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Abstract

Many-particle systems with congestion are widely found in biology, for example, in cell

tissues or herds. Mathematical modelling constitutes an important tool in their study. In

contrast to common approaches, we propose two new modelling frameworks that rely on

the exact treatment of the contacts between particles: a particle-based and a continuum

framework. Both frameworks are based on the same behavioural rules, namely 1) two

particles cannot overlap with each other and 2) the particles seek a minimum of a given

confining potential at all times. The dynamics is driven by the evolution of the potential

and changes in particle characteristics, such as size.

In the first part, the static equilibria of the particle-based model are obtained as so-

lutions to a minimization problem. This leads to non-convex optimization under volume

exclusion constraints. Classical tools are either not applicable or not efficient. We develop

and study a new and efficient minimization algorithm to approximate a solution.

The second part concerns the time-evolution of the particle-based framework. We

develop new time-stepping schemes involving the resolution of a minimization problem at

each time-step, which is tackled with the minimization algorithm developed in the first

part. The study of these schemes is performed in the case of a system of hard-spheres

undergoing ballistic aggregation on a torus and it succeeds to simulate up to one million

particles. These new tools are applied to the study of the mechanics of a cell tissue, which

has allowed to validate them in practice.

In the third part, we develop a continuum modelling framework describing the evolu-

tion of particle density. Our approach differs from previous ones by relying on different

modelling assumptions that are more appropriate to biological systems. We show that

this novel approach leads to a free-boundary problem and we characterize the dynamics

of the boundary.

Keywords: Volume exclusion constraints, confining potential, packing problems, non-

convex optimization, time-stepping scheme, cell tissue mechanics, free-boundary problem.
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4.9 Statistical quantifiers describing the morphology of the tissue over 36 hours.
For each graph we plot the mean and standard deviation over 5 initial
conditions. When available we also plot the reference values obtained from
experimental data (dashed red line). In Figure (a) we plot the number
of layers of nuclei (blue), in Figure (b) the average height of nuclei (blue)
and of the tissue (black), in Figure (c) the packing fraction of nuclei at
the upper (dark blue) and lower (light blue) half of the tissue, in Figure
(d) the length of the tissue using the basal points (pink), the nuclei (blue)
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0
Introduction

0.1 Overview

A many-particle system consists of a collection of particles, individuals or agents that

interact with each other and with the surrounding environment. A few examples include

molecules, granular material, such as dust or sand, cell tissues, herds or crowds of people.

In some instances, if the density of the particles is very high, the system becomes congested

or densely packed and contacts or near-contacts between particles become non-negligible

phenomena. In Section 0.2 we present a few examples of congested systems. The study

of congested systems requires the use of mathematical models that take into account

the volume of the particles, through for example volume exclusion or non-overlapping

constraints.

A many-particle system, or simply, a particle system exhibits emergent behaviour when

macroscopic features appear as a result of the interaction between particles, without being

directly encoded in them. To account for this behaviour, one needs to develop micro- and

macroscopic models of the same system that are consistent with each other. This moti-

vates the problem of finding a rigorous connection between these models, which constitutes

a big challenge in mathematics [76]. In this thesis we derive a microscopic (Chapters 1-4)

and a macroscopic (Chapter 5) modelling framework for congested systems that share

the same rules or principles. This work intends to be a first step towards a rigorous

connection between the two scales for a particular case of congested systems that we will

detail in this thesis. The microscopic model, which typically corresponds to a discrete

or particle-based model, describes the evolution of a finite number of particles, while the

macroscopic model, corresponding to continuum or density based model, describes the

evolution of a continuous particle density.

The rules underlying the dynamics of certain biological systems, such as cell tissues,
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may be very complex. In order to build appropriate models for such systems, rather than

using physical first principles, we will formulate heuristic rules based on simple hypotheses

about the underlying particle behaviour. The two main rules that we will consider here

are that 1) particles cannot overlap and 2) they seek at all times a state of minimal energy.

This translates into the minimization of an energy, which is given by a confining potential,

subject to non-overlapping constraints.

In the following we describe the main challenges arising in the microscopic and macro-

scopic modelling of congested systems and how we approach them in this thesis. Ad-

ditionally, we motivate the application of this framework to the study of a packed cell

tissue.

In models at the microscopic scale, space may be regarded as discrete or continuous.

The first case leads to on-lattice models where the particles occupy one or several units

of a grid at all times. In such models the volume exclusion constraints are easily ensured,

nevertheless, these models are not appropriate to address congestion due to the effects

introduced by the grid as it is reported in [77, 126, 150]. In our approach we rather consider

an off-lattice model where the particles can occupy any position in the Euclidean space.

For this class of models, the exclusion volume constraints may be approximated by a soft

repulsion potential. Despite being computationally less expensive, this approximation

may become less and less accurate as the compression forces generated by congestion

increase. To avoid this situation we use hard-constraints that are enforced at all times. In

our model, the particles are represented by hard-spheres that move over time in a given

domain and interact with each other according to certain collision rules. Such interactions

lead to discontinuities in the velocity (non-smooth dynamics), which makes the dynamics

of the system very complex, especially when the number of particles is large. In order to

get some insight about its evolution, we resort to computer simulations as explained next.

There are two types of schemes to simulate non-smooth systems [20, 111]: event-

driven (ED) and time-stepping (TS) (see Section 0.3.2.2 for a description of the main

algorithms presented in the literature). In the first case, the following two steps are

successively performed: 1) smooth evolution of the system until the next non-smooth

event (for example, a contact event) and 2) determination of the velocities after the

event. Despite being more accurate, this class of schemes becomes computationally very

expensive as the rate of events increases, which is likely to happen in a congested system

with many particles. In this situation, a time-stepping scheme may therefore be more

appropriate, as we observe in the study of ballistic aggregation presented in Chapter 3.

In a TS scheme, the time is discretized in regular intervals and, at each time-step, the

particles evolve according to the smooth dynamics, which may lead to overlapping with

neighbouring particles. Since this configuration is non-admissible, a nearby admissible

configuration is then obtained as a minimizer of a given potential energy subject to non-

overlapping constraints. Such a configuration represents a mechanical equilibrium of the

system. In Chapter 3 we propose a new TS method which is similar to the class of
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methods proposed by Schatzmann and Paoli [139, 140] in the context of impact problems

with unilateral contacts and Coulomb’s friction (see Section 0.3.2.2 for a brief discussion

on the TS methods proposed in the literature). We show in the context of ballistic

aggregation that the TS method is performing better than the ED method when the

volume fraction of the particles is large. Indeed the simulation with the TS scheme takes

a few hours while the ED scheme takes a few days.

The main difficulty of the TS scheme lies on the minimization problem with non-

overlapping constraints. Indeed, the non-overlapping constraints typically lead to non-

convex optimization (see Section 0.3.1.2 for an elaboration of this point). Unfortunately

there are no universal tools available and standard methods turn out to be computationally

expensive when the number of particles is large (see Section 0.3.2.1 for a brief overview on

the available algorithms for non-convex optimization). We then propose a new algorithm

to tackle this problem: the damped Arrow-Hurwicz algorithm (DAHA). In Section 0.3.2.1

we provide the necessary conditions for optimality that are on the basis of this algorithm.

Part I of this thesis is dedicated to the development and analysis of the DAHA. Specifically,

in Chapter 1 we present the derivation of this method and show that it performs better

than existing methods in terms of computational speed in the case of a packing problem

with a large number of particles. In Chapter 2 we present an analytical study on the

convergence of the method in one spatial dimension as well as a parametric investigation

of the convergence speed in any spacial dimension.

The model and algorithms developed for the microscopic setting are applied to the

study of a biological system: an epithelial tissue. An epithelial tissue is constituted

of closely packed cells which adhere with their neighbours. This system represents an

example of a congested system and therefore we may use our framework to model it. A

more elaborated justification for this choice is presented in Section 0.3.2.2, as well as a

brief overview on existing models. The biological motivation is to try to identify the main

mechanisms underlying the dynamics and shape of the tissue. In particular, in the case of

the healthy tissue, how the tissue shape remains stable despite of all the cell movements

and deformations and, in the case of a cancer tissue, how is the tissue shape disrupted

when defects in individual cells are introduced. In this thesis we primarily focus on the

healthy tissue. The results obtained in close collaboration with a team of biologists (Eric

Theveneau’s team, Toulouse) are presented in Chapter 4. The model consists of a system

of spheres with a hard inner-core and a soft outer-core, that represent the cell nucleus.

The spheres are connected to each other through springs, representing the cytoplasm.

In silico and in vivo experiments have been run in parallel. As a result, we have been

able to verify some hypotheses regarding the mechanics of the system. Specifically, the

model suggests that the soft-core of the nucleus and the presence of noise are essential

features, without which the system becomes too rigid and is not able to reproduce the

real dynamics observed in vivo.

At the macroscopic level, rather than looking at the behaviour of each particle, we look
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at the evolution of the density of particles in space. We assume heuristic rules that we

have highlighted before namely 1) particles cannot overlap and 2) they seek at all times

a state of minimal energy. This equilibrium state is a minimizer of a confining potential

energy subject to maximal density constraints. The constraints depend on the average

particle volume, which may grow as a consequence of the particle swelling. In Section 5.3

we analyse the constrained minimization problem and show that its solution leads to a

free-boundary problem where the dynamics of the boundary is driven by the evolution

of the confining potential and of the average particle volume. This work is presented

in Chapter 5. Similar models have been proposed in the literature (see Section 0.3.3.2

for a brief overview), such as Hele-Shaw type models. They differ from our approach

by relying on different physical assumptions, which leads to different predictions on the

behaviour of the material. Our approach constitutes therefore a new modelling framework

for congested systems and provides an attractive basis for the development of complex

models for swelling materials, such as tumours.

The present Chapter 0 comprehends two parts. The first part is constituted by Sec-

tions 0.2 and 0.3 and contains an overview of the main topics discussed in this thesis and of

the tools needed. Specifically, in Section 0.2 we present a general description of congested

systems and examples and in Section 0.3 we provide an overview on mathematical models

and algorithms for congested systems. Some background theory of optimization that is

essential in our modelling framework is also presented in Sections 0.3.2.1 and 0.3.3.1 .

The second part contains a summary of the main results and contributions to this thesis

(Section 0.4) and a schematic representation of this thesis (Section 0.5).

0.2 Congested systems with contact events

In Section 0.2.1 we provide a description of congested systems. In particular we describe

the different types of local interactions that distinguishes different types of systems. We

then present the systems that are discussed in this thesis (see Section 0.2.2) and other

systems that could be studied using our mathematical framework and computational tools

(see Section 0.2.3).

0.2.1 Description

A congested system is a many-particle system where the particles are densely distributed

in space and contacts or near-contacts between particles have a non-negligible effect on the

static state or evolution of the system. Congested systems may differ on the properties of

the particles (for example shape, growth, shrinkage, stiffness, preferred direction or ran-

dom behaviour) and on the type of interactions they are subjected to. These interactions

may come from the other particles of the system (for example, collisions, repulsion forces

or attraction forces) or from the environment (for example, chemical signals, population
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behaviour or space constraints).

Congested systems can be found for instance in vehicle traffic, crowd evacuation, cell

tissues or granular matter. In this thesis we focus on congested systems with contacts. In

the following paragraphs we present the systems treated in this thesis (Section 0.2.2) as

well as other systems that could be studied using our modelling and computational tools

(Section 0.2.3).

0.2.2 Examples treated in this thesis

0.2.2.1 Sphere packing

In Chapters 1 and 2, we address the question of given an arbitrarily finite sampling of

spheres (possibly overlapping), how to get a (non-overlapping) packed configuration that

is close to the given one. We address this question through the development and imple-

mentation of algorithms for non-convex optimization. Figure 1 shows a possible solution

to this problem. Note that we are not necessarily interested in the global optimum, as

in many natural systems individuals have only local information and therefore they only

look for a local optimizer.

Optimal configuration in R3

Figure 1: Example of a sphere packing in three spatial dimensions. This configuration has been generated
with the damped Arrow-Hurwicz algorithm detailed in Chapter 1.

Optimization problems associated to sphere packing in a container have been reviewed

in [89]. Packings of generic shaped particles have also been widely investigated in the

context of granular media [117], glasses [181], liquids [85], biology (bacterial colony

growth [107]) and in social sciences (maximum safe packing of living agents in crowds

or containers [39]). In geometry, the old Kepler problem of finding the densest packing of

spheres in the Euclidean space has only been solved in 2005 in dimension 3 [82, 178] and

more recently, in dimensions 8 and 24 [36].

0.2.2.2 Ballistic aggregation

Ballistic aggregation consists of a system of rigid particles moving in straight trajectories

until they collide, stick and form growing aggregates [56, 175]. The inelastic collision of two
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aggregates conserves the total mass and momentum, while kinetic energy is dissipated.

Note that given the initial positions and velocities, this dynamics is deterministic. In

Chapter 3 we consider a model for ballistic aggregation in two spatial dimensions with

periodic boundary conditions (see Figure 2). We use this model to explore and compare

several algorithms in the case of a large number of particles (up to one million).

Figure 2: Example of a final cluster obtained from ballistic aggregation dynamics on a domain with pe-
riodic boundary conditions. This configuration has been generated with the time-stepping algorithm with
non-smooth constraints and non-rigid clusters, NS-NR, detailed in Chapter 3.

Models for ballistic aggregation have been used in the study of evaporated target foils

[169], silica-sol gel films [78], a granular gas [142], cosmic dust [120] and protoplanetary

disks [136]. Other types of aggregation include diffusion-limited aggregation [13, 63, 156,

175], coalescence [6, 67], among others [121, 125].

0.2.2.3 Epithelial tissue mechanics

Epithelial tissues constitute one of the four types of animal tissue together with connective

tissue (adipose tissue, bones, blood, cartilage, etc), muscle tissue and nervous tissue.

They are constituted of closely packed cells that are adjacent to a basement membrane

(see Figure 3). These tissues are found in the whole body and constitute the surface of

organs and blood vessels [80]. For this reason, they have been studied in the context

of embryonic development [83] to understand how organs acquire their shape and how

it remains stable, and in the context of cancer, to understand how the tissue shape is

disrupted [172]. Indeed, many tumours have their origin in epithelial tissues.

Such questions have been explored in the literature with the aid of mathematical mod-

els. In particular, since epithelial tissues are packed, the underlying mechanics, such

as the contact forces between neighbouring cells, usually play a central role in these

studies [8]. Models of epithelial tissue range from individual based [14] to continuum

models [92, 105, 176]. Individual based models describe the tissue at the cell level and

study the local behaviour, for example, how the variation of spatial constraints influence

the cell cycle [170] or how contact inhibition of locomotion originates forces in the tissue
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[182]. See Section 0.3.2.2 for a brief overview of particle based models and see [138] for a

comparison between them. Continuum models instead describe the system at the tissue

level (cell density) and focus on global properties of the tissue, such as the curvature, resis-

tance to deformation [8], contraction-elongation and tissue shear flow [92], to name a few.

Both types of models may be coupled with models for the concentration of molecules [177]

or subcellular structures, such as microtubules and actin filaments, leading to multiscale

models [33, 42]. The mathematical connection between individual based and continuum

models has been developed in [19] for the case of two interacting populations of cells with

flux-limited chemotaxis.

Figure 3: Example of an epithelial tissue obtained from the chick embryo by Theveneau’s team in Toulouse
(see Chapter 4). We see a high density of cell nuclei.

In Chapter 4 we build a particle based model for the mechanics of an epithelial tissue

(see Figure 3) in order to study the effect of congestion on the morphology and dynamics

of the tissue.In Chapter 5 we build a continuum model for the cell density which includes

cell growth and movement under a confining potential and maximal density (packing)

constraints.

0.2.2.4 Swelling materials

In swelling or drying materials the volume of the material increases or decreases, respec-

tively, due to the absorption or loss of some substance (typically water). These materials

have been studied in many different contexts for example in biology (mitotic cells or tu-

mours [11, 183]), chemistry or material science (swelling gels [114]), geosciences (drying

of wetting soil [68]) and food (potato starch swelling [93]).

Mathematical models of swelling material have been proposed in the context of tu-

mour growth, namely in the study of malignant melanoma [11] or in the study of the

relation between differential cell growth and the mechanical stress experienced by cells in

a tumour [97]. Mathematical models have also been used to model the rate and degree of

swelling of gels in the context of drug delivery and tissue repair [73].

In Chapter 5 we develop a continuum model for incompressible swelling materials

based on simple rules on the interactions between the constituent particles. The main

rule is that the particles cannot overlap. The model describes the evolution of the number

density of particles that results from the swelling or shrinkage of the particles and from

the evolution of a given confining potential.
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0.2.3 Other examples

In this Section we briefly present other congested systems that could be studied using the

tools developed in this thesis, even though we do not treat these applications here.

A granular material is a conglomeration of discrete solid particles (grains) ranging in

size from 100 µm to the size of asteroids. Granular materials are ubiquitous in nature

(sand, foam, snow, icebergs,...) and industry (drugs, cereals, sugar, fertilizer,...). They

can behave like solids, liquids or gas [66] and they can present the paradoxical behaviour

of segregation when one shakes a container with two different materials inside [55]. Math-

ematical models have been developed to study for example the dynamics of ice floes [153]

or granular soils [49]. Many other models have been proposed for the different states of

granular media mentioned above, we refer the reader to [15] for a review. The model and

algorithms we propose in Chapter 3 could also be applied to the study of large granular

systems.

In crowd dynamics, besides the presence of physical interactions, such as collisions,

friction or clogging, each person is also driven by his/her own intentions and choices that

influence the movement. Depending if the crowd is leaving a place in a normal situation or

in an emergency, certain non-physical effects may occur, such as competition, collabora-

tion, following behaviour, lane formation, crowd impatience, kin behaviour (for example, a

family tries to stick together during evacuation), exit selection, etc. A big number of mod-

elling approaches has been proposed in the literature to describe crowd dynamics during

evacuations [143, 157] or during large sport, religious or cultural events [103, 110]. In par-

ticular, an agent based model has been proposed [124] where the contacts between agents

are not anticipated and avoided, but they rather occur and are treated as non-smooth

events. This is a realistic assumption in the case of congestion. The individual based

model we present and explore throughout Chapters 1 to 4 follows the same principles and

could therefore be used to study this type of systems.

0.3 Mathematical description of congested systems

We now consider mathematical models of the systems described in the previous Sec-

tion. We start by presenting two classifications based on the spatial scale (particle based

versus continuum models) and on the state of the system (statics versus dynamics), re-

spectively (see Section 0.3.1). The remaining Sections are dedicated to an overview of

mathematical and computational tools used in particle based models (Section 0.3.2) and

continuum models (Section 0.3.3). In both Sections we start by presenting the class of op-

timization problems associated to the description of the statics equilibrium of the system

(Sections 0.3.2.1 and 0.3.3.1), followed by a short literature review on models describing

its evolution (Section 0.3.2.2 and 0.3.3.2).
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0.3.1 Classification of models with volume exclusion con-

straints

0.3.1.1 Particle based versus continuum models

The models for congested systems can be divided into particle based∗ and continuum

models.

Particle based models consider a geometric representation of individual particles and

describe the evolution of the position and the state (for example, size, adhesion properties

or tendency to behave in a certain way) of each particle under pre-defined forces acting on

the particles. Particle based models provide information about the behaviour that occur

at the particle scale. This may include the position, velocity, size and state of the particles

over time, the rate of inter-particles interactions, the shape of particle aggregates, etc.

Continuum models describe averaged quantities such as number density and mean ve-

locity, therefore they are applicable to systems with a large number of particles. Such

quantities evolve in space and time under forces exerted on the particles. Continuum

models constitute reduced descriptions of particle systems in which phenomena occurring

at the particle level are averaged out. Instead, they provide information about macro-

scopic phenomena that is too difficult to be retrieved from a microscopic model, due to

the large number of particles that that would require.

Particle based models for congested systems may be classified according to:

• space discretization: on-lattice or off-lattice models;

• the way congestion is modelled: encoded in the model, by considering a partition of

space where each part represents one particle, such as vertex and Voronoi models, or

as an emergent phenomenon, by considering particles that can move independently

on their neighbours in between collisions;

• particle shape: simple or complex;

• the way contact events are modelled: non-smooth dynamics (hard-sphere) or ap-

proximated by a smooth dynamics (soft-sphere);

• stochastic or deterministic dynamics.

In Section 0.3.2.2 we use the criteria presented above to classify and compare several

particle based models available in the literature as well as to motivate our own approach.

Particularly, various factors need to be taken into account when making modelling choices.

On the one hand, a complex model may be more realistic, but also more difficult to analyse.

∗Particle based models (PBM) are also referred in the literature as individual based (IB) or agent
based (AB) models. The difference may be related to the type of particle and the type of interactions
between particles: PBM are typically used for systems of inert particles and IBM and ABM for systems
of living particles. In this thesis we use PBM in general and IBM in the context of cell tissues.
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On the other hand, a simple model may be easier to interpret, but may not be able to

capture the main features of the system. Therefore, a right balance must be kept between

complexity and simplicity.

Continuum models can be divided into two groups:

• phenomenological models: obtained from empirical observation of the system at the

macroscopic scale as a fluid or a solid;

• coarse-grained models: derived from particle-based models via hydrodynamic or

asymptotic limits.

This classification distinguishes two types of rules and modelling assumptions that one

can use to build a continuum model: macroscopic and microscopic rules. In particular, the

derivation of continuum models from particle-based models started with the well-known

Hilbert’s sixth problem, where he proposes developing ”mathematically the limiting pro-

cess (...) which leads from the atomistic view to the laws of motion of continua”. Despite

of the great advances during the last century, this problem continues to motivate re-

searchers nowadays [44, 76]. In Section 0.3.3.2 we use this classification to present a short

overview of continuum models and we situate our own approach.

This thesis is focused on the development and simulation of microscopic models for

biological systems based on simple heuristic rules on the behaviour of the particles. This

type of rules has also been used in the context of crowd motion [123]. In Chapter 5 we

then derive a macroscopic model based on analogous heuristic rules to the ones of the

microscopic model. This work intends to be a first step towards the connection between

scales for the particular case of congested systems with contact events.

0.3.1.2 Statics versus dynamics

We divide the description of congested systems into statics (time-independent) and dy-

namics (time-dependent). In the first case, the system is assumed to be at mechanical

equilibrium, corresponding to a state of minimal energy under volume exclusion con-

straints. The energy is associated to a given potential. In the second case, the energy

and/or constraints evolve over time inducing dynamics. The system evolves by remaining

at any time at mechanical equilibrium.

In this way, the state of the system at any time corresponds to a solution to a mini-

mization problem with volume exclusion (or maximal density) constraints. In the setting

we consider here, this leads to non-convex optimization in the particle based model and

convex optimization in the continuum model as defined next.

Definition 1. Let Y be a real vector space and f a real function on Y . If C ⊆ Y is a

convex set and f is a convex function, then the minimization problem:

find x∗ ∈ Y such that x∗ ∈ argmin{f(x)|x ∈ C}
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is said to be convex, otherwise, it is non-convex.

In the particle based model, the non-overlapping constraints are described by inequal-

ities which typically involve non-convex functions, leading to non-convex optimization.

For example in the case of spherical particles, the non-overlapping constraint between

two spheres of center x and y in Rd, d ∈ N and radius R1 and R2, respectively, is given

by φ(x, y) ≤ 0 with φ(x, y) = (R1 + R2)2 − |x− y|2, where |.| is the Euclidean norm (see

Chapter 1). The function φ : (Rd)2 7→ R is concave, and therefore the set of constraints

is non-convex. When the energy function is a confinement potential, this problem can be

seen as a sphere packing problem.

Contrarily, in the continuum model that we present in Chapter 5, the maximal packing

constraints involve convex functions, leading to convex optimization (provided the confine-

ment potential is also convex). Specifically, let τ : x ∈ Rd 7→ n(x) ∈ R be a given function

describing the average volume of particles in space and let n : x ∈ Rd 7→ n(x) ∈ R be

the number density of particles over space, then the maximal density constraint can be

written as φ(n) ≤ 0 with φ(n) = nτ − 1 (see Chapter 5).

In our continuum model, the convex problem can be solved analytically (see Chapter

5). Contrarily, in the microscopic case, there is no generic framework to tackle non-

convex problems analytically, except in very particular cases. This motivates the use of

iterative approaches to approximate a solution (see Chapters 1 and 2). In Sections 0.3.2.1

and 0.3.3.2 we provide the optimization tools in infinite and finite dimensional spaces

needed throughout the thesis and we present in Section 0.3.2.1 a brief overview of the

literature on algorithms for non-convex optimization.

The motion resulting from the evolution of the energy or the constraints may be smooth

or non-smooth. For example, at the microscopic level, the contact events lead to dis-

continuities in the velocity of the particles, which makes the dynamics non-smooth. In

Section 0.3.2.2 we discuss different approaches to model non-smooth events and we de-

scribe and classify the algorithms available for non-smooth dynamics. In contrast, at the

macroscopic level the motion is typically smooth (see Chapter 5 and Section 0.3.3.2).

0.3.2 Particle based models and algorithms

0.3.2.1 Statics

In this Section we present the optimization tools needed to describe the static equilibrium

of the system followed by a brief review on existing numerical methods for non-convex

optimization. As explained in the previous Section 0.3.1.2, this state corresponds to the

minimizer of an energy subject to non-overlapping constraints. Chapters 1 and 2 are

dedicated to numerical solutions to this problem and they are based on a Lagrangian

formulation which is presented here. In particular, we give the regularity conditions on

the functions associated to the constraints that allow us to use this formulation.
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Let p and q be positive integers. Consider the generic minimization problem with

inequality constraints:

find x ∈ Rp such that

x ∈ argmin
x∈C

W (x), (1)

with

C := {x ∈ Rp | φi(x) ≤ 0, i = 1, ..., q} (2)

where (φi)i=1,...,q = φ : Rp → Rq and W : Rp → R are given functions.

We define next the tangent and the linearized cone at a feasible point x̄ ∈ C.

Definition 2. The tangent cone of x̄ ∈ C is

T (x̄) := {d ∈ Rp | ∃{xn}n ⊂ C, {tn}n → 0+ s.t. xn → x̄ and
xn − x̄
tn

→ d} (3)

= {d ∈ Rp | ∃{dn}n → d, {tn}n → 0+ s.t. x̄+ tndn ∈ C, ∀n}. (4)

The linearized cone of x̄ ∈ C is

L(x) := {d ∈ Rp | 〈∇φi(x̄), d〉 ≤ 0, ∀i s.t., φi(x̄) = 0}, (5)

where 〈·〉 represents the inner-product in Rp.

Note that if φi, i = 1, ..., q are continuously differentiable at x̄, then one easily concludes

that T (x̄) ⊆ L(x̄). We now introduce a regularity assumption on the functions associated

to the constraints, also called constraint qualification.

Definition 3. We say that the Abadie constraint qualification (ACQ) holds at x̄ if

T (x̄) = L(x̄).

In Figure 4a we show an example where ACQ holds and in Figure 4b where it does not

hold. Many other constraint qualifications have been proposed in the literature, most of

them have been listed and compared in [148]. The next theorem ensures the existence of

Lagrange multipliers under ACQ and provides the necessary conditions for optimality.

Theorem 4. Let x∗ be a solution to (1) such that the ACQ holds at x∗. Then there exist

Lagrange multipliers, λ ∈ Rq, such that the KKT-conditions hold, i.e.,

feasibility conditions: λi ≥ 0, φi(x
∗) ≤ 0, i = 1, ..., q (6)

complementary slackness condition: λ · φ(x∗) = 0, (7)

Euler-Lagrange equation: ∇x(W + λ · φ)(x∗) = 0, (8)

where ”·” denotes inner-product.
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(a) ACQ holds: L(x̄) = T (x̄)
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(b) ACQ does not hold: L(x̄) 6= T (x̄)

Figure 4: Example (a) corresponds to C = {x = (x1, x2) ∈ R2 | − x1 − x2 ≤ 0, x1 − x2 ≤ 0} and
x̄ = (0, 0). Example (b) corresponds to C = {x = (x1, x2) ∈ R2 | x31 +x2 ≤ 0, x31−x2 ≤ 0} and x̄ = (0, 0).

Proof. See [2].

The conditions (6)-(8) are the so-called Karush-Kuhn-Tucker conditions (KKT - con-

ditions) [134] and they are commonly used in the search for candidate solutions to the

minimization problem (1). In Chapter 1 we develop an algorithm to approximate the

solutions to this system of equations for the case of a non-convex minimization problem.

Classical algorithms to tackle non-convex problems (see definition 1) include Uzawa-

Arrow-Hurwicz type algorithms [17], augmented Lagrangian [23, 25], linearly constrained

Lagrangian (LCL), sequential quadratic programming (SQP) [134], among others. The

SQP and the Uzawa-Arrow-Hurwicz algorithms are widely used. However they require

the Hessian matrix of the function to be minimized to be positive definite, which is not

always the case in this type of problems (see the example treated in Chapters 1 and 2).

In general, all these methods perform well with a small number of particles. However we

are interested in the case where this number becomes large. In Chapter 1 we propose a

new algorithm that outperforms the classical ones when the number of particles is large.

This algorithm is based on a modification of the Arrow-Hurwicz algorithm. We study

its convergence numerically in Chapter 1 and analytically in Chapter 2 in the case of a

specific problem involving a convex potential and non-convex constraints.

0.3.2.2 Dynamics

The simplest and perhaps the most popular discrete model to describe the dynamics of

particle systems is the cellular automaton [179], where the space is discretized by a regular

grid and a particle occupies one unit of the grid. A natural generalization of this model

conduces to the Potts model, where a particle is constituted by a collection of units of the

grid (see Figure 5a) and the evolution of the system is driven by the minimization of the

total energy. Nevertheless, this model is able to account for complex shapes, which may
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have contributed to its popularity in the modelling of the interactions between cells and

with the environment, see for example [163]. These two methods use space discretization,

which introduces grid artefacts, such as errors on the speed of the particles or on the inter-

particle interactions [77, 126, 150]. It has been reported that the amount of artefacts

increases with the particle density [126], which makes these models particularly unsuited

to congested systems where the particle density is high.

Off-lattice models include for example the subcellular element model that has been

used as a complex and more realistic description of cells [159]. A cell is represented as a

collection of subcellular elements that interact with each other (see Figure 5b). This leads

to a high degree of complexity that turns the study of large systems very challenging.

Other types of off-lattice models include vertex model and Voronoi model (see Fig-

ures 5c-5d, respectively). The former consists of a set of vertices connected through

segments and has been used to model cell tissues, see for example [8, 59, 65, 168, 170].

The latter is based on a Voronoi tesselation (see [135] for a description of different types of

tesselations and algorithms) and it has been used to model for example cell tissues [26, 127]

and foams [167]. These models are suited to packed systems with no free space between

the particles. The system is regarded as a partition of space where each part represents

one cell.

(a) Potts model (b) Subcellular ele-
ment model

(c) Vertex model (d) Voronoi model

(e) Prism model (f) Soft-hard-sphere model

Figure 5: Discrete models for cell tissues. We use hard-spheres in the model for ballistic aggregation (see
Chapter 3) and soft-hard-spheres in the model of a cell tissue (see Chapter 4).

In our modelling framework we would like to consider congestion as an emergent phe-

nomenon, rather than directly encoded in the model, like in the vertex and Voronoi

models. The most appropriate approach for our study is therefore a particle based model

where each particle can move continuously in an off-lattice domain and collides with its

neighbours. In order to describe the contact events, we need to describe the shape of the

particle. To keep the model simple, we choose the simplest shape possible, which is a
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hard-sphere. In Chapter 3 we use hard-spheres in the model for ballistic aggregation and

in the Chapter 4 we use hard-spheres contained in soft-spheres to model cell nuclei in an

epithelial tissue (see Figure 5f). Other approaches that also use hard-spheres have been

used in [112, 149] in the context of cell tissues. Other simple particle shapes found in the

literature are quadrilaterals [91] and hexagonal prisms [84] (see Figure 5e).

The contact events lead to discontinuities in the velocity of the colliding particles,

which makes the dynamics intrinsically non-smooth. The remainder of this Section will

be dedicated to the mathematical description and simulation of particle systems with

contact events. They can be modelled as non-smooth events or be approximated by a

smooth dynamics as explained next.

In the smooth approximation, the contact events do not occur instantaneously, they

are rather solved during a short time-interval. This approach may be used to study large

systems (with more than 104 particles) that do not require a high order of accuracy in the

performance of contact events. One smooth approach to this problem is given by molecular

dynamics algorithms, which typically consists of defining a (smooth) inter-particle poten-

tial and establishing and computing the Newton’s equations for the motion of interacting

particles [7]. Another smooth approach derives from the work by Cundall [41], which is

very closely related to molecular dynamics except that it also accounts for rotations and

complicated shapes.

In the non-smooth approach, the contact events are solved instantaneously at each

time-step, which requires an extra computational effort. This approach is therefore more

cumbersome, but also more accurate in the treatment of the volume exclusion constraints.

In particular, it allows us to control the size of each particle at all times, which is crucial

in the study of congestion. For this reason, in this thesis we opt for the non-smooth

approach. More precisely, in the case of the model for a cell tissue developed in Chapter

4, we use both a hard and a soft sphere to allow some deformation and flexibility in

the system and to make it more realistic. Specifically, we represent the nucleus of a cell

by a hard-sphere that is contained in a soft-sphere, in this way, a nucleus may overlap

other nuclei to a maximum point that is prescribed by the radius of the hard-sphere.

This models the shrinking and squeezing of the nucleus at highly congested situations.

Other non-smooth models have been presented in the literature, see for example [129]

and [139, 140], where two different models of a mechanical system with unilateral contacts,

impacts and Coulomb’s friction are proposed in terms of the velocities and positions of the

particles, respectively. Next we present an overview of numerical methods for simulating

non-smooth dynamics.

The algorithms for non-smooth systems can essentially be divided into two classes

which mainly differ in the way they deal with the non-smooth events: time-stepping (also

called time-driven scheme) and event-driven [20, 111]. The former consists of defining a

priori a regular and sufficiently fine discretization in time such that at each time-step all

the events (such as collisions) that have occurred during the previous time-interval are
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simultaneously solved (usually by integrating the Newton’s second law and projecting onto

the admissible space, which can be formulated as a minimization problem). The latter

consists of computing the exact time of the next events, list them by chronological order

and make the system evolving from one event to the next successively. The event-driven

algorithms are usually more appropriate for systems with fewer events, since it is very

likely that the events occur sequentially and not simultaneously. As the rate of events

increases, the computation of the time of each event becomes more expensive and less

accurate due to round-off errors [155]. At some point, an event-driven algorithm becomes

too expensive computationally, therefore a time-stepping scheme needs to be used. In

Chapter 3 we verify this effect in a model for ballistic aggregation with 106 particles,

where the volume fraction of the particles is approximately 1/2 of the domain. Since the

occurrence of new collisions in a packed cell tissue is highly frequent, in Chapter 3 we opt

for a time-stepping scheme in which our minimization algorithm is used at each time-step

to solve the events that occurred during the previous time-interval. For a very complete

overview on numerical methods for non-smooth dynamics problems see [28]. We next

provide a brief review on time-stepping algorithms.

There are two main time-stepping schemes available to integrate nonsmooth dynamics

[3]: the Moreau-Jean scheme [129, 161] and the Schatzman-Paoli scheme [139, 140]. These

schemes have been proposed for systems with unilateral contacts, impacts and Coulomb’s

friction. The main difference between the two schemes is that in the former the constraints

are imposed at the velocity level, while in the latter they are imposed at the positions

level. The idea is the following: at each time-step, the new positions and velocities of

the particles are computed according to the dynamics of the system, and an eventual

violation of the constraints (non-admissible configuration) is then corrected by projecting

the velocities (resp. positions) onto the set of admissible velocities (resp. positions).

This corresponds to solving a minimization problem where one minimizes the distance

between the non-admissible velocities (resp. positions) and the set of admissible velocities

(resp. positions) as follows: given the velocities V0 (resp. positions X0) computed by the

dynamics of the system, find the admissible velocities V̄ (resp. positions X̄) that satisfy

V̄ ∈ argminV∈Cdist(V0,V) (resp. X̄ ∈ argminX∈Cdist(X0,X)), (9)

where C is the admissible set of velocities (resp. positions) and dist is a distance. This

operation may introduce long range nonlocal effects. In Chapter 3 we consider a simple

experimental set up which shall be used in the future to investigate how these effects may

propagate in time and space by comparison with an exact event-driven algorithm.

We deduce from the description presented in the previous paragraph that in Moreau-

Jean scheme, the collision rule is strictly satisfied, but not the constraints in position, and

it is the opposite for the Schatzman-Paoli scheme. Moreover the multiplier associated to

the constraints may be directly interpreted as a mechanical impulse in the Moreau-Jean
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scheme, while in the Schatzman-Paoli it does not have any direct mechanical interpre-

tation. In [3] the author proposes a directed projection scheme that satisfies in discrete

time both the position and velocity constraints.

In our numerical experiments in Chapter 1 and 3, we observe that when the constraints

are imposed onto the velocities, the computational cost of the minimization algorithm be-

comes highly dependent on the initial configuration. This becomes a especially serious

problem when the number of particles is high (see Chapter 1). We therefore follow an

approach that is similar to the one by Schatzman-Paoli scheme, except that instead of

computing the projection at each time-step, we compute a minimizer of a given energy

function subject to non-overlapping constraints using our minimization algorithm. The

case where the energy function is the distance between the variable X and the current iter-

ate X0, as in the minimization problem (9), corresponds to the Schatzman-Paoli scheme.

In this sense, our approach is more general.

The other type of algorithms for non-smooth systems, the event-driven algorithms,

are less common. This may be due to the high computational cost they require, but

also to the difficulty on analysing their convergence, which may become a problem in the

simulation of complex dynamics [28]. Event-driven algorithms have been used for instance

in [152, 153] to study the dynamics of ice floes, in [5] to study rheology of granular mixtures

and in [51] to study jammed packings of spheres and ellipsoids.

In Chapter 3, we consider a simple 2D system constituted of hard-circles undergoing

ballistic aggregation in a periodic domain. We use an event-driven algorithm as follows:

we compute the exact time of the next collision and we perform the collision exactly. This

algorithm allows us to get the exact dynamics of the system (apart from round-off errors).

Despite being more accurate, the event-driven algorithm takes much longer to converge

when the number of particles and the rate of events increases (see Chapter 3), which leads

us to favour time-stepping schemes for the simulation of congested systems.

In Figure 6 we present a classification of the main time-stepping and event-driven al-

gorithms that have been proposed in the literature for smooth and non-smooth dynamics.

The algorithms we develop in this thesis belong to the class of time-stepping schemes and

event-driven for non-smooth dynamics (see Chapter 3).

0.3.3 Continuum models

0.3.3.1 Statics

In this Section we present the tools needed to describe the static equilibrium of the

system. As explained in Section 0.3.1.2, this state corresponds to the minimizer of an

energy subject to maximal density (packing) constraints. Contrarily to the minimization

problem arising in the discrete model (see Section 0.3.2.1), in the continuous model the

minimization problem is convex and we are able to solve it analytically. The resolution
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Figure 6: Classification of the algorithms for smooth and non-smooth dynamics of many particle systems
with volume exclusion constraints. Our approach belongs to the class of time-stepping schemes for non-
smooth dynamics.

is presented in Chapter 5 and it uses the Lagrangian formulation for minimization prob-

lems in infinitely dimensional spaces that we present next. In particular, we provide the

regularity conditions on the functions associated to the constraints that allow us to use

this formulation.

Let Y be a real vector space. Consider the minimization problem

find n ∈ Y a solution of

min{f(n) |n ∈ Y, gi(n) ≤ 0, i = 1, ..., p, h(n) = 0}, (10)

where f : Y → R, (gi)i=1,...,p = g : Y → Rp and (hj)j=1,...,q = h : Y → Rq are the given

data. If f and gi, i = 1, ..., p are convex and hj, j = 1, ..., q are affine functions then by

definition 1 the minimization problem is convex.

Consider the Slater condition:

• there exists a strictly admissible point n0 for (10), i.e.,

g(n0) < 0 and h(n0) = 0,

• the equality constraints are independent,

and the regularity assumptions:
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• f, g and h are continuously (Fréchet) differentiable in a neighbourhood of n∗,

• the minimization problem is convex and f, g and h are continuous and Gateaux

differentiable on Y .

The next theorem ensures that the necessary conditions for optimality hold true provided

n∗ is a solution to the minimization problem and some regularity assumptions are satisfied.

As we shall see, if the problem is convex the continuous differentiability assumption can

be relaxed.

Theorem 5. Let n∗ be a solution to (10). Suppose the Slater condition holds and at least

one regularity assumption holds. Then there exist multipliers (λ, µ) ∈ Rp ×Rq satisfying

non-triviality conditions: (λ, µ) 6= 0, (11)

feasibility conditions: λi ≥ 0, gi(n
∗) ≤ 0, h(n) = 0, i = 1, ..., p, (12)

complementary slackness condition: λ · g(n∗) = 0 (13)

Euler-Lagrange equation: (f + λ · g + µ · h)′(n∗) = 0, (14)

where ”′” denotes Fréchet derivative and ”· ” denotes inner-product.

Proof. See Thm. 9.4 and Thm. 9.8, p. 182− 185 in [35].

This is a central result in optimization and is used in this thesis in Chapter 5.

0.3.3.2 Dynamics

We now present a brief overview on continuum models for congested systems using the

classification proposed in Section 0.3.1.1, which divides the models into two groups: phe-

nomenological models and coarse-grained models (which are derived from particle-based

models). Within each group they can be subdivided according to their underlying frame-

work into reaction-diffusion systems, solid mechanics, fluid mechanics and free-boundary

problems.

We first present a few examples of phenomenological models and the contexts where

they have been applied.

• Reaction-diffusion systems. Reaction-diffusion systems have been used in the study

of tumour spheroids [162] and invasion processes applied to cell biology and ecology

[64, 104, 132].

• Solid mechanics. We refer to [11] where a model of swelling gel is proposed in the

framework of hyperelasticity theory and applied to the study of certain tumours,

such as malignant melanoma. In the context of tumor growth modelling a solid

mechanics model can be found for example in [32].
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• Fluid mechanics. A fluid model has been proposed in the context of crowd dynamics

to study the transition between congested and uncongested regimes [46]. In the

context of tumour growth, fluid models based on Darcy’s law can be found for

example in [22, 31, 37, 40, 87].

• Free-boundary problems. Free-boundary problems are used in the modelling of tissue

and tumour growth. They describe the boundary of the tissue over time [71]. In [21,

90] the authors have explored under which asymptotic limits the fluid model could

lead to a free-boundary problem. Related to these, the analogy between tumor

growth and the free-boundary problem of solidification (the so-called Hele-Shaw

problem) has been developed in [88, 145, 146, 147].

We now present a few examples of continuum models that have been derived from

particle based models (see Section 0.3.2.2 for a description of the different types of particle

based models).

• Reaction-diffusion system derived from a lattice-based model. Reaction-diffusion

systems for cell migration and proliferation have been derived from lattice-based

models through a mean-field limit in one [96] and two [95] spatial dimensions.

• Model in solid mechanics derived from vertex model. Also in the context of cell

biology, an epithelial cell tissue has been described by a two-dimensional viscoelastic

sheet originated from a vertex model through coarse-graining [8].

• Fluid model derived from off-lattice model with soft-spheres. A fluid model describing

the dynamics of herds [47] has been derived from an off-lattice model with soft non-

overlapping constraints through mean-field and hydrodynamic limits.

• Free-boundary problem derived from off-lattice model with hard-spheres. In the con-

text of tumour growth, a Hele-Shaw type problem has been formally derived through

coarse-graining from an off-lattice particle model with hard-contraints [130].

In Chapter 5 we consider a continuum model based on the minimization of a confining

potential under maximum packing density constraint. We then prove that these rules

give rise to a free-boundary problem. Similarly to the Hele-Shaw problem, the system is

regarded as the region of space where particles have reached the packing density. The

system is therefore an incompressible medium separated from the outer medium by a

moving free boundary. Since the heuristic rules considered in the continuum model are

analogous to the ones considered in the particle-based model, this work intends to be a

first step towards a formal (and rigorous) derivation of the continuum model from the

discrete one.
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0.4 Aims, main results and contributions

The thesis is divided into three parts. Part I deals with algorithms for static packing prob-

lems, which represent a fundamental tool in the discrete modelling framework presented

in Part II. Part II is mostly concerned with algorithms simulating dynamical problems

and in particular the study of an epithelial tissue. In Part III we develop a continuum

framework for swelling materials. The main results are summarized next.

0.4.1 Algorithms for packing problems (Part I)

We present next the general problem that motivates the work discussed in Part I of this

thesis. Let d ∈ N be the spatial dimension and N ∈ N the number of particles in Rd,

with position X = {Xi}i=1,...,N . Consider the following local minimization problem: find

a configuration X̄ ∈ RNd such that

X̄ ∈ argmin
φk`(X)≤0, k,`=1,...,N, k<`, X∈U(X̄)

W (X), (15)

where U(X̄) is a neighbourhood of X̄, W : RdN → R is a convex and smooth function (not

necessarily strictly convex) with an attainable minimum in the admissible set defined by

the constraints. The functions φk` : RdN → R, k < ` are continuous but not necessarily

convex. In these conditions, X̄ exists, but may not be unique. Note that we are not

necessarily interested in finding a global minimizer. Indeed, in many systems the particles

only seek to achieve a locally optimal solution. To simplify the notation we will omit

the condition X ∈ U(X̄) in the formulation of the minimization problems presented

throughout the thesis.

Specifically, we focus on the case where W represents a confining potential and φk` are

associated to non-overlapping constraints between particles k and `. In this setting, the

minimization problem (15) can be seen as a packing problem. Note that the functions as-

sociated to non-overlapping constraints are typically non-convex, which brings additional

difficulties compared to convex problems (see Section 0.4.1.1).

Examples of possible solutions in dimensions d = 2 and d = 3 are shown in Figure 7,

with

φk`(X) = (2R)2 − |Xk −X`|2, (16)

and

W (X) =
1

2N

∑
i<j

|Xi −Xj|2. (17)

where R denotes the radius of the spheres and |.| the Euclidean norm.

In Chapter 1 we present a new iterative algorithm to find an approximate solution

to (15) and we explore its computational speed and accuracy compared with classical
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Optimal configuration in R2 Local optimal configuration in R3

Figure 7: Two examples of solutions to the packing problem (15) with φk` and W defined in (16)
and (17), respectively. A global optimum in dimension 2 is presented on the left and corresponds to the
hexagonal lattice. A local optimum in dimension 3 is presented on the right.

methods in the case of a sphere packing problem with W defined by (17). In Chapter 2

we consider again the confining potential (17). We prove the convergence of a first-order

formulation of the algorithm towards the theoretical solution in dimension d = 1 and we

develop the analysis of speed of convergence in any dimension.

0.4.1.1 Damped Arrow-Hurwicz algorithm for sphere packing (Chapter

1)

Chapter 1 is based on the published work [45] which is a collaboration with Pierre Degond

and Sebastien Motsch. The aims of this Chapter are:

• To develop an efficient and accurate algorithm to solve the non-convex minimization

problem (15).

• To test numerically the new algorithm against other algorithms existing in the

literature.

