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Abstract

Thin-walled rectangular hollow section (RHS) struts are widely used in current structural

engineering practice due to their mass efficiency and relative ease of manufacture. Owing

to their optimized geometric properties, they are vulnerable to local–global interactive

buckling and exhibit highly unstable post-buckling behaviour with severe imperfection

sensitivity when the local buckling load is close to the global buckling load. The current

work investigates the underlying mechanism of local–global interactive buckling of RHS

struts using both analytical and finite element (FE) approaches.

Variational models formulated using analytical techniques, describing the nonlinear local–

global mode interaction in thin-walled RHS struts with varying flange–web joint rigidity,

different strut lengths and geometric imperfections under pure compression, are presented.

A system of nonlinear differential and integral equations subject to boundary conditions is

formulated and solved using numerical continuation techniques. For the first time, the equi-

librium behaviour of such struts with different cross-section joint rigidities is highlighted

with characteristically unstable interactive buckling paths and a progressive change in the

local buckling wavelength. Studies on the effects of strut length identify the boundaries

for the four distinct length-dependent zones, where different characteristic post-buckling

behaviour are exhibited. The most unstable zone is demonstrated to have a considerably

narrower range than previously determined owing to the consideration of more realistic

corner boundary conditions within the cross-section.

3



4

Imperfection sensitivity studies identify the high degree of sensitivity of struts exhibiting

mode interaction. They also reveal that local and global imperfections are relatively more

significant where global and local buckling are critical respectively. Moreover, a unified

local geometric imperfection measurement based on equal local bending energy is proposed

to determine the most severe local imperfection profile. It reveals that the most severe

profile is modulated rather than periodically distributed along the strut length for purely

elastic case.

For verification and extensive parametric study purposes, a nonlinear FE model, which

considers material nonlinearity, geometric imperfections, and residual stresses, is developed

within the commercial package Abaqus. The classical solutions and experimental results

from two independent studies are used to verify and validate the FE model, both of which

show excellent comparisons. The validated FE model is then used to verify the variational

model, which also shows excellent comparisons in local buckling wavelengths, cross-section

deformation profile, ultimate load and the mechanical behaviour.

Finally, parametric studies on geometric properties, material nonlinearity and residual

stresses are conducted using the developed FE model to understand the behaviour of RHS

struts exhibiting mode interaction in more practically realistic scenarios. Based on the

numerical results and existing experimental results from the literature, the current design

rules for thin-walled welded RHS struts are assessed by means of reliability analysis in

accordance with Annex D of EN1990. A modified Direct Strength Method (DSM) equation

has been proposed and it is shown to provide a better ultimate load prediction than it does

presently.



Acknowledgements

First of all, I would express my greatest gratitude and thanks to my first supervisor Profes-

sor Ahmer Wadee. He has always been very patient and kind and gave me lots of support

and encouragement. As one of the top 100 UK practising scientists, Ahmer’s expertise

and strong background in nonlinear mechanics and mathematics has inspired me a great

deal and always helped me achieve a deeper understanding of my research topic during

discussion, which greatly enriched my research work.

Secondly, I would give my thanks to my second supervisor Dr Adam J. Sadowski. Working

with him was a wonderful experience. His expertise in finite element analysis and program-

ming made me more efficient during my work. He is always a good listener and always

gave me the right directions.

Without both supervisors giving me the offer in 2014, I would not have the opportunity to

spend the most wonderful 3 years working with the top engineering scientists at the one of

the best universities in the world. Without them, the thesis will have never been realized.

I also would like to express my thanks to Professor Leroy Gardner, one of Ahmer’s best

friends in the department. He is a very successful researcher and educator. He was always

very friendly and gave me some very helpful suggestions and advice.

I would also express my gratitude to all the staff and colleagues in the Department, who

helped me during the past three years and half and made the daily college life more inter-

5



6

esting and enjoyable. Particularly, I would like to express my thanks and gratitude to Dr

Merih Kucukler, Dr Jialiang Yu, Dr Fernando Madrazo-Aguirre, Dr Reuben Brambleby,

Dr Elizabeth Liu, Dr Jie Wang, Bowen Xu, Oluwole Kunle Fajuyitan, Cagatay Demirci,

Nicholas Hadjipantelis, Andreas Fieber, Bradley Pring and Sophie Day for their support

and fruitful discussions throughout my PhD study; Professor Catherine O’Sullivan, Fion-

nuala Donovan and Sarah Willis for their support in the processes of the PhD assessments

and daily issues.

Moreover, I am grateful for the financial support provided by the President’s PhD Schol-

arship scheme from Imperial College London.

Finally, I would like to dedicate this thesis to my parents. It is very difficult for them

to let their only child study in a country that is over 9 thousand kilometres from home.

They sacrificed themselves a great deal by supporting me. It is their great love that makes

the completion of this thesis possible. Therefore, I would like to express my enormous

gratitude to them and hope they would feel happy and proud when they read this thesis.



Contents

List of Figures 16

List of Tables 32

Nomenclature 36

1 Introduction 47

1.1 Buckling analysis type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.1.1 Linear buckling analysis . . . . . . . . . . . . . . . . . . . . . . . . 50

1.1.2 Nonlinear buckling analysis . . . . . . . . . . . . . . . . . . . . . . 53

1.2 Interactive buckling phenomena . . . . . . . . . . . . . . . . . . . . . . . . 57

1.2.1 Augusti model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.2.2 Interactive buckling in real structures . . . . . . . . . . . . . . . . . 60

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7



CONTENTS 8

1.4.1 Chapter 2: Literature review . . . . . . . . . . . . . . . . . . . . . . 64

1.4.2 Chapter 3: FE model development . . . . . . . . . . . . . . . . . . 65

1.4.3 Chapter 4: Behaviour of long struts with semi-rigid flange–web joints 65

1.4.4 Chapter 5: Variational modelling of practical cases . . . . . . . . . 66

1.4.5 Chapter 6: Length effects . . . . . . . . . . . . . . . . . . . . . . . 66

1.4.6 Chapter 7: Imperfection sensitivity . . . . . . . . . . . . . . . . . . 67

1.4.7 Chapter 8: Sensitivity to manufacturing tolerance level imperfections 67

1.4.8 Chapter 9: Parametric study and suggestions for improved design

guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.4.9 Chapter 10: Conclusions and future work . . . . . . . . . . . . . . . 68

2 Literature Review 69

2.1 Analytical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.1.1 Engineering approaches . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.1.2 Theoretical approaches . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.2 Numerical approach to interactive buckling . . . . . . . . . . . . . . . . . . 84

2.2.1 Finite Element Method (FEM) . . . . . . . . . . . . . . . . . . . . 84

2.2.2 Generalized Beam Theory (GBT) . . . . . . . . . . . . . . . . . . . 88

2.2.3 Finite Strip Method (FSM) . . . . . . . . . . . . . . . . . . . . . . 89

2.3 Imperfection sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



CONTENTS 9

2.3.1 Geometric imperfections measurement and modelling . . . . . . . . 94

2.3.2 Residual stresses measurement and modelling . . . . . . . . . . . . 98

2.3.3 Imperfection tolerance and modelling recommendations in Eurocode

3 (EC3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.3.4 Imperfection sensitivity studies . . . . . . . . . . . . . . . . . . . . 103

2.4 Experimental studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.5 Related design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.5.1 Eurocode 3 approach . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.5.2 Direct Strength Method . . . . . . . . . . . . . . . . . . . . . . . . 119

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3 Finite element model development and validation 122

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.2 Development of finite element models . . . . . . . . . . . . . . . . . . . . . 123

3.2.1 Strut modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.2.2 Material Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.2.3 Geometric imperfection modelling . . . . . . . . . . . . . . . . . . . 131

3.2.4 Residual stress modelling . . . . . . . . . . . . . . . . . . . . . . . . 132

3.3 Analysis type and solution strategy . . . . . . . . . . . . . . . . . . . . . . 134

3.3.1 Linear buckling analysis . . . . . . . . . . . . . . . . . . . . . . . . 135



CONTENTS 10

3.3.2 Nonlinear analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.4 Verification against classical solutions . . . . . . . . . . . . . . . . . . . . . 140

3.4.1 Local buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.4.2 Global buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.5 Validation against experimental results . . . . . . . . . . . . . . . . . . . . 144

3.5.1 Test results from Usami & Fukumoto (1984) . . . . . . . . . . . . . 144

3.5.2 Results from Yang et al. (2017) . . . . . . . . . . . . . . . . . . . . 146

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4 Behaviour of long struts with semi-rigid flange–web joints 151

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.2 Development of the variational model . . . . . . . . . . . . . . . . . . . . . 152

4.2.1 Modal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.2.2 Total potential energy . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.2.3 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.4 Verification and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.5 Simplified approach to predicting the location of secondary bifurcation . . 179

4.6 Parametric studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.6.1 Length variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



CONTENTS 11

4.6.2 Cross-section aspect ratio variation . . . . . . . . . . . . . . . . . . 183

4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5 Variational modelling of practical cases 188

5.1 Modal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.2 Geometric imperfections description . . . . . . . . . . . . . . . . . . . . . . 193

5.3 Potential energy formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.3.1 Strain energy due to bending . . . . . . . . . . . . . . . . . . . . . 195

5.3.2 Membrane strain energy . . . . . . . . . . . . . . . . . . . . . . . . 198

5.3.3 Work done by the load and total potential energy . . . . . . . . . . 200

5.4 Variational formulation and eigenvalue analysis . . . . . . . . . . . . . . . 201

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6 Length effects 204

6.1 Numerical solution strategy for variational model . . . . . . . . . . . . . . 205

6.2 Numerical results and verification . . . . . . . . . . . . . . . . . . . . . . . 207

6.2.1 Long length strut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.2.2 Transitional length strut . . . . . . . . . . . . . . . . . . . . . . . . 212

6.2.3 Intermediate length strut . . . . . . . . . . . . . . . . . . . . . . . . 214

6.2.4 Short length strut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217



CONTENTS 12

6.3 Discussion and comparison with Van der Neut’s model . . . . . . . . . . . 222

6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7 Imperfection sensitivity 231

7.1 Numerical results, verification and discussion . . . . . . . . . . . . . . . . . 232

7.1.1 Global imperfections (qs0 6= 0, w0 = 0) . . . . . . . . . . . . . . . . 235

7.1.2 Local imperfections (w0 6= 0, qs0 = 0) . . . . . . . . . . . . . . . . . 238

7.1.3 Combined imperfections (qs0 6= 0, w0 6= 0) . . . . . . . . . . . . . . 242

7.1.4 Verification and discussion . . . . . . . . . . . . . . . . . . . . . . . 244

7.2 Variational model application and parametric study . . . . . . . . . . . . . 247

7.2.1 Simplified method to predict load at pitchfork bifurcation (qs0 6= 0,

w0 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

7.2.2 Simplified method to predict the ultimate load (qs0 = 10−3, w0 = 0) 250

7.2.3 Simplified method to predict the ultimate load (qs0 = 10−3, A0 =

d/200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

7.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

8 Sensitivity to manufacturing tolerance level imperfections 256

8.1 Imperfection description and modelling . . . . . . . . . . . . . . . . . . . . 257

8.2 Unified local imperfection measurement criterion . . . . . . . . . . . . . . . 258

8.3 Effects of local imperfection profiles . . . . . . . . . . . . . . . . . . . . . . 260



CONTENTS 13

8.3.1 Algorithm for determining most severe local imperfection profile . . 262

8.3.2 Effects of number of sinusoidal half-waves βi . . . . . . . . . . . . . 268

8.3.3 Effects of the degree of localization αi . . . . . . . . . . . . . . . . . 271

8.3.4 Equilibrium paths for struts with the most severe imperfection profile 275

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.4.1 Effects of localization on tangent stiffness and ultimate load . . . . 277

8.4.2 Most severe imperfection profile under amplitude tolerance constraint 279

8.4.3 Effects of superposing tolerance level global imperfections . . . . . . 281

8.5 Application and parametric study . . . . . . . . . . . . . . . . . . . . . . . 283

8.5.1 Wavelength of most severe local imperfection profile . . . . . . . . . 283

8.5.2 Global buckling loads of struts with tolerance level doubly-symmetric

cross-sectional local imperfections . . . . . . . . . . . . . . . . . . . 285

8.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

9 Parametric study 292

9.1 Algorithm for Automated GMNIA . . . . . . . . . . . . . . . . . . . . . . 292

9.2 Geometric parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

9.2.1 Plate width–thickness ratio . . . . . . . . . . . . . . . . . . . . . . 294

9.2.2 Cross-section aspect ratio . . . . . . . . . . . . . . . . . . . . . . . 297

9.3 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298



CONTENTS 14

9.3.1 Yielding stress levels . . . . . . . . . . . . . . . . . . . . . . . . . . 298

9.3.2 Effect of material strain-hardening . . . . . . . . . . . . . . . . . . 306

9.4 Residual stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

9.4.1 Effects on imperfection sensitivity . . . . . . . . . . . . . . . . . . . 309

9.4.2 Effects on equilibrium paths . . . . . . . . . . . . . . . . . . . . . . 311

9.4.3 Simplified method to determine initial local imperfection amplitude

A0
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

9.5 Comparison with the current design guidelines and reliability analysis . . . 319

9.5.1 Assessment of the Effective Width Method in EC3 and reliability

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

9.5.2 Assessment of the Direct Strength Method (DSM) and reliability

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

9.6 Proposal and reliability analysis of a modified DSM procedure . . . . . . . 327

9.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

10 Conclusions and future work 333

10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

10.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

10.2.1 Further enhancements of variational model . . . . . . . . . . . . . . 340

10.2.2 Inclusion of other factors . . . . . . . . . . . . . . . . . . . . . . . . 341

10.2.3 Statistical analysis of geometric imperfections in welded RHS members342



CONTENTS 15

10.2.4 Extension of methodology to similar problems . . . . . . . . . . . . 343

Appendices 344

A Expressions for ODEs, integral and boundary conditions 344

B Zone 2–3 boundary determination from double modulus theory 355

C Buckling load, wavelength and cross-section profiles of pure local buck-

ling mode 359

References 366



List of Figures

1.1 The Steve Jobs Theater in the Apple Campus in California, United States

with the world’s largest carbon fiber roof (Martin, 2017). . . . . . . . . . 48

1.2 Applications of thin-walled structures. . . . . . . . . . . . . . . . . . . . . . . 49

1.3 (a) Simply-supported strut under pure compression. (b) The deflection and

the curvature of the strut. (c) Equilibrium path of the strut under pure

compression using linear buckling analysis. . . . . . . . . . . . . . . . . . . 51

1.4 Typical post-buckling behaviour and the corresponding example structural

forms (Wadee, 2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.5 Koiter’s theory and its application in determining the post-buckling be-

haviour and the ultimate load of imperfect structural systems. . . . . . . . 54

1.6 Rolling ball analogy for three types of stability of equilibrium for (a) single

degree of freedom system and (b) system with more than one degree of

freedom. Case (I) is stable but (II) and (III) are both unstable. . . . . . . 56

1.7 Augusti model (1964) and sketches of its typical equilibrium paths. . . . . 59

1.8 Effect of wavelength of individual buckling mode on the interactive buckling

behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

16



LIST OF FIGURES 17

1.9 Interactive buckling in (a) build-up struts and (b) stiffened plates. . . . . 62

1.10 Link-spring model (Hunt, 1989) illustrating the effect of localized and peri-

odic deformation on the equilibrium path. . . . . . . . . . . . . . . . . . . 63

2.1 Cross-section deformation profile at different stages. (a) Local buckling; (b)

Interactive local–global buckling; (c) Local displacement change caused by

the local–global mode interaction. . . . . . . . . . . . . . . . . . . . . . . 71

2.2 The Van der Neut model of an idealized thin-walled strut and the Van der

Neut curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.3 Discrete model for analysing the interaction between the global lateral-

torsional buckling mode and the local flange buckling mode. . . . . . . . . 78

2.4 Decomposition of the global buckling mode into ‘sway’ and ‘tilt’ components. 80

2.5 Numerical continuation procedures for interactive buckling of perfect columns

in Auto. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6 Effective width of a plate under different stress distribution cases: (a) Uni-

form compression with σ1,i = σ2,i; (b) eccentric compression with σ1,i >

σ2,i > 0; (c) eccentric compression with σ1,i > 0 and σ2,i < 0. . . . . . . . 85

2.7 Square box-section strut with initial local geometric imperfections: (a) Ini-

tial state. (b) Axial compressive strain ∆. (c) Axial compressive strain ∆

and bending curvature ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.8 Illustration of the influence coefficient method of beam-column in conjunc-

tion with the finite strip method of nonlinear elastic analysis of locally buck-

led ‘cell’ element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



LIST OF FIGURES 18

2.9 Three types of structural imperfection sensitivity classified by Chilver (1976)

from the view of design philosophy. . . . . . . . . . . . . . . . . . . . . . . 93

2.10 Definition of local geometric imperfections (Schafer & Peköz, 1998a). . . . 95
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2.3 Design values of global imperfections recommended by Eurocode 3 Part 1.1

(EN-1993-1-1:2006E, 2006). . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.4 Buckling curve types for hollow section columns in Eurocode 3 Part 1.1

(EN-1993-1-1:2006E, 2006). . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.5 Imperfection factors for the separate buckling curves for compression mem-

bers made from steel (EN-1993-1-1:2006E, 2006) in EC3. . . . . . . . . . . 118

2.6 Comparison of the ulitmate load from experimental studies in the exist-

ing literature with the Effective Width Method (EWM) with the column

buckling curve being b (EN-1993-1-1:2006E, 2006) and the Direct Strength

Method (DSM) (Schafer, 2008). . . . . . . . . . . . . . . . . . . . . . . . . 118

3.1 Summary of analysis types and their objectives. . . . . . . . . . . . . . . . 135

3.2 Material and cross-section properties of square box section strut for mesh

sensitivity analysis and verification. . . . . . . . . . . . . . . . . . . . . . . 140

32



LIST OF TABLES 33

3.3 Material and geometric properties of the welded box section columns (Usami

& Fukumoto, 1984). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.4 Geometric imperfections and residual stresses in the welded box section

columns (Usami & Fukumoto, 1984). . . . . . . . . . . . . . . . . . . . . . 145

3.5 Ultimate load of columns from the tests of Usami & Fukumoto (1984) and

FE results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.6 Geometric properties and geometric imperfection sizes of two specimens

from Yang et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.7 Material properties of two specimens from Yang et al. (2017). . . . . . . . 148

4.1 Geometric properties of the rectangular hollow section strut in the numerical

example, selected to ensure global buckling is critical. . . . . . . . . . . . . 166

4.2 Theoretical values of the global and local critical buckling stresses for the

pinned cross-section case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.3 Rotational stiffness cθ and the corresponding normalized stiffness c̄θ values

used in the numerical studies. . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.4 Geometric properties of the rectangular hollow section struts in the para-

metric study, selected to ensure global bucking is critical. The flange width

b = 60 mm and the wall thickness tf = tw = 1 mm throughout. . . . . . . . 184

4.5 Comparison of the local buckling coefficient kp for the more compressed web

at the secondary bifurcation point from the full variational model, kp,AUTO,

solved using numerical continuation with Auto and the simplified method,

kp,EQ, using Eq. (4.66) from the pinned case (c̄θ = 0) to the rigid case

(c̄θ → ∞) for different cross-section aspect ratios. . . . . . . . . . . . . . . 185



LIST OF TABLES 34

6.1 Theoretical values of the global (PC
o ) and local (PC

l ) buckling loads for the

four representative length cases. . . . . . . . . . . . . . . . . . . . . . . . . 208

7.1 Theoretical values of the global and local buckling loads for the two separate

lengths studied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8.1 Number of half-waves β0 in the local buckling mode for the struts in four

characteristic length-dependent zones. . . . . . . . . . . . . . . . . . . . . . 260

8.2 Initial local imperfection parameters for the most severe local imperfection

case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

8.3 Ultimate load and local imperfection amplitude of the most severe local

periodic imperfection profile. . . . . . . . . . . . . . . . . . . . . . . . . . . 271

8.4 Ultimate load and local imperfection amplitude of the most severe local

modulated imperfection profile. . . . . . . . . . . . . . . . . . . . . . . . . 273

8.5 Normalized ultimate loads of struts with the most severe modulated local

imperfection and its approximation using periodic profiles under the ampli-

tude tolerance constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

9.1 Constants for the fitted imperfection sensitivity curves and their comparison

with FE results for four characteristic struts. . . . . . . . . . . . . . . . . . 302

9.2 Parameters for different elastic–plastic material models. . . . . . . . . . . . 306

9.3 Ratio σrc/σ
C
l for the example struts with the ECCS residual stress distri-

bution model for welded box-section members with two different uniform

tensile range lengths at different plate slenderness levels. . . . . . . . . . . 309



LIST OF TABLES 35

9.4 Constants for the fitted imperfection sensitivity curves Eq. (9.1) and their

comparison with FE results for four characteristic struts with ECCS welding

residual stress distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 311

9.5 Effect of residual stress on the ultimate load of example struts with global

imperfection qs0 = 1/1000 and local imperfection A0 = d/1000. . . . . . . 314

9.6 Principal parameters and their ranges for the parametric study for the guide-

line reliability assessment. Note that the critical buckling load ratio is al-

tered by varying the strut length. . . . . . . . . . . . . . . . . . . . . . . . 319

9.7 Coefficient of variation (COV) for geometric and material property param-

eters based on the data presented in (Schillo, 2017). . . . . . . . . . . . . . 325

9.8 Summary of reliability analysis results for the Effective Width Method in

EC3. Note that kd,n is the fractile factor, which is related to the number of

tests in each data set; bm and Vδ are the mean value and the COV of the

correction factor for the ultimate load from the tests, FE models and design

equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

9.9 Summary of reliability analysis results for the DSM with quantities being

defined in Table 9.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

9.10 Summary of reliability analysis results for the modified DSM equations with

quantities being defined in Table 9.8. . . . . . . . . . . . . . . . . . . . . . 328



Nomenclature

In this thesis, the following nomenclature is adopted. In the cases where more than one

meaning has been assigned to a symbol, the correct use should be obvious from the context.

Coordinates, stress, strains, loads and energy

x Transverse direction along flange width

y Transverse direction along web depth

z Longitudinal direction along strut

z̄ Normalized longitudinal coordinate

ζ Normalized transverse coordinate

C Critical bifurcation point

S Secondary bifurcation point

U Point of ultimate load

σz,wc Direct stress in the more compressed web

σC
l,w, σC

l,f Local buckling stress for webs and flanges respectively

σC
wcl Critical buckling stress of the more compressed web

36
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σC
o Global buckling stress

kp Plate buckling coefficient

kp,AUTO, kp,EQ kp solved using Auto and simplified equation respectively

γxz, γyz Shear strains in the planes xz and yz respectively

εz,f , εz,wc, εz,wt Direct strains in flanges, the more compressed web and less

compressed web respectively

εz,wco, εz,wto Direct strains in the more compressed web and less compressed

web from the global mode respectively

P Applied axial load

PE Euler buckling load

PC
o Global buckling load

PC
l Local buckling load

PC Critical buckling load

PB Load at the bifurcation point

P S Load at the secondary bifurcation point

Pu Ultimate load

Pu,FE, Pu,exp Ultimate load from FE and experimental results respectively

Pu,perf , Pu,imp Ultimate load of perfect and imperfect struts respectively

p Normalized axial load applied, p = P/PC

pu Normalized ultimate load, pu = Pu/P
C

pu,perf , pu,imp pu for perfect and imperfect struts respectively
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M Moment

Mf , Mwc Bending moments in the flange and the more compressed web

at the junction respectively

V Total potential energy

Ub,o Global bending strain energy

Ub,fl, Ub,wcl, Ub,wtl Local bending strain energy in both flanges, the more com-

pressed web and less compressed web respectively

Um,f , Um,wc, Um,wt Membrane strain energy in both flanges, the more compressed

web and less compressed web respectively

Uf , Uwc, Uwt Total strain energy in both flanges, the more compressed web

and less compressed web respectively

Usp Strain energy in rotational springs

L Lagrangian

Vij Hessian matrix

Geometric and material properties

b Flange width

d Web depth

tf Thickness of flange plate

tw Thickness of web plate

t Thickness of plate
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L Strut length

le Effective length of the isolated plate element

A Cross-sectional area

φc Cross-section aspect ratio d/b

φt Ratio of flange plate thickness to web plate thickness tf/tw

Ie Effective second moment of area of the cross-section owing to

local buckling

r Radius of gyration

E Young’s modulus

G Shear modulus

ν Poisson’s ratio

Df , Dw Flexural rigidities of the individual flanges and webs

respectively

EIw Flexural rigidity about the local weak neutral axis of the web

ci Rotational spring stiffness in the Augusti model

cθ Stiffness of rotational spring connecting flanges and webs

c̄θ Normalized cθ

cf Equivalent rotational stiffness on the more compressed web pro-

vided by the connecting flange

cθf Equivalent rotational stiffness, 1/cθf = 1/cθ + 1/cf

λ̄o Normalized global slenderness, λ̄o =
√

Py/PC
o
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λ̄l Normalized local slenderness, λ̄l =
√

Py/PC
l

η Reduction factor in the longitudinal stiffness owing to local

buckling of plate

η̄w Equivalent axial stiffness reduction factor in the more com-

pressed web

Φr Bending stiffness reduction factor due to local buckling in the

more compressed web and flanges determined using double-

modulus theory

Φm Equivalent bending stiffness reduction factor for the transi-

tional state

Generalized coordinates and displacements

Qi Generalized coordinates

W (z) Lateral displacement (sway component)

θ(z) Rotation of plane sections (tilt component)

χ Curvature of the deflected strut

qs, qt Generalized coordinates defining the normalized amplitude of

the sway and tilt modes respectively

qSs qs at the secondary bifurcation point

∆ Purely in-plane compressive strain

E Total end-shortening
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η(z) Displacement of the centroid of the cross-section owing to plate

local buckling

wf(x, z) Local out-of-plane displacement of the flanges

wwc(y, z) Local out-of-plane displacement of the more compressed web

wwt(y, z) Local out-of-plane displacement of the less compressed web

wwc,max Maximum out-of-plane displacement of the more compressed

web

uf(x, z) Local in-plane displacement of the flanges

uwc(y, z) Local in-plane displacement of the more compressed web

uwt(y, z) Local in-plane displacement of the less compressed web

ff(x), fwc(y), fwt(y) Cross-section component of wf(x, z), wwc(y, z) and wwt(y, z)

respectively

gf(x), gwc(y), gwt(y) Cross-section component of uf(x, z), uwc(y, z) and uwt(y, z)

respectively

w(z), u(z) Longitudinal component of local out-of-plane and in-plane dis-

placement respectively

θf , θw Rotations of the flange and the more compressed web at the

junction respectively

Geometric imperfections and residual stresses

W0(z) Initial out-of-straightness of the global mode

θ0(z) Initial rotation of the plane-section
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qs0 Amplitude of W0

qt0 Amplitude of θ0

wf0(x, z) Initial out-of-plane deflection in flanges

wwc0(y, z) Initial out-of-plane deflection in the more compressed web

wwt0(y, z) Initial out-of-plane deflection in the less compressed web

wi0(z) Longitudinal component of local imperfections

Ai0 Amplitude of wi0

αi0 Degree of localization of wi0

βi0 Number of sinusoidal half waves of wi0

E0 Total end-shortening of the initial imperfection

W̄E0 Combined geometric imperfection scaling factor

WE0 Combined measure of geometric imperfections

WE0=W̄E0{qs0,tolL,A0,tol}

U0
b,l Total local bending energy in the entire strut due to the local

imperfections

U0
b,lf , U

0
b,lwc, U

0
b,lwt Local bending energy in both flanges, the more compressed

web and the less compressed web due to local imperfections

respectively

A0
i0 Initial Ai0 input for determining the worst imperfection profile

ε0 Normalized imperfection size

δ0 Amplitude of global imperfection measured from tests

σrc Initial compressive residual stress
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σrt Initial tensile residual stress

σw,rc, σw,rt Initial compressive and tensile residual stresses in the webs

dt Length of the uniform tensile range in the ECCS residual stress

model for welded box-section members

Numerics

f Vector defining system of first order differential equations

y Vector of variables

η Continuation parameter

J Jacobian matrix

Finite element modelling and analysis

ml Number of elements along the strut length

mw Number of elements along the web depth

kθ Equivalent rotational stiffness in the FE model

Mz, Mx In-plane and out-of-plane bending moment of shell element

Eh Strain hardening modulus

σtrue, σnom True and nominal stresses

εtrue, εnom True and nominal strains

εtrue,pl True plastic strain
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fy Material yield stress

fu Material ultimate stress

εy Yield strain

εsh Strain value at which strain hardening commences

εu Ultimate strain

LBA Linear buckling analysis

GNA Geometric nonlinear analysis

GNIA Geometric nonlinear analysis with imperfections

GMNIA Geometric and material nonlinear analysis with imperfections

{P}ref Reference level of external load

[Kσ]ref Stress stiffness matrix associate {P}ref

[K] Stiffness matrix of the structure

λ Load proportion factor

λcr Load proportion factor at the critical buckling point

{d} Displacement vector

{δd} Buckling displacement vector

ū Generalized displacement
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Design guidelines

Eurocode 3

Aeff Effective area of cross-section owing to local buckling

χ Buckling reduction factor

Ncr Elastic buckling load for the relevant buckling mode based on

the gross cross-section

Nc,Rd Cross-section resistance under uniform compression

Nb,Rd Member buckling resistance

Nu,Rd Member resistance Nu,Rd = min{Nc,Rd, Nb,Rd}

γM0 Partial safety factor for cross-section resistance

γM1 Partial safety factor for member buckling resistance

ρ Area reduction factor for plate owing to local buckling

Direct strength method

Pne Nominal axial strength for flexural, torsional or flexural-

torsional buckling

Pnl Nominal axial strength for local buckling

Pn Nominal axial strength Pn = min{Pne, Pnl}
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Subscripts

1, 2 Cases where local and global buckling is critical respectively

f Flanges

w Webs

wc More compressed web

wt Less compressed web

l Local buckling

o Global buckling

Auto Solved from Auto

Abaqus Solved from Abaqus

EQ Solved from the equation using the simplified method

FE Solved from the finite element method

tol Tolerance level

imp Imperfect case

perf Perfect case



Chapter 1

Introduction

Sustainable design and construction has gradually become the mainstream in the structural

engineering discipline. Engineers are increasingly required to take full advantage of every

piece of material to design efficient structural systems so as to minimize the adverse effects

on the environment owing to construction. The advance in material science and manufac-

turing technology makes many light weight and high performance materials available for

structural purposes (Ashby, 2011), such as high strength steel, Carbon Fiber Reinforced

Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP). Moreover, better under-

standing in nonlinear mechanics (Thompson & Hunt, 1973; Thompson & Hunt, 1984) as

well as advances in computational mechanics (Belytschko et al., 2000; Bathe, 2006) and

optimization theory (Xie & Steven, 1993; Rozvany, 2009), have enabled structural forms

to become increasingly slender, as shown in Figure 1.1. However, buckling instability is

practically always the governing failure mode of such structures under compression (Bleich,

1952; Timoshenko & Gere, 1961; Bulson, 1970; Bažant & Cedolin, 2010).

Thin-walled structures are one of the most favourable and material efficient structural

forms. Thin plates can be efficiently manufactured to almost any imaginable structural

forms through a variety of different manufacturing methods, such as cold-forming, hot-

47
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Figure 1.1: The Steve Jobs Theater in the Apple Campus in California, United States with
the world’s largest carbon fiber roof (Martin, 2017).

rolling, welding and bolting. Therefore, it has wide applications in engineering structures

particularly where the self-weight of the structure is a key design constraint factor, such

as in aircraft, automotive applications, long-span bridge decks and even computer cases,

as shown in Figure 1.2. However, manufacturing processes and handling can introduce

significant imperfections in structures, such as geometric imperfections, residual stresses,

material strength enhancement and plastic strains. These imperfections have been reported

to have significant effects on the equilibrium behaviour and load-carrying capacity (van der

Neut, 1973; Thompson & Supple, 1973; Thompson & Hunt, 1973; Gioncu, 1994b; Wadee,

2000; Becque & Rasmussen, 2009a; Quach et al., 2010; Bai & Wadee, 2015a; Liu & Wadee,

2016b).

The term ‘thin-walled’ is defined by the relative thickness of plates in comparison with other

dimensions of the structures or the relatively high local slenderness in comparison with the

global slenderness. Unlike members with stocky cross-sections or low local slenderness,

thin-walled plated structural systems are likely to exhibit local buckling. When it comes

to thin-walled plated structures made of high strength materials, local buckling is almost

always permitted in order to take full advantage of the material strength. Therefore, the
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(a) Fuselage section of C919 jetliner (Comac
C919, 2014).

(b) Frame structure of BMW-7 series
(Howard, 2015).

(c) Steel box girders of A38 Thame Valley
Viaduct (MISTRAS group, 2017).

(d) Computer case (Powercase Technology
(Shenzhen) Co., Ltd., 2015).

Figure 1.2: Applications of thin-walled structures.

interaction between local and global buckling may influence a very large range of geometric

proportions.

According to linear theory (Bleich, 1952), a given structural form is optimum if the local

buckling and global buckling loads are equal, i.e. local and global buckling modes are

triggered simultaneously. However, the general theory of elastic stability (Thompson &

Hunt, 1973) has demonstrated that such an approach is not appropriate. Even though

these modes may be stable when triggered in isolation, the interaction between individual



CHAPTER 1. INTRODUCTION 50

modes can lead to completely unstable post-buckling behaviour and severe imperfection

sensitivity (Thompson & Lewis, 1972; Thompson & Supple, 1973; Tvergaard, 1973; van der

Neut, 1973; Thompson & Hunt, 1974; Koiter & Pignataro, 1976a; Byskov & Hutchinson,

1977; Loughlan, 1983; Hunt et al., 1988; Ko lakowski, 1989; Ko lakowski, 1993; Gioncu,

1994b; Hunt & Wadee, 1998; Wadee, 2000; Teter, 2007; Bai & Wadee, 2015a; Wadee &

Farsi, 2015; Bai & Wadee, 2016; Liu & Wadee, 2016b). In particular, the load-carrying

capacity erosion from initial imperfections tends to be maximum near the so-called ‘naive

optimum’ point (van der Neut, 1969; Thompson & Hunt, 1973).

The current work aims to investigate the nonlinear behaviour of thin-walled rectangular

hollow-section struts under compression at a fundamental level and then use this to provide

design recommendations.

1.1 Buckling analysis type

1.1.1 Linear buckling analysis

Linear buckling theory or analysis is well known and widely accepted. There are a great

number of textbooks (Bleich, 1952; Timoshenko & Gere, 1961; Bulson, 1970; Bažant &

Cedolin, 2010) dealing with the theory and their application in different types of structural

systems. Compared with nonlinear buckling theory, linear buckling analysis neglects higher

order terms in formulating the governing equations or the total potential energy of the

system and thus requires a relatively limited computational effort. For instance, for an

in-compressible, simply-supported strut under pure compression, as shown in Figure 1.3,

the complete relationship between the strut curvature χ and the deflection W is presented

as (Bažant & Cedolin, 2010):

χ =
Ẅ

(1 + Ẇ 2)3/2
= Ẅ

(

1 − 3

2
Ẇ 2 +

15

8
Ẇ 4 − · · ·

)

, (1.1)
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where dots represent derivatives with respect to the strut length coordinate z. In linear

W (z)P

1/χ

z

W (z)

z

L

ε

(a)

(b)

(c)

PE

P

Q

Linear post-buckling path

Fundamental path

Bifurcation point

Figure 1.3: (a) Simply-supported strut under pure compression. (b) The deflection and
the curvature of the strut. (c) Equilibrium path of the strut under pure compression using
linear buckling analysis.

buckling analysis, it is assumed that the slope of W with respect to z is small and thus

Eq. (1.1) can be reduced to a linearized version:

χ ≈ Ẅ . (1.2)

The governing differential equation for the strut is given thus:

EI
d4W

dz4
+ P

d2W

dz2
= 0, (1.3)

with the boundary conditions being:

W (0) = W (L) = Ẅ (0) = Ẅ (L) = 0. (1.4)

The trivial solution for the equation is W (z) = 0 and the non-trivial solutions are given

thus:

Wn(z) = Q sin
nπz

L
, Pn =

n2π2EI

L
, (1.5)
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where n is an integer and Q is the amplitude of the deflection. The lowest load of the

non-trivial solution, i.e. where n = 1, corresponds to the famous Euler buckling load, PE:

PE =
π2EI

L2
. (1.6)

The load–deflection relationship, i.e. the equilibrium path, is shown in Figure 1.3(c). The

strut is stable when Q = 0 and P < PE; it becomes unstable and branches at P = PE with

equal probability of exhibiting deflection in the positive or negative direction. This type of

problem is also known as a bifurcation problem. With a similar approach, which neglects

the membrane components, the critical buckling load of plates under pure compression can

be obtained using linear buckling analysis. The detailed derivation can be also found in

many classical text books (Timoshenko & Gere, 1961; Bulson, 1970; Brush & Almroth,

1975).

As can be seen from Figure 1.3(c) and Eq. (1.5), linear buckling analysis can only provide

the critical buckling load and the corresponding buckling mode at which point the struc-

tures initially lose stability. No further information about the post-buckling behaviour is

provided. Therefore, linear buckling analysis can only give a good estimate of the ultimate

load for structures exhibiting neutral or weakly stable post-buckling behaviour, such as

columns with stocky cross-sections. For structures exhibiting strongly stable post-buckling

behaviour, such as simply-supported plates under pure compression, they can sustain a

significantly greater load than the critical buckling load, as sketched in Figure 1.4(a). In

practice, local buckling is often permitted in order to take full advantage of the mate-

rial strength; the critical buckling load from linear buckling analysis would underestimate

the actual load-carrying capacity in such an example. On the other hand, for struc-

tures exhibiting unstable post-buckling behaviour, such as shells under axial compression

and struts on softening elastic foundations, the critical buckling load from linear buckling

analysis provides an upper bound estimate of the ultimate load, i.e. reaching the critical

buckling load is accompanied by stiffness loss and erosion in load capacity, as sketched
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Q
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Perfect path
PC

Q

P P

P

P

Q

Q

P Perfect
path

PC

Imperfect
path

QP

Elastica

Plate

(a) Stable post-buckling equilibrium path

(b) Unstable post-buckling equilibrium path

Strut on softening elastic
         foundations

 Shell

Imperfect path

QP

Figure 1.4: Typical post-buckling behaviour and the corresponding example structural
forms (Wadee, 2007).

in Figure 1.4(b). Moreover, since such structures are very sensitive to imperfections, the

perfect critical buckling load cannot be reached in practice. Therefore, higher order terms

need to be included in the analysis and hence nonlinear analysis is required so as to obtain

information about the post-buckling behaviour and understand some potentially highly

nonlinear post-buckling behaviour, such as interactive buckling.

1.1.2 Nonlinear buckling analysis

Since Euler’s work on the classical elastica problem (Euler, 1744), an actual theoreti-

cal framework was only formulated for the nonlinear post-buckling analysis when W. T.

Koiter devised the general approach to post-buckling analysis of continuous elastic sys-

tems (Koiter, 1945) using the perturbation method. A concise introduction of the theory

can be found in the review by Budiansky and Hutchinson (1979). In Koiter’s theory, as

shown in Figure 1.5(a), the fundamental and post-buckling paths are denoted by u0(λ) and
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u0(λ)+v(λ) respectively, the latter deviating from the fundamental path at the bifurcation

point with the load factor λ = λc. The normalized bifurcation mode may be defined by:

u1 = lim
λ→λc

v/ ‖v‖ , (1.7)

where ‖v‖ = 〈v, v〉1/2 and 〈v, v〉 is the inner-product functional. By introducing the scalar

parameter ξ = 〈v, u1〉, the post-buckling path can be expressed using power series expan-

sions, thus:

u = u0(λ) + ξu1 + ξ2u2 + · · · , where n ≥ 2, 〈un, u1〉 = 0, (1.8)

and

λ = λc + λ1ξ + λ2ξ
2 + · · · . (1.9)

Following the standard perturbation procedure, u1, u2, etc. and λc, λ1, λ2, etc. can be

deduced by solving the governing equations of equilibrium. In particular, the governing

equation is derived based on application of the calculus of variations on the nonlinear

potential energy functional V , where:

δV = 0, (1.10)

and δV is the first variation of V . The generalized theory can consider both perfect and

λ

||u||

λc

u0

u0+v

λ

ξ

λ

ξ

λu

λ1<0 λ1=0, λ2<0

(a) (b) (c)

λu

perfect path

imperfect path

bifurcation point

Figure 1.5: Koiter’s theory and its application in determining the post-buckling behaviour
and the ultimate load of imperfect structural systems.
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imperfect structural systems, as shown in Figure 1.5(b, c). It can not only provide a

qualitative prediction of the post-buckling behaviour of the structural system, but also an

accurate quantitative estimate of the ultimate load, particularly for imperfect structural

systems. The application of the theory for interactive buckling in thin-walled structures

will be introduced in Chapter 2.

Independently, the Stability Research Group at University College London, headed by A.

H. Chilver and J. M. T. Thompson, developed a general theory of elastic stability based

on the perturbation method in the context of discrete elastic systems (Thompson & Hunt,

1973; Thompson & Hunt, 1984). The fundamentals of the work are based on two axioms

(Thompson & Hunt, 1973) for elastic systems under conservative loading:

Axiom 1. A stationary value of the total potential energy with respect to the generalized

coordinates is necessary and sufficient for the equilibrium of the system.

Axiom 2. A complete relative minimum of the total potential energy with respect to the

generalized coordinates is necessary and sufficient for the stability of an equilibrium state.

The first axiom provides the governing equation for determining the equilibrium state:

Vi =
∂V

∂Qi

= 0, (1.11)

where V is the total potential energy and defined in terms of generalized coordinates Qi

and the external load P :

V = V (Q1, Q2, · · · , Qi, · · · , Qn, P ). (1.12)

The second axiom provides the governing criterion to determine the stability of the equi-

librium state. It can also be expressed as the second derivative of V with respect to the

generalized coordinates:

Vij =
∂2V

∂QiQj

. (1.13)
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The stability of the equilibrium can also be visualized with the rolling ball analogy. Fig-

ure 1.6(a) presents the analogy for stability of single degree of freedom (DOF) systems. In

case (a-I), the ball is in a local minimum and perturbation in both directions will make it

return to its original position eventually, which implies that the original position is stable.

In case (a-II), the ball is in a local maximum and perturbation in both directions will

make it permanently move away from the original position, which implies that the original

position is unstable. In case (a-III), the ball is at the point of inflexion and a small per-

turbation will make it effectively move away from the original position, which implies that

the original position is unstable. For systems with n-DOFs, the potential energy profile

(b)

(a-I) (a-II) (a-III)

(b-I) (b-II) (b-III)

(a)

Figure 1.6: Rolling ball analogy for three types of stability of equilibrium for (a) single
degree of freedom system and (b) system with more than one degree of freedom. Case (I)
is stable but (II) and (III) are both unstable.

becomes an n + 1-dimensional surface. Figure 1.6(b) presents the analogy for stability for

systems with two DOFs. Cases (b-I) and (b-II) are essentially the same as (a-I) and (a-II)

for SDOF system. Case (b-III) illustrates the case where the surface in one direction is a

minimum but one of the other directions is a maximum, which is known as saddle point–

it is essentially unstable also.

For multiple degrees of freedom (MDOF) systems, the stability of the equilibrium state
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should be determined by calculating the determinant of the Hessian matrix Vij, where

Vij =






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. (1.14)

The equilibrium state is stable if Vij is positive–definite and vice versa. In particular,

when Vij becomes singular, it corresponds to the bifurcation state. Higher derivatives of

V are required to determine the stability at the bifurcation point.

Catastrophe theory provides another theoretical tool to classify types of bifurcation in a

more theoretically strict way and facilitated a better overall understanding of the phys-

ical phenomena mathematically (Thompson et al., 1978; Thompson, 1979; Hunt, 1981;

Thompson, 1982; Gioncu, 1994a).

More recently, with the development of computational techniques, nonlinear post-buckling

analysis can be readily performed using general purpose numerical analysis packages, such

as the finite element package Abaqus (2014). More details about the numerical approaches

will be introduced in Chapter 2.

1.2 Interactive buckling phenomena

1.2.1 Augusti model

Since the full modelling of the local–global buckling mode interaction in actual structures

is relatively complex, many efforts have been made to use phenomenological models to



CHAPTER 1. INTRODUCTION 58

understand the underlying mechanism of interactive buckling. A systematic review of the

related mechanical models, which are devised using rigid bars and springs, can be found in

Gioncu’s review paper (Gioncu, 1994b). Even though these models are simple and generally

have a small number of degrees of freedom, their behaviour are essentially equivalent to

those of real and complex structures at least qualitatively.

One of the most famous models is the 2-DOF Augusti model (1964), as shown in Figure 1.7,

which is used to understand the interactive buckling of modes that both have stable sym-

metric post-buckling paths when considered in isolation. The model is made up of a rigid

cantilever with length L that is pinned at its base but restrained by two rotational springs

with stiffnesses c1 and c2 that provide the structural integrity. The deflected profile of the

cantilever is described by the angles spanned by the springs, Q1 and Q2. The detailed

energy formulation and the corresponding equilibrium path solution of the model can be

found in Thompson and Hunt (1973).

Figure 1.7(c, d) present the sketches of the equilibrium paths of the Augusti model with

c1 > c2 and c1 = c2 respectively. When Q1 and Q2 are triggered in isolation, i.e. the

cantilever purely deflects either in the xz plane or the yz plane, the system exhibits sym-

metrically stable post-buckling behaviour. However, in realistic scenarios, there is an

interaction between Q1 and Q2 since there is only a finite restraint in the non-critical plane

of deflection. For instance, the cantilever initially remains undeflected in the fundamental

path until P reaches the critical load PC = c1/L. After that, the cantilever starts to de-

flect in the direction Q1 corresponding to the relatively smaller spring stiffness c1. When

P reaches the buckling load at the secondary bifurcation point P S = (3c1 + c2)/4L, the

cantilever starts to deflect Q2 in addition to Q1, i.e. interactive buckling is triggered. The

triggering of interactive buckling also leads to unstable post-buckling behaviour. From the

perspective of energy, the unstable interactive buckling path requires less energy compared

with the primary stable post-buckling path (Timoshenko & Gere, 1961; Hunt et al., 1989).

In particular, when c1 = c2, the critical and secondary bifurcation points coincide, the post-
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Figure 1.7: Augusti model (1964) and sketches of its typical equilibrium paths. (a) The
initial configuration with rotational spring of stiffness c1 and c2 acting in the xz and the
yz planes respectively. (b) The buckled configuration with generalized angular coordinates
Q1 and Q2 representing the rotational deformation in the springs. Equilibrium paths
for the cases where (c) c2 > c1 and (d) c1 = c2. Symbols C, B, and S represent the
critical buckling point, the higher buckling load point, and the secondary bifurcation point
respectively. The equilibrium paths of the model with initial geometric imperfections are
also shown to demonstrate the erosion in the ultimate load due to geometric imperfections.

buckling behaviour is highly unstable, as shown in Figure 1.7(d); the critical buckling load

is followed by a negative post-buckling stiffness and hence a reduction in the load-carrying

capacity.

Moreover, the model also exhibits sensitivity to geometric imperfections, which is maxi-

mized for the case where c1 = c2. Closed-form expressions for the imperfection sensitivity

relationship for cases with c1 6= c2 and c1 = c2 are provided in Thompson and Hunt (1973),

which both follow the well-known two-thirds power law, i.e. pu,imp = pu,perf(1− aε
2/3
0 ) with
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pu,imp and pu,perf being the ultimate load of imperfect and perfect struts, a being constant

and ε0 being the normalized imperfection size.

The Augusti model demonstrates that the interaction of two stable-symmetric buckling

modes leads to an unstable-symmetric buckling mode as well as an introduction of imper-

fection sensitivity. It reflects the interactive buckling behaviour of real structures qualita-

tively, such as built-up columns (Thompson & Hunt, 1973), I-section struts (Wadee & Bai,

2014; Bai & Wadee, 2015a), stiffened plates (Wadee & Farsi, 2014a; Wadee & Farsi, 2015).

However, the phenomenological models cannot provide the physical similitude of the real

structures. Discrete structural models, which have more DOFs to simulate the most im-

portant aspects of the real structures, are required. Related work will be introduced in

Chapter 2.

1.2.2 Interactive buckling in real structures

Mode interaction in real structures is generally derived from the chosen geometric prop-

erties such that the critical buckling loads of several different buckling modes are equal

or in proximity, since linear theory (Bleich, 1952) and perhaps some study (Maquoi &

Massonnet, 1976) has suggested that such a scheme is most economical. From the wave-

length of the individual buckling mode, Gioncu (1994b) classified the interactive buckling

in structures into three main categories, as shown in Figure 1.8.

The first case represents where the wavelengths of the individual modes, i.e. modes 1 and

2, are of the same order and the post-buckling behaviour of each mode is either neutral

or weakly stable, as shown in Figure 1.8(a). The interactive buckling behaviour of such

structures is weakly unstable and their sensitivity to imperfections is minor or moderate.

An example for such a case is the interaction between flexural buckling and flexural–

torsional buckling in struts with mono-symmetrical sections.
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Figure 1.8: Effect of wavelength of individual buckling mode on the interactive buckling
behaviour (Gioncu, 1994b). Sub-graphs (I) and (II) present the longitudinal wavelength
and typical equilibrium paths of individual mode; (III) presents the interactive buckling
equilibrium path of perfect and imperfect structures.

The second case represents where the wavelength of mode 2 is significantly smaller than

that of mode 1, as shown in Figure 1.8(b), the unstable interactive buckling path shows

a relatively larger gradient than in the first case, i.e. exhibiting moderate-to-strong in-

teraction. Accordingly, such types of structures exhibit relatively higher sensitivity to

imperfections. There are many examples for the type of mode interaction, such as the

interaction of element member buckling with global buckling of the whole strut in built-up

columns and the interaction of plate local buckling with Euler buckling in thin-walled sec-

tion struts, as shown in Figure 1.9. It should be noted that the phenomena investigated

in the current research belongs to this type of mode interaction.

The third case is a specialized case of the second one. In particular, there are a large number
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Figure 1.9: Interactive buckling in (a) build-up struts and (b) stiffened plates.

of local buckling modes with the same buckling load in mode 2. The interaction between

the local modes gives rise to unstable post-buckling behaviour. Further interaction with

the global mode leads to extremely unstable behaviour and high imperfection sensitivity,

as shown in Figure 1.8(c). An example for such case is the cylindrical shells (Lord et al.,

1997).

In practice, the effects of mode interaction and imperfections on the load-carrying capacity

in the first case is considered by the safe coefficients (Gioncu, 1994b) because erosion in the

load-carrying capacity due to the imperfection sensitivity is mild, i.e. under 10%. However,

for cases 2 and 3, special design methods have been developed based on experimental

and numerical studies to consider the adverse effects in the load-carrying capacity due to

imperfections. Specifically, for thin-walled plated structural systems, the effective width

method (EWM) (EN-1993-1-5:2006E, 2006) and direct strength method (DSM) (Schafer

& Peköz, 1998b) are used to determine the load-carrying capacity of members susceptible

to interactive buckling.

Localization of buckling pattern due to interactive buckling

In contrast to the periodic buckling modes in the purely local buckling cases, interactive

buckling also leads to the localization of the local mode, which has been widely observed

in both analytical (Hunt & Wadee, 1998; Wadee, 1998; Wadee & Gardner, 2012; Wadee &
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Bai, 2014; Wadee & Farsi, 2014a) and experimental studies (Gardner & Nethercot, 2004a;

Becque & Rasmussen, 2009a; Wadee & Gardner, 2012; Pavlovčič et al., 2012) on interactive

buckling of thin-walled metallic structures and sandwich panels. Hunt (1989) adopted

simplified rigid-link and springs systems to illustrate the mechanism of the formation of

the localization pattern, as shown in Figure 1.10. If the post-buckling behaviour is stable,

P

ξ

Localized

P

ξ

Periodic

Localized

P

ξ

P

ξ

(a)

(b)

P
C

P
C Periodic

Figure 1.10: Link-spring model (Hunt, 1989) illustrating the effect of localized and periodic
deformation on the equilibrium path.

the localized pattern requires more energy to trigger and thus the practically-observed

post-buckling mode is periodic. If the post-buckling behaviour is unstable, the periodic

pattern requires more energy to trigger and thus the post-buckling mode is localized. In

such cases, a periodic profile assumption on the local mode would overestimate the post-

buckling stiffness and strength and therefore would be unsafe.

1.3 Research Objectives

The aim of the present project is to develop a series of variational and FE models to in-

vestigate the mechanism of interactive buckling of thin-walled rectangular hollow section

(RHS) struts under pure compression and to investigate the influence of different flange–
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web joint rotational rigidities, geometric properties, initial geometric imperfections and

material properties on the nonlinear interactive buckling behaviour. The aim is to pro-

vide practising structural engineers with safe and appropriate design recommendations on

designing hollow-section struts with geometries that are susceptible to modal interactions.

1.4 Outline of the thesis

There are nine further chapters in the current thesis and a brief outline is given below.

1.4.1 Chapter 2: Literature review

This chapter aims to provide a systematic and detailed review of the literature on topics

relevant to interactive buckling of thin-walled RHS struts. Firstly, both analytical and

numerical approaches to modelling the interactive buckling of thin-walled structures are

reviewed. Secondly, imperfection measurement and modelling, the imperfection modelling

recommendations in the Eurocode 3 (EC3) as well as the imperfection sensitivity studies

are reviewed and discussed. Moreover, the review summarises the experimental studies

on mode interaction in thin-walled RHS columns. The ultimate loads of these specimens

are summarized in the framework of current design guidelines. Related results on thin-

walled section beams (Wadee & Gardner, 2012) and struts (Becque & Rasmussen, 2009a)

of other cross-sections, which exhibit mode interaction, are also discussed. Finally, current

design methodologies considering the effects of mode interaction, such as the effective

width method (von Karman et al., 1932) and the Direct Strength Method (DSM) (Schafer

& Peköz, 1998b), are introduced.
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1.4.2 Chapter 3: FE model development

In this chapter, nonlinear FE models for thin-walled RHS struts are developed in the com-

mercial package Abaqus (ABAQUS, 2014). The modelling details, such as element types,

meshing scheme, strut modelling, boundary and loading conditions as well as geometric

imperfection and residual stress modelling are introduced. Moreover, the analysis type,

procedure and solution strategy are introduced. The verification and validation of the FE

models using some classical solutions and experimental results in the existing literature are

presented, which shows excellent comparisons. The developed FE models are used to ver-

ify variational models developed in the later chapters and to conduct extensive parametric

studies to understand the interactive buckling of thin-walled rectangular hollow section

columns in practically realistic scenarios.

1.4.3 Chapter 4: Behaviour of long struts with semi-rigid flange–

web joints

A variational model formulated using analytical techniques describing the nonlinear inter-

action of global and local buckling modes in long thin-walled RHS struts with semi-rigid

flange–web joints under pure compression is presented. A system of nonlinear differen-

tial and integral equations subject to boundary conditions is formulated and solved using

numerical continuation techniques. For the first time, the equilibrium behaviour of such

struts with different cross-section joint rigidities is highlighted with characteristically un-

stable interactive buckling paths and a progressive change in the local buckling wavelength.

The results from the variational model are verified using the nonlinear FE model devel-

oped in Chapter 3 and show excellent comparisons. A simplified method to calculate

the local buckling load of the more compressed web undergoing global buckling and the

corresponding global mode amplitude at the secondary bifurcation is also developed.
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1.4.4 Chapter 5: Variational modelling of practical cases

The variational model in Chapter 4 is further developed to include the cases where local

buckling is critical as well as introducing the possibility of both local and global geometric

imperfections existing. Two independent sets of in-plane and out-of-plane local displace-

ment fields, which represent the pure local buckling mode and global buckling induced

interactive buckling mode respectively, are introduced to describe the interactive buckling

of struts with different lengths. Global and local imperfections, the profiles of which cor-

respond to the global and local modal descriptions adopted in the variational model, are

introduced. The total potential energy is determined based on the modal description and

the newly introduced geometric imperfections using a very similar formulation adopted in

Chapter 4. By performing the calculus of variations on the total potential energy, the gov-

erning equations for the longitudinal components of the local post-buckling modes subject

to boundary and integral conditions are obtained.

1.4.5 Chapter 6: Length effects

The variational model developed in Chapter 5 is used to investigate how different strut

lengths affect the nonlinear mode interaction of perfect struts. The nonlinear behaviour

of four struts with representative lengths are investigated, which are characterized by the

post-buckling equilibrium paths. The numerical results from the variational model are

verified using nonlinear FE models. Moreover, the van der Neut-type (van der Neut, 1969)

curve for the example thin-walled RHS struts is presented. The four length-dependent

zones are identified and a detailed discussion is made based on the results.
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1.4.6 Chapter 7: Imperfection sensitivity

The variational model developed in Chapter 5 is used to investigate the imperfection sen-

sitivity of RHS struts where global and local buckling loads are in close proximity. The

equilibrium behaviour of struts with varying imperfection sizes is presented and compared.

The numerical results are validated using the nonlinear FE models. A simplified method to

calculate the pitchfork bifurcation load where mode interaction is triggered for struts with

a global imperfection is developed for the first time. The simplified method is calibrated to

predict the ultimate load for struts with tolerance level global imperfections and combined

imperfections based on a parametric study. The relative significance of local and global

imperfections on the load-carrying capacity of struts with different lengths is investigated.

1.4.7 Chapter 8: Sensitivity to manufacturing tolerance level

imperfections

This chapter is an enhancement on the work developed in Chapter 7. The main focus

is on the response of the struts with tolerance level imperfections. A unified local im-

perfection measurement based on equal local bending energy is proposed. The effects

of the cross-section profile, the number of half-waves and the degree of localization of

the local imperfections on the ultimate load and equilibrium path are investigated. A

framework to determine the most severe local imperfection is proposed and a program is

developed in Matlab, which makes it feasible to conduct an automated parametric study

in an efficient way. A semi-empirical equation to determine the most severe imperfection

profile is proposed based on the parametric study results. Since struts with tolerance

level doubly-symmetric cross-section local imperfections exhibit neutral post-buckling be-

haviour, a semi-empirical equation to calculate the corresponding global buckling load is

proposed since this would provide a reliable strength prediction.
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1.4.8 Chapter 9: Parametric study and suggestions for improved

design guidance

Parametric studies on cross-section geometric properties, material yielding stress level and

strain hardening, as well as residual stresses are conducted using the FE approach to

understand the behaviour of RHS struts exhibiting mode interaction in more practically

realistic scenarios. Based on the numerical results and existing experimental results in

the literature, the current design rules for thin-walled welded RHS struts are assessed by

means of reliability analysis, in accordance with Annex D of EN1990 (BS EN 1990, 2002).

1.4.9 Chapter 10: Conclusions and future work

The principal work conducted and discoveries are summarized in Chapter 10. The original

contributions and practical significance is also explained and highlighted. Suggestions

are made for extending the current work and the potential application of the present

methodology.



