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Abstract

This investigation revisits biaxial fatigue experiments carried out with nickel-based superalloy Waspaloy.
Recently, yield criteria extended to multiaxial fatigue and stress-based approaches have been analysed,
and their performances in correlating biaxial test data have been evaluated. It has been concluded
that despite giving reasonable results, the parameters do not properly represent the physical behaviour
of the material. An extension of the study is therefore executed using the strain based critical plane
approaches proposed by Wang-Brown and Fatemi-Socie, and the energy-based approaches proposed by
Smith-Watson-Topper, Liu and Ince-Glinka. Reasonably good fatigue life predictions are obtained with
all criteria. However, for low cycle fatigue regime, best correlation is obtained with the Liu parameter.
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1. Introduction

The safety and reliability of complex systems, such as nuclear reactors, gas turbines and aircrafts, are
strongly correlated to the design of the constituent parts and to the dynamic forces acting during their
operation. Cyclic loading, even for stress levels considerably below the ultimate strength of the material,
facilitates movement of dislocations, which eventually form persistent slip bands at critical points. Some5

of these slip bands grow to form extrusions and/or intrusions that may lead to the nucleation of micro-
cracks. Finally, one of the micro-cracks dominates the fatigue process by propagating and leading to final
failure [1, 2].

Often, mechanical components are designed considering ideal uniaxial loading conditions, due to the
simplicity and cost effectiveness of uniaxial testing and the amount of experimental data available. How-10

ever, engineering components and structures are commonly loaded by a combination of variable loads in
multiple directions, due to their complex geometry and/or complexity of external loading. In contrast to
uniaxial fatigue, the multiaxial fatigue problem involves complex stress/strain states, mean stress effects,
loading history dependency and non-proportional hardening. Thus, the study of multiaxial fatigue re-
quires experiments to properly reproduce such loading conditions and fatigue damage parameters which15

accurately predict multiaxial fatigue lives.
There exist numerous standards and preferred methods for fatigue testing and specimen geometries.

For instance, tension-torsion tests with thin-walled tubular specimens are commonly used to investigate
multiaxiality effects. However, although numerous different approaches have been proposed for modelling,
there is no universal consensus on the most efficient criterion for predicting multiaxial fatigue failure. Most20

of the criteria proposed are limited to certain materials and/or specific loading conditions.
In this regard, the present paper further investigates biaxial fatigue tests carried out at the University

of Oxford with cruciform specimens made of the nickel-based superalloy Waspaloy. In the initial study
[3], a combination of stress-based formulations was investigated, including yield criteria extended to
multiaxial fatigue, invariant-based formulations and critical plane approaches. Despite the reasonably25

good agreement between experimental fatigue life and predicted life, none of the formulations assessed
correctly captured the physical behaviour of the material (e.g. by predicting the correct initiation angle).
Hence, we propose here to extend the initial investigation by assessing a number of strain- and energy-
based formulations.
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1.1. Multiaxial Fatigue Testing30

Lanza [4] pioneered multiaxial fatigue experiments by observing combined cyclic loading back in 1886.
He discussed his test results for combined in-phase bending and torsion and pointed out the need for
further work. Later, Mason [5] conducted an extensive study of cyclic strains under combined fully
reversed torsional and bending stresses on mild steel. At the time, multiaxial fatigue was still in its
infancy and the term itself had not yet been coined.35

A significant contribution was made by Manson and co-workers in the early 1920s. Their work, [6]
published in 1923, is considered the pioneer in detailed elastic-plastic analysis in the high cycle fatigue
regime. They use a bilinear representation for the cyclic stress-strain curve in the case of round bars
under alternating torsion or bending [7]. In addition, Manson and Delaney [8] published the first report
on out-of-phase combined bending and torsion.40

A more systematic multiaxial fatigue test programme was conducted in the 1930s by Gough and Pollard
[9], who designed and built high speed testing machines to investigate the combined effects of bending
and torsional stresses (with and without mean stresses) on fatigue life. This set of experiments was used
as a benchmark for the early multiaxial fatigue criteria, such as the empirical proposition of Gough [10]
(for ductile steels and cast-irons) and the first stress-based multiaxial criteria. Yet another extensive45

investigation of fatigue strength under combined bending and torsion was published by Nishihara and
Kawamoto [11–13]. Their experimental data has been widely used for benchmarking.

Advances in material testing equipment and techniques during the past 40 years have enabled the
development of more realistic multiaxial fatigue tests by applying loads representative of service life, at
different temperatures, test frequencies and load phase difference. Among the most used techniques,50

cruciform specimens and thin-walled tubular specimens have been broadly used for fatigue testing under
biaxial stress states [14]. However, tension-torsion specimens pose limitations for probing the entire
principal stress plane, σ1 vs σ2, since only 2 of the 4 quadrants can be investigated. Nevertheless, using
internally-pressurized tubular specimens, it is possible to access more of the principal stress plane.