We start by reducing the original problem (15) to a critical-point system with a possible

enlargement of the set of solutions. Under certain regularity conditions on the functions

φk`, from theorem 4 (Section 0.3.2.1) we have that, if X̄ is a solution to the minimization

problem (15), then, there exists λ̄ ∈ (R+
0 )N(N−1)/2 such that (X̄, λ̄) is a critical-point of

the Lagrangian L : RdN × (R+
0 )N(N−1)/2 → R defined by

L(X,λ) = W (X) +
∑

k,`∈{1,...,N}, k<`

λk`φk`(X),

where λ = {λk`}k,`=1,...,N, k<` represents the set of Lagrange multipliers.

In the case where the functions φk` are non-convex, there may be critical-points that

are not solutions to the original minimization problem. Moreover, contrarily to convex

optimization, a critical-point may not be a saddle-point (see Section 2.4.1). This is the
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starting point of our work. We first observe that the classical Uzawa-Arrow-Hurwicz

Algorithm (AHA) does not converge. Specifically, by writing the algorithm as the dis-

cretization of an ODE system, we realize that the non-existence of saddle-points leads to

the existence of periodic orbits around the steady-state. To overcome this problem, we add

a damping term to the system of ODEs in order to change its dynamics without changing

the steady states. By discretizing the modified ODE system we obtain what we call the

damped Arrow-Hurwicz algorithm (DAHA) that is presented in the next definition.

Definition 6. We define the damped Arrow-Hurwicz system (DAHS) as

Ẍi = −α2[∇Xi
W (X) +

∑
k,`∈{1,...,N}, k<`

λk`∇Xi
φk`(X)]

−αβ ∑
k,`∈{1,...,N}, k<`

φk`(X)λk`∇Xi
φk`(X)− cẊi ,

i = 1, ..., N

λ̇k` =

0, if λk` = 0 and φk`(X) < 0

βφk`(X), otherwise
,

k, ` = 1, ..., N, k < `

where α, β and c are positive constants and the damped Arrow-Hurwicz algorithm

(DAHA) as the corresponding semi-implicit discrete scheme:

Xn+1
i = 1

1+c/2

(
2Xn

i − (1− c/2)Xn−1
i

)
− α2

1+c/2
[∇Xi

W (Xn) +
∑

k,`∈{1,...,N}, k<`
λnk`∇Xi

φk`(X
n)]

− αβ
1+c/2

∑
k,`∈{1,...,N}, k<`

φk`(X
n)λnk`∇Xi

φk`(X
n),

i = 1, ..., N

λn+1
k` = max{0, λnk` + βφk`(X

n+1)}, k, ` = 1, ..., N, k < `,

where α, β and c correspond now to numerical parameters.

We prove that the algorithm converges to a solution of our original problem for the

particular potential (17) with N = 2 in one spatial dimension and we observe numerically

that it also converges in two spatial dimensions for a large number of spheres.

Our algorithm is then compared with two different methods belonging to the class of

linearly constrained Lagrangian methods (LCL). The first method consists of solving a

sequence of convex minimization problems with linearized constraints using the AHA. At

each iteration, the constraints are linearized around the solution obtained at the previous

iteration. The numerical implementation involves an outer and an inner loop, what will be

referred to as the nested algorithm for the positions (NAP). The second method is based

on a formulation of the problem involving the evolution of ∇Xi
W (X), i = 1, ..., N which

we will refer to as the velocities. More precisely, the problem is formulated iteratively:

given an initial configuration X0 = {X0
i }i=1,...,N , we pass from iterate Xp to iterate Xp+1
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as follows 
Xp+1 = Xp + τ Vp+1 (18)

Vp+1 ∈ argmin
φk`(Xp+τ V)≤0, k,`=1,...,N, k<`

1

2

N∑
i=1

|Vi +∇Xi
W (Xp)|2, (19)

where τ > 0 is a given parameter and V = {Vi}i=1,...,N . Similarly to the first method,

we use the AHA to solve the minimization problem (19) with linearized constraints. This

algorithm will be referred to as nested algorithm for the velocities (NAV).

Numerical experiments in dimension d = 2 were designed to assess the three algorithms

(DAHA, NAP, NAV) in a scenario where particles are strongly attracted to each other

as exemplified by the global potential (17) and a highly dense and overlapping initial

configuration. After spanning the parameter space, the best parameters for each method

were selected. In a second stage, the three methods were compared in terms of the

computational time, accuracy and variability of computational time with respect to initial

configurations. The NAP turned out to be the fastest, the most accurate and the less

dependent on initial conditions for a small number of spheres (N = 7). For a large

number of spheres (N = 100), the DAHA performed better than any other method in

terms of computational time and variability of computational time. Accuracy has not

been measured as for N large the solution of the minimization problem is not unique.

Finally, in dimension d = 3, we show that the DAHA is able to generate random close

packings with a volume fraction of approximately 0.65. Whether a higher fraction could

be achieved by choosing a different set of parameters remains an open problem.

Future directions include the analysis of numerical stability and the study of the per-

formance of the algorithms for other types of initial configurations, higher spatial dim and

other particle shapes. Some of the numerical results obtained in this work are analytically

investigated in Chapter 2.

The applications of particle systems with volume exclusion constraints are many and

we believe that these type of algorithms may be very useful for biological, physical and

social systems.

0.4.1.2 Analytical study of a non-convex minimization problem (Chapter

2)

Chapter 2 is based on a collaboration with Sebastien Motsch. The aims of this Chapter

are:

• To develop an analytical study of the new algorithm proposed in Chapter 1 in

terms of convergence and speed of convergence in 1D and for an arbitrary number

of particles.

• To compare the new algorithm with an augmented Lagrangian method in terms of
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speed of convergence.

We consider the non-convex minimization problem (15) with the global potential (17).

We start by studying properties of a solution to this problem itself. In particular, we

fully characterize the only solution (apart from permutations and translations) and the

associated Lagrange multipliers in dimension d = 1 for any value of N . In dimension

d > 1, there are in general many local minima and there is no explicit expression for

the Lagrange multipliers. Nevertheless, we are able to compute the order of magnitude

with respect to N of the Lagrange multipliers associated to a particular class of solutions

belonging to the set of spherical configurations.

We then analyse the dynamical system associated to the AHA and prove that it does

not converge. Specifically, we show that for N > d+ 1 the Lagrangian does not have any

saddle-point.

We dedicate the remaining of Chapter 2 to the analysis of two dynamical systems.

The first one is associated with an augmented Lagrangian algorithm (ALA) and we call

it augmented Lagrangian system (ALS). The second one is associated with a first-order

formulation of the DAHS and we call it 1st-order DAHS. The two systems have the form:

Ẋi = −α[∇Xi
W (X) +

∑
k,`∈{1,...,N}, k<`

λk`∇Xi
φk`(X)]

−γDi(X, λ),

i = 1, ..., N (20)

λ̇k` =

0, if λk` = 0 and φk`(X) < 0

βφk`(X), otherwise
,

k, ` = 1, ..., N, k < `, (21)

where γ and β are positive constants. In the ALS, the last term in equation (20) is defined

by

Di(X, λ) := DAL
i (X, λ) =

∑
k,`∈{1,...,N}, k<`

φk`(X)∇Xi
φk`(X)

and in the 1st-order DAHS the same term is defined by

Di(X, λ) := DDAH
i (X, λ) =

∑
k,`∈{1,...,N}, k<`

φk`(X)λk`∇Xi
φk`(X).

We prove the convergence of both systems in dimension d = 1 towards the solution

of the minimization problem characterized before, provided the initial configuration is

sufficiently close to the steady state. Specifically, we use linear stability analysis to prove

that the solution to the minimization problem is an asymptotically stable steady state

of (20)-(21) for any value of the parameters. Moreover, we obtain for each system the

region in the parameter space where the convergence is faster. We conclude that in the

case of the 1st-order DAHS this region is narrower but it may lead to a faster convergence
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than the corresponding region of the ALS.

There is still much more work left to do, namely, investigate the convergence properties

of the DAHA towards a solution to the minimization problem in high spacial dimensions,

finding a rule to choose the parameters that lead to a faster convergence and study the

numerical stability of the algorithms. Despite of the simplicity of the formulation and

resolution of sphere packing problems in low dimensions, they turn out to be extremely

complex in higher dimensions (above 2). Therefore they still remain nowadays an active

area of research in mathematics [36, 89].

0.4.2 Particle-based models for congested systems (Part II)

We now consider discrete descriptions of the time-evolution of particle systems with con-

gestion. At each time, we assume that the system is at a mechanical equilibrium. Such

equilibrium state corresponds to a solution of a packing problem (see Part I), namely, a

minimization of a potential energy (confinement potential) subject to volume exclusion

constraints. The evolution of the system is then driven by changes in the potential energy

and other factors that are specified in the next Sections. This part of the thesis is formed

of two Chapters:

• In Chapter 3 we present a numerical study on the performance of several algorithms

for simulating the dynamics of congested systems. The experimental set up is a

particle-based model for ballistic aggregation. We compare several event-driven

and time-stepping algorithms and we select the one that performs faster for a large

number of particles.

• In Chapter 4, we build a mechanical model of a packed cell tissue and we use the

algorithm selected in Chapter 3 to simulate its dynamics. Using the model, we then

show that some hypotheses about the dynamics of the tissue are consistent with the

real data.

0.4.2.1 Event-driven versus time-stepping schemes for ballistic aggrega-

tion (Chapter 3)

Chapter 3 is based on a collaboration with Pierre Degond, Giacomo Dimarco and Sophie

Hecht. The aims of this Chapter are:

• To develop a time-stepping algorithm that efficiently simulates the dynamics of large

and dense particle systems.

• To assess the new algorithm against an event-driven algorithm in terms of compu-

tational time in the context of a particle system undergoing ballistic aggregation.
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Consider N ∈ N self-propelled hard-circles, with radius R > 0 and positions X =

{Xi}i=1,...,N ∈ R2N . The circles move smoothly in straight trajectories in a torus until

they collide and stick, forming growing clusters with velocity equal to the average of the

velocities of the constituent particles. We consider the evolution of the system until all

particles have come together to form one big cluster. The phenomenon described is called

ballistic aggregation and constitutes our experimental set up to assess an event-driven

(ED) and four time-stepping (TS) schemes (see Section 0.3.2.2 for a description of the

main features of these methods). The goal is to find a scheme that is able to deal with a

large number and a large density of particles.

In the TS schemes we define a small time-interval ∆t. Given the state of the system at

time t, we compute the state at time t+∆t by performing three steps: 1) the particles move

at a constant velocity until time t + ∆t, 2) the positions of the particles are adjusted to

restore the non-overlapping condition in the system, 3) the velocities of colliding clusters

are updated to the average velocity of the constituent particles. Step 2) consists of solving

a minimization problem with non-overlapping constraints (see Part I). The four different

TS schemes (S-R, NS-R, S-NR and NS-NR) are obtained by combining the two following

aspects:

• rigid (R) or non-rigid (NR) clusters, namely, each cluster behaves either as a whole

or as a collection of particles. In the former, all particles of the same cluster are

subject to the same update during the minimization algorithm and in the latter

each particle is updated individually;

• the use of smooth (S) or non-smooth (NS) functions associated to the non-overlapping

constraints, φk`(X) ≤ 0, k < `, namely,

φk`(X) = (2R)2 − |Xk −X`|2

or

φk`(X) = 2R− |Xk −X`|,

respectively. Note that the two functions lead to equivalent constraints, neverthe-

less they have different influence on the speed and accuracy of the minimization

algorithm.

We then compare the computational time of the TS and ED for different numbers

of spheres N and different sizes of the domain. We observe that when the number of

particles becomes large or the size of the domain becomes small, the ED method becomes

computationally more expensive than the TS schemes. Precisely, in our experiments,

we observe that for for N = 106 circles and a domain [0, L]2, with L = 2.5R
√
N , the

ED takes almost 4 days, while the TS takes less than two hours†.When comparing the

†The computational time was obtained in a Dell PowerEdge R630 rackmount server fitted with two
Intel Xeon E5-2637 3.5 GHz processors, each of which with 4 cores and 8 threads.
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TS algorithms between themselves, we observe that the ones using the smooth form of

the constraints are faster than the corresponding methods with non-smooth form of the

constraints. In Chapter 4 we therefore opted by the smooth form of the constraints in

the model for a cell tissue.

In future work, the TS methods should be assessed in terms of how accurate they

represent the real dynamics. Since the ED scheme is an exact method, we could use it

in this assessment as the reference for accuracy. After selecting the most efficient and

accurate TS scheme, we could use it to study statistical properties associated to ballistic

aggregation. By introducing variability in the initial positions and velocities, one could

explore the evolution of the number of clusters over time or the type of shapes arising

during and at the end of the dynamics.

0.4.2.2 Modelling a packed cell tissue with noise (Chapter 4)

Chapter 4 is based on a collaboration between mathematicians Pierre Degond and Sara

Merino-Aceituno and a team of biologists from Toulouse led by Eric Theveneau and

including Fernando Duarte. The aims of this Chapter are:

• To develop a mechanical model for a packed cell tissue.

• To explore the parameter space of the model.

• To obtain a qualitative and quantitative comparison with real data.

• To come up with preliminary hypotheses about the mechanics of the tissue.

In a densely packed tissue the contact forces between neighbouring cells cannot be

neglected. We consider in particular tissues where the nucleus is the most rigid part of

the cell, leading to nuclei packing. Our goal is to understand the contribution of the me-

chanical interactions between neighbouring cells to the shape and dynamics of the tissue.

In order to address this question, we compare experimental results with simulations of

a mathematical model. The experiments conducted by the team of Eric Theveneau are

performed on the chick neuroepithelium that will be presented next. The aim of the math-

ematical model is to test hypotheses that are based on the observation of experimental

data.

The neuroepithelium is constituted by one layer of elongated column-shaped cells whose

nuclei can be found at different heights inside the cell, giving the perception of a multi-

layer tissue (see Figure 8b). The cells are involved by an extra-cellular matrix. Epithelial

cells have a polarity, at the bottom (basal side), the cells are attached to a membrane,

called basement membrane, and at the top (apical side), they are attached to each other,

forming the so-called apical network (see Figure 8a). The nucleus moves inside the cell

along the apico-basal axis. Prior to division, it migrates to the apical side, where it
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(a) Sketch of the organization of a
pseudo-stratified epithelial tissue. Image
taken from [109] and modified.

(b) Image of the chick neuroepithelium taken by
Theveneau’s team.

Figure 8: In a pseudo-stratified epithelial tissue the nuclei are found at different heights inside the cells.
Prior to cell division, the nucleus migrates inside the cell to the apical side of the tissue.

divides. How the nucleus migrates and how that relates to the shape of the tissue are

questions we want to address in this study.

X

X

X

X

X

Basement
membrane

Apical side

Figure 9: Sketch of the model for the tissue presented in Figure 8. The model consists of soft-hard-spheres
connected to the apical and basal points through springs. The basal points are restricted to a straight line
and they cannot switch positions nor get too far away from each other. Neighbouring apical points are con-
nected through springs. The apical point, nucleus and basal point are subject to an alignment force.

In the mathematical model, a cell is constituted by the nucleus, an apical point and

a basal point. The apical and basal points are connected to the nucleus through springs

with adaptive rest lengths (see Figure 9). The rest length is gradually adapting to the

actual length of the spring, which introduces a visco-elastic effect on the system. The

nucleus is modelled by an inner-circle, which represents an impenetrable hard-core and an

outer-circle that resists to compression through an elastic response. The basal points are

restricted to the basement membrane, which is represented by a straight line. Moreover,

they cannot switch positions nor get too far away from each other, which models lateral

adhesion, i.e., the fact that cells adhere to each other. Each apical point is connected

to its neighbouring apical points through springs, forming an apical network. We also

consider an alignment force that tends to align the apical point, the nucleus and the basal
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point, which models the influence of the cytoplasm of the cell.
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Figure 10: Sketch of the changes occurring to a cell prior to division. The rest length of the springs
changes to allow the nucleus to approach the apical side. After a while, the radius of the hard nucleus in-
creases and finally, at division, one cell is substituted by two cells.

Prior to division, the stiffness and rest lengths of the springs of the dividing cell are

modified to allow the nucleus to approach the apical side (see Figure 10). After a short

time period, the radius of the inner-circle increases, which models an increase in the

rigidity of the nucleus. After a while the cell divides, i.e., two cells are introduced in

the place of the older cell. Each cell has an internal clock that determines the time

for division and its internal state, namely, the nucleus rigidity and the properties of the

springs. The position of the nuclei and apical points are subject to Gaussian white noise.

The dynamics of the system is driven by noise, cell division, changes in nucleus rigidity

and spring characteristics.

To simulate this dynamics, we use the time-stepping scheme developed and tested in

Chapter 3. This scheme involves the resolution of a minimization problem with smooth

constraints at each time-step. We minimize a potential corresponding to the sum of

the energy associated to the springs, the alignment force and the soft nucleus. The

minimization is subject to non-overlapping constraints on the nuclei inner-cores, and non-

switching and lateral adhesion constraints on the basal points. To solve this minimization

problem we use the DAHA algorithm that was developed in Chapter 1. At each time-

iteration of the simulation, we perform the following steps:

1. cell division (one cell is replaced by two cells)

2. actualization of internal state of each cell (nucleus rigidity, rest-length and stiffness

of springs),

3. adding noise to the position of the nuclei and apical points

4. restoration of the mechanical equilibrium (minimization algorithm).
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We then investigate for which region of the parameter space we get a qualitative agree-

ment with the laboratory data acquired by the team of biologists on the neuroepithelium.

As much as possible the values of the parameters have been estimated from experimental

data.

The model has provided important output about the mechanics underlying the tissue.

In particular, it suggests that the presence of noise in the system is fundamental to allow

the movement of nuclei in a crowded environment. Another observation is that the speed

of actualization of the springs performed in step 2 above seems to control both the time it

takes for the nucleus to reach the apical side before division and the height of the tissue.

These observations can be compared with experimental results and help in the design of

new laboratory experiments.

In the future one should develop more quantitative comparisons between the model

and experimental data to calibrate and validate the model. In particular, it would be

interesting to explore the potential existence of bifurcations on the model parameters and

see if they would relate to in vivo observations.

In a longer term the model could be used to explore other biologically relevant sit-

uations, such as cancer development. In this case, the model might prove particularly

useful, by allowing in silico experiments which could be technically challenging in vivo.

For instance, the effect of finely tuning cell heterogeneity within the tumour or assessing

the effect of tumour size on tumour dynamics and on healthy neighbouring cells.

0.4.3 Continuum models for congested systems (Part III)

In Part III we use the intuition developed in Parts I and II to design a continuum approach

for congested systems. We assume that the system is at all times at a state of mechanical

equilibrium, that corresponds to the solution of a minimization problem. The evolution

of the system is then driven by the evolution of an external confining potential and by

a change in average particle volume. The question we want to address is what motion

results from this situation.

0.4.3.1 A new continuum theory for incompressible swelling materials

(Chapter 5)

Chapter 5 is based on a collaboration with Pierre Degond, Sara Merino-Aceituno and

Mickaël Nahon. The aims of this Chapter are:

• To develop a continuum model for large and dense particle systems based on the

rules introduced in Part II at the particle level.

• To characterize a generic solution.
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We develop a continuum model for incompressible swelling materials, which intends

to be a first step towards the development of more realistic models of swelling gels or

tumours. We start by considering a discrete model in order to motivate the continuum

description. Similarly to the models presented in Part II, we consider a system made of

N finite-sized particles at equilibrium in a confining potential constrained by the non-

overlapping constraints. We then assume that the particle volume and the confining

potential may vary with time and that the particles follow this evolution adiabatically by

remaining at any time at mechanical equilibrium. We refer to [112] for a discussion of

the biological relevance of this description and to Chapter 4 for an example of a discrete

model developed within this particular setting.

We now formulate a similar problem at the continuum level. We consider a continuum

density n(x, t) for a population of particles having finite average volume τ(x, t), where

x ∈ Rd, d = 1, 2, 3 represents the position and t ≥ 0 the time. We assume that the

particle density satisfies the total mass constraint∫
Rd

n(x, t)dx = N, (22)

where N > 0 is fixed, the non-negativity constraint

n(x, t) ≥ 0 (23)

and the maximal density constraint

n(x, t)τ(x, t) ≤ 1. (24)

Moreover, we assume that the system is confined by an external potential V (x, t, τ(x, t))

whose associated mechanical energy is given by

Ft[n] =

∫
Rd

V (x, t, τ(x, t))n(x, t)dx, (25)

The state of the system at any given time t corresponds therefore to the solution of the

following minimization problem:

Find n(·, t) : x ∈ Rd 7→ n(x, t) ∈ R a solution of:

min
{
Ft[n(·, t)] | n(·, t) ≥ 0, n(·, t)τ ≤ 1 and

∫
Rd

n(x, t)dx = N
}
, (26)

for τ : (x, t) ∈ Rd × [0,∞) 7→ τ(x, t) ∈ R+ and N > 0 given.

We start by characterizing the resulting equilibrium density. We prove that the solution

to (26) is unique, contrarily to the discrete case (see section 0.4.1). The formulas we obtain

show that the particles fill all the energy level sets of the potential V while keeping the

non-overlapping condition saturated (i.e. the density being equal to the packing density)
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until they reach a maximal energy value related to the total number of particles. Indeed,

the potential V tends to bring all particles towards its points of global minimum. However,

the non-overlapping constraint prevents the particles to pile up at these points and forces

them to occupy increasingly higher potential values. They do so until the total number of

particles has been exhausted. At this point, the medium has reached its outer boundary

and it is therefore limited by the level set that encloses a number of particles exactly equal

to the total number N of available particles in the system.

Then, we assume that the average particle volume and of the confinement potential

depend on time. Assuming that the system moves adiabatically and remains at any time

at mechanical equilibrium, we can compute the continuum velocity. More precisely, we

determine this velocity by applying two heuristic principles directly connected to the

previous non-overlapping heuristics. The first heuristics is that particles cannot swap

their positions. Indeed, at the packing state, there is not enough space for two spherical

particles to undertake the maneuver required to swap their position. This heuristics

provides the component of the velocity normal to the level sets of the potential V . At this

point, we prove that the medium velocity is consistent with the continuity equation. In

order to determine the component of the velocity tangent to the level sets of the potential

V , we invoke a second heuristics, namely that the sequence of minimization problems over

time will favour a continuous particle motion rather than jumps which would generate

large velocities. In continuum terms, this means that the velocity should obey an energy

minimization principle. We show that this principle determines the tangential velocity in

a unique way as the tangential gradient along the potential level sets of a certain velocity

potential (not to be confused with the confinement potential). This velocity potential is

found by inverting a Laplace-Beltrami operator on each of the level sets.

This approach is different from the classical one relying on Darcy’s law. One con-

sequence of the use of Darcy’s law for incompressible swelling materials is that, at the

medium boundary, the continuum velocity is normal to the boundary [146]. Contrarily,

in our framework the velocity at the medium boundary does not have to be (and it is

not in general) normal to the boundary, due to the presence of a non-trivial tangential

velocity component.

This new modelling approach opens many exciting new research directions, from theory

to numerics and modelling to applications. A (non-exhaustive) list of future directions

which will be investigated in forthcoming works include the following: adding cell division;

considering a potential V that involves a contribution from particle interaction such as

attachment between nearby cells; coupling with chemical fields; introducing boundary

fuzziness; introducing a statistical description of particle volume sizes leading to a kinetic

equation; taking into account multiple particle species; deriving a macroscopic model

by coarse-graining; developing a numerical approximation of the system and applying to

practical systems.
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0.5 Structure of the thesis

In this thesis we propose two modelling frameworks to describe congested particle systems

at the discrete (Parts I and II) and continuum (Part III) levels. In the first framework, the

system is described at the particle level (microscopic model), while in the second frame-

work the system is described at the number density level (macroscopic model). The two

frameworks are based on simple heuristic rules on the interaction between particles that

are likely to be obeyed in generic congested systems. New computational and mathemat-

ical tools are developed in order to study the static equilibria (Part I and Part III) and

evolution (Part II and Part III) of these systems. The static equilibrium corresponds to a

solution of a minimization problem. In the discrete framework, such minimization prob-

lem is typically non-convex, which brings additional difficulties, as no universal numerical

methods exist for these problems and therefore, they need to be treated case by case.

Part I of this thesis is exclusively dedicated to the development and study of algorithms

to find a numerical solution to this problem.

In Chapter 1 (Part I) we propose a new algorithm, that we call DAHA, for non-convex

optimization problems. We develop a numerical study on the convergence and speed of

convergence of this algorithm in the context of a sphere packing problem in 2 and 3 spatial

dimensions. We develop a comparative study with existing methods belonging to the class

of Linearly Constrained Lagrangian.

In Chapter 2 (Part I) we find the analytical solution to the sphere packing problem

referred in the previous paragraph in dimension 1, which is unique up to permutations and

translations. We then consider a first order formulation of the DAHA and we prove its

convergence in dimension 1 towards the theoretical solution. We also explore analytically

existing methods, namely, the Uzawa-Arrow-Hurwicz and augmented Lagrangian and

compare them with our method.

In Chapter 3 (Part II) we consider the dynamics of N circles undergoing ballistic

aggregation in a torus. We study an event-driven (ED) and several time-stepping (TS)

algorithms in the case where the density of particles is high. The aim is to test and

compare various algorithms to simulate congested systems. We consider TS schemes

involving the resolution of a sphere packing problem at each time-iteration, which are

obtained by combining smooth and non-smooth form of the constraints and rigid and

non-rigid growing aggregates. The sphere packing problem is solved numerically using

the DAHA presented in Chapter 1. Numerical experiments show that the ED becomes

computationally very expensive as the density and the number of particles increases. The

TS scheme with the lowest computational time is the one that uses the smooth form of

the constraints and non-rigid clusters. We then select the smooth form of the constraints

to be used in the simulation of the dynamics of a cell tissue in Chapter 4.

In Chapter 4 (Part II) we develop a mechanical model of a densely packed epithelial cell

tissue in collaboration with a team of biologists led by Eric Theveneau (University Paul
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Sabatier, Toulouse), who run in vivo lab experiments. The aim is to identify the main

mechanical properties that lead to the observed dynamics and shape of the tissue. The

algorithm to simulate the model is the TS scheme with smooth form of the constraints

that we selected in Chapter 3. The results of the model are in good agreement with

experimental data. The model has motivated the formulation of new hypotheses about

the shape and evolution of this tissue.

In Chapter 5 (Part III) we propose a continuum description of swelling materials. The

aim is to describe the evolution of the particle density in a congested system where the

particles are confined by a potential energy. The motion is driven by the evolution of

the potential energy and changes in the average particle size. Similarly to the discrete

models presented in Chapters 3 and 4, we describe the static equilibrium as a solution to

a minimization problem with maximal density constraint. Contrarily to the minimization

problem associated to the discrete model presented in Part I, in the continuous model the

minimization problem is convex and we are able to compute the only solution analytically.

We then compute the medium velocity under two extra assumptions: particles cannot

swap positions (non-swapping condition) and they favour a continuous trajectory rather

than with jumps (principle of minimal displacement).

A schematic organization of the topics developed in the thesis is presented in Figure 11.

The topics are classified in four categories, resulting from the combination of two aspects:

• the type of model: discrete/particle-based or continuous/density-based (represented

in the horizontal axis),

• the state of the system: statics/time-independent or dynamics/time-dependent (rep-

resented in the vertical axis).

Part I (Chapters 1 and 2) refers to discrete models describing the static equilibrium

of congested systems. Part II (Chapters 3 and 4) refers to discrete models describing

the dynamics of congested systems. Part III (Chapter 5) refers to continuum models

describing both the static equilibrium and dynamics of congested systems.
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Figure 11: Classification of the Chapters of this thesis and how they relate to each other. The horizontal
axis refers to the spatial scale considered in the models: from microscopic (discrete particle-based models,
Chapters 1 to 4) to macroscopic (continuum density based models, Chapter 5). The vertical axis refers to
the state of the system: static equilibrium (Chapters 1, 2 and 5) versus dynamics (Chapters 3, 4 and 5).
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Part I

Algorithms for packing problems
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1
Damped Arrow-Hurwicz algorithm

for sphere packing

We consider algorithms that, from an arbitrarily sampling of N spheres (possibly over-

lapping), find a close packed configuration without overlapping. These problems appear

in the simulation of particle systems with congestion presented in Part II and they can

be formulated as minimization problems with non-convex constraints. For such pack-

ing problems, we observe that the classical iterative Arrow-Hurwicz algorithm does not

converge. We derive a novel algorithm from a multi-step variant of the Arrow-Hurwicz

scheme with damping. We compare this algorithm with classical algorithms belonging to

the class of linearly constrained Lagrangian methods and show that it performs better.

We provide an analysis of the convergence of these algorithms in the simple case of two

spheres in one spatial dimension. Finally, we investigate the behaviour of our algorithm

when the number of spheres is large in two and three spatial dimensions. This algorithm

is further analysed in Chapter 2.

The results presented in this Chapter have been published∗ in Journal of Computational

physics [45] in collaboration with Sebastien Motsch† and Pierre Degond‡.

∗The published article is under the license CC BY-NC-ND 4.0.
†School of Mathematical & Statistical Sciences, Arizona State University, Tempe, USA
‡Department of Mathematics, Imperial College London, UK
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1.1 Introduction

Particle packing problems can be encountered in many different systems, from the forma-

tion of planets or cells in live tissues to the dynamics of crowds of people. In particular,

they have been widely investigated in the study of granular media [117], glasses [181]

and liquids [85]. More recently, particle packings have also been used in biology, in the

study of bacterial colonies, [107] and social sciences, in the estimation of a maximum safe

packing in a crowd [39].

Packing problems lead to NP-hard non-convex optimization problems [89], due to the

non-convexity of the exclusion volume constraints. In the literature, we find numerical

studies involving particles with various shapes such as ellipses [180] or even non-convex

particles [60]. Depending on the degree of symmetry of the particles shape and the

packing domain, the optimal solution may not be unique, since permutations, rotations

or reflections may generate equivalent solutions. An example where all these symmetries

occur is the packing of a finite number of spheres in the Euclidean space, which corresponds

to the situation we explore here. Moreover, there are local minima and their number

increases as the number of particles and the spatial dimensions increases.

We consider algorithms that, given an initial configuration of N spheres (possibly

overlapping), find a nearby packed configuration without overlapping. This solution is

not in general a global optimum, which is an important feature regarding the applications

we are interested in. Indeed, in many natural systems individuals or particles only seek

to achieve a locally optimal solution. Therefore, it is more likely that they reach a local

configuration that does not necessarily correspond to a global optimum. By combining

our method with, for example, simulated annealing techniques [1], we could convert our

algorithms into global minimum search algorithms. It is however not the objective we

pursue here.

Classical procedures for non-convex optimization include Uzawa-Arrow-Hurwicz type

algorithms [17], augmented Lagrangian [23, 25], linearly constrained Lagrangian (LCL),

sequential quadratic programming (SQP) [134], among others. For the type of problems

we consider here, the Hessian matrix of the function to be minimized is not always positive

definite (see the example presented in section 1.3). Consequently, the SQP and Uzawa-

Arrow-Hurwicz algorithms do not always converge. On the other hand, the LCL methods

converge very quickly if the number of particles is small. However we are interested in

the case where this number becomes large.

In [53, 86] the authors study the shape of three dimensional clusters of atoms under

the effect of soft potentials by using molecular dynamics. This approach differs from

ours with regard to the non-overlapping constraints, which are approximated by soft

potentials, producing soft dynamics. Although being more costly when dealing with a

large number of particles, we have opted by the hard dynamics approach, since it allows

for a higher precision in the treatment of the constraints. This proves effective when
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dealing with interaction between rigid bodies, where the effect of the rigid boundaries

plays an important role. This motivates the present work.

We start in section 1.2.1 by presenting two formulations of the problem. The first one

is the classical minimization approach. The second one considers a constrained dynamical

system in the spirit of [122]. We also present two equivalent types of non-overlapping con-

straints involving smooth or non-smooth functions which are found in the literature [89, 4].

To solve the non-convex minimization problems arising in these formulations, we first

consider in section 1.2.3 the classical Arrow-Hurwicz algorithm (AHA). In section 1.2.4

we introduce a novel multi-step scheme based on a second-order ODE interpretation of

the minimization problem: the damped Arrow-Hurwicz algorithm (DAHA). We test the

DAHA against two methods taken from the widely known class of linearly constrained

Lagrangian algorithms [134, 122]. These algorithms consist of a sequence of convex min-

imization problems, for we refer to them as nested algorithms (NA) and they shall be

referred to as the NAP and NAV. The convergence of the four algorithms (the AHA,

DAHA, NAP and NAV) is analyzed in section 1.3 for the case of two spheres in one di-

mension. In section 1.4 the algorithms are numerically compared for the cases of many

spheres in two dimensions. A brief numerical study of the packing density in two and

three dimensions is also presented. Finally, conclusions and future works are presented in

section 1.5. We also refer to Chapter 2 for a more detailed analysis of the minimization

problem. In particular we prove that minimizers are not saddle points of the Lagrangian.

In the present Chapter we investigate the convergence of the algorithms numerically.

1.2 The damped Arrow-Hurwicz algorithm (DAHA)

1.2.1 Minimization problems for sphere packing

We first recall two different formulations of generic minimization problems. Let N and b

be two given positive integers. We consider first the problem of finding a configuration X̄

such that

X̄ ∈ argmin
φk`(X)≤0, k,`=1,...,N, k<`

W (X). (1.1)

where W : RbN → R is a convex function (not necessarily strictly convex). The functions

φk` : RbN → R, k, ` = 1, ..., N, k < ` are continuous but not necessarily convex. We

suppose that W has an attainable minimum in the set of admissible solutions {X ∈
RbN |φk`(X) ≤ 0, k, ` = 1, ..., N, k < `}. In these conditions, X̄ exists but may not

be unique. We also assume that φk`, k, ` = 1, ..., N, k < ` and W are C1 functions in

the neighbourhood of X̄. In what follows, d will denote the diameter of a sphere, N the

number of spheres, b the spatial dimension, X the position of the center of the spheres and

φk` the non-overlapping constraint functions between the kth and `th spheres. The non-
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overlapping constraints for a system of identical spheres in Rb can be expressed by means

of a smooth or a non-smooth function as specified bellow. Although leading to equivalent

constraints, each form has an impact on the convergence of the numerical method towards

a local minimizer, as we will see in sections 1.3 and 1.4.

Definition 7. We call non-smooth form of the constraint functions (NS) the

following function

φk`(X) = d− |Xk −X`|, k, ` = 1, ..., N, k 6= `

and smooth form of the constraint functions (S) the following function

φk`(X) = d2 − |Xk −X`|2, k, ` = 1, ..., N, k 6= `.

An illustration of the non-overlapping constraints, as well as, a possible solution for

N = 7 in dimension b = 2 are presented in Figure 1.1.

(a) (b)

Figure 1.1: Representation of the non-overlapping constraints, 1.1a, and a possible optimal solution
of (1.1) for N = 7, 1.1b.

We now present a second formulation consisting in solving a minimization problem

associated with a discrete dynamical system which has X̄ as a fixed point. Let | · |
denote the Euclidean norm on Rb. The problem is formulated iteratively: given an initial

configuration X0 = {X0
i }i=1,...,N , we pass from iterate Xp to iterate Xp+1 as follows

Xp+1 = Xp + τ Vp+1 (1.2)

Vp+1 ∈ argmin
φk`(Xp+τ V)≤0, k,`=1,...,N, k<`

1

2

N∑
i=1

|Vi +∇Xi
W (Xp)|2, (1.3)

where τ > 0 is a given parameter and V = {Vi}i=1,...,N . At each iteration p + 1, we look

for the fictitious velocity Vp+1 that is close to the steepest descent −∇Xi
W (Xp) and such

that the iterate Xp+1 = Xp + τVp+1 is a non-overlapping configuration. The algorithm
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stops when the velocity reaches zero, yielding a fixed point X̃ satisfying

0 ∈ argmin
φk`(X̃+τ V)≤0, k,`=1,...,N, k<`

1

2

N∑
i=1

|Vi +∇Xi
W (X̃)|2. (1.4)

In particular X̃ satisfies the non-overlapping constraint, φk`(X̃) ≤ 0. Note that the set

defined by the constraints is compact, so the minima of (1.4) exist, but may not be unique.

As we will see in the next Section, the Lagrangian formulation of the two problems (1.1)

and (1.4) are equivalent.

1.2.2 Lagrangian formulation

The minimization problem (1.1) can be formulated in terms of the Lagrangian L : RbN ×
(R+

0 )N(N−1)/2 → R defined by

L(X,λ) = W (X) +
∑

k,`∈{1,...,N}, k<`

λk`φk`(X),

where λ = {λk`}k,`=1,...,N, k<` represents the set of Lagrange multipliers.

We start by proving that the Abadie constraint qualification (ACQ) introduced in

section 0.3.2.1 holds at X̄ for the smooth and non-smooth constraints φk` defined in

definition 7.

Proposition 8. Let X̄ = {X̄i}i=1,...,N be a solution to the problem (1.1). Then the ACQ

holds at X̄.

Proof. Consider the tangent and the linearized cones T (X̄) and L(X̄) defined in defini-

tion 2 in section 0.3.2.1. We already know that T (X̄) ⊆ L(X̄). We now prove the other

inclusion for each form of the constraints.

• Smooth form of the constraint functions:

Let k, ` be such that φk`(X̄) = 0 and let ” · ” and ”〈·〉” denote the inner-product in Rb

and RbN , respectively. For any D = {Di}i=1,...,N ∈ L(X̄) ⊂ RbN , we have

0 ≥ 〈∇φk`(X̄),D〉
= −2(X̄k − X̄`) ·Dk − 2(X̄` − X̄k) ·D`

= −2(X̄k − X̄`) · (Dk −D`),
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which implies that (X̄k − X̄`) · (Dk −D`) ≥ 0. Consequently, for any tn ≥ 0,

φk`(X̄ + tnD) = d2 − |X̄k + tnDk − X̄` − tnD`|2

= d2 − (X̄k − X̄` + tn(Dk −D`)) · (X̄k − X̄` + tn(Dk −D`))

= d2 − |X̄k − X̄`|2 − 2tn(X̄k − X̄`) · (Dk −D`)− (tn)2|Dk −D`|2

= −tn(X̄k − X̄`) · (Dk −D`)− (tn)2|Dk −D`|2 (1.5)

≤ 0

where the step (1.5) comes from φk`(X̄) = 0. Now, let k, ` be such that φk`(X̄) < 0. As

φk` is a C1 function in a neighbourhood of X̄, we have that φk`(X̄+V) ≤ 0, for any X̄+V

sufficiently close to X̄. Therefore, there exist sequences {Dn}n → D and {tn}n → 0+ such

that φk`(X̄ + tnDn) ≤ 0, for all n and k, ` = 1, ..., N, k < `. We conclude that D ∈ T (X̄).

• Non-smooth form of the constraint functions:

Using a similar reasoning, we conclude that (X̄k − X̄`) · (Dk −D`) ≥ 0. Consequently, for

any tn ≥ 0,

φk`(X̄ + tnD) = d− |X̄k + tnDk − X̄` − tnD`|
= d− [(X̄k − X̄` + tn(Dk −D`)) · (X̄k − X̄` + tn(Dk −D`))]

1/2

= d− [|X̄k − X̄`|2 + 2tn(X̄k − X̄`) · (Dk −D`) + (tn)2|Dk −D`|2]1/2

= d− [d2 + 2tn(X̄k − X̄`) · (Dk −D`) + (tn)2|Dk −D`|2]1/2

≤ 0.

The proof follows now exactly the same path as in the smooth case.

By theorem 4 from section 0.3.2.1, there exists λ̄ ∈ (R+
0 )N(N−1)/2 such that (X̄, λ̄) is a

critical-point of the Lagrangian, namely, (X̄, λ̄) satisfies the KKT-conditions [148, 101]:
∇Xi
L(X̄, λ̄) = 0, i = 1, ..., N(

∇λk`L(X̄, λ̄) = 0 and λ̄k` ≥ 0
)

or
(
∇λk`L(X̄, λ̄) < 0 and λ̄k` = 0

)
,

k, ` = 1, ..., N, k < `

which is equivalent to
∇Xi

W (X̄) +
∑

k,`∈{1,...,N}, k<`
λ̄k`∇Xi

φk`(X̄) = 0, i = 1, ..., N(
φk`(X̄) = 0 and λ̄k` ≥ 0

)
or
(
φk`(X̄) < 0 and λ̄k` = 0

)
,

k, ` = 1, ..., N, k < `.

(1.6)

We have reduced our original problem (1.1) to a critical-point system, with a possible

enlargement of the set of solutions. In contrast to convex optimization, in the case of
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packing problems, these critical-points may not be saddle-points. In Chapter 2 we provide

a detailed analysis of this point.

We also formulate the minimization problem (1.3) in terms of a Lagrangian Lp,

Lp(V,µ) =
1

2

N∑
i=1

|Vi +∇Xi
W (Xp)|2 +

∑
k,`∈{1,...,N}, k<`

µk`φk`(X
p + τ V),

where µ = {µk`}k,`=1,...,N, k<` is the set of Lagrange multipliers associated to the con-

straints. The gradients of the Lagrangian are given by

∇ViLp(V,µ) = Vi +∇Xi
W (Xp)

+ τ
∑

k,`∈{1,...,N}, k<`

µk`∇Xi
φk`(X

p + τ V), i = 1, ..., N

∇µk`Lp(V,µ) = φk`(X
p + τ V), k, ` = 1, ..., N.

The dynamical system is written: X̃p+1 = X̃p+τ Ṽp+1 such that (Ṽp+1, µ̃p+1) is a solution

of the critical-point problem

Ṽ p+1
i +∇Xi

W (X̃p) + τ
∑

k,`∈{1,...,N}, k<`
µ̃p+1
k` ∇Xi

φk`(X̃
p + τ Ṽp+1) = 0,

i = 1, ..., N(
φk`(X̃

p + τ Ṽp+1) = 0 and µ̃p+1
k` ≥ 0

)
or(

φk`(X̃
p + τ Ṽp+1) < 0 and µ̃p+1

k` = 0
)
, k, ` = 1, ..., N, k < `

(1.7)

Likewise, the fixed point X̃ of the dynamical system is defined such that there exists µ̃

such that
∇Xi

W (X̃) + τ
∑

k,`∈{1,...,N}, k<`
µ̃k`∇Xi

φk`(X̃) = 0, i = 1, ..., N(
φk`(X̃) = 0 and µ̃k` ≥ 0

)
or
(
φk`(X̃) < 0 and µ̃k` = 0

)
,

k, ` = 1, ..., N, k < `.

(1.8)

Then, it is clear that problems (1.6) and (1.8) are equivalent for all values of τ > 0

by setting λ̄ = τ µ̃. However, the choice of τ is important to ensure convergence of the

dynamical system (1.7) to the fixed point.

As it will be obvious below, all functions W and φk` used throughout the Chapter will

satisfy the conditions considered in this section. The nonlinear systems (1.6) or (1.7) will

have to be solved by an iterative algorithm. We now present the algorithms considered

in the Chapter.
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1.2.3 The Arrow-Hurwicz algorithm (AHA)

The classical Arrow-Hurwicz iterative algorithm [17] searches a saddle-point of the La-

grangian by alternating steps in the direction of −∇XL and +∇λL. Using this idea, a

saddle-point is then a steady-state solution of the Arrow-Hurwicz system of ODE’s (AHS)

which is defined next.

Definition 9. The Arrow-Hurwicz system (AHS) is defined by

Ẋi = −α
(
∇Xi

W (X) +
∑

k,`∈{1,...,N}, k<`
λk`∇Xi

φk`(X)

)
,

i = 1, ..., N (1.9)

λ̇k` =

0, if λk` = 0 and φk`(X) < 0

βφk`(X), otherwise
,

k, ` = 1, ..., N, k < `, (1.10)

where α and β are positive constants. Considering a small time-step ∆t, a semi-implicit

Euler discretization scheme of the previous system leads to the Arrow-Hurwicz algo-

rithm (AHA), which is defined iteratively by
Xn+1
i = Xn

i − α
[
∇Xi

W (Xn) +
∑

k,`∈{1,...,N}, k<`
λnk`∇Xi

φk`(X
n)

]
,

i = 1, ..., N

λn+1
k` = max{0, λnk` + βφk`(X

n+1)}, k, ` = 1, ..., N, k < `

(1.11)

where α and β now correspond to α̃ = α∆t and β̃ = β∆t and the tildes have been dropped

for simplicity.

The original AHA was formulated using a fully explicit Euler scheme, but it has proved

more accurate to use a semi-implicit scheme. Finding a local steady-sate solution of (1.9)-

(1.10) in the case of a packing problem has revealed not to be always possible because it

often happens that no critical-point is a saddle-point (see Chapter 2, Section 2.4.1). This

manifests itself by the existence of periodic solutions of the AHS which do not converge

to the critical-point. In order to overcome this difficulty we propose the damped Arrow-

Hurwicz algorithm which is presented next. This method is based on a modification of the

dynamics of the AHS that transforms an unstable critical-point into an asymptotically

stable one. The performance of our method will be tested by comparing with previous

approaches [134, 122], which are based on a modification of the Lagrangian by linearly

approximating the constraints. These approaches are presented in section 1.2.5.

45



1.2.4 The damped Arrow-Hurwicz algorithm

In order to avoid periodic solutions we will add a damping term as described below. Note

that we are not interested on the transient dynamics of the system, but rather on its

asymptotic behaviour.

We propose the following definition.

Definition 10. We define the damped Arrow-Hurwicz system (DAHS) as

Ẍi = −α2[∇Xi
W (X) +

∑
k,`∈{1,...,N}, k<`

λk`∇Xi
φk`(X)]

−αβ ∑
k,`∈{1,...,N}, k<`

φk`(X)λk`∇Xi
φk`(X)− cẊi ,

i = 1, ..., N (1.12)

λ̇k` =

0, if λk` = 0 and φk`(X) < 0

βφk`(X), otherwise
,

k, ` = 1, ..., N, k < ` (1.13)

where α, β and c are positive constants and the damped Arrow-Hurwicz algorithm

(DAHA) as the corresponding semi-implicit discrete scheme:

Xn+1
i = 1

1+c/2

(
2Xn

i − (1− c/2)Xn−1
i

)
− α2

1+c/2
[∇Xi

W (Xn) +
∑

k,`∈{1,...,N}, k<`
λnk`∇Xi

φk`(X
n)]

− αβ
1+c/2

∑
k,`∈{1,...,N}, k<`

φk`(X
n)λnk`∇Xi

φk`(X
n),

i = 1, ..., N (1.14)

λn+1
k` = max{0, λnk` + βφk`(X

n+1)}, k, ` = 1, ..., N, k < `, (1.15)

where α, β and c correspond now to numerical parameters.

Note that the DAHA is a multi-step scheme, since not only one, but two previous

configurations Xn−1 and Xn are used to obtain Xn+1. By setting c = 2, the method is

reduced to a one-step method. As observed numerically in Section 1.4, the value c = 2

seems to yield the fastest convergence of the algorithm for the particular potential W

defined in (1.25). This motivates the analytical study of the corresponding first-order

ODE system presented in Chapter 2. For generic potentials it remains though an open

question whether this reduction also leads to a faster convergence or not.