Chapter 2

Literature Review

In the preceding chapter, a brief introduction about the general theory of elastic buckling

and the nonlinear coupled instability phenomena was presented. In the current chapter,

the focus moves on to the interactive buckling of thin-walled structures. Previous stud-

ies and corresponding design guidelines related to the interactive buckling of thin-walled

plated structures are reviewed, which aims at providing essential background information

and placing the contribution of the current work into context as well as its relationship

with previous work. Firstly, the analytical approaches to interactive buckling of thin-walled

plated structures are presented. Specifically, both strict theoretical and approximate engi-

neering approaches are introduced. After that, numerical approaches to modelling inter-

active buckling, i.e. the Finite Element Method (FEM), Generalized Beam Theory (GBT)

and the Finite Strip Method (FSM), are discussed. Since thin-walled plated structures

susceptible to mode interaction have been found to be quite sensitive to imperfections,

related work on imperfection measurement and modelling, studies on imperfection sensi-

tivity as well as imperfection modelling recommendations in current design guidelines are

presented. Moreover, experimental studies on determining the ultimate load of thin-walled

box-section struts exhibiting local–global mode interaction alongside some experimental

results on the local–global interactive buckling behaviour of open section struts are pre-

69
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sented. Finally, related parts about the ultimate load prediction of thin-walled struts

susceptible to local–global mode interaction in current guidelines are introduced. A com-

parison between experimental results from the existing literature and the design equations

is also presented.

2.1 Analytical approaches

In terms of analytical approaches, they can be classified into two categories (Gioncu,

1994b). The first one is the engineering method, based on approximate approaches, which

use the concept of reduced stiffness or a reduced cross-section to consider the effects of local

buckling. The engineering method is relatively simple but can only provide a prediction

on the ultimate load. The second is the theoretical method, based on the general theory of

elastic stability (Koiter, 1945; Thompson & Hunt, 1973). This method establishes the fully

nonlinear governing equations based on energy principles or from direct equilibrium. The

post-buckling behaviour and imperfection sensitivity can be predicted using Koiter’s the-

ory (Koiter, 1945), numerical continuation techniques (Wadee, 1998), or some combination

of the two.

2.1.1 Engineering approaches

Bijlaard and Fisher (1952; 1953) investigated the global buckling load of locally buckled

square box-section columns using the method of split rigidities (Bijlaard, 1951a; Bijlaard,

1951b) in conjunction with the principle of virtual work. The stress distribution and the

cross-section profile change, as shown in Figure 2.1, were solved based on energy methods.

The stress–strain relationship of plates in the post-buckling range as well as the kinematic

conditions of the perturbed profile, as shown in Figure 2.1(c), were adopted to establish

the corresponding internal and external virtual work terms. With the stress distribution,
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(a) (b) (c)

Figure 2.1: Cross-section deformation profile at different stages. (a) Local buckling. (b)
Interactive local–global buckling. Note that the arrows represent the deformation direction
of plate components. Dotted and solid lines represent the cross-section profiles during the
pure local buckling and local–global interactive buckling stages respectively. (c) Local
displacement change caused by the local–global mode interaction.

the bending moment on the section can be obtained, which can be used to determine

the effective bending rigidity of the section and the effective global buckling load, i.e.

the ultimate load. The results from the theoretical model showed good comparisons with

experimental results. However, it was assumed that the post-buckling stiffness of square

box-section columns was constant with the buckling progression, which in fact has been

shown in later work to be decreasing (Hancock, 1981). This assumption overestimated the

ultimate load. Moreover, the method can only be used for predicting the ultimate load

and no information about the behaviour after that can be obtained.

Little (1979) proposed an approximate solution method to study the local–global mode in-

teraction of thin-walled square box-section struts by transforming the geometric nonlinear

problem due to local buckling of plates to a nonlinear material problem. Based on the as-

sumption that the strain distribution is linear over the cross-section width, the theoretical

moment–rotation–axial load (M–φ–P ) relationship for a strut element with length being

equal to the half-wavelength of the local buckling mode was calculated. The stiffness loss

due to local buckling in the more compressed part was considered by applying a suitable

average nonlinear stress–strain relationship. This was taken from the load–end-shortening

curve of a simply-supported rectangular plate under pure compression up to failure us-

ing large deflection elastic-plastic analysis. Since the stress distribution in the webs is
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not uniform, they were divided into 10 elements, in which the stress and strain condition

was assumed to be constant. Then, the M–φ–P relationship was incorporated into an

iterative numerical method for an inelastic complete column, which was an assembly of

such half-wavelength elements. By integrating along the member axis, the load versus

deflection curves of locally buckled columns was obtained. Moreover, local and global geo-

metric imperfections, as well as residual stresses, were considered in the model. However,

as noted by the author, the average stress–strain relationship to consider the effects of

local buckling in plates neglected the interaction between individual plates. Moreover,

the assumption about the strain distribution over the cross-section, as well as the average

strain–stress relationship for the flanges, which are in combined compression and bending,

is also theoretically baseless.

Djubek et al. (1983) proposed a semi-analytical approach to compute the ultimate load

of thin-walled box-section struts susceptible to local–global mode interaction. The effects

of the plate local buckling on the bending rigidity of the cross-section were considered by

using the effective width concept. The expressions of the effective width for uniformly and

non-uniformly compressed plates were provided, which are used for determining the effec-

tive width in webs and flanges respectively. In particular, the Winter empirical equation

(Winter, 1968) was used to determine the effective width for the uniformly compressed

web. In the formulation, the variation of the effective cross-section along the length of

the strut owing to different ratios of compression and bending moment was considered.

Moreover, the neutral axis movement due to the buckling of the more compressed section

was also included. The governing equation for the local–global mode interaction of struts

was given thus:

{EIe [z,W (z, P )]W ′′(z, P )}′′ + P {W ′′(z, P ) + η′′ [z,W (z, P )] + W ′′

0 (z)} = 0, (2.1)

where Ie [z,W (z, P )] is the effective second moment of area of the cross-section, which is

the function of the coordinate z and the column deflection W (z, P ); P is the axial force



CHAPTER 2. LITERATURE REVIEW 73

applied to the strut; η [z,W (z, P )] represents the displacement of the centroid of the cross-

section owing to the plate local buckling; W0(z) is the initial global imperfection of the

strut and primes represent derivatives with respect to z. Since the governing differential

equation is nonlinear with coefficients being functions of P , a combination of numerical

continuation and the Runge–Kutta method (Press et al., 2007) was adopted to obtain

the numerical solution. Moreover, the limit state of the strut was defined by the onset

of yielding in the plate. The numerical results identified the erosion in the load-carrying

capacity due to the geometric imperfections. However, as noted by the authors, there is no

theoretical basis for the method to determine the effective stiffness in flanges, where there

is a combination of axial compression and bending. A systematic investigation should be

conducted to obtain the actual effective area distribution. It should also be noted that

the effective width equation proposed by Winter (1968) is mainly used for the ultimate

strength prediction. Therefore, it may not have been reasonable to describe the effective

stiffness distribution in the buckled plate without verification from experimental results.

Graves Smith (1968) developed analytical models based on variational principles in con-

junction with the Rayleigh–Ritz method to investigate the effects of material yielding

stress level, cross-section aspect ratio, local–global mode interaction on the ultimate load

of perfect thin-walled box-section columns. The analysis of local–global mode interaction

consisted of two parts: firstly, analysis was conducted to obtain the post-buckling be-

haviour of columns under pure compression; secondly, a perturbation analysis, by applying

an infinitesimal bending strain, was conducted based on the results of the first part. The

corresponding ultimate load was determined by computing the effective bending stiffness

of the section in the post-buckling range. The results revealed that the global–local in-

teractive failure mode has little effect on the ultimate load of square box-section columns

when the slenderness ratio is half of the critical slenderness ratio, defined where the local

buckling load is equal to the global buckling load. An excellent comparison in the ultimate

load was observed between the analytical and test results.
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Using a very similar approach to that proposed by Little (1979), Lee and his collaborators

(Shanmugam et al., 1987; Chiew et al., 1987) investigated the ultimate load of thin-walled

welded box columns susceptible to local–global mode interaction. The effect of plate local

buckling was considered by adopting a unified and simplified piecewise linear stress–strain

relationship, which could represent the typical load–end-shortening curves of unwelded

plates with plate width–thickness ratios being between 30 and 80 alongside an initial im-

perfection of b/1000, where b is the plate width. The analytical model was validated using

experimental results of 17 welded box-section columns under pure compression. It revealed

that the analytical model could provide a reasonably accurate prediction of the ultimate

load. Based on the validated analytical model, a parametric study on the column and

plate slenderness was conducted. The load-carrying capacity erosion due to geometric im-

perfections and residual stresses was identified, particularly for columns with intermediate

lengths. As for the effect of plate slenderness on the interactive buckling, it revealed that

the column strength is independent of column global slenderness λ̄o in the lower range of

λ̄o and this range increases with the increasing plate width to thickness ratio b/t. More-

over, at low b/t ratios, interactive buckling failure mode governs for the whole range of λ̄o,

whereas the failure is mainly due to local buckling up to a certain value of λ̄o for larger

b/t.

It should be noted that the engineering method becomes practically less significant for

research purposes with the advance and availability of computational mechanics tools,

such as commercially available FE packages. However, they played an important role in

understanding the key parameters that affect the physical phenomena. Moreover, owing to

its simplicity and reasonable accuracy, it is acceptable for practical engineering purposes

and some of these studies have played important roles in the development of the codes of

practice.
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2.1.2 Theoretical approaches

Van der Neut model

As far as the author is aware, the Van der Neut model (van der Neut, 1969) is the first

work to apply the general elastic stability theory to the interactive buckling of thin-walled

structures. The Van der Neut model is an idealized column, which consists of two load-

carrying flanges with width b and thickness h and an unspecified web with height 2c that

is rigid in shear and only offers a simple support to the flanges without contributing to

the transmission of the axial force, see Figure 2.2(a). With the idealized web assumption,

the force in the flanges is very easy to calculate; Van der Neut investigated the ultimate

load and initial post-buckling behaviour of perfect columns, columns with a pure local

imperfection, and columns with both local and global imperfections with varying lengths.

The application of the model to imperfection sensitivity and load-carrying capacity erosion

study is discussed in a later section specifically about imperfections (§2.3).

In the model, the interaction between local and global modes is considered by introducing

the reduction factor in the longitudinal stiffness η in the post-buckling range of the flanges.

The reduction factor η is given by:

η =
d(P/PC

l )

d(ε/εl)
, (2.2)

where P and ε are the applied compressive load and the direct strain in the flanges re-

spectively and PC
l and εl are the local buckling load and the corresponding direct strain

in the flanges. For the perfect case, η decreases with the increase of P/Pl, but it remains

approximately 0.4083 for ε/εl < 3 (Hemp, 1945). The governing differential equation was

established using direct equilibrium.

Using Koiter’s theory (Koiter, 1945), Van der Neut investigated the characteristics of

the equilibrium response at the buckling load and classified the post-buckling properties
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Figure 2.2: (a) The Van de Neut model of an idealized thin-walled strut (van der Neut,
1969). The strut comprises two load-carrying flanges with width b, thickness h, length L
with a pair of rigid webs of depth 2c− h with no longitudinal stiffness; P is the concentric
axial load applied to the entire strut. (b, c) The Van de Neut curves for the geometrically

perfect case: η is the stiffness reduction factor, L0 =
[

2η/(1 + η)
]1/2

L1, L2 = η1/2L1 and
L1 is defined when PE = PC

l ; PC
l and PE are the plate local buckling load and the column

Euler global buckling load respectively.
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Table 2.1: Types of bifurcation defined by Van der Neut (1969), where P is the axial
load and PC

l is the local buckling load. The quantity (W0/c)
2 is the same order of the

deflection at mid-span and −∆L is the end-shortening;
dP/PC

l

d(W 2
0
/c2)

represents the slope of the

load versus mid-span deflection curve and
dP/PC

l

d(−∆L/εlL)
represents the slope of the load versus

end-shortening curve.

Bifurcation at Pb

P

End-shortening

P

End-shortening

P

End-shortening

dP/PC

l

d(W 2
o /c

2)
< 0 < 0 > 0

dP/PC

l

(−∆L/εlL)
> 0 < 0 > 0

Post-buckling
Unstable & explosive unstable stable

characteristic

into three categories, as presented in Table 2.1. Moreover, as shown in Figure 2.2(b),

four distinct length-dependent zones were identified, i.e. the column is approximately neu-

trally stable when L < L2, strongly stable when L2 < L < L0, strongly unstable when

L0 < L < L1 and approximately neutrally stable once again when L > L1. By an axis

transformation, Figure 2.2(b) can be presented as the more well-known diagram compris-

ing three straight lines as shown in Figure 2.2(c). The boundary for each characteristic

zone was determined based on the Engesser ‘double-modulus’ theory (Bažant & Cedolin,

2010), where the effective axial stiffness of the buckled plate is assumed to be ηE.

Using almost the same methodology, Van der Neut (1976) also studied the mode interaction

in stiffened plates used in aircraft wing structures, where the cross-section is unsymmetrical,

i.e. the area of the plate side is larger than the stiffener topside. In particular, the rotational

constraint from adjacent plate elements were included in the analytical model. Unstable

post-buckling behaviour due to mode interaction was also observed but the severity was

mollified. Moreover, compared with the two-flange Van der Neut idealized column, it was

found that the unstable range for the stiffened plate was much smaller.
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Discrete models

Menken et al. (1991; 1994) developed a discrete model (see Figure 2.3) involving a limited

number of degrees of freedom to analyse the interaction between the local flange buckling

and the overall lateral-torsional buckling in a cantilever T-section beam. Using the general

theory of elastic stability (Thompson & Hunt, 1973), the interactive buckling behaviour

was reproduced and it agreed well with the experimental results qualitatively. Although

discrete models reproduce qualitative behaviour, analytical approaches based on continuous

models are generally superior for reproducing quantitative behaviour.

Figure 2.3: Discrete model for analysing the interaction between the global lateral-torsional
buckling mode and the local flange buckling mode; Q1 is the rotation and Q3 is the lateral
deflection, both describing the global lateral-torsional buckling mode. The independent
angles Q5 and Q6 represent the local buckling mode of flanges; Q2 characterizes the vertical
deflection and Q4 is the end-shortening. Reproduced from Menken et al. (1994).

Continuous models

Based the concept of slowly varying functions, Koiter and Pignataro (1976a) formulated a

relatively simple and approximate potential energy expression to describe the local–global

mode interaction in stiffened panels. As for the description of the local mode, a simple but

sufficiently accurate approximation based on the solution of initial post-buckling of long

flat plates was adopted. Specifically, the cross-section component of the local out-of-plane
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displacement was given as a piecewise function:

gw(ζ) =































q sin(πζ) + (1 − q) [1 − cos(3πζ)] /3 for 0 ≤ ζ ≤ 1/6,

q sin(πζ) + (1 − q) [1 + 2 sin(3πζ/2 − π/4)] /3 for 1/6 < ζ < 5/6,

q sin(πζ) + (1 − q) [1 + cos(3πζ)] /3 for 5/6 ≤ ζ ≤ 1,

(2.3)

where ζ=y/b is the normalized transverse coordinate with b being the plate element width

between stiffeners, q is the parameter reflecting the effects of rotational restraints in the

longitudinal edges, the variation of which can mimic a variety of different rotational bound-

ary conditions from the simply-supported (q=0) to clamped cases (q=1). The longitudinal

component of the out-of-plane displacement was assumed to be a sine function, the wave-

length of which depended on the rotational restraint at both longitudinal edges. Moreover,

the modulation in the local mode amplitude owing to local–global mode interaction was

considered by introducing a modulated function. As for the in-plane local mode, both axial

and transverse displacement fields were considered, the wavelength of which in the longitu-

dinal direction was assumed to be half of the out-of-plane component a. The cross-section

components for axial and transverse local modes were assumed to be:

gu =
π

8a
g2w(ζ), gv =

π

8b
gw(ζ)g′w(ζ), (2.4)

where the prime represents the derivative with respect to ζ. By reducing the functional in

terms of a dimensionless quantity, it revealed that the expression only depends on the ratio

of the global buckling load to the local buckling load as well as the cross-section properties,

the latter of which was found to vary in a relatively narrow range for practically significant

sections. Based on the analytical model, it was found that the unstable post-buckling

behaviour of stiffened panels was less severe than that for the Van der Neut’s two-flange

simplified model.

Recently, the group led by Wadee has developed a series of mathematical models based on
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variational principles to simulate the nonlinear local–global interactive buckling behaviour

in thin-walled structural components under compression (Wadee & Bai, 2014; Wadee &

Farsi, 2014a; Liu & Wadee, 2015) and bending (Wadee & Gardner, 2012). The fundamen-

tal methodology for the series of works is essentially the same, which was firstly proposed

while studying localized buckling in sandwich structures (Wadee, 1998). Timoshenko beam

theory was used to model the global behaviour of the structure because Hunt and Wadee

(1998) demonstrated that the shear strains within each individual element were essential to

preserve the energy terms necessary for modelling the interaction. Specifically, the global

mode was divided into two components: a pure lateral displacement W and a pure rotation

θ (see Figure 2.4), known as the ‘sway’ and ‘tilt’ modes respectively (Hunt et al., 1988;

Hunt & Wadee, 1998). The local mode was estimated by appropriate boundary conditions,

W (z)

z
x

x

(z)

(a) Sway mode

L

z

(b) Tilt mode

L

Figure 2.4: Decomposition of the global buckling mode into ‘sway’ and ‘tilt’ components.

in conjunction with the Rayleigh–Ritz method. Geometric nonlinearities were considered

by using large-deflection plate theory (Timoshenko & Woinowsky-Krieger, 1959). Based

on the modal description, the total strain energy and work done by load terms were deter-

mined. The global buckling load of the compression member was determined by considering

the condition where the Hessian matrix of the total potential energy V is singular on the

fundamental path, where all local and global buckling modes are null. With variational

principles, the total potential energy V was then minimized with respect to the continuous

variables, the longitudinal local out-of-plane component w and in-plane component u, to

obtain a system of nonlinear differential and integral equations that define the equilibrium

states.
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Since the governing equations are too complex to solve analytically, the numerical continua-

tion software, Auto (Doedel & Oldeman, 2009), was used to solve the governing equations.

Auto is generally used to solve the following problem using numerical continuation:

f (y, η) = 0, (2.5)

where f and y denote n-dimensional vectors, and η is the continuation parameter, i.e. a free

parameter introduced to observe how the solution of f evolves. The method for orthogonal

collocation (De Boor & Swartz, 1973) was adopted to discretize the problem using piecewise

polynomials with 2–7 collocation points per mesh interval (Doedel & Oldeman, 2009).

Moreover, the mesh is automatically adapted to the solution so as to distribute the error

from local discretization (Russell & Christiansen, 1978). Although Auto is principally

designed for autonomous systems (hence the name), nth-order non-autonomous equations

can be solved by introducing a further variable, fn+1, where

ḟn+1 = 1, (2.6)

with the boundary condition being:

fn+1 = 0. (2.7)

As for the numerical continuation routine, pseudo-arclength continuation is adopted in

combination with the modified Newton–Raphson method is adopted (Riks, 1979). It can

trace the limit points (or folds), which is very helpful to trace the highly nonlinear equi-

librium paths in current study.

Despite the advantage in tracing highly nonlinear equilibrium paths, the modified Newton–

Raphson method cannot detect and identify bifurcation points in the solution space (Cr-

isfield & Wills, 1988). Since the rank of the Jacobian matrix of the system of equations,

J, reduces by at least one at a bifurcation point, Auto can locate bifurcation points by

examining it (Doedel & Oldeman, 2009). Moreover, from evaluating the derivative of J at
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the bifurcation point, the trajectories of different post-bifurcation paths can be computed

by finding the roots of the resulting algebraic bifurcation equation (Keller, 1977). The well-

defined trajectories of the post-bifurcation branch paths also makes it possible to switch

between different post-bifurcation branches. It should be noted that Auto can also detect

other kinds of critical points, such as torus bifurcations and Hopf bifurcations. However, in

the current thesis, the detection of limit points and bifurcation points is deemed sufficient.

Auto has been shown in previous studies to be a powerful numerical solver of nonlinear

problems without losing the intrinsic mathematical structure of the solutions and to switch

between, as well as trace, equilibrium paths (Wadee & Bai, 2014; Wadee & Farsi, 2014a;

Wadee & Farsi, 2014b; Bai & Wadee, 2015b; Liu & Wadee, 2015). This puts it to somewhat

of an advantage to the commerical FE package Abaqus in the sense that the perfect

nonlinear behaviour can be investigated without resorting to perturbing the system to

by-pass the bifurcation. The fourth-order and second-order governing equations are firstly

non-dimensionalized and then transformed into a system of first order differential equations

(Wadee, 1998) so as to be solved within Auto. Moreover, it should be mentioned that

the principal parameters used in the continuation process in Auto are interchangeable.

For the case where global buckling is critical, see Figure 2.5(a), the global buckling load

PC
o is obtained explicitly from the analytical model. Using the continuation method,

the normalized amplitude of the global mode qs is then varied to obtain the secondary

bifurcation point S, where local buckling is triggered. Subsequently, the second run is

started at the bifurcation point S using the branch switching facility within the package

and the applied load P is varied to compute the interactive buckling paths. For the case

where local buckling is critical, the first run starts from zero load and the local buckling

load PC
l is obtained numerically. Using the branch switching function, the post-buckling

path of the local buckling mode is computed. The second run is stopped and the branch is

switched in the third run when a secondary bifurcation point S is found. From this point,

the interactive buckling path is found; the procedure is shown in Figure 2.5(b).
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Figure 2.5: The numerical continuation procedures for interactive buckling of perfect
columns: (a) global buckling being critical and (b) local buckling being critical. The
thicker line shows the actual solution path. Circles marked C and S represent the criti-
cal and secondary bifurcation points respectively; qs and wmax/t represent the respective
normalized amplitudes of the global and local buckling modes.

Highly unstable cellular buckling (Hunt et al., 2000) due to the instability of the mode

interaction in combination with the strong post-buckling stability of the local mode was

observed in I-section struts (Wadee & Bai, 2014), beams (Wadee & Gardner, 2012), stiff-

ened plates (Wadee & Farsi, 2014a) and angles (Bai et al., 2017). Snap-backs in the

equilibrium paths and evolution of the local mode profile from localized to distributed

were captured, which was not well reproduced in the numerical verification (Wadee & Bai,

2014; Wadee & Farsi, 2014a) using Abaqus, but were observed in physical experiments.

The analytical models for stiffened plates and I-section columns were extended to include

rotational springs at junctions within the cross-sections (Wadee & Farsi, 2014b; Bai &

Wadee, 2015b). In both cases, a rapid erosion of the snap-backs in the equilibrium paths

was observed with the increase of the rotational rigidity at junction. However, the evolution

of the local mode profile from localized to being more distributed and the wavelength

change was still captured. Moreover, based on the analytical models, parametric analysis

was conducted to investigate the effects of changing the global and local slenderness on

the post-buckling behaviour, thus providing the important practical sizing information to

structural designers (Bai, 2014; Wadee & Farsi, 2015). Compared with Van der Neut’s

‘three-straight line’ Pu/P
C
l –PC

o /P
C
l diagrams, as shown in Figure 2.2, the diagrams in



CHAPTER 2. LITERATURE REVIEW 84

present works (Bai, 2014; Wadee & Farsi, 2015) present quantitative information about

the behaviour of structural components in the interactive buckling range.

The results from these studies reveal amongst other things that progressive cellular buckling

(Hunt et al., 2000) arises from the nonlinear interaction between the weakly stable global

buckling mode and the strongly stable local buckling mode. Moreover, experimental results

from other research groups (Fok et al., 1976; Becque & Rasmussen, 2009a) have been useful

in validating the analytical work (Wadee & Bai, 2014; Wadee & Farsi, 2014b) with excellent

agreement. It should be noted that these models were also extended to include geometric

imperfections. The related work will be discussed in a later section specifically about

imperfection sensitivity.

2.2 Numerical approach to interactive buckling

2.2.1 Finite Element Method (FEM)

Owing to the popularity of general-purpose finite element (FE) packages with powerful

modelling and solution functions, FEM has become a critically important and accessible

method in analysing the nonlinear behaviour of thin-walled structures. Compared with

analytical methods, it can model nearly all the actual physical scenarios, including items

such as residual stresses, initial imperfections and plasticity. Therefore, it is often used for

verifying analytical models (Wadee & Farsi, 2014a; Becque, 2014; Bai & Wadee, 2015b;

Liu & Wadee, 2015), expanding the original simplified analytical model to more general

and actual cases (Kiymaz, 2005) and conducting parametric studies based on FE models

validated by experiments (Becque & Rasmussen, 2009b; Yuan et al., 2014). Related studies

using commercial packages with the FE models calibrated by experimental results are

reviewed later in §2.4.
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However, compared with analytical methods, it takes more time to run a nonlinear FE

analysis with a fine-mesh scheme. Nevertheless, high precision in the solution was ob-

tained in nearly all these numerical studies except for the aforementioned cases. In the

current study, the FE method is used as a verification tool for the analytical model, to give

hints for refining the analytical models and to conduct parametric studies to increase the

understanding of the behaviour of thin-walled RHS in practical scenarios.

Apart from the usage of generalized FE packages, some researchers have also developed

some specific finite elements to study the local–global mode interaction. Usami and Fuku-

moto (1984) adopted an updated Lagrangian formulation for elastic large displacement

analysis of beam-columns (Cook et al., 2007) to simulate the global response of welded

box-section struts exhibiting mode interaction within the FEM framework. Local buck-

ling was considered by introducing the effective width concept, as shown in Figure 2.6.

The effective member sections were determined using the effective width formula at every

loading stage. For uniformly compressed plates, i.e. webs, the expression for the effective

b
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Figure 2.6: Effective width of a plate under different stress distribution cases: (a) Uniform
compression with σ1,i = σ2,i; (b) eccentric compression with σ1,i > σ2,i > 0; (c) eccentric
compression with σ1,i > 0 and σ2,i < 0.

width at step i was given thus:

be,i
b

= C

√

σcr

σi

≤ 1, (2.8)

where b is the total width; C is a constant determined based on the stub column tests; σcr
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is the local buckling load of a simply supported plate under pure compression; σi is the

edge stress at step i. It should be noted that by substituting σi with the yielding stress fy

in Eq. (2.8), it is equivalent to the effective width equation to determine the ultimate load

of locally buckled plates. For non-uniformly compressed plates, the following expressions

were used. When σ1,i, σ2,i ≥ 0:

be1,i
b

=
C

2

√

σcr

σ1,i

, (2.9)

be2,i
b

=

[

1 + 0.44

(

1 − σ2,i

σ1,i

)]

be1,i
b

, (2.10)

be1,i + be2,i ≤ b. (2.11)

When σ1,i ≥ 0 and σ2,i ≤ 0, the expression for be1,i is the same as that given by Eq. (2.9)

and

be2,i
b

= 1.44
be1,i
b

, (2.12)

with

be1,i + be2,i ≤ b− be3,i, (2.13)

where σ1,i and σ2,i are the maximum and minimum edge stresses respectively, as shown in

Figure 2.6. As for the FE formulation for the beam-column element, the shape function

for the axial and lateral displacements was adopted as first and third order polynomials.

Half of each column was discretized into six elements and four point Gaussian quadrature

was adopted to integrate the element stiffness matrix. As for the imperfections, an initial

deflection of a half sinusoidal wave was introduced as the global geometric imperfection.

Ali and Sridharan (1988) developed a one-dimensional finite element model, which can

simulate the interactive buckling of thin-walled columns with an arbitrary cross-section.

In particular, the displacement field of the model includes amplitude modulation of the

local modes and the global mode. As for the global mode, both purely flexural and flexural–

torsional buckling modes were considered; as for the local mode description, a primary local

mode and two relevant secondary local modes with the same wavelength were considered.
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All the modes were determined using the finite strip method. Some examples on channel-

section columns were presented; it revealed that there is a nonlinear coupling between

flexural and flexural–torsional buckling through the local buckling mode. Moreover, highly

imperfection sensitive behaviour of channel-section columns was identified, which is more

severe than the cases with doubly-symmetric cross-sections.

Degée et al. (2007) developed a new special beam finite element to analyse the local and

interactive post-buckling of Rectangular Hollow Section (RHS) thin-walled members. The

newly developed element was based on the superposition of a displacement field of a clas-

sical strut (global mode) and a field describing local effects (local mode). The nonlinear

analysis results for beams of moderate local and global slenderness matched well with the

results obtained using shell elements. However, the simplified assumption that neglected

some nonlinear local terms in the strain energy expression makes the element only valid in

cases where the geometric nonlinear effect is relatively small.

Since the full nonlinear post-buckling analysis of thin-walled structures requires a consid-

erable computational effort, Lanzo and Garcea (1996) developed an asymptotic approach

based on a finite element implementation of Koiter’s general theory of stability. Com-

pared with the previous approach using the analytical method in conjunction with Koi-

ter’s theory, this method overcame the limitation from the displacement field assumption

and limited boundary condition cases. Compared with the standard nonlinear incremental

path-tracing approach, it was much faster and computationally efficient. The numerical

results also demonstrated that this method can provide a reasonably accurate prediction

of ultimate load and initial post-buckling behaviour. It was also reported that the method

could capture some complex strong modal interaction phenomena, which was difficult to

predict by some, more standard, nonlinear analysis techniques. However, since the selection

of the number of buckling modes is crucial for the accuracy of the method, an a posteriori

study on the number of selected modes should be performed, otherwise all critical modes

must be taken into account. Moreover, owing to the limitation of Koiter’s theory, this
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method is only reliable in the initial post-buckling stage. Therefore, this method has been

more widely used on the imperfection sensitivity studies (Zagari et al., 2016), where only

the ultimate load is of interest.

2.2.2 Generalized Beam Theory (GBT)

GBT was first developed by Schardt (1994) but was only valid for linear buckling theory

initially. Silvestre and Camotim (2003) developed a geometrically nonlinear GBT, which

is valid in the large deformation range but still keeps the advantage of the modal decompo-

sition feature. Compared with traditional GBT, two additional sets of cross-section defor-

mation modes, namely shear and transverse modes, were introduced, thus making complex

cross-section analysis possible. A finite element beam was developed for the solution of the

GBT equations. A predictor–corrector technique based on the Newton–Raphson method

and arc-length control was used to solve the nonlinear equations. In the three illustra-

tive examples on the post-buckling behaviour of a plate, a lipped channel and a Z-section

column under pure compression, the equilibrium paths calculated by the nonlinear GBT

match well with those from Abaqus using shell elements. The decomposition feature of

GBT helped explain the mechanism of some cross-section modes which cannot be provided

by conventional numerical methods directly. Moreover, the method discretized the system

in terms of modes and hence the number of degrees of freedom is substantially reduced

when compared with shell FE models, which has a marked effect on reducing computing

time.

In recent years, nonlinear GBT has been further extended to solve a variety of different

problems by Camotim and his collaborators, such as the post-buckling behaviour of thin-

walled structures made of nonlinear materials using the active elastic moduli predicted by

deformation and flow plasticity theories (Gonçalves & Camotim, 2004); the elastic post-

buckling behaviour of imperfect thin-walled steel members with arbitrary cross-section pro-
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files with non-standard support conditions (e.g. localised restraints) under general loading

conditions (Basaglia et al., 2011); the interaction between local and distortional buckling

of thin-walled lipped channel columns (Silvestre & Camotim, 2006) and beams (Martins

et al., 2018).

2.2.3 Finite Strip Method (FSM)

The FSM was first developed by Cheung (1968) alongside Graves Smith and Sridharan

(1978) to reduce the computational efforts. The basic methodology and theory is essentially

identical to FEM. The only difference is the discretization. In the finite strip method, only

a single element is used to model the longitudinal direction. It greatly reduces the number

of degrees of freedom in the model compared with FEM. However, it may also introduce

errors for the cases where the longitudinal displacement field varies and deviates from the

predefined shape function. Hancock et al. (1990) proposed the spline finite strip method

by discretizing the longitudinal direction as well and using spline functions to describe the

longitudinal displacement field. It can somewhat make up the shortcomings of the original

version of FSM but with the price of additional complexity and increased computational

efforts.

Using the FSM, Hancock (1981) studied the effective global bending rigidity of square box-

section columns with initial local imperfections. As shown in Figure 2.7, a perturbation in

global bending was applied by adding a small curvature to the locally deformed sections due

to axial compression and initial geometric imperfections. The resulting stress distribution

was integrated to obtain the bending moment applied on the section. To simulate the

actual stress distribution, half of the cross-section was subdivided into 16 equal width

strips. The effective global bending rigidity of the section then was determined by dividing

the bending moment by the curvature. With this methodology, the effective bending

rigidity of struts with different local imperfection sizes under different compressive stress
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Figure 2.7: Square box-section strut with initial local geometric imperfections: (a) Initial
state. (b) Axial compressive strain ∆. (c) Axial compressive strain ∆ and bending curva-
ture χ. The dotted line in the cross-section graphs represents the deformed profile in the
preceding stage.

levels was determined. A comparison was made with previous studies (Bijlaard & Fisher,

1953; Dewolf et al., 1974), which verified the effectiveness of the methodology. Moreover, it

revealed that the effective bending rigidity is sensitive to imperfection size when the initial

compressive load is smaller than the local buckling load.

Sridharan and his collaborators (Sridharan, 1983; Benitot & Sridharan, 1984; Sridharan

& Ali, 1986) used the finite strip method in conjunction with Koiter’s theory to analyse

the mode interaction of thin-walled structural members with different cross-sections. As

for the global mode, both purely flexural and flexural–torsional buckling were considered.

The numerical results (Benitot & Sridharan, 1984) matched the available experimental

results well. However, greater focus was placed on the imperfection sensitivity study. The

evolution or progress of the interactive buckling behaviour was not presented.

Davids and Hancock (1987) combined the influence coefficient method (Han & Chen, 1983)

for beam-columns with the FSM for nonlinear elastic analysis of locally buckled thin-

walled sections to analyse the local–global interactive buckling in beam-columns, as shown
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in Figure 2.8. This method takes advantage of both analysis methods and thus is very

computationally efficient. Moreover, the effects of local and global geometric imperfections,

residual stresses, general boundary conditions as well as the general applied loads were

included in the model. As for the analysis procedure, the column was first replaced by

a series of ‘cell’ elements, the lengths of which were equal to the half-wavelength of the

pure local buckling mode. The moment and axial force resisted by a cell subjected to the

defined curvature and axial strain were determined using the nonlinear elastic FSM. The

average values of moment and axial force then were used for the nonlinear analysis of the

beam-column. The numerical results showed good comparisons with experimental results.
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Figure 2.8: Illustration of the influence coefficient method of beam-column in conjunction
with the finite strip method of nonlinear elastic analysis of locally buckled ‘cell’ element.

In particular, the post-ultimate equilibrium path could be traced well and the amplitude

modulation in the local mode could be captured. The numerical results also revealed that

columns exhibiting mode interaction are sensitive to geometric imperfections. Compared

with previous approximate methods (Bijlaard & Fisher, 1952; Bijlaard & Fisher, 1953;

Dewolf et al., 1974; Djubek et al., 1983) in considering the reduced stiffness owing to local

buckling, this method is more accurate. However, it should be stressed that the wavelength
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of the local mode in the local–global interactive post-buckling range in fact varies along

the strut length and with the interaction progression, which was not considered by the

method due to technical complexity.

Møllmann and Goltermann (Møllmann & Goltermann, 1989; Goltermann & Møllmann,

1989) also used the finite strip method in conjunction with Koiter’s theory to investigate

the interactive buckling behaviour of an I-section beam under pure bending and a box-

section column under pure compression. Substantial reductions (up to 50%) in the load-

carrying capacity were observed in both examples due to the mode interaction. Guo and

Chen (1991) extended the method by including plasticity. The method was validated by

their experiments on channel columns under compression.

Hancock et al. (1990) reviewed the application of FSM in buckling and nonlinear analysis

of thin-walled structural members. Compared with the FEM, the FSM is more compu-

tationally efficient. However, in order to make the computation process simplified, some

assumptions or simplifications have to be made, which have been shown to have signifi-

cant effects on the post-buckling behaviour prediction. With the popularity of powerful

commercial FE packages, the principal role of FSM in the nonlinear buckling analysis

was replaced by the FEM. More recently, fewer papers have been forthcoming with FSM

used for nonlinear analysis; it has become more popular as a linear buckling analysis tool

(Schafer et al., 2010) to facilitate design using the so-called the Direct Strength Method

(Schafer & Peköz, 1998b).

2.3 Imperfection sensitivity

Previous studies (van der Neut, 1969; Thompson & Hunt, 1973; Svensson & Croll, 1975;

Gioncu, 1994b) have shown that structures susceptible to mode interaction can be ex-

tremely sensitive to imperfections, i.e. a tiny imperfection in the initial geometry may lead
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to a significant erosion in the load-carrying capacity. In view of the design philosophy,

Chilver (1976) classified the imperfection sensitivity of structures into three categories, as

shown in Figure 2.9. In his opinion, the imperfection sensitivity should be avoided but

Pu

0

Pu,perf

Figure 2.9: Three types of structural imperfection sensitivity classified by Chilver (1976)
from the view of design philosophy. Quantities Pu, Pu,perf , ε0 represent the ultimate load,
the ultimate load of perfect structures and the generalized imperfection size respectively.
Type 1 represents the structures exhibiting mildly imperfection sensitivity; Type 2 repre-
sents structures exhibiting initial sensitivity to micro imperfections but are mildly sensitive
to imperfections over a wide range of practical imperfection size; Type 3 represents struc-
tures showing strong sensitivity to imperfections.

relatively mild sensitivity can be accommodated. In particular, those structures that are

initially sensitive to micro-imperfections but showing mild sensitivity over a wide range of

practical imperfections, i.e. there is a ‘plateau’ of the ultimate load in the Pu–ε0 relation-

ship in the practical imperfection range (see curve 2 in Figure 2.9), can also be useful in

structures. The main issue for such cases is to determine the load-carrying capacity erosion

due to imperfections.

In this section, imperfection measurement methods in test and modelling techniques are

reviewed. After that, the imperfection tolerance level and modelling suggestions within the

current Eurocode are presented. Finally, imperfection sensitivity studies on thin-walled

members susceptible to interactive buckling are presented.
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2.3.1 Geometric imperfections measurement and modelling

Geometric imperfections of thin-walled section members are affected by a series of factors,

such as variations in material properties and geometry, the manufacturing method and

fabrication techniques. Moreover, additional geometric imperfections may arise due to

transportation, storage and erection, which are almost always localized, such as dents

(Cruise & Gardner, 2006). The existing literature (Schafer & Peköz, 1998a; Wadee, 2000;

Zeinoddini & Schafer, 2012; Wadee & Farsi, 2015; Bai & Wadee, 2015a; Liu & Wadee,

2016b; Zagari et al., 2016) has identified that both magnitude and distribution of geometric

imperfections affect the load carrying capacity of the structural members. Hence, a great

deal of effort has been made on geometric imperfection measurement and developing a

consistent and unified method to determine the geometric imperfection distribution and

the magnitudes that reflect actual cases in practice.

Schafer and Peköz (1998a) measured the local imperfection distribution along the length

for eleven nominally identical cold-formed specimens using a milling machine with a direct

current differential transformer (DCDT) and proposed the concept of the imperfection spec-

trum to describe the measured results. Based on the test results, they also explained the use

of the imperfection spectrum for modal and generalized imperfections. The methodology

was widely used by later researchers working on imperfection measurement and modelling

(Cruise & Gardner, 2006; Theofanous & Gardner, 2009; Schafer et al., 2010; Zeinoddini &

Schafer, 2012; Trouncer & Rasmussen, 2015).

Recently, Zhao et al. (2015) developed a novel imperfection measurement platform, which

can measure the full three-dimensional (3D) imperfect geometry of a cold-formed steel

member with good accuracy using a laser sensor mounted on transitional and rotary stages.

The data processing system can transform the raw data into a complete 3D numerical model

(point cloud), which provides the basis for further analysis on imperfections or numerical

simulations, such as FE analysis.
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As for the magnitude of local imperfections in cold-formed sections, Schafer and Peköz

(1998a) proposed rules of thumb for two types of imperfections for cold-formed sections

based on the collected test data, as shown in Figure 2.10. For internal elements, two ap-

w01
w02

(a) (b)

d

Figure 2.10: Definition of local geometric imperfections (Schafer & Peköz, 1998a).

proximate expressions based on linear regression and exponential curve fitting respectively

were given:

w01 ≈ 0.006d, (2.14)

w01 ≈ 6te−2t, (2.15)

where d and t are the width and thickness of the plate respectively. The unit in the equation

should be millimetres. For outstand elements, the magnitude of the imperfections can be

predicted by:

w02 ≈ t. (2.16)

It should be stressed that the above rules of thumb are only valid for a plate width–

thickness ratio (d/t) less than 200 for internal members and less than 100 for outstand

members; thicknesses should also be less than 3 mm.

Since large variations exist in the magnitude of local imperfections and the rules of thumb

do not provide a complete characterization of imperfection magnitude, Schafer and Peköz

(1998a) also suggested a probabilistic treatment, which ignores any trend in the data

attributed to plate width or thickness. The numerically estimated cumulative distribution

function (CDF) values and the summary statics are given in Table 2.2. A CDF value is
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Table 2.2: Numerically estimated cumulative distribution function (CDF) values for max-
imum magnitude of local imperfections (Schafer & Peköz, 1998a). Note that P(w0 < w0i)
represents probability that a randomly selected local imperfection maximum magnitude,
w0, is less than a discrete deterministic one, w0i.

Type 1 Type 2
P(w0 < w0i) w01/t w02/t
0.25 0.14 0.25
0.50 0.34 0.50
0.75 0.66 0.75
0.95 1.35 0.95
0.99 3.87 0.99
Mean 0.50 1.29
St. dev. 0.66 1.07

written as P(w0 < w0i) and indicates that the probability that a randomly selected local

imperfection maximum magnitude, w0, is less than a discrete deterministic value, w0i.

For instance, P(w0 < w0i) = 0.75 corresponds to w01/t = 0.66 for internal elements and

w02/t = 1.55 for outstand elements. The maximum magnitude of the local imperfection

for a typical member, w0, is expected to less than these values 75% of the time.

As for the magnitude of local imperfections in welded sections, a summary of the measured

data in existing literature (Pavlovčič et al., 2012; Shi et al., 2014; Schillo, 2017; Yang et al.,

2017) is presented in Figure 2.11. It reveals that P(A0/d < 1/200)=0.8 and P(A0/d <

1/125)=0.91, the latter of which corresponds to the functional manufacturing tolerances

for welded box sections (EN, 2008). As for the local imperfection normalized with respect

to plate thickness, it reveals that the imperfection amplitude is generally smaller than that

for cold-formed sections presented in Table 2.2, i.e. P(A0/t < 0.3)=0.83 and P(A0/t <

0.5)=0.96. This may be attributed to the fact that the plate slenderness in welded sections

is relatively higher than that for cold-formed sections.

Mateus and Witz (2001) proposed an equation to determine the initial imperfection am-

plitude based on the regression analysis of data gathered from surveys of ship and welded

box girder bridge plates:

w0

t
=

%d2

t2
fy
E
, (2.17)
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Figure 2.11: Histograms of local imperfection amplitude normalized with respect to (a)
plate width and (b) plate thickness in welded box-section columns in the existing literature.

where d and t are plate width and thickness respectively; fy and E are material yielding

stress and Young’s modulus respectively; % is the fitted factor. It was suggested that % = 0.1

would be most adequate; % = 0.3 and 0.025 would give the related upper and lower bound

of the imperfection amplitude. Figure 2.12 shows the histogram of % determined based on

the measured local imperfection amplitude in welded box section column in the existing

literature. It reveals that Eq. (2.17) could provide a relatively reasonable prediction of the

local imperfection amplitude in welded box-section struts.

Compared with the magnitude, there seems to be no real consensus on a consistent or

unified method for the distribution of local geometric imperfections. A great deal of ef-

fort has been made in analysing the measurement data using the signal–spectrum analysis

method (Schafer & Peköz, 1998a; Cruise & Gardner, 2006; Trouncer & Rasmussen, 2015)

and developing methodologies such that the artifically generated local imperfections can

reflect those in physical reality (Zeinoddini & Schafer, 2012). However, since local imper-

fections are essentially stochastic parameters, a large number of analyses are necessary to

obtain statistically significant results in terms of the ultimate load (Sarawit et al., 2003).
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Figure 2.12: Histogram of the local imperfection factor % in Eq. (2.17) determined based
on the results in the existing literature.

Therefore, for convenience, the majority of the previous studies adopted the profile of the

lowest local buckling mode as the distribution profile of local imperfections (van der Neut,

1969; Degée et al., 2008; Yang et al., 2017). The details of related work on the imperfection

distribution modelling and the effects on the ultimate load prediction will be introduced

later in the current chapter.

2.3.2 Residual stresses measurement and modelling

Residual stresses are internal stresses existing in structural sections in the externally un-

loaded state (Cruise & Gardner, 2008), which are primarily established during the uneven

cooling of a welded or hot-rolled steel member or during non-uniform plastic deformation

due to cold-work (Trahair et al., 2007). They must be distributed through the section

such that all equilibrium conditions are satisfied. The magnitude and distribution of resid-

ual stresses in sections are closely related with the corresponding manufacturing process

(Tebedge & Tall, 1973; Abambres & Quach, 2016). Generally, the existence of residual

stresses in structural members will cause premature yielding, thus leading to stiffness loss
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and erosion in the load-carrying capacity.

The current study focuses on residual stresses in welded cross-sections. However, it should

be noted that systematic experimental and theoretical studies on residual stresses in cold-

formed sections have been conducted, i.e. development of measuring techniques (Weng &

Peköz, 1990), test results (Schafer, 1997; Schafer & Peköz, 1998a), mechanism of residual

stress formation with its numerical and analytical simulation (Quach et al., 2004; Moen

et al., 2008; Quach et al., 2010; Pastor et al., 2013), and modelling methodologies in com-

putational models (Schafer & Peköz, 1998a; Schafer et al., 2010). Compared with welded

sections and cold-formed sections, work on residual stress distributions and magnitude in

hot-rolled sections is relatively more mature and related studies can be found (Lay & Ward,

1969; Tebedge & Tall, 1973; ECCS. TC 8, 1976). Moreover, owing to post-manufacturing

treatment, residual stresses in hot-rolled sections are relatively small in comparison with

cold-formed and welded sections.

As for the measurement of residual stresses in welded sections, it is mainly conducted using

the sectioning method (Abambres & Quach, 2016). This technique is based on the mea-

surement of residual strains that are released when test sections are cut into small coupon

strips (Tebedge et al., 1973). The residual stresses can then be obtained by multiplying the

change in the longitudinal strains in each strip coupon surface with the Young modulus.

It should be noted that there are also some non-destructive methods to measure residual

stresses, such as X-ray diffraction, ultrasonic and magnetic methods, but they are very

expensive and not often practical (Yuan et al., 2014).

As for residual stresses in welded sections, it has been observed that only the axial mem-

brane component is of significance (ECCS. TC 8, 1976). The membrane stress magnitude

depends on the plate cutting method and welding techniques. The distribution for normal

strength steel (NSS) has been investigated extensively and there are some widely-accepted

models (ECCS. TC 8, 1976; Abambres & Quach, 2016). The ECCS model for four typ-

ical cases is shown in Figure 2.13. The tensile stresses at the corners are assumed to be
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Figure 2.13: Residual stress distribution model for welded box sections (ECCS. TC 8,
1976), where fy is the yielding stress, t is the plate thickness and b is the plate width.

constant with the value equal to the material yielding stress. The length of the tensile

range is related to the welding method. The compressive residual stresses are assumed to

be uniformly distributed in the central part of the section, with the value determined from

the self-equilibrating conditions. With the increase of the plate width–thickness ratio, the

ratio of compressive residual stress to yielding stress decreases. In the current study, the

ECCS model is adopted for modelling the residual stresses.

Recently, as the use of high strength steel (HSS) has increased, numerous studies have

been conducted on residual stress distributions on welded HSS box-section members. Ban

et al. (2013) investigated the residual stress distribution in HSS welded box sections with

a yield stress of 460 MPa via experimental studies on 6 welded square box sections with

various width–thickness ratios and plate thickness. It was found that the residual stress

distribution profile over the sections is very similar to that of NSS sections, which can

also be described using piecewise functions. Moreover, the compressive residual stress was

significantly correlated with the sectional dimensions, unlike the tensile stress. As for the

compressive residual stress in the central portion, it decreased with the increase of the

width-to-thickness ratio. Moreover, no residual stress interaction among four component

plates was identified, i.e. the compressive and tensile residual stresses were self-equilibrating
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for each plate independently. Based on the test results, a prediction model and its simplified

form were proposed to describe the residual stress distribution. However, as noted by the

authors, the model is only valid for sections with the same steel grade and manufactured

using the same method, in this case from butt welds.

Somodi and Kövedi (2018) measured the residual stresses of welded box-section specimens

with a variety of different steel grades (S235 to S960) and plate width–thickness ratios (14

to 60.5) using the sectioning method. A residual stress distribution model was proposed

based on the test results and some results in the existing literature, which were applicable

for various steel grades between S235 and S960. However, as noted by the authors, since the

residual stress distribution is closely related to the manufacturing method, the proposed

model is only valid for the sections manufactured by the MAG (Metal Active Gas) welding

process.

2.3.3 Imperfection tolerance and modelling recommendations in

Eurocode 3 (EC3)

In Eurocode 3 (EN-1993-1-5:2006E, 2006), it is recommended that both geometric and

structural imperfections should be included in the FE model where imperfections are con-

sidered. However, equivalent geometric imperfections may be used when a more refined

analysis, which includes both geometric and structural imperfections, is unavailable. The

recommended equivalent initial global imperfection (local bow imperfection) amplitude e0

of hollow section members for nonlinear analysis depends on the many factors, i.e. material

properties, manufacturing method and analysis type, as shown in Tables 2.3 and 2.4.

As for the local equivalent geometric imperfections, the magnitude is the minimum of

a/200 and b/200, where a and b is the shorter span of the panel or subpanel, as shown in

Figure 2.14(b). The imperfection shape for global and local imperfections are the corre-

sponding linear buckling modes.
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Table 2.3: Design values of global imperfections recommended by Eurocode 3 Part 1.1
(EN-1993-1-1:2006E, 2006).

Buckling curve
elastic analysis plastic analysis

δ0/L δ0/L
a0 1/350 1/300
a 1/300 1/250
b 1/250 1/200
c 1/200 1/150
d 1/150 1/100

Table 2.4: Buckling curve types for hollow section columns in Eurocode 3 Part 1.1 (EN-
1993-1-1:2006E, 2006).

Cross-section type
manufacturing

method
buckling

about axis

Buckling curve

hollow sections
S235, S275,
S355, S420

S460

hot finished any a a0

cold-formed any c c

d

b

tf
tw

general welds (except below) any b b
thick welds: a > 0.5tf

any c cd/tw < 30
b/tf < 30

Moreover, the sign of the applied imperfection should be such that it leads to the lowest

resistance. In combining imperfections, a dominant imperfection shape should be chosen

and the accompanying imperfections may have their values reduced to 70%.

(a) Global imperfection

δ0

L

(b) Local imperfection

b

a

A0

b

a

A0

Figure 2.14: Equivalent global and local imperfection modelling recommended by Eurocode
3 Part 1.5 (EN-1993-1-5:2006E, 2006).

As for modelling residual stresses explicitly, it is recommended that the imperfection shape

should be based on the critical buckling modes and the amplitudes are 80% of the geometric
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fabrication tolerance. The residual stresses may be represented by a pattern from the

fabrication process with the amplitude equal to the mean values.

However, according to previous studies (Johansson et al., 2007; Degée et al., 2008), adopt-

ing tolerance level imperfections as the imperfection introduced in the model would lead

to an overly conservative prediction of the ultimate load. Therefore, it may not be a rea-

sonable choice in the context of a probabilistic analysis. Moreover, the measured local

imperfection amplitude from the specimens also revealed that the actual local geometric

imperfection amplitude is generally much smaller than the tolerance level (Degée et al.,

2008; Pavlovčič et al., 2012; Yang et al., 2017; Schillo, 2017). Numerical results (Johansson

et al., 2007) also showed that the ultimate load of a plate with a tolerance geometric im-

perfection level and the compressive residual stress being 0.2fy under pure compression is

more than 15% lower than calculated from the well known Winter formula (Winter, 1947).

In order to make them consistent, a reduced imperfection combination should be adopted.

2.3.4 Imperfection sensitivity studies

Based on the idealized ‘two-flange’ model, Van der Neut (1969; 1973) investigated the

imperfection sensitivity and post-buckling behaviour of such an idealized column with

local and global imperfections using the theory developed by Koiter (1945). For the local

imperfection function, Van der Neut assumed that the ‘worst’ imperfection corresponds to

the mode pertaining to the smallest buckling load. The stiffness reduction factor η for the

column with the local imperfection was determined by using a Ritz–Galerkin approximate

solution of the nonlinear plate equation. Unlike the perfect case, η is a nonlinear function

and would vary with the local imperfection amplitude A0 and the axial load P . The

governing differential equation was established with direct equilibrium as it was for the

perfect case. From the numerical results with different values of A0, it was found that

the instability phenomenon would vanish with the increase of the imperfection amplitude.
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Moreover, it was found that struts are sensitive to both global and local imperfections. In

particular, the global imperfection was found to be more significant in the range where

local buckling is critical. However, the validity of the results was restricted to small global

imperfections of amplitudes less than 2% of the web depth due to the approximation from

the Taylor series expansion of the load, P (ε).

Based on Van der Neut’s idealized column with local imperfections, Thompson and his

collaborators (Thompson & Lewis, 1972; Thompson & Hunt, 1974) investigated an effi-

ciency chart of such an idealized column, which shows the relationship of the ultimate

load for thin-walled struts versus the ratio of the global and local buckling loads under

a constant weight constraint for optimum design purposes, as shown in Figure 2.15. It

b

Pu

P

L

b

b

t

global buckling

local buckling

post-buckling strength

perfect case

imperfect case

bopti

(a) (b)

L=constant A=2bt=constant

t

Figure 2.15: Optimum design and efficiency chart of a square Van der Neut ideal two-flange
strut with fixed length L and fixed cross-section area A.

was found that the optimum point shifted to one side of the ideal optimum point, i.e. to

where PC
o /P

C
l |opt < 1. More importantly, it was demonstrated that reaching the so-called

‘naive optimum’ load, where the local buckling load is equal to the global buckling load,

was practically unachievable for such components with realistically sized initial imperfec-

tions. Moreover, using the asymptotic approach, they determined the local imperfection

sensitivity law in each zones and found that the imperfection sensitivity is fundamentally

more severe for the case where local buckling is critical than it is for case where the global

buckling is critical. This discovery was contrary to the received wisdom at the time where
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local buckling is permissible due to its stable post-buckling behaviour, but this is due to

the consideration of mode interaction.

Since the Van der Neut model did not include the contribution of both webs, Maquoi and

Massonnet (1976) investigated the efficiency chart for thin-walled square hollow section

columns with various different sizes of geometric imperfections using the software developed

by Klöppel nd Schubert (1971). A significant erosion in the load-carrying capacity near

the naive optimum point was also observed. Moreover, it was also found that the profile

of the efficiency chart curve was affected by the imperfection size. When the imperfection

size is tiny, the maximum efficiency is located to one side of the naive optimum point

(PC
o /P

C
l = 1), where PC

o /P
C
l < 1; with increasing imperfection size, it moves to the other

side and is finally located at some point where PC
o /P

C
l > 1. However, they found that the

respective curves were very flat in the vicinity where the local and global buckling loads

are equal. Therefore, it was concluded that the optimum scheme based on the equal local

and global buckling loads was still valid, even though the design load should be reduced

based on the imperfection sensitivity study results. It should also be noted that the effects

of material nonlinearity were investigated in their work. This affected the profile of the

efficient curve significantly, i.e. the capacity erosion was even larger and the efficiency curve

was essentially flat when the local buckling stress was close to the yielding stress.

Using the finite strip method with mode interaction theory, Sridharan (1983) found that in

the case of narrow stiffened plates supported along the longitudinal edges, no catastrophic

failure was observed where interactive buckling occurred for stiffened plates with initial

imperfections. It was also pointed out that previous research (Tvergaard, 1973) ignored

some key terms in the energy function that would affect the imperfection sensitivity results.

Moreover, it was highlighted that the severity of the imperfection sensitivity depended on

the structural profiles; cross-sections with unstiffened plate elements were more sensitive

than those with stiffened (mutually interconnected) elements.

Kiymaz (2005) investigated the effects of column out-of-straightness, plate imperfections,
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residual stresses and material plasticity on the ultimate load and post-buckling behaviour of

square hollow section columns exhibiting mode interaction using the FE package Abaqus.

Three example columns with typical slendernesses were analysed, where (i) global buckling

was clearly critical, (ii) global and local buckling were triggered simultaneously, and (iii)

local buckling was clearly critical. The severe erosion in the load-carrying capacity due

to imperfections in the case where the local and global buckling loads were the same was

again observed.

Degée et al. (2008) investigated the effects of various imperfections, i.e. residual stresses,

local and global geometric imperfections, on the load-carrying capacity of slender welded

RHS columns exhibiting mode interaction through experimental and numerical methods.

Since the residual stress is relatively complex to model, they proposed an equivalent ge-

ometric imperfection modelling method by amplifying the local and global geometric im-

perfections based on the parametric study results. They found that a model with a local

imperfection of 1/250 of the cross-section width and a global imperfection of 1/725 of the

column length showed good agreement with a model including residual stresses.

Based on a validated FE model from experimental results of two heavily welded box-section

struts, Pavlovčič et al. (2012) studied the effects of different measured imperfections (lo-

cal imperfection, global imperfection and residual stresses) and their combinations on the

ultimate load. It revealed that the residual stresses appeared to have the most significant

effect on the capacity erosion among all three imperfections, which reduces the column ca-

pacity up to 37%. It was also found that the equivalent geometric imperfection modelling

suggestion given by Degée et al. (2008), i.e. global imperfection L/725 plus local imperfec-

tion d/200 (L and d are the strut length and web depth respectively), may underestimate

the effects of actual imperfections on the heavily welded box-section struts. Moreover, it

was reported that the imperfection combination with pure geometric imperfections and

residual stresses, i.e. global imperfection L/1000 plus local imperfection d/1000 plus resid-

ual stresses, provided a safe, yet accurate, prediction of the ultimate load. However, the
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parametric study only focused on the two specimens. A more extensive parametric study

would have been required to draw general conclusions.

Since the Van der Neut’s idealized ‘two-flange’ model is only limited to the purely elastic

case, Becque (2014) introduced material nonlinearity into the classical model and studied

its effects on the imperfection sensitivity and ultimate load. The Von Mises yield criterion

was adopted with an associated flow rule and isotropic hardening to model the material

plasticity. The governing equations, derived based on equilibrium conditions, were written

in an incremental form. Moreover, compared with elastic plate theory, the stress resul-

tants were used instead of the stresses at mid-span because the stress distribution is no

longer linear in the inelastic range. The finite difference method was adopted to solve the

governing equations. The theoretical model was verified using the FE package Abaqus

and showed good comparisons. With the verified theoretical model, the effects of material

strain hardening and yielding stress level on the profile of the Van der Neut-type curve

and the strut imperfection sensitivity were investigated. As for the nonlinear material

model, the Ramberg–Osgood model was adopted. Two values of the Ramberg–Osgood

parameter n were considered, i.e. n = 7 and n = 50 corresponding to a strain–hardening

material similar to stainless steel and an approximately two-stage piecewise linear stress–

strain relationship. It was found that when the proof stress was significantly higher than

the local buckling stress of the cross-section (σ0.2 > 2σcr), plasticity curtailed the Van der

Neut curve for short length struts (Zone 4) into a plateau with low to moderate imper-

fection sensitivity; when the proof stress was the same order as the local buckling stress

(σ0.2 < 1.5σcr), the plateau in zone 4 would extend and merge with that for transitional

length struts (zone 2) and struts would exhibit high imperfection sensitivity. Indeed, the

length of the extended plateau depended on the amount of strain hardening. At the same

value of σ0.2/σcr, the width of plateau for n = 50 is much larger than that for n = 7.