Figure 1 illustrates the regions of the principal stress plane, σ1 vs σ2, that can be probed depending on55

the test configuration. The combination of cruciform specimens and axial-torsional specimens, internally
pressurized, allows the investigation of almost the entire principal stress plane. However, for cruciform
specimens the assessment of the biaxial compression region is challenging due to potential specimen
buckling limitations. In the literature, examples of fatigue life investigation using tubular specimens are
available in [15–17]. Cruciform specimens and biaxial test rigs allow the investigation of a broad range60

of biaxiality. However, specimens are expensive, and testing is complex [18–20].
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Figure 1: Possible stress domain and corresponding experiments. Adapted from [14].
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2. Material and Methods

Our earlier work on multiaxial fatigue has presented biaxial tests on Waspaloy [3], a nickel-based
superalloy widely used for disks in aero-engines. This material presents elevated creep resistance, high
fatigue strength, low thermal expansion coefficient and high thermal conductivity; essential characteristics65

to sustain the extreme mechanical and thermal loads to which aero-engine disks are subjected.
Load controlled tests were carried out at a load ratio of R = 0.05 and 0.5Hz frequency using a biaxial

servo-hydraulic rig, developed and built at the University of Oxford. The rig consists of two independent
frames carrying hydraulic actuators, such that the perpendicular load vectors meet at the centre of the
specimen. The vertical load path has a fixed clamp at the top and an actuator at the bottom capable of70

providing up to 350kN. The horizontal load path has two actuators, providing up to 100kN each. The
two frames are connected to each other through a set of springs, which allow vertical movement of the
horizontal actuators as the specimen deforms.

All tests were performed using a cruciform specimen with reduced thickness gauge section at the
centre (Figure 2). The centre portion (excluding the gauge section) was shot peened to increase the75

fatigue strength of the external edges between the arms and hence to inhibit failure away from the gauge
section. Strain gauge rosettes were mounted on both front and back face of the gauge section and at the
narrow point of the arms. The outputs from these were recorded, together with the applied loads, to
determine the calibration of the specimen.

H(t) H(t)

V(t)
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Figure 2: Cruciform specimen, applied loads and definition of x− y − z coordinate system.

In terms of its mechanical properties, the axial hardening curve for Waspaloy at room temperature was80

obtained from Pattison [21], who used deformation-controlled tests with thin-walled tubular specimens.
The material has a Poisson’s ratio of ν = 0.284 and Young’s modulus of E = 222 GPa. Figure 3 presents
the axial monotonic and cyclic stress-strain response of the material. The cyclic hardening curve was
modelled using the Ramberg-Osgood power law for cyclic loading to fit the stabilised plastic strain and
stress amplitude test data, as is defined in:85

∆ε

2
=

∆σ

2E
+

(
∆σ

2K ′

) 1
n′

, (1)

where K ′ and n′ are the axial fatigue strength coefficient and the cyclic axial strain hardening exponent,
respectively. These parameters can be obtained by fitting true stress versus plastic strain in a log-log
scale [22].

2.1. Load Combination

The original load conditions were set to have the same maximum principal stress in each case, varying90

the other in-plane principal stress. As the gauge section is only 2mm thick and 15mm across, the
assumption is made that the local behaviour is equivalent to plane stress conditions, i.e. that the stress
in the through thickness direction is zero. The following combinations were investigated:

– Equal biaxial tension (EB): Equal load applied to each arm (σ1 = σ2);

– Pure shear (PS): Stresses on the two axes are equal and opposite (σ1 = −σ2);95
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Figure 3: Cyclic hardening curve for Waspaloy at room temperature. Adapted from [21].

– Single Actuator (Uniaxial Load UL): Load applied on one axis only;

– Uniaxial Stress (US): Both axes are used to create an uniaxial equivalent stress state at the gauge
section (σ2 = 0);

– Minimum von Mises (Mv): The combination of loads that gives the minimum von Mises equivalent
stress (octahedral shear stress) at the gauge section, i.e. for a given σ1, σ2 is calculated to give the100

minimum von Mises equivalent stress under biaxial tension.

2.2. Experimental Results

As is presented in more detail in Sahadi et al [3], the initial tests compared different biaxialities at the
same σ1,peak, but different σ2,peak for each test. Further tests for the pure shear and uniaxial stress cases
were run at lower peak stresses. It was observed that in most cases yielding occurred during the first105

cycle, but no “reversed yielding” took place when load was removed. Hence subsequent load cycles at
the same load level were essentially elastic. This observation is important as it sets the context for the
multiaxial criteria which are appropriate.

To translate between the loads applied by the actuators and the stress at the gauge section an elastic
relationship was established. The data for this was obtained from measurements during the elastic loading
phase of testing. The normalised compliance response found for the rosette located at the centre of the
gauge section is cp = 0.0117µε/kN for the axis parallel to loading and cn = −0.0063µε/kN for the normal
direction (the ratio rε = cn/cp = −0.538). Hence, for any combination of loads the normalised nominal
strains can be calculated by:

εx = 0.0117LH − 0.0063LV , (2)

and

εy = −0.0063LH + 0.0117LV , (3)

where LH and LV are the horizontal and vertical nominal loads, respectively.
Assuming a plane stress state at the gauge section, the nominal stress state at the centre of the specimen

can be calculated by:

σx =
E

1− ν2
(εx + νεy) , (4)

and

σy =
E

1− ν2
(εy + νεx) , (5)

4



Nominal stress and strain levels were used to set the experimental conditions (estimate the loads110

required for each test), and actual strain gauge readings were used to confirm whether the required
values were achieved.