A second-order ODE system with damping has previously been proposed within the

scope of convex programming [9, 10]. Besides comprising the non-convex case, our ap-

proach differs from this with regard to the extra term αβ in equation (1.12).

In the following we present the derivation of the DAHS. We start by considering the

AHS (1.9)-(1.10) presented in the previous section. We then take the second-order version
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of (1.9). For each i = 1, ..., N we have

Ẍi = −α
N∑
m=1

∇Xm

[
∇Xi

W (X) +
∑

k,`∈{1,...,N}, k<`

λk`∇Xi
φk`(X)

]
Ẋm

−α
∑

k,`∈{1,...,N}, k<`

λ̇k`∇Xi
φk`(X). (1.16)

Using (1.10), we can replace λ̇k` in (1.16) by βφk`(X)H(λk`), where H is the Heaviside

function. Moreover, in order to keep the same steady states as the AHS, we replace

H(λk`) by λk`, as at equilibrium λk`φk` = 0 holds. Note that other choices could have

been made, such as a power of λk` for instance, which would have influence in the speed

of convergence of the algorithm, however we do not explore this aspect further here. We

get

Ẍi = −α
N∑
m=1

∇Xm

[
∇Xi

W (X) +
∑

k,`∈{1,...,N}, k<`

λk`∇Xi
φk`(X)

]
Ẋm (1.17)

−αβ
∑

k,`∈{1,...,N}, k<`

φk`(X)λk`∇Xi
φk`(X). (1.18)

It turns out that passing to the second-order introduces exponentially growing modes (see

Remark 1.2.1).

Remark 1.2.1. Consider the simple ODE u̇ = −αu whose solution is u(t) = u0e
−αt,

where u0 is the initial configuration. Differentiating both sides of the equation and sub-

stituting u̇ by −αu yields ü = α2u, whose solution includes now an exponentially growing

mode: u(t) = c1e
−αt + c2e

αt, where c1 and c2 are real constants determined by the initial

configurations.

In order to remove these modes, we replace the term in (1.17) by a simple second-order

dynamics in the force field given by the right hand side of (1.9). We get:

Ẍi = −α2

∇Xi
W (X) +

∑
k,`∈{1,...,N}, k<`

λk`∇Xi
φk`(X)


−αβ

∑
k,`∈{1,...,N}, k<`

φk`(X)λk`∇Xi
φk`(X). (1.19)

In this way, the first term is proportional to −∇XL, which avoids divergent modes and

stabilizes the dynamics. Now, we just add a velocity damping term in the form of −cẊi

and we finally obtain (1.12). We end up with the system (1.12)-(1.13).

Remark 1.2.2. We can interpret equation (1.12) as a second-order dynamics version

of (1.9). Denoting by T1 and T2 the terms in (1.19) which are multiplied by −α2 and −αβ,
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respectively, we recover (1.9) in an over-damped limit ε
[
Ẍi + αβT2

]
= −α2T1−cẊi, with

ε→ 0 and c = 1.

Proposition 11. The AHS (1.9)-(1.10) and the DAHS (1.12)-(1.13) have the same equi-

librium solutions.

Proof. If (λ∗,X∗) is a steady state of the AHS, then either φk`(X
∗) = 0 or λ∗k` = 0.

Consequently, λk`φk`(X
∗) = 0, which implies that the second part of equation (1.12) is

null and Ẍ∗ = 0. Using a similar argument we conclude that a steady state of DAHS is

also a steady state of AHS.

1.2.5 Previous approaches

A common approach to solve the generic minimization problems (1.1) and (1.2)-(1.3) is

based on the linearization of the constraint functions φk` around a certain configuration

Xp, which we denote by φpk`(X), i.e,

φpk`(X) = φk`(X
p) +∇Xφk`(X

p) · (X−Xp). (1.20)

The solution Xp+1 of the resulting linearly constrained optimization problem is used to

improve the linearization of the constraint functions and this process is iterated until

convergence. Note that this transformation turns the non-convex minimization prob-

lems (1.1) and (1.2)-(1.3) into a sequence of convex problems, for which there are many

tools available [24]. We have chosen the Arrow-Hurwicz algorithm, however, any other

method for convex optimization problems would suit our purpose.

This method belongs to the class of linearly constrained Lagrangian (LCL) meth-

ods [134] which have been used for large constrained optimization problems.

1.2.5.1 The nested algorithm for the positions (NAP)

Consider the system (1.6) with linearized constraint functions. We propose the following

definition.

Definition 12 (Nested Algorithm for the Positions (NAP)). Let (Xp,λp) be given.

Define Xp,0 = Xp, λp,0 = λp and φpk` as in (1.20). For a given (Xp,n,λp,n), let the step of

the inner-loop be defined as
Xp,n+1
i = Xp,n

i − α
[
∇Xi

W (Xp,n) +
∑

k,`∈{1,...,N}, k<`
λp,nk` ∇Xi

φpk`(X
p,n)

]
,

i = 1, ..., N (1.21)

λp,n+1
k` = max {0, λp,nk` + βφpk`(X

p,n+1)} , k, ` = 1, ..., N, k < `, (1.22)

then (Xp+1,λp+1) = limn→∞(Xp,n,λp,n).
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If we only compute one step of the inner-loop per iteration of the outer-loop we get a

variant of the AHA formulation, where φk`(X
p+1) is replaced by φpk`(X

p+1) in (1.22).

1.2.5.2 The nested algorithm for the velocities (NAV)

We consider the minimization problem (1.7) with linearized constraint functions.

Definition 13 (Nested Algorithm for the Velocities (NAV)). Let τ > 0 and

(Xp,Vp,µp) be given. Define Vp,0 = Vp, µp,0 = µp and φpk` as in (1.20). For a given

(Vp,n,µp,n), let the step of the inner-loop be defined as

V p,n+1
i = V p,n

i

−α
(
V p,n
i +∇Xi

W (Xp) + τ
∑

k,`∈{1,...,N}, k<`
µp,n
k` ∇Xi

φpk`(X
p + τVp,n)

)
,

i = 1, ..., N (1.23)

µp,n+1
k` = max {0, µp,nk` + βφpk`(X

p + τVp,n+1)} , k, ` = 1, ..., N, (1.24)

then (Vp+1,µp+1) = limn→∞(Vp,n,µp,n) and Xp+1 = Xp + τ Vp+1.

The NAV corresponds to an adaptation of the method developed by Maury in [122].

1.3 Linear analysis

1.3.1 Preliminaries

Under the assumptions considered in the previous section, the associated ODE systems

are piecewise smooth. In particular, they are smooth in a neighbourhood of X̄, which

allows us to carry out the linear stability analysis in order to study the local convergence

of the solution towards a steady state.

We consider here the particular physical system where N rigid spheres in Rb attract

each other through a global potential which is given by a quadratic function of the relative

distance,

W (X) =
1

2N

∑
i,j∈{1,...,N}, i<j

|Xi −Xj|2. (1.25)

Definition 14. A steady state x∗ of the ODE system ẋ = f(x), t ≥ 0, is called

• stable (in the sense of Lyapunov) if for all ε > 0, there exists a δ > 0 such that

‖x̄(0)− x∗‖ < δ implies ‖x̄(t)− x∗‖ < ε, for all t > 0 and for all solution x̄;

• asymptotically stable if it is stable and limt→∞ ‖x̄(t)− x∗‖ = 0;

• unstable if it is not stable.
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Note that this definition assumes that the initial configuration is chosen close enough

to the steady state. Alternative notions of stability could have been used [151, 61], there

is no particular reason for this choice. The next theorem allows us to obtain conclusions

about the original nonlinear system from the corresponding linearized system.

Theorem 15. Consider the ODE system ẋ = f(x) and a steady state x∗, where f is

smooth at x∗. If x∗ is an asymptotically stable (unstable) solution of the linearized system

about x∗, i.e., ˙̃x = f ′(x∗)(x̃ − x∗), then it is an asymptotically stable (unstable) solution

of the original system.

Proof. See [34], thm. 2.42, p. 158.

In order to ensure convergence of the ODE system towards a steady state, we only

need to ensure that the eigenvalues of f ′(x∗) all have negative real part. If at least one

eigenvalue has positive real part, then x∗ is unstable, and if all eigenvalues are pure

imaginary, then x∗ is a center equilibrium, i.e. if a solution starts near it then it will be

periodic around it. In the latter case, we cannot conclude anything about the nonlinear

system. The analysis presented next is made for the case of two spheres in R.

1.3.2 The Arrow-Hurwicz algorithm (AHA)

1.3.2.1 AHA-NS

Let φ(X) = d−|X| and consider the potential (1.25). The ODE system associated to the

DAHA-NS in the case of two spheres in R where one sphere is fixed at the origin can be

written as 
Ẋ = −α

(
1− λ

|X|

)
X (1.26)

λ̇ =

0, if λ = 0 and d < |X|
β(d− |X|), otherwise.

(1.27)

Lemma 16. The steady states of the system (1.26)-(1.27), (X∗, λ∗) = (d, d) and (X∗, λ∗) =

(−d, d), are both asymptotically stable, for any α and β positive.

Proof. Since the dynamics around each steady state is identical, we only need to carry

out the analysis of the first steady state. Suppose X > 0 and consider the change of

variables Y = X − d and µ = λ− d. The system on the new variables is given in matrix

form by [
Ẏ

µ̇

]
= A

[
Y

µ

]
, A =

[
−α α

−β 0

]
.

We want the eigenvalues of matrix A to be real and negative in order to have a fast

convergence to the steady state. The roots of the characteristic polynomial P(λ) =
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λ2 + αλ + βα, have both negative real part, therefore the steady state is asymptotically

stable.

Any solution to the ODE system (1.26)-(1.27) converges to a steady state for all

α, β > 0 and the fastest convergence is achieved when α = 4β. In contrast to the

one dimensional case, in higher spatial dimensions the constraints are no longer piecewise

linear. Consequently, we cannot directly extrapolate the conclusions drawn in this section.

In particular, in dimension b = 2, the numerical simulations show oscillations around the

steady state for N > 3 without never converging to it. The non-convergence is in this

case due to the non-existence of a saddle-point of the Lagrangian (see section 2.4.1).

1.3.2.2 AHA-S

Let φ(X) = d2 − |X|2 and consider the potential (1.25). The ODE system associated

to the AHA-S in the case of two spheres in R where one sphere is fixed at the origin can

be written as 
Ẋ = −α (1− 2λ)X (1.28)

λ̇ =

0, if λ = 0 and d < |X|
β(d2 −X2), otherwise.

(1.29)

Lemma 17. The steady states of the system corresponding to the linearization of (1.28)-

(1.29), (X∗, λ∗) = (d, 1/2) and (X∗, λ∗) = (−d, 1/2), are both center equilibria, for any α

and β positive.

Proof. As before, we will only carry out the analysis of the first steady state.

Suppose X > 0 and consider the change of variables Y = X − d and µ = λ− 1/2. The

linearized system on the new variables is given in matrix form by[
Ẏ

µ̇

]
= A

[
Y

µ

]
, A =

[
0 2dα

−2dβ 0

]
.

The roots of the characteristic polynomial P(λ) = λ2 + 4d2αβ are both purely imaginary,

therefore the steady state of the linearized system is a center equilibrium.

The linear analyses does not allow us to conclude anything about the asymptotic

behaviour of the nonlinear system (see thm. 15). Nevertheless, the phase portrait plotted

in Figure 1.2 reveals that a solution to the nonlinear system should converge towards a

periodic orbit around the steady state. As we will see in the next section, the damping

term applied to the Arrow-Hurwicz system (1.9)-(1.10) ensures asymptotic stability of the

steady state, under certain conditions on the parameters.
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Figure 1.2: Phase portrait of the system (1.28)-(1.29) with (α, β, d) = (0.01, 0.01, 2) and initial condition
X0 = 0.2. The dynamics do not converge to the equilibrium (2, 12 ).

1.3.3 The damped Arrow-Hurwicz algorithm (DAHA)

1.3.3.1 DAHA-NS

Let φ(X) = d−|X| and consider the potential (1.25). The ODE system associated to the

DAHA-NS in the case of two spheres in R where one sphere is fixed at the origin can be

written as 
Ẍ = −α2

(
1− λ

|X|

)
X + αβλ(d− |X|) X

|X| − cẊ (1.30)

λ̇ =

0, if λ = 0 and d < |X|,
β(d− |X|), otherwise.

(1.31)

Lemma 18. Let α, β, c > 0. If (α + βd)c − βα > 0, then the steady states of the sys-

tem (1.30)-(1.31), (X∗, Ẋ∗, λ∗) = (d, 0, d) and (X∗, Ẋ∗, λ∗) = (−d, 0, d), are both asymp-

totically stable.

Proof. Suppose X > 0 and consider the change of variables Y = X − d, Z = Ẏ and

µ = λ− d. The linearized system on the new variables is given in matrix form byẎŻ
µ̇

 = A

YZ
µ

 , A =

 0 1 0

−α2 − αβd −c α2

−β 0 0

 .
The eigenvalues of matrix A are the roots of the characteristic polynomial in λ, which is

given by P(λ) = λ3 + cλ2 + (α2 + αβd)λ + βα2. Consider in general a cubic polynomial

of the form P(λ) = λ3 + c2λ
2 + c1λ + c0, with c0, c1, c2 ∈ R+. Let z1, z2 and z3 be the
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(complex) roots to this polynomial. We want to ensure that all roots have negative real

part. Since all coefficients are positive, if the roots are real then they must be negative.

Suppose now that two roots are complex conjugate, for example, z1 = a+ ib, z2 = a− ib,
a, b ∈ R and z3 ∈ R−. In order to find a condition on the coefficients which ensures that

a is non-positive, we start by identifying the coefficients of the equation with its roots:

z1 + z2 + z3 = −c2, z1z2 + z1z3 + z2z3 = c1, z1z2z3 = −c0

Rewriting in terms of a, b and z3 we get

2a+ z3 = −c2, a
2 + b2 + 2az3 = c1, (a2 + b2)z3 = −c0 (1.32)

From (1.32) we deduce that a satisfies the cubic polynomial

8a3 + 8c1a
2 + 2(c1 + c2

2)a+ c1c2 − c0 = 0.

Consequently, if c1c2 − c0 > 0, then a is necessarily negative.

Back to our case, we have c2 = c, c1 = α2 + αβd and c0 = βα2 and a sufficient

condition for the steady state to be asymptotically stable is (α2 + αβd)c− βα2 > 0, i.e.,

(α+βd)c−βα > 0. Note that since the steady state is asymptotically stable as a solution

to the linearized system, then it is also asymptotically stable (see thm. 15).

1.3.3.2 DAHA-S

Let φ(X) = d2 − |X|2 and consider the potential (1.25). For the case of two spheres in R
where one sphere is fixed at the origin, the ODE system associated to the DAHA-S can

be written as 
Ẍ = −α2 (1− 2λ)X + 2αβλ(d2 − |X|2)X − cẊ (1.33)

λ̇ =

0, if λ = 0 and d < |X|
β(d2 − |X|2), otherwise.

(1.34)

Lemma 19. Let α, β, c > 0. If c − 2α > 0, then the steady states of the system (1.33)-

(1.34), (X∗, Ẋ∗, λ∗) = (d, 0, 1/2) and (X∗, Ẋ∗, λ∗) = (−d, 0, 1/2), are both asymptotically

stable.

Proof. As before, suppose X > 0 and consider the change of variables Y = X − d, Z = Ẏ

and µ = λ− 1/2. The linearized system on the new variables is given in matrix form byẎŻ
µ̇

 = A

YZ
µ

 , A =

 0 1 0

−2αβd2 −c 2dα2

−2dβ 0 0

 .
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The eigenvalues of matrix A are the roots of the characteristic polynomial in λ:

P(λ) = λ3 + cλ2 + 2αβd2λ+ 4d2βα2

Using the same reasoning as before we have c2 = c, c1 = 2αβd2 and c0 = 4d2βα2. A

sufficient condition for the steady state to be asymptotically stable is 2cαβd2−4d2βα2 > 0,

i.e., c− 2α > 0.

Remark 1.3.1. We see that as long as the damping coefficient, c, is large enough, the

sufficient conditions for stability of both the DAHA-NS and DAHA-S are fulfilled. Fur-

thermore, the parameter space corresponding to the stability of DAHA-NS is larger than

the one of the DAHA-S.

1.3.4 Previous approaches

1.3.4.1 NAP-NS

Let φ(X) = d−|X| and consider its linearization around Xp 6= 0, i.e., φp(X) = d− Xp

|Xp|X,

and the potential (1.25). The ODE system associated to the inner-loop of the NAP-NS

in the case of two spheres in R where one sphere is fixed at the origin can be written as
Ẋ = −α

(
X − Xp

|Xp|λ
)

(1.35)

λ̇ =

0, if λ = 0 and d− Xp

|Xp|X < 0

β(d− Xp

|Xp|X), otherwise,
(1.36)

with the initial condition (X,λ)(0) = (Xp, λp).

Lemma 20. If X0 6= 0, then the steady state of the system (1.35)-(1.36), (X∗, λ∗) =

d
(
|Xp|
Xp , 1

)
, is asymptotically stable for any α and β positive and the outer-loop converges

in one iteration.

Proof. The stability analysis shows that the steady state of (1.35)-(1.36), namely, (X∗, λ∗) =

d
(
|Xp|
Xp , 1

)
, is asymptotically stable. Furthermore, if X0 6= 0, the outer-loop is defined

recursively by Xp+1 = d |X
p|

Xp and it converges in one iteration. In fact, X1 = d |X
0|

X0 and

Xp = X1 for all p > 1.

The conclusions of the analysis in the one dimensional case cannot be directly extrap-

olated to higher dimensional cases, where the constraint functions are no more piecewise

linear. In section 1.4, we resort to numerical simulations to get some insight about the

behaviour of the system in two spatial dimensions.
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1.3.4.2 NAP-S

Let φ(X) = d2−|X|2 and consider its linearization around Xp, i.e., φp(X) = d2 + |Xp|2−
2Xp · X and the potential (1.25). The ODE system associated to the inner-loop of the

NAP-S in the case of two spheres in R where one sphere is fixed at the origin can be

written as 
Ẋ = −α (X − 2Xpλ) (1.37)

λ̇ =

0, if λ = 0 and d2 + (Xp)2 − 2XpX < 0

β(d2 + (Xp)2 − 2XpX), otherwise,
(1.38)

with the initial condition (X,λ)(0) = (Xp, λp).

Lemma 21. If X0 6= 0, then the steady state of the system (1.37)-(1.38), (X∗, λ∗) =
d2+(Xp)2

2(Xp)2
(Xp, 1

2
), is asymptotically stable for any α and β positive and the outer-loop gen-

erates the sequence {Xp}p∈N defined iteratively by Xp+1 = d2+(Xp)2

2Xp , which is convergent.

Proof. The stability analysis shows that the steady state of (1.37)-(1.38), namely, (X∗, λ∗) =
d2+(Xp)2

2(Xp)2
(Xp, 1

2
), is asymptotically stable. Consequently, the outer-loop generates the se-

quence defined recursively by Xp+1 = d2+(Xp)2

2Xp , which is well-defined for X0 6= 0. If this

sequence is convergent to, say, L, then L must satisfy L = d2+L2

2L
i.e., L = ±d. Now, if

Xp > d then
Xp+1

Xp
=

1

2

(
d2

(Xp)2
+ 1

)
< 1,

therefore Xp+1 < Xp, i.e., the sequence decreases. Furthermore, if we write Xp in the

form Xp = d+ ε, ε > 0, we then have that

Xp+1 − d =
1

2

(
d2

d+ ε
+ d+ ε

)
− d

=
1

2(d+ ε)
(d2 + (d+ ε)2 − 2d(d+ ε))

=
ε2

2(d+ ε)
> 0

i.e., Xp+1 > d. On the other hand, if 0 < Xp < d then the sequence increases. Con-

sequently, we finally conclude that if X0 > 0 then the sequence {Xp}p∈N converges to-

wards d. Using the same reasoning we conclude that if X0 < 0 then {Xp}p∈N converges

towards −d. We see that for the case of the smooth form of the constraint functions, the

sequence generated by the outer-loop converges.
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1.3.4.3 NAV-NS

Let φ(X) = d − |X| and consider the linearization of φ around Xp 6= 0 evaluated

at Xp + τV , i.e., φp(Xp + τV ) = d − |Xp| − τ Xp

|Xp|V and the potential (1.25). In the

particular case of two spheres in R where one sphere is fixed at the origin, the ODE

system corresponding to the inner-loop is given by
V̇ = −α

(
V +Xp − τ λ Xp

|Xp|

)
(1.39)

λ̇ =

0, if λ = 0 and d− |Xp| − τ Xp

|Xp|V < 0

β
(
d− |Xp| − τ Xp

|Xp|V
)
, otherwise,

(1.40)

with the initial condition (V, λ)(0) = (V p, λp).

Lemma 22. If X0 6= 0, then the the steady state of the system (1.39)-(1.36) is asymp-

totically stable for any α and β positive and the outer-loop converges in one iteration.

Proof. The stability analysis shows that the steady state,

V ∗ =
d− |Xp|

τ

|Xp|
Xp

, λ∗ =
1

τ 2
(d− |Xp|(1− τ)),

is asymptotically stable. Consequently, the outer-loop generates the sequence defined

recursively by Xp+1 = d |X
p|

Xp . If X0 6= 0 the sequence is well-defined and X1 = d |X
0|

X0 and

Xp = X1 for all p > 1, hence the outer-loop converges in one iteration.

The NAV with the smooth form of the constraint functions did not show numerically

good convergence results, for we do not explore it in this work. We note that in [122], the

author has also only considered the non-smooth form of the constraint functions.

1.4 Numerical results

In this section we investigate and compare the numerical results obtained from the damped

Arrow-Hurwicz algorithms (DAHA-NS, DAHA-S) and the nested algorithms (NAP-NS,

NAP-S and NAV-NS) for the potential defined in (1.25). Due to the difficulty in finding

the optimal parameters (α, β) for each method and for each N , we have restricted this

study to the cases N = 7 and N = 100 in two spatial dimensions, b = 2. We address

the convergence time, the robustness of the convergence time with respect to the initial

configurations. Additionally, we compare the accuracy of the methods for the case N = 7

only. Indeed, in the case N = 7, the stable steady state of the dynamical systems

associated to the algorithms is unique (apart from translations, rotations and reflections)

and is represented in Figure 1.1b. This guarantees that all algorithms converge to the

same minimum, whatever initial configuration. In particular, this allows us to assess the
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accuracy of the algorithms by comparing the computed minimum with the exact one.

We finally show some examples of configurations obtained with the DAHA-S for the case

N = 2000 in two and three dimensions.

In order to adjust the spatial dimensions, the numerical parameters must satisfy

α, β, c ∼ O(1) for the methods with the non-smooth form of the constraint functions

and α, c ∼ O(1) and β ∼ O(1/d2) for the methods with the smooth form of the con-

straint functions. In the following we have considered d = 1.

In order to be able to compare the nested algorithms with the DAHA regarding con-

vergence time, we only consider the evolution of X and V and we do not consider the

evolution of λ. We denote by ‖ · ‖ the Euclidean norm in RbN . For a given small and

positive ε, the stopping criterion for the minimization algorithms associated to the NAP,

is given by the following condition on the relative error

‖Xn+1 −Xn‖
‖Xn‖ < εinner. (1.41)

For the case of the minimization problem formulated in terms of the velocities, the stop-

ping criterion is similar but instead of X we write V and instead of normalizing by Vn,

we normalize by Xn, yielding

‖Vn+1 −Vn‖
‖Xn‖ < εinner

τ
. (1.42)

By using the Euler step Xn+1 = Xp + τ Vn+1 we show that the two conditions (1.41)

and (1.42) are equivalent. As we will see, in order to get a fast convergence with the

nested algorithms, one does not need to wait for the convergence of the inner-loop. We

introduce a new parameter, Iinner, which stands for the maximum number of iterations

of the inner-loop allowed per outer-loop iteration. Finally, the stopping criterion for both

the outer-loop of the NAP and the NAV, as well as, for the DAHA reads

‖Xp+1 −Xp‖
‖Xp‖ < ε. (1.43)

The assessment and comparison of the methods will be made through the comparison

of statistical indicators obtained from averaging certain quantities over a set of different

initial configurations. The indicators are introduced bellow.

Definition 23. Consider a set of p initial configurations for which an algorithm converges,

i.e., the stopping criterion is satisfied in a finite number of iterations. Let T` be the

number of iterations needed for the algorithm to converge when starting with the `th

initial configuration. Let Aij be the overlapping area of spheres i and j at convergence

and Atotal = Nπ(d/2)2.

We define the following statistical indicators mean convergence time, variance of
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(a) DAHA-NS (b) DAHA-S

Figure 1.3: Maximum number of iterations needed for the DAHA to converge over a set of 20 randomly
generated initial configurations as a function of c for N = 7 and ε = 10−6. The numerical parameters used
are: 1.3a (α, β) = (0.3, 3) and 1.3b (α, β) = (0.3, 1.4).

the convergence time and the mean proportion of overlapping area per sphere

as

T =
1

p

p∑
`=1

T`, σ2 =
1

p− 1

p∑
`=1

(T` − T )2 and A =
1

pNAtotal

∑
i,j∈{1,...,N}, i<j

Aij,

respectively.

The indicator T measures the efficiency of an algorithm with respect to the convergence

time, A measures the accuracy on the treatment of the non-overlapping constraints and

σ2 measures the robustness of the convergence time with respect to the initial configura-

tions. For simplicity we assume that the time interval between iterations is constant and

invariant among the different algorithms. As a consequence of this simplification, we will

use the number of iterations as the time unit of T .

1.4.1 Case N = 7

We present a detailed numerical study for the case of N = 7 spheres in dimension b = 2.

The 20 different initial configurations considered in this section were generated from a

standard Gaussian distribution. We choose the tolerances ε = 10−6 and εinner = 10−9

and the maximum number of iterations of the inner-loop Iinner = 10. In order to study

the relation between the damping parameter c and the convergence time of the DAHA

with smooth and non-smooth constraints, we plot in Figure 1.3 the maximum number

of iterations over 20 different randomly generated initial configurations as a function of

c ∈ (0, 10]. We observe that the lower convergence time is attained when c ≈ 2, for both

58



(a) DAHA-NS (b) DAHA-S

Figure 1.4: Relative error on log scale averaged over a set of 20 randomly generated initial configurations,
p, as a function of iteration number, n, for different values of c and for N = 7 and ε = 10−6. The numeri-
cal parameters used are: 1.4a (α, β) = (0.3, 3) and 1.4b (α, β) = (0.35, 1.4).

the DAHA with the smooth and with the non-smooth constraints. In Figure 1.4 we plot

the relative error as a function of iteration number, n, for different values of c. If c = 0

we observe that the relative error oscillates and never drops bellow 10−1. As we increase

c the oscillations tend to diminish. In the following we have used c = 2. Note that this

choice for c eliminates the dependence on Xn−1 in (1.14)-(1.15), in this case, the DAHA

can be seen as a discretization of the following first-order ODE system:

Ẋi = −1
2
α2[∇Xi

W (X) +
∑

k,`∈{1,...,N}, k<`
λk`∇Xi

φk`(X)]

−1
2
αβ

∑
k,`∈{1,...,N}, k<`

φk`(X)λk`∇Xi
φk`(X), i = 1, ..., N

λ̇k` =

0, if λk` = 0 and φk`(X) < 0

βφk`(X), otherwise
,

k, ` = 1, ..., N, k < `.

We now consider the five methods, namely, the DAHA-NS, DAHA-S, NAP-NS, NAP-S

and NAV-NS. The numerical simulations suggest that α has influence in the attraction

and β in the repulsion between spheres, which can also be observed by looking directly

at the equations. If β is too large we observe oscillations, if α or both parameters are too

large we observe numerical instability and if α is small we observe a very slow dynamics.

The optimal set of parameters should then be chosen near the parameters that lead to

numerical instability, which may be a problem, since an algorithm may be very efficient

for some set of initial configurations, however it may be numerically unstable for another.

Moreover, we have observed that the final positions obtained from each method by varying

the numerical parameters are naturally not always the same. Only the relative positions
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(a) DAHA-NS (b) DAHA-S

(c) NAP-NS (d) NAP-S

(e) NAV-NS

Figure 1.5: Relative error on log scale, p, as a function of iteration number, n, for 20 randomly generated
initial configurations computed by each algorithm for N = 7 and ε = 10−6. The numerical parameters used
are: 1.5a (α, β, c) = (0.3, 3, 2), 1.5b (α, β, c) = (0.35, 1.4, 2), 1.5c (α, β, Iinner, εinner) = (0.6, 0.46,
10, 10−9), 1.5d (α, β, Iinner, εinner) = (0.25, 0.28, 10, 10−9) and 1.5e (α, β, Iinner, εinner, τ) =
(0.48, 126, 10, 10−9, 0.1) .
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(ε, εinner) (10−4, 10−7) (10−6, 10−9) (10−8, 10−11)
Mean convergence time (T )

DAHA-NS 103 145 198
DAHA-S 85 133 182
NAP-NS 81 107 131

NAP-S 165 246 325
NAV-NS 248 283 535

Order of accuracy (A,W − 3)
DAHA-NS (10−6,−10−6) (10−9,−10−9) (10−12,−10−13)
DAHA-S (10−7,−10−6) (10−10,−10−10) (10−12,−10−13)
NAP-NS (10−9,10−8) (10−12,10−12) (10−15,0)

NAP-S (10−8,−10−5) (10−11, 10−6) (10−13,−10−8)
NAV-NS (10−8, 10−1) (10−10,−10−1) (10−14, 10−9)

Variance of the convergence time (σ2)
DAHA-NS 1.08× 103 1.21× 103 1.70× 103

DAHA-S 4.19× 102 4.49× 102 5.65× 102

NAP-NS 3.00× 102 4.13× 102 2.93× 102

NAP-S 5.74× 102 4.68× 102 4.68× 102

NAV-NS 1.03× 104 1.04× 104 1.80× 105

Table 1.1: Results of the assessment of the final configurations averaged over a set of 20 initial configu-
rations and obtained by each algorithm for N = 7 and for three different values of ε, namely, 10−4, 10−6

and 10−8. The parameters used are DAHA-NS (α, β, c) = (0.3, 3, 2), DAHA-S (α, β, c) = (0.35, 1.4, 2),
NAP-NS (α, β, Iinner, εinner) = (0.6, 0.46, 10, 10−9), NAP-S (α, β, Iinner, εinner) = (0.25, 0.28, 10, 10−9)
and NAV-NS (α, β, Iinner, εinner, τ) = (0.48, 126, 10, 10−9, 0.1) .

(apart from permutations) are invariant. As an exception, the NAV leads to nearly exactly

the same configurations. In fact, we can see from equations (1.2)-(1.3) that the dynamics

of the particles in the NAV is not directly affected by a change of the numerical parameters,

since the parameters are only involved in the computation of the velocity. In contrast, in

the NAP and DAHA a change in the parameters produces a different dynamics, which

leads to different final configurations. This is comprehensible, since the parameters in

those algorithms are directly related to the attraction and repulsion forces between the

spheres. The previous observation could be statistically verified by comparing all the final

configurations produced by each method and checking how different (how far away from

each other) they are.

In the following, we have chosen the numerical parameters (α, β) that correspond to

a fast convergence of each method for all the 20 sets of initial configurations. We plot

in Figure 1.5 the relative error on log scale as a function of iteration number for 20

randomly generated initial configurations and for each method. We observe that the

profile of the relative error follows the pattern: non-monotone behaviour, followed by an

approximately linear decay at a certain speed, which seems to be invariant with respect to

the initial configuration. The faster decay is observed in the NAP-NS (see Figure 1.5c).

The efficiency of the NAV-NS (see Figure 1.5e) is apparently highly dependent on the

initial configuration.
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In order to quantify and compare the efficiency, as well as, the accuracy of the final

configurations generated by each algorithm we consider three different tolerances, ε =

10−4, ε = 10−6 and ε = 10−8, and we compute the mean convergence time, T , the

variance of the convergence time, σ2, the mean proportion of overlapping area per sphere

A and the difference between the theoretical optimum and the value of W at convergence.

The results are presented in Table 1.1 and they are averaged over a set of 20 randomly

generated initial configurations. We observe that the NAP-NS (in bold) performs better

than any other method, while the NAV-NS is the least robust to initial configurations,

the slowest to reach convergence and it only produces an accurate solution for ε = 10−8.

In the case of the methods with smooth constraints, we also observe in Table 1.1 that the

DAHA-S converges faster and produces more accurate solutions than the NAP-S. Indeed,

for ε = 10−6 for example, we observe that the mean convergence time is T = 133 for the

DAHA-S and T = 246 for the NAP-S and the difference between the theoretical minimum

and the computed one is of order 10−10 for the DAHA-S and 10−6) for the NAP-S.

1.4.2 Case N = 100

We present in the following a short study for the case of N = 100 spheres. The 5 different

initial configurations considered in this section were generated from a standard Gaussian

distribution. In this case where the initial configurations are very dense, one may observe

two different types of behaviours depending on the choice of the numerical parameters:

either the spheres disperse initially very rapidly before they start to concentrate again

while trying to avoid overlapping with other spheres or they disperse slowly while trying

to rearrange in a non-overlapping configuration. We keep the choice ε = 10−6 and εinner =

10−9, and we choose Iinner = 103. Similarly to the case N = 7, the best value for the

damping parameter c should be of order O(1). We keep the choice c = 2.

We now consider the five methods, namely, the DAHA-NS, DAHA-S, NAP-NS, NAP-

S and NAV-NS. In the following we have chosen the numerical parameters (α, β) that

correspond to a fast convergence of each method for all the 5 sets of initial configurations.

We plot in Figure 1.6 the relative error on log scale as a function of iteration number.

In contrast to the case N = 7 the DAHA seems to converge faster than the NAP (see

Figures 1.6a-1.6d). The efficiency of the nested algorithms (see Figures 1.6c-1.6e) seems

to be highly dependent on the initial configuration.

Note that the performance of the methods depends not only on the numerical param-

eters, but also on the initial configuration. In this study, we have only considered initial

configurations that are very concentrated around one point. In the other case, i.e., if the

spheres are initially far away from each other, then all the simulations must be redone

and different conclusions may be drawn.
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(a) DAHA-NS (b) DAHA-S

(c) NAP-NS (d) NAP-S

(e) NAV-NS

Figure 1.6: Relative error on log scale, p, as a function of iteration number, n, for 5 randomly gen-
erated initial configurations computed by each algorithm for N = 100 and ε = 10−6. The numer-
ical parameters used are: 1.6a (α, β, c) = (0.07, 0.5, 2), 1.6b (α, β, c) = (0.04, 0.15, 2), 1.6c
(α, β, Iinner, εinner) = (0.1, 0.16, 103, 10−9), 1.6d (α, β, Iinner, εinner) = (0.015, 0.026, 103, 10−9) and
1.6e (α, β, Iinner, εinner, τ) = (0.31, 41, 103, 10−9, 0.1) .
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1.4.3 Case N = 2000

Numerical simulations were successfully performed with the DAHA for N large, up to

N = 2000. In order to obtain a faster convergence towards a local minimizer, a fourth

parameter, γ, was introduced in the first equation of the original formulation of the

DAHA (1.14)-(1.15), yielding,

Xn+1
i = 1

1+c/2

(
2Xn

i − (1− c/2)Xn−1
i

)
− α2

1+c/2
[∇Xi

W (Xn) +
∑

k,`∈{1,...,N}, k<`
λnk`∇Xi

φk`(X
n)]

− γ2

1+c/2

∑
k,`∈{1,...,N}, k<`

φk`(X
n)λnk`∇Xi

φk`(X
n), i = 1, ..., N

λn+1
k` = max{0, λnk` + βφk`(X

n+1)}, k, ` = 1, ..., N, k < `.

While using γ 6= √αβ cannot be justified from the derivation presented in section 1.2.4,

it seems to bring additional flexibility to the algorithm that can be used to improve speed

and accuracy (see Chapter 2).

Note that the parameter γ is imperative for the dynamics to converge. If we set γ = 0

with c = 2, the DAHA is reduced to the AHA (up to a scaling factor) and the algorithm

presents an oscillatory behaviour as observed in figure 1.2.

In Figure 1.7 we present an example of four configurations that were obtained at

intermediate steps, namely, n = 1, n = 101, n = 1001 and n = 10001 for N = 2000

with the DAHA-S. The initial configuration was generated from a standard Gaussian

distribution. For a tolerance of ε = 10−5 an optimal configuration was obtained in less

than 13000 iterations.

We observe numerically that the stationary state is close to an optimal packing config-

uration, which corresponds to the hexagonal lattice. In order to quantify this observation,

we measure the packing density, denoted by φ, which corresponds to the ratio of the area

covered by the particles over a disc centered at the center of mass X̄ = 1
N

∑
i=1,...,N Xi for

different radius R (see Figure 1.8). We observe that the packing density (φ ≈ .87) is close

to the optimal packing density (i.e. π
2
√

3
≈ .909) for a wide range of radius size R. For

R > 25, the packing density quickly decays since there are not enough particles to cover

the domain considered.

1.4.4 Case N = 2000 in R3

Finally, we would like to explore how the DAHA performs in R3. We use a similar setting

as in R2, i.e., we choose the same parameters with an initial configuration generated

from a standard Gaussian distribution. In figure 1.9, we plot the configuration after

104 iterations and remove a segment to visualize its interior. The color corresponds

to the pressure exerted by nearby particles and estimate as µi =
∑

j λij. Notice that
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Figure 1.7: Sequence of configurations produced at intermediate steps, namely, n = 1, n = 101, n = 1001
and n = 10001 with the DAHA-S and for N = 2000. The numerical parameters used are: (α, β, γ, c) =
(7.8× 10−3, 2.8× 103, 1.6× 10−2, 2).
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Figure 1.8: The packing density φ is estimated by taking the ratio of the area covered by the particles over
a disc of size R centered at X̄ = 1

N

∑
i=1,...,N Xi, with N = 2000 (1.8a). The packing density is close to

the optimal configuration for a wide range of radius R (1.8b).

numerically the dynamics has not yet reached a stationary state but it would require a

new investigation to analyze when equilibrium will be reached.

We estimate the density packing of the configuration using the same method as in

R2 except that the domain considered is a ball (centered at the center of mass X̄ =
1
N

∑
i=1,...,N Xi with radius R) instead of a disc. In figure 1.10a, we observe that the

packing density φ reaches a maximum around 0.65. The value φ ≈ 0.64 is actually the

packing density for a random close packing [173]. However, the optimal configuration

for sphere packing would give a packing density of φ = π
3
√

2
≈ 0.741. It is an open

problem to determine if one could get closer to this optimal value by using a different set

of parameters.

Another useful information is to study the number of neighbours each particle has.

Numerically, two particles are neighbours if their relative distance is less than 1.1 (1

being the distance for two discs in contact). In figure 1.10b, we observe that particles

have mainly between 8−10 neighbours. In an optimal packing configuration, each particle

would have 12 neighbours.

1.4.5 Summary of the results

We confront in table 1.2 the results obtained from the theoretical analysis for the case of

two spheres (N = 2) in one dimension (b = 1) and the results of the numerical simulations

for the case of N > 2 spheres in two dimensions (b = 2). If the system converges to a

non-overlapping configuration within a reasonable number of iterations and for some set

of parameters we write 3, otherwise we write 7.

66



Figure 1.9: Configuration after n = 104 iterations of the DAHA-S algorithm in R3 with N = 2000 parti-
cles. The color corresponds to the pressure exerted by nearby particles denoted µ. The numerical parame-
ters used are: (α, β, γ, c) = (2.8× 10−2, 2.2× 102, 5.6× 10−2, 2).
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Figure 1.10: Packing density for the three dimensional configuration of Figure 1.9 (1.10a). Histogram of
the number of neighbours for all particles (1.10b).

67



Smooth constraints Non-smooth constraints
Analysis Simulations Analysis Simulations

AHA 7 7 3 7

DAHA 3 3 3 3

NAP 3 3 3 3

NAV 3 7 3 3

Table 1.2: Summary of the results obtained from the analysis for N = 2 in one spatial dimension and
numerical simulations for N ≥ 2 in two spatial dimensions.

1.5 Conclusions and future work

We have deduced a promising algorithm for solving a non-convex minimization problem,

which was derived from a multi-step variant of the Arrow-Hurwicz algorithm: the damped

Arrow-Hurwicz algorithm. This algorithm can be seen as a generalization of the AHA,

when an additional parameter, γ, is considered. In the particular case of packing problems,

the DAHA has revealed to perform better for a large number of spheres when compared

to other classical algorithms. Further studies should be done in order to explore both the

advantages and limitations of this method. In Chapter 2 we develop the stability analysis

of the corresponding ODE system for the case of a generic number of spheres N in b = 1

dimension. However, the analysis in the general case of higher dimensions is still missing,

as well as, the analysis of the numerical stability. In the present Chapter, the DAHA was

assessed in the case of a global potential and highly dense initial configurations, which we

believe to correspond to the worst scenario possible. Nevertheless, the results obtained

here do not necessarily apply to other types of potentials or initial configurations, and

hence similar studies should be conducted for those cases. The estimated packing density

of a three dimensional configuration obtained with the DAHA shows that this algorithm is

capable of generating random close packings. Whether a higher density could be achieved

by choosing a different set of parameters remains an open problem. In the next work we

should consider more general particle systems with different sized spheres or ellipsoids.

The applications of hard-particle systems are vast, for we believe these type of algorithms

are going to be very useful in the study of many biological, physical and social systems.

As an example of application to the modelling of a cell tissue see Chapter 4.
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2
Analytical study of a non-convex

minimization problem

We investigate a non-convex minimization problem with non-overlapping constraints which

naturally arises in the study of many-particle systems with congestion (see Section 0.3.1.2).

Specifically, we consider algorithms to numerically solve this problem which are based on

the Lagrangian formulation of the minimization problem. We first prove that the La-

grangian does not have any saddle-point which implies the non-convergence of the classi-

cal Arrow-Hurwicz algorithm. We then study an Augmented Lagrangian method and a

first-order version of the damped Arrow-Hurwicz algorithm proposed in Chapter 1. We

prove that these two methods converge to the only solution (apart from permutations and

translations) to the minimization problem in dimension d = 1.

This work is based on a collaboration with Sebastien Motsch∗. The proof of the non-

existence of a saddle-point presented in Section 2.4.1 has been contributed by Sebastien

and it has been included in this thesis for completeness.

∗School of Mathematical & Statistical Sciences, Arizona State University, Tempe, USA
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2.1 Introduction

Minimization problems under non-overlapping constraints occur naturally in the mod-

elling of systems of interacting particles (see Section 0.3.1.2). The constraints are asso-

ciated to the shape of the particles, which is typically described by inequalities involving

non-convex functions, consequently, leading to non-convex optimization. Unfortunately

there are no algorithms that work for all non-convex problems, therefore they have to be

treated case by case. The aim of this Chapter is to study several algorithms to numerically

solve these type of problems. In particular we formalize some of the numerical results

obtained in Chapter 1 in terms of the properties of solutions to the minimization problem

and convergence of the algorithms.

Given a configuration of N spheres of radius R in Rd, d ∈ N, we are interested in

finding an optimal packing configuration that is close to the given one. To formulate this

problem, we denote xi the center of each sphere and X = (x1, . . . ,xN) the vector of the

configuration and we consider the potential W :

W (X) =
1

2N

∑
i<j

|xi − xj|2, (2.1)

where | · | denotes Euclidean norm, and the non-overlapping constraints :

φij ≤ 0 for all i 6= j with φij = 4R2 − |xi − xj|2. (2.2)

We combine these N(N − 1)/2 constraints into a single vector: F (X) = (φij)i<j. The

expression for the potential W (2.1) has been chosen based on what we expect to be the

worst scenario possible in terms of convergence of the algorithms considered in this Chap-

ter. Indeed, the convergence corresponds to a balance between attraction and repulsion

forces. In the case of the potential (2.1) this balance is particularly difficult to achieve for

large N due to the large magnitude of attraction forces, which require a fast actualization

of the repulsion forces. We claim that if the algorithms perform well with this potential,

then they will also perform well for other convex potentials. This claim should be further

investigated.

Definition 24. A configuration X is an optimal packing configuration if it satisfies locally:

X ∈ argmin
F (X)≤0

W (X) (2.3)

where F (X) ≤ 0 indicates that each component of F should be non-positive (i.e. φij ≤ 0

for all i 6= j). In other words, X minimizes the potential W under the non-overlapping

constraints.

We are interested in solving the optimization problem (2.3). We illustrate the problem
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with two solutions in dimension 2 and 3 (see Figure 2.1). The main challenge of the

problem (2.3) is that the constraints do not form a convex domain. In other words, the

following set is not convex:

C = {X : F (X) ≤ 0} = {X : |xj − xi| ≥ 2R for all i 6= j}. (2.4)

Optimal configuration in R2 Local optimal configuration in R3

Figure 2.1: Two examples of solutions to the packing problem (2.3). A global optimum in dimension 2 is
presented on the left and corresponds to the hexagonal lattice. A local optimum in dimension 3 is presented
on the right.

Since the problem (2.3) is invariant under translation, we can restrict the set of solu-

tions for vector X with zero mean. Under this restriction, the potential W is coercive:

W (X)
|X|→+∞−→ +∞.

Since the domain C is closed, we deduce that there always exists a solution.

Proposition 25. There exist solutions X to the problem (2.3).

Of course, the solution is far from being unique. From invariance by rotation and

translation, one can deduce other solutions. But for dimensions bigger than 1 there are

in general even more solutions. In appendix A we present some solutions in dimension

d = 2 and for N = 2, 3, 4.

Suppose that X = (xi)i=1,...,N is a solution of (2.3) and that the Abadie Constraint

qualification (ACQ) [2] holds at X (see Section 1.2.2). Then, by Theorem 4 there exist

Lagrange multipliers λ = (λij)i<j satisfying the three conditions: the feasibility conditions,

λij ≥ 0, F (X) ≤ 0 (2.5)

the complementary slackness conditions,

λijφij(X) = 0. (2.6)
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and the Euler-Lagrange equation,

∇XW (X) +
∑
i<j

λij∇Xφij(X) = 0. (2.7)

Substituting (2.1) and (2.2) in (2.7), we get for each i:

1

N

∑
j

(xi − xj)− 2
∑
j

λij(xi − xj) = 0. (2.8)

A Lagrange multiplier λij is non-zero only if the corresponding constraint is activated:

λij > 0 ⇒ |xi − xj| = 2R,

Conditions (2.5)-(2.7) are called Karush-Kuhn-Tucker conditions (KKT-conditions)

and they constitute the necessary conditions for optimality [134]. These conditions are

on the basis of the optimization algorithms treated in this Chapter.

