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Abstract

The thesis presents various perspectives on physical and biological computation. Our

fundamental object of study in both these contexts is the notion of switching/erasing

a bit. In a physical context, a bit is represented by a particle in a double well, whose

dynamics is governed by the Langevin equation. We define the notions of reliability and

erasing time-scales in addition to the work required to erase a bit for a given family of

control protocols. We call bits “optimal” if they meet the required reliability and erasing

time requirements with minimal work cost. We find that optimal bits always saturate the

erasing time requirement, but may not saturate the reliability time requirement. This

allows us to eliminate several regions of parameter space as sub-optimal.

In a biological context, our bits are represented by substrates that are acted upon by cat-

alytic enzymes. We define retroactivity as the back-signal propagated by the downstream

system when connected to the upstream system. We analyse certain upstream systems

that can help mitigate retroactivity. However, these systems require a substantial pool of

resources and are therefore not optimal. As a consequence, we turn our attention to in-

sulating networks called push-pull motifs. We find that high rates of energy consumption

are not essential to alleviate retroactivity in push-pull motifs; all we need is to couple

weakly to the upstream system. However, this approach is not resilient to cross-talk

caused by leak reactions in the circuit.

Next, we consider a single enzyme-substrate reaction and analyse its mechanism. Our

system has two intermediate states (enzyme-substrate complexes). Our main question

is “How should we choose binding energies of the intermediates to minimize sequestra-

tion of substrates (retroactivity), whilst maintaining a minimum flux at steady-state?”.

Choosing very low binding energies increases retroactivity since the system spends a con-

siderable proportion of time in the intermediate states. Choosing binding energies that

are very high reduces retroactivity, but hinders the progress of the reaction. As a result,

we find that the the optimal binding energies are both moderate, and indeed tuned with

each other. In particular, their difference is related to the free energy difference between

the products and reactants.
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Chapter 1

Introduction

The thesis focuses on the idea of manipulating a bit - the fundamental unit of computation

that possesses two states. Physical and biological systems however, are more complex

than their computational abstractions - they go beyond the canonical two state model

involved in manipulating a bit. This raises the question of how the bit moves between

the two states. The impact of these intermediate configurations on the properties of bit-

like systems is the unifying idea of the thesis. We will study the manifestation of these

properties in two separate contexts: (i) Physical bits - where we study the erasure of a

bit represented by a particle in a double well obeying Langevin dynamics (ii) Biological

bits - where we analyse the switching of a substrate by an enzyme, which converts it from

an inactive (active) state to an active (inactive) state. To motivate this discussion, we

will briefly outline the relevant topics and put them into historical context.

1.1 Physics of computation

Maxwell’s Demon, Smoluchowski’s resolution and Szilárd’s engine: The story began in

1867 when James Maxwell wrote a letter [1] to Peter Tait describing a thought experiment

in which a “finite being” observes the speed of gas molecules in a box containing a

trapdoor in the centre. The finite being allows the faster than average molecules and
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slower than average molecules to settle on opposite halves of the box by opening the

trap door suitably. As a consequence, temperature difference is generated without any

apparent work input, seeming to contradict the second law of thermodynamics [2, 3].

Figure 1.1 illustrates the thought experiment outlined by Maxwell.

FIGURE 1.1: Maxwell’s demon: A “finite being” can create temperature difference by opening the
trapdoor suitably without any work input, to allow slow and fast molecules to settle in opposite halves
of the box, seeming to contradict the second law of thermodynamics.

Later, Smoluchowski in 1914 suggested a modified experiment [4, 5], where he tried

to represent the demon by a physical object, whose properties can be studied. More

specifically, he imagined the trapdoor connected to a spring (which plays the role of the

demon) such that the door allows only one way entry of molecules. Note that the gas

molecules and spring are initially at different temperatures and hence out of equilibrium.

One can exploit this temperature difference to power the gas molecules into one side of

the trapdoor. Molecular collisions on the trapdoor gradually increase the energy of the

spring. If the spring and gas molecules come into equilibrium, the door would start to

open spontaneously allowing gas molecules to pass on both sides of the trapdoor. Thus,

the second law of thermodynamics is never violated. Figure 1.2 shows Smoluchowski’s

construction of the spring-trapdoor mechanism.

In an attempt to explicitly bring measurement back into the story, Leo Szilárd in 1929

envisioned a thought experiment [6] using a model where calculations could be performed

exactly. His model consists of a box containing a single gas molecule connected to a heat

reservoir. The demon inserts a massless and frictionless partition in the centre of the

box. If he measures which half of the box the particle is in, he can suitably attach a

pulley that can lift a weight due to the collisions caused by the gas molecule on the

2



FIGURE 1.2: Smoluchowski’s spring trapdoor: A trapdoor connected to a spring permits uni-
directional flow of of gas molecules, building up pressure on one side of the box. When the spring
heats up due to collisions by gas molecules and comes into equilibrium with the gas, the trapdoor starts
allowing gas molecules to flow in either direction. The spring-trapdoor mechanism effectively acts as
heat-engine, exploiting the initial temperature difference between the spring and gas molecules as a re-
source to channel gas molecules to one side of the box. The second law of thermodynamics is always
preserved in this experiment.

partition. The entropy of the gas molecule is unchanged since it returns back to its initial

state after the cycle. The entropy of the work reservoir also remains unchanged after

this cycle. The heat drawn from the heat reservoir which is used to expand the gas,

decreases the entropy of the heat reservoir. As a consequence, the total entropy of the

universe (gas molecule + heat reservoir + work reservoir) appears to decrease, seeming

to contradict the second law of thermodynamics. Szilárd posited that there has to be a

cost for performing measurement. Though he did not define measurement explicitly, his

observation played a crucial role in forming a mathematical bridge between information

theory and thermodynamics. Figure 1.3 outlines the essential steps corresponding to the

operation of the Szilárd engine.

Landauer’s insight and Bennett’s argument : Taking a cue from Szilárd’s analysis, Bril-

louin [7] and Gabor [8] postulated that physical act of locating the position of the par-

ticle incurred an energy cost which saved the second law from being violated. Later

Landauer [9] built a precise correspondence between logical and physical states of such

systems. He discussed logically irreversible computations - where the outputs of the

operations did not have a corresponding unique input. One such logically irreversible

operation that he considered was the “erase” or RESET operation. It corresponds to

taking a bit in a random state and setting it to a known state (usually “0”). Landauer’s

key insight was that the RESET operation requires a work input of at least kBT log 2.

The RESET operation reduces the entropy of the bit by kB log 2. The input work is

3



? ?

FIGURE 1.3: Szilárd engine: A cyclic protocol where the demon “measures” the position of the gas
molecule, to extract work from it later. Szilárd postulated that the act of measurement requires at least
kB log 2 entropy production, which compensates for the entropy reduction (kB log 2) that occurs when
heat from the heat reservoir is taken to expand the gas.

converted into heat, which is deposited into the surroundings, increasing its entropy by

at least kB log 2.

Bennett [10] proposed that Landauer’s insight on physical consequences of bit manipu-

lations was key to resolving the problem of Szilárd engine. Physically, he considered the

same set-up as that of Szilárd, but with the gas molecule dimagentized and a ferromagnet

in proximity that starts in a specific state, to be equivalent of the demon’s memory. A

measurement of the molecule would correspond to correlating the position of the diamag-

netic gas molecule with the ferromagnetic material. He could show that measurement

could be done in a logically reversible manner with no heat deposited into the environ-

ment. However, the measurement bit (ferromagnet) needed to be set to its initial state.
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This act of resetting the demon’s memory requires at least kBT log 2 of work input in

accordance with Landauer’s principle, which saves the second law from being violated.

Later, both Lecerf [11] and Bennett [12] came up with a mechanism to run computers

in a logically reversible fashion, with no heat exchange with the environment. This gave

rise to the field of reversible computing. Subsequently, Fredkin and Toffoli [13, 14] came

up with logic gates to perform arbitrary reversible operations.

Non-equilibrium thermodynamics : Modern resurgences in non-equilibrium thermodynam-

ics inspired by advances in quantum mechanics and biological physics give a slightly dif-

ferent resolution to the Szilárd’s problem in which the “resolution” of the paradox is not

assigned to work done during a particular reset step; rather, it is seen that measurement

creates a non-equilibrium state and this state must be paid for. They [15, 16] use the

phrase “measurement” to include the following steps (i) correlating the demon’s memory

with data (the position of the gas particle) - the COPY step, (ii) de-correlating the mem-

ory with data - the DECORRELATE step and (iii) resetting the memory to a fixed value

- the RESET step. For conceptual convenience, we can think of the demon’s memory to

be a hypothetical Szilárd engine different from the actual Szilárd engine. We will assume

the demon’s memory and the position of gas molecule to be binary random variables

taking values 0 or 1.

Our universe shall consist of the demon’s memory M , a gas molecule, also called data

D (denoting the position of the gas molecule), a heat reservoir and a work reservoir.

We will denote by S(M), the entropy of the memory, S(D), the entropy of the data,

Sheat, the entropy of the heat reservoir, Swork, the entropy of the work reservoir and W ,

the available work in the work reservoir. Denoting by S(M,D), the joint entropy of the

combined system (demon’s memory and the data), we note that S(M,D) ≤ S(M)+S(D)

due to correlations between memory and data.

Assumption: Let’s say that the demon’s memory M starts with a fixed state “0”.
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FIGURE 1.4: Non-equilibrium Szilárd engine: A schematic of the Szilárd engine, where the measure-
ment procedure is split up into separate (i) COPY (ii) DECORRELATE and (iii) RESET steps. The
universe consists of (a) The combined demon-memory system, (b) the gas molecule (c) a heat reservoir
(d) a work reservoir. The schematic enlists the change in entropic costs for each component of the
universe corresponding to various steps of the measurement protocol.

1. Step 1 - COPY: This corresponds to the following operation

M = 0 and D =


0, w.p. 1

2

1, w.p. 1
2

COPY−−−−→ M = D =


0, w.p. 1

2

1, w.p. 1
2

The entropy of the joint system before the copy step is S(M,D) = S(M) +S(D) =

0 + kB log 2 since the memory and data are uncorrelated. After the copy, we still

possess one bit of information because the memory and data are now correlated,

implying that S(M,D) = kB log 2. Therefore, ∆S(M,D) = 0. There is no heat

exchange with the heat reservoir, implying that ∆Sheat = 0. The entropy of the

work reservoir is unchanged, implying ∆Swork = 0. Since there is no work input or

extracted during this step, ∆W = 0.
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2. Step 2 - DECORRELATE: Knowing the data (i.e. which side the gas particle

is on), one can connect a pulley to the partition suitably to lift a weight due to the

expansion of the gas molecule. Symbolically, it corresponds to the following

M = D =


0, w.p. 1

2

1, w.p. 1
2

DECORRELATE−−−−−−−−−−→M =


0, w.p. 1

2

1, w.p. 1
2

and D =


0, w.p. 1

2

1, w.p. 1
2

Just before the gas expansion, the data and memory are correlated and we have

one bit of information implying that S(M,D) = kB log 2. After decorrelating the

memory from data, we have two independent random bits giving a joint entropy

S(M,D) = S(M) + S(D) = 2kB log 2. Therefore, ∆S(M,D) = kB log 2. Heat is

drawn from the heat reservoir to expand the gas, implying that ∆Sheat = −kB log 2.

The entropy of the work reservoir is unchanged, implying ∆Swork = 0. The expan-

sion of the gas is used to useful work; therefore ∆W = +kBT log 2.

3. Step 3 - RESET: In this step, the demon’s memory is set to state “0”, by com-

pressing the gas molecule of demon’s Szilárd engine to half its volume. Symbolically,

M =


0, w.p. 1

2

1, w.p. 1
2

and D =


0, w.p. 1

2

1, w.p. 1
2

RESET−−−−→ M = 0 and D =


0, w.p. 1

2

1, w.p. 1
2

Neglecting the internal details of how exactly one implements each step of the

measurement protocol, Figure 1.4 gives a schematic of the key steps and their

corresponding changes in entropic costs (given that the memory of the demon starts

in state “0”). From the above analysis, we have the before resetting, S(M,D) =

2kB log 2. After resetting the memory bit to “0”, we have essentially one bit of

information giving a joint entropy S(M,D) = kB log 2. Therefore, the change in

the entropy of the joint system ∆S(M,D) = −kB log 2. The compression of gas

in the demon’s Szilárd engine puts kB log 2 heat into the heat reservoir. Hence,

∆Sheat = +kB log 2. The entropy of the work reservoir is unchanged, implying
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∆Swork = 0. The compression of gas molecule in the demon’s Szilard engine requires

kB log 2 of work input, implying that ∆W = −kBT log 2. Table 1.1 summarises our

observations.

∆S(M,D) ∆Sheat ∆Swork ∆W

COPY 0 0 0 0

DECORRELATE +kB ln 2 -kB ln 2 0 +kBT ln 2

RESET -kB ln 2 +kB ln 2 0 -kBT ln 2

Table 1.1: Changes in thermodynamic quantities for various steps in the measurement protocol when
the bit starts in a fixed state “0”.

We could also have started our measurement cycle with the bit in a purely random

state instead of the fixed state “0”. In this case, there is no need to reset the bit after

decorrelating it from the data. The costs associated with the RESET step in the previous

case become those associated to the COPY step in the present case. More precisely, we

get Table 1.2.

∆S(M,D) ∆Sheat ∆Swork ∆W

COPY -kB ln 2 +kB ln 2 0 -kBT ln 2

DECORRELATE +kB ln 2 -kB ln 2 0 +kBT ln 2

Table 1.2: Changes in thermodynamic quantities for various steps in the measurement protocol when
the bit starts in a random state.

The key observation is that correlations between non-interacting physical systems put

them out of equilibrium - a state for which one needs to pay a cost. This behaviour is

very similar to what catalysts do in a biological context. We will come back to this in

the next section on biological computation, where we discuss catalytic systems in detail.

To summarise the history of the field, it is fair to say that Szilárd (rightly) posited (using

the example of a single particle engine) that the act of “measurement” requires work in-

put, which prevents the second law from being violated. Brillouin was perhaps confused,

attributing the cost to the physical act of knowing the position of the particle. Landauer
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postulated that performing logically irreversible computations necessarily increases en-

tropy of environment. Bennett used Landauer’s argument to say that the demon does not

have to pay work to measure, but does have to pay work to reset. The fundamental point

made by modern synthesis based on non-equilibrium thermodynamics is that the details

of when work is put in– during measurement or reset is not important. The measured

state is out of equilibrium and can be exploited to get work, but also must be paid for

(either by external work or some other resource).

Reliability of information: In a slightly different context, the notion of reliability of

information was introduced by von Neumann in his lectures [17] at the University of

Chicago. He observed that there was a huge difference between the cost of neuron spiking

and the thermodynamic estimate of kBT log 2, which is the minimal cost for typical

manipulations of a bit. One possible explanation was that biological computations are

required to be reliable i.e. be able store information for long periods of time, which results

in extremely high energy costs. This view was further perpetuated by Swanson [18] who

used ferromagnetic substances as memory devices to store information “reliably”. Using

the entire ferromagnetic material to make a bit was inefficacious since it did not result

in many bits; while dividing the material into smaller pieces left it vulnerable to effects

like calorific agitation and quantum tunnelling. Thus, he concluded that there was a

size-efficiency trade-off for building bits – the optimal size for building efficient bits was

neither too big nor too small; but in fact moderate.

Cost/speed trade-off to erasing a bit : It is important to note that the Landauer bound

of kBT log 2 for erasing a bit holds in the quasi-static limit i.e. when the procedure is

carried out infinitely slowly. However, in reality computations are performed fast and

require substantial energy consumption – much more than the kBT log 2 estimate. Thus

the time spent in the intermediate states is of paramount importance and we are coerced

into looking beyond the two state model of erasing a bit, consonant with the title of the

thesis. The idea of finite-time thermodynamics was kick-started in 1975 by Andresen,
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Salamon and Berry, who published a series of papers [19, 20, 21, 22], analysing classical

thermodynamic models like the heat-engine [23], and step-Carnot cycle [24] for their

efficiency. Subsequently, this has evolved into the field of stochastic thermodynamics.

The basic idea of stochastic thermodynamics starts with the following: Let U(λ, x) denote

the internal energy of the system as a function of coordinate x and a control parameter

λ which is amenable to external manipulation. Then

dU =
∂U

∂λ
dλ+

∂U

∂x
dx (1.1)

Sekimoto [25] recognises d̄W = ∂U
∂λ
dλ as the differential work done in manipulating

the potential of small systems at a rate faster than their characteristic time-scale and

d̄Q = ∂U
∂x
dx to be the heat dissipated into the environment. Formulating the first-law

in this way allows us to define relevant thermodynamic quantities like work, heat, en-

tropy on the level of fluctuating trajectories. Several fundamental results like the famous

Jarzynski’s equality [26] and Crooks fluctuation theorem [27] (which relate ensemble av-

erages of functions of thermodynamic variables over trajectories) – have been established

using tools from the thermodynamics of small systems. We refer the reader to a com-

prehensive review of this field by Udo Seifert [28]. Using these techniques, Sekimoto

and Saga [29] have given a lower bound for the excess heat dissipated in a given time

window for erasing a bit represented by a particle obeying Langevin dynamics. In par-

ticular, they obtain Qirr∆t ≥ kBTAmin, where Qirr is the excess heat dissipated, ∆t is

the time window of operation, and Amin is the minimum value of action required for the

protocol. Schmiedl and Seifert [30] have calculated optimal protocols for taking a system

obeying overdamped Langevin dynamics from one equilibrium state to another. Using

techniques from geometric optimization [31], Zulkowski, Sivak and Deweese [32] have ex-

tended this result for a system moving between two non-equilibrium steady-states. This

has resulted in work by Aurell et al. [33] which gives an entropic lower bound for era-

sure in a finite time interval by using techniques from Monge-Kantorovich optimal mass

transport theory. More recently, Zulkowski and DeWeese [34] have looked at erasure of
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a bit represented by a particle in a square well potential obeying overdamped Langevin

dynamics. Using the chemical master equation to model probability distributions, they

obtain Q/kBT ≈ ∆S
kB

+ 4K
∆t

, where Q is the excess heat dissipated, ∆S is the difference in

Shannon entropies of the initial and final states, K is the Hellinger distance between the

initial and final states and ∆t is the duration of the protocol. The notion of accuracy

has also been explored by Giovanni et al. [35] where they study energy/speed/accuracy

trade-offs for erasure in the setting of quantum dots. The common point that all these

analyses drive home is that faster (and more accurate) computations require more work

input, seeming to give an alternative resolution to von Neumann’s question raised before.

It is interesting to note that bit erasure has been studied using arbitrary complex control

strategies (i.e. arbitrary ∂U
∂λ

). This begs the question of whether these controls are

physically reasonable? Taking this into account, we study the relationship between cost,

speed and reliability for erasing a bit represented by a particle in a double well obeying

Langevin dynamics. We pick a simple family of controls for our analysis, but many of our

results generalise to other families. This forms the core idea for Chapter 2 of the thesis.

1.2 Biological computation

Natural computation: Examples of computations performed by natural systems include,

but are not limited to DNA replication [36] – where information encoded in a single DNA

molecule is passed on to two similar DNA strands, transcription of DNA to RNA [37]

– a process where RNA polymerase catalyses the conversion of DNA to its complemen-

tary RNA strand, translation of RNA to proteins [38] and modulation of proteins by

transcription factors, which bind to DNA and turn on/off certain gene sequences. A key

property of such computations is that they are potentially autonomous i.e. (no external

manipulation of potentials etc.). We are oblivious to the internal details of how biological

systems accomplish certain tasks. This essentially gets around the question of: “How do
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we implement our protocols?” linking back to the ideas mentioned in the previous section.

Yet another example of natural computation occurs in the context of signal amplification.

The key idea here is that certain special proteins called enzymes trigger activation of a

large number of molecules in the cascade which results in the output being amplified. This

has been explored quite a while ago in two biological contexts [39] (i) blood clotting and

(ii) vision. In the case of blood clotting [40], a special type of co-enzyme called Hageman

factor trips the activation of a large numbers of pro-enzymes eventually resulting in the

conversion of fibrinogen into fibrin which causes clotting. In case of vision [41], a few

molecules of rhodopsin activate a large number of enzymes in their pathway resulting

in an amplified signal. Cascades of enzymes have been known to produce switch-like

behaviour [42]. One such example is the well known MAP cascade that consists of three

components: (i) MAPKKK (ii) MAPKK and (iii) MAPK. This cascade is known to show

ultra-sensitive behaviour. Further, it has been shown that the number of cascades has a

multiplicative effect on the sensitivity [43].

Signal amplification has also been found to be useful in chemotaxis [44, 45, 46] - which

is used by cells to sense concentrations of chemicals. It has been postulated that a large

number of receptors “grouped” together can co-operatively amplify signals [47]. There-

fore, bacteria like E. coli can detect even small changes in concentration gradients [48, 49].

The mechanism of chemotaxis in E. coli involves inter-conversion of the receptor-kinase

system between its active and inactive forms [50] reminiscent of switching a bit. It also

involves feedback mechanisms to effectively calculate a gradient [50] using a technique

called “exact adaptation”.

Engineered computation: Inspired by natural systems, Len Adleman [51] in 1994 first

demonstrated how to solve the Hamiltonian path problem by using DNA strands. The

idea was to exploit the massive parallelism generated by mixing DNA strands to simulta-

neously generate solutions to the Hamiltonian path problem (known to be NP-complete)

in linear time. This kick-started the field of DNA-computing. Since then the field has
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evolved to different branches like DNA self-assembly, a program initiated by Nadrian

Seeman [52] where small DNA strands assemble themselves to form intricate shapes and

structures. The field of DNA origami (a special case of self-assembly) has been pioneered

by Paul Rothemund [53], where a very long strand of DNA folds to form complex archi-

tectures. Several interesting computations have been made using the tool of DNA strand

displacement reactions [54, 55]. Notably, Qian and Winfree [56] have used DNA strand

displacement reactions to compute the square root a 4 bit number – a first of a kind

computation. It is worth mentioning that around 130 DNA strands were used in the

circuit for this protocol.

Chemical Reaction Networks: The theory of chemical reaction networks (CRN) initiated

by Horn and Jackson [57] provides a solid mathematical framework for analysing com-

plex biological networks. The key ingredients of CRNs consist of a set of species, a set of

complexes and a set of reactions from which the stoichiometric matrix is formed. Various

questions like the persistence of network trajectories [58, 59, 60, 61, 62], stability of fixed

points [63, 64, 65, 66] and properties of oscillations [67, 68, 69] can be answered using

the powerful machinery of CRNs. The precise correspondence between chemical reaction

networks and their implementation using DNA-strand displacement reactions was given

by Winfree et al. [70]. Since then, a large community of researchers have been trying to

come up with chemical reaction networks that can perform certain specific computations.

David Soloveichik et al. [71] have designed a chemical reaction network that determin-

istically computes a semi-linear function. Further, they show that this computation is

poly logarithmic in the size of the input CRN. This result has been generalised in a later

paper [72] to the stochastic setting, where the computation happens with a non-zero

probability of error. Luca Cardelli et al. [73] have designed a chemical reaction network

such that the steady-state of the output molecule is a draw from an arbitrary probability

distribution with finite support in the natural lattice. Separate initiations of their reac-

tion network gives independent draws, but a single implementation only samples a single

point. In a different paper, Cardelli and Csiksz-Nagy [74] have demonstrated that the
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cell-cycle switch simulates approximate majority - a distributed computing algorithm.

Recently, Gopalkrishnan [75] has come up with a scheme for designing a reaction net-

work that calculates the maximum likelihood estimator for log-linear models. In a sequel,

Gopalkrishnan et al. [76] build a stochastic reaction network scheme to perform informa-

tion projection. It is worth noting that fundamental physical trade-offs (e.g. microscopic

reversibility of physical reactions) have generally not been taken into consideration while

analysing such networks. A recent review by Ouldridge [77] highlights the relevance of

microscopic reversibility for the parity computation algorithm [78]. Ignoring microscopic

reversible reactions effectively implies that one would need an infinite free energy drive

for the computation to work.

Catalysis and Enzymes : Many of the natural and synthetic examples discussed in the

previous section like DNA self-assembly, origami, allosteric activation of enzymes and

their natural analogues involve relaxation to an equilibrium state specified by selective

binding of molecules. Dominique Chu has studied generic properties of such systems. He

defines entropy driven computation [79] as a discrete state continuous time Markov chain

relaxing to equilibrium and shows that there is a trade-off between energy cost, accuracy

and the system size. An alternative paradigm, particularly, common in natural systems

discussed before like MAPK cascades, DNA self-replication and transcription is catalytic

binding in which interaction is temporary, but the effect long-lived – reminiscent to the

notion of non-interacting measurement of a particle in Szilárd’s engine. Näıvely, a catalyst

is a substance that alters the rate of a reaction without being consumed by it. Further,

it also does not alter the equilibrium of the reaction system. However, catalytic systems

use fuel molecules like ATP to pump the system [77] into a non-equilibrium steady-

state. Ouldridge and ten Wolde [80] have established that enzymatic actions of certain

catalytic systems called the “push-pull motifs” can be directly mapped to the notion of bit

switching. They show that energetic costs derived for abstract bits are actually relevant

bounds for biochemical circuits. Though they analyse the thermodynamics in detail, they

still assume the two-state model for switching a bit. Catalysts also include enzymes that
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are designed to act on specific substrates in various biochemical pathways. In particular,

enzymes have been studied in the context of gene-metabolic feedback circuits by Oyarzún

and Stan et al. [81, 82, 83]. In what follows in Chapters 3 and 4 of the thesis, we will study

enzyme-substrate interactions in the context of retroactivity - an effect we introduce in

the subsequent section.

Modularity and Retroactivity : The ability of individual components to retain their func-

tionality upon interconnection is called modularity. It has been the object of study in

biological systems; more specifically in biological evolution [84, 85], and the evolution of

modularity itself [86]. The origin of modularity has been studied in detail by Wagner et

al. [87] contemplating between whether it is a fallout of natural selection or mutation. It

has also seen observed to contribute to system robustness [88, 89]. The review article by

Pantoja et al. [90] gives a vivid history of the study of modularity in biological systems.

FIGURE 1.5: Mechanism of catalysis: A rough schematic of catalyst-substrate reaction. There is a
non-zero time for which the catalyst is bound to the substrate and this catalyst-substrate intermediate
gives rise to retroactive effects for the motif.

However, real systems do not exhibit perfect modularity. The breakdown of modularity

leads to retroactivity [91] - an effect first observed in electrical systems. It essentially refers

to the back-signal experienced by the upstream system when it passes on a signal to a

downstream system. Catalysis is one way biological systems can try to reduce this effect

since catalysts do not need to remain bound permanently with the substrate. However,

even in catalysis there is a non-zero time for which the components are bound to each

other. These intermediate states are analogous to the intermediate states involved in bit

switching discussed in the previous section, and impart retroactivity to motifs. Figure 1.5

gives a rough sketch of the mechanism of catalytic interactions. We study the effect of

retroactivity in two settings.
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In the first one, given in Chapter 3, we analyse the “push-pull” motif, a network first

studied in detail by Del Vecchio et al. [92]. The system essentially consists of two an-

tagonist enzymes that act in opposite directions converting a substrate from one state to

another. This is also the model studied by Ouldridge and ten Wolde [80], where they map

it to a copying process using an ingenious transform. Maintaining the push-pull motif in

a non-equilibrium steady-state requires energy consumption in the form of fuel molecules

- an idea that has a parallel to the notion of energy consumption required to switch bits

fast and reliably (as discussed in the previous section). Barton and Sontag [93] claim

that it takes substantial energy consumption to reduce the retroactivity of this motif.

