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Abstract. Pose estimation, i.e. predicting a 3D rigid transformation
with respect to a fixed co-ordinate frame in, SE(3), is an omnipresent
problem in medical image analysis. Deep learning methods often parame-
terise poses with a representation that separates rotation and translation.
As commonly available frameworks do not provide means to calculate
loss on a manifold, regression is usually performed using the L2-norm
independently on the rotation’s and the translation’s parameterisations.
This is a metric for linear spaces that does not take into account the Lie
group structure of SE(3).
In this paper, we propose a general Riemannian formulation of the pose
estimation problem, and train CNNs directly on SE(3) equipped with a
left-invariant Riemannian metric. The loss between the ground truth and
predicted pose (elements of the manifold) is calculated as the Riemannian
geodesic distance, which couples together the translation and rotation
components. Network weights are updated by back-propagating the gra-
dient with respect to the predicted pose on the tangent space of the man-
ifold SE(3). We thoroughly evaluate the effectiveness of our loss function
by comparing its performance with popular and most commonly used ex-
isting methods, on tasks such as image-based localisation and intensity-
based 2D/3D registration. We also show that hyper-parameters, used
in our loss function to weight the contribution between rotations and
translations, can be intrinsically calculated from the dataset to achieve
greater performance margins.

1 Introduction

Intensity-based registration and landmark matching are the de-facto standards
to align data from multiple image sources into a common co-ordinate system.
Applications that require intensity-based registration include e.g., atlas-based
segmentation [1], motion-compensation [15], tracking [10], or clinical analysis of
the data visualised in a standard co-ordinate system. These often require manual
initialisation of the alignment since general optimisation methods often cannot
find a global minimum from any given starting position on the cost function.
An initial rigid registration can be achieved by selecting common landmarks [2]
through an iterative agent, which impedes hard real-time constraints or less
robustly through local image descriptors [19].
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Convolutional Neural Networks (CNNs) have shown promising results for
intra and inter modal alignment [10, 4]. These approaches show that informa-
tion about a learn-able canonical co-ordinate system is encoded directly in the
features of an image. Early work in this domain showed that image’s pose (i.e.
position and orientation) can be regressed relatively to a canonical alignment
from a large set of training images sampling the canonical space [7]. Follow-up
formulations for medical applications showed similar success for motion compen-
sation and device localisation [10, 4]. However, these approaches rely on heuristic
approximations and manual fine-tuning of the CNN loss used to characterise the
poses’ prediction error. This fosters domain shift problems and limits options for
interchangeable application of various deep learning pose estimation models.

Contribution: We introduce a new loss function that calculates the geodesic
distance of two poses on the SE(3) manifold, from a data-adaptive Riemannian
metric. We derive appropriate gradients that are required for CNN back propaga-
tion. Our method couples the translation and rotation parameters, and regresses
them simultaneously as one parameter on the Lie algebra se(3). We show that
our loss function is agnostic to the architecture by training different CNNs and
can effectively predict poses that are comparable to state-of-the-art methods. In
addition, we demonstrate that hyper-parameters tuning for our loss function can
be directly calculated from the dataset, thus avoiding long and expensive opti-
misation searches to boost performance. Finally, we validate quantitatively by
benchmarking the performance of our loss function with current state-of-the-art
methods, and validate their statistical significance with Student’s t-test.

Background: A pose, i.e. a rigid transformation in 3D, is an element of the Lie
group SE(3), the Special Euclidean group in 3D. A pose has two components; a
rotation component of group SO(3) and a translation component of R3. SE(3)
has the following matrix representation (homogeneous representation):

SE(3) =

{
X | X =

[
R t
0 1

]
, t ∈ R3, R ∈ SO(3)

}
(1)

In usual implementations of SE(3), the rotation (SO(3)) can be parame-
terised in any form as long as the group structure is implicitely imposed. R can
be stored as Euler angles, quaternions, axis-angle or SO(3) rotation matrix. The
numerical properties of each parameterisation need to be considered carefully,
especially when designing deep learning applications, as it can impact efficacy.

