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One-sentence summary: 
We discovered an energetic tidal disruption event with an expanding radio jet and most 
of its energy radiated in the infrared. 
 
Tidal disruption events (TDEs) are transient flares produced when a star is ripped 
apart by the gravitational field of a supermassive black hole (SMBH). We have 
observed a transient source in the western nucleus of the merging galaxy pair Arp 299 
that radiated >1.5×1052 erg in the infrared and radio, but was not luminous at optical or 
X-ray wavelengths. We interpret this as a TDE with much of its emission re-radiated at 
infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain 
the difference between theoretical predictions and observed luminosities of TDEs. The 
radio observations resolve an expanding and decelerating jet, probing the jet formation 
and evolution around a SMBH. 
 
 
 
 
 



 

The tidal disruption of stars by supermassive black holes (SMBH) in the nuclei of galaxies 
was predicted theoretically thirty years ago (1-2). In a tidal disruption event (TDE), roughly 
half of the star’s mass is ejected whereas the other half is accreted onto the SMBH, 
generating a bright flare that is normally detected at X-ray, ultraviolet (UV), and optical 
wavelengths (3-5). TDEs are also expected to produce radio transients, lasting from months 
to years and including the formation of a relativistic jet, if a fraction of the accretion power is 
chanelled into a relativistic outflow (6). TDEs provide a means of probing central black holes 
in quiescent galaxies and testing scenarios of accretion onto SMBHs and jet formation (3,6). 

On 2005 January 30, we discovered a bright transient in the near-infrared (IR) (7) 
coincident with the western nucleus B1 (Fig. 1) of the nearby [44.8 Mpc (7)] luminous 
infrared galaxy (LIRG) Arp 299. In galaxy mergers like Arp 299, large amounts of gas fall 
into the central regions, triggering a starburst. The long-term radio variability (8) and the IR 
spectral energy distribution (SED) (9) indicate a very high core-collapse supernova (SN) rate 
of ~0.3 yr-1 within the B1 nucleus. The B1 region also harbors a Compton-thick active 
galactic nucleus (AGN) that has been seen directly only in hard X-rays (10). This is 
consistent with an extremely high extinction AV of ~ 460 magnitudes through an almost edge-
on AGN torus (11). Galaxy mergers like Arp 299 are expected to have TDE rates several 
orders of magnitude higher than in field galaxies, albeit for relatively short periods of time 
[~3×105 yr (12)].  

The transient source (henceforth Arp 299-B AT1) was discovered as part of a near-IR 
(2.2 μm) survey for highly obscured SNe in starburst galaxies (13). Over the following years 
it became luminous at IR and radio wavelengths, but was much fainter in the optical (7), 
implying substantial extinction by interstellar dust in Arp 299. Our follow-up observations 
show that the nuclear outburst had a peak brightness comparable to the entire galaxy nucleus 
at both near-IR and radio wavelengths (Fig. 4; 8). Based on the energetics and multi-
wavelength behavior of Arp 299-B AT1 over a decade of observations (Figs. 1-3), two broad 
scenarios to explain its origin are plausible: (i) an event unrelated to the SMBH, such as an 
extremely energetic SN, or a gamma-ray burst; or (ii) accretion-induced SMBH variability, 
such as an AGN flare, or a TDE. 

High angular resolution [100 milliarcseconds (mas)], adaptive optics assisted, near-IR 
imaging observations from the Gemini-North telescope (7) show that Arp 299-B AT1 
remained stationary and coincident (within 37 mas, corresponding to ~8 pc projected 
distance) with the near-IR K-band nucleus, as seen in pre-outburst imaging from the Hubble 
Space Telescope (HST) (Fig. 1). Radio observations obtained with very long baseline 
interferometry (VLBI) constrain its position with milliarcsecond angular precision (7). Pre-
discovery Very Long Baseline Array (VLBA) observations showed several compact sources 
at 2.3 GHz within the central few parsecs of the B1 nucleus, but no counterparts at higher 
frequencies (14). A new compact radio source was detected on 2005 July 17 at 8.4 GHz with 
the VLBA (7, 14). The coincidence of the near-IR and VLBI positions, together with the 
appearance of the VLBI source soon after the near-IR detection and their subsequent 
evolution (see below; 7), point to a common origin for both.  

High angular resolution radio observations of Arp 299-B AT1 with VLBI show that 
the initially unresolved radio source developed a prominent extended, jet-like structure, 
which became evident in images taken from 2011 onwards (Fig. 1; 7). The measured  average 
apparent expansion speed of the forward shock of the jet is (0.25±0.03)c between 2005 and 
2015 (7), where c is the speed of light. The radio morphology, evolution and expansion 
velocity of Arp 299-B AT1 rule out a SN origin. Similarly, a gamma-ray burst is inconsistent 
with both the observed peak flux density and time to reach that peak in the radio (15). 



 

Therefore, the most likely explanation is that Arp 299-B AT1 is linked to an accretion event 
onto the SMBH. The persistent 2.3 GHz radio emission most likely corresponds to the 
quiescent AGN core (7).   