Table 1 summarizes the results obtained after testing of 11 specimens. Note that stress and strain
levels presented in Tab. 1 are nominal, calculated using Eqs. 2–5. The map of peak stresses in the two
principal directions (σ1 vs σ2) shown in Fig 4 graphically represents the test cases shown in Tab. 1. It115

gives a diagrammatical summary of the load conditions, with life to failure (’000 cycles) shown below each
case point. von Mises and elastic strain energy contours were plotted in Figure 4 as guides to represent
the initial elastic domain of Waspaloy.

 

Figure 4: Map of Stress Concentration for σ3 = 0. Each point represents a test case. The resulting life is shown in thousands
of cycles below each point. For cases with two test results, both values are given.

Table 1: Experimental tests parameters and results – nominal stress and strain values.

Exp. � Load Case
Peak Load [kN] Norm. Peak Strain Norm. Peak Stress Biaxiality Ratio

Cycles, 2Nf
Horizontal Vertical εx εy σx σy σvM Load Strain Stress

CX01 Equi-Biaxial 127 0 1.489 -0.801 1.372 -0.412 1.618 0.00 -0.54 -0.30 87,765

CX02 Equi-Biaxial 170 170 0.921 0.921 1.286 1.286 1.286 1.00 1.00 1.00 65,426

CX03 Equi-Biaxial 170 170 0.921 0.921 1.286 1.286 1.286 1.00 1.00 1.00 57,884

CX04 Single Actuator 117 0 1.372 -0.738 1.264 -0.379 1.490 0.00 -0.54 -0.30 97,560

CX05 Pure Shear 90 -90 1.623 -1.623 1.264 -1.264 2.189 -1.00 -1.00 -1.00 25,789

CX06 Pure Shear 51 -51 0.920 -0.920 0.716 -0.716 1.241 -1.00 -1.00 -1.00 510,000a

CX07 Uniax Equiv 129 39 1.264 -0.359 1.264 0.000 1.264 0.30 -0.28 0.00 154,396

CX08 Min von Mises 148 103 1.084 0.273 1.264 0.632 1.095 0.70 0.25 0.50 107,004

CX09 Uniax Equiv 94 28 0.920 -0.261 0.920 0.000 0.920 0.30 -0.28 0.00 658,164

CX10 Pure Shear 66 -66 1.182 -1.182 0.920 -0.920 1.594 -1.00 -1.00 -1.00 236,935

CX11 Pure Shear 90 -90 1.623 -1.623 1.264 -1.264 2.189 -1.00 -1.00 -1.00 21,684

a Runout

2.3. Stress and Strain Ranges

Finite Element modelling was used to obtain the actual stress ranges for each loading condition, as120

the relationship between load and stress/strain is not obvious for the cruciform specimen. Due to the
symmetry of the problem, only one eighth of the specimen was modelled with appropriate boundary
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conditions imposed to the symmetry planes. Under applied cyclic loading, stress-strain responses at
the gauge section showed a transient response, but stabilized over a number of loading cycles. All test
conditions were performed under proportional load. Therefore, the FE model was provided with the125

stabilized cyclic stress-stress response, described in Figure 3.
All the strain- and energy-based formulations presented in the following section follow the critical-plane

approach. Therefore, the elastic and plastic strain components for the critical plane search algorithm
were calculated considering Hooke’s law and Hencky’s total deformation plasticity equation [23]:

εij =
1 + ν

E
σij −

ν

E
σkkδij +

3

2

εpeq
σeq

Sij , (6)

where εij represents the total strain components, σij the stress components of Cauchy’s stress tensor and
Sij the deviatoric stress components, given by:

Sij = σij −
1

3
σkkδij . (7)

The remaining terms, σeq and εpeq, are the von Mises equivalent stress and equivalent plastic strain,
respectively:

σeq =

√
3

2
SijSij , (8)

εpeq =

√
2

3
εpijε

p
ij . (9)

The relationship between these, for the multiaxial stress state, is the Ramberg-Osgood power law
presented in Eq. 1:

εpeq =
(σeq
K ′

) 1
n′

, (10)

Table 2 presents the actual stress and strain ranges seen during the tests. i.e. it presents the average
strain amplitude and average mean strain measured with strain gauge rosettes and the actual residual
and peak stresses obtained with an elastic-plastic Finite Element analysis, considering the peak loads
measured by the load cells of the biaxial rig. Critical residual and peak stresses for each test condition130

were obtained from the points of maximum von Mises equivalent stress in the gauge section.

Table 2: Experimental tests parameters and results based on strain gauge readings and FE analysis.

