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Bayesian Multiobjective Optimisation With Mixed
Analytical and Black-Box Functions: Application

to Tissue Engineering
Simon Olofsson , Mohammad Mehrian, Roberto Calandra , Liesbet Geris , Marc Peter Deisenroth ,

and Ruth Misener

Abstract—Tissue engineering and regenerative medicine
looks at improving or restoring biological tissue function
in humans and animals. We consider optimising neotissue
growth in a three-dimensional scaffold during dynamic
perfusion bioreactor culture, in the context of bone tissue
engineering. The goal is to choose design variables that
optimise two conflicting objectives, first, maximising
neotissue growth and, second, minimising operating cost.
We make novel extensions to Bayesian multiobjective
optimisation in the case of one analytical objective function
and one black-box, i.e. simulation based and objective
function. The analytical objective represents operating cost
while the black-box neotissue growth objective comes from
simulating a system of partial differential equations. The
resulting multiobjective optimisation method determines
the tradeoff between neotissue growth and operating cost.
Our method exhibits better data efficiency than genetic
algorithms, i.e. the most common approach in the literature,
on both the tissue engineering example and standard test
functions. The multiobjective optimisation method applies
to real-world problems combining black-box models with
easy-to-quantify objectives such as cost.

Index Terms—Bayesian optimisation, black-box optimi-
sation, multi-objective optimisation, tissue engineering.

I. INTRODUCTION

MODERN developments in obtaining patient-specific
genetic characteristics [1] open up the possibilities of

personalised healthcare, which is expected to greatly improve
the quality and cost-effectiveness of healthcare, as it offers more
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personalised and targeted therapies [2]. Bone tissue engineering
develops methods for healing, improving or replacing damaged
bone tissue. Engineered skeletal tissue has the potential to
treat bone fractures or regenerate tissue after surgical bone
removal [3].

The keys for successful in vivo or in vitro formation of bone
tissue [4], [5] are (i) a vibrant cell population with predictable
in vitro and in vivo behaviour, (ii) carriers and scaffolds for
the cells to grow on, (iii) growth factors that control what cell
types are created, (iv) proper mechanical conditions that do not
put too much stress on the cells, (v) sufficient blood supply to
carry oxygen to the cells and remove waste products. Ensuring
that–or understanding when–all key elements are in place is
a major difficulty in tissue engineering. Neotissue (cells and
their extracellular matrix) generated in vitro has been shown
to hold great potential for use as scaffold material in tissue
engineering [6].

Bioreactors play an important role in clinical applications
of tissue engineering because bioreactors provide controllable
environments for large-scale production of cells or neotissue.
Standardising bioreactor processes may reduce the cost of neo-
tissue production, a necessary condition for the future commer-
cial viability of tissue-engineered products [3], [7].

In silico models help address reproducibility and quality con-
trol issues in in vitro experiments [8]–[15] by revealing bio-
logical insight into neotissue growth inside the bioreactor, and
predicting bioreactor settings optimising those processes. But
in silico models often consist of solving systems of differential
equations with implementations that may be specialised to spe-
cific hardware or software. We treat these in silico models as
black boxes for the purpose of optimisation when we can sim-
ulate reactor conditions but cannot efficiently derive gradient
or Hessian information. Relevant black-box optimisation meth-
ods include genetic algorithms [16], trust-region methods [17],
and Bayesian optimisation [18]–[21]. Black-box methods give
flexibility with respect to the black-box contents. If there are
no restrictions on the black box, the optimisation methods are
equally relevant to in vitro experiments as legacy computer code.

It is often difficult to define what constitutes an optimal so-
lution to a problem as there may be multiple, conflicting objec-
tives. The goal of the optimisation procedure is to find a good
trade-off between costs, e.g. cost of materials, time and nega-
tive side-effects, and rewards, e.g. successful neotissue growth.
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Multi-objective optimisation (MOO) methods explicitly find the
trade-offs between conflicting objectives [22], [23].

This paper considers optimising design variables for neo-
tissue growth on a three-dimensional scaffold in a bioreactor
setting. The problem has two conflicting objectives: (i) max-
imising neotissue growth and (ii) minimising operating cost.
The first objective function is an expensive-to-evaluate black
box. The second objective function is analytical and cheap to
evaluate. Combining analytical and black-box methods is an
active area of research [24], [25]. This manuscript introduces a
method for finding solutions to the MOO problem using a novel
extension of Bayesian MOO methods that exploits the mixed
analytical and black-box natures of the objective functions. We
compare this method to random search and a variety of genetic
algorithms (the most common approach in literature to solving
MOO problems), and demonstrate that our method performs
better (in terms of the required number of function evaluations)
for a collection of test problems as well as for the tissue engi-
neering application. We show how the MOO results can guide
tissue engineering practice.

A limited study on the acquisition function in Sec. II-A was
previously published at a conference [26]. The contribution of
this article is the study of additional acquisition functions, more
significant experimental results, and discussions of the applica-
tions and implications of our method.

II. BACKGROUND

In the following section, we provide background on (A) the
tissue engineering application and multi-objective problem, (B)
Gaussian process regression and Bayesian optimisation, and (C)
multi-objective optimisation.

A. Objective Functions: Tissue Engineering Application

We consider maximising the percentage of a scaffold filled
with neotissue, i.e. the filling, while minimising the amount of
material used by the bioreactor, i.e. the cost.

The filling objective function is a black box, i.e. we cannot
write down an analytical, differentiable expression of the filling
with respect to the inputs. We have an expensive-to-evaluate in
silico partial differential equations (PDE) model of neotissue
growth on a three-dimensional scaffold in a bioreactor setting
(see Fig. 1) [10]–[12].

