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Abstract

Different semantics of abstract Argumentation Frameworks (AFs) provide dif-
ferent levels of decisiveness for reasoning about the acceptability of conflicting
arguments. The stable semantics is useful for applications requiring a high
level of decisiveness, as it assigns to each argument the label “accepted” or the
label “rejected”. Unfortunately, stable labellings are not guaranteed to exist,
thus raising the question as to which parts of AFs are responsible for the non-
existence. In this paper, we address this question by investigating a more general
question concerning preferred labellings (which may be less decisive than stable
labellings but are always guaranteed to exist), namely why a given preferred
labelling may not be stable and thus undecided on some arguments. In partic-
ular, (1) we give various characterisations of parts of an AF, based on the given
preferred labelling, and (2) we show that these parts are indeed responsible for
the undecisiveness if the preferred labelling is not stable. We then use these
characterisations to explain the non-existence of stable labellings. We present
two types of characterisations, based on labellings that are more (or equally)
committed than the given preferred labelling on the one hand, and based on the
structure of the given AF on the other, and compare the respective AF parts
deemed responsible. To prove that our characterisations indeed yield responsi-
ble parts, we use a notion of enforcement of labels through structural revision,
by means of which the preferred labelling of the given AF can be turned into
a stable labelling of the structurally revised AF. Rather than prescribing how
this structural revision is carried out, we focus on the enforcement of labels
and leave the engineering of the revision open to fulfil differing requirements of
applications and information available to users.
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1. Introduction

Argumentation formalisms have been widely studied for representing argu-
ments and conflicts between these arguments, and for evaluating which sets of
arguments should be accepted by resolving the conflicts. An important appli-
cation area of such formalisms is in decision support, where decisions are made5

based on an exchange of arguments and an evaluation of their acceptability, see
for example [1, 2, 3, 4, 5, 6, 7, 8, 9].

One of the most prominent formalisms is Dung’s (abstract) Argumentation
Framework (AF) [10], which assumes as given a set of arguments, i.e. abstract
entities that can represent anything desired by users, and attacks between these10

arguments. AFs are equipped with different semantics, defining which argu-
ments should be deemed acceptable. They can be defined in terms of accept-
able sets of arguments, so called extensions [10], or equivalently in terms of
labellings [11, 12], which assign one of the labels in (accepted), out (rejected),
or undec (undecided) to each argument. Extensions coincide with the set of15

all arguments labelled in by a corresponding labelling. Different semantics im-
pose different restrictions on labellings and extensions. Concerning labellings
in particular, each argument needs to be legally labelled, where an in-labelled
argument is legally labelled if all arguments attacking it are labelled out, an
out-labelled argument is legally labelled if at least one argument attacking it20

is labelled in, and an undec-labelled argument is legally labelled if at least one
argument attacking it is labelled undec and no argument attacking it is labelled
in [11, 12].

In many applications, it is desirable to choose a highly decisive semantics, in
other words, a semantics that assigns the label in or the label out to as many25

arguments as possible. Compared to less decisive semantics, this means greater
certainty about the acceptance status of arguments for the user. In particu-
lar, the preferred semantics assigns the label in to a maximal set of arguments
(w.r.t. set inclusion). If the union of all in- and out-labelled arguments in a
preferred labelling is maximal among all preferred labellings (w.r.t. set inclu-30

sion), the labelling is semi-stable [13]. Even more decisively, if all arguments in a
preferred labelling are labelled in or out, the labelling is stable. In applications
requiring decisiveness, e.g. in medical or legal scenarios, it is desirable to have
at least one stable labelling. Unfortunately, stable labellings are not guaranteed
to exist, that is, in some cases all preferred labellings may comprise arguments35

labelled undec.
As an illustration, consider the following example from the medical domain1,

represented graphically as an AF in Figure 1, where nodes are arguments and
directed edges are attacks.2 A physician needs to decide which therapy amongst

1A similar example can be found, e.g., in the legal domain as presented in [14].
2The example is inspired by the framework of [15] for representing and synthesising knowl-

edge from medical evidence. Whereas in [15] arguments are preferences over treatments,
supported by evidence, here, for simplicity of presentation, they are in support or against the
effectiveness of treatments.
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five possible therapies to recommend to her patient. She first reads a study prais-40

ing therapy A and concluding that therapy A is way more effective than therapy
B. This study thus provides an argument for the effectiveness of therapy A and
positions it as a counterargument against any argument stating that therapy B
is effective and should be chosen. In Figure 1, this is indicated by the attack
from argument “A is effective” to argument “B is effective”, which the physician45

obtains reading a second article. This second article recommends therapy B,
showing that it is more reliable than therapy C and much more effective than
therapy D. The physician reviews a third study, which describes the enormous
success of therapy C and the poor performance of therapy A compared to C.
Another article advocates therapy D somewhat incoherently, providing within50

the same study evidence against the effectiveness of this therapy. Therefore,
the argument “D is effective” in Figure 1 attacks itself. Finally, a fifth article
discusses therapy E, providing evidence against its effectiveness.

A is effective

undec

B is effective

undec

C is effective

undec

D is effective

undec

E is not effective

in

Figure 1: AF representing the physician’s information about therapies according to informa-
tion from scientific articles and the AF’s only preferred (and semi-stable) labelling LabArgpref .

The resulting AF, representing the physician’s information on the effective-
ness of the five therapies, has a single preferred (and semi-stable) labelling but55

no stable labelling. Thus, using the stable semantics, no therapy can be recom-
mended. The preferred (and semi-stable) labelling, referred to as LabArgpref in
the remainder of this introduction and illustrated in Figure 1, labels all argu-
ments as undec except for argument “E is not effective”, which is labelled in.
Thus, using the preferred (or semi-stable) semantics, the physician can draw60

the conclusion that therapy E is definitely not effective but still cannot make
any decision as to which therapy to prescribe. Thus, the non-existence of stable
labellings and the undecisiveness of preferred labellings are closely connected
problems.

In this paper we address the problem of non-existence of stable labellings65

as a by-product of identifying, for a chosen non-stable preferred labelling of a
given AF, which parts of the AF can be deemed responsible that this preferred
labelling is not stable. Our mechanisms for identifying parts responsible that
a chosen preferred labelling is not stable can be seen as means to move from a
“partially undecided” preferred labelling to a “fully decided” stable labelling in70

a rational way. Note that the problem of identifying parts responsible that a
chosen preferred labelling is not stable, is interesting in its own right, even if the
AF admits stable labellings. Indeed, preferred, non-stable labellings will differ
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from stable labellings in their assignment of in and out labels, so an argument
may be labelled in in a stable labelling and out in a non-stable preferred one.75

If the user has a preference for the assignment in the latter, but needs to be
fully decisive, then understanding why the preferred labelling is not stable is
important.

Naively, the set of all undec arguments may be deemed responsible if a
preferred labelling is not stable, since there are no undec arguments in a stable80

labelling. We show that, in general, only a subset of undec arguments is in fact
responsible in general. We propose two different characterisation approaches
identifying such sets of responsible arguments: a labelling-based approach and
a structural approach.

In the labelling-based approach, we give characterisations of responsible85

parts in terms of sets of arguments labelled undec by the chosen preferred
labelling and illegally labelled if all undec labels are changed to in or out.
As an example, consider the AF in Figure 1 and its only preferred labelling
LabArgpref . Figure 2 illustrates a re-labelling of the AF, where all arguments
labelled undec by LabArgpref are re-labelled as in or out. This may reflect90

the physician’s intuition about the effectiveness of the different therapies or her
belief in the truth of the different studies. For example, she may know that
the authors of the first study cannot be trusted, whereas those of the second
study work in an exemplary scientific manner, leading to the labels illustrated
in Figure 2. Only the argument “A is effective” is illegally labelled by the new95

labelling and is thus deemed responsible by our labelling-based approach that
LabArgpref is not a stable labelling, and consequently that no stable labelling
exists.

In contrast, in the structural approach we characterise responsible parts
as initial strongly connected components (SCCs) [16] of the AF restricted to100

arguments labelled undec by the chosen preferred labelling. We call such parts
strongly connected undec parts (SCUPs) and prove that they always comprise an
odd-length cycle of attacking arguments. The only SCUP of the AF in Figure 1
is the cycle of arguments about therapies A, B, and C, so the set of these three
arguments is deemed responsible by our structural approach that LabArgpref is105

not a stable labelling, and consequently that no stable labelling exists.

A is effective

out

B is effective

in

C is effective

out

D is effective

out

E is not effective

in

Figure 2: AF representing the physician’s information, where undec labels from the preferred
labelling are replaced by in or out labels (underlined labels are illegal).

We define responsibility that a chosen preferred labelling is not stable in
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terms of parts of the AF that require changes in order to turn the undec labels
into legal in or out labels. This necessarily requires some structural revision of
those responsible parts. Importantly, the exact structural change is not of in-110

terest here; instead, the engineering of the revision is left open to fulfil differing
requirements of applications and information available to users. We therefore
focus on the change of labels from undec to in or out and the fact that enforc-
ing3 the label through some structural revision makes this label legal (in the
structurally revised AF).115

For instance, in our example we determined that one of the sets of arguments
deemed responsible by our labelling-based characterisation comprises only the
argument “A is effective”, since it is illegally labelled out by the re-labelling in
Figure 2. Enforcing the label out for this argument leads to “A is effective” being
legally labelled out. This could be achieved, e.g., by adding a new argument120

attacking the argument about A, as illustrated in Figure 3. The new argument
may be additional evidence found by the physician, concluding that therapy A is
not effective at all. In this paper, however, we are interested in the existence of
some structural revision rather than the exact nature of the structural change.

Using this notion of enforcement of labels, we prove that our labelling-based125

characterisations yield exactly those sets of arguments (a) that need to be en-
forced and (b) that are sufficient to enforce in order to ensure that all arguments
are legally labelled (in the structurally revised AF). Since our labelling-based
characterisations thus provide necessary and sufficient conditions for turning a
non-stable into a stable labelling (through structural revision), the characterised130

parts of the AF can be deemed responsible that the given preferred labelling is
not stable.

Within our structural approach, the characterisation in terms of SCUPs give
a necessary condition for turning a non-stable into a stable labelling (through
structural revision). We furthermore show that iteratively enforcing arguments135

in SCUPs gives a sufficient condition for turning a non-stable into a stable
labelling (through structural revision). SCUPs can thus be deemed responsible
that the given preferred labelling is not stable.

Note that our labelling-based characterisations are defined with respect to
any preferred labelling. For preferred labellings that are stable, the empty set140

of arguments is the only “responsible” set identified by our characterisations.
We can therefore show that an AF has no stable labelling if and only if, with
respect to all preferred labellings, there exists a non-empty set of arguments
identified as the responsible part of the AF.

The paper is organised as follows. We provide background on AFs in Sec-145

tion 2 and give some preliminary definitions used throughout this paper in
Section 3. In Section 4, we define our labelling-based characterisations of parts
of an AF and prove that two of them are indeed responsible if a given preferred

3Baumann and Brewka [17] introduce the term “enforcement” as a structural change of an
AF that makes a desired set of arguments an extension. We here use the term differently, to
refer to a structural change that makes desired labels of arguments legal.
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A is effective

out

B is effective

in

C is effective

out

D is effective

out

E is not effective

in

A is not effective

in

Figure 3: AF representing the physician’s information, where the previously illegal out-label
of the argument about therapy A is enforced by adding a new argument.

labelling is not stable since they provide necessary and sufficient conditions for
turning the preferred labelling into a stable labelling through a structural revi-150

sion. In Section 5, we introduce our structural characterisations of responsible
parts: odd-length cycles of attacking arguments, specific strongly connected
components (SCCs), and SCUPs. The latter are indeed responsible if the given
preferred labelling is not stable as they provide a sufficient condition for turning
a non-stable preferred labelling into a stable one (of the structural revision). We155

then investigate the relation between our labelling-based and structural charac-
terisations in Section 6. In Section 7, we discuss how our definitions characterise
the non-existence of stable labellings, explain some of the design choices under-
lying our approach, and compare our to related work. In Section 8, we conclude
and discuss future work.160

2. Background

An argumentation framework (AF) [10] is a pair AF = 〈Ar,Att〉, where Ar
is a (finite) set of arguments and Att ⊆ (Ar × Ar) is a set of attacks between
them. We say that argument A attacks argument B, or equivalently that B
is attacked by A, if and only if (A,B) ∈ Att. A set of arguments Args ⊆ Ar165

attacks a set of arguments Args′ ⊆ Ar if and only if there exist arguments
A ∈ Args and B ∈ Args′ such that (A,B) ∈ Att. We denote by parents(Args)
the set of all arguments that are not contained in Args and attack Args, i.e.
parents(Args) = {A ∈ Ar \Args | (A,B) ∈ Att,B ∈ Args}.

Example 1. Let AF1 = 〈{a, b, c}, {(a, b), (b, b), (b, c), (c, b)}〉, which is illus-170

trated as a graph in Figure 4 (with arguments as nodes and attacks as directed
edges). For the set of arguments {b}, parents({b}) = {a, c}.

For the rest of this paper, we assume as given a fixed but arbitrary argu-
mentation framework AF = 〈Ar,Att〉, unless specified otherwise.
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a b c

Figure 4: AF1 from Example 1.

The semantics of an AF are originally defined in terms of extensions [10],175

i.e. sets of “accepted” arguments, which are able to defend themselves against
all attacking arguments. The semantics can be equivalently expressed in terms
of labellings [11, 12], which we will use here.

A labelling of AF is a total function LabArg : Ar −→ {in, out, undec}.
We will sometimes refer to a labelling regarding the set of arguments it labels180

rather than the AF, for example LabArg is a labelling of Ar. We denote the
set of all arguments labelled in by LabArg as in(LabArg), i.e. in(LabArg) =
{A ∈ Ar | LabArg(A) = in}, and the sets of arguments labelled out and
undec as out(LabArg) and undec(LabArg), respectively. We call a labelling
with undec(LabArg) = ∅ an in-out labelling.185

Given a labelling LabArg of AF and an argument A ∈ Ar:

• A is legally labelled in by LabArg if and only if A ∈ in(LabArg) and
∀B ∈ Ar attacking A it holds that B ∈ out(LabArg);

• A is legally labelled out by LabArg if and only if A ∈ out(LabArg) and
∃B ∈ Ar attacking A such that B ∈ in(LabArg);190

• A is legally labelled undec by LabArg if and only if A ∈ undec(LabArg)
and ∃B ∈ Ar attacking A such that B ∈ undec(LabArg), and ∀C ∈ Ar
attacking A it holds that C /∈ in(LabArg).

A is legally labelled by LabArg if and only if it is legally labelled in, out, or
undec by LabArg; otherwise A is illegally labelled by LabArg. Equivalently we195

say that a label is legal/illegal w.r.t. LabArg.
A labelling LabArg of AF is a complete labelling of AF if and only if all

arguments A ∈ Ar are legally labelled by LabArg. A complete labelling LabArg
of AF is

• a stable labelling of AF if and only if it is an in-out labelling;200

• a preferred labelling of AF if and only if in(LabArg) is maximal (w.r.t. ⊆)
among all complete labellings.

Example 2. AF1 (see Figure 4) has one complete labelling, namely LabArg =
{(a, in), (b, out), (c, in)}, which is also the only preferred and only stable la-
belling.205

Given a set of arguments Args ⊆ Ar, AF↓Args = 〈Args,AttArgs〉 denotes
the restriction of AF to Args, where AttArgs = Att ∩ (Args × Args). Fur-
thermore, given a labelling LabArg of AF , LabArg↓Args = LabArg ∩ (Args ×
{in, out, undec}) denotes the restriction of LabArg to Args [18].
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Example 3. Given the set of arguments {a, b}, AF1↓{a,b} is depicted in Fig-210

ure 5 along with the labelling LabArg↓{a,b}.

a b

in out

Figure 5: AF1↓{a,b} and the labelling LabArg↓{a,b}.

A path from argument A ∈ Ar to argument B ∈ Ar is a sequence of ar-
guments A0, A1, . . . , An (n > 0, ∀i ∈ {0, . . . , n} : Ai ∈ Ar) with A0 = A and
An = B such that ∀i ∈ {0, . . . , n − 1} : Ai attacks Ai+1. A cycle is a path
A0, A1, . . . , An where An = A0. It is an odd-length cycle if and only if n is odd.215

With an abuse of notation, we denote a cycle as a set of arguments C , where
Ai ∈ C if and only if Ai occurs in the cycle.

Path-equivalence between two arguments A ∈ Ar and B ∈ Ar holds if and
only if A = B or there exists a path both from A to B and from B to A.
The equivalence classes of arguments under the relation of path-equivalence220

are called strongly connected components (SCCs) of AF [16]. Since SCCs are
sets of arguments, the notion of attacks between sets of arguments can be
straightforwardly lifted to a notion of attacks between SCCs. Given an SCC
Args ⊆ Ar, the set of parent SCCs is parentSCCs(Args) = {Args′ ⊆ Ar |
Args′ is an SCC of AF , Args′ ∩ parents(Args) 6= ∅}. If parentSCCs(Args) =225

∅, then Args is an initial SCC. Furthermore, the set of ancestor SCCs of Args is

ancestorSCCs(Args) = parentSCCs(Args) ∪⋃
Args′∈parentSCCs(Args) ancestorSCCs(Args′).

Example 4. AF1 (see Figure 4) has one odd-length cycle, namely {b}, and
two SCCs, namely {a} and {b, c}, where the former attacks the latter.230

parentSCCs({a}) = ancestorSCCs({a}) = ∅, so {a} is an initial SCC, and
parentSCCs({b, c}) = ancestorSCCs({b, c}) = {a}.

An argumentation framework (AF) with input [18] is a tuple

AFI = (AF , I, LabArgI , AttI)

where I is a set of input arguments such that I ∩Ar = ∅, LabArgI is the input235

labelling of I (i.e. a labelling of I), and AttI is an attack relation between I
and Ar, i.e. AttI ⊆ (I × Ar). We say that argument A ∈ I attacks argument
B ∈ Ar if (A,B) ∈ AttI .

The semantics of an AF with input is defined as follows. A labelling LabArg
of AF is a complete labelling w.r.t. AFI if and only if for all A ∈ Ar it holds240

that4:

4Baroni et al. [18] call this the “canonical local function” of the complete semantics.
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• if A ∈ in(LabArg), then ∀B ∈ Ar ∪ I attacking A it holds that B ∈
out(LabArg) ∪ out(LabArgI);

• if A ∈ out(LabArg), then ∃B ∈ Ar ∪ I attacking A such that B ∈
in(LabArg) ∪ in(LabArgI);245

• if A ∈ undec(LabArg), then ∃B ∈ Ar ∪ I attacking A such that B ∈
undec(LabArg)∪ undec(LabArgI), and ∀B ∈ Ar ∪ I attacking A it holds
that B /∈ in(LabArg) ∪ in(LabArgI).

