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Abstract: A novel lightweight diagnostic film with sensors/actuators and a multiple-path wiring
option using inkjet printing was developed. The diagnostic film allows for systematic, accurate,
and repeatable sensor placement. Furthermore, the film is highly flexible and adaptable for placement
on complex configurations. The film can be attached to the surface of the structure through a
uniform secondary boundary procedure or embedded within the composite layup during curing.
The surface-mounted film can simply be peeled off for repair or replacement without scratching
or damaging the part. The film offers significant weight reduction compared to other available
technologies. A set of extreme temperature, altitude, and vibration environment test profiles were
carried out following the Radio Technical Commission for Aeronautics (RTCA) DO-160 document to
assess the durability and performance of the diagnostic film for onboard application. The diagnostic
film was shown to be durable and reliable in withstanding the variable operational and harsh
environmental conditions of tests representing the conditions of regional aircraft.

Keywords: diagnostic film; additive manufacturing; structural health monitoring; aircraft structures;
guided waves

1. Introduction

Structural health monitoring (SHM) based on ultrasonic techniques is now considered to provide
an alternative reliable, noninvasive way to test critical structural components. In this case, SHM may
involve the employment of macrofiber composite (MFC) piezoelectric actuators [1,2], fiber Bragg
grating (FBG) optical fiber sensors [3,4], or piezoelectric lead zirconate titanate (PZT) transducers [5,6].
There are several challenges related to onboard SHM components that need to be addressed when
dealing with large-scale structures (e.g., airframes), such as additional weight and cost of the
system as well as the reliability of the decision-making. One way to address additional weight
and cost is to design an SHM system with an optimal number and location of transducers while
maintaining acceptable reliability in diagnosis [5–9]. Other challenges related to the durability,
longevity, and reliability of the installation and operation of onboard equipment are reported in
Radio Technical Commission for Aeronautics (RTCA) DO-160C [10]. Despite the fact that permanently
attached PZT networks have proven to be a reliable tool for detecting and localizing impacts [11–13]
and resulting damage (i.e., delamination) [14–17] in composite structures in laboratory conditions,
certain issues arise when this technology is scaled up to real structures in the aviation industry [18].
More specifically, the required SHM system for monitoring the structural integrity of an aerospace
structure consists of ground components, which remain on the ground, and onboard (airborne)
components, which are permanently installed on the structure [19].

One of the major impediments in the application of structural health monitoring using PZT-based
ultrasonic-guided wave damage detection in aeronautics is the added weight, which is due mainly to
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the wiring. Added complications include directing and securing the wires through a complex structure
such as a fuselage with frames and stringers. Figure 1 shows a sensorized stiffened composite curved
panel where the challenge of additional weight can be clearly seen.
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For the application of SHM systems at the industrial scale (e.g., on a fleet of aircraft), it is necessary
to automate the installation. The factors that are important for scaling up the technology are precision
and repeatability in placing the transducers to ensure reliability in acquisition. Another requirement is
flexibility of the installation to adapt to any part with complex geometry (e.g., panels with stringers,
manholes, frames) without adversely effecting its operation.

The decision to employ an SHM system as a maintenance strategy aboard a structure is directly
related to the additional cost and reliability of the system as compared to existing schedule-based
maintenance and SHM techniques. Furthermore, the installed sensors are usually not protected from
the aircraft’s operational environment, making PZT sensor failure a distinct possibility [20,21]. In the
event of a faulty transducer, if the damaged PZT cannot be replaced, it will lessen the reliability
of the diagnosis, resulting in missed detections or false alarms, thereby compromising the overall
performance of the system. In addition, the onboard SHM components must survive the operational
and environmental loads of an aircraft without any adverse effect on their performance [19]. Hence,
the reliability and probability of detection of the diagnostic system are directly related to the integrity of
the onboard equipment during the lifetime of the structure and the possibility of repairing or replacing
faulty components.