The PDE model assumes curvature-driven neotissue growth
kinetics [10] with local shear stress effects on the growth
rate [12]. The scaffold geometry and the neotissue filling level
determine the curvature of the neotissue surface. As illustrated
in Fig. 1(c), greater curvature yields a greater growth rate and
zero curvature yields zero neotissue growth velocity [12]. The
medium flow through the bioreactor exerts shear stress on the
neotissue. Some shear stress encourages neotissue growth, but
too much shear stress inhibits it. The Navier-Stokes equation
models the flow in the scaffold void space. The neotissue,
modelled as a homogeneous porous medium with a given per-
meability, exhibits Darcy, i.e. creeping, flow. The shear stress
distribution on the neotissue interface and the flow of nutrients
and waste products change as the scaffold neotissue filling level
changes, which in turn affects the neotissue growth kinetics.

Fig. 1. (a) The experimental bioreactor setup. (b) Cross-section of the
bioreactor chamber, with the scaffold placed in the centre [11]. (c) A
scaffold pore under different neotissue filling levels illustrates how the
neotissue growth rate increases with greater neotissue curvature [10].

The PDE model implementation currently only runs on one
machine. Parallel model evaluations are impossible due to hard-
ware constraints. Legacy in silico models are difficult to main-
tain [27], especially in research settings where long-term code
maintenance typically brings few benefits to the original devel-
oper. We could replicate the existing model, but we estimate
six person-months for recreating and validating the new code.
Instead, we repurpose the existing model.

The PDE model considers several design variables:
� Refreshment period: length of time r between changing

the bioreactor medium.
� Refreshment amount: percentage a of the medium

changed every time r hours.
� Flow rate: rate s at which the medium is pumped through

the bioreactor.
Table I summarises bounds and units for the design variables.

See also Fig. 1(a). We fix the scaffold parameters, e.g. the scaf-
fold shape and pore size [10].
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TABLE I
DESIGN VARIABLES

Fig. 2. Experimental data and model predictions [28].

TABLE II
HUMAN GROWTH FACTORS, THEIR APPROXIMATE COSTS (SIGMA ALDRICH
WEBSITE, 8 MARCH 2017) AND APPROXIMATE CONCENTRATIONS NEEDED

IN THE MEDIUM, BASED ON LITERATURE

We also have a reduced-order, cheap-to-evaluate in silico
ordinary differential equations (ODE) model [28]. The re-
duced model only takes the refreshment period and refreshment
amount as design variables, and assumes a fixed flow rate s.
One model evaluation takes on the order of milliseconds. The
reduced-order model will be used for testing our optimisation
method and comparing its performance to competing methods.
The full PDE and reduced-order ODE models show agreement
with each other and the experimental data (see Fig. 2).

The cost objective function (the cost of the bioreactor
medium) scales linearly with the amount of medium used. We
assume that the medium has an associated cost c� per ml, with
V ≈ 10 ml of the medium in the system at any time, and that the
cost of an experiment is given solely by the amount of medium
used. The medium contains growth factors inherently present
in the foetal bovine serum [29], which, with its cost of around
$0.11/ml (Sigma Aldrich website, 8 March 2017), is the most
expensive component.

However, foetal bovine serum is an animal product, and
therefore problematic in the context of clinical applications.
Chemically defined media are animal-free alternative growth
media consisting of cocktails of various well-known (recombi-
nant versions of) growth factors under well-defined concentra-
tions, generally leading to a cost increase by at least one order
of magnitude. Table II lists some of the required human growth
factors [30], their approximate costs (Sigma Aldrich website,
8 March 2017) and approximations of the concentrations
needed, based on growth factor concentrations studied in

[31]–[34]. Often the growth factor concentrations used in in
vitro experiments will be at least a factor of 2 higher. The scaf-
fold shown in Fig. 1 is 6 mm in diameter and 6 mm in length [11],
and one experiment can require more than 100 ml of medium.
Thus, the cost of materials for growing a human bone graft
of less than 1 cm3 could be hundreds of dollars. This expense
clearly motivates using optimisation to mitigate high costs.

The PDE and ODE models simulate 504-hour (21 days) ex-
periments. Given a refreshment period r, the medium is changed
a discrete number (�504/r�) of times. The cost of one ex-
periment is the sum of the initial cost V · c� and the cost to
change the medium by the refreshment amount a. In total,
c(r, a) = V · c� · (1 + �504/r� · a). For simplicity, the constant
V · c� is ignored, such that c(r, a) = 1 + �504/r� · a ∈ [1, 43].

We could create a single-objective optimisation problem
by setting a monetary value on the neotissue produced in the
bioreactor, and optimise the design variables by maximising the
difference between the monetary reward of the neotissue and
the production cost, e.g. as in growing red blood cells [35], [36].
This would be equivalent to scalarisation, which is described
later in this section. However, the commercial viability of
bone tissue engineering depends on growing high-quality bone
grafts. Therefore, we also want to maximise the filling of the
scaffold. Hence, an MOO approach using a Pareto frontier is
more appropriate.

B. Bayesian Optimisation and Gaussian Processes

We begin by considering the minimisation of a single ob-
jective function f . Bayesian optimisation is a global black-box
optimisation method [18]. It uses function evaluations to con-
struct a probabilistic objective function surrogate model, which
exhibits a higher level of certainty in well-explored regions than
in unexplored regions. Bayesian optimisation does not require
the objective function gradient with respect to its input. Using
a surrogate model, we can compute the optimal choice for the
next function evaluation point. This makes Bayesian optimisa-
tion more data efficient, i.e. it requires fewer function evalu-
ations, than many other optimisation methods. It is therefore
practical to use with objective functions that are expensive to
evaluate. Bayesian optimisation has proven very useful, e.g. in
robotics [37], sensor networks [38] and biology [39].

The typical surrogate model is a Gaussian process. A Gaus-
sian process is a collection of random variables, any finite subset
of which are jointly Gaussian distributed [40]. The random vari-
ables are the values of the objective function. We place a Gaus-
sian process prior GP(μ(·), k(·, ·)) on the unknown function f ,
where μ(·) and k(·, ·) are the mean and covariance functions,
respectively. The Gaussian process prior is fully specified by
μ(·) and k(·, ·).