Based on the developed variational model, Wadee and his collaborators investigated the

imperfection sensitivity analysis of I-section columns (Bai & Wadee, 2015a; Liu & Wadee,
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2016b) and stiffened plates (Wadee & Farsi, 2015) under compression. The effects of

local imperfections, global imperfections and their combination on the ultimate load and

post-buckling behaviour were investigated. It was found that the compression members

susceptible to local–global mode interaction are very sensitive to imperfections. Moreover,

with the increase of imperfection size, the severity of unstable post-buckling behaviour is

mollified to some degree, but cellular buckling phenomena could still be observed (Wadee

& Farsi, 2015; Bai & Wadee, 2015a).

Effect of imperfection profile

Owing to its relative simplicity and the lack of efficient and advanced computational tools,

early researchers mainly adopted a local imperfection profile that was affine to the lowest

local buckling eigenmode to investigate the imperfection sensitivity of thin-walled compres-

sion members susceptible to mode interaction (van der Neut, 1969; Koiter & Pignataro,

1976a; Koiter & Pignataro, 1976b). These works identified serious erosion in the load-

carrying capacity for the cases where the local and global buckling loads are in close

proximity. Moreover, these provided the ultimate load prediction with good accuracy for

the cases studied. Therefore, it is still one of the most widely used methodologies (Schafer

et al., 2010).

In spite of its convenience, local imperfections modelled with this approach may not reflect

the actual imperfection profiles in physical reality. Equally importantly, they may not rep-

resent the most severe local imperfection profile (Wadee, 2000; Schafer et al., 2010). With

the advance of computational tools and physical testing techniques, numerous investiga-

tions on the effects of local imperfection profiles on the ultimate load and post-buckling

behaviour have been conducted. Rasmussen and Hancock (1988) proposed an analytical

technique to expand the range of measured geometric imperfections in the longitudinal and

cross-sectional dimensions based on the buckling modes. In particular, the secondary local

buckling components triggered by the interaction of global and local buckling modes were
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also considered, i.e. the modulated longitudinal profile and the mono-symmetric cross-

section profile.

Dubina and Ungureanu (2002) studied the effects of cross-section imperfection profiles on

the load erosion of channel section columns susceptible to mode interaction using the FE

method. They found that the ultimate loads for example struts with symmetrical and

asymmetrical cross-section imperfection profiles, which are affine to the lowest and higher

local buckling modes, were 12% lower and 15% higher than the test results respectively.

They also emphasized that using the sinusoidal shape from linear buckling analysis may

not represent the most appropriate imperfection mode introduced in nonlinear analysis.

Zeinoddini and Schafer (2012) introduced three methods to simulate the geometric im-

perfections in cold-formed steel members and compared their effects for predicting the

peak load and final failure mode using geometric and materially nonlinear FE models. All

three methods were based on the imperfection spectra (Schafer & Peköz, 1998a), which

is built on a large number of imperfection measurement tests. It was found that the ‘1D

Modal Spectra Method’, which adopted the cross-section imperfection component from

linear buckling analysis and the longitudinal component from spectral analysis, provided

the most accurate prediction for the ultimate load and the final failure mode.

Trouncer and Rasmussen (2015) conducted a spectral analysis of the ultimate load as a

function of imperfection spectra for 20 storage rack columns susceptible to mode interac-

tion. From a large number of FE simulations, they found that local imperfections in the

shape of higher order modes with half-wavelengths in close proximity to the half-wavelength

of the critical buckling mode have little effect on the ultimate load; this also applies if the

local imperfections were introduced to the cross-section non-symmetrically, which would

naturally break the symmetry and hence trigger mode interaction.

Zagari et al. (2016) investigated the imperfection sensitivity of thin-walled perforated rack

members in compression using an FE implementation of the Koiter method in conjunction
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with a Monte Carlo simulation. The most severe combination of imperfections and the

erosion of the ultimate load due to imperfections were identified. From the probability

distribution of the ultimate load for specimens exhibiting mode interaction, it was found

that the deviation is very small, which implies that the imperfection profile has very minor

effects on the ultimate load for such cases. However, even though a great number of

imperfection combinations were adopted in the study, only the geometric imperfections in

the space of the linear buckling modes were considered.

Wadee and his collaborators investigated the most severe imperfection profile of thin-walled

I-section struts (Bai & Wadee, 2015a; Liu & Wadee, 2016b) and stiffened panels (Wadee

& Farsi, 2015) exhibiting mode interaction using an analytical approach. By introducing

a local imperfection function that matches the least stable localized post-buckling mode

for the strut on a softening foundation – derived from a first order approximation of a

multiple scale perturbation analysis (Wadee et al., 1997), the most severe local imperfection

profiles have been determined in terms of the wavelength of the oscillating component and

the degree of localization. Unlike preceding work that compared different imperfection

profiles with the same amplitude, a unified and consistent approach was implemented

adopting the concept of initial end-shortening of the extreme fibre of flange plate E0. This

was initially proposed by Wadee (2000) for identifying the most severe local imperfection

profile in sandwich panels under compression that are susceptible to local–global mode

interaction. Based on the unified and consistent imperfection measurement approach,

these works determined that the most severe local imperfection profiles correspond to a

localized profile with a smaller wavelength of the oscillating component than that for the

local buckling eigenmodes. It was also found that the most severe imperfection profile

is related to imperfection size, i.e. the wavelength of the longitudinal component of local

imperfection decreases with the increasing imperfection size.
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2.4 Experimental studies

Experimental studies are essential to validate the effectiveness of the existing theoretical or

numerical models and to provide suggestions for more reasonable or accurate models that

reflect the actual underlying physical mechanisms. In this section, experimental studies on

the interactive buckling of box-section columns are reviewed. Since the existing experimen-

tal studies on box-section columns principally focus on the ultimate load-carrying capac-

ity, very limited information about the mode interaction mechanism is generally provided.

Some experimental studies on members with other cross-sections under pure compression

or pure bending, which provide more information on local–global mode interaction and

facilitate a better understanding of the underlying mechanism, are introduced.

Usami and Fukumoto (1982) tested 24 welded box struts made from high strength steel

(nominal yielding stress fy = 690 N/mm2) and with various slenderness ratios (L/r=10,

35, 50 and 65) and width–thickness ratios (d/t = 22, 27, 33, 38, 44). Both global geometric

imperfection and residual stresses were measured before the test. From the test, it was

observed that the triggering of local–global mode interaction did not lead to the ultimate

state of specimens. Moreover, the tested specimens exhibited a large deformation capacity

even after reaching the ultimate load, which implies that the failure mode was ductile.

Chiew et al. (1987) performed experimental studies on a series of 17 steel welded box-

section struts with square and rectangular hollow sections with various column and plate

slendernesses. Local–global mode interaction was observed in long columns with high

plate slendernesses. The final failure mode was gradual in most cases, even though in some

specimens, the failure occurred rapidly with almost no visible warning, which was followed

by very rapid unloading.

Degée et al. (2008) presented the test results of six welded rectangular hollow section

columns that failed by local–global mode interaction. The initial imperfections of the test

columns were measured before the test and it was found that all of them were below the
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tolerance level recommended by Eurocode 3. The ultimate loads of all the specimens were

found to be higher than that predicted by the current Eurocode 3 provisions. Based on

the test results, FE models were developed and calibrated. Since the current Eurocode 3

was shown to be relatively conservative, a proposal was made about the modification of

the non-dimensional slenderness used in the global buckling calculation and the selection

of the buckling curve a instead of b in the Eurocode 3.

Pavlovčič et al. (2010; 2012) conducted full-scale tests on four welded and cold-formed box-

section columns subject to concentric compression. Material properties, local and global

geometric imperfections and residual stress distributions were measured before loading

tests. As for the test results, the ultimate loads of the four example struts were all higher

than those predicted by the current Eurocode 3 provisions. In particular, the displacement

in the mid-line of the more compressed flange was provided in two specific stages, i.e. the

ultimate load and the ultimate displacement stages. It revealed that the amplitudes of the

local and global mode were the same magnitude in both stages. The profile of the local

mode was modulated before and at the ultimate load point and became highly localized

due to the development of plasticity at some specific location.

Kwon and Seo (2013) conducted a series of compression tests on welded rectangular hollow

section columns fabricated from 6.0 mm thick steel plates with a nominal yielding stress of

315 MPa and susceptible to local–global interactive buckling. A significant erosion in the

load-carrying capacity due to imperfections was identified in the specimens. The local–

global mode interaction was also observed in the tests, with the final failure mode being a

localized kink in the plate due to plasticity. It was also found that localized imperfections

may lead to a premature localized failure at the loaded end. Since most of the example

struts clearly had local buckling being critical (PC
o /P

C
l > 1.5), a significant post-buckling

reserve was observed before the visible local–global mode interaction, which occurred before

the ultimate load was reached. However, when the ultimate load was reached, it was always

followed by a sharp drop in the load-carrying capacity. Moreover, the ultimate load of the
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test columns was compared against the current design guidelines, such as the DSM based

on the American Institute of Steel Construction (AISC) guidelines and the effective width

method given in Eurocode 3, which showed that these guidelines can predict the ultimate

load properly and safely.

Yang et al. (2017) tested 12 steel medium-length welded steel box-section columns. Before

the tests, the geometric imperfections were measured and were revealed to be smaller than

the recommended tolerance level in the current design guidelines. The failure mode of

all specimens was observed in a form of local–global buckling, i.e. local buckling occurred

initially and then the global mode was triggered. The test results were compared against

Eurocode 3 and showed that the current guidelines slightly overestimate the ultimate load,

with the average ratio of the design equation to the test results being 1.05. Moreover,

FE models calibrated based on the experimental results were developed and parametric

studies were conducted in a wider range of parameters, such as material strength, column

slenderness, plate width to thickness ratio, geometric imperfection size and residual stress

levels. The numerical results further confirmed the potentially unsafe prediction of the

current guidelines. A design proposal on the buckling curve selection for designing box-

section columns susceptible to local–global interactive buckling was presented. A summary

of the slenderness range and the ultimate load of box-section columns in the literature are

presented in Figures 2.16 and 2.17 respectively. A discussion about the comparison is

presented in the following section specifically about design guidelines (§2.5).

Several experiments, more related with the mechanism investigation, were conducted on

T-section beams under pure bending (Menken et al., 1991), I-section columns under com-

pression (Davids & Hancock, 1986; Becque & Rasmussen, 2009a) and I-section beams under

uniform bending (Wadee & Gardner, 2012). In the experiments of the simply-supported

T-section beams under pure bending (Menken et al., 1991), the interactive buckling be-

tween the local flange buckling and the overall lateral–torsional buckling was observed. In

particular, a wavelength change in the local mode was captured.
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Figure 2.16: Summary of the normalized global slenderness λ̄C
o =

√

Py/PC
o and local

slenderness λ̄C
l =

√

Py/PC
l of specimens in the existing literature, where Py, PC

o and PC
l

represent the squash load, the global buckling load and the local buckling load respectively.
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Figure 2.17: Summary of the ulitmate load from experimental studies in the existing
literature and comparison with the Direct Strength Method (DSM) (Schafer, 2008) and
the Effective Width Method (EWM) (EN-1993-1-1:2006E, 2006). Note that the symbol
legend in graph (b) is the same as that in (a).
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Davids and Hancock (1986) conducted an experimental study on interactive buckling of

long I-section columns under compression, a local buckling mode with uniform wavelength

and amplitude along the full length of the column was first observed with a decrease in

axial stiffness. When global buckling was triggered, modulation in the maximum amplitude

of the local buckling mode along the length was observed, accompanied by an increase in

the number of local buckle halfwaves and a decrease in the wavelength. Moreover, the

equilibrium path of the load–end-shortening relationship also showed a rapid unloading,

indicating the unstable post-buckling behaviour.

Tests to investigate the interactive buckling behaviour of pin-ended thin-walled stainless

steel I-columns under the concentric compressive load were conducted by Becque (2008).

Compared with previous research, more details about the interactive buckling behaviour,

i.e. the evolution of the local buckling mode, were presented (see Figure 2.18). Amplitude

modulation in the local mode with the increase of the load was clearly observed in the

tests.

Figure 2.18: Interactive buckling observed in a stainless steel I-section strut (Becque, 2008).

In the tests presented by Wadee and Gardner (2012) on I-section beams under uniform

bending, a highly unstable response was observed once interactive buckling was triggered.

In particular, cellular buckling was observed in some of the tests, i.e. a new local buckling

peak appearing soon after the initial one. Amplitude modulation, with the peak at the

mid-span and decaying to the lateral restraints, was also clearly observed, particularly for
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the cases where lateral torsional buckling was critical. Some of the test results showed

good comparisons for cases where global lateral buckling was critical with those from a

variational model developed using analytical techniques.

2.5 Related design guidelines

Current design guidelines mainly focus on the load-carrying capacity erosion at the in-

teraction point of material yielding and pure global buckling (Perry–Robertson formula)

or pure local buckling (Winter formula) due to imperfections. The basic methodology to

consider the effects of mode interaction is to replace the yielding stress or squash load with

the limiting stress of a mode that may interact with the original buckling mode or to adopt

reduced cross-section properties, with calibrated factors for the original design equations

based on experimental or numerical results.

2.5.1 Eurocode 3 approach

In the current version of EC3 (EN-1993-1-1:2006E, 2006; EN-1993-1-5:2006E, 2006), the

effect of local buckling on the ultimate load is considered by using an effective cross-section

instead of the gross cross-section properties. Both cross-section and member buckling

resistance checks are required. The cross-section resistance under uniform compression is

given thus:

Nc,Rd = Aefffy/γM0, (2.18)

where γM0 is a partial safety factor for cross-section resistance with a recommended value

of 1.0; Aeff =
∑

Ac,eff , which is the summation of all the effective areas of compression

elements within the cross-section. The effective area of each individual plate Ac,eff is given

by:

Ac,eff = ρAc, (2.19)
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where Ac is the gross area of each individual plate, and for box-section members under

pure compression the expression for the factor ρ is given by:

ρ =

(

λ̄ps − 0.22
)

λ̄2
ps

6 1, (2.20)

with the normalized plate slenderness λ̄ps defined as:

λ̄ps =

√

fy
σcr

, (2.21)

where σcr = kpπ
2E/[12(1 − ν2)(b/t)2] is the local buckling stress of a rectangular plate

with width b, thickness t and the adopted value of the buckling coefficient kp is 4, which

is a safe assumption. It implies that the interaction between individual plates within the

cross-section is neglected.

For member buckling design resistance, Nb,Rd, the expression is given thus:

Nb,Rd = χAefffy/γM1, (2.22)

where γM1 is a partial safety factor for member buckling; χ is the buckling reduction factor

and is given by the following expression from the Perry–Robertson model (Trahair et al.,

2007):

χ =















1 for λ̄ 6 0.2,

(

Φ +
√

Φ2 − λ̄2
)−1

for λ̄ > 0.2,

(2.23)

where

Φ = 0.5
[

1 + α
(

λ̄− 0.2
)

+ λ̄2
]

, λ̄ =

√

Aefffy
Ncr

, (2.24)

with Ncr being the elastic buckling load for the relevant mode based on the gross cross-

section and α being an imperfection factor that determines a distinct buckling curve; in

EC3, there are five separate buckling strength curves, as presented in Table 2.5. The

buckling curve is assigned on the basis of the cross-section type, material properties and
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the axis of buckling. In particular, the column buckling curves for generally welded and

Table 2.5: Imperfection factors for the separate buckling curves for compression members
made from steel (EN-1993-1-1:2006E, 2006) in EC3.

Buckling Curve a0 a b c d
Imperfection factor α 0.13 0.21 0.34 0.49 0.76

heavily welded steel sections are recommended as b and c respectively (EN-1993-1-1:2006E,

2006). The nominal ultimate load Nu,Rd is thus given as the minimum of Nc,Rd and Nb,Rd.

The comparison of experimental results in the existing literature with the effective width

method can be seen in Figure 2.17(b). The scatter in the comparison is quite large. The

range, mean and the coefficient of variation (COV) of Pu,Exp/Pu,EC3,b are presented in

Table 2.6. Generally, the test results from some researchers (Degée et al., 2008; Pavlovčič

et al., 2012; Kwon & Seo, 2013) showed that the current EC3 formulae can provide a

conservative prediction of the ultimate load but it can be overly conservative for some

specimens. However, some test results from Yang et al. (2017) showed that the Eurocode

3 provisions may provide unconservative predictions under certain circumstances. The

Table 2.6: Comparison of the ulitmate load from experimental studies in the existing
literature with the Effective Width Method (EWM) with the column buckling curve being
b (EN-1993-1-1:2006E, 2006) and the Direct Strength Method (DSM) (Schafer, 2008).

Tests
Pu,Exp/Pu,EC3,b Pu,Exp/Pu,DSM

Range Mean COV Range Mean COV
U. & F. (1984) 0.882→1.210 1.016 9.66% 0.799→1.029 0.921 7.69%

Chiew et al. (1987) 0.688→1.253 1.020 11.73% 0.604→1.195 0.937 13.87%
Degée et al. (2008) 1.110→1.347 1.222 7.26% 1.034→1.189 1.106 5.01%

Pavlovčič et al. (2012) 1.066→1.104 1.085 2.50% 0.868→0.943 0.906 5.87%
Kwon & Seo (2013) 0.917→1.206 1.164 10.05% 0.820→1.114 1.024 8.91%
Yang et al. (2017) 0.816→1.071 0.915 9.03% 0.722→0.954 0.844 9.72%

reason for the scatter of the data mainly comes from the welding method and the local

imperfection size. Currently, the effective width in each plate is determined by Eq. (2.20),

which is only related to the plate slenderness. However, the actual effective width is also

related with the local imperfection size, which can vary considerably between different

cases (Schillo, 2017). This may explain that the scatter for each set of experimental data
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is relatively small. Therefore, in order to describe the load-carrying capacity of thin-walled

welded box-section struts better, a calibration of the Winter curve, i.e. Eq. (2.20), should

be conducted. Moreover, it should be noted that the abnormally low data point in Chiew

et al. (1987) may be resulting from deflects in the specimen, since the rest of the data all

range from 0.95 to 1.20.

2.5.2 Direct Strength Method

The Direct Strength Method (DSM) was developed by Schafer and Peköz (Schafer & Peköz,

1998b) for considering the local, distortional and global buckling of cold-formed carbon steel

sections (Schafer, 2006c; Schafer, 2006b; Schafer, 2008). It has been included in Appendix

1 of the AISI specification (AISI:S100-2007, 2007). Instead of determining the effective

width for each individual plate and calculating the effective cross-section properties, only

the critical buckling loads of the member with gross section properties are required for

the DSM, which can be obtained very conveniently using available free software, such as

CUFSM (Schafer, 2006a) based on the so-called constrained finite strip method or GBTUL

(Bebiano et al., 2008) based on Generalized Beam Theory.

The nominal axial strength, Pn, is the minimum of Pne and Pnl as given below. The nominal

axial strength, Pne, for flexural, torsional or flexural–torsional buckling is:

Pne

Py

=















0.658λ̄2
o for λ̄o ≤ 1.5,

0.877/λ̄2
o for λ̄o > 1.5,

(2.25)

where the global slenderness λ̄o =
√

Py/PC
o , the squash load of the gross cross-section

Py = Agfy, PC
o is the minimum of the critical elastic buckling loads in flexural, torsional,

or flexural–torsional buckling and Ag is the gross cross-sectional area. As for local buckling,
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the nominal axial strength, Pnl is given by:

Pnl

Pne

=















1 for λ̄l ≤ 0.776,

[

1 − 0.15
(

PC
l /Pne

)0.4
]

(

PC
l /Pne

)0.4
for λ̄l > 0.776,

(2.26)

where λ̄l =
√

Pne/PC
l with PC

l being the critical elastic local buckling load and Pne being

defined in Eq. (2.25).

Compared with the effective width method currently in EC3, the DSM is more simple and

straightforward. The comparison of experimental results on welded box-section columns in

the existing literature with the DSM prediction can be seen in Figure 2.17(a) and Table 2.6.

It can be seen that the scatter in the comparison is large. Generally, the DSM provides an

unconservative prediction of the ultimate load. This is in fact reasonable since the DSM is

mainly based on fitting the test and numerical results of cold-formed thin-walled columns.

As for welded sections, the effects of residual stress may have a detrimental effect on the

ultimate load. Therefore, in order to make the DSM valid for the welded sections, further

calibration is necessary with respect to experimental or validated numerical results.

2.6 Concluding remarks

In the current chapter, a literature review about the interactive buckling of thin-walled

plated structures has been presented. Analytical approaches, including both approximate

engineering and strict theoretical approaches, alongside their advantages, disadvantages

and findings have been introduced. In particular, the seminal work by Van der Neut as

well as the extensive work by Wadee and his collaborators, the methodology of which is

adopted in the current work is introduced in detail. Subsequently, related studies using

numerical approaches to the local–global mode interaction, i.e. from FE, GBT and FSM

approaches, are presented. Moreover, imperfection measurement and modelling, the imper-
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fection modelling recommendations in EC3 as well as the imperfection sensitivity studies

have been reviewed and discussed. Furthermore, existing experimental studies on thin-

walled box-section columns exhibiting local–global mode interaction were reviewed. The

ultimate load of these specimens were also summarized in the framework of current design

guidelines. It is revealed that the DSM formulae based on the cold-formed steel sections

generally provides an unconservative ultimate load prediction for the welded box-section

struts. As for the effective width method in the current EC3 methodology, it is revealed

that it can provide a conservative ultimate load prediction for most tested specimens. How-

ever, a large scatter in the results is observed, which suggests that the current simplified

design equation may be improved.



Chapter 3

Finite element model development

and validation

3.1 Introduction

In order to verify the variational models developed in the study, a robust and accurate

numerical method should be adopted. Owing to the popularity of general-purpose finite

element (FE) packages with powerful modelling and accurate solution functions, the FE

method has become an important and accessible technique in analysing the nonlinear

behaviour of thin-walled structures (Schafer et al., 2010). Compared with other numerical

methods, it can model relatively easily nearly all the actual physical scenarios, including

items such as residual stresses, initial geometric imperfections and plasticity. Therefore,

it is often used for verifying analytical models (Wadee & Farsi, 2014a; Bai & Wadee,

2015b), expanding an originally simplified analytical model to more general and actual

cases (Kiymaz, 2005) and conducting parametric studies based on the FE model validated

by experiments (Degée et al., 2008; Becque & Rasmussen, 2009b; Yuan et al., 2014; Yang

et al., 2017).

122
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In the current chapter, details of models, developed within the commercial general pur-

pose FE package Abaqus (2014), are presented. Firstly, the strut modelling details, i.e.

boundary conditions, the use of symmetry to improve computational efficiency, semi-rigid

flange–web joint modelling, the chosen element type and mesh scheme, are described. The

material model, geometric imperfection modelling and the introduction of residual stresses

are also presented. Moreover, the analysis types and the corresponding solution strategy

as well as the analysis objectives are described. Finally, the verification of finite element

models against classical solutions and validation against experimental results from the

literature are presented.

3.2 Development of finite element models

A thin-walled rectangular hollow section strut of length L with simply-supported boundary

conditions under an axial load P is considered, as shown in Figure 3.1.

3.2.1 Strut modelling

Boundary conditions

As shown in Figure 3.1(c), there are two planes of symmetry in the interactive buckling

mode. Therefore, the current FE model exploits symmetry for computational efficiency, as

shown in Figure 3.2(a). As for the boundary condition at the loaded-end, the displacements

and rotations of the end section (z = 0) of the strut are linked to a reference point at the

centre of the cross-section through rigid body kinematic coupling. This ensures that all

the boundary conditions, defined at the reference point, are uniformly transmitted to the

entire cross-section. The translational degrees of freedom (DOFs) in the x and y directions

at the reference point are restrained and thus the pinned-roller support assumption is
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Figure 3.1: (a) Plan view of the thin-walled rectangular hollow section strut of length L
under an axial load P . Lateral and longitudinal coordinates are x and z respectively. (b)
Cross-section properties of the strut; the vertical coordinate is y. (c) Plan and cross-section
view of the interactive buckling mode.
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Figure 3.2: (a) Illustration of the FE model for thin-walled RHS struts. Global buckling
bends the strut about the weak axis y. (b) Distributively applied load at the end-section;
the magnitude of the load on the nodes at the symmetric line (y = 0) is half of that in the
other nodes. Note that the mesh in the figure is only for illustration purposes and does
not represent the mesh scheme implemented in actual analyses.
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satisfied. The axial load P is applied distributively to each node of the end section in the

z-direction, as shown in Figure 3.2(b). In particular, the magnitude of the applied load

on the two nodes on the symmetric line (y = 0) is half of those on the other nodes. It

should be noted that the choice of double symmetry and the way the load was applied was

made after careful verification against the half-strut (Shen & Wadee, 2018b) and full-strut

models, where it was found that they produce identical results.

It should also be noted that the symmetric boundary condition at mid-span makes the

number of half-waves in the local mode always be odd, which may lead to large errors in

the cases where the strut length is within a factor of 5 of the half wavelength of the local

buckling mode. In such cases, the symmetric boundary condition at mid-span is removed

and full-length strut model is adopted, as can be seen in §3.4.1. However, such cases are

not significant for strut design in term of practical geometries.

Semi-rigid flange–web connection modelling

Compared with open sections, the interaction between individual plates in closed cross-

sections is more significant. Therefore, a study on the effects of flange–web joint rigidity is

conducted in Chapter 4. To capture the local deformation of each individual plate and the

effects of the rotational stiffness at the junction, each plate is modelled separately. The

nodes at the junctions of the webs and the flanges are defined and labelled separately but

share the same coordinates. The translational DOFs of these nodes are then tied together

but the rotational DOFs are not, thus approximating a pinned joint. A rotational spring

element, ‘Spring2’ in the Abaqus element library, is then introduced to connect the end

nodes of each flange and web, as shown in Figure 3.3(a).

With the varying stiffness of the spring element, cross-section joint properties ranging from

pinned to rigid can be modelled. Since the rotational springs are discretely distributed in

the FE model, as shown in Figure 3.3(b), in order to make them equivalent to that in the
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Figure 3.3: Semi-rigid flange–web connection modelling in the FE model. (a) Node-to-
node rotational springs in the cross-section; (b) Springs along the length of the strut; ml

represents the number of elements along the length of the strut; kθ is the stiffness of an
individual rotational spring.

variational model, which is continuous, the following relationship is applied:

kθ =
cθL

ml + 1
, (3.1)

where cθ is the rotational stiffness of the rotational spring at flange–web joints in the

analytical model defined in the analytical formulation in Chapter 4; L is the strut length;

kθ is the rigidity of an individual rotational spring in the FE model with its units being

Nmm and ml is the number of elements along the length of strut. For the two limiting joint

cases, i.e. the pinned and rigid cases, special treatments are adopted. In the FE model, if

kθ were set to be zero, the strut would in fact be a mechanism and hence would not satisfy

static equilibrium. Therefore, kθ is set to be a very small nominal value of 10−6 Nmm such

that potential kinematic mechanisms can be avoided and the pinned case is essentially

satisfied numerically. As for the rigid joint case, the rotational DOFs at the junctions of

the webs and flanges are tied together in the same way as the translational DOFs.

It should be noted that since there are two nodes at the flange–web joints that share the

same coordinate and all the transitional DOFs are tied, the distributed load is only applied

on one of the nodes – currently being the nodes on the top edges of both webs. Moreover,
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in order to make the model more concise, only one node is defined at the junction for FE

models used in the remaining chapters.

Element choice

Owing to the geometry of the thin-walled rectangular hollow section struts, 3D finite

elements are not suitable for the analysis. If the 3D elements were made very thin only in

the thickness direction, there would be problems of shear locking and ill-conditioning. In

order to overcome the problem, a great number of 3D elements should be used. Therefore,

three dimensional conventional shell elements were used, which take full advantage of the

geometric property conditions to discretize the structure by defining the geometry at a

reference surface and the thickness being defined through the section property definition.

Specifically, the 4-node general-purpose, reduced integration shell element with hourglass

control S4R (ABAQUS, 2014) was adopted. The general-purpose element can provide

robust and accurate solutions in all loading conditions for both thin (Kirchhoff plate theory)

and thick shear flexible (Mindlin plate thoery) plates. It should be noted that 4-node

bilinear elements suffer from shear locking in both the in-plane (membrane) and the out-of-

plane (transverse) dimension, as shown in Figure 3.4. Spurious shear strains are introduced

due to the bilinear displacement field assumption. However, it has been demonstrated that

the problem can be solved using reduced integration (Cook et al., 2007), since the shear

strain at the integration point, the solid square symbol in Figure 3.4, is zero. The reduced

integration method can overcome the shearing lock problem but it introduces the ‘zero

strain’ or ‘hourglass’ mode, as shown in Figure 3.5. These modes would lead to zero

strain in the integration point and hence zero energy in the element, thus making the

stiffness matrix singular. In Abaqus, there is an hourglass control/stabilization procedure

for both transverse and in-plane displacement (ABAQUS, 2014). Therefore, the type of

element chosen does not suffer from shear locking, nor does it have any unconstrained

hourglass modes.
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Figure 3.4: Shear locking for the four-noded bilinear plate element. (a) Four-noded bilinear
shell element and its coordinate system. (b) Deformation of plate and the four-noded
bilinear plate element under in-plane bending moment Mz. (c) Deformation of plate and
four-noded bilinear shell element under out-of-plane bending moment Mx.

About the cross-sectional properties of the shell element, Simpson’s rule is adopted for the

numerical integration. The default number of the integration points for a homogeneous

section is five, which is sufficient for predicting the response of an elastic–plastic shell up

to the limit load (ABAQUS, 2014). However, for the cases with more complex nonlinear

behaviour involving strain reversals or cases with complex residual stresses and strain

distributions (Schafer et al., 2010), more section points would be required, but normally

no more than nine.

It should also be noted that the S4R element is capable of handling large strains and

large rotations, which is suitable for modelling the geometric nonlinearity due to the mode

interaction. Moreover, numerous previous research studies (Becque & Rasmussen, 2009b;

Schafer et al., 2010; Sadowski & Rotter, 2013; Yuan et al., 2014; Wadee & Farsi, 2014a;

Bai & Wadee, 2016; Liu & Wadee, 2016b) have demonstrated this element can model plate

buckling problems with very good accuracy.
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Figure 3.5: (a) Undeformed 2 by 2 four-noded bilinear elements. Solid circle and square
symbols represent the nodes and integration points respectively. The horizontal and ver-
tical displacements are u and v respectively. Hourglass modes (Cook, 1994) with (b)
u = −cxy, v = 0; (c) u = 0, v = cxy; and (d) u = cy(1 − x), v = cx(1 − y), where c is a
non-zero constant.

Meshing scheme

Since the wavelength of the local buckling mode is considerably smaller than that of the

global mode, a meshing scheme suitable for capturing the local buckling mode naturally

would be sufficiently good for the global and local–global interactive buckling mode. More-

over, to increase computational accuracy, the shape of the elements is made to be as square

as possible (Cook et al., 2007). A mesh sensitivity study has been conducted to find an

acceptable meshing scheme that not only yields accurate results but also is computational

efficient, which may be found in §3.4.1. Currently, the meshing scheme of 20 elements per

wavelength has been adopted.
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3.2.2 Material Modelling

Apart from models formulated in Chapter 9, the material is assumed to be linear elastic,

homogeneous and isotropic with Young’s modulus E, Poisson’s ratio ν and shear modulus

G = E/[2(1 + ν)]. In Chapter 9, where the effects of material nonlinearity is considered,

the idealized piecewise linear elastic–plastic stress–strain relationship, presented in Fig-

ure 3.6(b), is employed to simulate the actual engineering stress–strain relationship for

carbon steel, as shown in Figure 3.6(a). The parameters fy and εy are the yielding stress

σ

ε

Upper yield point

Yield plateau

(plastic flow)

Lower yield point

Elastic

Strain hardening

Ultimate strength

Necking
Fracture

σ

ε
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εy εst=(1+n)εy

Yield plateau
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plateau)

1
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hardening)

(a) Qualitative (b) Idealized

f y

f u

f y

f u

Figure 3.6: Typical constitutive curve for structural carbon steel: (a) qualitative descrip-
tion of actual stress–strain relationship and (b) idealized piecewise linear relationship. In
particular, n = 0 and Eh = 0 represents the elastic–perfectly plastic model; n = 0 but
Eh > 0 represents the elastic–linear strain-hardening model; n > 0 and Eh > 0 represents
the model that has a yielding plateau before the linear strain hardening. Note that the
strains and stresses are both engineering strains and stresses.

and strain respectively; (1 +n)εy is the strain value, at which the strain hardening begins;

Eh is the modulus in the strain hardening range; fu and εu are the ultimate stress and

strain respectively. Moreover, the isotropic hardening and the Von Mises yield criterion

with associated plastic flow are adopted in the material model.

It should be noted that the graphs presented in Figure 3.6 are for nominal values of strain

and stress, where the cross-section area reduction during the loading is not included. How-

ever, the constitutive formulations are based on the true ‘Cauchy’ stress–strain relationship

in Abaqus. Therefore, the transformation of data from nominal stress σnom and strain
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εnom to true stress σtrue and strain εtrue is required, thus:

σtrue = σnom(1 + εnom), (3.2)

and

εtrue = ln(1 + εnom). (3.3)

Moreover, in defining the data on the stress–strain curves, Abaqus also requires that the

plastic strains rather than the total strains, as shown in Figure 3.7. The true plastic strain

true

true

f y

y

1 2
3 4

pl,2

i

pl,i

...

1

E

Figure 3.7: A typical nonlinear stress–strain relationship and the corresponding input
parameters in Abaqus.

can be expressed as:

εtrue,pl = εtrue −
σtrue

E
. (3.4)

3.2.3 Geometric imperfection modelling

There are two different methods to introduce the geometric imperfections in FE models

in Abaqus. The first is to use the keyword ‘*IMPERFECTION’ to introduce the shape

of eigenmodes from linear buckling analysis, which is very straightforward and convenient.

Currently, it is used for introducing the necessary geometric perturbation to simulate the

post-buckling behaviour response of the perfect case and the cases where only a global
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imperfection exists. However, it should be stressed that this approach is quite cumbersome

and inefficient in cases where local buckling is clearly critical, since a large number of less

important local modes would also be produced apart from the target local and global

modes. Moreover, since the sequence order of the global mode is not known in advance,

a post-processing script would need to be written to distinguish the target modes for the

nonlinear analysis. Therefore, the approach is not suitable for automation and naturally

limits the number of cases that can be considered.

The second approach is to use Matlab (MATLAB, 2010) to generate the nodal coordinates

input file for the FE model with pre-defined global or local imperfections respectively, which

can model more general imperfection cases. In particular, this approach can be used for

the investigation of the most severe local imperfection profile. Moreover, it can improve the

computational efficiency since no linear buckling analysis is required before the nonlinear

analysis, which also makes an automated parametric study possible. It should be noted

that the local and global imperfection profiles in the this approach is based on the local

and global buckling mode obtained from the variational model, which is introduced in

Chapter 7.

3.2.4 Residual stress modelling

Residual stresses are modelled as initial conditions in the current FE models in Abaqus.

Currently, only membrane residual stresses are considered. Unless otherwise specified,

the ECCS (1976) residual stress distribution pattern for welded box-section members is

adopted, as shown in Figure 3.8. The tensile residual stresses at the corners are assumed

to be equal to yielding stress fy. The compressive residual stress in the flanges and webs

are determined based on the equilibrium condition. For instance, the compressive residual
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Figure 3.8: ECCS residual stress distribution for welded box-section members. Note that
the uniform tensile range length dt for heavily-welded and lightly-welded box-section mem-
bers are 3t and 1.5t respectively; σf,rc and σw,rc are compressive residual stresses in the
flanges and webs respectively; σf,rt and σw,rt are tensile residual stresses in the flanges and
webs respectively.

stresses in the webs can be determined as:

σw,rc =
3dtσw,rt

d− 3dt
. (3.5)

A script has been developed in Matlab to produce the residual stress distribution in the

FE model automatically.

Moreover, it should be noted that for the models including residual stresses, the coordinate

system is re-defined such that the longitudinal direction of the strut parallels to the x

coordinate, as shown in Figure 3.9(b). In Abaqus, the local coordinate orientation of shell

elements, which is related to the residual stress components, is defined by the projection

of the global axis on the surface, as shown in Figure 3.9. Owing to the local imperfections

introduced in both webs, the local coordinate orientation, particularly the local 1-direction,

would vary along the length with the curvature of the initially deformed plate if the global

coordinate orientation in Figure 3.2 is adopted, as shown in Figure 3.9(a). It would make
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different global coordinate systems.

the introduction of residual stresses in the model very complex. Therefore, the x-direction

of the global coordinate transformed to be the same as the longitudinal direction of the

plate, as shown in Figure 3.9(b), which makes the local 1-direction in all plates be the

same and consistent along the length.

3.3 Analysis type and solution strategy

As presented in Table 3.1, four different types of analyses are adopted in the current study

for specific objectives. The solution strategy and objective of each type of analysis is

introduced in this section.



CHAPTER 3. FINITE ELEMENT MODEL DEVELOPMENT AND VALIDATION 135

Table 3.1: Summary of analysis types and their objectives.

Abbreviation Geometric
nonlinearity

Material
model

Imperfections Analysis objective

LBA None Linear
elastic

None Critical buckling load and
eigenmodes for nonlinear
analysis (Chapters 4, 6, 7)

GNA Yes Linear
elastic

None Interactive buckling be-
haviour of perfect elastic
RHS struts (Chapters 4, 6)

GNIA Yes Linear
elastic

Geometric
imperfections
only

Interactive buckling be-
haviour of elastic RHS
struts with geometric im-
perfections (Chapters 7,
8)

GMNIA Yes Piecewise
linear with
yielding

Geometric
imperfections
and/or resid-
ual stresses

Ultimate load of imperfect
RHS struts susceptible to
local–global buckling with
different material yielding
stress levels (Chapter 9)

3.3.1 Linear buckling analysis

As mentioned in §3.2.3, the linear buckling analysis in the current study is conducted

principally to acquire the critical buckling load and the corresponding eigenmodes to be

introduced as perturbations or imperfections for further nonlinear analyses. Moreover, it is

used to provide guidance on the proposal of cross-section shape functions for the variational

model and to verify the linear buckling analysis of the variational model.

As for the solution process of linear buckling analysis, the first step is to load the structure

by an arbitrary reference level of external load, {P}ref , and then a standard linear static

analysis is conducted to determine element stresses. For the stress associated with load

{P}ref , the stress stiffness matrix is [Kσ]ref . Since it is assumed that the problem is linear,

the stiffness matrix of the structure [K] remains the same and the stress stiffness matrix

would be proportional to the load level with respect to the reference external load, i.e.

[Kσ]=λ[Kσ]ref , where λ = {P}/{P}ref . Therefore, at the bifurcation point, the following
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relationship should be satisfied:

([K] + λcr[Kσ]ref) {d} = {P}cr = λcr{P}ref , (3.6)

where {d} is the displacement of nodes at reference configuration of the primary path.

From the concept of perturbation, let the buckling displacement {δd} occur relative to the

displacement {d} of the reference configuration with the load level remaining unchanged:

([K] + λcr[Kσ]ref) {d + δd} = λcr{P}ref . (3.7)

By subtracting Eq. (3.6) from Eq. (3.7), the classical eigenvalue problem can be obtained:

([K] + λcr[Kσ]ref) {δd} = {0}. (3.8)

The smallest root λcr defines the level of the critical buckling load, i.e. λcr = {P}cr/{P}.

The eigenvector {δd} associated with λcr is the buckling mode. Since the magnitude of

{δd} is indeterminate in a linear buckling problem, it would be output as a normalized

shape with the amplitude being unity.

In order to model the interactive buckling behaviour, both the local and global buckling

buckling mode is required to be introduced as geometric perturbations. Particularly, for

short struts with larger ratios of global buckling load to local buckling load PC
o /P

C
l , the

eigenvalue of the global buckling mode would be much larger than that of the critical local

buckling mode. A large number of eigenvalues and eigenmodes are required to be output.

Therefore, the Lanczos method (Bathe, 2006) is adopted to extract the eigenvalues and

eigenmodes. It is generally much faster when a large number of eigenmodes are required

for a system with many degrees of freedom compared with the subspace iteration method,

the latter of which is faster for the cases where only a small number of (fewer than 20)

eigenmodes are required (ABAQUS, 2014).
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3.3.2 Nonlinear analysis

The linear buckling analysis can only provide the critical buckling load and the corre-

sponding buckling mode. In order to obtain the nonlinear post-buckling behaviour and

the behaviour of struts with imperfections and nonlinear material properties, nonlinear

analysis should be conducted.

Geometric Nonlinear Analysis (GNA)

GNA is mainly used to analyse the local–global mode interaction of perfect struts. Owing to

the discontinuous pitchfork bifurcation response at the initial instability, it is not possible to

analyse the interactive post-buckling behaviour of perfect struts as well as struts with only

global imperfections or only symmetric local imperfections exist, in Abaqus directly, unless

imperfections exist naturally from the discretization. Therefore, an initial perturbation

in the geometry is introduced to transform the discontinuous bifurcation problem into a

continuous one (Belytschko et al., 2000). In the current study, the eigenmode shapes from

linear buckling analysis are adopted as the profiles for the initial local or global geometric

perturbations and the scale factors for the local and global perturbations are set to 10−3tw

and 10−6L respectively. These sufficiently small sizes ensure that the response essentially

mimics the perfect cases as far as possible, without encountering the pitchfork bifurcations

that would have led to convergence problems.

As for the solution method, the modified Riks arc-length method (Riks, 1979) is adopted.

Compared with the load-controlled or displacement-controlled methods, the method can

allow the load or displacement to increase and decrease, as shown in Figure 3.10(a). Pre-

vious studies on thin-walled compression members (van der Neut, 1969; Wadee & Farsi,

2014a; Wadee & Bai, 2014) have demonstrated that there is a snap-back and sharp dy-

namic drop in the load-carrying capacity after the ultimate load for perfect members and

members with tiny imperfections, where local buckling load is close to global buckling load.
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Figure 3.10: (a) Comparison of equilibrium paths with a snap back after the ultimate
load from different nonlinear solution strategies. Dotted, dashed and solid lines repre-
sent the load-controlled, displacement controlled and Riks arc-length method respectively.
Note that P and E represent the load and end-shortening respectively. (b) Sketch for the
modified Riks arc-length method. Note that ū represents the generalized displacement.

Therefore, the highly unstable nonlinear response can be traced accurately. Moreover, it

should be noted that the basic algorithm of the Riks method remains the Newton–Raphson

method. However, compared with the Newton–Raphson method, it can overcome the con-

vergence difficulties for the cases where there is a ‘limit’ point (Cook et al., 2007), which

is very common in the current study.

As for the incremental step size control, the initial step size is set to be 0.05 of the critical

buckling load. Moreover, the step size can be automatically adjusted with the progression

of the analysis and the step size limit is also 0.1. All of these can avoid the problem of

overshooting and make the computation efficient as far as possible.

Nonlinear Analysis with Imperfections

Geometric Nonlinear Analysis with Imperfectons (GNIA) principally deals with the im-

perfection sensitivity of purely elastic struts susceptible to local–global mode interaction,

which is used for the verification of the variational model that includes geometric imperfec-
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tions. Geometric and Material Nonlinear Analysis with Imperfections (GMNIA) is mainly

used to analyse the ultimate load of imperfect struts (including geometric imperfections

and residual stresses) with different yielding stress levels. It helps understand the actual

nonlinear behaviour of struts in practice and facilitates the establishment of robust design

guideline for such members.

Both GNIA and GMNIA adopt the same nonlinear solution method, i.e. the Riks arclength

method, as that of the GNA. Therefore, the analysis procedure is essentially the same. The

only difference is that geometric imperfections, residual stresses and material nonlinearity

are introduced into the FE models. It should be noted that for the cases where both

geometric imperfections and residual stresses are introduced in the FE model, a pre-analysis

is required before the nonlinear analysis, since the strut with the predefined geometric

local imperfections and residual stresses may not be in equilibrium (Little, 1980). The pre-

analysis step may amplify the initial geometric imperfection amplitude significantly where

the compressive residual stress is close to the plate buckling load, as shown in Figure 3.11.

Therefore, an iterative solution process needs to be conducted to determine the initial
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Figure 3.11: Illustration of the effects of initial residual stresses on the initial geometric
imperfections introduced within the plate.

imperfection amplitude A0
0 introduced in the FE model so that the initial imperfection

amplitude after the pre-analysis step is the same as the prescribed value A0.
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Automated termination of analyses

Currently, Abaqus does not provide a satisfactory facility for automatically terminating

a nonlinear analysis when the failure criterion is met. This can make the parametric

study inefficient. Recently, Sadowski et al. (2017a) developed a Fortran code for an

Abaqus user subroutine, which is able to terminate the nonlinear Riks arc-length analysis

automatically once certain criteria are met. In the current study, a code with similar

functions is developed within Matlab, the details of which can be found in Chapter 8.

3.4 Verification against classical solutions

In this section, linear buckling analysis is conducted to obtain the local and global buckling

load of square box-section columns and comparisons are made with the classical solutions.

3.4.1 Local buckling

Firstly, the mesh sensitivity study is presented. Since the wavelength of the local buckling

mode is much smaller than that of the global one, a good meshing scheme suitable to

capture the local buckling mode naturally would be satisfactory to capture the global one.

A mesh sensitivity analysis was conducted for an example square box section strut where

local buckling was critical. The cross-section geometric properties are shown in Table 3.2.

Owing to the square section, each plate would essentially buckle independently. Therefore,

Table 3.2: Material and cross-section properties of square box section strut for mesh sen-
sitivity analysis and verification.

E (kN/mm2) ν b (mm) d (mm) t (mm)
210 0.3 90 90 1

the unloaded edges of each plate can be treated as simply-supported. Moreover, the length
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of the example strut is 3890 mm, which makes the strut length sufficiently long such that

the local buckling coefficient kp can be treated as 4, which appears in the local critical

buckling stress of a plate σcr expression thus:

σcr =
kpπ

2E

12(1 − ν2)(b/t)2
. (3.9)

The mesh sensitivity results are presented in Figure 3.12. Considering both the accuracy
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Figure 3.12: (a) Local buckling coefficient of the example strut using different mesh sizes.
(b) CPU (Intel Core i7-4790 CPU@3.60GHz) running time versus the number of elements
along the web depth mw. Note that the material and cross-section properties of the example
strut are presented in Table 3.2, and the strut length is 3890 mm.

and computational effort, it was deemed that 20 elements for per half wave, i.e. m = 20,

was sufficient to simulate the local buckling mode currently.

Based on the mesh sensitivity study, the strut length is varied to obtain the local buckling

coefficient of square box-section struts with different length to width ratios, as shown in

Figure 3.13. It should be noted that the symmetric boundary condition at mid-span, as

shown in Figure 3.2, is removed and the whole length strut is modelled so as to capture the

even number of half-waves in the longitudinal direction. The results from linear buckling
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Figure 3.13: Local buckling coefficient of struts with different length–web depth ratios.
Solid line represents the analytical solutions from Bulson (1970) and circles represent the
results from FE models using linear buckling analysis. Note that the material and cross-
section properties of the example strut are presented in Table 3.2.

analysis show good comparisons with the analytical solutions from Bulson (1970), partic-

ularly in the practically significant range where the strut length is at least 5 times greater

than the flange width. Finally, it should be noted that the buckling coefficient kp = 4

is obtained based on classical Kirchhoff plate theory (Timoshenko & Woinowsky-Krieger,

1959), where shearing effects are neglected. However, the FE model for struts is modelled

using S4R shell elements, where shearing effects are included. This explains the critical

buckling coefficient from FE model being smaller than that from the classical solution since

the former has more degrees of freedom.

3.4.2 Global buckling

The comparison with the Euler buckling equation is mainly to verify the effectiveness of

the simply-supported condition at the ends and symmetric boundary conditions adopted

at mid-span and the mid-lines of the webs. The material and cross-section geometric
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properties are the same as those in the previous subsection. The strut length is varied

from the case where the local buckling load is equal to the global buckling load, i.e.

PC
o /P

C
l = 1, to the cases where global buckling is clearly critical, i.e. PC

o /P
C
l < 0.4. As

L (mm)
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C l
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Figure 3.14: Global buckling load of example struts from linear buckling analysis using
FE models (circles) and Euler buckling equation (Timoshenko & Gere, 1961). Note that
the material and cross-section geometric properties of example struts are presented in
Table 3.2.

shown in Figure 3.14, the results from the FE models show excellent comparisons with

those predicted by the classical Euler buckling equation.

Based on the excellent comparisons with the classical solutions on plate local buckling

and strut global buckling, it may be concluded that the current developed FE models are

verified. However, it should be noted that the comparison with the classical solutions only

verify the ‘linear’ behaviour of the perfect models. Therefore, in the next section, existing

experimental results from literature are adopted to validate the nonlinear behaviour of FE

models, where the geometric imperfections as well as residual stresses are included.



CHAPTER 3. FINITE ELEMENT MODEL DEVELOPMENT AND VALIDATION 144

3.5 Validation against experimental results

In order to validate the FE model, experimental results on welded box-section columns

susceptible to local–global mode interaction under pure compresssion from two independent

sources (Usami & Fukumoto, 1984; Yang et al., 2017) were adopted. The cross-section

geometries of the specimens are shown in Figure 3.15.

d
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6 mm

6 mm

Axis of bending
(a) (b)

Axis of bending

t

b

d

t

Figure 3.15: Cross-section geometry of specimens from (a) Usami & Fukumoto (1984) and
(b) Yang et al. (2017).

3.5.1 Test results from Usami & Fukumoto (1984)

The geometric and material properties of the columns are presented in Table 3.3. As for

Table 3.3: Material and geometric properties of the welded box section columns (Usami &
Fukumoto, 1984).

Specimen E
ν

fy b d t L
No. (kN/mm2) (N/mm2) (mm) (mm) (mm) (mm)

R-40-29

213 0.225 568

93 147 4.46 1650
R-40-44 143 214 4.46 2150
R-40-58 191 277 4.47 3310
R-65-29 94 147 4.44 2690
R-65-44 143 214 4.44 4080
R-65-58 191 277 4.46 5370



CHAPTER 3. FINITE ELEMENT MODEL DEVELOPMENT AND VALIDATION 145

the global imperfection, the deflected shapes in the perpendicular direction to the buckling

axis were determined by measuring the deflection at nine sections along the members. The

shapes were reported to be close to the half-sine wave shape and the maximum values of

initial deflection δ0 are listed in Table 3.4. Therefore, in the FE model, it was assumed

that the global mode is a half sine wave with the amplitude being δ0. As for the local

imperfection, the amplitude and distribution were not presented. The amplitude of the

local imperfection was adopted from the manufacturing tolerance recommended by EC3,

i.e. A0=d/200, and its distribution was assumed to be affine to the lowest local buckling

mode.

Table 3.4: Geometric imperfections and residual stresses in the welded box section columns
(Usami & Fukumoto, 1984).

Specimen No. A0/d δ0/L Rc = σrc/fy Rt = σrt/fy
R-40-29

1/200

3.02 × 10−4 0.32

0.8

R-40-44 2.06 × 10−4 0.22
R-40-58 1.46 × 10−4 0.15
R-65-29 2.42 × 10−4 0.32
R-65-44 2.48 × 10−4 0.22
R-65-58 1.18 × 10−4 0.15

As for the residual stresses, the sectioning method was adopted to measure the distribution

and it showed that there are rather high tensile stresses (about 0.8fy) near the web–flange

junctions and the compressive residual stresses remain constant over the central portion of

each plate with the normalized magnitude being listed in Table 3.4. Therefore, the residual

stress model, as presented in Figure 3.16, is adopted in the FE model.

As for material modelling, since the material is mild steel, an elastic–perfectly plastic model

was adopted in the material modelling. The comparison in the ultimate load from FE and

experimental results is shown in Figure 3.5. For the six tested specimens, the ratio of the

ultimate load from FE to the experimental results ranged from 0.939 to 1.001, with the

average value and the coefficient of variation (COV) being 0.972 and 2.62% respectively.

Moreover, a sensitivity study on the local imperfection size in the FE model was conducted.

As shown in Figure 3.17, Pu,FE/Pu,Exp is always in the range of [0.9, 1.1] with the normalized
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Figure 3.16: Residual stress distribution model adopted in FE models for columns tested
in Usami & Fukumoto (Usami & Fukumoto, 1984). The values of Rc and Rt for different
specimens are presented in Table 3.4.

Table 3.5: Ultimate load of columns from the tests of Usami & Fukumoto (1984) and FE
results. Also shown are the ratios of the column global buckling load PC

o and the squash
load Py to the local buckling load PC

l .

Specimen No. PC
o /P

C
l Py/P

C
l Pu,exp (kN) Pu,FE (kN) Pu,FE/Pu,exp

R-40-29 1.40 0.64 970.0 960.4 0.991
R-40-44 4.14 1.38 1160.0 1093.6 0.943
R-40-58 5.21 2.32 1180.0 1158.6 0.982
R-65-29 0.54 0.65 753.0 754.0 1.001
R-65-44 1.16 1.39 939.0 881.9 0.939
R-65-58 1.99 2.33 1040.0 1015.6 0.977

Average 0.972
COV 2.62%

local imperfection size varying from 1/1000 to 1/200.

3.5.2 Results from Yang et al. (2017)

Since the results from Usami & Fukumoto (1984) only provided the ultimate load, test

results from Yang et al. (2017), where the load–end-shortening relationship was provided,

are adopted to validate the FE models further. The geometric properties and initial ge-
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Figure 3.17: Sensitivity of the local geometric imperfection size introduced in the FE
models on the ultimate load and their comparison with the experimental results.

ometric imperfection size of the two specimens are shown in Table 3.6. The initial local

Table 3.6: Geometric properties and geometric imperfection sizes of two specimens from
Yang et al. (2017).

Specimen No. b (mm) d (mm) t (mm) Le (mm) A0/d δ0/Le

R-235-2 155.25 305.35 5.45 2780.4 0.340% 0.063%
R-345-1 125.39 245.89 5.81 2250.0 0.479% 0.114%

out-of-plane deformation of cross-sections at five different sections were measured in the

test (Yang et al., 2017). It revealed that the largest amplitude often occur in the webs

but cross-section profiles did not resemble the local buckling mode and showed significant

scatter. The initial out-of-straightness deformation of the columns was measured at the

quarter-points of the span and the largest value was recorded as δ0. In the FE modelling,

the maximum displacement in the web A0 was adopted as the amplitude of the local imper-

fection and the imperfection profiles were assumed to be affine to the lowest local buckling

mode; the global imperfection was modelled as a half-sine wave and the amplitude was set

to be δ0.
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Although only one detailed stress–strain curve for the material of a specimen was provided

in Yang et al. (2017), the key parameters in the stress–strain curves for each specimen are

presented in Table 3.7. A preliminary sensitivity study on the effects of material strain-

Table 3.7: Material properties of two specimens from Yang et al. (2017).

Specimen no. E (kN/mm2) fy(N/mm2) fu (N/mm2) εst εu
R-235-2 207 315.30 462.48 0.0265 0.210
R-345-1 203 416.25 575.91 0.0145 0.132

hardening has shown that strain-hardening has little effect before the ultimate load is

reached. Therefore, the piecewise linear model with yielding, the parameters of which were

based on tests, was adopted in the FE models.

As for the residual stresses, the actual distribution was not provided in Yang et al. (2017).

Therefore, the ECCS residual stress distribution model was adopted, as presented in Fig-

ure 3.8. It was assumed that specimens were heavily welded, i.e. the width of the uniformly

residual tensile stress range is 3t and the tensile residual stresses at edges σrc = fy.

The comparisons in the load–end-shortening relationship between experimental and FE

results are presented in Figure 3.18. Generally, the FE results show a good comparison

with the experimental results, particularly the initial stiffness. As for the specimen R-235-

2, the FE model can capture the stiffness change in the entire loading history well, with the

FE model exhibiting a slightly stiffer response. The ultimate load ratio Pu,FE/Pu,Exp=1.038.

As for the specimen R-345-1, there is stiffness reduction near P=1000 kN for the FE model

but the FE model shows a slightly higher ultimate load with Pu,FE/Pu,Exp=1.029.

Based on the good comparisons with two independent experimental studies, it may be

concluded that the developed FE model has been validated and may be used to verify the

variational models developed in later chapters and be implemented to perform extensive

parametric studies.
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Figure 3.18: Load–end-shortening relationship for specimens (a) R-235-2 and (b) R-345-1
from experimental (Yang et al., 2017) and FE results.

3.6 Concluding remarks

In the current chapter, the details of finite element modelling, the solution strategy along-

side their verification and validation were presented. Firstly, strut modelling details, i.e.

simply-supported boundary conditions, semi-rigid flange–web joints, usage of symmetry to

improve computational efficiency, the selected element type and the meshing scheme, were

described. Moreover, the adopted material model, geometric imperfections and residual

stresses introduced in the models were presented. The analysis types: the linear buckling

analysis (LBA), geometric nonlinear analysis (GNA), geometric nonlinear analysis with

imperfections (GNIA) and geometric and material nonlinear analysis with imperfections

(GMNIA) were introduced alongside their solution strategies and application scenarios.

The developed FE models were firstly verified against the classical solutions from the linear

buckling of simply-supported plates under pure compression and the Euler buckling load

of a simply-supported column, which show excellent comparisons. This verifies the effec-

tiveness of the boundary conditions, element type and mesh scheme adopted in the current
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FE model. Subsequently, the verified FE models were validated against experimental re-

sults from two independent studies, which also shows good comparisons. It validates the

effectiveness of nonlinear material modelling, geometric imperfections and residual stress

modelling as well as the nonlinear solution strategy. Therefore, it may be concluded that

the developed FE model has been validated. In the following chapters, the validated FE

models will be used to verify the developed variational models and to conduct extensive

parametric studies to provide suggestions on the establishment of robust guidance for thin-

walled rectangular hollow section columns.



Chapter 4

Behaviour of long struts with

semi-rigid flange–web joints

4.1 Introduction

The current chapter investigates global–local mode interaction in rectangular hollow sec-

tion struts with semi-rigid flange–web joints. It aims at providing a quantitative description

of the interaction between flanges and webs in the interactive post-buckling stage, which

has not been addressed well in previous studies due to technical complexity (van der Neut,

1969). It facilitates a better understanding of the underlying mechanics of local–global

mode interaction in practical cross-sections. A variational model describing the behaviour

of a thin-walled rectangular hollow section strut with semi-rigid flange–web joints under

axial compression is developed using analytical techniques. The primary aim is to analyse

the interaction of global and local buckling modes for the case where global buckling is

critical. A relationship describing how the cross-section joint rigidity affects the properties

of the system is obtained explicitly from the developed equilibrium equations. These equa-

tions are solved using numerical continuation techniques through the well-known software

151
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Auto-07p (Doedel & Oldeman, 2009). The resulting equilibrium paths are presented for

various different cases and potentially dangerous unstable interactive buckling is found.

