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We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear
phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are
connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave
vector but differences in phase. By exploiting symmetry transformations within the framework of the
nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing
such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the
wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and
visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly
nonlinear regime of general systems exhibiting dispersive waves.
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Domain walls are transition zones of finite width
between neighboring homogeneous domains. They are
of fundamental importance in many fields of modern
physics. In wave dynamics, domain walls connecting
neighboring wave fields differing in wave amplitude and
phase are also called wave jumps [1–6].
The question of the existence of domain walls between

finite amplitude surface gravity waves on deep water, i.e.,
between domains of deep water Stokes waves, has been
investigated at least since the 1960s [7–10]. The dispersive
nature of water waves shows that shape conserving domain
walls do not exist in the linear limit of infinitesimally small
wave amplitudes. However, already early on there was
speculation about the existence of weakly nonlinear
domain walls in the small but nonzero amplitude limit,
where nonlinearity might counteract dispersion and might
lead to the existence of shape conserving wall or jump type
behavior. While similar considerations in the context of
localization have led to the discovery of solitons and
breathers [11,12] in weakly nonlinear waves, there were
only a few attempts to derive and study analogous shape
conserving solutions for domain walls or wave jumps.
Only recently a remarkable series of experimental

and theoretical studies has sparked new interest in the
field [13–15]. By performing wave tank tests a wave jump
between neighboring domains of fully out of phase Stokes
waves has been studied. The authors introduced both scalar
and coupled systems of nonlinear Schrödinger equations to
explain the observed wave state.
The present study has been motivated by these results but

starts from a different, simpler conceptual perspective. We
employ a 2Dþ 1 (D stands for the spatial dimensions)

focusing nonlinear Schrödinger equation (NLS) to obtain
analytical solutions for weakly nonlinear domain walls.
The NLS is the universal lowest order equation describing
the spatiotemporal dynamics of weakly nonlinear narrow-
banded wave packets [16,17]. The 2Dþ 1 form has been
used for various questions on stability and nonplanar
solutions [18–21]. In these latter pioneering contributions,
the diffraction of Stokes waves that propagate in two
dimensions has been studied theoretically, numerically,
and experimentally. We emphasize that our domain tran-
sition investigated in our study remains stationary in the
moving reference frame. The 2Dþ 1 NLS equation can be
derived by the method of multiple scales [22–24],
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where Aðx; y; tÞ is the complex wave envelope, t denotes
time, x and y are the orthogonal horizontal spatial coor-
dinates, with unidirectional background wave propagation
along the x axis, and cg is the group velocity. The
dispersion and nonlinearity coefficients α and β are
functions of frequency ω and wave number κ, and for
deep water waves result as

α ¼ ω

8κ2
; β ¼ ωκ2

2
: ð2Þ

The linear dispersion relation is ω ¼ ffiffiffiffiffi
gκ

p
, with g the

constant of gravity. To first order in wave steepness, the
surface elevation ηðx; y; tÞ is given as
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ηðx; y; tÞ ¼ RefAðx; y; tÞ exp½iðκx − ωtÞ�g: ð3Þ

For simplicity, we consider a scaled form of the
2Dþ 1 NLS,

iuT þ uXX − 2uYY þ 2juj2u ¼ 0; ð4Þ

which is obtained from Eq. (1) by introducing the scaled
variables

X ¼ x − cgt; Y ¼ y;

T ¼ −αt; u ¼
ffiffiffiffiffiffi
β

2α

r
A: ð5Þ

A transformation introduced earlier [25], based on the
idea to investigate solutions of the 2Dþ 1 NLS that
actually depend on one spatial direction only, allows the
derivation of solutions for the 2Dþ 1 NLS from solutions
of a 1Dþ 1 NLS. For that purpose we introduce an angle γ
and a new spatial coordinate Z according to

Z ¼ X cos γ þ Y sin γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 3 sin2 γj

p : ð6Þ

We obtain

i
∂u
∂T þ s

∂2u
∂Z2

þ 2juj2u ¼ 0; ð7Þ

which is indeed a 1Dþ 1 NLS, involving a sign fac-
tor s ¼ ½1 − 3 sin2ðγÞ�=½j1 − 3 sin2ðγÞj�.
A solution of the 1Dþ 1 NLS Eq. (7) thus corresponds

to a solution of the 2Dþ 1 NLS Eq. (1). Depending on γ,
two cases result. For small values of γ < 35.26°, s ¼ þ1
and the 1Dþ 1 NLS is focusing. For γ > 35.26°, s ¼ −1
and the 1Dþ 1 NLS turns out defocusing. While the
former case has already been studied [26,27], we will
consider the latter case here.
For the present purpose of identifying the desired shape