The outline of the Chapter is as follows. We start by presenting in Section 2.2 the

dynamical systems associated to the algorithms considered in this Chapter, namely, the

Arrow-Hurwicz algorithm (AHA), the augmented Lagrangian algorithm (ALA) and the

first-order damped Arrow-Hurwicz algorithm (DAHA), and we summarize the conver-

gence results towards a solution of the minimization problem. In Section 2.3 we find the

only analytical solution, apart from permutations and translations of the minimization

problem (2.3) in dimension d = 1. We then compute the order of magnitude of the

Lagrange multipliers associated to what we call a spherical configuration for any dimen-

sion. These results are used in the investigation of the algorithms that are developed in

Section 2.4. In particular, in Section 2.4.1 we show that in general that the Lagrangian

associated to the minimization problem does not have any saddle-point, which implies

the non-convergence of the classical Arrow-Hurwicz algorithm. Then in Section 2.4.2

we analyse two algorithms in dimension d = 1 which are based on modifications of the

Arrow-Hurwicz algorithm and show that they converge to a solution of the minimization

problem for any positive value of the parameters, provided the initial configuration is

chosen close enough to the solution. Finally, in Section 2.5 we draw some conclusions and

future directions.

2.2 Algorithms and convergence results

In this Section we present the dynamical systems associated to each algorithm treated in

this Chapter and the convergence results towards a solution of the minimization prob-

lem (2.3).
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2.2.1 Lagrangian method and Arrow-Hurwicz algorithm (AHA)

A classical method to solve the minimization problem (2.3) is based on the so-called

Lagrangian L : RdN × (R+
0 )N(N−1) → R,

L(X,λ) = W (X) + 〈λ, F (X)〉
=

1

2N

∑
i<j

|xj − xi|2 +
∑
i<j

λijφij, (2.9)

with φij = 4R2 − |xj − xi|2. From equations (2.5)-(2.7) we see that a solution to the

minimization problem (2.3) is a critical point to L. We now introduce the concept of

saddle point.

Definition 26. A couple (X∗, λ∗) is a saddle point of the Lagrangian L (2.9) if it satisfies:

L(X∗, λ) ≤ L(X∗, λ∗) ≤ L(X,λ∗) (2.10)

for any X and λ ≥ 0.

One can show if (X∗, λ∗) is a saddle point of L then it also satisfies the minimization

problem (2.3). In other words, being a saddle point for L is a stronger condition than

solving the minimization problem (2.3) (consequence of the weak-duality). In some special

cases, such as linear constraints or convex problems with Slater’s condition (see Section

0.3.3.1), the two problems are equivalent (strong-duality [27]). But it will not be the case

in our setting of sphere packing, there is a duality gap.

To reach the saddle point of L, we introduce the Arrow-Hurwicz system [17, 184]

(AHS): {
Ẋ = −α∇XL
λ̇ = β∇λL.

(2.11)

where α, β are two positive numbers. Using expression (2.9) of the Lagrangian L(X,λ),

this leads to: 
ẋi =

α

N

N∑
j=1

(xj − xi) + 2α
N∑
j=1

λij(xi − xj)

λ̇ij =

{
0, if λij = 0 and φij < 0

βφij, otherwise.

(2.12)

with φij = 4R2 − |xj − xi|2. The Arrow-Hurwicz algorithm (AHA) corresponds to a

time-discretization of this system. In all simulations presented in this Chapter we use a

semi-implicit Euler discretization, specifically, we use an explicit Euler discretization in

the first equation for X and implicit Euler discretization in the second equation for λ.

In a convex setting, one can find sufficient conditions to show the convergence of the

Arrow-Hurwicz method [184]. However, it will not be possible in our setting. Indeed,
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as we will prove in the next Section, there is no saddle point for the Lagrangian L (see

Theorem 34).

Remark 2.2.1. Since we are interested in finding the equilibrium of the system (2.11),

we can change the time unit and reduce the number of parameters. Indeed, using as new

time variable t̃ =
√
αβ t and considering the change λ̃ =

√
α/
√
βλ and ε =

√
α/
√
β, we

obtain after dropping the tildes:

(AHS)


ẋi =

ε

N

N∑
j=1

(xj − xi) + 2
N∑
j=1

λij(xi − xj)

λ̇ij =

{
0, if λij = 0 and φij < 0

φij, otherwise.

(2.13)

Notice that we could in principle get rid of the parameter ε using a change in unit length.

However, length is already prescribed by the radius R of the spheres. Thus, modifying

unit length will modify the radius R. In the following we will consider this version of the

Arrow-Hurwicz system (2.13), which is based on the modified Lagrangian Lε:

Lε(X,λ) = εW (X) + 〈λ, F (X)〉
=

ε

2N

∑
i<j

|xj − xi|2 +
∑
i<j

λijφij, (2.14)

In this case, the Euler-Lagrange equation (2.8) becomes

ε

N

∑
j

(xi − xj)− 2
∑
j

λij(xi − xj) = 0. (2.15)

As we will observe and prove later, the Arrow-Hurwicz method does not converge for

our non-convex setting. Therefore we study two alternatives which are also based on the

Lagrangian associated to the minimization problem. These two alternatives are presented

in the two following Sections.

2.2.2 Augmented Lagrangian Algorithm (ALA)

We propose to add an extra term to the Arrow-Hurwicz system (2.13) to obtain what we

call the augmented Lagrangian system (ALS) as follows:

(ALS)


ẋi = ε

N

∑N
j=1(xj − xi) + 2

∑
j (λij + γφij)

+ (xi − xj)

λ̇ij =

{
0, if λij = 0 and φij < 0

φij, otherwise.

(2.16)

where γ and ε are positive parameters and x+ = max(x, 0) represents the positive part

of a real number x. The augmented Lagrangian algorithm (ALA) is obtained by a semi-
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implicit Euler discretization of the ALS, specifically, we use an explicit Euler discretization

in the first equation for X and an implicit Euler discretization in the second equation for

λ. Note that for γ = 0 we retrieve the original Arrow-Hurwicz system.

We observe that any steady state (X̄, λ̄) of the system (2.16) satisfies the complemen-

tary slackness condition (2.6). Hence, (X̄, λ̄) is also a steady state to the Arrow-Hurwicz

system (2.13) and a critical point to the original Lagrangian L. Thus, the modification

in (2.16) does not change the equilibrium states.

In dimension d = 1, system (2.16) has only one steady state, apart from permutations

and translations, and in Section 2.3.1 we characterize this state. In Section 2.4.2 we prove

that this steady state is Lyapunov asymptotically stable, i.e., for any initial configuration

chosen close enough to the steady state, the system will converge to it for any positive

value of the parameters.

Remark 2.2.2. Note that the algorithm (2.16) is close to an augmented Lagrangian

method [134], the algorithm adds up a memory term λij to the strength of repulsion γ.

Thus, if a constraint is not satisfied i.e. φij > 0, the coefficient λij will increase and make

the repulsion between i and j. Therefore, there is no need to take γ → +∞.

However, classical augmented Lagrangian would be slightly different. Indeed, if we consider

the following Augmented Lagrangian:

L̃ε(X,λ) =
ε

2N

∑
i<j

|xj − xi|2 +
∑
i<j

λijφij + γ
∑
i<j

(φ+
ij)

2. (2.17)

Applying Arrow-Hurwicz method leads to (assuming α = 1):
ẋi =

ε

N

N∑
j=1

(xj − xi) + 2
∑
j

(
λij + γφ+

ij

)
(xi − xj)

λ̇ij =

{
0, if λij = 0 and φij < 0

φij, otherwise.

(2.18)

Thus, we obtain as repulsion coefficient:
(
λij + γφ+

ij

)
rather than (λij + γφij)

+ in (2.16).

Numerically, the algorithm (2.16) outperforms the algorithm (2.18).

2.2.3 First-order damped Arrow-Hurwicz algorithm (DAHA)

We also investigate the first-order damped Arrow-Hurwicz system that has been obtained

from the original second-order damped Arrow-Hurwicz system proposed in [45] by consid-

ering a certain parameter regime. This version of the method has revealed to be the most

appropriate to solve problem (2.3) (see Section 1.4.1). The first-order damped Arrow-
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Hurwicz system (DAHS) is given by:

(DAHS)


ẋi =

ε

N

N∑
j=1

(xj − xi) + 2
∑
j

(λij + γλijφij) (xi − xj)

λ̇ij =

{
0, if λij = 0 and φij < 0

φij, otherwise.

(2.19)

The first-order damped Arrow-Hurwicz algorithm (DAHA) is obtained by a semi-implicit

Euler discretization of the DAHS, specifically, we use an explicit Euler discretization in

the first equation for X and an implicit Euler discretization in the second equation for λ.

This system is very similar to the augmented Lagrangian system. The only difference

is the γ term, which has the additional factor λij in the case of the first-order DAHS.

By the same reason as in the previous Section, the equilibrium states correspond to the

critical-points of the Lagrangian.

Similarly to the ALS, we prove in Section 2.4.2 that, in dimension d = 1, this system

converges to the only solution (apart from permutations and translations) of the mini-

mization problem, provided the initial configuration is close enough to the steady state.

Numerical experiments performed in Chapter 1 indicate that in higher dimensions d = 2

and d = 3 solutions to the minimization problem also correspond to asymptotically stable

steady states of this system, however, a proof is still missing.

The two systems ALS and DAHS differ on the rate of convergence towards the steady

state as a function of parameter space, as we may conclude from the analysis developed in

Section 2.4.2. The best parameters in terms of speed of convergence towards the steady

state, lead to a faster convergence of the DAHS when compared to the ALS. On the other

hand, such region within the parameter space is wider in the case of the ALS than in the

case of the DAHS.

2.3 Properties of analytical solutions

2.3.1 Solution in dimension d = 1

In this Section we present an explicit formula for the only solution apart from permutations

and translations to the minimization problem (2.3) in dimension d = 1. This result is

going to be used later in Section 2.4.2 in the study of convergence of the algorithms AL

and DAHA.

Proposition 27. In dimension d = 1, the configuration X = (x1, ..., xN) defined by∑
j

xj = 0 and xi+1 = xi + 2R, i = 1, ..., N − 1
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is the only solution (apart from permutations) to (2.3). Moreover, the associated Lagrange

multipliers λ = (λij)i,j are unique and given by λi,j = 0, j 6= i− 1, i+ 1 and

λN−k,N−k+1 =

ε
2Mk−(k−1)k

4
, for N = 2M + 1

ε2Mk−k2
4

, for N = 2M
, k = 1, ..., N − 1

Proof. The configuration X is an admissible point to (2.3) as

φi,i+1(X) = 0, i = 1, ..., N − 1, φi,j(X) = −(i− j + 1)24R2 < 0, i 6= j − 1, j + 1 (2.20)

and it corresponds to segments arranged next to each other (see Figure 2.2). Consider

Figure 2.2: Explicit solution to the minimization problem (2.3) in dimension 1.

an arbitrary perturbation Υ = (υ1, ..., υN) ∈ RN\{0} such that X + Υ is an admissible

point centered at 0, i.e.,
∑

i(xi + υi) = 0, and the order of the segments is preserved

(no permutations), ie, xi + υi < xi+1 + υi+1. Consequently, X + Υ satisfies the following

conditions:

φi,i+1(X + Υ) = 4R2 − (xi + υi − xi+1 − υi+1)2 ≤ 0, i = 1, ..., N − 1, (2.21)∑
i

υi = 0, (2.22)

υi − υi+1 < 4R, i = 1, ..., N − 1. (2.23)

From condition (2.21) we get 4R(υi−υi+1) ≤ (υi−υi+1)2 and together with (2.23) implies

that υi− υi+1 has to be non-positive. Therefore υi ≤ υj for all i < j. Moreover, if υi = υj

for all i, j, then from (2.22) we would have Υ = 0 which is impossible, consequently there

exists at least one pair (i, j) for which the inequality is strict. This implies

W (X + Υ)−W (X) =
∑
i<j

(υi − υj)2 − 4R
∑
i<j

(υi − υj) > 0,

which proves that X is the only solution to (2.3) apart from permutations.

We now compute the Lagrange multipliers λ associated toX. Suppose that N = 2M+1.

Applying formula (2.15) for i = N , we obtain:

εM · 2R = 2λM−1,M(2R) ⇒ λM−1,M =
εM

2
.
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For i = N − 1, we deduce:

ε(M − 1) · 2R = 2
(
λM−2,M−1 · 2R− λM−1,M · 2R

)
⇒ λM−2,M−1 =

ε(M − 1)

2
+
εM

2
.

Thus, recursively, we obtain: λN−k,N−k+1 = ε(M−k)
2

+ · · ·+ εM
2

, ie,

λN−k,N−k+1 = ε
2Mk − (k − 1)k

4
.

A similar argument applies also with N = 2M spheres. Finally, from (2.6) we get that

λi,j = 0 for j 6= i− 1, i+ 1, which concludes the proof.

Remark 2.3.1. For N odd in Prop. 27, the maximum of the second-order polynomial

in k is reached at k = M + 1/2. The closest integers are k = M and k = M + 1,

which corresponds to the middle of the configuration. At those points the value of λ is

λM,M+1 = λM+1,M+2 = εM(M+1)
4

.

2.3.2 Spherical solution

In dimension d = 2, one can find analytically the minimizer X and the corresponding

Lagrange multipliers with N ≤ 4 spheres (see appendix A). However for larger values of

N or d the problem becomes much harder and there is in general no uniqueness of X nor

explicit expression for the Lagrange multipliers. It is though possible to deduce the order

of magnitude of the Lagrange multipliers λ with respect to N associated to a particular

type of solution belonging to the set of spherical configurations that we define next. These

results are used in the study of the existence of saddle-points of the Lagrangian presented

in the Section 2.4.1.

Given a configuration X = (xi)i=1,...,N in Rd, let G be the undirected graph associated

to X where the vertices V = {1, ..., N} correspond to the indexes of the points in X and

the edges E = {(i, j)|φij(X) = 0} correspond to the pairs of neighbouring spheres. A path

P between any two vertices i, j ∈ V corresponds to a sequence of different vertices where

each vertex is connected to the following one, ie, P = (v1, ..., vn) ∈ V n, with (vi, vi+1) ∈ E
and vi 6= vj, i 6= j. The set of all paths of G from vi to vf is denoted by Pvivf (G). We define

the length of a path P as a function L : Pvfvi (G) → N, P = (v1, ..., vn) 7→ L(P ) = n− 1.

We define a distance f between any two vertices of a connected graph G as

f(vi, vf ) = min
P∈P

vf
vi

(G)

L(P ). (2.24)

For technical purposes, suppose that there exists one sphere x1 located at the center

of the configuration, ie., x1 = 〈x〉 := 1/N
∑

i xi. Now, consider a partition of X defined
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by the length of the shortest path to the center of the configuration 〈x〉, ie,

X =
M⋃
i=1

χi, (2.25)

with

χi = {xk ∈ X|f(k, 1) = i− 1}, i = 1, ...,M. (2.26)

Note that each set corresponds to a level set of the distance f(·, 1) to the center.

Definition 28. Let X = {xi}i=1,...,N be a configuration in Rd of spheres with radii of

order 1 with respect to N . Consider the partition of X defined in (2.24)-(2.26). We say

that X is a spherical configuration with radius R := maxk |xk − 〈x〉| if it satisfies the

non-overlapping constraints (2.2) and the two conditions:

(convexity) O(|xi − xj|) = f(i, j), for all i, j = 1, ..., N (2.27)

(sphericity) O(|xk − 〈x〉|) = i, for all xk ∈ χi and i = 1, ...,M. (2.28)

where O denotes order of magnitude.

Remark 2.3.2. • The spherical configuration is an admissible point and should have

an approximately spherical shape with radius R := maxk |xk − 〈x〉| = O(M) as

shown in the examples of Figure 2.1.

• This definition is based on the idea of convexity and on the idea of defining a sphere

as the union of spherical surfaces successively contained in each other, ie., the level

curves of f(1, k) = min
P∈P〈x〉xk

(G)
L(P ) are approximately contained in spherical sur-

faces in Rd with center 〈x〉.

Two examples of spherical configurations are presented in Figure 2.1. We start by

computing the order of magnitude of the radius of a spherical configuration.

Lemma 29. Let X be a spherical configuration with radius R of N spheres in Rd. Then

O(R) = N1/d.

Proof. The volume V of the d-dimensional sphere of radius R has order of magnitude of

Rd. Since V has the same order of magnitude as the sum of the volume of the spheres

that constitute X, we have O(V ) = N . Consequently, O(Rd) = N , ie., O(R) = N1/d.

Similarly to the one dimensional case, we show that the Lagrange multipliers λij are

increasing as we move towards the center of the configuration.

Proposition 30. Let X be a solution to the minimization problem (2.3) in dimension

d that belongs to the set of spherical configurations. Moreover, let λ be the associated

Lagrange multipliers. Then, the order of magnitude of λij ranges from εN1/d to εN2/d,

for spheres i and j at the periphery and at the center of the configuration, respectively.
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Proof. Consider the partition of X in M sets as defined in (2.24)- (2.26). For any sphere

k in χk, let kj, j = 1, ..., nk, ..., nk be its neighbouring spheres, such that (see Figure 2.3)(xkj − xk) · (〈x〉 − xk) ≤ 0, j = 1, ..., nk − 1

(xkj − xk) · (〈x〉 − xk) ≥ 0, j = nk, ..., nk
(2.29)

Denote

Figure 2.3: Sketch of the interaction between spheres k, its neighbours k1, ..., k6 and 〈x〉 in dimension 2.
The dot product between vector 〈x〉 − xk and vectors xkj − xk is negative for j = 1, 2, 3 (circles in blue)
and positive for j = 4, 5, 6 (circles in red).

σ−k :=

nk−1∑
j=1

λkkj and σ+
k :=

nk∑
j=nk

λkkj . (2.30)

We want to prove by induction that

σ+
k = O (ε(M +M − 1 + ...+ k)) , k = 1, ...,M, (2.31)

where k = M represents a sphere at the periphery and k = 1 at the center of the

configuration.

We first introduce some notation and deduce some relations. Consider the angle

θkkj between the vectors xkj − xk and 〈x〉 − xk and define the non-negative constants

αkkj := | cos(θkkj)|. Moreover, considering the projection onto xk − 〈x〉 we have from

equation (2.15) that:

ε|xk − 〈x〉|2 = 2 · 2R|xk − 〈x〉|(−
nk−1∑
j=1

λkkjαkkj +

nk∑
j=nk

λkkjαkkj).

Equivalently,

ε|xk − 〈x〉| = 2 · 2R(−
nk−1∑
j=1

λkkjαkkj +

nk∑
j=nk

λkkjαkkj).

Since the coefficients αkkj have order 1, we have from (2.30) that ε|xk − 〈x〉| = O(−σ−k +

σ+
k ). Since λij = λji, we have that σ−k = O(σ+

k+1). Moreover from (2.28) we have that

80



|xk − 〈x〉| = O(k), for xk ∈ χk. All this together implies that

σ+
k = O(σ−k + εk) = O(σ+

k+1 + εk). (2.32)

We now prove by induction that (2.31) holds true. We start with k = M and we

proceed downwards. Let k = M and consider a sphere xM ∈ χM , which is located at the

periphery of the configuration. Consequently, all neighbours satisfy the second equation

in (2.29) and we have nk = 1 and σ−M = 0. Finally, from (2.32) we have that σ+
M = O(εM).

Suppose the inductive hypothesis σ+
k+1 = O(ε(M + M − 1 + ... + k + 1)), xk+1 ∈ χk+1

holds true. From (2.32) we finally get that (2.31) holds true. The maximum value for σk

is attained at the center, where k = 1 and σ1 = O(ε(M + ... + 1)) = O(εM2). Finally,

note that λkkj = O(σk) and that since the radius of each sphere has order 1, we have from

Lemma 29 that M = O(N1/d), which concludes the proof.

2.4 Convergence analysis

2.4.1 Duality gap: non-convergence of AHA

We first analyze the Arrow-Hurwicz system (2.13) and more precisely the underlying

saddle-point problem (2.10) for Lε defined in (2.14). The goal of the Section is to show

that there does not exist a saddle point which in turn explains why the Arrow-Hurwicz

does not converge.

We have seen that showing existence of solution to the minimization problem (2.3),

also referred to as the primal problem, is rather simple (prop. 25). Proving existence (or

non-existence) of a saddle point for Lε (2.14) is in general a more delicate manner. Let

us consider the min-max problem:

d∗ = sup
λ≥0

inf
X
Lε(X,λ) (2.33)

p∗ = inf
X

max
λ≥0
Lε(X,λ). (2.34)

One can show that d∗ < p∗ (weak duality). But it is more delicate to know whether

d∗ = p∗ (strong duality) in which case there exists a saddle point [27].

Remark 2.4.1. The notations d∗ and p∗ are used since they each correspond to the

solution of (resp.) the dual and primal problem.

To further investigate the Lagrangian Lε, we introduce the functions:

g(λ) = inf
X
Lε(X,λ) , f(X) = sup

λ≥0
Lε(X,λ).
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The solutions of the min-max problem d∗ and p∗ correspond (resp.) the supremum and

infinimum of g and f . We first study the function f .

Lemma 31. For any configuration X,

f(X) =

{
εW (X) if X ∈ C
+∞ if X /∈ C, (2.35)

where C (2.4) is the set of non-overlapping configuration.

Proof. If X does not satisfy the constraint (i.e. X /∈ C) then f(X) = +∞. Moreover, if

X ∈ C (i.e. F (X) ≤ 0), we have 〈λ, F (X)〉 ≤ 0 and therefore f(X) = εW (X).

From lemma 31, we deduce that:

inf
X
f(X) = inf

X∈C
εW (X) = εW (X).

Thus, p∗ = εW (X) where X is a solution of the primal problem (2.3).

We now turn to the dual problem with the function g.

Lemma 32. For any positive coefficients λ ≥ 0,

g(λ) =

{
4R2

∑
i<j λij if Aε positive definite

−∞ if Aε not positive definite
(2.36)

where Aε is the matrix with coefficients:

aij =

{
−(ε/2N − λij) , if i 6= j,∑

k 6=i(ε/2N − λik) , if i = j.
(2.37)

Proof. We use the expression of the Lagrangian Lε and isolate how it depends on the

configuration X:

Lε(X,λ) =
∑
i<j

( ε

2N
− λij

)
|xj − xi|2 + 4R2

∑
i<j

λij.

Thus, we can write the Lagrangian as a quadratic form in X:

Lε(X,λ) = 〈AεX,X〉 + 4R2
∑
i<j

λij, (2.38)

where the matrix Aε is given by (2.37). Indeed, for any symmetric coefficients cij, denoting
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σi =
∑

j cij, we have:

∑
i<j

cij|xj − xi|2 =
1

2

∑
i,j

cij(x
2
j + x2

i − 2xjxi)

=
∑
i

σix
2
i −

∑
i,j

cijxixj = MX,

where M is a matrix with entries −cij outside the diagonal and
∑

k 6=i cik on the diagonal.

Using the formulation (2.38), we deduce that the minimization of Lε is −∞ if the

matrix Aε (2.37) is not positive definite. On the other hand, if Aε is positive definite (i.e.

〈AεX,X〉 ≥ 0) then (2.38) leads to:

Lε(X,λ) ≥ 4R2
∑
i<j

λij.

Therefore the infinimum is reached with X = 0 and g(λ) = 4R2
∑

i<j λij.

It is delicate to find explicit condition for the matrix Aε to be positive definite. One can

find sufficient condition: if (ε/2N − λij) ≥ 0 then Aε is diagonal dominant and therefore

positive definite. Moreover, Aε is not positive definite if the diagonal is not positive.

Thus, let σi =
∑

k λik, i = 1, ..., N . If there exists i such that σi > ε(N − 1)/2N , then

the matrix Aε is not positive definite.

Proposition 33. The solution of the dual problem is given by:

d∗ = sup
λ≥0

g(λ) = εR2(N − 1). (2.39)

Proof. Denoting again σi =
∑

k λik, the matrix Aε (2.37) is not positive definite if there

exists σi > ε(N − 1)/2N and therefore g(λ) = −∞ in this case. We deduce that the

maximization of the function g can be reduced over the λ satisfying σi ≤ εN−1
2N

for all i.

From lemma 32, we have:

g(λ) ≤ 4R2
∑
i<j

λij = 2R2
∑
i

σi.

Therefore, g(λ) ≤ εR2(N − 1). This upper-bound is reached by taking λij = ε/2N for

i 6= j leading to the result (2.39).

Notice that the value d∗ corresponds to configurations where all spheres are at a dis-

tance 2R from each other. Indeed, suppose |xj − xi| = 2R for all i 6= j, then:

W (X) =
ε

2N

∑
i<j

4R2 =
N(N − 1)

4N
4εR2 = (N − 1)εR2.
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Thus, we have d∗ = p∗ only if all the spheres can be at distance 2R from each other.

In dimension 2, this corresponds to having only N = 2 or N = 3 spheres. But if N ≥ 4

in dimension 2, then d∗ < p∗ and therefore there is no saddle point (X∗, λ∗) for the

Lagrangian L in this case.

Theorem 34. The Lagrangian Lε (2.14) does not have a saddle point if N > d+1 where

N is the number of spheres and d ≤ 4 is the spatial dimension.

While we do not have a saddle point for the Lagrangian (2.9), we can still look for local

saddle points. In short, does it exist a point (X̃, λ̃) satisfying:

Lε(X̃, λ) ≤ Lε(X̃, λ̃) ≤ Lε(X, λ̃) for all (X,λ) close to (X̃, λ̃). (2.40)

The hope is that solutions of the primal problem X (with the corresponding Lagrangian

multiplier λ) will be local saddle point (i.e. solution of (2.40)). Then, we could apply the

Arrow-Hurwicz algorithm to find those solutions.

The left inequality of (2.40), i.e. Lε(X̃, λ) ≤ Lε(X̃, λ̃), imposes that X̃ satisfies the

constraints. The right inequality means that X̃ is a local minimum of:

X 7→ Lε(X, λ̃). (2.41)

Using the formulation (2.38), we deduce that X̃ is a local minimum if the matrix Aε (2.37)

is positive definite. As we have seen previously, in order to have the matrix Aε positive

definite, it is necessary to have the coefficients λij satisfying: σi =
∑

k λik ≤ εN−1
2N

. This

property is not satisfied by the Lagrange multiplier. They are actually of the order of

(at least) εN1/d (see Proposition 30). We conclude that a solution to the primal problem

(X,λ) cannot be a local saddle point, as it is not a local minimum to the function defined

in (2.41).

2.4.2 Stability analysis in d = 1: convergence of DAHA and

ALA

We now analyse the ODE systems (2.16) and (2.19) associated to the ALA and DAHA,

respectively, for an arbitrary number of spheres N in dimension d = 1. Note that such

systems are piecewise smooth. In particular, they are smooth in a neighbourhood of X,

which allows us to carry out the linear stability analysis in order to study the local conver-

gence of the solution towards a steady state. We will show that the steady state obtained

in Section 2.3.1 is an asymptotically stable steady state of both systems as defined in

Chapter 1, Definition 14. Note that this definition assumes that the initial configuration

is chosen close enough to the steady state. The next Theorem gives conditions on the

function f that ensure the asymptotic stability of a given steady state of the ODE system

ẋ = f(x), t ≥ 0.
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Theorem 35. Let n ∈ N and let f : Rn 7→ Rn be a function. Consider the ODE system

ẋ = f(x) and a steady state x∗, where f is smooth at x∗. If the eigenvalues of the Jacobian

matrix of f evaluated at x∗, Df(x∗), have negative real part, then x∗ is asymptotically

stable. Moreover, let φt be the flow of the differential equation. Then if −ξ is a number

larger than every real part of an eigenvalue of Df(x∗), then there is a neighbourhood U

of x∗ and a constant k > 0 such that

|φt(x)− x∗| ≤ k|x|e−ξt,

whenever x ∈ U and t ≥ 0.

Proof. See [34], thm. 2.42, p. 158 and cor. 2.43, p. 160.

Next we prove that a solution to the minimization problem (2.3) corresponds to an

asymptotically stable steady state of the ODE systems (2.16) and (2.19) in the case of an

arbitrary number N of spheres in R.

Proposition 36. Let X = (xi)i=1,...,N be a solution to the minimization problem (2.3)

and λ = (λij)i<j the associated Lagrange multipliers in dimension d = 1. Then, for any

ε, γ positive, (X,λ) is an asymptotically stable steady state of both systems ALS (2.16)

and DAHS (2.19).

Proof. First note that by adding up all differential equations in xi, i = 1, ..., N of (2.16)

we get that ˙〈x〉 = 0, ie., the center of mass is conserved. So without loss of generality, let

〈x〉 = 0. From Prop. 27, the solution to the minimization problem is unique (apart from

permutations) and satisfies xi+1 − xi = 2R, λi,i+1 > 0 and

φij(X) < 0, λij = 0, j 6= i− 1, i+ 1 (2.42)

Second, from (2.15) and (2.6) it follows that (X,λ) is a critical-point of the Lagrangian (2.14),

and therefore it is also a steady state of (2.16). We want to prove that this steady state

is asymptotically stable. Consider a close enough perturbation (X(0), λ(0)) of (X,λ)

satisfying

|xi(0)− xi| < R, i = 1, ..., N,

λi,i+1(0) ≥ 0, i = 1, ..., N − 1 and λij(0) = λij = 0, j 6= i+ 1, i− 1,

λi,i+1(0) + γφi,i+1(X(0)) > 0, i = 1, ..., N − 1

Note that we only perturb the Lagrange multipliers that are associated to the active

constraints at λ. Indeed, from (2.42) follows that φij(X(t)) < 0, j 6= i + 1, i − 1 for t

in some time interval [0, T ], consequently, λ̇ij(t) < 0 and any small enough perturbation

would decay to zero.
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Consider the following smooth system:

ẋ1 = −εx1 + 2(λ12 + γφ12)(x1 − x2)

ẋi = −εxi + 2(λi,i−1 + γφi,i−1)(xi − xi−1) + 2(λi,i+1 + γφi,i+1)(xi − xi+1),

i = 2, ..., N − 1

ẋN = −εxN + 2(λN−1,N + γφN−1,N)(xN − xN−1)

λ̇i,i+1 = φi,i+1, i = 1, ..., N − 1

λij = 0, j 6= i− 1, i+ 1

(2.43)

Now, we note two aspects. First, if

|xi(t)− xi| < R, i = 1, ..., N, t ≥ 0 (2.44)

holds true, meaning that no two spheres cross each other at any moment, then for j 6=
i−1, i+1, φij(x(t)) < 0 and λij(t) = 0 for all t ≥ 0 and therefore λ̇ij(t) = 0, j 6= i−1, i+1

for all t ≥ 0. Consequently, the system (2.16) is equivalent to (2.43). Second, if (X,λ) is

an asymptotically stable steady state of (2.43), then condition (2.44) holds for all times,

provided that the initial condition (X(0), λ(0)) is chosen close enough to the steady state.

It is then enough to prove that (X,λ) is an asymptotically stable steady state of (2.43).

We first compute the difference ẋi+1 − ẋi, i = 1, ..., N − 1. Considering the change of

variables xi+1,i := xi+1 − xi we get

ẋi+1,i = −εxi+1,i + 4(λi+1,i + γφi+1,i)xi+1,i

−2(λi+1,i+2 + γφi+1,i+2)xi+2,i+1 − 2(λi,i−1 + γφi,i−1)xi,i−1. (2.45)

We will now write the system describing the dynamics of the 2(N − 1) variables

xi,i+1, λi,i+1, i = 1, ..., N − 1 in matrix form. Note that these are all the variables of

system (2.43), because as we saw λij = 0, i 6= j + 1, j − 1 and 〈x〉 = 0 for all t ≥ 0.

Consider the (N − 1)× (N − 1) square matrices X,Λ and A defined by

X =


x21 0

x32

. . .

0 xN,N−1

 , Λ =


λ21 0

λ32

. . .

0 λN,N−1
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and A =



2 −1 0

−1
. . .

. . . . . . . . .
. . . −1

0 −1 2


and the (N − 1) vectors λ = [λi+1,i]i=1,...,N−1 and 1 = [1]i=1,...,N−1. Then, equations (2.45)

can be written in matrix form as

Ẋ1 = −εX1 + 2AXλ+ 2γ4R2AX1− 2γAX31 (2.46)

Using the same notation, we may also write the equation for λ in matrix form as follows

λ̇ = (4R2I −X2)1, (2.47)

where I is the (N − 1)× (N − 1) identity matrix. The dynamics of the system (2.43) can

then be described by{
Ẋ1 = −εX1 + 2AXλ+ 2γ4R2AX1− 2γAX31 := F (X,λ)

λ̇ = (4R2I −X2)1 := G(X,λ)

After a simple computation we conclude that the steady states of this system satisfy,

X∗2 = 4R2I and λ∗ = ε
2
A−11. In particular,

(X,λ) = (2RI,
ε

2
A−11) (2.48)

is a steady state, as expected. We want to find conditions on the parameters ε and γ such

that (X,λ) is asymptotically stable. The Jacobians of F and G are given by

D(X,λ)(F,G) =

[
DXF DλF

DXG DλG

]

with

DXF (X,λ) = −εI + 2AΛ + 2γ4R2A− 2× 3γAX2

DλF (X,λ) = 2AX

DXG(X,λ) = −2X

DλG(X,λ) = 0
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The Jacobian evaluated at the steady state (2.48) is given by the block matrix

D(X,λ)(F,G)|(X,λ) = 4R

[
−4RγA A

−I 0

]
(2.49)

Since this matrix is negative definite for all γ positive, then by Theorem 35 from Sec-

tion 0.3.2.1 the steady state (2.48) is asymptotically stable.

Applying the same reasoning to the damped Arrow-Hurwicz system (2.19) we obtain

the Jacobian evaluated at the steady state (2.48),

D(X,λ)(F,G)|(X,λ) = 4R

[
−2RγεI A

−I 0,

]
(2.50)

which is positive definite for all γ and ε positive and again by Theorem 35 the steady

state (2.48) is also asymptotically stable. This concludes the proof.

Figure 2.4: Largest real part of the eigenvalues of the Jacobian matrices (2.49) and (2.50) for the Aug-
mented Lagrangian system (left) and for the damped Arrow-Hurwicz system (right), respectively, as a func-
tion of the parameters (γ, ε) for N = 5 and R = 1. We observe that the eigenvalues can be smaller in the
case of the DAHS, but the region of small eigenvalues is narrower when compared to the case of ALS.

This proposition allows us to conclude that the DAHS and the ALS both converge to

a solution of the minimization problem in dimension d = 1 for any positive value of the

parameters ε and γ, provided the initial configuration is close enough to the steady state.

Theorem 35 also tells us that the speed of convergence is exponential with a rate of decay

that is larger than the largest eigenvalue of the Jacobian matrix (2.49), in the case of

ALS, and (2.50) in the case of the DAHS. We plot in Figure 2.4 the largest real part of

the eigenvalues of each of these matrices as a function of the parameters (γ, ε) ∈ [0, 3]2

for N = 5. In Figure 2.5 we plot the same as in Figure 2.4 but for N = 100 and for

the range of parameters (γ, ε) ∈ [0, 30]2 in the case of the AL and (γ, ε) ∈ [0, 3]2 in the

case of the DAHS. In both Figures, we can see that the maximum eigenvalue is always

negative, which is expected. The blue region corresponds to the parameter region where
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Figure 2.5: The same as in Figure 2.4 for the case of N = 100. The conclusions are similar to the case of
N = 5 presented in Figure 2.4.

Figure 2.6: Euclidean distance between the solution obtained numerically at each iteration by the DAHA
and the steady state given in Proposition 27 X∗, i.e., |Xn − X∗| for two different sets of parameters taken
from the yellow (dot line) and blue (solid line) regions of the graph in Figure 2.4-right. As expected, the
solid line decays at a larger rate than the dashed line. The model parameters are N = 5, R = 1 and the
numerical parameter ∆t = 0.002.

the maximum eigenvalue is smaller, which may lead to a faster convergence towards

equilibrium. Comparing the two systems, the blue region in the case of the DAHS is

darker, meaning that the eigenvalues are smaller, than in the case of ALS. On the other

hand, the blue region is wider in the case of the ALS compared to the DAHS. This

indicates that the DAHS may be faster for specific parameters, but the region where to

choose the best parameters is narrower than for the ALS. Comparing the results for each

value of N , we observe that for N = 100 the eigenvalues are one order of magnitude

larger compared to the case with N = 5. Moreover, for the DAHS the region with small

eigenvalues has became narrower for N large, while for the ALS the corresponding region

became wider.
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The Euclidean distance between a numerical solution obtained with the DAHA and the

equilibrium state given in Proposition 27 over iteration number is plotted in Figure 2.6 for

N = 5 and for two different pairs (ε, γ) taken from the yellow and blue region of Figure 2.4,

respectively. We see that starting from a distance of the order of 10−2, the convergence

is exponential, and the system converges much faster (decay rate of approximately 0.008)

for values of the parameters chosen from the blue region than the yellow one (decay rate

of approximately 0.001).

2.4.3 Numerical simulations in dimension d = 1

In this Section we present simulations of the evolution of the dynamical systems AHS (2.13)

and ALS (2.16) in dimension d = 1 in order to illustrate the analytical results presented

in the previous Sections. The conclusions regarding the ALS also apply to the DAHS, so

we do not consider this method in this Section.

To illustrate the non-convergence of the AHS, we present in Figure 2.7 the evolution

of the positions X with N = 3 particles, which corresponds to the simplest scenario

where the Lagrangian L (and Lε) does not have a saddle point thanks to Theorem 34.

We observe that the trajectories (x1(t), x2(t), x3(t)) have a chaotic behavior for ε = .5

(left Figure) whereas it converges to a periodic solution with ε = 1 (right Figure). The

convergence of the AHS to a periodic solution occurs in three steps. Phase I: the particles

move away from each other (i.e. λij and L increases) until there is no more overlapping

(i.e. X(t) moves to the constraint set C). Phase II: the solution contracts (i.e. X(t)

moves back to the border of C). Phase III: the solution starts to oscillate. For instance,

in Figure 2.7-right, phase I corresponds roughly to t ∈ [0, 1], phase II: t ∈ [1, 3] and phase

III: t ≥ 3.
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Figure 2.7: Solution to the AHS (2.13) with N = 3 particles in one dimension with ε = 1 (left Figure) and
ε = 0.5 (right Figure). A period solution occurs only if ε is small enough. Parameters: ∆t = 0.05, R = 1.

A similar situation has been observed when we increased the number of particles N .

The dynamical system (2.13) periodic solution only if ε is small enough.
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Figure 2.8: Similar simulations as in Figure 2.7 using the stabilizer dynamics ALS (2.16) with γ = 0.2.
Both simulations converge to a steady state.
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Figure 2.9: Simulation with ALS (2.16) for N = 50 particles and for (ε, γ) = (5 · 10−4, 0.2) (left) and
(ε, γ) = (5 · 10−3, 0.2) (right). The dynamics converges if both ε is ’small enough’ and γ large enough.
Parameters: ∆t = 0.05, R = 1.

We now run the same simulations but with the augmented Lagrangian system (2.16).

We observe in Figure 2.8 that using γ = .2 the solution converges to a steady state. In

the simulation with N = 50 particles in Figure 2.9-left, adding the stabilizer makes the

dynamics converge to a steady state. However, if ε is too large as in Figure 2.9-right, the

dynamics is chaotic at the center and it does not seem to converge. This indicates that

despite being an asymptotically stable steady state of the modified system, if the initial

configuration is far away from the steady state, then the solution may not converge to it.

This situation should be further explored in the future. In particular, given an arbitrary

initial configuration, what parameter regime leads to the convergence of the ALA towards

the steady state.
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2.5 Conclusion and future work

In this Chapter we study a non-convex minimization problem with non-overlapping con-

straints that naturally arises in the study of particle systems. We show that the Arrow-

Hurwicz algorithm does not converge and we prove convergence of the augmented La-

grangian algorithm and of the damped Arrow-Hurwicz algorithm (DAHA) towards a

solution of the minimization problem in dimension d = 1.

There are still many questions that remain unanswered and could be investigated in

the future. Two of them are concerned with the convergence properties of the ALA and

DAHA in the case of higher spacial dimensions and how we should choose the parameters

to get the fastest convergence. One could also investigate the types of local minima that

may arise from different types of initial conditions and the convergence properties of the

more general 2nd-order DAHA developed in Chapter 1.

Despite of the simplicity of the formulation and resolution of sphere packing problems

in low dimensions, they turn out to be extremely complex in higher dimensions (above 2).

Therefore they still remain nowadays an active area of research in mathematics [36, 89].
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Part II

Particle-based models for congested

systems
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3
Event-driven versus time-stepping

schemes for ballistic aggregation

This Chapter deals with the problem of simulating the dynamics of large and densely

packed particle systems subject to ballistic aggregation. Two different paradigms are

typically used: event-driven and time-stepping algorithms. Despite being more accurate,

event-driven algorithms become computationally very expensive as the number of particles

increases. Such situations require the use of an alternative approach, such as time-stepping

algorithms. In these methods, the contact events occurring during a small time-interval

are grouped and solved simultaneously. In this work we explore a new time-stepping

approach for the case of ballistic aggregation and we compare it to the event-driven one

in terms of computational time. This approach is based on a minimization problem with

non-overlapping constraints that is solved by the damped Arrow-Hurwicz algorithm de-

veloped in Part I, which distinguishes it from other algorithms proposed in the literature.

Specifically, we obtain four time-stepping algorithms from the combination of considering

smooth or non-smooth constraints and rigid or non-rigid aggregates. Numerical results

obtained in the case of a bounded domain and spherical particles show that when the num-

ber of particles becomes large or the size of the domain becomes small the time-stepping

methods perform faster than the event-driven. The threshold at which this switch occurs

is identified. In particular, for N = 106 particles, the event-driven takes almost four days,

while the time-stepping takes only a few hours. Among the four time-stepping schemes,

the ones with smooth constraints seem to perform faster for any number of particles.

This work is based on a collaboration with Giacomo Dimarco∗, Sophie Hecht and Pierre

Degond†.

∗Department of Mathematics and Computer Science, University of Ferrara, Italy
†Department of Mathematics, Imperial College London, UK
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3.1 Introduction

Aggregation can be found in many different fields of physics, such as aerosols, raindrops

formation, sprays, polymers, formation of planets and galaxies, nucleation and growth,

crystallization [6, 175, 56]. Also in biology, cells aggregate to form tissues or to repair

injuries (blood coagulation), bacteria aggregate to form biofilms [106], etc. Aggregation

can be observed and studied at different scales [58]. For instance, at the microscopic level

one gets particle based models describing the evolution of the mass, position and velocity

of each particle [69, 70, 116, 48, 119, 120, 169, 142, 79]. At the mesoscopic level, one

studies the evolution of a statistical distribution of sizes, positions and velocities of the

aggregates [154, 58, 94]. Within this description, a widely studied approach is given by

the so-called Smoluchowski coagulation equations or the Marcus-Lushnikov model [6, 67].

At the macroscopic level, one typically describes averages of the distribution function

with respect to the mass or size of the clusters [113, 57]. However, despite of being

easier to treat, both computationally and analytically, the mesoscopic and macroscopic

models do not incorporate all information about position or velocity of the clusters [6].

Moreover, it is often assumed that the clusters are spherical. A particle based model

instead is able to give more detailed spatial information and it allows the construction

of more realistic models [50, 79]. Additionally, it provides an appropriate framework to

study the randomness arising on the initial conditions [70, 116], the statistical properties

of the growing aggregates related to the evolution of the shape [99, 128, 13] and the

type of aggregates obtained in the long-time limit [119]. For these reasons we opt by the

microscopic approach.

Specifically, we focus on a particular type of aggregation phenomenon, called ballistic

aggregation, in which hard-spheres move in straight trajectories until they collide, stick

and form growing moving aggregates [56, 175]. We consider that the collisions are inelastic

and frictionless and that during a collision the total mass and momentum is conserved

while kinetic energy is dissipated. This model is among the simplest models for the

interaction of rigid particles, which contributes for its popularity [144]. The choice of

this model is justified by the fact that, despite of its simplicity, it already presents many

of the difficulties related to the simulation of densely packed systems, which makes it a

good system for testing and comparing numerical methods.

There are two main classes of numerical methods to simulate the dynamics of particle

based models with contact events. The first is the so-called event-driven method (ED) [69,

70]. In this approach, the time of the next collision is computed, the system evolves to

that time and the collision is performed exactly. The main difficulty is to determine the

sequence of particle collisions. In order to simplify the dynamics, some approaches use

fixed lattices space discretizations [48, 70, 119, 169, 120, 175, 63, 156], however such a

simplification produces effects on the dynamics and on the shapes of the clusters [75]. The

second class of methods is the so-called time-driven or time-stepping (TS) method [81].
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In this approach, the time is discretized in equal intervals and all events occurring within

a time-interval are solved simultaneously. The procedure at each time-step consists of

computing the positions and velocities of the particles from their own individual dynamics

and correcting possible overlaps between particles by solving a minimization problem

with non-overlapping constraints. To solve this minimization problem we use the first-

order damped Arrow-Hurwicz algorithm [45] developed in Part I. We consider four time-

stepping methods which result from the combination of two features. The first feature

is related to the formulation of the non-overlapping constraints, namely we consider a

smooth and a non-smooth form that lead to equivalent constraints. The second feature

is related with a modelling assumption on the rigidity of the clusters: we consider rigid

clusters, in which the particles in the same cluster are subjected to the same dynamics and

consequently, they remain always in the same relative positions, and non-rigid clusters,

where the particles of each cluster move individually and adhesive particles may even fall

apart within the cluster.

Since it is an exact method, an ED algorithm should be more accurate at describing

the real dynamics of the system than a TS scheme. Nevertheless, ED algorithms may

become computationally expensive as the number of particles increases. The aim of this

work is to compare TS and ED algorithms in terms of computational time and identify in

which situations it is necessary to use a TS scheme due to the high computational time

an ED requires. In particular we study the influence of the number of particles and of

the size of the domain. We observe that there is a threshold on these two quantities at

which the TS method becomes more efficient than the ED. The numerical experiments

have been run up to N = 106 particles. For this value of N , the TS algorithms took a

few hours, while the ED took a few days to simulate the dynamics.

The plan of the Chapter is the following. In Section 3.2 we introduce the time-

continuous model for ballistic aggregation and the ED method. In Section 3.3 we present

a corresponding time-discrete dynamics and the four TS schemes. In Section 3.4, we first

optimize the parameters involved in the TS schemes. Then we compare the ED and the TS

methods in terms of computational speed for different values of N and size of the domain.

In the final Section 3.5, we draw some conclusions and suggest future investigations.

3.2 Time-continuous model and event-driven (ED)

scheme

3.2.1 Time-continuous model

Let d,N ∈ N and L > 0. We consider a system of N self-propelled hard spheres on

a d−dimensional torus [0, L]d. The spheres are characterized by their radius Ri > 0,

their position Xi = (xi1 , ..., xid), their velocity Vi = (vi1 , ..., vid) and their mass mi >
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0, i = 1, ..., N . They interact via inelastic frictionless collisions and an adhesive force is

immediately created between the colliding particles. No other forces are exerted on the

spheres. Thus, between two consecutive collisions, particles travel in straight trajectories

at a constant speed. Given the times t1 and t2 of two consecutive collisions, the velocities

V(t) = {Vi(t)}i=1,...,N and positions X(t) = {Xi(t)}i=1,...,N of the particles at time t ∈
[t1, t2] satisfy the following equations on the torus

dXi

dt
(t) = Vi(t1), t ∈ [t1, t2], i = 1, ..., N. (3.1)

For each i, j = 1, ..., N, i < j, consider the functions φij : RdN → R, i < j, defined by,

φij(X) = Ri +Rj − |Xi −Xj|, (3.2)

where |.| denotes the Euclidean norm on the torus (see Remark 3.2.1).