One of our main contributions in this chapter is to refute the claim made by Barton and

Sontag - we show that high rates of energy consumption are not required to attenuate

retroactivity.

In the second setting given in Chapter 4, we study the mechanism of enzyme-substrate

catalysis – a phenomenon ubiquitous in biological systems. Instead of considering the

entire push-pull motif, we analyse the action of a single catalytic enzyme that converts a

substrate from its inactive form to its active form. Such systems have been studied before

under certain assumptions and are popularly known as the Michaelis-Menten and Briggs-

Haldane dynamics. We generalise the assumptions made in these models to construct

enzyme-substrate motifs that minimize retroactivity at fixed rate of reaction. This forms

the basis of Chapter 4 in the thesis.

A more detailed breakdown of the contributions in each chapter is given below.

1. Chapter 2 introduces the idea of a bit as a particle in a double well obeying Langevin

dynamics. We make precise what we mean by switching/erasing a bit. In addition,

we introduce the notion of reliability (given by the reliability time-scale), speed

of operation (characterised by the erasing time-scale) and the cost associated with

erasing a bit. We also discuss the non-monotonic dependence of reliability and

erasing time-scales as a function of the friction coefficient. We define optimal bits -
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bits that meet the desired reliability and erasing time requirements with the lowest

work cost within some family of controls. We analyse the geometry generated by

such bits and rule out certain regions of parameter space as sub-optimal. The

content of this chapter was published in [94].

2. Chapter 3 introduces the notion of retroactivity in the context of biological circuits.

Our primary network of study is the push-pull motif. Maintaining this motif in

a non-equilibrium steady-state requires energy consumption in the form of fuel

molecules. Our main result is that it does not require high energy to reduce the

retroactivity of this motif. We illustrate this effect by coupling the upstream enzyme

weakly to the push-pull motif. However, making the coupling too weak leaves the

motif exposed to cross-talk caused by leak reactions in the circuit. This work was

recently published in [95].

3. Chapter 4 deals with designing efficient enzyme-substrate networks. More specif-

ically, we ask: how to choose the binding energies of the intermediate enzyme-

substrate complexes so that it minimizes the retroactivity of the motif at fixed

overall rate of the reaction. This manuscript is in preparation.

4. Conclusion: In this section, we conclude by summarising our observations about

switching in both physical and biological contexts.

5. The Appendix contains detailed calculations, proofs and other details related to

various chapters in the thesis.
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Chapter 2

Designing the Optimal Bit:
Balancing Energetic Cost, Speed
and Reliability

Abstract

We consider the challenge of operating a reliable bit that can be rapidly erased. We find that

both erasing and reliability times are non-monotonic in the underlying friction, leading to a

trade-off between erasing speed and bit reliability. Fast erasure is possible at the expense of

low reliability at moderate friction, and high reliability comes at the expense of slow erasure in

the underdamped and overdamped limits. Within a given class of bit parameters and control

strategies, we define “optimal” designs of bits that meet the desired reliability and erasing

time requirements with the lowest operational work cost. We find that optimal designs always

saturate the bound on the erasing time requirement, but can exceed the required reliability time

if critically damped. The non-trivial geometry of the reliability and erasing time-scales allows

us to exclude large regions of parameter space as suboptimal. We find that optimal designs are

either critically damped or close to critical damping under the erasing procedure.

2.1 Introduction

As discussed in the introduction, minimal costs of bit manipulation is a long standing

topic of investigation, with deep connections to basic thermodynamics. In particular,

certain information processing operations such as erasing a bit, or copying the state of

one bit into another previously randomised bit have fundamental lower bounds on work

input [6, 9, 10, 96, 97]. Practical devices, however, do not approach these bounds [98, 99]
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and insights gained from thinking about the lower bound have not yet translated into

more energy-efficient technology. A partial explanation is that man-made devices and

biological cells need to operate on fast time-scales and hence cannot involve the quasi-

static manipulations necessary to reach lower bounds [34, 100]. As remarked earlier in

the introduction, an alternative suggestion from von Neumann is that the need to store

information for long periods of time (reliability) leads to high-cost architectures [17].

We explore the interplay between reliability, speed and the energetic cost of bit opera-

tion. Equilibrium thermodynamic bounds such as the Landauer limit cannot account for

these inherently kinetic phenomena. This general question of how to design fast, cheap

and reliable bits has obvious technological relevance to the optimal design of low power

computational devices [101, 102, 103] Additionally, since the discovery of the structure

of DNA and the central dogma of molecular biology, it has become well accepted that

information processing is at the heart of many natural phenomena. Many authors have

explored information processing in biological systems, both to understand natural exam-

ples and design synthetic analogs [10, 104, 105, 106, 100, 77, 107, 108]. The question of

the interplay between reliability, speed and cost are also relevant here, although under-

explored. In this chapter, we explore the challenge of building fast, cheap and reliable

bits, and provide a framework for its analysis in terms of reliability and erasure time-

scales. We also take the first steps towards exploring the physics of the optimal design

problem by considering a simple model: a particle in a 1-D potential, which is a quartic

double-well potential in the device’s “resting” state. We require that the bit be reliable,

so that a particle equilibrated in either well stays in that well for a specified long time

on average. Simultaneously, we require the implementation of an “erase” or “reset” op-

eration using an external control, so that erasure is completed within a specified short

amount of time. Our principal question is to find values for the design parameters which

consist of the height of the double well, the friction coefficient, and the control parame-

ters to guarantee these requirements without expending more energy than required. Our

main contribution is an exploration of this design space, which demonstrates the previ-
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ously under-appreciated role of friction. In particular, we identify a “Goldilocks zone”

where the friction coefficient takes moderate values. This is somewhat counter-intuitive

because historically friction has been viewed as a nuisance to computing, to be sent as

low as possible [109, 110, 111, 112].

In Section 2.2, we describe the model which will provide intuition for our work. We

formalize the time-scale over which the bit stores information through the notion of

reliability time. In Section 2.2.3, we describe one simple family of control protocols for

resetting a bit. We calculate the work done in erasing a bit for this form of control. We will

use this particular control protocol to illustrate our subsequent ideas. In Section 2.2.3, we

introduce the notion of erasing time. In Section 2.3, we consolidate from the literature

the analytical forms and approximations for our two time-scales of interest, and confirm

them with numerical simulations. We find that both the reliability and erasing time-scales

are non-monotonic, roughly U-shaped functions of the friction coefficient. It follows that

high reliability is obtained by setting the friction to a low or high value, whereas a low

erasing time is favoured by an intermediate value of friction, implying a conflict between

the two time scales for a given class of protocols. In Section 2.4, we investigate how this

conflict feeds into the geometry of optimal bits: bits that fulfil the desired reliability

and erasing time requirements with the minimum energy cost. We find and partially

characterize a “Goldilocks zone” in design space where optimal bits reside. In Section 5,

we discuss the robustness of our results when more freedom is allowed in the choice of

design parameters, and the control protocol.

2.2 The Double-Well Bit

We will represent a device to store one bit of information by a particle in a symmetric

bistable potential UA,B (x) = A
(
x2

B2 − 1
)2

, where A is the height of the well and ±B are

the coordinates of the minima of the right and left wells. We will refer to the device as a
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whole by “a bit”. The device reports “0” when the particle is in the left well, i.e., x < 0

and reports “1” otherwise (Figure 2.1a). The dynamics of the particle is described by

the Langevin equation.

mdx = p dt

dp = − γp dt− ∂xUA,B (x) dt+
√

2mγkBT dW

(2.1)

where m is the mass of the particle, x is position, p is momentum, γ is the friction

coefficient of the medium, UA,B(x) is the potential, kB is Boltzmann’s constant, and T is

the temperature of the heat bath. The term
√

2mγkBT dW represents the effect of noise

from the surroundings. The Langevin equation is a stochastic differential equation, to

be mathematically interpreted as a Stratonovich integral. For our case both the Ito and

Stratonovich interpretations coincide [113, pp. 109] since the noise coefficient
√

2mγkBT

does not depend upon p. From [114, pp. 182], the generator for the Langevin equation 2.1

is

L =
p

m
∂x − (∂xUA,B(x)) ∂p + γ

(
−p∂p + kBT∂

2
p

)
(2.2)

(a) (b)

FIGURE 2.1: A bit as represented by a particle in a 1-D potential. Figure 2.1a: the bit in its resting
state, with a barrier of height “A” separating particle locations that correspond to bit values of 0 or 1.
Figure 2.1b: a control potential as in Example 2.2.1 is applied to erase the stored data.

The Hamiltonian of the system is H (x, p) = UA,B (x) + p2

2m
. The Gibbs distribution

π(x, p) =
e−H(x,p)/kBT∫∞

−∞

∫∞
−∞ e−H(x′,p′)/kBT dx′ dp′

(2.3)

is approached as the system relaxes to equilibrium. Convergence to π(x, p) happens
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exponentially fast at a rate given by the first non-zero eigenvalue of the generator L [115].

2.2.1 Reliability

A device to store information should be able to store it with high fidelity for a specified

long period of time. We introduce the reliability time to represent the time-scale

over which our device can store data. Specifically, we define the reliability time τr as

the expected first passage time for the particle to cross the barrier of the resting-state

potential of the bit, given the Gibbs distribution π(x, p) (Equation 2.3) as the initial

distribution. That is,

τr := E [inf{t ≥ 0 | x(t) = 0}] (2.4)

where the expectation is over trajectories (x (t) , p (t)) distributed as specified by Equa-

tion 2.1 from the initial condition (x (0) , p (0)) ∼law π (x, p). Note that τr is also the

first passage time to cross the barrier for a bit prepared with a Gibbs distribution, but

confined to either the left-hand well π0(x, p) or right-hand well π1(x, p).

π0 (x, p) =


2π (x, p) if x < 0

0 otherwise

, π1 (x, p) =


2π(x, p) if x > 0

0 otherwise

. (2.5)

Intuitively, once a typical particle has had enough time to reach the top of the barrier,

the data stored is no longer reliable.

2.2.2 Setting information

A device intended to store information must provide functionality to load, or set this

information into the device. Setting information is a two-bit operation. A common use

case is when a reference bit and the bit to be set are initially at some arbitrary values.

We require that after the SET operation the reference bit is unchanged whereas the bit to
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be set now holds a copy of the reference bit. This is the operation that Szilard [6] refers

to as “copying” (in contrast, Landauer [9, 116] chooses to reserve the word “copying” for

the operation where the bit to be set is initially already known to be in the state “0”).

Note that in the operation of setting information, or copying in the sense of Szilard,

initially the two bits are uncorrelated and unknown whereas after the operation they are

still unknown but correlated. Thus implementing this operation requires decreasing the

entropy of the system. Since it is easier to study a one-bit system rather than a two-bit

system, we will investigate a one-bit proxy for the task of decreasing the entropy of the

system, which is the task of erasing a bit.

Erasing involves taking a device whose initial state is maximally unknown into a known

reference state, usually “0.” Somewhat counter intuitively, given the name, erasing in-

creases the information we know about the system. What is erased is not information

but randomness. It helps to keep in mind the example of erasing a blackboard where

some random state with chalk marks is reset to the “all clear” state.

2.2.3 Erasing

The example that follows describes a simple family of control potentials to implement

the erasing operation for our device, which will form the basis of our analysis.

Example 2.2.1. Our control potentials are described by a single parameter F ∈ R>0 as

follows.

VF (x) :=


A+ F · x− UA,B (x) if x ≥ 0 and A− UA,B (x) + F · x ≥ 0,

0 otherwise.

(2.6)

One control potential from this family is illustrated in Figure 2.1b. We chose such a

simple class of controls to make a full understanding feasible, setting a framework for

analysing more complex protocols. We also note that arbitrary variation of a physical
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potential in reality is highly non-trivial; experimental studies in which complex time-

dependent potentials have been applied in fact use highly dissipative mechanisms to

generate them [117, 118].

The Langevin equation in the presence of control is

mdx = p dt

dp = − γp dt− ∂xUeffec(x)dt+
√

2mγkBT dW

(2.7)

, where Ueff(x) = UA,B (x) + VF (x). More explicitly,

Ueff (x) :=


A+ F · x if x ≥ 0 and A− UA,B (x) + F · x ≥ 0,

UA,B (x) otherwise.

(2.8)

Note that the control potential, as defined, is not differentiable at the boundary of the

region in which it is non-zero. In practice, we assume that ∂xVF changes rapidly but

continuously in a small vicinity around these points.

In this work, we will consider variation of A, F and γ at fixed m, B, and T . In this case,

m specifies the natural mass scale, B the natural length scale and kBT the natural energy

scale; the natural time scale is then
√
mB2/kBT . Henceforth, all numerical quantities

will be reported using reduced units defined with respect to these natural scales, although

m, B and kBT will be retained within formulae.

Operational view of Erasing

The speed of bit operations is of practical importance: a useful bit must be reliable on

much larger time-scales than those required to set or switch it. The control is switched

on at time 0 and switched off at an appropriately-chosen time τ . The time τ is chosen

beforehand, and does not depend on details of individual trajectories – a trajectory-

dependent control would require measurement and feedback that itself would need ac-
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counting for [119, 120, 121, 122, 123, 124]. We could declare erasing as completed and

switch off the control as soon as a majority of trajectories are expected to be in the left

well. However, many of these “erased” bits would have high energies compared to typical

bits drawn from the equilibrium distribution in the left well, π0 (x, p). Thus they could

rapidly return to the right well after a very short stay in the left well. So we insist on a

more stringent condition. We require that the time τ should be large enough so that the

majority of bits are in the target well, with an expected next passage time close to the

reliability time.

One way to guarantee that the next passage time is high is by insisting on mixing, in

the sense that the initial distribution π(x, p) comes close to a distribution of particles

thermalised in the left-hand well, π0(x, p). If this happens, we can guarantee that the

expected next passage time will be equal to, or close to, the expected first passage time.

However, we found this criterion too stringent for the following reason. At the end of the

erasing protocol, it is not necessary that the distribution is close to π0(x, p) – only that

the particles tend to relax to this distribution much faster than they cross back into the

right-hand well, and thus have barrier passage times representative of particles initialised

with π0(x, p). Nonetheless, we show in Section 6.2.1 of Appendix A that using such a

criterion preserves the qualitative features reported below (in particular, the scaling of

erasure time with friction in the high and low friction limits).

Instead, we define an erasure region in well “0” as all points (x, p) with total energy

H(x, p) ≤ A − 3kBT where A is the barrier height. We look for the mean first passage

time to reach the erasure region for particles initiated in well “1” and take this quantity

to be representative of the erasing time-scale. The choice of 3kBT criterion is somewhat

arbitrary, but has been used before by Vega et al. [125] to study atom-surface diffusion.

As we show in Section 6.2.2 of Appendix A, using 4kBT makes no qualitative difference to

our conclusions. This metric has the merit that it provides a clear computable criterion

for erasing. Below, we demonstrate that particles within the 3kBT erasure region do
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indeed have expected next passage times close to the reliability time, as required.

For a range of well parameters, we used the Langevin A algorithm from [126] [refer to

Section 6.1 of Appendix A for the integrator set-up and validation], to estimate τ(x, p),

the average barrier crossing time for particles initialised at position x with momentum p

in the left well, for a grid of points (x, p). The average reliability time for a given well

can be approximated in terms of an ensemble average of τ(x, p) as follows:

τr ≈

∑
x,p

τ(x, p) e−H(x,p)/kBT

∑
x,p

e−H(x,p)/kBT
. (2.9)

The deviation δ(x, p) := |1− τ(x,p)
τr
| for every point (x, p) in the grid is plotted in Figure 2.2,

for a range of friction parameters at well height A = 7. It is clear from the figure that,

for all values of friction, the points with total energy H(x, p) ≤ A− 3kBT have reliability

times close to τr. The same is true of other well heights A. This is because such particles

typically undergo thermal mixing before they can escape the well. Once mixed, their

next escape over the barrier will be on a time-scale of the order of τr.

Despite the robustness of this result to the value of the friction, the heatmaps in Figure 2.2

are friction-dependent. When γ is low, the particle diffuses very slowly in energy space,

and it is the challenge of diffusing within this energy space that prohibits escape from the

well. As a result the heatmap corresponding to γ = 0.1 (Figure 2.2a) follows the shape

of constant energy contours. As friction starts increasing (e.g. in Figure 2.2b and 2.2c),

diffusion in momentum-space becomes more rapid, but diffusion in position-space slows

down. Once γ becomes very high (e.g. γ = 100 in Figure 2.2d), the behaviour of the

heatmap is essentially determined by the initial position of the particle; those close to

the barrier and with UA,B(x) sufficiently close to A can escape easily, but the momentum

is irrelevant. Using the total energy H(x, p) as a criterion ensures that we account for all

the regimes of friction.

Since we are interested in the typical time scale of transferring particles to a different
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(a) δ (x, p) when γ = 0.1 (b) δ (x, p) when γ = 1

(c) δ (x, p) when γ = 10 (d) δ (x, p) when γ = 100

FIGURE 2.2: For particles initiated with H(x, p) ≤ A− 3kBT , well escape times are close to τr. Heat
maps show the fractional deviation in expected escape time δ(x, p) from the well-thermalised average τr,
as a function of initial position x and momentum p. The labelled contours correspond to a well height
A = 7 with energy H(x, p) = A − 3kBT = 4kBT . These heat maps are representative of the situation
for other barrier heights A ≥ 5kBT .

well from the existent well, we will sample initial points only from the right well. We

define the erasing time τe as the expected time to hit the erasure region, given that the

particle started in the right-hand well:

τe = E [inf{t ≥ 0 | x(t) < 0 and H(x(t), p(t)) ≤ A− 3kBT}] (2.10)

where (x (t) , p (t)) is the solution to Equation 2.7 with the initial condition (x (0) , p (0)) ∼law

π1 (x, p). Given this definition, τe indicates a typical time scale over which the control

must be applied to successfully erase a large fraction of the bits. In practice, the control

would be applied for a period τ > τe to achieve high accuracy. We will use τe as an

indicative time scale of control operation for the purposes of our analysis. It is useful to

decompose the erasing time τe as the sum of two times: the transport time and mixing

time.
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• Transport time (τt): The time taken by the particle to reach well “0” given that

it is initially distributed according to π1(x, p).

τt = E [inf{t ≥ 0 | x (t) ≤ 0}] (2.11)

where x(t) is the solution to Equation 2.7 with the initial condition (x(0), p(0)) ∼law

π1(x, p).

• Mixing time (τm): The time taken by the particle to mix sufficiently inside the

well. This is the time starting from when the particle first reaches well “0” to when

it first hits the erasure region.

τm = τe − τt (2.12)

Cost of erasing

In this section, we calculate the work done in erasing a bit. From Sekimoto’s expres-

sion [25, 127], for a protocol applied for a time τ and to a region I = {x ≥ 0 |

A− UA,B (x) + F · x ≥ 0},

〈W 〉 :=

τ∫
0

∫
x∈I

∂VF (x, t)

∂t
p(x, t) dx dt, (2.13)

where p(x, t)dxdt is the probability that the particle is between position (x, x + dx) in

the time interval (t, t + dt). There are two potential sources of work that appear in our

calculation.

1. When we begin the erasure protocol by switching on the control to lift the

particle: We first give an intuitive argument for the expression of work, and then

justify it both analytically and numerically. The particle’s initial potential energy

is approximately kBT/2 on average, due to the equipartition theorem, and after the

control is switched the average potential energy is A+F ·B for a particle in the right
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well, since the particle is localised around x = B, and still kBT/2 for a particle in

the left well. Therefore, the work done in this step is W = (A+ F ·B − kBT/2)/2.

We now justify that this approximation is accurate for the values of A and F that

we consider, and we will use this as the form of work for the rest of the chapter.

Since we switch on the control instantaneously, ∂VF (x,t)
∂t

= VF (x, t) δ(t). From Equa-

tion 2.13, and letting I = {x ≥ 0 | A− UA,B (x) + F · x ≥ 0}, we get

〈W 〉 =

τ∫
0

∫
I

VF (x, t) p (x, t) δ (t) dxdt

=

∫
I

(A− UA,B (x) + F · x) p (x, 0) dx (2.14)

Since p (x, 0) = e
−
UA,B(x)

kBT

∞∫
−∞

e
−
UA,B(x)

kBT

, we can rewrite the expression of work as

〈W 〉 =

∫
I

(A− UA,B (x) + F · x) e
−
UA,B(x)

kBT dx

∞∫
−∞

e
−
UA,B(x)

kBT dx

(2.15)

FIGURE 2.3: Work when the control is switched on against various values of A and F , comparing the
full expression Eq. 2.15 and the approximate result Eq. 2.20.

Since I ⊆ [0,∞) and (A− UA,B (x) + F · x) e
−
UA,B(x)

kBT is negligible as x→∞, replac-
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ing the upper limit of integration by ∞ is reasonable. Hence the integral becomes

〈W 〉 ≈

∞∫
0

(A− UA,B (x) + F · x) e
−
UA,B(x)

kBT dx

∞∫
−∞

e
−
UA,B(x)

kBT dx

(2.16)

Since our potential UA,B(x) = A( x
2

B2 − 1)2 is symmetric about x = 0, we get that
∞∫
−∞

e
−
UA,B(x)

kBT dx = 2
∞∫
0

e
−
UA,B(x)

kBT dx. The expression of work then becomes

〈W 〉 ≈

∞∫
0

(A− UA,B (x) + F · x) e
−
UA,B(x)

kBT dx

2
∞∫
0

e
−
UA,B(x)

kBT dx

(2.17)

When A� kBT , we can safely assume that the particle only samples the region of

space near the bottom of the well. As a result, we can approximate the potential

corresponding to the region x > 0 by a harmonic oscillator and set the lower limit

of integration in both the numerator and denominator to −∞. As we show in

Equation 2.24, UA,B (x) ≈ 4A(x−B)2

B2 for x > 0. Therefore, Equation 2.17 becomes

〈W 〉 ≈

∞∫
−∞

(A− 4A(x−B)2

B2 + F · x) e
− 4A(x−B)2

kBTB
2 dx

2
∞∫
−∞

e
− 4A(x−B)2

kBTB
2 dx

(2.18)

=
A

2
−

∞∫
−∞

4A(x−B)2

B2 e
− 4A(x−B)2

kBTB
2 dx

2
∞∫
−∞

e
− 4A(x−B)2

kBTB
2 dx

+

F
∞∫
−∞

(x−B) e
− 4A(x−B)2

kBTB
2 dx

2
∞∫
−∞

e
− 4A(x−B)2

kBTB
2 dx

+
F ·B

2

Let y = x − B. As x → −∞, y → −∞ and as x → ∞, y → ∞. Therefore, the

expression of work becomes

〈W 〉 ≈ A

2
−

∞∫
−∞

4Ay2

B2 e
− 4Ay2

kBTB
2 dx

2
∞∫
−∞

e
− 4Ay2

kBTB
2 dx

+

F
∞∫
−∞

y e
− 4Ay2

kBTB
2 dx

2
∞∫
−∞

e
− 4Ay2

kBTB
2 dx

+
F ·B

2
(2.19)

≈ A

2
−

1
4
AB
√
π(kBT

A
)
3/2

B
√
π kBT

A

+ 0 +
F ·B

2
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Therefore, our expression for work becomes

〈W 〉 ≈
(
A+ F ·B − kBT

2

)
2

(2.20)

justifying our physical intuition. The accuracy of this expression compared to

Eq. 2.15 is illustrated in Figure 2.3.

2. At the end of the protocol when we switch off the control: We show that

in our family of controls, there is negligible energy recovered when the control is

switched off, since the probability of the particle being in the region in which the

control is applied is small. More generally, the question of whether energy might

be recovered from small systems and stored efficiently is a complex one, despite the

optimism shown in previous discussions of erasing. Indeed, current technology does

not attempt to recover any energy from bits.

To illustrate this more formally, we assume that the control is switched off after a

time τ sufficiently large compared to τe so that the proportion of particles remaining

on the right hand side of the well is determined by the Boltzmann factor. The work

that we could then in principle recover is given by the following expression:

〈Wrec〉 ≈
∫
I
(A−UA,B(x)+F ·x) e

−(A+F ·x)
kBT dx

0∫
−∞

e

−UA,B(x)

kBT dx+
∫
I

e
−(A+F ·x)
kBT dx

(2.21)

Recall that I = {x ≥ 0 | A − UA,B (x) + F · x ≥ 0}. This implies that I = [0, x∗],

where A−UA,B (x∗) +F ·x∗ = 0. Using Equations 2.20 and 2.21, we will calculate

the fraction of recovered work i.e., W f
rec = 〈Wrec〉

〈W 〉 . Figure 2.4 precisely calculates

this quantity. As is evident from the figure, the fraction is almost negligible and

reaches its maximum value at low A and F .

Observation 2.2.2. Work is an increasing function of well height A at fixed F and γ.

This follows immediately from the expression of work W = (A+ F ·B − kBT/2)/2.
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FIGURE 2.4: Negligible energy can be recovered for our family of controls.

2.3 Friction-based trade-offs for reliability and

erasing

We explore the behaviour of the reliability and erasing time-scales as functions of the

friction coefficient. We find that both these time-scales are non-monotonic, roughly U-

shaped functions of the friction coefficient. A high reliability time requirement is favoured

by a very low or very high friction; whereas a low erasing time requirement is helped by

the choice of a moderate value of friction. Since a bit designer would seek reliable bits

(needing high or low friction) that can be erased fast (needing intermediate friction), this

yields a friction-based trade-off between reliability and speed of erasure.

2.3.1 Reliability Time

Our definition of reliability time (Equation 2.4) is very similar to the classic problem of

escape rates from one-dimensional wells (Fig 2.5), as applied in transition state theory to

understand chemical reactions. In a famous paper [128], Kramer found analytic expres-

sions for the escape rate k from a well by calculating the flux of particles between a source

on one side of the barrier (xA) and a sink at the other side (xB). Kramer’s expressions
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apply separately to the regimes of low friction, moderate to high friction and very high

friction.

FIGURE 2.5: The escape of particles from a one-dimensional well. Kramer [128] considered a source
of particles at the bottom of the well, and estimated the rate of escape to a sink on the far side of a
barrier.

Later the groups of Melnikov and Meshkov [129] and Pollack, Grabert and Hänggi [130]

gave formulae that interpolate accurately over all values of friction (see review in [131]).

We illustrate the key ideas used in the derivation of Melnikov and Meshkov [129]. The

starting point is to describe the dynamics in the low friction regime by a Fokker-Planck

equation in energy-action variables. Subsequently, this leads to an integral equation with

the Green function as its kernel. The integral equation is then solved using the Wiener-

Hopf method by explicitly calculating certain Fourier transforms. Refer to [129] for a

detailed derivation of these facts. In particular, we shall use the following formula [129,

Equations 6.1a and 6.3] to estimate analytical forms of the escape rate for our bistable

system.

k =
ω0

2π

[√
1 +

γ2

4ω2
b

− γ

2ωb

]
g e−A/kBT ,where

ln g =
1

2π

∫ π
2

0

ln

[
1− exp

(
−γ I(A)

4kBT cos2 x

)]
dx.

(2.22)

Here, ωb is the angular frequency at barrier height, ω0 is the angular frequency at the

bottom of the well and I(A) is the action for barrier height A. In order to calculate these
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parameters for our system UA,B(x) = A( x
2

B2 − 1)2, we need ∂xUA,B (x) =
4Ax(x2−B2)

B4 and

∂xxUA,B (x) =
4A(3x2−B2)

B4 . Then, we have the following

1. ωb: We can approximate the region near the barrier by an inverted harmonic oscil-

lator. By Taylor expanding the potential about the point x = 0, we get

UA,B (x) ≈ U (0) + ∂xUA,B (x)

∣∣∣∣
x=0

x+

∂xxUA,B (x)

∣∣∣∣
x=0

x2

2

≈ A− 2Ax2

B2
= A− mω2

bx
2

2

(2.23)

Therefore we have ωb =
√

4A
mB2 .