The numerical results from the variational model show excellent comparisons through-

out the post-buckling range with numerical results obtained using a nonlinear finite ele-

ment (FE) model developed within the commercial package Abaqus (2014). A simplified

method to predict the local buckling load of the more compressed web undergoing global

buckling and the corresponding amplitude at the secondary bifurcation point is developed

based on the verified variational model. A couple of parametric studies concerning the

geometric properties are also presented that successfully verify the simplified methodology.

4.2 Development of the variational model

A thin-walled simply supported rectangular hollow section strut of length L, loaded by an

axial force P at the centroid of the cross-section is considered, as shown in Figure 4.1. The

P

L
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x d
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(a) Simply-supported strut under pure compression (b) Cross-section

Neutral axis of bending

c

c c

c

Figure 4.1: (a) Plan view of the rectangular hollow section strut of length L under the
concentric axial load P . The lateral and longitudinal coordinates are x and z respectively.
(b) Cross-section geometry of the strut with semi-rigid joints including definitions of the
rotational stiffness at junctions; the vertical axis coordinate is y.

web depth and thickness are d and tw respectively; the flange width and thickness are b and

tf respectively. The joints between the webs and the flanges are assumed to be semi-rigid

and connected by a rotational spring with stiffness cθ. It should be stressed that as cθ → ∞,
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the joints tend to full rigidity; when cθ → 0, the joints tend to being pinned, i.e. there

is no rotational interaction between individual plate and they buckle individually. The

strut material is assumed to be linearly elastic, homogeneous and isotropic with Young’s

modulus E, Poisson’s ratio ν and shear modulus G = E/ [2(1 + ν)]. It is assumed that

global buckling occurs about the weak axis of bending.

4.2.1 Modal descriptions

The formulation begins with the definition of both the global and the local modal displace-

ments based on a recent purely numerical study (Shen et al., 2015). Since previous studies

(Hunt & Wadee, 1998; Wadee et al., 2010; Wadee & Bai, 2014; Wadee & Farsi, 2014a;

Wadee & Farsi, 2014b; Bai & Wadee, 2015b) have clearly demonstrated that it is essential

to include the shear strain contributions into the total potential energy formulation to

model the interactive buckling behaviour, Timoshenko beam theory is assumed currently.

The global mode is decomposed into two components: a purely lateral displacement W

and a pure rotation of the plane sections θ, see Figure 4.2, known as the ‘sway’ and ‘tilt’

modes (Hunt et al., 1988; Hunt & Wadee, 1998) respectively. The global buckling lateral

displacement W and the corresponding rotation θ are defined by the following expressions:

W (z) = −qsL sin
(πz

L

)

, θ(z) = −qtπ cos
(πz

L

)

, (4.1)

where qs and qt are the generalized coordinates defining the normalized amplitudes of the

sway and tilt modes respectively. The shear strain in the flanges from global buckling is

given by the following expression:

γxz =
dW

dz
− θ = − (qs − qt) π cos

(πz

L

)

. (4.2)
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Figure 4.2: (a) Sway and tilt components of the global buckling mode bending about the
weak axis y. (b) Out-of-plane local mode in the flanges wf(x, z) and in the more compressed
web wwc(y, z). Also shown are the in-plane local mode in the flanges uf(x, z) and in the
more compressed web uwc(y, z).

In the current study, the focus is on the cases where global buckling occurs first and

so the local displacement in the less compressed web is assumed to be zero. The local

buckling mode, including out-of-plane and in-plane displacement components, shown in

Figure 4.2(b), is defined with the following variables:

wf(x, z) = ff(x)w(z), wwc(y, z) = fwc(y)w(z), (4.3)

uf(x, z) = gf(x)u(z), uwc(y, z) = gwc(y)u(z), (4.4)
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where f and g are the cross-section components for the out-of-plane and in-plane dis-

placement components respectively; w(z) and u(z) are the longitudinal out-of-plane and

in-plane displacement components respectively.

From an earlier numerical study (Shen et al., 2015), it was determined that the cross-

section shape functions for the out-of-plane and the in-plane components, f and g, are

approximately the same. Therefore, currently, these components are in fact assumed to be

the same, i.e. gf(x) = ff(x) and gwc(y) = fwc(y). The cross-section components, ff(x) and

fwc(y), as shown in Figure 4.3(a), are estimated by applying appropriate kinematic and

static boundary conditions for each plate in conjunction with the Rayleigh–Ritz method.

It is assumed that fwc has the functional form that is derived from the conditions of a

simply-supported strut (a cosine wave) and a beam under pure bending (a parabola) such

that the cases for a fully pinned joint or a joint that rotates as a rigid body can be modelled,

thus:

fwc = B0 cos
(πy

d

)

+ (1 − B0)

(

1 − 4y2

d2

)

. (4.5)

For ff , the functional form is derived from a beam with one end clamped and the other end

simply-supported with an end moment arising from the transfer of moment at a non-pinned

joint. This naturally leads to a cubic polynomial form:

ff = A0

(

x +
b

2

)

+ A1

(

x +
b

2

)2

+ A2

(

x +
b

2

)3

. (4.6)

The coefficients B0 in fwc and A0, A1 and A2 in ff are determined by applying appropriate

boundary conditions at the junctions. The form of fwc automatically satisfies the natural

boundary conditions for the web displacement function, i.e. fwc(±d/2) = 0. Since global

buckling occurs first and the resulting less compressed web is assumed to have zero out-of-

plane displacement, the flanges near the less compressed side also have zero out-of-plane

displacement. Therefore, the junction between the less compressed web and the flanges is

assumed to be rigid, as shown in Figure 4.3(a). At the junction between the less compressed
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Figure 4.3: Semi-rigid joint with corresponding kinematic and static boundary conditions
at the web–flange junctions. (a) Cross-section component of the local mode in the flanges
ff(x) and the more compressed web fwc(y); the stiffness of the rotational spring at the
joints is cθ. (b) Kinematic boundary condition at the junction; θf and θw are the rotations
of the flange and the more compressed web at the junction respectively. (c) Equilibrium
condition at the junction; Mf and Mw are the bending moments in the flange and the
more compressed web at the junction respectively. (d) Equivalent rotational springs with
stiffness cθf attached to the more compressed web.

web and flanges, x = −b/2 and y = ±d/2, the boundary condition for the flanges are:

ff (−b/2) = f ′

f (−b/2) = 0, (4.7)

where the prime denotes differentiation with respect to x.

Another boundary condition can be obtained by considering moment continuity at the

junction between the flanges and the more compressed web given that there is a rotational

spring of stiffness cθ present, as shown in Figure 4.3(b–c). Hence, the following boundary

conditions need to be satisfied:

Mf (x = b/2) + Mwc (y = −d/2) = cθ(θw − θf), (4.8)

where:

Mf (x = b/2) =

[

Df

(

∂2wf

∂x2
+ ν

∂2wf

∂z2

)]

x=b/2

, (4.9)
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Mwc (y = −d/2) =

[

Dw

(

∂2wwc

∂y2
+ ν

∂2wwc

∂z2

)]

y=−d/2

, (4.10)

θw =
dfwc
dy

∣

∣

∣

∣

y=−d/2

, θf =
dff
dx

∣

∣

∣

∣

x=b/2

, (4.11)

with Df = Et3f /[12(1 − ν2)] and Dw = Et3w/[12(1 − ν2)] being the flexural rigidities of the

individual flanges and webs respectively.

As for the purely pinned or rigid joint, one more boundary condition at the more com-

pressed web and flange junction can be obtained. For the purely pinned joint case, the

flanges do not buckle, hence:

θf = f ′

f (x = b/2) = 0. (4.12)

For the case where the joint rotates as a rigid body, the rotation of the more compressed

web and flange are the same, hence:

θf = f ′

f (x = b/2) = θw = f ′

wc(y = −d/2). (4.13)

These four equations above, i.e. Eqs. (4.7–4.8), (4.12) and (4.13), can resolve the four

undetermined coefficients in fwc and ff for the pinned and rigid joint cases respectively.

However, for the semi-rigid joint case, the fourth boundary condition cannot be obtained

directly as for the pinned and rigid joint cases above. When the more compressed web

buckles, both the flanges and the joint rotational springs provide the web with restraints.

Therefore, by isolating the more compressed web plate, the total rotational stiffness pro-

vided by the flanges together with the rotational spring can be replaced by an equivalent

rotational spring cθf , as shown in Figure 4.3(d). Moreover, since the flanges and the rota-

tional springs are effectively in series, the following standard relationship can be used:

1

cθf
=

1

cθ
+

1

cf
, (4.14)

where cf is the equivalent rotational stiffness accounting for the rotational restraint provided
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by the flanges, as shown in Figure 4.4(a). In the rigid joint case, where cθ → ∞ and cθf = cf ,

cf

cf

w

w

(a)

d

b

f wc(y)

f f(x)

x

y

f f(x)

w

w

(b) (c)

w

w

x

y

fwM

fwM
fwM

fwM

w

w

Figure 4.4: (a) Equivalent rotational springs with stiffness cf on the more compressed
web provided by the connecting flange. (b) Cross-section component of the local mode in
the flanges ff(x) and the more compressed web fwc(y) for the rigid joint case due to the
rotation of the flange and the more compressed web at the junction, θ̄w. (c) Free-bodies of
the more compressed web–flange junctions; M̄fw is the bending moment within the flange
and the more compressed web at the junction.

the rotational stiffness cf can be determined by considering the continuity of moment and

rotation at the junctions, as shown in Figure 4.4(b–c), hence:

M̄fw = cf θ̄w =

[

Dw

(

∂2wwc

∂y2
+ ν

∂2wwc

∂z2

)]

y=−d/2

, (4.15)

where:

θ̄w =
∂wwc

∂y

∣

∣

∣

∣

y=−d/2

= w [f ′

wc (y = −d/2)] , (4.16)

∂2wwc

∂y2

∣

∣

∣

∣

y=−d/2

= w [f ′′

wc (y = −d/2)] , (4.17)

∂2wwc

∂z2

∣

∣

∣

∣

y=−d/2

= ẅ [fwc (y = −d/2)] = 0. (4.18)

Substituting the displacement function for the more compressed web in the rigid joint case,
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the rotational stiffness cf can be obtained:

cf =
4Df

b
(4.19)

and an expression for the equivalent rotational spring stiffness cθf can be expressed thus:

cθf =
cθ

cθ/cf + 1
. (4.20)

Therefore, the final boundary condition to determine the undetermined parameters is given

by the relationship:

cθfθw =

[

Dw

(

∂2wwc

∂y2
+ ν

∂2wwc

∂z2

)]

y=−d/2

. (4.21)

Based on these conditions, the coefficients Ai, where i = {0, 1, 2} and B0 can be determined:

A0 = 0,

A1 = − 2πc̄θ (c̄θ + 2)

b2φc (c̄θ + 1) (πφcφ3
t c̄θ − 4φcφ3

t c̄θ − 2c̄θ − 2)
,

A2 =
2πc̄θ (c̄θ + 2)

b3φc (c̄θ + 1) (πφcφ3
t c̄θ − 4φcφ3

t c̄θ − 2c̄θ − 2)
,

B0 = − 2 (2φcφ
3
t c̄θ + c̄θ + 1)

πφcφ3
t c̄θ − 4φcφ3

t c̄θ − 2c̄θ − 2
,

(4.22)

where c̄θ = cθ/cf , φt = tf/tw and φc = d/b. It should be stressed that when cθ → ∞, ff

and fwc converge to the rigid joint case, i.e. θf = f ′

f (x = b/2) = θw = f ′

wc(y = −d/2); when

cθ → 0, ff and fwc converge to the pinned joint case, i.e. ff = 0 and fwc = cos (πy/d).

4.2.2 Total potential energy

The total potential energy V comprises the contributions from the strain energy U stored

from the global bending of the strut, axial and shear stresses in the whole cross-section,
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the local bending of the flanges and the more compressed web, the rotational springs and

the work done by the external load PE , where E is the total end-shortening.

The only contribution to the global bending strain energy Ub,o is from the webs through

the sway mode, since the membrane strain energy contributions from the flanges and webs

account for the effect of global bending through the tilt mode, as shown in Figure 4.2(a).

Therefore, the global bending strain energy, Ub,o, can be expressed thus:

Ub,o = 2

∫ L

0

EIw
2

Ẅ 2 dz = EIw

∫ L

0

q2s
π4

L2
sin2 πz

L
dz, (4.23)

where EIw = Edt3w/12 is the flexural rigidity about the local weak neutral axis of the web

and dots represent differentiation with respect to z. The factor of 2 is included to account

for both webs.

The local bending strain energy stored in both flanges and the more compressed web can

be determined with the following standard expressions:

Ub,fl = Df

∫ L

0

∫ b/2

−b/2

{

(

∂2wf

∂z2
+

∂2wf

∂x2

)2

− 2(1 − ν)

[

∂2wf

∂z2
∂2wf

∂x2
−
(

∂2wf

∂z∂x

)2 ]
}

dx dz,

(4.24)

Ub,wcl =
Dw

2

∫ L

0

∫ d/2

−d/2

{

(

∂2wwc

∂z2
+

∂2wwc

∂y2

)2

(4.25)

− 2(1 − ν)

[

∂2wwc

∂z2
∂2wwc

∂y2
−
(

∂2wwc

∂z∂y

)2 ]
}

dy dz.

Since it is assumed that there is no buckling displacement in the less compressed web, it

naturally follows that there is zero local bending strain energy in that element.

The membrane strain energy in the flanges Um,f is derived from considering the direct

strains (ε) and the shear strains (γ). The complete direct strain expression for the flanges

can be written as:

εz,f =
∂ut

∂z
+

∂uf

∂z
+

1

2

(

∂wf

∂z

)2

− ∆, (4.26)



CHAPTER 4. BEHAVIOUR OF LONG STRUTS WITH SEMI-RIGID FLANGE–WEB JOINTS 161

where the first term is from the global mode and ut = xθ(z), being the ‘tilt’ in-plane

displacement; the second and third terms are the local components obtained based on

von Kármán plate theory; the final term is the purely in-plane compressive strain. The

corresponding shear strain component can be written thus:

γxz,f =
∂uf

∂x
+

∂W

∂z
− θ +

∂wf

∂x

∂wf

∂z
. (4.27)

From the previous numerical study (Shen et al., 2015), the transverse stress component

was shown to be very small when compared with the other two components, a finding

that also coincides with earlier analytical work (Koiter & Pignataro, 1976a), hence it is

not included presently. The complete expression for the membrane strain energy stored in

both flanges can be written thus:

Um,f = 2

∫ L

0

∫ tf/2

−tf/2

∫ b/2

−b/2

1

2

(

Eε2z,f + Gγ2
xz,f

)

dx dy dz. (4.28)

The membrane strain energy stored in the more compressed web also comprises direct and

shear strain energy contributions. As for the less compressed web, the expression is more

straightforward since it is assumed that there are no local buckling related terms. The

complete expressions for the direct strain in the more and less compressed webs are:

εz,wc = εz,wco − ∆ +
∂uwc

∂z
+

1

2

(

∂wwc

∂z

)2

, (4.29)

εz,wt = εz,wto − ∆, (4.30)

where the direct strains from the global mode, i.e. εz,wco and εz,wto, can be written thus:

εz,wco = − b

2
θ̇ = −qt

bπ2

2L
sin

πz

L
, (4.31)

εz,wto = +
b

2
θ̇ = qt

bπ2

2L
sin

πz

L
. (4.32)
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Unlike the flanges, the shear strain within the webs only contain terms from the local

mode. The shear strain in the less compressed web is zero and the shear strain in the more

compressed web can be written thus:

γyz,wc =
∂uwc

∂y
+

∂wwc

∂y

∂wwc

∂z
. (4.33)

The transverse stress is once again neglected in the current formulation for the same reasons

as outlined above, thus the membrane strain energy contributions from the webs Um,wc and

Um,wt can be given respectively thus:

Um,wc =

∫ L

0

∫ tw/2

−tw/2

∫ d/2

−d/2

1

2

(

Eε2z,wc + Gγ2
yz,wc

)

dy dx dz, (4.34)

Um,wt =

∫ L

0

∫ tw/2

−tw/2

∫ d/2

−d/2

1

2
Eε2z,wt dy dx dz. (4.35)

The strain energy stored in the rotational springs, Usp, accounting for the web–flange joints

in the side of the more compressed web, is given by the following expression:

Usp = 2

∫ L

0

1

2
cθ

(

∂wf

∂x

∣

∣

∣

∣

x=b/2

− ∂wwc

∂y

∣

∣

∣

∣

y=−d/2

)2

dz. (4.36)

The factor of 2 is included to account for the rotation of both corners, as shown in Fig-

ure 4.3(a).

The total end-shortening E comprises components from pure squash, the global sway mode

and the local in-plane displacement. Hence, the work done by the external load P is given

by the expression:

PE = P

∫ L

0

(

q2s
π2

2
cos2

πz

L
+ ∆ − ∆m

)

dz, (4.37)

with:

∆m =

[

2φt {gf}x + {gwc}y
]

u̇

2b (φt + φc)
, (4.38)

where {gf}x and {gwc}y are definite integrals with respect to their corresponding subscript
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x or y, thus:

{gf}x =

∫ b/2

−b/2

gf dx, {gwc}y =

∫ d/2

−d/2

gwc dy. (4.39)

In summary, the total potential energy V can be expressed by the summation of all the

strain energy terms minus the work done by the external load:

V = Ub,o + Um,f + Um,wc + Um,wt + Ub,fl + Ub,wcl + Usp − PE . (4.40)

4.2.3 Governing equations

By performing the calculus of variations on the total potential energy V , the governing

equations of equilibrium can be obtained. The integrand of the total potential energy V

can be written as a Lagrangian (L) of the form thus:

V =

∫ L

0

L
(

ẅ, ẇ, w, u̇, u, z
)

dz. (4.41)

The equilibrium states of the system can be obtained by invoking the condition that V is

stationary by setting the first variation of V , i.e. δV , to zero, where:

δV =

∫ L

0

(

∂L
∂ẅ

δẅ +
∂L
∂ẇ

δẇ +
∂L
∂w

δw +
∂L
∂u̇

δu̇ +
∂L
∂u

δu

)

dz. (4.42)

Since δẅ = d(δẇ)/ dz, δẇ = d(δw)/ dz and δu̇ = d(δu)/ dz, integration by parts allows

the development of the Euler–Lagrange equations for w and u, resulting in a fourth order

nonlinear ordinary differential equation (ODE) in w and a second order nonlinear ODE in
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u:

Dw

[

2φ3
t

{

f 2
f

}

x
+
{

f 2
wc

}

y

]

....
w − 3Etw

2

[

2φt

{

f 4
f

}

x
+
{

f 4
wc

}

y

]

ẇ2ẅ

−Gtw

[

2φt

{

f ′

f
2
f 2
f

}

x
+
{

f ′2
wcf

2
wc

}

y

]

(

ẅw2 + ẇ2w
)

− Etw

[

2φt

{

gff
2
f

}

x
+
{

gwcf
2
wc

}

y

]

(üẇ + u̇ẅ)

+
π2Etwbqt

2L

[

4φt

b

{

xf 2
f

}

x
+
{

f 2
wc

}

y

]

(

sin
πz

L
ẅ +

π

L
cos

πz

L
ẇ
)

+

{

2Dwν

[

2φ3
t {fff ′′

f }x + {fwcf ′′

wc}y
]

− 2Dw(1 − ν)

[

2φ3
t

{

f ′

f
2
}

x
+
{

f ′

wc
2
}

y

]

+ Etw∆
[

2φt

{

f 2
f

}

x
+
{

f 2
wc

}

y

]

}

ẅ −Gtw

[

2φt {g′ff ′

fff}x + {g′wcf ′

wcfwc}y
]

u̇w

− 2π2Gtf
L

{f ′

fff}x (qs − qt) sin
πz

L
w + Kw = 0,

(4.43)

Etw

[

2φt

{

g2f
}

x
+
{

g2wc
}

y

]

ü + Etw

[

2φt

{

gff
2
f

}

x
+
{

gwcf
2
wc

}

y

]

ẇẅ

−Gtw

[

2φt {g′ff ′

fff}x + {g′wcf ′

wcfwc}y
]

ẇw + 2Gtf {g′f}x (qs − qt)π cos
πz

L

− π3Etwbqt
2L2

[

4φt

b
{xgf}x + {gwc}y

]

cos
πz

L
−Gtw

[

2φt

{

g′f
2
}

x
+
{

g′2wc
}

y

]

u = 0,

(4.44)

where K is the coefficient of the linear term w, sometimes also referred to as the foundation

term, which is well known to affect the local buckling load (Hunt & Wadee, 1998). Cur-

rently, it comprises a plate-related term Kp and a spring-related term Ks, i.e.K = Kp+Ks,

where:

Kp = Dw

[

2φ3
t

{

f ′′

f
2
}

x
+
{

f ′′

wc
2
}

y

]

, Ks = 2cθ
(

f ′

wc|y=d/2 − f ′

f |x=b/2

)2
. (4.45)

Moreover, equilibrium also requires the minimization of V with respect to the generalized

coordinates qs, qt and ∆, leading to three integral equations:

∂V

∂qs
= π2GtfbL (qs − qt) +

π4EIwqs
L

− P
π2Lqs

2
(4.46)

− 2πGtf

∫ L

0

[

{g′f}x u + {f ′

fff}x ẇw
]

cos
πz

L
dz = 0,



CHAPTER 4. BEHAVIOUR OF LONG STRUTS WITH SEMI-RIGID FLANGE–WEB JOINTS 165

∂V

∂qt
=

π4Etwb
2dqt

4L

[

1 +
φt

3φc

]

− π2GtfbL (qs − qt) (4.47)

+ 2πGtf

∫ L

0

[

{g′f}x u + {f ′

fff}x ẇw
]

cos
πz

L
dz

− π2Ebtw
2L

∫ L

0

{[

{gwc}y +
4φt

b
{xgf}x

]

u̇

+

[

1

2

{

f 2
wc

}

y
+

2φt

b

{

xf 2
f

}

x

]

ẇ2

}

sin
πz

L
dz = 0,

∂V

∂∆
= −Etw

∫ L

0

{

[

{gwc}y + 2φt {gf}x
]

u̇ +

[

1

2

{

f 2
wc

}

y
+ φt

{

f 2
f

}

x

]

ẇ2

}

dz (4.48)

+ 2EtwdL∆

(

1 +
φt

φc

)

− PL = 0.

Since the strut is an integral member, Eq. (4.47) provides a relationship between qs and qt

before the local mode is triggered, i.e. when u = w = ẇ = 0:

qs = (1 + s) qt, (4.49)

where:

s =
π2Eb2

4GL2

(

1

3
+

φc

φt

)

. (4.50)

The boundary conditions for w and u and their derivatives are for a simple-support at

z = 0 and for symmetry at z = L/2:

w (0) = ẅ (0) = ẇ (L/2) =
...
w (L/2) = u (L/2) = 0. (4.51)

A further boundary condition can be obtained from minimizing V and it is a condition

that relates to matching the in-plane strain at the ends:

u̇(0)
[

{

g2wc
}

y
+ 2φt

{

g2f
}

x

]

+
ẇ2(0)

2

[

{

gwcf
2
wc

}

y
+ 2φt

{

gff
2
f

}

x

]

−∆
[

{gwc}y + 2φt {gf}x
]

+
P
[

{gwc}y + 2φt{gf}x
]

2Etwd (1 + φt/φc)
= 0.

(4.52)
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Linear eigenvalue analysis for the perfect column is conducted to determine the critical load

for global buckling PC
o . This is achieved by considering the condition where the Hessian

matrix Vij is singular when qs = qt = w = u = 0, where:

Vij =







∂2V
∂q2s

∂2V
∂qs∂qt

∂2V
∂qt∂qs

∂2V
∂q2

t






, (4.53)

which produces the following expression:

PC
o =

2π2EIw
L2

+
π2Etfb

3

2 (1 + s)L2

(

1

3
+

φc

φt

)

. (4.54)

Note that if Euler–Bernoulli bending theory had been assumed, the shear modulus G → ∞,

which implies that s → 0, and PC
o would reduce to the classical Euler load, as would be

expected.

4.3 Numerical results

In this section, representative numerical examples from the variational model with a varying

rotational stiffness cθ are presented. The geometric properties of the example strut are

presented in Table 4.1. The Young’s Modulus E and Poisson’s ratio ν of the material are

Table 4.1: Geometric properties of the rectangular hollow section strut in the numerical
example, selected to ensure global buckling is critical.

Length Flange width Web depth Flange thickness Web thickness
L b d tf tw

5250 mm 60 mm 120 mm 1 mm 1 mm

chosen to be 210 kN/mm2 and 0.3 respectively. For the case where cθ = 0, the theoretical

buckling stresses and critical mode are presented in Table 4.2. The global buckling stress

is calculated using Eq. (4.54) where σC
o = PC

o /A and A is the total area of the cross-

section. The local buckling stress is estimated by using the classical plate buckling stress
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Table 4.2: Theoretical values of the global and local critical buckling stresses for the pinned
cross-section case.

σC
o (N/mm2) σC

l,w (N/mm2) σC
l,f(N/mm2) Critical mode

52.70 52.72 210.88 Global

σC
l,w = kpDwπ

2/(d2tw) for the webs and σC
l,f = kpDfπ

2/(b2tf) for the flanges (Bulson, 1970).

Since it is initially assumed that cθ = 0, all the plates have effectively pinned edges and the

length of the strut is much larger than the width of the plate, kp = 4 is adopted for the plate

buckling coefficient to obtain a lower bound. With the increase of the rotational stiffness cθ,

the local buckling load PC
l would also increase whereas the global buckling load PC

o would

remain the same. Therefore, the selected geometric dimensions and material properties

ensure that global buckling is always critical for any positive value of cθ in the examples

presented.

The system of nonlinear differential equations, i.e. Eqs. (4.43)–(4.44), subject to the cor-

responding integral (Eqs. (4.46)–(4.48)) and boundary conditions (Eqs. (4.51) and (4.52)),

is solved numerically using the continuation and bifurcation software Auto (Doedel &

Oldeman, 2009). The software is not only capable of solving the nonlinear ordinary dif-

ferential equations numerically, but it also maintains the intrinsic bifurcational structure

of the solutions. Moreover, importantly, the software can switch between, as well as trace,

different equilibrium paths, allowing the evolution of the geometrically perfect cases to be

studied.

The solution strategy for using Auto is shown diagrammatically in Figure 4.5. The

critical load PC
o is obtained explicitly from Eq. (4.54). Using the continuation method,

the generalized global sway mode amplitude qs is first varied, while P = PC
o , to obtain the

secondary bifurcation points Si, where the first one (S1 ≡ S) pinpoints the location where

interactive buckling is practically triggered. Subsequently, the second run is started at the

secondary bifurcation point S using the branch switching facility within the software and

P is varied to compute the interactive buckling path. With the increase of cθ, the value
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q

PC
o

S1

Run 1

Run 2

P

s

C

Global bucking path

Interactive buckling path

S2 S3 S4

qs
S

Figure 4.5: Numerical continuation procedure for determining the interactive buckling
equilibrium path for perfect struts where global buckling is critical. The thicker solid
line shows the actual solution path. Circles marked C and Si represent the critical and
secondary bifurcation points respectively. The generalized coordinate of the sway mode at
the secondary bifurcation point is defined as qSs .

of qs at the secondary bifurcation point qSs increases due to the higher local buckling stress

for the more compressed web relative to the constant global buckling load.

However, before conducting numerical continuation in Auto, the effects of the rotational

springs on the nonlinear ODEs are investigated. The explicit spring related term in the

ODEs is the coefficient of linear term w, K, in Eq. (4.43). Figure 4.6(a) shows the rela-

tionship between the individual components of K, i.e. Kp and Ks defined in Eq. (4.45),

while varying the normalized joint rigidity c̄θ. It can be seen that the plate-related term

Kp rises with the increase of the rotational spring stiffness. Moreover, it reaches a plateau

with the value being the same as the rigid joint case when the normalized joint stiffness

c̄θ is close to 7. As for the spring-related term Ks, it reaches a peak and then decays

to zero as c̄θ is increased further. This can be attributed to the fact that the rotation

of the flange and the more compressed web at the joint are approximately the same and

thus f ′

wc(y=d/2) = f ′

wt(x=b/2). Based on this analysis, struts with the cross-section joint

stiffness cθ listed in Table 4.3 are used in the subsequent numerical study.

Unstable post-buckling behaviour arising from the triggering of interactive buckling is
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Figure 4.6: (a) The influence of the rotational spring stiffness on the coefficient of the
linear term w in Eq. (4.43) for the example strut with the properties listed in Table 4.1.
The quantities Kp and Ks are the plate and spring related terms respectively, given in Eq.
(4.45). (b) The normalized values of the coefficient of the linear term K̄ and the generalized
coordinate of the global sway mode q̄Ss versus the normalized joint rigidity c̄θ.

Table 4.3: Rotational stiffness cθ and the corresponding normalized stiffness c̄θ values used
in the numerical studies.

cθ (Nm/m) 0 160.26 641.03 2564.10 ∞
c̄θ 0 0.125 0.5 2 ∞
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observed in all example struts presented in Figure 4.7. Figure 4.7(a) shows that the severe
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Figure 4.7: Numerical equilibrium paths for struts with varying joint rigidity c̄θ. Graphs
of the normalized load p = P/PC

o versus (a) the normalized end-shortening E/L, (b) the
generalized coordinate of the sway mode qs and (c) the normalized peak amplitude of local
deformation in the more compressed web wwc,max/tw; (d) wwc,max/tw versus qs.

snap-back phenomenon in the normalized load p = P/PC
o versus the normalized end-

shortening E/L relationship is mollified with the increasing joint rigidity c̄θ. Moreover,

stiffer joints within the cross-section also lead to a higher residual post-buckling capacity.

A gradual transition from highly unstable behaviour to less unstable behaviour can be

observed. At the same load level in the post-buckling range, a higher joint rigidity case

corresponds to larger global and local mode amplitudes, as shown in Figure 4.7(b, c). The

generalized global mode amplitude to trigger the mode interaction qSs increases significantly

especially between c̄θ = 0 and c̄θ = 0.5. The rate of increase in qSs , however, begins to reduce
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significantly as c̄θ is increased further; for example, the equilibrium path of the case with

c̄θ = 2 is very similar to the rigid case. By normalizing K and qSs between the pinned and

rigid cases, thus:

K̄ =
K −K0

KR −K0

, q̄Ss =
qSs − qSs0
qSsR − qSs0

, (4.55)

where K0 is the coefficient of the linear term for the pinned case (c̄θ = 0); KR is the

coefficient of the linear term for the rigid case (cθ → ∞); qSs0 is the value of qSs for the

pinned case (c̄θ = 0); and qSsR is the value of qSs for the rigid case (cθ → ∞). It can

be observed in Figure 4.6(b) that the respective distributions of K̄ and q̄Ss with respect

to c̄θ are practically identical, which is understandable since K is known to control the

local buckling load (Hunt & Wadee, 1998) and that in turn controls when the secondary

bifurcation occurs.

From the solutions of the out-of-plane components of the local mode w, a wavelength

variation is observed with the progress of interactive buckling, as shown in Figure 4.8.

The initially localized buckling mode spreads outwards from the mid-span of the column,

developing with more peaks and troughs alongside a clear reduction in wavelength as the

modal amplitude becomes larger and the load drops in the post-buckling range. Since the

global buckling mode amplitude at the secondary bifurcation is relatively larger for struts

with a higher joint rigidity, the local buckling profile is initially more localized at mid-span

at p = 0.995. Moreover, the higher joint rigidity also leads to a smaller wavelength at the

same load level. This is in accord with results in previous work on I-section struts (Bai

& Wadee, 2015b) and on struts on elastic softening–hardening foundations (Budd et al.,

2001).

Three dimensional representations of the numerical solutions with c̄θ = 0, c̄θ = 0.5 and the

rigid case (c̄θ → ∞) at load levels p = 0.995 and p = 0.790 in the post-buckling range are

shown in Figure 4.9. It should be emphasized that there is no buckle in the flanges for the
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Figure 4.8: Numerical solutions of the normalized local out-of-plane displacement in the
more compressed web wwc/tw for the cases where: (a) c̄θ = 0 (pinned), (b) c̄θ = 0.5 and
(c) c̄θ → ∞ (rigid). The left and right columns correspond to the normalized load in
the post-buckling range p = 0.995 and p = 0.790 respectively. Note that the longitudinal
coordinates are normalized with respect to half the strut length z̄ = 2z/L and that the
buckling wavelengths are reduced at the lower load.

c̄θ = 0 case, as shown in Figure 4.9(a), owing to the lack of interaction between adjacent

plates within the cross-section.

4.4 Verification and discussion

The validated FE model developed in Chapter 3 was used to verify the variational model.

A linear eigenvalue analysis is first conducted in Abaqus to obtain the global buckling load

of the FE model with the same geometric properties as the variational model. The global

critical load is found to be 18.90 kN, approximately 0.21% smaller than the analytical

solution PC
o using Eq. (4.54). The insignificant error is postulated to be derived from the

global mode displacement field assumption in Eq. (4.1), which comprises only a single term.

In terms of the nonlinear behaviour, equilibrium paths obtained from both the variational

and FE models show excellent agreement for all rotational stiffness cases listed in Table 4.3,
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Figure 4.9: 3D visualization of the numerical solutions from the variational model, plotted
using Matlab (MATLAB, 2010). The results are shown for the post-buckling equilibrium
states for the cases where: (a) c̄θ = 0 (pinned), (b) c̄θ = 0.5 and (c) c̄θ → ∞ (rigid)
from the top to the bottom row respectively. The left and right columns correspond to the
normalized load in the post-buckling range p = 0.995 and p = 0.790 respectively. Note that
the deformations shown have been amplified by a factor of 5 and the longitudinal coordinate
(z) has been scaled by a factor of 0.25, both to aid visualization. All dimensions are in
millimetres.

with the variational model exhibiting a very slightly stiffer response in the advanced post-

buckling range. Three typical cases, i.e. c̄θ = 0 (pinned), c̄θ = 0.5 and c̄θ → ∞ (rigid),

are presented and discussed currently, as shown in Figure 4.10. From both the p–qs and

wwc,max–qs equilibrium diagrams, it can be observed that the values of qSs for all cases are

extremely close between the two models. As for the local–global mode relationship, the

present model matches better with the FE results, when compared to previous studies on
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Figure 4.10: Comparison of the post-buckling equilibrium paths for the cases where: (a)
c̄θ = 0 (pinned), (b) c̄θ = 0.5, and (c) c̄θ → ∞ (rigid) from the variational (solid line)
and FE (dashed line) models. Graphs of the normalized load ratio p = P/PC

o versus the
normalized end-shortening E/L in the first column, the generalized coordinate of the sway
mode qs in the second column, and the normalized maximum amplitude of local deflection
in the more compressed web wwc,max/tw in the third column; the fourth column shows
wwc,max/tw versus qs.

I-section struts (Bai & Wadee, 2015b; Liu & Wadee, 2015) using the same methodology.

Apart from the fact that the cross-section functions ff , fwc, gf and gwc have assumed forms,

an additional source for the stiffer response of the variational model is derived from the

underlying assumption that the neutral axis location remains unchanged. In fact, the

neutral axis of bending would move to the less compressed web side when local buckling

occurs in the more compressed web and flanges, as shown in Figure 4.11; however, it is

worth emphasising presently that the errors are fundamentally small.

Figure 4.12 shows the evolution of the cross-section deformation at mid-span for the cases
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Figure 4.11: Neutral axis shifting due to local buckling in the more compressed web and
flanges. The variation in the normal stress due to the global curvature κ (a) before local
buckling and (b) after local buckling in the more compressed web and flanges; δFt and δFc

are the relative load changes in the less and more compressed sides of the cross-section
respectively, which include the unloading and loading of the flanges and webs; η is the
stiffness reduction factor for the more compressed web due to local buckling.

where c̄θ = 0 (pinned), c̄θ = 0.5, and c̄θ → ∞ (rigid). The excellent comparisons through-
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Figure 4.12: Local deformation of the cross-section for the example struts at mid-span
at different load levels for the cases where: (a) c̄θ = 0 (pinned), (b) c̄θ = 0.5, and (c)
c̄θ → ∞ (rigid) from the variational (solid line) and FE (dashed line) models. Note that
the displacements shown have been amplified by a factor of 20 to aid visualization.
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out verify the effectiveness of the assumed cross-sectional shape functions. At c̄θ = 0, there

is no out-of-plane displacement in the flanges. With the increase of the joint rigidity c̄θ,

the flanges bulge increasingly and finish with the rotation at the joint being equal to the

more compressed web, i.e. θf(x = b/2) = θwc(y = d/2), as shown in Figure 4.12(c). A small

difference in the more compressed web deflection can be observed between the FE and the

variational results in the advanced post-buckling range; the difference increases as c̄θ is

increased, as shown in the fourth column of Figure 4.12(b, c). Moreover, the discrepancy

in the less compressed web is caused by the large amount of bending in that web (Shen

et al., 2015), which is currently not included as an extra local displacement function in the

variational model.

Figure 4.13 shows the comparison for the normalized solutions of the out-of-plane displace-

ment in the more compressed web wwc/tw for the cases where c̄θ = 0 (pinned), c̄θ = 0.5,

and c̄θ → ∞ (rigid), at p = 0.950 and p = 0.790 respectively. An excellent comparison
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Figure 4.13: Comparisons of the numerical solutions for the normalized local out-of-plane
displacement wwc/tw in the more compressed web from the variational (solid line) and FE
(dashed line) models for c̄θ = 0 (pinned), c̄θ = 0.5 and c̄θ → ∞ (rigid) cases respectively.
Note that the longitudinal coordinate is normalized with respect to half of the strut length
z̄ = 2z/L.

is observed in all the cases, especially for the case where c̄θ = 0. However, the slight
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error increases with the commensurate increase of the joint rigidity and the progression

of interactive buckling, as described for Figure 4.12. In the variational model, the pro-

file of the local mode is assumed to be the same in the whole strut and the amplitude

is allowed to vary, see Eqs. (4.3) and (4.4). This assumption holds true for the c̄θ = 0

case, where the profile is always the sine function, since the flanges provide no rotational

restraints to the buckled web. For the cases where c̄θ > 0, the cross-section profile depends

on the bending moment at the web–flange junctions, which varies along the length. Fig-

ure 4.12 demonstrates that the currently assumed shape function matches well with the

cross-section deformation at mid-span. Therefore, the errors, although very small, become

increasingly larger towards the ends, where the profile is slightly different from that at

mid-span.

Since the FE package Abaqus can automatically calculate and output the strain energy

in individual plates and the work done by load as standard, it provides an additional

perspective for validating the variational model. Figure 4.14 presents the comparisons

between the components of the potential energy during the loading for the cases where

c̄θ = 0 (pinned), c̄θ = 0.5 and c̄θ → ∞ (rigid). As for the energy in the variational model,

the strain energy in the flanges Uf comprises the local bending energy Ub,fl, given in Eq.

(4.24), and the membrane strain energy Um,f , given in Eq. (4.28). The strain energy in

the more compressed web Uwc comprises half of the total global bending energy Ub,o/2,

given in Eq. (4.23), the local bending energy Ub,wcl, given in Eq. (4.25), and the membrane

strain energy Um,wc, given in Eq. (5.28). The strain energy in the less compressed web

Uwt comprises half of the total global bending energy Ub,o/2, given in Eq. (4.23), and the

membrane strain energy Um,wt, given in Eq. (4.35). The work done by load term PE is

given in Eq. (4.37).

There are three individual stages that may be observed in the energy relationships versus

the generalized coordinate of the sway mode qs. The first stage corresponds to the purely

axial deformation of the struts under compression before the buckling load is reached. The
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Figure 4.14: Comparisons of the potential energy components from the example struts
with joint rigidities c̄θ = 0 (pinned), c̄θ = 0.5 and c̄θ → ∞ (rigid) from the variational
(solid line) and FE (dashed line) models. Graphs of the total strain energy stored in the
flanges Uf , more compressed web Uwc, less compressed web Uwt and the work done by the
load PE respectively, all versus the generalized coordinate of the sway mode qs.

second stage is where pure global buckling is triggered and the third stage is where inter-

active buckling progresses with the simultaneous increase of the global and local modes.

Except for the strain energy in the more compressed web, an energy reduction can be ob-

served at the initial stage of interactive buckling. For the strain energy in the flanges and

the work done by the load, the reduction corresponds to the ‘snap-back’ that features in the

load–end-shortening relationship shown in Figure 4.7(a) for small values of c̄θ. With the

increase of the joint rigidity, the reduction diminishes; for the rigid joint case, the energy

reduction is essentially negligible, which perhaps explains why no snap-back is observed

for that case.
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The comparisons of the strain energy terms and the work done by the load between the

FE and the variational models are generally excellent for all values of c̄θ. The main source

of discrepancy resides in the strain energy stored in the less compressed web Uwt, with the

relative errors being 40%, 33% and 28% at qs = 0.01 for c̄θ = 0 (pinned), c̄θ = 0.5 and

c̄θ → ∞ (rigid) cases respectively. However, the proportion of the strain energy stored

in the less compressed web compared to the total strain energy stored in the rectangular

hollow section strut, Uwt/U , is relatively small; for the rigid joint case, Uwt/U ≈ 0.07 when

qs = 0.01. Therefore, the errors for the entire system due to errors from the less compressed

web are in fact below 3%. Referring to Figure 4.7(d), at the same value of qs, the local

mode amplitude is higher for smaller values of c̄θ. Therefore, any neutral axis movement

would be larger for smaller values of c̄θ. This contributes to the reason why the error in the

strain energy stored in the less compressed web is the largest in the effective pinned joint

case at the same value of qs. The neutral axis movement due to the plate buckling and the

assumed cross-section shape functions (see Figure 4.12) are the two principal factors that

are postulated to be responsible for the small overall discrepancy in the strain energy of

the more compressed and less compressed webs. All of these factors taken together lead

to a very marginally stiffer response in the variational model, but it is not particularly

large and is only really significant in the far-field post-buckling range. Hence, it may be

concluded that the developed variational model has been satisfactorily verified and may

now be exploited further.

4.5 Simplified approach to predicting the location of

secondary bifurcation

From the numerical results, as presented in Figure 4.7, unstable post-buckling equilibrium

paths were observed after the secondary bifurcation point and the severely unstable be-

haviour is somewhat mollified with the increase of c̄θ, which in turn shows an increase in
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the generalized coordinate of the sway mode at the secondary bifurcation point qSs . Earlier

studies (van der Neut, 1969; van der Neut, 1973; Thompson & Hunt, 1973; Thompson &

Hunt, 1984; Wadee & Farsi, 2015) on thin-walled structures susceptible to mode interaction

suggest that the imperfection sensitivity decreases with the relative increase of qSs since the

proximity of the critical and secondary bifurcation points is reduced. A simplified approach

for predicting qSs based on the verified variational model is presented currently since this

quantity provides a valuable indication of the potential sensitivity to imperfections.

When the strut buckles in a purely global mode, the direct strain εz,wc can be written as

Eq. (4.29) by assuming the local buckling components are zero:

εz,wc = εz,wco − ∆, (4.56)

where εz,wco is obtained from Eq. (4.31); ∆ is also obtained by assuming the local buckling

components in Eq. (4.48) are zero. Since the transverse strain is neglected, the compressive

stress in the more compressed web σz,wc can be written thus:

σz,wc = Eεz,wc = −π2Ebqt
2L

sin
πz

L
− PC

o

2twd (1 + φt/φc)
. (4.57)

From the numerical results in Figure 4.8, the local mode is initially localized. Instead

of analysing the whole web with the entire strut length, a plate element at mid-span

with length le is isolated to compute the approximate local buckling coefficient kp, as

shown in Figure 4.15. It is assumed that within this plate element, the axial stress is

constant along the length with the value of the direct stress at mid-span. Therefore,

when the direct stress in the more compressed web σz,wc reaches the local buckling stress,

σC
wcl = kpπ

2E/[12(1− ν2)(d/tw)2], it may be assumed that interactive buckling will also be

triggered.

Since the cross-section shape function for the more compressed web has already been

obtained, with reference to Eq. (4.5) and Figure 4.3(d), the local buckling coefficient kp
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Figure 4.15: Deformed shape of the isolated plate element of the more compressed web
under the critical buckling stress σC

wcl. The effective length of the element is le with depth
d and thickness tw. The equivalent rotational stiffness provided by the flanges and the
rotational springs at the web–flange joints is cθf .

may be calculated by applying minimum potential energy principles on the isolated plate

element of the more compressed web. The buckled displacement field is thus assumed to

be:

wwc(y, z) = Qfwc(y) sin
πz

le
, (4.58)

where Q is a new generalized coordinate representing the amplitude of the local buckling

mode within the plate element shown in Figure 4.15.

The strain energy U in the plate element comprises two components: the strain energy

stored from local buckling Ub,wcl and the strain energy stored in the equivalent rotational

springs Usp,θf :

Ub,wcl =
Dw

2

∫ le

0

∫ d/2

−d/2

{

(

∂2wwc

∂z2
+

∂2wwc

∂y2

)2

(4.59)

− 2(1 − ν)

[

∂2wwc

∂z2
∂2wwc

∂y2
−
(

∂2wwc

∂z∂y

)2 ]
}

dy dz,

Usp,θf = 2

∫ le

0

1

2
cθf

(

∂wwc

∂y

∣

∣

∣

∣

y=−d/2

)2

dz, (4.60)
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where the expression for cθf was presented in Eq. (4.20). The work done by load term is

given by the following standard expression:

P∆ =
σC
wcltw
2

∫ le

0

∫ d/2

−d/2

(

∂wwc

∂z

)2

dy dz. (4.61)

The total potential energy can thus be written as:

V = Ub,wcl + Usp,θf − P∆, (4.62)

and by setting dV/dQ = 0 for equilibrium, the following expression for kp is obtained:

kp = a0 + a1φ
2
l +

1

φ2
l

, (4.63)

where φl = le/d with a0 and a1 being constants that are functions of φc, φt and c̄θ, thus:

a0 =
10
{

4φcφ
3
t c̄θ [φcφ

3
t c̄θ (5π2 − 48) + 3 (π2 − 8) (c̄θ + 1)] + 3π2 (c̄θ + 1)2

}

4φcφ3
t c̄θ [φcφ3

t c̄θ (π4 + 15π2 − 240) + 15 (π2 − 8) (c̄θ + 1)] + 15π2 (c̄θ + 1)2
, (4.64)

a1 =
15
{

4φcφ
3
t c̄θ [φcφ

3
t c̄θ (π2 − 8) + (π2 − 4) (c̄θ + 1)] + π2 (c̄θ + 1)2

}

4φcφ3
t c̄θ [φcφ3

t c̄θ (π4 + 15π2 − 240) + 15 (π2 − 8) (c̄θ + 1)] + 15π2 (c̄θ + 1)2
. (4.65)

Defining φl = (a1)
−1/4, an expression for the minimum value of kp is found:

kp = a0 + 2
√
a1. (4.66)

By referring to the relationship between qs and qt given in Eq. (5.37), an explicit expression

for the secondary bifurcation point qSs is duly obtained:

qSs =
2
(

σC
wcl − σC

o

)

(1 + s)L

π2Eb
. (4.67)



CHAPTER 4. BEHAVIOUR OF LONG STRUTS WITH SEMI-RIGID FLANGE–WEB JOINTS 183

4.6 Parametric studies

To verify the simplified approach, a couple of parametric studies are presented where

the length and the cross-section aspect ratios are varied. The results from the simplified

approach are compared to the full variational model solved using numerical continuation

in Auto.

4.6.1 Length variation

The strut geometries have the same cross-section properties as shown in Table 4.1 and the

joint rigidity values are c̄θ = {0, 0.5, 1, ∞}. The length of the struts is varied from the

case where global buckling is marginally critical to L = 7200 mm.

The comparison of the generalized coordinate of the sway mode at the secondary bifurcation

point qSs between the full variational model using numerical continuation and the simplified

approach using Eq. (4.67) is shown in Figure 4.16. With the increase of the length L, qSs

increases; the simplified approach predicts qSs with good accuracy and is always on the safe

side. The source of error arises from the fact that the simplified model assumes that the

stress is constant along the length of the plate element. However, the stress distribution is

effectively a combination of the uniform stress from the axial load and the superposition

of the sine function from global buckling, as given in Eq. (4.57).

4.6.2 Cross-section aspect ratio variation

For the cross-section aspect ratio parametric study, the geometric properties of the struts

are shown in Table 4.4. The cross-section aspect ratio φc ranges from 1 to 2.5; the width

of the flange b is fixed and the wall thickness is fixed and uniform throughout the cross-

section. The length of each strut is selected to ensure that global buckling is marginally
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Figure 4.16: Comparison of the generalized coordinate of the sway mode at the secondary
bifurcation point qSs using numerical continuation with Auto for the full variational model
alongside the presented simplified method.

Table 4.4: Geometric properties of the rectangular hollow section struts in the parametric
study, selected to ensure global bucking is critical. The flange width b = 60 mm and the
wall thickness tf = tw = 1 mm throughout.

Cross-section aspect ratio Web depth d Length L
φc (mm) (mm)
1 60 2430

1.25 75 3120
1.5 90 3830
1.75 105 4540

2 120 5250
2.5 150 6700
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critical (PC
o /P

C
l ≈ 0.995) for the pinned joint case. Since qSs is related to the strut length,

the current focus is on the local buckling coefficient kp at the secondary bifurcation point.

Table 4.5 shows the comparisons between the evaluation of the local buckling coefficient

Table 4.5: Comparison of the local buckling coefficient kp for the more compressed web
at the secondary bifurcation point from the full variational model, kp,AUTO, solved using
numerical continuation with Auto and the simplified method, kp,EQ, using Eq. (4.66) from
the pinned case (c̄θ = 0) to the rigid case (c̄θ → ∞) for different cross-section aspect ratios.

φc
Ranges kp,EQ/kp,AUTO

kp,AUTO kp,EQ/kp,AUTO Mean COV
1 4.01 → 5.03 0.968 → 0.998 0.980 1.16%

1.25 4.01 → 5.32 0.941 → 0.998 0.959 2.22%
1.5 4.01 → 5.47 0.936 → 0.997 0.956 2.38%
1.75 4.01 → 5.56 0.938 → 0.998 0.957 2.31%

2 4.01 → 5.63 0.941 → 1.000 0.960 2.28%
2.5 4.01 → 5.76 0.947 → 0.998 0.964 1.93%

kp at the secondary bifurcation point from the full variational model solved by numerical

continuation and the approximation presented in Eq. (4.66).

In the same way, as shown in the length parameter study results, the simplified method

is demonstrated to predict kp with very good accuracy yet being always on the safe side

for the cases studied. Defining kp,EQ as the prediction of kp from the simplified method

using Eq. (4.66) and kp,AUTO as the value of kp from the full variational model, for each

cross-section case, the mean value of kp,EQ/kp,AUTO ranges between 0.956 and 0.980 and

the maximum COV (coefficient of variation) is 2.38%. With the increase of the aspect ratio

φc, an increase in kp is observed due to the rotational restraint provided by the relatively

narrower flanges. Therefore, a larger cross-section aspect ratio would lead to a relatively

higher post-buckling strength.

Since cases with rigid joints (c̄θ → ∞) and uniform thickness (φt = 1) are most common

in practice, a power series approximation for Eq. (4.66) can be derived to order φ2
c for such

cases:

kp = 4.33 + 0.76φc − 0.10φ2
c. (4.68)
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The comparison between this function and Eq. (4.66) is shown in Figure 4.17 and can be

seen to be practically perfect for the range shown.

φc

1 1.5 2 2.5

k
p

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Simplified method

Power series approximation

Figure 4.17: The relationship between the local buckling coefficient kp and the cross-section
aspect ratio φc for the rigid joint case from the simplified method using Eq. (4.66) and the
curve fit function given in Eq. (4.68).

4.7 Concluding remarks

A nonlinear variational model describing the interactive buckling of a thin-walled rect-

angular hollow section strut with varying rigidities of the web–flange joints under pure

compression has been developed using variational principles. Numerical examples, focus-

ing on cases where global buckling is critical, have been presented and verified using the

FE package Abaqus. Unstable post-buckling behaviour due to mode interaction was ob-

served. A progressive change in the local buckling mode is identified in terms of both

the wavelength and the amplitude. As far as the author is aware, it is the first time that

this has been demonstrated in rectangular hollow section struts. With the increase of the

cross-section joint rigidity, a transition from highly unstable to more mildly unstable post-

buckling behaviour is observed. The excellent comparisons between the variational and

FE results verified the effectiveness of the presented methodology.
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A simplified method to predict the local buckling coefficient in the more compressed web

and the global buckling amplitude at the secondary bifurcation point is proposed based on

the verified variational model; it is demonstrated to be simple, yet safe and accurate for

the cases studied.

The study in this chapter verifies the analytical methodology adopted and provides a

preliminary understanding of the highly nonlinear system. The following chapters build

on the findings in this chapter and extend them to analyse cases where local buckling is

critical and flange–web joints are rigid alongside more practically realistic cases with initial

geometric imperfections.



Chapter 5

Variational modelling of practical

cases

The previous chapter introduced a variational model for RHS struts with semi-rigid flange–

web joints, but the model was only valid for long length struts where global buckling is

critical. Moreover, no geometric imperfections were introduced in the variational model.

However, in practice, a large proportion of thin-walled RHS struts are designed with local

buckling being critical so as to take full advantage of the high strength to self-weight ratio.

The actual flange–web joint properties are rigid more often than not. More importantly,

there is always some imperfection in real structures, either in the geometry or in the

loading. Previous studies (Koiter & Pignataro, 1976a; Thompson et al., 1976; Loughlan,

1983; Goltermann & Møllmann, 1989; Wadee, 2000; Bai & Wadee, 2015a; Wadee & Farsi,

2015; Liu & Wadee, 2016b) have identified that thin-walled plated structures susceptible

to interactive buckling tend to be highly sensitive to imperfections; a tiny imperfection

may lead to a significant erosion in the load-carrying capacity. Therefore, in the current

chapter, the variational model is extended to include the scenarios where local buckling is

critical as well as where both local and global geometric imperfections exist.

188
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The material and cross-section geometric properties of the RHS struts in this chapter are

almost the same as those presented in Chapter 4. The only difference is that the joints

between the webs and the flanges are assumed to be rigid, hence the following two as-

sumptions are satisfied (Bulson, 1970): (i) the webs and the flanges at their common

edges remain orthogonal during buckling; (ii) the wavelengths of the local buckling mode,

which simultaneously appear in all constituent plates, are the same. Recalling the varia-

tional model in Chapter 4, the same definitions for material and geometric properties are

adopted and shown in Figure 4.1.

5.1 Modal descriptions

The formulation begins with the description of both the global and the local modal dis-

placements. The global mode description is the same as that in Chapter 4, which is

decomposed into two components, a pure lateral displacement W and a pure rotation of

the plane sections θ, as presented in Eq. (4.1) and Figure 4.2(a).

The local buckling mode, including out-of-plane and in-plane displacement components,

shown in Figure 5.1, is expressed as a combination of the local modes in the pure local

buckling case and the case where global buckling is critical, as shown in Figures 5.1 and

5.2, which can be expressed as:

wf(x, z) = f1f(x)w1(z) + f2f(x)w2(z),

wwc(y, z) = f1wc(y)w1(z) + f2wc(y)w2(z),

wwt(y, z) = f1wt(y)w1(z) + f2wt(y)w2(z),

uf(x, z) = g1f(x)u1(z) + g2f(x)u2(z),

uwc(y, z) = g1wc(y)u1(z) + g2wc(y)u2(z),

uwt(y, z) = g1wt(y)u1(z) + g2wt(y)u2(z),

(5.1)
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(a) Out-of-plane

(b) In-plane

x
y

z

x
z

y

wf(x, z)=f 1f(x)w1(z)+f 2f(x)w2(z)

wwc(y, z)=f 1wc(y)w1(z)+f 2wc(y)w2(z)

uwc(y, z)=g1wc(y)u1(z)+g2wc(y)u2(z)

uf(x, z)=g1f(x)u1(z)+g2f(x)u2(z)

Figure 5.1: (a) Out-of-plane local mode in the flanges wf(x, z) and in the more compressed
web wwc(y, z). (b) In-plane local mode in the flanges uf(x, z) and in the more compressed
web uwc(y, z).
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f 2f(x)

f 1wt(y)
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Figure 5.2: Local out-of-plane displacement fields of the cross-section. (a) Pure local
buckling case. (b) Interactive buckling case where global buckling is critical.
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where f and g are the cross-section components for the out-of-plane and in-plane com-

ponents respectively; wi and ui, where i = {1, 2}, are the longitudinal out-of-plane and

in-plane displacement components respectively. Subscripts 1 and 2 represent the cases

where local and global buckling are critical respectively, as shown in Figure 5.2. The

subscripts ‘f’ and ‘w’ represent the flanges and webs respectively; subscripts ‘c’ and ‘t’

represent the more and less compressed webs respectively.

The cross-section out-of-plane components f , as shown in Figure 5.2, are estimated by

applying kinematic and static boundary conditions for each plate. For the pure local

critical mode, as shown in Figure 5.2(a), it is assumed that the out-of-plane displacement

in the webs f1w has the functional form that is derived from the conditions of a simply-

supported strut (a cosine wave with the current coordinate system) and a beam under pure

bending (a parabola from applying Euler–Bernoulli beam theory), thus:

f1wc = f1wt = A10 cos
πy

d
+ (1 − A10)

(

1 − 4y2

d2

)

. (5.2)

For the out-of-plane displacement in the flanges f1f , the functional form is derived from a

simply-supported beam with equal and opposite end moments arising from the transfer of

moment at the flange–web joints. This naturally leads to the following parabolic form:

f1f = B10

(

x2

b2
− 1

4

)

. (5.3)

The coefficients A10 in f1wc and B10 in f1f are determined by applying appropriate boundary

conditions at the junctions, as shown in Figure 5.3. The form of f1wc and f1f automati-

cally satisfies the natural boundary conditions at the junctions, i.e. f1wc(±d/2) = 0 and

f1f(±b/2) = 0. Owing to the symmetric form of the functions, the junction between the

flange and the web with the coordinate (x = b/2, y = d/2) is considered. For rotational
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f 1f(x)

f 1f(x)
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f 1wc(y)f 1wt(y)
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1wc

(b)
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M1wc

M1f

(c)

1f

Figure 5.3: (a) Pure local buckling mode. (b) Kinematic boundary condition at the junc-
tion; θ1f and θ1wc are the rotations of the flange and the web at the junction respectively.
(c) Equilibrium condition at the junction; M1f and M1wc are the bending moments in the
flange and the more compressed web at the junction respectively.

continuity, the following boundary condition also needs to be satisfied:

θ1f =
df1f
dx

∣

∣

∣

∣

x=b/2

= θ1wc =
df1wc

dy

∣

∣

∣

∣

y=d/2

. (5.4)

Moreover, moment equilibrium at the junction leads to a further condition:

M1f (x = b/2) + M1wc (y = d/2) = 0, (5.5)

where:

M1f (x = b/2) =

[

Df

(

∂2w1f

∂x2
+ ν

∂2w1f

∂z2

)]

x=b/2

= Dfw1
d2f1f
dx2

∣

∣

∣

∣

x=b/2

, (5.6)

M1wc (y = d/2) =

[

Dw

(

∂2w1wc

∂y2
+ ν

∂2w1wc

∂z2

)]

y=d/2

= Dww1
d2f1wc

dy2

∣

∣

∣

∣

y=d/2

, (5.7)

where Df = Et3f /[12(1 − ν2)] and Dw = Et3w/[12(1 − ν2)] are the flexural rigidities of the

individual flange and web plates respectively. The terms related to the Poisson’s ratio ν

disappear due to the fact that f1f = f1wc = 0 at the junction. Based on the boundary

conditions presented in Eqs. (5.4) and (5.5), the coefficients A10 and B10 are thus:

A10 =
4 (φcφ

3
t + 1)

4 + φcφ3
t (1 − π)

, B10 =
4π

φc [4 + φcφ3
t (1 − π)]

, (5.8)
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where the cross-section aspect ratio φc = d/b, and the flange–web thickness ratio φt = tf/tw.