Remark 3.2.1. The Euclidean norm of a vector X = {xi}i=1,...,d on a torus [0, L]d is

defined by

|X|2 = min
P1,P2: P1∪P2={1,...,N}, P1∩P2=∅

{∑
i∈P1

|xi|2 +
∑
i∈P2

(L− |xi|)2

}
, (3.3)

The norm induces the Euclidean distance on a torus d(X, Y ) = |X − Y |, X, Y ∈ [0, L]d.

This distance corresponds to select the shorter path among all possible straight paths be-

tween X and Y . An example of the four possible straight paths between two points in R2 is

presented in Figure 3.1. In the middle of the domain the usual Euclidean distance in Rd

holds. In order to simplify the presentation of the algorithms, we assume in the following

that we are in Rd.

In order to avoid overlapping spheres, we impose non-overlapping constraints,

φij(X) ≤ 0, i, j = 1, ..., N, i < j. (3.4)

The collisions between particles produce discontinuities in the velocity field due to the

non-overlapping constraint imposed in the system. The collision rule is described next

in dimension d = 2. Notice that it is possible to generalize this rule to higher dimen-

sions [171], however for simplicity we only present the two-dimensional case here. The

physical background of what follows can be found for example in [16].

Let d = 2. When spheres i and j collide they bind and form a new moving cluster. Let

Xi, Xj be the positions of the spheres at collision and Vi, Vj the pre-collision velocities.

The center of mass of the new cluster is defined by Xc := (miXi + mjXj)/(mi + mj).

The velocity V ′c of the center of mass of the new cluster is given by the weighted average
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Figure 3.1: The four different straight lines going from point A to point B in a 2-dimensional torus [0, L]2.
The squared Euclidean norm of the vector A− B = (x1, x2) ∈ [0, L]2 corresponds to the minimum between
the length of each line, namely a) x21 + x22, b) x21 + (|x2| − L)2, c) (|x1| − L)2 + x22 and d) (|x1| − L)2 +
(|x2| − L)2.

between the pre-collision velocities, i.e.,

V ′c =
miVi +mjVj
mi +mj

.

The cluster starts to spin with an angular velocity Ω′ given by

Ω′ =
Mc

J

with

Mc = miXi × Vi +mjXj × Vj − (mi +mj)Xc × V ′c ,

where × denotes the cross product, and J is the moment of inertia given by

J = |Xi −Xc|2mi + |Xj −Xc|2mj.

The velocity of each sphere after the collision, V ′i , V
′
j , is given by the sum between the

velocity of the cluster and the relative velocity of the sphere with respect to the center of

mass of the cluster, i.e.,

V ′k = V ′c + Ω′ × (Xk −Xc), k = i, j.

Since there are no other forces acting on the particles, then the colliding particles remain

near each other ever since after the collision. During the time evolution of the system,

collisions occur and growing aggregates of multiple spheres are formed. In this situation,

when a cluster C1 collides with a cluster C2 they stick together forming a new cluster C ′

with center of mass Xc :=
∑

i∈C′miXi/(
∑

i∈C′mi). The linear velocity V ′c of the center

of mass of the new cluster is a weighted average between the pre-collision velocities Vi of
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the spheres that constitute the new cluster,

V ′c =

∑
i∈C′miVi∑
i∈C′mi

. (3.5)

The angular velocity Ω′ of the new cluster is given by

Ω′ =
Mc

J

with

Mc =
∑
i∈C′

miXi × Vi −
∑
i∈C′

miXc × V ′c and J =
∑
i∈C′
|Xc −Xi|2mi.

The velocity of each sphere of the new cluster after the collision is then given by

V ′i = V ′c + Ω′ × (Xi −Xc), i ∈ C ′. (3.6)

We consider this dynamics until all particles have come together to form one big cluster.

The collision law described above conserves the linear and the angular momenta. How-

ever, in what follows we will use a reduced model which does not incorporate the rotation

of the clusters around its center of mass. Consequently, the angular momentum is not

conserved. Our aim is to compare different numerical methods for large and dense sys-

tems and the rotation movement would bring technical difficulties that do not contribute

to the conclusions of this study. The collision rule of the simplified model we consider in

this Chapter is given by (3.5) and (3.6) with Ω′ = 0.

The algorithms we consider in this study are presented next.

3.2.2 ED scheme

An event-driven method integrates exactly equations (3.1). The main difficulty is to

compute the exact time at which the next collision event occurs. The idea consists of

computing the time of all future collisions between any pair of spheres assuming that

these events did not interfere with each other. In other words, one computes the times of

collisions between any pair of particles that would collide with each other in a future if

there were no other particles in the system. Since the system is bounded, all M clusters

can collide with any other cluster, which corresponds to M(M − 1)/2 collisions. The

smallest time is then selected and the system is updated to that time. The formulas used

to predict the time of the next collision are deduced in the following [52]. Let X ′i and X ′j,

be the positions of two particles belonging to two different clusters Ck and C` at the time

t+ ∆tij of contact. At this time the distance between these two spheres is

|X ′i −X ′j| = Ri +Rj. (3.7)
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Figure 3.2: Example in two dimensions of a collision between sphere i and cluster k and successive aggre-
gation. The pre and post collisional velocities are represented by solid and dashed lines, respectively.

On the other hand, at time t of the previous event, the positions, Xi and Xj, and velocities,

Vi and Vj , of the two spheres satisfy

X ′i = Xi + ∆tijVi and X ′j = Xj + ∆tijVj. (3.8)

Substituting now the 2d equations (3.8) into equation (3.7) gives

∆tij =

{
∞ if ∆V ·∆X ≥ 0 or σ < 0

−∆V ·∆X+
√
σ

∆V ·∆V otherwise,
(3.9)

with σ = (∆V ·∆X)2−(∆V ·∆V )(∆X ·∆X−(Ri+Rj)
2), ∆X = Xi−Xj and ∆v = Vi−Vj.

Using formula (3.9) we compute the time interval ∆tij for each pair (i, j) of spheres that

do not belong to the same cluster.Thus, in order to predict the time of the next collision

event, it is sufficient to find the minimum between these time increments at time t

∆t = min(∆tij), ∀ i, j = 1, ..N, i ∈ Ck, j ∈ C`, k 6= `. (3.10)

In Figure 3.2 it is depicted an example of aggregation between two clusters in two space

dimensions together with the pre and post collisional velocities.

Remark 3.2.2. In order to speed up the algorithm, rather than computing the collision

time for all pairs of spheres that do not belong to the same cluster, we only compute it for

the pairs of spheres that collide in a near future as follows. We subdivide the domain in

boxes of side length ` and we compute the future collision times only between the pairs of

spheres that lie within the same box or in nearby boxes. Similarly to formula (3.10), we

then obtain the smallest time increment ∆1t among all computed increments. In order

to avoid missing collisions between spheres that were far from each other we restrict the

movement of the spheres between two consecutive iterations of the algorithm to a square

of side length s = `/2. We then compute the maximum time increment ∆st associated

to this length as follows: ∆st = mini(s/|Vi|∞), with |Vi|∞ = maxk |vik |. The time to the

next iteration of the algorithm is then given by the minimum between the two increments
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referred above, i.e.,

∆t = min(∆st,∆1t). (3.11)

The system then evolves from event to event as follows. Let the state of the system

at time t be given, namely the positions X(t) = {Xi(t)}i=1,...,N and velocities V(t) =

{Vi(t)}i=1,...,N of the particles and the sets of particles that belong to the same cluster

C1(t), ..., CM(t). Additionally, consider the time t + ∆t of the next event. The state of

the system at time t+ ∆t is then obtained by performing the following steps:

1. Evolution of the positions of particles and clusters to time t + ∆t along a straight

line trajectory, i.e.,

X(t+ ∆t) = X(t) + ∆tV(t);

2. Actualization of the velocities:

a) Computation of the new clusters. We determine the number of clusters M

and the sets of particles belonging to each cluster C1(t+ ∆t), ..., CM(t+ ∆t);

b) Computation of the velocities of the two colliding clusters according to the

collision law (3.5);

3. Computation of the time of the next collision using (3.9) and (3.10).

Figure 3.3: Illustration of a 2-dimensional torus divided in boxes with an outer layer of boxes for the ghost
spheres (see remark 3.2.3). The real spheres are displayed within the inner square, while the ghost spheres
are displayed in red outside the inner square.

Remark 3.2.3. The spheres are kept inside the domain [0, L]d by applying modulo L

operation to the positions X. The spheres that are near the borders of the hypercube

[0, L]d are copied to the opposite border. The copies are called ghost spheres and they

are represented in red in the example in Figure 3.3. The ghost spheres are then used to
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compute the Euclidean distances in a torus using formula (3.3). The collision time (3.9)

is obtained by considering all (ghost and real) spheres and selecting the smallest time using

formulas (3.10) and (3.11).

In the next Section we present the time-discrete dynamics and the TS methods con-

sidered in this work.

3.3 Time-discrete model and time-stepping (TS) schemes

3.3.1 Time-discrete model

We begin by reformulating the problem presented in the previous Section as a time-

discrete dynamics. We define apriori a sequence of time-increments ∆tn > 0, n ∈ N
defined iteratively as the largest value such that the movement of all spheres is bounded

by a square of side length equal to the radius the sphere Ri, i.e., ∆tn = miniRi/|V n−1
i |∞,

with |Vi|∞ = maxk |vik |. This avoids that the spheres pass through each other without any

collision being detected. Consider the initial condition X0
i = Xi(0) and V 0

i = Vi(0), i =

1, ..., N at time t0 = 0. The sequence of the successive positions Xn = {Xn
i }i=1,...,N , n ∈ N

and velocities Vn = {V n
i }i=1,...,N , n ∈ N of the spheres at time tn = tn−1+∆tn, is obtained

by performing a time-discretization of equations (3.1). This operation is then followed by a

small correction on the positions or velocities of the spheres to remove the overlapping that

might have been introduced in the previous step. This correction typically involves the

resolution of a minimization problem. Finally, an actualization of the velocities according

to the collision rule (3.5) is performed. An illustration of the time-discrete dynamics is

presented in Figure 3.4. In contrast to the time-continuous dynamics, in the time-discrete

dynamics multiple collisions may occur simultaneously in the same time-step.

Figure 3.4: Illustration of the three main steps executed during one time-iteration of the TS allgorithms:
1) free motion using a time-discretization of the equations (3.1), 2) adjustment of the positions to correct
overlapping, and 3) actualization of the velocities according to collision rule (3.5).

3.3.2 TS schemes

The time-stepping schemes are based on the time-discrete dynamics described above and

in the resolution of a minimization problem with non-overlapping constraints at each

time-step. In Section 0.3.2.2 we describe some examples of TS schemes that have been

proposed in the literature and a general comparison with the methods we propose next.
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The state of the system at time tn is described by the positions Xn and velocities Vn of

the spheres and the set Sn of pairs of spheres that are linked through adhesive forces. After

the minimization algorithm, it may happen that two adhesive spheres end up away from

each other, beyond a certain distance, in order to open space for the new spheres arriving

in the cluster. In this situation we break the adhesive link between them. The set Sn

contains therefore the pairs of spheres with two properties: 1) they came into contact with

each other at some time-point prior to tn, becoming adhesive, and 2) they remained within

a certain small distance from each other until time tn. Let WSn : RdN → R, X 7→ WSn(X)

be a given real function associated to the set Sn, which will be the function we minimize

in the minimization step. Suppose that WSn has an attainable minimum in the set defined

by the non-overlapping constraints defined in (3.2)-(3.4). The general procedure of the

time-stepping methods considered in this Chapter is presented next.

Let the initial state of the system (X0,V0, S0) at time t0 be given. Given the state

of the system (Xn−1,Vn−1, Sn−1) at time tn−1, we obtain the state (Xn,Vn, Sn) at time

tn := tn−1 + ∆tn, with ∆tn = miniRi/|V n−1
i |∞ by performing the following steps:

1. Free motion. The state of each particle evolves independently of the other particles

through an Euler discretization of equation (3.1):

X̂n = Xn−1 + ∆tnVn−1;

2. Adjustment of the positions to correct overlapping between colliding spheres. We

perform the following steps:

a) Computation of the set of adhesive spheres Sn. Starting from Sn−1 we add

new links corresponding to new contacts and we break links corresponding to spheres

whose mutual distance is larger than some threshold:

Sn = (Sn−1 ∩ {(i, j)|i < j, φij(X̂
n) ≥ −Rijεu} )

∪ {(i, j)|i < j, φij(X̂
n) ≥ 0}. (3.12)

where φij is the function defined in (3.2), Rij = max{Ri, Rj} and εu is the threshold

for unbinding, which is chosen to be 1/10.

b) Finding a set of positions Xn in the neighbourhood of X̂n−1 that locally solves

the minimization problem (see remark 3.3.1):

Xn ∈ argmin
φij(X)≤0, (i,j)∈S

WSn(X), (3.13)

3. Actualization of the velocities:

a) Computation of the new clusters. We obtain the number of clusters Mn and

the sets of particles belonging to each cluster Cn
1 , ..., C

n
Mn .
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b) Computation of the velocities according to collision rule (3.5):

∀k = 1, ...,Mn, ∀i ∈ Cn
k , V

n
i =

∑
j∈Cn

k
mjV

n−1
j∑

j∈Cn
k
mj

.

Remark 3.3.1. During the minimization algorithm in Step 2b), the clusters have to

expand in order to eliminate the overlapping in the system. This may lead to new over-

lapping with nearby clusters that were not overlapping before. Thus, within Step 2, we

need to actualize the set of linked (adhesive) spheres and solve the minimization problem

again for the new set. We repeat these steps until no more actualizations are needed. The

implementation of Step 2 includes therefore an inner and an outer procedure:

• The inner procedure stands for the minimization algorithm itself and it will be de-

scribed in the next two Sections.

• In the outer-loop we successively actualize the set of linked spheres Sn,q and obtain

Xn,q as a solution to the minimization algorithm with the set Sn,q until no more

actualizations on the set of linked spheres are performed. We start by initializing

Xn,0 = Xn and the set Sn,0 = Sn. Let Xn,q−1 and Sn,q−1 be given. At the qth

iteration, first we compute Sn,q. Similarly to (3.12), we define Sn,q as the union

between the set of the links in Sn that have not been lost during the outer-loop and

the set of new links that have been formed, i.e.,

Sn,q = (Sn,q−1 ∩ {(i, j)|i < j, φij(X
n,q−1) ≥ −Rijεu})

∪ {(i, j)|i < j, φij(X
n,q−1) ≥ 0}. (3.14)

Second, if Sn,q = Sn,q−1 then the outer loop stops, otherwise Xn,q is obtained as a

solution to the minimization problem for the new set Sn,q.

The four TS methods considered in this Chapter derive from the next two observations.

First, the clusters involved in a collision may either be regarded as a rigid object that

moves as a whole, or as a non-rigid object constituted by several spheres that move

individually under the effect of adhesion forces and non-overlapping constraints. The

two schemes that derive from this observation are described in Sections 3.3.3 and 3.3.4.

Second, the non-overlapping constraints may be described by inequalities involving non-

smooth or smooth functions, both leading to equivalent constraints. The smooth form of

the constraints is given by

φij(X) = (Ri +Rj)
2 − |Xi −Xj|2. (3.15)

and the non-smooth form of the constraints is given by

φij(X) = Ri +Rj − |Xi −Xj|. (3.16)
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As observed in Chapter 1, the use of each of these functions have differences on the

performances of the algorithms. The four different methods result therefore from the

combination of using smooth (S) or non-smooth (NS) form of the constraints and rigid

(R) or non-rigid (NR) clusters. By combining these two aspects we get the 4 methods we

explore in this Chapter that we denote by: S-NR, NS-NR, S-R, NS-R.

The modifications to the original dynamics obtained by substituting the exact collision

dynamics with the minimization method give rise naturally to different aggregates of

spheres. However, since the original system is highly dependent from the initial position

and velocity of the objects which in general cannot be known with precision, we assume

that the modification introduced in the dynamics will play the same role of the uncertainty

in the system and that this modified system will statistically produce the same type

of configurations than the event-driven approach. This assumption should be further

documented in future work. The second part of this work is devoted to the numerical

comparison between event-driven and time-stepping methods.

3.3.3 Minimization algorithm for non-rigid clusters

In this Section we describe the algorithm that is used in Step 2b) in the previous Sec-

tion 3.3.2 in the case of non-rigid clusters.

Let X̂ be the configuration with overlapping spheres, called non-admissible configura-

tion, obtained in Step 1 at the nth iteration. Let S be the set of pairs of linked spheres

obtained in Step 2a). We want to find a configuration X̄ in the neighbourhood of X̂ such

that X̄ does not have overlapping spheres and the pairs of linked spheres remain near each

other. This can be formulated as the search for a configuration X̄ in the neighbourhood

of X̂ that locally minimizes the sum of the squared distances between the pairs in S i.e.,

WS(X) =
1

2

∑
(i,j)∈S

|Xi −Xj|2,

under non-overlapping constraints φij(X) ≤ 0, (i, j) ∈ S. Note that in contrast to the

minimization problem considered in Part I, the function that we minimize represents a

local potential, i.e., each particle interacts only with their neighbouring particles. Sim-

ilarly to the problems studied in Part I, this problem has also multiple solutions and a

local solution can be computed by the 1st-order DAHA that was developed in Chapter 1.

We briefly describe it next.

Let #S be the number of pairs of linked spheres. Consider the Lagrangian LS :

RdN × (R+
0 )#S defined by

LS(X,λ) = WS(X) +
∑

(i,j)∈S

λijφij(X) (3.17)
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where λ = {λij}(i,j)∈S is the set of Lagrange multipliers associated to the non-overlapping

constraints. Consider the first-order damped Arrow-Hurwicz system (DAHS) [45]
Ẋk = −α2∇Xk

LS(X,λ)− γ2(
∑

(i,j)∈S φij(X)λij∇Xk
φij(X))

k = 1, ..., N (3.18)

λ̇ij = β∇λijLS(X,λ), (i, j) ∈ S (3.19)

where the dot represents the derivative with respect to a fictitious time and α, β and γ

are positive parameters.

Substituting (3.17) into (3.18)-(3.19), we obtain

Ẋk = −α2(∇Xk
WS(X) +

∑
(i,j)∈S

λij∇Xk
φij(X))

−γ2(
∑

(i,j)∈S φij(X)λij∇Xk
φij(X))

k = 1, ..., N (3.20)

λ̇ij =

0, if λij = 0 and φij(X) < 0

βφij(X), otherwise
, (i, j) ∈ S. (3.21)

From Theorem 4 presented in Section 0.3.2.1, the set of solutions to the minimization

problem is contained into the set of critical-points of the Lagrangian. These critical points

coincide with the steady states of the DAHS.

Indeed, from equation (3.21) we have that a steady state (X̄, λ̄) satisfies λ̄ijφij(X̄) = 0.

Consequently, from the system (3.18)-(3.19) a steady state satisfies ∇Xk
LS(X̄, λ̄) = 0,

and ∇λijLS(X̄, λ̄) = 0, (i, j) ∈ S, k = 1, ..., N . The 1st-order DAHA consists on a

semi-implicit discretization of the DAHS system:

Xp
k = Xp−1

k − α2(∇Xk
WS(Xp−1) +

∑
(i,j)∈S

λp−1
ij ∇Xk

φij(X
p−1))

−γ2(
∑

(i,j)∈S
φij(X

p−1)λp−1
ij ∇Xk

φij(X
p−1))

k = 1, ..., N (3.22)

λpij = max{0, λp−1
ij + βφij(X

p)}, (i, j) ∈ S, (3.23)

where α, β and γ are positive numerical parameters. The convergence test of this scheme

reads
|Xp −Xp−1|
|Xp−1| ≤ εX , (3.24)

for a small positive constant εX .

As a final remark note that a steady state of the DAHS (3.20)-(3.21) satisfies

∇Xk
W (X̄) = −

∑
(i,j)∈S

λij∇Xk
φij(X̄), k = 1, ..., N. (3.25)
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These equalities show that a solution to the minimization problem corresponds to a bal-

ance between attraction forces associated to the adhesive particles (left hand-side) and

repulsion forces associated to overlapping particles (right hand-side). The dynamics of

the DAHA algorithm corresponds thus to a search for this balance.

3.3.4 Minimization algorithm for rigid clusters

In the previous approach, the relative position of the spheres in one cluster may change

over time after each minimization problem. In this Section we propose an algorithm that

ensures that the non-overlapping linked spheres keep the same relative position. In this

way, the clusters are kept rigid and the dynamics of the system should get closer to the

dynamics produced by the ED described in Section 3.2.2.

We start by reformulating the minimization problem appearing in Step 2b) in Sec-

tion 3.3.2. Let X̂ be the configuration with overlapping spheres obtained in Step 1 at

time tn. Let C0
1 , ..., C

0
M be the sets of spheres belonging to the same cluster at the end of

the previous time-point tn−1. Consider the set of overlapping spheres Soverl defined by

Soverl = {(i, j) | φij(X̂) ≥ 0}. (3.26)

and the set of rigid configurations with respect to X̂ defined by

X (X̂) := {X ∈ RdN | ∀k ∈ 1, ...,M, ∀i, j ∈ C0
k , Xi −Xj = X̂i − X̂j}.

This set contains all configurations such that the spheres belonging to the same cluster

at time tn−1 keep the same relative positions they had at time tn−1. The minimization

problem is similar to the one formulated in the previous approach, except that instead

of using the pairs of linked spheres we use the pairs of overlapping spheres Soverl and we

look for solution within X (X̂). In other words, we search for a configuration X̄ ∈ X (X̂)

in the neighbourhood of X̂ that locally minimizes the function

WSoverl
(X) =

1

2

∑
(i,j)∈Soverl

|Xi −Xj|2 (3.27)

subject to non-overlapping constraints

φij(X) ≤ 0, i, j ∈ Soverl.

To solve this problem, we consider the Lagrangian LSoverl
as defined in (3.17) and

a modification of the DAHS (3.20)-(3.21) in which all spheres in the same cluster are

subjected to the same dynamics. Specifically, they are subjected to the sum of the forces
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acting in each particle of the cluster. The resulting dynamical system is then given by

Ẋp = −α2
∑
`∈Ck

∇X`
Loverl(X,λ)

−γ2
∑
`∈Ck

(
∑

(i,j)∈Soverl

φij(X)λij∇X`
φij(X))

∀p ∈ Ck, k = 1, ...,M (3.28)

λ̇ij =

0, if λij = 0 and φij(X) < 0

βφij(X), otherwise
, (i, j) ∈ Soverl. (3.29)

Similarly to the case of non-rigid clusters, we then consider a semi-implicit discretization

of this system and the convergence criterion (3.24).

3.4 Numerical study

In this Section we compare the ED and TS algorithms described in the previous Sections.

We first tune the parameters of the minimization algorithms in order to maximize the

efficiency of the TS methods. Then we compare the TS and ED methods in terms of

computational time for different values of N up to N = 106 and for two different values

of the size of the domain.

Figure 3.5: Initial condition with N = 100 particles.

The numerical simulations are performed in dimension d = 2. The experimental set

up used in this study is the following. We consider N spheres with the same mass

mi = m = 1 and radius Ri = R, i = 1, ..., N , given by R = 3/(4
√
N). The spheres move

in a 2-dimensional torus [0, L]2 divided in N squared boxes with side length ` = `1R.

108



In the following we use `1 ∈ {2.5, 3} and N ∈ [102, 106]. Note that the volume fraction

occupied by the spheres in the situation described above is relatively high, namely, 0.5 for

`1 = 2.5 and 0.35 for `1 = 3. The initial condition is given by a configuration where each

sphere is located at the center of each box as in Figure (3.5) and the initial velocities are

randomly generated from the uniform distribution with support [0, Vmax], with Vmax = 5R.

In the next Sections, for each of the quantities plotted, we represent the average value

over the different initial conditions and we use error bars to represent the standard de-

viation‡. The ED method is represented by a black line. The TS methods with smooth

or non-smooth constraints are represented by a green or red line, respectively. The TS

methods with rigid or non-rigid clusters are represented by a dashed or solid line, respec-

tively.

3.4.1 Choice of parameters of minimization algorithms

In this Section we consider the four minimization algorithms: S-NR, NS-NR, S-R, S-NR

and we choose the most appropriate parameters α, β, γ and εX which are going to be

used in the comparative study presented in the next Section. We first consider εX = 10−6

and explore the parameter space for α, β and γ. We choose the values that lead to a

small number of iterations of the minimization algorithm. Then we use these values to

run a similar study for the tolerance εX . We choose the value for εX that leads to a small

number of iterations of the minimization algorithm while preserving the accuracy of the

system. Notice that the choice of the parameters is going to depend on the minimization

method and on the parameters of the model, such as the number of spheres N and the

radius R.

3.4.1.1 Choice of α, β and γ

We first run simulations to choose the parameters α, β and γ for each of the four min-

imization algorithms. The parameter α is related to the speed of actualization of the

positions of the spheres in the direction of minus the gradient of the potential WS while

the parameter β controls how fast the Lagrange multipliers associated to the constraints

are actualized (see Part I). Consequently, α is related to the intensity of the attraction

forces and β to the intensity of the repulsion forces. The larger the values of these param-

eters, the faster the dynamics of the system, but the harder it is to converge (see Chapter

2). So we have to find intermediate values which lead to a fast convergence. For each

value of the parameters, we compute the average number of iterations of the minimization

algorithm Nmean
iter over the number of simulations during the time-evolution of the system,

‡The simulations were run on a Dell PowerEdge R630 rackmount server fitted with two Intel Xeon
E5-2637 3.5 GHz processors, each of which with 4 cores and 8 threads. The results were plotted using
matlabR2014b.
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Figure 3.6: Plot of Nmean
iter (in color code) as functions of the parameters α, β, γ for the NS-NR algorithm

with N = 104, R = 3/(4
√
N) and ` = 2.5R. Dark blue corresponds to Nmean

iter = 10 and yellow corresponds
to Nmean

iter = 80. The parameters (α, β, γ) = (0.001, 2, 0.01) were chosen from the blue region.

i.e.,

Nmean
iter =

1

Nsimu

Nsimu∑
n=1

Nn
iter,

where Nsimu is the total number of simulations and Nn
iter is the number of iterations of the

minimization algorithm at the nth simulation.

As an example, in Figure 3.6 we show the results in the case of NS-NR with N = 104

and ` = 2.5R. The graph shows Nmean
iter (in color code) as a function of α, β, γ, where

α ∈ [0.001, 0.008], β ∈ [0.01, 3.2] and γ ∈ [0.004, 0.012]. Notice that in order to simplify

the visualization we only plot the dots corresponding to Nmean
iter < 82. The color code

ranges from dark blue, with Nmean
iter = 10, to yellow, with Nmean

iter = 82. We then choose the

values of the parameters within the blue region. In this case we have chosen (α, β, γ) =

(0.001, 2, 0.01).

This study has been conducted for each algorithm and several values of N . From these

simulations we have been able to extract the parameters which are presented in Table

3.1. The algorithms with rigid cluster use the same parameters as the algorithms with

non-rigid clusters. In the case of the smooth methods, the parameters have spatial units,

therefore, they depend on R.

3.4.1.2 Choice of εX

Once the parameters α, β and γ have been chosen, we determine the value of the tolerance.

The idea is to choose a tolerance εX such that the number of iterations of the minimization

is low while the error, which measures how well the hard constraints are verified, remains
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N α β γ

smooth constraints
- 0.001 0.01/R2 0.1/R

non-smooth constraints
9× 102 0.003 2 0.1

[2.5, 6.4]× 103 0.002 2 0.02
[1, 4]× 104 0.001 2 0.01

[1.6, 2.5]× 105 0.001 2 0.003
106 0.0001 2 0.001

Table 3.1: Parameters for the minimization problems with smooth and non-smooth constraints for different
values of N and for R = 3

4
√
N

and ` = 2.5R.

small. This parameter is going to be fixed for all of the following simulations and it is

not going to depend on the algorithm used nor on the number of particles. To compare

the influence of the tolerance, we are going to compute the average number of iterations,

Nmean
iter , and the error, Etextmean, which is given by

Emean =
1

Nsimu

Nsimu∑
n=1

1

#Sn

∑
(i,j)∈Sn

|φi,j(X)|
R ,

where Sn contains the pairs of linked spheres at the nth minimization as defined in (3.12)

and #Sn is the number of elements in Sn. The function φij can have the smooth

or non-smooth form as defined in (3.15) and (3.16), respectively, and the normaliza-

tion constant R takes either the value 2R or 4R2 depending on the function φij used.

Figure 3.7 shows Emean and Nmean
iter as a function of the tolerance εX = 10−n with

Figure 3.7: Plot of Emean (a) and Nmean
iter (b) as functions of the tolerance εX ∈ {10−7, 10−6,

10−5, 10−4, 10−3} for NS-NR (red solid line), S-NR (green solid line), NS-R (red dashed line), S-R (green
dashed line) with N = 900, R = 3/(4

√
N) , ` = 2.5R and for 10 initial conditions. The value of the

tolerance that minimizes the number of iterations and the error is ε = 10−6.

n ∈ {−7,−6,−4,−3,−2,−1}. The simulation has been run for the four methods S-

NR, NS-NR, S-R, NS-NR and 10 initial conditions with N = 900, ` = 2.5R and the
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remaining parameters taken from table 3.1.

In Figure 3.7a) we observe that the error increases with the tolerance, which is expected.

We consider that the hard constraint is verified if the error is around 10−3, which occurs

for a tolerance equal to 10−7 or 10−6. However in Figure 3.7b) we observe that the mean

number of iterations of the minimization decreases exponentially with the tolerance. From

εX = 10−7 to εX = 10−6 the mean number of iterations ranges from two times smaller in

the case of the S-NR and one hundred times smaller in the case of the NS-NR. Since we

want to keep the number of iteration as low as possible we choose the tolerance εX = 10−6.

3.4.2 Comparison between TS and ED schemes

In this Section we compare the ED and TS schemes regarding the computational time

they take to simulate the phenomenon of ballistic aggregation described in Section 3.2.

In particular, we study the influence of the number of spheres N and of the size of the

domain. We use the numerical parameters obtained in the previous Section, namely, α, β

and γ presented in Table 3.1 and the tolerance εX = 10−6.

3.4.2.1 Influence of the number of particles

We first compare the TS algorithms with the ED algorithm with respect to the computa-

tional time for several values of N . In this Section we consider a set of 5 initial conditions

and like in the previous Section, we use the radius R = 3/(4
√
N) and the side of a box

` = 2.5R. For these values, the volume occupied by the spheres and the volume of the do-

main remain constant over N . As we will see, the computational time of the ED becomes

larger than the TS schemes as N increases.
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(a) N ∈ {0.9, 2.5, 6.4, 10, 14.4, 22.5} × 103.
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(b) N ∈ {4, 1.6, 2.5, 10} × 105.

Figure 3.8: Computational time as a function of N for NS-NR (red solid line), S-NR (green solid line), NS-
R (red dashed line), S-R (green dashed line), ED (black line) and 5 initial conditions with R = 3/(4

√
N)

and ` = 2.5R. We observe that the TS algorithms outperform the ED for N ≥ 6400.

We obtain the computational time (CPU time), for each method and for several values

of N , from N = 900 up to N = 106. In Figure 3.8 we present the CPU time as a function of
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N for four time-stepping algorithms (S-NR, NS-NR, S-R, NS-R) and for the event-driven.

We observe that the ED needs less time than the TS for N ≤ 900 and the TS algorithms

overcome the ED for N ≥ 6400. In particular, for N = 106 the ED takes almost four days,

while the TS algorithms take less than two hours. When we compare the TS algorithms

between themselves we do not see such a big difference. The algorithms with smooth form

of the constraints (in green) seem to perform better than with the non-smooth form (in

red). The algorithms with non-rigid cluster (in solid line) seem to perform better than

with rigid cluster (dashed line). A possible explanation for this last observation could be

that a rigid cluster may have more difficulty in finding space in a crowded environment

than a non-rigid one.

3.4.2.2 Influence of the size of the domain

We now fix the number of spheres N = 6400 and analyse the effect of increasing the size

of the domain. Specifically, we consider the side length of the box that we have been

using, namely, ` = 2.5R and a larger one ` = 3R. As we will see, the TS algorithms are

negatively affected by this increase on the size of the domain, while the ED algorithm is

not substantially affected by this change.
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(a) Side length of a box ` = 2.5R.
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Figure 3.9: Number of clusters over computational time during one simulation for NS-NR (red solid line),
S-NR (green solid line), NS-R (red dashed line), S-R (green dashed line), ED (black line), for two different
values of length side of a box ` = 2.5R (a) and ` = 3R (b) with N = 6400 and R = 3/(4

√
N). We observe

that the ED takes longer in the first case and less time in the second case compared to the TS algorithms.

For each value of `, we plot in Figure 3.9 the number of clusters that are being formed

after each time-iteration as a function of the computational time for one initial condition.

Naturally, we observe in all schemes that the number of clusters is monotonically decreas-

ing from N , at the beginning of the simulation, to 1, at the end of the simulation. In the

ED scheme we observe that the number of clusters decreases linearly over computational

time. This means that the computational time that it takes to reduce the number of

clusters by one (i.e., to compute one collision) is independent on the number of clusters

existing in the system. Each star in the graph represents one time-iteration. Looking at
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the first star of the TS schemes in Figure 3.9a), we observe that the number of clusters

has dropped more than 3000, i.e., more than 3000 collisions have occurred during the first

time-step. After that, the number of collisions per time-step reduces drastically. This may

be explained by the decrease on the number of clusters over time. Indeed, less clusters

implies a lower rate of collisions. Consequently, less collisions are solved at one time-step

and the TS algorithms become less efficient. At some point during the simulation, the TS

schemes become less efficient than the ED.

If we consider a larger domain then the overall rate of collisions decreases and the TS

schemes may lose against the ED, as we see in Figure 3.9b) where the side length of a box

is ` = 3R. This shows that, for a fixed N , there is a threshold on ` (and consequently

on the size of the domain), where the TS overcomes the ED. This threshold lies between

2.5R and 3R. In particular, we deduce that the fastest algorithm would result from a

combination between the two types of schemes: a TS scheme to simulate the first part

of the dynamics where the rate of collisions is high and an ED scheme to simulate the

second part of the dynamics where the rate of events is below some threshold. In order

to develop such a hybrid scheme, the best switching point would have first to be found.

This investigation is left for future work.

3.5 Conclusion and future work

In this work we propose four different time-stepping schemes to simulate ballistic aggre-

gation in a d-dimensional torus [0, L]d in the case where the volume fraction occupied

by the particles is high. The TS schemes involve the resolution of a minimization prob-

lem with non-overlapping constraints at each time-step which is solved by the damped

Arrow-Hurwicz algorithm developed in Part I. The TS algorithms differ from each other

on the way the growing aggregates are modelled (rigid or non-rigid) and on the form of

the non-overlapping constraints (smooth or non-smooth). We compare the four methods

with an event-driven algorithm in terms of computational time. In particular, we study

numerically the influence of the number of spheres N and of the size of the domain in

dimension d = 2 for equally sized spheres with radius R. We observe that the TS methods

get increasingly faster than the ED as N increases. For a size of the domain of L = `
√
N ,

with ` = 2.5R, the TS overtakes the ED for N ≥ 6400. In particular, for N = 106 particles

the ED takes almost four days, while the TS takes only a few hours. On the other hand,

the TS methods become slower as ` increases. Specifically, for N = 6400 particles, the

threshold on ` at which the TS method becomes slower than the ED lies within 2.5R and

3R. By plotting the evolution of the number of clusters over computational time during

one simulation, we observe that the TS scheme is very efficient at the beginning of the

dynamics, as many collisions are solved simultaneously at one time-step. In contrast, at

the end of the simulation the TS schemes become very inefficient. This indicates that

the fastest algorithm to simulate the dynamics should combine a TS at the first part of
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the dynamics with an ED at the second. This observation should be further investigated

in the future, namely, at which point of the dynamics should one switch between the TS

and the ED. Another important aspect that should be explored in the future is how well

the TS schemes describe the real dynamics of the system. This may be accomplished by

assuming the ED as a reference point for accuracy and comparing the dynamics obtained

by the TS with the ED. After selecting an efficient and accurate scheme, one could then

study statistical properties associated to the growing aggregates, namely, how many ag-

gregates of size x there are at time t or which type of shapes of the final aggregate may

emerge for each type of initial conditions one may consider.
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4
Modelling a packed cell tissue

with noise

In a packed tissue, neighbouring cells exert high pressure on each other at all times. Such

mechanical interactions are believed to play an important role on the dynamics and shape

of the tissue. However, their exact contributions are still not yet fully understood. To

explore this relation we develop a 2D individual based model for the particular case of

an epithelial tissue where the nucleus is the most rigid part of the cell, leading to nuclei

packing. The model is based on a geometric representation of individual cells through

soft-hard-spheres, modelling the nuclei, and springs, modelling the cytoplasm. The cells

interact with each other aiming at minimizing a local potential energy at all times, subject

to non-overlapping constraints. This problem is formulated as a non-convex minimization

problem, which is tackled with the damped Arrow-Hurwicz algorithm developed in Part

I. The evolution of the system is then triggered by cell division, noise and changes in

cell characteristics and it is simulated by the time-stepping scheme described in Chapter

3 with smooth constraints. Numerical results show good agreement with experimental

data, which has allowed us to support some hypotheses previously proposed by biologists

regarding the underlying mechanics of the tissue. In particular, the model suggests that

the presence of noise in the system is essential to allow the movement of nuclei in a

crowded environment. Preliminary results suggest that the height of the tissue may be

directly related to the speed at which the nuclei move inside the cells.

This work is based on a collaboration between mathematicians Pierre Degond∗ and Sara

Merino-Aceituno† and a team of biologists‡ led by Eric Theveneau and including Fernando

Duarte.

∗Department of Mathematics, Imperial College London, UK
†School of Mathematical and Physical Sciences, University of Sussex, UK
‡Centre de Biologie du Développement (CBD), University Paul Sabatier, CNRS, France
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4.1 Introduction

Mathematical modelling has been used as a low-cost research tool in the study of the

mechanics of cell tissues, as a complement to laboratory experiments. In particular,

some questions have recently been explored by resorting to this tool, such as, how a

change in spatial constraints affects the cell cycle [170], how curvature of an epithelial

sheet is determined by mechanical tensions [84] or what are the sources of the forces

acting in each cell within the tissue [182]. We refer to Section 0.2.2.3 for a brief overview

of tissue mechanics models. The general modelling methodology consists of building a

model based on hypotheses proposed by biologists and observing the model predictions.

If these predictions are in agreement with experimental data, then they might be kept for

further exploration. If not, then they might be incomplete or wrong and new hypotheses

should be formulated. In this work, we focus on packed cell tissues. The dynamics of

such tissues is strongly influenced by the contact forces between neighbouring cells. Our

aim is to develop a modelling framework which can be used to predict the impact of these

forces on the dynamics and shape of the tissue. Such a framework is developed in the

context of the neroepithelium of a chick embryo, which is described in the next Section.

The outline of the Chapter is as follows. In Section 4.2 we provide the biological

background and the questions that motivate this work. In Section 4.2.2 we justify our

modelling choices. In Section 4.3 we describe the mathematical model of the tissue at equi-

librium as a solution to a minimization problem. In Section 4.4 we introduce perturbations

to this equilibrium state, such as cell division, noise and changes in cells characteristics,

and obtain a model for the time-evolution of the tissue. In Section 4.5 we present the

numerical results as follows. We start in Section 4.5.1 by estimating the ranges for the

parameters of the model from experimental data. Then in Section 4.5.2 we present the

influence of the magnitude of the forces and of the intensity of noise. Finally, in Sec-

tion 4.5.4, statistical results for the evolution of the shape and morphology of the system

over 36 hours are presented and compared with experimental data. Finally, the model

results are discussed in Section 4.6 and possible future directions and applications are

described in Section 4.7.

4.2 Biological background and modelling princi-

ples

4.2.1 The neuroepithelium

In this Section we present the main features of the chick neuroepithelium which is used

as a biological model in this study.

The epithelial tissue or epithelium is one of the basic types of animal tissue and it is
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constituted of closely packed cells adjacent to a basement membrane. The epithelium

can be classified according to the number of cell layers, into simple, pseudostratified (one

layer) or stratified (several layers), and according to the shape of the cells, into squamous,

cuboidal or columnar.

Figure 4.1: Figure a) represents a 2-days-old embryo with the neural tube in green. Figure b) was obtained
by Theveneau’s lab and it contains a cross section of the neural tube represented in Figure a). The apical
network is located in the inner part of the tube, while the basement membrane in the outer part. In between
the two we see the nuclei in white. Figure c) was taken from [109] and it contains a sketch of a subsection
of Figure b) representing the morphology of a pseudostratified epithelium. Each cell has an elongated shape
and it is attached at one side to the basement membrane and at the other side to the apical network. The
nucleus is the most rigid part of the cell. Prior to division the nucleus migrates to the apical side as repre-
sented in the right most cell in Figure c). The tissue grows in all three directions due to cell division and
cell stretching.

The tissue we are interested in is the neuroepithelium which constitutes the neural

tube of the chick embryo (see Figure 4.1(a) and (b)). This tissue belongs to the class

pseudostratified columnar epithelial tissue, as it contains only one layer of elongated

column-shaped cells whose nuclei can be found at different heights inside the cell, giving

the perception of a multilayer tissue. In the neuroepithelium of the chick embryo, we

observe up to 8 layers in a two-days old embryo, as it is shown in Figure 4.2. The cells

are adjacent to a basement membrane. Epithelial cells have polarity, at the basal side

the cells are attached to the membrane and at the apical side they are attached to each

other, forming an apical network (see Figure 4.1(c)). The volume of a cell is nearly the

volume of the nucleus. The nucleus is also the most rigid part of the cell.

The nucleus moves inside the cell along the apico-basal axis. This is called interki-

netic nuclear migration, INM. The cells are continuously getting stretched, leading to

the growth of the tissue in the apico-basal direction. At some point of the cell cycle,
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Figure 4.2: A 2D image of a section of the neuroepithelium of a two-days old chick embryo. We can see
that there are approximately 6 to 8 layers of nuclei. The green line on top corresponds to the apical network
and the green line in the bottom corresponds to the basement membrane. The red nucleus near the apical
network is in the process of division. Image obtained by Theveneau’s lab.

the nucleus tries to approach the apical side. At this stage, the nucleus movement is

considerably faster than before. After a while, the nucleus gets more rigid and then it

divides. Nearly all divisions are observed to occur when the nucleus is at the apical side

of the tissue. All nuclei are constantly shaking without having any apparent directed

movement, which may be a consequence of internal sub-nuclear processes. This shaking

behaviour may be necessary to allow the rapid movement of nuclei along the apico-basal

direction prior to division. Due to crowding, one daughter cell may be born at a different

cross-section than the mother cell, leading to the growth of the tissue in the longitudinal

direction of the tube.

The mechanical interactions occurring within the neuroepithelium are believed to play

a crucial role on the dynamics and architecture of this tissue [109]. Specifically, a few

questions one may ask are:

• How does a macroscopic structure, namely the neural tube, emerge and how does

it remain stable, despite all the complex processes occurring at the cell level, such

as INM and crowding.

• How does the nucleus migrate to the apical side prior to division, despite the crowd-

ing and the movement of neighbouring nuclei.

• What determines the number of layers of nuclei along the apico-basal axis and how

does that affect INM.

The questions referred above are especially relevant in two contexts: embryonic de-

velopment and cancer formation. In the context of embryonic development, one tries to

understand how organs acquire their shape and how it remains stable [83]. In the context

of cancer, how the shape is disrupted and how this disruption allows cancer cells to leave

the tissue and start spreading to other organs [172, 98].

The mechanics underlying cell tissues have been addressed in the literature by com-

plementing lab experiments with mathematical modelling and computer simulations, as

some hypothesis are very difficult to test in the lab. This is what we are going to do as
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well. In this first stage of the project, we have developed a 2D model for the neuroep-

ithelium based on hypotheses formulated from the observed cell behaviour and we have

validated the model against experimental data. In a second stage we will perform in silico

experiments to try to get a deeper insight about the interplay between crowding, INM,

tissue shape and growth.

4.2.2 Modelling principles

In this Section we present and justify our modelling approach.

We want to study the relationship between intercellular forces and the dynamics and

shape of the tissue, therefore a multiscale approach would be appropriate. The general

reasoning that motivates our modelling choices is described in Figure 4.3. The main aim

is to be able to derive two models of the tissue at different spatial scales, called the micro-

and the macroscopic models, that are mathematically linked, in the sense that the macro-

scopic model can rigorously be derived from the microscopic one. Such a mathematical

framework, would give a powerful tool in the study of biological systems, as it would

allow to enlarge and reduce the spatial scale as needed, just like a ”mathematical micro-

scope”. This feature also allows to reduce the computational cost. Moreover, a rigorous

bridge between two spatial scales would allow to keep consistency between variables and

constants across scales, which is very relevant in biology, since the data is usually ob-

tained from macroscopic scales, but the mechanisms that explain these data often occur

at microscopic scales. In sum, in order to be able to fully understand a biological system,

a rigorous multiscale approach is often needed. Due to the difficulty of the problem, it

is desirable to consider the simplest possible individual based model (IBM), which we

describe next. A macroscopic model corresponding to a simplified IBM is developed in

Chapter 5. Nevertheless, the link between the two models is still missing and is left for

future work.

Figure 4.3: Scheme of our modelling strategy.
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A fairly big amount of individual based models of packed tissues has recently been pro-

posed by several authors. A few examples are cellular automata [115], Potts model [163],

vertex model [59, 168, 65, 170], Voronoi model [127], subcellular model [159]. All these

models use a complex representation of a cell. Simpler representations use quadrilater-

als [91] and hexagonal prisms [84], however, they do not account for the variability in cell

size or for the movement of each individual cell. In this work, instead, we use soft-hard-

spheres, modelling the cell nuclei, and springs, modelling the cytoplasm, as presented in

the next Section. The cells may differ from each other with respect to the rest length of

the springs and to the radius of the nucleus.

4.3 Tissue at mechanical equilibrium

4.3.1 Model description

In this Section we first describe the model of one cell and the link to neighbouring cells.

This is a 2D model representing a subsection of the neuroepithelium as presented in

Figure 4.1c). Since we are primarily interested in studying the morphology of a cross-

section of the neural tube and in particular the effect of INM, a 2D model is a reasonable

starting point. However, a more accurate 3D model should be developed in the future

in order to incorporate 3D effects, such as crowding in 3D and a 2D apical network (see

Section 4.7.2 for a brief description of such extension).

A cell is constituted by the nucleus, an apical point and a basal point (see Figure 4.4).