A labelling LabArg of AF is a stable labelling w.r.t. AFI if and only if LabArg
is a complete labelling w.r.t. AFI and undec(LabArg) = ∅. We sometimes say250

that LabArg is a complete/stable labelling of AF w.r.t. the input I.

Example 5. An AF with input (AF1, I, LabArgI , AttI) is depicted in Figure 6,
where the set of input arguments is I = {a′, b′}, the labelling of input arguments
is LabArgI = {(a′, in), (b′, undec)}, and AttI = {(a′, a)}. There are two com-
plete labellings w.r.t. (AF1, I, LabArgI , AttI), namely255

{(a, out), (b, undec), (c, undec)} and {(a, out), (b, out), (c, in)},
where the latter is a stable labelling w.r.t. (AF1, I, LabArgI , AttI).

a b ca′b′

inundec

Figure 6: The AF with input from Example 5.

3. Preliminaries

The aim of this paper is to give characterisations of parts of an AF responsi-
ble that a given preferred labelling is not stable. To prove that the characterised260

parts are in fact responsible, we show that when re-labelling arguments labelled
undec by the preferred labelling as in or out, with the aim to obtain a stable
labelling, the labels of arguments in the characterised parts have to be enforced
through some structural revision to ensure their legality. In contrast, labels of
arguments not in the characterised parts may not have to be enforced.265

Importantly, we are here not interested in the exact structural revision,
but rather in any (sensible) structural revision of the AF that turns illegally
labelled arguments into legally re-labelled ones. In other words, we see structural
revisions as a way to “enforce” the legality of labels. Since we are only interested
in enforcing the labels of certain arguments (usually those re-labelled as in or270

out that have been identified as responsible), we restrict structural revisions to
a given set of arguments.

The rational behind this enforcement of labels through structural revision is
as follows: If a preferred labelling is not stable, our characterisations of responsi-
ble sets point the user towards parts of the AF responsible that the acceptability275
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of some arguments cannot be decided. The user can then further investigate
the nature of these arguments and decide which label they should have. The
user may for example notice that she expected one of the responsible arguments
to be accepted and would thus label it as in. To ensure that this argument is
legally labelled, the structure of the AF (in particular, the structure of the part280

including the re-labelled argument) then has to be revised. This revision may
be grounded in the user’s realisation that the structure of the AF is incorrect,
for example, that an important argument is missing (adding an argument to
the AF) or that an existing attack should not be present in the AF (deleting an
attack).285

Following this intuition, we introduce set-driven revisions, which ensure that
labels (according to some desired labelling) of arguments in a given set Args
are legal after structurally revising the part of the AF consisting of Args, while
not making any structural changes affecting arguments not in Args.

Definition 1 (Set-Driven Revision and Revision Labelling). Let LabArg290

be a labelling of AF and let Args ⊆ Ar. A (set-driven) revision of AF
w.r.t. Args by LabArg is AF~ = 〈Ar~, Att~〉 such that:

• Ar ⊆ Ar~;

• {(A,B) ∈ Att | B ∈ Ar \Args} = {(A,B) ∈ Att~ | B ∈ Ar \Args};

• there exists a labelling LabArg~ of AF~ satisfying that:295

– ∀C ∈ Ar: LabArg~(C) = LabArg(C);

– ∀D ∈ Ar~ \Ar: D is legally labelled in or out by LabArg~ in AF~;

– ∀E ∈ Args: E is legally labelled by LabArg~ in AF~.

Any such LabArg~ is called a revision labelling of AF~.

Since a set-driven revision enforces desired labels for arguments in the given300

set Args, we do not allow the deletion of arguments in Args. Arguments may
thus only be added in a set-driven revision (specified by the first bullet in Defi-
nition 1). Furthermore, structural changes that may affect (the legality of labels
of) arguments not in Args are prohibited. Thus, all attacks on arguments not
in Args have to remain the same in the revision (specified by the second bullet).305

It follows, that permitted structural changes are the addition of attacks between
arguments in Args or between new arguments and arguments in Args, and the
deletion of attacks between arguments in Args or from arguments not in Args
to arguments in Args (indirectly specified by the second bullet). Since LabArg
specifies the desired labels of all arguments, a revision labelling is a simple “en-310

largement” of LabArg to include (legal) labels of new arguments; the labels of
all other arguments remain unchanged (specified by the first and second item
of the third bullet). Furthermore, and most importantly, a revision labelling
ensures that all arguments in Args are legally labelled in the revision (specified
by the third item of the third bullet).315

From here onwards, we will refer to set-driven revisions simply as revisions.
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Example 6. Consider the AF in Figure 1 (see page 3), call it AF therapy. From
here on, we use a shorthand notation for each argument according to the letter of
the respective therapy, e.g. A denotes the argument “A is effective”. Let LabArg
be the labelling of AF therapy illustrated in Figure 2 (see page 4). Figure 3 (see320

page 6) depicts a revision of AF therapy w.r.t. {A} by LabArg, which we denote
AF~

therapy, and the labelling in Figure 3 is a revision labelling of AF~
therapy.

Note that AF~
therapy is also a revision of AF therapy w.r.t. any superset of {A}

by LabArg.

As shown by the following lemma, a revision exists for any given set of325

arguments and any labelling.

Lemma 1. Let LabArg be a labelling of AF and let Args ⊆ Ar. Then there
exists a revision of AF w.r.t. Args by LabArg.

The proof of this lemma and of most other lemmas and propositions pre-
sented throughout this paper can be found in Appendix B.330

Note that, in this paper, we are not concerned with the exact structural
change of a revision compared to the original AF. We simply use the structural
change of an AF as a tool to ensure that labels of arguments are legal. As a re-
sult, there may be various revisions of an AF w.r.t. a given set of arguments and
labelling. Furthermore, a revision may have various different revision labellings.335

It is in general up to the preference of users and the application scenario to de-
cide which of these revisions and revision labellings to use. For example, a user
may be interested in revisions with “minimal” structural changes as in [19, 20].

Example 7. Let AF2 be the AF depicted on the left of Figure 7 and LabArg
the labelling of AF2 illustrated on the left of Figure 7, which is the labelling340

we desire. Argument a is illegally labelled by LabArg, so a revision can be
used to enforce the desired label for argument a. A possible revision of AF2

w.r.t. {a} by LabArg is illustrated on the right of Figure 7, alongside a revi-
sion labelling. Another revision of AF2 w.r.t. {a} by LabArg is illustrated in
Figure 8, alongside two different revision labellings.345

a

out

a

out

a′

in

Figure 7: Left – AF2 and a labelling LabArg, where the underline indicates that the argument
is illegally labelled. Right – A revision of AF2 and its only revision labelling (see Example 7).
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a

out

a′ a′′

in out

a

out

a′ a′′

out in

Figure 8: A revision of AF2, which has two different revision labellings (see Example 7).

Next, we extend the comparison notion of commitment of two labellings of
an AF [11] to the comparison of labellings of potentially different AFs, where
the arguments of one AF form a superset of the arguments of the other.

Definition 2 (Commitment of Labellings). Let LabArg be a labelling of
AF and let LabArg′ be a labelling of AF ′ = 〈Ar′, Att′〉, where Ar ⊆ Ar′.350

• LabArg′ is more or equally committed than LabArg, denoted LabArg v
LabArg′, if and only if in(LabArg) ⊆ in(LabArg′), out(LabArg) ⊆
out(LabArg′) and undec(LabArg′) ⊆ undec(LabArg).

• LabArg′ is more committed than LabArg, denoted LabArg @ LabArg′, if
and only if LabArg v LabArg′ and undec(LabArg′) ⊂ undec(LabArg).355

We note that a revision labelling is more or equally committed than the
original labelling.

Observation 2. Let LabArg be a labelling of AF and Args ⊆ Ar. Then,
for all revisions AF~ of AF w.r.t. Args by LabArg and all revision labellings
LabArg~ of AF~, it holds that LabArg v LabArg~.360

For instance, the two revision labellings of the revision of AF2 illustrated
in Figure 8 (see Example 7) are more committed than the original labelling of
AF2, depicted on the left of Figure 7.

Notation 1. In the remainder of this paper, and if not stated otherwise, we
assume as given a fixed but arbitrary argumentation framework AF = 〈Ar,Att〉365

and a preferred labelling LabArgpref of AF .

4. Labelling-Based Characterisations

As previously explained, we aim to 1) characterise parts of an AF responsible
that a chosen preferred labelling is not stable and 2) prove the responsibility of
these parts by showing that, in order to obtain a stable labelling that is more370

committed than this preferred labelling, in or out labels have to be enforced
for arguments in these responsible parts.
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In this section, we give three declarative characterisations of sets of argu-
ments responsible if LabArgpref is not a stable labelling. All characterisations
identify the empty set as responsible if and only if LabArgpref is stable. These375

characterisations are labelling-based, which means that they identify responsible
sets based on labellings that are more or equally committed than LabArgpref .
We also investigate our characterisations in the light of revisions of the AF that
(do not) have a stable labelling that is more committed than LabArgpref . In
particular, we show that our two non-näıve characterisations, which we intro-380

duce in Sections 4.2 and 4.3, define necessary and sufficient conditions for the
existence and non-existence of a more committed stable labelling of a revision.

4.1. The Basic Approach

A näıve way to characterise arguments responsible that LabArgpref is not a
stable labelling is in terms of all arguments labelled undec by LabArgpref , since385

these are the arguments violating the definition of a stable labelling.

Definition 3 (Labelling-Based Characterisation 1). undec(LabArgpref ) is
the labelling-based responsible set w.r.t. LabArgpref .

Trivially, if LabArgpref is a stable labelling, the labelling-based responsible
set is the empty set.390

It is straightforward that this characterisation provides a sufficient condi-
tion for turning a non-stable preferred labelling into a stable labelling (of a
revision), as stated in the following proposition. That is, a labelling-based re-
sponsible set comprises all those arguments whose labels definitely need to be
enforced in order to obtain a stable labelling of a revision, i.e. the responsible395

arguments are included in this set. However, (since this characterisation gives
only a sufficient but not a necessary condition) a labelling-based responsible
set may also comprise arguments whose labels do not necessarily need to be
enforced, i.e. non-responsible arguments.

Proposition 3. Let Args be the labelling-based responsible set w.r.t. LabArgpref400

and let LabArg be a labelling of AF such that LabArgpref v LabArg and
undec(LabArg) = ∅. Then, for all revisions AF~ of AF w.r.t. Args by LabArg
and all revision labellings LabArg~ of AF~, LabArg~ is a stable labelling of
AF~.

Example 8. Consider again AF therapy from Example 6 (see page 11) and its405

only preferred labelling LabArgpref , which labels all arguments undec except
for argument E, which is labelled in. Thus, the labelling-based responsible set
w.r.t. LabArgpref is {A,B,C,D}. Let LabArg be the labelling of AF therapy

illustrated in Figure 2 (see page 4). The revision labelling of the revision
AF~

therapy of AF therapy w.r.t. {A,B,C,D} by LabArg (see Figure 3, page 6) is410

a stable labelling of AF~
therapy.
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Since by Lemma 1 a revision exists w.r.t. any set of arguments and any
labelling, it follows that there exists a revision w.r.t. the labelling-based re-
sponsible set, and in particular (by Proposition 3) a revision that has a stable
labelling.415

Corollary 4. Let Args be the labelling-based responsible set w.r.t. LabArgpref
and let LabArg be a labelling of AF such that LabArgpref v LabArg and
undec(LabArg) = ∅. Then there exists a revision AF~ of AF w.r.t. Args
by LabArg and a revision labelling LabArg~ of AF~ such that LabArg~ is a
stable labelling of AF~.420

Note that, by Observation 2, a stable labelling obtained through such a
revision is more committed than LabArgpref (if LabArgpref is not stable). Thus,
as desired, the labelling-based responsible set can be used to turn a non-stable
preferred labelling into a stable labelling (of a revision).

4.2. Enforcement Sets425

The definition of labelling-based responsible set is a rather näıve character-
isation of arguments responsible if a preferred labelling is not stable, since it is
often possible to legally label some of its arguments as in or out. For example,
considering the arguments A, B, C, and D labelled undec by the preferred la-
belling of AF therapy (see Figure 1, page 3), we observe that three out of these430

four arguments can in fact be legally labelled in or out, as illustrated in Figure 2
(see page 4).

Our next characterisation takes this observation into account, characteris-
ing specific subsets of the labelling-based responsible set as responsible. In
particular, arguments that are legally labelled by an in-out labelling that is435

more or equally committed than LabArgpref will not be deemed responsible.
More precisely, our second labelling-based characterisation defines a minimal
set of arguments labelled undec by LabArgpref satisfying that some in-out la-
belling that is more or equally committed than LabArgpref legally labels all
non-responsible arguments (i.e. all arguments not contained in this set).440

Definition 4 (Labelling-Based Characterisation 2). Args ⊆ Ar is an en-
forcement set w.r.t. LabArgpref if and only if it is a minimal set of arguments
(w.r.t. ⊆) such that

Args ⊆ undec(LabArgpref )
and ∃LabArg of AF with LabArgpref v LabArg and undec(LabArg) = ∅445

such that ∀A ∈ undec(LabArgpref ) \Args: A is legally labelled by LabArg.
Any such LabArg is an enforcement labelling w.r.t. Args.

Example 9. Consider AF therapy and its only preferred labelling LabArgpref
(see Example 8 on page 13 and Figure 1 on page 3). Then {A} is an enforce-
ment set w.r.t. LabArgpref , where the labelling shown in Figure 2 (page 4) is an450

enforcement labelling, as it is an in-out labelling that is more committed than
LabArgpref and it legally labels all arguments labelled undec by LabArgpref
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except for argument A (i.e. arguments B, C, and D). Furthermore, {A} is a
minimal set satisfying this condition, since for its only subset {} there exists
no in-out labelling that is more committed than LabArgpref and that legally455

labels all arguments labelled undec by LabArgpref . There are two more en-
forcement sets w.r.t. LabArgpref , namely {B} and {C}. Note that {D} is not
an enforcement set since there exists no in-out labelling that legally labels A,
B, and C. Furthermore, no superset of {D} is an enforcement set, as no such
superset fulfils the minimality condition.460

In Example 9, all enforcement sets are disjoint. The following example
illustrates that different enforcement sets may contain the same arguments and
that an enforcement set may have various different enforcement labellings.

Example 10. Let AF3 be the AF on the left of Figure 9, whose only preferred
labelling LabArgpref labels all arguments as undec. There are three enforcement465

sets w.r.t. LabArgpref : {a, e}, {b, e}, and {c, e}. Note that for all of them
various enforcement labellings exist, e.g. the labelling illustrated on the left of
Figure 9 is an enforcement labelling of {b, e}, and so is {(a, out), (b, out), (c, in),
(d, in), (e, in)} (among others).

a

in

b

in

c

out

d

out

e

out

a

in

b

in

c

out

d

out

e

out

e′

in

Figure 9: Left – AF3 and labelling LabArg, where underlined labels are illegal. Right – A
revision AF~

3 of AF3 by LabArg and a revision labelling that is a stable labelling of AF3

(see Examples 10 and 11).

It follows from Definition 4 that all arguments in an enforcement set are ille-470

gally labelled by an enforcement labelling. For example, arguments b and e are
illegally labelled by both enforcement labellings discussed in Example 10. Still,
we note that an enforcement set is defined as a minimal set of arguments such
that all arguments not in this set are legally labelled. An alternative definition
of enforcement set as a minimal set of arguments such that all arguments in475

this set are illegally labelled is however not equivalent as it would always yield
the empty set as the only enforcement set (w.r.t. any enforcement labelling).
Clearly, the empty set, and thus the alternative definition, would not be helpful
in characterising parts of an AF responsible that a given preferred labelling is
not stable.480

In the following lemma, we show that at least one enforcement set exists
and that enforcement sets are always non-empty if LabArgpref is not a stable
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labelling. Both are important properties for sets of arguments characterising
parts of an AF responsible that a preferred labelling is not stable.

Lemma 5. Enforcement sets have the following properties:485

1. There exists an enforcement set w.r.t. LabArgpref .

2. Args = ∅ is an enforcement set w.r.t. LabArgpref if and only if LabArgpref
is a stable labelling.

Note that if Args = ∅ is an enforcement set w.r.t. LabArgpref , it is the only
enforcement set w.r.t. LabArgpref as it is the minimal set satisfying Definition 4,490

where LabArgpref is the only enforcement labelling.

4.2.1. Responsibility of Enforcement Sets

The reason for naming our second labelling-based characterisation “enforce-
ment sets” is illustrated by Theorem 6: “enforcing” the labels of an enforcement
labelling for arguments in an enforcement set in terms of a revision results in a495

stable labelling (of a revision). An enforcement set is thus a sufficient condition
for obtaining a stable labelling through a revision, which is more refined than
the condition given by the labelling-based responsible set (since every enforce-
ment set is a subset of the labelling-based responsible set). This proves that all
arguments that are jointly responsible that a preferred labelling is not stable500

are contained in an enforcement set.

Theorem 6. Let Args ⊇ Argsenf where Argsenf is an enforcement set w.r.t.
LabArgpref and let LabArg be an enforcement labelling w.r.t. Argsenf . Then,
for all revisions AF~ of AF w.r.t. Args by LabArg and all revision labellings
LabArg~ of AF~, LabArg~ is a stable labelling of AF~.505

Proof. Since by Definition 4, undec(LabArg) = ∅, it follows from Observa-
tion 2 that undec(LabArg~) = ∅. By Definition 1, all A ∈ Ar~ \Ar are legally
labelled by LabArg~ in AF~. Let B ∈ Ar. If B ∈ Args, then, by Definition 1,
B is legally labelled by LabArg~ in AF~. If B /∈ Args, and thus B /∈ Argsenf ,
then by Lemma 39 in Appendix A, B is legally labelled by LabArg in AF , so by510

Lemma 37 in Appendix A, B is legally labelled by LabArg~ in AF~. Since all
arguments are legally labelled by LabArg~ and undec(LabArg~) = ∅, LabArg~

is a stable labelling of AF~. �

Example 11. Consider the enforcement set {b, e} and the enforcement la-
belling LabArg of AF3, illustrated on the left of Figure 9 (see page 15). The515

AF on the right of Figure 9 is a revision AF~
3 of AF3 w.r.t. {b, e} by LabArg

and the revision labelling LabArg~ illustrated in the figure is a stable labelling
of AF~

3 .

Note that Theorem 6 shows that in order to obtain a stable labelling (of
a revision), it is sufficient to enforce the label in or out for certain arguments520

that are labelled undec by LabArgpref . In particular, it tells us which subsets of
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undec arguments can be chosen for the enforcement, namely enforcement sets.
In general enforcing labels for some (unrestricted) subset of undec arguments
may not result in a stable labelling (of a revision). For example, for AF3,
whose only preferred labelling labels all arguments as undec, choosing {d} (or525

even {d, e}) as a subset of undec arguments and enforcing the labels in or out
for these arguments, we do not obtain a stable labelling. If, however, one of the
enforcement sets is chosen, as illustrated in Example 11, and labels are enforced
appropriately, then a stable labelling (of the revision) is obtained.