A possible solution to the aforementioned issues is provided by the use of additive manufacturing.
Over the last few years, inkjet printing, and especially drop-on-demand (DoD) inkjet printing, has been
employed as an effective and cost-efficient technique for the fabrication of electronic devices such
as organic thin-film transistors [20,21], solar cells [22], organic light-emitting diodes (OLEDs) [23,24],
and sensors for SHM applications [25–27]. Inkjet printing is a versatile noncontact printing technology
that enables the creation of desirable wires on different substrates [28]. By employing this technique,
the feature size of flexible electronics can be drastically reduced. In addition, the amount of material
required to manufacture the circuits is significantly reduced, since the material is positioned on demand.
These two key features enable a significant reduction in both the cost of producing electronic devices
and their weight, while also being environmentally friendly.

Current technologies proposed for industrial-scale use include the integrated SHM layer by [29]
and the SMART Layer by Accellent [30]. The integrated layer, shown in Figure 2, consists of DuraActTM

transducers integrated between two layers of uncured ethylene propylene diene monomer (EPDM)
rubber. The cables for each sensor were soldered prior to their integration. The resulting layer is a
flexible array that will be co-cured during the same autoclave cycle as the prepreg, which also acts as a
protective layer once it is cured [14].
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SMART Layer [30] is fabricated by etching a conductor pattern onto a dielectric substrate,
laminating a deictic cover layer for electrical insulation, and mounting an array of PZT transducers
on the circuit. SMART Layer is bonded to a metallic surface using secondary bonding with epoxy.
For composite structures, the layer is embedded into the structure during the manufacturing process.
The layer is reported to have been tested under harsh environmental conditions, although certain
deficiencies were reported in [19].

In this paper, a flexible diagnostic film was developed to address the challenges of onboard
SHM components in terms of cost, repeatability of installation, and reliability of acquisition for
aeronautical application.

The proposed layer consists of an array of PZT sensors and an inkjet-printed conductive network.
The diagnostic film can be either surface mounted on a structure or embedded within a composite
interlayer. Due to the versatile characteristics of inkjet printing technology, the developed conductive
network can be purposely designed to allow for accurate sensor placement and can better meet
application demands. The reliability of the developed SHM system has been verified through extensive
tests simulating the operational environment of an aircraft.

2. Development of the Diagnostic Film

A silver nanoparticle suspension in a triethylene glycol monomethyl was employed for the inkjet
printing of the conductive wires. The silver nanoparticle concentration was 30–35 wt% and the particle
diameter was under 50 nm. The viscosity ranged from 10 to 18 mPa·s and the surface tension was
between 35 and 40 mN·m−1. The substrate used for printing was a 25 µm thick polyimide film
(Kapton). For bonding of the Kapton film onto the composite surface, a thermoplastic film with a
melting point of 150 ◦C was employed. Figure 3 illustrate a schematic representation of the diagnostic
film surface-mounted and embedded within a composite, respectively.

DuraAct transducers were used as PZT sensors, while the connections between the printed
circuits and the transducers were created using a two-part silver-loaded epoxy adhesive. A durable
surface-mounted connector with an operating temperature range of −40 ◦C to +85 ◦C was also used.

Inkjet printing of the conductive silver wires was performed using a piezoelectric Dimatix DMP
2850 printer. The piezo voltage was selected at 20 V and a customized waveform with a maximum
jetting frequency of 5 kHz enabled a satisfactory drop formation. During printing, the substrate
temperature was 60 ◦C and a drop spacing of 30 µm was selected. The printing width was set at
1 mm. In order to decrease the electrical resistivity of the printed wires, 3 layers of silver-based
ink were printed on top of each other. At the end of the printing process, sintering took place in
a laboratory oven for 30 min at 150 ◦C to remove any remaining traces of solvents and to fuse the
conductive particles into a cohesive conductive trace. The versatility of the process enables the
precise and cost-effective creation of complex geometries and patterns on flexible substrates (Figure 4).
Exploiting the aforementioned features of inkjet printing, specially designed circuits were developed
to decrease the cross-talk between sensors and actuators. Cross-talk is an unwanted effect that greatly
affects the reliability of damage detection methods, especially where conventional smart layers are
employed. The use of coaxial cables lessens this effect. However, their increased weight compared to
the diagnostic film is a major drawback.
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2.1. Printed Circuit Characterization

To assess the quality of the developed film and ensure its suitability for onboard application, a set
of characterization tests were carried out and are reported in the following subsections.