The nucleus is modelled by an inner-circle, which represents an impenetrable hard-core

and an outer-circle, which represents a soft-core that resists to compression through an

elastic response. The apical point represents the point of connection with neighbouring

cells and the basal point represents the point where the cell is attached to the basement

membrane. The two points are connected to the nucleus through springs with adaptive

rest length, representing the cytoplasm. The rest length is gradually adapting to the actual

length of the spring, which introduces a visco-elastic effect on the system. Each apical

point is connected through springs to one or two neighbouring apical points, depending if

the cell is in the edge or in the middle of the tissue, respectively. The apical connections

represent the so-called apical network. Let N be the number of cells in the tissue. For

each i = 1, ..., N the parameters that characterize the configuration of the tissue are the

following:

• the radii hard-cores of the nucleus RH
i > 0,

• the position of the center of the nucleus, Xi = (xi(1), xi(2)) ∈ R2,

• the position of the point where the cell attaches to the basement membrane, bi =

(bi(1), bi(2)) ∈ R2,
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• the position of the point where the cell attaches to neighbouring cells, ai = (ai(1), ai(2)) ∈
R2,

For each i = 1, ..., N and j = 1, ..., N − 1 the springs, the alignment force and the nuclei

soft-core are characterized by:

• the rest length ηaXi and stiffness αaXi of the spring connecting the nucleus and the

apical point

• the rest length ηbXi and stiffness αbXi of the spring connecting the nucleus and the

basal point,

• the rest length a0 and stiffness αaj of the spring connecting apical points j and j+1,

• the strength of the alignment force, αai ,

• the stiffness of the soft nucleus, αXi .

X

X

X

X

X

Basement
membrane

Apical side

Figure 4.4: Sketch of the model for the tissue presented in Figure 4.2. The model consists of soft-hard-
spheres connected to the apical and basal points through springs. The basal points are restricted to a
straight line and they cannot switch positions nor get too far away from each other. Neighbouring apical
points are connected through springs. The apical point, nucleus and basal point are subject to an alignment
force.

Additionally, we consider the following rules. The basal points are restricted to the

basement membrane, which is represented by a straight line, i.e., bi(2) is kept constant.

Neighbouring basal points cannot switch positions nor get too far away from each other,

i.e., 0 < bi+1(1)−bi(1) < 2R̄b0, i = 1, ..., N−1, where R̄ =
∑

iR
S
i /N and b0 > 0. The rule

that the basal points cannot be too far away from each other models lateral adhesion, i.e.,

the fact that cells adhere to each other. We also consider an alignment force that tends

to align the apical point, the nucleus and the basal point, which models the influence of

the cytoplasm of the cell.

4.3.2 Minimization problem

We describe the tissue at equilibrium as a local solution to a minimization problem for

the positions of the nuclei, apical points and basal points. All the other parameters are
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constants that are determined by the dynamics of the system, as explained in the next

Section. We minimize a potential corresponding to the sum of the energy associated to

the springs, the alignment force and the soft radius. The minimization is subject to non-

overlapping on the nuclei inner-cores and non-switching and lateral adhesion constraints

on the basal points.

Let X = (X1, ..., XN), a = (a1, ..., aN) and b = (b1, ..., bN) be the positions of the

center of the nuclei, the apical points and the basal points, respectively. Consider the

parameters defined in the previous Section. We define the potential W : (R2N)3 → R by

W = W1 +W2 +W3 +W4 +W5

with

W1(X, a,b) =
N∑
i=1

αaXi

∣∣∣∣ |ai −Xi|
RS
i (1 + ηbXi )

− 1

∣∣∣∣2
W2(X, a,b) =

N∑
i=1

αbXi

∣∣∣∣ |bi −Xi|
RS
i (1 + ηbXi )

− 1

∣∣∣∣2
W3(X, a,b) =

N−1∑
i=1

αai

∣∣∣∣ |ai+1 − ai|
2R̄

− a0

∣∣∣∣2
W4(X, a,b) =

N∑
i=1

αabi

(
(ai −Xi) · (bi −Xi)

|ai −Xi||bi −Xi|
+ 1

)2

W5(X, a,b) =
N∑

i,j=1

αXij1{|Xi−Xj |<RS
i +RS

j }(X)

∣∣∣∣ |Xi −Xj|
RS
i +RS

j

− 1

∣∣∣∣2 ,
The potentials W1, W2 and W3 represent the energy associated to the springs, W4 repre-

sents the energy associated to the alignment forces and W5 represents the energy associ-

ated to the soft-core of the nuclei.

Consider the functions associated to the constraints:

• φk`(X) =
(RH

k +RH
` )2−|Xk−X`|2
R̄2 , k, ` = 1, ..., N, k < `,

• ψi(b) = bi(1)−bi+1(1)

R̄
, i = 1, ..., N − 1,

• Ωi(b) = bi+1(1)−bi(1)

R̄
− 2b0, i = 1, ..., N − 1,

For k, ` = 1, ..., N, k < ` and i = 1, ..., N − 1, the non-overlapping, the non-switching and

the lateral adhesion constraints are then respectively described by

φk`(X) ≤ 0, ψi(b) ≤ 0, Ωi(b) ≤ 0.
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The minimization problem is formulated as follows: find (X̄, ā, b̄) such that

(X̄, ā, b̄) ∈ argmin
φkl(X),ψi(b),Ωi(b)≤0, k<`

W (X, a,b) (4.1)

We use the damped Arrow-Hurwicz algorithm (DAHA) [45] developed in Part I to solve

the minimization problem (4.1). We consider the Lagrangian L : (R2N)3 × RN(N−1)/2
+ ×

(RN−1
+ )2 → R associated to the potential W and to the constraints, which is defined by

L(X, a,b,λ,µ, ξ) = W (X, a,b) +
∑

k,`=1,...,N, k<`

λk`φk`(X) +
N−1∑
i=1

µiψi(b) +
N−1∑
i=1

ξiΩi(b)

where λ = {λk`}k,`=1,...,N, k<`, µ = {µi}i=1,...,N−1 and ξ = {ξi}i=1,...,N−1 are the Lagrange

multipliers associated to the constraints. The DAHA consists on a discretization of the

damped Arrow-Hurwicz system, that is given by

Ẍi = −cẊi − α2∇Xi
L − γ2

∑
k,`=1,...,N, k<`

λk`φk`∇Xi
φk`

äi = −cȧi − α2∇aiL

b̈i = −cḃi − ρ2α2∇biL − γ2
N−1∑
k=1

[µkψk∇biψk + ξkΩk∇biΩk] ,

i = 1, ..., N

λ̇k` =

0, if λk` = 0 and φk` < 0

βφk`, otherwise
, k, ` = 1, ..., N, k < ` (4.2)

µ̇k =

0, if µk = 0 and ψk < 0

βψk, otherwise
, k = 1, ..., N − 1

ξ̇k =

0, if ξk = 0 and Ωk < 0

βΩk, otherwise
, k = 1, ..., N − 1

where α, ρ, β and c are positive constants and ρ ≤ 1. The parameter ρ in the equation

for bi models basal adhesion: the smaller it is, the slower the basal points move during

the minimization algorithm. Consequently, due to the non-uniqueness of steady state

solutions, the algorithm should reach a steady state where the basal points have not

moved much from their initial positions, when compared to the nuclei and apical points.

By discretizing this system, we get the DAHA, with the positive numerical parameters

α, β, γ and c the tolerance associated to the stopping criterion, ε. The values used in

the simulations are α = 0.01R̄, β = 0.25, γ = 0.1R̄, c = 2 and ε = 10−6.
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4.4 Dynamics driven by noise, cell division and changes

in cell characteristics

4.4.1 Model description

In this section we describe the time-dependant model for the dynamics and growth of

the tissue until either a maximum number of cells or a maximum time has been reached.

The movement of cells is induced by cell division, changes in cell characteristics and cell

diffusion with diffusion coefficient d.

We consider the cell cycle divided into three stages: S/G1, G2 and mitosis. We assume

that a cell has an internal clock that determines the position of the cell in the cell cycle.

During the first stage S/G1, a cell moves passively driven by the crowd and noise,

while trying to reach a internal state of equilibrium. This equilibrium is associated to the

desired cell shape as explained in the previous Section. However, in order to accommodate

the volume of nuclei, the tissue grows in all directions and in particular, in the apico-

basal direction. Consequently, the cells have to stretch, i.e., the springs connecting the

nucleus to the apical and basal points have to stretch. This leads to tension within

each cell. We assume that cells release this tension, by letting the rest length of the

springs progressively adapt to the actual size of the spring. This models the dynamics

of actomyosin and microtubules inside a cell. Given the configuration of a cell at some

time-point t, (Xi(t), ai(t), bi(t)), the desired rest lengths are given by ηaX∗i (t) = |Xi(t) −
ai(t)|/RS

i −1 and ηbX∗i (t) = |Xi(t)−bi(t)|/RS
i −1. The dynamics of the rest lengths ηaXi (t)

and ηbXi (t) are then governed by the piecewise linear ODE

η̇aXi =

0, if ηaXi = 0

kη(η
aX∗
i − ηaXi ), otherwise

, i = 1, ..., N (4.3)

and

η̇bXi =

0, if ηbXi = 0

kη(η
bX∗
i − ηbXi ), otherwise

, i = 1, ..., N (4.4)

where kη is a positive constant controlling the speed of actualization of the rest lengths.

During stage G2, the characteristics of the springs change in order to encourage the

nucleus to approach the apical side of the tissue:

• the spring connecting the neighbouring apical points of the dividing cell gets stronger

(increase in αai ) and

• a pushing force from the basal membrane and a pulling force from the apical network

are activated (increase of rest length of the spring connecting the nucleus to the basal

membrane, ηbX∗i , and decrease of rest length of the spring connecting the nucleus to
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the apical point, ηaX∗i ),

• the spring connecting the nucleus to the apical point gets stronger (increase in αaXi ).

During mitosis, besides the changes implemented during G2, two additional changes re-

lated to cell rigidity occur:

• the nucleus gets larger and more rigid (increase in RH
i ),

• cell gets more rigid (increase in alignment force in αabi ).

The cell will divide with probability Pout as soon as it reaches its maximum life time,

despite the nucleus being or not at the apical side. The cell division is performed according

to the following rules (see Figure 4.5):

• the division plan is parallel to the basement membrane: the nucleus, apical and

basal points are substituted by two nuclei and two apical and basal points which

are disposed near each other

• the two new cells and nuclei have the normal rigidity and size

• the springs of each cell and apical points are restored.

X

^

X

X X X

^

XX

Time

^ ^

Cell
division

Springs 
update

Rigidity 
increase

X

Basement 
membrane

Apical sideX

Figure 4.5: Sketch of the changes occurring to a cell prior to division. The rest length of the springs
changes to allow the nucleus to approach the apical side. After a while, the radius of the hard nucleus in-
creases and finally, at division, one cell is substituted by two cells.

Over the whole dynamics, the nuclei diffuse with coefficient of diffusion d, i.e., for

each cell i, the vector Xi follows the equation dXi(t) =
√

2d dW (t), where W (t) is the

two-dimensional standard Wiener process.

For each cell i, we denote the duration of the G2 phase and mitosis by σG2
i and σMi ,

respectively. Moreover, we denote the life time by σi and the birth time by τi. The time

unit is hour. We use bold notation to denote the parameters for all cells i = 1, ..., N . We

distinguish four types of parameters:
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• tissue parameters: a0, b0, ρ (defined in Section 4.3.1), d, Pout, kη, N

• cell cycle parameters: σ, σG2, σM and τ

• cell parameters: RS, RH , αaX , αbX , αa, αab, αX

• cell variables: X, a,b,ηaX ,ηbX

4.4.2 Time-stepping scheme

In this Section we present the time-stepping algorithm we use to simulate the dynamics

described in the previous Section.

Let ∆t be the time-step, which in practice will be equal to the time interval between two

frames in the videos obtained in the lab, i.e., 0.1 hours. Let the initial tissue parameters,

cell cycle parameters and cell parameters (see end of Section 4.4.1) be given. Consider

the initial time t0 = 0 and let the values for the cell variables X0, a0,b0, ηaX0 and ηbX0 be

given. Given the cell variables at time tn−1, we obtain Xn, an,bn ηaXn and ηbXn at time

tn = n∆t by performing the following steps:

1. evolve the rest length of springs of all cells i, i.e., obtain ηaXi,n and ηbXi,n through a

time-discretization of equations (4.3) and (4.4) with ηaX∗k = |Xi,n−1−ai,n−1|/RS
i − 1

and ηbX∗n = |Xi,n−1 − bi,n−1|/RS
i − 1 if cell i is in S/G1 phase and ηaX∗n = 0 and

ηbX∗n = |ai,n−1 − bi,n−1|/RS
i − 2 if cell i is in G2 or mitosis.

2. identify the cells k that are going to enter in G2 phase and update the stiffness of

the springs: increase αaXk , αak−1, α
a
k.

3. identify the cells k that are going to enter in mitosis and update the cell rigidity:

increase RH
k , and αabk .

4. identify cells k that have reached the life time and divide them: increment N to

N + 1, remove the old cell and initialize two new cells k1 and k2 by performing the

following steps:

(a) restore the hard-core of the nucleus and the magnitude of the forces associ-

ated to the springs and alignment.

(b) define the parameters: τk1 = τk2 = tn, σk1 = uk1 and σk2 = uk2 , where

uk1 , uk2 are two values generated from the uniform distribution with support [σmin, σmax]

with σmin, σmax > 0,

(c) actualize the variables:

ηaXj,n = ηaXj,n−1, η
bX
j,n = ηbXj,n−1, j = k1, k2

ˆ̂Xk1,n = Xk1,n−1 − (0.05RS
k , 0), ˆ̂Xk2,n = Xk2,n−1 + (0.05RS

k , 0)
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âk1,n = ak1,n−1 − (0.05RS
k , 0), âk2,n = ak2,n−1 + (0.05RS

k , 0)

b̂k1,n = bk1,n−1 − (0.05RS
k , 0), b̂k2,n = bk2,n−1 + (0.05RS

k , 0),

5. obtain X̂n by adding to ˆ̂X Gaussian white noise with mean 0 and standard deviation√
2d∆t, i.e., X̂n = ˆ̂Xn +

√
2d∆tu, where u is generated from the 2N -dimensional

multivariate standard Gaussian distribution,

6. obtain an admissible configuration (Xn, an,bn) by readjusting the positions in (X̂n,

ân, b̂n). In other words, obtain a local solution, (Xn, an,bn), of (4.1) by numerically

solving the ODE system (4.2) with initial condition (X̂n, ân, b̂n).

The algorithm stops when either the maximum number of cells or the maximum time

have been reached.

4.5 Numerical results

In Sectio 4.5.1 we present the ranges of the parameters and the type of initial condition

that are used in the remaining Sections of the Chapter. In Section 4.5.2 we study the effect

of the magnitude of the forces associated to the springs, alignment and soft nucleus. In

Section 4.5.3 we study the effect of noise. Finally in Section 4.5.4 we study the evolution

of the tissue over 36 hours and we compare the results with experimental data.

4.5.1 Choosing the model parameters and initial conditions

The ranges for the model parameters are presented in Table 4.1. These ranges are chosen

according to the data obtained from lab experiments conducted by Theveneau’s lab or

taken from the literature. The aim is to reproduce a section of the neuroepithelium as

shown in Figure 4.2. Theveneau’s lab has obtained statistical descriptors of the tissue

shape and morphology for different stages of development. We do not present these

descriptors here as we rather keep the focus on the model. We only mention some averaged

values that allow us to get a first estimate of the model parameters. In the future, more

accurate estimates should be obtained. We also resort to image 4.2 to justify some choices

for some parameters. Despite being just one single sample, the lab experiments have

shown that there is a relatively low variability among different embryos. Thus the tissue

represented in image 4.2 can be considered as a good and robust representation of the

system. Some parameters will be obtained by direct measurements on that image.

We start by choosing the initial number of cells N = 30 as the minimum number that

allow us to reproduce the morphology of the tissue.

We define the radius of the soft-core of the nucleus as the space unit and we use the

value RS
i = 1 for all i. Measurements on the shape of the nucleus indicate that the shape
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Name Symbol Unit Range

Tissue parameters

Number of cells N [30, 60]
Speed of actualization of the rest
length of nucleus springs

kη 1/h ≥ 2

Rest length of apical springs a0 2R̄ ≤ 1/6
Maximal distance between neigh-
bouring basal points

b0 2R̄ [1/3, 1/2]

Minimizer selector ρ 1/2
Diffusion coefficient d R̄2/h 2.5
Proportion of outer divisions Pout 0.8

Cell cycle parameters

Time life σ h [11, 14]
Duration of G2 phase σG2 h 1/2
Duration of M phase σM h 1/2

Cell parameters

S/G1 G2/M M

Radius of soft-core of the nucleus RS 1
Radius of hard-core of the nucleus RH RH1 ∈ [RS/2, RS ] RH2 ∈ [RH1 , RS ]
Stiffness of spring connecting nu-
cleus and apical point

αaX O(1) O(1)

Stiffness of spring connecting nu-
cleus and basal point

αbX O(1) O(1)

Stiffness of spring connecting
neighbouring apical points

αa O(10) O(10)

Magnitude of alignment force αab O(10) O(10)
Stiffness of soft-core of the nucleus αX O(1) O(1)

Table 4.1: Ranges of model parameters obtained as much as possible from lab experiments. The symbol O
denotes order of magnitude and R̄ =

∑
iR

S
i /N .

is close to an ellipsoid with axis a, b, c, where a = b < c and c = 1.5a or c = 2a. To get

a close representation we consider that the larger axis corresponds to the radius of the

soft-core and we choose the value for the radius of the hard-core within the longer and

shorter axis, RH
i ∈ [RS

i /2, R
S
i ]. During mitosis the value radius the radius of the hard-core

is larger than outside mitosis.

The coefficients representing the stiffness of the springs do not affect directly the dy-

namics. Instead they have an direct role in the minimization algorithm. Since there are

many local minima, these coefficients in some sense impose a priority on which energy

associated to each force to minimize first. Consequently, the first one to be minimized will

be closer to the minimum than the others, thus representing a stiffer spring or a stronger

force. This allows us to choose the parameters roughly and relatively to each other. We

know from the experiments that both the springs between apical points and the alignment

force, should be much stronger than the other forces. So we choose αX , αaX , αbX of order

1 and αab, αa of order 10. In the next Section we show the effect of considering other

values for these parameters. During G2 and mitosis the stiffness of the soft nucleus and

springs is larger than outside these stages.
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We observe in the experiments that the nucleus starts to approach the apical side 1

hour before division and that within half an hour it arrives there. To reproduce this

behaviour, the rest length of the springs connected to the nucleus have to actualize in less

than half an hour. Recall that, during this stage, the desired rest lengths are 0 and |ai−bi|
for the springs connecting the nucleus and the apical and basal points, respectively. Since

kη corresponds to the inverse of the time it takes for ηaX and ηbX to reach such value, we

have to choose kη larger than the inverse of half an hour, i.e., kη ≥ 2/h, where h denotes

hour. At the beginning of the dynamics, the rest lengths are initialized with the value 3.

The quantity 2a0R̄, with R̄ =
∑

iR
S
i /N corresponds to the rest length between api-

cal points. From the experiments, we observe that the apical network is approximately

straight. Therefore, the distance between apical points i and i+1 has to be approximately

equal to the quotient between 2RS
i and the number of nuclei that lie within the rectangle

with width 2RS
i and length equal to the height of the tissue, i.e., the nuclei that lie exactly

below or above nucleus i. This number of nuclei is equal to the number of layers of nuclei

in the tissue. At the initial stage, we observe around 6 to 8 layers of nuclei. So we have

2a0R̄ = 2R̄/6 and therefore a0 = 1/6.

The parameters ρ ≤ 1 and b0, are related to basal adhesion. The parameter ρ con-

tributes to slow down the dynamics of the basal points in the minimization algorithm and

consequently, select a minimizer in which the basal points have not moved much from

their previous positions. We use the value ρ = 1/2. The quantity 2b0R̄ corresponds to

the maximal distance between basal points. We will consider b0 ∈ [1/3, 1/2]. Note that

when the tissue has a rectangular shape, the distance between basal points should be

similar to the distance between apical points. As mentioned in the previous paragraph,

such distance should be around 2R̄/6. Consequently, in this case, the bound imposed on

the basal points is not limiting their movement too much.

The diffusion coefficient d has been estimated from the movement of nuclei in vivo as

follows. Given the successive positions of a nucleus over the life time of the cell, we selected

a time window with 15 frames in which the nucleus is shaking without having any apparent

directed movement. We measure the consecutive displacements ∆xn, n = 1, ..., 14 during

this time window and we obtain the mean d̂ and standard deviation σ̂ of the values

dn = (∆x)2
n/(2∆t), where ∆t = 0.1 hours. We did this first for the data in 3D. Then we

ignored the third coordinate which gives the longitudinal position in the neural tube and

we obtained an estimate of the diffusion coefficient in 2D. In the 3D case, we obtained

d̂ = 0.37R̄2/h and σ̂ = 0.61R̄2/h and in 2D d̂ = 0.32R̄2/h and σ̂ = 0.60R̄2/h. Naturally

the estimate in 3D is larger than in 2D, as there is the movement in the third dimension

that we are ignoring in the 2D estimate. In fact, since the model is in 2D, the nuclei have

less space to move than in the real tissue. This may cause extra difficulties to the overall

dynamics of the tissue that do not exist in vivo. One way to overcome this limitation of

the model is by considering a larger diffusion coefficient. On the other hand, if we look

at the estimated standard deviation, we see that its value is quite large, which is due to
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a few big jumps with an amplitude that can reach the order of magnitude of the radius

within one hour. This shows that the diffusive behaviour of the nucleus is very complex

and should be further statistically explored. As a first rough approximation, we then

consider a diffusion coefficient of d = 2.5R̄2/h.

The duration of the cell cycle ranges approximately between 12 and 14 hours and

mitosis and G2-phase§ take around 30 minutes [108]. In the model, we generate the

duration of the cell cycle σi for each cell i from a uniform distribution U([11, 14]). We use

a smaller lower bound because some cells might take less than 12 hours. The duration

of G2 and mitosis are always the same for all cells and they are given by σG2 = 1/2 and

σM = 1/2, respectively.

The divisions are observed to occur in the plan perpendicular to the apico-basal axis.

This means that when a cell divides, one daughter cell may be formed outside the cross

section we are looking at. We assume that this happens when the direction of division

forms an angle larger than 18o with the plan defined by the cross section. This value

corresponds to 20% of all possible angles. Assuming that the divisions can occur in

any direction with equal probability within the plan of division mentioned before, we

conclude that the probability that a division occurs outside the plan of the cross section

is Pout = 0.8.
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(b) Tissue after 2 hours.

Figure 4.6: Initial (a) and final (b) tissue configuration obtained by the algorithm described in Sec-
tion 4.4.2. The stars represent apical points, the small circles at the basal line represent the basal points,
the coloured circles represent the hard-core of the nucleus and the black circles represent the soft-core. The
tissue parameters are N = 30, a0 = 1/6, b0 = 1/3, ρ = 1/2, d = 2.5, Pout = 0.8. The cell cycle parame-
ters are σ ∈ [11, 14], σG2 = 1/2 and σM = 1/2. The cell parameters during G1/S are RS = 1, RH = 0.5,
αaX = 2, αbX = 2, αa = 5, αab = 15, αX = 1. During G2/M we use αa = 10, αab = 15 and during M we
use RH = 0.8.

In Figure 4.6a) we plot the initial configuration of the tissue (X0, a0,b0) with N = 30

cells. The initial condition is obtained by defining the positions of the apical and basal

§To be precise, G2-phase takes about 2 hours and the nucleus moves apically during the last half
an hour of this phase [108]. But for simplicity we call G2 to this period in which the nucleus migrates
apically.
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points along parallel horizontal line and randomly throwing nuclei in between these two

lines. We then solve a minimization problem for the nuclei only, while keeping the apical

and basal points fixed. During the minimization, the nuclei are restricted to two vertical

walls, as we can see in Figure 4.6a). Each color represents one cell that is formed by the

apical point, nucleus and basal point. The basal points are displayed in a horizontal line

and the apical points at the top of the configuration. In the middle we see the nuclei

with the soft-core (in black) and the hard-core (in color). For each cell i, we randomly

generate the life time σi from the uniform distribution U([11, 14]) and the birth hour τi

from U([−σi, 0]). The rest length of the springs connecting the nucleus and the apical

and basal points for each cell i is initialized by ηaXi,0 = ηbXi,0 = 3.

In Figure 4.6b) we plot the configuration obtained after 2 hours for the parameters

taken within the ranges mentioned above. We observe that the nuclei are more spread

out and the tissue keeps a rectangular shape, despite not having lateral walls to hold the

peripheral cells.

4.5.2 Influence of magnitude of the forces

In this Section we explore different values associated to the magnitude of the align-

ment and elastic forces presented in the system. This is controlled by the parameters

αX , αaX , αbX αab and αa. Specifically, we study the effect of having αX , αaX , αbX of order

10 and αab, αa of order 1. The remaining parameters are chosen within the ranges pre-

sented in the previous Section (see Table 4.1). The experimental set up is the following.

We start by generating an initial condition as described in the previous Section 4.5.1. We

then let the system evolving for at least 2 hours and we plot the final configuration in

Figure 4.7. We do this for one value of each parameter referred in the previous paragraph.

We first plot in Figure 4.7b) the control tissue that was obtained using parameters

within the ranges presented in the previous Section. By comparing with the tissue ob-

tained in vivo presented in Figure 4.7a), we observe that the overall configuration seems

to coincide. In particular, the nuclei are displayed between the basal membrane and apical

network, the number of layers of nuclei is around 6 to 8 and the relative size of the nucleus

with respect to the size of the tissue seem pretty comparable. The apical membrane seems

very straight in the real tissue and less straight in the simulated one. This maybe due to

the fact that the apical network is a 2D network while in this model we represent it by

a 1D network, which is in some sense less robust to the forces exerted by the nuclei (see

Section 4.7.1 for improvements and extensions of the model). Moreover, the tiny green

lines in between nuclei in Figure 4.7a) indicate that the cells are approximately straight,

which is also observed in Figure 4.7b) by comparing the abscissa of basal point, nucleus

and apical point of each cell. A more quantitative comparison between in vivo and in

silico results is presented in Section 4.5.4.
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(a) Tissue obtained in vivo. (b) Control tissue
(αX , αaX , αbX = 1 and
αab, αa = 10).

(c) Large stiffness of soft nu-
cleus (αX = 10).

(d) Large stiffness of nucleus
springs (αaX = αbX = 10).

(e) Weak alignment force
(αab = 1).

(f) Small stiffness of apical
springs (αa = 1).

Figure 4.7: Final configurations obtained after 2 hours for different values of the parameters that control
the stiffness of springs and nucleus and the magnitude of the alignment force. We observe different effects
on the layering, packing, height of the tissue, straightness of each cell and of apical domain. The tissue
parameters are a0 = 1/6, b0 = 1/2, ρ = 1/2, d = 2.5, Pout = 0. In this simulation the rest length
of the springs is not evolving over time, kη = 0, and they have the value ηaX = ηbX = 3 during G1/S
and ηaX = 1, ηbX = 10 during G2/M. The cell cycle parameters are σ = 10, σG2 = 2 and σM = 1/2.
The remaining cell parameters during G1/S are RS = 1 and RH = 0.7. During G2/M we use αa = 100,
αab = 20 and during M RH = 0.9. The initial condition is described in Section 4.5.1.

In Figure 4.7c) we consider the case of a more rigid soft nucleus, by using αX = 10.

Comparing with the control tissue, we observe that the nuclei are more rigid and packed.

This brings extra difficulties to the movement of nuclei, especially before mitosis and by

looking at the video of the dynamics we see that many nuclei to not manage to reach the

apical side before dividing.

In Figure 4.7d) we consider the case where the springs connecting the nucleus with

the apical and basal points are stiffer by using αaX = αbX = 10. We observe less layers

(around 4) and a shorter tissue.

In Figure 4.7e) we consider a weaker alignment force by using αab = 1. We observe a

disorganization in the colors of the nuclei, indicating that the cells are not straight, in the

sense that the basal point, the nucleus and the apical point are not aligned. Interestingly,

if we look at the top left of the tissue we even see one nucleus above the apical domain,

which typically does not happen in a healthy tissue, but may happen in a defected one.

Finally, in Figure 4.7f) we consider a small stiffness of apical springs by using αa = 1.

We see that the apical domain is not straight and is quite rough. The tissue seems also
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slightly shorter.

4.5.3 Influence of noise

In this Section we study the influence of noise on the positions of the nuclei and apical

points during division along the apico-basal axis during a period of 4 hours. Specif-

ically, we consider the vertical distance between the nucleus and the basal point nor-

malized by the vertical distance between the apical point and the basal point, i.e.,

|Xi(2)− bi(2)|/|ai(2)− bi(2)|. If the nucleus is near the apical point, then this quan-

tity is close to 1. For each cell dividing within 4 hours, we plot this quantity for two time

points: when the cell starts to approach the apical domain (in blue) and when the cell is

dividing (in red). These points are connected to a straight line that indicates the global

vertical direction of the nucleus during this period. We expect that this line has a positive

slope and that the second dot lies at the top, near the apical domain. We obtain this plot

(a) d = 0. (b) d = 2.5.

Figure 4.8: Vertical position of the nucleus in the tissue normalized by the vertical distance between api-
cal and basal point over time for each cell that has divided within 4 hours and for two time-points corre-
sponding to the moment when the nucleus starts to go up (in blue) and when the cell divides (in red). We
observe that in the case with noise (b) the nuclei divide apically, while in the case without noise (a) they
don’t. The tissue parameters are a0 = 1/6, b0 = 1/2, ρ = 1/2, Pout = 0. In this simulation the rest length
of the springs is not evolving over time, kη = 0, and they have the value ηaX = ηbX = 3 during G1/S and
ηaX = 1, ηbX = 10 during G2/M. The cell cycle parameters are σ = 10, σG2 = 2 and σM = 1/2. The
cell parameters during G1/S are RS = 1, RH = 0.7, αaX = 1, αbX = 1, αa = 10, αab = 10, αX = 1.
During G2/M stage we use αa = 100, αab = 20 and during M stage we use RH = 0.9. The initial condition
is described in Section 4.5.1.

for two values of the diffusion coefficient, namely, d = 0, corresponding to the situation

without noise (see Figure 4.8a)) and d = 2.5, corresponding to the situation with noise

(see Figure 4.8b)). We observe that 4 divisions have occurred within 4 hours. In the case

without noise we observe that the nuclei approach the apical domain, however most of

them do not manage to arrive there. In contrast, in the situation with noise, the nuclei

approach the apical domain with a larger slope than in the previous case and most of
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them manage to arrive there. These results suggest that the noise in the nuclei and apical

points positions is fundamental to allow the nucleus migration to the apical side before

division.

4.5.4 Evolution over 36 hours and comparison with experi-

mental data

In this Section we consider the evolution of the tissue over 36 hours. We start by introduc-

ing quantifiers that provide information about the evolution of the shape and morphology

of the tissue. Then we run simulations for one parameter set and five initial conditions

and we plot the average and standard deviation for each quantifier over time. Some quan-

tifiers have also been estimated in the lab by Theveneau’s team using data from several

embryos and several sections of the neuroepithelium from each embryo. We do not present

all their results here, we simply consider the average value and we plot over the model

results. This allow us to have a preliminary quantitative comparison with experimental

data.

Let p be the number of initial conditions. The quantifiers used in this Section are

presented next:

• Number of layers, Nlayers. The number of layers is obtained by using a Voronoi

tessellation [43] as follows. The Voronoi tessellation divides the space in regions

containing exactly one nucleus each. We construct the tessellation in a way such

that the nuclei situated at the top layer of the tissue belong to a region with infinite

area, while the others don’t. We compute recursively each layer by identifying the

regions with infinite area and removing them from the tessellation.

• Length of the apical domain, nuclei configuration and basal domain (unit: R̄),

Lapical = aN(1)− a1(1),

Lnuclei = xright − xleft

and

Lbasal = bN(1)− b1(1),

where xleft = miniXi(1), xright = maxiXi(1).

• Average height of the tissue and average height of nuclei (unit: R̄),

Htissue =
1

#Smiddle

∑
i∈Smiddle

|ai(2)− bi(2)|
RS
i
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and

Hnuclei =
1

#Smiddle

∑
i∈Smiddle

|Xi(2)− bi(2)|
RS
i

,

where Smiddle = {i : xleft + Lnuclei/4 ≤ Xi(1) < xright − Lnuclei/4} and #Smiddle is the

number of elements in Smiddle.

• Packing fraction of the hard-core of nuclei in the upper and lower half of the tissue,

Φup =
2

Amiddle

∑
i∈Sup

π(RH
i )2

and

Φdown =
2

Amiddle

∑
i∈Sdown

π(RH
i )2,

with Sup = {i : (Xi(2)− bi(2))/RS
i > Htissue/2}, Sdown = Smiddle\Sup and Amiddle =

HtissueR̄(Lnuclei/2 + 2R̄), with R̄ =
∑

iR
S
i /N .

• Straightness of apical network,

Astraight =

(
1

|a1 − aN |
N−1∑
i=1

|ai − ai+1|
)−1

• Height of nucleus i during division,

Hdiv =
|Xn

i (2)− bni (2)|
|ani (2)− bni (2)| , with tn < τi + σi < tn+1.

We compute the value of each quantifier over time and for 5 different initial conditions.

We obtain the mean and standard deviation for each time tn and for each quantifier, except

Pdiv. Since there may be times without any division, we compute the mean and standard

deviation of Pdiv over a larger time-interval with size 5∆t, which in this case corresponds to

half an hour. In Figure 4.9 we plot the average and standard deviation for each quantifier

over time t ∈ [0, 36] for parameters taken within the ranges presented in Table 4.1.

We observe in Figure 4.9a) that the number of layers of nuclei grows approximately

linearly from around 8 to 13 layers, which is in agreement with experimental data.

Figure 4.9c) shows the packing fraction of the nuclei hard-core at the top and at the

bottom of the tissue. We observe that the packing fraction at the upper part remains

approximately constant, while at the lower part it decreases. If we compare this result

with the evolution of the height of nuclei presented in graph 4.9b) we conclude that the

nuclei are moving away from the basement membrane. In graph 4.9b) we also observe

that the height of the tissue is growing at a similar speed than the average height of nuclei.

This growth is slightly slower when compared to experimental data.
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Figure 4.9: Statistical quantifiers describing the morphology of the tissue over 36 hours. For each graph
we plot the mean and standard deviation over 5 initial conditions. When available we also plot the reference
values obtained from experimental data (dashed red line). In Figure (a) we plot the number of layers of
nuclei (blue), in Figure (b) the average height of nuclei (blue) and of the tissue (black), in Figure (c) the
packing fraction of nuclei at the upper (dark blue) and lower (light blue) half of the tissue, in Figure (d) the
length of the tissue using the basal points (pink), the nuclei (blue) and the apical points (black), in Figure
(e) the apical straightness and in Figure (f) the height of nuclei during cell division. The tissue parameters
are N = [30, 53], a0 = 1/6, b0 = 1/3, ρ = 1/2, d = 2.5, Pout = 0.8. The cell cycle parameters are
σ ∈ [11, 14], σG2 = 1/2 and σM = 1/2. The cell parameters during G1/S are RS = 1, RH = 0.5, αaX = 2,
αbX = 2, αa = 5, αab = 15, αX = 1. During G2/M we use αa = 10, αab = 15 and during M we use
RH = 0.8.

Figure 4.9d) shows the evolution of the length of the tissue at the bottom, in the

middle and at the top, by considering the length occupied by basal points, nuclei and

apical points, respectively. Since the three quantities grow at approximately the same

speed, we conclude that the shape of the tissue remains approximately rectangular, which

is what we observe in experimental data.

Figure 4.9e) shows that the apical network is not very straight and that its straightness

decreases over time. This result diverges from experimental results.

Figure 4.9f) shows the height of divisions occurring during every half an hour. We

observe that the divisions occur apically, which is in agreement with experimental data.

In Figure 4.10 we show two samples of the tissue obtained from a 2-days old (a) and a

3.5-days old (b) embryos. We observe an increase of around 5 layers of nuclei. The height
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Figure 4.10: Neuroepithelium obtained from a 2-days old (a) and 3.5-days old (b) embryo. We observe
that the older tissue is around 1.7 times taller and it has approximatelly more 5 layers of nuclei than the
younger tissue. Images obtained by Theveneau’s lab.

of the tissue is approximately 1.67 times higher in the older tissue compared with the

younger one. Looking at the top of the images, we see that the apical network is almost

completely straight in both cases.

4.6 Discussion

As we have seen in Section 4.5, the model has been able to reproduce many features of

the shape and dynamics of the neuroepithelium. This may indicate that we have been

able to identify the main mechanisms that underlie the dynamics of this system. We will

therefore keep working along the biological assumptions regarding the way cells behave

and interact with their neighbours and the basement membrane in order to obtain more

robust results about their validity and to further explore the relation between crowding,

INM, tissue shape and growth. At this point, the model has already suggested some new

hypothesis that we present next.

The parameter kη that controls the rest length of the springs connected to the nucleus

seems to be a key parameter in the dynamics. Indeed, kη seems to control directly both

the height of the tissue and the speed of the nuclei during the apical movement before

division. The speed should be slightly smaller than |ai−Xi|/kη and the height of the tissue

seems to grow with kη. The interesting aspect, is that for a certain value of this parameter,

we are able to get these two quantities close to what is observed in experimental data.

This suggests that in reality the speed of the movement of the nuclei is controlling the

height of the tissue.

This parameter kη seems to have also an indirect role on the number of layers. The

larger it is the larger the number of layers is. Note that a taller tissue does not necessarily

imply a tissue with more layers, as the nuclei density is decreasing near the basement

membrane over time. This might suggest that the lateral pressure between cells is not that

high and that the packing is not playing an important role in the lateral direction. This
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is supported also by the fact that in the model, despite of not having lateral compressive

forces, the shape of the tissue is kept approximately rectangular.

The packing may instead have an important role in the upper part of the tissue near

the apical membrane. Preliminary in silico experiments in the case of cells with a shorter

life time (see Section 4.7.3) indicate that the nuclei is not able to reach the apical domain

due to the too high packing fraction of nuclei near the domain. This is also observed in

vivo. It would therefore be worth exploring the role of packing along the apico-basal axis.

Finally, we point out that the mechanisms we consider in the model are not specific

to the neuroepithelium. Therefore our model could also be used to study other packed

tissues. In Section 4.7.3 we present a possible application to the study of cancer tissue.

4.7 Future work

4.7.1 Model improvement, quantitative validation and pa-

rameter space exploration

The model has been able to reproduce the general aspects of the tissue regarding shape,

morphology and the dynamics of cells before division. However there are a few aspects

that can still be improved in order to get a representation that is closer to the data. One

aspect where the model could be improved is on the straightness of the apical network.

One possible way to increase the straightness could be by decreasing the rest length of the

apical springs, 2R̄a0, over time. This is indeed what happens in the real tissue as reported

in [165]: as the tissue grows, the number of layers increases and the apical domain shrinks.

Other modelling aspects that could be improved are described in the next Section 4.7.2.

In the future, a more quantitative comparison of the model with experimental data

should be conducted. In particular, the comparison between the evolution of the packing

fraction and tissue length are still missing.

Moreover, one can try to explore other parameter regimes, such as a larger number

of cells N , a longer time period, different relations between the strength of the forces,

different values for the radius of the soft and hard nucleus, etc. In particular, as referred

in the discussion, the parameter kη that controls the speed of actualization of the rest

length of the springs should be further explored, as it may help to better understand the

relation between cell behaviour and tissue shape and size. Output parameters, such as the

packing density or the number of layers, could then be obtained for each value of input

parameter, in order to look for bifurcations in the system. These bifurcations would then

be searched in vivo. If they prove to exist, we would obtain a stronger validation of the

model and a deeper understanding of the mechanics underlying the cell tissue.
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4.7.2 Model extensions

The model could be extended to a 3D model with the shape approximated by a slice

of a cylinder, in which the nuclei would be represented by spheres, instead of circles,

the apical network would be represented by a 2D network of apical points connected by

springs and the basement membrane would be represented by a plan. This model would

allow to develop a more accurate study of the effect of nuclei packing. Since in 3D there is

naturally more free space than in 2D, the current model overestimates the role of packing

in the system. A 3D model would also allow to study the effect of a 2D apical network

which seems to have a crucial role in the structure and shape of the tissue. In contrast

to the model presented in this Chapter, a 2D apical network would be more robust to

perturbations caused by the movement of nuclei. We expect that the straightness of the

apical network would get closer to the one observed in the real tissue. One could therefore

explore the relation between cell behaviour and shape at a deeper level.

Another extension could be obtained by improving the representation of the nucleus

or basement membrane. The shape of the nucleus could be generalized to ellipsoids. In

the current model, the basement membrane is represented by a straight line, however, in

reality, the membrane consists of a sophisticated matrix constituted by fibers. A model

of fibers has been developed in [149] and could be adapted to this case. This modelling

extension would allow to study the effect of matrix degradation and cell escape from the

tissue, which is associated to cancer metastasis as explained in the next Section.

4.7.3 Studying cancer metastasis and the formation of rosettes

The mechanisms that lead to the first stage of metastasis are similar to the ones occurring

during the development of the neural tube in a chick embryo. Therefore the chick embryo

has been used as a biological model for studying cancer metastasis [172, 98]. During

normal cell division, a cell detaches from the basement membrane, shrinks and divides in

two, and then these two new cells elongate and attach again. However, if the cell is can-

cerous, it has defects, and the elongation and reattachment may not occur. Instead, the

cell may keep dividing abnormally and eventually the cancer cells are found attached to

each other, forming rosettes. Sometimes a rosette will somehow break through the mem-

brane and start invading the surrounding tissues. The model developed in this Chapter

could be used to explore the relation between defects in individual cells and the formation

of rosettes. Specifically, two defects that could be incorporated in the model are high

proliferation rate and polarity defect, i.e., apical and basal points are not necessarily at

opposite sides of the nucleus. The first defect can be included by decreasing the life time

of a cell. The second defect can be modelled by decreasing the strength of the alignment

force. The model could then be used to explore what could be the contribution of each

defect to the formation of rosettes. Preliminary results suggest that a decrease in the

life time of the cells prevents the nuclei from reaching the apical domain before division,
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(a) Lab experiment in which Ets1 oncogene
is overexpressed to promote tumor formation.
Among others, Ets1 leads to increased prolifera-
tion.

(b) In silico experiment in which cell life time
is 16h and 10h in the healthy and cancer tissue,
respectively.

Figure 4.11: Comparison of box plots for the height of divisions in the case of a normal tissue and a can-
cer tissue with a higher rate of proliferation obtained from lab (a) and in silico (b) experiments. In both
graphs, we observe that the divisions occur near the apical side in the case of the healthy tissue, while in the
case of the cancer tissue they occur at any position.

as shown in Figure 4.11b). The same phenomenon is observed in lab experiments, see

Figure 4.11a). Another preliminary result on polarity defects, suggests that this defect is

enough to generate rosette-type structures, as represented in Figure 4.12.

(a) Lab experiment. (b) In silico experiment.

Figure 4.12: Cluster of cells organized in rosettes obtained in vivo (left), by Theveneau’s lab, and in sil-
ico (right). In both images the apical and basal points are situated at the center of the configuration and
surround by nuclei.
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Part III

Continuum models for congested

systems
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5
A new continuum theory for

incompressible swelling materials

Swelling media (e.g. gels, tumors) are usually described by mechanical constitutive laws

(e.g. Hooke or Darcy laws). However, constitutive relations of real swelling media are not

well-known. Here, we take an opposite route and consider a simple packing heuristics, i.e.

the particles cannot overlap. This approach is based on the same heuristic rules used in

Part II in the context of particle based models. We deduce a formula for the equilibrium

density under a confining potential. We then consider its evolution when the average

particle volume and confining potential depend on time under two additional heuristics:

(i) any two particles cannot swap their position; (ii) motion should obey some energy

minimization principle. These heuristics determine the medium velocity consistently with

the continuity equation. In the direction normal to the potential level sets the velocity

is related with that of the level sets while in the parallel direction, it is determined by

a Laplace-Beltrami operator on these sets. This complex geometrical feature cannot be

recovered using a simple Darcy law.

This work is based on a submitted paper written in collaboration with Pierre Degond∗,

Sara Merino-Aceituno† and Mickaël Nahon‡. My own contributions include the resolution

of the minimization problem presented in Section 5.3, the formula for the speed of the

moving boundary in Section 5.4, which is crucial for the characterization of the normal

component of the velocity of the boundary, and participation in discussions regarding the

material presented in the remaining Sections. The determination of the tangential com-

ponent of the velocity in Section 5.5.3 has been contributed by the other authors and it

has been included in this thesis for completeness.

∗Department of Mathematics, Imperial College London, UK
†School of Mathematical and Physical Sciences, University of Sussex, UK
‡École Normale Supérieure de Lyon, France
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5.1 Introduction

Swelling or drying media are encountered in many contexts such as chemistry or material

science (swelling gels), biology (cancer tumors or growing tissues), geosciences (drying of

wetting soil), cooking (dough being cooked), etc. The modelling of swelling or drying

media from first principles is difficult due to the complex nature of the materials (cells,

mixtures, polymers, etc). Often, they have intermediate properties between solids and

liquids or can have genuinely new properties (biological tissues). Modelling of swelling

or drying material is very important in view of potential applications in health (tumour

growth or tissue development) and other sciences.

Mathematical models have been proposed in the context of tumor growth. Many of

these models use a fluid-dynamic approach, and specifically, Darcy’s law or some elabo-

ration of it [22, 31, 40, 87, 37]. Mathematically, Darcy’s law is expressed by v = −k∇p,
where v is the fluid velocity, p is the hydrostatic pressure, ∇ is the spatial gradient and k

is a constant named ’hydraulic conductivity’. Darcy’s law is derived from Navier-Stokes

equation for a fluid subjected to strong friction such as flowing inside a porous medium.

However, the use of Darcy’s law is not obvious. The article [12] is entirely devoted to

the problem of determining the velocity in the mass balance equations (referred to as the

“closure problem”) and to a phenomenological justification of the use of Darcy’s law in

tumour growth.

Due to its importance in the clinic, one of the major questions explored in tumor

growth modelling is the description of the tumor boundary and how it evolves in time. It

naturally leads to the study of free boundary problems [71]. Related to these, the analogy

between tumor growth and the free-boundary problem of solidification (the so-called Hele-

Shaw problem) has been developed in [88, 146, 145, 147]. In these last series of works,

the tumor consists on the region of space where cells have reached the packing density.

The tumor is therefore an incompressible medium separated from the outer medium by

a moving free boundary which can be calculated through the resolution of an elliptic

problem for the pressure in the moving domain of the tumor.

All the previous studies rely on a continuum description of the tumor. However, at

the microscopic level, a tumor is made of discrete entities, the cells and various types

of “individual-based” microscopic models of tumor growth, where cells are described as

discrete entities, have been developed: see in particular [54]. We refer to [158] for a review

of the various modelling approaches and to [30] for a comparison of their merits. The

connection of the microscopic approach to the macroscopic one through coarse-graining

is investigated in [130].

In the present work, we revisit the closure problem and investigate what motion results

from the combination of volume-exclusion (or non-overlapping) and growth. In relation to

this, we question the validity of Darcy’s law once more. Our approach, rather than relying

on constitutive relations like hyper-elasticity or Darcy’s law, hypothesizes simple heuristic
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rules, more likely to be obeyed in generic situations. Here, the main heuristic rule is that

particles cannot overlap. In other words, we directly place ourselves in a context akin to

the Hele-Shaw limit as developed in [146] and related works cited above. However, as we

will see, our conclusions will be different. We also point out that similar heuristic rules

have been applied to other domains, such as crowd modelling (see in particular [123]).