Since by Lemma 1 a revision exists w.r.t. any set of arguments and labelling,530

it follows that there exists a revision w.r.t. an enforcement set by an enforcement
labelling and that the revision has a stable labelling that is more committed than
LabArgpref .

Corollary 7. Let Args ⊇ Argsenf where Argsenf is an enforcement set w.r.t.
LabArgpref and let LabArg be an enforcement labelling w.r.t. Argsenf . Then535

there exists a revision AF~ of AF w.r.t. Args by LabArg and a revision la-
belling LabArg~ of AF~ such that LabArg~ is a stable labelling of AF~.

4.3. Preventing Sets

Enforcement sets characterise a responsible set of arguments with respect to
a specific more committed labelling, which illegally labels all arguments in this540

set. Instead, our second non-näıve characterisation defines a responsible set of
arguments as a minimal set containing at least one illegally labelled argument
with respect to every in-out labelling that is more committed than LabArgpref .

Definition 5 (Labelling-Based Characterisation 3). Args ⊆ Ar is a pre-
venting set w.r.t. LabArgpref if and only if it is a minimal set of arguments545

(w.r.t. ⊆) such that
Args ⊆ undec(LabArgpref )
and ∀LabArg of AF with LabArgpref @ LabArg and undec(LabArg) = ∅
it holds that ∃A ∈ Args such that A is illegally labelled by LabArg.

Example 12. Consider AF therapy and its only preferred labelling LabArgpref550

(see Example 8 on page 13 and Figure 1 on page 3). The only preventing set
w.r.t. LabArgpref is {A,B,C}, since no matter how the labels in and out are
assigned to this set of arguments, at least one argument is illegally labelled. In
contrast, for all subsets there exists some in-out labelling that legally labels all
arguments. For instance, for the set {A,B}, an in-out labelling that labels A555

as in and B and C as out legally labels both A and B.

Note that in contrast to the definition of enforcement sets, we only consider
labellings that are more committed than LabArgpref in the definition of pre-
venting sets. This is because for enforcement sets LabArgpref itself can be an
enforcement labelling (if it is a stable labelling), whereas for preventing sets560

LabArgpref needs to be excluded as a labelling having illegally labelled argu-
ments if it is a stable labelling.

As for enforcement sets, at least one preventing set exists w.r.t. LabArgpref
and preventing sets are always non-empty if LabArgpref is not a stable labelling.
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Lemma 8. Preventing sets have the following properties:565

1. There exists a preventing set w.r.t. LabArgpref .

2. Args = ∅ is a preventing set w.r.t. LabArgpref if and only if LabArgpref
is a stable labelling.

Note that, analogously to enforcement sets, if Args = ∅ is a preventing set
w.r.t. LabArgpref , it is the only preventing set w.r.t. LabArgpref .570

4.3.1. Responsibility of Preventing Sets

Theorem 9 illustrates the reason for naming our third labelling-based charac-
terisation “preventing sets”: all revisions w.r.t. a set of arguments not compris-
ing any argument from some preventing set have no stable labelling that is more
committed than LabArgpref . Thus, preventing sets define a sufficient condition575

for “preventing” the existence of a stable labelling that is more committed than
LabArgpref .

Theorem 9. Let Args ⊆ Ar \ Argsprev where Argsprev is a preventing set
w.r.t. LabArgpref . Then, for all labellings LabArg of AF such that LabArgpref @
LabArg and undec(LabArg) = ∅, there exists no revision AF~ of AF w.r.t. Args580

by LabArg such that some revision labelling LabArg~ of LabArg~ is a stable
labelling of AF~.

Proof. Assume there exists a revision AF~ of AF w.r.t. Args by LabArg and
a revision labelling LabArg~ of AF~ such that LabArg~ is a stable labelling
of AF~. By Definition 5, ∃A ∈ Argsprev such that A is illegally labelled by585

LabArg in AF . Since A ∈ Ar \Args, it follows from Lemma 37 in Appendix A
that A is illegally labelled by LabArg~ in AF~. Contradiction. �

Example 13. RecallAF3, depicted on the left of Figure 9 (see page 15), and its
only preferred labelling LabArgpref , which labels all arguments as undec. There
are two preventing sets w.r.t. LabArgpref , namely {a, b, c} and {e}. Consider the590

preventing set {e} and some in-out labelling of AF3, e.g. LabArg illustrated on
the left of Figure 9. In order to ensure that e is legally labelled by LabArg, an
attack on e from some argument labelled in has to be added (e.g. as illustrated
on the right of Figure 9). Conversely, if e was labelled in by an in-out labelling,
the self-attack of e would have to be deleted in order to ensure that e was legally595

labelled. Thus, no revision w.r.t. a set of arguments not containing e can result
in e being legally labelled.

4.4. Enforcement versus Preventing Sets

Theorems 6 and 9 hint at a connection between enforcement and preventing
sets: one provides a sufficient condition for the existence of a stable labelling600

after revision, the other a sufficient condition for the non-existence. In this
section, we investigate the relationship between enforcement and preventing
sets in more detail.

We first show that a preventing set is a minimal set containing at least one
argument from each enforcement set (if non-empty enforcement sets exist).605
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Theorem 10. Let Senf be the set of all enforcement sets w.r.t. LabArgpref .
Then S = {Args ⊆ Ar | Args is a minimal set satisfying that ∀Argsenf 6= ∅ ∈
Senf : Args ∩Argsenf 6= ∅} is the set of all preventing sets w.r.t. LabArgpref .

Proof. We prove that all Args ∈ S are preventing sets and that all preventing
sets are contained in S. We note that, by Lemma 5, Senf 6= ∅. If Senf = {∅}610

then S = {∅}. By Lemma 5 LabArgpref is a stable labelling and by Lemma 8
the empty set is the only preventing set. If Senf 6= {∅} then ∀Argsenf ∈ Senf :
Argsenf 6= ∅ and LabArgpref is not a stable labelling.

• Let Args ∈ S and assume that Args is not a preventing set. Then either
Args is not a minimal set satisfying the conditions in Definition 5 or Args615

does not satisfy the conditions at all.

– In the first case, ∃Argsprev ⊂ Args such that Argsprev is a pre-
venting set. Since Args is a minimal set satisfying that ∀Argsenf ∈
Senf : Args∩Argsenf 6= ∅, it follows that ∃Args′enf ∈ Senf such that
Argsprev∩Args′enf = ∅. Since Args′enf is an enforcement set there ex-620

ists an enforcement labelling LabArg. By Lemma 39 in Appendix A it
holds that ∀B ∈ Ar\Args′enf , B is legally labelled by LabArg. Since
Argsprev is a preventing set it holds that ∃C ∈ Argsprev such that C
is illegally labelled by LabArg. Contradiction since C ∈ Ar\Args′enf .

– In the second case, we note that Args ⊆ undec(LabArgpref ) since625

∀A ∈ Args : ∃Argsenf such that A ∈ Argsenf and Argsenf ⊆
undec(LabArgpref ) by Definition 4. Thus, Args violates Definition 5
because ∃LabArg such that LabArgpref @ LabArg, undec(LabArg) =
∅, and ∀A ∈ Args it holds that A is legally labelled by LabArg. Let
Args′ = Ar \ Args. Then, ∀A ∈ Ar \ Args′ = Args, A is legally630

labelled by LabArg, in particular all A ∈ undec(LabArgpref ) \Args′

are legally labelled by LabArg. Thus, Args′ satisfies the conditions
of an enforcement set (disregarding minimality). Since by definition
of Args′ it holds that Args ∩ Args′ = ∅, Args′ is not an enforce-
ment set (by definition of Args). Thus, Args′ is not a minimal set635

satisfying the conditions of an enforcement set, i.e. ∃Argsenf ∈ Senf

such that Argsenf ⊂ Args′. Then, by definition of Args, it holds
Args ∩Argsenf 6= ∅ and thus Args ∩Args′ 6= ∅. Contradiction.

Thus, Args is a preventing set.

• Let Argsprev be a preventing set and assume that Argsprev /∈ S. Then640

either ∃Argsenf ∈ Senf such that Argsprev ∩ Argsenf = ∅ or there exists
a minimal set Args ⊂ Argsprev satisfying that Args∩Argsenf 6= ∅ for all
Argsenf ∈ Senf .

– In the first case, since Argsenf is an enforcement set there exists
an enforcement labelling LabArg. By Lemma 39 in Appendix A it645

holds that ∀A ∈ Ar \Argsenf , A is legally labelled by LabArg. Since
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Argsprev is a preventing set it holds that ∃B ∈ Argsprev such that B
is illegally labelled by LabArg. Contradiction since B ∈ Ar\Argsenf .

– In the second case, Args ∈ S, so it follows from the first item of this
proof that Args is a preventing set. Contradiction since Argsprev is650

a preventing set (and thus minimal).

Thus, Argsprev ∈ S. �

Example 14. From Example 10, we know that for AF3 the set of all enforce-
ment sets is Senf = {{a, e}, {b, e}, {c, e}}. Then both {a, b, c} and {e} are min-
imal sets containing an argument from each enforcement set. Indeed, {a, b, c}655

and {e} are the two preventing sets w.r.t. LabArgpref of AF3 (see Example 13).

Conversely, an enforcement set is a minimal set containing at least one ar-
gument from each preventing set (if non-empty preventing sets exist).

Theorem 11. Let Sprev the set of all preventing sets w.r.t. LabArgpref . Then
S = {Args ⊆ Ar | Args is a minimal set satisfying that ∀Argsprev 6= ∅ ∈660

Sprev : Args∩Argsprev 6= ∅} is the set of all enforcement sets w.r.t. LabArgpref .

Proof. Analogous to the proof of Theorem 10, see Appendix B. �

Example 15. From Example 13, we know that Sprev = {{a, b, c}, {e}} forAF3.
Then {a, e}, {b, e}, and {c, e} are all the minimal sets containing an argument
from each preventing set. Indeed, these three sets are the enforcement sets of665

AF3 w.r.t. LabArgpref (see Example 10 on page 15).

4.5. Necessary Conditions for the (Non-)Existence of Stable Labellings

Based on the correspondence results between enforcement and preventing
sets, we now further investigate their responsibility regarding a non-stable pre-
ferred labelling LabArgpref . We prove that both enforcement and preventing670

sets define not only sufficient but also necessary conditions for the existence
and non-existence, respectively, of a stable labelling (of a revision) that is more
committed than LabArgpref .

Concerning enforcement sets, Theorem 12 proves that in order to obtain a
stable labelling (through a revision) that is more committed than LabArgpref ,675

the labels of all arguments in some enforcement set have to be enforced for
sure. Enforcement sets thus provide a necessary condition for obtaining a stable
labelling (of a revision) that is more committed than LabArgpref . It follows that
all arguments in an enforcement set are responsible that the given preferred
labelling is not stable, in other words, the enforcement set does not comprise680

non-responsible arguments.

Theorem 12. Let Args ⊆ Ar and let LabArg be a labelling of AF such that
LabArgpref v LabArg, undec(LabArg) = ∅, and there exists a revision AF~

of AF w.r.t. Args by LabArg and a revision labelling LabArg~ of AF~ such
that LabArg~ is a stable labelling of AF~. Then there exists an enforcement685

set Argsenf w.r.t. LabArgpref such that Argsenf ⊆ Args.
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Proof. If LabArgpref is a stable labelling then the only more or equally com-
mitted labelling is LabArgpref itself. Thus, for any set Args ⊆ Ar it holds that
there exists a revision AF~ = AF of AF w.r.t. Args by LabArg = LabArgpref
and a revision labelling LabArg~ = LabArgpref of AF~ = AF such that690

LabArg~ is a stable labelling of AF~. By Lemma 5, the only enforcement
set is the empty set, so it holds that Argsenf ⊆ Args. Let LabArgpref be a
non-stable preferred labelling and let Args ⊆ Ar. By (the contrapositive of)
Theorem 9 it holds that: if there exists a labelling LabArg of AF such that
LabArgpref @ LabArg, undec(LabArg) = ∅, and there exists a revision AF~

695

of AF w.r.t. Args by LabArg and a revision labelling LabArg~ of AF~ such
that LabArg~ is a stable labelling of AF~, then Args * Ar \ Argsprev where
Argsprev is a preventing set w.r.t. LabArgpref . Thus, ∃A ∈ Args such that
A /∈ Ar \Argsprev, and consequently A ∈ Argsprev. Since this holds for all pre-
venting sets Argsprev, let Args′ be the set of all such A ∈ Args that are part of700

a preventing set, so Args′ consists of at least one argument from each preventing
set. By Theorem 11, Argsenf ⊆ Args′, where Argsenf is an enforcement set,
and since Args′ ⊆ Args, it follows that Argsenf ⊆ Args. �

Example 16. Consider AF4 and its only preferred labelling LabArgpref , illus-
trated at the top of Figure 10. Let LabArg be the labelling illustrated at the705

bottom of Figure 10 and let Args = {d, g}. Then AF~
4 at the top of Figure 11

is a revision of AF4 w.r.t. Args by LabArg, where the labelling LabArg~ at
the top of Figure 11 is a revision labelling of AF~

4 . We note that LabArg~

is a stable labelling of AF~. As stated by Theorem 12, Args is a superset of
some enforcement set, in fact, it is a superset of both enforcement set {d} and710

enforcement set {g}.

Note that even if a set of arguments used to revise an AF is a superset of
an enforcement set, the labelling used for the revision may be different from
all enforcement labellings of this enforcement set. For example, LabArg from
Example 16 (see bottom of Figure 10) is used for the revision ofAF4 w.r.t. Args,715

but it is not an enforcement labelling of either of the two enforcement sets
that are subsets of Args. For instance, the only enforcement labelling of the
enforcement set {d} is illustrated at the bottom of Figure 11.

The next Corollary follows directly from Theorem 12 and states that the
converse of Theorem 6 holds.720

Corollary 13. Let Args ⊆ Ar and let LabArg be a labelling of AF such that
LabArgpref v LabArg, undec(LabArg) = ∅, and for all revisions AF~ of AF
w.r.t. Args by LabArg and all revision labellings LabArg~ of AF~ it holds
that LabArg~ is a stable labelling of AF~. Then there exists an enforcement
set Argsenf w.r.t. LabArgpref such that Argsenf ⊆ Args.725

Theorem 14 proves that the converse of Theorem 9 holds. That is, if no
revision w.r.t. a set of arguments Args is such that some revision labelling is a
stable labelling of the revision, then there exists a preventing set that is disjoint
from Args. In other words, preventing sets define a necessary condition for the
non-existence of a stable labelling that is more committed than LabArgpref .730
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Figure 10: AF4 with its only preferred labelling LabArgpref (top) and with a labelling LabArg
that is more committed than LabArgpref , where arguments d and g are illegally labelled
(bottom).

Theorem 14. Let Args ⊆ Ar be such that, for all labellings LabArg of AF
with LabArgpref @ LabArg and undec(LabArg) = ∅, there exists no revision
AF~ of AF w.r.t. Args by LabArg such that some revision labelling LabArg~

of AF~ is a stable labelling of AF~. Then there exists a preventing set Argsprev
w.r.t. LabArgpref such that Args ⊆ Ar \Argsprev.735

Proof. Since LabArgpref @ LabArg it follows that LabArgpref is not a stable
labelling. Let Args ⊆ Ar. By (the contrapositive of) Corollary 7 it holds
that: if for all labellings LabArg of AF such that LabArgpref v LabArg and
undec(LabArg) = ∅, there exists no revision AF~ of AF w.r.t. Args by LabArg
such that some revision labelling LabArg~ of AF~ is a stable labelling of AF~,740

then Args + Argsenf where Argsenf is an enforcement set. Thus, ∃A ∈ Argsenf
such that A /∈ Args. Since this holds for all enforcement sets Argsenf , let
Args′ be the set of all such A occurring in some enforcement set such that
A /∈ Args, so Args′ consists of at least one argument from each enforcement
set. By Theorem 10, Args′ ⊇ Argsprev where Argsprev is a preventing set.745

Clearly, Args ⊆ Ar \ Args′, so Args ⊆ Ar \ Argsprev where Argsprev is a
preventing set. �

Example 17. Consider again AF3 = 〈Ar3, Att3〉 illustrated on the left of Fig-
ure 9 (see page 15) and the set of arguments Args = {c, d}. Then, for any in-out
labelling LabArg of AF3 that is more committed than LabArgpref , there exists750

no revision AF~
3 of AF3 w.r.t. Args by LabArg such that a revision labelling of

AF~
3 is a stable labelling of AF~

3 , since any revision labelling will illegally label
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Figure 11: Top – A revision AF~
4 of AF4 and a revision labelling LabArg~ (see Example 16).

Bottom – The only enforcement labelling of the enforcement set {d} of AF4 w.r.t. LabArgpref .

e (as no attacks can be added to or deleted from e). As stated by Theorem 14,
it holds that for the preventing set {e}, Args ⊂ Ar3 \ {e}.

Note that the correspondence between preventing and enforcement sets im-755

plies that, for a revision w.r.t. a set of arguments comprising an argument from
each preventing set, there exists a revision whose revision labelling is a stable
labelling (of the revision). Thus, a revision w.r.t. the union of all preventing
sets by an appropriately chosen labelling is a sufficient condition for obtaining
a stable labelling (of the revision) that is more committed than LabArgpref .760

Theorems 6 and 12 as well as Theorems 9 and 14 show that enforcement and
preventing sets indeed characterise exactly those sets of arguments responsible if
a preferred labelling is not a stable labelling. Enforcement sets are responsible
since they consist of exactly the arguments whose labels need to be enforced
in order to obtain a stable labelling (of a revision), whereas preventing sets are765

responsible because they consist of exactly those arguments that prevent the
existence of a stable labelling (of a revision) if the label of no argument in the
set is enforced.
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5. Structural Characterisations

Determining responsible sets of arguments according to the declarative labelling-770

based characterisations from Section 4 involves guessing sets of arguments and
checking if they satisfy the respective definition. In this section, we instead char-
acterise sets of arguments as responsible if a preferred labelling is not a stable
labelling based on the structure of the AF. We thereby aim at characterisations
that allow for a constructive determination of responsible sets of arguments.775

5.1. Odd-Length Cycles

Our first structural characterisation is inspired by the seminal work of Dung
[10], who proved that if an AF has no odd-length cycles, then a stable extension
– and thus a stable labelling5 – exists. Consequently, the non-existence of stable
labellings implies the existence of an odd-length cycle.780

We show that, furthermore, an odd-length cycle exists if some preferred
labelling is not stable, even if the AF has a stable labelling. In particular,
there exists an odd-length cycle of arguments labelled undec by this (non-stable)
preferred labelling. Thus, we define such odd-length cycles of arguments labelled
undec as responsible if the preferred labelling is not stable. The reason to785

exclude odd-length cycles of arguments labelled in or out is that such cycles do
not violate the definition of a stable labelling.