The multi frequency radio light curves of Arp 299-B AT1 (Fig. 2) are well reproduced 
by a model (16) of a jet powered by accretion of part of a tidally disrupted star onto a SMBH 
(7). The jet initially moves at relativistic speeds ~0.995 c, but after a distance of less than 
~1017 cm (corresponding to ~760 days after the burst) it has already decelerated significantly 
to ~0.22 c, in agreement with expectations for TDE-driven jets (6). The apparent speed of the 
jet indicated by the VLBI observations, together with the non-detection of the counterjet, 
constrains the jet viewing angle, θobs, to be within a narrow range: 25o-35o (7). If the jet had 
been launched by a pre-existing AGN, its viewing angle with respect to our line-of-sight 
should have been close to 90o, as the AGN torus is seen almost edge-on (11), and a counterjet 
should have also been detected (7). However, a radio jet associated with a TDE does not 
necessarily have to be perpendicular to the pre-existing AGN accretion disc (17). We 
therefore identify the observed radio jet as being launched by a TDE. While such jets have 
been predicted (6), no direct imaging has previously shown an expanding jet in a TDE, and 
its likely presence has been inferred based on radio observations only in the cases of 
ASASSN-14li (18-19), IGR J12580+0134 (20), and Swift J164449.3+573451 (hereafter Sw 
J1644+57; 21). Our VLBI observations show a resolved, expanding radio jet in a TDE, in 
accordance with theoretical expectations (6).  

The intrinsic (i.e. beaming-corrected) kinetic energy of the jet required to reproduce 
the radio light curves (Fig. 2) is (1.8 ± 0.9)×1051 erg (7), similar to the case of the relativistic 
TDE Sw J1644+57 (16). The rise of the radio emission at high frequencies in less than about 
200 days and the significant delay of the lower-frequency radio emission (7) implies the 
existence of substantial external absorption, consistent with the jet being embedded in the 
very dense nuclear medium of the AGN, which has a constant number density ~4×104 cm-3 up 
to a distance 6.3×1017 cm from the central engine (7).  

Observations from the ground and the Spitzer Space Telescope show that the IR SED 
of Arp 299-B AT1 and its evolution from 2005 until 2016 can be explained by a single 
blackbody component (Fig. 3). The blackbody radius expands from 0.04 pc to 0.13 pc 
between May 2005 and Jan. 2012 while its temperature cools from ~1050 K to ~750 K. The 
size, temperature and peak luminosity (6×1043 erg s-1) of the IR emitting region agrees well 
with both theoretical predictions and observations of thermal emission from warm dust 
surrounding TDEs (22-23). Therefore, the IR SED and its evolution are consistent with 
absorption and re-radiation of the UV and optical light from Arp 299-B AT1 by local dust. 

We modeled the IR SED of the pre- and post-outburst (734 days after the first IR 
detection) components of Arp 299-B1 using radiative transfer models for the emission from a 
starburst within the galaxy and a dusty torus predicted by the standard unified model for 
AGN, including also the effect of dust in the polar regions of the torus (Fig. 4, 24). The 
model luminosities of the starburst and AGN dusty torus components remain constant within 
the uncertainties, whereas the luminosity of the polar dust component is found to increase by 
a factor of ~15 after the outburst, and the corresponding polar dust temperature increases 
from 500 to 900 K. Therefore, the observed IR SED of Arp 299-B AT1 can be most plausibly 
explained by re-radiation by optically thick dust clouds in the polar regions of the torus, 
which suffer from a relatively low foreground extinction within Arp 299-B1 (7).  

Integrating the luminosity of Arp 299-B AT1 over the period 2005-2016 (Fig. 3) 
yields a total radiated energy of about 1.5×1052 erg. However, a significant fraction of the 
total energy emitted by the transient can be expected to be scattered, absorbed, and re-



 

radiated at substantially longer IR wavelengths by the dusty torus. We estimate that the 
fraction of energy that heated the polar dust was in the range 23%-78% (7). Thus the total 
radiated energy of Arp 299-B AT1 was (1.9-6.5)×1052 erg, which requires a disruption of a 
star with a mass of about 1.9-6.5 solar masses (M

¤
), assuming a standard accreted fraction 

and radiative efficiency (7). Stars in this mass range can be disrupted by the ~2×107 M
¤

 
SMBH in Arp 299-B1 (10, 25). The kinetic energy of the jet is expected to be about 1% of 
the total energy (6), which agrees well with our estimated kinetic energy for the radio jet of 
Arp 299-B AT1 (7).  

In addition to Arp 299-B AT1, the only other TDE candidates (with debated nature) to 
have an observed radiated energy on the order of 1052 erg are ASASSN-15lh (26-27) and 
possibly transients similar to PS1-10adi (28). While the high energy of ASASSN-15lh was 
proposed to be the result of a high mass (7.6×108 M

¤
), rapidly rotating black hole (27), in the 

case of PS1-10adi the large radiated energy was proposed to arise from the interaction of the 
expanding TDE material with the dense nuclear medium (28). Arp 299-B AT1 was most 
plausibly the result of the disruption of a star more massive than about 2 M

¤ in a very dense 
medium. The soft X-ray photons produced by the event were efficiently reprocessed into 
ultraviolet and optical photons by the dense gas, and further to IR wavelengths by dust in the 
nuclear environment. Efficient reprocessing of the energy might thus resolve the outstanding 
problem of observed luminosities of optically detected TDEs being generally lower than 
predicted (29). 