Exp. � Load Case
Peak Load [kN] Mean Strain Strain Amplitude Residual Stress Peak Stress

Cycles, 2Nf
Horizontal Vertical εx εy εxy εx εy εxy σx σy σx σy

CX01 Single Actuator 126.33 8.07 1.396 -0.469 0.359 0.690 -0.367 0.132 -0.19 0.07 1.12 -0.23 87765

CX02 Equi-Biaxial 169.34 172.67 1.049 1.098 1.075 0.445 0.436 0.436 -0.04 -0.04 1.18 1.23 65426

CX03 Equi-Biaxial 170.73 170.98 1.180 1.143 1.141 0.450 0.452 0.459 -0.04 -0.04 1.20 1.21 57884

CX04 Single Actuator 118.20 1.15 1.154 -0.676 0.199 0.662 -0.358 0.145 -0.17 0.07 1.08 -0.28 97560

CX05 Pure Shear 92.32 -90.40 1.209 -1.121 0.241 0.327 -0.326 0.072 -0.42 0.42 0.80 -0.80 25789

CX06 Pure Shear Low 52.15 -51.22 0.638 -0.622 0.014 0.444 -0.440 0.014 -0.04 0.04 0.66 -0.66 510000a

CX07 Uniax Equiv 130.30 38.70 0.852 -0.301 0.261 0.612 -0.178 0.198 -0.08 0.02 1.19 0.01 154396

CX08 Min von Mises 150.25 103.22 0.645 0.134 0.343 0.525 0.127 0.313 0.00 0.00 1.29 0.57 107004

CX09 Uniax Equiv Low 96.41 28.33 0.502 -0.145 0.121 0.452 -0.133 0.144 0.03 0.00 0.97 -0.01 658164

CX10 Pure Shear 67.74 -65.88 1.093 -1.035 0.069 0.584 -0.574 0.017 -0.16 0.16 0.74 -0.73 236935

CX11 Pure Shear 93.00 -90.40 1.581 -1.365 0.170 0.342 -0.327 0.018 -0.42 0.42 0.81 -0.80 21684

a Runout

Both tables (Tabs.1 and 2) present similar stress ranges. However the results obtained with the elastic-
plastic FE analysis show that there was a significant level of residual stresses for the single actuator
(CX01 and CX04) and pure shear (CX05, CX10 and CX11) test cases. Therefore, for these test cases
the actual peak stresses are considerably different than the nominal ones.135

3. Multiaxial Fatigue Modelling

The fatigue behaviour of materials is characterized in the form of a stress or strain parameter versus
fatigue life, and a cyclic stress-strain curve. Such a characterization is usually obtained using smooth
specimens under uniaxial loading. Multiaxial fatigue assessment is then carried out with the help of
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an appropriate rule or criterion that reduces the complex multiaxial stress/strain state to an equivalent
uniaxial stress/strain state. For high cycle fatigue regime, fatigue life is commonly estimated using a
combination of stress-based theories and the relationship established by Basquin. For axial loading, this
relationship is given by:

∆σ

2
= σ′f (2Nf )b , (11)

and for torsional/shear loading:
∆τ

2
= τ ′f (2Nf )bγ . (12)

In terms of elastic axial and shear strain, Eqs. 11 and 12 can be rewritten as follows:

∆εe

2
=
σ′f
E

(2Nf )b , (13)

and,
∆γe

2
=
τ ′f
G

(2Nf )bγ , (14)

where ∆σ and ∆τ are the axial and shear stress ranges, and ∆εe and ∆γe the axial and shear elastic
strain ranges, respectively. σ′f and b are the axial fatigue strength coefficient and exponent, respectively.
Analogously, τ ′f and bγ are the shear fatigue strength coefficient and exponent, respectively. Nf is the
number of reversals (2Nf refers to the number of cycles to failure).140

However, many components and structures undergo a few cycles of high amplitude stress during their
lifetime (i.e. take-off and landing of aircrafts, start-up and shut-down of power generation plants, etc.).
Design for this life region (life < 105 cycles) is referred to as low cycle fatigue design for which localized
cyclic plasticity plays an important role. For the past 60 years, cyclic strain has been the basis for
low cycle fatigue design. Hence, predictions for low cycle fatigue regime are made by the association of
strain-based criteria with the following strain-life relationship for axial loading:

∆ε

2
=

∆εe

2
+

∆εp

2
=
σ′f
E

(2Nf )b + ε′f (2Nf )c, (15)

where ∆ε is the total axial strain range, and equal the sum of elastic and plastic strain ranges. ε′f and c
are the axial fatigue ductility coefficient and exponent, respectively. Similarly, for torsional/shear loading:

∆γ

2
=

∆γe

2
+

∆γp

2
=
τ ′f
G

(2Nf )bγ + γ′f (2Nf )cγ , (16)

where ∆γ is the total shear strain range, and equal the sum of elastic and plastic strain ranges. γ′f and
cγ are the shear fatigue ductility coefficient and exponent, respectively. Eqs. 15 and 16 are a combination
of Basquin’s and Coffin-Manson’s relationships.