Definition 6 (Structural Characterisation 1). C ⊆ Ar is a responsible cy-
cle w.r.t. LabArgpref if and only if C is an odd-length cycle of AF and for all
A ∈ C it holds that A ∈ undec(LabArgpref ).790

Example 18. Let AF5 be the AF illustrated in Figure 12 and let LabArgpref
be its only preferred labelling, also depicted in the figure. AF5 has five odd-
length cycles, including nested ones: the odd-length cycle {d, e, f} contains the
two odd-length cycles {d} and {e}. However, only the two odd-length cycles
C1 = {c} and C2 = {e} are responsible cycles w.r.t. LabArgpref .795

a b c d

e f

g

in out undec
out

undec undec

in

Figure 12: AF5 and its only preferred labelling (see Example 18).

5by the correspondence between extensions and labellings [11]
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In contrast to our labelling-based characterisations, which always exist but
coincide with the empty set in case LabArgpref is a stable labelling, responsible
cycles exist if and only if LabArgpref is not stable. Thus, responsible cycles are
well-defined characterisations of parts of an AF responsible if LabArgpref is not
a stable labelling.800

Proposition 15. There exists a responsible cycle w.r.t. LabArgpref if and only
if LabArgpref is not a stable labelling.

We are again interested in characterising our responsible parts as indeed be-
ing responsible that LabArgpref is not stable. The following proposition states
that it is sufficient to consider the set of all responsible cycles to obtain a805

stable labelling by enforcing labels for arguments in the responsible cycles. Im-
portantly, to obtain a stable labelling (of a revision) that is more or equally
committed than LabArgpref , the labelling used for the revision has to be chosen
carefully.

Proposition 16. Let S = {A ∈ Ar | C is a responsible cycle w.r.t. LabArgpref ,810

A ∈ C }. Then there exists a labelling LabArg of AF with LabArgpref v LabArg
and undec(LabArg) = ∅ such that, for all revisions AF~ of AF w.r.t. S by
LabArg and all revision labellings LabArg~ of AF~, LabArg~ is a stable la-
belling of AF~.

Note that this also holds if LabArgpref is a stable labelling, in which case815

S = ∅, LabArg = LabArg~ = LabArgpref , and AF~ = AF .

Example 19. Consider again AF4 illustrated at the top of Figure 10 (see
page 22). The set of arguments occurring in responsible cycles w.r.t. LabArgpref
is S = {d, g}. Consider the labelling LabArg depicted at the bottom of Fig-
ure 10, which is more committed than LabArgpref and labels no arguments as820

undec. A revision AF~
4 of AF4 w.r.t. S by LabArg is shown at the top of

Figure 11, along with a revision labelling that is a stable labelling of AF~
4 .

Since by Lemma 1 a revision exists w.r.t. any set of arguments and any
labelling, it follows that there indeed exists a revision w.r.t. responsible cycles
that has a stable labelling that is more committed than the given non-stable825

preferred labelling.

Corollary 17. Let S = {A ∈ Ar | C is a responsible cycle w.r.t. LabArgpref ,
A ∈ C }. Then there exists a labelling LabArg of AF with LabArgpref v LabArg
and undec(LabArg) = ∅, and there exists a revision AF~ of AF w.r.t. S by
LabArg and a revision labelling LabArg~ of AF~ such that LabArg~ is a stable830

labelling of AF~.

5.2. Strongly Connected Components

Our second structural characterisation is based upon a result on the com-
position of stable labellings, namely that stable labellings can be computed
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along the SCCs [16] of the AF. That is, the stable labellings of initial SCCs are835

computed and, subsequently, the stable labellings of the following SCCs are it-
eratively determined, while taking the labels of arguments in their parent SCCs
into account. It follows that if the AF has no stable labelling, some SCC in this
iterative computation has no stable labelling (when taking the labels in parent
SCCs into account).840

The following structural characterisation of sets of arguments responsible if
LabArgpref is not a stable labelling refines this observation. It defines as respon-
sible the “first” SCCs that have no stable labelling in the iterative computation
of a stable labelling, given the labels of LabArgpref . More precisely, responsible
sets are SCCs satisfying that: 1) the SCC has no stable labelling w.r.t. the input845

from its parent SCCs, i.e. w.r.t. the labels of attackers in parent SCCs according
to LabArgpref ; and 2) all parent SCCs have a stable labelling w.r.t. the input
from their parent SCCs that coincides with the labels assigned by LabArgpref .

Definition 7 (Structural Characterisation 2). Args ⊆ Ar is a responsible
SCC w.r.t. LabArgpref if and only if Args is an SCC of AF such that850

1. there exists no stable labelling w.r.t. (AF↓Args, parents(Args),
LabArgpref ↓parents(Args), Att ∩ (parents(Args)×Args))
that is more or equally committed than LabArgpref ↓Args, and

2. for all Args′ ∈ parentSCCs(Args), LabArgpref ↓Args′ is a stable labelling
w.r.t. (AF↓Args′ , parents(Args′), LabArgpref ↓parents(Args′),855

Att ∩ (parents(Args′)×Args′)).

Example 20. The only responsible SCC of AF therapy w.r.t. its only preferred
labelling LabArgpref (see Figure 1 on page 3) is {A,B,C}. Since this is an
initial SCC, it is trivially satisfied that its parent SCCs have a stable labelling.

The following example illustrates an AF where a responsible SCC is not an860

initial SCC of the AF.

Example 21. Consider again AF4 and its only preferred labelling LabArgpref ,
illustrated at the top of Figure 10 (see page 22). The only responsible SCC
w.r.t. LabArgpref is the SCC {b, c, d, e, f, g, h} since: 1) there exists no sta-
ble labelling w.r.t. the AF with input (AF↓{b,c,d,e,f,g,h}, {a}, {(a, in)}, {(a, b)}),865

which is depicted in Figure 13; and 2) {b, c, d, e, f, g, h} only has one parent
SCC, namely {a}, and LabArgpref restricted to {a}, i.e {(a, in)}, is a stable
labelling w.r.t. (AF↓{a}, ∅, ∅, ∅).

Note that Definition 7 does not require a responsible SCC to not have a stable
labelling at all (w.r.t. its parent SCCs), but rather that it has no stable labelling870

that is more committed than the labels assigned to the SCC by LabArgpref .

Example 22. Let AF6 be the AF in Figure 14, which has no stable labelling,
and consider the depicted preferred labelling LabArgpref . AF6 has three SCCs,
namely {a, b, c}, {d}, and {e}. The SCC {a, b, c} has a stable labelling w.r.t.
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Figure 13: The AF with input made of the SCC {b, c, d, e, f, g, h} of AF4 (right of dashed line)
and the input arguments from its parent SCCs (left of dashed line) with the input labelling
(given by the preferred labelling of AF4).
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Figure 14: AF6 and a preferred labelling LabArgpref .

(AF↓{a,b,c}, ∅, ∅, ∅), namely {(a, out), (b, in), (c, out)}, but this stable labelling875

is not more or equally committed than LabArgpref ↓{a,b,c}. This illustrates the
importance of the comparison with LabArgpref in the first condition of Defi-
nition 7: due to the comparison, {a, b, c} satisfies the condition; without the
comparison, {a, b, c} would not satisfy the condition. Thus, without the com-
parison {a, b, c} would not be identified as a responsible SCC. However, {a, b, c}880

should be identified as responsible since it is the “first” SCC that provides a
reason why LabArgpref is not a stable labelling.
Of similar importance is the comparison with LabArgpref in the second condition
of Definition 7. Consider the SCC {d} and its parent SCC {a, b, c}. {a, b, c} has
a stable labelling w.r.t. (AF↓{a,b,c}, ∅, ∅, ∅), namely {(a, out), (b, in), (c, out)},885

so without the comparison with LabArgpref , {d} would be identified as a respon-
sible SCC. However, since the stable labelling w.r.t. (AF↓{a,b,c}, ∅, ∅, ∅) does not
coincide with LabArgpref ↓{a,b,c}, {d} is not a responsible SCC.

We prove that at least one responsible SCC exists if and only if the given
preferred labelling is not stable.890

Proposition 18. There exists a responsible SCC w.r.t. LabArgpref if and only
if LabArgpref is not a stable labelling.

Differently from our previous characterisations, we do not investigate the role
of responsible SCCs w.r.t. the existence of a stable labelling (of a revision), since
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we do so for our next structural characterisation, which refines our definition of895

responsible SCCs.

5.3. Strongly Connected undec Parts (SCUPs)

Our characterisation of responsible SCCs relies on the decomposability of
stable labellings with regards to the SCCs of an AF. In this section, we refine
this notion by using another decomposability result. Baroni et al. [18] show900

that the complete labellings of an AF can be obtained by splitting the AF into
any partition and then determining complete labellings of the different parts
in such a way that they are compatible. We can thus think of LabArgpref as
a combination of two compatible labellings: a labelling of the part of the AF
whose arguments are labelled in or out by LabArgpref , and a labelling of the905

part of the AF whose arguments are labelled undec by LabArgpref . We call
these two parts the in/out-part and the undec-part, respectively.

The fact that all arguments in the undec-part are labelled undec by LabArgpref
implies that this is the only labelling compatible with the in and out labels in
the in/out-part (if there was another labelling, LabArgpref would not be max-910

imal). Proposition 19 proves that, furthermore, labelling all arguments in the
undec-part as undec is the only complete labelling of this part on its own (dis-
regarding the in/out-part). In other words, the labels of arguments in the
in/out-part are not responsible that all arguments in the undec-part are la-
belled undec. Rather, the structure of the undec-part itself is responsible that915

the arguments cannot be legally labelled in or out.

Proposition 19. Let undec(LabArgpref ) 6= ∅. The only complete labelling of
AF↓undec(LabArgpref )

labels all arguments as undec.

Since the undec-part has only one complete labelling, which labels all ar-
guments as undec, this labelling is also its only preferred labelling. Thus, the920

question as to why LabArgpref is not a stable labelling can be reduced to the
question as to why the only preferred labelling of the undec-part is not a stable
labelling.

Applying our notion of responsible SCCs, we obtain that the preferred la-
belling of the undec-part is not a stable labelling because of its “first” SCCs that925

have no stable labelling. These “first” SCCs are the initial SCCs of the undec-
part since no SCC in the undec-part has a stable labelling. This observation
results in the following new characterisation of sets of arguments responsible if
LabArgpref is not a stable labelling: a set of arguments is responsible if it is an
initial SCC of the undec-part.930

Definition 8 (Structural Characterisation 3). Args ⊆ Ar is a strongly
connected undec part (SCUP) w.r.t. LabArgpref if and only if Args is an initial
SCC of AF↓undec(LabArgpref )

.

Example 23. AF therapy from Section 1 has only one SCUP w.r.t. its only
preferred labelling (see Figure 1 on page 3), namely {A,B,C}.935
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Importantly, at least one SCUP exists w.r.t. a preferred labelling if and
only if this preferred labelling is not stable, which shows that SCUPs provide a
well-defined characterisation of responsible sets of arguments.

Proposition 20. There exists a SCUP w.r.t. LabArgpref if and only if LabArgpref
is not stable.940

The following example illustrates that an AF may have various SCUPs
w.r.t. a preferred labelling.

Example 24. Let AF7 and its only preferred labelling LabArgpref be as illus-
trated in Figure 15. There are two SCUPs w.r.t. LabArgpref , namely {c} and
{d}.945

a b
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d e

in out

undec

undec undec

Figure 15: AF7 and its only preferred labelling LabArgpref (see Example 24).

We now prove that SCUPs are refinements of responsible SCCs in the sense
that every responsible SCC comprises a SCUP.

Proposition 21. Let Args be a responsible SCC w.r.t. LabArgpref . Then
∃Args′ ⊆ Args such that Args′ is a SCUP w.r.t. LabArgpref .

Example 25. Consider again AF4 and its only preferred labelling LabArgpref950

illustrated at the top of Figure 10 (see page 22). As discussed in Example 21, the
only responsible SCC w.r.t. LabArgpref is {b, c, d, e, f, g, h}. As expected, there
exists a SCUP that is a subset of this responsible SCC, namely {c, d, e, f, g, h},
which is the only SCUP of AF4 w.r.t. LabArgpref .

Note that the converse of Proposition 21 does not hold in general, i.e. it is955

not the case that every SCUP is a subset of some responsible SCC. For example,
{d} is a SCUP of AF7 w.r.t. LabArgpref (see Figure 15), but the SCC containing
d, i.e. {b, d}, is not a responsible SCC, since the parent SCC {c} has no stable
labelling.

Even though SCUPs are defined based on the structure of the AF rather than960

based on labellings that are more committed than LabArgpref , as our labelling-
based characterisations, we prove that SCUPs constitute sets of arguments that
cannot all be legally labelled in or out. More precisely, with respect to any in-
out labelling that is more committed than LabArgpref , at least one argument in
every SCUP is illegally labelled. This indicates that SCUPs indeed characterise965

sets of arguments responsible if LabArgpref is not a stable labelling.
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Lemma 22. Let Args be a SCUP w.r.t. LabArgpref . Then, for all labellings
LabArg of AF with LabArgpref @ LabArg and undec(LabArg) = ∅, it holds
that there exists A ∈ Args such that A is illegally labelled by LabArg.

Since by Proposition 21 every responsible SCC comprises a SCUP, an analo-970

gous result to Lemma 22 also holds for responsible SCCs. That is, with respect
to all in-out labellings that are more committed than LabArgpref , at least one
argument in every responsible SCC is illegally labelled.

5.4. Revising SCUPs

In this section, we investigate the responsibility of SCUPs in more detail, by975

examining revisions that turn LabArgpref into a stable labelling (of the revision).
We first prove that, as for preventing sets, SCUPs provide a sufficient condition
for “preventing” the existence of a stable labelling that is more committed
than LabArgpref . That is, a revision w.r.t. a set of arguments not containing
an argument from some SCUP will not yield a stable labelling that is more980

committed than LabArgpref .

Theorem 23. Let Args ⊆ Ar \ArgsSCUP where ArgsSCUP is a SCUP w.r.t.
LabArgpref and let LabArg be a labelling of AF such that LabArgpref @ LabArg
and undec(LabArg) = ∅. Then there exists no revision AF~ of AF w.r.t. Args
by LabArg such that some revision labelling LabArg~ of AF~ is a stable la-985

belling of AF~.

Proof. Assume there exists a revision AF~ of AF w.r.t. Args by LabArg and
a revision labelling LabArg~ of AF~ such that LabArg~ is a stable labelling
of AF~. By Lemma 22, ∃A ∈ ArgsSCUP such that A is illegally labelled by
LabArg in AF . Since A ∈ Ar\Args, by Lemma 37 in Appendix A, A is illegally990

labelled by LabArg~ in AF~. Contradiction. �

Example 26. Consider again the SCUPs of AF7 w.r.t. its only preferred la-
belling LabArgpref (see Example 24 on page 29). Let LabArg be the in-out
labelling illustrated in Figure 16, which is more committed than LabArgpref .
The set {a, b, d, e} does not contain any argument from the SCUP {c}. It is easy995

to see that there exists no revision AF~
7 of AF7 w.r.t. {a, b, d, e} by LabArg

such that a revision labelling is a stable labelling of AF~
7 , since c will always

be illegally labelled out.

Therefore, if we are to obtain a stable labelling, a revision has to involve
arguments from every SCUP. In what follows, we thus investigate whether en-1000

forcing labels for arguments in all SCUPs yields a stable labelling (of a revision).
For this purpose, we define a SCUP revision as a revision w.r.t. the set of all
arguments in all SCUPs by a labelling that is more committed than LabArgpref
and labels all arguments in all SCUPs as in or out. That is, a SCUP revision
enforces the labels in and out for all arguments in all SCUPs.1005

Notation 2. Let Args1, . . . , Argsn be all SCUPs w.r.t. LabArgpref . SCUPS =
Args1 ∪ . . . ∪Argsn denotes the set of all arguments in SCUPs.
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Figure 16: AF7 and a labelling LabArg (see Example 26), where illegal labels are underlined.

Definition 9 (SCUP Revision and SCUP Revision Labelling).
Let LabArgSCUPS be a labelling of AF↓SCUPS with undec(LabArgSCUPS) = ∅
and let LabArg = LabArgSCUPS ∪ LabArgpref ↓Ar\SCUPS . AF~ is a SCUP1010

revision of AF if and only if AF~ is a revision of AF w.r.t. SCUPS by LabArg.
A revision labelling LabArg~ of AF~ is called a SCUP revision labelling of
AF~.

Example 27. Consider againAF7 from Example 24 (see Figure 15 on page 29).
A SCUP revision of AF7 along with a SCUP revision labelling is depicted on1015

the left of Figure 17. The labelling of arguments in SCUPS used for the SCUP
revision is LabArgSCUPS = {(c, out), (d, in)}.
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in undec
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Figure 17: Left – AF~
7 and a SCUP revision labelling LabArg~ (see Example 27), where

illegal labels are underlined. Right – AF~
7 and a preferred labelling that is more committed

than LabArg~ (see Example 28).

Since, by Lemma 1, a revision exists w.r.t. any set of arguments and labelling
and since, by Proposition 20, there exists a SCUP w.r.t. a preferred labelling if
and only if it is not stable, the following holds.1020

Corollary 24. There exists a SCUP revision AF~ of AF if and only if LabArgpref
is not a stable labelling.

The SCUP revision from Example 27 illustrates that a SCUP revision la-
belling may not be a complete labelling of the SCUP revision since arguments
labelled undec by LabArgpref that are not contained in SCUPS may be ille-1025

gally labelled (see the left of Figure 17). However, we prove that there exists a
preferred labelling of the SCUP revision that is more or equally committed than
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the SCUP revision labelling. In other words, illegally labelled undec arguments
can be appropriately changed to in or out labels, yielding a preferred labelling
of the SCUP revision.1030

Theorem 25. Let AF~ be a SCUP revision of AF and LabArg~ a SCUP
revision labelling of AF~. Then there exists a preferred labelling LabArg~pref of

AF~ such that LabArg~ v LabArg~pref.

Proof. Let SCUPS~ = {A ∈ Ar~ | A ∈ SCUPS ∨ A /∈ Ar}. Let Args1 =
in(LabArgpref ) ∪ out(LabArgpref ) ∪ SCUPS~, Args2 = Ar~ \ Args1, and1035

LabArg1 = LabArg~↓Args1 .