conserving stationary or quasistationary domain wall sol-
utions in the 2Dþ 1 focusing NLS, we choose the
corresponding shape conserving spatially localized non-
linear solutions of the 1Dþ 1 defocusing NLS: black and
gray solitons [28–34], also referred to as dark solitons.
Gray and black solitons of the 1Dþ 1 defocusing NLS

possess exact analytical solutions of the form

uðZ; TÞ ¼ ½sinðθÞ þ i cosðθÞ tanhfcosðθÞ½Z − 2 sinðθÞT�g�
× expð2iT þ iχÞ: ð8Þ

Dark solitons of the 1Dþ 1 defocusing NLS connect
wave domains of identical amplitude which are out of
phase. The black soliton, θ ¼ 0, represents the case which
goes along with a phase change of π and drops of the wave

envelope to zero, while for gray solitons, θ ≠ 0, the
amplitude drops and the phase difference is less marked.
With this we can now construct domain wall solutions

for the 2Dþ 1 focusing NLS, or small amplitude weakly
nonlinear deep water surface gravity Stokes waves. Indeed,
we have two free parameters at hand. The first parameter is
θ, originating from the one-parameter family of gray or
black solitons. The second parameter is γ, originating from
the transformation between 1D and 2D formulations. The
carrier wave amplitude a and frequency ω may be under-
stood as further parameters.
Combining all of the above, the solution of Eq. (8) can be

transformed, using the transformations (5) and (6), into a
solution of Eq. (1). It may be written, with an additional
constant χ, as

Aðx; y; tÞ ¼ affiffiffi
2

p
κ2

½sinðθÞ þ i cosðθÞ tanhfcosðθÞMg�

× exp ð−2ia2αtþ iχÞ; ð9Þ
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In the following we will discuss the key properties of the
resulting solutions. For simplicity, and ease of illustration,
we will compare the results with experimental realizations
obtained in a water wave tank.
The experiments have been conducted in a wave facility

installed at the Hamburg ship model testing facility
(HSVA). The wave tank is shown schematically in
Fig. 1. It has dimensions of 50 × 5 × 2.4 m3. The wave
maker consists of 10 flaps, each with a width of 0.5 m. The
paddles are installed at one end of the tank and an
absorbing beach of 10 m is located at the other side.

FIG. 1. Schematic illustration of the water wave tank at
the Hamburg ship model testing facility. Dimensions are
50 × 5 × 2.4 m3.
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The resulting propagation distance for the waves is about
40 m. Lines of markers are installed at various distances
from the wave maker. Each line has 25 markers where the
first is centered at the middle of the tank and the others are
equally spaced towards the tank wall. The motion of the
markers is measured by a VICON (MX-3þ) camera system
with a sampling frequency of 50 Hz.
We choose an (x, y) coordinate system with x along the

tank and y in the transverse direction. The paddles are
labeled by an integer j ∈ ½1; 10�, and in the following yj
indicates the transverse location of the center of the jth
paddle, assuming all of them located at x ¼ 0. The time-
dependent displacement of each paddle can be written in
the form of a time-dependent amplitude ajðtÞ and a time-
dependent phase ϕjðtÞ,

ηjðaj; yjÞ ¼ Refaj expðiϕjÞg: ð11Þ

The motion of the paddles is set according to the domain
wall solutions described above. To evaluate the influence of
the nonlinearity, all tests have been conducted for varying
degrees of wave steepness.
First we discuss the domain wall arising from the black

soliton, θ ¼ 0, and a transformation angle of γ ¼ π=2. The
paddles move with a phase variation in the y direction
corresponding to a hyperbolic tangent.
Three different carrier wave steepness values, aκ ¼ 0.11,

aκ ¼ 0.16, and aκ ¼ 0.22 have been tested. All of them are
below the breaking threshold of Stokes waves [35]. The
wavelengths, λ ¼ 0.58, 0.78, and 0.86 m, have been
selected to ensure the effects of surface tension to remain
negligible, and the amplitudes of the background take the
values a ¼ 0.01, 0.02, and 0.03 m. Figure 2 shows the
measurements of surface elevation and phase.
It turns out that a stationary wall is separating two wave

domains of weakly nonlinear waves with an identical
amplitude and wave vector; however, fully inverted phases
result. The domain wall is aligned with the propagation
direction of the underlying Stokes waves. A photograph of
one of the weakly nonlinear domain walls is shown
in Fig. 3.
The measurements show very good agreement with the

theoretical predictions from Eq. (9): The domain walls
stretch out along the whole length of the tank without any
noticeable change in properties.
We have also conducted some straightforward numerical

simulations of the 2Dþ 1 NLS Eq. (4) using a (second-
order) finite difference scheme for the spatial discretization
and a fourth-order Runge-Kutta method (with fixed time
step) for the time marching.
Figure 4 shows the results for the reference case of

lowest carrier wave steepness under study. Two different
instants of time are depicted, t ¼ 10 and 100 s. The
numerical simulations suggest that for the time and length
scales considered, the present domain wall pattern is not
showing any sign of instability but remains stationary. We
should stress at this point that transverse instability can be

FIG. 3. Photographic image taken at a distance of 35 m from the
wave maker for the experiment presented in the top panel of
Fig. 2: a ¼ 0.01 m; κ ¼ 10.8 m−1.