We consider a system made of finite-sized particles at equilibrium in a confining ex-

ternal potential constrained by the non-overlapping condition. We refer to [112] for a

discussion of the biological relevance of this description and to Chapter 4 for an example

of a discrete model developed within this particular setting. We then let the particle

volume and the confinement potential vary with time. The particles follow this evolution

adiabatically by remaining at any time at a mechanical equilibrium. The question we

want to address is what particle motion results from this situation.

Answering this question in full generality at the discrete level is probably out of reach.

So, we formulate a similar problem at the continuum level. We assume a continuum

density for a population of particles having finite average volume. The particles are

confined by an external potential and we assume the particles at mechanical equilibrium.

Our first result is to characterize the resulting equilibrium density. Like in the Hele-Shaw

type models referred above, the particles occupy a domain of finite extension in space,

limited by a level set of the potential. Inside this domain, the density is equal to the

maximal (packing) density allowed by their finite size. Outside this domain the density

is zero.

Then, we let the system evolve and we compute the continuum velocity. We first

determine the component of the velocity that is normal to the potential level sets by

using a non-swapping heuristics rule, i.e., particles cannot swap their positions, which is

a reasonable assumption in a packed system. To determine the component of the velocity

tangent to the potential level sets, we invoke a second heuristics, namely, the particles

movement is preferable continuous rather than with jumps which would generate large

velocities. In continuum language, this means that the velocity should obey an energy

minimization principle. We show that this principle determines the parallel velocity in a

unique way as the parallel gradient along the potential level sets of a velocity potential

(not to be confused with the confinement potential). This velocity potential is found by

inverting a Laplace-Beltrami operator on each of the level sets.

We will show that in general, it is not possible to neglect the tangential component of

the velocity. This means that the velocity at the boundary of the medium is not normal

to the boundary. By contrast, the Hele-Shaw limit of the tumor models of [146] leads

to a velocity at the boundary which is normal to that boundary. Our model provides

a different conclusion and consequently, brings new elements in the debate about the

validity of the Darcy law, at least in its simple form when the hydraulic conductivity is a

scalar.

The medium under consideration bears analogy with a granular material. There has

145



been considerable literature on granular media and we refer the reader to [15] for a review.

Continuum approaches for granular media are mostly based on thermodynamical consid-

erations (see e.g. the seminal work [74]). These approaches rely on the assumption that

the system is at equilibrium. However, in complex media such as gels or tumors, there are

momentum exchanges with the environment and energy exchanges through (bio)-chemical

processes. Since these are extremely difficult to model on a first physical principle basis,

we favor a heuristic approach based on the rules as described above.

The Chapter is structured as follows. In Section 5.2 we summarize the main results of

our work and provide a detailed discussion and directions for future work. The following

sections are devoted to the proofs. The case of the mechanical equilibrium is dealt with in

Section 5.3. Then, the time dependent problem is investigated with first the determination

of the normal velocity in Section 5.4 and then that of the tangential velocity in Section

5.5. A short conclusion is drawn in Section 5.6.

5.2 Framework, main results and discussion

5.2.1 Motivation: microscopic background

In this section, we motivate our approach by proposing a model of an incompressible

swelling medium at the particle level in the same spirit as the models described in Part I

and II. We consider a system consisting of N incompressible spherical particles of positions

xi ∈ Rd, d ≥ 1, and radii Ri > 0, for i = 1, . . . , N . The radii are known but the positions

are the solutions of a minimization problem. Specifically, we consider that each particle

is subject to a potential energy V (xi, Ri) for a given known energy function V (x,R). For

simplicity, we denote by X = (x1, . . . , xN) and R = (R1, . . . , RN). The total energy of

the system is the function

ER(X ) =
N∑
i=1

V (xi, Ri). (5.1)

The first problem we are interested in consists of minimizing the energy (5.1) over a

set of admissible configurations X corresponding to non-overlapping spheres. Specifically,

we define the admissible set by

AR =
{
X ∈ (Rd)N | |xi − xj| ≥ Ri +Rj, ∀i, j ∈ {1, . . . , N}, i 6= j

}
. (5.2)

The minimization problem consists of finding X ∈ (Rd)N which realizes

min
X∈AR

ER(X ). (5.3)

This pictures the equilibrium configuration of a granular medium made of frictionless

spheres in an external potential. Introducing friction or cohesion between the grains is
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discarded here and will be investigated in future works. Problem (5.3) has been consid-

ered numerically and analytically in Part I. This is a non-convex problem with multiple

solutions. We would like to characterize the properties of a generic solution and to this

end, we will consider a continuum version of it.

The second problem we consider is the introduction of time evolution dynamics in the

system following the same lines as the models developed in Part II. This dynamics is

generated by the changes over time of the particles radii Ri(t), which can increase (case

of a swelling material) or decrease (case of a drying material). We also allow the potential

energy V to depend on time. Here we will suppose that both evolutions are given. Since,

the vector of the particle radii R(t) changes over time, the admissible set AR(t) and the

potential V (x, t, R) depend on time. Consequently, solutions of (5.3) will also depend on

time. Indeed, we assume that the particles stay adiabatically at a minimum of the energy

(5.1) and that we can extract a smooth (at least differentiable) trajectory X (t) among

the possible solutions, at least for a small interval of time. The problem is then to find

the particle velocities vi(t) = dxi
dt

, or in other words, the vector

V(t) = (v1(t), . . . , vN(t)) =
dX
dt

(t). (5.4)

Again, we discard any friction or cohesion forces between the grains which could alter the

time dynamics.

A similar problem has been investigated numerically in [122]. In particular, one possible

algorithm is to introduce a time discretization tk = k∆t with a time step ∆t > 0 and

assume that X k is a solution of (5.3) associated to radiiRk = R(tk) and potential function

V k(x,R) = V (x, tk, R). Then, time is incremented by ∆t and a new minimization problem

is considered associated to radii Rk+1 and potential function V k+1. Obviously, X k is not

a solution of this new minimization problem. So, a new solution X k+1 is sought. To single

out a unique solution among the many possible solutions of the minimization problem,

we select the solution X k+1 which has the smallest distance to X k. In this way, a discrete

configuration X k+1 is found, from which a set of discrete velocities

Vk =
X k+1 −X k

∆t
, (5.5)

is found. The selection principle above leads to the velocity Vk of smallest possible norm

among the possible candidates. The question is whether we can find a simple expression

to determine Vk.
Finding a simple answer to this question seems unlikely in the discrete setting, but the

problem may be easier to study at the level of a coarse-grained continuum model. So,

the goal of this work is to propose such a continuum model and to show that indeed, it is

possible to determine these velocities in a unique way. We would like to stress here that it

is not our goal to justify the coarse-graining procedure. Rather, we are going to postulate
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the problem at the continuum level as an analogue of the problem at the discrete level.

The investigation of the passage from the discrete to the continuum problem will be the

subject of future work (see also [130] for the coarse-graining of a related model).

5.2.2 General assumptions

We assume a medium made of discrete entities each having finite volume and minimizing

a confinement energy subject to a non-overlapping (incompressibility) constraint such as

described in Section 5.2.1. Since we are aiming at a continuum description, we do not

describe each particle individually but consider their number density n(x, t) and their

average volume τ(x, t) > 0, where x ∈ Rd is the position in a d-dimensional space (in

practice d = 1, 2 or 3) and t ≥ 0 is the time. The non-overlapping constraint (which,

at the discrete level, was expressed by the fact that X must belong to the admissible set

AR) is now expressed by the fact that at any given point in space and time, the volume

fraction occupied by the particles n(x, t)τ(x, t) cannot exceed 1, i.e.

n(x, t) τ(x, t) ≤ 1. (5.6)

Thus, τ−1(x, t) is the maximal allowed (packing) density of the particles. We assume that

τ(x, t) is a given function of space and time (exactly like in the discrete setting R was

assumed to be a function of time) and that it is defined, positive and finite irrespective

of the presence of particles at (x, t). The precise value of τ(x, t) in practice depends on

the modelling context and will be made precise in future work. We also impose that the

particle density is nonnegative:

n(x, t) ≥ 0. (5.7)

Additionally, like in the discrete case, we assume that the total number of particles N

is fixed, given and is constant in time, i.e.∫
Rd

n(x, t) dx = N. (5.8)

Again, in future work, this assumption will be removed and replaced by a model for the

growth or shrinkage of the population.

5.2.3 Mechanical equilibrium

We are first interested by the mechanical equilibrium. Freezing the time variable t for the

moment, we assume that there exists a mechanical energy

Ft[n] =

∫
Rd

V (x, t, τ(x, t))n(x, t)dx, (5.9)
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associated with a given potential V (x, t, τ), which the particles try to minimize while

satisfying the non-overlapping constraint (5.6), the nonnegativity constraint (5.7) and the

total mass constraint (5.8). In other words, our goal is to solve the following minimization

problem at any given time t:

Find n(·, t) : x ∈ Rd 7→ n(x, t) ∈ R a solution of:

min
{
Ft[n(·, t)] | n(·, t) ≥ 0, n(·, t)τ ≤ 1 and

∫
Rd

n(x, t)dx = N
}
, (5.10)

for τ : (x, t) ∈ Rd × [0,∞) 7→ τ(x, t) ∈ R+ and N > 0 given. The potential V (x, t, τ)

is the continuum analog of the discrete potential V of Section 5.2.1 and Eq. (5.9) is

nothing but an approximation of Eq. (5.1) when N is large, assuming that the particle

positions xi are drawn randomly, independently and identically according to the proba-

bility N−1 n(x, t) dx. Obviously, whether this independence assumption holds needs to be

proved but we will leave justifications of this question to future work.

We assume that V ≥ 0. For the simplicity of notations, we define an “effective poten-

tial” W (x, t) by

W (x, t) = V (x, t, τ(x, t)). (5.11)

We assume that, for all t ≥ 0, we have

W (x, t)→ +∞ as |x| → +∞. (5.12)

In Section 5.3, we will show that, under appropriate conditions on the potential V

including (5.12), the solution nN(x, t) of the minimization problem (5.10) (indexed by the

number N of particles in the system) is given by

nN(x, t) =


1

τ(x, t)
, if x ∈ ΩN(t),

0, if x 6∈ ΩN(t),
(5.13)

where the domain ΩN(t) is given by

ΩN(t) = {x ∈ Rd | 0 ≤ W (x, t) ≤ UN(t)}, (5.14)

and UN(t) is the unique solution of the equation

P (UN(t), t) = N, (5.15)

with P : (u, t) ∈ [0,∞)2 7→ P (u, t) ∈ [0,∞) given by

P (u, t) =

∫
{x∈Rd, 0≤W (x,t)≤u}

τ−1(x, t) dx. (5.16)
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Figure 5.1: Schematics of the filling of the potential level sets. The level set UN (t) corresponds to the
filling of the potential level sets by the entire population of particles N .

Eq. (5.13) shows, that within its support, the density saturates the congestion con-

straint (5.6), i.e. the density is everywhere equal to the maximal allowed (packing) density

τ−1(x, t). Microscopically, the particles fill all the available space and it is not possible

for them to increase the density any further. This is the so-called “packing” or “incom-

pressible” state. To interpret the construction of ΩN(t) (formulas (5.14) to (5.16)), we

introduce the level sets of the effective potential W . For a given u ∈ [0,∞) and time

t ∈ [0,∞), the level set of W (·, t) corresponding to the value u is defined by:

Et(u) = {x ∈ Rd , W (x, t) = u}. (5.17)

Eq. (5.14) states that ΩN(t) is bounded by the level set Et(UN(t)). Formula (5.16) defines

P (u, t) as the number of particles in the volume limited by the level u. Eq. (5.15) simply

states that the level UN(t) which bounds the domain ΩN(t) encloses the total number of

particles N , see Fig. 5.1.

Let np(x, t) be the solution associated with a different total number of particles p ≥ 0

with associated support Ωp(t). Since P is stricly increasing with respect to u, we have

p < N ⇒ Up(t) < UN(t) and so, with (5.13):

p < N ⇒ Ωp(t) ( ΩN(t) and nN(·, t)|Ωp(t) = np(·, t). (5.18)

Additionally, We introduce the domain boundary Σp(t) of Ωp(t). With (5.14) and (5.17),

we have

Σp(t) = ∂Ωp(t) = {x ∈ Rd | W (x, t) = Up(t)} = Et(Up(t)). (5.19)
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This surface will play a crucial role in the definition of the dynamics below. Here, we just

remark that, as a consequence of (5.14),

ΩN(t) =
⋃
p↑N

Σp(t), (5.20)

see Fig. 5.1.

5.2.4 Motion under volume growth in non-swapping condi-

tion

Now, we turn our attention towards a dynamic situation where the average volume

occupied by the particles τ(x, t) at point (x, t) may vary in time due to either their

swelling or drying, described respectively by a time-increasing or decreasing average vol-

ume τ(x, t). We also allow for a possible time-dependence of the confinement potential

function V (x, t, τ). We assume that at any given time t, the medium is at mechanical

equilibrium as described in the previous section. So, the time variations of τ and V in-

duce an evolution of the density n and of the material interface ΩN(t) in an adiabatic way,

i.e. the system follows a trajectory which is a time-continuous sequence of mechanical

equilibria, see Fig. 5.2. We are interested by the motion of the material-vacuum interface

ΩN(t) but also, more importantly, by the motion of the medium itself. More precisely,

we would like to define a continuum velocity v(x, t), x ∈ ΩN(t) such that the continuity

equation

∂tn+∇ · (nv) = 0, (5.21)

is satisfied with the solution n = nN in the domain ΩN(t), where ∇ indicates the spatial

gradient. Since within ΩN(t), nN(x, t) = τ−1(x, t) by virtue of (5.13), Eq. (5.21) is an

equation for v(x, t), namely:

∇ · (τ−1(x, t) v(x, t)) = −∂tτ−1(x, t), x ∈ ΩN(t), t ≥ 0. (5.22)

However, it is a scalar equation for the vector quantity v(x, t) and only fully determines v

in dimension 1. This is exactly the statement of the “closure problem” discussed in [12].

Here our goal is to determine the velocity v(x, t) fully in any dimension, by following two

principles inspired by the microscopic picture, namely, (i) the non-swapping condition and

(ii) the principle of smallest displacements. Principle (i) will determine the component

of v normal to the family of surfaces (Σp(t))p∈(0,N ] while Principle (ii) will determine its

tangential component to these surfaces. We will investigate the consequences of Principle

(i) in the present section and defer the use of Principle (ii) to the next section.

The non-swapping principle (Principle (i)) postulates that the level sets of the potential

constrain the dynamics of the particles. More precisely, it postulates that two neighboring

particles that are on a same level set at one time will continue to be on the same level

151



Figure 5.2: Schematics of the motion of the medium between two instants t1, t2 where τ(·, τ2) > τ(·, τ1).

set at future times, while those on different level sets will continue to be on different level

sets. This non-swapping assumption is a logical consequence of the fact that particles are

at a packing state and cannot find enough free space to undertake a swapping maneuver

in the normal direction. In dimension d = 1, we show that this assumption is always

satisfied (given the assumptions made on the data) and consequently, the dynamics is

fully determined by the continuity equation. By contrast, in dimension d ≥ 2, this

assumption leads to a non-trivial condition that allows for the unique determination of

the component of v normal to the boundary Σp(t) of Ωp(t), for all p ≤ N . To do so, we

introduce

π(x, t) = P (W (x, t) , t), (5.23)

where W and P are given in (5.11) and in (5.16), respectively. This function gives the

number of particles in the volume enclosed by the level set of the effective potential

associated with its value at point (x, t), i.e., u = W (x, t) in the definition of P (5.16). By

(5.19), we have

Σp(t) = {x ∈ Rd | π(x, t) = p} = π(·, t)−1({p}), (5.24)

so that the family (Σp(t))0≤p≤N is nothing but the family of level sets of the function

π(·, t). We assume a non-degeneracy condition: ∇π(x, t) 6= 0, for all (x, t) ∈ Rd × [0,∞).

In geometrical language, π(·, t) endows ΩN(t) with a fiber bundle structure with base

space (0, N ]. The vector

ν(x, t) =
∇π(x, t)

|∇π(x, t)| , (5.25)

defines the outward unit normal to Σp(t) at x with p = π(x, t). We can decompose the

velocity vector v as follows:

v(x, t) = v⊥(x, t) + v‖(x, t), v⊥(x, t) =
(
(v · ν) ν

)
(x, t), v‖(x, t) · ν(x, t) = 0, (5.26)

for all x ∈ ΩN(t), t ∈ [0,∞). In the sequel, v⊥ = |v⊥|ν will be referred to as the normal

velocity (with respect to the surface Σp with p = π(x, t)) and v‖ as the tangential velocity.

The main consequence of the non-swapping assumption is that in dimension d ≥ 2, it
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Figure 5.3: Medium velocity in the normal direction is the velocity of Σp, i.e. w⊥ =
1
dt (X(t+ dt)−X(t)) ·ν(t) (see Definition 39).

leads to the full determination of the modulus of the normal velocity |v⊥| = w⊥ as follows:

w⊥(x, t) = − ∂tπ(x, t)

|∇π(x, t)| , x ∈ ΩN(t), t ≥ 0. (5.27)

This is nothing but the velocity of Σp(t) in the normal direction. The interpretation is

that, due to the non-swapping assumption, any particle located in the infinitesimal layer

between Σp(t) and Σp+δp(t) with δp � 1 must remain in this layer and therefore, has to

move with the velocity of Σp(t), see Fig. 5.3.

In Section 5.4, we prove that, for any velocity field satisfying (5.27), the left-hand side

of the continuity equation (5.21) averaged on Σp(t) is identically zero for any p ≤ N and

any t ≥ 0, namely 〈
δ ◦
(
π(·, t)− p

)
,
(
∂tn+∇ · (nv)

)
(·, t)

〉
= 0, (5.28)

where 〈·, ·〉 is the duality bracket between a distribution and a smooth function. To inter-

pret the Dirac delta in the expression above, we recall the following formula, a consequence

of the so-called coarea formula:〈
δ ◦ ψ , f

〉
=

∫
{ψ(x)=0}

f(x)
dS(x)

|∇ψ(x)| , (5.29)

for any smooth functions x ∈ Rd 7→ f(x), ψ(x) ∈ R, where dS(x) is the Euclidean surface

element on the level set {x ∈ Rd, ψ(x) = 0}. The notation (·, t) is there to remind that

the time variable t is fixed when evaluating the duality bracket in (5.28). Eq. (5.28) will

be an important condition for determining the tangential velocity v‖ in the next section.
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Figure 5.4: Illustration of a need for a non-zero tangential velocity v‖.

5.2.5 Tangential velocity

To determine the tangential velocity v‖, we apply the principle of smallest displacements

(Principle (ii), see previous section). This principle suggests to determine the velocity

v‖ as the solution of a convenient energy minimization principle. It is the continuum

counterpart of the principle set at the microscopic level in Section 5.2.1, which suggested

to look for the smallest velocity Vk among the possible ones. In the present section, we

summarize the conclusions of this approach ; details and proofs can be found in Section 5.5.

First, let us make a special mention of dimension 1, as in this case, there is no tangential

velocity. So, a natural question is whether Eq. (5.27) is compatible with the continuity

equation (5.21). In Section 5.5.1, we will show that this is indeed the case. This will be

a consequence of (5.28).

Second, we point out that in dimension d ≥ 2, we do need a non-zero tangential velocity

v‖ in general. Indeed, even if the choice v = v⊥ ν with v⊥ as in (5.27) satisfies (5.28), it

does not necessarily satisfy the continuity equation (5.21). In Section 5.5.2, we will give

a two-dimensional counter-example where this is indeed not true, see Fig. 5.4.

So, if d ≥ 2, in order to satisfy the continuity equation, the velocity has to incorporate

a non-trivial parallel component v‖. Using (5.26), the continuity equation (5.22) can be

written

∇ · (τ−1 v‖) = f, f := −∂tτ−1 −∇ · (τ−1w⊥ ν), x ∈ ΩN(t), t ≥ 0, (5.30)

and appears as a constraint on v‖. Eq. (5.28) tells us that, for each p ≤ N and t ≥ 0, the

average of f on the level set Σp(t) (defined in (5.24)) is zero, namely,〈
δ ◦
(
π(·, t)− p

)
, f(·, t)

〉
= 0, ∀(p, t) ∈ (0, N ]× [0,∞). (5.31)
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In section 5.5.3, we show that (5.31) is a necessary condition for the existence of a solution

to (5.30). It is also a sufficient condition. However, in order to guarantee the uniqueness

of the solution, we need to impose an additional constraint.

Here, we add the condition that v‖ corresponds to the minimal displacement on each

of the level sets Σp(t). In other words, we search for the vector fields v‖ that minimize

the parallel kinetic energy

Kp,t[v‖] =
〈
δ ◦
(
π(·, t)− p

)
, |v‖(·, t)|2

〉
, ∀(p, t) ∈ (0, N ]× [0,∞), (5.32)

on all surfaces Σp(t), i.e.

v‖ ∈ arg min{Kp,t[w‖], w‖ s.t. ∇ · (τ−1 v‖) = f }, ∀(p, t) ∈ (0, N ]× [0,∞), (5.33)

where we denote by arg min the set of minimizers of the expression inside the curly

brackets. The expression (5.32) is nothing but the integral of the parallel kinetic energy

density on the surface Σp(t). Indeed, the parallel kinetic energy of a particle of volume

τ is proportional to τ |v‖|2 but the density of such particles is proportional to τ−1. The

contributions of the particle volume τ cancel, which leads to the expression (5.32).

In section 5.5.3, we show that such vector fields are necessarily surface gradients on

the level set Σp(t) of scalar functions. Specifically, we will show that (5.33) implies that

there exists a scalar function θ(x, t), such that:

v‖(x, t) = −∇‖θ(x, t), ∇‖θ(x, t) := ∇θ(x, t)−
(
∇θ(x, t) · ν(x, t)

)
ν(x, t), (5.34)

where ∇‖ is the tangential gradient parallel to the level sets Σp(t). With this condition,

(5.30) becomes an elliptic equation for θ on each level set surface Σp(t), written as

−∇‖ · (τ−1∇‖θ) = f, x ∈ ΩN(t), t ≥ 0, (5.35)

In section 5.5.3, this equation will be shown to have a unique solution in an appropriate

function space, provided that (5.31) holds and that θ is sought with average zero on each

level surface, namely〈
δ ◦
(
π(·, t)− p

)
, θ(·, t)

〉
= 0, ∀(p, t) ∈ (0, N ]× [0,∞). (5.36)

Indeed, (5.35) can be reformulated as the inversion of a Laplace-Beltrami operator on each

of the level surfaces Σp(t). Standard differential geometry (see [72], Section 4.D.2) asserts

that if the solution is sought in the subspace H1
0 (Σp(t)) of the Sobolev space H1(Σp(t))

consisting of functions satisfying the additional constraint (5.36), this inversion has a

unique solution.

If the problem has spherical symmetry, i.e. if there exists V : (r, t, τ) ∈ [0,∞)3 7→
V(r, t, τ) ∈ [0,∞) and T : (r, t) ∈ [0,∞)2 7→ T (r, t) ∈ [0,∞) such that V (x, t, τ) =
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V(|x|, t, τ), τ(x, t) = T (|x|, t), then the unique solution of (5.35), (5.36) is θ = 0, which

shows that in this case v‖ = 0 and v = v⊥ν.

5.2.6 Discussion

First, we discuss the stationary equilibrium exposed at Section 5.2.3. The result given

in (5.13), (5.14) proves that the solution of the minimization problem is unique, contrary

to the discrete case exposed in Section 5.2.1. These formulas show that the particles

gradually fill the energy level sets of the effective potential W by increasing values while

keeping the non-overlapping condition saturated (i.e. the density being equal to the

packing density). Indeed, the effective potential W tends to bring all particles towards its

points of global minimum. However, the non-overlapping constraint prevents the particles

to pile up at these points and forces them to occupy increasingly higher potential values.

They do so until the total number of particles has been exhausted. When this happens,

the medium has reached its outer boundary and is therefore limited by the level set that

encloses a number of particles exactly equal to the total number N of available particles

in the system (see Eq. (5.15)).

This can be compared to the process by which electrons fill energy levels in a perfect

crystal at zero temperature. Electrons fill the crystal energy levels by increasing energy

due to Pauli’s exclusion principle which prevents a given energy level to be occupied twice.

The energy corresponding to the last occupied energy level is called the Fermi energy. The

present picture is similar and UN(t) (Eq. (5.15)) could be viewed as the Fermi energy of

our medium. The measure dP
du

(u, t) du (see Eq. (5.16)) which can be interpreted as the

infinitesimal number of particles in a small energy interval du around energy u is similar

to what solid-state physicists call the density-of-states, see Fig. 5.1.

We now comment on the time-dependent case and the determination of the velocity

in Sections 5.2.4 and 5.2.5. In these two sections, we provide an answer to the “closure

problem” [12], i.e. the problem of determining the velocity field consistent with the con-

tinuity equation (5.21). This answer is different from the classical one relying on Darcy’s

law. Consequences of the use of Darcy’s law for incompressible swelling materials can

be found e.g. in [146]. One of these is that, at the medium boundary, the continuum

velocity is normal to the boundary. In the framework presented here, the velocity at the

medium boundary does not have to be (and is not in general) normal to the boundary,

due to the presence of a non-trivial tangential velocity component. The presence of this

tangential component allows the material to move along regions of constant energy. Since

the dynamics is smooth, this situation may allow a faster, and perhaps a more radi-

ally asymmetric evolution of the boundary of the material when compared with classical

models. This discrepancy with Darcy’s law may result from confinement by the external

potential V acting independently from the growth source modelled by dτ/dt, see Fig. 5.4.

In [146], the confinement pressure is directly computed from the growth source term with-
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out any external potential V . Situations where confinement arises from external factors

may be of importance for instance in tumor modelling when the tumor is confined by the

surrounding tissue.

The model presented here is a building block towards a more realistic description

of swelling materials such as swelling gels or tumours. This new modelling approach

opens many exciting new research directions, from theory to numerics and modelling

to applications. A (non-exhaustive) list of future directions which will be investigated

in forthcoming works include the following: adding cell division; consider a potential V

that involves a contribution from particle interaction such as attachment between nearby

cells; coupling with chemical fields; introduction of boundary fuzziness; introduction of a

statistical description of particle volume sizes leading to a kinetic equation; taking into

account multiple particle species; derivation from a microscopic model by coarse-graining;

numerical approximation and applications to practical systems.

The following three sections provide the mathematical foundations of the results ex-

posed so far.

5.3 Equilibrium through confinement subject to

volume exclusion constraint

In the present section, we provide the mathematical background to the conclusions ex-

posed in Section 5.2.3, i.e. we determine the equilibrium configuration of the particles

at a given time t. Throughout this section, t is only a parameter, and so we will omit

it in the expression of all the variables. The equilibrium configuration corresponds to

minimizing the confinement energy F [n] given by (5.9) subject to the volume exclusion

constraint (5.6), the nonnegativity constraint (5.7) and the total number of particles con-

straint (5.8). Therefore, we are led to solving the minimization problem (5.10) which we

rewrite as follows since we omit the time-dependence:

Find n : x ∈ Rd 7→ n(x) ∈ R a solution of:

min
{
F [n] | n ≥ 0, nτ ≤ 1 and

∫
Rd

n(x)dx = N
}
, (5.37)

for τ : x ∈ Rd 7→ τ(x) ∈ R+ and N > 0 given. We recall the expressions (5.11) of the

effective potential W and write W = W (x) as we ignore the dependence with respect to

t. We also recall the definition (5.17) of the level set of W associated to the level value u

and we denote this level set by E(u), again ignoring the time-dependence. In this section

we prove the following:

Theorem 37. Assume the following:

(i) the functions x ∈ Rd 7→ W (x) ∈ R and x ∈ Rd 7→ τ−1(x) ∈ R are smooth ;

157



(ii) W (x) ≥ 0, ∀x ∈ Rd ;

(iii) 0 < τ(x) <∞ for all x ∈ Rd ;

(iv) |∇W (x)| <∞, for all x ∈ Rd ;

(v) for all u > 0, the level sets E(u) are compact and have strictly positive d− 1 Lebesgue

surface measure;

(vi) x = 0 is the only critical point of W and W (0) = 0;

(vii) W (x)→ +∞ as |x| → +∞ ;

(viii)
∫
Rd τ

−1(x) dx > N ;

then, the solution of the minimization problem (5.37) is unique and given by (5.13) with

the set Ω given by (5.14)-(5.16).

Remark 5.3.1. (i) That E(u) is compact for all u > 0 (see Assumption (v)) follows

from Assumption (vii). However, that they have strictly positive d− 1 dimensional

measure does not follow from Assumption (vii). Conversely, Assumption (vii) does

not follow from the compactness of E(u).

(ii) Differentiating expression (5.23) with respect to x, we obtain:

∇π(x, t) =
dP

du
(W (x, t), t)∇W (x, t). (5.38)

By assumption (vi), ∇W (x, t) 6= 0 for x 6= 0 and, as we will see in the proof of

Th. 37, Eq. (5.48), it holds that

dP

du
(u) > 0, ∀u > 0.

Therefore, from (5.38) we conclude that

∇π(x, t) 6= 0, for x 6= 0, (5.39)

which is a non-degeneracy condition that we will use in the sequel. Moreover, by

Assumption (i), using Eq. (5.23), we have that π is also smooth.

(iii) A more general form of the coarea formula (5.41) (see Ref. [62]) would allow us to

extend the results with weaker assumptions than (vi) or without having to assume

that ∇π 6= 0. However, to keep the presentation simple, we do not follow this path

here. Indeed, with assumption (vi) we ensure that Ω stays connected. If we had,

say, two connected components, the global minimisation problem (5.37) would fix

the number of particles in each of the connected components, which is unrealistic,

as we may expect that these two numbers could a priori be chosen independently.

Before proving Theorem 37 we first prove the following:

Lemma 38. Suppose the assumptions of Theorem 37 hold. Then, a solution n of the
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minimization problem (5.37) is such that, for all x ∈ Rd,

either n(x) τ(x) = 1 or n(x) = 0. (5.40)

Proof: We start by recalling the theory for convex optimization exposed in Section

0.3.3.1 in order to prove the existence of Lagrange multipliers associated to a solution of

the minimization problem (5.37). First note that F and the functions associated to the

constraints are continuous and Gateaux differentiable (see [174] for a proof of differen-

tiability). Moreover, all these functions are linear and, therefore, the problem (5.37) is

convex (see Section 0.3.1.2, definition 1). Second, under hypothesis (viii) of theorem 37,

we have that N < M , with M =
∫
Rd τ

−1dx. Consequently, the point

n1 =
N

M
τ−1,

is a strictly admissible point of (5.37), so the Slater condition holds true.

Let n be a solution to the minimization problem (5.37). Then, recalling theorem

5 from Section 0.3.3.1, there exist three Lagrange-Kuhn-Tucker multipliers λ, µ and ν,

where µ ∈ R and λ = λ(x) ≥ 0 and ν = ν(x) ≥ 0 are functions satisfying: (i) λ(x) = 0

for all x such that n(x) τ(x) < 1 ; and (ii) ν(x) = 0 for all x such that n(x) > 0 ; such

that the Euler-Lagrange equations hold:∫
W (x) δn(x) dx = −

∫
λ(x) τ(x) δn(x) dx+

∫
ν(x) δn(x) dx+ µ

∫
δn(x) dx,

for all small variations δn(x) of n(x). The last term corresponds to the constraint on the

total mass being equal to N . It follows that

W (x) = −λ(x) τ(x) + ν(x) + µ.

Now, suppose that n(x′) τ(x′) < 1 and n(x′) > 0 for x′ in a neighbourhood U of a point x.

Then, λ = 0 and ν = 0 in U and

W (x) = µ = Constant, ∀x ∈ U .

This occurrence is ruled out by Assumption (vi) of Theorem 37. Therefore, Eq. (5.40)

must be verified. Now, thanks to condition (viii) in Th. 37 this is an admissible solution,

which ends the proof of the Lemma.

Before turning to the proof of Theorem 37, we recall the coarea formula in its general
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form (formula (5.29) is a particular case involving the Dirac delta):∫
Rd

f(x) dx =

∫
ψ(Rd)

(∫
{ψ(x)=u}

f(x)
dSu(x)

|∇ψ(x)|
)
du, (5.41)

where x ∈ Rd 7→ ψ(x), f(x) ∈ R are smooth functions and dSu(x) is the Euclidean

surface element on the codimension-1 manifold {ψ(x) = u} and ∇ψ is nowhere zero

(these assumptions can be relaxed, see [62]). With (5.29), we can also write (5.41) as∫
Rd

f(x) dx =

∫
ψ(Rd)

〈
δ ◦ (ψ − u) , f

〉
du. (5.42)

In particular, we have∫
Rd

f(x) (g ◦ ψ)(x) dx =

∫
ψ(Rd)

〈
δ ◦ (ψ − u) , f

〉
g(u) du, (5.43)

where g : ψ(Rd) 7→ R is a smooth function.

Proof of Proposition 37. Thanks to Lemma 38, any solution of (5.37) is of the form

(5.13) where the only unknown is the set Ω. We denote by χΩ the indicator function of

the set Ω (we recall that the indicator function of a set A is the function that takes the

value 1 on A and the value 0 on its complement set). Then, by the coarea formula (5.43)

applied with f = τ−1χΩ, g(u) = u and ψ = W , we get, since n(x) = τ−1(x) on Ω:

F [n] =

∫
Ω

W (x) τ−1(x) dx

=

∫
Rd

W (x) τ−1(x)χΩ(x) dx

=

∫ +∞

0

〈
δ ◦ (W − u) , τ−1 χΩ

〉
u du. (5.44)

Here the integration with respect to u can be taken over [0,∞) thanks to Assumption (ii)

of Theorem 37. We recall that, following (5.29)

〈
δ ◦ (W − u) , τ−1 χΩ

〉
=

∫
E(u)

τ−1(x)χΩ(x) dSu(x)

|∇W (x)| ,

where dSu(x) is the Euclidean surface element on E(u) and E(u) is defined at (5.17).

Consequently, the only values of χΩ(x) that enter the integral (5.44) for a fixed value of

u are those taken on E(u). We claim that the minimum of F [n] is reached if and only

if the following is satisfied: (i) χΩ(x) (which is equal to 0 or 1) is constant (i.e. either

constantly 0 or constantly 1) on any level set E(u) for all u ≥ 0; (ii) there exists U > 0

such that χΩ(x) = 1 on E(u) for all u such that 0 ≤ u ≤ U and χΩ(x) = 0 for u ≥ U .
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Equivalently, these two conditions put together mean that χΩ(x) can be written:

χΩ(x) = χ[0,U ](W (x)), i.e. χΩ = χ[0,U ] ◦W. (5.45)

It follows that (thanks to (5.43)〈
δ ◦ (W − u) , τ−1 χΩ

〉
= χ[0,U ](u)

〈
δ ◦ (W − u) , τ−1

〉
, (5.46)

and

F [n] =

∫ U

0

〈
δ ◦ (W − u) , τ−1

〉
u du. (5.47)

Assuming this result for a while, i.e., that U satisfying (5.45) exists, we show that U is

uniquely determined by the total number of particles constraint (5.8). Using (5.45) and

the fact that on Ω, n(x) = τ−1(x), we can compute the total mass as follows:

N =

∫
Ω

τ−1(x) dx

=

∫
Rd

τ−1(x)χΩ(x) dx

=

∫
Rd

τ−1(x) χ[0,U ](W (x)) dx

=

∫
{x∈Rd , 0≤W (x)≤U}

τ−1(x) dx

= P (U),

where the function P (for fixed time t) is defined by (5.16). This leads to Eq. (5.15) for

the determination of U . Note that P (U) <∞ for any U ≥ 0 by Assumption (vii).

Now, Eq. (5.15) has a unique solution. Indeed, using the coarea formula again, we

have

P (u) =

∫ u

0

〈
δ ◦ (W − u′) , τ−1

〉
du′.

Therefore, using (5.29) and recalling the definition (5.17) of E(u), we have

dP

du
(u) =

〈
δ ◦ (W − u) , τ−1

〉
=

∫
E(u)

τ−1(x)
dSu(x)

|∇W (x)| .

From Assumptions (i) and (iii) to (iv) and (vi) of Theorem (37), there exists Cu > 0 such

that τ−1(x) |∇W (x)|−1 ≥ Cu > 0 on E(u). Thus, by Assumption (v) of Theorem (37),

dP

du
(u) ≥ Cu

∫
E(u)

dSu(x) > 0. (5.48)
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Consequently, P is a strictly increasing function and there exists a unique u = U such

that (5.15) holds.

We now show (5.14). Denote by Ω0 the set defined by (5.14) and by n0 the corre-

sponding density given by (5.13). Taking χΩ not of the form (5.14), we show that the

corresponding density n has energy strictly larger than that of n0, i.e. F [n] > F [n0]. This

incidentally shows the uniqueness of the solution of the minimization problem as from

Lemma 38, it must be of the form (5.13) for some set Ω and if Ω 6= Ω0, then, its energy

is strictly larger than that obtained with Ω0.

Taking Ω 6= Ω0 means that at least one of the subsets

ω1 = {x ∈ Rd, such that W (x) ≤ U and χΩ = 0},

or

ω2 = {x ∈ Rd, such that W (x) > U and χΩ = 1},

contains a non-zero number of particles (i.e. has non-zero measure for the measure

τ−1(x) dx). We now show that they both contain a non-zero number of particles and

that these numbers are the same by the total number of particles constraint (5.8). In-

deed, we note that

Ω0 \ ω1 = Ω \ ω2 = {x ∈ Rd, such that W (x) ≤ U and χΩ = 1}. (5.49)

Denote this set by ω̃. Then, by the constraint (5.8), we can write:

N =

∫
Ω0

τ−1(x) dx =

∫
Ω

τ−1(x) dx.

Decomposing the first integral on ω1 and ω̃ (which form a partition of Ω0 by (5.49)) and

the second one on ω2 and ω̃ (which similarly form a partition of Ω), we get:∫
ω1

τ−1(x) dx+

∫
ω̃

τ−1(x) dx =

∫
ω2

τ−1(x) dx+

∫
ω̃

τ−1(x) dx,

and consequently ∫
ω1

τ−1(x) dx =

∫
ω2

τ−1(x) dx, (5.50)

showing that the number of particles contained in ω1 and ω2 are the same. Note that, by

the coarea formula (5.42), we can re-write (5.50) according to:∫ +∞

0

〈
δ ◦ (W − u) , (χω2 − χω1) τ

−1
〉
du = 0. (5.51)
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Now, we have, thanks to (5.44)

F [n]− F [n0] =

∫ +∞

0

〈
δ ◦ (W − u) , (χΩ − χΩ0) τ

−1
〉
u du. (5.52)

We note that

χΩ0 = χω1 + χω̃, χΩ = χω2 + χω̃.

So, (5.52) is written

F [n]− F [n0] =

∫ +∞

0

〈
δ ◦ (W − u) , (χω2 − χω1) τ

−1
〉
u du. (5.53)

But we have

ω2 ⊂ {x ∈ Rd , W (x) > U}, ω1 ⊂ {x ∈ Rd , W (x) ≤ U}.

So, we can write∫ +∞

0

〈
δ ◦ (W − u) , χω2 τ

−1
〉
u du =

∫ +∞

U

〈
δ ◦ (W − u) , χω2 τ

−1
〉
u du

> U

∫ +∞

U

〈
δ ◦ (W − u) , χω2 τ

−1
〉
du

= U

∫ +∞

0

〈
δ ◦ (W − u) , χω2 τ

−1
〉
du, (5.54)

and similarly

∫ +∞

0

〈
δ ◦ (W − u) , χω1 τ

−1
〉
u du =

∫ U

0

〈
δ ◦ (W − u) , χω1 τ

−1
〉
u du

≤ U

∫ U

0

〈
δ ◦ (W − u) , χω1 τ

−1
〉
du

= U

∫ +∞

0

〈
δ ◦ (W − u) , χω1 τ

−1
〉
du, (5.55)

Therefore,

F [n]− F [n0] > U

∫ +∞

0

〈
δ ◦ (W − u) , (χω2 − χω1) τ

−1
〉
du. (5.56)

But the integral at the right-hand side of (5.56) is equal to zero by (5.51). Consequently,

we get

F [n] > F [n0],

which is the result to be proved. Note that the proof relies on the fact that the inequality
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in (5.54) is strict. This is only true if the support of the function

u 7→
〈
δ ◦ (W − u) , χω2τ

−1
〉
,

is not reduced to {U}. But if this is the case, since the involved function is smooth, this

means that it is identically equal to zero. This implies that∫ ∞
0

〈
δ ◦ (W − u) , χω2 τ

−1
〉
du = 0,

and this is the total number of particles in ω2. But if there are no particles contained in

ω2, that means that all particles are contained in Ω0 and therefore Ω = Ω0. So, as soon

as Ω 6= Ω0, we have a strict inequality in (5.54). This ends the proof of Prop. 37.

Remark 5.3.2. The interpretation of (5.47) is as follows. The measure

dN(u) :=
dP

du
(u) du =

〈
δ ◦ (W − u) , τ−1

〉
du,

is the number of particles comprised between the level sets E(u) and E(u + du) (similar

to the density-of-states in solid-state physics, see Section 5.2. In this layer, the effective

potential has value u. So, (5.47) expresses that we get the total energy by summing the

values of the effective potential u associated to the level set E(u) between 0 and U , weighted

by the number density of particles in this level set.

5.4 Continuum velocity under non-swapping con-

straint

In this section, we turn our attention to a time-dynamic situation, and provide the mathe-

matical framework to the results described in Section 5.2.4. We consider that the average

volume τ of the underlying particles in the continuum medium as well as the potential

function V may evolve in time. However, we assume that, during this evolution, the

medium stays at mechanical equilibrium under the antagonistic influences of congestion

and the volume exclusion constraint at any time. Due to the time-variation of τ and

V the particle density n(x, t) will change and we are interested in finding the velocity

field v(x, t) of this continuum medium. Such velocity must satisfy the continuity equation

(5.21). However, this equation is a scalar equation and can only determine the vector

quantity v in dimension one. In dimension more than 2, we need additional physical

assumptions to determine v. Here, we examine what additional information on v we can

get from assuming that the underlying particles cannot swap their positions. We refer to

Section 5.2.4 for a justification of the non-swapping assumption.

In this section, by contrast to the previous one, we restore the time-dependence of all
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the quantities involved in the minimization of the mechanical energy (5.9) subject to the

constraints (5.6), (5.7), (5.8). We recall that under the assumptions of Theorem 37, the

particle density nN(x, t), the unique solution of this constrained minimization problem,

is given by (5.13), where the domain ΩN(t) is given by (5.14)-(5.16). We also recall that

in dimension d ≥ 2, the constraint that the particles cannot swap their positions implies

that those contained in the layer between two neighbouring level sets Σp(t) and Σp+δp(t)

with δp � 1 at time t will remain in this layer at all times. Such particles must move

with the layer, i.e. their normal velocity to the layer must be that of the layer or, in other

words, that of the boundary Σp(t).

To express this velocity, we recall the expression (5.23) of the function π(x, t) such

that x ∈ Σπ(x,t)(t). The function π(x, t) is the number of particles in the volume enclosed

by the level set of the effective potential W associated with the level value W (x, t). By

Eq. (5.24) we also have that Σp(t) is the level set of the function π(·, t). We assume the

non-degeneracy condition:

∇π(x, t) 6= 0, ∀(x, t) ∈ Rd\{0} × [0,∞), (5.57)

which is implied by the assumptions of Th. 37, see Rem. 5.3.1 point (ii). The outward

unit normal to Ωp(t) at x with p = π(x, t) is the vector ν(x, t) defined by (5.25) and we

decompose the velocity vector v according to its normal and tangential components to

Ωp(t) as defined by (5.26).

We now recall the definition of the speed of a surface (or more generally of a co-

dimension 1 manifold).

Definition 39. Consider a time-dependent smooth regular domain Ω(t) and a point x ∈
∂Ω(t). Then, the speed w⊥(x, t) of the surface ∂Ω(t) at x is defined as follows: define

ν(x, t) the outward unit normal to ∂Ω(t) at x. Then, for t′ close to t, the line drawn from

x in the direction of ν(x, t) intersects ∂Ω(t′) at a unique point X(t′). Then

w⊥(x, t) =
( d
dt′
X(t′)

)
|t′=t · ν(x, t). (5.58)

In the case of Ωp(t), the speed of the surface is given in the following Lemma:

Lemma 40. Let Ω(t) = Ωp(t). Then the speed of the surface Σp(t) as defined in Definition

39 is given by

w⊥(x, t) = − ∂tπ

|∇π| . (5.59)

Proof. We can write π(X(t′), t′) = p, for all t′ in a small neighbourhood of t, with
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X(t) = x. Therefore, using (5.25) and (5.58), and since p is independent on time, we get:

0 =
( d
dt′

(π(X(t′), t′))
)∣∣∣∣
t′=t

= ∂tπ(x, t) +
( d
dt′
X(t′)

)
|t′=t · ∇π(x, t)

= ∂tπ(x, t) +
(( d
dt′
X(t′)

)
|t′=t · ν(x, t)

)
|∇π(x, t)|

= ∂tπ(x, t) + w⊥(x, t) |∇π(x, t)|, (5.60)

which leads to (5.59) and ends the proof of the Lemma.

To define the material velocity, we will need to introduce its flow:

Definition 41. Given a vector field v = v(x, t) which we assume continuous, bounded

and C1 with respect to x, the flow of v is the unique map Φs
t : ΩN(t) → ΩN(s) such that

for any x ∈ ΩN(t), the function η : s 7→ Φs
t(x) satisfiesη(t) = x,

η′(s) = v(η(s), s) ∀s ≥ 0.

We can now define the non-swapping constraint for a velocity.

Definition 42. We assume that the assumptions of Theorem 37 are satisfied. We also

assume the non-degeneracy condition (5.57). The material velocity v(x, t) satisfying the

same assumptions as in Def. 41 is said to be consistent with the non-swapping constraint if

and only if for all (x, t) such that x is a regular point of W (t, ·), there exists a neighborhood

U × V × I of (x, π(t, x), t) in Rd × [0, N ] × [0,∞) and a function Ht : (p, s) ∈ V × I 7→
Hs
t (p) ∈ R which is continuous and C1 with respect to s, such that for any s ∈ I the map

p ∈ V 7→ Hs
t (p) ∈ R is injective and such that for all (y, s) ∈ U × I, we have

π(Φs
t(y), s) = Hs

t (π(y, t)). (5.61)

Remark 5.4.1. Def. 42 is illustrated by Fig. 5.5: Eq. (5.61) implies that, if at time t two

cells are at neighboring locations y1 and y2 (namely y1 and y2 belong to the neighborhood U)

such that they belong to the same level set, i.e. p = π(y1, t) = π(y2, t) (respectively do not

belong to the same level set i.e. π(y1, t) 6= π(y2, t)), then at time s they belong to the same

level set given by π(Φs
t(y1), s) = π(Φs

t(y2), s) = Hs
t (p) (respectively they do not belong to

the same level set i.e. p = π(Φs
t(y1), s) = Hs

t (π(y1, t)) 6= p′ = π(Φs
t(y2), s) = Hs

t (π(y2, t))

because of the injectivity of Hs
t ).