By Definitions 9 and 1 it holds that ∀A ∈ SCUPS~, A is legally labelled by
LabArg~ in AF~. Since SCUPS consists of arguments in SCUPs, it holds
that ∀A ∈ SCUPS~ and ∀B attacking A in AF~, B ∈ Args1. Thus, A
being legally labelled by LabArg~ only depends on LabArg1. Let LabArg21040

be some labelling of Args2. Then, ∀A ∈ SCUPS~, A is legally labelled by
LabArg1 ∪LabArg2 in AF~. Note that for any LabArg2 of Args2 it holds that
LabArg~↓Args2 v LabArg2 since undec(LabArg~↓Args2) = Args2, because

Args2 ⊆ undec(LabArgpref ) \ SCUPS. Then LabArg~ v LabArg1 ∪ LabArg2.
Let LabArg = LabArgSCUPS ∪ LabArgpref ↓Ar\SCUPS be the labelling used for1045

the SCUP revision. By Lemma 38 in Appendix A, ∀A ∈ in(LabArgpref ) ∪
out(LabArgpref ) it holds that A is legally labelled by LabArg in AF since
LabArgpref @ LabArg. Then, by Lemma 37 in Appendix A, ∀A ∈ in(LabArgpref )
∪out(LabArgpref ) it holds that A is legally labelled by LabArg~ in AF~. Since
LabArg~ v LabArg1∪LabArg2, by Lemma 38 in Appendix A it holds that ∀A ∈1050

in(LabArgpref )∪ out(LabArgpref ), A is legally labelled by LabArg1 ∪LabArg2
in AF~.
Thus, ∀A ∈ Args1, A is legally labelled by LabArg1 ∪LabArg2 in AF~. Then,
by Lemma 43 in Appendix A, LabArg1 is compatible with LabArg2 (for any la-
belling LabArg2 of Args2). Furthermore by Lemma 45 in Appendix A, there ex-1055

ists a labelling LabArg′2 that is compatible with LabArg1. Then, by Lemma 40
in Appendix A, LabArg1 ∪ LabArg′2 is a complete labelling of AF~. Then
either LabArg1 ∪LabArg′2 is a preferred labelling of AF~ or there exists a pre-

ferred labelling LabArg~
′

such that LabArg1 ∪ LabArg′2 @ LabArg~
′

and thus

LabArg~ @ LabArg~
′
. �1060

Example 28. Given the SCUP revision AF~
7 and the SCUP revision labelling

LabArg~ from Example 27 (see left of Figure 17), there exists a preferred la-
belling of AF~

7 that is more committed than LabArg~, as illustrated on the
right of Figure 17.

Since a SCUP revision labelling is more committed than LabArgpref (because1065

all arguments in SCUPs are labelled in or out by the SCUP revision labelling,
but are labelled undec by LabArgpref ), it follows that there exists a preferred
labelling of the SCUP revision that is more committed than LabArgpref .
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Corollary 26. Let AF~ be a SCUP revision of AF . Then there exists a pre-
ferred labelling LabArg~pref of AF~ such that LabArgpref @ LabArg~pref.1070

In Example 28, there exists a preferred labelling of the SCUP revision that
is more committed than the SCUP revision labelling and that is also a stable
labelling of the SCUP revision. However, in general a SCUP revision may not
have a stable labelling that is more committed than the SCUP revision labelling.

Example 29. Let AF8 and its only preferred labelling LabArgpref be as illus-1075

trated at the top of Figure 18. There are two SCUPs w.r.t. LabArgpref , namely
{a} and {e}. A SCUP revision AF~

8 of AF8 is depicted at the bottom of Fig-
ure 18, along with the SCUP revision labelling. A preferred labelling LabArg~pref
of AF~

8 that is more committed than the revision labelling is illustrated in Fig-
ure 19. However, LabArg~pref is not a stable labelling of AF~

8 . Furthermore,1080

in this example there exist no SCUP revision and SCUP revision labelling that
result in a stable labelling that is more committed than LabArgpref .

a b c d e

undec undec undec undec undec

a b c d e

in undec undec undec in

Figure 18: Top – AF8 and its only preferred labelling LabArgpref . Bottom – A SCUP

revision AF~
8 of AF8 (see Example 29) and the SCUP revision labelling, where illegal labels

are underlined.

To summarise, differently from preventing sets, revisions w.r.t. the union of
all SCUPs are not guaranteed to have a stable labelling that is more committed
than LabArgpref . Nevertheless, they yield a more committed preferred labelling.1085

If a SCUP revision has a preferred labelling that is not a stable labelling, then
by Proposition 20 there exists a SCUP w.r.t. this preferred labelling. In order
to obtain a stable labelling of the whole AF, these “new” SCUPs thus have
to be revised. We therefore define an iterative procedure of SCUP revisions
w.r.t. preferred labellings, which can be used to obtain a stable labelling (of a1090

revision). As for preventing sets, this shows the responsibility of SCUPs, since
it provides a sufficient condition for obtaining a stable labelling.

Definition 10 (Iterative SCUP Revision). A sequence 〈AF1, LabArg1〉, . . . ,
〈AFn, LabArgn〉 (n > 1) is an iterative SCUP revision of AF if and only if

• AF1 = AF and LabArg1 = LabArgpref , and1095
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• ∀i (1 ≤ i < n) it holds that AF i+1 is a SCUP revision of AF i, with

LabArg~
i+1

a SCUP revision labelling of AF i+1, and LabArgi+1 is a

preferred labelling of AF i+1 such that LabArg~
i+1 v LabArgi+1.

We are, of course, most interested in iterative SCUP revisions that result in
a stable labelling.1100

Definition 11 (Stable Iterative SCUP Revision). An iterative SCUP re-
vision 〈AF1, LabArg1〉, . . . , 〈AFn, LabArgn〉 of AF is a stable iterative SCUP
revision of AF if and only if LabArgn is a stable labelling of AFn.

Example 30. Consider again AF8 and its preferred labelling, illustrated at
the top of Figure 18. An example of a stable iterative SCUP revision of AF81105

is 〈AF1
8, LabArg1〉, 〈AF2

8, LabArg2〉, 〈AF3
8, LabArg3〉, where AF2

8 and LabArg2

are depicted in Figure 12, and AF3
8 and LabArg3 are as illustrated in Figure 19.

a b c d e

in out in out in

Figure 19: The AF obtained from a stable iterative SCUP revision of AF8 (see Example 30).

Since a SCUP revision has a preferred labelling that is more committed
than LabArgpref , each iteration in the iterative SCUP revision reduces the set
of arguments labelled undec. Since there are only finitely many arguments,1110

there exists an iterative SCUP revision that results in a stable labelling (of the
revision).

Theorem 27. There exists a stable iterative SCUP revision of AF if and only
if LabArgpref is not a stable labelling.

Proof. If LabArgpref is a stable labelling then there exists no iterative SCUP1115

revision since by Proposition 20, there exists no SCUP w.r.t. LabArgpref . If
LabArgpref is not a stable labelling, by Proposition 20, there exists a SCUP
w.r.t. LabArgpref and thus by Corollary 26 there exists a preferred labelling
LabArg2 of AF2 such that LabArgpref @ LabArg2. If LabArg2 is not a stable
labelling, then, by Proposition 20, there exists a SCUP w.r.t. LabArg2 and thus1120

a SCUP revisionAF3 ofAF2, and by Corollary 26 a preferred labelling LabArg3

of AF3 such that LabArg2 @ LabArg3. The same then applies to AF3, and
so on. Thus, the set of undec arguments in LabArgi monotonically decreases,
and since there are only finitely many arguments, the sequence terminates with
some AFn such that undec(LabArgn) = ∅. �1125

Our results show that iteratively revising SCUPs provides a sufficient con-
dition for turning a non-stable preferred labelling into a a stable labelling (of a
revision), and SCUPs are thus parts of the AF that can be deemed responsible
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that LabArgpref is not a stable labelling. Furthermore, SCUPs can be used for
a well-directed revision of the AF that leads to a stable labelling that is more1130

committed than LabArgpref .
Since by Proposition 21 every responsible SCC comprises a SCUP, respon-

sible SCCs also define a sufficient condition for for turning LabArgpref into a a
stable labelling (of a revision), and consequently need to be revised in order to
obtain a stable labelling. However, the condition provided by responsible SCCs1135

is less refined than the notion of SCUPs. Therefore, we do not investigate the
revision w.r.t. responsible SCCs in more detail.

5.5. Responsible Cycles versus Responsible SCCs and SCUPs

The characterisation of responsible arguments in terms of responsible cy-
cles differs considerably from our second and third structural characterisations,1140

which are based on SCCs. Nevertheless, we prove that the three characterisa-
tions are related. In particular, every SCUP comprises a responsible cycle.

Proposition 28. Let Args be a SCUP w.r.t. LabArgpref . Then there exists a
responsible cycle C w.r.t. LabArgpref such that C ⊆ Args.

Example 31. The only SCUP of AF4 (see top of Figure 10 on page 22) is1145

{c, d, e, f, g, h}. There are furthermore two responsible cycles that form subsets
of the SCUP, namely {d} and {g} (see Example 19 on page 25).

Note that the converse of Proposition 28 does not hold in general, i.e. it is not
the case that every responsible cycle is a subset of some SCUP. For instance, in
AF8 (see top of Figure 18 on page 33) each of the five self-attacking arguments1150

is a responsible cycle. However, there are only two SCUPs, namely {a} and {e},
so for instance the responsible cycle {b} is not a subset of any SCUP.

Since by Proposition 21 every responsible SCC comprises a SCUP, it follows
that every responsible SCC contains a responsible cycle.

Corollary 29. Let Args be a responsible SCC w.r.t. LabArgpref . Then there1155

exists a responsible cycle C w.r.t. LabArgpref such that C ⊆ Args.

Note that Propositions 16 and 28 imply that rather than defining a SCUP
revision w.r.t. all arguments in SCUPs, we could only revise the responsible
cycles in the SCUPs. This is illustrated by Example 19 (see page 25), where a
revision w.r.t. the responsible cycles contained in the only SCUP is illustrated.1160

On the other hand, the responsible cycles in a SCUP do not have to be
revised in order to legally label all arguments in the SCUP. Instead, the SCUP
may be revised w.r.t. a subset of the SCUP not containing arguments from
responsible cycles. For instance, a SCUP revision of AF4 w.r.t. LabArgpref
(see top of Figure 10 on page 22) where no responsible cycles are revised is1165

illustrated in Figure 20 (see page 36), along with a preferred labelling that is
more committed than the SCUP revision labelling.

It is therefore up to the user to decide what type of SCUP revision is most
suitable for the application at hand.

35



a b c d e

fghi

in out in out out

inoutoutin

e′

h′

in

in

Figure 20: A SCUP revision of AF4 and a preferred labelling that is more committed than
the SCUP revision labelling.

6. Labelling-Based versus Structural Characterisations1170

We presented two different approaches to characterising sets of arguments
responsible if LabArgpref is not a stable labelling: a labelling-based and a struc-
tural approach. We proved that the labelling-based characterisations in terms of
enforcement and preventing sets define necessary and sufficient conditions for the
(non-) existence of a stable labelling that is more committed than LabArgpref .1175

However, these characterisations are not constructive, whereas our structural
characterisations are. The structural characterisation in terms of SCUPs can
also be used to guide the revision of an AF in such a way that a stable labelling
is obtained, defining a sufficient but not a necessary condition for obtaining a
stable labelling.1180

In this section, we examine the connection between our labelling-based and
structural characterisations in more detail. Note that we omit the näıve char-
acterisation of labelling-based responsible sets, since both enforcement and pre-
venting sets are refinements of this characterisation. Similarly, we do not include
responsible SCCs in our comparison since SCUPs provide a refinement of re-1185

sponsible SCCs.

6.1. SCUPs versus Preventing Sets

SCUPs and preventing sets share the property that if none of their arguments
is involved in a revision, then the revision has no stable labelling that is more
committed than LabArgpref (see Theorems 9 and 23). These results hint at1190

a close connection between SCUPs and preventing sets. Indeed, Theorem 30
proves that each SCUP comprises a preventing set.

Theorem 30. Let ArgsSCUP be a SCUP w.r.t. LabArgpref . Then there exists
a preventing set Argsprev w.r.t. LabArgpref such that Argsprev ⊆ ArgsSCUP .

Proof. By Lemma 22, for all labellings LabArg of AF with LabArgpref @1195

LabArg and undec(LabArg) = ∅, it holds that there exists A ∈ ArgsSCUP such
that A is illegally labelled by LabArg. Then either ArgsSCUP is a minimal set
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satisfying this property, and thus ArgsSCUP is a preventing set, or there exists
a minimal set Argsprev ⊂ ArgsSCUP satisfying this property, so Argsprev is a
preventing set. �1200

Example 32. Consider again AF4 illustrated on the top of Figure 10 (see
page 22). As discussed in Example 25 (see page 29), the only SCUP w.r.t. LabArgpref
is {c, d, e, f, g, h}. Here, two different preventing sets w.r.t. LabArgpref are sub-
sets of the SCUP, namely {c, d, g, h} and {d, e, f, g}.

Note that, conversely, it is not the case that every preventing set is a subset1205

of some SCUP.

Example 33. Consider again AF8, illustrated at the top of Figure 18 (see
page 33). There are three preventing sets w.r.t. LabArgpref : {a}, {e}, and
{b, c, d}. The first two coincide with the two SCUPs w.r.t. LabArgpref , but the
latter is not a subset of any SCUP.1210

Since SCUPs only characterise the “first” problematic sets of arguments,
whereas preventing sets define “all” problematic sets, it is not surprising that
some preventing sets are disjoint from SCUPs. However, when considering all
SCUPs in a stable iterative SCUP revision, every preventing set shares an ar-
gument with some SCUP.1215

Notation 3. Let 〈AF1, LabArg1〉, . . . , 〈AFn, LabArgn〉 be an iterative SCUP
revision.

⊎
SCUPS = {SCUPSi | SCUPSi is the set of all arguments in SCUPs

w.r.t. LabArgi, 1 ≤ i ≤ n} consists of the sets of arguments in SCUPs at every
step in the iterative SCUP revision.

Theorem 31. Let 〈AF1, LabArg1〉, . . . , 〈AFn, LabArgn〉 be a stable iterative1220

SCUP revision. Then, for all preventing sets Argsprev w.r.t. LabArgpref , it
holds that ∃SCUPS ∈

⊎
SCUPS such that SCUPS ∩Argsprev 6= ∅.

Proof. Let Argsprev be a preventing set w.r.t. LabArgpref . By (the contrapos-
itive of) Theorem 9, it holds that if AF~ is a revision of AF w.r.t. some Args ⊆
Ar by some LabArg such that some revision labelling LabArg~ of AF~ is a sta-1225

ble labelling ofAF~, then Args∩Argsprev 6= ∅. SinceAFn has a stable labelling
LabArgn and since AFn is a revision of AF w.r.t.

⋃
SCUPS∈

⊎
SCUPS SCUPS

by LabArgn ∩ (Ar×{in, out, undec}) it holds that ∃SCUPS ∈
⊎
SCUPS such

that SCUPS ∩Argsprev 6= ∅. �

Example 34. Consider again AF8, illustrated at the top of Figure 18 (see1230

page 33), and the stable iterative SCUP revision ofAF8 discussed in Example 30
(see page 34). The set of arguments in SCUPs in every step of the stable iterative
SCUP revision is

⊎
SCUPS = {{a, e}, {c}}. For the preventing set {b, c, d}

w.r.t. LabArgpref , which is not a subset of any SCUP w.r.t. LabArgpref (see
Example 33), there exists the set {c} in

⊎
SCUPS, which shares an argument1235

with {b, c, d}. Clearly, the preventing sets {a} and {e}, which are subsets of
SCUPs w.r.t. LabArgpref , also have a non-empty intersection with a set in⊎
SCUPS, namely with {a, e}.
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6.2. SCUPs versus Enforcement Sets

Next, we investigate the relationship between SCUPs and enforcement sets.1240

We first show that a SCUP contains an argument from each enforcement set.

Theorem 32. Let ArgsSCUP be a SCUP w.r.t. LabArgpref . Then, for all en-
forcement sets Argsenf w.r.t. LabArgpref , it holds that ArgsSCUP∩Argsenf 6= ∅.

Proof. By Theorem 30, there exists a preventing set Argsprev w.r.t. LabArgpref
such that Argsprev ⊆ ArgsSCUP . Since by Theorem 10 it holds that for all en-1245

forcement sets Argsenf w.r.t. LabArgpref , Argsprev ∩ Argsenf 6= ∅, it follows
that ArgsSCUP ∩Argsenf 6= ∅. �

Example 35. AF8, illustrated at the top of Figure 18 (see page 33), has two
SCUPs w.r.t. LabArgpref , namely {a} and {e} (see Example 29 on page 33).
Both SCUPs contain an argument from each of the three enforcement sets1250

w.r.t. LabArgpref , i.e. {a, b, e}, {a, c, e}, {a, d, e}. In fact, both SCUPs are
subsets of each enforcement set.

In contrast, AF4, illustrated at the top of Figure 10 (see page 22), has only
one SCUP w.r.t. LabArgpref , namely {c, d, e, f, g, h}. Again the SCUP contains
an argument from each enforcement set w.r.t. LabArgpref , i.e. from {d}, {g},1255

{c, e}, {c, f}, {e, h}, and {f, h}. In fact, here each enforcement set is a subset
of the SCUP.

Note that, in general, SCUPs are not subsets of enforcement sets or vice
versa. For instance, the SCUP {a, b, c} of AF3 (see left of Figure 9 on page 15)
is not a subset of any of the enforcement sets {a, e}, {b, e}, or {c, e} or vice1260

versa.
By Theorem 12, we know that if a revision has a stable labelling that is more

committed than LabArgpref , the set of arguments used for the revision must be
a superset of some enforcement set. Since a stable iterative SCUP revision
results in such a stable labelling, it follows that there exists an enforcement set1265

that is a subset of the set of all arguments occurring in SCUPs of the iterative
SCUP revision.

Theorem 33. Let 〈AF1, LabArg1〉, . . . , 〈AFn, LabArgn〉 be a stable iterative
SCUP revision. Then there exists an enforcement set Argsenf w.r.t. LabArgpref
such that ∀A ∈ Argsenf : ∃SCUPS ∈

⊎
SCUPS with A ∈ SCUPS.1270

Proof. By Theorem 31, for each preventing set Argsprev it holds that ∃A ∈
Argsprev such that ∃SCUPS ∈

⊎
SCUPS with A ∈ SCUPS. It then follows

from Theorem 11 that there exists an enforcement set Argsenf such that such
that ∀A ∈ Argsenf : ∃SCUPS ∈

⊎
SCUPS with A ∈ SCUPS. �

Example 36. Consider again AF8 illustrated in Figure 18 (see page 33) and1275

the stable iterative SCUP revision ofAF8 discussed in Example 30 (see page 34).⊎
SCUPS = {{a, e}, {c}}, so there exists an enforcement set such that each

argument is contained in a set in
⊎
SCUPS, namely the enforcement set {a, c, e}.
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The relation between enforcement sets and SCUPs implies that even though
a stable iterative SCUP revision is not a minimal way of revising the AF to1280

obtain a stable labelling, it includes the arguments that definitely have to be
revised.

6.3. Responsible Cycles versus Enforcement and Preventing Sets

We now turn to the comparison between responsible cycles and enforcement
and preventing sets. We first prove that there exists an enforcement set that1285

consists only of arguments from responsible cycles.