Hyunh et al. [5] have shown that Euler parameterisation is not unique, this
is undesirable as two different mappings can represent the same rotation. A ro-
tation matrix, carrying 9 parameters, is over parameterised and has a strict or-
dinance on orthonormality. Non-orthogonal rotation matrix can result in skewed
or sheared transformations, making it undesirable also. Quaternion parameter-
isation are often favoured as it can be mapped to valid transformations after
normalisation. However, the parameterisation chosen for the rotation is almost
never coupled with the parameterisation of the translation, thus denying the
intrinsic structure of SE(3) = SO(3) n R3. Here, we choose to represent the
rotation and the translation together as an element of the Lie algebra of SE(3),
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i.e. its tangent space at the identity element of the group, denoted se(3). It repre-
sents the best linear approximation of SE(3) around its identity element. Since
the Lie group SE(3) is 6-dimensional, an element of se(3) is a 6D vector.

One can define a collection of distances on SE(3), which can be used as
loss functions in deep learning applications. A popular choice for the loss is
the Euclidean distance associated to the L2-norm. However, the L2-norm is not
desirable on SE(3) since it does not respect the manifold’s non-linearity and
can lead to unpredictable behaviours. It is also undesirable to use two separates
L2-norms on SO(3) and R3 since SE(3) is not a direct product, and SO(3) itself
is non-linear: this can be observed visually with quaternions, e.g., the Euclidean
distance of two quaternions can be small, despite the rotation being large. This
disparity causes network weight updates to be sub optimal. Hence it is desirable
to have a loss function that respects the structure of SE(3).
Related Work: Popular deep learning frameworks, such as Caffe, TensorFlow,
Theano, PyTorch, do not provide the means to regress on SE(3), as the common
losses used are cross-entropy for probabilities or a p-norms for distances.

Kendall et al. [7] uses the L2-norm to regress parameters on the Lie algebra
se(3) directly, with a β parameter to weight the contribution between rota-
tion and translation. This was similarly performed by authors in [13, 17, 10, 9],
who use the predicted parameters for registration tasks. Alternatively, [8, 16] re-
parameterised the pose parameters as projected co-ordinates on a 2D view plane.
This was similarly performed by [4, 3] with Anchor Points, where three arbitrary
selected reference points on a 2D plane define the plane’s location in 3D space.
Using the L2-norm to calculate the Euclidean distance between a predicted pro-
jection co-ordinate and the ground truth projection co-ordinate is appropriate,
as the L2-norm is the appropriate metric. To the best of our knowledge, there
is currently no loss function that respects the full Lie group structure of SE(3),
for example invariant Riemannian metrics on SE(3) have not been used.

2 Method

Any CNN Architecture

p = 𝑟$, 𝑟& , 𝑟', 𝑡$, 𝑡& , 𝑡' ∈ 𝔰𝔢(3)
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Fig. 1. CNN architecture using a Riemannian geodesic distance on SE(3) as the loss.

The core of our method is to implement a new loss layer that is agnostic
to the network architecture used: we define the loss as the geodesic distance on
SE(3) equipped with a left-invariant Riemannian metric, shown in Figure 1.
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Left-invariant Riemannian metric on SE(3): A Riemannian metric on
SE(3) is a smooth collection of positive definite inner products on each tan-
gent space of SE(3). Then, SE(3) becomes a Riemannian manifold. With a left-
invariant metric, it is enough to define an inner product on the tangent space
at the identity of SE(3), and then “propagate” it: the metric is s.t. ∀u, v ∈
Tp1SE(3) and ∀p1, p2 ∈ SE(3): < DLp1(p2)u,DLp1(p2)v > |Lp1

p2 =< u, v > |p2

where Lp1 is the left translation by p1: Lp1(p2) = p1 ◦ p2, and DLp1(p2) its
differential at p2. We define an inner product Z at p2 = identity so that we get
a metric Zp1

at the tangent space of any pose p1 of SE(3) [12], and thus to
compute inner products and norms of tangent vectors at p1.
Loss and gradient: We use the loss function: loss(p, p̂) = distZSE(3)(p, p̂)2 =∥∥LogZp̂ (p)