Remark 5.4.2. In dimension 1 the non-swapping constraint is always satisfied and there-

fore carries no content. Indeed, since we suppose in Def. 42 that x is a regular point of
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Figure 5.5: Schematics of the non-swapping condition in Def. 42

W (·, t), then it is also a regular point of π(·, t), and we can locally invert π(·, t)|U : U → V.

Thus we can always find a function Ht satisfying Eq. (5.61) as

Hs
t (p) := π

(
Φs
t ◦ π|U(·, t)−1(p), s

)
.

Next, we give a necessary condition that the velocity v has to fulfil when the evolution

of n is given by the continuity equation. Particularly, we show that in dimension d ≥ 2, if

a particle moves with velocity v satisfying the non-swapping constraint, then the normal

component of the velocity is given by the domain velocity of its level set Σp(t) (Prop. 43

below), and it remains in the same level set Σp(t) for all times (Prop. 45 below). This

shows that Definition 42 ensures that a particle remains in the layer between two level

sets Σp(t) and Σp+δp(t) at all times. More precisely:

Proposition 43. Suppose that v satisfies the assumptions of Def. 41, the non-swapping

constraint as given by Def. 42 for d ≥ 2, and is such that

∂tn+∇ · (vn) = 0. (5.62)

Then, we have

v · ν = w⊥, (5.63)

where w⊥ is given by Eq. (5.59) and ν by (5.25).

To prove this result, we first show the following lemma that provides a global version

of the non-swapping constraint:
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Lemma 44. Let v satisfy the assumptions of Def. 41 and verify the non-swapping con-

straint as expressed by Def. 42. We assume d ≥ 2. Then, there exists a continuous

function h = h(p, t) such that for all t, x,

(∂t + v · ∇x)π(x, t) = h(π(x, t), t). (5.64)

Proof. For all (t, x) such that x is not a critical point of W (·, t), the non-swapping

constraint in Def. 42 gives a function Ht that satisfies (5.61) for all y in a neighbourhood

Ux of x. Differentiating (5.61) along s and evaluating at s = t we have:

(∂t + v · ∇)π(y, t) = ∂sH
s
t (π(y, t))|s=t ,

for all y ∈ Ux. We define hx(p, t) = ∂sH
s
t (π(y, t))|s=t, with π(y, t) = p. We will show

that this definition is independent of x. Indeed, if x, y are in ΩN(t) (and are not critical

points), and z ∈ Ux ∩ Uy, then it must hold

hx(π(z, t), t) = (∂t + v · ∇)π(z, t) = hy(π(z, t), t). (5.65)

Now, since d ≥ 2 and W (·, t) has a unique critical point (at x = 0), the level sets of

π are diffeomorphic to connected (d − 1)−spheres. Using the relation (5.65) and the

connectivity of the level sets (since d ≥ 2), we get that hx(p, t) = hy(p, t) for any x, y

such that hx(·, t) and hy(·, t) are defined at p. Thus the functions hx can be glued to a

single function h = h(p, t) that satisfies (5.64). Since the functions hx are continuous, h

is continuous as well.

Proof of Prop. 43. By lemma 44 there exists a function h satisfying Eq. (5.64). This

equation is equivalent to

v · ν(x, t) =
h(π(x, t), t)− ∂tπ(x, t)

|∇π(x, t)|

=
h(π(x, t), t)

|∇π(x, t)| + w⊥(x, t),

where w⊥ is the normal velocity of Σp(t) as computed in (5.59). Since
∫

Ωp(t)
n dx = p by
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the definition of Ωp(t), we deduce that

0 =
d

dt

(∫
Ωp(t)

n dx

)
=

∫
Ωp(t)

∂tn dx+

∫
Σp(t)

nw⊥dS(x)

=

∫
Ωp(t)

−∇ · (nv) dx+

∫
Σp(t)

nw⊥dS(x)

=

∫
Σp(t)

n(w⊥ − v · ν)dS(x)

= −h(p, t)

∫
Σp(t)

n

|∇π|dS(x).

In the second line, we used the standard formula for the derivative of an integral on a

time-dependent domain. The continuity equation was used in the third line, and Stokes’

theorem in the fourth line. Since n > 0 on Σp(t), and since Σp(t) has positive d − 1

measure (because p is not a critical value of the potential), the integral on the last line is

strictly positive. We conclude that h(p, t) = 0 for all p > 0, and so for all (t, x), we have

0 = (∂t + v · ∇)π = ∂tπ + (v · ν)|∇π|,

which is exactly (5.63) and finishes the proof.

As a consequence of the previous proof, we have

Proposition 45. Suppose n satisfies the continuity equation (5.62), v satisfies the non-

swapping constraint as expressed in Def. 42 and d ≥ 2. Then there exists a constant

p ≥ 0, such that Φt
0(x) ∈ Σp(t), ∀t ≥ 0.

Proof. Let p = π(x, 0), it follows from 43 that

d

dt
{π(Φt

0(x), t)} = (∂tπ + v · ∇π)(Φt
0(x), t) = 0.

And so π(Φt
0(x), t) = p for all t ≥ 0, which proves the proposition.

We now show that a velocity field satisfying the non-swapping condition in dimension

d ≥ 2 (42) satisfies the continuity equation averaged over all surfaces Σp(t). In other

words, the number of particles leaving Σp(t) at a given time is exactly compensated by

the number of particles arriving at Σp(t).

Theorem 46. Under the assumptions of Theorem 37, let n(x, t) be given by (5.13). Let

v be a vector field such that

v · ν = w⊥, (5.66)
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where ν and w⊥ are given by Eqs. (5.25) and (5.59) respectively. Then, such vector field

satisfies〈
δ ◦ (π(·, t)− p) ,

(
∂tn+∇ · (nv)

)
(·, t)

〉
= 0, ∀t > 0, ∀p ∈ (0, N). (5.67)

Remark 5.4.3. Notice that we exclude the case p = N since then n becomes discontinuous

and the derivatives cannot be defined.

Proof. Note that we have dropped the subscript N to nN for simplicity. Let t ≥ 0,

since the function

p 7→
〈
δ ◦ (π(·, t)− p) ,

(
∂tn+∇ · (nv)

)
(·, t)

〉
is continuous, we only need to show that for all p ≥ 0,

I(p) :=

∫ p

0

〈
δ ◦ (π(·, t)− p′) ,

(
∂tn+∇ · (nv)

)
(·, t)

〉
dp′ = 0.

Using Stokes’ theorem, we have:

I(p) =

∫
{x |π(t,x)≤p}

(
∂tn+∇ · (nv⊥)

)
(x, t) dx

=

∫
Ωp(t)

∂tn(x, t) dx+

∫
Σp(t)

nv⊥ · ν(x, t) dS(x),

where dS(x) is the canonical measure on ∂Ω(t). By hypothesis, v⊥ · ν(x, t) is exactly the

velocity of Σp(t) at (x, t), and so:

∫
Ωp(t)

∂tn(x, t) dx+

∫
Σp(t)

nv⊥ · ν(x, t) dS(x) =
d

dt

(∫
Ωp(t)

n(x, t) dx

)
=
dp

dt

= 0,

where we used Eq. (5.60). So I(p) = 0 for all p, which ends the proof.

5.5 Determination of the tangential velocity

In this section, we provide the detailed mathematical discussion of the results summarized

in Section 5.2.5.
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5.5.1 Dimension one

In this section, we investigate the one-dimensional case. The non-swapping constraint is

an empty constraint in this case (see Remark 5.4.2) and there is no tangential velocity.

The consequence is that the dynamics of the medium is not governed by the potential

(save for the determination of an integration constant), which is an important difference

with the higher dimensional case. In dimension one, the continuity equation for n provides

a scalar differential equation for the velocity v, which defines it up to a constant, and this

constant is determined by the boundary conditions, which indirectly involve the potential,

as the following proposition shows.

Proposition 47. We suppose d = 1. Under the assumptions of Theorem 37, there exists

a unique velocity v that satisfies the continuity equation (5.62) and which is compatible

with n being a solution of the energy minimization problem, given by the conditions

W (a(t), t) = W (b(t), t),

∫ b(t)

a(t)

n(x, t)dx = N, (5.68)

where Ω(t) = [a(t), b(t)]. This velocity is given by

v(x, t) =
1

n(x, t)

(
n(a(t), t)a′(t)−

∫ x

a(t)

∂tn(y, t)dy

)
, (5.69)

where a′(t) denotes the time derivative of a(t) and is given by

a′(t) =
n(b, t)

(
∂tW (b, t)− ∂tW (a, t)

)
− ∂xW (b, t)

∫ b
a
∂tn(x, t) dx

n(b, t) ∂xW (a, t)− n(a, t) ∂xW (b, t)
. (5.70)

For clarity, the dependence of a and b on t has been dropped. The expression of b′(t), the

time derivative of b(t), is given by (5.70) after exchanging a and b.

Proof. The expression of the velocity v is obtained by integrating the continuity equation

(5.62) with respect to space on [a(t), x], noting that the velocity at a(t) is precisely

a′(t). We just need to verify that the same property is satisfied at b(t), namely that

v(b(t), t) = b′(t). Differentiating the second Eq. (5.68) with respect to t gives

b′(t)n(b(t), t)− a′(t)n(a(t), t) +

∫ b(t)

a(t)

∂tn(y, t)dy = 0. (5.71)

Using (5.69), this leads to:

v(b(t), t) =
1

n(b(t), t)

(
n(a(t), t)a′(t)−

∫ b(t)

a(t)

∂tn(y, t)dy

)
= b′(t),

which ends the proof. To find (5.70) we differentiate the first Eq. (5.68) with respect to

171



t. We find

∂xW (b(t), t) b′(t)− ∂xW (a(t), t) a′(t) + ∂tW (b(t), t)− ∂tW (a(t), t) = 0.

Together with (5.71), this forms a 2× 2 linear system for (a′, b′) whose solution leads to

(5.70) for a′ and to the corresponding expression with a and b exchanged for b′. Note that

the denominator cannot be 0 as ∂xW (a, t) and ∂xW (b, t) have opposite signs and cannot

be zero as W has a unique critical point which belongs to the open interval (a(t), b(t)).

5.5.2 Dimension d ≥ 2: tangential velocity is not zero in

general

In this section, we show that in dimension d ≥ 2 in general the velocity field must have

a non-zero tangential component v‖ to be consistent with the continuity equation. For

this purpose, we provide a counter-example in dimension d = 2 where the velocity field

is defined by v = w⊥ν with w⊥ given by (5.63) and which does not fulfil the continuity

equation (5.21).

Indeed, consider a potential V (x, τ) which does not depend on τ and is of the form

V (x) = W (x) =
x2

2

2
:= W̃ (x2), for x = (x1, x2) ∈ T× R,

and an average volume

τ(x, t) = |x|t, x ∈ T× R, t ∈ [0,∞). (5.72)

Here T = (−1, 1] ≈ R/2Z is the torus, i.e. we assume that all functions are 2-periodic

with respect to x1 and when integrals with respect to x1 are involved, they are meant

over the torus T. Then, by Prop. 37 it holds that

n(x, t) =
1

τ(x, t)
=

1

|x|t , x ∈ T× R, t ∈ [0,∞).

Firstly notice that

π(x, t) =

∫
{W̃ (y2)≤W̃ (x2)}

τ−1(y, t) dy := π̃(x2, t),

so it is x1-independent. The choice of x1 lying in the torus T ensures that this integral is

finite. Denoting by (e1, e2) a cartesian basis associated to the coordinate system (x1, x2),

we get that ν(x, t) is parallel to e2, i.e.

ν(x, t) = e2 for x2 > 0, ν(x, t) = −e2 for x2 < 0.

172



We also have

v⊥(x, t) = −(∂tπ/|∇π|)(x, t) = −(∂tπ̃/|∂x2 π̃|)(x2, t) := ṽ⊥(x2, t),

also only depends on x2.

This implies

0 = ∂tn+∇ · (nv) = ∂tn+ ∂x2(nṽ⊥).

For the considered value of τ in (5.72) and x2 > 0, we have

∂tn+ ∂x2(nṽ⊥) =
|x|2(−1 + t ∂x2 ṽ⊥(x2, t))− ṽ⊥(x2)x2t

|x|3t2 .

If this last expression was zero, it would imply that

t

|x|2 =
−1 + t ∂x2 ṽ⊥(x2, t)

ṽ⊥(x2, t)x2

,

but this cannot hold since the left-hand side depends on x1 but the right-hand side does

not. Hence, we must conclude that the continuity equation is not satisfied.

Remark 5.5.1. The example proposed here does not satisfy the assumptions of Th. 37,

however it can be seen as a limiting case of τ ε(x, t) = (|x|2 + ε)1/2 t and V (x) = ((εx2
1) +

x2
2)/2 as ε→ 0; and where we have replaced assumption (vii) by periodicity conditions in

the first component x1.

5.5.3 Dimension d ≥ 2: determination of v‖ under the princi-

ple of minimal displacements

We first show that (5.31) is a necessary solvability condition for (5.30). This is a conse-

quence of the following lemma, in which we forget the time variable t:

Lemma 48. Let f : Rd 7→ R be a smooth function, with d a positive integer. If there

exists a smooth vector field A: Rd 7→ Rd, tangent to all surfaces Σp, i.e. satisfying

A · ∇π = 0, in ΩN , (5.73)

and solving the equation

∇ · A = f, in ΩN , (5.74)

then f must be of zero-average on all level sets Σp, i.e. f must satisfy (5.31).

Proof. We show that if A: Rd 7→ Rd is a smooth vector field tangent to all surfaces Σp,

then, it satisfies 〈
δ ◦
(
π − p

)
, ∇ · A

〉
= 0, ∀p ∈ (0, N ]. (5.75)
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This will show the result as applying (5.75) to (5.74) leads to (5.31). To show (5.75), we

take any smooth function g: R 7→ R with compact support and compute, using (5.43)

and Green’s formula:∫ ∞
−∞

g(p)
〈
δ ◦
(
π − p

)
, ∇ · A

〉
dp =

∫
Rd

(g ◦ π)(x) (∇ · A)(x) dx

= −
∫
Rd

∇(g ◦ π)(x) · A(x) dx

= −
∫
Rd

(g′ ◦ π)(x) (∇π · A)(x) dx

= 0,

where the cancellation comes from (5.73). This shows (5.75) and ends the proof of the

lemma.

Next, we consider the resolution of (5.35) and postpone the proof that the solution of

problem (5.33) is given by (5.34) to the end of the section. For any (p, t) ∈ (0, N)×(0,∞),

we note that Σp(t) ⊂ ΩN(t). We denote by Ip,t: Σp(t)→ ΩN(t) the set injection of Σp(t)

into ΩN(t), i.e. for any y ∈ Σp(t), Ip,t(y) = y ∈ ΩN(t). Now, we introduce the following

change of variables. For a function θ: (x, t) ∈ ∪t∈(0,∞) ΩN(t) × {t} 7→ θ(x, t) ∈ R, we

define a function θ̄: (p, t, y) ∈ ∪(p,t)∈(0,N)×(0,∞) {(p, t)} × Σp(t) 7→ θ̄(p, t, y) ∈ (0,∞) such

that

θ(Ip,t(y), t) = θ̄(p, t, y). (5.76)

Below, we will use that

(∇‖θ)(Ip,t(y), t) = ∇yθ̄(p, t, y), (5.77)

where ∇y denote the gradient operator on the manifold Σp(t). We now state the

Theorem 49. Under the assumptions of Theorem 37 and under the solvability condition

(5.31), Eq. (5.35) together with the zero-average constraint (5.36) has a unique solution

which can be written θ(x, t) = θ̄(p, t, y) thanks to the change of variables (5.76), such

that θ̄ belongs to the class C0
(
(0, N)× (0,∞), H1(Σp(t))

)
where H1(Σp(t)) is the Sobolev

space of square integrable functions on Σp(t) whose first order distributional derivatives

are square integrable.

Proof. Notice that f (given by (5.30)) is smooth, since τ−1 and π are smooth (see

Assumption (i) in Th. 37 and Rem. 5.3.1 point (ii)). Taking ψ: (x, t) ∈ Rd 7→ ψ(x, t) ∈ R
any smooth compactly supported function, multiplying (5.35) by ψ and using Green’s

formula, we get:∫ ∞
0

∫
Rd

τ−1(x, t)∇‖θ(x, t) · ∇‖ψ(x, t) dx dt =

∫ ∞
0

∫
Rd

f(x, t)ψ(x, t) dx dt,
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and using (5.41), we deduce:∫ ∞
0

∫ N

0

∫
x∈Σp(t)

τ−1(x, t)∇‖θ(x, t) · ∇‖ψ(x, t)
dSp,t(x)

|∇π(x, t)| dp dt

=

∫ ∞
0

∫ N

0

∫
x∈Σp(t)

f(x, t)ψ(x, t)
dSp,t(x)

|∇π(x, t)| dp dt, (5.78)

where dSp,t(x) is the Euclidean surface measure on Σp(t). Using the change of variable

(5.76) on both θ and ψ, we get∫ ∞
0

∫ N

0

∫
y∈Σp(t)

τ−1(Ip,t(y), t)∇yθ̄(p, t, y) · ∇yψ̄(p, t, y)
dSp,t(y)

|∇π(Ip,t(y), t)| dp dt

=

∫ ∞
0

∫ N

0

∫
y∈Σp(t)

f(Ip,t(y), t) ψ̄(p, t, y)
dSp,t(y)

|∇π(Ip,t(y), t)| dp dt. (5.79)

Since this is true for any function ψ̄(p, t, y), this implies that for any (p, t) ∈ (0, N)×(0,∞),

and any smooth function ξ : y ∈ Σp(t) 7→ ξ(y) ∈ R, we have∫
y∈Σp(t)

τ−1(Ip,t(y), t)∇yθ̄(p, t, y) · ∇yξ(y)
dSp,t(y)

|∇π(Ip,t(y), t)|

=

∫
y∈Σp(t)

f(Ip,t(y), t) ξ(y)
dSp,t(y)

|∇π(Ip,t(y), t)| . (5.80)

Eq. (5.79) is the weak formulation of an elliptic problem posed on the closed (i.e. without

boundary) smooth manifold Σp(t). Reciprocally, if y 7→ θ̄(p, t, y) is a solution to (5.80)

for any (p, t) ∈ (0, N) × (0,∞), then θ(x, t) constructed through (5.76) is a solution to

(5.78) and ultimately to (5.35).

We now show that (5.80) is equivalent to the same problem when we restrict ξ to

satisfy the additional constraint〈
δ ◦
(
π(·, t)− p

)
, ξ
〉

= 0,

i.e. ∫
y∈Σp(t)

ξ(y)
dSp,t(y)

|∇π(Ip,t(y), t)| = 0. (5.81)

Indeed, if (5.80) is satisfied for all smooth ξ, it is satisfied in particular for those which

satisfy the additional constraint (5.81). Conversely, suppose that (5.80) is satisfied for all

smooth ξ that satisfy (5.81) and take now a smooth ξ that does not satisfy (5.81). We

define

ξ̃(y) = ξ(y)−
∫
z∈Σp(t)

ξ(z) dSp,t(z)

|∇π(Ip,t(z),t)|∫
z∈Σp(t)

dSp,t(z)

|∇π(Ip,t(z),t)|

.
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Then, by (5.80) applied with ξ̃ (which is legitimate since ξ̃ satisfies (5.81)), we get∫
y∈Σp(t)

τ−1(Ip,t(y), t)∇yθ̄(p, t, y) · ∇y ξ̃(y)
dSp,t(y)

|∇π(Ip,t(y), t)|

=

∫
y∈Σp(t)

f(Ip,t(y), t) ξ̃(y)
dSp,t(y)

|∇π(Ip,t(y), t)| . (5.82)

But since ξ̃ differs from ξ by a constant on Σp(t), the left-hand side of (5.82) is equal

to the same expression with ξ instead of ξ̃. Using the assumption (5.31) that f is of

zero-average on Σp(t), the right-hand side of (5.82) is also equal to the same expression

with ξ instead of ξ̃. So, we deduce that (5.80) is satisfied for all smooth ξ, not only those

which satisfy (5.81).

So, now, we are left with solving (5.79) for all smooth ξ that satisfy (5.81). It is time to

set up functional spaces. We consider the space L2(Σp(t)) of square integrable functions

on Σp(t) endowed with the norm

‖u‖L2(Σp(t)) =
(∫

y∈Σp(t)

|u(y)|2 dSp,t(y)

|∇π(Ip,t(y), t)|
)1/2

,

and the Sobolev space H1(Σp(t)) of functions u of L2(Σp(t)) which have first order distri-

butional derivatives ∇yu in L2(Σp(t)), endowed with the norm

‖u‖H1(Σp(t)) =
(
‖u‖2

L2(Σp(t)) + ‖∇yu‖2
L2(Σp(t))

)1/2

.

Finally, we introduce the space H1
0 (Σp(t)) of functions u ∈ H1(Σp(t)) which have zero

average on Σp(t) i.e. such that∫
y∈Σp(t)

u(y)
dSp,t(y)

|∇π(Ip,t(y), t)| = 0.

The space H1
0 (Σp(t)) is a closed subspace of H1(Σp(t)) (because Σp(t) is compact) and

so, is a valid Hilbert space to apply Lax-Milgram theorem. Indeed, defining

a(θ, ξ) =

∫
y∈Σp(t)

τ−1(Ip,t(y), t)∇yθ(y) · ∇yξ(y)
dSp,t(y)

|∇π(Ip,t(y), t)| ,

〈L, ξ〉 =

∫
y∈Σp(t)

f(Ip,t(y), t) ξ(y)
dSp,t(y)

|∇π(Ip,t(y), t)| ,

the problem of finding a solution of (5.79) for all ξ satisfying (5.81) can be recast in the

functional setting:

Find θ ∈ H1
0 (Σp(t)) such that

a(θ, ξ) = 〈L, ξ〉, ∀ξ ∈ H1
0 (Σp(t)). (5.83)
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It is clear that a and L are respectively a continuous bilinear form and a continuous linear

form on H1
0 (Σp(t)). The only missing hypothesis to apply Lax-Milgram theorem is the

coercivity of a on H1
0 (Σp(t)). For this, we remark that since τ−1 is smooth and positive,

and since Σp(t) is compact, there exists C > 0 such that τ−1(Ip,t(y), t) ≥ C > 0 for all

y ∈ Σp(t). Then, for all ξ ∈ H1
0 (Σp(t))

a(ξ, ξ) ≥ C

∫
y∈Σp(t)

|∇yξ(x)|2 dSp,t(y)

|∇π(Ip,t(y), t)| := C ã(ξ, ξ). (5.84)

The quadratic form ã(ξ, ξ) at the right-hand side of (5.84) is nothing but the quadratic

form associated to the Laplace Beltrami operator on Σp(t) endowed with the metric g(y) =

|∇π(Ip,t(y), t)|− 2
d−1 ge(y), where ge(y) is the Euclidean metric of Σp(t) at point y. We know

from the properties of the Laplace Beltrami operator on closed (i.e. without boundary)

manifolds (see [72], Section 4.D.2) that its leading eigenvalue is zero, is simple and that

the associated eigenfunctions are the constants. Furthermore, the eigenfunctions of this

Laplace-Beltrami operator form a complete ortho-normal basis of the space L2(Σp(t)).

Therefore, from standard spectral theory, since H1
0 (Σp(t)) is the orthogonal space to the

constants for the inner product of L2(Σp(t)), we have

min
ξ∈H1

0 (Σp(t))

ã(ξ, ξ)

‖ξ‖L2(Σp(t))

= λ1 > 0,

where λ1 is the first non-zero eigenvalue of the Laplace-Beltrami operator, which is strictly

positive. Therefore, we have

a(ξ, ξ) ≥ C λ1‖ξ‖2
L2(Σp(t)), ∀ξ ∈ H1

0 (Σp(t)),

with Cλ1 > 0, which shows the coercivity of a. Applying Lax-Milgram’s theorem, we

deduce that there exists a unique solution to (5.83). Moreover, by the regularity (in H1)

of the solution with respect to the data, and owing to the fact that all data are smooth,

we deduce that the solution θ̄ has the regularity C0
(
(0, N) × (0,∞), H1(Σp(t))

)
, which

ends the proof of Theorem 49.

We note that if the problem has spherical symmetry, the solution θ has also spherical

symmetry, and the level sets Σp(t) are spheres. Therefore, θ is constant on Σp(t) but on

the other hand, condition (5.36) implies that its average must be zero. Therefore, the

constant value of θ on Σp(t) is necessarily zero. Thus, when the problem has spherical

symmetry, the unique solution of (5.35), (5.36) is zero, the tangential velocity v‖ = 0 and

the velocity v is purely normal v = w⊥ν.

Now we show that the solution of minimization problem (5.33) is given by 5.34). More

precisely, we have the following:

Proposition 50. Let v‖ be a solution of (5.33). Then, there exists a function θ such that
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(5.34) holds.

Proof. Suppose v‖ = v‖(x, t) is a solution of (5.33). Let δv‖ = δv‖(x, t) be a variation of

v‖. Then δv‖ is a tangent vector field to all level surfaces Σp(t), for all (p, t) ∈ (0, N) ×
(0,∞) and satisfies the constraint

∇ · δv‖ = 0, ∀(x, t) ∈
⋃

t∈(0,∞)

ΩN(t)× {t}. (5.85)

Taking smooth functions ϕ: (x, t) ∈ ∪t∈(0,∞) ΩN(t) × {t} 7→ ϕ(x, t) ∈ R, and g: p ∈
(0, N) 7→ g(p) ∈ R, we have, successively using Green’s formula, the fact that δv‖ is

tangent to Σp(t), and that ∇‖(g ◦ π) = 0:

0 =

∫
ΩN (t)

∇ · δv‖(x, t)ϕ(x, t) g(π(x, t)) dx

= −
∫

ΩN (t)

δv‖(x, t) · ∇(ϕ g ◦ π)(x, t) dx

= −
∫

ΩN (t)

δv‖(x, t) · ∇‖(ϕ g ◦ π)(x, t) dx

= −
∫

ΩN (t)

δv‖(x, t) · ∇‖ϕ(x, t) g(π(x, t)) dx

= −
∫ N

0

〈
δ ◦ (π(·, t)− p), δv‖ · ∇‖ϕ

〉
g(p) dp,

where the last identity follows from (5.43). Now, since this identity is true for all smooth

functions g(p), we deduce that

0 =
〈
δ ◦ (π(·, t)− p), δv‖ · ∇‖ϕ

〉
, ∀(p, t) ∈ (0, N)× (0,∞),

or, using (5.29) and the change of variables (5.76):

0 =

∫
y∈Σp(t)

δv‖(p, t, y) · ∇yϕ̄(p, t, y)
dSp,t(y)

|∇π(Ip,t(y), t)| , ∀(p, t) ∈ (0, N)× (0,∞). (5.86)

Now, the Euler-Lagrange equations of the minimization problem (5.33) are written〈
δ ◦ (π(·, t)− p), v‖ · δv‖(·, t)

〉
= 0, ∀ δv‖ tangent vector field to Σp(t)

and satisfying (5.85) , ∀(p, t) ∈ (0, N)× (0,∞), (5.87)

or, using (5.29) and (5.76) again:

0 =

∫
y∈Σp(t)

v̄‖(p, t, y) · δv‖(p, t, y)
dSp,t(y)

|∇π(Ip,t(y), t)| , ∀ δv‖ tangent vector

field to Σp(t) and satisfying (5.86) , ∀(p, t) ∈ (0, N)× (0,∞), (5.88)
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Eq. (5.88) shows that on each surface Σp(t), v̄‖(p, t, ·) is a tangent vector field orthog-

onal (for the L2(Σp(t)) inner product) to all tangent vector fields δv‖(p, t, ·) themselves

orthogonal to all gradient vector fields (by (5.86)). But the space of gradients of functions

of H1(Σp(t)) is the same as the space of gradients of functions of H1
0 (Σp(t)). And this

latter space is closed in L2(Σp(t)). This follows easily again from the coercivity of the

quadratic form ã as proved in the proof of Theorem 49 (details are left to the reader).

Therefore, v̄‖(p, t, ·) being orthogonal to the orthogonal space to the gradients (and the

space of gradients being closed), is itself a gradient. So, there exists a function θ̄(p, t, ·)
(parametrized by (p, t) ∈ (0, N)× (0,∞)) such that

v̄‖(p, t, y) = ∇yθ̄(p, t, y), ∀y ∈ Σp(t), ∀(p, t) ∈ (0, N)× (0,∞).

Defining θ(x, t) through the change of variables (5.76), we get (5.34), which ends the

proof.

5.6 Conclusions and future work

In this Chapter, we have proposed a new continuum model of a swelling or drying material.

Two aspects have been investigated. The first one is an equilibrium problem describing

particles seeking to minimize their mechanical energy subject to non-overlapping con-

straints. Its solution has been fully characterized. The second one is a non-equilibrium

problem where we assume that the particle average volume and potential energy may vary

with time and where we compute the resulting velocity applying two principles: (i) the

non swapping condition and (ii) the principle of smallest displacements. Under these

two principles, the medium velocity has been fully determined. A detailed discussion has

been provided and many different elaborations of the model have been proposed. In future

work, we intend to progress towards the resolution of the many open problems outlined

at the end of Sec. 5.2.6.
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6
Conclusion and perspectives

In this Chapter we present the general conclusions of this thesis and we motivate several

research directions that can be further pursued.

6.1 Conclusion

Large and congested many-particle systems encompass complex multiscale phenomena,

ranging from contacts between neighbouring particles to the emergence of coordinated

macroscopic behaviour. These phenomena present big challenges to the modelling and

simulation of such systems. In this thesis we tackle some of the challenges and we develop

new modelling frameworks and efficient computational tools to study these systems.

Specifically, two modelling frameworks are developed. The first framework describes

the system at the particle level, leading to particle-based models, which are studied in

Part I and Part II. The second framework describes the system at the number density

level, leading to a continuum model, which is described in Part III. The long term aim is to

obtain an integrated multiscale modelling framework which is able to capture phenomena

occurring across different time and space scales. These phenomena are especially relevant

in certain particle systems arising in biology (see [29] for a review). One example is the

emergence of the shape of organs during embryonic development from local mechanical

interactions occurring between neighbouring cells [118].

The two frameworks are based on the same modelling principles. The system is first

assumed to be at a mechanical equilibrium, described by a minimizer of a confining poten-

tial subject to volume exclusion constraints. The system then evolves driven by changes in

the potential and in the particle properties. These modelling principles have been tested

in practice and they have proved appropriate in the case of a densely packed cell tissue,

which is studied in Chapter 4. Among other aspects, the two modelling frameworks differ
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from each other with respect to the minimization problem involved in the description

of the statics equilibrium. Indeed, in the discrete model, this problem is typically non-

convex, a solution is not unique and one has to resort to computational tools to find an

approximation of a solution. The numerical and analytical treatment of these problems

are discussed in Part I of this thesis. In the continuum model, the minimization problem

is convex, a solution is unique and we are able to obtain it analytically. This is presented

in Part III. Another difference between the two frameworks is related to the type of in-

formation each one provides. In the particle-based framework, we get information about

the approximated positions and velocities of each particle over time. In the continuum

framework, we obtain the exact averaged positions and velocities of the particles over

time and the exact averaged behaviour of the whole population.

We conclude that the particle-based framework provides more detailed spatial infor-

mation, but it requires the development of sophisticated computational tools to be able

to obtain this information in the case of large systems. On the other hand, the contin-

uum framework only provides information about the averaged behaviour of the system,

but it may be treated analytically by using available tools, which allows a more accurate

analysis of the averaged dynamics. This shows the importance of the two approaches and

how they complement each other.

6.2 Perspectives

Besides searching for a mathematical link between the particle-based and continuum

frameworks, as referred above, other future research directions can be envisioned. For

example the improvement of the algorithms in terms of computational speed and ac-

curacy, the analysis of the models and algorithms or the development of more realistic

models by considering three spatial dimensions, more accurate particle shapes or more

complex interaction rules. Next we describe how the results of each Chapter could be im-

proved following the lines described above and additionally, how they could be extended

to solve problems in social sciences, cell biology, ecology, material sciences, astronomy,

meteorology and geometry.

Chapter 1 Following the results presented in Chapter 1, one could investigate what

types of packings can be generated by the damped Arrow-Hurwicz algorithm (DAHA) due

to the non-uniqueness of local minima and how each packing relates with the parameters

and initial configuration. The results of such a study could be compared with existing

packing generating algorithms (see [51] for a brief review) to assess the efficiency and the

ability of the DAHA to generate different types of packings. Regarding the shape of the

configurations, we expect the radial symmetry of the initial configuration to be preserved

by the algorithm. In two dimensions we expect to obtain nearly hexagonal packings (see

Figure 1.7, Chapter 1) for all choices of parameters and initial configurations for which the
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algorithm converges. In the more intriguing case of three spatial dimensions the structure

of the resulting configuration is not so obvious. The results of our numerical experiments

suggest that the DAHA is able to generate random close packings with a volume fraction

of around 64%. However other choices of parameters and initial conditions might lead to

other types of packings with higher or lower volume fractions.

After this study, the DAHA could be used to investigate packings of interest, such

as random loose and random close packings [137, 164, 166], mono- and polydisperse

packings, etc. One could efficiently study several properties of large packings such as

the pore-size distribution, packing entropy, number of different packing configurations

for a given density, crystaline and glassy states, distribution of number of neighbours,

degree of heterogeneity and disorder, short and long range correlations between particles

and so on [18, 100, 102]. In geometry, provided the DAHA converges in high dimensions

d > 4, one could use this algorithm to explore the existence of dense configurations or to

find bounds for the kissing number, i.e., the maximum number of equally-sized spheres

that can be in contact with the same sphere without overlapping. In dimensions 1 to 4

the kissing number has been proven to be 2, 6, 12 [38] and 24 [133], respectively. For

higher dimensions the kissing number is mostly unkown. Finally, as shown in Part II the

DAHA can be integrated in time-stepping schemes to obtain algorithms that simulate the

dynamics of large and dense particle systems.

Chapter 2 The study developed in Chapter 2 could be attempted in the case of more

general convex and non-convex potentials, as well as, in the case of higher spatial dimen-

sions (d ≥ 2). However a new approach would have to be developed as the one used

here relies on the dimension (d = 1) and on the shape of the potential. It would be par-

ticularly interesting to investigate whether these results also apply to potentials that are

commonly used in other applications, such as, gravitational potential, Coulomb potential,

chemical and electrical potentials or ”social potentials” associated with dissatisfaction or

preferences of the individuals [61].

Chapter 3 The results presented in Chapter 3 suggest that the fastest algorithm to

simulate ballistic aggregation should result from the combination of a time-stepping with

an event-driven scheme. The combined scheme would consist of using the time-stepping

scheme during a first part of the dynamics and then switching to the event-driven one.

An easy to check criterion to switch between the two schemes should be identified. After

the construction of such a scheme, one could consider the full physical system presented in

Section 3.2.1 and explore the statistics associated to its dynamics, such as distribution of

cluster sizes and velocities or the shape and morphology of the growing clusters. Moreover,

since the algorithm is able to deal with very large systems (with 1 million particles), it

provides an appropriate tool to explore the relation between particle models and the

corresponding kinetic models that are obtained when the number of particles goes to
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infinity [120], such as the widely studied Smoluschovsky coagulation equation [6]. One

could then use this knowledge to study multiscale aggregation phenomena in physics, such

as thin films, clouds, cosmic dust or planet formation [78, 120, 131, 136], or in biology,

such as bacteria colony growth or animals aggregation [107, 141].

Chapter 4 The mechanical model for a cell tissue developed in Chapter 4 is discrete in

time. In order to both simplify the analysis and provide a more realistic description of the

system one could try to write a corresponding time-continuous dynamics. In particular,

such a description would allow to study the time-asymptotic behaviour of the system,

which would provide criteria to classify different parameter regions. One possible way to

formulate such a time-continuous model may be obtained by projecting the solution into

the admissible space according to an appropriate norm. The theoretical background to

formulate and analyse such a time-continuous model may be found for example in [160].

On the other hand, in order to make the model more realistic, one could extend it to three

spatial dimensions and consider more accurate particle representations, such as ellipsoids

or polyhedrons. One may also incorporate other elements, such as fibers [149], chemical

signals or other subcellular components. As discussed at the end of Chapter 4, this model

can be used in the study of embryonic development and in particular to understand how

organs acquire its shape and how it remains stable [83]. Also, in the context of cancer, this

model can be very useful to study how defects in individual cells may lead to a disruption

in the tissue [98, 172]. Such a scenario is particularly challenging to reproduce in the lab

due to the lack of tools and technology to induce defects in targeted cells. The model

could therefore constitute a very valuable tool in such a study.

Chapter 5 In Chapter 5, a continuum model for swelling materials has been developed.

The evolution of the number density of the material is driven by the evolution of an

external potential and changes in particle size. We have shown that the component of the

medium velocity that is tangent to the level sets of the potential is in general nonzero.

This allows the particles to move along regions of constant energy. In the future, these

results should be discussed in view of commonly used models that do not incorporate this

feature, such as Hele-Shaw type models [146]. In a further future the model could be

developed to include cell division or other phenomena of interest and it could be applied

to the study of practical situations, such as for example tissue growth or the study of

different types of cancer therapeutics.
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A
Explicit solutions for the primal

and dual problems in dimension

d = 2

In this appendix we present analytical solutions in dimension d = 2 to the primal prob-

lem (2.33) and to the corresponding dual problem (2.34) presented in Section 2.4.1 for

the Lagrangian L (2.9) presented in Section 2.2.1. In the cases N = 2 and N = 3 one can

find explicit solutions for both problems. Recall that the solution to the primal problem

X = (xi)i=1,...,N , xi ∈ R2, and the associated Lagrange multipliers, λ = (λij)i<j, λij ∈ R+,

represent a critical point to the Lagrangian, therefore they satisfy the complementary

slackness condition (2.6) and the Euler-Lagrange equation (2.7). These two conditions

together with primal and dual feasibility, i.e., F (X̄) ≤ 0 and λ̄ ≥ 0, respectively, consti-

tute the necessary conditions for optimality, known as KKT-conditions.

For N = 2 in dimension d = 2, we get from the KKT-conditions:(1/N − 2λ)(x1 − x2) = 0

(4R2 = |x1 − x2|2 and λ ≥ 0) or (4R2 < |x1 − x2|2 and λ = 0)

Any solution to this system satisfies 2R = |x̄1− x̄2| and λ̄ = 1/4. The solution to the dual

problem is also λ̂ = 1/4. In this case, we have d∗ = p∗ = R2 and the critical-point (X̄, λ̄)

is a saddle-point of the Lagrangian. Furthermore, the matrix A(λ̄) is null, therefore the

Arrow-Hurwicz method (2.13) does not converge towards the saddle-point.
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For N = 3 in dimension d = 2, we obtain:

x1 − 〈x〉 = 2
(
λ12(x1 − x2) + λ13(x1 − x3)

)
x2 − 〈x〉 = 2

(
λ12(x2 − x1) + λ23(x2 − x3)

)
x3 − 〈x〉 = 2

(
λ13(x3 − x1) + λ23(x3 − x2)

)
(4R2 = |x1 − x2|2 and λ12 ≥ 0) or (4R2 < |x1 − x2|2 and λ12 = 0)

(4R2 = |x1 − x3|2 and λ13 ≥ 0) or (4R2 < |x1 − x3|2 and λ13 = 0)

(4R2 = |x2 − x3|2 and λ23 ≥ 0) or (4R2 < |x2 − x3|2 and λ23 = 0)

Apart from permutations and translations, this system has several solutions, including

a saddle-point of the Lagrangian, as we will see next. By symmetry, we have λ12 = λ13 =

λ23 = λ. Moreover, from basic triangle geometry we have:

x1 − 〈x〉 = 2λ
(
(x1 − x2) + (x1 − x3)

)
= 2λ · 3

(
x1 − 〈x〉

)
.

Thus, all pairs (X̄, λ̄) satisfying |x̄1 − x̄2| = |x̄1 − x̄3| = |x̄2 − x̄3| = 2R, λ̄ = 1
6

are

solutions to this system. The solution to the dual problem satisfies σ̂i = 2/6, i = 1, 2, 3,

therefore, λ̂12 = λ13 = λ23 = 1/6 is a solution to the dual problem. In this case, we

have d∗ = p∗ = 2R2 and the critical-point (X̄, λ̄) is a saddle-point of the Lagrangian.

Furthermore, the matrix A(λ̄) is null, therefore the Arrow-Hurwicz method does not

converge.

For N = 4, we look for solutions of the form:

|x1 − x2| = |x2 − x3| = |x3 − x4| = |x4 − x1| = 2R

λ12 = λ23 = λ34 = λ14 =: λ,

λ13 = λ24 = 0

We only need to compute λ. By using a geometrical argument we obtain:

x1−〈x〉 = 2λ
(
(x1−x2)+(x1−x4)

)
= λ

(
(x1−x2)+(x1−x4)+(x1−x3)

)
= 4λ

(
x1−〈x〉

)
,

therefore λ = 1/4. These are solutions to the primal problem and we get p∗ = 4R2. On

the other hand, the solution to the dual satisfies σ̂i = 3/8 and we have d∗ = 3R2, which

is strictly smaller than p∗, consequently, a solution of the primal is not a saddle-point of

the Lagrangian.
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[117] H. A. Makse, J. Brujić, and S. F. Edwards. Statistical mechanics of jammed matter.

Phys. Granul. Media, pages 45–85, 2004.

[118] T. Mammoto and D. E. Ingber. Mechanical control of tissue and organ development.

Development, 137(9):1407–1420, 2010.

[119] P. A. Martin and J. Piasecki. One-dimensional ballistic aggregation: Rigorous long-

time estimates. Journal of statistical physics, 76(1-2):447–476, 1994.

[120] P. A. Martin and J. Piasecki. Aggregation dynamics in a self-gravitating one-

dimensional gas. Journal of statistical physics, 84(3-4):837–857, 1996.

[121] B. Maury. Direct stimulation of aggregation phenomena. Communications in Math-

ematical Sciences, 2(Supplemental Issue):1–11, 2004.

[122] B. Maury. A time-stepping scheme for inelastic collisions. Numer. Math.,

102(4):649–679, 2006.

194



[123] B. Maury, A. Roudneff-Chupin, F. Santambrogio, and J. Venel. Handling congestion

in crowd motion models. Net. Het. Media, 6(3):485–519, 2011.

[124] B. Maury and J. Venel. Handling of contacts in crowd motion simulations. Traffic

and Granular Flow’07, pages 171–180, 2009.

[125] B. Mehlig, M. Wilkinson, K. Duncan, T. Weber, and M. Ljunggren. Aggregation

of inertial particles in random flows. Physical Review E, 72(5):051104, 2005.

[126] L. Meinecke and M. Eriksson. Excluded volume effects in on-and off-lattice reaction–

diffusion models. IET systems biology, 11(2):55–64, 2016.

[127] F. A. Meineke, C. S. Potten, and M. Loeffler. Cell migration and organization in the

intestinal crypt using a lattice-free model. Cell proliferation, 34(4):253–266, 2001.

[128] P. Michael and R. Zoltan. Active zone of growing clusters: Diffusion-limited aggre-

gation and the eden model. Phys. Rev. Lett., 53:415, 1984.

[129] J. J. Moreau. Unilateral contact and dry friction in finite freedom dynamics. In

Nonsmooth mechanics and Applications, pages 1–82. Springer, 1988.

[130] S. Motsch and D. Peurichard. From short-range repulsion to hele-shaw problem in

a model of tumor growth. Journal of mathematical biology, 76(1-2):205–234, 2018.

[131] S. Müller-Pfeiffer, H.-J. Anklam, and W. Haubenreisser. A generalized ballistic

aggregation model for the simulation of thin film growth with special consideration

of nodular growth. physica status solidi (b), 160(2):491–504, 1990.

[132] J. D. Murray. Mathematical biology. i, volume 17 of interdisciplinary applied math-

ematics, 2002.

[133] O. R. Musin. The kissing number in four dimensions. Annals of Mathematics, pages

1–32, 2008.

[134] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business

Media, USA, second edition, 2006.

[135] A. Okabe. Spatial tessellations. Wiley Online Library, 1992.

[136] S. Okuzumi, H. Tanaka, and M.-a. Sakagami. Numerical modeling of the coagulation

and porosity evolution of dust aggregates. The Astrophysical Journal, 707(2):1247,

2009.

[137] G. Y. Onoda and E. G. Liniger. Random loose packings of uniform spheres and the

dilatancy onset. Phys. Rev. Lett., 64:2727–2730, May 1990.

195



[138] J. M. Osborne, A. G. Fletcher, J. M. Pitt-Francis, P. K. Maini, and D. J. Gav-

aghan. Comparing individual-based approaches to modelling the self-organization

of multicellular tissues. PLoS computational biology, 13(2):e1005387, 2017.

[139] L. Paoli and M. Schatzman. A numerical scheme for impact problems i: The one-

dimensional case. SIAM Journal on Numerical Analysis, 40(2):702–733, 2002.

[140] L. Paoli and M. Schatzman. A numerical scheme for impact problems ii: The

multidimensional case. SIAM journal on numerical analysis, 40(2):734–768, 2002.

[141] J. K. Parrish and W. M. Hamner. Animal groups in three dimensions: how species

aggregate. Cambridge University Press, 1997.

[142] S. N. Pathak, D. Das, and R. Rajesh. Inhomogeneous cooling of the rough granular

gas in two dimensions. EPL (Europhysics Letters), 107(4):44001, 2014.

[143] N. Pelechano and A. Malkawi. Evacuation simulation models: Challenges in mod-

eling high rise building evacuation with cellular automata approaches. Automation

in Construction, 17(4):377 – 385, 2008.

[144] M. Pelliccione and T.-M. Lu. Evolution of Thin Film Morphology: Modelling and

Simulations. Springer-Verlag Berlin Heidelberg, 2008.

[145] B. Perthame, F. Quirós, M. Tang, and N. Vauchelet. Derivation of a Hele-Shaw

type system from a cell model with active motion. arXiv preprint arXiv:1401.2816,

2014.

[146] B. Perthame, F. Quirós, and J. L. Vázquez. The Hele–Shaw asymptotics for me-

chanical models of tumor growth. Arch. Ration. Mech. Anal., 212(1):93–127, 2014.

[147] B. Perthame and N. Vauchelet. Incompressible limit of a mechanical model of

tumour growth with viscosity. Phil. Trans. R. Soc. A, 373(2050):20140283, 2015.

[148] D. W. Peterson. A review of constraint qualifications in finite-dimensional spaces.

SIAM Review, 15(3):639–654, 1973.

[149] D. Peurichard, F. Delebecque, A. Lorsignol, C. Barreau, J. Rouquette, X. De-

scombes, L. Casteilla, and P. Degond. Simple mechanical cues could explain adipose

tissue morphology. Journal of theoretical biology, 429:61–81, 2017.

[150] M. J. Plank and M. J. Simpson. Models of collective cell behaviour with crowding

effects: comparing lattice-based and lattice-free approaches. Journal of the Royal

Society Interface, 9(76):2983–2996, 2012.

[151] R. Poliquin and R. Rockafellar. Tilt stability of a local minimum. SIAM Journal

on Optimization, 8(2):287–299, 1998.

196
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Grenoble, 2015.
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