Theorem 34. Let S = {A ∈ Ar | C is a responsible cycle w.r.t. LabArgpref ,
A ∈ C }. Then there exists an enforcement set Args w.r.t. LabArgpref such that
Args ⊆ S.

Proof. By Proposition 16, there exists a labelling LabArg of AF with1290

LabArgpref v LabArg and undec(LabArg) = ∅ such that, for all revisions AF~

ofAF w.r.t. S by LabArg and all revision labellings LabArg~ ofAF~, LabArg~

is a stable labelling of AF~. It then follows from Theorem 12 that there exists
an enforcement set Args w.r.t. LabArgpref such that Args ⊆ S. �

Example 37. Consider again AF4, illustrated at the top of Figure 10 (see1295

page 22). The set of arguments in responsible cycles w.r.t. LabArgpref is S =
{d, g}. There are two different enforcement sets that are subsets of S, namely
{d} and {g}. This example also illustrates that not all enforcement sets contain
arguments that are part of a responsible cycle, e.g. the enforcement set {c, e} is
disjoint from S.1300

Note that not every responsible cycle shares arguments with some enforce-
ment set. For instance, the responsible cycle {e} w.r.t. the preferred labelling
LabArgpref of AF7, illustrated in Figure 15 (see page 29), and the only en-
forcement set w.r.t. LabArgpref , namely {c, d}, do not have any arguments in
common.1305

Next, we show the connection between responsible cycles and preventing set.
In particular, every preventing set comprises a responsible cycle.

Theorem 35. Let Args 6= ∅ be a preventing set w.r.t. LabArgpref . Then there
exists a responsible cycle C w.r.t. LabArgpref such that C ⊆ Args.

Proof. By Lemma 8, LabArgpref is not a stable labelling. Let ArgsIO =1310

in(LabArgpref ) ∪ out(LabArgpref ). Assume there exists no responsible cy-
cle C w.r.t. LabArgpref such that C ⊆ Args. Thus, AF↓Args comprises no
odd-length cycles, so by Corollary 36 in [10] AF↓Args has a stable labelling
LabArgArgs. By Lemma 46 in Appendix A, LabArgpref ↓ArgsIO is compati-
ble with LabArgArgs. Furthermore, by the same reasoning as in the proof1315

of Proposition 19, LabArgArgs is compatible with LabArgpref ↓ArgsIO. It fol-
lows from Lemma 40 in Appendix A that LabArgArgs ∪ LabArgpref ↓ArgsIO

is a complete labelling of AF↓Args∪ArgsIO. Let LabArg′ be a labelling of
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Args′ = Ar\(Args∪ArgsIO) such that out(LabArg′) = Args′. Let LabArg =
LabArgArgs ∪ LabArgpref ↓ArgsIO ∪ LabArg′. Clearly LabArgpref @ LabArg.1320

Furthermore, ∀A ∈ Args it holds that A is legally labelled by LabArg. Con-
tradiction, since by Definition 5, ∀LabArg with LabArgpref @ LabArg and
undec(LabArg) = ∅ it holds that ∃A ∈ Args such that A is illegally labelled by
LabArg. �

Example 38. Consider again AF4, illustrated at the top of Figure 10 (see1325

page 22). The two preventing sets w.r.t. the preferred labelling LabArgpref of
AF4 are {c, d, g, h} and {d, e, f, g}. Both contain a responsible cycle w.r.t. LabArgpref ,
in this case even two responsible cycles, namely {d} and {g}.

These results imply that odd-length cycles of arguments labelled undec by
LabArgpref are an important characteristic of sets of arguments that prevent1330

LabArgpref from being a stable labelling (Theorem 35). Furthermore, it is suf-
ficient to revise (specific) arguments in odd-length cycles to obtain a stable la-
belling (of the revision) that is more committed than LabArgpref (Theorem 34).

7. Discussion and Related Work

Having introduced and analysed various characterisations of parts of an AF1335

responsible if a given preferred labelling is not stable, we now discuss the implica-
tions for the non-existence of stable labellings, the choice of preferred semantics,
and connections with related work.

7.1. Non-existence of Stable Labellings

Throughout this paper, we gave different characterisations of parts of an1340

AF responsible that a given preferred labelling is not stable, irrespective of the
existence of a stable labelling. That is, in general, the AF may have various
preferred labellings, some that are stable and some that are not. These pre-
ferred labellings differ in their assignment of the labels in and out to certain
arguments, in other words, an argument may be labelled in by one but out by1345

another preferred labelling. This gives users the freedom to choose an assign-
ment according to their own preferences.

In applications where decisiveness is required, users can thus decide whether
they only care about finding some labelling without undec labels, in which case
they can simply choose a stable labelling (if one exists), or they can choose one of1350

the preferred labellings according to their preference concerning the assignment
of in and out labels, and, if this preferred labelling is not stable, identify a
suitable revision of the AF. If the AF has no stable labelling at all, the second
situation is the only possible one. Our characterisations are thus versatile, as
they can be applied both in scenarios where an AF has no stable labelling and1355

in scenarios where a stable labelling exists, but the desired preferred labelling
is not stable.

Since every stable labelling is a preferred labelling [11], it follows that if no
stable labelling exists, then no preferred labelling is stable. Thus, in the case
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of non-existence of stable labellings, our characterisations can explain the non-1360

existence in terms of the preferred labellings not being stable in the following
sense.

Proposition 36. AF has no stable labelling if and only if for all preferred
labellings LabArgpref of AF there exist a non-empty enforcement and a non-
empty preventing set w.r.t. LabArgpref , and there exist a responsible cycle and1365

a SCUP w.r.t. LabArgpref .

Proof. Follows from Lemmas 5 and 8, and Propositions 15 and 20. �

Note that any one of the “responsibility conditions”, e.g. the existence of
a non-empty enforcement set, implies all the other “responsibility conditions”,
e.g. the existence of a SCUP. Which of our characterisations is most suitable1370

for an application in question is left to the user to decide. As we have shown,
each characterisation defines parts of an AF that are indeed responsible that a
preferred labelling is not stable, and consequently that no stable labelling exists.

7.2. Preferred versus Other Approximation Labellings

The preferred semantics is not the only one to “approximate” the stable1375

semantics. In particular, semi-stable labellings [13] are specific preferred la-
bellings. Furthermore, stage and CF2 semantics [21] capture special types of
maximal conflict-free sets. Even though stable labellings are always stage and
CF2 labellings, stage and CF2 semantics do not generally adhere to the same
basic properties as stable semantics in that, in particular, they do not satisfy1380

admissibility [12]. Therefore, stage and CF2 semantics do not lend themselves
to investigating the non-existence of stable labellings. However, it will be inter-
esting future work to investigate whether similar methods as presented in this
paper could help characterise why stage or CF2 labellings are not stable.

In contrast to CF2 and stage semantics, semi-stable labellings fulfil the ad-1385

missibility property. They are defined as preferred labellings where the union
of in and out labelled arguments is maximal (w.r.t. ⊆) among all complete
labellings [13]. We therefore also considered to use semi-stable labellings for our
characterisations, instead of preferred labellings. In fact, most of our definitions
apply to semi-stable labellings, too. For example, we could define enforcement1390

and preventing sets w.r.t. a semi-stable rather than a preferred labelling since
every semi-stable labelling is preferred.

However, with regards to SCUPs, semi-stable labellings lead to a problem:
even though SCUPs can be defined with respect to a semi-stable instead of a
preferred labelling, stable iterative SCUP revisions may not exist when defining1395

SCUPs with respect to a semi-stable labelling. The reason is that Theorem 25
and Corollary 26 are not guaranteed to hold for semi-stable labellings, i.e. a
SCUP revision may not have a semi-stable labelling that is more committed
than the semi-stable labelling of the original AF, as illustrated by the following
example.1400
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Example 39. Let AF9 be the AF on the left of Figure 21, which also illustrates
the only preferred and only semi-stable labelling LabArgpref of AF9. The only
SCUP w.r.t. LabArgpref is {a}. A SCUP revision AF~

9 of AF9 and its SCUP
revision labelling LabArg~ are shown on the right of Figure 21. The left of
Figure 22 illustrates the only preferred labelling of AF~

9 that is more committed1405

than LabArg~ and LabArgpref . Note that this preferred labelling is not a semi-
stable labelling of AF~

9 . The only semi-stable labelling of AF~
9 is illustrated on

the right of Figure 22. It is not more (or equally) committed than LabArg~. The
same problem arises if the SCUP is revised in such a way that a is labelled out

in the SCUP revision labelling, as illustrated at the top of Figure 23. The only1410

semi-stable labelling of the SCUP revision is shown at the bottom of Figure 23,
which is not more or equally committed than the SCUP revision labelling or
LabArgpref .
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undec

undec

undec

out in

undec

a

b

c d e
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in

undec

undec

out in

undec

Figure 21: Left – The only preferred and semi-stable labelling of AF9. Right – A SCUP
revision AF~

9 of AF9 and a SCUP revision labelling.
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Figure 22: A preferred labelling of AF~
9 that is more committed than LabArgpref (left) and

the only semi-stable labelling of AF~
9 (right).
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Figure 23: Another SCUP revision of AF9 and a SCUP revision labelling (top), and the only
semi-stable labelling of this SCUP revision (bottom).

The problem with defining SCUPs with respect to semi-stable rather than
preferred labellings is thus that iterative SCUP revisions cannot be applied,1415

unless we are prepared to change the labels of arguments already labelled in

and out by the semi-stable labelling of the original AF. However, this would
defeat the spirit of our work, as we are interested in why a particular labelling
is not a stable labelling. Of course, one could start with a semi-stable labelling
and then use preferred labellings in the iterative SCUP revision.1420

7.3. Related Work

Related to our work on stable semantics, Baumann and Strass [22] focus on
the question how many stable extensions an AF has on average and what the
maximal number of stable extensions is. Furthermore, Dunne and Bench-Capon
[23] investigate AFs whose stable and preferred extensions coincide, so-called1425

coherent AFs, and thus deal with AFs that always have a stable extension.
To the best of our knowledge, the only work investigating the non-existence

of stable extensions or labellings is by Nouioua and Würbel [24], who propose
a revision operator that transforms an AF without stable extensions into one
with a stable extension. Their setting is different from ours as they assume1430

that the AF in question, which has no stable extension, was obtained from
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an addition of arguments and attacks to some original AF. Assuming that the
added arguments and attacks are “correct”, they restrict the structural change
performed by the revision operator to the original AF. In contrast, our work
aims at characterising parts of an AF responsible for the non-existence of sta-1435

ble labellings and only uses the notion of structural change to prove that our
characterised parts are indeed responsible. Furthermore, Nouioua and Würbel’s
approach differs from ours in various ways: Firstly, they revise an AF through
a particular structural change, namely the deletion of attacks, whereas in our
approach the addition of arguments and attacks is allowed, too. Importantly, in1440

some cases, an enforcement labelling may be such that a mere deletion of attacks
does not yield the desired enforcement, in other words, adding arguments may
be necessary to obtain the desired enforcement.6 Furthermore, their approach
is not concerned with preserving a particular preferred, or even the grounded,
labelling when performing the structural change. Another difference is that1445

they are concerned with minimal (w.r.t. cardinality) changes that guarantee the
existence of a stable extension. In our approach minimality also plays a role,
as enforcement sets are minimal (w.r.t. set inclusion) sets of arguments used to
obtain a stable labelling. However, as far as structural changes are concerned
we do not make any minimality assumptions.1450

Like us, Baroni, Giacomin and Liao [25] are interested in arguments labelled
undec. However, rather than investigating how undec labels can be turned
into definite in or out labels, they argue that undecidedness is desirable in
some situations and review various semantics that include different notions of
“undecidedness”.1455

Caminada and Pigozzi [26] also investigate labellings that are “as close as
possible” to a given labelling and fulfil certain conditions, e.g. down-admissible
labellings are the closest admissible labellings less committed than the given
labelling and up-complete labellings are the closest complete labellings more
committed than the given labelling. Instead, our enforcement labellings define1460

more committed labellings that are “closest” to a stable labelling in terms of a
minimal set of illegally labelled arguments, so they are not complete labellings.
Another idea shared with their work is that of an iterative re-labelling (con-
traction and expansion functions) to obtain a labelling that legally labels all
arguments. This is related to our iterative SCUP revision, where arguments1465

in SCUPs are iteratively re-labelled (and enforced through structural revision)
until a stable labelling (of a revision) is obtained.

The ideas of enforcement and preventing sets introduced here are similar in
spirit as Reiter’s [27] diagnoses and conflict sets. They describe components of a
system causing abnormal behaviour of the system. Similarly to enforcement and1470

preventing sets, they form duals (in terms of Reiter, one is a “hitting set” of the
other). Inspired by that, Ignatiev et al. [28] define similar duals for propositional
logic in terms of minimal corrections subsets and minimal unsatisfiable subsets.

6An example is a self-attacking argument whose label should be out, achievable by adding
a new argument attacking the self-attacking one.
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In the following sections, we review some further strands of research sharing
particular aspects with our work.1475

7.3.1. Cycles in Argumentation Frameworks

Recently, cycles (of attacking arguments) in AFs have received considerable
attention, including a special issue of the Journal of Logic and Computation [29].
Many authors regard the behaviour of preferred semantics with respect to cycles
as “problematic”, as it treats odd-length and even-length cycles differently. In1480

particular, arguments in odd-length cycles can often only be labelled undec, as
is the case for our responsible cycles, whereas arguments in even-length cycles
can be alternately labelled in and out.

Baroni, Giacomin and Guida [16] discuss this “problematic” behaviour of
preferred semantics and introduce the CF2 semantics for AFs, which “correctly”1485

handles odd- and even-length cycles. Dvořák and Gaggl [30] extend the CF2
semantics to the so-called stage2 semantics, which fulfils some additional prop-
erties. Arieli [31] introduces a new family of conflict-tolerant semantics, where
the conflict-freeness requirement for extensions is dropped. Therefore, odd- and
even-length cycles are treated the same by the new semantics. Gabbay [32]1490

defines another family of new semantics, able to handle the “problematic” be-
haviour of the preferred semantics with regards to cycles. In the loop busting
semantics no argument is labelled undec. The procedure for computing the
semantics has similarities with ideas used in our approach, since it iteratively
applies a specific type of revision of initial SCCs. More precisely, an argument1495

in an initial SCC of the undec-part with respect to the grounded extension is
chosen and a new attacker is added. Then the grounded labelling of the new AF
is computed and the same procedure is performed iteratively for the new AF
restricted to arguments labelled undec. The iterative SCUP revision introduced
here applies a similar approach since an initial SCC of the undec-part (i.e. a1500

SCUP) is revised and the revision is then repeated on the AF restricted to ar-
guments still labelled undec. However, we allow for any revision and use the
preferred rather than grounded semantics. Bodanza and Tohmé [33] propose
two new semantics for handling odd-length cycles: the first one allows to accept
arguments attacked by an odd-length cycle, and the second one additionally al-1505

lows to accept single arguments in an odd-length cycle. Both types of semantics
yield labellings that are more committed than preferred labellings.

In contrast to the aforementioned works, Bench-Capon [34] argues that the
way the preferred semantics handles cycles is not “problematic”, by providing
an interpretation of even-length cycles as dilemmas and odd-length cycles as1510

paradoxes. He argues that using this point of view, it is reasonable that ar-
guments in odd-length cycles are neither true nor false, and that consequently
their justification status cannot be decided.

Note that the motivation of our approach is completely different from the
motivations of the works reviewed above. We do not make any claims about1515

whether or not the preferred semantics handles cycles “correctly”, and are there-
fore not concerned with new semantics. Instead, we characterise specific parts of
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an AF, which turn out to comprise odd-length cycles, as responsible that a pre-
ferred labelling is not stable, which also characterise parts of the AF responsible
for the non-existence of stable labellings.1520

Like us, Baumann and Woltran [35] are not concerned with the “correct” or
“incorrect” behaviour of semantics regarding odd-length cycles. Instead, they
study the role of self-attacking arguments, i.e. cycles of length one, with regards
to the equivalence of AFs.

7.3.2. Splitting Argumentation Frameworks1525

Two of our structural characterisations build upon the idea of SCCs intro-
duced in [16]. We investigate a particular type of SCCs, namely specific initial
SCCs, and use Baroni, Giacomin and Guida’s results [16] that the preferred and
stable semantics are SCC-recursive, i.e. that the preferred and stable extensions
(or equivalently labellings) of an AF can be obtained by computing the respec-1530

tive extensions for initial SCCs and using them recursively for computing the
extensions of the following SCCs. Liao [36] shows how the semantics of an AF
can be computed through the step-wise computation of semantics of SCCs, and
Baroni et al. [18] generalise the decomposability results about SCCs, showing
how complete labellings of an AF can be computed by combining complete la-1535

bellings of arbitrary parts of the AF. We apply and extend Baroni et al.’s results
for a particular partitions of an AF into the set of arguments labelled in or out
by a preferred labelling, and (a subset of the) arguments labelled undec.

Our results about combining a labelling of a SCUP with the in and out labels
in a preferred labelling are also related to the splitting results of Baumann et1540

al. [37, 38]. They show that, for the stable semantics, extensions of an AF can
be obtained by splitting the AF into two parts and computing the extensions
of the two parts using a method that takes the extensions of the respective
other part into account. Another related approach was introduced by Rienstra
et al. [39], who propose multi-sorted extensions as a new semantics of an AF1545

with respect to a partition of the AF. A multi-sorted extension is such that its
restriction to a part coincides with a given semantics for this part. This approach
is conceptually related to our work, which combines the stable labellings of parts
of the AF, namely SCUPs, with in and out labels from a preferred labelling.

7.3.3. Dynamics in Argumentation Frameworks1550

The study of dynamics in AFs has received considerable attention in recent
years. Our work investigates the dynamics of AFs from a special angle, since we
are not concerned with the exact structural change of an AF and its effect (as
e.g. in [40]), but rather with the existence of some structural change resulting
in the enforcement of a desired label for an argument. Importantly, which1555

structural change is chosen is not of importance for our work.
Liao, Jin, and Koons [41] introduce a general approach for computing ex-

tensions of an AF that has been structurally changed, allowing for any number
of additions and deletions of arguments and attacks. The idea is that, in order
to compute the semantics of the new AF, only the semantics of the part of1560

the AF that is affected by the structural change has to be re-computed. The
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semantics of the unaffected part stays the same as before the structural change
and only “conditions” the extensions of the affected part. This idea is related to
our iterative SCUP revisions, where we do not change the labels of arguments
labelled in or out in the SCUP revision labelling (they are “unaffected”), but1565

only of those labelled undec that are “conditioned” by the in and out labels of
the SCUP revision labelling.

The work of Booth et al. [42] is of similar spirit to our work, but concerned
with the complete rather than the stable semantics: they investigate how to
turn a non-complete labelling into a complete one through a structural change.1570

In contrast to our work, Booth et al. assume an intended complete labelling,
whereas for our approach no intended stable labelling is required.