∥∥2
Zp̂

where distZSE(3) is the geodesic distance and Log is the Riemannian

logarithm at p̂ i.e. a tangent vector at p̂. We use a left-invariant Riemannian
metric, thus: loss(p, p̂) = ||DLp̂−1 .LogZp̂ (p)||2Z , where we now have a tangent
vector at the identity and we can use the inner product Z. If we take Z being
the canonical inner product at identity, this is the L2-norm but on the tangent
vector transported from p̂ to identity using the differentialDLp̂−1 . The backward
gradient corresponding to the loss seen as a function of p̂ is ∇p̂loss(p, p̂) =

−2 · LogZp̂ (p) [14] which is a tangent vector at p̂.
Implementation: The inputs to the loss layer are the poses p and p̂ for ground
truth and prediction respectively. We represent a pose with geomstats imple-
mentation [11] i.e. as the Riemannian Logarithm of canonical left-invariant met-
ric on SE(3) s.t. p = {r, t} = {rx, ry, rz, tx, ty, tz} ∈ R6. With this parameter-
isation, the rotation r is in axis-angle parameterisation, the inner product Z
is a 6x6 positive definite matrix and the differential DLp̂ of the left transla-

tion is the 6x6 jacobian matrix: Jp̂ =

(
∂Lp̂

r

∂r
∂Lp̂

r

∂t
∂Lp̂

t

∂r
∂Lp̂

t

∂t

)
. We denote vt = LogZp̂ (p)

which is a tangent vector at p̂ in this parameterisation. The loss is calculated
by loss(p, p̂) = vTt ∗ JT

p̂−1 ∗Z ∗ Jp̂−1 ∗ vt where ∗ is the matrix multiplication and
the Riemannian logarithm vt is given by geomstats. The gradient is calculated
by: ∇p̂loss(p, p̂) = −2 ∗ JT

p̂−1 ∗ Z ∗ Jp̂−1 ∗ vt.

3 Experiments and Results

We evaluate our novel loss function on three datasets: (Exp1) the publicly
available PoseNet dataset [7], which allows a direct comparison to state-of-the-
art in Computer Vision and further evaluates optimisation strategies for these
experiments. (Exp2), C-Arm X-Ray to Computed Tomography (CT) alignment
problem with data from [4]. (Exp3), the pose estimation dataset for motion
compensation in fetal Magnetic Resonance Imaging (MRI) from [3].

In each experiment, we benchmark existing SE(3) parameterisation strate-
gies with the respective loss function used. PoseNet: direct regression of parame-
ters on the Lie algebra se(3), where a combination of quaternion and translation
parameters are regressed using L2-norms with a static β parameter to weight
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the respective contribution. Anchor Points formulation: a re-parameterisation of
SE(3) in Euclidean space, where three statically defined points in 3D space de-
fines a plane. Each Anchor Point is regressed independently using the L2-norm.
Finally, our SE(3) loss, i.e., the geodesic distance on the Riemannian manifold.

All experiments are conducted using the Caffe framework, on a computer
equipped with an Intel i7 6700K CPU and Nvidia Titan X Pascal GPU.

Exp.1: Metric Localisation on Natural Images: In this experiment, we
replicated PoseNet’s original experiment [7] on the King’s College dataset as a
baseline benchmark. [7] extracted images from a series of videos, and fed them
into a structure from motion pipeline to create a 3D model in order to ex-
tract plane locations with respect to a world co-ordinate reference frame. The
parameterisations of this dataset are quaternions with translation offsets. We
mirrored the dataset using axis-angle representation instead of quaternions, and
used our SE(3) loss function as regressor. Both networks were trained with a
GoogLeNet [18] base architecture with no parameter weighting.