2. ω0: We can approximate the region near the bottom of the well by a harmonic

oscillator. By Taylor expanding the potential about the point x = B, we get

UA,B (x) ≈ U (B) + ∂xUA,B (x)

∣∣∣∣
x=B

(x−B) +

∂xxUA,B (x)

∣∣∣∣
x=B

(x−B)2

2

=
4A (x−B)2

B2
=
mω2

0 (x−B)2

2

(2.24)

Therefore we have ω0 =
√

8A
mB2 .

3. I(A): Consider a particle of mass m with a starting velocity v = 0, moving along

a constant energy surface with energy A. The particle starts at x = 0 and moves

to x =
√

2B and returns back to x = 0. The action for this round trip is given by

I (A) =
∮
pdx = 2

√
2m
∫ √2B

0

√
A− A

(
x2

B2 − 1
)2
dx = 8B

√
mA

3
.

We plot the analytical prediction of 1/k given by Eq. 2.22 in Fig. 2.6 for two values of well

height A, as a function of friction γ. This prediction is compared to average first passage

time for particles to reach the top of the barrier from an initial Boltzmann distribution

within a single well. The two quantities differ at large γ because Kramer’s definition does

not treat a particle that crosses the barrier but then immediately crosses back as having
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“escaped”, whereas our definition of reliability in terms of a first passage time treats such

particles as no longer being reliable. In the underdamped regime, immediate recrossings

are rare and hence τr and 1/k coincide; in the overdamped regime, particles that reach

the barrier top have a 50% chance of returning and so τr = 1/2k. As can be seen from

Fig. 2.6, τr smoothly interpolates between 1
k

and 1
2k

, with the small numerical factor

providing only a minor correction to the underlying physics of the analytical expression

in Eq. 2.22. Note that all stochastic simulations here and elsewhere in the chapter were

performed by using the Langevin A integrator [126] and averaging the results over many

initial conditions.

(a) A = 6 (b) A = 10

FIGURE 2.6: The reliability time τr ∝ 1
γ in the low friction regime, τr ∝ γ in the high friction regime

and is minimum at moderate friction. Simulation results are compared to the inverse of escape rate from
a single well (1/k) and (1/2k), as predicted by Eq. 2.22. Here, and elsewhere in the chapter, error bars
are omitted when comparable to data points.

The Melnikov-Meshkov expression predicts an almost-exponential scaling of 1/k with bar-

rier height A, which is reproduced by τr and expected from the Arrhenius rate law [132].

Note that both 1/k and τr are non-monotonic in friction γ, with long reliability times

in the underdamped and overdamped limits. This behaviour results from the need for

particles to diffuse in both position and energy in order to reach the top of the barrier

from an initial state thermalized within a single well. At high friction, particles rapidly

sample different kinetic energies due to strong coupling with the environment, but move

slowly in position space and hence take a long time to cross the barrier. At low friction,

particles can move rapidly but their energy remains effectively constant over short time

periods. They only cross the barrier when they have eventually gained enough total en-
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ergy. Intermediate friction, when neither process is excessively slow, gives the shortest τr.

This behaviour is typical of equilibrating systems in which an initial out-of-equilibrium

condition (particles are guaranteed to be on one side of the well and not the other) re-

laxes towards an equilibrium state (particles on both sides of the barrier), and is thus

insensitive to the details of our bit design.

2.3.2 Erasing time

As noted earlier, the erasing time is composed of two parts: the transport time defined

in Eq. 2.11 and the mixing time defined in Eq. 2.12. We now present analytical estimates

of these times and compare them with numerical solutions.

Transport time

Using Equations 2.7 and 2.8 for the region in which control is applied i.e. x ≥ 0 and A−

UA,B (x) + F · x ≥ 0, the Langevin equation becomes

mdx = p dt

dp = − γp dt− Fdt+
√

2mγkBT dW

(2.25)

Dividing by dt throughout and taking ensemble averages, we obtain(after noting that the

operations of averaging and differentiation with respect to time commute)

m
d〈x〉
dt

= 〈p〉

d〈p〉
dt

= − γ〈p〉 − F
(2.26)

For the sake of rough calculation, we can approximate the potential for the region x > 0

by a harmonic oscillator. Using Equation 2.24, we get UA,B (x) ≈ 4A(x−B)2

B2 , a harmonic

oscillator symmetric about x = B. Therefore, on expectation, the particle starts at x = B
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and the average distance travelled by the particle during the period of transport time is

B.

1. Low friction regime: When friction is very low, Equation 2.26 reduces to d〈p〉
dt

=

−F . Therefore, the particle travels with an average acceleration 〈a〉 = − F
m

. Using

the laws of kinematics, we get B = 〈u〉τt + 1
2
〈a〉τ 2

t . Plugging in 〈u〉 = 0 as the

average initial velocity, we get τt ≈
√

2mB/F .

(a) A = 10, F = 1 (b) A = 10, F = 100

FIGURE 2.7: The transport time obtained from simulations approximates the analytical estimates of
τt ≈

√
2mB/F in the low friction regime, τt ≈ mBγ/F (∝ γ) in the high friction regime.

2. High friction regime: Since friction is very high, we can assume that the net

average force on the particle is 0 i.e. d〈p〉
dt

= 0. Plugging in d〈p〉
dt

= 0 in Equation 2.26,

we get γm〈v〉 = γ〈p〉 = −F . Therefore, the particle travels with an average velocity

of 〈v〉 = − F
mγ

. The time taken to travel a distance B is τt ≈ mBγ/F .

We thus expect the transport time to be constant in the underdamped regime and increase

linearly with friction in the overdamped regime. Figure 2.7 illustrates that this scaling is

observed in Langevin simulations, and that numerical values are in reasonable agreement

with these estimates. The largest quantitative deviations occur at low force and low

friction (e.g. F = 1 in Figure 2.7a), when the diffusion of the particle on the slope

contributes significantly to τt. This results in a simulation transport time larger than the

analytical estimate.
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Mixing time

Similar to the transport time, analytical estimates of the mixing time can be obtained in

the limits of high and low friction.

1. Low friction regime: For purposes of approximate calculation we treat the

well “0” as a harmonic oscillator. Deterministically, the energy of a harmonic

oscillator decays exponentially in the underdamped regime. Therefore we have

E (t) = E0 e−γt, where E0 is the initial energy of the particle when it first reaches

x = 0 and E (t) is the energy of the particle at time t. In the underdamped regime,

a particle starting at B arrives at position x = 0 with energy E0 ≈ A+F ·B. Thus

solving for E (τmix) = A− 3kBT ,

τmix ≈
1

γ
log

A+ F ·B
A− 3kBT

(2.27)

(a) A = 10, F = 1 (b) A = 10, F = 100

FIGURE 2.8: Evidence from simulation that the mixing time τmix ≈ 1
γ log A+F ·B

A−3kBT

(
∝ 1

γ

)
in the low

friction regime, τmix ≈ mB2γ

2
√

2A
(∝ γ) in the high friction regime and is minimised at moderate friction.

2. High friction regime: A sensible estimate of the behaviour can be obtained

by explicitly modelling the diffusion of the particle near the barrier top. In the

overdamped limit, the criterion of reaching a total energy of E (τmix) = A − 3kBT

is equivalent to reaching a point d which has potential energy of A − 3kBT , since

momenta are sampled arbitrarily rapidly in this limit. To proceed, we consider
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the typical time required to reach an absorbing barrier at d starting from x = 0,

assuming a sufficiently large F that we can treat x = 0 as a reflecting barrier.

Starting from the overdamped stochastic differential equation

mγ dx = −∂xUA,B (x) dt+
√

2mγkBT dW (2.28)

with generator L = kBT
mγ

e
UA,B(x)

kBT ∂x e
−UA,B(x)

kBT ∂x, we apply the standard methods

outlined in Pavliotis [114, (7.1), pp. 239], which leads to the following system of

equations for the average mixing time τmix(x) as a function of the initial position x

kBT

mγ
e
UA,B(x)

kBT ∂x e
−UA,B(x)

kBT ∂xτmix (x) = − 1, d < x ≤ 0.

τmix (x) = 0, x = d.

(2.29)

We can solve Equation 2.29 using appropriate limits to get

τmix (x) =
mγ

kBT

∫ √
3kBT

2A
B

0

∫ q

0

e
U(q)−U(r)

kBT dqdr, (2.30)

where we have approximated the potential near the barrier as an inverted harmonic

oscillator to estimate d =
√

3kBT
2A

B. Repeating this approximation within the

integral, we obtain

τmix (x) ≈ mγ

kBT

∫ B

√
3kBT

2A

0

∫ q

0

e
2A(r2−q2)
B2kBT dqdr ≈ mB2γ

2
√

2A
. (2.31)

Equations 2.27 and 2.31 predict that the mixing time will scale as 1/γ in the low friction

limit and as γ in the high friction limit. In the first case, mixing within the well is

limited by the rate at which the particle can reduce its total energy, whereas in the

second it is determined by the speed with which the particle can diffuse in position space

to a configuration with lower potential energy. We plot simulation results for the mixing

time, along with the analytic predictions, in Fig. 2.8, confirming this scaling and the

resultant non-monotonicity. Quantitatively, simulation results deviate from the crude

analytic predictions at low force (e.g. F = 1 in Figure 2.8a), when it is no longer

reasonable to treat x = 0 as either a reflecting barrier or a steep side of a harmonic well.
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Instead, excursions of the particle back onto the slope occupying the region x > 0 lead

to much larger mixing times. Nonetheless, the scaling and non-monotonicity in friction

are preserved. Combining τtrans and τmix gives τe, plotted in Fig. 2.9. Analytically, the

erasing time is given as:

(a) A = 10, F = 1 (b) A = 10, F = 100

FIGURE 2.9: Evidence from simulation that the erasing time τe ≈
√

2mB
F + 1

γ log A+F ·B
A−3kBT

in the low

friction regime, scaling as 1/γ, and τe ≈ mBγ
F + mB2γ

2
√

2A
in the high friction regime, scaling as γ. The

erasing time is minimised at moderate friction.

1. Low friction regime:

τe ≈
√

2mB

F
+

1

γ
log

A+ F ·B
A− 3kBT

. (2.32)

2. High friction regime:

τe ≈
mBγ

F
+
mB2γ

2
√

2A
(2.33)

Like reliability, erasing time is large in the underdamped and overdamped limits, and

minimized at intermediate values of friction. The physical cause is the same as before;

our erasing protocol involves setting the system into a non-equilibrium state, and waiting

for the system to relax towards an equilibrium in the perturbed potential. This process

requires the system to diffuse in energy space and also explore configuration space, and

is therefore favoured by intermediate friction. Specifically, if the friction is too low,

the particle oscillates and slowly loses energy to be confined within the desired well. If

the friction is too high, both the transport and mixing times increase as the particle’s
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movement through space is so slow. The relative importance of these effects can be

seen in Fig. 2.10. We note that the value of the damping γ that minimises τe is quite

sensitive to F (Fig. 2.10). Fundamentally, a larger F means the challenge of moving in

position-space is made easier, and a greater loss of energy is needed to reach equilibrium.

Therefore a higher friction coefficient is optimal. As with the reliability time, further

analysis is possible but not necessary for the conclusions we wish to draw. Once again,

the key point is the trade-off between high and low friction, which is not specific to our

control. The trade-off is likely to be quite generic since any protocol will necessary push

the system out of equilibrium, and will require particles to be typically confined within

the target well before the control is removed.

(a) A = 10, F = 1 (b) A = 10, F = 100

FIGURE 2.10: Comparison of transport and mixing times. Transport time dominates the mixing time
for low force at high friction.

Both erasing and reliability times exhibit a trade-off in friction, being minimised by

intermediate values. This fact sets up a second trade-off between designing bits with

extreme values of friction to optimise reliability, or moderate values of friction to optimise

erasing. The consequences of this secondary trade-off will be explored in Section 2.4.

2.3.3 Additional dependencies of the erasing time

A larger value of A implies a steeper descent into the target left-hand well, making

mixing faster. We therefore expect that the mixing time and hence the erasing time

monotonically decreases with A.
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Observation 2.3.1. The erasing time is a strictly decreasing function of well height A at

fixed F , γ. This can be seen from the analytic expressions of erasing time (Equations 2.32

and 2.33) backed up with numerical simulations (Figure 2.11).

(a) F = 5 (b) F = 100

FIGURE 2.11: Evidence that the erasing time is a strictly decreasing function of well height across a
range of F and γ. Other values of F and γ show similar behaviour.

By contrast, erasing time shows a non-monotonic dependence on F at fixed A, γ. Ap-

plying too little force leads to slow transport, and doesn’t effectively trap the particle

within the target well. But applying too much force supplies the particle with too much

energy, which must subsequently be lost during the mixing period. We illustrate the

non-monotonicity of τe on F at fixed W = A + F and γ in Figure 2.12, in which simple

regression formulae have been fitted to the simulation data to enable interpolation at

fixed W and γ (see Section 6.3 of Appendix A). As friction increases, the force required

to provide the particle with excess energy increases, leading to minima at higher values

of F .

We make the following observation which will be used in the subsequent sections.

Observation 2.3.2. We have found no evidence of multiple local minima of erasing

time in a level set of work for our control family. Refer to Section 6.4 of Appendix A for

characteristic plots showing the minima of erasing time in a level set of work. Physically

this is unsurprising since the non-monotonicity in τe with γ and F mentioned above arise

from fairly simple trade-offs, producing curves with single minima.
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(a) γ = 0.1 (b) γ = 1

(c) γ = 10 (d) γ = 100

FIGURE 2.12: For a fixed value of W and γ, the erasing time is a non-monotonic function of F and
is minimum at moderate F . This is illustrated at work W = 20 for various values of γ.

As with the reliability time, a more detailed analysis of the dependence of τe on other

parameters, and even the shape of the control, is possible. However, these details are

likely to be difficult to generalise, and are not necessary for the conclusions we draw in

the subsequent sections.

2.4 Design of Bits

We are now ready to study the question of how to design good bits. A design involves

choosing parameters A,F, γ for a bit to satisfy requirement specifications in terms of

speed of erasing and reliability, without expending more work than required. The most

general formulation of our problem would require us to also allow the length scale B,

the temperature T and the mass m to vary, as well as allowing arbitrary controls. Such

a formulation would appear to make the problem even more challenging, so it seems
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prudent in a first analysis to restrict our analysis to the variables A,F , and γ. Our

restricted analysis is not without value since the underlying technology in any given

construction typically does not allow arbitrary variation. Our numerical analysis with

Example 2.2.1 will guide us in our assumptions and analysis, but our results will hold

in greater generality. We will construct our proofs based on general assumptions, and

subsequently explain how these assumptions are met by our control family.

We introduce the following terms.

1. The design of a bit is completely specified by the design triple (A,F, γ). Design

Space (DS) is the space of all design triples (A,F, γ).

2. A requirement specification is a tuple (tr, te) ∈ R2
>0 denoting the reliability and

erasing time that we require of the bit. Requirements Space (RS) is the space

of all requirement specifications.

3. Erasing time τe : DS → R>0 takes a design triple (A,F, γ) to the time required for

erasing the corresponding bit under the control protocol specified by F . Reliability

time τr : DS → R>0 takes a design triple (A,F, γ) to the reliability time of the

corresponding bit. Note that τr is constant as a function of F since it is a property

of the dynamics in the absence of control.

4. Work W : DS → R>0 represents the expected work done by the control in erasing

the corresponding bit. We will assume that W is constant as a function of γ, as is

the case in Example 2.2.1.

5. A design (A,F, γ) is feasible for a requirement (tr, te) iff both τr(A,F, γ) ≥ tr and

τe(A,F, γ) ≤ te. A (tr, te)-feasible design (A,F, γ) is (tr, te)-optimal iff the work

W (A,F, γ) is minimum among all (tr, te)-feasible designs.

6. Inspired by the observation that non-trivial minima of erasing time at fixed work

exist for our family of protocols (Section 2.3.3), we define the notion of trapped
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bits. A design (A,F, γ) is trapped iff for all designs (A′, F ′, γ′) with W (A,F, γ) =

W (A′, F ′, γ′), the erasing time τe(A,F, γ) ≤ τe(A
′, F ′, γ′). A design (A,F, γ) is

uniquely trapped iff for all designs (A′, F ′, γ′) with W (A,F, γ) = W (A′, F ′, γ′),

the erasing time τe(A,F, γ) ≤ τe(A
′, F ′, γ′) with equality iff (A,F, γ) = (A′, F ′, γ′).

A design (A,F, γ) is locally trapped iff there exists a neighbourhood of (A,F, γ)

consisting of bits (A′, F ′, γ′) with W (A,F, γ) = W (A′, F ′, γ′) such that the erasing

time τe(A,F, γ) ≤ τe(A
′, F ′, γ′). More informally, a trapped design has the lowest

erasing time within a level set of work; a trapped design is unique if it is the

only design within that level set of work to have the minimal erasing time; and a

locally trapped design has the minimal erasing time within a local neighbourhood

of designs of equal work.

7. A requirement specification (tr, te) is unsaturated iff there exists a (tr, te)-optimal

design (A,F, γ) such that either τr(A,F, γ) > tr or τe(A,F, γ) < te. A feasible

requirement specification that is not unsaturated is called saturated.

Throughout this section, we will assume that τe, τr, and W are continuous functions.

We will state and prove the main results related to the properties of the optimal design.

We first claim that an optimal design always saturates the bound on the erasing time

constraint. Further, if the optimal bit is not locally trapped, then it also saturates the

bound on the reliability time constraint.

Claim 2.4.1 (Saturation of timescales). Let us assume that it is possible to locally

decrease work at fixed reliability time (This is generally possible since one can perturb

the control parameters to reduce work; but reliability time does not depend on the control

parameters). Fix requirement specifications (tr, te) ∈ RS. Suppose (A,F, γ) is a (tr, te)-

optimal design. Then

1. τe(A,F, γ) = te.

2. If the design (A,F, γ) is not locally trapped, then τr(A,F, γ) = tr.
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Proof. 1. For contradiction suppose that τe(A,F, γ) < te. Since τe is continuous and

it is possible to locally decrease work at fixed reliability time, there exists a design

(A′, F ′, γ′) with W (A′, F ′, γ′) < W (A,F, γ) that is (tr, te)-feasible contradicting the

optimality of the design (A,F, γ).

2. For contradiction suppose that τr(A,F, γ) > tr. Since the design (A,F, γ) is not

locally trapped and τr is continuous, there exists a design (A0, F0, γ0) requiring

work W (A0, F0, γ0) = W (A,F, γ), erasing time τe(A0, F0, γ0) < τe(A,F, γ) ≤ te

and maintaining reliability time τr(A0, F0, γ0) ≥ tr. Thus the design (A0, F0, γ0)

is (tr, te)-optimal contradicting Claim 2.4.1.1 that the optimal design saturates the

bound on the erasing time constraint.

FIGURE 2.13: An illustration of the mapping of requirement specifications to optimal designs. The
requirement space is divided by a curve corresponding to the reliability and erasing times of trapped
designs. Points M,N in (i) Requirement Space(RS) having the same erasing time requirement get
mapped to the same optimal bit in (ii) Design Space(DS): a trapped design with τr and τe equal to the
requirements at N . The requirement specifications represented by points like P having the same te but
greater tr than N are mapped to distinct points in design space. (iii) A representation of a level set of
work W within DS, illustrating that the optimal designs to which unsaturated requirements are mapped
minimize erasing time among all designs requiring the same work.
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The next claim provides insight into the geometry of optimal designs. In particular, it

states that under mild assumptions the requirement space is divided into two regions by a

boundary given by the reliability and erasing times of trapped designs. Requirements with

tr < t′r and te = t′e, where (t′r, t
′
e) is a requirement on the dividing line, are unsaturated,

while other requirement specifications are saturated. To prove this claim, we first make

the following observation that the erasing time of trapped designs is a strictly decreasing

function of the work.

Observation 2.4.2. The erasing time of trapped designs is a strictly decreasing function

of work for our family of protocols (Example 2.2.1). In other words, if (A0, F0, γ0) and

(A∗, F ∗, γ∗) are trapped designs withW (A∗, F ∗, γ∗) > W (A0, F0, γ0) then τe(A
∗, F ∗, γ∗) <

τe(A0, F0, γ0).

Proof. Since W is a continuous increasing function of A (Observation 2.2.2), one can

choose A′ > A0 such that W (A′, F0, γ0) = W (A∗, F ∗, γ∗). Noting that increasing well

height at fixed F and γ decreases erasing time (Observation 2.3.1), we get τe(A
′, F0, γ0) <

τe(A0, F0, γ0) . Using the fact that (A∗, F ∗, γ∗) is a trapped design, we get τe(A
∗, F ∗, γ∗) ≤

τe(A
′, F0, γ0) < τe(A0, F0, γ0) establishing the claim.

Claim 2.4.3 (Saturated and Unsaturated Requirements). Assume that the erasing time

of trapped designs is a strictly decreasing function of the work by Observation 2.4.2

and that as before it is always possible to decrease work at fixed reliability time. Let

(A∗, F ∗, γ∗) be a trapped design such that τe(A
∗, F ∗, γ∗) = te.

1. If tr ≤ τr(A
∗, F ∗, γ∗) then (A∗, F ∗, γ∗) is (tr, te)-optimal.

2. If tr < τr(A
∗, F ∗, γ∗) then (tr, te) is unsaturated.

3. Make the additional assumption that locally trapped designs are uniquely trapped

(as noted for our family of protocols (Example 2.2.1) in Observation 2.3.2).

If tr ≥ τr(A
∗, F ∗, γ∗), then (tr, te) is saturated.
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Proof. 1. Since τr(A
∗, F ∗, γ∗) ≥ tr and τe(A

∗, F ∗, γ∗) = te, the design (A∗, F ∗, γ∗) is

(tr, te)-feasible. Suppose that the design (A∗, F ∗, γ∗) is not (tr, te)-optimal. Then

there exists a (tr, te)-feasible design (A′, F ′, γ′) such thatW (A′, F ′, γ′) < W (A∗, F ∗, γ∗).

Let (A0, F0, γ0) be a trapped design withW (A0, F0, γ0) = W (A′, F ′, γ′) < W (A∗, F ∗, γ∗).

Then τe(A0, F0, γ0) > τe(A
∗, F ∗, γ∗) since the erasing time of trapped bits is a

strictly decreasing function of work. Using the fact that (A0, F0, γ0) is a trapped

design, we get τe(A
′, F ′, γ′) ≥ τe(A0, F0, γ0) > τe(A

∗, F ∗, γ∗) = te, a contradiction

since (A′, F ′, γ′) is a (tr, te)-feasible design.

2. Immediate from Claim 2.4.3. 1.

3. For contradiction suppose that the requirement (tr, te) is unsaturated. Then by

Claim 2.4.1. 1 there exists a (tr, te)-optimal design (A0, F0, γ0) such that τr(A0, F0, γ0) >

tr and τe(A0, F0, γ0) = τe(A
∗, F ∗, γ∗) = te. Since locally trapped designs are

uniquely trapped, using Claim 2.4.1. 2, we get that the design (A0, F0, γ0) must

be uniquely trapped. Noting that uniquely trapped bits are trapped and using the

fact that the erasing time of trapped designs is a strictly decreasing function of work,

we get W (A0, F0, γ0) = W (A∗, F ∗, γ∗). This implies that (A0, F0, γ0) = (A∗, F ∗, γ∗),

a contradiction since τr(A0, F0, γ0) > tr ≥ τr(A
∗, F ∗, γ∗).

The claims about saturation/unsaturation of times-scales can also be proved using KKT

conditions(a standard tool from optimization theory [133, 134]), as we show below.

2.5 KKT conditions

Consider the optimization problem of finding the design with the lowest work that is

(tr, te)-feasible.
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Problem 2.5.1.

(A∗, F ∗, γ∗) = arg inf
A,F,γ

W (A,F )

tr − τr (A∗, γ∗) ≤ 0

τe (A∗, F ∗, γ∗)− te ≤ 0

In order to state the KKT conditions, we will need the notion of a regular point. The

following definition will make this precise.

Definition 2.5.2 (Regular point). Let Sat (x∗) denote the set of gradients of the

constraints that are saturated at the point x∗. Then x∗ is regular iff Sat (x∗) does not

form a linearly dependent set.

Theorem 2.5.3 (KKT conditions). Let (A∗, F ∗, γ∗) be a local optimum of 2.5.1 and

a regular point. Then by [133, (12.1), pp. 95], there exists λ∗1, λ
∗
2 ∈ R≥0 such that

1. ∇W (A∗, F ∗, γ∗)− λ∗1∇τr (A∗, γ∗) + λ∗2∇τe (A∗, F ∗, γ∗) = 0.

2. λ∗1 (tr − τr (A∗, γ∗)) = 0 and λ∗2 (τe (A∗, F ∗, γ∗)− te) = 0.

Given this powerful theorem 2.5.3, we are now ready to prove the the same result that

we obtained earlier but with the machinery of KKT conditions.

Lemma 2.5.4. Let us assume that it is always possible to locally decrease work at fixed

reliability time. Let (A∗, F ∗, γ∗) be a local optimum of 2.5.1. Then either

1. The design (A∗, F ∗, γ∗) saturates the bound on both constraints i.e. τr (A∗, γ∗) = tr

and τe (A∗, F ∗, γ∗) = te or

2. The design (A∗, F ∗, γ∗) saturates the bound on the erasing time constraint i.e.

τe (A∗, F ∗, γ∗) = te but does not saturate the bound on the reliability time constraint

i.e. τr (A∗, γ∗) > tr and is locally trapped.
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Proof. Consider an optimal design (A∗, F ∗, γ∗) such that either it does not saturate the

bound on the reliability time constraint i.e. τr (A∗, γ∗) > tr or it does not saturate the

bound on the erasing time constraint i.e. τe (A∗, F ∗, γ∗) < te. Then we have the following

cases:

• Case 1: The design (A∗, F ∗, γ∗) saturates the bound on the erasing time constraint,

but does not saturate the bound on the reliability time constraint i.e. τr (A∗, γ∗) > tr

and τe (A∗, F ∗, γ∗) = te. This implies that λ∗1 = 0. Since only one constraint is

active, (A∗, F ∗, γ∗) is a regular point. Hence, by Theorem 2.5.3 on KKT conditions,

there exists λ∗2 > 0 such that ∇W (A∗, F ∗, γ∗)+λ∗2∇te (A∗, F ∗, γ∗) = 0. This implies

that (A∗, F ∗, γ∗) is a stationary point of erasing time in the level set of it’s work

W (A∗, F ∗, γ∗). The fact that this stationary point is actually a local minimum

follows from Claim 2.4.1. 2.

• Case 2: The design (A∗, F ∗, γ∗) saturates the bound on the reliability time con-

straint, but does not saturate the bound on the erasing time constraint i.e. τr (A∗, γ∗) =

tr and τe (A∗, F ∗, γ∗) < te. This implies that λ∗2 = 0. Since only one constraint is

active, (A∗, F ∗, γ∗) is a regular point. Hence, by Theorem 2.5.3 on KKT conditions,

there exists λ∗1 > 0 such that ∇W (A∗, F ∗, γ∗) = λ∗1∇tr (A∗, γ∗), a contradiction

since ∂W
∂F
6= 0 but ∂τr

∂F
= 0.

• Case 3: The design (A∗, F ∗, γ∗) does not saturate the bound on either constraints

i.e. τr (A∗, γ∗) > tr and τe (A∗, F ∗, γ∗) < te. Since no constraint is active we have

∇W (A∗, F ∗, γ∗) = 0, which is not possible.