It should be stressed that the above assumption for f1f and f1w is only valid for rectangular

sections (d > b), where the critical stress in the webs is smaller than in the flanges. A set

of shape functions, which is valid from a square to a rectangular hollow section, is derived

from a semi-analytical method, the details of which may be found in Appendix C.

The cross-section components describing mode interaction, where global buckling is critical,

can be determined by letting cθ → ∞ in the cross-section shape functions Eqs. (4.5)–(4.6)

and (4.22) in Chapter 4:

f2wc =
2 (2φcφ

3
t + 1)

2 + φcφ3
t (4 − π)

cos
πy

d
− πφcφ

3
t

2 + φcφ3
t (4 − π)

(

1 − 4y2

d2

)

, (5.9)

f2f =
−2π

φc [2 + φcφ3
t (4 − π)]

(

x

b
+

1

2

)2

+
2π

φc [2 + φcφ3
t (4 − π)]

(

x

b
+

1

2

)3

, (5.10)

f2wt = 0. (5.11)

As for the cross-section shape functions for the in-plane components, g, it was determined

that they are same as those of out-of-plane components currently, i.e. gif = fif , giwc = fiwc

and giwt = fiwt, based on the same assumption adopted in §4.2.1. It should be noted

that this assumption may not be consistent with classical theory (Koiter, 1945) for an in-

plane displacement field, but the shape function forms do satisfy the kinematic boundary

conditions. Moreover, since the energy would be minimized by the longitudinal components

of the in-plane displacement, i.e. u1(z) and u2(z), the approximate nature of the shape

function should be mitigated somewhat.

5.2 Geometric imperfections description

An initial out-of-straightness in the x-direction, W0, and an initial pure rotation of the

plane section θ0, corresponding to the sway and tilt components of the global buckling
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mode in Eq. (4.1), are introduced to the whole strut respectively as components that form

the global imperfection:

W0(z) = −qs0L sin
(πz

L

)

, θ0 (z) = −qt0π cos
(πz

L

)

, (5.12)

with qs0 and qt0 being the respective normalized amplitudes.

The local imperfection is introduced by defining an initial out-of-plane deflection in both

flanges and webs, corresponding to the local mode description in Eq. (5.1):

wf0(x, z) = f1f(x)w10(z) + f2f(x)w20(z),

wwc0(y, z) = f1wc(y)w10(z) + f2wc(y)w20(z),

wwt0(y, z) = f1wt(y)w10(z) + f2wt(y)w20(z),

(5.13)

where the cross-section components f are the same as described in Eqs. (5.2)–(5.3) and

(5.9)–(5.11); the longitudinal component of the local imperfection w0(z) is derived from

a first-order approximation from a multiple scale perturbation analysis of a strut on a

nonlinear softening foundation, which has been demonstrated to match the least stable

localized post-buckling mode shape very well (Wadee et al., 1997):

wi0 (z) = Ai0sech
[

αi

( z

L
− η
)]

cos
[

βiπ
( z

L
− η
)]

, (5.14)

where i = {1, 2}, z ∈ [0, L] and the imperfection is symmetric about z/L = η. Since

previous work on sandwich panels (Wadee, 2000), I-section struts (Bai & Wadee, 2015a),

stiffened plates (Wadee & Farsi, 2015) and functionally graded carbon nanotube-reinforced

composite beams (Wu et al., 2016) have demonstrated that the drop in the stiffness is

largest when the local imperfection is symmetric about midspan, i.e. η=1/2, the value of η

is selected to be 1/2 in the current study. The quantity Ai0 controls the amplitude of the

imperfection component. The parameters αi and βi control the degree of localization of

the imperfection and the number of sinusoidal half waves of the longitudinal imperfection
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component respectively, as shown in Figure 5.4. When αi = 0, the function is periodic;

with the increase of αi, the function becomes increasingly localized. Moreover, in order to

be in accord with the boundary condition at ends, βi has to be an odd number.

z/L
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(a)

βi increasing

αi increasing

Figure 5.4: Profile of local imperfection function, wi0(z)/Ai0. (a) Localized imperfections
introduced by varying the localization parameter αi from zero to 10. (b) Periodic im-
perfections (αi = 0) with different numbers of half sine waves by varying the frequency
parameter βi from 1 to 9.

5.3 Potential energy formulation

The formulation of the total potential energy functional follows a similar approach as that

in Chapter 4, but currently accounts for the scenarios where local buckling may also be

critical as well as where both global and local geometric imperfections exist.

5.3.1 Strain energy due to bending

The unloaded strut with initial global and local imperfections is assumed to be stress-

relieved (Thompson & Hunt, 1984; Wadee, 2000; Bai & Wadee, 2015a; Wadee & Farsi,

2015). The case of the global imperfection W0 is illustrated in Figure 5.5. For the local
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imperfection case, w0 would replace W0 and the flexural rigidity of the flanges Df =

Et3f / [12 (1 − ν2)] or the webs Dw = Et3w/ [12 (1 − ν2)] would replace the flexural rigidity

of the web about the local weak neutral axis EIw = Edt3w/12.

z

x

(a)
L

0
W (z)

W0(z)

M

Flexural rigidity EIw

0

Stress relieved

z
x

(z)

0(z)

ut=x( - 0)

(b)

M

M
dWdz

d

b

Figure 5.5: Introduction of the global imperfection. (a) The out-of-straightness sway
component W0 and (b) the pure rotation tilt component θ0.

Therefore, the global bending energy, Ub,o, can be expressed thus:

Ub,o = 2

∫ L

0

EIw
2

(χ− χ0)
2 dz = EIw

∫ L

0

(qs − qs0)
2 π

4

L2
sin2 πz

L
dz, (5.15)

with χ = Ẅ and χ0 = Ẅ0, where dots represent derivatives with respect to z. The factor

of 2 is included to account for both webs.

The local bending energy stored in both flanges, the more compressed web and the less

compressed web can be determined by the standard expression for the strain energy of

bending of a plate (Timoshenko & Woinowsky-Krieger, 1959), hence:

Ub,fl = Df

∫ L

0

∫ b/2

−b/2

{

[

∂2 (wf − wf0)

∂z2
+

∂2 (wf − wf0)

∂x2

]2

(5.16)
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− 2(1 − ν)

[

∂2 (wf − wf0)

∂z2
∂2 (wf − wf0)

∂x2

−
(

∂2 (wf − wf0)

∂z∂x

)2 ]
}

dx dz,

Ub,wcl =
Dw

2

∫ L

0

∫ d/2

−d/2

{

[

∂2 (wwc − wwc0)

∂z2
+

∂2 (wwc − wwc0)

∂y2

]2

(5.17)

− 2(1 − ν)

[

∂2 (wwc − wwc0)

∂z2
∂2 (wwc − wwc0)

∂y2

−
(

∂2 (wwc − wwc0)

∂z∂y

)2 ]
}

dy dz,

Ub,wtl =
Dw

2

∫ L

0

∫ d/2

−d/2

{

[

∂2 (wwt − wwt0)

∂z2
+

∂2 (wwt − wwt0)

∂y2

]2

(5.18)

− 2(1 − ν)

[

∂2 (wwt − wwt0)

∂z2
∂2 (wwt − wwt0)

∂y2

−
(

∂2 (wwt − wwt0)

∂z∂y

)2 ]
}

dy dz.

By substituting wf from Eqs. (5.1) and (5.13) into Eq. (5.16), the explicit expression for

the local bending energy in the flanges is written thus:

Ub,fl = Df

∫ L

0

{

{

f 2
1f

}

x
(ẅ1 − ẅ10)

2 +
{

f 2
2f

}

x
(ẅ2 − ẅ20)

2 +
{

f ′′2
1f

}

x
(w1 − w10)

2 (5.19)

+
{

f ′′2
2f

}

x
(w2 − w20)

2 + 2 {f1ff2f}x (ẅ1 − ẅ10) (ẅ2 − ẅ20)

+ 2 {f ′′

1ff
′′

2f}x (w1 − w10) (w2 − w20) + 2ν {f1ff ′′

1f}x (ẅ1 − ẅ10) (w1 − w10)

+ 2ν {f2ff ′′

2f}x (ẅ2 − ẅ20) (w2 − w20) + 2ν {f1ff ′′

2f}x (ẅ1 − ẅ10) (w2 − w20)

+ 2ν {f ′′

1ff2f}x (w1 − w10) (ẅ2 − ẅ20) + 2(1 − ν)

[

{

f ′2
1f

}

x
(ẇ1 − ẇ10)

2

+
{

f ′2
2f

}

x
(ẇ2 − ẇ20)

2 + 2 {f ′

1ff
′

2f}x (ẇ1 − ẇ10) (ẇ2 − ẇ20)

]}

dz.

The respective expanded expressions for the local bending strain energy stored in the more
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and less compressed webs are obtained in the same way and have a very similar format.

The total local bending energy Ub,l can be written as:

Ub,l = Ub,fl + Ub,wcl + Ub,wtl. (5.20)

5.3.2 Membrane strain energy

The membrane strain energy in the flanges Um,f is derived from considering the direct

strains (εz) and the shear strains (γxz) in the flanges. The direct strains comprise three

contributions, the first term from the global tilt mode, the next three terms from the local

mode obtained based on von Kármán plate theory and finally a purely in-plane compressive

strain ∆:

εz,f =
∂ut

∂z
+

∂uf

∂z
+

1

2

(

∂wf

∂z

)2

− 1

2

(

∂wf0

∂z

)2

− ∆

= −x (qt − qt0)
π2

L
sin

πz

L
+ {g1f}x u̇1 + {g2f}x u̇2 +

1

2

{

f 2
1f

}

x

(

ẇ2
1 − ẇ2

10

)

+
1

2

{

f 2
2f

}

x

(

ẇ2
2 − ẇ2

20

)

+ {f1ff2f}x (ẇ1ẇ2 − ẇ10ẇ20) − ∆. (5.21)

The shear strain component can be written thus:

γxz,f =
∂uf

∂x
+

∂ (W −W0)

∂z
− (θ − θ0) +

∂wf

∂x

∂wf

∂z
− ∂wf0

∂x

∂wf0

∂z

= {g′1f}x u1 + {g′2f}x u2 − [(qs − qt) − (qs0 − qt0)] π cos
πz

L

+ {f ′

1ff1f}x (ẇ1w1 − ẇ10w10) + {f ′

2ff2f}x (ẇ2w2 − ẇ20w20)

+ {f ′

1ff2f}x (w1ẇ2 − w10ẇ20) + {f1ff ′

2f}x (ẇ1w2 − ẇ10w20).

(5.22)

From the previous numerical study (Shen et al., 2015), the transverse stress component was

shown to be tiny when compared with the longitudinal stress, a finding that also coincides

with earlier work (Koiter & Pignataro, 1976a). Therefore, the complete expression for the

membrane strain energy stored in the flanges can be written thus if the transverse strain
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is simplified to be εx,f = −νεz,f :

Um,f = Ufd + Ufs = 2

∫ L

0

∫ tf/2

−tf/2

∫ b/2

−b/2

1

2

(

Eε2z,f + Gγ2
xz,f

)

dx dy dz. (5.23)

The membrane strain energy in the webs also comprises direct and shear strain energy

contributions. The complete expressions for the direct strain in the more compressed and

less compressed webs are very similar to those for the flanges presented in Eq. (5.21), thus:

εz,wc =
∂ut,wc

∂z
+

∂uwc

∂z
+

1

2

(

∂wwc

∂z

)2

− 1

2

(

∂wwc0

∂z

)2

− ∆

= − (qt − qt0)
bπ2

2L
sin

πz

L
+ {g1wc}y u̇1 + {g2wc}y u̇2 +

1

2

{

f 2
1wc

}

y

(

ẇ2
1 − ẇ2

10

)

+
1

2

{

f 2
2wc

}

y

(

ẇ2
2 − ẇ2

20

)

+ {f1wcf2wc}y (ẇ1ẇ2 − ẇ10ẇ20) − ∆,

(5.24)

εz,wt =
∂ut,wt

∂z
+

∂uwt

∂z
+

1

2

(

∂wwt

∂z

)2

− 1

2

(

∂wwt0

∂z

)2

− ∆

= (qt − qt0)
bπ2

2L
sin

πz

L
+ {g1wt}y u̇1 + {g2wt}y u̇2 +

1

2

{

f 2
1wt

}

y

(

ẇ2
1 − ẇ2

10

)

+
1

2

{

f 2
2wt

}

y

(

ẇ2
2 − ẇ2

20

)

+ {f1wtf2wt}y (ẇ1ẇ2 − ẇ10ẇ20) − ∆.

(5.25)

Unlike the flanges, the shear strains in the webs only contain the terms from the local

mode owing to their relatively small thickness, thus:

γyz,wc =
∂uwc

∂y
+

∂wwc

∂y

∂wwc

∂z
− ∂wwc0

∂y

∂wwc0

∂z

= {g′1wc}y u1 + {g′2wc}y u2 + {f ′

1wcf1wc}y (ẇ1w1 − ẇ10w10)

+ {f ′

2wcf2wc}y (ẇ2w2 − ẇ20w20) + {f ′

1wcf2wc}y (w1ẇ2 − w10ẇ20)

+ {f1wcf ′

2wc}y (ẇ1w2 − ẇ10w20) ,

(5.26)
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γyz,wt =
∂uwt

∂y
+

∂wwt

∂y

∂wwt

∂z
− ∂wwt0

∂y

∂wwt0

∂z

= {g′1wt}y u1 + {g′2wt}y u2 + {f ′

1wtf1wt}y (ẇ1w1 − ẇ10w10)

+ {f ′

2wtf2wt}y (ẇ2w2 − ẇ20w20) + {f ′

1wtf2wt}y (w1ẇ2 − w10ẇ20)

+ {f1wtf
′

2wt}y (ẇ1w2 − ẇ10w20) .

(5.27)

Again, assuming that εy,wc = −νεz,wc and εy,wt = −νεz,wt, the membrane strain energy

stored in both webs is given thus:

Um,w =
1

2

∫ L

0

∫ d/2

−d/2

∫ tw/2

−tw/2

[

E
(

ε2z,wc + ε2z,wt

)

+ G
(

γ2
yz,wc + γ2

yz,wt

)

]

dx dy dz. (5.28)

5.3.3 Work done by the load and total potential energy

The total end-shortening E comprises terms from pure squash, the global sway mode and

the local in-plane displacement. The expression for the work done by the external load is

given by:

PE = P

∫ L

0

[

∆ +
(

q2s − q2s0
) π2

2
cos2

πz

L
− ∆m

]

dz, (5.29)

where:

∆m =

(

2φt {g1f}x + {g1wc}y + {g1wt}y
)

u̇1 +
(

2φt {g2f}x + {g2wc}y + {g2wt}y
)

u̇2

2b(φt + φc)
. (5.30)

In summary, the total potential energy V can be expressed by the summation of all the

strain energy terms minus the work done by the external load:

V = Ub,o + Ub,l + Um,f + Um,w − PE . (5.31)
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5.4 Variational formulation and eigenvalue analysis

The governing equations for equilibrium are obtained by performing the calculus of varia-

tions on the total potential energy V following the same procedure for the case in Chapter

4. The integrand of the total potential energy V can be expressed as a Lagrangian (L) of

the form:

V =

∫ L

0

L
(

ẅi, ẇi, wi, u̇i, ui, z
)

dz, (5.32)

where i = {1, 2}. Equilibrium of the system requires that V is stationary for any small

changes in wi and ui. Therefore, the governing equilibrium equations can be obtained by

setting the first variation of V to zero:

δV =

∫ L

0

[

∂L
∂ẅi

δẅi +
∂L
∂ẇi

δẇi +
∂L
∂wi

δwi +
∂L
∂u̇i

δu̇i +
∂L
∂ui

δui

]

dz = 0. (5.33)

Since δẅi = d(δẇi)/dz, δẇi = d(δwi)/dz and δu̇i = d(δui)/dz, integration by parts allows

the development of the Euler–Lagrange equations for wi and ui, which comprise a fourth

order ordinary differential equation (ODE) for wi and second order ODE for ui, thus:

d2

dz2

(

∂L
∂ẅi

)

− d

dz

(

∂L
∂ẇi

)

+
∂L
∂wi

= 0, (5.34)

d

dz

(

∂L
∂u̇i

)

− ∂L
∂ui

= 0. (5.35)

Moreover, equilibrium also requires the minimization of V with respect to the generalized

coordinates qs, qt and ∆, leading to three integral equations:

∂V

∂qs
= 0,

∂V

∂qt
= 0,

∂V

∂∆
= 0. (5.36)

The first expression in Eq. (5.36) provides a relationship between the global imperfection

parameters qs0 and qt0 that is obtained by setting global mode amplitudes qs and qt, and
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local buckling mode functions, i.e. ui, wi and their derivatives with respect to z, to zero:

qs0 = (1 + s) qt0, (5.37)

where s is the shear correction factor and the expression is the same as presented in Eq.

(4.50). Moreover, it should be mentioned that the corresponding relationship, qs = (1+s)qt,

also applies before local buckling is triggered as it did for the perfect long strut length cases

presented in Chapter 4.

The boundary conditions for wi, ui and their derivatives are for simply-supported condi-

tions at z = 0 and for symmetry conditions at z = L/2:

wi(0) = ẅi(0) = ẇi(L/2) =
...
w i(L/2) = ui(L/2) = 0. (5.38)

Two further boundary conditions can be obtained from the variational formulation with

regards to the in-plane displacements ui, hence:

[

∂L
∂u̇i

δui

]L

0

= 0. (5.39)

The global buckling load PC
o can be determined by conducting linear buckling analysis for

the imperfect strut with the same methodology adopted in Chapter 4 by considering the

Hessian matrix Vij being singular, where qs = qt = 0 and w1 = w2 = u1 = u2 = 0. It turns

out that the expression for PC
o is the same as Eq. (4.54). Moreover, it should be noted

that the full expressions for Eqs. (5.34)–(5.36) and (5.39) may be found in Appendix A.

5.5 Concluding remarks

The nonlinear variational model in Chapter 4 has been extended to describe the interac-

tive buckling of elastic thin-walled RHS struts in scenarios where local buckling may be
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critical as well as where both local and global geometric imperfections exist. Two indepen-

dent sets of in-plane and out-of-plane local displacement fields, which represent the pure

local buckling mode and global buckling induced interactive buckling mode respectively,

are introduced to describe the interactive buckling mode of struts with different lengths.

In particular, the cross-section components of these local modes are approximated by ap-

plying approximate kinematic boundary conditions for each plate in conjunction with the

Rayleigh–Ritz method. The total potential energy was determined based on the modal de-

scription and introduced geometric imperfections. By performing the calculus of variations

on the total potential energy, the governing equations for the longitudinal components of

the local post-buckling modes subject to boundary and integral conditions are obtained.

The verification of the variational model and a series of parametric studies for both perfect

and imperfect cases are presented in Chapters 6 and 7 respectively.



Chapter 6

Length effects

In the current chapter, the variational model developed in Chapter 5 is used to inves-

tigate how different strut lengths affect the nonlinear modal coupling of perfect struts,

i.e. qs0=qt0=w10=w20=0. The interactive buckling responses of four representative struts,

which are defined qualitatively in sequence as the length is progressively reduced as ‘long’,

‘transitional’, ‘intermediate’ and ‘short’ length struts, thus corresponding to the four dif-

ferent zones shown in Figure 6.1 respectively, are studied. The characteristic post-buckling

P  /Pl

1

1

neutral
stableunstable

neutral

C

P
C
/Pl

C
o

① ② ③ ④

u Strut length decreasing

Figure 6.1: The Van der Neut type curve (see Figure 2.2) for geometrically perfect struts.
The quantities Pu, PC

o , PC
l are the ultimate, the global buckling and the local buckling

loads respectively, also each part of the curve has a specific post-buckling characteristic
behaviour.

equilibrium paths are determined and a progressive change in the local buckling wave-
204
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length is found in each case. The numerical results from the variational model largely

show excellent comparisons with numerical results obtained using a nonlinear FE model

developed within Abaqus (2014) in terms of the ultimate load and the initial post-buckling

behaviour. A parametric study on the strut length identifies the boundaries of the four

distinct length-dependent domains and places the current results within the context of the

classical work by Van der Neut (1969).

6.1 Numerical solution strategy for variational model

Since the complete system of the nonlinear coupled ordinary differential equations is too

complicated to be solved analytically, it is therefore solved numerically using the con-

tinuation and bifurcation software Auto-07p (Doedel & Oldeman, 2009). According to

previous studies on mode interaction in thin-walled compression members (van der Neut,

1969; Koiter & Pignataro, 1976a; Wadee & Farsi, 2015; Bai & Wadee, 2016; Liu & Wadee,

2016a), the behaviour can be classified into four distinct zones that are related to the strut

length L. Currently, these have been assigned the qualitative names ‘long’, ‘transitional’,

‘intermediate’ and ‘short’ length struts and respectively correspond to the zones labelled

1–4, as shown in Figure 6.1. The different equilibrium diagrams alongside the numeri-

cal continuation procedures to compute the equilibrium paths of the four representative

struts using Auto are shown diagrammatically in Figure 6.2. Figure 6.2(a) depicts the

equilibrium behaviour for the case where global buckling is critical and was described in

Chapter 4.

However, for the cases where local buckling is critical, i.e. for zones 2–4, as presented in

Figure 6.1, there is known to be some numerical difficulty in switching from the pure local

buckling path to the interactive buckling path (Wadee & Bai, 2014; Liu & Wadee, 2016b;

Yiatros et al., 2015). Therefore, the numerical continuation strategy known as ‘homotopy’

was adopted to obtain the solution, as described in Figure 6.3. The solution begins from
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PClPClPCo

Figure 6.2: Sketches of the equilibrium paths for struts of different lengths exhibiting mode
interaction. Graphs (a)–(d) correspond to the zones labelled 1–4, as presented in the Van
der Neut type curve in Figure 6.1. Circles marked C and S represent the critical and
secondary bifurcation points for each case respectively. Note that the abscissa changes
from qs in (a–b) to wwc,max in (c–d), which reflects the appropriate measure of the critical
buckling mode.

determining the equilibrium path for a strut with length L1, a case where global buckling

is critical, referring to Runs 1 and 2 depicted in Figure 6.3. Then by replacing qs with L

as the principal varying parameter in Auto, the interactive buckling equilibrium states of

struts with different lengths can be obtained, referring to Run 3, depicted in Figure 6.3,

which begins at point R1. The interactive buckling path of the strut with the new length

L2, where local buckling is critical, can be computed from the point R2 by re-setting the

principal varying parameter back to qs and keeping L constant. The solution of this branch

ends at the new secondary bifurcation point S2.

As for the fundamental and pure local buckling equilibrium path, as shown in Run 1 in

Figure 6.2(b) and Runs 1 and 2 in Figure 6.2(c–d), the continuation process initiates from

zero load and the local buckling load PC
l is obtained numerically. The post-buckling path

is then computed by using the branch switching facility and the local buckling equilibrium

path ends at the secondary bifurcation point S, where critical local buckling is initially

destabilized due to contamination from the global buckling mode.
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compute the global-local interactive
post-buckling path to point R1.
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parameter, using the branch switching
facility in AUTO to find R2, one solution
point  of the local-global interactive
buckling path with length L2.
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With qs as the principal varying parameter,
trace solution back to the secondary
bifurcation point S2 to obtain the whole
local-global interactive buckling path for
the strut with length L2.

Local
buckling
critical

Run 2

R1

R2
L

L1

Run 3
Run 4

L2

qs

1

Po1

C

P

P

S2

C2

C1
Run 1

S1

qs

Figure 6.3: Sketch and flowchart of the numerical continuation procedure for determining
the interactive buckling equilibrium path for perfect struts where local buckling is critical.
Circles marked Ci and Si represent the critical and secondary bifurcation points respec-
tively; triangles marked Ri represent generic equilibrium states on the interactive buckling
paths with strut lengths Li. Strut lengths L1 and L2 represent the cases where global
buckling and local buckling are critical respectively; PC

o1 is the global buckling load of the
strut with length L1.

6.2 Numerical results and verification

Four representative numerical examples from the variational model with the same cross-

section properties but different lengths are presented. The cross-section geometric and

material properties of the example struts are the same as the example strut presented

in §4.3. The same material and cross-section properties are used throughout the current

chapter. The length, critical buckling loads and corresponding zones of the example struts

are presented in Table 6.1.
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Table 6.1: Theoretical values of the global (PC
o ) and local (PC

l ) buckling loads for the four
representative length cases.

L (mm) PC
o (kN) PC

l,Auto (kN) PC
l,Abaqus (kN) PC

o /P
C
l Zone Length description

4800 22.67 24.61 24.57 0.92 1 ‘Long’
4500 25.79 24.61 24.58 1.05 2 ‘Transitional’
4000 32.54 24.57 24.58 1.32 3 ‘Intermediate’
3600 40.30 24.67 24.58 1.63 4 ‘Short’

6.2.1 Long length strut

The interactive buckling behaviour of long struts has been investigated in Chapter 4, which

showed excellent comparisons with the FE model. For the present long length strut, where

L = 4800 mm, a sharp snap-back in the load–end-shortening relationship is observed, as

shown in Figure 6.4(a). Severely imperfection sensitive behaviour would be expected for

such a strut with PC
o /P

C
l being close to unity (Bai & Wadee, 2015a; Wadee & Farsi, 2015).

From the solutions of the out-of-plane components of the local mode in the more compressed

web wwc, the increase of the global buckling mode amplitude not only leads to an increase

in the local mode amplitude, as shown in Figure 6.4(d), but also forces a change of the local

buckling profile from being localized to being more distributed alongside a corresponding

reduction in the local buckling mode wavelength, as shown in Figure 6.5.

Compared with the FE model, the variational model shows a slightly stiffer post-buckling

response, as shown in Figure 6.4. One of the sources for the stiffer response is derived from

the assumption that the location of the neutral axis remains unchanged in the variational

model. In fact, the neutral axis would move towards the less compressed web as the

effective stiffness of the more compressed web drops due to it buckling locally, as shown in

Figure 4.11. Moreover, in the variational model, the cross-section profile of the local mode

is assumed to be the same along the length of strut and throughout the post-buckling range

with the only variable being the modal amplitude of local buckling. However, the profile is

in fact affected by the bending moment and axial stress on the cross-section, which varies

along the strut length and with the progression of mode interaction. This may explain
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Figure 6.4: Nonlinear equilibrium paths for the example long length strut with L = 4800
mm from the variational and FE models. Graphs of the normalized load ratio p = P/PC,
where PC is the critical buckling load, versus (a) the normalized end-shortening E/L,
(b) the generalized coordinate of the sway mode qs, and (c) the normalized maximum
amplitude of the local buckling deflection in the more compressed web wwc,max/tw; (d)
wwc,max/tw versus qs.

the small discrepancy in the longitudinal solutions of the local deflection amplitude in the

more compressed web wwc/tw, as shown in Figure 6.5, and the ‘bulging-out’ effect due to

the high axial stress in the more compressed web in Figure 6.6(d). It should be mentioned

that there is a tiny out-of-plane displacement in the less compressed web in the initial

post-buckling stage of the FE results, as shown in Figure 6.5(e–h) and Figure 6.6(a). With

the increase of the global mode amplitude, the change in the profile of the local mode

nearly follows the same pattern as that in the more compressed web, i.e. from localized

to more distributed, but its amplitude remains approximately the same. The kinematic



CHAPTER 6. LENGTH EFFECTS 210

0 0.2 0.4 0.6 0.8 1

w
w
c
/t

w

-2

0

2

(a) qs =0.001

0 0.2 0.4 0.6 0.8 1

w
w
t/
t w

-0.2

0

0.2

(e) qs =0.001

0 0.2 0.4 0.6 0.8 1

w
w
c
/t

w

-2

0

2

(b) qs =0.002

0 0.2 0.4 0.6 0.8 1

w
w
t/
t w

-0.2

0

0.2

(f) qs =0.002

0 0.2 0.4 0.6 0.8 1

w
w
c
/t

w

-2

0

2

(c) qs =0.004

0 0.2 0.4 0.6 0.8 1

w
w
t/
t w

-0.2

0

0.2

(g) qs =0.004

z̄
0 0.2 0.4 0.6 0.8 1

w
w
c
/t

w

-2

0

2

(d) qs =0.010

z̄
0 0.2 0.4 0.6 0.8 1

w
w
t/
t w

-0.2

0

0.2

(h) qs =0.010

Figure 6.5: Evolution of the numerical solutions for the normalized local out-of-plane
displacement in (a–d) the more compressed web wwc/tw and (e–h) the less compressed web
wwt/tw for the long length strut with L = 4800 mm. The dashed and solid lines represent
the numerical results from the FE and the variational model respectively. Note that the
longitudinal coordinate is normalized with respect to half of the strut length z̄ = 2z/L and
that wwc/tw is an order of magnitude greater than wwt/tw.

compatibility between the buckled flanges and the less compressed web leads to the tiny

deformation. When the generalized coordinate of the global mode qs is relatively larger,

the entirety of the less compressed web deforms inwards slightly, as shown in Figures 6.5(h)

and 6.6(d). This is caused by the out-of-plane force introduced by the global mode that

is identical to the phenomenon that causes the ‘Brazier effect’ in cylindrical shells under

uniform bending (Brazier, 1927; Wadee et al., 2006), as shown in Figure 6.7, which is not

included in the current variational model. All of these factors taken together lead to the

very marginally stiffer response in the variational model for the long strut, but it is, in

fact, very small.
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Figure 6.6: Local deformation of the cross-section at mid-span for the long length strut
with L = 4800 mm with the increase of the generalized sway mode coordinate qs. The
dashed and solid lines represent the numerical results from the FE and variational mod-
els respectively. The dot-dashed line represents the undeformed shape. Note that the
displacements shown have been amplified by a factor of 20 to aid visualization.
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Figure 6.7: (a) Out-of-plane forces due to the large bending displacement with FV repre-
senting the effective vertical component, as shown, of the axial force within each web (Fc

or Ft). (b) Corresponding effects on the local mode profile – the dotted line and the thick
solid line represent the cross-section profile before and after considering the global bending
effects respectively.
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6.2.2 Transitional length strut

For the transitional length strut considered, where L = 4500 mm, an even more severe

snap-back is observed in the load–end-shortening relationship, as shown in Figure 6.8(a).

This is caused by the fact that when local buckling initially occurs, the actual stiffness of
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Figure 6.8: Nonlinear equilibrium paths for the transitional length strut with L = 4500
mm from the variational and FE models. Graphs (a)–(d) are as described in Figure 6.4.

the strut is reduced, effectively leading to a reduced global buckling load, which becomes

instantaneously smaller than the critical local buckling load PC
l . Hence, both buckling

modes are effectively triggered simultaneously, as shown in Figure 6.8(d).

The solutions of the local deflection in the more and less compressed webs are shown in

Figure 6.9. The amplitude in the more compressed web increases with the progression of
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Figure 6.9: Evolution of the numerical solutions for (a–d) wwc/tw and (e–h) wwt/tw for the
transitional length strut with L = 4500 mm. Graphs are as described in Figure 6.5.

mode interaction, while the amplitude in the less compressed web remains approximately

unchanged. This leads to a transition of the cross-section deformation from being close

to the pure local mode (symmetrical about the y-axis) to being dominated by the global

mode (asymmetrical about the y-axis), as shown in Figure 6.10. Since local buckling is
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Figure 6.10: Local deformation of the cross-section at mid-span for the transitional length
strut with L = 4500 mm as qs is increased. The graphs are as described in Figure 6.6.

critical for the transitional length strut, the longitudinal profile of the local mode is initially

distributed rather than localized. However, a reduction in the local buckling wavelength

with the increase of the global mode amplitude is also observed as the axial end-shortening

is increased.

The variational model for the transitional length strut also shows a stiffer post-buckling re-

sponse when compared to the corresponding FE model, as can be seen from the equilibrium
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path comparison in Figure 6.8; the reasons listed for the long strut also apply presently.

The excellent comparisons between the solution of the out-of-plane displacement in the

more compressed web and the cross-section deformation, particularly when qs is relatively

small, verify the current methodology. As shown in Figure 6.7, with the increase of the

global buckling amplitude, the less compressed web bulges inwards. It can be seen clearly

from the solution of the out-of-plane displacement in the less compressed web from the

FE model in Figure 6.9(g–h), where the solution wave drifts to the negative direction.

This can also help to explain the discrepancy in the cross-section deformation for the less

compressed web at mid-span when qs is large, as shown in Figure 6.10(c–d).

6.2.3 Intermediate length strut

For the intermediate length strut, where L = 4000 mm, there are three stages in the equi-

librium paths for the load versus end-shortening and versus the local buckling amplitude,

as shown in Figure 6.11(a,c). The first stage involves purely axial deformation of the strut

before the critical buckling load PC
l is reached (p < 1). The second stage is the local buck-

ling of the whole cross-section and the third stage is the local–global mode interaction.

Before the secondary bifurcation, the strut is stable; however, the triggering of the global

mode leads to unstable post-buckling behaviour. In the interactive buckling range, there

are several snap-backs in the equilibrium path, which correspond to the local mode in-

creasing its number of peaks hence reducing its wavelength, as shown in Figure 6.12. This

type of cellular buckling (Hunt et al., 2000) has also been observed in previous studies on

I-section beams (Wadee & Gardner, 2012), I-section struts (Wadee & Bai, 2014), stiffened

panels (Wadee & Farsi, 2014a) and struts with equal angle cross-sections (Bai et al., 2017).

From the solutions of the out-of-plane displacements in the more and less compressed

webs, the progression of mode interaction forces a reduction in wavelength. Since the

local buckling mode is well developed before mode interaction occurs, the wavelength
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Figure 6.11: Nonlinear equilibrium paths for the intermediate length strut with L = 4000
mm from the variational and FE models. Graphs (a)–(d) are as described in Figure 6.4.
Insets in (a)–(c) present close-ups of graphs that show the snap-backs in the interactive
post-buckling range.

reduction leads to an increase in the number of peaks and troughs, as shown in Figure 6.12,

which is not observed in the previous two relatively slender example struts. Moreover, the

displacement amplitude increases at mid-span but remains approximately unchanged at

the ends, leading to the profile changing from periodic to being more localized. The mode

interaction makes the relative contributions from local modes 2 and 1, i.e. w2/w1, increase,

thus breaking the initial symmetric deformation of the local mode gradually, as can be

seen in Figure 6.13.

Compared with the long and transitional length struts, the numerical results from the

variational model for the intermediate length strut shows a relatively stiffer post-buckling
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response when compared with the FE model. The reason is partly due to local buckling

being more developed before the triggering of the secondary instability; for example, the

assumed cross-section profile of the local mode, which fits well with the FE results at mid-

span, is not necessarily valid for the whole length. The errors would be relatively small for

slender struts, since the longitudinal deflection profile is more localized. However, for the

intermediate length strut, the longitudinal component is further distributed and the error

therefore would be significantly larger.

However, it should be emphasized that the current model can capture the evolution of the

longitudinal and cross-section components of the local mode well, as shown in Figures 6.12

and 6.13. It should also be noted that even though the progressive change in the local mode
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Figure 6.12: Evolution of the numerical solutions for (a–d) wwc/tw and (e–h) wwt/tw for
the intermediate length strut with L = 4000 mm. Graphs are as described in Figure 6.5.
Note that wwc/tw is now less than an order of magnitude greater than wwt/tw.

is also captured by the FE model, there are no snap-backs observed in the corresponding

equilibrium paths. The variational model shows a stiffer response after the secondary

bifurcation, but the predictions of the critical and secondary bifurcations agree well with

the FE model and provide the correct trend for the post-buckling behaviour after the

secondary instability.
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Figure 6.13: Local deformation of the cross-section at mid-span for the intermediate length
strut with L = 4000 mm with the increase of qs. Graphs are as described in Figure 6.6.

6.2.4 Short length strut

Previous studies (van der Neut, 1969; Koiter & Pignataro, 1976a) have shown that short

length struts exhibit an approximately neutral post-buckling behaviour after the secondary

bifurcation point. Therefore, the main focus presently is to determine the axial stiffness

reduction factor η for the whole cross-section due to local buckling and the load at the

secondary bifurcation point. The current variational model for short struts shows excel-

lent comparisons with the FE model before the secondary bifurcation, as shown in Fig-

ure 6.14. However, after the secondary bifurcation, the variational model exhibits stable

post-buckling behaviour, even though there are several snap-backs. The FE model shows

an approximately neutral, in fact weakly unstable, post-buckling behaviour and there are

also several snap-backs observed. Although the variational model shows a relatively stiffer

response after the secondary bifurcation, the location of the secondary bifurcation point

agrees very well with the FE model, as shown in Figure 6.14(d), which is meaningful for

practical considerations in terms of ultimate load predictions.

It should be noted that even though the variational and FE models exhibit different post-

buckling trends in the interactive buckling range, they show excellent comparisons for

the local mode, i.e. the solutions for the normalized local out-of-plane displacement in the

more compressed web wwc, the less compressed web wwt (Figure 6.15) and the cross-section

deformation profile at mid span (Figure 6.16). In a similar fashion to the intermediate

length strut, the ratio w2/w1 increases alongside the increase of qs, leading to the transition
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Figure 6.14: Nonlinear equilibrium paths for the short length strut with L = 3600 mm
from the variational and FE models. Graphs (a–d) are as described in Figure 6.4. The
dot-dashed line in (a–c) represents the normalized effective global buckling load ηPC

o /P
C
l =

1.051, where η is the axial stiffness reduction factor for the whole cross-section due to the
local buckling. Insets in (a)–(c) present close-ups of graphs that show the snap-backs in
the interactive post-buckling range.
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Figure 6.15: Evolution of the numerical solutions for (a–d) wwc/tw and (e–h) wwt/tw for
the short length strut with L = 3600 mm. Graphs are as described in Figure 6.5. Note
that wwc/tw is the same order of magnitude as wwt/tw.
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Figure 6.16: Local deformation of the cross-section at mid-span for the short length strut
with L = 3600 mm with the increase of qs. Graphs are as described in Figure 6.6.

of wwc from being initially distributed to localized and the decay of the wwt amplitude.

Moreover, a change in the number of peaks and troughs is also observed, which corresponds

to the snap-back in the equilibrium path, as shown in Figure 6.14. As for the cross-section

deformation at mid-span, a profile transition from that dominated by mode 1 to one being

dominated by mode 2 is also observed.

Compared with the other example struts, the strain level is much higher at and beyond

the secondary bifurcation point, which makes the assumptions that are applicable to slen-

der struts less valid. All the reasons leading to the stiffer post-buckling response in the

transitional and intermediate length struts can also be used to explain the relatively stiffer



CHAPTER 6. LENGTH EFFECTS 220

response of the strut predicted by the variational model. Moreover, it should be recalled

that any explicitly transverse displacements within the cross-section are omitted in the

current variational model and only Poisson’s ratio effects are accounted in those direc-

tions. However, the corner joints of the cross-section would move with the progress of

mode interaction, even though the magnitude is quite small, as illustrated in Figure 6.17.

The effects become more significant in the short length struts, as shown in Figure 6.18,

x

y

CR,MCCR,LC

x

y

CR,LC CR,MC

(a) Before buckling (c) Interactive buckling(b) Pure local buckling

x

y

CR,MCCR,LC

Figure 6.17: In-plane displacements within the cross-section. (a) Expansion due to the
Poisson’s ratio effect before local buckling occurs. (b) Symmetrical contraction due to pure
local buckling. (c) Asymmetrical contraction due to interactive buckling. The thick solid
line and the dot-dashed line represent the deformed and undeformed shape respectively.
The dashed line in (b) represents the deformed shape before buckling. Also shown are
the vertical displacements of the more and less compressed web–flange joints ∆CR,MC and
∆CR,LC. The small reduction in the overall cross-section depth and width would account
for some reduction in the post-buckling stiffness.

which presents results from the FE model. The omission of the explicitly transverse dis-

placements has also been discussed recently in a related study (Garcea et al., 2017). To

capture the full post-buckling path accurately, a local mode description that includes the

cross-section in-plane displacement field, i.e. the transverse displacements in both flanges

and webs, would be required (Garcea et al., 2017), but this would complicate the current

variational formulation considerably.

From the FE results and previous studies (Bai & Wadee, 2016), it has been shown that

the strut is approximately neutrally stable after the secondary bifurcation. Therefore,

locating the secondary bifurcation point is in fact sufficient for practical strength prediction.

Moreover, since the variational model shows excellent agreement with the FE model before

the secondary bifurcation, the stiffness reduction factor η can be obtained precisely from
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struts with different lengths from the FE results. The variational model currently omits
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the load–end-shortening relationship, thus:

η =
( dP/ dE)post
( dP/ dE)pre

= 0.645. (6.1)

Therefore, the Euler buckling load for the locally buckled strut ηPC
o can be calculated and

is plotted with the dot-dashed line in Figure 6.14. In comparison with the ultimate load

from the FE model, Pu,FE, the variational model provides a safe, yet accurate strength

prediction where ηPC
o /Pu,FE = 0.976. Hence, it may be concluded that the developed

variational model has been satisfactorily verified for all the zones considered and may now

be investigated further.
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6.3 Discussion and comparison with Van der Neut’s

model

A parametric study is now presented to determine the respective boundaries for the four

distinct length domains using the developed variational model. The numerical results are

presented in Figure 6.19 in the style of the classical Van der Neut curve that was shown
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Figure 6.19: The numerically obtained Van der Neut curve for struts with cross-section
properties presented in Table 4.1. It should be noted that the slope of dashed line is in fact
equal to the axial stiffness reduction factor for the whole cross-section due to pure local
buckling.

in Figure 6.1. The shape of the curve is very similar to previous similar results for stiff-

ened panels (Koiter & Pignataro, 1976a; Wadee & Farsi, 2015) and I-section struts (Bai

& Wadee, 2016; Liu & Wadee, 2016a). The ultimate load for perfect long and transitional

length struts is the corresponding critical buckling load PC. The triggering of mode inter-

action leads to unstable post-buckling behaviour. Particularly for transitional length struts

(zone 2), since the critical and secondary bifurcations are practically coincident, reaching

the ultimate load in practice may not be possible due to the inherently high degree of

sensitivity to imperfections that would be expected (Thompson & Hunt, 1973; Thompson
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& Supple, 1973; Tvergaard, 1973; van der Neut, 1973; Thompson & Hunt, 1974; Wadee

& Farsi, 2015; Bai & Wadee, 2015a; Liu & Wadee, 2016b). For intermediate length struts

(zone 3), stable post-buckling behaviour is exhibited after the critical bifurcation, as shown

in Figure 6.11. Therefore, the ultimate load is higher than the critical (local) buckling

load. For the ultimate load prediction, the variational model shows excellent agreement

with the FE model, as shown in Figure 6.19. For the short length struts (zone 4), stable

post-buckling behaviour is also exhibited after the critical bifurcation and approximately

neutrally stable post-buckling behaviour after the secondary bifurcation. The variational

model can also predict the ultimate load with good agreement compared to the FE model

and ηPC
o provides a safe, yet relatively accurate, prediction for the ultimate load.

Since the struts exhibit distinct behaviour in different zones, it is beneficial to determine

the boundary between each zone for practical engineering purposes. The boundary between

zones 1 and 2 is very straightforward since this is by definition where the global buckling

load PC
o and the local buckling load PC

l precisely coincide.

The boundary between zones 2 and 3 corresponds to the competing mode between pure

local and global buckling due to the cross-section bending stiffness reduction caused by local

buckling of the compressed side of the cross-section, as shown in Figure 6.20. The buckling

loads for the depicted modes (I) and (II) are the local buckling load PC
l and the reduced

global buckling load ΦrP
C
o respectively, where Φr is the bending stiffness reduction factor

due to local buckling of the more compressed web and flanges. At the zonal boundary, the

ultimate load for the two competing modes would be the same, i.e. ΦrP
C
o = PC

l , which

leads to the value PC
o /P

C
l = 1/Φr.

For the ideal two-flange model originally presented by Van der Neut, Φr can be obtained

from Engesser’s so-called ‘double modulus’ theory (Bažant & Cedolin, 1991). The current

variational formulation cannot in fact replicate the results of Van der Neut’s idealization

precisely since shear strain is neglected in the latter. However, a simplified rectangular

hollow section strut model with pinned corners within the cross-section, which is very sim-
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in zone 2. (b) Cross-section flange–web conditions for Van der Neut’s model (VdN), a
rectangular hollow section with pinned corners and a rectangular hollow section with rigid
corners. (c) Competing buckling modes in zone 2 for three different models: (I) pure local
buckling; (II) global buckling from the cross-section bending stiffness reduction caused by
local buckling in the compressed web and flanges; (III) transitional state between (I) and
(II). The bending stiffness reduction factor due to local buckling in the more compressed
web and flanges is Φr and the equivalent reduction factor for the transitional state (III) is
Φm.

ilar to van der Neut’s ideal model, may be used for validation and illustration purposes, as

shown in Figure 6.20(b). Since each corner within the cross-section is pinned, the web and

flange plates buckle independently. In zone 2, when global buckling is triggered, only the

more compressed web remains buckled, as shown in Figure 6.20(c), and the corresponding

effective cross-section stiffness distribution is shown in Figure 6.21(a). Based on the cross-

section stiffness distribution, using the double modulus theory, the details of which are in

Appendix B, by setting ηf(x) in Eqs. (B.2) and (B.8) to unity, the following expression for
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Φr is obtained:

Φr =

[

(η̄w + 1)2 t2w + 12b2η̄w
]

φ2
c + 2 [(η̄w + 1) t2w + 4 (η̄w + 1) b2]φcφt + 4b2φ2

t

2 [2φt + (1 + η̄w)φc] [(3b2 + t2w)φc + b2φt]
. (6.2)

For the strut with the same cross-section and material properties as the example struts in

the current chapter, 1/Φr = 1.462, which is very close to the value computed using the

variational model, where PC
o /P

C
l = 1.461; this verifies the effectiveness of the double mod-

ulus theory for predicting the boundary between zones 2 and 3 for such cases. Moreover,

it should also be noted that the value is much smaller than that obtained by van der Neut,

where η̄w = 0.408 and 1/Φr = (1 + η̄w) /(2η̄w) = 1.725, even though the equivalent axial

stiffness reduction factor η̄w in the more compressed web is adopted as the same value due

to the pinned corners within the cross-section. The difference arises owing to the inclusion

of both flanges, which contribute the full elastic modulus E.

For the hollow section with rigid flange–web joints, which is the most widely applicable

for engineering practice, the axial stiffness distribution in the cross-section for the com-

peting mode is not as straightforward as the pinned corner case due to the interaction of

the flanges and webs within the cross-section. Therefore, three different stiffness distri-

bution candidate schemes are considered, as shown in Figure 6.21, and the corresponding

x

y

E

E

E

(a) Scheme 1 (b) Scheme 2 (c) Scheme 3

  Ew

  Ew

  Ew

x

y

E

E

E

  Ew x

y

E

E

E

  Ew

  Ew

  Ew

Figure 6.21: Cross-section axial stiffness distribution schemes where the stiffness is directly
proportional to the material Young’s modulus E and η̄w is the equivalent axial stiffness
reduction factor due to local buckling of the more compressed web.
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relationship between 1/Φr and η̄w can be established using Eq. (B.8). Figure 6.22 shows

η̄w
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Figure 6.22: Relationship between 1/Φr and η̄w for the cross-section stiffness distributions
presented in Figure 6.21 and the expression proposed by Van der Neut. The asterisk line
represents the equivalent 1/Φr for the example struts obtained from the current variational
model results that are verified by FE.

the relationship for the strut with the same cross-section and material properties as the

example struts. The value of 1/Φr, i.e. the ratio PC
o /P

C
l at the boundary between zones 2

and 3, increases with the reduction of the effective axial stiffness of the whole section from

schemes 1 to 3 as well as with the reduction of the equivalent axial stiffness of the more

compressed web η̄w. Since the actual effective axial stiffness of the more compressed side

of the flanges for the competing mode would be reduced due to local buckling, as shown

in Figures 6.23 and B.1(b), scheme 1 would provide the lowest limiting prediction for 1/Φr

if the double modulus approach were to be applicable for the cross-section case with rigid

flange–web joints.

However, the parametric study (see Figure 6.19) shows that the value of PC
o /P

C
l at the

boundary of zones 2 and 3 for the example struts with rigid joints between flanges and webs

is 1.085, which corresponds to the asterisk line in Figure 6.22. Since it has been noted that

scheme 1 provides the lowest limiting prediction of 1/Φr, the corresponding value of η̄w for

the more compressed web should be even larger than 0.8, as shown in Figure 6.22. Even
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though the rigid flange–web joints can provide more restraint to the more compressed web,

thus leading to a higher post-buckling stiffness, the value of η̄w for the more compressed

web using the isolated more compressed web model is 0.46 (Shen et al., 2017). Therefore,

it would seem that including the contribution of the flanges and the rigid flange–web joints

not only introduces additional stiffness when compared to the pinned cross-section case

but also potentially more competing modes, which diminishes the validity of the double

modulus approach in such cases.

It should be stressed that in both the Van der Neut model and the case where the cross-

section has pinned corners, the effective axial stiffness in the more compressed web remains

approximately the same before and after the transition from the pure local buckling mode

to local–global interactive buckling due to the simply-supported boundary condition of the

unloaded edges, as shown in Figure 6.20(c). However, for the rigid flange–web joint case,

there is a reduction in the deformation of the more compressed side after the transition,

which is particularly apparent in the flanges, as can be seen from Figure 6.23. It suggests
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Figure 6.23: Cross-section deformation for the pure local buckling case (dot-dashed line)
using Eqs. (5.2) and (5.3) and the global buckling induced local buckling case (solid line)
using Eqs. (5.9)–(5.11). The deformation has been amplified by a factor of 20 to aid
visualization.

that the unloading of the less compressed web and flanges affects the stiffness distribution

in the more compressed side of the cross-section, which does not occur in Van der Neut’s
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ideal model and the case of the cross-section with pinned corners. It implies that there

is an increase in the axial stiffness of the more compressed side of the cross-section and

it can thus resist higher compressive stresses. The condition for the boundary between

zones 2 and 3 can thus be written as PC
l = ΦrP

C
o + δP , where δP is the load increase

due to the stiffness redistribution in the cross-section caused by the less compressed side of

the cross-section. Therefore, there should be an additional transitional stage (III) between

these two more distinct states, as shown in Figure 6.20. This is also confirmed by the

numerical results of the cross-section deformation shape for the transitional length strut.

The existence of this further transitional stage moves the boundary between zones 2 and

3 to the left when compared with stage (II), as shown in Figure 6.20(a), where PC
o /P

C
l

is equal to
(

1 − δP/PC
l

)

/Φr. This finding is also in accord with results from previous

work on stiffened panels (Koiter & Pignataro, 1976a; Wadee & Farsi, 2015) and I-section

struts (Bai & Wadee, 2016; Liu & Wadee, 2016a). Since the unstable range is notorious

for its imperfection sensitivity (Bai & Wadee, 2015a; Wadee & Farsi, 2015), a somewhat

reduced imperfection sensitivity range may be expected for such struts; these matters are

investigated further in the subsequent chapters.

The boundary between the intermediate length struts (zone 3) and the short length struts

(zone 4) is the same as that in Van der Neut’s curve, where PC
o /P

C
l = 1/η = 1.550. From

Figure 6.14(a–c), with the decrease of the strut length, the peak load would converge to

ηPC
o , as shown in Figure 6.19. However, it should be noted that the straight line in zone

4 would in fact be curved with a decreasing slope due to the decreasing stiffness reduction

factor caused by the effects of large deflections in plates; a similar effect would occur if a

yield stress were introduced into the material model (Liu & Wadee, 2016a).

Finally, it should be stressed that the factors listed for the movement of the boundary

between zones 2 and 3 also affect the value of PC
o /P

C
l at the boundary of zones 3 and

4. However, since the local buckling mode is more developed before mode interaction is

triggered, the effects of stiffness redistribution would be much smaller. Moreover, adopting
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η as the bending stiffness reduction factor would provide an accurate, yet safe ultimate

load prediction.

6.4 Concluding remarks

The nonlinear variational model in Chapter 5 has been adopted to analyse the interactive

buckling behaviour of perfect elastic thin-walled rectangular hollow section struts with

different lengths under pure compression. Numerical examples, considering four repre-

sentative lengths corresponding to distinct parts of the Van der Neut curve, have been

presented and verified using the commercial FE package Abaqus. Using the verified

variational model, the boundaries of four distinct length-dependent domains have been

identified for realistic cross-section characteristics for the first time.

Unstable post-buckling behaviour due to mode interaction was observed in long, transi-

tional and intermediate length struts. Potentially dangerous behaviour, i.e. a sharp drop

in the load capacity immediately after the ultimate load is reached, has been identified

where the global buckling load is close to the local buckling load. A progressive change in

the local buckling mode is observed within the nonlinear post-buckling range in all struts.

In particular, for intermediate and short length struts, snap-backs that correspond to the

change in the number of troughs and peaks in the local mode that are akin to cellular

buckling, are observed. The parametric study on strut length shows that the notoriously

unstable post-buckling range for rectangular hollow-section struts is in fact significantly

smaller than that predicted by Van der Neut’s idealized model and the stiffness reduction

factor is also considerably higher. The reason for this difference has been identified as

being derived from the interaction between the individual plates due to the rigid corners

within the cross-section, which lead to some stiffness redistribution. This is in contrast

with the assumption that the corners are pinned where the web and flange plates behave

independently.
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The highly unstable post-buckling behaviour of struts in the transitional range between

zones 1 and 2 and the whole range of zone 2 indicate that they may be very sensitive to

initial imperfections, i.e. a tiny imperfection may lead to significant erosion in the load-

carrying capacity. Therefore, in the following chapter, the variational model is adopted to

investigate the imperfection sensitivity of such struts exhibiting local–global mode inter-

action.



Chapter 7

Imperfection sensitivity

The previous chapter investigated the effect of the strut length on the nonlinear inter-

active buckling behaviour of perfect thin-walled RHS struts. However, there are always

imperfections in real structures, either in the geometry or in the loading. More impor-

tantly, thin-walled plated structures susceptible to interactive buckling tend to be highly

sensitive to imperfections (Koiter & Pignataro, 1976a; Thompson et al., 1976; Loughlan,

1983; Goltermann & Møllmann, 1989; Wadee, 2000; Bai & Wadee, 2015a; Wadee & Farsi,

2015; Liu & Wadee, 2016b); a tiny imperfection may lead to a significant erosion in the

load-carrying capacity evaluated from a linear analysis.

In the current chapter, the effects of geometric imperfections on the ultimate load and

equilibrium behaviour of thin-walled RHS struts is investigated using the full variational

model developed in Chapter 5. In a similar way to Chapter 6, the developed system of

nonlinear ordinary differential and integral equations subject to boundary conditions is

solved using the numerical continuation software Auto-07p. The resulting equilibrium

paths are presented for various different cases and the erosion in the load-carrying capacity

due to imperfections is observed. The results from the variational model show good com-

parisons with the numerical results from GNIA using the nonlinear FE method developed

231
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in Chapter 3. A simplified method to calculate the pitchfork bifurcation load where mode

interaction is triggered for struts with global imperfections is developed for the first time.

The relative significance of global and local imperfections for struts with different lengths is

investigated. Based on the numerical results, the simplified method is calibrated to predict

the ultimate load for struts with tolerance level global imperfections and combined local

and global imperfections. The current work provides an improved understanding of the

imperfection sensitivity of thin-walled rectangular hollow section struts exhibiting mode

interaction, which will allow the establishment of more rational and robust design guidance

for such structural components in Chapter 9.

7.1 Numerical results, verification and discussion

Chapter 6 demonstrated that there is a redistribution of stiffness across the cross-section

in the transition from the pure local buckling mode to the global buckling induced inter-

active mode, as shown in Figure 6.23. Specifically, owing to the rigid connection between

each individual plates, the less compressed web provides additional restraint to the more

compressed side (Bijlaard & Fisher, 1953; Hancock, 1981; Young & Rasmussen, 1997; Shen

& Wadee, 2018b). Hence, there is an effective increase in the axial stiffness of the more

compressed web and flanges, thus leading to a higher resistance to compressive stresses.

It implies that the mono-symmetric cross-section imperfection profile would be effectively

more severe than the doubly-symmetric case. Therefore, in the current chapter, only the

mono-symmetric cross-section deformation profile, as shown in Figure 5.2(b), is used as

the cross-section component for the local imperfection. Therefore, the local out-of-plane

imperfection, Eq. (5.13), can be reduced to:

wf0(x, z) = f2f(x)w0(z), wwc0(y, z) = f2wc(y)w0(z), wwt0(y, z) = f2wt(y)w0(z), (7.1)

where the cross-section components f are the same as described in Eqs. (5.9)–(5.11).
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Previous studies on the imperfection sensitivity of thin-walled struts (van der Neut, 1969;

Koiter & Pignataro, 1976a; Bai & Wadee, 2015a; Wadee & Farsi, 2015; Liu & Wadee,

2016a) found that the maximum erosion in the load-carrying capacity principally occurs

within the range where the global buckling load is close to the local buckling load, i.e.

the transitional range between zones 1 and 2 and the whole range of zone 2, as shown

schematically in Figure 7.1. Therefore, the imperfection sensitivity of two typical length

Pu/Pl
C

P
C
/Pl

C
o

1

1 2

Perfect case

Imperfect case

(1+ )/2 1/

Erosion balance point

Figure 7.1: The Van der Neut curve for the geometrically perfect and imperfect cases
(van der Neut, 1969). The quantity η is the stiffness reduction factor due to the local
buckling of the flanges. The imperfect case line shows that within zones 1–3, there is a
reduced ultimate load compared to the perfect case. There is also an ‘erosion balance
point’ marked where the curve for the imperfect case intersects with the perfect case.

struts, where global and local buckling are critical respectively but the ratio of the global

and local buckling loads is close to unity in both cases, are analysed in detail. The cross-

section geometry and material properties of the example struts are the same as that in

Chapter 6. Table 7.1 summarizes the strut lengths, the buckling loads and corresponding

zones, as defined in Chapter 6. The effects of global imperfections, local imperfections

and their combination on the nonlinear equilibrium path and load-carrying capacity of the

two example struts are investigated. The solution of the governing equilitrium equations

is obtained within the numerical continuation and bifurcation software Auto-07p.

Typical equilibrium paths for perfect and imperfect example struts alongside the numerical

continuation procedures to solve the equilibrium paths using Auto are shown diagram-
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Table 7.1: Theoretical values of the global and local buckling loads for the two separate
lengths studied.