The following sections present some of the most widely used multiaxial fatigue theories. Of course, it
is not possible to review all the models that have been proposed in the literature. For a chronological145

review of multiaxial fatigue criteria see [7, 24–26]. For a more detailed review of stress-, strain- and
energy-based multiaxial criteria refer to [25–30]. Critical plane approaches have also been assessed in
[30–33]; Finally, for a consistent experimental data base see: [34].

The theories described in here are presented in three main different classes, stress-based, strain-based
and energy-based criteria. These approaches are classified based on the parameter used to quantify fatigue150

damage.

3.1. Stress-based criteria

An introductory analysis of the test data was achieved by considering extensions of yield theories to
multiaxial fatigue and stress-based criteria. The formulations of von Mises, elastic strain energy equivalent
stress, Crossland [35], Findley [36] and Matake [37] were investigated. Among them, the energy parameter155

and Crossland’s invariant based approach gave the best predictions.
The elastic strain energy density is the sum of the products of strain and stress (divided by 2). In the

case of plane stress and no shear, a uniaxial stress with strain energy equivalent to a biaxial stress state
is formulated as follows:

σUe =
√
σ2

1 + σ2
1 − 2νσ1σ2 , (17)

Figure 5 presents the correlation between this parameter normalised and the test data in cycles to
failure, considering the nominal stress values presented in Tab. 1. The stress-life curve was obtained
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using Basquin’s relation for stress (Eq. 11) and using the equivalent stress presented in Eq. 17. The
criterion provided good results with a correlation coefficient, R2, of 0.868. Among all the test cases, the160

pure shear case (CX10) was the furthest from the line of best-fit.

Analogously, Figure 6 presents the results obtained with the elastic strain energy parameter and the
actual stress levels from Tab. 2. In order to reduce scatter and account for mean stress effects, the energy
parameter was associated with the Walker stress criterion [38], and formulated as:

σW = (σUe,peak)
1−m

(σUe,a)
m

, (18)

where σUe,peak and σUe,a are the peak and amplitude of the elastic strain energy equivalent stress, respec-
tively. σW represents the Walker stress and m the Walker exponent, a fitting parameter used to collapse
both mean stress and multi-axial effects. The exponent in this correlation was optimised to m = 0.645,
improving correlation with the experimental data, R2 = 0.9107, and reducing the scatter observed with165

the pure shear case (CX10).

 

Figure 5: Fatigue life prediction with elastic strain energy density – Nominal stress values.

 

Figure 6: Fatigue life prediction with elastic strain energy density – Actual stress values from FE analysis.
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Next, some of the most widely used stress-based criteria were investigated. The stress invariant based
criterion proposed by Crossland [35] considers the amplitude of the second invariant of the deviatoric
stress tensor, J2a (which corresponds to the amplitude of von Mises equivalent stress) and the maximum
value of the first invariant of Cauchy’s stress tensor, i.e. the maximum hydrostatic stress, σh,max. This
last term accounts for the mean stress effect. The criterion is given as:√

J2a + κσh,max = λ , (19)

where κ and λ are material constants determined under fully reversed tension (σ−1) and torsion (τ−1)
tests with smooth specimens respectively:

κ = 3

(
τ−1

σ−1

)
−
√

3 ; λ = τ−1 . (20)

Figure 7 presents the fatigue life predictions obtained with this formulation, considering various fatigue
thresholds, i.e. a test case below a line is predicted to have a longer fatigue life than the threshold of the
line. On the other hand, a point above it represents a test case with shorter life. The light grey shade area
corresponds to the calibrated region (tension-torsion), and is delimited by the uniaxial tension dashed170

lines. The darker grey shade area is delimited by the equi-biaxial line. The dashed black lines connect
test cases with the same σ1,peak, in order to illustrate the biaxiality effect when σ2,peak is changed.

It is concluded that in general the model presents good correlation with experimental data both within
and outside the tension-torsion calibration region. However, non-conservative predictions are obtained
for negative values of σ2,peak (pure shear and uniaxial load cases – CX01, CX04, CX05 and CX10). In175

contrast, as σ2,peak increases towards higher positive values, the criterion becomes proportionally more
conservative (minimun von Mises and equi-biaxial – CX08, CX02 and CX03).

 

Figure 7: Fatigue life predictions according to Crossland’s criterion.

3.2. Strain-based criteria

Despite the satisfactory results obtained with the stress-based criteria, it was concluded in the previous
investigation that they do not properly represent the physical behaviour of materials. In this context,180

a further analysis is performed using strain-based critical plane approaches. This class of strain-based
methods determines critical planes (one or more) where a particular damage parameter reaches its maxi-
mum magnitude. This methodology has gained great attention over the past 40 years as it mathematically
describes the physical phenomenon and is capable of predicting damage and also the crack orientation
(for ductile materials, cracks typically nucleate along slip planes, where the maximum shear stress occurs185

[28, 39]). Two of the most widely used criteria: the Fatemi-Socie [40] and Wang-Brown [41] parameters
are evaluated here.