A more intuitive picture of the results can be understood from Figure 2.13. In this

figure, we illustrate how finding an optimal design subject to a specification maps a

point in the requirement space to a point in the design space. For a trapped design

(A∗, F ∗, γ∗), requirements with tr < τr(A
∗, F ∗, γ∗) and te = τe(A

∗, F ∗, γ∗) are unsaturated
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and get mapped to the same design (A∗, F ∗, γ∗) (claims 2.4.3. 2 and 2.4.3. 1). If the

design (A∗, F ∗, γ∗) is uniquely trapped, then requirements with tr ≥ τr(A
∗, F ∗, γ∗) and

te = τe(A
∗, F ∗, γ∗) are saturated (claim 2.4.3. 3).

(a) (b)

FIGURE 2.14: Illustration of the division of Requirement Space(RS) into saturated and unsaturated
regions by requirements that correspond to trapped designs. (a) Squares show requirements (te, tr) that
are saturated by trapped designs for the family of protocols we consider. Numerical optimization shows
that requirements to the left of the locus defined by these points are unsaturated (circles), whereas
requirements to the right are saturated (diamonds). (b) A plot of the optimal designs for points from
(a) at te = 1.5967. It is clear that for requirements tr ≤ 3173, lying to the left of the trapped-design
locus in (a), optimal design parameters are identical whereas they are distinct for tr > 3173.

Figure 2.14 illustrates these results for our example family of controls (Example 2.2.1).

As discussed in Section 6.3 of Appendix A, we have implemented simple regression to

fit the functions τe(.) and τr(.) to our simulation results. We then identified trapped

designs using numerical minimisation, plotting the requirement specifications saturated

by these designs. For each trapped bit (A∗, F ∗, γ∗), we randomly selected requirements

with te = τe(A
∗, F ∗, γ∗), but with tr either greater than equal to or less than τr(A

∗, F ∗, γ∗),

and used numerical optimization techniques to search for the optimal designs. The results

support our analysis; requirements with tr < τr(A
∗, F ∗, γ∗) are unsaturated, and those

with tr ≥ τr(A
∗, F ∗, γ∗) are saturated. Furthermore, as we show in Figure 2.14 (b),

unsaturated requirements at fixed te all map to the same trapped design.
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2.5.1 Optimal friction for simple controls

In Section 2.3, we demonstrated that both reliability and erasing times are non-monotonic

in friction, with short erasing times favoured by moderate values of friction, and long

reliability times favoured by extreme values. In what follows, we give a precise quantifi-

cation of the resultant trade-off in finding the friction of an optimal bit. The analysis

is significantly simplified for our family of controls, in which work W ≈
(
A+F ·B− kBT

2

)
2

is

independent of the friction coefficient. Let us introduce the following terms. Fix an A

and F . Then,

1. γecrit is the friction coefficient that minimizes erasing time as a function of friction

coefficient γ at fixed A and F , i.e., for all γ′ ∈ R>0, we have:

τe(A,F, γ
e
crit) ≤ τe(A,F, γ

′). (2.34)

We call the design (A,F, γecrit) critically damped.

2. γrcrit is the friction coefficient that minimizes reliability time as a function of friction

coefficient γ at fixed A and F , i.e., for all γ′ ∈ R>0, we have:

τr(A,F, γ
r
crit) ≤ τr(A,F, γ

′). (2.35)

It is easy to note that trapped bits are also critically damped. In Figure 2.15 we show

illustrative curves of the erasing and reliability times as a function of friction coefficient γ

at fixed A,F . These curves have single minima at γecrit and γrcrit, respectively. Also shown

on this graphs are regions of friction space that can be eliminated from consideration for

optimal bits. To eliminate extreme values of friction, we note that the design must have

a minimal finite A to be a well-defined two-state system in the resting state. For our bit,

it is Amin ≈ 3. In the next claim we precisely describe which regions of friction can be

eliminated.
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FIGURE 2.15: Regions of friction-space can be eliminated from the search for optimal bits for our
class of controls. As a result, the optimal friction is either critical damping, or lies somewhere within
two regions of moderate friction. Illustrative curves of τe and τr at fixed A,F indicate these regions.

Claim 2.5.5. [Forbidden regions for optimal friction] Assume that both τe and τr have

a single-well-defined minimum and tend to infinity as γ tends to zero or infinity. Let

(A,F, γ) be a (tr, te)-optimal design. (Refer to Figure 2.15 for notational convenience)

1. Let γ0 be such that τr(A,F, γ0) = τr(A,F, γ
e
crit).

(a) If γecrit > γrcrit, then γ /∈ (γ0, γ
e
crit).

(b) If γecrit < γrcrit, then γ /∈ (γecrit, γ0).

i.e. the friction of the optimal bit does not reside in the central red region in

Figure 2.15.

2. Let Amin be the minimum height for a bit to be reliable and let γ1 < γ2 be such

that τr(Amin, F, γ1) = τr(Amin, F, γ2) = tr. If (A,F, γ) is not locally trapped, then

γ /∈ (0, γ1) ∪ (γ2,∞) i.e. the friction of the optimal bit does not arise from the

extreme red regions in Figure 2.15.

Proof. 1. We prove it for the case when γecrit > γrcrit, the other case proceeds in identical

fashion. For contradiction, assume that γ ∈ (γ0, γ
e
crit). Then, due to the single
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minima in both τe and τr, and the fact that τr tends to infinity as γ tends to zero or

infinity, there exists a design (A,F, γ′) with γ′ > γ0 and τr(A,F, γ
′) = τr(A,F, γ) ≥

tr, but τe(A,F, γ
′) < τe(A,F, γ) ≤ te. The design (A,F, γ′) is (tr, te)-optimal since it

is (tr, te)-feasible and has W (A,F, γ′) = W (A,F, γ), contradicting Lemma 2.4.1. 1

that the optimal bit saturates the bound on the erasing time constraint.

2. For contradiction, suppose that γ < γ1 or γ > γ2. Then since A ≥ Amin and

the reliability time increases with well height and more extreme values of γ, either

τr(A,F, γ) ≥ τr(Amin, F, γ) > τr(Amin, F, γ1) = tr or τr(A,F, γ) ≥ τr(Amin, F, γ) >

τr(Amin, F, γ2) = tr, contradicting claim 2.4.1. 2 that an optimal design that is not

locally trapped saturates the bound on the reliability time constraint.

For clarity, let us assume initially that γecrit > γrcrit (equivalent arguments hold for the

alternative). We see that optimal designs reside either at γecrit, or lie within two regions

at moderate friction, as illustrated in Figure 2.15. Interestingly, one region is adjacent to

γecrit, whereas the other is not. It is not easy to see how designs in one region (γ1 ≤ γ ≤ γ0)

as in Figure 2.15 can outperform those in the other region (γecrit < γ ≤ γ2). Indeed, when

we performed numerical optimisation on the regression-based fits to our simulation data,

we only observed optimal bits that are either critically damped or lie in the allowed region

adjacent to critical damping.

This is illustrated in Figure 2.16, where we plot the optimal friction as a function of

erasing time requirement at fixed reliability time requirement, for two values of reliability

time requirements. We also plot γecrit and γrcrit for comparison. At low erasing time

requirements, designs reside at γecrit. At slightly higher erasing time requirements, the

designs become saturated and the optimal friction lies adjacent to γecrit in the region

γecrit < γ ≤ γ2. Eventually, γecrit crosses γrcrit. At the crossing point, we have γ = γecrit =

γrcrit. At higher values of erasing time requirements, γ still occupies the region adjacent
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(a) Reliability time requirement(tr) = 500 (b) Reliability time requirement(tr) = 10000

FIGURE 2.16: Optimal friction is either critical damping, or lies within a small region adjacent to
critical damping, for our family of controls. We plot friction for optimal designs (A,F, γ) against erasing
time requirements (te) for a fixed value of reliability time requirement (tr), alongside γecrit and γrcrit. Note
that A and F are not fixed, but determined by the optimisation procedure alongside the optimal friction
for each requirement (tr, te). The data was obtained from numerical optimisation and minimisation
based on regression fits to simulation data.

to γecrit, which is now γ1 ≤ γ ≤ γecrit < γrcrit.

2.6 Conclusions

We have explored the question of the design of optimal bits. Previously, authors [135,

136, 137, 34, 138] have focused on designing optimal protocols that minimize work in-

put when implementing a finite-time operation on a given system, as highlighted in the

introduction. Our approach differs in considering that bits need to have two distinct

functionalities: retain data for long periods of time and allow rapid switching or erasing.

Moreover we consider optimising over system parameters such as the intrinsic friction as

well as the external control. Our fundamental observation is that friction plays a non-

trivial role in the design of bits. Both switching/erasing and the eventual degradation

of data involve relaxation towards equilibrium from a non-equilibrium distribution. This

process is fastest at intermediate values of the friction, but slow in the overdamped and

underdamped regimes. The best bit designs have high reliability times and low switch-

ing/erasing times, which implies an inherent trade-off in bit design between extreme

values of friction that favour high reliability, and moderate values of friction that favour
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rapid switching or erasing.

We have explored the consequences of the biphasic role of friction for a simple class of

controls. The existence of non-trivial minima of erasing time in the level set of work

leads to the generation of trapped designs. These designs are optimal for reliability

requirements smaller than their own reliability time leading to unsaturated requirements.

The result of the trade-off between extreme values of friction that maximize reliability

time and moderate values of friction that minimise erasing times is that optimal designs

are either critically damped or occupy a region of moderate friction close to critical

damping.

Our work opens up a new perspective on the design of efficient computational devices

showing that: the best designs are likely to be neither underdamped nor overdamped. This

observation is particularly important as some authors have considered friction to be in-

herently problematic for computation. The role of friction is suppressed when bits are

modelled as discrete two-state systems [9, 100, 139], since this approximation assumes

rapid equilibration within the discrete states. Friction also has links back to the IBM

project [109, 140] that was initiated in the 1970’s, which used Josephson junctions (con-

sisting of two superconducting materials segregated by an insulating layer) to build logical

devices. Current flows through this junction due to the tunnelling of electrons across the

insulator at virtually no resistance (friction). There is a critical value of current above

which the material stops acting as a superconductor. This “switching” of junction state

from superconducting to non-superconducting is analogous to the switching of a bit in

our case. In fact, authors [110, 111] compare the switching in Josephson circuits to

Kramer’s escape rate problem in the underdamped regime. Further, Klein and Mukher-

jee [111] compare the performance of noise switching rates among several multi-junction

SQUIDS(Superconducting Quantum Interference Devices).

The main issue for building devices out of Josephson junctions came in the construc-

tion of fast memory chips. Firstly, the cycle time of these devices was restricted by
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“punchthrough”- a phenomenon in which the voltage of the device could not be reset

after its cycle. Secondly, the value of critical current was lower bounded due to the pres-

ence of thermal noise that caused unwarranted switching, analogous to the noise-induced

switching of a particle in a bistable well. Thirdly, semi-conductor technology was not that

far behind, and the current super-conductor project would take atleast a couple of years

to be put into practice. As a consequence, the IBM project was finally abandoned [141]

in 1983.

It is important to note the we have only considered a simple family of controls to motivate

our analysis and illustrate our findings. This family is not optimal - it was chosen for it’s

simplicity and ease of analysis. Moreover, there is some arbitrariness in the definition of

both the erasing and reliability times. We are not claiming to have derived numerical

corrections to the minimal cost of erasing a bit, for example, or the specific work costs

(substantially larger than kBT ln 2) which are not that informative. Rather, it is the

qualitative results, which hold for a much broader class of controls which are important.

The non-monotonic role of friction in both the erasing and reliability time-scales is a

generic physical phenomenon that extends beyond the details of our implementation,

and implies a competition between the goals of fast manipulation and long reliability

times. Relatively weak assumptions – that it is always possible to decrease work at fixed

reliability time and that the minimal erasing time decreases with increased work imply

that erasing time requirements are always saturated by optimal bits and that trapped

designs lead to unsaturated reliability time requirements respectively. Other results rely

more on the simplicity of the control family: the existence of only one local minimum of

erasing time at fixed work simplifies the question of whether a requirement specification is

saturated. The fact that work is independent of friction simplifies the task of eliminating

certain values of friction as sub-optimal.

Explicit exploration of a broader class of controls, including those with more complex

variation over time, and varying parameters such as particle mass and distance between
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wells, are possible directions for future work. It is not immediately clear whether minima

in erasing time at fixed work cost will become more or less prominent features of the

optimisation landscape when the complexity of the system is increased, for example.

In particular, raising or lowering the barrier between metastable states is a common

idea [100, 34, 117, 118]. Lowering the barrier during erasing potentially allows for faster

erasing at fixed reliability time and lower work cost. If said barriers could be raised

and lowered arbitrarily far and quickly, it may be possible to circumvent any conflict

between high reliability and low erasure time. However, real physical systems are not

generally this flexible. Indeed, in order to apply a complex time-dependent control to a

small colloid, experimenters typically use optical feedback traps [117, 118], which are not

true potentials and rely on the continuous input of energy to apply forces and perform

feedback control. For true physical protocols that permit finite raising and lowering of

barriers between metastable states, we expect that our findings would still apply to a

family of protocols with optimal barrier manipulation. An alternative direction would be

to consider similar effects in systems with inherently quantum mechanical behaviour.

The ideas of reliability, speed and cost have been studied in the context of bit-erasure for a

two-state Markov chain [139]. Here, the authors come up with a cost of log 2− log 1− e
τe
τr

for fast and reliable bit-erasure. Our work differs from theirs in many ways. At a

fundamental level, we are essentially interested in questions that involve a relaxation

time –a notion that does not carry over directly to the discrete state limit. In addition,

the cost function used by the authors in [139] is a Kullback-Leibler divergence – which

is not a typical work function. This makes it hard to map the results obtained in our

setting to the two-state Markov chain problem.

It is important to observe that a significant fraction of our results arise as a manifestation

of going beyond the two-state model of a bit. In particular, the crucial role played by

friction resulting in a trade-off between high reliability and low erasing time-scales emerges

as a consequence of the presence of a continuum of intermediate states separating the
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two states of the bit. The notion of relaxing to equilibrium within a state (as defined

in erasing time) becomes relevant precisely due to the same reason. In addition, our

discussion about careful consideration of control strategies draws its pertinence from

exploring bit manipulations beyond its two-state canonical model.
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Chapter 3

High rates of fuel consumption are
not required by insulating motifs to
suppress retroactivity in biochemical
circuits

Abstract

Retroactivity arises when the coupling of a molecular network U to a downstream network

D results in signal propagation back from D to U . The phenomenon represents a breakdown

in modularity of biochemical circuits and hampers the rational design of complex functional

networks. Considering simple models of signal-transduction architectures, we demonstrate the

strong dependence of retroactivity on the properties of the upstream system, and explore the

cost and efficacy of fuel-consuming insulating motifs that can mitigate retroactive effects. We

find that simple insulating motifs can suppress retroactivity at a low fuel cost by coupling

only weakly to the upstream system U . However, this design approach reduces the signalling

network’s robustness to perturbations from leak reactions, and potentially compromises its

ability to respond to rapidly-varying signals.

3.1 Introduction

In the second section of the introduction, we discussed and outlined some of the mecha-

nisms by which biological systems perform computation. Performing complex biological

computations requires the use of multiple connected components or pathways, as in elec-

trical circuits. The possibility of designing electrical circuits to function as well-defined
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modules is crucial to the engineering of complex circuitry with many interconnected

components. Ideal modules have clearly-defined inputs, and produce outputs specified

by those inputs and the internal structure of the module, independent of the broader

context within which they are embedded [142].

Biological systems appear to exhibit modularity in some contexts, and it has been sug-

gested that this modularity is evolutionarily advantageous [143, 86, 85], or contributes to

system robustness [89, 144]. For humans seeking to engineer biological systems without

the benefit of billions of years of highly parallel evolution, modularity can be hugely advan-

tageous. In the context of biochemical networks, the concept of modularity was first put
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FIGURE 3.1: A schematic representation of the concept of retroactivity. (A) Subsystems U and
D evolve separately according to internal dynamics (the arrows in these diagrams indicate arbitrary
interactions). (B) By coupling U and D via a molecular interaction between Z (an output of U) and
G (an input of D), a signal is propagated. However, in general the coupling also induces changes in Z
due to retroactivity (dashed line). (C) This retroactivity is particularly problematic when adding an
additional downstream system D′ that also couples to U . (D) Retroactivity can potentially be reduced
using an insulator I between U and D. In effect, U couples to a compound downstream motif D′. (E) A
specific example of an insulating circuit. Retroactivty is very high for propagation of a signal by direct
binding, as in (E.i). Alternatively, Z can act as a catalyst for the phosphorylation of an intermediate
species, X → X∗, that when phosphorylated binds to P , thereby reducing the retroactivity experienced
by Z, as in (E.ii). Note that this insulating “push-pull” motif requires turnover of ATP to function, and
involves an antagonistic phosphatase Y . (E.iii) A graphical representation of the reactions in (ii). (F) If
the insulating circuit I itself couples to multiple downstream subsystems, retroactivity experienced by
I may be relevant.

on a solid footing by Hartwell [145], Lauffenburger [146] and Weiss et.al. [147, 148]. The

phenomenon of “retroactivity” [149, 150, 151, 152, 93], illustrated formally in Fig. 3.1 A,B

has been shown to cause a breakdown in modularity. Here, an upstream system U con-

sisting of a set of molecular species and reactions is coupled to a downstream system D

via a species Z, which is part of U . The coupling causes a change in the output of D
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(here represented by a species C), passing on a signal from U to D. However, in general

U and in particular Z is also affected by the coupling, implying the propagation of an

unintended signal back from D to U . Thus the meaning of the basic concepts of “up-

stream” and “downstream” is corrupted, and the ability to logically design circuits with

well-defined inputs and outputs is compromised.

The presence of retroactivity is particularly problematic when coupling to a subsystem U

with pre-existing connections (Fig. 3.1C) due to the fan-out effect [153] - an effect which

causes signal reduction/delay due to the presence of excess downstream connections than

required. Such a situation could arise from a change in network topology from human in-

tervention or natural evolution, or due to dynamic changes in molecular abundance within

a cell. In these circumstances, strong retroactivity would lead to the new “downstream”

subsystem having an undesirable influence on the other “downstream” subsystems, and

vice-versa.

Having identified the possibility of undesired retroactive interactions, several questions

present themselves. (i) Most immediately, how should retroactivity be quantified? (ii)

Given a suitable metric, are certain designs of U and D more prone to retroactive effects?

(iii) Is it possible to design insulating motifs I, as illustrated in Fig. 3.1D, that suppress

retroactivity between U and D? (iv) Does suppression of retroactivity necessarily imply

an increased fuel consumption, and are there trade-offs associated with, for example, the

accuracy of signal propagation?

In the last decade, several groups have considered these questions. In particular, Del

Vecchio et.al. [151, 152, 154] have proposed the relative change in Z due to the intro-

duction of D as a potential metric for retroactivity. Later, Barton and Sontag [93, 155]

proposed two alternative metrics to quantify retroactivity, namely the distortion and com-

petition effect. The distortion captures the change in C relative to an idealised system

with no retroactive effect, while the competition effect quantifies the consequence for an

existing downstream subsystem when a new one is attached to U . Particular attention
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has been paid to retroactivity in the context of the binding of transcription factors to

DNA [151, 152, 156, 93, 154, 50]. Certainly, the passing of signals via binding is naturally

retroactive, since it intrinsically requires sequestration of the upstream molecule. More-

over, signal propagation by direct binding occurs in contexts other than transcription

factor binding [157], and is widely used as a way to transmit signals in engineered nucleic

acid systems both in vitro and in vivo [56, 158].

Sub-networks described as “insulators” (I) have been proposed to mitigate retroactivity

by connecting D to U indirectly (see Fig. 3.1D) [151, 93, 154, 155]. The key component

underlying these insulators is catalysis, as described in the Introduction. Put simply, by

acting as a catalyst molecule, the Z is able to influence the downstream reactions without

being sequestered indefinitely [159, 80].

The push-pull motif illustrated in Fig. 3.1E.ii is a common catalytic motif in natural sig-

nalling systems [160] and is also known by the name of “futile” cycle in literature [161].

The molecule X is catalytically switched between its two states X and X∗ by the antag-

onistic enzymes Z and Y (respectively, a kinase and a phosphatase if the modification

of X is phosphorylation, as in Fig. 3.1E.ii). This mechanism is cognate to the notion of

switching a bit between two states given by X and X∗, as stated in the Introduction.

The output of X∗ is then sensitive to the relative concentrations of Z and Y . By this

mechanism, a signal encoded in the concentration of Z can be propagated without per-

manent binding of Z to a downstream substrate. Previous work has shown that such a

push-pull motif can function as an effective insulator between U and D [151, 93], allowing

information in the concentration of Z to be propagated via X∗ to a downstream system

with only limited sequestration of Z.

Catalysts cannot alter the equilibrium point of a reaction. Thus if [X∗] is to be sensitive

to [Z], the system must be driven out of equilibrium by the turnover of biochemical fuel

molecules [159]. In the case of phosphorylation-based signalling, the system is driven

out of equilibrium by the coupling of phosphorylation/dephosphorylation cycles to the
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breakdown of ATP into ADP and inorganic phosphate Pi, as shown in Fig. 3.1E.ii. The

ATP molecules, which have a high free energy, are the chemical fuel. On a fundamental

level, this fuel consumption (breakdown of ATP) allows the X molecules to “remember”

the fact that they interacted with either Y or Z most recently, even though the interaction

has ended [162, 80].

For the catalytic reactions in Fig. 3.1E.ii to proceed, complexes between Z and X must ex-

ist for a finite time [163]. Therefore, although the push-pull insulator can reduce retroac-

tivity, some of the Z molecules are still sequestered at any given point and so some

retroactivity remains. Thus, the presence of an intermediate state (catalyst-substrate

complex) imparts retroactivity to the motif – yet another example where going beyond

the two-state model of bit switching gives rise to interesting behaviour. Barton and

Sontag [93] explored the question of whether this residual retroactivity could be sup-

pressed, concluding that substantial energy consumption in the form of a high turnover

of chemical fuel molecules was required. In a subsequent paper [155], they considered a

slightly modified direct binding system in which the insulator itself acts catalytically on

the downstream system D, reaching the same conclusion.

In this chapter, we revisit the resource costs of retroactivity suppression, as first high-

lighted in Ref [93], by considering the simplest steady-state setting. In Section 3.3,

we consider whether the design of the upstream system U can mitigate retroactive ef-

fects when long-lived binding of Z is necessary for signal propagation. We observe that

a constant turnover of Z due to continuous production and decay can itself mitigate

retroactivity in certain circumstances. However, this turnover is associated with a large

resource cost if it is to be more rapid than the time-scale of signal variation.

As a result, we turn our attention in Section 3.5 to the analysis of insulating push-pull

motifs that can potentially reduce retroactivity with limited protein production costs.

Our main finding is that a higher rate of fuel consumption is not required to produce better

insulators. In general, both fuel consumption and retroactivity can be reduced simply by
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decreasing the coupling strength of both the upstream molecule Z and the phosphatase Y

shown in Fig. 3.1E.ii to the X/X∗ molecule, whilst maintaining the steady-state output of

the system. In Section 3.6, we generalise this result to account for microscopic reversibility

in the catalytic reactions that was neglected in Ref. [93]. We find that a large chemical

driving force (a large free energy stored in each ATP molecule) is necessary to propagate

strong signals, but not to suppress retroactivity, and that it is still possible to reduce

both retroactivity and energy consumption to low levels by reducing the coupling of Z

and Y to the push-pull network.

Although high free-energy consumption is not necessary to suppress retroactivity, we

postulate that a certain amount is indeed important for faithful signal transduction.

In particular, in Section 3.7 we show that weak coupling of Z and Y to the push-pull

network renders the system as a whole vulnerable to unintended leak reactions. We

also hypothesize that high turnover of fuel molecules is necessary to accurately track

time-dependent inputs to U .

3.2 Methods

We will work in the limit of a large copy number of molecules, in which case the reaction

networks can be modelled deterministically by mass-action ordinary differential equations.

All our calculations related to retroactivity and energy consumption will be performed

after the decay of initial transients, as in previous works [151, 93, 164, 90, 165]. Previously,

some authors have focussed on systems driven by time-dependent variation of parameters

within U , such as sinusoidally varying birth and death rates of Z [151, 93]. In particular,

Barton and Sontag [93] analyse a certain network called the push-pull motif having a

relatively rapid variation in the upstream signal. They define two metrics to quantify

the amount of retroactivity in this system, namely the distortion and competition effect.

The distortion captures the difference between the actual output [Creal(t)] and the output
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[Cideal(t)] of a hypothetical system in which the downstream system responds to Z as if

binding were occurring, but the population of Z is unaffected by these reactions (and

thus there is no retroactivity). The distortion metric is given by

D =
1

σ[Cideal]

〈|[Cideal(t)]− [Creal(t)]|〉 . (3.1)

Here, σ[Cideal] is the standard deviation of the ideal signal corresponding to the hypothetical

system, and the angled brackets indicate an average over time. They also define the

competition metric C as

C =
1

σ[C]

〈∣∣∣∣∣∂[C(t)]

∂[P ′tot]

∣∣∣∣
[P ′tot]=0

∣∣∣∣∣
〉
, (3.2)

where [P ′tot] is the total concentration of a binding site for a second downstream subsystem

D′.

On the basis of these metrics, Barton and Sontag argued that producing better insula-

tors(low retroactivity) requires substantial energy consumption. However, these conclu-

sions are a direct result of the particular choice of retroactivity metrics, which we believe

are poorly-justified. Firstly, although the presence of retroactive terms in the dynami-

cal equations does influence the output of a system, it is unclear why the deviation of

the output from a particular hypothetical “ideal” system should quantify retroactivity.

For a start, one could write down other “ideal” systems in which the retroactive terms

were removed. But more importantly, the metric D does not quantify the back-action

felt by U . For example, it is large if U is completely decoupled from any insulator and

downstream network. Such a system does a poor job of propagating a signal, but doesn’t

exhibit retroactivity in any meaningful sense.

The competition metric C comes closer to the spirit of retroactivity, in that it quantities

the effect of one downstream subsystem on another via U . However, minimising C with

respect to the parameters in D and/or I, rather than the newly-added subsystem, does

not minimise retroactivity due to the I+D subsystem. Instead, it involves making I+D
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insensitive to the presence of the new downstream subsystem – which can be achieved, for

example, by coupling to U very strongly, so that the introduction of a new downstream

system has essentially no effect. Such a design would be highly retroactive in the sense

that I +D strongly influences U , but would have a low value of C .

We therefore believe that the “optimal” systems found by Barton and Sontag do not

minimise retroactivity. Instead they identified subsystems I that allow rapid tracking of

U , and are relatively insensitive to the introduction of parallel downstream subsystems,

due to strong coupling between U and I that results in high fuel turnover.

In our case, we will assume slow signal variation that implies that our systems reach

steady states – as in Ref. [156]. We make this simplifying assumption to deconvolve the

distinct problems of tracking a time-dependent signal and suppressing retroactivity.

Taking our cue from Refs. [151, 152, 154] we use the retroactivity metric

R =

∣∣∣∣∣1− [Zss]

[Zss
D,I→∅]

∣∣∣∣∣ , (3.3)

where [Zss] denotes the concentration of free Z in steady state in the actual system,

[Zss
D,I→∅] is the steady state concentration of free Z when it is not connected to the

downstream system (D and I are absent, D, I → ∅). We find this metric to be more

natural than the ones proposed by Barton and Sontag [93], since it directly quantifies the

back action on the upstream system. Using this metric, we shall show that high rates of

energy consumption are not required to reduce retroactivity in push-pull motifs.

Throughout the thesis, we will use the following reduced units: concentrations will be

measured relative to [C0] = 10−6M. Uni-molecular rate constants will be measured relative

to k0 = 1s−1 units and bimolecular rate constants relative to k0

[C0]
= 106M−1s−1.