The Gaussian process prior implies that any finite number
of function values f = [f(x1), . . . , f(xn )]� at points X =
[x1 , . . . ,xn ]� are jointly Gaussian distributed with the func-
tion value f(x∗) at a query point x∗:

[
f

f(x∗)

]
∼ N

([
μ

μ(x∗)

]
,

[
K k∗

k�
∗ k(x∗,x∗)

])
,
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where [μ]i = μ(xi), [k∗]i = k(xi ,x∗) and [K]ij = k(xi ,xj ).
Assume we have observed the function values f at loca-
tions X . Given training data f , X and an unseen test lo-
cation x∗, Gaussian process regression uses Bayes’ theorem
to compute the posterior predictive distribution f(x∗)|f ,X ∼
N (μ∗, σ2

∗ ), where μ∗ = μ(x∗) + k�
∗ K−1(f − μ) and σ2

∗ =
k(x∗,x∗) − k�

∗ K−1k∗. If we have a noisy process, such that
we observe yi = f(xi) + ηi , where ηi ∼ N (0, σ2

η ) are i.i.d.
noise terms, then the posterior predictive mean and vari-
ance are μ∗ = μ(x∗) + k�

∗ (K + σ2
ηI)−1(y − μ) and σ2

∗ =
k(x∗,x∗) − k�

∗ (K + σ2
ηI)−1k∗, respectively.

We assume the black-box objective functions are smooth.
A common choice of covariance function k for smooth latent
functions is the radial basis function with automatic relevance
detection (RBF-ARD) [40]:

k(x,x′) = ρ2 exp
(− 1

2 (x − x′)�Λ−1(x − x′)
)

,

where ρ2 is the signal variance and Λ = diag(λ2
1 , . . . , λ

2
D ),

x ∈ RD , is a diagonal matrix of squared length scales λd . The
hyperparameters (ρ2 , Λ, σ2

η ) are commonly learnt by maximis-
ing the marginal likelihood p(y |X, ρ2 ,Λ, σ2

η ).
One computational bottleneck of Gaussian process models

lies in reoptimising the hyperparameters after new observa-
tions, and inverting the matrix K (or K + σ2

ηI), e.g. by using
its Cholesky decomposition [40]. Retraining the model scales
as O(n3). Only adding an additional observation without re-
optimising the hyperparameters scales as O(n2). Computing
the Gaussian process posterior predictive distribution for M
test points also requires several matrix-vector multiplications
and scales as O(Mn2). Sec. IV will discuss how our proposed
methodology depends on the trade-off between evaluating the
black-box function, evaluating the posterior distribution, and
updating the Gaussian process surrogate model.

In Bayesian optimisation, the optimal next point to query
(in the search for the minimum of the objective function) is
determined by maximising an acquisition function [41]. The ac-
quisition function has a built-in trade-off between exploration
and exploitation, i.e. trying to find potential optima in unex-
plored regions versus exploiting already existing information
about where a minimum might be.

Assume the conditional distribution f(x∗)|y,X ∼
N (μ∗, σ2

∗ ) is given for a point x∗ and let μ̃ = (ymin − μ∗)/σ∗,
where ymin = mini yi is the best value of f observed so far.
Common acquisition functions for single-objective Bayesian
optimisation are confidence bounds [42], probability of
improvement [18] P (f(x∗) < ymin) = Φ (μ̃), and expected
improvement [43] E[ymin − f(x∗)] = σ∗ (μ̃Φ(μ̃) + φ(μ̃)),
where φ(·) is the zero-mean Gaussian probability density
function with unit variance and Φ(·) the corresponding
cumulative distribution function. Fig. 3 shows an example
of the expected improvement acquisition function, where the
posterior predictive distributions are computed given three
observations of an unknown objective function.

We optimise the acquisition function through multi-start gra-
dient descent: The acquisition function is evaluated at a large
number, in our case 106 , of random initial locations. Out of

Fig. 3. The top graph shows the posterior predictive distribution at
each point, with posterior mean (solid line) and two standard deviations,
given three observations (dots) of an unknown function (dashed line).
The bottom graph shows the expected improvement acquisition function,
which is maximised in order to find the optimal next query point in the
search for the minimum of the objective function.

the initial set of locations, the locations that generated the best
acquisition function values form a smaller subset of locations
that are chosen as starting locations for gradient descent. The
objective function is evaluated at the location of the optimum
found through optimising the acquisition function, after which
we update the Gaussian process surrogate model with the new
data point.

C. Multi-Objective Optimisation

MOO aims to compromise multiple conflicting objectives.
Assume a D-dimensional input space and nf conflicting ob-
jective functions fi : RD → R, i = 1, . . . , nf , where we are
interested in finding the optimal input arg minx{fi(x)}. There
are two different ways of finding an optimal trade-off between
the objective functions [22]: Scalarisation, where the trade-off
is made a priori, and the Pareto method, where the trade-off is
made a posteriori.

1) Scalarisation: The first method for dealing with mul-
tiple, conflicting objectives is to create a single, aggregated
objective function fs . A common example is a weighted sum1

fs(x) =
∑

i ωifi(x) [44]. This function can then be minimised
to find a trade-off solution to the original problem. Scalarisation
is easy to implement. But choosing the weight coefficients {ωi}
introduces a new problem as they have to be chosen a priori, of-
ten with incomplete understanding of the system. Additionally,
an optimal solution for a specific set of weights yields little or no
information about other possible optimal solutions for different
sets of weights. This approach has been used in previous MOO
work integrating analytical and black-box functions [45].

2) Pareto Method: This method aims to finds the frontier of
Pareto-optimal points in objective space. Pareto-optimality is a
state in which one objective function cannot be improved with-
out impairing another [46]. The Pareto frontier is commonly

1Also known as a linear combination, or convex combination if
∑

i
ωi = 1,

∀i ωi ≥ 0).
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Fig. 4. (a) Approximate Pareto frontier (line) given by the non-
dominated observations (black dots). (b) Convexity and concavity in
a Pareto frontier. The section a–b is concave, and the section b–c is
convex.

approximated using the set of non-dominated2 function obser-
vations (see Fig. 4(a)). Once an approximate Pareto frontier
has been computed, the user decides which optimum, i.e. what
trade-off, best suits the particular application.