Brown and Miller [39] proposed a theory based on a physical interpretation of mechanisms of fatigue
crack growth. According to them, failure under multiaxial fatigue is governed by the maximum shear
stress range. In addition, the tensile normal strain acting on the plane of maximum shear strain benefits
propagation (by opening the crack tip). Originally, Brown and Miller represented graphically their
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criterion by contours of constant life. Later Kandil, Brown and Miller [42] proposed a specific formulation
of the theory for ‘Case A’ cracks, which propagate along the surface:

∆γ̂ = (∆γαmax + S∆εαn )
1
α , (21)

where ∆γ̂ is the equivalent shear strain range, ∆γmax is taken as the maximum shear strain range and
∆εn is the normal strain range on the plane of maximum shear strain range. S represents a material
dependent parameter, describing the influence of the normal strain on material crack growth. Similar190

to the material constants for Crossland’s formulations, S is also determined by correlating axial and
torsional fatigue data.

Finally, Wang-Brown [41] introduced a mean stress term to the formulation, and assuming α = 1, the
equivalent shear strain amplitude was expressed as:

∆γ̂

2
=

∆γmax

2
+ S∆εn . (22)

For fatigue life prediction, this formulation is expressed as follows:

∆γmax

2
+ S∆εn = [(1 + ν) + S(1− ν)]

σ′f
E

(2Nf )b + [1.5 + 0.5S]ε′f (2Nf )c, (23)

where,

S =

τ ′
f

G (2Nf)
bγ + γ′f(2Nf)

cγ − (1 + ν)
σ′
f

E (2Nf)
b − 1.5ε′f (2Nf)

c

(1− ν)
σ′
f

E (2Nf)b + 0.5ε′f (2Nf)c
. (24)

Based on the work of Brown and Miller [39], Fatemi and Socie [40] concluded that tensile normal
stress in the maximum shear stress plane accelerates crack growth by separating the crack surfaces and
consequently reducing frictional forces. The following damage model may be interpreted as the cyclic
shear strain modified by the normal stress to include the crack closure effects described:

∆γmax

2

(
1 + κ

σn,max

σ′yield

)
=
τ ′f
G

(
2Nf

)bγ
+ γ′f

(
2Nf

)cγ
, (25)

where ∆γmax

2 is the maximum shear strain amplitude and σn,max is the maximum normal stress on the

plane where ∆γmax

2 occurs. The material parameter κ represents the influence of the normal stress,
σn,max. In addition, σ′yield represents the cyclic yield strength of the material and is included to make195

the maximum normal stress component dimensionless and proportional to the shear strain.
The material parameter κ is expressed in the following way:

κ =

 τ ′
f

G (2Nf)
bγ + γ′f(2Nf)

cγ

(1 + ν)
σ′
f

E (2Nf)b + 1.5ε′f (2Nf)c
− 1

 σyield

σ′f (2Nf)b
. (26)

3.3. Energy-based criteria

Energy based criteria are generally classified into three different groups, depending on the kind of strain
energy density per cycle assumed as the damage parameter. In the first group, elastic strain energy is
considered as the damage parameter, and the criteria are used for high cycle fatigue regimes. Secondly, for
low cycle fatigue regimes, plastic strain energy is considered as the damage parameter. The last group is
based on a combination of elastic and plastic strain energies for both high and low cycle fatigue regimes.
The first of the energy-based damage parameter considered was proposed by Smith et al [43], SWT,
for predicting fatigue life under uniaxial tension-compression conditions. The parameter was originally
defined as:

σn,max
∆ε

2
=
σ′2f
E

(2Nf)
2b + σ′fε

′
f(2Nf)

b+c, (27)

This parameter was modified for proportional and non-proportional multiaxial loading conditions of
materials that fail predominantly by crack growth on planes of maximum tensile strain or stress, i.e. by
Mode I. In these materials, cracks nucleate in shear, but early life is controlled by crack growth on planes
perpendicular to the maximum principal stress and strain. Socie [44] proposed a modification to the
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SWT parameter in order to take into account only stresses and strains occurring in the critical plane.
This became the most well-known form of the parameter and is mathematically represented by:

σn,max
∆ε1

2
=
σ′2f
E

(2Nf)
2b + σ′fε

′
f(2Nf)

b+c. (28)

where ∆ε1
2 represents the maximum normal strain, and accordingly σn,max is calculated on the plane

where ∆ε1
2 occurs.