In addition to the retroactivity on U , one could also consider the retroactivity expe-

rienced by I. This effect was termed “retroactivity to the output” by Del Vecchio et

al. [151], who considered the design of compound motifs for minimising both input and
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output retroactivity simultaneously [166, 154]. However, for a simple insulator intended

to prevent retroactivity on U , any retroactivity experienced by I is irrelevant – in the

same way that the retroactivity internal to the compound motifs of Del Vecchio et al. is

ignored [154]. We therefore restrict our analysis to the retroactivity experienced by the

upstream system U . If, however, an insulating circuit needs to couple to multiple down-

stream subsystems (see Fig. 3.1F), the retroactivity experienced by I may be relevant.

In this case, the properties of those downstream interfaces could be analysed in the same

way as we consider the retroactivity on U .

3.3 Dependence of retroactivity on the upstream sub-

system

In this section, we will consider three basic alternatives for the internal dynamics of

the upstream subsystem U , and explore the consequences for retroactivity. We will first

illustrate the problem using a simple choice of D and the coupling between U and D.

We shall then seek to generalise the results. For our illustrative downstream subsystem

D, we consider the inter-conversion of molecular species P and C. We shall take a

direct coupling between upstream and downstream subsystems via binding of Z to P

to produce C. This setting is an extremely common motif for passing on a signal in

biology, provided that the complex C has properties that are distinct from those of P .

For example, Z could be a transcription factor that binds to a promoter P , triggering or

suppressing translation [167], or a receptor that recruits proteins to the cell membrane

when active [157]. Similar motifs are widespread in nucleic acid nanotechnology [56, 158].

1. Fixed total concentration of Z: In the simplest case, there is a fixed and finite

pool of Z molecules, [Ztot] = [Z] + [C]. This description would approximate a

setting in which a pool of Z molecules are suddenly activated or released due to an
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external signal, and the overall system reaches a steady state response prior to the

deactivation or recapture of Z at the end of the signalling period. A fixed [Ztot]

during the signalling period is consistent with an in vitro setting in which there is

no net turnover of components, or to an in vivo setting in which protein production

and decay or dilution of molecules is slow compared to signal dynamics. In this

case, we need only solve for the steady state of

Z + P
kon−−⇀↽−−
koff

C (3.4)

subject to [Ztot] = [Z] + [C] and [Ptot] = [P ] + [C].

2. Constant birth/death dynamics: In this case, we assume that Z molecules

undergo a rapid birth/death process in addition to binding to P . Specifically, we

imagine that Z molecules are produced and degraded at rate constants k and δ,

respectively, as well as binding to P to form the complex C. Thus the system

∅ k−⇀↽−
δ
Z

Z + P
kon−−⇀↽−−
koff

C (3.5)

reaches steady state subject to the constraint [Ptot] = [P ] + [C]. Such a description

would approximate an in vivo response to a variation of k and δ on a time-scale

slower than protein production and decay or dilution. This system was previously

analysed in the stochastic setting by Ghaemi et al. [156].

3. Active and inactive forms of Z: Finally, we consider a setting in which Z exists

in both inactive (Z0) and active (Z) forms, as well as in complex with P . We

assume that Z0 is incapable of forming a complex, and that the total population

[Z ′tot] = [Z0] + [Z] + [C] is fixed. Such a setting would correspond to a situation

similar to case (1), but when only a fraction of the the Z molecules are activated
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FIGURE 3.2: Replenishing the pool of Z from large reservoirs or by rapid production and decay of
components can suppress retroactivity. To illustrate this, we plot the steady-state concentration of Z
and the retroactivity metric as a function of [Ptot] for three different upstream subsystems U . Parameters
of the system: k = 10, δ = kon = koff = 1, kactive = 0.1, [Ztot] = k

δ , [Z
′
tot] = kactive+kinactive

kactive
[Ztot].

or released in response to an external signal. In this case we solve

Z0
kac−−⇀↽−−
kin

Z

Z + P
kon−−⇀↽−−
koff

C (3.6)

for the steady state subject to the constraints [Z ′tot] = [Z] + [Z0] + [C] and [Ptot] =

[P ] + [C]. Here, kin, and kac are first-order rate constants,

The steady-state concentration [Zss] is the output signal of U ; in the limit [Ptot]→ 0 (D

absent), the three alternatives for U all produce the same signal if

k

δ
= [Ztot] =

kac

kac + kin

[Z ′tot]. (3.7)

In Figure 3.2 we show [Zss] and the retroactivity metric R as we increase [Ptot], given

equal [Zss] for [Ptot] → 0. Figure 3.2 demonstrates that retroactivity is highly sensitive

to the internal details of U . Clearly, the system with fixed [Ztot] shows the strongest

retroactivity; the system with constant birth and death of Z shows no retroactivity; and

the system with active and inactive forms of Z interpolates between these two limits.

Constant birth-death dynamics is analogous to having an infinite pool of Z to draw upon

(formally, Z is coupled to a chemostat [168]). On average, a Z molecule gets replenished

every time it is consumed after binding to P . As a result, this system has zero retroactivity

and [Zss] = k
δ

irrespective of [Ptot] – this fact was previously noted in the stochastic setting

70



by Ghaemi et al. [156]. The case with fixed [Ztot] = [Z]+[C] has the highest retroactivity

since there is nothing to replenish Z once it binds to P . The setting with active and

inactive forms of Z implies a finite buffer upon which to draw; for low [Ptot], most of

the sequestration of Z can be compensated for by conversion of Z0 into Z, but as [Ptot]

grows, this buffer gets depleted. Consequently this third case is moderately retroactive,

interpolating between the regimes of fixed [Z]+[C] and constant birth-death dynamics. In

particular when kinactive � kactive, this intermediate case approaches constant birth-death

dynamics. Refer to the case of Active/Inactive forms of Z in Section 7.1 of Appendix B

for a proof of this fact. More generally, Section 7.1 gives analytic expressions for each

of the regimes considered here. As shown by Ghaemi et al. [156] in the setting of non-

deterministic dynamics, introducing birth-death dynamics for Z is a general approach to

buffering against the influence of downstream systems D. In a wide range of steady-state

contexts, this buffering eliminates retroactivity. In particular, [Z] = k/δ necessarily holds

if the reaction network obeys detailed balance [169, 170, 171, 57]. However, a constant

decay rate of the complex C1 and a constant production of P is sufficient to compromise

this perfect buffering. Explicitly, the system

∅ k−⇀↽−
δ
Z, Z + P

β1−⇀↽−
β2

C1

C1
α1−→ ∅, ∅ γ1−→ P. (3.8)

has the following set of differential equations:

˙[Z] = k − δ[Z]− β1[Z][P ] + β2[C1]

˙[C1] = β1[Z][P ]− β2[C1]− α1[C1]

˙[P ] = −β1[Z][P ] + β2[C1] + γ1. (3.9)

In steady-state, we have [Zss] = k−γ1

δ
6= k

δ
implying non-zero retroactivity. Increasing γ1

increases retroactivity, as more Z molecules are consumed by the downstream system and

never released. Even in the case of perfect buffering, implementing a system that produces
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and degrades components on a time scale that is fast compared to signal variation would

be extremely expensive. Turning over a single protein molecule, for example, costs a cell

on the order of thousands of ATP fuel molecules [172]. The alternative of having a very

large but fixed pool of molecules from which to create Z is also costly; energy (and in

the cell, space) needs to be devoted to these molecules, and in vivo the large population

would need to be maintained against a background dilution/decay, which is more costly

than maintaining a small population. Similar arguments apply to maintaining a large

pool of Z that bind to P only weakly, or more complex U subsystems that replenish

Z. In summary, although the use of a large or bottomless supply of Z can suppress

retroactivity, the inherent cost of this strategy is related to the cost of producing a

large number of molecules, which is generally high. In Section 3.5, we consider the

alternative of using an insulating push-pull motif, in which retroactivity is suppressed

without excessive production of the signalling species. Instead, an energy-consuming

circuit involving catalytic molecular modification is used to reduce sequestration of Z.

This modification consumes chemical fuel molecules such as ATP, which are far less

costly than, for example, entire proteins. It is because of the relatively low cost of post-

translational modification that we focus on the push-pull motif, rather than alternative

insulators incorporating protein production and degradation [151]. We now recall explicit

formulae for basic notions in thermodynamics like the free energy of a reaction and the

binding energy of a complex.

3.4 Free energy of a reaction

Consider the following reaction

A+B
k1−⇀↽−
k2

C (3.10)
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Then,

∆G = ∆G0 + kBT ln
[C]

[A][B]
(3.11)

where ∆G is the net free energy difference between the products and reactants, ∆G0 (also

called the binding energy of C) is the intrinsic free energy difference between products

and reactants. In the present case, ∆G0 = ln k2

k1
. Therefore, the equation of free energy

becomes

∆G = kBT ln
k2

k1

+ kBT ln
[C]

[A][B]
(3.12)

3.5 The relationship between retroactivity and fuel

consumption for an insulating push-pull motif

Having argued about the costs of suppressing retroactivity through the design of U , we

now turn to the alternative approach of using insulating motifs as shown in Fig. 3.1E.ii.

We reiterate the question first raised by [93]: is increased consumption of fuel necessary

for suppression of retroactivity in a push-pull network? To approach this question, we

will consider an insulating push-pull motif for an upstream network U with a fixed total

amount of Z. This was the simplest U considered in Section 3.3. This choice is motivated

not only by simplicity, but also because it is the most challenging context for an insulator

(underlying retroactive effects are strongest) and because the alternative choices of U are

associated with their own additional resource costs. Our system is therefore defined by

the set of reactions below, following Ref. [93]:

Z +X
β1−⇀↽−
β2

C1
k1−→ X∗ + Z,

Y +X∗
α1−⇀↽−
α2

C2
k2−→ X + Y,

X∗ + p
kon−−⇀↽−−
koff

C. (3.13)
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Here we have assigned mass-action rate constants to each step, and assumed that the role

of the molecular fuel molecules ATP, ADP and Pi can be implicitly absorbed into rate

constants, as is common. We have also assumed that the free energy of ATP breakdown,

∆GATP, is sufficiently large that dephosphorylation via Z and phosphorylation via Y are

never observed.

An explicit representation of the intermediate catalyst-substrate complexes C1 and C2

allows for a quantification of sequestration of Z by the push-pull insulator. Again, we

consider the fractional reduction in free Z due to the introduction of the downstream

system:

R =

∣∣∣∣∣1− [Zss]

[Zss
D,I→∅]

∣∣∣∣∣ =
[Css

1 ]

[Ztot]
. (3.14)

The system illustrated in Eq. 3.13 turns over a single molecule of ATP per phosphory-

lation/dephosphorylation cycle, in which a molecule of X is first activated by Z then

deactivated by Y . Thus the fuel consumption rate per unit volume is given by the net

flux Ψ of X molecules around this cycle. The overall power per unit volume is given by

w = Ψ∆GATP, where ∆GATP is the free energy released by the breakdown of a single

ATP molecule. From inspection,

Ψ = k1[Css
1 ], w = Ψ∆GATP = k1[Css

1 ]∆GATP. (3.15)

Strictly speaking, ∆GATP should be infinite since we have approximated the catalytic

reactions as microscopically irreversible, as in [93, 151, 173, 174]. In practice, ∆GATP is

assumed to have a large, fixed, negative value. The power consumption will then be es-

sentially determined by the flux Ψ through the cycle. As a consequence, we see that both

retroactivity and fuel consumption grow proportionally to [Css
1 ]. In intuitive terms both

fuel turnover through phosphorylation, and the retroactivity, increase if Z is frequently

bound to X to form the enzyme-substrate complex C1. This observation raises questions

about the conclusion that increased energy consumption is necessary to suppress retroac-

tivity from Ref. [93]. To explore this idea further, let us consider whether an insulating

system can in general be tuned to reduce both retroactivity and fuel consumption whilst
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maintaining its signal-transducing function. Specifically, let us ask whether combinations

of system parameters can be changed so that the input-output relation [Css]([Ztot]) is ap-

proximately preserved, but both w and R are reduced. In Refs. [151, 93, 154, 175, 176],

optimisation of insulating circuits was only performed over the total concentrations of

species. Natural evolution or deliberate design will, however, allow for moderation of at

least some of the chemical rate constants, and we will focus on these parameters. If it

were possible to take the catalytic rate constants k1, k2 →∞, we would obtain [Css
1 ]→ 0

and R → 0, and retroactivity could be completely eliminated, regardless of the fuel con-

sumption rate. However, these catalytic rate constants encode complex chemistry that is

likely difficult to accelerate. We shall therefore take k1, k2 as fixed and instead focus on

α1, β1, the rate constants of enzymatic binding. Whilst there is a diffusion-based limit to

how far α1, β1 can be increased [177], we assume that it is always possible to reduce the

speed with which a given catalyst binds to its substrate. Alternatively, we could have

focussed on α2, β2 (the unbinding rate constants), assuming that it is always possible

to increase them. In both cases, which yield similar results, we essentially assume that

it is possible to reduce the catalyst-substrate binding affinity, either through design of

synthetic systems or via evolution of natural systems. For example, this reduced affinity

could arise from replacing a hydrophobic residue by a hydrophilic one in a protein-protein

interaction or creating a mismatch in DNA-DNA interaction. We first consider the low
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FIGURE 3.3: An example of reducing both fuel consumption and retroactivity whilst maintaining an
approximately fixed input-output relation, even with high initial retroactivity. (A) Input-output relation
for two systems with distinct α1, β1, but otherwise identical parameters. The second curve is obtained by
setting β′1 = 0.018β1, and adjusting α′1 to maximise the similarity between curves. (B) Retroactivity R
for the system in (A), illustrating substantially lower retroactivity for α′1, β

′
1 < α1, β1. (C) Flux Ψ, which

is much reduced for α′1, β
′
1 < α1, β1. Other parameters: [Xtot] = 200, [Ytot] = 100, [Ptot] = 100, α2 =

β2 = k1 = k2 = kon = koff = 10.
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retroactivity limit, when [Css
1 ] and [Css

2 ] are both small. In this case,

[Css] ≈
f(r)±

√
f 2(r)− 4r2k2

on[Xtot][Ptot]

2rkon

(3.16)

where

r =
β1

α1

k1[Ztot]

k2[Ytot]

k2 + α2

β2 + k1

, (3.17)

and

f(r) = koff + r(kon([Ptot] + [Xtot]) + koff). (3.18)

In this limit, [Css] is a function of β1/α1, rather than α1 and β1 independently, if all other

parameters are fixed. Moreover,

R,Ψ ∝ β1 at fixed
β1

α1

(3.19)

(see Section 7.2 in Appendix B for a derivation of these facts). If we then reduce β1

and α1 by the same factor φ whilst keeping all other parameters fixed, the input-output

relation [Css]([Ztot]) is unchanged whilst R and w are both reduced by φ. In principle,

this simultaneous reduction of retroactivity and fuel consumption at fixed input-output

relation can proceed arbitrarily far. The above observation forms the intuition behind

the main claim of this chapter. Fundamentally, the push-pull network responds to a

competition between Z and Y . We can therefore reduce the strength with which both

Z and Y couple to X, whilst maintaining the same steady-state output. Reducing the

coupling to X serves to minimise both retroactivity and energy consumption. If [Css
1 ] and

[Css
2 ] are not both small, the input-output relationship is not a function of β1

α1
only. It is

therefore no longer possible to reproduce input-output relations exactly as outlined above.

However, we can instead consider reducing β1 → β′1, and identifying the corresponding

change α1 → α′1 that reproduces the original input-output curve as closely as possible.

Specifically, we identify the new α′1 as the value that minimizes the following measure of
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the difference between input-output relations

u∫
l

|[Css]([Ztot], α1, β1)−

[Css]([Ztot], α
′
1, β

′
1) | d[Ztot], (3.20)

where l and u are such that Css(l, α1, β1) ≈ 0.01[Ptot] and Css(u, α1, β1) ≈ 0.9[Ptot].
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FIGURE 3.4: In the limit of low [Css
1 ] and [Css

2 ] or equivalently low α1 and β1, the steady-state
concentration of the output [Css] depends on the ratio β1

α1
and not α1 and β1 individually. (A) Scaling

of α1 and β1 as they are simultaneously adjusted to retain a given input-output curve. (B) Scaling of
retroactivity R with β1 as this operation is performed. (C) Scaling of net flux Ψ with β1 as this operation
is performed. Both the flux and retroactivity decrease as β1 is decreased, becoming proportional to β1 at
fixed ratio β1

α1
in the low retroactivity limit. Constant parameters for the network: [Xtot] = 400, [Ytot] =

150, [Ztot] = 50, [Ptot] = 100, α1 = 10, α2 = 15, β1 = 10, β2 = 15, k1 = k2 = kon = koff = 10.

Even when retroactivity (and hence [Css
1 ]) is high for the original parameters α1, β1,

it is frequently possible to approximate the input-output relation with reduced α′1, β
′
1.

Consider, for example, the input-output curves in Fig.3.3, in whichR ∼ 0.8. As expected,

the reduced α′1, β
′
1 give substantially lower retroactivity and fuel consumption. Further

examples are provided in Section 7.5 of Appendix B.

The above process can be iterated, producing even lower retroactivity and energy con-

sumption by a continuing reduction in coupling strength between Z and the insulator.

We illustrate the process in Fig. 3.4. Eventually, the limit of small [Css
1 ] and [Css

2 ] is

reached and α1 and β1 decrease in proportion, with R and Ψ also scaling proportionally.
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3.6 Incorporating microscopic reversibility for an in-

sulating push-pull motif

In principle, all chemical reactions are microscopically reversible [178, 77]. This fact is

often ignored when studying physiological ATP-driven systems, as it was by Barton and

Sontag [93], since the high free energy of ATP hydrolysis [179] can render reverse reactions

irrelevant to the eventual steady state. Such an approximation is typically reasonable

for push-pull motifs driven by free energies substantially in excess of 4kBT [162], as we

confirm in our case in Section 7.3 of Appendix B. Nonetheless, a full understanding of the

resource requirements of insulators requires explicit treatment of reverse reactions, since

their contribution depends directly on the free energy consumed per cycle. Moreover, in

developing synthetic systems, a chemical fuel with a free energy as high as physiological

ATP may be unavailable or undesirable. We therefore explicitly incorporate microscopic

reversibility into our discussion in this session. We introduce microscopically reversible

reactions in the simplest possible way, still assuming a single long-lived catalyst/substrate

complex. In particular, we set the rate constant corresponding to the reaction X∗+Z →

C1 to be εk1β1

β2
and the rate constant corresponding to X + Y → C2 to be εk2α1

α2
. The

system is represented by the following

Z +X
β1−⇀↽−
β2

C1
k1−−−⇀↽−−−
εk1β1
β2

X∗ + Z,

Y +X∗
α1−⇀↽−
α2

C2
k2−−−⇀↽−−−
εk2α1
α2

X + Y,

X∗ + p
kon−−⇀↽−−
koff

C. (3.21)

Here, ε is the parameter that modulates the distance of the system from equilibrium;

ε = 0 corresponds to a completely irreversible network, with infinite driving, while ε = 1

corresponds to an equilibrium network. To illustrate this, consider the reactions corre-
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sponding to the phosphorylation-dephosphorylation cycle

Z +X
β1−⇀↽−
β2

C1
k1−−−⇀↽−−−
εk1β1
β2

X∗ + Z,

Y +X∗
α1−⇀↽−
α2

C2
k2−−−⇀↽−−−
εk2α1
α2

X + Y, (3.22)

Using Equation 3.12, the free energy of the molecular fuel consumed in a single cycle is

given by ∆GATP = kBT (ln β2[C1]
β1[Z][X]

+ln
[Z][X∗]

εk1β1
β2

k1[C1]
+ln α2[C2]

α1[Y ][X∗]
+ln

[Y ][X]
εk2α1
α2

k2[C2]
) = 2kBT ln ε.

Therefore, ε = 0 corresponds to ∆GATP ∼ −∞ and ε = 1 corresponds to an equilibrium

network with ∆GATP = 0
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FIGURE 3.5: Increasing microscopic reversibility limits the ability of the network to produce a wide
range of output. Parameters used for the network: A) [Xtot] = 100, [Ytot] = 100, [Ptot] = 100, α1 = β1 =
α2 = β2 = 0.1, k1 = k2 = 1, kon = koff = 10. B) [Xtot] = 200, [Ytot] = 100, [Ptot] = 100, α1 = β1 =
0.1, α2 = β2 = k1 = k2 = 1, kon = koff = 10.

Fundamentally, imposing a finite free energy per fuel molecule through microscopic re-

versibility limits the overall range of the input-output function [Css]([Ztot]). Intuitively,

if catalysts function in both directions, [X] > 0 even if [Ztot]/[Ytot] → ∞. Similarly,

[X∗] > 0 even if [Ztot]/[Ytot]→ 0. Indeed, as we show in Section 7.4 of the Appendix, the

following relation holds true:

ε ≤ [X∗]

[X]
≤ 1

ε
, (3.23)

implying a reduced dynamic range of the insulator and hence a weaker propagation of

the signal from Z to the output. We illustrate this intuition for a specific system in

Figure 3.5. The overall range of the input-output function drops as ε increases from

0 towards 1. Although potentially problematic for signal propagation, the reduction in
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range of the input-output function [Css]([Ztot]) is not an inherently retroactive effect. It is

not a direct consequence, nor a cause, of sequestration of Z by the downstream subsystem.

We now explicitly consider the effect of microscopic reversibility on retroactivity. We show

that decreasing the free energy consumed per fuel molecule can increase retroactivity due

to rebinding of products to catalysts. However, the essential arguments of Section 3.5

remain valid; it is still possible to simultaneously reduce free-energy consumption and

retroactivity through weak coupling of Z and Y to X. For the push-pull motif that

explicitly incorporates the microscopically reversible reactions,
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FIGURE 3.6: A) Inclusion of microscopically reversible reactions can increase the retroactivity of the
motif due to rebinding of products to catalysts; R increases with ε for a specific system while all other
parameters are fixed. B) The rate of energy consumption decreases with increase in ε. However, this is
not primarily due to a decrease in flux, but rather due to the decrease in free energy of ATP molecules.
Parameters of the network: i) [Xtot] = 300, [Ytot] = 50,= [Ztot] = 100, [Ptot] = 100, α1 = α2 = β1 =
β2 = k1 = k2 = 1, kon = koff = 10.(ii) [Xtot] = [Ytot] = [Ztot] = [Ptot] = 100, α1 = α2 = β1 = β2 =
0.1, k1 = k2 = 1, kon = koff = 10.

Ψ = k1[Css
1 ]− εk1β1

β2

[X∗ss][Zss], (3.24)

and

w = 2kBT ln ε

(
k1[Css

1 ]− εk1β1

β2

[X∗ss][Zss]

)
, (3.25)

whilst the retroactivity remains R = [Css
1 ]/[Ztot]. Away from the microscopically irre-

versible limit of ε→ 0, retroactivity and energy consumption are less directly related than

in Section 3.5. Indeed, if we simply keep all other parameters fixed whilst varying ε, it is

possible to simultaneously increase retroactivity and decrease overall power consumption

(or vice-versa). In particular, both Ψ and w tend to decrease as ε → 1, but R can be
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enhanced as both X and X∗ can bind to Z to produce C1. A specific example is given

in Fig. 3.6.

The above observation, however, does not imply that reduction of retroactivity necessarily

requires high rates of free energy consumption. In particular, for a push-pull motif of

fixed ε, we can play essentially the same trick as before: reduce the strength of coupling to

the push-pull by decreasing both α1 and β1 in such a way that approximately maintains

the input-output relation [Css]([Ztot]). In fact, just as in the completely irreversible case,

we show that in the limit of low [Css
1 ] and [Css

2 ], the steady-state output is a function of

β1

α1
but not α1 and β1 separately. Moreover,

R, w ∝ β1 at fixed
β1

α1

(3.26)

still holds (see Section 7.2 of Appendix B). In the limit of low retroactivity, one can
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FIGURE 3.7: Simultaneous reduction in retroactivity and energy consumption whilst approximately
maintaining the input-output relation at a fixed and finite free energy stored per fuel molecule. (A)
Two different sets of binding rates α1, β1 and α′1, β

′
1 that give a similar input-output relation with all

other parameters fixed (α′1 is chosen by minimising Eq. 3.20 for given α1, β1, β
′
1). (B) and (C) show

retroactivity R and power w for the two cases. Other Parameters used [Xtot] = [Ytot] = 100, [Ptot] =
10, α1 = β1 = 0.1, α2 = β2 = 1, k1 = k2 = kon = koff = 10, ε = 0.01.

therefore decrease both α1 and β1 in proportion to give the same input/output curve at

reduced retroactivity and energy consumption, as before. For higher [Css
1 ] and [Css

2 ], just

as in Section 3.5, it is not possible to obtain the same input-output curve by varying β1

at fixed β1

α1
. However, we again observe that in most cases a good fit to the input-output

relation can be obtained by reducing β1 and α1 in such a way as to minimize Eq. 3.20,

even when R is appreciable, in the process reducing both R and w. We demonstrate this

behaviour for a specific system in Fig. 3.7; other examples are given in Section 7.5 of Ap-

pendix B. Yet another way to confirm this effect is to see how retroactivity behaves with
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the rate of energy consumption as we vary the coupling to the push-pull motif (by chang-

ing α1, β1), whilst maintaining the same steady-state output. As we expect, retroactivity

decreases with decrease in the rate of energy consumption. Figure 3.8 confirms this fact.

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7

4.5

5.0

5.5

6.0

6.5

7.0

FIGURE 3.8: Decreasing the coupling to the push-pull motif (by decreasing α1, β1), whilst maintaining
the same input-output relationship decreases both retroactivity and the rate of energy consumption.
Parameters used: [Xtot] = [Ytot] = 100, [Ztot] = 15, [Ptot] = 10, α2 = β2 = 1, k1 = k2 = kon = koff =
10, ε = 0.01.

3.7 Arbitrarily weak coupling to an insulator causes

vulnerability to cross-talk

Biochemical signalling pathways do not exist in isolation; in both natural and complex

synthetic systems multiple information transmission pathways based on similar reactions

must co-exist [180, 56, 181, 182]. Transferring information to only the desired downstream

recipients is a challenge in specificity; the possibility of unintended interference would

compromise information transduction. In this section we demonstrate how cross-talk

limits the degree to which weak insulator-coupling allows effective signalling with low

fuel consumption and low retroactivity. To do so we consider the system in Eq. 3.27,

with an additional upstream molecule Z ′ that couples to X through an accidental leak
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reaction. As a result, we get the following network:

Z ′ +X
γ1−⇀↽−
γ2

C4
k3−→ X∗ + Z ′,

Z +X
β1−⇀↽−
β2

C1
k1−→ X∗ + Z,

Y +X∗
α1−⇀↽−
α2

C2
k2−→ X + Y,

X∗ + p
kon−−⇀↽−−
koff

C. (3.27)

Conceptually, Z ′ represents the combined effect of many alternative catalysts that could

cause accidental activation of X via a leak reaction. It will therefore be challenging to

reduce γ1 arbitrarily far, either by evolution or design, whilst retaining the functions of

these alternative catalysts within their intended pathways. In Fig. 3.9, we repeat the

protocol of progressively weakening α1 and β1 while attempting to preserve the input-

output curve [Css]([Ztot]) as outlined in Section 3.5, comparing a system with γ1 = 0 to a

system with a fixed and finite γ1. Crucially, we now observe that as the coupling between

Z and X becomes weaker, Z ′ starts to dominate the insulator’s behaviour. When the

coupling between Z ′ and X exceeds the coupling between Z and X, we are no longer

able to reduce α1 and β1 to give a close match to the original curve, since [Css] responds

primarily to Z ′ rather than Z. The range of the input-output function [Css]([Ztot]) is

consequently compromised, and signal propagation becomes ineffective.