2.1.1. Electrical Resistivity Measurements

The electrical resistivity of the inkjet-printed wires was assessed via a 4-point probe using a digital
multimeter. The thickness of the printed wire was obtained from height profiles, which were measured
with a surface profilometer. The electrical resistivity was calculated using:

ρ = R*A/l (1)

where R is resistance, and l and A are the length and cross-sectional area of the wire, respectively.
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The resistivity of the printed wires was calculated using Equation (1) to 8 µΩ cm, which is
approximately 5 times greater than bulk silver resistivity (1.59 µΩ cm). The calculated resistivity
is slightly lower than that reported in the ink datasheet. This difference can be attributed to the
additional printed layers, which increased the conduction of the paths along the printed wire. To better
understand this behavior, the morphology of the printed wire surface was studied using scanning
electron microscopy.

2.1.2. Surface Morphology

The surface morphology of the printed wires was characterized using scanning electron
microscopy (SEM). Figure 5 illustrates the SEM images obtained from the surface of a printed wire at
3 different magnifications (×100, ×1000, and ×5000) at the end of the sintering process. During the
sintering process, thermal expansion of the silver particles along with evaporation of the solvent
resulted in the formation of a continuous and cohesive silver layer [31]. This conductive µm-thick film
provides a good percolation channel for the conduction electrons to flow. However, as can be observed
in Figure 5b, there are several voids across the entire wire length that reduce the conductivity of the
wire [32]. In addition, silver-particle agglomerates can be spotted in Figure 5c and can be attributed to
poor dispersion quality of the silver particles within the solvent. However, it is evident that the overall
surface of the printed wire consisted of a smooth and dense silver particle network that enhanced the
conductivity of the printed wire. It should also be noted that the poor contrast that can be observed in
the SEM image with the highest magnification can be attributed to a homogeneous particle network
with a low surface roughness [33].
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2.1.3. Weight Assessment

As stated previously, one of the most important factors affecting the scaling up of an SHM
system to real-scale applications is additional weight. Conventional ultrasonic-based SHM equipment
consists of a coaxial cable and a Bayonet Neill–Concelman (BNC) connector per attached sensor. Thus,
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the overall weight that is added to the structure is proportional to the total number of PZT transducers,
the length of the wires, the number of connectors, and, to a lesser extent, the shouldering of the
sensors to the coaxial wires. The developed diagnostic film significantly decreases the overall weight
of the airborne SHM system by: (i) replacing conventional coaxial cables with extremely lightweight
inkjet-printed circuits, (ii) using a single surface-mounted connector instead of a number of required
BNC connectors, and (iii) not having additional materials (e.g., cable clips, bundlers, protective layers)
used for cable handling. It is worth noting that the weight of a single BNC connector with a 15 cm
long coaxial cable is 7 g, thus the added weight of a 300 mm × 300 mm area using, for example, 4 PZT
sensors, is approximately 35 g. Of course, the RAC-160 regulations are quite demanding in terms of
securing the cables and connectors such that they do not become projectile during sudden descent
of the aircraft. Not only are these difficulties avoided with the diagnostic film, but also the weight
required for the SHM system for the same area is reduced by 67%, to approximately 12 g for the
4-transducer system.

3. Integrity and Reliability Assessment of the Diagnostic Film

The diagnostic film was subjected to aircraft environmental and operational loads as specified in
RTCA/DO-160 for airborne components. The integrity of the film (including the transducers, wires,
and bonding) was assessed by comparing the recorded response of the transducers (both actuating
and sensing) before and after each test to ensure the reliability and integrity of the acquisition under
repeated operational conditions. For this purpose, the developed thin film was mounted on the surface
of carbon fiber reinforced polymer (CFRP) coupons using a thermoplastic layer. The diagnostic film
consisted of two DuraAct sensors that were attached to the inkjet-printed wires using silver conductive
paste. At the end of the printed circuits, a surface-mounted connector was employed. For the plate
manufacturing, 16 plies of unidirectional Hexply 914-TS-5-134 prepreg were used. The stacking
sequence was [0/45/−45/90]2s and the composite final thickness was 2 mm. CFRP specimens were
cut in the desired dimensions according to ASTM-STP3039 and the ends of the specimens were
reinforced with end tabs. The developed thin film was tested in mechanical and electrical fatigue
loading conditions. Finally, the ability of the diagnostic film to withstand thermal loading profiles
required for airborne electronic components was examined.