Baumann and Brewka [17] were the first to investigate whether certain sets
of arguments can be enforced as an extension according to a chosen semantics.
In contrast to our general revisions, they only allow structural changes called1575

“expansions”, where arguments and attacks can be added, and new attacks
must involve a new argument. Baumann and Brewka prove that for certain
kinds of expansions, all arguments that are part of extensions before the struc-
tural change are also part of extensions after the structural change. In line
with their work, we show that for any revision w.r.t. an enforcement set by an1580

enforcement labelling, a stable labelling is obtained in which all previously in-
and out-labelled arguments keep their labels. Baumann [19] as well as Coste-
Marquis et al. [20] then studied how to enforce a set of arguments through a
minimal structural change of adding or deleting attacks. Similarly, we prove
that enforcement sets are minimal sets of arguments that, when used for a revi-1585

sion, yield a stable labelling. Coste-Marquis et al. [43] introduce a whole family
of revision operators that can be used for enforcement, generalising revision
operators defined by others, e.g. [44, 45, 46]. Other authors [47, 48, 49] study
enforcements as logical formulae to be satisfied through structural change. It
is important to note that even though enforcement is a related problem, we do1590

not assume a set of arguments to be “enforced” as an extension of the SCUP.
In contrast, we only require that some stable extension exists after the revision.
However, the previously mentioned approaches could be used for enforcing a
certain set of arguments as a stable extension of a SCUP.

8. Conclusion1595

In this paper, we investigated why a preferred labelling may not be stable.
Our contributions can be summarised as follows:

1. We gave three labelling-based and three structural characterisations of sets
of undec arguments deemed responsible that a given preferred labelling is
not a stable labelling.1600

2. We proved that our characterised sets of arguments are indeed responsible
by examining the effect of enforcing the label in or out for responsible
arguments in these sets through some structural revision. In particular:
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• each enforcement set provides a necessary and sufficient condition for
turning a non-stable preferred labelling (of the original AF) into a1605

stable labelling (of the revised AF);

• the union of all preventing sets as well as the union of all responsible
cycles provide a sufficient condition for turning a non-stable preferred
labelling (of the original AF) into a stable labelling (of the revised
AF);1610

• the union of all SCUPs in a stable iterative SCUP revision provides
a sufficient condition for turning a non-stable preferred labelling (of
the original AF) into a stable labelling (of the revised AF);

• each preventing set provides a necessary and sufficient condition for
the failure of turning a non-stable preferred labelling (of the original1615

AF) into a stable labelling (of the revised AF);

• each SCUP provides a sufficient condition for the failure of turning
a non-stable preferred labelling (of the original AF) into a stable
labelling (of the revised AF).

3. The stable iterative SCUP revision can be used to constructively obtain1620

a stable labelling (of a revision) from a given preferred labelling (of the
original AF).

4. Our characterisations also explain the non-existence of stable labellings,
in the sense that they characterise for each preferred labelling why it is
not a stable labelling.1625

We compared our labelling-based and structural characterisations, proving
that SCUPs provide a constructive approximation of our precise labelling-based
characterisations. Furthermore, our comparison shows that odd-length cycles
are an important feature of all our characterisations.

One of our results states that a SCUP revision has a preferred labelling that1630

is more (or equally) committed than the chosen preferred labelling of the original
AF. We did, however, not discuss how to obtain such a preferred labelling. The
näıve approach is to compute all preferred labellings of the SCUP revision,
compare them to the SCUP revision labelling, and choose a preferred labelling
that is more or equally committed than the SCUP revision labelling. There1635

exists a large variety of computational tools to solve this task, see [50] for an
overview. Another possibility is to use a slight modification of the algorithm
by Cerutti et al. [51] for computing preferred labellings through an iterative
procedure that splits the AF into different parts.

Future work includes studying the complexity and developing a tool for find-1640

ing our different notions of responsible sets of arguments and revising the AF
based on these sets combined with the user’s choice of labels (e.g. of argu-
ments in a SCUP). Furthermore, we plan to investigate how different revision
operators from the literature (e.g. [44, 45, 46, 43]) can be combined with our
characterisations.1645

Various authors have shown that there is a semantic correspondence between
logic programs and AFs that encode the same information as the logic program
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[10, 52, 53]. It follows from these results that if a logic program has no stable
models, the encoding AF has no stable labellings. A future direction of research
is thus to study whether our notions of responsible sets and revisions based on1650

these sets can be carried over to logic programs, and how they relate to existing
work on the inconsistency and debugging of logic programs, e.g. [54, 55, 56, 57,
58, 59, 60, 61].

We here only considered semantics that assign one of three labels to argu-
ments. Other types of semantics for AFs rank arguments or assign a numerical1655

value to each argument, e.g. [62, 63, 64, 65, 66, 67, 68, 69]. It will be interesting
to investigate if there is any connection between our responsible sets of argu-
ments and their numerical value or rank according to these different semantics.
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Appendix A. Auxiliary Results

Lemma 37. Let LabArg be a labelling of AF , Args ⊆ Ar and A ∈ Ar \Args.
Let AF~ be a revision of AF w.r.t. Args by LabArg and LabArg~ a revision
labelling of AF~. Then A is legally labelled by LabArg in AF if and only if A
is legally labelled by LabArg~ in AF~.1665

Proof. From left to right: Let A be legally labelled by LabArg. By Defini-
tion 1, (B,A) ∈ Att if and only if (B,A) ∈ Att~. Furthermore, LabArg~(A) =
LabArg(A) and for all B ∈ Ar, LabArg~(B) = LabArg(B). Since it only
depends on the labels of attackers of A whether or not A is legally labelled,
it follows that A is legally labelled by LabArg~. The proof of the opposite1670

direction is analogous. �

Lemma 38. Let LabArg and LabArg′ be two labellings of AF such that LabArg
v LabArg′. Then, ∀A ∈ in(LabArg)∪ out(LabArg) it holds that if A is legally
labelled by LabArg, then A is legally labelled by LabArg′.

Proof. Let A ∈ in(LabArg). Then, for all attackers B of A, B ∈ out(LabArg).1675

By definition of LabArg′, A ∈ in(LabArg′) and for all attackers B of A, B ∈
out(LabArg′). Thus, A is legally labelled in by LabArg′. Let A ∈ out(LabArg).
Then there exists an attacker B of A such that B ∈ in(LabArg). By defini-
tion of LabArg′, A ∈ out(LabArg′) and B ∈ in(LabArg′). Thus, A is legally
labelled out by LabArg′. �1680

Lemma 39. Let Args be an enforcement set w.r.t. LabArgpref and LabArg an
enforcement labelling w.r.t. Args. Then, ∀A ∈ Ar \ Args, A is legally labelled
by LabArg.

Proof. Let A ∈ Ar \Args. By Definition 4, if A ∈ undec(LabArgpref ), then A
is legally labelled by LabArg. If A ∈ in(LabArgpref ) ∪ out(LabArgpref ), then1685

by Lemma 38 A is legally labelled by LabArg, since LabArgpref @ LabArg. �
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Definition 12 (Compatible Labelling). Let Args1, Args2 ⊆ Ar such that
Args1 ∩ Args2 = ∅ and Args1 ∪ Args2 = Ar. Let LabArg1 be a labelling of
AF↓Args1 and LabArg2 a labelling of AF↓Args2 . LabArg1 is compatible with
LabArg2 if and only if LabArg1 is a complete labelling w.r.t.1690

(AF↓Args1 , Args2, LabArg2, Att ∩ (Args2 ×Args1)).

Lemma 40. Let Args1, Args2 ⊆ Ar such that Args1 ∩Args2 = ∅ and Args1 ∪
Args2 = Ar. Let LabArg1 be a labelling of AF↓Args1 and LabArg2 a labelling
of AF↓Args2 . LabArg = LabArg1 ∪ LabArg2 is a complete labelling of AF if
and only if LabArg1 is compatible with LabArg2 and LabArg2 is compatible with1695

LabArg1.

Proof. Follows from Definition 12 and Theorem 3 in [18]. �

Lemma 41. Let Args1, Args2 ⊆ Ar such that Args1 ∩ Args2 = ∅, Args1 ∪
Args2 = Ar, and Args2 does not attack Args1. Let LabArg1 be a com-
plete labelling of AF↓Args1 and LabArg2 a labelling of AF↓Args2 . LabArg =1700

LabArg1 ∪ LabArg2 is a complete labelling of AF if and only if LabArg2 is
compatible with LabArg1.

Proof. From left to right: Let LabArg = LabArg1 ∪ LabArg2 be a complete
labelling of AF . Then, by Lemma 40, LabArg2 is compatible with LabArg1.
From right to left: Let LabArg2 be compatible with LabArg1. Since LabArg1 is1705

a complete labelling of AF↓Args1 , by Proposition 1 in [18] LabArg1 is a complete
labelling w.r.t. (AF↓Args1 , ∅, ∅, ∅). Since Args2 does not attack Args1, it follows
that LabArg1 is a complete labelling w.r.t. (AF↓Args1 , Args2, LabArg2, ∅), so
LabArg1 is compatible with LabArg2. Thus by Lemma 40, LabArg1 ∪LabArg2
is a complete labelling of AF . �1710

We can generalise Lemma 41 to SCCs.

Corollary 42. Let Args1, . . . , Argsn (n ≥ 1) be a sequence of all SCCs of AF
and for all i 6= j, Argsi 6= Argsj, and if Argsi is attacked by Argsk (i 6= k),
then k < i. Let LabArgi be a labelling of AF↓Argsi . Then LabArg = LabArg1∪
. . .∪LabArgn is a complete labelling of AF if and only if LabArg1 is a complete1715

labelling of Args1 and LabArgi is compatible with LabArg1 ∪ . . . ∪ LabArgi−1
for all i ∈ {2 . . . n}.

Lemma 43. Let Args1, Args2 ⊆ Ar such that Args1 ∩Args2 = ∅ and Args1 ∪
Args2 = Ar. Let LabArg1 be a labelling of AF↓Args1 and LabArg2 a labelling of
AF↓Args2 . If ∀A ∈ Args1 it holds that A is legally labelled by LabArg1∪LabArg21720

in AF , then LabArg1 is compatible with LabArg2.

Proof. Let LabArg = LabArg1 ∪ LabArg2 and let A ∈ Args1.

• If A ∈ in(LabArg1), then clearly A ∈ in(LabArg). Thus, ∀B attacking
A, B ∈ out(LabArg). It follows that if B ∈ Args1, B ∈ out(LabArg1),
and if B ∈ Args2, then B ∈ out(LabArg2).1725
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• If A ∈ out(LabArg1), then clearly A ∈ out(LabArg). Thus, ∃B at-
tacking A such that B ∈ in(LabArg). It follows that B ∈ Args1 and
B ∈ in(LabArg1), or B ∈ Args2 and B ∈ in(LabArg2).

• If A ∈ undec(LabArg1), then clearly A ∈ undec(LabArg). Thus, ∀B at-
tacking A, B /∈ in(LabArg), and ∃C attacking A such that C ∈ undec(LabArg).1730

It follows that if B ∈ Args1, B /∈ in(LabArg1), and if B ∈ Args2,
then B /∈ in(LabArg2). Furthermore, it follows that C ∈ Args1 and
C ∈ undec(LabArg1) or C ∈ Args2 and C ∈ undec(LabArg2).

Thus, all A ∈ Args1 satisfy the conditions in Definition 12, so Args1 is com-
patible with Args2. �1735

Lemma 44. Let ArgsIO = in(LabArgpref ) ∪ out(LabArgpref ) and ArgsU =
undec(LabArgpref ). Then LabArgpref ↓ArgsU is the only complete labelling w.r.t.
(AF↓ArgsU , ArgsIO,LabArgpref ↓ArgsIO, Att ∩ (ArgsIO ×ArgsU)).

Proof. Since LabArgpref is a complete labelling of AF , it holds by Lemma 40
that LabArgpref ↓ArgsIO is compatible with LabArgpref ↓ArgsU and vice versa.1740

By Definition 12, it follows that LabArgpref ↓ArgsU is a complete labelling w.r.t.
(AF↓ArgsU , ArgsIO,LabArgpref ↓ArgsIO, Att ∩ (ArgsIO ×ArgsU)).
To prove that LabArgpref ↓ArgsU is the only such labelling, assume there exists
a labelling LabArgU 6= LabArgpref ↓ArgsU of AF↓ArgsU such that LabArgU is
a complete labelling w.r.t.1745

(AF↓ArgsU , ArgsIO,LabArgpref ↓ArgsIO, Att ∩ (ArgsIO ×ArgsU)).
Thus by Definition 12, LabArgU is compatible with LabArgpref ↓ArgsIO.
Clearly, LabArgpref @ LabArgpref ↓ArgsIO ∪ LabArgU , so by Lemma 38 all
A ∈ ArgsIO are legally labelled by LabArgpref ↓ArgsIO ∪ LabArgU . Then,
by Lemma 43, LabArgpref ↓ArgsIO is compatible with LabArgU . It follows1750

by Lemma 40, that LabArgpref ↓ArgsIO ∪ LabArgU is a complete labelling of
AF . Contradiction, since LabArgpref @ LabArgpref ↓ArgsIO ∪ LabArgU and
LabArgpref is a preferred labelling. Thus, LabArgpref ↓ArgsU is the only com-
plete labelling w.r.t.
(AF↓ArgsU , ArgsIO,LabArgpref ↓ArgsIO, Att ∩ (ArgsIO ×ArgsU)). �1755

Lemma 45. Let Args1, Args2 ⊆ Ar such that Args1 ∩Args2 = ∅ and Args1 ∪
Args2 = Ar. Let LabArg2 be a labelling of AF↓Args2 . Then there exists a
labelling LabArg1 of AF↓Args1 such that LabArg1 is compatible with LabArg2.

Proof. Since Definition 12 mirrors the definition of canonical local function
of the complete semantics (Definition 24 in [18]), a labelling LabArg1 of Args11760

is compatible with a labelling LabArg2 of Args2 if and only if LabArg1 is an
element of the canonical local function of the complete semantics of the argu-
mentation framework with input (AF↓Args1 , Args2, LabArg2, Att ∩ (Args2 ×
Args1)). By Definition 13 in [18], the canonical local function of the complete
semantics of (AF↓Args1 , Args2, LabArg2, Att ∩ (Args2 × Args1)) can be com-1765

puted via the complete labellings of the standard argumentation framework of
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(AF↓Args1 , Args2, LabArg2, Att ∩ (Args2 × Args1)). Since a standard argu-
mentation framework always exists, it has a complete labelling, so the canonical
local function of the complete semantics for (AF↓Args1 , Args2, LabArg2, Att ∩
(Args2 ×Args1)) is non-empty. Thus LabArg1 exists. �1770

Lemma 46. Let ArgsIO = in(LabArgpref ) ∪ out(LabArgpref ) and ArgsU ⊆
undec(LabArgpref ). Let LabArgIO = LabArgpref ↓ArgsIO and let LabArgU be
some labelling of AF↓ArgsU . Then LabArgIO is compatible with LabArgU .

Proof. We note that ∀B ∈ ArgsU attacking some A ∈ ArgsIO it holds that
A ∈ out(LabArgIO) since arguments labelled in are not attacked by arguments1775

labelled undec in LabArgpref . Let A ∈ ArgsIO.

• If A ∈ in(LabArgIO), then, for all B ∈ ArgsIO attacking A, it holds
that B ∈ out(LabArgIO) since LabArgpref is a complete labelling. Fur-
thermore, no B ∈ ArgsU attacks A.

• If A ∈ out(LabArgIO), then there exists B ∈ ArgsIO attacking A such1780

that B ∈ in(LabArgIO) since LabArgpref is a complete labelling.

Thus, LabArgIO is a complete labelling w.r.t. (AF↓ArgsIO, ArgsU, LabArgU,
Att∩(ArgsU×ArgsIO)), and therefore LabArgIO is compatible with LabArgU .

�

Appendix B. Proofs1785

Proof (of Lemma 1). Let AF~ = 〈Ar~, Att~〉 be such that

• Ar~ = Ar ∪ {X} where X /∈ Ar and

• Att~ = (Att \ {(B,A) ∈ Att | A ∈ Args,A ∈ in(LabArg) ∪ undec(LabArg)})
∪ ({(X,A) | A ∈ Args,A ∈ out(LabArg)}
∪ {(A,A) | A ∈ Args,A ∈ undec(LabArg)}).1790

Let LabArg~ = LabArg ∪ {(X, in)}. Then clearly Ar ⊆ Ar~ and {(A,B) ∈
Att | B ∈ Ar \ Args} = {(A,B) ∈ Att~ | B ∈ Ar \ Args}, and ∀C ∈ Ar:
LabArg~(C) = LabArg(C).
Let A ∈ Args. If A ∈ in(LabArg~), then A is not attacked by any argument
B in AF~, so trivially, for all attackers B of A in AF~, B ∈ out(LabArg~).1795

Thus, A is legally labelled in by LabArg~ in AF~. If A ∈ out(LabArg~), then
A is attacked by X in AF~ and X ∈ in(LabArg~), so A is legally labelled
out by LabArg~ in AF~. If A ∈ undec(LabArg~), then A is only attacked by
itself in AF~. Thus, there exists an attacker of A in AF~ labelled undec by
LabArg~ and there exists no attacker of A in AF~ labelled in by LabArg~, so1800

A is legally labelled undec by LabArg~ in AF~.
Since furthermore X ∈ Ar~ \ Ar is legally labelled in by LabArg~ in AF~,
AF~ and LabArg~ satisfy the conditions in Definition 1, so AF~ is a revision
of AF w.r.t. Args by LabArg. �

52



Proof (of Proposition 3). Since undec(LabArg) = ∅, it follows from Ob-1805

servation 2 that undec(LabArg~) = ∅. Furthermore, by Definition 1 all A ∈
Ar~ \ Ar are legally labelled by LabArg~ in AF~. Let B ∈ Ar. If B ∈
Args, then, by Definition 1, B is legally labelled by LabArg~ in AF~. If
B /∈ Args, then B ∈ in(LabArgpref )∪ out(LabArgpref ), so B is legally labelled
by LabArgpref in AF . By Lemma 38 in Appendix A, B is legally labelled1810

by LabArg in AF , and by Lemma 37 in Appendix A, B is legally labelled by
LabArg~ in AF~. Since all arguments in AF~ are legally labelled by LabArg~

and undec(LabArg~) = ∅, LabArg~ is a stable labelling of AF~. �

Proof (of Lemma 5).