The strength of leak reactions or cross-talk thus determines the degree to which effec-

tive signalling can be maintained despite weak coupling between U and the insulator I.

The system U must couple more strongly than cross-talk reactions, and consequently

fuel turnover and retroactivity cannot be suppressed arbitrarily far whilst retaining a

functioning network. A similar consideration shows that the rates of spontaneous phos-

phorylation and dephosphorylation also limit the degree to which Z can couple weakly to

the insulator and remain effective. It is important to note, however, the logical distinction

between the observation that some degree of fuel turnover and retroactivity are required

for effective signal propagation, and the suggestion that increased fuel consumption is
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FIGURE 3.9: Evidence that accidental leak reactions limit the degree to which coupling between U
and I can be reduced whilst maintaining a functioning network. (A) In the absence of a leak reaction,
one can decrease α1 and β1 successively using exactly the procedure outlined in Section 3.5, maintaining
an approximately constant input-output curve. (B) In the presence of a leak reaction caused by a signal
molecule Z ′, one is able to reduce α1 and β1 to match a given input-output curve whilst the coupling
of Z ′ remains relatively weak. However, eventually Z ′ becomes dominant and one cannot find suitable
parameters α1 and β1 to match a given input-output curve well. Parameters used for both networks:
[Xtot] = 150, [Ytot] = 100, [Z ′tot] = 100, [Ptot] = 100, α1 = β1 = 1, α2 = β2 = 10, γ1 = 0.01, γ2 = k1 =
k2 = kon = koff = 10, k3 = 1.

required to suppress retroactivity.

3.8 Conclusions

We have considered the suppression of retroactivity in molecular signal transduction sys-

tems by both the design of the upstream subsystem U , and by incorporating an insulator

I between the U and the downstream subsystem D. Using the fractional reduction in

the concentration of the output of U due to the presence of D/I as a metric for retroac-

tivity [151, 154], we find that retroactivity is strongly dependent on the design of U , and

that insulators can suppress retroactivity at low levels of fuel consumption.

In particular, if U consists of a single species Z undergoing production and decay on a

fast time-scale relative to signal switching, retroactivity can be eliminated in the steady

state for certain downstream systems D (as previously noted in [156] for a specific case).

More generally, birth/death dynamics serves to buffer the concentration of Z against

the influence of D, reducing retroactivity. However, such a buffering would incur sub-

stantial resource costs, requiring a high turnover of molecules or the establishment and

maintenance of a very large buffer population.
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We then consider the behaviour of certain catalytic circuits called push-pull motifs that

can act as insulators I, to explore whether they can reduce retroactivity at low cost.

These insulators do not require a high production rate of signalling molecules, nor the

establishment and maintenance of a large population of said molecules. Instead, the

insulators consume fuel, typically by converting ATP into ADP and inorganic phosphate.

We argue that coupling U to I weakly reduces both the retroactivity and fuel consump-

tion. Moreover, in the steady-state signalling limit, it is often possible to simultaneously

reduce both retroactivity and fuel consumption to arbitrary low levels, whilst maintain-

ing an approximately fixed signal propagation from U to the output of D. Note that we

do not claim that one can always match an input-output curve with weaker coupling.

In particular, motifs based on zero-order ultra-sensitivity [174, 183, 184, 185] actually

leverage retroactive effects. However, in such contexts retroactivity is a key ingredient

of the system, rather than a nuisance to be eliminated. Additionally, in these cases it

would be incorrect to say that suppressing retroactivity requires more fuel consumption

– instead, suppressing retroactivity and fuel consumption simultaneously comes at the

expense of signal alteration.

Therefore it is in general possible to suppress retroactivity at low cost through insulation,

and an engineer could design a signalling network with low energy consumption and low

retroactivity. This observation still holds when the finite free energy associated with

the breakdown of each ATP is explicitly modelled through microscopically reversible

reactions. We note that unlike increasing the concentration of insulator molecules [151,

93, 154, 175, 176], which strongly influences the interactions of both U and D with I,

there is no reason why changing the coupling of I to U at their mutual interface should

make I more subject to “retroactivity to the output” at its interface with downstream

subsystems [151]. This fact supports the approach of considering only the retroactivity on

U in our analysis. However, the presence of unintended leak reactions limits the degree

to which the coupling to the insulator can be weakened before signal transduction is
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compromised.

In this work we have assumed that the signalling network reaches steady state. We

have thus not considered its ability to respond to fast variation of the parameters of

the upstream subsystem, as in some previous studies [151, 93]. Tracking rapid variation

in U is impossible if U only couples weakly to downstream subsystems since insulator

molecules must undergo catalytic cycling on a time-scale comparable to the variation in

U in order to propagate the time-varying signal. We therefore expect that, like robustness

to leak reactions, the need to respond to time-varying signals will set a limit on how weak

the coupling between U and I can be whilst retaining functional signalling.

Note, however, that neither the constraints that arise from leak reactions nor those

from signal-tracking imply that a high level of fuel consumption is necessary to sup-

press retroactivity. Rather, an alternative trade-off is suggested: retroactivity can be

reduced at low free-energy cost, but at the expense of reduced response speed and ro-

bustness of the signalling pathway. Exploring this putative trade-off in more depth, and

with more detailed models of chemical reactions, will be the subject of the next chapter.

From the perspective of understanding and engineering actual biochemical systems in an

experimental context, relevant questions are: how weak can the coupling be in practice

before signalling is disrupted, and is the principle of relatively weak coupling applicable

in natural systems? In particular, if weaker coupling is used in biology to minimize fuel

turnover, one would expect different circuits to find different optimal trade-offs. Circuits

with many possible leak reactions, or which need to vary on a rapid time scale, will

exhibit stronger coupling (faster fuel turnover) than others. Furthermore, our analysis

may explain why an activation reaction that is known to be vital for cellular function

nonetheless has a slow rate.

When designing a synthetic signalling network, either from proteins or nucleic-acid based

analogs, researchers could consider varying coupling strength to optimize performance,
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and indeed might consider different coupling strengths for different tasks. Importantly,

making strong binding weaker by mutating a binding interface is relatively simple – at

least when compared to making an already-strong interface stronger. We note that it

is important to make interactions with both the activating and deactivating catalysts

weaker.

From a fundamental biophysics perspective, our results emphasize an important and

often mis-understood point. Catalytic circuits must be dissipative (consume fuel) in

order to function. But given an inherently dissipative structure it does not follow that an

increased dissipation rate leads to better performance. Fundamentally, a fuel-consuming

network structure is needed to ensure that catalysts overwhelmingly activate rather than

deactivate their substrates (or vice versa), which is a question of relative reaction rates.

The rate of dissipation, however, depends not only on these relative rates but also absolute

rates, which may not help to improve circuit functionality [186].

One can analyse the push-pull motif from a cost/speed/reliability perspective as in Chap-

ter 2. As mentioned earlier, the inactive and active states of the substrate would cor-

respond to the different states of a bit. The notion of switching time can be likened to

the amount of time spent in the intermediate catalyst-substrate complex. The notion of

reliability can be mapped to the absence or inefficacy of leak-reactions in the network.

The premise of this chapter seems to suggest that switching a biological bit rapidly and

reliably requires low cost. This is not actually true – the point is that the push-pull

motif can be an effective insulator without needing to actually switch between its states

very often (by coupling the kinase and phosphatase weakly to the push-pull motif). It is

known that switching a bit with arbitrary accuracy in an autonomous system costs sub-

stantial amount of energy [80]. We have not delved into the precise biophysical details

to talk about trade-offs with reliability or speed of switching. We will take some steps in

that direction in the next chapter.
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Chapter 4

Optimizing enzymatic catalysts for
rapid turnover of substrates with
low sequestration

Abstract

We analyse the mechanism of enzyme-substrate catalysis from the perspective of alleviating

retroactivity, whilst maintaining a minimum rate of the reaction. In particular, we ask: How

should we choose binding energies of the intermediates so that the motif minimizes retroactivity,

while proceeding at a certain minimal rate? Under reasonable assumptions on the rate constants,

we find that there is a trade-off to choosing the optimal binding energies. Choosing high binding

energies results in the motif having low retroactivity, but hampers the effective progress of

the reaction. Selecting low binding energies results in high sequestration of the enzyme into

complexes, giving high retroactivity. We find that the difference between the optimal binding

energies of the intermediate complexes is related to the free energy difference between the

products and reactants. In addition, we show that many of these observations carry over

qualitatively upon relaxing the assumptions on the rate constants.

4.1 Introduction

This piece of work can be viewed as a sequel to Chapter 3. Instead of focussing on

the entire push-pull motif, we consider a single enzyme-substrate reaction and analyse

its dynamics. The idea is to build a slightly more complex model for enzyme-substrate

catalysis, to observe the inherent constraints that arise, but are not obvious from simpler

models considered in the previous chapter. Our primary emphasis will be on the states

88



in the middle of the switching transition (i.e. conversion of substrate from its inactive

(active) form to its active (inactive) form by the catalyst).

Enzymatic catalysts form a ubiquitous part of biological pathways and analysing their

mechanism is essential to understanding the exquisite behaviour exhibited by them. En-

zymes are proteins that alter the rate of certain reactions and/or aid in conversion of a

substrate from one form to another [50]. Even though the naive idea of catalysis gives the

impression that the catalyst alters the rate of the reaction without being consumed, there

is a non-zero time for which it is bound to the substrate. This sequestration of enzymatic

catalysts results from the formation of catalyst-substrate intermediates and gives rise to

effects like retroactivity. Even before the introduction of the term “retroactivity”, ten

Wolde et al. [187] discuss how back-interactions in biological systems break modularity

assumptions. Though their primary interest lies in the consequences of these interactions

for noise propagation, they make the above (general) point quite nicely. It is important

to observe that sequestration of catalysts implies that one is using up a valuable resource

– the enzyme’s “time” that could be spent processing other substrates.

Natural systems seem to evolve towards minimizing sequestration [188](unless they are

actively being used for things like zero-order ultrasensitivity [174, 163, 184]). But equally,

in this age of synthetic biology and DNA nanotechnology, we might want to design our

own systems that minimize sequestration [189]. We analyse simple models to understand

how the underlying features of the enzymatic process might be tuned to achieve this goal.

The chapter is structured as follows: In section 4.2, we present the precise model of the

enzyme-substrate network that we analyse, with appropriate assumptions. Initially, we

assume that catalyst-substrate binding reactions are diffusion controlled, so that their

rate constants are taken to be fixed. We formulate the problem of building optimal

circuits (from the view-point of retroactivity) that proceed with a minimum flux at steady-

state, as an optimization problem (Problem 4.2.1). More precisely, we ask: How do we

choose binding energies (refer to Section 3.4 for a definition of binding energy) of the
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intermediate complexes so that the circuit minimizes retroactivity, whilst proceeding at

a minimum flux? In Section 4.3, we analyse this optimization problem to find that there

is an energy trade-off to designing optimal circuits. Choosing very high binding energies

for the intermediate complexes reduces retroactivity, but also reduces the flux through

the circuit - which results in failing the minimal flux requirement. On the other hand,

choosing very low binding energies implies that the system spends a large proportion

of time in the intermediate states, increasing the retroactivity of the system. Hence,

there is a trade-off to choosing the optimal binding energies. We show that not only are

the optimal binding energies moderate, but they are strongly related to each other. In

particular, the difference of optimal binding energies is connected to the intrinsic free

energy difference between the products and reactants. In addition, we also show that the

optimal circuit saturates the bound on the flux requirement. In Section 4.4, we relax the

assumption of diffusion control for the binding rates and analyse the same optimization

problem. We find that many of our observations carry over to this new regime and the

optimal binding energies typically still try to remain tuned with each other.

4.2 Model and methods

In what follows, we consider discrete-state models of biochemical reactions. In particular,

we model the enzyme-substrate mechanism traditionally represented by the following

equation

Z +X −⇀↽− XZ → X∗ + Z (4.1)

Here Z is the catalytic enzyme, X the inactive form of substrate, XZ the catalyst-

substrate intermediate and X∗ the activated form of the substrate. The two classical

approaches for analysing the mechanism of enzyme-substrate catalysis are the Michaelis-

Menten [190, 191] and Briggs-Haldane [192] approximations. One issue with these classic
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models is that they conflate the notions of the underlying biochemical catalysis and the

release of products. To get around this, we decouple the notion of catalysis and bind-

ing/unbinding using two separate reactions [193] by explicitly incorporating a second

intermediate X∗Z via the reactions XZ → X∗Z and X∗Z → X∗ + Z. In addition, we

incorporate the notion of reversibility [194, 195] by making all our reactions microscop-

ically reversible. The model corresponding to these assumptions can be represented by

the following:

Z +X
k+0−−⇀↽−−
k−0

XZ
k+cat−−−⇀↽−−−
k−cat

X∗Z
k+1−−⇀↽−−
k−1

X∗ + Z (4.2)

The essentially catalytic parts are governed by the reactions XZ −⇀↽− X∗Z and the bind-

ing/unbinding parts by the reactions Z + X −⇀↽− XZ and X∗Z −⇀↽− X∗ + Z. The model

represented by Equation 4.2 forms the basis of our analysis in this chapter – it is the

minimal model that meaningfully allows us to ask how optimal enzymes should be de-

signed. It is important to stress that such unpacking of the model is necessary to analyse

the structure of the optimal enzyme-substrate network. Handling the catalytic and bind-

ing/unbinding parts of the reaction separately allows us to make reasonable assumptions

on the respective rate constants. Indeed as remarked earlier, we find that the two optimal

binding energies are linked to each other by the free energy difference of the reaction.

We provide a rough sketch of the analysis of this system from the viewpoint of retroac-

tivity - the back signal experienced by the upstream system when connected to the

downstream system [92, 150, 152, 90, 95].

As is common in cellular biology [196], we assume that the reservoirs of both the inactive

and active substrates X and X∗ are constantly topped up throughout the course of the

reaction. This means that their concentrations remain buffered to a fixed value. As

a consequence, we have pseudo first-order ODEs that describe the rate of change of

concentrations of enzymatic states (i.e. k+0[X] and k−1[X∗] become simple “pseudo-first

order rate constants”). Consequently, each molecule of the enzyme Z can be treated
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independently, and we can analyse the system using stochastic dynamics of a single

enzyme [197] evolving according to a master equation. Let us denote by pZ , pXZ , pX∗Z the

probabilities of being in states Z,XZ and X∗Z respectively. Then we have the following

master equation describing the time evolution of the probabilities corresponding to the

different states.



ṗZ

ṗXZ

ṗX∗Z


=



−(k−1[X∗] + k+0[X]) k−0 k+1

k+0[X] −(k−0 + k+cat) k−cat

k−1[X∗] k+cat −(k+1 + k−cat)





pZ

pXZ

pX∗Z


(4.3)

Our system can also be represented by a continuous time Markov chain as shown in

Figure 4.1.

FIGURE 4.1: Markov chain corresponding to the enzyme-substrate catalysis given by Equation 4.1

Maintaining such infrastructure requires us to drive the system out of equilibrium, re-

quiring energy consumption in the form of fuel molecules. In our case, the buffers of

X and X∗ act as fuel molecules [77, 159, 198, 199, 200]. In what follows, we analyse

various properties of this out-of-equilibrium system in steady-state (often referred to as

“non-equilibrium steady-state”). The notion of non-equilibrium steady-states has also

been shown to be relevant in other contexts like kinetic proofreading [201, 202, 50] and

more recently by Gunawardena et.al. [203] in the context of overcoming the “Hopfield

92



barrier” to sharpness of gene regulation [204].

Let us define the intrinsic free energy difference between X∗ and X as ∆µ. A large

magnitude of ∆µ pushes the reaction forwards. The net free energy difference of the

reaction becomes ∆G = ln [X∗]
[X]
−∆µ. It is also possible to explicitly incorporate ancillary

fuel molecules (e.g ATP/ADP) under certain approximations. A possible mechanism for

phosphorylation(XZ −⇀↽− X∗Z) in the presence of fuel molecules is given by the following

XZ + ATP −⇀↽− XZ--ATP −⇀↽− X∗Z--ADP −⇀↽− X∗Z + ADP (4.4)

If the binding/unbinding reactions (XZ + ATP −⇀↽− XZ--ATP and X∗Z--ADP −⇀↽−

X∗Z + ADP ) are fast enough to not be treated as explicit reactions in modelling, then

the mechanism looks like

XZ + ATP −⇀↽− X∗Z + ADP (4.5)

Let us denote the intrinsic free energy difference between ATP and ADP as ∆µATP,ADP .

Therefore the net free energy difference for the reaction becomes ∆G = ln [X∗]
[X]
− ∆µ +

ln [ADP ]
[ATP ]

−∆µATP,ADP = ln [X∗]
[X]
−∆µ′, where ∆µ′ = ∆µ − ln [ADP ]

[ATP ]
+ ∆µATP,ADP . Thus

the fuel molecules do alter the free energy, but their effect can be incorporated into an

effective intrinsic free energy difference.

Let EXZ and EX∗Z denote the binding energies corresponding to the complexes XZ

and X∗Z. These binding energies fix the ratio of the transition rates. Letting kBT =

1, we get k−0

k+0
= eEXZ and k+1

k−1
= eEX∗Z and k+cat

k−cat
= e−EX∗Z+EXZ+∆µ. The binding

reactions Z + X −⇀↽− XZ and X∗Z −⇀↽− X∗ + Z require association of diffusing molecules.

We assume that they are diffusion-controlled [205, 206] (i.e. the on-rate is fixed). In

particular, we set k+0 = k0 and k−1 = k1. In the language of [207], fixing the on-rates

corresponds to the reactions being “backward” and “forward” labile, respectively. We

could in principle make the catalytic part of our network XZ −⇀↽− X∗Z either forward or

backward labile; however as we show in the Section 4.3 that this gives rise to pathological
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results for the question we ask. One way to get around this problem is to upper bound

both the forward and backward catalytic rate constants whilst still maintaining the ratio

k+cat

k−cat
= e−EX∗Z+EXZ+∆µ. Therefore, we choose k+cat = kcat min(1, e−EX∗Z+EXZ+∆µ+∆Gc)

and k−cat = k′cat min(1, e−EXZ+EX∗Z−∆µ−∆Gc), where k′cat = kcate
∆Gc for some ∆GC ∈ R.

∆GC represents an offset between the maximum forward and backward catalytic rate

constants. Figure 4.2 gives a graphical representation of the rates as a function of their

respective binding energies. Our system can therefore be represented as

FIGURE 4.2: Graphical illustration of transition rates of the Markov chain as a function of respective
binding energies. Binding rate constants are assumed to be fixed due to diffusion. Catalytic rate constants
are bounded, whilst maintaining k+cat

k−cat
= e−EX∗Z+EXZ+∆µ.

Z +X
k0−−−−⇀↽−−−−

k0e
EXZ

XZ
kcat min(1,e−EX∗Z+EXZ+∆µ+∆Gc )−−−−−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−−−−−

kcate∆Gc min(1,e−EXZ+EX∗Z−∆µ−∆Gc )

X∗Z
k1e

EX∗Z−−−−−⇀↽−−−−−
k1

X∗ + Z (4.6)

Recalling Equation 3.3 from chapter 3, the retroactivity metric is R =
∣∣∣1− [Zss]

[Zss
D→∅]

∣∣∣, where

D denotes the downstream system. Starting with an initial concentration of Z, say [Ztot],

the retroactivity metric translates to

R = 1− [Zss]

[Ztot]
(4.7)

Then, the flux (or net flow across any reaction) in steady-state corresponding to Equa-

tion 4.2 is given by

Ψ = k+0[Zss][Xss]− k−0[XZss]eEXZ

= kcat min(1, e−EX∗Z+EXZ+∆µ+∆Gc)[XZss]− kcate
∆Gc min(1, e−EXZ+EX∗Z−∆µ−∆Gc)[X∗Zss]

= k+1[X∗Zss]eEX∗Z − k−1[X∗ss][Zss]

(4.8)

Our primary goal in this chapter is to design efficient enzyme-substrate circuits that
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proceed at a minimum flux whilst consuming as little of the enzyme as possible (i.e.

minimize retroactivity). More specifically,

Our main question is: How should binding energies EXZ and EX∗Z be chosen to minimize

retroactivity R , whilst proceeding with a minimal flux Ψ0 through the circuit?

Let us call the optimal binding energies as Eopt
XZ and Eopt

X∗Z , the optimal flux Ψopt and the

required minimum flux to be Ψ0 ∈ R>0. Then, we can state the problem in the following

form

Problem 4.2.1.

(Eopt
XZ , E

opt
X∗Z) = arg min

EXZ ,EX∗Z
R

s.t. Ψopt ≥ Ψ0

Sivak and Brown [207] have also considered optimizing flux albeit in a different context;

there the authors decide on splitting the free energy available to maximise the flux in the

circuit. They find that maximizing the flux results in having fewer intermediate states

and that uneven splitting of free energy is optimal for a fixed amount of transition states.

Our work differs from theirs in the sense that they are exclusively looking to maximize

flux, while we are concerned with maximizing flux whilst minimizing the time spent in

the intermediate states.

4.3 Optimal binding energies and flux

It is not hard to see that Eopt
XZ is finite - increasing Eopt

XZ increases the unbinding rate

(XZ → X + Z), which decreases the flux exponentially. Since we have a minimum flux

requirement, we cannot make Eopt
XZ arbitrarily large. Similarly, Eopt

X∗Z cannot be made

arbitrarily large since it essentially prevents the reaction from progressing further. But

it is not a priori clear how Eopt
XZ and Eopt

X∗Z should be related. As we shall show in this
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chapter, Eopt
X∗Z = Eopt

XZ + ∆µ+ ∆Gc. In addition, we also claim that Ψopt = Ψ0. We first

present a rough biophysical argument to justify both these claims and then present more

formal proofs using the theory of continuous time Markov chains.

4.3.1 Biophysical argument

Consider the free energy profile corresponding to our problem, as depicted in Figure 4.3.

Naively, one might expect to get a nice “ladder” of (roughly) evenly-spaced decreasing

intrinsic free energies. But in general, we do not see this effect; the intrinsic free energies

of the intermediate states get pushed as high as possible to avoid sequestration whilst

maintaining the desired flux. With respect to this figure, the retroactivity metric is

proportional to the fraction of time spent in the intermediate metastable states XZ and

X∗Z (or is inversely proportional to the fraction of time spent in the free Z state). The

flux is directly proportional to both the fraction of time spent in the free Z state and the

difference in probabilities of going from the start state to the end state and back (in this

case, the start and end states are the free Z states).

FIGURE 4.3: Free energy profile of the reaction. The metastable states denote the intermediates
XZ and X∗Z. Our primary question is: How to choose binding energies EXZ and EX∗Z such that it
minimizes retroactivity, whilst maintaining a minimum flux.

Let us assume for contradiction that EX∗Z 6= EXZ + ∆µ+ ∆Gc. Then, we have two cases
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1. EX∗Z < EXZ + ∆µ+ ∆Gc: Equation 4.6 becomes

Z +X
k0−−−−⇀↽−−−−

k0e
EXZ

XZ
kcat−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−

kcate
−EXZ+EX∗Z−∆µ

X∗Z
k1e

EX∗Z−−−−−⇀↽−−−−−
k1

X∗ + Z (4.9)

Comparing Equations 4.9 and 4.2, we get that increasing EX∗Z increases both k+1

and k−cat proportionately. Keeping in mind Figure 4.3, this amounts to making the

well corresponding to state X∗Z shallower. As a consequence, one is more likely

to pop out of the X∗Z state quickly; but the relative probabilities of hopping to

its neighbouring states remain unaffected. Therefore, one has to spend a smaller

proportion of time in the X∗Z state and a large proportion of time in the free Z

state. By Equation 3.3, since retroactivity is inversely proportional to the amount

of time spent in the free Z state, we get that the retroactivity decreases with

increase in EX∗Z . In addition, since the relative probabilities of hopping between

states remain unchanged, the flux increases with increase in EX∗Z . So, given any

configuration of binding energies obeying EX∗Z < EXZ +∆µ+∆Gc, one can always

increase EX∗Z to reach a more optimal state.

If we don’t bound the backward catalytic rate constant (i.e. if the system is 100%

backwards labile on the catalytic transition) and let our system evolve according to

Z +X
k0−−−−⇀↽−−−−

k0e
EXZ

XZ
kcat−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−

kcate
−EXZ+EX∗Z−∆µ

X∗Z
k1e

EX∗Z−−−−−⇀↽−−−−−
k1

X∗ + Z (4.10)

we can keep on increasing EX∗Z (by the argument above) to get systems with lower

flux and higher retroactivity. Thus, Eopt
X∗Z is arbitrarily high for this system, which

is clearly unphysical.

2. EX∗Z > EXZ + ∆µ+ ∆Gc, then Equation 4.6 becomes

Z +X
k0−−−−⇀↽−−−−

k0e
EXZ

XZ
kcate

EXZ−EX∗Z+∆µ

−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
kcat

X∗Z
k1e

EX∗Z−−−−−⇀↽−−−−−
k1

X∗ + Z (4.11)

Arguing as above, one can conclude in this case that increasing EXZ decreases

retroactivity and increases the flux of the motif, and hence cannot be optimal.
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Similar to the first case, if we do not bound the forward catalytic rate constant (i.e.

if system is 100% forwards labile on the catalytic transition) and let our system

evolve according to

Z +X
k0−−−−⇀↽−−−−

k0e
EXZ

XZ
kcate

EXZ−EX∗Z+∆µ

−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
kcat

X∗Z
k1e

EX∗Z−−−−−⇀↽−−−−−
k1

X∗ + Z (4.12)

we can keep on increasing EXZ to get systems with lower flux and higher retroac-

tivity. Thus, Eopt
XZ is arbitrarily high for this system, which is pathological. This

justifies the energetic-dependence of our catalytic rates.

As a result, if EX∗Z 6= EXZ + ∆µ + ∆Gc, one can increase either EXZ or EX∗Z to

reach a more optimal state. Therefore, we get Eopt
X∗Z = Eopt

XZ+∆µ+∆Gc and we have

k+cat = kcat and k−cat = kcate
∆Gc . It is interesting to observe what happens if we

increase both EXZ and EX∗Z by the same amount when EX∗Z = EXZ + ∆µ+ ∆Gc.

With respect to Figure 4.3, increasing EXZ and EX∗Z makes it easier to pop out

of both wells into the free Z state. Since the catalytic rate constants k+cat = kcat

and k−cat = kcate
∆Gc are fixed, it also increases the probability of going from XZ

and X∗Z to the free Z state. This reduces the retroactivity of the motif. As a

consequence, if the optimal flux did not saturate the bound on the constraint i.e.

if Ψopt > Ψ0, one could increase both the binding energies by a sufficiently small

amount so that it still satisfies the constraint on the flux with lower retroactivity.

Repeatedly performing this operation of increasing both binding energies by the

same amount will eventually suppress flux and the the optimal flux will always

saturate the bound on the flux constraint i.e. Ψopt = Ψ0.

4.3.2 Formal proof using Markov chains

To make these arguments more formal, we require machinery from the theory of Markov

chains. The continuous time Markov chain corresponding to our network is shown in

Figure 4.4. For convenience, we will use the following notation. Let us assume that
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we start from the state Z and let the Markov chain evolve until it returns back to Z.