3.1. Mechanical Fatigue Testing

In order to examine the effect of multiple fatigue cycles on the durability of the diagnostic and
specifically the inkjet-printed wires, the diagnostic film was subjected to tensile-tensile fatigue testing
for 109 cycles, using a hydraulic INSTRON universal testing machine equipped with a 100 kN load
cell (Figure 6a). The selected cyclic frequency was f = 5 Hz, the maximum tensile load was 5 kN,
and the stress ratio was R = 0.1. The maximum signal amplitude of both transducers was recorded at
distinctive load cycles of the test to monitor any permanent change to the signal due to mechanical
loading. The CFRP with the surface-mounted diagnostic film is depicted in Figure 6b.

Figure 7 presents the results obtained from the fatigue testing of the coupon. The percentage
change in the maximum amplitude of the propagated wave was calculated using the initial maximum
amplitude as reference. As can be observed, the maximum amplitude of the signal exhibited an initial
increase of approximately 2% after the first 10 cycles of mechanical fatigue load, followed by relatively
stable values until the last stages of the test. This relatively low change in amplitude can be attributed
to stabilization or settlement of the system during the initial loading stage. At the final stages of testing,
at approximately 5 × 104 cycles, the recorded signal’s maximum amplitude for both sensors showed a
second change that reached almost 4%. However, it should be mentioned that the initial percentage
change should not be taken into consideration due to the stabilization of the SHM system at that point.
Thus, the total percentage change during the mechanical testing was approximately 2%, showing
satisfactory performance for the SHM system after 109 cycles of fatigue loading. This change should
be considered when setting the damage threshold to avoid false alarms.
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3.2. Electrical Fatigue Testing

In this case, the effect of several excitation cycles on signal amplitude was studied. For this
purpose, the diagnostic film was electrically fatigued using a 250 kHz five-cycle Hanning tone-burst
with an output voltage of 6 V for 0, 108, 5 × 108, 109, and 2 × 109 cycles. It should be noted
that the selected voltage amplitude is extensively used for excitation of ultrasonic Lamb waves in
SMH applications. At the end of the test, the maximum signal amplitude of the reference specimen
was compared with those after electrical fatigue loading to see whether there was any degradation,
as presented in Figure 8. It is evident that even after 2 × 109 cycles of electrical fatigue loading,
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the maximum amplitude exhibited a minor change, less than 1%, showing the ability of the printed
circuit to withstand a large number of electrical loading cycles. This behavior can be attributed
to the relatively high conductivity of the printed wires, which is a result of the high-quality inkjet
printing process.
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3.3. Effect of Printed Wire Length

In a parallel study, the effect of the printed wires on both the electrical impedance and signal
amplitude of the sensors was also examined. In this case, five straight wires of different lengths (50, 100,
150, 200, and 250 cm) were inkjet-printed on the Kapton surface and five DuraAct sensors were used for
actuating and sensing Lamb waves. The thin film was then attached to a CFRP surface and ultrasonic
waves were excited with a 250 kHz five-cycle Hanning tone-burst with a signal amplitude of 6 V.
Prior to the ultrasonic measurements, electromagnetic impedance spectroscopy (EIS) was employed.