L (mm) PC
o (kN) PC

l,Auto (kN) PC
l,Abaqus (kN) PC

o /P
C
l Zone Length description

4800 22.67 24.61 24.57 0.92 1 ‘Long’
4500 25.79 24.61 24.58 1.05 2 ‘Transitional’

matically in Figure 7.2. For the case where only the global imperfection exists two stages
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Figure 7.2: Sketches of the equilibrium paths and their numerical continuation procedures
in Auto for the imperfect struts primarily in zones 1 and 2. (a) Global buckling being
critical with an initial out-of-straightness global imperfection qs0 only; (b) local buckling
being critical with qs0 only; (c) global buckling being critical with a mono-symmetric local
imperfection w0 only or with both w0 and qs0; (d) local buckling being critical with w0 only
or with both w0 and qs0. The thicker and thinner lines represent the imperfect and perfect
systems respectively. Circles represent critical (C) and secondary (S) bifurcation points
for the perfect systems and a pitchfork bifurcation point (B) for the imperfect system; PB

represents the load at the pitchfork bifurcation point.

are required to obtain the whole equilibrium path, as shown in Figure 7.2(a–b). Branch

switching is necessary at the pitchfork bifurcation point (B) (Glendinning, 1994), which is

the generic term for a conventional symmetric (stable or unstable) bifurcation (Thompson

& Hunt, 1973), where local and hence interactive buckling is triggered, to trace the post-
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buckling equilibrium path. For the cases with pure local imperfections and with combined

local and global imperfections, only one run is required to obtain the whole equilibrium

path, as shown in Figure 7.2(c, d). The mono-symmetric local imperfection immediately

breaks the symmetry as the numerical run begins and therefore qs and qt are introduced

without the need for branch switching.

7.1.1 Global imperfections (qs0 6= 0, w0 = 0)

In this section, the effects of a purely global imperfection are studied. Only initial sway

and tilt imperfections, i.e. qs0 and qt0, which satisfy the relationship from Eq. (5.37), are

introduced. A set of values for the normalized initial sway imperfection amplitude qs0

ranging from 10−4 to 10−3 is selected for analysis. Figures 7.3 and 7.4 show a family of

equilibrium paths with increasing global imperfection size and the relationship between the

ultimate load and the global imperfection amplitude for the long (zone 1) and transitional

length (zone 2) struts respectively. It is clearly observed that the ultimate load decreases

as the imperfection size increases. For qs0 = 1/1000, which is the tolerance level for

global imperfections recommended in the relevant part of Eurocode 3 (EN-1993-1-3:2006E,

2006), the erosion in the load-carrying capacity is approximately 25% compared with the

critical buckling load of the perfect system for both struts. From the equilibrium path,

the transition from highly unstable to approximately neutral post-buckling behaviour can

be observed with the increase of the global imperfection size qs0. Specifically, the snap-

back and the sharp load drop at the secondary bifurcation in the load–end-shortening

relationship for the perfect case disappear gradually with the increase of the imperfection

size. It can also be seen that all equilibrium paths converge asymptotically to the same

state, as would be expected from classical studies (Thompson & Hunt, 1973).

Moreover, for the perfect case and the cases where the imperfection size is vanishingly

small, the triggering of local buckling represents the ultimate state, which is followed by
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Figure 7.3: Equilibrium paths and the imperfection sensitivity graph for the long length
strut (L = 4800 mm) with different global imperfection sizes qs0. Graphs of the normalized
load ratio p = P/PC, where PC is the critical buckling load for the perfect strut, versus
(a) the normalized end-shortening E/L, and (b) the normalized amplitude of the sway
mode qs; (c) shows the normalized maximum amplitude of the local buckling deflection
in the more compressed web wwc,max/tw versus qs; (d) shows the normalized ultimate load
pu = Pu/P

C from both the FE and variational models and the normalized load at the
pitchfork bifurcation point for the imperfect system pB = PB/PC against qs0 showing
the sensitivity to initial global imperfections. Circles in (a) and (b) represent bifurcation
points.

unstable post-buckling behaviour. However, with increasing imperfection size, there is a

further increase in the load-carrying capacity after local buckling in the more compressed

web is triggered, as shown in Figures 7.3 and 7.4, which has also been reported previously

(van der Neut, 1969; van der Neut, 1973; Bai & Wadee, 2016; Liu & Wadee, 2016b).

Therefore, it would seem that determining the load at the pitchfork bifurcation point PB
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Figure 7.4: Equilibrium paths and the imperfection sensitivity graph for the transitional
length strut (L = 4500 mm) with different global imperfection sizes qs0. Graphs (a)–(d)
are as described in Figure 7.3.

would provide a safe, yet accurate, method to predict the ultimate load for struts with

purely global imperfections.

As shown in Figure 7.5(a) and (c), the global imperfection size also affects the profile of

the interactive buckling mode in the proximity of the pitchfork bifurcation point. For the

long length strut, the interactive buckling mode becomes more localized with increasing

imperfection size. As for the transitional length strut, the global imperfection imme-

diately breaks the symmetry, making the profile change from approximately periodically

distributed along the length to localized at mid-span. The increasing imperfection size also

increases the degree of localization of the interactive buckling mode as that for the long
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Figure 7.5: Numerical solutions of the longitudinal profile of the local out-of-plane displace-
ment in the more compressed web w̄wc = wwc/wwc(z̄ = 1) at (a, c) the pitchfork bifurcation
point and (b, d) where qs = 8 × 10−3 for the long length strut (a–b) and the transitional
length strut (c–d) respectively. The dashed, dot-dashed and solid lines represent the cases
with perfect and imperfect (qs0 = 10−4 and 10−3) geometries respectively. Note that the
longitudinal coordinate is normalized with respect to half of the strut length z̄ = 2z/L.

length strut. It should be noted that in both cases the increase in the degree of localization

is accompanied by a reduction in the wavelength. With the progress of mode interaction,

the post-buckling mode spreads towards the boundary and becomes distributed along the

whole length of the strut, as shown in Figure 7.5(b, d). It can be concluded that, in a

similar way to the equilibrium path, the post-buckling mode also converges approximately

to the same profile in the far-field post-buckling range.

7.1.2 Local imperfections (w0 6= 0, qs0 = 0)

For the study where only local imperfections exist, the global imperfection parameters qs0

and qt0 are set to zero. The cross-section profile of the local imperfection is assumed to

be mono-symmetric and defined by Eqs. (5.9)–(5.11). The longitudinal component of the

local imperfection w0 is determined based on fitting the longitudinal component of the first

local buckling mode from the FE models using Eq. (5.14). The profile of the imperfection

is shown in Figure 7.6. For the long length strut, it is determined that α = 4.314 and
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β = 47; whereas for the transitional length strut, α = 5 and β = 47. A set of values for
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Figure 7.6: Longitudinal component of initial local imperfections for (a) the long length
strut and (b) the transitional length strut. Solid and dashed lines represent fitting func-
tions and the first local buckling mode from FE respectively. Note that the longitudinal
coordinate is defined as in Figure 7.5.

the normalized local imperfection amplitude A0/tw ranging from 0.01 to 0.6 is selected for

analysis.

Figures 7.7 and 7.8 show a family of equilibrium paths with increasing local imperfection

sizes and the relationship between the ultimate load and the local imperfection amplitude

for the long and transitional length struts respectively. The ultimate load drops sub-

stantially with increasing local imperfection amplitude. For A0/tw = 0.6 = d/(200tw),

which is the tolerance level for local imperfections recommended in Eurocode 3 (EN-1993-

1-3:2006E, 2006), the erosion in the load-carrying capacity is greater than 20% compared

with the perfect case for both struts considered. As for the equilibrium paths, in a similar

way to the global imperfection case, a transition from highly unstable to mildly stable

behaviour is observed in both struts with increasing local imperfection size. Specifically,

for the perfect case and the cases where the imperfection size is vanishingly small, reaching

the ultimate load is accompanied by potentially unstable behaviour, i.e. snap-backs in the

load–end-shortening relationship and a simultaneous sharp load drop may be expected.

However, for the cases with larger imperfection sizes, the behaviour is relatively stable, i.e.

the stiffness decreases with an increase of the applied load but remains positive and the
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Figure 7.7: Equilibrium paths and the imperfection sensitivity graph for the long length
strut with different local imperfection amplitudes A0. Graphs (a–c) are as described in
Figure 7.3. Graph (d) shows the normalized ultimate load pu from both FE and variational
models against A0 showing the sensitivity to initial local imperfections.

deformation level at the ultimate load is relatively large.

It should be noted that there is a snap-back in the qs–wwc/tw relationship for the long

length strut with a normalized local imperfection amplitude A0/tw = 0.01, as shown in

Figure 7.7(c). It corresponds to a jump in the local mode, as shown in Figure 7.9. Before

the mode jump occurs at qs = 0.002, the number of peaks and troughs in the form of

wwc with A0/tw = 0.01 is the same as that for the strut with A0/tw = 0.14, which is

determined by the pre-defined local imperfection function, as shown in Figures 7.6(a) and

7.9(a). However, after the mode jump, there are more peaks and troughs for the strut
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Figure 7.8: Equilibrium paths and the imperfection sensitivity graph for the transitional
length strut with different local imperfection amplitudes A0. Graphs (a)–(d) are as de-
scribed in Figure 7.7.

with A0/tw = 0.01 and the number is the same as that for the perfect case, as shown in

Figure 7.9(b); this finding is also in accord with previous studies (Bai & Wadee, 2015a;

Wadee & Farsi, 2015). With increasing local imperfection size, the formation of new peaks

or troughs requires more membrane strain energy, which would necessitate a longer snap-

back path. This, perhaps, explains why no mode jump is observed for the cases with larger

imperfection sizes in the current deformation range, i.e. where qs < 10−2. It should also be

noted that the mode jumping phenomenon is not observed in the transitional length strut

with the same imperfection size (A0/tw = 0.01) while qs . 10−2, which in fact occurs at

qs = 1.2×10−2. This may, in turn, be explained by the fact that local buckling is critical in
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Figure 7.9: Evolution of the numerical solutions for the normalized local out-of-plane
displacement in the more compressed web where (a) qs = 0.002 and (b) qs = 0.008 for
the long length strut with different local imperfection amplitudes A0. The solid, dot-
dashed and dashed lines represent where A0/tw = 0.14, A0/tw = 0.01 and the perfect case
respectively.

that case and the local mode defined by the imperfection is well developed, thus requiring

an excessive amount of strain energy (and hence a longer snap-back path) to trigger any

jump in the post-buckling mode.

7.1.3 Combined imperfections (qs0 6= 0, w0 6= 0)

The effects of combining local and global imperfections are now studied. As mentioned

earlier, according to Eurocode 3 (EN-1993-1-3:2006E, 2006; Degée et al., 2008), the tol-

erance levels for global and local imperfections are qs0,tolL = L/1000 and A0,tol = d/200

respectively. Hence, the imperfection combination selected currently is set to be pro-

portional to and also normalized with respect to this combination, which is defined as

WE0 = W̄E0{qs0,tolL,A0,tol}, where W̄E0 is a non-dimensional scaling factor.

Figures 7.10 and 7.11 show the nonlinear equilibrium paths and the imperfection sensitivity

relationship for both example struts. With increasing imperfection size, a transition from

highly unstable to mildly stable behaviour is also observed. It should be noted that there

remains a snap-back in the relationship between the local and global mode amplitudes for
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the long length strut with W̄E0 = 1/60, where the global and local imperfection amplitudes

are L/60000 and d/12000 respectively; this implies that there is a jump in the local mode.
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Figure 7.10: Equilibrium paths and the imperfection sensitivity graph for the long length
strut with different normalized combined imperfection sizes W̄E0. Graphs (a)–(c) are as
described in Figure 7.3. Graph (d) shows the normalized ultimate load pu from both the
FE and variational models against W̄E0 showing the sensitivity to the combined local and
global imperfections. Note that W̄E0 = 1 corresponds to the global imperfection amplitude
qs0L being L/1000 and the local imperfection amplitude A0 being d/200.

Moreover, compared with purely global or local imperfection cases, the introduction of the

other imperfection-type leads to a further 10% load drop. For the imperfections at the

Eurocode 3 tolerance levels (W̄E0 = 1), the load-carrying capacity erosion in comparison

with the perfect case is over 30% for both struts. According to the definition suggested
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Figure 7.11: Equilibrium paths and the imperfection sensitivity graph for the transitional
length strut with different normalized combined imperfection sizes W̄E0. Graphs (a)–(d)
are as described in Figure 7.10.

by Gioncu (1994b), this may be classified as a strong interaction. A larger load-carrying

capacity erosion would be expected for the cases where PC
o /P

C
l is approximately unity.

7.1.4 Verification and discussion

The FE model developed in Chapter 3 is adopted to verify the variational model using

GNIA. The comparison of the ultimate load from the FE and the variational models

are shown in (d) of Figures 7.3–7.4, 7.7–7.8, 7.10–7.11 (inclusive). The results from the

variational models generally show good comparisons with those from the FE models, with
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the variational models generally predicting slightly higher ultimate loads. The discrepancy

increases with increasing imperfection size and the maximum relative difference (Pu −

Pu,FE)/Pu,FE, which occurs at the tolerance imperfection combination case (W̄E0 = 1) for

the transitional length strut, is slightly below 8%.

The reasons for the stiffer response or higher ultimate load prediction of the variational

model for the perfect case have been discussed in §6.2 and also apply currently. Firstly,

when the more compressed web buckles, the neutral axis for strut flexure would move to the

less compressed side, thus introducing an additional bending moment to the strut. The

effect becomes more significant with the progression of interactive post-buckling, which

facilitates the load reaching the ultimate value and subsequently dropping. To consider

this effect, an additional displacement function would need to be introduced in the current

model to describe the movement of the neutral axis. Secondly, in the current formulation, it

is assumed that the effect of local buckling on the transverse stress in each plate is negligible,

which leads to the relationship εx = −νεz in the flanges and εy = −νεz in the webs. In

fact, this assumption is valid only when the local out-of-plane displacement of the plate is

small. In the advanced post-buckling range, the assumption would be no longer valid, as

demonstrated in Figure 7.12. The assumption also simplifies the transverse displacement

field, i.e. the in-plane displacement field across the cross-section (see Figure 6.17), which

may lead to a ‘locking’ problem (essentially, a stiffer response), as reported by a recent

study (Garcea et al., 2017). Moreover, the in-plane cross-section displacement would also

reduce the effective flexural rigidity of the strut. To resolve the problem, an independent

local mode to describe the transverse in-plane displacement field in both flanges and webs

would be required, but this would complicate the variational model considerably.

Thirdly, in the current formulation, the cross-section component of the direct in-plane

displacement field is assumed to be the same as that of the out-of-plane one. Although this

assumption satisfies the kinematic boundary conditions, it does not represent the actual

cross-sectional displacement field very well. To describe the cross-section component of
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Figure 7.12: Membrane stress distributions along the strut corner line of the more com-
pressed web at the ultimate load from FE for the transitional length strut with the tolerance
imperfection combination (W̄E0=1). Solid and dot-dashed lines represent the longitudinal
and transverse stresses respectively, showing that the transverse stresses are definitely not
zero.

the direct in-plane displacement field better, the solutions from classical theory (Koiter,

1945) could be adopted with the introduction of more functions to describe the variation

of the cross-section component along the strut length. However, the positive comparison

of the current model versus the FE model suggests that any advantage would be minor

and be mostly offset by the additional model complexity. Finally, the cross-section profile

of the local mode is assumed to remain unchanged along the length of the strut and also

throughout the progression of mode interaction with the only variable being the modal

amplitude, as can be seen in Eq. (5.1). However, the profile is affected by the ratio of axial

force and bending moment, which varies along the length and also throughout the entire

loading history. Furthermore, some higher order effects, such as the bending effects on the

cross-section profile as presented in Figure 6.7, would also affect the cross-section profile.

All of these factors taken together lead to the stiffer response of the variational model, thus

overestimating the ultimate load especially in the cases where the imperfection size is close

to the recommended tolerance levels within the Eurocode. However, the errors are within

generally acceptable bounds and the variational model does provide a better insight into

the system mechanics.

Based on the FE results, curves have been fitted to describe the ultimate load–normalized
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imperfection size relationship, as shown in (d) of Figures 7.3–7.4, 7.7–7.8, 7.10–7.11 (in-

clusive). For the pure global imperfection case, the expressions for both example struts

indicate approximately a 1/2 power law relationship to leading order; for the pure local

imperfection and combined imperfection cases, the expressions for both example struts in-

dicate approximately a 1/3 power law relationship, which is also observed in I-section struts

susceptible to mode interaction (Liu, 2016). Moreover, the transitional length strut ex-

hibits relatively more sensitivity to global imperfections and the long length strut exhibits

relatively more sensitivity to pure local and combined imperfections.

7.2 Variational model application and parametric study

7.2.1 Simplified method to predict load at pitchfork bifurcation

(qs0 6= 0, w0 = 0)

From the numerical results hitherto, it was demonstrated that for the case where only a

global imperfection exists, the load at the pitchfork bifurcation point PB can be used to

predict the ultimate load that is safe and compares very well to the FE model, as shown

in Figures 7.3(d) and 7.4(d). Therefore, a simplified method to predict PB is proposed

based on the method developed in §4.5, which determined the local buckling load of the

more compressed web undergoing global buckling and the corresponding global buckling

amplitude at the secondary bifurcation point for perfect thin-walled rectangular section

struts exhibiting global–local mode interaction.

Equation (5.36) provides the governing equation for the relationship between qs, qt and P

along the equilibrium path. By setting the terms related to the local mode to be zero, the

first two expressions of Eq. (5.36) can be written as:

∂V

∂qs
= π2GtfbL [(qs − qt) − (qs0 − qt0)] +

π4EIw (qs − qs0)

L
− P

π2Lqs
2

= 0, (7.2)
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∂V

∂qt
=

π4Etfb
3

4L

(

1

3
+

φc

φt

)

(qt − qt0) − π2GtfbL [(qs − qt) − (qs0 − qt0)] = 0. (7.3)

Substituting Eq. (7.3) into Eq. (7.2) to remove the shear term and using the relationship

in Eq. (5.37) gives the following expression:

P = PC
o

(

qs − qs0
qs

)

. (7.4)

If no local buckling occurs, P would increase with qs and tend towards PC
o in the limit.

However, the bending stiffness would drop due to local buckling in the more compressed

web and flanges. Since the transverse stress component is neglected currently, the direct

stress in the more compressed web σwc before local buckling occurs can be written thus:

σwc = Eεwc = −π2Eb (qt − qt0)

2L
sin

πz

L
− P

Ag

, (7.5)

where Ag = 2(btf +dtw) is the gross cross-sectional area. From the numerical results shown

in Figures 7.5(a, c), the local mode is initially localized. Instead of analysing the whole

web with the entire strut length, it was demonstrated in §4.6 that when σwc at mid-span

reaches the local buckling stress of the more compressed web σC
wc, interactive buckling can

be assumed to have been triggered. The expression for the local buckling stress of the more

compressed web element restrained by both flanges is given by:

σC
wc =

kpπ
2E

12(1 − ν2)(d/tw)2
(7.6)

and the plate buckling coefficient kp can be determined by Eq. (4.63). For the practically

significant case where the cross-section has a uniform wall thickness (φt = 1), the expression

for kp was determined by Eq. (4.68). By substituting Eqs. (5.37) and (7.4) into Eq. (7.5),
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the relationship between PB and the global imperfection size qs0 is obtained:

PB =
Ag

2

[

π2Ebqs0
2(1 + s)L

+
PC
o

Ag

+ σC
wc

−

√

(

PC
o

Ag

− σC
wc

)2

+
π2Ebqs0

2(1 + s)L

(

π2Ebqs0
2(1 + s)L

+
2PC

o

Ag

+ 2σC
wc

)

]

.

(7.7)

Figure 7.13 shows the comparison of the normalized load pB = PB/PC obtained from Eq.
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Figure 7.13: Comparison of the normalized load pB using the simplified method and the full
variational model against the normalized ultimate load pu from the FE models for (a) the
long length strut and (b) the transitional length strut. Note that only global imperfections
are included in both example struts.

(7.7) and the full variational model against the normalized ultimate load pu = Pu/P
C from

the FE model for example struts with purely global imperfections for different imperfection

sizes. For the long length strut, the simplified method shows excellent comparisons with

the full variational model for PB, as shown in Figure 7.13(a). For the transitional length

strut, the comparison is good for the cases where the global imperfection size is larger

than 10−4. For tiny global imperfections, the simplified method would overestimate PB.

This is caused by the fact that when the imperfection size is vanishingly small, the system

would behave very similarly to the perfect system, i.e. the less compressed web would
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also buckle, as shown in Figure 6.10. Therefore, the restraints on the more compressed

web would be smaller, which leads to a smaller value of kp. In general, for the current

two example struts, the simplified method provides a safe, yet accurate prediction of the

ultimate load for different imperfection sizes. Finally, it should be mentioned that if the

material yield stress fy replaced σC
wc in Eq. (7.7), the equation would revert to the classical

Perry–Robertson formula (Trahair et al., 2007) for the failure load of an imperfect column.

7.2.2 Simplified method to predict the ultimate load (qs0 = 10−3,

w0 = 0)

Figure 7.14 presents the relationship between the ultimate and pitchfork bifurcation loads

for different length struts with tolerance level global imperfections (qs0 = 10−3). In the
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Figure 7.14: Length effects on the ultimate and pitchfork bifurcation load of thin-walled
RHS struts with purely tolerance level global imperfections (qs0 = 10−3). Note that the
cross-section and material properties of the struts are the same as the example struts in
previous section.

range where global buckling is critical (PC
o /P

C
l < 1), the ultimate load is approximately

the same as the pitchfork bifurcation load. Therefore, Eq. (7.7) can be used as an accurate
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prediction of the ultimate load for such cases. However, in the range where local buckling

is critical, the pitchfork bifurcation load is significantly smaller than the ultimate load

and the difference increases with decreasing strut length, which implies that the triggering

of local–global mode interaction in such cases does not lead to unstable post-buckling

behaviour.

The prerequisite of the simplified method for predicting the ultimate load is that the

effective global buckling load ΦrP
C
o is less than or very close to PB, where Φr is the

bending stiffness reduction factor due to local buckling of the more compressed web and

flanges and is given by Eq. (B.8). Otherwise, the load would still increase beyond PB with

a reduced stiffness and would tend to ΦrP
C
o , even though mode interaction is triggered, as

shown in Figures 7.3 and 7.4. Therefore, more calibration parameters could be introduced

in Eq. (7.7) to fit it for the whole length range. An equation is proposed based on the FE

results in the range where PC
o /P

C
l 6 4:

Pu,glob,tol =











PB
tol for PC

o /P
C
l 6 1,

PB
tol

[

0.32
(

PC
o /P

C
l − 1

)

+ 1
]

for 1 < PC
o /P

C
l 6 4.

(7.8)

The average ratio of Eq. (7.8) to Pu,FE,glob,tol is 0.998 and the coefficient of variation (COV)

is 0.96%, which represents an excellent fit. However, it should be noted that the equation

is only valid for the current geometric parameter space; an extensive parametric study on

geometric properties, i.e. plate width–thickness ratio and cross-section aspect ratio, would

be required to make the equation more generic. This will be left for future study.

7.2.3 Simplified method to predict the ultimate load (qs0 = 10−3,

A0 = d/200)

In the current subsection, the ultimate load for thin-walled RHS struts with purely toler-

ance level local imperfections, purely tolerance level global imperfections and their combi-
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nations for different length struts is investigated. The aim is to establish the relationship

between the ultimate load for the cases with purely tolerance level global imperfections

and those with tolerance level combined imperfections alongside calibrating Eq. (7.8) to

be valid for the latter cases.

Figure 7.15(a) shows the ultimate load for thin-walled RHS struts with purely tolerance

level local imperfections, purely tolerance level global imperfections and their combinations

in the range: PC
o /P

C
l =[0.2, 2.0]. It can be observed that the struts exhibit sensitivity to
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Figure 7.15: (a) Effects of tolerance level local imperfections, global imperfections and
their combination on the ultimate load for thin-walled RHS struts with different lengths.
(b) Ratio of Pu,tol to Pu,glob,tol versus the strut length, where Pu,tol and Pu,glob,tol represent
the ultimate load with tolerance level combined imperfections and tolerance level global
imperfections respectively. Note that local imperfection profiles are affine to the lowest
local buckling mode from linear buckling analysis using FE models.

both local and global imperfections and the load erosion is most significant at the point

where PC
o /P

C
l =1. For the current example struts with the cross-section properties as pre-

sented in Table 4.1 and the imperfection tolerance level (A0/t=0.6 and qs0=10−3) selected,

the ultimate load erosion due to purely tolerance level local and global imperfections is

nearly equal at the point where PC
o /P

C
l =1. Therefore, an opportunity to determine the

relative significance of both imperfection types on the ultimate load erosion for different
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length ranges is provided. The principal finding from Figure 7.15(a) is that the ultimate

load with purely local imperfections is lower than that with purely global imperfections in

the range where global buckling is critical and vice versa. This observation implies that

struts where global buckling is critical are more sensitive to local imperfections than global

imperfections and vice versa.

The underlying mechanism of the critical buckling mode dependent imperfection sensitivity

may be explained based on the interactive buckling behaviour of perfect systems. No matter

to which type the critical buckling mode belongs, the failure of perfect thin-walled RHS

struts is controlled by the symmetry breaking action of mode interaction (Supple, 1967;

Shen & Wadee, 2018b). In the perfect case or the case with imperfections purely in the

shape of the primary buckling mode, the secondary buckling mode would be triggered

when the primary mode is fully developed. Since the primary mode is stable or neutral,

the imperfect system would approximate to the perfect case in the purely elastic scenarios.

The imperfections with interactive post-buckling mode profiles would have an immediate

destabilization effect on the system, i.e. a reduction in stiffness, which would facilitate the

triggering of the secondary mode and expedite the reaching of the ultimate state (Supple,

1967).

As for the effects of superposing a tolerance level global imperfection on a local imperfec-

tion, the ratio of the ultimate load for struts with purely tolerance level local imperfections

to that of struts with combined imperfections, Pu,loc,tol/Pu,tol, almost remains constant in

the range where global buckling is critical, with the average and the COV being 0.896 and

1.2% respectively. It should be noted that the value is very close to the strength reduction

factor 0.877 of the nominal strength for slender elastic columns from the current Direct

Strength Method (DSM) (Schafer, 2008). In the range where local buckling is critical,

Pu,loc,tol/Pu,tol increases with increasing PC
o /P

C
l , with Pu,loc,tol/Pu,tol=0.965 at PC

o /P
C
l =2.

The ratio remains approximately constant beyond the point. As for the effects of superpos-

ing a tolerance level local imperfection on struts with a tolerance level global imperfection,



CHAPTER 7. IMPERFECTION SENSITIVITY 254

Pu,glob,tol/Pu,tol increases with the increasing PC
o /P

C
l from 0.839 at PC

o /P
C
l =0.2 to 0.985 at

PC
o /P

C
l =2, as shown in Figure 7.15(b), and the ratio converges gradually to unity beyond

this point.

As shown in Figure 7.15(b), a curve is fitted based on the numerical results to describe the

relationship between Pu,tol and Pu,glob,tol:

Pu,tol =

[

0.836 +
0.18

1.2 + (PC
o /P

C
l )

−4.24

]

Pu,glob,tol. (7.9)

The average ratio of Eq. (7.9) to FE results in the range PC
o /P

C
l =[0.2, 4] is 1.000 and the

COV is 0.63%. In a similar way to Eq. (7.8), the current equation is also limited to the

current geometric space and further parametric studies are necessary to make it apply to

a wider range of cases.

7.3 Concluding remarks

Based on the nonlinear variational model developed in Chapter 5, the imperfection sen-

sitivity of axially-loaded thin-walled rectangular hollow section struts with initial global

and local geometric imperfections is investigated. Numerical examples, focusing on cases

where the global buckling load is close to the local buckling load, have been presented

and verified using the FE model developed in Chapter 3. The sensitivity of two example

struts exhibiting mode interaction to initial geometric imperfections has been quantified.

With the increase of the geometric imperfection size, a transition from highly unstable to

neutrally or mildly stable post-buckling behaviour is observed. A progressive change in

the local buckling mode is identified in terms of both wavelength and amplitude. In par-

ticular, mode jumping within the interactive buckling mode, i.e. the change in the number

of troughs and peaks of the local mode and snap-backs in the equilibrium path, is also

observed in the cases where the local imperfection size is vanishingly small. A simplified
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method to predict the load at the pitchfork bifurcation point, where interactive buckling

is triggered, is proposed for struts with purely global imperfections based on the verified

variational model; it is demonstrated to be simple, yet safe and accurate for the cases

studied.

A parametric study on the effects of global tolerance imperfections, local tolerance im-

perfections and their combinations on the ultimate load for struts with different lengths

was conducted. It was revealed that for struts with tolerance level global imperfections,

the post-buckling behaviour after the pitchfork bifurcation point is unstable and stable

for struts with global buckling and local buckling being critical respectively. It was also

found that local imperfections are more significant than global imperfections for struts

with global buckling being critical and global imperfections are more significant for struts

with local buckling being critical. This is attributed to the characteristic behaviour where

the alternative imperfection type would facilitate the necessary symmetry breaking to trig-

ger interactive buckling. Based on the parametric study results, the simplified method to

predict the pitchfork bifurcation load is calibrated to calculate the ultimate load for struts

with tolerance level global and combined imperfections.

It should be stressed that, in the current chapter, only one type of local imperfection

profile was investigated, i.e. a mono-symmetric cross-section profile with the longitudinal

component based on fitting the eigenmode from linear buckling analysis. This may not

represent the most severe imperfection profile. Therefore, the effects of imperfection profiles

on the ultimate load is investigated in the following chapter.



Chapter 8

Sensitivity to manufacturing

tolerance level imperfections

The current chapter is a continuation of the preceding one on the imperfection sensitivity

of thin-walled RHS struts susceptible to interactive buckling. However, it focuses on the

behaviour of such struts with imperfections, the sizes of which are related to the recom-

mended manufacturing tolerances. A measurement method for different local imperfection

profiles based on the concept of equal local bending strain energy is proposed. A proce-

dure to terminate the nonlinear analysis within Abaqus when certain failure criteria are

met is developed, which makes an automated parametric study more efficient. The effects

of the imperfection profile, i.e. cross-section profile, the longitudinal wavelength and the

degree of localization, on the ultimate load and equilibrium path of four characteristic

length struts are investigated and the most severe local imperfection forms are identified.

The effects of localized imperfections on the behaviour of struts are also discussed. A

parametric study on the wavelength of the most severe imperfection profile is conducted

and a semi-empirical relationship to determine the corresponding wavelength is proposed.

The mechanism of global buckling in struts with tolerance level doubly-symmetric local

imperfections is discussed and an explicit equation to calculate the global buckling load is

256
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proposed.

8.1 Imperfection description and modelling

Since the variational model exhibits a relatively stiffer response where the imperfection

size is close to the tolerance level, all the analyses in the current chapter were conducted

using the FE model developed in Chapter 3. In order to model bespoke imperfection

profiles, Matlab was used to generate the nodal coordinates input file for the FE model

with pre-defined global and local imperfections. As shown in Figure 8.1, the geometric

imperfection description follows the same principles as presented in §5.2 for the variational

model, which is based on the local and global buckling mode description. These modal

functions have been demonstrated to be capable of describing purely local and global

buckling modes, as well as the interactive buckling mode, for perfect struts with different

lengths very well. Specifically, the global and local imperfections are defined by Eq. (5.12)

and Eq. (5.13) respectively. However, it should be noted that the set of functions for the

W0(z)

z
x

x

0(z)

Sway component

Tilt component

L

(a) Global imperfection (b) Local imperfection
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f 2wt(y)

b

Figure 8.1: Imperfection descriptions. (a) Global imperfection bending about weak axis
y: sway and tilt components. (b) Cross-section component of local imperfections: doubly-
symmetric and mono-symmetric profiles.

doubly-symmetric cross-section profile in the local mode, i.e. Eqs. (5.2) and (5.3), is only

valid for rectangular hollow section struts with relatively large cross-section aspect ratios,



CHAPTER 8. SENSITIVITY TO MANUFACTURING TOLERANCE LEVEL IMPERFECTIONS 258

i.e. d/b ≥ 1.5. Therefore, a new set of functions is used, which is valid from a square to a

rectangular hollow section. These expressions are derived from a semi-analytical method,

the details of which may be found in Appendix C. The longitudinal component of the local

imperfection wi0(z) has the same format as Eq. (5.14). As shown in Figure 5.4, the degree

of localization and the number of half-waves in the local imperfection profile can be varied

by adjusting the parameters αi and βi respectively.

8.2 Unified local imperfection measurement criterion

Since Ai0, βi and αi in Eq. (5.14) are parameters that have various different combinations,

purely using the imperfection amplitude Ai0 as the sole measurement of imperfection size

inevitably neglects important features and does not provide meaningful comparisons. Pre-

vious studies (Wadee, 2000; Bai & Wadee, 2015a; Wadee & Farsi, 2015; Liu & Wadee,

2016b) adopted the concept of the total end-shortening arising from introducing the local

imperfection to measure various different longitudinal distributions of local imperfections:

Ei0 =
1

2

∫ L

0

ẇ2
i0 dz, (8.1)

which includes the contribution from all the parameters in Eq. (5.14). However, this 1-D

approach is not easily adaptable for the comparison of the doubly-symmetric and mono-

symmetric cross-section imperfection profiles in the current case. Hence, a 3-D approach

based on the local bending energy is proposed currently. It should be noted that a similar

methodology was also adopted previously in an investigation on the effects of local im-

perfection profiles in the response of simply-supported rectangular plates (Sadovskỳ et al.,

2005). From classical plate bending theory (Bulson, 1970) and the energy formulation in

preceding chapters, the total local bending energy stored in the entire strut due to the
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initial local imperfections U0
b,l can be expressed as:

U0
b,l =U0

b,lf + U0
b,lwc + U0

b,lwt

=Df

∫ L

0

∫ b/2

−b/2

{

(

∂2wf0

∂z2
+

∂2wf0

∂x2

)2

− 2(1 − ν)

[

∂2wf0

∂z2
∂2wf0

∂x2
−
(

∂2wf0

∂z∂x

)2 ]
}

dx dz

+
Dw

2

∫ L

0

∫ d/2

−d/2

{

(

∂2wwc0

∂z2
+

∂2wwc0

∂y2

)2

− 2(1 − ν)

[

∂2wwc0

∂z2
∂2wwc0

∂y2
−
(

∂2wwc0

∂z∂y

)2 ]
}

dy dz

+
Dw

2

∫ L

0

∫ d/2

−d/2

{

(

∂2wwt0

∂z2
+

∂2wwt0

∂y2

)2

− 2(1 − ν)

[

∂2wwt0

∂z2
∂2wwt0

∂y2
−
(

∂2wwt0

∂z∂y

)2 ]
}

dy dz,

(8.2)

where U0
b,lf , U

0
b,lwc, U

0
b,lwt are the local bending energies due to the initial local imperfections

in both flanges, the more compressed web and the less compressed web respectively; Df =

Et3f / [12(1 − ν2)] and Dw = Et3w/ [12(1 − ν2)] are the flexural rigidities of the flanges and

webs respectively.

By substituting wf0, wwc0 and wwt0 from Eq. (5.13) into Eq. (8.2), the local bending energy

due to local imperfections with the doubly-symmetric (i = 1) and mono-symmetric (i = 2)

cross-sectional components can be expressed thus:

U0
b,li = Dw

∫ L

0

[

(

2tf
tw

{

f 2
if

}

x
+
{

f 2
iwc

}

y
+
{

f 2
iwt

}

y

)

ẅ2
i0

+

(

2tf
tw

{

f ′′2
if

}

x
+
{

f ′′2
iwc

}

y
+
{

f ′′2
iwt

}

y

)

w2
i0

+ 2ν

(

2tf
tw

{fiff ′′

if}x + {fiwcf ′′

iwc}y + {fiwtf
′′

iwt}y
)

ẅi0wi0

+ 2 (1 − ν)

(

2tf
tw

{

f ′2
if

}

x
+
{

f ′2
iwc

}

y
+
{

f ′2
iwt

}

y

)

ẇ2
i0

]

dz,

(8.3)
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where dots represent differentiation with respect to z; primes denote differentiation with

respect to x and y for flanges and webs respectively. From Eqs. (8.2) and (8.3), it can

be seen that the variation of local imperfections in both cross-sectional and longitudi-

nal dimensions can be considered. Moreover, the advance in imperfection measurement

facilities (Zhao et al., 2015) has made it possible to obtain the 3D distribution of local

imperfections. Using numerical integration, the corresponding local bending energy can

be obtained, which can be adopted as a reference value to compare different imperfection

profiles.

It should be noted that from the perspective of linear buckling theory (Timoshenko &

Gere, 1961), the local bending strain energy in struts due to local imperfections is equal

to the work done by load due to local imperfections at the initial instability. Therefore,

the current method based on the equal local bending energy is essentially equivalent to

previous concepts based on the equal work done by load or equal end-shortening (Wadee,

2000).

8.3 Effects of local imperfection profiles

Chapter 6 has demonstrated that there are four distinct length-dependent zones for thin-

walled RHS struts, which exhibit different post-buckling behaviour, as shown in Figures 6.2

and 6.19. Therefore, four representative example struts with the same material and geo-

metric properties as those in Table 6.1 are adopted. Table 8.1 presents the strut length and

the corresponding number of half-waves β0 in the local buckling mode. It should be noted

Table 8.1: Number of half-waves β0 in the local buckling mode for the struts in four
characteristic length-dependent zones. The theoretical values of global and local buckling
loads as well as the length description for the struts can be found in Table 6.1.

Zone 1 2 3 4
L(mm) 4800 4500 4000 3600

β0 49 45 41 37
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that the number of half-waves β0 in the pure local buckling mode from both analytical

and FE models are the same for all four characteristic struts, even though the profiles are

periodic and modulated for the analytical and FE models respectively.

For each characteristic length strut, four different imperfection cases are studied, as pre-

sented in Table 8.2. For the first one, the imperfection profile is the critical local buckling

Table 8.2: Initial local imperfection parameters for the most severe local imperfection case
study. Note that ‘Eval’ in the table represents quantities evaluated based on the other
input parameters and the number of half-waves βi=β0.

Case U0
b,li A0

i0 Cross-section profile fi Notes

1 N/A d/200 doubly-symmetric Linear buckling mode
2 U0

b,l2 d/200 mono-symmetric A0
10=0, A0

20=d/200
3 U0

b,l2 Eval doubly-symmetric U0
b,l is equal to that in case 2

4 Eval d/200 doubly-symmetric A0
10=d/200, A0

20=0

mode obtained from linear buckling analysis using the FE model and the corresponding

imperfection amplitude is d/200, which is the tolerance level for the local imperfection

amplitude, as recommended by Eurocode 3 (EN-1993-1-3:2006E, 2006). It is used as a

reference to compare with the imperfection profiles in other cases. The second case adopts

the mono-symmetric cross-section imperfection profile, with the number of half-waves along

the strut length β0 being equal to those listed in Table 8.1 and the initial imperfection am-

plitude A0
i0 also being d/200. The third case adopts the doubly-symmetric cross-section

imperfection profile and the local bending energy due to local imperfections is equal to that

in the second case, which aims to study the more severe case between the mono-symmetric

and doubly-symmetric ones with the same local bending energy stored from the initially

imperfect geometry. The fourth case adopts the doubly-symmetric cross-section imper-

fection profile, with β0 and A0
i0 being the same as those in the second case; this aims to

study the more severe case between the mono-symmetric and doubly-symmetric cases with

the same local imperfection amplitude. Moreover, it should be stressed that the global

imperfection is not included in the example struts in the current section. For convergence

purposes, a global perturbation distribution defined by Eq. (5.12) with the normalized
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amplitude qs0=10−6 is introduced.

8.3.1 Algorithm for determining most severe local imperfection

profile

The investigation to determine the most severe local imperfections comprises two stages,

as shown in Figure 8.2. A similar methodology has already been adopted for studying the

i=0, i 0, A
0
i0, f i

Ub,l = a fixed given value

Compute the ultimate load of
the strut with the
imperfection determined by
the combination of i i and
Ai0 using GNIA in ABAQUS

Calculate Ai0 with the
combination of i i  and Ub,l

Lowest ultimate
load?

No

1st Stage:
Periodic local
imperfection

i= i+2

No

i=0?

Yes

No
i i, Ai0 and Pu

Yes

i , Pu and Ub,l

Set a small positive
value to i

 Increase i

2nd Stage:
Modulated local
imperfection

0

0

0

           i

           i

           i

Figure 8.2: Algorithm for determining the most severe case periodic and modulated lo-
cal imperfections under the constraint of the equal local bending energy of the initially
imperfect geometry.

most severe local imperfection profile in sandwich panels (Wadee, 2000), I-section struts

(Bai & Wadee, 2015a; Liu & Wadee, 2016b) and stiffened plates (Wadee & Farsi, 2015):

1. Periodic imperfections are investigated by adopting βi as the principally varying pa-

rameter. Initially, the value of U0
b,li is determined and fixed based on the combination
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of αi = 0, βi being the number of half waves of the pure local buckling mode βi0 from

the variational model in Chapter 6, A0
i0 being the local imperfection amplitude tol-

erance level value adopted from Eurocode 3 (EN-1993-1-3:2006E, 2006). Then, the

quantity βi is varied as the principal parameter and increased from a sufficiently small

but reasonable odd integer while the value of αi remains zero. Note that the value

of βi only takes odd integer values to satisfy the boundary and symmetry conditions.

The amplitude Ai0 is varied accordingly to keep U0
b,li at the selected value; hence,

increasing βi would naturally lead to a decrease in Ai0. GNIA is conducted to obtain

the ultimate load of the strut with each combination of βi and Ai0. In particular,

the combination of βi and Ai0 that gives the lowest ultimate load Pu is recorded and

used for the modulated imperfection study.

2. Modulated local imperfections are investigated by adopting αi as the principally

varying parameter. The quantities βi and U0
b,li are the same as those corresponding

to the lowest ultimate load in stage 1. The localization parameter αi is set as the

principally varying parameter and the amplitude Ai0 is varied accordingly to keep

U0
b,li constant; increasing αi naturally leads to a higher value of Ai0; GNIA is also

conducted to obtain the ultimate load of the strut with each imperfection combination

of αi and Ai0. In particular, the combination of αi and Ai0 that gives the lowest

ultimate load Pu is recorded.

Automated termination of nonlinear analysis in Abaqus

In order to make the process presented in Figure 8.2 automated, the principal challenge

is to terminate the nonlinear analysis automatically once certain failure criteria are met,

since current versions of Abaqus do not provide such a functionality satisfactorily. As

mentioned in §3.3.2, there are some existing Fortran codes using an Abaqus user sub-

routine (Sadowski et al., 2017a) that are able to terminate the nonlinear Riks arc-length

analysis automatically once certain criteria are met.
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Currently, the main body of the program, as presented in Figure 8.2, is developed within

Matlab, such as the determination of key imperfection related parameters (i.e. Ai0, αi, βi

and U0
b,li), FE model creation, nonlinear analysis job submission and data post-processing

and output. In order to make the program self-consistent, a function is developed within

Matlab to terminate the nonlinear analysis once the failure criteria are met, the algorithm

of which is presented in Figure 8.3. Based on the equilibrium paths obtained in previous

chapters, two failure criteria are adopted in the function, as shown in Figure 8.4. The first

one represents the cases where there is a clear maximum load in the load–end-shortening

relationship, as shown in Figure 8.4(a). This failure mode can be easily determined when

the incremental load proportionality factor (LPF) becomes negative or smaller than the

tolerance value (10−7). In Abaqus, the LPF of each step is output in the ‘.sta’ file.

Therefore, by monitoring the incremental LPF in the ‘.sta’ file, the limit point can be

easily detected. Once the negative incremental LPF is detected, the nonlinear analysis can

be terminated using the system command in Matlab.

The second failure criterion mainly deals with the cases where the post-buckling behaviour

is essentially neutral, as shown in Figure 8.4(b). In such cases, it may take over hundreds

of steps to reach the point where the incremental LPF becomes negative or smaller than

the tolerance value (10−7). Moreover, in practice, reaching the plateau can be treated as

the failure of a column, since a tiny increase in the load capacity would lead to a large

structural deformation. To improve the computational efficiency, the Modified Southwell

(MS) method (Doerich & Rotter, 2011; Sadowski et al., 2017a) is adopted to determine

the termination point.

For illustration purposes, the equilibrium path of the short length strut with a tolerance

level mono-symmetric cross-section profile local imperfections is presented, as shown in

Figure 8.5. Firstly, the load and end-shortening are extracted from the ‘odb’ file by run-

ning the post-processing python script within Matlab. Then, the equilibrium path is

transformed into the Modified Southwell (MS) plot, as shown in Figure 8.5(b), which com-
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Figure 8.3: Algorithm for function to terminate the nonlinear analysis when the load begins
to drop or the load–end-shortening curve reaches the plateau. Note that ∆LPF represents
the incremental load proportionality factor; ∆Ptol is the tolerance value for ∆LPF; pestu,i

represents the estimated ultimate load at the ith step; ‘Errtol’ is the error tolerance for the
difference between the estimated ultimate loads. Note also that the ‘odb’ file is Abaqus

output database and stores the entirety of the computed nodal and element variables; the
‘sta’ file is the Abaqus status output file and stores the status of increment summaries of
nonlinear analysis.
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Figure 8.4: Sketch of two typical equilibrium paths describing failure for thin-walled RHS
struts: (a) clearly unstable post-buckling behaviour; (b) weakly stable post-buckling be-
haviour.

prises a nearly vertical part at the start corresponding to the nearly linear response and

a plateauing part corresponding to the global buckling of locally buckled struts. The es-

timated ultimate load pestu,i is computed by the tip of the non-vertical portion of the MS

curve on the vertical axis, which can be determined by linear fitting through the three

adjacent data points on the MS curve. If the absolute relative difference between any

two adjacent estimated ultimate loads is below the error tolerance, which is set as 0.05%

currently, it is assumed that the plateau has been reached and the command is sent to the

Abaqus/Standard solver to terminate the nonlinear analysis. Currently, pestu,i is only used

for convergence judgement purposes and the load corresponding to the final step before the

analysis termination is adopted as the ultimate load in such cases. Moreover, the failure

criterion is used when the ultimate load is not reached within 100 steps, which can also

avoid the effect of vertical portion in the MS plot. It should be noted that there may be

some jumps in the |pestu,i − pestu,i−1|/pestu,i−1 due to the piecewise numerical solution, as shown

in Figure 8.5(c), but the absolute difference decreases with the increase of load increment

steps generally. As shown in Figure 8.5(a), the termination point determined by the second

criterion can detect the plateau well.
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Figure 8.5: Numerical illustration example for the Modified Southwell (MS) method to
estimate the failure load from partial nonlinear analysis data and terminate the nonlinear
analysis once certain failure criterion is met. (a) The normalized load–end-shortening
relationship. Symbol (*) represents the termination point determined based on the current
failure criterion. (b) Modified Southwell (MS) plot from (a). Note that the curve is nearly
vertical at the initial stage of loading. (c) Convergence and the termination criterion. The
quantities pestu,i and pestu,i−1 represent the estimated ultimate load using the MS method at
step i, which are determined based on a linear fit through the three most recent adjacent
data points in (b). The dashed line represents the error tolerance for the absolute relative
difference between any two adjacent estimated ultimate loads through MS method, i.e.
0.05%.
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8.3.2 Effects of number of sinusoidal half-waves βi

The imperfection sensitivity of struts with various different local periodic imperfection

profiles is shown in Figure 8.6. With the increase of the number of half-waves βi, the
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Figure 8.6: Normalized ultimate load of struts pu = Pu/P
C versus number of half-waves

βi with different local imperfection cases presented in Table 8.2 for different length struts.
Symbols ◦, ., ∗ represent cases 2, 3 and 4 respectively; the dashed line represents case 1.
The pentagram and hexagram on the horizontal axis represent the number of half-waves in
the pure local buckling mode and in the local–global interactive post-buckling mode of the
perfect struts respectively; recall that the interactive post-buckling mode has a naturally
modulated amplitude.

normalized ultimate load pu=Pu/P
C, where PC is the critical buckling load for the perfect

strut, decreases and then increases again. This trend resembles the relationship between

the plate length to width aspect ratio and the critical buckling load of simply-supported
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rectangular plates under axial compression (Bulson, 1970). It should be noted that under

the equal local bending energy constraint, the imperfection amplitude naturally decreases

with increasing βi, as shown in Figure 8.7. Therefore, the amplitude of the most severe
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Figure 8.7: Normalized amplitude of local imperfections versus number of half-waves βi

for different imperfection cases presented in Table 8.2. The symbols in the graphs are the
same as described in Figure 8.6. Note that the value of βi at the intersection of ◦ and ∗
symbols with the dashed line is the number of half-waves in the longitudinal direction of
the pure local buckling mode.

imperfection profile is smaller than that of imperfection profiles with fewer half-waves,

which correspond to a much higher ultimate load. It is therefore demonstrated that the

imperfection amplitude itself only cannot be used as the unique reference for determining

the most severe imperfection profile.

For all four different length struts, the most severe imperfection profile is from the doubly-

symmetric cross-section profile imperfection (case 4) with the second most severe being

from the mono-symmetric cross-section profile imperfection (case 2). The differences be-

tween these two cases are within 1%. It should be noted that the relationship of the

imperfection amplitude and the number of half-waves is very close to each other for these

two cases, as shown in Figure 8.7. However, the local bending strain energy due to the

local imperfection in case 4 is nearly double of that in case 2. When the local bending

energy is equal, i.e. taking cases 2 and 3, the mono-symmetric cross-section local imper-

fection profile is more severe than the doubly-symmetric one. Specifically, the difference

is approximately 5% for the long length strut with L = 4800 mm, while the difference
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becomes smaller with decreasing strut length. It should also be noted that the ratio of the

local imperfection amplitude for cases 2 and 3 is approximately 1.4 in the range of βi, as

presented in Figure 8.7. It reveals that the ultimate load is principally affected by the local

imperfection profiles, i.e. the number of half-waves and amplitude, in the more compressed

web. Moreover, the difference in pu for cases 3 and 4 also decreases as the strut length

decreases, which implies that short struts with relatively larger values of PC
o /P

C
l would

exhibit relatively less sensitivity to local imperfections. This finding is also in accord with

that presented in Figure 7.15.

As for the number of half-waves in the most severe case, it is larger than that in the

pure local buckling mode and the local–global interactive post-buckling mode for perfect

cases from Chapter 6, as shown in Figure 8.6. Moreover, cases 3 and 4 have the same

cross-section imperfection profiles but different imperfection amplitudes, i.e. different local

bending energy levels due to local imperfections. The values of βi corresponding to the

lowest ultimate load are different for these two cases, which implies that the most severe

imperfection profile is also related to the imperfection amplitude. This finding is in accord

with previous studies on the most severe local imperfection profile of I-section struts (Bai &

Wadee, 2015a) and stiffened panels (Wadee & Farsi, 2015). However, it should be stressed

that a small increase or decrease in the value of βi would only lead to a tiny change in the

ultimate load, which has also been reported in a study on the imperfection sensitivity of

open-section storage rack columns (Trouncer & Rasmussen, 2015).

Figure 8.6 also shows the ultimate load of struts with imperfection profiles corresponding

to the lowest local buckling mode from linear buckling analysis using the FE model. The

difference with the most severe case decreases from approximately 5.4% for the long length

strut to approximately 4.3% for the short length strut, as shown in Table 8.3. Therefore, it

may be concluded that the lowest local buckling mode does not always represent the most

severe imperfection profile.
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Table 8.3: Ultimate load and local imperfection amplitude of the most severe local periodic
imperfection profile. Note that for case 1, Pu/Pu,LBA,FE=1.0 by definition and Ai0/t=0.6
for all lengths.

L
Pu/Pu,LBA,FE Ai0/t

case 2 case 3 case 4 case 1 case 2 case 3 case 4
4800 0.959 1.007 0.955

0.6

0.494 0.377 0.508
4500 0.961 0.998 0.953 0.488 0.358 0.480
4000 0.969 0.991 0.959 0.475 0.349 0.467
3600 0.968 0.984 0.958 0.463 0.323 0.455

8.3.3 Effects of the degree of localization αi

As described in Figure 8.2, the study on the effect of localization is based on the results

of the immediately preceding section. The number of half-waves βi for each case is kept

to the value corresponding to the lowest ultimate load as presented in Figure 8.6. The

equivalent local bending energy due to local imperfections U0
b,l also remains the same in

each case. The relationship of the normalized imperfection amplitude Ai0/t versus αi under

the constraint of equal local bending energy is shown in Figure 8.8. In contrast with the
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Figure 8.8: Normalized amplitude of the local imperfection versus the degree of localization
αi for different imperfection cases as presented in Table 8.2. The dashed, solid, dotted and
dot-dashed lines represent the imperfection profiles from cases 1, 2, 3 and 4 respectively.

Ai0/t versus βi relationship, the increase in αi would lead to an increase in Ai0/t under the

equal local bending energy constraint. However, the Ai0/t versus αi relationships for cases

2 and 4 are still very close to each other, as they were in the Ai0/t versus βi relationship,

see Figure 8.7.
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The relationship between the normalized ultimate load pu and the degree of localization αi

for different length struts is shown in Figure 8.9. Initially, the ultimate load decreases from
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Figure 8.9: Normalized ultimate load of the strut pu = Pu/P
C versus the degree of local-

ization αi for different local imperfection cases presented in Table 8.2. Line types in the
graphs represent the same cases as those described in Figure 8.8.

the periodic profile to the localized one in all four cases. The modulation of the longitudinal

profile does affect the ultimate load but the effects are relatively small. Specifically, the

modulation only leads to a further 0.6% to 2.6% drop in the ultimate load. Among cases

2–4, the effect is most minor for the mono-symmetric case, where the further drop is below

0.8%. With further increase in the degree of localization, the ultimate load begins to

increase, even though the imperfection amplitude increases. This, again, demonstrates

that the imperfection amplitude is not suitable to be used as the unique criterion for
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imperfection measurement. Moreover, at least for the current purely elastic case, a highly

localized local imperfection with a large imperfection amplitude does not represent the

most severe imperfection profile.

The comparison of the lowest ultimate load and the normalized imperfection amplitude for

each case with the profile that is affine to the lowest linear buckling mode from FE models

is shown in Table 8.4. For all four cases, the largest and the second largest differences in

Table 8.4: Ultimate load and local imperfection amplitude of the most severe local modu-
lated imperfection profile.

L
pu/pu,LBA,FE Ai0/t

case 2 case 3 case 4 case 1 case 2 case 3 case 4
4800 0.952 0.985 0.932

0.6

0.711 0.570 0.817
4500 0.953 0.980 0.933 0.702 0.542 0.776
4000 0.963 0.979 0.942 0.684 0.555 0.756
3600 0.963 0.974 0.944 0.666 0.514 0.770

the ultimate load occur in cases 4 and 2 respectively, with the largest percentage difference

value being 6.8% in case 4 for the long length strut. However, the corresponding imper-

fection amplitude in cases 2 and 4 is larger than that of the linear buckling mode profile,

i.e. the tolerance level value.

For all four characteristic length struts, the values of αi corresponding to the lowest ultimate

load for doubly-symmetric imperfection cases are very close and are slightly larger than that

for the mono-symmetric imperfection case. The longitudinal component of the most severe

imperfection profiles in cases 3 and 4 for the long length strut are shown in Figure 8.10 (a,

b). For comparison purposes, the longitudinal component of the local buckling mode from

linear buckling analysis and the interactive buckling mode in the advanced post-buckling

range of the perfect system from Chapter 6 are also shown in Figure 8.10 (c, d) respectively.

As identified in the preceding subsection, the wavelength of the most severe imperfection

profile is considerably shorter than the linear buckling mode and slightly smaller than the

interactive post-buckling mode in the advanced post-buckling range.
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Figure 8.10: Normalized longitudinal profile in the more compressed web of (a) most
severe imperfection profile for the mono-symmetric imperfection (case 2), (b) most severe
imperfection profile for the doubly-symmetric imperfection (case 4), (c) local buckling mode
from linear buckling analysis and (d) interactive mode in the advanced post-buckling range
of the perfect system where qs = 0.009 for the long length strut with L = 4800 mm. Note
that w̄wc0 = wwc0/wwc0,max and w̄wc = wwc/wwc,max.
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8.3.4 Equilibrium paths for struts with the most severe imper-

fection profile

Figure 8.11 presents the nonlinear equilibrium paths of example struts with the most
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Figure 8.11: Equilibrium paths of example struts in zones 1–4 presented in columns (a)–
(d) respectively, with the most severe imperfection profiles of the four cases presented in
Table 8.2. Graphs of normalized load ratio p = P/PC versus normalized end-shortening
E/L in the first row and the normalized global amplitude qs in the second row; the third row
shows the normalized maximum amplitude of local deflection in the more compressed web
wwc,max/tw versus qs. Line types in the graphs correspond to the same cases as described
in Figure 8.8.

severe local imperfection profiles for each case described in Table 8.2. Unlike the perfect

case, where the equilibrium paths for four example struts are qualitatively different, the

struts with tolerance level local imperfections exhibit approximately the same behaviour,
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i.e. column-like weakly stable, practically neutral, post-buckling behaviour. This is also

reported in previous work using simplified models (van der Neut, 1969; Gilbert & Calladine,

1974) and experimental studies (Gilbert & Calladine, 1974).

For cases with doubly-symmetric cross-section imperfection profiles, the symmetry in the

deformation remains until mode interaction is triggered and the interaction leads to the

approximately neutral post-buckling behaviour. For the case with the mono-symmetric

imperfection profile, the symmetry in the deformation is broken from the start, i.e. the

global mode is introduced at the beginning of the numerical run, thus making the initial

bending stiffness much lower than those in the doubly-symmetric cases. However, the

equilibrium path converges to the doubly-symmetric case when the global mode is fully

developed, i.e. when qs > 0.005. Therefore, it may be inferred that the ultimate behaviour

of such struts with tolerance level imperfections would be governed by eventual material

failure, rather than the cases where imperfection size is tiny and a drop in stiffness due

to mode interaction governs as reported in Chapter 6. Moreover, it is concluded that

determining the global buckling load of struts with tolerance level local imperfections may

provide a good approximation for the ultimate load in such cases.

8.4 Discussion

In a similar way to the local imperfection amplitude, the equivalent local bending energy of

imperfection profiles also cannot be used as the sole criterion to determine the severity of

imperfection profile. However, it gives an insight into how the imperfection profiles affect

the ultimate load. Therefore, it can still be used as an important reference to judge the

severity of local imperfections.

In this subsection, a discussion is presented that considers why very localized local imper-

fections with high imperfection amplitudes exhibit higher ultimate loads than the periodic
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ones with the same local bending energy. Moreover, the most severe imperfection profile

and the wavelength under the constraint of the manufacturing tolerance level is discussed,

as is the effect of global imperfections on the most severe local imperfection profiles.

8.4.1 Effects of localization on tangent stiffness and ultimate load

As shown in Figure 8.9, struts with very localized imperfections exhibit considerably higher

ultimate loads than periodic imperfections, even though the corresponding amplitude is

much larger than that of the periodic case. These findings are similar to those in earlier

work on thin plates (Dow & Smith, 1984).