FIG. 2. Surface elevation and phase measured at a distance of
12 and 22 m [(blue) crosses and (red) dots] from the wave maker.
aκ ¼ 0.11, 0.16 and 0.22 (upper, middle and lower panels). Solid
(black) lines indicate the theoretical curves.
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analyzed, when triggered following the application of a
particular perturbation in the y direction [36]. As our wave
setup is well controlled, the spontaneous emergence and
development of the transverse instability require significant
time or length scales beyond our facility’s configuration or
dimensions.
We now investigate walls arising from general trans-

formation angles γ ≠ π=2. The initial conditions for the
wave paddles are again determined by Eq. (3). We inves-
tigate two cases: the first originates from the black soliton,
θ ¼ 0, and transformation angle γ ¼ 0.4π. The second one
starts from a gray soliton, θ ¼ π=6, and a transformation
angle γ ¼ 0.35π.
Figure 5 shows the resulting analytical solution of the

2Dþ 1 NLS for the first case. Snapshots of the surface
elevation are shown for subsequent times. In contrast to the
previous solution, where the domain wall was oriented in
the direction of the wave vector, now an oblique boundary
results, which moves laterally but is still stationary in a
moving reference frame. This is the general result also for
other choices of parameters; a photograph is given in Fig. 6.
For a quantitative comparison between the solutions of

the 2Dþ 1 NLS and the tank test, we took measurements
along the wave tank at distances of x ¼ 3, 5, 8, and 10 m
from the wave maker. The measurements are shown in the

left panels of Figs. 7 and 8 for θ ¼ 0 and θ ¼ π=6. When
the domain wall passes the sensor locations, the amplitude
experiences a depression as expected and corresponding
well to the solution of the 2Dþ 1 NLS. The experimental
results agree very well with the new domain wall solutions
of the 2Dþ 1 NLS.
While the first observed domain wall solutions are

stationary and oriented in the direction of the wave vector
of the neighboring domains, the present oblique walls turn
out to link neighboring wave domains with a phase
difference of less than π, which comes at the expense of
obliqueness and lateral motion of the domain wall.
To summarize our findings, we have demonstrated the

existence of novel elementary types of domain wall
solutions in the 2Dþ 1 NLS. The new solutions suggest
that weakly nonlinear domain walls, separating neighbor-
ing domains of weakly nonlinear waves with identical wave
vector but differences in phase, do exist. For a phase
difference of π the domain walls are stationary and oriented
along the wave vector of the neighboring domains. For
other phase differences, the domain walls are obliquely
oriented to the wave vector and stationary in laterally
moving reference frames. An experimental illustration for

FIG. 7. Evolution of an oblique moving wall with θ ¼ 0 and
γ ¼ 0.4π for a ¼ 0.02 m and κ ¼ 7.3 m−1. Single point mea-
surements (left) and corresponding theoretical predictions (right)
at x ¼ 3, 5, 8, and 10 m from the wave maker.
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FIG. 5. Snapshots of the motion of a moving wall as resulting
from Eq. (3) for four different times t ¼ 0, 5, 10, and 15 s.
a ¼ 0.02 m, κ ¼ 7.3 m−1, χ ¼ 0, θ ¼ 0, and γ ¼ 0.4π.

FIG. 4. Simulation results for uðx; yÞ at t ¼ 10 and 100 s.
Parameters as in the top panel of Fig. 2: a¼0.01m, κ¼10.8m−1.

FIG. 6. Photographic image taken at a distance of 10 m from the
wave maker for a ¼ 0.02 m, κ ¼ 7.3 m−1, χ ¼ 0, θ ¼ 0, and
γ ¼ 0.4π.
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the solutions has been obtained for weakly nonlinear deep
water surface gravity Stokes waves. For the nonlinearity
range and the length and timescales considered, the
measurements are in very good agreement with the pre-
dictions of the 2Dþ 1 NLS theory.
Future work will be devoted to stability properties of the

observed patterns. Further numerical studies will focus on
limitations of the weakly nonlinear approach of the NLS in
water waves. Moreover, similar studies in other universal
fields of physics where weakly nonlinear dispersive waves
arise may be motivated from the present findings.
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