The case of Arp 299-B AT1 suggests that recently formed massive stars are being 
accreted onto the SMBH in such environments, resulting in TDEs injecting large amounts of 
energy into their surroundings. However, events similar to Arp 299-B AT1 may remain 
hidden within dusty and dense environments, and would not be detectable by optical, UV or 
soft X-ray observations. The recent discovery of another TDE candidate in the nucleus of the 
luminous infrared galaxy IRAS F01004-2237 (30) yields further support for an enhanced rate 
of TDEs in such galaxies, which could be missed due to dust extinction. Such TDEs from 
relatively massive, newly formed stars might provide a large radiative feedback, especially at 
higher redshifts where galaxy mergers and LIRGs are more common (31). 
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Figure 1. The transient Arp 299-B AT1 and its host galaxy Arp 299. (A) A color-composite 
optical image from the Hubble Space Telescope (HST), with high resolution, 12.5×13 arcsecond sized 
near-infrared 2.2 μm images (insets B and C) showing the brightening of the B1 nucleus (7). (D) The 
evolution of the radio morphology as imaged with Very Long Baseline Interferometry (VLBI) at 8.4 
GHz (7×7 milliarcsecond region centered at the 8.4 GHz peak position in 2005, RA = 
11h28m30.9875529s, Dec = 58o33′40′′.783601 (J2000.0), indicated by the dotted lines). The VLBI 
images are aligned with an astrometric precision better than 50 μas. The initially unresolved radio 
source develops into a resolved jet structure a few years after the explosion, with the center of the 
radio emission moving westward with time (7). The radio beam size for each epoch is indicated in the 
lower-right corner.  
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Figure 2. Radio properties of Arp 299-B AT1. (A) Radio luminosity, Lν, evolution of Arp 299-B 
AT1 at 1.7 (circles), 5.0 (pentagons) and 8.4 GHz (squares) spanning more than 12.1 years of 
observations, along with modeled radio light curves, using hydrodynamic and radiative simulations 
for a tidal disruption event (TDE) launched jet (16). The day zero corresponds to 2004 Dec. 21.6. (B) 
Intrinsic (beaming-corrected) jet kinetic energy, EK, versus outflow speed (Γβ, where Γ = (1-β2)-1/2  is 
the bulk Lorentz factor of the outflow and β = v/c), from radio observations of gamma-ray bursts 
(GRB), supernovae (SNe), low-luminosity active galactic nuclei (LLAGN), and TDEs (4, 16, 19-21, 
32). The large circles show the inferred loci for Arp 299-B AT1 at four epoch from right to left: just 
after the jet is launched by the TDE, ~1, ~12, and ~760 days thereafter (in the observer frame). For 
the LLAGN sample, we have assumed a constant jet kinetic power over 10 yr. The triangles indicate 
upper limits for the expansion speed of IGR J1258+01 (20) and Sw J1644+57 (21). 
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Figure 3. Infrared properties of Arp 299-B AT1. (A) The evolution of the observed infrared 
spectral energy distribution (points) shown together with blackbody fits between 136 and 4207 days 
after the first infrared detection on 2004 Dec. 21.6 (7). Over this period the blackbody temperature 
decreased from about 1050 to 750 K while the blackbody radius increased from 0.04 to 0.13 pc. (B) 
The evolution of the integrated blackbody luminosity (blue circles) and cumulative radiated energy 
(red squares). The observed radiated energy by day 4207 was about 1.5×1052 erg.   
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TWO ALTERNATIVE FIGURES ARE SHOWN 
 
Figure 4. Model for the observed properties of Arp 299-B AT1. Shown are the best fitting models 
for the pre-outburst (A) and the post-outburst (734 days after the first mid-infrared detection) spectral 
energy distribution of the Arp 299 nucleus B (B), with a starburst component (dashed line), an active 
galactic nucleus (AGN) dusty torus (dotted line), and a polar dust component (thick solid line) (7). 
The sum of these components is shown as a thin solid line. In (B) most of the model parameters were 
fixed, whilst the temperature of the polar dust varied from 500 K in the pre-outburst case to 900 K in 
the post-outburst case. This yields a covering factor of the polar dust of 23%-78%, implying that the 
total radiated energy is ~(1.9-6.5) ×1052 erg. (C) Schematic diagram (not to scale) showing the 
geometry of the emitting and absorbing regions (7). The tidal disruption event generates prominent X-
ray, ultraviolet and optical emission. However, the direct line-of-sight to the central black hole is 
obscured by the dusty torus, which is opaque from soft X-rays to infrared wavelengths. The polar dust 
re-radiates in the infrared a fraction of the total energy emitted by the event. The transient radio 
emission originates from a relativistic jet launched by the tidal disruption of a star.  
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