Since the global buckling load of struts with doubly-symmetric cross-section imperfection

profiles is related to the axial stiffness distribution, the axial tangent modulus of the cross-

section versus load relationship is analysed. It should be stressed that the relationship for

different lengths is approximately the same before global buckling is triggered. Therefore,

the relationship of the tangent axial stiffness and the normalized axial load for the perfect

short length strut and the short length strut with periodic (α1 = 0) and highly localized

local imperfections (α1 = 20) with the cross-section profile being doubly-symmetric are

presented in Figure 8.12(a) for illustration. It should also be noted that the cross-section

imperfection profiles, the number of half-waves and initial local bending energy due to local

imperfections for both imperfect struts are the same as that for case 4 in Figure 8.11(d).

The strut with localized imperfections exhibits a higher tangent stiffness than the periodic

case from the commencement of loading. This is attributed to the fact that the local

out-of-plane displacement in the webs is affine to the localized imperfection profile and

that there is no out-of-plane displacement at the loaded end before the local buckling

load is reached, as shown in Figure 8.12(b). It implies that there is no progression of the

local out-of-plane displacement from the localized to being more distributed, as seen in

the local–global interactive buckling for the perfect case. The zero displacement in the
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Figure 8.12: (a) Cross-sectional axial tangent modulus of the short length strut with
increasing load level. (b–d) Longitudinal component of the local buckling mode in the webs
(solid line) at different load levels and the initial imperfection (dashed line), where p =
P/PC

l . Note that the cross-section profile of the local imperfections is doubly-symmetric
and global imperfections are not included.

plate represents no loss in the axial stiffness, which helps to explain the relatively higher

tangent axial stiffness compared to the periodic imperfection case. When the load reaches

the local buckling load of the strut, there is a sharp drop in the axial stiffness, which is

also observed in the perfect case. This corresponds to local buckling of the unbuckled plate

near the loaded-end, as shown in Figure 8.12(c). After that, the out-of-plane displacement

in the webs becomes more distributed. However, it should be noted that the wavelength

near the loaded end is relatively larger than at mid-span, which is determined by the

imperfection, as shown in Figure 8.12(d). Moreover, it is worth mentioning that although

struts with highly localized local imperfection profiles exhibit higher ultimate loads, there

is a tiny drop in the load capacity afterwards and it converges to that of the periodic case

with the lowest ultimate load, which implies that the post-buckling behaviour is weakly

unstable. This is also observed in plates with localized imperfections (Dow & Smith, 1984).

However, it should also be mentioned that the current discussion only applies for purely

elastic cases. As reported by Gardner & Nethercot (2004a), the localization of deformation
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profile could well lead to the premature failure of material. A study on the most severe

imperfection profile where the effects of the material nonlinearity are included is left for

future work.

8.4.2 Most severe imperfection profile under amplitude tolerance

constraint

As presented in Figure 8.9 and Table 8.4, the most severe imperfection profile for each

strut corresponds to case 4 with the modulated longitudinal components, i.e. the doubly-

symmetric cross-section with α1 6=0 (see Eqs. (5.13) and (5.14) for the definition of the

modulated imperfection). However, since current manufacturers principally adopt the

tolerance level of imperfection amplitude as the quality control, the worst profile determined

in §8.3.3 would be practically insignificant owing to its excessive amplitude, as shown in

Table 8.4. Therefore, based on the algorithm presented in Figure 8.2, the value of α1 that

makes the imperfection amplitude be the tolerance value under the constraint of equal

local bending energy is determined using the interval bisection method. It should be noted

that the value of α1 purely corresponds to the horizontal coordinate at the intersection

of the dashed line and the dot-dashed line in Figure 8.8, where the amplitude of the

imperfection is equal to the tolerance level under the equal local bending energy constraint.

The longitudinal component of the most severe imperfection profile under the amplitude

tolerance constraint is presented as the solid line in Figure 8.13.

It should be stressed that the modulated imperfection profiles are relatively complex to

model when compared with the periodic imperfection profiles, the latter of which can

be obtained directly from some software, such as CUFSM (Schafer, 2006a). Moreover,

as can be seen from Table 8.5, the ultimate load for struts with a periodic imperfection

profile is lower than the corresponding modulated imperfection with the same amplitude.

Therefore, for modelling convenience, the periodic imperfection profile with the tolerance
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Figure 8.13: Longitudinal component of the most severe imperfection profile (case 4) w10

under the amplitude tolerance constraint (solid line), with the degree of localization pa-
rameter α1 being (a) 2.269, (b) 2.742, (c) 2.977 and (d) 3.213 respectively for different
length struts. Dashed lines represent the periodic imperfection profile with the amplitude
being the tolerance value, which is currently used for a safe approximation of the most
severe imperfection profile.

Table 8.5: Normalized ultimate loads of struts with the most severe modulated local im-
perfection and approximations using periodic profiles under the amplitude tolerance con-
straint; Pu,LBA,An represents the ultimate load of struts with periodic imperfection profiles
from linear buckling analysis using the analytical model presented in Appendix C with
tolerance level imperfections.

L
(mm)

Pu/Pu,LBA,FE Pu,LBA,An/Pu,LBA,FEModulated Periodic
4800 0.944 0.932 0.967
4500 0.941 0.925 0.970
4000 0.949 0.929 0.977
3600 0.949 0.927 0.980
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level amplitude could be adopted as a safe approximation of the most severe imperfection

profile, as presented with the dashed line in Figure 8.13. The following discussion and

parametric study focuses on local imperfection profiles with doubly-symmetric cross-section

and periodic longitudinal components.

8.4.3 Effects of superposing tolerance level global imperfections

In the preceding sections, the most severe local imperfection profile is determined based

on the cases with pure local imperfections. In order to investigate whether the most

severe local imperfection profile would change with the inclusion of tolerance level global

imperfections, a parametric study on the most severe local imperfection is conducted for

the cases where both tolerance level local and global imperfections exist using the algorithm

presented in Figure 8.2.

The normalized wavelength of the most severe imperfection profile for the two cases are

shown in Figure 8.14. Compared with the pure local imperfection cases (hollow circles),

the introduction of the global imperfection (solid circles) leads to a further decrease in the

wavelength. However, the increase and decrease in the number of waves near the most

severe imperfection profiles βworst has minor effects on the ultimate load. Specifically, for

the example struts in the current paper, ±4 half-waves would lead to errors within 0.5%

for both cases, which are shown in Figure 8.14. Therefore, the range between βcomb,worst−4

and βloc,worst+4, i.e. the range enclosed by the dashed lines in Figure 8.14, is the overlap

of the two cases, which can be used for the approximation of the most severe imperfection

profile with excellent accuracy for both cases, as outlined above. It may therefore be

concluded that the most severe imperfection profile determined in the case with purely

local imperfections is still valid for the cases with both local and global imperfections.

Moreover, instead of determining βworst for each characteristic strut length individually

using the iterative process, it is postulated that a fixed reduced wavelength can be used
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Figure 8.14: Normalized wavelength of the most severe local imperfection profile with
a doubly-symmetric cross-section profile for different length struts. The quantity λp,LBA

represents the wavelength of the lowest local buckling mode, which is determined using
Eq. (C.21); quantities βloc,worst and βcomb,worst represent the number of half-waves of the
most severe imperfection profile with purely local imperfections and combined local and
global imperfections respectively. Range enclosed by the dashed line represents the overlap
of the two cases, which can estimate the most severe local imperfection profile with good
accuracy.
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to approximate the most severe profile for the current case. Specifically, if a reduced

wavelength λworst = 0.825λp,LBA is adopted, which are shown as the plus (+) symbols

in Figure 8.14, the largest differences in the corresponding ultimate load with the lowest

ultimate load is 0.33% among the four example struts. Therefore, in the following section,

an explicit expression is proposed to determine the wavelength of the worst imperfection

profile based on the results of the parametric study.

8.5 Application and parametric study

8.5.1 Wavelength of most severe local imperfection profile

The parametric study in this section comprises two parts: the first part focuses on the

effects of geometric properties and the second part focuses on the effects of imperfection

size. In the first part, parametric studies on the wavelength of the most severe local

imperfection profile for struts with different geometric properties, i.e. cross-section aspect

ratios φc = [1, 2.5] and web depth to thickness ratios φdt = [60, 240], are conducted. The

web width is fixed to 120 mm as that of the example struts in the preceding section. Since

the ultimate load erosion is most significant in the range where PC
o /P

C
l ≈ 1, the strut

length is determined based on the condition that PC
o /P

C
l =1. Moreover, the initial local

imperfection amplitude A0
i0 is 0.6t.

Figure 8.15(a) shows the normalized wavelength of the most severe imperfection profile

determined using the algorithm presented in Figure 8.2. The variation of the wavelength

is small in the range, i.e., the average value is 0.836λp,LBA and the coefficient of variation

(COV) is 2.14%. It implies that the normalized wavelength of the most severe imperfection

profile can be treated to be constant for different φc and φdt cases. Moreover, the effects

of the strut length varying (PC
o /P

C
l = 0.6, 1.0 and 1.5) are also investigated; it is revealed

that the average value almost remains the same with a slight increase in the COV to be



CHAPTER 8. SENSITIVITY TO MANUFACTURING TOLERANCE LEVEL IMPERFECTIONS 284

φc

1 1.5 2 2.5

λ
w
or
st
/λ

p
,L
B
A

0

0.2

0.4

0.6

0.8

1

(a)

φdt=60
φdt=120
φdt=180
φdt=240
Proposed equation

A0/t
0 0.5 1 1.5 2 2.5 3

λ
w
or
st
/λ

p
,L
B
A

0

0.2

0.4

0.6

0.8

1

(b)

φc=1

φc=1.2

φc=1.5

φc=1.8

φc=2

φc=2.2

φc=2.5

Proposed equation

Figure 8.15: (a) Normalized wavelength of the most severe imperfection profile
λworst/λp,LBA for struts with different cross-section aspect ratios and different plate width
to thickness ratios. (b) Relationship of λworst/λp,LBA and the normalized imperfection size
A0/t for struts with different aspect ratios. Note that the length of all struts is determined
based on the condition PC

o /P
C
l =1.

3.36%. This may be attributed to the constraint that the number of half-waves should be

an integer; for the cases where the number of half-waves is small, ±2 half-waves along the

length would lead to a relatively larger variation in the wavelength.

Since it has been demonstrated that the wavelength of the most severe imperfection profile

decreases with the increase of imperfection size, a parametric study on the effects of im-

perfection size is conducted based on the results in the first part. The web depth and plate

thickness are fixed to 120 mm and 1 mm respectively as those of the example struts in

preceding section. It should be noted that the manufacturing tolerance of local imperfec-

tions is expressed as a ratio of plate width, i.e. d/200, in Eurocode 3 (EN-1993-1-3:2006E,

2006). However, a theoretical study (Supple, 1970) demonstrated that the imperfection

related parameter in the governing equations for the buckling of imperfect plates can be

normalized with respect to plate thickness A0/t. Therefore, the dimensionless quantity

A0/t is adopted as the varying imperfection parameter.



CHAPTER 8. SENSITIVITY TO MANUFACTURING TOLERANCE LEVEL IMPERFECTIONS 285

The results of the parametric study are presented in Figure 8.15(b). With the increase of

imperfection size, the wavelengths of the most severe imperfection profiles decrease. For

a fixed value of imperfection size, the maximum COV in the wavelength for struts with

different cross-section aspect ratios among all cross-section aspect ratio cases is found to be

only 2.83%. Therefore, an equation is fitted based on the least squares method to describe

the relationship between the most severe wavelength and the imperfection size:

λworst/λp,LBA = 1 − 0.2

(

A0

t

)0.36

. (8.4)

The average ratio of the FE results to that predicted by Eq. (8.4) is 1.002 and the COV is

2.14%, which represents an excellent fit.

8.5.2 Global buckling loads of struts with tolerance level doubly-

symmetric cross-sectional local imperfections

A simplified method to calculate the load at the pitchfork bifurcation point (Glendinning,

1994), which is a generic term for a symmetric bifurcation point, of thin-walled RHS struts

with purely global imperfections was proposed in §7.2.1. This has been demonstrated

to provide a safe prediction with excellent accuracy. Currently, attempts are made to

understand the mechanism of the global buckling of struts with tolerance level doubly-

symmetric cross-sectional local imperfections and develop a simplified method to calculate

the buckling load. The latter would also be a good approximation of the ultimate load

since the post-buckling behaviour has been shown to be weakly stable in such cases.

As shown in Figure 8.12(a), local buckling leads to the axial stiffness dropping to below

60% of the pre-buckling value for the perfect strut. The post-buckling axial stiffness is

much larger than that in Van der Neut’s model (approximately 40%), where the compressed

plates are simply-supported and there is no interaction between individual plates within the
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cross-section (van der Neut, 1969). However, after local buckling is triggered, the tangent

axial stiffness does not remain constant but drops further with increasing deformation.

Specifically, the cross-section profile would not remain in the initially buckled shape but

bulge out gradually, as shown in Figure 6.16. This finding is also reported in Young &

Rasmussen (1997) and Loughlan et al. (2011), but has been omitted in other previous

studies (Bijlaard & Fisher, 1953; van der Neut, 1969; Koiter & Pignataro, 1976a; Graves

Smith, 1972) owing to technical complexity. As for the imperfect case, the tangent axial

stiffness is lower than that of the perfect case at the start of loading and decreases as

further loading is applied. When the load exceeds the local buckling load, the tangent

stiffness of the imperfect strut would converge to that of the perfect strut.

In Van der Neut’s idealized model (van der Neut, 1969), where there are only two simply-

supported flanges contributing to the bending rigidity through their axial stiffness, the

corresponding global buckling load for the locally buckled strut is ηPC
o , which can be

determined using double-modulus theory (Bažant & Cedolin, 2010), as discussed in Chap-

ter 6. The stiffness reduction factor η can be determined from the normalized tangent

stiffness Et/E of purely local buckling struts directly because both flanges are parallel to

the neutral axis of bending and thus Et/E represents the actual stiffness reduction ratio

in both flanges.

In the current case, however, the normalized tangent stiffness Et/E from the load versus

end-shortening relationship only represents the general stiffness reduction of the whole

cross-section in the purely local buckling case. The transition from the purely local buckling

mode to the global–local interactive post-buckling mode involves a stiffness redistribution

across the entire cross-section due to the interaction of individual plates (Bijlaard & Fisher,

1952; Hancock, 1981; Shen & Wadee, 2018b). This implies that the tangent stiffness

distribution would be different from that of the purely local buckling case at the same load

level. Moreover, the restraint from both flanges on the webs also decreases with increasing

load and thus the actual stiffness distribution profile is also affected by the load level,
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i.e. it is related to the strut length. In order to obtain the corresponding global buckling

load for the locally buckled struts, the actual tangent stiffness distribution at the pitchfork

bifurcation point is required (Rasmussen, 1997). The problem itself is highly complex and

requires geometrically nonlinear analysis to solve.

A systematic parametric study is conducted currently to investigate the key parameters

that may affect the global buckling load of thin-walled RHS struts with purely tolerance

level local imperfections P̄C
o . This is used to develop an expression to determine the

value of P̄C
o . Firstly, the effect of geometric properties is investigated. The principal

varying parameters are the cross-section aspect ratio φc, web depth to thickness ratio φdt,

and the strut length PC
o /P

C
l . The web depth is fixed to the value of 120 mm and the

dimensionless local imperfection size is fixed to A0/t = 0.6. The cross-section profile of

local imperfections is doubly-symmetric and determined using Eqs. (C.2) and (C.3); the

longitudinal component is periodic and the wavelength is determined using Eqs. (8.4) and

(C.21).

The results from the parametric study on geometric properties are presented in Figure 8.16.

As can be seen, P̄C
o /P

C
o decreases with decreasing strut length. It reflects that the tangent

stiffness of the cross-section decreases with increasing load level, as shown in Figure 8.12(a).

Moreover, P̄C
o /P

C
o decreases with increasing cross-section aspect ratio φc at a fixed value

of PC
o /P

C
l , but the difference is small and reduces with decreasing strut length, as seen

in Figure 8.16(a). This may be attributed to the fact that the interaction between each

individual plate becomes weaker with increasing load level. Compared with the cross-

section aspect ratio φc, the effect of the plate width to thickness ratio φdt is much smaller, as

shown in Figure 8.16(b). This is reasonable since the thickness has a relatively minor effect

on the cross-section second moment of area for thin-walled section members. Therefore, it

may be concluded that the effect of cross-section aspect ratio and web depth to thickness

ratio on the relationship between P̄C
o /P

C
o and PC

o /P
C
l may be safely neglected.

The second part of the parametric study focuses on the effect of local imperfection size. The
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Figure 8.16: Reduced global buckling load of struts P̄C
o /P

C
o with dimensionless local im-

perfection size A0/t = 0.6 versus PC
o /P

C
l from FE results and Eq. (8.5) for different (a)

φc values and (b) φdt values. Note that the web depth d is fixed to 120 mm; the plate
thickness t is fixed to 1 mm in (a); in (b) φc is fixed to 2.

imperfection profiles are determined in the same way as the parametric study on geometric

properties, which, in turn, is based on the parametric study on the worst imperfection

profile. The cross-section geometric properties of the struts are the same as the example

struts in §8.3, with the results presented in Figure 8.17(a). It is observed clearly that with

increasing imperfection size, the value of P̄C
o /P

C
o decreases. In particular, the drop is much

larger when global buckling is critical, i.e. where PC
o /P

C
l <1, which implies that struts with

global buckling being critical are more sensitive to local imperfections. The difference in

the reduced normalized global buckling load for different length struts becomes small when

the normalized imperfection size A0/t is large.

The following equation is fitted based on the results of the two-part parametric study using

the least squares method:

P̄C
o

PC
o

=

(

C1 − C2

√

PC
l

PC
o

)

(

PC
l

PC
o

)C3

, (8.5)
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Figure 8.17: (a) Relationship of the normalized reduced global buckling load P̄C
o /P

C
o versus

PC
o /P

C
l at different imperfection amplitude levels. (b) Ratio of the normalized reduced

global buckling load of struts with different imperfection sizes from FE results and Eq.
(8.5); the dashed line represents the average with the value being 0.993.

where C1, C2 and C3 are imperfection size related parameters, thus:

C1 = 4.67 − 4(A0/t)
0.05, C2 = 0.15 − 0.24(A0/t)

−0.3, C3 = 5.02 − 4.8(A0/t)
0.03. (8.6)

As shown in Figures 8.16(a) and (b), the average ratios of Eq. (8.5) to the FE results

for struts with different geometric properties are 0.998 and 1.000 respectively, and the

COVs are 1.20% and 0.46% respectively. As for imperfection size effects, as shown in

Figure 8.17(b), the average ratio is 0.993 and the COV is 1.71%. It implies that Eq.

(8.5) provides excellent agreement with FE models for the reduced global buckling load of

thin-walled RHS struts with different geometric properties and imperfection sizes.

8.6 Concluding remarks

The behaviour of thin-walled RHS struts with tolerance level imperfections was investigated

using GNIA based on the FE model developed in Chapter 3 alongside findings from the
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variational model in Chapter 7. Focus has been on the effect of local imperfection profiles

on the ultimate load and equilibrium behaviour.

A unified local imperfection measurement based on equal local bending energy has been

proposed. An algorithm for determining the most severe local imperfection profile is pro-

posed. A function to terminate the nonlinear analysis automatically once certain failure

criteria is developed within Matlab, which greatly improves the computational efficiency.

Within the automated computational framework, the most severe local imperfection pro-

files for struts with different lengths have been determined. The study revealed that the

ultimate load is principally affected by the imperfection in the more compressed web. The

wavelength of the most severe periodic local imperfection was found to be smaller than

that of the purely local buckling mode or the local–global interactive post-buckling mode

for the perfect case, which implies that the lowest local buckling mode from linear buckling

analysis does not necessarily represent the most severe local imperfection profile. Intro-

ducing a modulated amplitude in the local imperfection profile leads to a further decrease

in the ultimate load. However, struts with highly localized local imperfection profiles ex-

hibit a relatively stiffer response, thus leading to a higher ultimate load. Moreover, it was

revealed that under the constraint of the manufacturing imperfection tolerance level, the

most severe imperfection profile can be safely approximated using the case with doubly-

symmetric cross-section initial deformation and periodic longitudinal components. An

equation to approximate the corresponding wavelength has been proposed based on the

results of the parametric study.

As for the equilibrium behaviour, the example struts with doubly-symmetric cross-section

local imperfections with a tolerance level amplitude exhibit approximately neutral or

weakly stable responses after the local–global mode interaction is triggered. This is differ-

ent from the perfect case, where there are four representative length-related ranges that

exhibit distinct interactive post-buckling responses. Although the mono-symmetric cross-

section imperfection profile breaks the symmetry of the strut deformation at the beginning,
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the equilibrium path converges to the doubly-symmetric case when the global mode is fully

developed. An explicit equation to predict the global buckling load of thin-walled RHS

struts with tolerance level doubly-symmetric cross-section imperfections has been proposed

and shows excellent agreement with the FE results for different plate width to thickness

ratios, cross-section aspect ratios and imperfection size levels.

Hitherto, the behaviour of perfect and imperfect purely elastic RHS struts have been

investigated. In the next chapter, the effect of material nonlinearity on the behaviour

of RHS struts susceptible to local–global mode interaction is investigated. Moreover, a

systematic and extensive parametric study on geometric properties, material yielding stress

levels, and residual stresses is conducted to understand the behaviour of RHS struts in

practical scenarios.



Chapter 9

Parametric study

The previous chapters introduced a series of variational models and identified unstable

interactive post-buckling behaviour, length effects and imperfection sensitivity of thin-

walled rectangular hollow section struts susceptible to mode interaction. In the current

chapter, systematic parametric studies on geometric properties (cross-section aspect ratio

and plate width–thickness ratio), material yielding stress levels, imperfections (geometric

imperfections and residual stresses) are conducted using the validated FE models in Chap-

ter 3. Moreover, the numerical results are compared with the current design guidelines.

Recommendations on the designing of such specimen are provided at the end.

9.1 Algorithm for Automated GMNIA

In the current chapter, a multitude of nonlinear analyses are required so as to understand

the effects of different parameters on the interactive buckling behaviour of RHS struts.

Processing so many nonlinear FE models is time-consuming and the volume of data gen-

erated can be very large. Moreover, the traditional nonlinear analysis procedure requires

Linear Buckling Analysis (LBA) to acquire the geometric perturbation or imperfection

292
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profile into the model for nonlinear analysis. The computational burden is therefore quite

high, particularly for short columns with high PC
o /P

C
l ratios, where a large number of unre-

lated eigenmodes would be produced simultaneously in order to obtain the global buckling

mode. A post-processing script would have to be written to distinguish the desired eigen-

mode automatically. The whole process would have been quite cumbersome.

Therefore, based on the findings in preceding chapters, an algorithm to automate the

Geometric and Material Nonlinear Analysis with Imperfection (GMNIA) is proposed, as

presented in Figure 9.1. Since the global and local buckling modes for struts with different

geometric properties have been defined using Eq. (4.1) and Eqs. (C.2)–(C.3) and (C.21)

respectively, which showed good comparisons with that from LBA, the nonlinear FE model

for struts with predefined geometric imperfections is developed directly based on these

analytical expressions and thus the nonlinear analysis can be conducted directly without

LBA. Moreover, the function developed in Chapter 8, as shown in Figure 8.3, is adopted

to terminate the nonlinear analysis automatically once a certain failure criterion is met.

Moreover, the post-processing is conducted immediately afterwards to extract the ultimate

load and the equilibrium path (if required) using a Python script generated together with

the model input file. After that, the capacious output database (.odb) file, which stores all

details of model information and analysis results, is deleted to save memory storage since

they are no longer used. The automated GMNIA process makes it possible to conduct a

systematic and extensive parametric study.

9.2 Geometric parameter

In preceding chapters, the cross-section geometry of the example struts remains constant

in most cases and the principal varying parameter is the strut length. In this section, the

effects of plate width–thickness ratio and cross-section aspect ratio on the profile of the

Van der Neut-type curve are investigated.
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Terminate GMNIA

Delete odb file

Figure 9.1: Algorithm for automated GMNIA for RHS struts. Codes were developed in
Matlab to achieve the entire process.

9.2.1 Plate width–thickness ratio

The flange width and web depth are fixed as presented in Table 4.1. The principally

varying parameter is the plate thickness. The Van der Neut type curves of perfect RHS

struts and struts with tolerance level geometric imperfections with different plate width–

thickness ratios are shown in Figure 9.2. For both perfect and imperfect cases, the effect
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Figure 9.2: The effect of plate width–thickness ratio on the Van der Neut type curve for
perfect rectangular hollow section struts and struts with tolerance level imperfections. Solid
and hollow symbols represent the ultimate load of perfect struts and struts with tolerance
level imperfections respectively. Solid and dashed lines represent the average ultimate load
of perfect and imperfect struts with different d/t ratios. Symbols ◦, O, � and 4 represent
the web depth–thickness ratio being 120, 80, 60 and 40 respectively. Note that the width
depth and flange width are fixed being 120 mm and 60 mm respectively.

of web depth–thickness ratios on the curve is small. Specifically, the COVs with respect

to the corresponding average value ranges from 0.13% to 1.76% for the perfect and 0.68%

to 3.82% imperfect cases respectively.

Specifically, for the perfect case, with the decrease of plate width–thickness ratio, the

normalized ultimate load Pu/P
C
l decreases. The effect is very small in zones 2 and 3

and the difference increases with increasing PC
o /P

C
l . As for the zonal boundary between

zones 2 and 3, the differences are negligible. For illustration purposes, a simplified model

presented in Figure 6.20, where the corners of the four plates are pin connected, is adopted.

Figure 9.3(a) presents the effect of plate width–thickness ratio on the zonal boundary of

such strut using Eq. (B.8) based on the double modulus theory. It can be seen that the

effect of d/t on the zonal boundary is tiny. Moreover, it should be stressed that there is
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Figure 9.3: Effect of the cross-section aspect ratio and web depth–thickness ratio on the
zonal boundary of zones 2 and 3 for rectangular hollow section struts with pinned corners.
Note that web depth and flange width are 120 mm and 60 mm respectively in (a); the
web depth and plate thickness are 120 mm and 1 mm respectively in (b). The stiffness
reduction factor in the more compressed web is 0.408.

stiffness re-distribution in the rigid joint case, which may further alleviate the difference.

For the case with tolerance level imperfections, the trend seems to be to the contrary of

that for the perfect case, particularly in the range where global buckling is critical. This

may be attributed to the fact that the effect of the local imperfection on the ultimate

load is essentially governed by the dimensionless parameter A0/t (Supple, 1970; Little,

1980). However, in the current study, the amplitude of the tolerance level local imper-

fections is set to d/200. Therefore, A0/t for sections with larger d/t is relatively higher

and the corresponding erosion on the ultimate load would be more significant. Moreover,

as demonstrated in Chapter 7, the effect of local imperfections is more significant in the

range where global buckling is critical. This may explain why the trend is to the contrary

of the range where global buckling is critical and becomes similar to that of the perfect

case when PC
o /P

C
l becomes large.
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9.2.2 Cross-section aspect ratio

The parametric study on the cross-section aspect ratio is based on parametric study on

the plate width–thickness ratio in the preceding subsection. The plate thickness and web

depth are fixed to 1 mm and 120 mm respectively. The cross-section aspect ratio varies

from 1 to 2.5. As shown in Figure 9.4, the change in the cross-section aspect ratios also

has a small effect on the Van der Neut type curves for both perfect and imperfect struts.

Specifically, the COVs for the ultimate load with respect to the average values within the
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Figure 9.4: The effect of cross-section aspect ratio on the Van der Neut type curve. Solid
and hollow symbols represent the ultimate load of perfect struts and struts with tolerance
level geometric imperfections respectively. Symbols ◦, O, � and 4 represent the cross-
sections with aspect ratio being 1, 1.5, 2, and 2.5 respectively. The solid and dashed lines
represent the average ultimate load of perfect and imperfect cases with different cross-
section aspect ratios.

ranges shown are from 0.5% to 2.53% for the perfect struts and from 0.81% to 2.41% for

the struts with tolerance level imperfections.

However, it should be noted that the zonal boundary value of PC
o /P

C
l for zones 2 and

3 for the perfect struts increases with the increasing cross-section aspect ratio d/b. For

illustration purposes, the simplified RHS strut model with the corners of four plates being
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pin connected is adopted once again. As shown in Figure 9.3(b), with the increase of the

cross-section aspect ratio for the pinned connection case, the value of PC
o /P

C
l at the zonal

boundary increases. It should be noted again that there is stiffness redistribution in the

rigid connection case, which may alleviate the difference, but the simplified model can

generally describe the trend.

From the parametric study on the plate width–thickness ratio and cross-section aspect

ratio, it can be seen that the effects of these two parameters on the Van der Neut-type

curve are minor, at least for the purely elastic case. It provides support to the Direct

Strength Method (DSM) for the ultimate load prediction of RHS struts exhibiting mode

interaction where the effects of cross-section geometry are excluded.

9.3 Material properties

In the current section, the effects of the yielding stress level on the profile of Van der Neut

type curve and imperfection sensitivity as well as the effect of material strain-hardening

on the ultimate load is investigated.

9.3.1 Yielding stress levels

Effect on the Van der Neut-type curve profile

The principally varying parameter in the study is the yielding stress level. As shown in

Figure 9.5, the normalized ultimate load Pu/P
C
l decreases with the decreasing yielding

stress levels. The ultimate load drop is not significant in the range where global buckling

is critical but it becomes increasingly significant with the increase of PC
o /P

C
l in the range

where local buckling is critical. This finding is in accord with the previous study on the

effect of yielding stress level on the Van der Neut model (Becque, 2014).
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Figure 9.5: The effect of yielding stress levels on the Van der Neut-type curve of strut
with tolerance level geometric imperfections. The solid line represents the ultimate load
of elastic and perfect RHS struts. Note that the cross-section properties of the struts are
presented in Table 4.1.

Effect on the strut imperfection sensitivity

An imperfection sensitivity study is conducted on the four characteristic length struts,

as presented in Table 6.1, at different material yielding stress levels. In particular, four

typical yielding stress levels are selected, i.e. fy/σ
C
l = {1, 1.5, 2, 4} and the corresponding

normalized local slenderness λ̄p =
√

fy/σC
l = {1, 1.225, 1.414, 2} respectively (Trahair

et al., 2007). Moreover, four different imperfection cases are investigated:

1. local imperfection A0 = 0, but global imperfection qs0 6= 0 to investigate the sensi-

tivity to global imperfections;

2. A0 6= 0, but qs0 = 0 to investigate the sensitivity to local imperfections;

3. A0 6= 0 and qs0 6= 0 to investigate the sensitivity to combined imperfections. In par-

ticular, the combined imperfections are proportional to the tolerance level local and



CHAPTER 9. PARAMETRIC STUDY 300

global imperfections recommended in EC3, i.e. WE0 = W̄E0{qs0,tolL,A0,tol}, where

W̄E0 is a non-dimensional scaling factor, qs0,tol = 1/1000 and A0,tol/d = 1/200.

4. qs0 = 10−3 and A0 6= 0 to investigate the local imperfection sensitivity of struts with

a tolerance level global imperfection.

For case 1, as shown in Figure 9.6(a), the global imperfection sensitivity of all struts

increases with the decreasing λ̄p. In order to describe the imperfection sensitivity better, as
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Figure 9.6: Imperfection sensitivity of four characteristic length struts to geometric imper-
fections at different cross-sectional local slenderness λ̄p levels. Also shown are the fitted
imperfection sensitivity curves, the details of which may be found in Table 9.1. Each family
of curves represent zones 1 to 4 in sequence from right to left.

well as understanding the underlying mechanism, curves are fitted based on the numerical
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results with the following function:

pu,ε0 = 1 − aε0 (ε0)
bε0 , (9.1)

where pu,ε0 is the normalized ultimate load of imperfect struts with respect to that of

the perfect struts or struts without certain types of imperfection; ε0 is the normalized

imperfection, which is, for example, qs0 for case 1; aε0 and bε0 are constants determined

using the least squares method. As presented in Table 9.1, the sensitivity to purely global

imperfections indicates approximately a 1/2 power law relationship to leading order for all

four characteristic length struts at different cross-sectional local slendernesses, which is in

accord with the finding in (Shen & Wadee, 2018a) for the purely elastic system. At the

same cross-sectional local slenderness level, struts in zones 3 and 4 exhibit less imperfection

sensitivity compared to struts in zones 1 and 2. However, the imperfection sensitivity for

struts in zones 3 and 4 is quite dependent on cross-sectional local slenderness levels. For

instance, the imperfection sensitivity constant aε0 at λ̄p = 1 is approximately double of

that at λ̄p = 2. On the contrary, the effects of λ̄p on the imperfection sensitivity for struts

in zones 1 and 2 are relatively small. Specifically, for the example struts in zones 1 and

2, the nonlinear behaviour is almost identical for λ̄p = 2 and the purely elastic cases. It

implies that the strut failure in such cases is governed by stiffness loss due to instability

rather than material failure. Moreover, the example strut in zone 2 also shows a relatively

higher sensitivity to imperfections than struts in other zones owing to the severely unstable

post-buckling behaviour that is intrinsic in such struts (Shen & Wadee, 2018b).

As for the sensitivity to purely local imperfections (case 2), as shown in Figure 9.6(b),

similar trends are observed as that for the purely global imperfection case (case 1). The

fitted imperfection sensitivity curves show a 1/3 power law relationship, as presented in

Table 9.1. In particular, the short length strut in zone 4 exhibits mild imperfection sen-

sitivity in the range where λ̄p > 1.414. This kind of imperfection sensitivity behaviour is

most desirable for structural applications according to Chilver’s stability design concept
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Table 9.1: Constants for the fitted imperfection sensitivity curves and their comparison
with FE results for four characteristic struts. Note that an average below unity represents
a safe estimation by the fitted curve.

Imperfection
type

λ̄p

L = 3600 mm
(zone 4)

L = 4000 mm
(zone 3)

L = 4500 mm
(zone 2)

L = 4800 mm
(zone 1)

aε0 bε0 aε0 bε0 aε0 bε0 aε0 bε0

Case 1:
pure global

imperfection

1 6.469

1/2

9.211

1/2

10.435

1/2

10.431

1/2
1.225 5.732 7.051 9.558 9.275
1.414 4.982 6.343 9.343 9.162

2 3.102 5.768 9.284 9.151
Elastic 2.999 5.761 9.284 9.151

pu,Eq/pu,FE
Average 0.997 0.998 0.998 0.997

COV 1.36% 1.15% 0.87% 0.81%

Case 2:
pure local

imperfection

1 0.325

1/3

0.246

1/3

0.403

1/3

0.383

1/3
1.225 0.133 0.206 0.347 0.355
1.414 0.086 0.199 0.347 0.355

2 0.076 0.196 0.347 0.355
Elastic 0.073 0.195 0.347 0.355

pu,Eq/pu,FE
Average 0.995 0.993 0.998 0.995

COV 1.02% 1.31% 1.12% 2.29%

Case 3:
combined

imperfection

1 0.425

1/2

0.413

1/2

0.501

1/3

0.496

1/3
1.225 0.322 0.384 0.424 0.424
1.414 0.254 0.320 0.391 0.398

2 0.148 0.254 0.363 0.377
Elastic 0.124 0.244 0.360 0.376

pu,Eq/pu,FE
Average 0.997 0.999 0.997 0.995

COV 1.47% 1.04% 1.95% 2.66%

Case 4:
qs0 = 10−3,
varying A0

1 0.377

1/2

0.374

1/2

0.363

1/2

0.362

1/2
1.225 0.207 0.230 0.241 0.255
1.414 0.141 0.164 0.181 0.199

2 0.067 0.081 0.102 0.135
Elastic 0.025 0.058 0.094 0.131

pu,Eq/pu,FE
Average 0.996 0.996 0.995 0.996

COV 1.03% 0.91% 0.84% 0.73%

(Chilver, 1976). However, when λ̄p becomes close to unity, the strut becomes increasingly

sensitive to imperfections owing to the interaction of material yielding and local buckling.

Moreover, it should be noted that for the example struts in zones 1 and 2, the imperfec-

tion sensitivity relationship is almost identical compared to the purely elastic cases when

λ̄p > 1.225. This bound is much smaller than that for case 1. This is reasonable since the

local imperfection has a direct and immediate destabilization effect on the strut stiffness
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in zones 1 and 2, which facilitates the stiffness-governed failure mode.

Figure 9.6(c) presents the sensitivity of struts to the combined imperfections (case 3). It

also reveals that the sensitivity increases with the decrease of λ̄p and the effect is most

significant in the example strut that lies in zone 4. The fitted imperfection sensitivity

curves exhibit a 1/2 power law for example struts in zones 3 and 4 and a 1/3 power law

for struts in zones 1 and 2, as presented in Table 9.1. It implies that the struts in zones

3 and 4 are more sensitive to global imperfections and those in zones 1 and 2 are more

sensitive to local imperfections. This finding is also in accord with the finding for purely

elastic struts with tolerance level imperfections (Shen & Wadee, 2018a). Moreover, unlike

the previous two cases, the struts in zones 1 and 2 become sensitive to the cross-sectional

local slenderness, i.e. a gradual increase in the imperfection sensitivity is observed with

the decrease of λ̄p.

The effects of cross-sectional local slenderness on the imperfection sensitivity in case 4

are presented in Figure 9.6(d). The fitted imperfection sensitivity curves exhibit a 1/2

power law relationship for all example struts, as presented in Table 9.1. Relatively mild

imperfection sensitivity is observed in the example struts in zones 2, 3 and 4 in the purely

elastic case, but the severity of imperfection sensitivity increases dramatically with the

decrease of λ̄p. For the example strut in zone 4, the trend is the same as that in case

2. However, for the example struts in zones 2 and 3, the results are very different from

any previous case. Moreover, an increasing sensitivity to the yielding stress level is also

observed in the example strut in zone 1. All these findings imply that material yielding may

be the governing failure mechanism in the current case for all four example struts. This is

reasonable owing to the following facts: (1) the relatively large initial global imperfection

would lead to a relatively large degree of bending in the strut; (2) as found in (Shen &

Wadee, 2018c), the introduced local imperfection further undermines the effective axial

stiffness of the cross-section, thus leading to increased global deflection. The latter may

also explain why the imperfection sensitivity curves satisfy a 1/2 power law, the same as
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for the purely global imperfection case.

Effect on equilibrium paths

Since Degée et al. (Degée et al., 2008) suggested that the equivalent geometric imper-

fection combination for struts, where the residual stresses are not explicitly modelled, is

qs0 = 1/1000 and A0/d = 200, this particular combination is now adopted. As shown in

Figure 9.7, all four example struts exhibit highly unstable behaviour after the ultimate load
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Figure 9.7: Equilibrium paths of four characteristic length struts with purely geometric
imperfections with qs0 = 1/1000 and A0/d = 1/200 at different λ̄p levels. Dashed, solid,
dotted and dot-dashed lines represent λ̄p=1, 1.225, 1.414, and 2 respectively; the outer thin
dark solid line represents the purely elastic case. Graphs of normalized load ratio p = P/PC

versus normalized end-shortening E/L in the first row; the second row shows the normalized
maximum amplitude of local deflection in the more compressed web wwc,max/tw versus the
normalized global amplitude qs. Note that the point where loading commences is marked
by ‘*’.

point when λ̄p = 1 due to the coupling of plate local buckling and material yielding. The

severity of unstable behaviour is mollified with the increase of λ̄p. It may help explain the

reason why the imperfection sensitivity of struts decreases with the increase of λ̄p. For the
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practically significant range, i.e. the serviceability limit |qs| < 0.01, λ̄p = 2 can be treated

to be the same as the purely elastic case, particularly for the long length and transitional

length struts. Moreover, from the wwc,max/tw–qs relationship, it can be determined that

the final failure mechanism is due to the localized failure of the more compressed web at

mid-span.

In order to understand the failure mechanism better, a simply-supported plate with the

same geometric and material properties as well as initial geometric imperfections as the

more compressed web is selected for illustration purposes. Figure 9.8 presents the relation-

ship between the normalized axial tangent stiffness of the plate and the normalized axial

load level. For the case where λ̄p is small, the tangent stiffness decreases dramatically

p
0 0.5 1 1.5 2

E
t
/E
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0.2
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Figure 9.8: Axial tangent modulus of a simply-supported plate with d = 120 mm, t = 1
mm and initial imperfection size A0 = d/200 with increasing axial load level. Line types
in the graphs correspond to the same cases as described in Figure 9.7.

with a tiny increase of the axial load after the first yield. This is quite similar to the

stiffness drop in the more compressed web owing to the local buckling in perfect struts

in Chapter 6, which leads to highly unstable post-buckling behaviour after the secondary

bifurcation point and a commensurate high degree of sensitivity to imperfections. It can

explain the highly unstable behaviour of struts with relatively small λ̄p. With the increase

of λ̄p, this severity is mollified. Specifically, for the case λ̄p = 2, the decrease in Et/E is
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accompanied by an obvious increase in p. This can, in turn, explain the mildly unstable

behaviour of struts with λ̄p = 2. However, it should be noted that the actual boundary

condition of the more compressed web is not simply-supported. A study on the effect

of rotational restraints from both flanges, which may quantify the tangent axial stiffness

change in the more compressed web, is left for future study.

9.3.2 Effect of material strain-hardening

Three different material models are adopted to investigate the effects of strain-hardening

with the parameters shown in Table 9.2. Type 1 corresponds to an elastic–perfectly plastic

Table 9.2: Parameters for different elastic–plastic material models. Note that the defini-
tions of the parameters n and Eh can be found in Figure 3.6.

Type n Eh/E σu/fy Note
1 0 0 1 Elastic–perfectly plastic
2 0 1/50 1.2 Elastic–linear strain-hardening
3 9 1/50 1.2 Elastic–linear strain-hardening with plastic flow

model, where there is no strain–hardening. Type 2 corresponds to the elastic–linear strain-

hardening model but there is no plastic flow. The material model represented by type 3 is

more realistic particularly for carbon steel (Sadowski et al., 2017b; Yun & Gardner, 2017),

where there is a yield plateau before the linear strain-hardening. In particular, for types 2

and 3, the same strain-hardening modulus Eh = 1/50 is adopted. Moreover, the strain at

the beginning of strain-hardening (1 + n)εy is taken to be 10εy. These values are chosen

based on the material model for hot-rolled steel recommended by ECCS (1984).

Figure 9.9 presents the effect of material strain-hardening on the ultimate load for the four

characteristic length struts with tolerance level combined imperfections. The ultimate load

ratios of types 1 and 3 material model are almost the same for all four example struts,

which implies that the strain-hardening after the plastic flow has no practical effect on

the ultimate load for the current case. For the strain-hardening model without plastic
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Figure 9.9: Effect of strain-hardening on the ultimate load of struts with tolerance level
imperfections at different material yielding stress levels. Symbols 4 and ∗ represent non-
linear material types 2 and 3 in Table 9.2; the ordinate in each graph is normalized with
respect to the ultimate load found from type 1, i.e. the elastic–perfectly plastic case; the
abscissa λ̄p =

√

fy/σC
l , where σC

l = PC
l /Ag with Ag being the gross cross-sectional area.

flow (type 2), the ultimate load is relatively higher due to the material strain-hardening,

but the percentage increase is tiny, i.e. less than 1% at λ̄p = 0.5. Moreover, it should be

noted that the increment in the ultimate load decreases with the increasing cross-sectional

slenderness as well as the strut length. Therefore, it may be concluded that the effect of

material strain-hardening on the ultimate load is tiny and it can be neglected currently.
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9.4 Residual stress

In this section, the effects of residual stresses on the equilibrium path and imperfection

sensitivity of struts are investigated. Unlike the stocky welded sections, the compressive

residual stresses in slender sections would lead to premature local buckling at a lower

external load level. Therefore, the ratio of the compressive residual stress σrc to the plate

local buckling stress σC
l versus the plate width–thickness ratio d/t is investigated. By

transforming Eq. (3.5), the relationship between the compressive residual stress σrc and

the local buckling stress σC
l in the ECCS residual stress distribution model for welded

box-section members can be expressed as:

σrc

σC
l

=

(

3dt
d− 3dt

)

σrt

σC
l

=
3dtd

2

(d− 3dt)t2

[

(1 − ν2)σrt

kpπ2E

]

. (9.2)

For illustration purposes, the σrc/σ
C
l –d/t relationship for a heavily welded cross-section

with an aspect ratio of 2 is presented in Figure 9.10. As shown in Figure 9.10(a), for a

d/t
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Figure 9.10: Ratio of compressive residual stresses σrc to local plate buckling stresses σC
l

versus plate width–thickness ratios d/t in heavily welded box-section members for different
(a) cross-sectional local slendernesses and (b) practical yielding stress levels. Note that the
buckling coefficient for the local buckling stress is adopted with the cross-section aspect
ratio being 2.
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fixed value of the normalized local slenderness λ̄p, σrc/σ
C
l decreases with the increase of d/t;

for a fixed value of d/t, σrc/σ
C
l increases with the increase of λ̄p. Figure 9.10(b) presents

the σrc/σ
C
l –d/t relationship at some practical yielding stress levels. It can be seen that

σrc/σ
C
l increases with d/t as well as with increasing yielding stress levels. In particular,

for high strength steel components (fy ≥ 460 N/mm2), the compressive residual stress in

cross-sections with a high d/t ratio is larger than 50% of the local buckling stress.

9.4.1 Effects on imperfection sensitivity

Based on the numerical results, the effects of residual stress on the imperfection sensitivity

are now investigated. Emphasis is placed on the local imperfection sensitivity of struts with

the normalized global imperfection size qs0 being 1/1000, i.e. case 4 in §9.3.1.Moreover,

the same four characteristic length struts are selected, as presented in Table 6.1. As for

the residual stress distribution, the ECCS model is again adopted. Two different cases

for the length of the uniform tensile range are considered. The first case, where dt = 3t,

corresponds to the ECCS model for heavily welded box-section members. Since the plate

width–thickness ratio d/t for the web of the current example strut is 120, σrc/σ
C
l only

varies from 0.081 to 0.324 in the range of λ̄p = [1, 2], as shown in Table 9.3. Therefore,

the second case, where dt = 6t, is adopted to understand the effects of residual stresses at

high σrc/σ
C
l levels, which reflects the effects of residual stress in relatively stocky sections.

Table 9.3: Ratio σrc/σ
C
l for the example struts with the ECCS residual stress distribution

model for welded box-section members with two different uniform tensile range lengths at
different plate slenderness levels.

λ̄p
σrc/σ

C
l

case 1: dt = 3t case 2: dt = 6t
1 0.081 0.176

1.225 0.122 0.265
1.414 0.162 0.353

2 0.324 0.706

Figure 9.11 presents the sensitivity of four characteristic length struts to local geometric
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imperfections for cases 1 and 2. In both cases, the imperfection sensitivity decreases

with the increase of λ̄p, which is very similar to those cases with no residual stresses,

as presented in Figure 9.6(d). Imperfection sensitivity curves are fitted to describe the

imperfection sensitivity relationship, which exhibit a 1/2 power law relationship for all

example struts, as presented in Table 9.4. This is also the same as for the struts without

residual stresses. However, compared with the residual stress-free case, the imperfection

sensitivity decreases with the increase of σrc/σ
C
l . For instance, the parameter aε0 of the

imperfection sensitivity curve for the long length strut (L = 4800 mm) with λ̄p = 2 is

0.135 for the residual stress-free case, 0.098 for the case where dt = 3t and 0.039 for the

case where dt = 6t respectively. Moreover, struts in case 2 with λ̄p = 2 exhibit relatively

moderate sensitivity to imperfections, as shown in Figure 9.11(b) and Table 9.4.
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Figure 9.11: Local imperfection sensitivity relationship for four characteristic length struts
with residual stresses and the normalized global imperfection amplitude qs0 being 1/1000
at different λ̄p levels. Also shown are the fitted imperfection sensitivity curves, the details
of which may be found in Table 9.4.
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Table 9.4: Constants for the fitted imperfection sensitivity curves Eq. (9.1) and their
comparison with FE results for four characteristic struts with ECCS welding residual stress
distributions.

Imperfection
type

λ̄p

L = 3600 mm
(zone 4)

L = 4000 mm
(zone 3)

L = 4500 mm
(zone 2)

L = 4800 mm
(zone 1)

aε0 bε0 aε0 bε0 aε0 bε0 aε0 bε0

Case 1:
dt = 3t

1 0.317

1/2

0.327

1/2

0.336

1/2

0.343

1/2
1.225 0.177 0.254 0.231 0.250
1.414 0.127 0.166 0.207 0.195

2 0.061 0.074 0.084 0.098

pu,Eq/pu,FE
Average 1.000 1.000 1.000 1.000

COV 0.91% 1.14% 0.86% 0.77%

Case 2:
dt = 6t

1 0.246

1/2

0.274

1/2

0.300

1/2

0.315

1/2
1.225 0.121 0.176 0.189 0.213
1.414 0.077 0.106 0.127 0.149

2 0.068 0.039 0.015 0.039

pu,Eq/pu,FE
Average 1.000 1.000 1.000 1.000

COV 1.15% 0.92% 1.40% 1.17%

9.4.2 Effects on equilibrium paths

In order to understand the underlying mechanism of the effects of residual stress on the

imperfection sensitivity better, the effects of residual stresses on the equilibrium paths

of struts are investigated. The equilibrium paths for the four characteristic length struts

with a global imperfection qs0 = 1/1000 and a local imperfection A0/d = 1/1000, which

are recommended in previous studies (Degée et al., 2008; Pavlovčič et al., 2012) as a

reasonable geometric imperfection combination for welded box-section struts with residual

stresses being explicitly modelled, are presented in Figures 9.12 and 9.13. The general

trends of the equilibrium paths are very similar to those in the residual stress-free case as

presented in Figure 9.7. All four characteristic example struts exhibit similar responses, i.e.

struts with λ̄p = 2 exhibit weakly stable behaviour and struts with lower λ̄p values exhibit

unstable behaviour after the ultimate load point. However, compared with the residual

stress-free case, the severity of the behaviour after the ultimate load point is mollified with

the increase of σrc/σ
C
l . This may help explain the decreasing imperfection sensitivity of

struts with increasing σrc/σ
C
l .
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Figure 9.12: Equilibrium paths of four characteristic length struts with the ECCS resid-
ual stress distribution for welded box-section members with dt = 3t at different yielding
stress levels. Note that the global and local imperfection sizes are qs0 = 1/1000 and
A0/d = 1/1000 respectively. Graphs (a)–(d) and the line types are the same as described
in Figure 9.7, except there is no purely elastic case.

The residual stress also leads to an erosion in the ultimate load, as can be seen from Fig-

ure 9.14, which presents the equilibrium paths for intermediate length struts with different

yielding stress magnitudes at various cross-section slenderness levels. A summary of the

load capacity erosion of the four example struts is presented in Table 9.5. It should be

noted that the length effects on the erosion percentage is tiny. Therefore, only the average

value and COV are presented. Moreover, struts with a higher σrc/σ
C
l ratio exhibit stiffness

erosion at a relatively lower load level. This is attributed to the fact that the compressive

residual stress facilitates premature buckling of the more compressed web at a relatively

lower external axial load level, thus leading to the loss of strut stiffness. For illustration

purposes, the normalized tangent stiffness Et/E of a simply-supported plate at different

load levels are presented in Figure 9.15. The geometric properties, local imperfection size

and the residual stress distributions are the same as for the more compressed web of the

short length strut. It can be seen that the compressive residual stresses lead to an erosion
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Figure 9.13: Equilibrium paths of four characteristic length struts with the ECCS residual
stress distribution for welded box-section members with dt = 6t at different yielding stress
levels. Graphs (a)–(d) and the line types are the same as described in Figure 9.7, except
there is no purely elastic case.

in the axial tangent stiffness of the example plate. For the current case, the erosion is most

significant in the case with λ̄p = 2, where σrc/σ
C
l is 0.324 and 0.706 for cases 1 (dt = 3t)

and 2 (dt = 6t) respectively. Moreover, it should be noted that there is no material yielding

in the case with λ̄p = 2 before Et/E = 0.40, which is the tangent stiffness value within the

initial post-buckling range of a simply-supported plate. The difference in p with respect

to the residual stress-free case at the point is equal to the corresponding σrc/σ
C
l for each

case respectively. However, it should be noted that Figure 9.15 is only for qualitative il-

lustration purposes. A more refined model that includes the effects of rotational restraint

from both flanges is required to quantify the actual axial tangent stiffness change, but this

is left for future study.
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Figure 9.14: Equilibrium paths of the intermediate length strut (L = 4000 mm) with
no residual stress (solid line), with the ECCS residual stress distribution with dt = 3t
(dashed line) and 6t (dot-dashed line). Note that the global and local imperfection sizes
are qs0 = 1/1000 and A0/d = 1/1000 respectively and the point where loading commences
is marked by ‘*’.

Table 9.5: Effect of residual stress on the ultimate load of example struts with global
imperfection qs0 = 1/1000 and local imperfection A0/d = 1/1000. Note that pu,case0,
pu,case1 and pu,case2 represent the cases with no residual stress, with the ECCS residual
stress distribution with dt = 3t and 6t respectively; the ratio σrc/σ

C
l for each case is

presented in Table 9.3.

λ̄p
pu,case1/pu,case0 pu,case2/pu,case0 pu,case2/pu,case1

Average COV Average COV Average COV
1 0.890 0.89% 0.860 1.18% 0.967 0.30%

1.225 0.894 1.55% 0.860 1.46% 0.962 0.12%
1.414 0.897 1.86% 0.855 0.96% 0.953 0.91%

2 0.883 0.75% 0.806 0.49% 0.913 1.22%

9.4.3 Simplified method to determine initial local imperfection

amplitude A0
0

As illustrated in Figure 3.11, the initial imperfection amplitude A0
0 introduced in the FE

model is amplified owing to the compressive residual stresses after the self-equilibrating
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Figure 9.15: Effects of residual stresses on the axial tangent modulus–axial load relationship
of a simply-supported plate with d = 120 mm and t = 1 mm. Note that the initial geometric
imperfection size A0 = d/1000. The dotted line represents the purely elastic case with no
residual stress; the other line types in the graphs correspond to the same cases as described
in Figure 9.14.

step. Since the self-equilibrating step involves geometric nonlinearity, an iterative solution

process is required to determine the initial imperfection amplitude A0
0, such that A0 is

equal to the desired value after the self-equilibrating step. However, this process is very

cumbersome, even though an automated solution searching program has been developed

within Matlab in conjunction with Abaqus. Currently, an investigation is conducted

to understand the amplification of the amplitude at different σrc/σ
C
l levels and propose a

simplified equation to describe the relationship.
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The self-equilibrating process is essentially an equilibrium problem of an initially deformed

plate under initial residual stresses. From the perspective of linear theory, the total poten-

tial energy of an initially deformed plate under pure compression can be expressed as:

V = U − PE

=
D

2

∫ L

0

∫ d/2

−d/2

{

[

∂2 (w − w0)

∂z2
+

∂2 (w − w0)

∂y2

]2

− 2(1 − ν)

[

∂2 (w − w0)

∂z2
∂2 (w − w0)

∂y2

−
(

∂2 (w − w0)

∂z∂y

)2 ]
}

dy dz − P

2

∫ L

0

∫ d/2

−d/2

[

(

∂w

∂z

)2

−
(

∂w0

∂z

)2
]

dy dz,

(9.3)

where D is the plate flexural rigidity; L and d are length and width of the plate respectively;

z and y are the longitudinal and transverse coordinates respectively. By assuming that

the total out-of-plane deflection w = Qf(y)w(z) and the initial out-of-plane deflection

w0 = Q0f(y)w(z), the relationship between Q, Q0 and P can be obtained by applying the

stationary potential energy condition for equilibrium ∂V/∂Q = 0 and can be expressed

thus:

Q0

Q
= 1 − P

Pcr

, (9.4)

where Pcr is the critical buckling load of the plate. It should be noted that Eq. (9.4) is

a general expression that is independent of the selected functions for f(y) and w(z) and

its format is practically identical to the load–deflection amplitude relationship for initially

imperfect columns (Timoshenko & Gere, 1961). However, since plates have a considerable

post-buckling stiffness compared with columns, this expression may only be valid for cases

where the deflection and load levels are small, otherwise strain energy contributions from

membrane stresses would need to be included.

Figure 9.16 presents the ratio of the initial imperfection amplitude A0
0 to the imperfection

amplitude A0 = d/1000 after the self-equilibrating step at different σrc/σ
C
l levels. The

cross-section aspect ratio is fixed to 2 and the web depth is 120 mm; λ̄p ranges from 1 to

2. It can be seen that with the increase of σrc/σ
C
l , A0

0/A0 decreases. A linear function is
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Figure 9.16: Relationship of the imperfection amplitude ratio before and after the self-
equilibrating step A0

0/A0 and σrc/σ
C
l . Note that the cross-section aspect ratio is 2, the web

depth d is fixed to 120 mm, and the ECCS residual stress distribution model for heavily
welded box-section members is adopted; the targeted A0 value is d/1000.

fitted based on the numerical results:

A0
0

A0

= 1 − σrc

σC
l

. (9.5)

The mean ratio from the FE results to the fitting equation in the parameter range shown

is 1.000 and the COV is 1.33%. It can be seen that this relationship is essentially identical

to Eq. (9.4).

A more extensive study is conducted to establish the sensitivity of Eq. (9.5) to other

parameters, such as the cross-section aspect ratio, plate width–thickness ratio and targeted

imperfection size A0. As shown in Figure 9.17, Eq. (9.5) shows good comparisons with the

FE results for the cases where σrc/σ
C
l is small and A0 is relatively small. The difference

increases with the increase of σrc/σ
C
l and A0. This is reasonable since Eq. (9.5) is essentially

based on linear theory, which is only valid for small deflections.

However, Table 9.4 shows that the sensitivity of struts to local imperfections decreases
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Figure 9.17: Comparison of FE results with Eq. (9.5) for different cross-section aspect
ratios, targeted imperfection sizes and compressive residual stress levels.

commensurately with λ̄p and struts exhibit only moderate sensitivity to local imperfections

when λ̄p = 2. Figure 9.18 presents the envelope of two curves (solid line) defined by λ̄p = 2

(dashed line) and fy = 690 N/mm2 (dot-dashed line) based on Eq. (9.2) with dt = 3t,

which represents heavily welded sections. The range below the envelope is practically
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Figure 9.18: Ratio σrc/σ
C
l at the boundary of local geometric imperfection sensitivity

range for practically realistic box-section members. The solid line envelope is defined by
λ̄p = 2 (dashed line) and fy = 690 N/mm2 (dot-dashed line) by Eq. (9.2), as illustrated in
Figure 9.10 for the case where d/b = 2.

significant. It can be seen that σrc/σ
C
l is generally less than 0.6 for most cases, where
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Eq. (9.5) can provide a relatively accurate estimation of A0
0, as shown in Figure 9.17.

Specifically, for the target A0 = d/1000, which is the local geometric imperfection size

recommended in previous work (Degée et al., 2008; Pavlovčič et al., 2012) for numerical

modelling of welded box-section members with residual stresses being explicitly modelled,

A0
0,FE/A

0
0,Eq varies between 0.95 and 1.05. As for higher strength steels, previous studies

(Ban et al., 2013; Somodi & Kövesdi, 2018) have reported that the width of the uniform

tensile zone would decrease with the increase of steel strength grade. This would make the

size of the envelope decrease with the increase of the steel strength grade. Therefore, it

may be concluded that Eq. (9.5) provides a simple yet relatively accurate estimation of the

initially introduced imperfection size A0
0 for the cases where residual stresses are explicitly

accounted within the FE model.