Weighted sum scalarisation suffers from the limitation that it
can only converge on trade-offs lying on convex3 sections of the
Pareto frontier (see Fig. 4(b)) [47]. If the entire Pareto frontier is
concave, only the extreme points at the boundaries can be found
using weighted sum scalarisation.

A problem with the Pareto method is the difficulty to visu-
alise the Pareto frontier for more than three objective functions
(nf > 3), which makes it difficult for the user to choose an op-
timal trade-off. An advantage of the Pareto method over scalar-
isation is that restrictions imposed on the range of one objective
function immediately translate into restrictions on the range of
optimal values that can be achieved for the other objective(s).
This paper uses the Pareto method.

III. METHOD

The neotissue growth application has two conflicting ob-
jectives: maximising filling, i.e. minimising negative filling,
and minimising cost. We can compute the probability of an
input x resulting in an observation y = (y1 , y2). The cost
function f1(x) is deterministic, whereas the filling function
f2(x) ∼ N (μ2(x), σ2

2 (x)) is modelled by a Gaussian process.
This means the joint probability is p(y|x) = δ(y1 − f1(x)) ·
p(y2 |x), where δ(·) is the Dirac delta function.

For notational convenience we drop the dependency on x of
f1 , μ2 and σ2

2 from here on. We also define the functions

φ̂(γ1 , γ2) = φ
(

γ1 −μ2
σ2

)
− φ

(
γ2 −μ2

σ2

)
,

Φ̂(γ1 , γ2) = Φ
(

γ1 −μ2
σ2

)
− Φ

(
γ2 −μ2

σ2

)
,

2Given two observations y(1) , y(2) ∈ Rn f , we say that y(1) is dominated

by y(2) if for all j = 1, . . . , nf it holds that y
(1)
j ≥ y

(2)
j , and for at least one

j it holds that y
(1)
j > y

(2)
j .

3For the case of two objective functions (nf = 2), the Pareto frontier is con-
vex for sections with a positive second derivative d2 f2 /df 2

1 > 0, and concave
for sections with d2 f2 /df 2

1 < 0.

TABLE III
SUMMARY OF NOTATION

Fig. 5. Expected hyper-volume improvement, EHVI. (a) Area improve-
ment (grey region) a new observation (y1 , y2 ) would yield. (b) Division
of region below the approximated Pareto frontier into rectangles Cij to
integrate over in Eq. (2).

as differences between zero-mean, unit variance probability den-
sity and cumulative distribution functions, respectively.

We assume that an approximated Pareto frontier Pa =
{rj} = {(rj,1 , rj,2)} from np non-dominated observations is
given, and that Pα is sorted, i.e. rj,1 < rj+1,1 and rj,2 > rj+1,2
for all j = 1, . . . , np .

There are many different acquisition functions for Bayesian
MOO, e.g. expected hyper-volume improvement (EHVI) [48],
expected maximin improvement (EMmI) [49], probability of
improvement and expected Euclidean improvement [50], pre-
dictive entropy search [51], and uncertainty reduction [52].
This section presents novel closed-form expressions, given one
black-box and one analytical objective function, for the EHVI
and EMmI acquisition functions. Similar expressions may be
derived for other acquisition functions. Table III summarises
some mathematical notation.

A. Expected Hyper-Volume Improvement (EHVI)

The EHVI [48] EHI(x) for input x is defined as:

EHI(x) =
∫

IV (y,Pα )p(y|x)dy , (1)

where the function IV (y,Pα ) = Vol(Pα ∪ y) − Vol(Pα ) is the
Lebesgue volume improvement that a point y would yield to the
area bounded by Pα (see Fig. 5(a)), calculated with respect to
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some reference point. Note that IV (y,Pα ) = 0 if y is dominated
by any point in Pα . For the two-dimensional case, Eq. (1) is the
expected area improvement.

We divide the region below Pα into rectangles Cij defined
by corners (ri,1 , rj,2) and (ri+1,1 , rj+1,2), as in Fig. 5(b). Sur-
rogate points r0 and rnp +1 act as rectangle corner points on the
available objective space. The reference point for calculating
Vol(·) becomes (rnp +1,1 , r0,2).

Now the EHVI in Eq. (1) can be rewritten as a sum over all
rectangles, i.e.:

EHI(x) =
np∑
i=0

np∑
j=i

∫
y∈Ci j

IV (y,Pα )p(y|x)dy . (2)

Since y ∈ Cij is in the region below Pα , it will never be
dominated by any point in Pα , but will instead dominate
existing observations. The set of non-dominated points in
(Pα ∪ y) is {r0 , . . . , ri ,y, rj+1 , . . . , rnp +1}. Now let Vn =∑n

k=1(rnp +1,1 − rk,1)(rk−1,2 − rk,2) denote the area bounded
by the first n observations in Pα , with V0 = 0, and Vnp

=
Vnp +1 = Vol(Pα ). This way, Vol(Pα ∪ y) becomes:

Vol(Pα ∪ y) = Vol(Pα ) + Vi − Vj+1

+ (rnp +1,1 − y1)(ri,2 − y2)

+ (rnp +1,1 − rj+1,1)(y2 − rj+1,2) ,

and we see that the area improvement IV (y,Pα ) for y ∈ Cij

can be rewritten as:

IV (y,Pα ) = Vi − Vj+1 + (rnp +1,1 − y1)(ri,2 − y2)

+ (rnp +1,1 − rj+1,1)(y2 − rj+1,2) . (3)

In our application, one objective function is deterministic, hence
p(y|x) = 0 for all y1 �= f1 . Let h be the integer index such
that 0 ≤ h ≤ np and rh,1 < f1 ≤ rh+1,1 , which means Eq. (2)
simplifies to:

EHI(x) =
np∑

j=h

∫ rj , 1

rj + 1 , 1

IV ((f1 , y2),Pα )p(y2 |x)dy2 . (4)

Inserting the expression in Eq. (3) into Eq. (4) and integrating
out y2 yields the final expression:

EHI(x) =
np∑

j=h

[
Φ̂(rj,2 , rj+1,2)

(
Vh − Vj+1 + μ2(f1 − rj+1,1)

+ rh,2(rnp +1,1 − f1) − rj+1,2(rnp +1,1 − rj+1,1)
)

− σ2(f1 − rj+1,1)φ̂(rj,2 , rj+1,2)
]
. (5)

Eq. (5) is differentiable with respect to f1 , μ2 and σ2 , so we can
use gradient-based optimisation to maximise the EHVI.