Liu [45] proposed a criterion based on the virtual strain energy concept. He used two different formu-
lations depending on the failure mode, one for tensile failure, ∆WI , and another one for shear failure,
∆WII . The first criterion, ∆WI , considers the axial work, ∆σ∆ε, as the main damage parameter, and
assumes as the critical plane the plane in which this parameter reaches its maximum value. On the other
hand, for the second criterion, ∆WII , the critical plane is the one that maximises the shear work, ∆τ∆γ:

∆WI = (∆σ∆ε)max + (∆τ∆γ) , (29)

and,

∆WII = (∆σ∆ε) + (∆τ∆γ)max . (30)

For fatigue life prediction, these formulations are expressed as:

∆WI = 4σ′fε
′
f (2Nf )

b+c
+

4σ′2f
E

(2Nf )
2b

, (31)

and,

∆WII = 4τ ′fγ
′
f (2Nf )

bγ+cγ +
4τ ′2f
G

(2Nf )
2bγ . (32)

Finally, two formulations were proposed by Ince-Glinka [46], based on search for specific planes experi-
encing the maximum amount of a generalised strain energy (GSE). The GSE damage parameter includes
both the normal and shear strain energy terms:

W ∗gen =

(
τmax

∆γe

2
+

∆τ

2

∆γp

2
+ σn,max

∆εen
2

+
∆σn

2

εpn
2

)
max

. (33)

This formulation takes into account the effects of mean stress and non-proportional hardening through200

the elastic shear and normal strain energy terms by including the maximum shear stress, τmax, and the
maximum normal stress, σmax, in the formulation of the damage parameter. In addition, the shear strain
energy terms reflect the initiation and growth of cracks, and the normal strain energy terms accelerate
the crack growth.

The shear strain energy terms in Eq. 33 can be normalised with the shear stress amplitude, ∆τ
2 and

the normal strain energy terms can be normalised with the normal stress amplitude, ∆σ
2 to transform

the generalized strain energy parameter to the form of generalized strain amplitude (GSA):

∆ε∗gen
2

=

(
τmax

∆τ/2

∆γe

2
+

∆γp

2
+
σn,max

∆σn/2

∆εen
2

+
εpn
2

)
max

. (34)

Based on Basquin’s relationship presented in Eqs. 11 and 12, and assuming a fatigue life of one cycle, i.e.
2Nf = 1, the shear and normal stress amplitudes become:

∆σ

2
= σ′f (2Nf )b = σ′f , (35)

and,
∆τ

2
= τ ′f (2Nf )bγ = τ ′f . (36)

Substituting Eqs. 35 and 36 into Eq. 34, the multiaxial fatigue damage parameter based on the gener-
alized strain amplitude becomes:

∆ε∗gen
2

=

(
τmax

τ ′f

∆γe

2
+

∆γp

2
+
σn,max

σ′f

∆εen
2

+
εpn
2

)
max

. (37)
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4. Results205

This section presents the general behaviour and fatigue life prediction obtained with each of the strain-
and energy-based formulations presented in the previous section.

4.1. Critical Plane Search

For a loaded specimen, stress and strain magnitudes at a given point vary depending on the orientation
of a plane passing through that point. In this work, stress and strain components on arbitrary planes are
calculated using a coordinate transformation matrix with respect to plane orientation. The coordinate
system, x− y− z, on the surface of the cruciform specimen is shown in Fig. 2. The planes of interest are
obtained by first rotating the coordinate system by an angle θ about the x axis (Eq. 38) and then by an
angle φ about the z axis (Eq. 39). The rotation matrix for rotations about x and z are given respectively
as:

aθ =

∣∣∣∣∣∣
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

∣∣∣∣∣∣ , (38)

aφ =

∣∣∣∣∣∣
cosφ sinφ 0
− sinφ cosφ 0

0 0 1

∣∣∣∣∣∣ . (39)

Finally, the general transformation matrix for rotations about x axis first and then z axis is defined
as:

aθφ = aθaφ =

∣∣∣∣∣∣
cos θ sin θ cosφ sin θ sinφ
− sin θ cos θ cosφ cos θ sinφ

0 − sinφ cosφ

∣∣∣∣∣∣ . (40)

Consequently, the stresses on specific planes can be calculated by:

σ′ij = aθφσija
ᵀ
θφ , (41)

where aᵀθφ defines the transpose of the general transformation matrix presented in Eq. 40. As is presented
above, the elastic and plastic components of strain correspondent to σ′ij are calculated according to Eq. 6.210

The general variation of normal and shear stresses for the equi-biaxial case (CX03) with respect to θ and
φ are presented in Figs. 8 and 9. Similarly, Figs. 10 to 15 present the variation of each of the strain- and
energy-based parameters presented in the previous section with respect to θ and φ.

Analysing Figs. 10–15, the most noticeable difference between strain- and energy-based parameters is
that strain-based parameters tend to have more pronounced peaks, while energy-based parameter param-215

eters have spread out maximums. Wang-Brown and Fatemi-Socie parameters present similar variation
as a function of θ and φ. That is expected, as both parameters (Eq. 23 and 25) consider the planes of
maximum shear strain amplitude, ∆γ

2 , as critical planes. The difference between the two strain-based
formulations (WB and FS) consists basically in the minimum values obtained with each of them.

For the energy-based formulations, only the SWT and Liu parameters present a symmetrical variation.220

The SWT parameter is always searching for the plane which maximises the normal work. Therefore,
its maximum peaks repeat every 90 degrees, similar to WB and FS parameters. In the case of Liu’s
formulation, Fig. 13 illustrates the sum of normal and shear virtual works and not Liu I or Liu II in
particular. That is exactly why the variations of GSE and GSA are not symmetrical (Figs. 14 and 15).
For GSE and GSA critical planes are the planes which maximise the parameter as a whole, not just the225

maximum shear or normal strain energy density.
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Figure 8: Variation of normal stress with respect to θ and φ. Equi-biaxial condition.