Table 1. Mean Error of Loss Functions on Natural Images

Rx Ry Rz tx ty tz G.D.

PoseNet 4.141 7.774 4.597 1.341 1.139 0.154 23.629
SE(3) 4.306 6.675 11.580 1.307 1.149 0.155 14.973

A: Without Parameter Weighting

Rx Ry Rz tx ty tz G.D.

PoseNet 1.790 2.612 2.371 1.161 1.306 0.154 13.516
SE(3) 1.870 3.143 3.662 1.759 1.240 0.156 16.370

B: With Parameter Weighting

We convert the predicted and ground truth poses to Euler angles in degrees
and translation in meters, along with the geodesic distance (G.D.) on the man-
ifold. Table 1-A shows the average errors of each parameter. It can be seen that
the error is similar in each Euler and translation parameters, which is confirmed
by Student’s t-test to be insignificant. However, the geodesic distance error of
SE(3) is much lower compared to PoseNet. Despite this, Student’s t-test still
shows no significant difference, which is caused by the large variance of PoseNet.

To tune the weight parameter β, Kendall et al. [7] performed grid search and
found that β = [120, 750] works best for indoor scenes and β = [250, 2000] for
outdoor scenes. Grid search is computationally very expensive, and it can be
difficult to find an optimal value if the search interval is coarse. We show here
that we can compute a data-adaptive Riemannian metric on SE(3) to weight
the contribution of each parameter in the loss.

We first train the network with no weightings, followed by an inference pass
through the entire validation dataset. We compute the prediction error as the
rigid transformation: (ytrue)

−1 ◦ ypred and consider the dataset of their Rie-
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mannian logarithms at the identiy {Xi}i. The parameter weightings are then

calculated by diag(cov(Xi)
−1

). The diagonal of the covariance matrix shows the
variance of each parameter, whereas the inverse shows how tightly coupled it is
to the mean. Thus, the higher the diagonal element, the tighter the variable is
clustered. Elements, that are more sparsely coupled, are weighted less as they
are likely to induce errors. The optimal weightings for the King’s College dataset
from [7] are: diag(cov(Xi)

−1
) = {0.147, 0.954, 0.261, 0.001, 0.003, 0.002}.

Table 1-B shows the performance of the networks retrained with suggested
weightings. Student’s T-test still shows no significant difference between errors
induced by PoseNet and SE(3). We note that having different weightings on
the rotation part induces a distance that is not a Riemannian geodesic distance
anymore. The properties of this distance will be investigated in future work.

Exp.2: Plane Detection on C-ARM Imaging: [4] demonstrated the ver-
satility of CNNs for performing 2D/3D registration of C-Arm X-ray images to
CT volumes using Anchor Points. In this experiment, we replicate the 2D/3D
registration task using CaffeNet and evaluate the performance with the newly
proposed SE(3) parameterisation and loss regressor. For comparison, a network
was also trained with PoseNet’s parameterisation. All weight parameters are set
to a default of 1. Table 2 shows the performance of each parameterisation.

Table 2. Mean Error of Loss Functions on DRR (Digitally Reconstructed Radiographs)

Rx Ry Rz tx ty tz G.D.

PoseNet 7.960 3.136 7.547 62.650 57.315 45.852 15201.845
Anchor Points 7.274 2.511 7.059 59.292 54.889 40.576 15115.858

SE(3) 8.243 3.697 7.924 58.647 55.477 44.189 14170.722*

A: Healthy Patient Dataset

Rx Ry Rz tx ty tz G.D.