B. Expected Maximin Improvement (EMmI)

The modified maximin fitness function [53], developed for
MOO using genetic algorithms, is defined as:

IM (x) � − max
j=1,...,np

min
i=1,...,nf

(fi(x) − rj,i) . (6)

Fig. 6. Expected maximin improvement, EMmI. (a) Pα is given by
observations r1 , r2 , and r3 . The point f(x1 ) = (f1 (x1 ), f2 (x1 )) has
a larger smallest distance to the frontier than f(x2 ), which means that
f(x1 ) yields a larger maximin improvement. (b) Division of regions to
integrate over in Eq. (8). The dotted lines correspond to the integration
limits in Eq. (9).

It is a measure of the distance from the point f(x) to the approx-
imated Pareto frontier, and for best performance requires that
the scales of the different objective functions are comparable.
Fig. 6(a) illustrates the modified maximin improvement func-
tion. For Bayesian MOO, Svensson and Santner [49] propose
using the (truncated) EMmI:

EMI(x) �
{

E [IM (x)|Pa ] , if IM (x) ≥ 0 ,

0 , otherwise,
(7)

as the acquisition function. They show that for the case of two
objective functions (nf = 2), Eq. (7) is equivalent to:

EMI(x) =
2∑

i=1

np∑
j=1

I(x, i, j) , (8)

where the function I(x, i, j) is the integral:

I(x, i, j) =
∫ yi =rj , i

yi =−∞

∫ yu p (i)

y l ow (i)
(rj,i − yi)p (y|x) dy . (9)

The integration limits, illustrated in Fig. 6(b), are yup(i) =
rh(i,j ),k(i) − rj,i + yi and ylow (i) = rj,k(i) − rj,i + yi , where
k(1) = 2, k(2) = 1, h(1, j) = j − 1, h(2, j) = j + 1 and
rnp +1,1 = r0,2 = ∞.

In our setting of one analytical and one black-box objective
function, the integral I(x, 1, j), where i = 1, simplifies to:

I(x, 1, j) = 1f1 ≤rj , 1

∫ y
( 1 )
u p

y
( 1 )
low

(rj,1 − f1)p (y2 |x) dy2

= 1f1 ≤rj , 1 (rj,1 − f1)Φ̂(y(1)
up , y

(1)
low ) , (10)

where y
(1)
up = rj−1,2 − rj,1 + f1 and y

(1)
low = rj,2 − rj,1 + f1 ,

and 1S is 1 if S is true and 0 otherwise. Similarly, the
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Fig. 7. Reduced-order ODE model. Plots (a) and (b) show the approximated Pareto frontiers (blue line) from observations (blue dots) using the
EHVI and EMmI acquisition functions, respectively, and the true Pareto frontier (dotted red line). The same 10 random initial points were used for
(a) and (b), after which 25 additional points were chosen by the respective acquisition functions. Plot (c) shows the additional 25 chosen query
points in variable space.

integral I(x, 2, j), where i = 2, simplifies to:

I(x, 2, j) = 1f1 ≤rj + 1 , 1

∫ y
( 2 )
u p

y
( 2 )
low

(rj,2 − y2)p (y2 |x) dy2

= 1f1 ≤rj + 1 , 1 (rj,2 − μ2)

·
(
Φ̂(y(2)

up , y
(2)
low ) − σ2

2 φ̂(y(2)
up , y

(2)
low )

)
, (11)

where y
(2)
up = min(rj,2 , rj,2 − rj,1 + f1) and y

(2)
low = rj,2 −

rj+1,1 + f1 . Thus, we have derived a closed-form expression
for the EMmI, differentiable with respect to f1 , μ2 and σ2 .

C. Other Acquisition Functions

Similar expressions to Eq. (5), (10) & (11) can be derived for
other acquisition functions, e.g. the probability of improvement
and expected Euclidean improvement [50]. For two objective
functions, the probability of improvement PI(x) is:

PI(x) =
np∑
i=0

np∑
j=i

∫
y∈Ci j

p(y|x)dy .

For one analytical objective function f1 and one black-box ob-
jective function f2 ∼ N (μ2 , σ

2
2 ), using a similar but simplified

approach to the one described in Sec. II-A, PI(x) becomes:

PI(x) =
np∑

j=h

Φ̂(rj,2 , rj+1,2) = Φ̂(rh,2 , rnp +1,2) . (12)

The probability of improvement may not encourage uniform
Pareto frontier exploration since PI(x) does not consider the
expected amount of improvement. One way to try to overcome
this is to use the expected Euclidean improvement [50]:

EEuc.(x) = PI(x)‖ŷ(x) − r∗‖2 , (13)

where r∗ = arg minr∈Pα
‖[f1(x∗), μ2(x∗)]� − r‖2 , with x∗ =

arg max PI(x), and:

ŷ(x) =
1

PI(x)

np∑
i=0

np∑
j=i

∫
y∈Ci j

y p(y|x)dy .

For one analytical and one black-box objective function, Eq. (13)
can be simplified using ŷ1(x) = f1/PI(x) and:

ŷ2(x) = μ2 − σ2

(
φ̂(rh,2 , rnp +1,2)/Φ̂(rh,2 , rnp +1,2)

)
.

For predictive entropy search [51], the acquisition function is in
general intractable, even for single-objective optimisation. But
similar expressions combining analytical and black-box objec-
tives may be developed for other acquisition functions.

IV. RESULTS

This section presents the results of MOO for the neotissue
growth problem with both the ODE and the PDE model. It also
introduces performance metrics enabling a comparison of the
EHVI and EMmI acquisition functions and competing MOO
methods, for a set of MOO test problems.