 

Figure 9: Variation of shear stress with respect to θ and φ. Equi-biaxial condition.
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Figure 10: Wang-Brown parameter. Variation with respect to θ and φ. Equi-biaxial condition.

 

Figure 11: Fatemi-Socie parameter. Variation with respect to θ and φ. Equi-biaxial condition.

14



 

Figure 12: Smith-Watson-Topper parameter. Variation with respect to θ and φ. Equi-biaxial condition.

 

Figure 13: Liu parameter. Variation with respect to θ and φ. Equi-biaxial condition.
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Figure 14: GSE parameter. Variation with respect to θ and φ. Equi-biaxial condition.

 

Figure 15: GSA parameter. Variation with respect to θ and φ. Equi-biaxial condition.
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Figure 16: Strain-based parameters. Fatigue life prediction.

 

Figure 17: Energy-based parameters. Fatigue life prediction.
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4.2. Fatigue Life Prediction

After calibrating all the models using material parameters and results available in the literature [33,
40, 46], their performance was assessed using the biaxial test data presented in Tab. 1. Fatigue lives
were calculated using the formulations presented in Eqs. 17 to 37, considering the value of each damage230

parameter on the material plane where they reached their maximum. The results are plotted against the
experimental fatigue lives in Fig. 16 for strain-based approaches, and Fig. 17 for energy-based approaches.
Figure 18 summarize the overall result. The solid black line in the plot represents perfect correlation
between predicted (2Np) and experimental life (2Ne). In contrast, predictions lying above this line
represent non-conservative predictions, and data points below the line represents conservative predictions.235

Further, the dashed lines represent the factor of three scatter bands.

 

Figure 18: Fatigue life prediction with strain and energy-based formulations.

5. Discussion

Considering Fig. 16, which presents the fatigue life prediction for the strain-based parameters by
Fatemi-Socie (FS) and Wang-Brown (WB), it is observed that both parameters present similar predictions
(an expected result as both parameters present similar variations in Figs. 10 and 11). These two criteria240

show their best predictions for the pure shear condition (CX05 and CX11), uniaxial load (CX01 and
CX04) and uniaxial stress (CX07). Despite the good agreement with the pure shear loading case (CX06),
this result is misleading as this was a runout specimen. Their worst predictions are for the equi-biaxial
case (CX02 and CX03), minimum von Mises (CX08), uniaxial equivalent with lower strain range (CX09)
and pure shear with lower stress range (CX10). Nevertheless, both strain-based parameters present good245

correlation, with almost all their predictions within the factor of three scatter bands.
Considering Fig. 17 and the energy-based criteria, best predictions are obtained with the SWT and

Liu parameters. Almost all predictions obtained with SWT and Liu lie within the factor of three scatter
bands. Comparing the two of them, the SWT parameter gives more conservative predictions, which is a
desirable characteristic for the safe design of complex engineering components. On the other hand, better250

agreement with the experimental data is obtained with Liu, despite conservative predictions for the pure
shear cases. Good correlation is also obtained with the GSE and GSA parameters. However, despite the
higher scatter, the GSA is in better correlation with the experimental data, as some of the predictions
obtained with the GSE parameter are over-conservative.
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In an attempt to characterise the fatigue behaviour of Waspaloy under both proportional (in-phase)255

and non-proportional (out-of-phase) loading at room temperature and elevated temperature, Pattison
[21] used a hyperbolic co-tangent to correlate numerous stress-, strain and energy-based parameters to
initiation life. The objective of their research was the assessment of how alternative multiaxial damage
parameters perform as direct replacements to Walker Strain parameter. Similar to the conclusions pre-
sented here, Pattison pointed out that the Liu parameter performed the best in collapsing the fatigue260

data points to the initiation life curve. However, they note that this parameter is not ideal, since there
is no explicit mean stress correction term.

6. Conclusion

Further investigation of the biaxial fatigue behaviour of Waspaloy has concluded that all the strain-
and energy-based formulations assessed give reasonably good correlation for most of the loading cases.265

In particular, better agreement with experimental data has been obtained with the SWT and Liu II
parameter. The Liu II parameter gives particularly good predictions for the low cycle fatigue regime
(< 105 cycles), with slightly higher error for the minimum von Mises loading case. However, for high
cycle fatigue, Liu II gives predictions with significant scatter in results. In contrast, the SWT does not
present as close agreement with the experimental data as the Liu II parameter, but all the predictions270

obtained with the SWT parameter lie on the conservative side of the plot.
Therefore, for the safe design of complex engineering components made of Waspaloy that operate in

the low cycle fatigue regime, and in loading conditions similar to those shown in this work, the Liu II
parameter is recommended. For high cycle fatigue, or more conservative designs the SWT parameter is
recommended.275
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