Let us denote by pss
i , the steady-state probability of being state i; 〈τi〉, the expected

lifetime of state i; 〈τ rZ〉, the expected return time of Z; 〈τi→j〉, the expected time to

reach state j given that you started in state i and by pi,j: the probability of transition

from state i to j. By the memoryless property of continuous time Markov chains, the

lifetime of a state is exponentially distributed with parameter equal to the total rate

of outward transition from that state, implying that 〈τi〉 = 1
λi

, where λi is the rate of

outward transition from state i. The steady-state probabilities of the three states in

the Markov chain are pss
Z = [Zss]

[Ztot]
, pss

XZ = [XZss]
[Ztot]

and pss
X∗Z = [X∗Zss]

[Ztot]
. Since we have an

irreducible Markov chain, using [208, Theorem 3.8.1] and Equation 4.7, we get R =

1 − [Zss]
[Ztot]

= 1 − pss
Z

a.s.
2

−−→ 1 − 〈τZ〉〈τrZ〉
. Using 〈τ rZ〉 = 〈τZ〉 + pZ,XZ〈τXZ→Z〉 + pZ,X∗Z〈τX∗Z→Z〉,

we get R a.s.−−→ 1 − 〈τZ〉
〈τZ〉+pZ,XZ〈τXZ→Z〉+pZ,X∗Z〈τX∗Z→Z〉

. Noting that pZ,XZ = k+0〈τZ〉 and

pZ,X∗Z = k−1〈τZ〉, we get

R a.s.−−→ 1− 1

1 + k+0〈τXZ→Z〉+ k−1〈τX∗Z→Z〉
(4.13)

FIGURE 4.4

Observing that 〈τXZ→Z〉 = 〈τXZ〉+pXZ,X∗Z〈τX∗Z→Z〉 and 〈τX∗Z→Z〉 = 〈τX∗Z〉+pX∗Z,XZ〈τXZ→Z〉,

we get that 〈τXZ→Z〉 =
〈τX∗Z〉+pX∗Z,XZ〈τXZ〉

1−pX∗Z,XZpXZ,X∗Z
and 〈τX∗Z→Z〉 =

〈τXZ〉+pXZ,X∗Z〈τX∗Z〉
1−pX∗Z,XZpXZ,X∗Z

. Equa-

tion 4.13 then becomes

R = 1− 1

1 + k+0

(
〈τX∗Z〉+pX∗Z,XZ〈τXZ〉

1−pX∗Z,XZpXZ,X∗Z

)
+ k−1

(
〈τXZ〉+pXZ,X∗Z〈τX∗Z〉

1−pX∗Z,XZpXZ,X∗Z

) (4.14)

2almost surely

99



We will now formally show that Eopt
X∗Z = Eopt

XZ + ∆µ + ∆Gc. For contradiction, assume

not. Then, we have two cases:

1. Eopt
X∗Z < Eopt

XZ + ∆µ + ∆Gc. This corresponds precisely to the situation in Fig-

ure 4.5. Eliminating [XZss] and [X∗Zss] from system 4.8 with k+cat = kcat, k−cat =

kcate
Eopt
X∗Z−E

opt
XZ−∆µ and noting that [Zss] = [Ztot](1 − R), we get that the flux in

steady-state is given by

Ψ =
(1−R)k0k1kcat[Ztot]([X]e∆µ − [X∗])

k0k1e∆µ+Eopt
XZ + k0kcat + k1kcate∆µ

(4.15)

FIGURE 4.5

Note that the transition probabilities pXZ,X∗Z = kcat

k0e
E

opt
XZ+kcat

and pX∗Z,XZ =

kcate
−Eopt

XZ
−∆µ

k1+kcate
−Eopt

XZ
−∆µ

remain unchanged as Eopt
X∗Z increases. As one increases Eopt

X∗Z , the

expected lifetime of X∗Z, 〈τX∗Z〉 = 1

e
E

opt
X∗Z (k1+kcate

−Eopt
XZ
−∆µ

)
decreases, while 〈τZ〉 =

1
k0+k1

and 〈τXZ〉 = 1

kcat+k0e
E

opt
XZ

remain unchanged. By Equation 4.14, we get that

R decreases as Eopt
X∗Z increases. Using Equation 4.15, we get that flux Ψ increases

as Eopt
X∗Z increases. Therefore, increasing Eopt

X∗Z by an amount ∆E > 0 gives a

tuple (Eopt
XZ , E

opt
X∗Z + ∆E) that has flux greater than Ψ0 but lower retroactivity,

contradicting the optimality of the tuple (Eopt
XZ , E

opt
X∗Z).

2. Eopt
X∗Z > Eopt

XZ + ∆µ+ ∆Gc. This corresponds exactly to the situation in Figure 4.6.

Setting k+cat = kcate
−Eopt

X∗Z+Eopt
XZ+∆µ, k−cat = kcat and eliminating [XZss] and [X∗Zss]

from system 4.8 with [Zss] = [Ztot](1−R), we find that the steady-state flux is given
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by

Ψ =
(1−R)k0k1kcat[Ztot]([X]e∆µ − [X∗])

k0k1e
Eopt
X∗Z + k0kcat + k1kcate∆µ

(4.16)

FIGURE 4.6

Since 〈τXZ〉 = 1

e
E

opt
XZ (k0+kcate

−Eopt
X∗Z+∆µ+∆Gc )

, we get that 〈τXZ〉 decreases with increase

in Eopt
XZ , while the transition probabilities pXZ,X∗Z = kcate

−Eopt
X∗Z+∆µ+∆Gc

k0+kcate
−Eopt

X∗Z+∆µ+∆Gc
, pX∗Z,XZ =

k′cat

k′cat+k1e
E

opt
X∗Z

and the lifetimes of other states remain unchanged. Using Equa-

tion 4.14, we get that R decreases as Eopt
XZ increases. Using Equation 4.16, we

get that flux Ψ increases as Eopt
XZ increases. Increasing Eopt

XZ by an amount ∆E > 0

gives a tuple (Eopt
XZ + ∆E,Eopt

X∗Z) that has flux greater than Ψ0 but lower retroac-

tivity, contradicting the optimality of the tuple (Eopt
XZ , E

opt
X∗Z).

Our observations are summarised in Figure 4.7.

Next, we show that Ψopt = Ψ0. For contradiction, assume that Ψopt > Ψ0. We first

prove that R decreases if you increase both Eopt
XZ and Eopt

X∗Z by the same amount. Since

the optimal binding energies satisfy Eopt
X∗Z = Eopt

XZ + ∆µ + ∆Gc, our system can be

represented by the Markov chain in Figure 4.8. Note that increasing both Eopt
XZ and Eopt

X∗Z

by the same amount decreases both pXZ→X∗Z = kcat

kcat+k0e
E

opt
XZ

and pX∗Z→XZ = kcat

k′cat+k0e
E

opt
X∗Z

;

further the expected lifetimes 〈τXZ〉 = 1

k0e
E

opt
XZ+kcat

, 〈τX∗Z)〉 = 1

k1e
E

opt
X∗Z+kcat

decrease, while

〈τZ〉 = 1
k0+k1

remains unaffected. Therefore, using Equation 4.14 we get that R decreases

as we increase both Eopt
XZ and Eopt

X∗Z by the same amount. As a consequence, one can

increase both the binding energies Eopt
XZ and Eopt

X∗Z by a sufficiently small amount say
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FIGURE 4.7: (a) In the regime EX∗Z < EXZ + ∆µ + ∆Gc, one can increase EX∗Z to get a system
having lower retroactivity and higher flux. In the regime EX∗Z > EXZ + ∆µ + ∆Gc, one can increase
EXZ to get a system having lower retroactivity and higher flux. As a consequence, optimal binding
energies are constrained to lie on Eopt

X∗Z = Eopt
XZ + ∆µ+ ∆Gc. (b) Free energy landscape corresponding

to the optimal reaction.

E0 > 0, to get a tuple (Eopt(XZ) + E0, E
opt(X∗Z) + E0) that has flux greater than Ψ0,

but has lower retroactivity than the tuple (Eopt
XZ , E

opt
X∗Z), contradicting the optimality of

(Eopt
XZ , E

opt
X∗Z). If we keep on increasing both the binding energies, eventually the flux will

start decreasing, ultimately dropping below Ψ0. Therefore, we have Ψopt = Ψ0.

FIGURE 4.8

We have solved Problem 4.2.1 for the network corresponding to Figure 4.4 using numerical

optimization to verify our observations. Figure 4.9 gives a contour plot of flux and

retroactivity as a function of the binding energies EXZ and EX∗Z . Embedded on them

are the optimal binding energies obtained as a result of numeric optimization for a range

of target fluxes. Increasing EXZ increases flux up to a certain point; then the flux

starts to decrease with further increase in EXZ . A similar behaviour is observed for

EX∗Z . The optimal binding energies for different values of target flux lie on a straight
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line, consonant with our observations. The fact that the optimal binding energies obey

precisely Eopt
X∗Z = Eopt

XZ + ∆µ + ∆Gc is verified numerically in Fig 4.9. In addition, the

optimal flux saturates the constraint on the target flux i.e. Ψopt = Ψ0.
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FIGURE 4.9: (a) Retroactivity contour plot as a function of binding energies. (b) Flux contour as a
function of binding energies. (c) Optimal binding energies as a function of target flux. The black dots
indicate optimal binding energies corresponding to certain target fluxes. Parameters used for optimiza-
tion: Ztot = 10, a = 1, b = 3, k0 = 1, k1 = 1, kcat = 1,∆µ = 3,∆Gc = 1. As is evident from part (c), the
optimal binding energies obey Eopt

X∗Z = Eopt
XZ + ∆µ+ ∆Gc.

The observations we made above suggests that there is an energy trade-off to designing

optimal (minimally retroactive) biological circuits. Ideally, one would want binding ener-

gies to be arbitrarily high, so that the system spends very little time in the intermediate

states, thereby reducing the retroactivity of the motif. However, one cannot increase the

binding energies arbitrarily, since they start affecting the flux of the circuit. We wish

to design biological circuits that possess reactions happening at a certain rate - which

constrains the binding energies to certain values. Interestingly, we find that the difference

between the optimal binding energies is a constant - (∆µ + ∆Gc), where ∆µ is the free

energy difference between X∗ and X and ∆Gc is the offset. Further, this difference does

not depend upon the concentrations of [X]/[X∗], which is slightly counter-intuitive. One

might have expected that a high amount of [X∗] would coerce us to increase EX∗Z relative

to EXZ to avoid spending a lot of time in the X∗Z state; however our results show that

the difference EX∗Z − EXZ is independent of [X]/[X∗].
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4.4 Effect of non-diffusion controlled binding rates

Until now, we assumed that the binding rate constants k+0, k−1 are diffusion-controlled

and cannot be changed arbitrarily, but placed no constraint on the dissociation rate

constants. We now relax this assumption by limiting the maximum rate of dissoci-

ation, and assume that beyond a certain point, association is reduced instead. This

assumption is incorporated in the model represented by Equation 4.1 with k+cat =

kcat min(1, e−EX∗Z+EXZ+∆µ+∆Gc), k−cat = k′cat min(1, e−EXZ+EX∗Z−∆µ−∆Gc),

k+0 = k0 min(1, e−(EXZ−E1)), k−0 = k′0 min(1, eEXZ−E1), k+1 = k′1 min(1, eEX∗Z−E2), k−1 =

k1 min(1, e−(EX∗Z−E2)), where k′cat = kcate
∆Gc , k′0 = k0e

E1 and k′1 = k1e
E2 . A schematic il-

lustrating the distinct regions of this model is shown in Figure 4.10a. This phase diagram

demarcates various regions in the space of binding energies, along with their respective

relationships with retroactivity and flux. These relationships help us determine the struc-

ture and geometry of the optimal binding energies, which would have been hard to follow

otherwise.

We have already analysed regions I and II in the previous section. By similar ap-

proaches, we deduce which directions on the EXZ and EX∗Z plane are guaranteed to

decrease/increase flux and retroactivity in the different regions shown in Figure 4.10a.

Our results are plotted in Figure 4.10b. The continuous time Markov chains correspond-

ing to each of these regions is depicted in Figure 4.11.

• Region V I: Employing the same argument that we used for Region I, one can show

that increasing EX∗Z decreases retroactivity but increases flux in this region.

• Region III: Arguing as we did for Region II, one can show that increasing EXZ

decreases retroactivity but increases flux in this region.

• Region V : Note that the transition probabilities pXZ,X∗Z = kcat

k′0+kcat
, pX∗Z,XZ =

k′cate
−EXZ+EX∗Z−∆µ−∆Gc

k′1+k′cate
−EXZ+EX∗Z−∆µ−∆Gc and the expected lifetimesX∗Z, 〈τ lX∗Z〉 = 1

k′1+k′cate
−EXZ+EX∗Z−∆µ−∆Gc ,
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FIGURE 4.10: Behaviour of binding energies in the setting where binding reactions may or may not
be diffusion controlled. (a) The space of binding energies can be divided into multiple regions in which
different reactions are forward and backward labile. (b) In regions II and III, one can always increase
EXZ to get to a state with higher flux and lower retroactivity. In regions I and V I, one can always
increase EX∗Z to get to a state with higher flux and lower retroactivity. Consequently, optimal binding
energies lie either on Eopt

X∗Z = Eopt
XZ + ∆µ+ ∆Gc or in the regions IV, V, V II. In regions IV, V, V II, one

can increase both EXZ and EX∗Z by the same amount to reach a state with lower retroactivity.

〈τ lXZ〉 = 1
k′0+kcat

remain unchanged, while k+0 and k−1 decrease as we increase both

EXZ and EX∗Z by the same amount. By Equation 4.14, this decreases the retroac-

tivity R of the system.

• Region IV : Arguing as we did for Region V , one can show that R decreases as we

increase both EXZ and EX∗Z by the same amount in this region.

• Region V II: Note that the transition probability pXZ,X∗Z = kcat

k′0e
EXZ−E1+kcat

and the

expected lifetime 〈τ lXZ〉 = 1
kcat+k′0e

EXZ−E1
decreases, while pX∗Z,XZ =

k′cate
−EXZ+EX∗Z−∆µ−∆Gc

k′1+k′cate
−EXZ+EX∗Z−∆µ−∆Gc

and 〈τ lX∗Z〉 = 1
k′1+k′cate

−EXZ+EX∗Z−∆µ−∆Gc remain unchanged if we increase both EXZ

and EX∗Z by the same amount. In addition k−1 decreases with increase in EX∗Z .

Therefore, by Equation 4.14, retroactivity decreases if we increase both EXZ and

EX∗Z by the same amount.

As a consequence, the optimal binding energies either satisfy Eopt
X∗Z = Eopt

XZ + ∆µ+ ∆Gc

or lie in regions IV, V, V II. We have verified this numerically for some sample target
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FIGURE 4.11: Continuous time markov chains corresponding to regions III, IV, V, V I, V II in Fig-
ure 4.10.a.

fluxes. Figure 4.12 illustrates this result. We can also show that Ψopt = Ψ0 for optimal

binding energies lying in regions IV, V, V II using the same argument we used for those

lying on Eopt
X∗Z = Eopt

XZ + ∆µ + ∆Gc. We repeat the argument here. For contradiction,

assume that Ψopt > Ψ0. Now increase both the binding energies Eopt
XZ and Eopt

X∗Z by

a sufficiently small amount ∆E such that the constraint on flux is still satisfied. As

observed above, this reduces the retroactivity of the motif. Thus, we get a new tuple

(Eopt
XZ+∆E,Eopt

X∗Z+∆E) that has lower retroactivity; whilst still satisfying the constraint

on flux. Morever, increasing both the binding energies eventually suppresses the flux,

ensuring that it falls below Ψ0. Therefore, the optimal binding energies satisfy Ψopt = Ψ0.

It is interesting to observe that in regions I, II, III, V I, we can always increase one of the

binding energies to go to a state with lower retroactivity and higher flux. We could not

do the same in regions IV, V, V II. However, it is true that if we increase the appropriate

binding energies (EXZ in region V and EX∗Z in region IV ), then eventually, retroactivity
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FIGURE 4.12: (a) Retroactivity contour plot as a function of binding energies. (b) Flux contour
plot as a function of binding energies. The point coloured green in plots a and b lies somewhere on
the intersection of regions I and II. Black dots indicate optimal binding energies outside regions I
and II. (c) Optimal binding energies as a function of target flux. Parameters used for optimization:
Ztot = 10, a = 1, b = 3, k0 = 1, k1 = 1, kcat = 1,∆µ = 3,∆Gc = 1, E1 = 4, E2 = 5. The difference
between the optimal binding energies EX∗Z − EXZ is constant.

will converge on a finite value, but flux will be suppressed exponentially to 0. In contrast,

if we increase both the binding energies simultaneously by the same amount, we will

suppress retroactivity and, eventually the flux. Consequently, the optimal solutions tend

to balance out the energies. As one varies the requirement on the target flux, one obtains

a locus of optimal binding energies. In some cases, this locus intersects regions I and II.

When it does, we observe that the difference between EX∗Z and EXZ is a constant given

by ∆µ+ ∆Gc. Figure 4.12 illustrates this fact.

When the locus lies entirely outside regions I and II, we see that the difference between

EX∗Z and EXZ might get (slightly) larger as you increase the target flux. This effect is

depicted in Figure 4.13. One simple criterion to decide when the locus of optimal binding

energies lies outside regions I and II would be the following: Consider all binding energies

that lie on the line EX∗Z = EXZ + ∆µ + ∆Gc. Amongst these binding energies, if the

binding energies that give the maximum value of flux lie outside regions I and II, then

the claim is that the optimal binding energies cannot lie in regions I and II. This is

simply because, retroactivity decreases as we move along EX∗Z = EXZ + ∆µ + ∆Gc by

increasing both binding energies. If the optimal binding energies lie within regions I and

II, then the binding energies satisfying EX∗Z = EXZ + ∆µ+ ∆Gc that correspond to the
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maximum flux have higher flux and lower retroactivity than the optimal binding energies,

a contradiction.
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FIGURE 4.13: (a) Retroactivity contour plot as a function of binding energies. (b) Flux contour
plot as a function of binding energies. (c) Optimal binding energies as a function of target flux. Black
dots indicate optimal binding energies outside regions I and II. Parameters used for optimization:
Ztot = 10, a = 1, b = 3, k0 = 1, k1 = 1, kcat = 1,∆µ = 3,∆Gc = 2, E1 = 4, E2 = 5. The difference
between the optimal binding energies EX∗Z − EXZ gets larger as you increase the target flux.

We do not yet have a rigorous explanation for explaining these phenomenon. Exploring

these effects is a subject of future work.

4.5 Conclusion and future work

We have analysed a model of enzyme-substrate catalysis. Our model has two intermedi-

ate states (or enzyme-substrate complexes), namely XZ and X∗Z, which decouple the

catalytic reactions from the binding/unbinding ones. The notion of retroactivity corre-

sponds to the time spent in these intermediate states. Our primary question was: how to

choose binding energies (EXZ , EX∗Z) corresponding to these intermediate states so that it

minimizes retroactivity, whilst maintaining a certain minimum flux for the reaction? We

make reasonably modest assumptions about the reaction network like fixing the rate con-

stant for the binding reactions and upper-bounding the catalytic rate constants. Given

these constraints on the intrinsic dynamics, we find that there is an energy-tradeoff for

designing optimal biological networks. Choosing binding energies that are too low im-

plies that the intermediate states act as sinks, with the system spending a substantial
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proportion of time in them. This increases the retroactivity of the system. Choosing

very high binding energies implies that the system spends meagre amount of time in

the intermediate states, thereby reducing the retroactivity of the system. However, high

binding energies jeopardises the progress of the reaction, failing to meet the minimal flux

requirement.

Interestingly, we find that in the system we consider, the optimal binding energies are

tuned with each other. In particular, their difference EX∗Z − EXZ is a constant and is

related to the intrinsic free energy difference between the products and reactants. Further,

this difference is independent of the concentrations of [X]/[X∗]. However, more complex

models could break this tuning. It would be worth seeing how many of the results that we

have for this simple model carry over to more complex networks (e.g. wherein one might

have more intermediates states). We expect the idea that binding energies could be as

high as possible without disrupting the flow of the reaction to still hold in these cases.

In addition, if we don’t allow binding reactions to be limited by diffusion, we find that

most of our results carry over qualitatively with some minor differences; in particular,

the difference between the optimal binding energies may not be perfectly constant.

The present work gives a macro-level insight into the analysis of enzyme-substrate catal-

ysis. It is possible to explore a micro-level approach wherein one can design such bio-

chemical systems using in-vitro DNA nanotechnology. Our work also opens up possible

avenues for the analysis of push-pull motifs [95, 160, 161] since our system can be thought

of as half of a push-pull motif.

This chapter flows out as a natural extension to the previous chapter. In chapter 3, one

could reduce both the retroactivity and energy consumption by coupling weakly to the

push-pull motif; however we could not do this arbitrarily due to cross-talk caused by leak

reactions in the circuit. In this chapter, we effectively analyse how retroactivity might

be reduced at fixed energy consumption and coupling strength i.e. what can be achieved

at the level of single interactions, if the network-level approach fails.
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One question to explore is whether an increased free energy difference between X∗ and

X (given by ∆µ) leads to circuits having lower retroactivity (as per the optimization

Problem 4.2.1). This essentially amounts to asking whether stronger driving by ancillary

fuel molecules produces better circuits. In addition, we also need to explain the behaviour

of optimal binding energies when the binding rate constants are not diffusion-controlled.
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Chapter 5

Conclusion

We have tried to present different facets of computation in the context of physical and

biological systems. In particular, our focus has been on the notion of information pro-

cessing in these systems. The idea of bits and their computations provides a link between

the actual information processing tasks performed by these systems and its mathematical

abstraction. We summarise the important contributions and highlight certain similarities

and differences between physical and biological computations.

Our primary operations of interest are switching and erasing a bit. The former corre-

sponds to flipping the state of the bit (i.e. taking it from 0 to 1 or from 1 to 0). The

latter corresponds to setting a random bit to a fixed value (i.e. taking a bit that is equally

likely to be in 0 or 1 to a state 0). Though we discuss erasure in the context of physical

bits, and switching in the context of biological bits, we can effectively refer to them as

“switching” without affecting the results of either systems. In the physical context, we

represent a bit by a particle in a double well obeying Langevin dynamics. In the biological

context, the bit is represented by a substrate, on which the enzyme acts. The notion of

intermediate states involved in switching a bit in both these contexts is the coalescing

feature of the thesis. There are slight differences though - our models of physical bits

possess a continuum of intermediate states, while we work with discrete intermediates in
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the biological context. Strictly speaking, this is an approximation – it just turns out that

the biological bits we think about can be well approximated by the discrete state limit.

This assumption implies that things like friction are not relevant and there is no notion

of “inertia” in the biological context. The presence of these intermediate states gives rise

to the notion of erasing time in the physical context and retroactivity in the biological

setting.

In the case of physical bits, the notion of reliability corresponds to the amount of time

spent by a particle in a single well. In the biological context, bits can switch spontaneously

with some time-scale which sets the reliability time. Cross-talk, which is present in

biological networks but perhaps not in physical models of bits, effectively increases the

rate at which uncontrolled switching happens. In some sense, reliability time in biological

systems depends on a slightly broader context than in standard computation; the same

bit can be less reliable in a network with more potential cross-talking kinases. This is

reflective of both the strength and the weakness of biological computation, which is that

all molecules can diffuse around and interact with each other without any computational

cost. The notion of erasing/switching time in a physical context corresponds to the time

taken for a particle to start from a certain well and settle down in a different well. In a

biological context, one can define switching time as the inverse of the rate of switching

in a bit. This is (generally) not equal to the time spent in the intermediates - i.e.., it’s

finite even in a perfect two-state model. The common thread connecting the Langevin

(physical) system and the biological bit is the interaction period (attachment of enzyme

to substrate in biology and application of control in physical bits) which slows down

physical computers and causes retroactivity in biological systems. Though, the exact

details of implementations are not comparable, the properties of intermediate states play

a vital role in both these systems. The notion of work in the the context of physical bits

corresponds to the energy spent in raising the particle to a certain potential so that it is

ready to settle down in a different well. Cost in the biological context corresponds to the

energy required by fuel molecules to maintain the system out of equilibrium. It is also
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interesting to note that in the context of physical bits, both reliability and erasing time-

scales are equilibration processes; while expending work to lift the particle amounts to

putting it in a non-equilibrium state with respect to the potential. On the biological side,

enzymatic circuits consume fuel to maintain the system in a non-equilibrium steady-state.

Our study of both physical and biological systems emphasize the physical constraints

under which these operate. In biology, it is not practical to implement an arbitrarily

fast catalytic reaction. This gives rise to a trade-off for choosing the appropriate binding

energies to implement an optimal catalyst. In the physical setting, the constraints arise

from choosing to work within a specific family of control protocols for erasing the bit. As

mentioned in Chapter 2, allowing the use of arbitrary control strategies does not lead to

effective trade-offs.

Yet another parallel between physical and biological computation is provided by the

nature of problems involved. Some of the effects observed in Chapter 2 and 4 arise

as a manifestation of an optimization problem. In the physical context, we seek to

design bits that meet the required reliability and erasing time requirements with minimal

work cost. For the enzyme-substrate system in Chapter 4, we wish to choose binding

energies of the intermediates such that it minimizes the retroactivity of the motif, whilst

proceeding at a certain minimum rate. In the physical case, the optimal bits saturate the

bound on the erasing time requirement, but can exceed the bound on the reliability time

requirement. For the enzyme-substrate system, the optimal binding energies saturate the

bound on the flux requirement. In addition, the proofs involved in proving the notions

of saturation/unsaturation are quite similar in both systems.

The idea of trade-offs is common to both physical and biological computation. Friction

plays a non-trivial role in the analysis of physical bits. Both erasing and reliability

time-scales are non-monotonic in the underlying friction. High reliability is favoured by

very low or very high friction, whereas low erasing time is favoured by moderate friction

leading to a trade-off. In fact, we find that the optimal friction is critically damped or
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close to critical damping. In a similar vein, there is a trade-off to choosing the optimal

binding energies for enzyme-substrate catalysis. Choosing binding energies that are too

low implies that the system spends a large proportion of time in the intermediate states,

which increases the retroactivity of the motif. Selecting binding energies that are too high

decreases retroactivity, but also simultaneously decreases the flux through the circuit.

Thus, making binding energies extremely high effectively hampers the progress of the

reaction.

The overall take home message is that physical and biological computation are not that

disjoint. Fundamentally, a lot of assumptions/observations apply generally to both set-

tings; albeit being manifested in different forms. Clearly, it requires substantial energy

consumption to perform operations accurately. Thinking about concrete (bio)physical

settings with constrained possibilities is important in understanding engineering limita-

tions. We only saw an energy requirement when trying to optimise reliability and erasing

time requirements because we limited our control strategies. Similarly, one can only see

the energy trade-off in the previous chapter if one realistically constrains certain reac-

tion rates. High energy consumption was needed in Chapter 3 only when we considered

realistic constraints on cross-talk.

It seems that there are natural biological analogues of computations performed in a

physical context, as we saw in the case of switching a bit. But more complex computations

in biology might not fall so nicely into in-silico paradigms. One example taking forward

the ideas of computation in a biophysical framework is to build artificially engineered

motifs (e.g. enzyme-substrate systems or push-pull motifs) and try to see if the behaviour

of the system matches our theoretical observations.
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Chapter 6

Appendix A

6.1 Validating the timestep of the integrator

We validate the accuracy of our Langevin integrator by considering the dependence of

thermodynamic expectations on the time step. We calculate the average potential and

kinetic energies for a particle in a quadratic potential WA,B = A
(
x
B
− 1
)2

, a quadratic

proxy for a single well of the quartic resting-state potential. We plot the results in

Figure 6.1 for a few representative values of the friction coefficient γ = [0.1, 1.10, 100]

and A = 10. Each result is based on an average from 10 simulations each of 5× 108 time

steps. As is evident from the figure, a time step of 0.001 gives good convergence to the

equipartition limit of kBT/2.