A. Results for the Reduced-Order ODE Model

The reduced-order ODE model is not guaranteed to mimic
the full PDE model but it is useful for testing possible algo-
rithms before moving to the expensive-to-evaluate model [28].
Recall that the objective is to maximise filling and minimise
cost. We compute approximate Pareto frontiers using the EHVI
(Fig. 7(a)) and EMmI (Fig. 7(b)) acquisition function, with 10
random initialisation points after which 25 additional points are
chosen by the optimisation algorithm.

Fig. 7 shows that the query points chosen by EHVI and
EMmI favour different variable space regions. EHVI selects
more points with higher filling and higher cost (flat part of the
frontier), whereas EMmI selects more points with a medium fill-
ing and low cost (steeply increasing part of the frontier). EHVI
chooses points along the flat part of the frontier because a small
filling improvement may yield a large area improvement.

We compute a probabilistic Pareto frontier [54]–[56] by map-
ping a grid of variable points through the cost function and the
filling function posterior distribution. We determine the non-
dominated sampled point set by letting a point with cost f

(1)
1
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Fig. 8. Reduced-order ODE model: The true Pareto frontier (dotted red line), approximated Pareto frontier (dashed blue line) from observations
(blue dots), and probabilistic approximation of the Pareto frontier with mean (green line) and some measure of its uncertainty, with (a) the initial
10 data points, and (b), (c) after additional points to query have been chosen by using the EMmI acquisition function.

and mean filling μ
(1)
2 dominate a point with cost f

(2)
1 and mean

filling μ
(2)
2 if f

(1)
1 < f

(2)
1 and μ

(1)
2 > μ

(2)
2 .

Fig. 8 shows an example evolution of a subregion of the prob-
abilistic Pareto frontier. In this example, the optimisation starts
with 10 initial data points, and further points are chosen using
the EMmI acquisition function. The probabilistic Pareto fron-
tier approaches the true Pareto frontier. As the number of data
points grows, the probabilistic frontier approximates the true
Pareto frontier better than the approximation from observations
alone.

B. Performance Metrics

To compare algorithm performance, we use three perfor-
mance metrics. The first metric is the Euclidean generational
distance (GD) [57]:

GD(Pa) = 1
np

np∑
i=1

min
r( t )∈Pt r u e

‖ri − r(t)‖2 , (14)

which measures the average Euclidean distance between points
ri ∈ Pα to the true Pareto frontier Ptrue .

The second performance metric is the maximum Pareto fron-
tier error (MPFE) [57]:

MPFE(Pa) = max
p( t )∈Pt r u e

min
i

‖ri − r(t)‖2 , (15)

a measure of the largest approximation error introduced by us-
ing Pα to approximate Ptrue , defined as the greatest Euclidean
distance between any point in Pα to the true Pareto frontier
Ptrue .

The third metric is the volume ratio (VR):

VR(Pa) = − log
(
1 − Vol(Pa )

Vol(Pt r u e )

)
. (16)

between (i) the area (or hypervolume) bounded by the approx-
imated Pareto frontier Pα and (ii) the area bounded by the true
Pareto frontier Ptrue .

The logarithm in Eq. (16) distinguishes the methods’ perfor-
mance for volume ratios close to 1, which frequently occur in
our tests. Increasing the ratio Vol(Pa)/Vol(Ptrue) from 99%
and 99.9% is more significant than increasing it from 19% and

19.9%. Good optimisation method performance, in terms of pro-
ducing a good approximate Pareto frontier Pa , is indicated by
small GD and MPFE metrics and large VR metric. We approx-
imate the true Pareto frontier Ptrue for each problem through
exhaustive grid search.

C. Test Problems

We additionally consider five test problems based on the fol-
lowing criteria:

� There should be exactly two objective functions for each
problem, and at least one of them has to be analytical.

� The optimisation problems should be unconstrained, but
with finite (hyper-rectangular) search domains.

� The Pareto frontiers should be different: concave, convex,
both concave and convex, and discontinuous.

The first test problem is Fonzeca & Fleming’s problem [58],
where the conflicting objective functions are:⎧⎪⎪⎨
⎪⎪⎩

f1(x) = 1 − exp
(
−∑D

i=1

(
xi − 1/

√
D
)2
)

,

f2(x) = 1 − exp
(
−∑D

i=1

(
xi + 1/

√
D
)2
)

,

(17)

where xi ∈ [−4, 4] for i = 1, . . . , D, and f1(x), f2(x) ∈ [0, 1],
and we choose D = 2. Fonzeca & Fleming’s test problem has
a concave Pareto frontier. The output function bounds are used
to compute hyper-volume improvement and performance met-
rics. The second test problem is Schaffer’s two-objective prob-
lem [59]: {

f1(x) = x2 ,

f2(x) = (x − 2)2 ,

where x ∈ [−3, 3], which implies output bounds f1(x) ∈ [0, 9]
and f2(x) ∈ [0, 25]. Schaffer’s test problem has a convex Pareto
frontier. The third test problem is Kursawe’s problem [60]:⎧⎨
⎩ f1(x) =

∑D−1
i=1

[
−10 exp

(
−0.2

√
x2

i + x2
i+1

)]
,

f2(x) =
∑D

i=1

[|xi |0.8 + 5 sin
(
x3

i

)]
,

(18)
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Fig. 9. True Pareto frontiers for the different test problems (D = 2 except where noted otherwise). (a) Fonzeca & Fleming (D ≥ 2). (b) Schaffer.
(c) Kursawe (D = 3). (d) S−. (e) S+ .

which has a discontinuous Pareto frontier. The input bounds
are xi ∈ [−5, 5] for i = 1, . . . , D and we choose D = 3,
which yields approximate output bounds f1(x) ∈ [−20,−4]
and f2(x) ∈ [−12, 25]. The fourth and fifth test problems, con-
structed with the aim of a continuous Pareto frontier with both
convex and concave section, are defined as:

{
f1(x) = x1 ,

f2(x) = 10 − x1 + x2 ± sin(x1) ,

and called S− and S+ depending on the sign in front of the
sine-term in f2 . Problem S− has two convex sections with a
concave section in-between, whereas S+ has two concave sec-
tions with a convex section in-between. For both S− and S+ , the
two-dimensional inputs have ranges x1 ∈ [0, 10] and x2 ∈ [0, 2],
which yields outputs with approximate domains f1(x) ∈ [0, 10]
and f2(x) ∈ [−1, 12]. Fig. 9 shows the Pareto frontiers for all
test problems.