As expected, the length of the printed wires had a negligible effect on both the EIS measurements
and the signal features, such as amplitude. As stated, the relatively high electrical conductivity of the
inkjet-printed wires resulted in a minor attenuation of the excitation signal; see Figure 9, where the
magnitude of impedance and maximum signal amplitude versus wire length are presented. Based on
the obtained results, both values remained unaltered with increased wire length, indicating that the
proposed diagnostic film can be employed for monitoring of large areas without compromising the
performance of the SHM system.
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3.4. Temperature and Humidity Environmental Testing

Initially, the diagnostic film was mounted onto the surface of the CFRP and exposed to the
environmental test profile depicted in Figure 10. Tests were performed using a TAS Series 3 temperature
and climatic chamber. The chamber temperature was measured with a PRT platinum resistance
thermometer probe and K-type thermocouples, which were in contact with the specimen. At the
end of the thermal loading test, the effect of temperature change on electrical impedance and signal
amplitude was studied. For that purpose, prior to and after the thermal loading, EIS measurements
were conducted while ultrasonic signals were generated and recorded in a pitch catch configuration
with excitation frequency of 50 and 250 kHz to check the effect of temperature on antisymmetric
and symmetric modes. Afterward, the same procedure was followed to study the effect of increased
humidity on the performance of the diagnostic film. In this case, the CFRP specimen was exposed to
environmental conditions for 72 h using the climatic chamber. The relative humidity and temperature
were set at 85% and 60 ◦C, respectively. EIS measurements and ultrasonic inspection tests were
conducted prior to and after the environmental testing as described above.

Sensors 2018, 18, x FOR PEER REVIEW  9 of 14 

 

3.4. Temperature and Humidity Environmental Testing 

Initially, the diagnostic film was mounted onto the surface of the CFRP and exposed to the 
environmental test profile depicted in Figure 10. Tests were performed using a TAS Series 3 
temperature and climatic chamber. The chamber temperature was measured with a PRT platinum 
resistance thermometer probe and K-type thermocouples, which were in contact with the specimen. 
At the end of the thermal loading test, the effect of temperature change on electrical impedance and 
signal amplitude was studied. For that purpose, prior to and after the thermal loading, EIS 
measurements were conducted while ultrasonic signals were generated and recorded in a pitch catch 
configuration with excitation frequency of 50 and 250 kHz to check the effect of temperature on 
antisymmetric and symmetric modes. Afterward, the same procedure was followed to study the 
effect of increased humidity on the performance of the diagnostic film. In this case, the CFRP 
specimen was exposed to environmental conditions for 72 h using the climatic chamber. The relative 
humidity and temperature were set at 85% and 60 °C, respectively. EIS measurements and ultrasonic 
inspection tests were conducted prior to and after the environmental testing as described above. 

 
Figure 10. Recorded temperature profile for the chamber and two points on the composite. 

The evolution of the impedance magnitude spectrum for both PZT sensors before and after 
thermal loading and humidity exposure is presented in Figure 11. It is evident that the impedance 
magnitude and resonance frequencies of both sensors remained unaltered after the temperature and 
humidity testing. Before thermal loading, the resonance frequency and impedance magnitude at this 
frequency of sensor 1 were 275.72 kHz and 316.85 Ω, respectively. After thermal exposure, the 
resonance frequency remained the same, exactly 275.72 kHz, while the magnitude of impedance 
showed a minor increase to 318.49 Ω. Similar behavior was observed for sensor 2. For the reference 
state, the resonance frequency was found to be 278.72 kHz and the impedance magnitude at this point 
was 308.00 Ω. At the end of the thermal loading test, the resonance frequency was slightly shifted 
toward lower frequencies, reaching 276.89 kHz, while the impedance magnitude showed a minor 
increase to 313.85 Ω, which was within the acceptable range. As can be seen, after exposing the CFRP 
specimen to 85% humidity and 60 °C, the impedance magnitude and resonance frequencies of both 
sensors showed negligible changes. 

The thermal and humidity exposure of the plate to the operational temperature profile did not 
affect the recorded signals. For both excitation frequencies (50 and 250 kHz), the features of the 
recorded signals showed minor changes, indicating that the developed thin film acted as a protective 
layer for both the PZT transducers and the inkjet-printed circuits (see Figure 12). 

Figure 10. Recorded temperature profile for the chamber and two points on the composite.