However, it is not sufficient to just compare the average kinetic and potential energies to

the equipartition limit. We need to ensure that the observed kinetics are robust to our

choice of time step. In particular, we need to test that a time step of 0.001 is sufficient for

the highest values of our control parameter F , which presents the most severe challenge

to integrating our Langevin equation (due to the behaviour near x = 0). Figure 6.2

confirms that a time step of 0.001 is appropriate for F = 100 and the full range of γ
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(a) γ = 0.1 (b) γ = 1

(c) γ = 10 (d) γ = 100

FIGURE 6.1: A time step of 0.001 is good enough to ensure that the average potential and kinetic
energies approaches kBT

2 = 0.5 for a wide range of friction values.

tested. Each value in the figure is an average over 1000 initial conditions.

FIGURE 6.2: A time step of 0.001 gives reasonable values of erasing time for the largest value of the
control parameter (F = 100) that we use in the simulations.
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6.2 Erasure region

In this section, we demonstrate that our results are not limited to our specific definition

of the erasure region by considering two alternative criteria for erasing and confirming

that our earlier conclusions are supported.

6.2.1 Accuracy of erasure: Convergence of probability distri-

bution

Recall that the erasing time is a sum of transport time (τt) and the mixing time (τm).

Since the transport time is independent of the metric used to measure the mixing time, we

analyse a proxy for the mixing process in isolation. Specifically, we consider the relaxation

of a particle in a harmonic well, initially prepared in an arbitrary non-equilibrium distri-

bution. As an alternative definition of mixing, we consider τ εm as the first time when the

probability distribution of the particle comes within a certain distance (in the appropriate

norm, and relative to its initial distribution) of the Gibbs distribution corresponding to

the well. More specifically,

τ εm = inf
t≥0
{||law((x(t), p(t))− π0(x, p)||L2(π0(x,p)) ≤ ε||law((x(0), p(0))− π0(x, p)||L2(π0(x,p))}(6.1)

where (x(t), p(t)) is the solution to Equation 2.7 given appropriate initial conditions.

Here, π0(x, p) is the stationary distribution of the harmonic well. As is usual, the weighted

norm L2(π0(x, p)) := {f |
∫∞
−∞

∫∞
−∞ |f |

2π0(x, p)dxdp < ∞}. Informally, τ εe is the time

required for the distribution to be a factor ε� 1 “closer” to the equilibrium distribution

than in the initial condition. We define η = 1− ε as the accuracy of erasure. Lesser the

ε, the closer the distribution of the particle is to the Gibbs distribution of the harmonic
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well and hence more accurate the erasure. Consider the modified Langevin equation

mdx = p dt

dp = − γp dt− ∂xNA,B (x) dt+
√

2mγkBT dW

(6.2)

Here NA,B(x) = 1
2
mω2

0 (x−B)2 where ω0 =
√

8A
mB2 is the harmonic potential that ap-

proximates well “0”. Equation6.2 has the generator [114, pp. 182] given by

L =
p

m
∂x − (∂xNA,B(x)) ∂p + γ

(
−p∂p + kBT∂

2
p

)
(6.3)

It is common knowledge that the following equation is true [115].

||law((x(t), p(t))− π0(x, p)||L2(π0(x,p)) ≤ e−λt||law((x(0), p(0))− π0(x, p)||L2(π0(x,p)) (6.4)

where λ is the first non-zero eigenvalue of the generator L given by Equation 6.3. Setting

e−λt = ε, we get useful upper bounds on the mixing time. In particular, we get

τ εm ≤
1

λ
ln

1

ε
(6.5)

For the sake of rough scaling, we will use τ εm ≈ 1
λ

ln 1
ε

as an approximate estimate of the

mixing time. It is important to note that the generator L is not self-adjoint and may

possess imaginary eigenvalues. The rate of convergence in such cases will be determined

by the real part of the eigenvalue. In fact using [114, pp. 200], the first non-zero eigenvalue

of the generator is

λ =
γ

2
− 1

2

√
γ2 − 4ω2

0 (6.6)

In the underdamped limit when γ � 2ω0, we have Re(λ) = γ
2
. Therefore τ εm ≈ 2

γ
log(1

ε
)

in the low friction regime. When friction is very high i.e. γ � ω0, we have λ ≈ ω2
0

γ
. As a

result we get τ εm ≈
γ
ω2

0
log 1

ε
. Thus our proxy for the mixing process produces τ εm ∝ 1

γ
in

the low friction regime and τ εm ∝ γ in the high friction regime, consonant with the scaling

and non-monotonicity observed using the erasure region criterion. As a consequence,

using a convergence criterion for erasure would not change the physics of the problem,
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merely perturbing the erasing time-scale quantitatively.

6.2.2 4kBT criterion for erasure region

Within the framework of the original “erasure region” criterion discussed in Chapter 2,

we now consider the robustness of results to changing the numerical value of the criterion.

Specifically, we here define the erasure region as all phase space points with total energy

atleast 4kBT below the barrier height. More formally,

τ 4kBT
e = E [inf{t ≥ 0 | x(t) < 0 and H(x(t), p(t)) ≤ A− 4kBT}] (6.7)

where (x (t) , p (t)) is the solution to Equation 2.7 with the initial condition (x (0) , p (0)) ∼law

π1 (x, p). We now show that we get the same non-monotonicity and scaling of erasing

time as a function of friction-coefficient that we got using the 3kBT criterion. In par-

ticular, the erasing time scales as 1
γ

in the low friction regime and scales as γ at high

friction. Figure 6.3 illustrates this fact. Fits are performed using analytical expressions

equivalent to those discussed in Chapter 2, but adjusted for the new numerical value of

the boundary of the erasure region.

1. Low friction regime:

τ 4kBT
e ≈

√
2mB

F
+

1

γ
ln
A+ F ·B
A− 4kBT

. (6.8)

2. High friction regime:

τ 4kBT
e ≈ mBγ

F
+

2mB2γ

5A
(6.9)
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(a) A = 10, F = 1 (b) A = 10, F = 100

FIGURE 6.3: Evidence from simulation that the use of 4kBT to define the erasure reason does not
change the fundamental physics of the problem.

6.3 Regression and Cross Validation

We use cubic regression to interpolate between simulation data for both the reliability

and erasing time-scales. Let F ′ = log(F ) and γ′ = log(γ). Then we use the following

polynomials to fit the time-scales.

1. Erasing Polynomial:

log(τe) = b1 + b2A
3 + b3F

′3 + b4γ
′3 + b5A

2F ′ + b6A
′F ′2 + b7F

′2γ′ + b8F
′γ′2

+ b9A
′2γ′ + b10Aγ

′2 + b11A
2 + b12F

′2 + b13γ
′2 + b14AF

′ + b15F
′γ′

+ b16Aγ
′ + b17A+ b18F

′ + b19γ
′

(6.10)

2. Reliability Polynomial:

log(τr) = c1 + c2A
3 + c3γ

′3 + c4A
2γ′ + c5Aγ

′2 + c6A
2 + c7γ

′2 + c8Aγ
′ + c9A+

c10γ

(6.11)

, where the coefficients b1, b2, · · · b19 and c1, c2, · · · c10 are to be determined by re-

gression.

Figure 6.4 gives a visual illustration of the fact that cubic fits offer a good approximation

to the simulation results for both the erasing and reliability time-scales. In what follows,
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(a) Erasing time from simulation and cubic-
regression for A = 6

(b) Reliability time from simulation and cubic-
regression

FIGURE 6.4

we present a more detailed and formal justification using cross-validation.

(a) Errors of regression fits for erasing time (b) Errors of regression fits for reliability time

FIGURE 6.5

We perform “Leave-one-out” cross validation to justify the use of cubic regression. Fig-

ure 6.5 reports the mean square training and testing cross-validation errors corresponding

to linear, quadratic and cubic fits. A lower value of the testing error indicates a good

fit. Cubic regression has the lowest value of testing errors amongst the fits considered

for both the reliability and erasing time-scales. Figure 6.5 confirms that the training and

testing errors corresponding to cubic-regression for both the time-scales are roughly com-

parable(with the training error being slightly lower than the testing error). As a result,

we can safely assume that the cubic polynomial does not over-fit the data and use it for

modelling both the time-scales.
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6.4 Locally trapped bits are uniquely trapped

In this section, we give typical plots for our family of controls that show no evidence

of multiple local minima in erasing time within a level set of work. Towards this we

let F ′ = log(F ) and γ′ = log(γ). Using the same form of regression polynomial as in

Equation 6.10, but at constant work W , this translates to

log(τe) = b1 + b2(W − eF ′)3 + b3F
′3 + b4γ

′3 + b5(W − eF ′)2F ′ + b6(W − eF ′)F ′2

+ b7F
′2γ′ + b8F

′γ′2 + b9(W − eF ′)2γ′ + b10(W − eF ′)γ′2 + b11(W − eF ′)2

+ b12F
′2 + b13γ

′2 + b14(W − eF ′)F ′ + b15F
′γ′ + b16(W − eF ′)γ′ + b17(W − eF ′)

+ b18F
′ + b19γ

′

(6.12)

Note that
(
dτe
dγ′

)
W,F ′

= γ
(
dτe
dγ

)
W,F

and
(
dτe
dF ′

)
W,γ′

= F
(
dτe
dF

)
W,γ

. Therefore solving for(
dτe
dγ

)
W,F

=
(
dτe
dF

)
W,γ

= 0 is equivalent to solving for
(
dτe
dγ′

)
W,F ′

=
(
dτe
dF ′

)
W,γ′

= 0. We

solve
(
dτe
dγ′

)
W,F ′

=
(
dτe
dF ′

)
W,γ′

= 0 numerically and plot it in Figure 6.6. As illustrated by

Figure 6.6, there is exactly one solution to the equations
(
dτe
dγ

)
W,F

=
(
dτe
dF

)
W,γ

= 0 within

the broad range of parameters allowed, confirming our assumption that locally trapped

bits are uniquely trapped.

(a) W=12 (b) W=19

FIGURE 6.6: Evidence that for our family of controls, locally trapped bits are uniquely trapped.

The system
(
dτe
dγ

)
W,F

=
(
dτe
dF

)
W,γ

= 0 has exactly one solution within the broad range of parameters

considered, which corresponds to a unique local minimum of erasing time in a level set of work. This is
illustrated for work W = 12 and W = 19. The situation is representative for other values of work.

142



Chapter 7

Appendix B

In what follows, we will assume that we start with a fixed amount of transcription factor

[Ztot], promoter [Ptot], kinase [Ztot] and phosphatase [Ytot] unless specified otherwise.

7.1 Analytics for different Z dynamics

In this section we give analytical results for the steady-state dynamics corresponding to

three different U subsystems discussed in Section 3.3 in Chapter 3.

1. Fixed amount of Z:

Z + P
kon−−⇀↽−−
koff

C

In this case, we have the conservation laws [Zss] + [Css] = [Ztot] and [P ss] + [Css] =

[Ptot]. Solving for steady-state, we get kon[Zss]([Ptot]− [Ztot] + [Zss]) = koff([Ztot]−

[Zss]) implying that

[Zss] =
−λ±

√
λ2 + 4koffkon[Ztot]

2kon

,
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where λ = koff + kon([Ptot] − [Ztot]). We choose the solution that makes physical

sense for a given set of parameters i.e. the solution that satisfies [Zss] ≥ 0 and

[Zss] ≤ [Ztot]. The metric for retroactivity translates to

R =

∣∣∣∣∣1− [Zss]

[Zss
D,I→∅]

∣∣∣∣∣ = 1− [Zss]

[Ztot]
(7.1)

2. Constant birth/death dynamics:

φ
k−⇀↽−
δ
Z

Z + P
kon−−⇀↽−−
koff

C

In this case, solving for steady-state we get k − δ[Zss] − kon[Zss]([Ptot] − [Css]) +

koff[Css] = 0 and kon[Zss]([Ptot] − [Css]) − koff[Css] = 0. Therefore [Zss] = k
δ
. In

addition, note that [Zss
D,I→∅] = k

δ
implying that the retroactivity metric is

R =

∣∣∣∣∣1− [Zss]

[Zss
D,I→∅]

∣∣∣∣∣ = 0. (7.2)

3. Active/Inactive forms of Z:

Z0
kac−−⇀↽−−
kin

Z

Z + P
kon−−⇀↽−−
koff

C

In this case, we start with a fixed amount of total Z, say [Z ′tot]. Solving for steady-

state, we get

kac([Z
′
tot]− [Zss]− [Css]) = kin[Zss] (7.3)

and kon[Zss]([ptot]− [Css]) = koff[Css] implying that

[Zss] =
−µ±
√
µ2+4kac(kac+kin)koffkon[Z′tot]

2(kac+kin)kon
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where

µ = kinkoff + kac(koff + kon([Ptot]− [Z ′tot])) (7.4)

As in case 1, we choose only those solutions that make physical sense i.e. those which

satisfy [Zss] ≥ 0 and [Zss] ≤ [Z ′tot]. Note that kin[Zss
D,I→∅] = kac([Z

′
tot] − [Zss

D,I→∅]).

Therefore,

[Zss
D,I→∅] =

kac

kac + kin

[Z ′tot] (7.5)

Choosing [Zss
D,I→∅] = k

δ
allows the system to be compared sensibly to other designs

of U with the same behaviour in this limit. In this case, the metric for retroactivity

translates to

R =

∣∣∣∣∣1− [Zss]

[Zss
D,I→∅]

∣∣∣∣∣ = 1− δ[Zss]

k
. (7.6)

Subsequently, Equation 7.5 becomes

kac

kac + kin

[Z ′tot] =
k

δ
(7.7)

In the limit when kin � kac, Equation 7.7 reduces to

kac

kin

[Z ′tot] =
k

δ
(7.8)

When kin � kac, one can safely assume that [Z ′tot]− [Zss]− [Css] ∼ [Z ′tot] since all of

the Z is essentially present in the form of Z0. Therefore, Equation 7.3 reduces to

kac

kin

[Z ′tot] = [Zss] (7.9)

Comparing Equation 7.8 and Equation 7.9, we obtain [Zss] = k
δ
, thereby reproduc-

ing the steady-state concentration of constant birth-death process.
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7.2 Effect of decreasing the coupling to the push-pull

Recall the microscopically reversible push-pull motif from Chapter 3:

Z +X
β1−⇀↽−
β2

C1
k1−−−⇀↽−−−
εk1β1
β2

X∗ + Z

Y +X∗
α1−⇀↽−
α2

C2
k2−−−⇀↽−−−
εk2α1
α2

X + Y

X∗ + p
kon−−⇀↽−−
koff

C. (7.10)

Here, 0 ≤ ε ≤ 1 is the parameter that defines the degree of microscopic reversibility. We

analyse the effect of repeatedly reducing the coupling to the push-pull motif to match a

given input/output curve. We show that the steady-state output of a push-pull motif is

a function of the ratio β1

α1
and not α1 and β1 individually, in the low retroactivity limit.

Further the retroactivity and power is directly proportional to β1 at fixed ratio β1

α1
. Our

analysis is divided into two cases:

1. Microscopically irreversible limit: A push-pull motif coupled to fuel with an

infinite free energy corresponds to case ε = 0. Specifically, we have the following

network:

Z +X
β1−⇀↽−
β2

C1
k1−→ X∗ + Z

Y +X∗
α1−⇀↽−
α2

C2
k2−→ X + Y

X∗ + p
kon−−⇀↽−−
koff

(7.11)

As we reduce the coupling to the push-pull motif by making α1 and β1 sufficiently

small, one can approximately ignore sequestration into complexes relative to [Css],
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[Xss] and [X∗ss] and the network essentially boils down to the following:

X

k1β1[Ztot]
β2+k1−−−−−⇀↽−−−−−

α1k2[Ytot]
k2+α2

X∗

X∗ + P
kon−−⇀↽−−
koff

C. (7.12)

Solving for steady-state, we get

[Xss]k1β1[Ztot]
β2+k1

= [X∗ss]α1k2[Ytot]
k2+α2

(7.13)

and

kon[X∗ss]([Ptot]− [Css]) = koff[Css] (7.14)

with the conservation relation [Xss] + [X∗ss] + [Css] = [Xtot]. Therefore, we have

[Css] =
f(r)±
√
f2(r)−4r2k2

on[Xtot][Ptot]

2rkon
(7.15)

where r =
k1β1[Ztot]
β2+k1

α1k2[Ytot]
k2+α2

and f(r) = koff + r(kon([Ptot] + [Xtot]) + koff), justifying Equa-

tion 3.16 in Chapter 3. It follows that both [Xss] and [X∗ss] are functions of

α1 and β1 through the ratio r = β1

α1
. Solving for steady-state of [C1], we get

β1[Zss][X∗ss] − (β2 + k1)[Css
1 ] = 0, implying that [Css

1 ] = β1[Zss][X∗ss]
(β2+k1)

. As a conse-

quence Css
1 ∝ [Zss]β1 at fixed r. This implies thatR =

[Css
1 ]

[Ztot]
∝ β1(1 + β1)−1 ≈ β1 for

sufficiently small β1 and flux Ψ = k1[Css
1 ] ∝ β1 at fixed r, justifying Equation 3.19

in Chapter 3.

2. Finite free energy of fuel molecules: Explicitly incorporating the presence of

microscopically reversible reactions in the push-pull motif corresponds to the case

0 < ε ≤ 1. As in the case of infinite free energy, making α1 and β1 sufficiently

small amounts to neglecting sequestration into complexes relative to [Css], [Xss]
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and [X∗ss], giving the following network:

X

k1β1[Ztot]
β2+k1

+ε
α1k2[Ytot]
k2+α2−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−

α1k2[Ytot]
k2+α2

+ε
k1β1[Ztot]
β2+k1

X∗

X∗ + p
kon−−⇀↽−−
koff

C

Solving for steady-state, we get

Xss

(
k1β1[Ztot]

β2 + k1

+ ε
α1k2[Ytot]

k2 + α2

)
= [X∗ss]

(
α1k2[Ytot]

k2 + α2

+ ε
k1β1[Ztot]

β2 + k1

)
(7.16)

and

kon[X∗ss]([Ptot]− [Css]) = koff[Css] (7.17)

with the conservation relation [Xss] + [X∗ss] + [Css] = [Xtot]. Let r =
k1β1[Ztot]
β2+k1

α1k2[Ytot]
k2+α2

and

r′ = r+ε
rε+1

. Therefore, we have

[Css] =
f(r′)±

√
f 2(r′)− 4r′2k2

on[Xtot][Ptot]

2r′kon

(7.18)

where f(r′) = koff+r′(kon([Ptot]+[Xtot])+koff). Solving for [Css
1 ], we get β1[Zss][X∗ss]−

(β2 + k1)[Css
1 ] + εk1β1

β2
[X∗ss] = 0, implying that

[Css
1 ] =

β1[Zss][X∗ss] + εk1β1

β2
[X∗ss]

(β2 + k1)
. (7.19)

Since both [Xss] and [X∗ss] depend only on the ratio r′, we get that R =
[Css

1 ]

[Ztot]
∝

β1(1 + β1)−1 ≈ β1 for sufficiently small β1 at fixed r′ and power w = Ψ∆GATP ∝ β1

justifying equation 3.26 in Chapter 3.

7.3 Effectively irreversible push-pull motifs

We show that push-pull networks consuming free energy per cycle beyond a certain thresh-

old are essentially equivalent to those without the microscopically reversible reactions, for

the purposes of the steady-state concentrations. In our system, this threshold is ∼ 4kBT .
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Figure 7.1 illustrates this fact for certain sets of parameters. Recall from Chapter 3 that

FIGURE 7.1: For a push-pull network consuming free energy in excess of −2kBT ln ε ∼ 4kBT , the
presence of microscopically reversible reactions has negligible effect on the steady-state output as demon-
strated for two specific systems. Parameters used for the model: a) [Xtot] = [Ytot] = [Ztot] = 50, [Ptot] =
100, α1 = β1 = 0.1, α2 = β2 = k2 = kon = koff = 10, k1 = 1. b) [Xtot] = 200, [Ytot] = [Ztot] =
100, [Ptot] = 100, α1 = β1 = α2 = β2 = k1 = k2 = 1, kon = koff = 10.

the free energy of a push-pull motif having microscopically reversible reactions is given

by ∆GATP = 2kBT ln ε.

7.4 Microscopic reversibility constrains overall range

of the input-output function

As observed earlier in the main text, addition of microscopically reversible reactions re-

stricts the input-output range. In this section, we derive quantitative bounds to illustrate

this fact. In particular, we derive Equation 3.23 in the main text. Recall Equation 7.16.

We rewrite it here for convenience.

[Xss]

(
k1β1[Ztot]

β2 + k1

+ ε
α1k2[Ytot]

k2 + α2

)
= [X∗ss]

(
α1k2[Ytot]

k2 + α2

+ ε
k1β1[Ztot]

β2 + k1

)
(7.20)

Dividing this Equation throughout by [Ytot] gives,

[Xss]

(
k1β1[Ztot]

(β2 + k1)[Ytot]
+ ε

α1k2

k2 + α2

)
= [X∗ss]

(
α1k2

k2 + α2

+ ε
k1β1[Ztot]

(β2 + k1)[Ytot]

)
(7.21)

149



Therefore, we get

[X∗ss]

[Xss]
=

(
k1β1[Ztot]

(β2+k1)[Ytot]
+ ε α1k2

k2+α2

)
(

α1k2

k2+α2
+ ε k1β1[Ztot]

(β2+k1)[Ytot]

) (7.22)

Since ε ≤ 1, we get

ε ≤

(
k1β1[Ztot]

(β2+k1)[Ytot]
+ ε α1k2

k2+α2

)
(

α1k2

k2+α2
+ ε k1β1[Ztot]

(β2+k1)[Ytot]

) (7.23)

Hence ε ≤ [X∗ss]
[Xss]

. In the limit [Ytot] � [Ztot], we get equality i.e. ε = [X∗ss]
[Xss]

. Similarly,

dividing Equation 7.20 by [Ztot] gives,

[Xss]

(
k1β1

β2 + k1

+ ε
α1k2[Ytot]

(k2 + α2)[Ztot]

)
= [X∗ss]

(
α1k2[Ytot]

(k2 + α2)[Ztot]
+ ε

k1β1

β2 + k1

)
(7.24)

Therefore, we get

[X∗ss]

[Xss]
=

(
k1β1

β2+k1
+ ε α1k2[Ytot]

(k2+α2)[Ztot]

)
(

α1k2[Ytot]
(k2+α2)[Ztot]

+ ε k1β1

β2+k1

) (7.25)

Using the fact that ε ≤ 1, we get(
k1β1

β2+k1
+ ε α1k2[Ytot]

(k2+α2)[Ztot]

)
(

α1k2[Ytot]
(k2+α2)[Ztot]

+ ε k1β1

β2+k1

) ≤ 1

ε
(7.26)

Hence [X∗ss]
[Xss]

≤ 1
ε
. In the limit [Ztot]� [Ytot], we get equality i.e. [X∗ss]

[Xss]
= 1

ε
. In addition,

it is easy to check that the fraction [X∗ss]
[Xss]

=

(
k1β1
β2+k1

+ε
α1k2[Ytot]

(k2+α2)[Ztot]

)
(

α1k2[Ytot]
(k2+α2)[Ztot]

+ε
k1β1
β2+k1

) is monotonic in [Ytot]
[Ztot]

.

This implies that the relation ε ≤ [X∗ss]
[Xss]

≤ 1
ε

holds over the entire range of [Ytot]
[Ztot]

, justifying

Equation 3.23 in the main text.
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7.5 Retroactivity and rate of free-energy

consumption for randomly parameterised push-

pull motifs

In this section we show that the results presented in Fig. 3.7 of Chapter 3 – namely that

it is possible to reproduce an input-output relation at weaker coupling, thereby reducing

retroactivity and free energy consumption, is true for a good proportion of randomly

generated systems. Push-pull motifs having infinite free energy are a limiting case of

generic push-pull networks possessing microscopically reversible reactions. As noted ear-

lier, having an infinite free energy corresponds to putting ε = 0, where ε is the parameter

that quantifies the amount of microscopic reversibility. It therefore suffices to consider

push-pull motifs having finite free energy. We repeat the plots of Fig. 3.7 from Chapter

3, using randomly generated parameters. Specifically, we consider 10 systems randomly

chosen from parameter distributions:Xtot, Ytot ∼ U[1, 200], Ptot ∼ U[1, Xtot], α1, β1, kon ∼

10U[−2,0], α2, β2, k1, k2, koff ∼ 10U[−1,1], ε ∼ 10U[−3,−1]. Here, U indicates a uniform distri-

bution and all samples are independent. The results are plotted in the following figures,

demonstrating that often (though not always) it is possible to get a very close match to

the input-output curve at weaker coupling. Moreover, even when the matching of the

input-output curve is moderate, both retroactivity and fuel consumption still decrease.
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FIGURE 7.2: [Xtot] = 41.198, [Ytot] = 108.948, [Ptot] = 36.176, α1 = 0.051, α2 = 0.897, β1 =
0.614, β2 = 0.291, k1 = 0.950, k2 = 3.184, kon = 0.517, koff = 0.203, ε = 0.026.
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FIGURE 7.3: [Xtot] = 124.747, [Ytot] = 5.810, [Ptot] = 101.106, α1 = 0.126, α2 = 0.177, β1 =
0.043, β2 = 6.802, k1 = 0.391, k2 = 1.600, kon = 0.366, koff = 0.215, ε = 0.065.
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FIGURE 7.4: [Xtot] = 182.861, [Ytot] = 57.132, [Ptot] = 171.82, α1 = 0.054, α2 = 0.137, β1 =
0.035, β2 = 0.283, k1 = 3.383, k2 = 0.105, kon = 0.432, koff = 0.646, ε = 0.027.
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FIGURE 7.5: [Xtot] = 95.631, [Ytot] = 147.689, [Ptot] = 72.11, α1 = 0.208, α2 = 9.877, β1 = 0.033, β2 =
6.076, k1 = 1.450, k2 = 0.766, kon = 0.418, koff = 1.559, ε = 0.104.
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FIGURE 7.6: [Xtot] = 84.151, [Ytot] = 100.826, [Ptot] = 56.871, α1 = 0.021, α2 = 0.438, β1 =
0.326, β2 = 9.358, k1 = 8.781, k2 = 0.145, kon = 0.323, koff = 0.389, ε = 0.011.

0 10 20 30 40

15

20

25

30

35

40

45

(A)

0 10 20 30 40

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(B)

0 10 20 30 40

0

50

100

150

(C)

FIGURE 7.7: [Xtot] = 138.883, [Ytot] = 67.044, [Ptot] = 67.68, α1 = 0.047, α2 = 0.942, β1 = 0.187, β2 =
0.264, k1 = 2.308, k2 = 0.717, kon = 0.041, koff = 0.822, ε = 0.024.
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FIGURE 7.8: [Xtot] = 14.304, [Ytot] = 58.104, [Ptot] = 6.824, α1 = 0.032, α2 = 0.503, β1 = 0.803, β2 =
5.777, k1 = 0.145, k2 = 0.671, kon = 0.069, koff = 6.124, ε = 0.016.
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FIGURE 7.9: [Xtot] = 58.564, [Ytot] = 4.7, [Ptot] = 23.929, α1 = 0.122, α2 = 0.128, β1 = 0.240, β2 =
1.023, k1 = 6.555, k2 = 0.252, kon = 0.680, koff = 9.066, ε = 0.061.
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FIGURE 7.10: [Xtot] = 18.954, [Ytot] = 166.734, [Ptot] = 4.529, α1 = 0.086, α2 = 0.131, β1 =
0.035, β2 = 0.524, k1 = 1.245, k2 = 7.211, kon = 0.438, koff = 3.268, ε = 0.043.
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FIGURE 7.11: [Xtot] = 54.201, [Ytot] = 50.055, [Ptot] = 39.431, α1 = 0.045, α2 = 0.295, β1 =
0.042, β2 = 0.135, k1 = 9.537, k2 = 6.173, kon = 0.038, koff = 1.337, ε = 0.023.
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