The acquisition functions derived in Sec. II require one an-
alytical and one black-box objective function. Therefore, for
Bayesian MOO of each test problem, we assume that f1 is an
analytical function and f2 is a black box.

D. Comparison to Competing Methods

This section compares the EHVI and EMmI acquisition func-
tions and competing MOO methods. The first competing method
is random search, where we uniformly sample input values for
which to evaluate the objective functions. The second compet-
ing method is genetic algorithms, commonly used for MOO
in biomedical engineering, e.g. [61], [62]. We consider the
algorithms: NSGA-II, NSGA-III, EpsMOEA, GDE3, SPEA2,
MOEAD, OMOPSO, SMPSO, CMAES, IBEA, PAES, PESA2,
as implemented in the Python package Platypus [63]. We use
default parameter values for all genetic algorithms, with 10
outer divisions for NSGA-III and ε = [1, 1] for EpsMOEA and
OMOPSO.

For each test problem, as well as for the optimisation of the
ODE model for neotissue growth, the Bayesian optimisation al-
gorithms are given 10 random initial observations after which
the acquisition functions run for 50 iterations. The genetic al-
gorithms and random search run for 60 function evaluations.
Performance metrics are computed after each function evalu-
ation. This is repeated 25 times, with new random seeds for

all methods, after which the average performance metrics are
computed for each algorithm.

Table IV compares the average values (with standard error) of
the performance metrics at initialisation (after 10 function eval-
uations) and after 10, 25 and 50 additional function evaluations.
For each performance metric, the first two columns are the aver-
age performance metrics for EHVI and EMmI, respectively. The
third column for each performance metric is the best average
value (with standard error) achieved by any of the competing
genetic algorithms and random search.

We see from Table IV that, with the exception of some in-
stances in the MPFE column, at least one (and often both) of the
Bayesian optimisation methods perform better than all compet-
ing methods (genetic algorithms and random search). In Fig. 10,
we display the learning curves for the tissue engineering appli-
cation using the reduced-order ODE model. Learning curves for
the test problems can be found in the supplementary material.
The curves in Fig. 10 are typical for the difference between the
different MOO algorithms, in that the Bayesian MOO methods
perform better than the competition for the GD and VR metrics,
and similar to (or better than) the competing methods for the
MPFE metric.

E. Scaling to Higher Dimensions

This section compares the Bayesian MOO methods versus
the genetic algorithms for test problems of higher dimension
D. Fonzeca & Fleming’s Eq. (17) and Kursawe’s Eq. (18) are
defined for D ≥ 2, so we compare using these test problems.

Consider D ∈ {5, . . . , 20, 25, 30}. The data needed for a
“good” Pareto frontier approximation may increase with D.
Therefore, we choose to begin each Bayesian MOO experi-
ment with N0 = 10 + D initial, uniformly-sampled data points
and then select N = 30 + 10D additional data points. The ge-
netic algorithms and random search run for N0 + N iterations.
Defining PA

a,j,i as the approximate Pareto frontier produced by
algorithm A in experiment j using the N0 + i first observations,
we compute the average metrics:

MA ,i
=

1
J

J∑
j=1

M(PA
a,j,i) ,

of J = 100 experiments, with M ∈ {GD, MPFE, VR} de-
fined in Eqs. (14)–(16). To present the results, we redefine the
metrics as the difference between the average performances of
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TABLE IV
COMPARISON OF THE BAYESIAN MOO METHOD WITH EHVI AND EMMI FUNCTIONS, AND COMPETING MOO METHODS, AT THE START OF THE TESTS

(10 FUNCTION EVALUATIONS) AND AFTER 10, 25, AND 50 ADDITIONAL FUNCTION EVALUATIONS. AVERAGE VALUES (WITH STANDARD ERROR)
ARE SHOWN FOR THREE DIFFERENT PERFORMANCE METRICS: GD, MPFE, AND VR

Bold font denotes the best average performance.

Fig. 10. Reduced-order ODE model: Performance metric learning curves for MOO using Bayesian optimisation with the EHVI and EMmI acquisition
functions, random search, and genetic algorithms (GAs). A good approximate Pareto frontier has small GD and MPFE metrics and high VR metric.

algorithm A compared to random search R, summed over all
iterations:

GDA=
1
N

N∑
i=1

(
GDR ,i

− GDA ,i

)
, (19)

MPFEA=
1
N

N∑
i=1

(
MPFER ,i

− MPFEA ,i

)
, (20)

VRA=
1
N

N∑
i=1

(
VRA ,i

− VRR ,i

)
, (21)

Note: larger, positive values for the metrics in Eqs. (19)–(21)
indicate better performance than random search.

As we scale up the dimensionality for Fonzeca & Fleming’s
test problem, performance deteriorates for all algorithms. The
performance of the Bayesian optimisation methods and the ge-
netic algorithms are equally poor, and effectively indistinguish-
able from that of the random search.

For Kursawe’s test problem (Fig. 11), the Bayesian methods
outperform both random search and the genetic algorithms on
metrics GDA and VRA . Digging deeper into Kursawe’s test

problem, the Bayesian methods’ performance stays relatively
stable on GDA and VRA for large D, while random search
and the genetic algorithms degrade with increasing dimension
D. Metric MPFEA has large standard errors, i.e. the mean
fluctuates a lot, making it difficult to derive conclusions about
Kursawe’s test problem from MPFEA .