1. Let Args = undec(LabArgpref ). Clearly there exists some LabArg with1815

LabArgpref v LabArg and undec(LabArg) = ∅. Then trivially, ∀A ∈
undec(LabArgpref ) \ Args = ∅ it holds that A is legally labelled by
LabArg. Thus, Args and LabArg satisfy the conditions in Definition 4,
but Args may not be a minimal set satisfying the conditions. If for all
Args1 ⊂ Args and for all LabArg′ of AF with LabArgpref v LabArg′ and1820

undec(LabArg′) = ∅ there exists some A ∈ undec(LabArgpref ) \ Args1
that is illegally labelled by LabArg′, then Args is a minimal set sat-
isfying the conditions in Definition 4, so it is an enforcement set (and
LabArg an enforcement labelling w.r.t. Args). Else, there is a smallest
Args1 ⊂ Args satisfying that ∃LabArg1 with LabArgpref v LabArg1 and1825

undec(LabArg1) = ∅ such that ∀A ∈ undec(LabArgpref ) \ Args1: A is
legally labelled by LabArg1. Thus, Args1 is an enforcement set (and
LabArg1 an enforcement labelling).

2. Let LabArg be an enforcement labelling w.r.t. Args. If Args = ∅, then,
by Lemma 39 in Appendix A, all arguments in Ar are legally labelled by1830

LabArg, so since undec(LabArg) = ∅, LabArg is a stable labelling. Thus,
LabArgpref = LabArg is a stable labelling.
If LabArgpref is a stable labelling then undec(LabArgpref ) = ∅. Then
Args = ∅ is the minimal set satisfying Definition 4 with LabArg =
LabArgpref as the only enforcement labelling. �1835

Proof (of Lemma 8).

1. Let Args = undec(LabArgpref ) and let LabArg be such that LabArgpref @
LabArg and undec(LabArg) = ∅. Since LabArgpref is a maximal com-
plete labelling, ∃A ∈ Args such that A is illegally labelled by LabArg.
Since this holds for all such labellings LabArg, Args satisfies the condi-1840

tions in Definition 5. However, Args may not be a minimal set satisfy-
ing these conditions. If for all Args1 ⊂ Args there exists LabArg1 with
LabArgpref @ LabArg1 and undec(LabArg1) = ∅ such that all A ∈ Args1
are legally labelled by LabArg1, then Args is a minimal set satisfying
the conditions in Definition 5, so it is a preventing set w.r.t. LabArgpref .1845

Else, there is a smallest Args1 ⊂ Args satisfying that ∀LabArg′ with
LabArgpref @ LabArg′ and undec(LabArg′) = ∅ it holds that ∃A ∈ Args1
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such that A is illegally labelled by LabArg′. Then Args1 is a preventing
set w.r.t. LabArgpref .

2. Assume Args = ∅ is a preventing set w.r.t. LabArgpref and LabArgpref is1850

not a stable labelling. Then ∃LabArg @ LabArgpref and, by Definition 5,
∃A ∈ Args such that A is illegally labelled. Contradiction since @A ∈
Args, so LabArgpref is a stable labelling.
Assume LabArgpref is a stable labelling. Then undec(LabArgpref ) = ∅
and Args = ∅ satisfies Definition 5. �1855

Proof (of Theorem 11). We prove that all Args ∈ S are enforcement sets
and that all enforcement sets are contained in S. We note that, by Lemma 8
Sprev 6= ∅. If Sprev = {∅} then S = {∅}. Then, by Lemma 8, LabArgpref is a
stable labelling and by Lemma 5 the empty set is the only enforcement set. If
Sprev 6= {∅} then by Lemma 8 ∀Argsprev ∈ Sprev : Argsprev 6= ∅.1860

• Let Args ∈ S and assume that Args is not an enforcement set. Then
either Args is not a minimal set satisfying the conditions in Definition 4
or it does not satisfy the conditions at all.

– In the first case, ∃Argsenf ⊂ Args such that Argsenf is an enforce-
ment set. Since Args is a minimal set satisfying that ∀Argsprev ∈1865

Sprev : Args ∩ Argsprev 6= ∅, it follows that ∃Args′prev ∈ Sprev

such that Argsenf ∩ Args′prev = ∅. Since Args′prev is a prevent-
ing set it holds that ∀LabArg such that LabArgpref @ LabArg and
undec(LabArg) = ∅, ∃A ∈ Args′prev such that A is illegally la-
belled by LabArg. However, since Argsenf is an enforcement set1870

it holds that ∃LabArg′ such that, by Lemma 39 in Appendix A,
∀B ∈ Ar \Argsenf : B is legally labelled by LabArg′. Contradiction
since B ∈ Args′prev .

– In the second case, we note that Args ⊆ undec(LabArgpref ) since
∀A ∈ Args : ∃Argsprev such that A ∈ Argsprev and Argsprev ⊆1875

undec(LabArgpref ) by Definition 5. Thus, Args violates Definition 4
because ∀LabArg with LabArgpref @ LabArg and undec(LabArg) =
∅ it holds that ∃A ∈ undec(LabArgpref )\Args such that A is illegally
labelled by LabArg. Let Args′ = Ar \Args. Then ∃A ∈ Args′ such
that A is illegally labelled by LabArg, so Args′ satisfies the conditions1880

of a preventing set (disregarding minimality). Since by definition of
Args′ it holds that Args ∩ Args′ = ∅, Args′ is not a preventing set
(by definition of Args). Thus Args′ is not a minimal set satisfying
the conditions of a preventing set, i.e. ∃Argsprev ∈ Sprev such that
Argsprev ⊂ Args′. Then, by definition of Args, Args∩Argsprev 6= ∅1885

and thus Args ∩Args′ 6= ∅. Contradiction.

Thus Args is an enforcement set.

• Let Argsenf be an enforcement set and assume that Argsenf /∈ S. Then
either ∃Argsprev ∈ Sprev such that Argsenf ∩Argsprev = ∅ or there exists
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a minimal set Args ⊂ Argsenf satisfying that ∀Argsprev ∈ Sprev : Args ∩1890

Argsprev 6= ∅.

– In the first case, since Argsprev is a preventing set it holds that
∀LabArg with LabArgpref @ LabArg and undec(LabArg) = ∅, ∃A ∈
Argsprev such that A is illegally labelled by LabArg. However, since
Argsenf is an enforcement set, by Lemma 39 in Appendix A there1895

exists LabArg′ such that ∀B ∈ Ar\Argsenf it holds that B is legally
labelled by LabArg′. Contradiction since B ∈ Argsprev .

– In the second case, Args ∈ S, so it follows from the first item of this
proof that Args is an enforcement set. Contradiction since Argsenf
is an enforcement set (and thus minimal).1900

Thus, Argsenf ∈ S. �

Proof (of Proposition 15). Assume there exists no odd-length cycle of ar-
guments all labelled undec by LabArgpref . Then AFu = AF↓undec(LabArgpref )

comprises no odd-length cycle. By Corollary 36 in [10], AFu has a stable la-
belling LabArgu. We observe that, for all arguments A ∈ in(LabArgpref ) ∪1905

out(LabArgpref ) that are attacking some argument in undec(LabArgpref ), it
holds that A ∈ out(LabArgpref ) and that, for all arguments B ∈ in(LabArgpref )∪
out(LabArgpref ) that are attacked by some argument in undec(LabArgpref ), it
holds that B ∈ out(LabArgpref ).
Let LabArg = LabArgpref ↓in(LabArgpref )∪out(LabArgpref )

∪ LabArgu, so1910

undec(LabArg) = ∅ and LabArgpref v LabArg. We show that LabArg is a
complete labelling of AF :

• Let A ∈ in(LabArg). If A ∈ in(LabArgpref ), then, by Lemma 38 in Ap-
pendix A, A is legally labelled by LabArg. If A ∈ in(LabArgu), then, for
all attackers B of A such that B ∈ in(LabArgpref )∪out(LabArgpref ), B ∈1915

out(LabArgpref ) (by the above observation), and thus B ∈ out(LabArg).
Furthermore, for all attackers C of A such that C ∈ undec(LabArgpref ),
C ∈ out(LabArgu) since LabArgu is a stable labelling of AFu, and thus
C ∈ out(LabArg). Thus, A is legally labelled in by LabArg.

• Let A ∈ out(LabArg). If A ∈ out(LabArgpref ), then, by Lemma 381920

in Appendix A, A is legally labelled by LabArg. If A ∈ out(LabArgu),
then there exists an attacker B of A such that B ∈ undec(LabArgpref )
and B ∈ in(LabArgu) since LabArgu is a stable labelling of AFu, and
thus B ∈ in(LabArg). Thus, A is legally labelled out by LabArg.

Thus, LabArg is a stable labelling of AF , so LabArgpref = LabArg is a stable1925

labelling. It follows that there exists an odd-length cycle of arguments all la-
belled undec by LabArgpref .
If LabArgpref is a stable labelling, then undec(LabArgpref ) = ∅. Thus there
exists no odd-length cycle of arguments all labelled undec. �
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Proof (of Proposition 16). Since AF↓undec(LabArgpref )\S comprises no odd-1930

length cycles, by Corollary 36 in [10] it has a stable labelling LabArgstable. Let
LabArg′ = LabArgstable ∪ LabArgo be a labelling of AF↓undec(LabArgpref )

where
LabArgo is a labelling of arguments in AF↓S such that out(LabArgo) = S,
and let LabArg = LabArg′ ∪ LabArgpref ↓in(LabArgpref )∪out(LabArgpref )

. Clearly
LabArg is a labelling ofAF such that LabArgpref @ LabArg and undec(LabArg)1935

= ∅.

• Let A ∈ in(LabArgpref ) ∪ out(LabArgpref ). By Lemma 38 in Appendix
A, A is legally labelled by LabArg.

• Let A ∈ undec(LabArgpref )\S and LabArg(A) = in. Then, for all attack-
ers B of A such that B ∈ undec(LabArgpref ) \ S, LabArgstable(B) = out1940

and thus LabArg(B) = out. Furthermore, for all attackers C of A such
that C ∈ S, LabArgo(C) = out and thus LabArg(C) = out. Additionally,
for all attackers D of A such that D ∈ in(LabArgpref )∪out(LabArgpref ),
LabArgpref (D) = out and thus LabArg(D) = out. Hence, A is legally
labelled in by LabArg.1945

• Let A ∈ undec(LabArgpref ) \ S and LabArg(A) = out. Then there
exists an attacker B of A such that B ∈ undec(LabArgpref ) \ S and
LabArgstable(B) = in and thus LabArg(B) = in. Hence, A is legally
labelled out by LabArg.

Thus, all A ∈ Ar \ S are legally labelled by LabArg. Let AF~ be a revision1950

of AF w.r.t. S by LabArg and LabArg~ a revision labelling of AF~. By
Definition 1, all A ∈ S and all B ∈ Ar~ \ Ar are legally labelled by LabArg~

in AF~. Furthermore, by Lemma 37 in Appendix A, all A ∈ Ar \ S are legally
labelled by LabArg~ in AF~. Therefore, LabArg~ is a stable labelling of AF~.

�1955

Proof (of Proposition 18). If LabArgpref is a stable labelling, then for all
SCCs Args it holds that LabArgpref ↓Args is a stable labelling w.r.t. (AF↓Args,
parents(Args), LabArgpref ↓parents(Args), Att ∩ (parents(Args) × Args)). This
violates the condition in Definition 7, so there exists no responsible SCC.
If LabArgpref is not a stable labelling then since the attacks between SCCs are1960

by definition unidirectional, there exists a sequence of SCCs Args1, . . . , Argsn
(∀i 6= k : Argsi 6= Argsk) such that if Argsi is attacked by Argsk (i 6= k), then
k < i. By Corollary 42 in Appendix A, LabArgpref = LabArg1 ∪ . . .∪LabArgn
where LabArgi is a labelling of Argsi, LabArg1 is a complete labelling of
Args1, and for all j ∈ {2 . . . n} it holds that LabArgj is compatible with1965

LabArg1 ∪ . . .∪LabArgj−1. If LabArg1 is not a stable labelling of Args1, then
Args1 satisfies Definition 7, so there exists a responsible SCC w.r.t. LabArgpref .
Else, there exists LabArgi such that, for all LabArgj with j < i, it holds that
undec(LabArgj) = ∅ and undec(LabArgi) 6= ∅. Since by the construction of our
sequence of SCCs, for all Args′ ∈ parentSCCs(Argsi) it holds that Args′ =1970

Argsj for some j < i, it follows that, for all these Args′, LabArgpref ↓Args′ is a
stable labelling w.r.t. (AF↓Args′ , parents(Args′), LabArgpref ↓parents(Args′), Att∩
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(parents(Args′) × Args′)). Furthermore, since undec(LabArgi) 6= ∅, it follows
that there exists no stable labelling w.r.t. (AF↓Argsi , parents(Argsi),
LabArgpref ↓parents(Argsi), Att∩(parents(Argsi)×Argsi)) that is more commit-1975

ted than LabArgi. (If there was such a labelling, then LabArgpref would be a
stable labelling.) �

Proof (of Proposition 19). Let ArgsIO = in(LabArgpref )∪out(LabArgpref )
and ArgsU = undec(LabArgpref ). We observe that since arguments labelled
undec are not attacked by arguments labelled in by a complete labelling, ∀B ∈1980

ArgsIO attacking some A ∈ ArgsU , it holds that B ∈ out(LabArgpref ↓ArgsIO).
We first prove that LabArgpref ↓ArgsU is a complete labelling of AF↓ArgsU .
Since by Lemma 44 in Appendix A, LabArgpref ↓ArgsU is a complete labelling
w.r.t. (AF↓ArgsU , ArgsIO,LabArgpref ↓ArgsIO, Att∩(ArgsIO×ArgsU)), it fol-
lows that ∀A ∈ ArgsU and ∀B ∈ ArgsU attacking A, B /∈ in(LabArgpref ↓ArgsU ),1985

and ∃C ∈ ArgsU attacking A such that C ∈ undec(LabArgpref ↓ArgsU ) since by
our above observation @D ∈ ArgsIO attacking A such that
D ∈ undec(LabArgpref ↓ArgsIO). Thus, all A ∈ ArgsU are legally labelled by
LabArgpref ↓ArgsU , so LabArgpref ↓ArgsU is a complete labelling of AF↓ArgsU .
We now prove that there exists no other complete labelling of AF↓ArgsU .1990

Assume there exists a complete labelling LabArgU of AF↓ArgsU such that
undec(LabArgU) 6= ArgsU . Clearly, LabArgpref @ LabArgpref ↓ArgsIO∪LabArgU .

By Lemma 46 in Appendix A, LabArgpref ↓ArgsIO is compatible with LabArgU .
Furthermore, LabArgU is compatible with LabArgpref ↓ArgsIO:

• If A ∈ in(LabArgU), then ∀B ∈ ArgsU attacking A, B ∈ out(LabArgU)1995

since LabArgU is a complete labelling of AF↓ArgsU . Furthermore ∀B ∈
ArgsIO attacking A, B ∈ out(LabArgpref ↓ArgsIO) as previously noted.

• If A ∈ out(LabArgU), then ∃B ∈ ArgsU attacking A such that B ∈
in(LabArgU) since LabArgU is a complete labelling of AF↓ArgsU .

• If A ∈ undec(LabArgU), then ∀B ∈ ArgsU attacking A, B /∈ in(LabArgU),2000

and ∃B ∈ ArgsU attacking A such that B ∈ undec(LabArgU) since
LabArgU is a complete labelling ofAF↓ArgsU . Furthermore, ∀B ∈ ArgsIO
attacking A, B /∈ in(LabArgpref ↓ArgsIO) as previously noted.

It follows by Lemma 40 in Appendix A, that LabArgpref ↓ArgsIO∪LabArgU is a
complete labelling ofAF . Contradiction, since LabArgpref @ LabArgpref ↓ArgsIO∪2005

LabArgU and LabArgpref is a preferred labelling. �

Proof (of Proposition 20). Since every non-empty AF has an initial SCC,
AF↓undec(LabArgpref )

has an initial SCC if and only if undec(LabArgpref ) 6= ∅,
i.e. if and only if LabArgpref is not a stable labelling. By Definition 8 this initial
SCC is a SCUP w.r.t.2010

LabArgpref . �

Proof (of Proposition 21). By Definition 7, there exists no stable labelling
w.r.t. (AF↓Args, parents(Args), LabArgpref ↓parents(Args), Att∩(parents(Args)×
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Args)) that is more or equally committed than LabArgpref ↓Args. Thus,
undec(LabArgpref ↓Args) 6= ∅. Let Args′ = undec(LabArgpref ↓Args). Since2015

Args is an SCC of AF , Args′ is an SCC of AF↓undec(LabArgpref )
.

By Definition 7, for all Argsp ∈ parentSCCs(Args) it holds that LabArgpref ↓Argsp
is a stable labelling w.r.t. (AF↓Argsp , parents(Argsp), LabArgpref ↓parents(Argsp),
Att ∩ (parents(Argsp) × Argsp)). Thus, @A ∈ parents(Args), B ∈ Args such
that A attacks B and A ∈ undec(LabArgpref ). Since Args′ ⊆ Args and2020

since Args \ Args′ ⊆ in(LabArgpref ) ∪ out(LabArgpref ), it follows that @A ∈
parents(Args′), B ∈ Args′ such that A attacks B and A ∈ undec(LabArgpref ).
Thus, in AF↓undec(LabArgpref )

it holds that Args′ is an SCC and Args′ is not
attacked by any arguments not contained in Args′. Thus, Args′ is an initial
SCC of AF↓undec(LabArgpref )

, so it is a SCUP w.r.t. LabArgpref . �2025

Proof (of Lemma 22). Assume ∃LabArg of AF with LabArgpref @ LabArg
and undec(LabArg) = ∅ such that ∀A ∈ Args, A is legally labelled by LabArg
in AF . Let Args1 = in(LabArgpref ) ∪ out(LabArgpref ) ∪ Args, Args2 =
Ar \ Args1, and LabArg1 = LabArg↓Args1 . Since Args is a SCUP, it holds
that ∀A ∈ Args and ∀B attacking A, B ∈ Args1. Thus, A being legally la-2030

belled by LabArg only depends on LabArg1. Let LabArg2 be some labelling of
Args2. Then, ∀A ∈ Args, A is legally labelled by LabArg1 ∪ LabArg2 in AF .
Furthermore, clearly LabArgpref @ LabArg1 ∪ LabArg2. Then, by Lemma 38
in Appendix A, ∀A ∈ in(LabArgpref )∪out(LabArgpref ) it holds that A is legally
labelled by LabArg1 ∪LabArg2 in AF . Thus, ∀A ∈ Args1, A is legally labelled2035

by LabArg1 ∪LabArg2 in AF . Then, by Lemma 43 in Appendix A, LabArg1 is
compatible with LabArg2 (for any labelling LabArg2 of Args2). Furthermore,
by Lemma 45 in Appendix A, there exists a labelling LabArg′2 that is compatible
with LabArg1. Then, by Lemma 40 in Appendix A, LabArg1∪LabArg′2 is a com-
plete labelling of AF . Contradiction since LabArgpref @ LabArg1 ∪ LabArg′2.2040

�

Proof (of Proposition 28). By Proposition 19 and the SCC recursiveness
of complete labellings [16], AF↓Args has no stable labelling. Then, by Corol-
lary 36 in [10], there exists an odd-length cycle in Args. �
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