The evolution of the impedance magnitude spectrum for both PZT sensors before and after
thermal loading and humidity exposure is presented in Figure 11. It is evident that the impedance
magnitude and resonance frequencies of both sensors remained unaltered after the temperature
and humidity testing. Before thermal loading, the resonance frequency and impedance magnitude
at this frequency of sensor 1 were 275.72 kHz and 316.85 Ω, respectively. After thermal exposure,
the resonance frequency remained the same, exactly 275.72 kHz, while the magnitude of impedance
showed a minor increase to 318.49 Ω. Similar behavior was observed for sensor 2. For the reference
state, the resonance frequency was found to be 278.72 kHz and the impedance magnitude at this point
was 308.00 Ω. At the end of the thermal loading test, the resonance frequency was slightly shifted
toward lower frequencies, reaching 276.89 kHz, while the impedance magnitude showed a minor
increase to 313.85 Ω, which was within the acceptable range. As can be seen, after exposing the CFRP
specimen to 85% humidity and 60 ◦C, the impedance magnitude and resonance frequencies of both
sensors showed negligible changes.

The thermal and humidity exposure of the plate to the operational temperature profile did not
affect the recorded signals. For both excitation frequencies (50 and 250 kHz), the features of the
recorded signals showed minor changes, indicating that the developed thin film acted as a protective
layer for both the PZT transducers and the inkjet-printed circuits (see Figure 12).
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4. Diagnostic Film Applications

In this section, examples of embedding or surface-mounting of the developed diagnostic film are
presented. Figure 13 depicts three cases where the thin film was attached on the surface of a metallic or
composite plate using different PZT sensors. In detail, Figure 13a shows the application of the thin film
attached to a curved surface, a cylindrical CFRP composite tube. The employed PZTs in this example
were two 0.5 mm thick transducers by PI Ceramic. The diagnostic film can also be surface-mounted
on an aluminum plate (Figure 13b). By using the thermoplastic film, good adhesion was achieved,
while any short circuit between the metallic plate and the printed electrodes was successfully avoided.
For the last case scenario, depicted in Figure 13c, the film was mounted onto the surface of a CFRP
plate. Four DuraAct sensors were placed in the corners of the 225 mm × 300 mm panel, showing the
film’s flexibility to adapt to large geometries of complex shape. The dashed lines in Figure 13c indicate
that the cables were printed on the back surface of the diagnostic film.
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The diagnostic film can also be embedded into composite. Figure 14 depicts the proof of concept
for embedding the thin film within a composite interlayer. To avoid short circuiting between the
conductive printed circuit and the carbon fibers, the wires and sensors were sandwiched using a
second Kapton film (Figure 14). To improve adhesion between the two Kapton films and avoid
possible delamination, a chemically treaded Kapton film was used as an insulation layer. Afterward,
curing of the carbon fiber prepreg with the embedded network of PZT sensors took place in autoclave.

At the end of the curing process (Figure 15a), the connector was surface-mounted on the Kapton
film and signals were recorded to examine the system’s ability to withstand the increased temperature
and pressure inside the autoclave. As can be seen in Figure 15b, the integrity of the sensors and the
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connections between the printed circuits and the PZTs was confirmed by the successful recording of
the signals.
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5. Conclusions

The design, manufacturing, and testing of a novel flexible diagnostic film for SHM application to
aeronautical structures was presented. The diagnostic film has the following novel characteristics:

• Is flexible, so that it can adapt to any surface.
• Can be surface-mounted as well as embedded in composites.
• Is repairable, so it can be easily removed from the surface of the structure and replaced in case of

failed sensors.
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• Has an adaptable design: the wires can be of any shape (curved or straight), so it is applicable to
any complex geometries and can be readily scaled up.

• Has low weight (compared to conventional wired solution, 70% reduction in weight can
be achieved).

• Has a uniform and repeatable bonding quality.
• Exhibits reliable functionality under operational conditions of aircraft.

The integrity and reliability of the signal acquisition was assessed under the operational conditions
of an aircraft. For that purpose, the developed diagnostic film was subjected to extensive testing that
included electrical and mechanical fatigue and thermal loading. The data acquired before and after each
test showed successful application of the diagnostic film under loading conditions representative of an
aircraft, without any permanent change. The collected data can then be reliably used for any diagnostic
application, including impact and/or damage detection and identification of aeronautical structures.
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