F. Result for PDE Model

Sec. III-D shows no large performance difference between
the EHVI and EMmI acquisition functions for the test problems.
We expect the full PDE model to have a concave Pareto frontier
resembling that of the reduced-order ODE model in Figs. 7
& 8. Our interpretation is that EMmI performs better for the
reduced-order ODE model, and that it chooses to explore less in
the region with a high operating cost. EMmI also out-performed
EHVI for the concave Fonzeca & Fleming test problem, so we
choose the EMmI acquisition function for optimising the full,
expensive-to-evaluate PDE.

The full PDE model takes the refreshment period, refreshment
amount and flow rate as design parameters. There are 8 data
points from past model evaluations (used e.g. for validating
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Fig. 11. Kursawe’s test problem in high dimension D. Plotted are the means with standard error. Well-performing methods have larger metrics.

Fig. 12. Approximated Pareto frontier resulting from Bayesian MOO of
the full, expensive-to-evaluate PDE model, using the EMmI acquisition
function.

the reduced-order model) that we use as our initial data set.
The EMmI acquisition function chooses 14 additional points to
evaluate, with computations running from 12 December 2015
until 19 February 2016. As mentioned in Sec. I-A, despite our
best efforts, parallel model evaluations are not possible (the
server runs out of memory and the computations crash).

Fig. 12 shows the resulting approximated Pareto frontier. Our
initial data set already contained a point (top left, roughly 4
units’ cost and 80 % filling) on the Pareto frontier yielding a
good trade-off between cost and scaffold filling. In the bottom
left of Fig. 12, the surrogate model has also explored regions
where it overestimated the expected filling at a low cost.

V. DISCUSSION

Single-objective scaffold filling maximisation would lead
to frequent medium replacement and therefore unrealistically
high operating costs. Incorporating cost minimisation shows the
trade-off between scaffold filling and culture cost. Fig. 12 clearly
indicates that there is a refreshment regime beyond which the
amount of filling is hardly increasing whilst the cost is increasing
dramatically. Based on these in silico results, new experiments
should be set up investigating the culture regimes that are close
to the optimal point in the top left of the Pareto frontier and
compare them to (new or historic) experiments on other Pareto
frontier regimes.

This manuscript develops novel extensions of acquisition
functions EHVI and EMmI for Bayesian MOO of one black-
box and one analytical objective function. The Bayesian op-

timisation method outperforms twelve state-of-the-art genetic
algorithms for the tissue engineering application as well as for
a set of test problems. These results demonstrate successful ex-
ploitation of problems combining both black-box and analytical
objective functions.

Our positive results depend on the data-efficient nature of
Bayesian optimisation, which requires relatively few function
evaluations. Our working assumption is that the limiting step
is the computational cost of evaluating the black-box objective
function, i.e. that the computational cost of training the Gaus-
sian process surrogate model and maximising the acquisition
function is comparatively negligible. When maximising the
acquisition function, the major computational cost comes
from the large number M of Gaussian process predictions.
Maximising the acquisition function scales as O(Mn2), with
n the number of training data points and M � n, whereas
training the surrogate model scales as O(n3). Our working
assumption is valid for the full, expensive-to-evaluate PDE
model which inspires this paper. However, for problems where
training the surrogate model and/or evaluating the posterior
predictive distribution is more expensive than evaluating the
black-box function, genetic algorithms and random search will
be able to explore the variable space much quicker (in terms
of wall clock time) than Bayesian optimisation, giving them an
advantage.

Gaussian processes typically do not scale well to higher di-
mensions due to the curse of dimensionality – the training data
needed for surrogate models may grow exponentially with the
number of dimensions. But Sec. III-E shows that the Bayesian
optimisation methods scaled either (i) as well (or poorly) as or
(ii) better than random search and genetic algorithms with de-
fault parameter settings for two test problems with dimensions
up to D = 20.

The Pareto frontier of the neotissue growth problem with
the reduced-order ODE model has both convex and concave
sections, making optimisation through scalarisation, e.g. by us-
ing a weighted sum, unattractive for the full PDE model, since
scalarisation may not be able to capture all optima. The Pareto
frontier also yields an understanding of the interaction between
the conflicting objectives, making an a posteriori trade-off de-
cision preferable to an a priori one.

We showed in Sec. III-A that constructing a probabilistic
surrogate model of the expensive black box also enables us to
construct a probabilistic Pareto frontier. This provides a measure
of confidence for selecting optima in unexplored regions of the
variable space. Other MOO methods, e.g. genetic algorithms
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and random search, do not provide any measure of confidence
for selecting unexplored optima.

Combining expensive-to-evaluate black-box models with
easy-to-quantify objectives like cost is common in the life sci-
ences and engineering. The benefit of Gaussian processes is
that they act as cheap simulators and allow us to treat black
boxes almost like analytical functions, whilst providing us with
confidence bounds. Note that the choice of Gaussian process
prior is important: Most off-the-shelf covariance functions make
explicit assumptions about the smoothness of the underly-
ing function [40], but there exist methods to overcome these
assumptions, e.g. [64].

Tissue engineering has come a long way in the past decade,
and tissue-engineered products are finding clinical use [65].
However, scaling up production introduces new problems, many
of which have in common that they require optimisation of con-
flicting black-box and easy-to-quantify, analytical objectives.
The Bayesian MOO method presented in this paper puts no re-
strictions on the contents of the black box, which makes the
method equally useful for problems involving in vitro experi-
ments as legacy computer code.

VI. CONCLUSIONS

We have proposed a method for exploiting one black-box and
one analytical objective for Bayesian MOO, where the black-
box function is expensive to evaluate. The Bayesian method
outperforms competing MOO methods for a diverse set of test
problems and for a tissue engineering application. Given the
Gaussian process surrogate model, which we construct of the
black box during the Bayesian optimisation, we infer a prob-
abilistic Pareto frontier that discriminates optimal solutions all
across the variable space, with some measure of their uncer-
tainty. The results show that the Bayesian multi-objective op-
timisation method is highly applicable to real-world problems
combining black-box models with easy-to-quantify objectives
like cost. The acquisition functions have been implemented in
python and made available on GitHub [66].
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