PoseNet 10.653 5.788 10.760 69.107 72.238 57.726 23495.708
Anchor Points 8.540 4.060 8.553 65.521 68.543 54.133 21725.921

SE(3) 10.511 6.789 11.913 62.588 68.747 54.110 19624.246*

B: Pathological Patient Dataset

Here, we convert the predicted and ground truth poses to Euler angles in
degrees, and translation to millimeters. Similar to Exp1, the average error for
rotation and translation (for both healthy and pathological patients) are similar,
and insignificant as confirmed by Student’s t-test. However, there is a noticeable
trend in average geodesic distance errors. Student’s t-test showed significant
difference (marked by *) between SE(3) loss compared to PoseNet and Anchor
Points for both datasets. This shows that the geodesic metric is able to quantify
properties that the metric expressed in Euler-translation parameters cannot.

Exp.3: 2D/3D Registration on fetal brain MRI: We replicate the results
evaluation method from [3], and evaluate our loss regressor for 2D/3D regis-
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tration used during motion compensation of fetal MRI data in canonical organ
space. [3] uses aligned, reconstructed 3D brain volumes to learn a canonical ori-
entation space and utilises an approach based on GoogLeNet to reorient unseen
2D brain slices into their correct anatomical location in this space. To sample
the canonical training space we use the same Euler iteration method (i.e., 18◦

steps in Rx Ry Rz between −90◦ and +90◦, and 2mm offsets in Tz constrained
between -40 and 40) to generate 1.12M images for the training set. The evalua-
tion method is performed similarly as [3], with the performance summarised in
Table 3. The validation dataset is composed of brain slices sampled with random
Euler angles between −90◦ and +90◦, and random offsets between -40 and +40.

Table 3. Mean Error of Loss Functions on Fetal Brain Images

CC MSE PSNR SSIM G.D.

PoseNet 0.8199 1046.4 18.6509 0.5448 18.1708
Anchor Points 0.8378 935.0 19.3564 0.5845 15.7504

SE(3) 0.8732* 724.9713* 20.7484* 0.6470* 10.0836*

Our SE(3) loss function shows drastic improvement in all image similarity
metrics (Cross Correlation, Mean Squared Error, Peak Signal-to-Noise Ratio
and Structural SIMilarity). This is confirmed by Student’s t-test which shows
significant difference. This is crucial for Slice-to-Volume Registration (SVR) ap-
plications as the metric for slice alignment is derived from the metrics above [6].

Discussion: A pose is a combination of rotation and translation, therefore it
seems reasonable that a CNN predicting a pose should use a metric that accounts
for both simultaneously. Metrics are perceptually a method of measurement with
its own set of rules, e.g., imperial vs. metric system for quantifying distances.
Choosing a metric for a target application is not always straight forward and of-
ten a question of required precision, e.g., one would not measure the diameter of
a pinhead with a meter rule, nor measure distance between cities with a caliper.
We have shown that our loss function, using a Riemannian geodesic distance
on SE(3) is better suited for medical registration tasks as shown in Exp2 and
Exp3. Exp2 shows each test case yielding no significant difference on Euler and
translation parameters, with significant difference on geodesic parameters. This
suggests that Euler-translation parameters separately are not able to fully quan-
tify the properties of SE(3). In Exp3, our loss function was able to significantly
improve the image similarity metrics, as used by SVR algorithms.

4 Conclusion

In this work, we have presented a novel loss function to regress poses on the Lie
group SE(3), and derived the necessary gradients required for CNN training.
We showed that our method alleviates the need of re-parameterising regression
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parameters, which addresses the domain shift problem of deep learning applica-
tions. Our approach achieves similar results to manually fine-tuned approxima-
tions out-of-the-box, e.g., for data from a new scanner. This is demonstrated on
the current state-of-the-art for pose estimation, PoseNet, where we show that our
method achieves similar performance as the carefully tuned approximation used
in [7]. We also show significant improvements for medical image pose estimation
and outperform the state-of-the-art in this domain [4, 3].
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