9.5 Comparison with the current design guidelines

and reliability analysis

Based on the findings in preceding sections, an extensive parametric study on geometric

parameters, material yielding stress levels, as well as strut length is conducted and the

results are placed in the context of the current design methodologies, i.e. the Effective

Width Method (EWM) and the Direct Strength Method (DSM). The principal parameters

and their ranges are presented in Table 9.6. As for imperfections introduced in the model,

Table 9.6: Principal parameters and their ranges for the parametric study for the guideline
reliability assessment. Note that the critical buckling load ratio is altered by varying the
strut length.

Principal parameters Range
Cross-section aspect ratio d/b 1 → 2.5

Critical buckling load ratio PC
o /P

C
l 0.6 → 4

Cross-sectional slenderness λ̄p 0.6 → 2
Welding options dt 1.5t and 3t

the combination recommended by Degée et al. (Degée et al., 2008) is adopted, i.e. the
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global imperfection being L/1000, the local imperfection being d/1000 and the ECCS

residual stress distribution model for welded box-section members. The comparisons with

the existing experimental results are shown in Figure 9.19. It can be seen that the FE
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Pavlovčič et al. (2012)

Kwon and Seo (2013)

Yang et al. (2017)

Figure 9.19: Comparison of ultimate loads between the experimental and FE results using
the imperfection combination recommended by Degée et al. (Degée et al., 2008).

model with the imperfection combination can provide a reasonably safe ultimate load

prediction for welded box-section members exhibiting mode interaction. Specifically, the

average of Pu,FE/Pu,Exp is 0.914 with the COV being 12.07% for dt = 3t and 0.960 with

the COV being 11.88% for dt = 1.5t respectively. This is attributed to the fact that

the amplitudes of the currently chosen imperfections are generally larger than those of

specimens in tests, particularly for the compressive residual stress level. In most cases,

the compressive residual stress level is much closer to the ECCS model for lightly welded

sections. Therefore, in the reliability analyses that follow, a variability term VFE = 0.1144,

determined by considering the deviation of the current numerical models to actual welded

specimens, is adopted to add artificial variability to the numerical results. The procedure

to determine VFE is precisely the same as that presented in Bock et al. (Bock et al., 2015),

which was also adopted by a later study (Wang & Gardner, 2017) to consider the deviation

of the numerical model. Currently, VFE is determined based on the correlation between
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the experimental results and the FE model with the lightly welded residual stress model

and it is assumed that it also applies to the cases in heavily welded members, since there

is a lack of available experimental data.

9.5.1 Assessment of the Effective Width Method in EC3 and

reliability analysis

In the current version of EC3 (EN-1993-1-1:2006E, 2006; EN-1993-1-5:2006E, 2006), the

column buckling curves for generally welded and heavily welded sections are recommended

as b and c respectively, as shown in Table 2.4. The comparisons of the FE results for lightly

welded and heavily welded members are presented in Figure 9.20. It can be seen that

the current design approach based on the EWM can generally provide a good prediction

for the ultimate load of thin-walled welded RHS struts susceptible to mode interaction.

Specifically, for lightly welded struts, the average of Pu,FE+tests/Pu,EC3 is 1.001 and the

COV is 9.24%; for heavily welded struts, the average and its COV are 1.011 and 9.96%

respectively.

However, in some parameter ranges, the current design guidelines may give unsafe predic-

tions. Therefore, a reliability analysis is conducted within the framework of the first order

reliability method (FORM) in Annex D of EN 1990 (BS EN 1990, 2002). The objective

of reliability analysis is to ensure that the probability of failure Pf is below a certain level,

i.e.:

Pf = Pr[(R− Ea) ≤ 0] = φ(−βr), (9.6)

where R is the resistance and Ea represents the action effects; φ is the cumulative distri-

bution function of the standardized normal distribution; βr is the total reliability index,

which is equal to 3.8 for the ultimate limit state design of building structural members
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with a 50-year design life (BS EN 1990, 2002).
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Figure 9.20: Comparison of the ultimate loads for lightly welded and heavily welded struts
from the validated FE model and the design equation from EC3. Symbols ‘◦’ and ‘*’
represent FE and experimental data respectively. Note that the column buckling curves
for lightly and heavily welded struts are adopted as ‘b’ and ‘c’ respectively, as presented
in Table 2.5.

In the FORM, the variabilities of the load effects and resistance functions are assessed

separately. As for design resistance Rd, the probability of the resistance of structural

members being smaller than Rd is given thus:

Pr(R ≤ Rd) = φ(αrβr) ≈ 0.001, (9.7)

where αr is the sensitivity factor and is adopted to be 0.8. The principal task in reliability

analysis is to determine the partial safety factor γM defined thus:

γM = rn/rd, (9.8)

where rn is the nominal resistance determined from the design resistance equation using the

nominal geometric and material properties; rd is the design resistance determined from the
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reliability analysis procedure using the actual or measured data from tests. The detailed

procedure to determine γM can be found in design guidelines (BS EN 1990, 2002) and

previous studies (Afshan et al., 2015; Bock et al., 2015):

1. Compare the ultimate load from the FE model and design equation to obtain the

mean value of the correction factor b and the corresponding COV of the error terms

Vδ;

2. Define the COVs for the basic variables VXi
in the resistance function and calculate

the COV of the resistance function Vrt as well as the COV of the FE model VFE;

3. Calculate the combined COV V 2
r such that: V 2

r = Vδ + V 2
rt + V 2

FEM;

4. Determine the design resistance value rd using the expression given in Annex D of

EN 1990 (BS EN 1990, 2002), which is a function of Vr, Vδ and Vrt;

5. Calculate the nominal resistance value rn using the nominal geometric and material

properties;

6. Calculate the partial safety factor using Eq. (9.8).

Compared with previous studies, the key challenge in the current study is to determine

the deviation of the resistance function V 2
rt defined thus:

V 2
rt =

Var[grt(X)]

g2rt(Xm)
≈ 1

g2rt(Xm)
·

j
∑

i=1

(

∂grt
∂Xi

· VXi

)2

, (9.9)

where grt is the resistance function; X and Xm represent the variables in the resistance

function and their respective mean values; VXi
is the COV of variable Xi, which is generally

determined based on prior knowledge. The COVs of basic variables in the current study are

presented in Table 9.7. However, the current resistance function, i.e. Eqs. (2.22)–(2.24),

is not a continuous function and comprises two parts, which means that a continuous

and explicit expression may be difficult to obtain. Moreover, the value of V 2
rt is not a
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constant but varies with the geomeric properties and yielding stress levels (Afshan et al.,

2015). Therefore, the resistance function is developed as a function in Matlab and V 2
rt

is evaluated numerically for each specimen. Figure 9.21 presents the relationship of V 2
rt

versus PC
o /P

C
l at different cross-section local slenderness levels for heavily welded RHS

struts with d=120 mm, b = 60 mm and t = 1 mm. It can be seen that V 2
rt increases with

PC
o /P

C
l
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Figure 9.21: Relationship between V 2
rt and PC

o /P
C
l at different plate slendernesses deter-

mined based on Eq. (9.9) for heavily welded RHS struts with d = 120 mm, b = 60 mm and
t = 1 mm. The dotted line represents the value of V 2

rt determined based on a mean squre
formula (Schillo, 2017). Note that the coefficients of variation of geometric and material
properties are presented in Table 9.7.

the increase of PC
o /P

C
l and also varies with the local slenderness λ̄p. The variation is caused

by the change of ∂grt/∂Xi in different parametric ranges, which reflects the corresponding

governing failure mechanism of struts (Afshan et al., 2015).

As for the calculation of the nominal resistance rn, it is assumed that the mean to nominal

yielding strength ratio fy,mean/fy,nominal = 1.135 (Wang & Gardner, 2017). Based on the

rn,i and rd,i values for each specimen, the overall γM1 is determined based on least squares
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Table 9.7: Coefficient of variation (COV) for geometric and material property parameters
based on the data presented in (Schillo, 2017).

Parameter COV
Plate thickness (tf , tw) 0.05

Plate width (b, d) 0.005
Strut length (L) 0.005

Material yielding stress (fy) 0.07

regression:

γM1 =

∑n
i=1 r

2
n,i

∑n
i=1 rn,ird,i

. (9.10)

A summary of the results of the reliability analysis is presented in Table 9.8. For both

Table 9.8: Summary of reliability analysis results for the Effective Width Method in EC3.
Note that kd,n is the fractile factor, which is related to the number of tests in each data
set; bm and Vδ are the mean value and the COV of the correction factor for the ultimate
load from the tests, FE models and design equation.

Welding option No. of simulations or tests kd,n bm Vδ γM1

Light 790 FE models + 57 tests 3.102 1.013 0.087 1.138
Light 57 tests 3.271 1.056 0.136 1.386
Heavy 885 FE models 3.101 1.036 0.102 1.172

cases, the values of γM1 are larger than unity, where unity is the recommended value in

EC3 for member buckling. It implies that the current design equation may fail to meet the

Eurocode reliability requirement if γM1 = 1 is adopted. However, it should be noted that

the current parametric study includes extensive geometric and material property ranges,

some of which may not be practically significant and may also contribute to the relatively

higher values of γM1. A further parametric study on struts with practically significant

geometric and material properties is required to assess the reliability of the design equation

further but this is left for future study.
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9.5.2 Assessment of the Direct Strength Method (DSM) and re-

liability analysis

The comparisons of the FE results and the DSM prediction are presented in Figure 9.22.

Since the DSM was proposed based on systematic experimental and numerical studies

specifically on cold-formed steel sections, it is not entirely surprising that the current

DSM generally provides an overprediction for the ultimate load of thin-walled welded RHS

struts. Specifically, for lightly welded struts, the average of Pu,FE+tests/Pu,DSM is 0.887 and

the COV is 7.77%; for heavily welded struts, the average and COV are 0.823 and 7.28%

respectively. Following the same procedure presented in the preceding section as well as
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Figure 9.22: Comparison of the ultimate loads for lightly welded and heavily welded struts
from the validated FE model and the DSM. Also shown are the correction factor functions
fitted based on least squares.

adopting the same COVs for the basic parameters, reliability analysis has been conducted

and a summary of results is presented in Table 9.9.
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Table 9.9: Summary of reliability analysis results for the DSM with quantities being defined
in Table 9.8.

Welding option No. of simulations or tests kd,n bm Vδ γM1

Light 790 FE models + 57 tests 3.102 0.904 0.070 1.223
Light 57 tests 3.271 0.962 0.132 1.495
Heavy 885 FE models 3.101 0.855 0.075 1.319

9.6 Proposal and reliability analysis of a modified DSM

procedure

Because the current DSM method cannot be applied directly to the ultimate load prediction

of thin-walled welded RHS struts, efforts have been made currently to propose a new design

equation. As presented in Table 9.9, the effects of welding options should be considered and

separate equations need to be adopted for each case. Currently, the EC3 column curves for

lightly welded and heavily welded members are b and c respectively (EN-1993-1-1:2006E,

2006). The column buckling curve adopted in the current DSM lies in the range between

buckling curves a and b (see Table 2.5), as shown in Figure 9.23. This is an additional

0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9.23: Column buckling curves. Solid and the dashed lines represent the column
strength curve in the DSM and the five curves, a0–d, in EC3 respectively.
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reason why the ultimate load prediction is on the unsafe side. Therefore, in the proposed

modified DSM, the column buckling curves b and c from EC3 are adopted for the lightly

welded and heavily welded members respectively to determine the nominal global failure

load Pne,N, i.e.:

Pne,N = χAgfy, (9.11)

with χ defined as that in Eq. (2.23) and the gross cross-sectional area being adopted to de-

termine the relevant quantities in Eq. (2.24). The imperfection factors α for lightly welded

and heavily welded members are 0.34 and 0.49 respectively, as presented in Table 2.5. As

for local buckling, the nominal axial strength, Pnl,N is given by:

Pnl,N

Pne,N

=















1 for λ̄l,N ≤ 0.536,

[

1 − 0.21
(

PC
l /Pne,N

)0.6
]

(

PC
l /Pne,N

)0.46
for λ̄l,N > 0.536,

(9.12)

where λ̄l,N =
√

Pne,N/PC
l with Pne,N being defined in Eq. (9.11). The nominal axial

strength, Pn,N, is the minimum of Pne,N and Pnl,N.

The comparisons of the modified DSM with the FE and experimental results are presented

in Figure 9.24. Compared with the current DSM equations, the modified DSM equations

provide a superior prediction of the ultimate loads. Specifically, for lightly welded struts,

the average of Pu,FE+tests/Pu,NDSM is 1.006 and the COV is 8.04%; for heavily welded struts,

the average and its COV are 1.005 and 8.41% respectively. Moreover, a reliability analysis

has been conducted and a summary of the results is presented in Table 9.10.

Table 9.10: Summary of reliability analysis results for the modified DSM equations with
quantities being defined in Table 9.8.

Welding option No. of simulations or tests kd,n bm Vδ γM1

Light 790 FE models + 57 tests 3.102 1.013 0.074 1.105
Light 57 tests 3.270 1.055 0.140 1.404
Heavy 885 FE models 3.101 1.029 0.087 1.135

The modified DSM takes advantage of the EC3 column buckling curves to consider the
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Figure 9.24: Comparison of the ultimate load for lightly and heavily welded struts from
the validated FE model and the modified DSM. Graphs (a) and (b) are as described in
Figure 9.20.

effects of welding options but remains within the framework of the DSM, which makes the

calculation process relatively simple. More importantly, compared with the current DSM

and EWM, it is demonstrated to provide superior accuracy and reliability for the ultimate

load prediction, in terms of mean bm and the partial safety factor γM1. Therefore, it may

be concluded that the proposed modified DSM provides a simple and reliable approach in

designing welded thin-walled RHS members.

9.7 Concluding remarks

In the current chapter, the effects of cross-section geometry, material properties, residual

stress on the behaviour of thin-walled RHS struts exhibiting mode interaction were in-

vestigated using the validated FE model developed in Chapter 3 but also drawing on the

developments presented in the subsequent chapters. An assessment of the current design

guidelines was made by means of structural reliability analysis in accordance with Annex
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D of EN1990.

Firstly, a program that could automatically generate, submit, terminate and process ge-

ometric and material nonlinear analyses with imperfections (GMNIA) was developed in

Matlab. With the program, an extensive parametric analysis can be conducted efficiently

and systematically.

The parametric study on the cross-section geometry, i.e. plate width to thickness ratio

and cross-section aspect ratio, showed that they generally have minor effects on the profile

of the Van der Neut-type curve in the purely elastic case. It also indicated that the

Direct Strength Method (DSM) can be used for the ultimate load prediction in such cases.

Moreover, for perfect struts, the extent of the notoriously unstable range, i.e. zone 2, was

observed to increase with the increase of cross-section aspect ratio, while there was little

effect found from varying the plate width to thickness ratio.

The effects of the yielding stress level on the Van der Neut-type curve were also investi-

gated. With the decrease of material yielding stress level, the Van der Neut-type curve

was curtailed. The load-carrying capacity drop is not significant in the range where global

buckling is critical but it becomes increasingly significant with the increase of PC
o /P

C
l in

the range where local buckling is critical. Based on the results, the imperfection sensitivity

of four representative length struts at different yielding stress levels was investigated. In

particular, four typical imperfection cases were studied, i.e. with purely a global imperfec-

tion, purely a local imperfection, a combined local and global imperfection with amplitudes

normalized to the tolerance value combination and a varying local imperfection with the

global imperfection being at the tolerance level. Curves were fitted to describe the im-

perfection sensitivity based on numerical results for different cases. It was found that the

leading power law relationship order is not affected by the yielding stress level but the

imperfection sensitivity increases with the decrease of the yielding stress level, particu-

larly for ‘short’ struts. Moreover, it was found that the leading order in the power law

relationship is related to the strut failure mechanism. Following that, the effects of ma-
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terial yielding stress level on the equilibrium path of the four characteristic length struts

were investigated. For struts with lower cross-sectional slenderness, the final failure mech-

anism is localized failure of the more compressed web at mid-span and the failure mode

is highly unstable. With the increase of cross-sectional slenderness, the severity of the

unstable behaviour is mollified, which helps explain the imperfection sensitivity of struts

with different yielding stress levels. The failure mechanism of struts was explained using

the axial tangent stiffness versus axial load relationship of a simply-supported plate under

pure compression. Moreover, the study on the effect of material strain-hardening showed

that the effect of strain-hardening slope in practical steels on the ultimate load of struts

susceptible to local–global mode interaction is tiny and may be neglected.

As for the effect of residual stress, the local imperfection sensitivity of struts with the

normalized global imperfection size qs0 being 1/1000 was investigated. The example struts

exhibited a 1/2 power law relationship, which is the same as the residual stress-free case.

With the increase of the ratio of the compressive residual stress to local buckling stress,

mollification in the imperfection sensitivity was observed. The effects of residual stress on

the equilibrium path of the four characteristic length struts with different normalized cross-

section slenderness were investigated. Erosion in the load-carrying capacity was observed

in all four example struts compared with the residual stress-free case and it was also found

that the length effect on the erosion is negligible. Moreover, a reduction in the initial

strut stiffness, as well as a mollification in the severity of unstable behaviour owing to the

coupling of plate local buckling and material failure, were observed. This is attributed

to the fact that the compressive residual stress promotes premature buckling of the more

compressed web at a relatively lower external axial load level, thus leading to the loss of

strut stiffness.

Since the initial imperfection size A0
0 would be amplified after the self-equilibrating step for

the cases where residual stresses are explicitly accounted within the FE model, a simplified

method was proposed to determine A0
0. Parametric studies showed that it does provide a
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simple yet relatively accurate estimation of A0
0.

Finally, based on the numerical results, an assessment of the current design rules for thin-

walled welded RHS struts, i.e. the effective width method (EWM) in EC3 and the DSM,

were made by means of reliability analysis in accordance with Annex D of EN1990. It

revealed that the EWM can generally provide a good ultimate load prediction but may

be unsafe in some parametric ranges; the DSM generally gives an unsafe ultimate load

prediction. Partial safety factors γM1 were determined for both cases such that make the

current design equations meet the Eurocode reliability requirement. Moreover, a modified

DSM equation has been proposed based on the numerical and experimental results and it

is shown to provide a better ultimate load prediction than it does at present.



Chapter 10

Conclusions and future work

10.1 Conclusions

The current thesis has presented a series of variational and finite element (FE) models, de-

scribing the local–global mode interaction of thin-walled rectangular hollow section struts.

The effects of flange–web joint rigidity, strut length and geometric imperfections were in-

vestigated using the developed variational model and verified by FE models. The highly

unstable post-buckling behaviour and imperfection sensitivity due to interactive buckling

have been highlighted. The behaviour of RHS struts exhibiting mode interaction in more

practically realistic scenarios, which include material nonlinearity and residual stresses,

were also investigated using FE models validated from existing experimental results, high-

lighting that particular attention should be paid while designing such structural members.

Firstly, nonlinear FE models using shell elements were developed in the commercial FE

package Abaqus. The classical solutions from linear theory for the buckling of simply-

supported plates under pure compression and the Euler buckling load of simply-supported

columns were used to verify the FE model and showed good comparisons. Moreover,

experimental results on local–global mode interaction of welded box-section columns under

333
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pure compression from two independent studies were used to validate the effectiveness of

the nonlinear material modelling, geometric imperfections and residual stress modelling as

well as the nonlinear solution strategy in the current FE model. Good comparisons were

also observed.

The analytical study started with the focus on the global buckling induced local–global

mode interaction of thin-walled RHS struts with semi-rigid flange–web joints. Unstable

post-buckling behaviour due to mode interaction was observed. A progressive change in

the local buckling mode was identified in terms of both the wavelength and the amplitude.

As far as the author is aware, it is the first time that this has been demonstrated in

rectangular hollow section struts. With the increase of the cross-section joint rigidity,

a transition from highly unstable to more mildly unstable post-buckling behaviour was

observed. The results from the variational model showed excellent comparisons with the

FE results, which verified the effectiveness of the presented methodology. A simplified

method to predict the local buckling coefficient in the more compressed web and the global

buckling amplitude at the secondary bifurcation point was proposed based on the verified

variational model; it was demonstrated to be simple, yet safe and accurate for the cases

studied.

The variational model was then extended to describe the interactive buckling of elastic

thin-walled RHS struts in scenarios where local buckling may be critical as well as the

existence of both local and global geometric imperfections. Two independent sets of in-

plane and out-of-plane local displacement fields, which represent the pure local buckling

mode and global buckling induced interactive buckling mode respectively, were introduced

to describe the interactive buckling mode of struts with different lengths. In particular,

the cross-section components of these local modes were approximated by applying approx-

imate kinematic boundary conditions for each plate in conjunction with Rayleigh–Ritz

method. Global and local imperfections, the profiles of which correspond to the global

and local modal descriptions adopted in the variational model, were introduced. The total
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potential energy was determined based on the modal description and introduced geomet-

ric imperfections. By performing the calculus of variations on the total potential energy,

the governing equations for the longitudinal components of the local post-buckling modes

subject to boundary and integral conditions were obtained.

Based on the developed variational model, a parametric study on strut length was con-

ducted. Numerical examples, considering four representative lengths corresponding to dis-

tinct parts of the Van der Neut curve, were presented and verified using the validated FE

model developed in Chapter 3. Using the verified variational model, the boundaries of four

distinct length-dependent domains were identified for realistic cross-section characteristics

for the first time. Unstable post-buckling behaviour due to mode interaction was observed

in long, transitional and intermediate length struts. Potentially dangerous behaviour, i.e.

a sharp drop in the load-carrying capacity immediately after the ultimate load is reached,

has been identified where the global buckling load is close to the local buckling load. A

progressive change in the local buckling mode was observed within the nonlinear post-

buckling range in all struts. In particular, for so-called ‘intermediate’ and ‘short’ length

struts, snap-backs that correspond to the change in the number of troughs and peaks in

the local mode that are akin to cellular buckling, were observed. The parametric study on

strut length also showed that the notoriously unstable post-buckling range for rectangular

hollow-section struts is in fact significantly smaller than that predicted by Van der Neut’s

idealized model and the stiffness reduction factor is also considerably higher. The reason

for this difference has been identified as being derived from the interaction between the

individual plates due to the rigid corners within the cross-section, which lead to some stiff-

ness redistribution. This is in contrast with the assumption that the corners are pinned

where the web and flange plates behave independently.

Following the study of perfect systems, the imperfection sensitivity of thin-walled RHS

struts with initial global and local geometric imperfections was investigated. Numerical

examples, focusing on cases where the global buckling load is close to the local buckling
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load, were presented and verified using the FE model developed in Chapter 3. The sensi-

tivity of two example struts exhibiting mode interaction to initial geometric imperfections

was quantified. With the increase of the geometric imperfection size, a transition from

highly unstable to neutrally or mildly stable post-buckling behaviour was observed. A

progressive change in the local buckling mode was identified in terms of both wavelength

and amplitude. In particular, mode jumping within the interactive buckling mode, i.e. the

change in the number of troughs and peaks of the local mode and snap-backs in the equilib-

rium path, was also observed in the cases where the local imperfection size is vanishingly

small. Curves were fitted to describe the ultimate load versus normalized imperfection

size relationship. For the purely global imperfection case, the expressions for both exam-

ple struts indicated approximately a 1/2 power law relationship to leading order; for the

purely local imperfection and combined imperfection cases, the expressions for both exam-

ple struts indicated approximately a 1/3 power law relationship. A simplified method to

predict the load at the pitchfork bifurcation point, where interactive buckling is triggered,

was proposed for struts with purely global imperfections based on the verified variational

model; it was demonstrated to be simple, yet safe and accurate for the cases studied.

A further parametric study on the effects of tolerance level global imperfections, local

imperfections and their combinations on the ultimate load for struts with different lengths

was conducted. It was revealed that for struts with tolerance level global imperfections,

the post-buckling behaviour after the pitchfork bifurcation point is unstable and stable for

struts with global buckling and local buckling being critical respectively. It was also found

that local imperfections are more significant than global imperfections for struts where

global buckling is critical and global imperfections are more significant for struts where

local buckling is critical. This was attributed to the characteristic behaviour where the

alternative imperfection type would facilitate the necessary symmetry breaking to trigger

interactive buckling. Based on the parametric study results, the simplified method to

predict the pitchfork bifurcation load was calibrated to calculate the ultimate load for

struts with tolerance level global and combined imperfections.
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Based on the FE model developed in Chapter 3 alongside findings from the variational

model in Chapter 7, the behaviour of thin-walled RHS struts with tolerance level im-

perfections was investigated using the Geometric Nonlinear Analysis with Imperfections

(GNIA). Focus was on the effect of local imperfection profiles on the ultimate load and

equilibrium behaviour. A unified local imperfection measurement based on equal local

bending energy was introduced, which could provide a consistent and meaningful compar-

ison between different imperfection profiles. An algorithm for determining the most severe

local imperfection profile was proposed. A function, which can terminate the nonlinear

analysis automatically once certain failure criteria is met, was also developed within Mat-

lab. This greatly improved the computational efficiency and made an efficient parametric

study feasible. Within the automated computational framework, the most severe local

imperfection profiles for struts with different lengths were determined. The study revealed

that the ultimate load is principally affected by the imperfection in the more compressed

web. The wavelength of the most severe periodic local imperfection was found to be smaller

than that of the purely local buckling mode or the local–global interactive post-buckling

mode for the perfect case, which implies that the lowest local buckling mode from linear

buckling analysis does not necessarily represent the most severe local imperfection profile.

Under the equal local bending energy constraint, introducing a modulated amplitude in the

local imperfection profile leads to a further decrease in the ultimate load. However, struts

with highly localized local imperfection profiles exhibited a relatively stiffer response, thus

leading to a higher ultimate load. Moreover, it was determined that under the constraint

of the manufacturing imperfection tolerance level, the most severe imperfection profile can

be safely approximated using the case with doubly-symmetric cross-section initial deforma-

tion and periodic longitudinal components. An equation to approximate the corresponding

wavelength was proposed based on the results of the parametric study.

As for the equilibrium behaviour, the example struts with doubly-symmetric cross-section

local imperfections with a tolerance level amplitude exhibit approximately neutral or

weakly stable responses after the local–global mode interaction is triggered. This is differ-
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ent from the perfect case, where there are four representative length-related ranges that

exhibit distinct interactive post-buckling responses. Although the mono-symmetric cross-

section imperfection profile breaks the symmetry of the strut deformation at the beginning,

the equilibrium path converges to the doubly-symmetric case when the global mode is fully

developed. An explicit equation to predict the global buckling load of thin-walled RHS

struts with tolerance level doubly-symmetric cross-section imperfections was proposed and

showed excellent agreement with the FE results for different plate width to thickness ratios,

cross-section aspect ratios and imperfection size levels.

Finally, based on findings in preceding chapters, a program that can automatically gener-

ate, submit, terminate and process geometric and material nonlinear analyses with imper-

fections (GMNIA) was developed in Matlab. With the program, an extensive parametric

analysis was conducted in an efficient and systematic way. The parametric study on the

cross-section geometry, i.e. plate width to thickness ratio and cross-section aspect ratio,

showed that they generally have minor effects on the profile of the Van der Neut-type curve

in the purely elastic case. It also indicated that the Direct Strength Method (DSM) can

be used for the ultimate load prediction in such cases. Moreover, for perfect struts, the

length of the notoriously unstable range, i.e. zone 2, was observed to increase in size with

the increase of cross-section aspect ratio while there was little effect from varying the plate

width to thickness ratio.

The effects of the yielding stress level on the Van der Neut-type curve have been inves-

tigated. With the decrease of material yielding stress level, the Van der Neut-type curve

was curtailed. The load-carrying capacity drop is not significant in the range where global

buckling is critical but it becomes increasingly significant with the increase of PC
o /P

C
l in

the range where local buckling is critical. Based on the results, the imperfection sensitivity

of four representative length struts at different yielding stress levels was investigated. In

particular, four typical imperfection cases were studied. Curves were fitted to describe the

imperfection sensitivity based on numerical results for different cases. It was found that the
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leading power law relationship order is not affected by the yielding stress level but the im-

perfection sensitivity increases with the decrease of the yielding stress level, particularly for

‘short’ struts. Moreover, it was found that the leading order in the power law relationship

is related to the failure mechanism. Following that, the effects of material yielding stress

level on the equilibrium path of the four characteristic length struts were investigated. For

struts with lower cross-sectional slenderness, the final failure mechanism is localized failure

of the more compressed web at mid-span and the failure mode is highly unstable. With the

increase of cross-sectional slenderness, the severity of the unstable behaviour is mollified,

which helps explain the imperfection sensitivity of struts with different yielding stress lev-

els. The failure mechanism of struts was explained using the axial tangent stiffness versus

axial load relationship of a simply-supported plate under pure compression. Moreover, the

study on the effect of material strain hardening showed that the effect of strain-hardening

slope in practical steels on the ultimate load of struts susceptible to local–global mode

interaction is tiny and may be neglected.

As for the effect of residual stress, the local imperfection sensitivity of struts with the

normalized global imperfection size qs0 being 1/1000 was investigated. The example struts

exhibited a 1/2 power law relationship, which is the same as the residual stress-free case.

With the increase of the ratio of compressive residual stress to the local buckling stress,

mollification in the imperfection sensitivity was observed. The effects of residual stress on

the equilibrium path of the four characteristic length struts with different normalized cross-

section slenderness were investigated. Erosion in the load-carrying capacity was observed

in all four example struts compared with the residual stress-free case and it was also found

that the length effect on the erosion is negligible. Moreover, a reduction in the initial

strut stiffness, as well as a mollification in the severity of unstable behaviour owing to the

coupling of plate local buckling and material failure, were observed. This is attributed

to the fact that the compressive residual stress promotes premature buckling of the more

compressed web at a relatively lower external axial load level, thus leading to the loss of

strut stiffness. Since the initially introduced imperfection size A0
0 would be amplified after
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the self-equilibrating step for the cases where residual stresses are explicitly accounted

within the FE model, a simplified method was proposed to determine A0
0. Parametric

studies showed that it does provide a simple yet relatively accurate estimation of A0
0.

Finally, based on the numerical results, an assessment of the current design rules for thin-

walled welded RHS struts, i.e. the effective width method (EWM) in EC3 and the DSM,

were made by means of reliability analysis in accordance with Annex D of EN1990. It

revealed that the EWM can generally provide a good ultimate load prediction but may

be unsafe in some parametric ranges; the DSM generally gives an unsafe ultimate load

prediction. Partial safety factors γM1 were determined for both cases such that make the

current design equations meet the Eurocode reliability requirement. Moreover, a modified

DSM equation has been proposed based on the numerical and experimental results and it

is shown to provide a better ultimate load prediction than it does at present.

10.2 Future work

Following the work presented in the current thesis, the following subsections outline areas

for further investigation.

10.2.1 Further enhancements of variational model

Modal description scheme As noted in preceding chapters, some simplifications have

been made in the modal descriptions in the variational models, which account for the

relatively over-stiff response of the variational model. Therefore, in order to simulate and

predict the mode interaction behaviour more accurately, the following enrichment can be

made in the modal description:

1. Introduce an independent set of transverse displacement field functions to consider
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the effects of transverse stress in plates, which have been assumed to be zero in the

current formulation.

2. Introduce higher order terms in the cross-section profile of the local buckling mode,

which could capture the progressive change in the cross-section profile owing to the

increasing compressive strain levels as well as the global inward deformation in the

less compressed web due to global bending effects in the far-field post-buckling range.

3. Re-define the cross-section components of the direct in-plane displacement field based

on the solutions from classical theory (Koiter, 1945) and results from FE models so

that the actual in-plane displacements can be better simulated.

Material nonlinearity The current variational model only limits to the linear elastic

material properties. However, as demonstrated in Chapters 8 and 9 as well as in the

existing physical test results, the ultimate failure of the thin-walled RHS struts with prac-

tical imperfection levels is mainly governed by material failure. Therefore, including the

nonlinear effects of the material in the variational model would help to understand the un-

derlying mechanism in the failure of RHS structures in realistic scenarios better. The novel

framework proposed by Köllner (2017), which extends the general elastic stability theory

to certain non-conservative deformation processes, may be used to enhance the variational

model. Moreover, the developed model may also be used to simulate mode interaction in

thin-walled RHS struts made from nonlinear materials, such as stainless steel (Gardner &

Nethercot, 2004b).

10.2.2 Inclusion of other factors

Cold-formed sections In the current thesis, mode interaction in welded RHS struts

has been investigated using the FE method. In practice, cold-formed thin-walled RHS

struts are also widely used. Compared with welded members, the process of cold working
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leads to the enhancement of material strength at the corners. Moreover, the residual stress

distribution pattern is also different (Schafer et al., 2010; Quach et al., 2010). Therefore,

FE models considering these effects could be developed to investigate the mode interaction

in cold-formed thin-walled RHS sections.

Boundary conditions of columns In the current thesis, the boundary condition of

the columns are assumed to be simply-supported and the load is applied at the cross-

section centroid. In practice, the boundary condition of column is always semi-rigid and

the load condition is always a combination of axial load and bending moment. Therefore,

a model including these factors would help better understand the effects of local–global

mode interaction on the beam-column strength curves and provide suggestions for robust

design guidelines.

10.2.3 Statistical analysis of geometric imperfections in welded

RHS members

Chapters 7, 8 and 9 have demonstrated that the ultimate load of thin-walled RHS struts

susceptible to mode interaction is sensitive to size of any geometric imperfections. Great

efforts have been made to collect and analyse the geometric imperfections in cold-formed

thin-walled members and some widely accepted equations to determine the statistically

significant imperfection size have been proposed (Schafer & Peköz, 1998a; Schafer et al.,

2010). However, as far as the author is aware, there is no such kind of database for welded

members. Therefore, a consistent and reasonable geometric imperfection size expression,

which is based on the statistical analysis of the measured data and can reflect realistic

imperfections, would be very helpful for developing a rational computational models for

research and design purposes.
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10.2.4 Extension of methodology to similar problems

Mode interaction in thin-walled RHS fibre-reinforced polymer struts Owing

to its advantages over conventional structural materials (steel, concrete, wood, etc.), such

as high strength-to-weight ratio, high failure stress and high corrosion resistance, fibre-

reinforced polymer (FRP) members are gaining increasing popularity recently and this will

probably continue (Barbero & Tomblin, 1994; Jones, 1998; Barbero, 2013). Since the FRP

material remains linearly elastic for large strains, buckling is always the governing failure

mode of such members (Barbero et al., 2000). Therefore, thin-walled RHS struts with

certain geometric properties would be susceptible to interactive buckling. Changing the

isotropic material to an orthotropic material within the current model framework would

make it possible to investigate mode interaction of such members. With the developed

model, the effects of the lay-up of the laminates or orientation of the laminates on the

local–global mode interaction, imperfection sensitivity, and Van der Neut-type curve can

be investigated, which could be used to provide recommendations to design such members.

Mode interaction in thin-walled struts with other cross-section profiles As far

as the author knows, the current methodology has not been used to investigate the local–

global mode interaction in channel-section and polygonal section struts. The challenge

in modelling these sections is a good local modal displacement scheme, which is more

complex compared with that of RHS struts. More local mode components would have

to be introduced to describe the actual local displacement field fully, which may make

the formulation process very complex and cumbersome. Therefore, the automation of the

formulation of the governing equations in the context of the symbolic computation package

Maple (2017) is essential.



Appendix A

Expressions for ODEs, integral and

boundary conditions

Currently, the extended expressions for the ODEs, integral and boundary conditions de-

rived in Chapter 5 for struts with both local and global geometric imperfections ranging

from local buckling being critical to global buckling being critical are presented. Moreover,

it should be noted that by setting local and global imperfection related terms to zero, these

expressions are the governing equations for the perfect struts presented in Chapter 6.

The fourth order ODE for w1 and w2 are given thus:

(A11A22 − A12A21) (
....
w 1 −

....
w 10) − A12 (C21 + C22) + A22 (C11 + C12) = 0, (A.1)

(A11A22 − A12A21) (
....
w 2 −

....
w 20) + A11 (C21 + C22) − A21 (C11 + C12) = 0, (A.2)
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x
+
{

f 2
1wc

}

y
−
{

f 2
1wt

}

y

]

(π

L
cos

πz

L
ẇ1 + sin

πz

L
ẅ1

)

+ Etw∆

[

2tf
tw

{

f 2
1f

}

x
+
{

f 2
1wc

}

y
+
{

f 2
1wt

}

y

]

ẅ1

− Etw
2

[

2tf
tw

{

f 4
1f

}

x
+
{

f 4
1wc

}

y
+
{

f 4
1wt

}

y

]

(

3ẇ2
1ẅ1 − 2ẇ10ẅ10ẇ1 − ẇ2

10ẅ1

)

− Etw

[

2tf
tw

{

g1ff
2
1f

}

x
+
{

g1wcf
2
1wc

}

y
+
{

g1wtf
2
1wt

}

y

]

(ü1ẇ1 + u̇1ẅ1)

− 2Gtf {f ′

1ff1f}x [(qs − qt) − (qs0 − qt0)]
π2

L
sin

πz

L
w1

−Gtw

[

2tf
tw

{g′1ff ′

1ff1f}x + {g′1wcf ′

1wcf1wc}y + {g′1wtf
′

1wtf1wt}y
]

u̇1w1

−Gtw

[

2tf
tw

{

f ′

1f
2
f 2
1f

}

x
+
{

f ′2
1wcf

2
1wc

}

y
+
{

f ′2
1wtf

2
1wt

}

y

]

(

ẅ1w
2
1 + ẇ2

1w1

− ẅ10w10w1 − ẇ2
10w1

)

,

(A.7)
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C22 =2Dwν

[

2Df

Dw

{f2ff ′′

2f}x + {f2wcf ′′

2wc}y + {f2wtf
′′

2wt}y
]

(ẅ2 − ẅ20)

− 2Dw(1 − ν)

[

2Df

Dw

{

f ′

2f
2
}

x
+
{

f ′

2wc
2
}

y
+
{

f ′

2wt
2
}

y

]

(ẅ2 − ẅ20)

+ Dw

[

2Df

Dw

{

f ′′

2f
2
}

x
+
{

f ′′

2wc
2
}

y
+
{

f ′′

2wt
2
}

y

]

(w2 − w20)

+ Etw
π2b

2L
(qt − qt0)

[

4tf
btw

{

xf 2
2f

}

x
+
{

f 2
2wc

}

y
−
{

f 2
2wt

}

y

]

(π

L
cos

πz

L
ẇ2 + sin

πz

L
ẅ2

)

+ Etw∆

[

2tf
tw

{

f 2
2f

}

x
+
{

f 2
2wc

}

y
+
{

f 2
2wt

}

y

]

ẅ2

− Etw
2

[

2tf
tw

{

f 4
2f

}

x
+
{

f 4
2wc

}

y
+
{

f 4
2wt

}

y

]

(

3ẇ2
2ẅ2 − ẇ2

20ẅ2 − 2ẇ20ẅ20ẇ2

)

− Etw

[

2tf
tw

{

g2ff
2
2f

}

x
+
{

g2wcf
2
2wc

}

y
+
{

g2wtf
2
2wt

}

y

]

(ü2ẇ2 + u̇2ẅ2)

− 2Gtf {f ′

2ff2f}x [(qs − qt) − (qs0 − qt0)]
π2

L
sin

πz

L
w2

−Gtw

[

2tf
tw

{g′2ff ′

2ff2f}x + {g′2wcf ′

2wcf2wc}y + {g′2wtf
′

2wtf2wt}y
]

u̇2w2

−Gtw

[

2tf
tw

{

f ′

2f
2
f 2
2f

}

x
+
{

f ′2
2wcf

2
2wc

}

y
+
{

f ′2
2wtf

2
2wt

}

y

]

(

ẅ2w
2
2 + ẇ2

2w2

− w20ẅ20w2 − ẇ2
20w2

)

,

(A.8)

C12 = C12,bl + C12,d + C12,s, (A.9)

C12,bl =Dwν

[

2Df

Dw

{f1ff ′′

2f}x + {f1wcf ′′

2wc}x + {f1wtf
′′

2wt}x
]

(ẅ2 − ẅ20)

− 2Dw(1 − ν)

[

2Df

Dw

{f ′

1ff
′

2f}x + {f ′

1wcf
′

2wc}y + {f ′

1wtf
′

2wt}y
]

(ẅ2 − ẅ20)

+ Dw

[

2Df

Dw

{f ′′

1ff
′′

2f}x + {f ′′

1wcf
′′

2wc}y + {f ′′

1wtf
′′

2wt}y
]

(w2 − w20)

+ Dwν

[

2Df

Dw

{f ′′

1ff2f}x + {f ′′

1wcf2wc}y + {f ′′

1wtf2wt}y
]

(ẅ2 − ẅ20) ,

(A.10)
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C12,d =Etw
π2b

2L
(qt − qt0)

[

4tf
twb

{xf1ff2f}x + {f1wcf2wc}y

− {f1wtf2wt}y
](

π

L
cos

πz

L
ẇ2 + sin

πz

L
ẅ2

)

+ Etw∆

[

2tf
tw

{f1ff2f}x + {f1wcf2wc}y + {f1wtf2wt}y
]

ẅ2

− Etw

[

2tf
tw

{

g2ff
2
1f

}

x
+
{

g2wcf
2
1wc

}

y
+
{

g2wtf
2
1wt

}

y

]

(ü2ẇ1 + u̇2ẅ1)

− Etw

[

2tf
tw

{g1ff1ff2f}x + {g1wcf1wcf2wc}y + {g1wtf1wtf2wt}y
]

(ü1ẇ2 + u̇1ẅ2)

− Etw

[

2tf
tw

{g2ff1ff2f}x + {g2wcf1wcf2wc}y + {g2wtf1wtf2wt}y
]

(ü2ẇ2 + u̇2ẅ2)

− Etw
2

[

2tf
tw

{

f 2
1ff

2
2f

}

x
+
{

f 2
1wcf

2
2wc

}

y
+
{

f 2
1wtf

2
2wt

}

y

]

(

3ẅ1ẇ
2
2 + 6ẇ1ẇ2ẅ2

− 2ẅ10ẇ20ẇ2 − 2ẇ10ẅ20ẇ2 − 2ẇ10ẇ20ẅ2 − ẇ2
20ẅ1 − 2ẇ20ẅ20ẇ1

)

− Etw
2

[

2tf
tw

{

f 3
1ff2f

}

x
+
{

f 3
1wcf2wc

}

y
+
{

f 3
1wtf2wt

}

y

]

(

6ẇ1ẅ1ẇ2 + 3ẇ2
1ẅ2

− 2ẅ10ẇ20ẇ1 − 2ẇ10ẅ20ẇ1 − 2ẇ10ẇ20ẅ1 − ẇ2
10ẅ2 − 2ẇ10ẅ10ẇ2

)

− Etw
2

[

2tf
tw

{

f1ff
3
2f

}

x
+
{

f1wcf
3
2wc

}

y
+
{

f1wtf
3
2wt

}

y

]

(

3ẇ2
2ẅ2 − ẇ2

20ẅ2

− 2ẇ20ẅ20ẇ2

)

,

(A.11)
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C12,s = − 2Gtf {f1ff ′

2f}x [(qs − qt) − (qs0 − qt0)] π
(π

L
sin

πz

L
w2 − cos

πz

L
ẇ2

)

−Gtw

[

2tf
tw

{g′2ff ′

1ff1f}x + {g′2wcf ′

1wcf1wc}y + {g′2wtf
′

1wtf1wt}y
]

(u̇2w1)

−Gtw

[

2tf
tw

{g′1ff1ff ′

2f}x + {g′1wcf1wcf ′

2wc}y + {g′1wtf1wtf
′

2wt}y
]

(u̇1w2 + u1ẇ2)

−Gtw

[

2tf
tw

{g′2ff1ff ′

2f}x + {g′2wcf1wcf ′

2wc}y + {g′2wtf1wtf
′

2wt}y
]

(u̇2w2 + u2ẇ2)

−Gtw

[

2tf
tw

{

f ′2
1ff1ff2f

}

x
+
{

f ′2
1wcf1wcf2wc

}

y
+
{

f ′2
1wtf1wtf2wt

}

y

]

(

w2
1ẅ2

− ẇ10ẇ20w1 − w10ẅ20w1 + w10ẇ10ẇ2

)

−Gtw

[

2tf
tw

{

f ′

1ff
2
1ff

′

2f

}

x
+
{

f ′

1wcf
2
1wcf

′

2wc

}

y
+
{

f ′

1wtf
2
1wtf

′

2wt

}

y

]

(

ẇ2
1w2 + 2w1ẅ1w2

+ 2w1ẇ1ẇ2 − ẅ10w20w1 − ẇ10ẇ20w1 − ẅ10w10w2 − ẇ2
10w2 − w10ẇ10ẇ2

)

−Gtw

[

2tf
tw

{

f ′2
2ff2ff1f

}

x
+
{

f ′2
2wcf2wcf1wc

}

y
+
{

f ′2
2wtf2wtf1wt

}

y

]

(

2w2ẇ
2
2 + w2

2ẅ2

− ẇ2
20w2 − w20ẅ20w2 − w20ẇ20ẇ2

)

−Gtw

[

2tf
tw

{

f 2
1ff

′2
2f

}

x
+
{

f 2
1wcf

′2
2wc

}

y
+
{

f 2
1wtf

′2
2wt

}

y

]

(

ẅ1w
2
2 + 2ẇ1w2ẇ2

− ẅ10w20w2 − ẇ10ẇ20w2 − ẇ10w20ẇ2

)

−Gtw

[

2tf
tw

{f1ff ′

1ff2ff
′

2f}x + {f1wcf ′

1wcf2wcf
′

2wc}y + {f1wtf
′

1wtf2wtf
′

2wt}y
]

(

2w1ẇ
2
2

+ 2w1w2ẅ2 − ẇ2
20w1 − w20ẅ20w1 − ẇ10ẇ20w2 − w10ẅ20w2 − w10ẇ20ẇ2

+ ẇ10w20ẇ2

)

− 2Gtf {f ′

1ff2f}x [(qs − qt) − (qs0 − qt0)] π cos
πz

L
ẇ2

+ Gtw

[

2tf
tw

{g′1ff ′

1ff2f}x + {g′1wcf ′

1wcf2wc}y + {g′1wtf
′

1wtf2wt}y
]

u1ẇ2

+ Gtw

[

2tf
tw

{g′2ff ′

1ff2f}x + {g′2wcf ′

1wcf2wc}y + {g′2wtf
′

1wtf2wt}y
]

u2ẇ2

+ Gtw

[

2tf
tw

{

f ′

2ff
2
2ff

′

1f

}

x
+
{

f ′

2wcf
2
2wcf

′

1wc

}

y
+
{

f ′

2wtf
2
2wtf

′

1wt

}

y

]

(

w2ẇ
2
2 − w20ẇ20ẇ2

)

+ Gtw

[

2tf
tw

{

f ′2
1ff

2
2f

}

x
+
{

f ′2
1wcf

2
2wc

}

y
+
{

f ′2
1wtf

2
2wt

}

y

]

(

w1ẇ
2
2 − w10ẇ20ẇ2

)

,

(A.12)

C21 = C21,bl + C21,d + C21,s, (A.13)
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C21,bl =Dwν

[

2Df

Dw

{f ′′

1ff2f}x + {f ′′

1wcf2wc}y + {f ′′

1wtf2wt}y
]

(ẅ1 − ẅ10)

− 2(1 − ν)Dw

[

2Df

Dw

{f ′

1ff
′

2f}x + {f ′

1wcf
′

2wc}y + {f ′

1wtf
′

2wt}y
]

(ẅ1 − ẅ10)

+ Dw

[

2Df

Dw

{f ′′

1ff
′′

2f}x + {f ′′

1wcf
′′

2wc}y + {f ′′

1wtf
′′

2wt}y
]

(w1 − w10)

+ Dwν

[

2Df

Dw

{f1ff ′′

2f}x + {f1wcf ′′

2wc}y + {f1wtf
′′

2wt}y
]

(ẅ1 − ẅ10) ,

(A.14)

C21,d =Etw
π2b

2L
(qt − qt0)

[

4tf
btw

{xf1ff2f}x + {f1wcf2wc}y

− {f1wtf2wt}y
]

(π

L
cos

πz

L
ẇ1 + sin

πz

L
ẅ1

)

+ Etw∆

[

2tf
tw

{f1ff2f}x + {f1wcf2wc}y + {f1wtf2wt}y
]

ẅ1

− Etw

[

2tf
tw

{

g1ff
2
2f

}

x
+
{

g1wcf
2
2wc

}

y
+
{

g1wtf
2
2wt

}

y

]

(ü1ẇ2 + u̇1ẅ2)

− Etw

[

2tf
tw

{f1fg2ff2f}x + {f1wcg2wcf2wc}y + {f1wtg2wtf2wt}y
]

(ẇ1ü2 + ẅ1u̇2)

− Etw

[

2tf
tw

{g1ff1ff2f}x + {g1wcf1wcf2wc}y + {g1wtf1wtf2wt}y
]

(ü1ẇ1 + u̇1ẅ1)

− Etw
2

[

2tf
tw

{

f 2
1ff

2
2f

}

x
+
{

f 2
1wcf

2
2wc

}

y
+
{

f 2
1wtf

2
2wt

}

y

]

(

3ẇ2
1ẅ2 + 6ẇ1ẅ1ẇ2 − ẇ2

10ẅ2

− 2ẇ10ẅ10ẇ2 − 2ẅ10ẇ20ẇ1 − 2ẇ10ẅ20ẇ1 − 2ẇ10ẇ20ẅ1

)

− Etw
2

[

2tf
tw

{

f1ff
3
2f

}

x
+
{

f1wcf
3
2wc

}

y
+
{

f1wtf
3
2wt

}

y

]

(

6ẇ1ẇ2ẅ2 + 3ẅ1ẇ
2
2

− 2ẅ10ẇ20ẇ2 − 2ẇ10ẅ20ẇ2 − 2ẇ10ẇ20ẅ2 − ẇ2
20ẅ1 − 2ẇ20ẅ20ẇ1

)

− Etw
2

[

2tf
tw

{

f 3
1ff2f

}

x
+
{

f 3
1wcf2wc

}

y
+
{

f 3
1wtf2wt

}

y

]

(

3ẇ2
1ẅ1 − ẇ2

10ẅ1 − 2ẇ10ẅ10ẇ1

)

,

(A.15)
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C21,s = − 2Gtf {f ′

1ff2f}x [(qs − qt) − (qs0 − qt0)] π
(π

L
sin

πz

L
w1 − cos

πz

L
ẇ1

)

−Gtw

[

2tf
tw

{g′1ff ′

2ff2f}x + {g′1wcf ′

2wcf2wc}y + {g′1wtf
′

2wtf2wt}y
]

(u̇1w2)

−Gtw

[

2tf
tw

{f ′

1fg
′

2ff2f}x + {f ′

1wcg
′

2wcf2wc}y + {f ′

1wtg
′

2wtf2wt}y
]

(w1u̇2 + ẇ1u2)

−Gtw

[

2tf
tw

{f ′

1fg
′

1ff2f}x + {f ′

1wcg
′

1wcf2wc}y + {f ′

1wtg
′

1wtf2wt}y
]

(u̇1w1 + u1ẇ1)

−Gtw

[

2tf
tw

{

f1ff
′2
2ff2f

}

x
+
{

f1wcf
′2
2wcf2wc

}

y
+
{

f1wtf
′2
2wtf2wt

}

y

]

(

ẅ1w
2
2

− ẅ10w20w2 − ẇ10ẇ20w2 + w20ẇ20ẇ1

)

−Gtw

[

2tf
tw

{

f ′

1ff
′

2ff
2
2f

}

x
+
{

f ′

1wcf
′

2wcf
2
2wc

}

y
+
{

f ′

1wtf
′

2wtf
2
2wt

}

y

]

(

w1ẇ
2
2

+ 2w1w2ẅ2 + 2ẇ1w2ẇ2 − ẇ10ẇ20w2 − w10ẅ20w2 − ẇ2
20w1 − w20ẅ20w1

− w20ẇ20ẇ1

)

−Gtw

[

2tf
tw

{

f ′2
1ff1ff2f

}

x
+
{

f ′2
1wcf1wcf2wc

}

y
+
{

f ′2
1wtf1wtf2wt

}

y

]

(

2w1ẇ
2
1

+ w2
1ẅ1 − ẇ2

10w1 − w10ẅ10w1 − w10ẇ10ẇ1

)

−Gtw

[

2tf
tw

{

f ′2
1ff

2
2f

}

x
+
{

f ′2
1wcf

2
2wc

}

y
+
{

f ′2
1wtf

2
2wt

}

y

]

(

w2
1ẅ2

+ 2w1ẇ1ẇ2 − ẇ10ẇ20w1 − w10ẅ20w1 − w10ẇ20ẇ1

)

−Gtw

[

2tf
tw

{f1ff ′

1ff2ff
′

2f}x + {f1wcf ′

1wcf2wcf
′

2wc}y + {f1wtf
′

1wtf2wtf
′

2wt}y
]

(

2ẇ2
1w2

+ 2w1ẅ1w2 − w10ẅ10w2 − ẇ2
10w2 − ẅ10w20w1 − ẇ10ẇ20w1 − ẇ10w20ẇ1

+ w10ẇ20ẇ1

)

− 2Gtf {f1ff ′

2f}x [(qs − qt) − (qs0 − qt0)] π cos
πz

L
ẇ1

+ Gtw

[

2tf
tw

{f1fg′2ff ′

2f}x + {f1wcg′2wcf ′

2wc}y + {f1wtg
′

2wtf
′

2wt}y
]

ẇ1u2

+ Gtw

[

2tf
tw

{g′1ff1ff ′

2f}x + {g′1wcf1wcf ′

2wc}y + {g′1wtf1wtf
′

2wt}y
]

u1ẇ1

+ Gtw

[

2tf
tw

{

f ′

1ff
2
1ff

′

2f

}

x
+
{

f ′

1wcf
2
1wcf

′

2wc

}

y
+
{

f ′

1wtf
2
1wtf

′

2wt

}

y

]

(

w1ẇ
2
1 − w10ẇ10ẇ1

)

+ Gtw

[

2tf
tw

{

f 2
1ff

′2
2f

}

x
+
{

f 2
1wcf

′2
2wc

}

y
+
{

f 2
1wtf

′2
2wt

}

y

]

(

ẇ2
1w2 − ẇ10w20ẇ1

)

.

(A.16)
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The detailed expressions of the ODEs for u1 and u2 are given thus:

(B11B22 − B12B21) ü1 − B12 (D21 + D22) + B22 (D11 + D12) = 0, (A.17)

(B11B22 − B12B21) ü2 + B11 (D21 + D22) − B21 (D11 + D12) = 0, (A.18)

where:

B11 = Etw

[

2tf
tw

{

g21f
}

x
+
{

g21wc
}

y
+
{

g21wt

}

y

]

, (A.19)

B22 = Etw

[

2tf
tw

{

g22f
}

x
+
{

g22wc
}

y
+
{

g22wt

}

y

]

, (A.20)

D11 = − Etw
π3b

2L2
(qt − qt0)

[

4tf
btw

{xg1f}x + {g1wc}y − {g1wt}y
]

cos
πz

L

+ Etw

[

2tf
tw

{

g1ff
2
1f

}

x
+
{

g1wcf
2
1wc

}

y
+
{

g1wtf
2
1wt

}

y

]

(ẇ1ẅ1 − ẇ10ẅ10)

+ 2Gtf {g′1f}x [(qs − qt) − (qs0 − qt0)] π cos
πz

L

−Gtw

[

2tf
tw

{

g′21f
}

x
+
{

g′21wc
}

y
+
{

g′21wt

}

y

]

u1

−Gtw

[

2tf
tw

{g′1ff ′

1ff1f}x + {g′1wcf ′

1wcf1wc}y + {g′1wtf
′

1wtf1wt}y
]

(ẇ1w1 − ẇ10w10) ,

(A.21)

D22 = − Etw
π3b

2L2
(qt − qt0)

[

4tf
btw

{xg2f}x + {g2wc}y − {g2wt}y
]

cos
πz

L

+ Etw

[

2tf
tw

{

g2ff
2
2f

}

x
+
{

g2wcf
2
2wc

}

y
+
{

g2wtf
2
2wt

}

y

]

(ẇ2ẅ2 − ẇ20ẅ20)

+ 2Gtf {g′2f}x [(qs − qt) − (qs0 − qt0)] π cos
πz

L

−Gtw

[

2tf
tw

{

g′22f
}

x
+
{

g′22wc
}

y
+
{

g′22wt

}

y

]

u2

−Gtw

[

2tf
tw

{g′2ff ′

2ff2f}x + {g′2wcf ′

2wcf2wc}y + {g′2wtf
′

2wtf2wt}y
]

(ẇ2w2 − ẇ20w20) ,

(A.22)

B12 = Etw

[

2tf
tw

{g1fg2f}x + {g1wcg2wc}y + {g1wtg2wt}y
]

, (A.23)

B21 = Etw

[

2tf
tw

{g1fg2f}x + {g1wcg2wc}y + {g1wtg2wt}y
]

, (A.24)
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D12 =Etw

[

2tf
tw

{

g1ff
2
2f

}

x
+
{

g1wcf
2
2wc

}

y
+
{

g1wtf
2
2wt

}

y

]

(ẇ2ẅ2 − ẇ20ẅ20)

+ Etw

[

2tf
tw

{g1ff1ff2f}x + {g1wcf1wcf2wc}y + {g1wtf1wtf2wt}y
]

(

ẅ1ẇ2 + ẇ1ẅ2

− ẅ10ẇ20 − ẇ10ẅ20

)

−Gtw

[

2tf
tw

{g′1fg′2f}x + {g′1wcg′2wc}y + {g′1wtg
′

2wt}y
]

u2

−Gtw

[

2tf
tw

{g′1ff ′

2ff2f}x + {g′1wcf ′

2wcf2wc}y + {g′1wtf
′

2wtf2wt}y
]

(ẇ2w2 − ẇ20w20)

−Gtw

[

2tf
tw

{g′1ff ′

1ff2f}x + {g′1wcf ′

1wcf2wc}y + {g′1wtf
′

1wtf2wt}y
]

(w1ẇ2 − w10ẇ20)

−Gtw

[

2tf
tw

{g′1ff1ff ′

2f}x + {g′1wcf1wcf ′

2wc}y + {g′1wtf1wtf
′

2wt}y
]

(ẇ1w2 − ẇ10w20) ,

(A.25)

D21 =Etw

[

2tf
tw

{

f 2
1fg2f

}

x
+
{

f 2
1wcg2wc

}

y
+
{

f 2
1wtg2wt

}

y

]

(ẇ1ẅ1 − ẇ10ẅ10)

+ Etw

[

2tf
tw

{f1fg2ff2f}x + {f1wcg2wcf2wc}y + {f1wtg2wtf2wt}y
]

(

ẇ1ẅ2 + ẅ1ẇ2

− ẇ10ẅ20 − ẅ10ẇ20

)

−Gtw

[

2tf
tw

{g′1fg′2f}x + {g′1wcg′2wc}y + {g′1wtg
′

2wt}y
]

u1

−Gtw

[

2tf
tw

{f1ff ′

1fg
′

2f}x + {f1wcf ′

1wcg
′

2wc}y + {f1wtf
′

1wtg
′

2wt}y
]

(ẇ1w1 − ẇ10w10)

−Gtw

[

2tf
tw

{f1fg′2ff ′

2f}x + {f1wcg′2wcf ′

2wc}y + {f1wtg
′

2wtf
′

2wt}y
]

(ẇ1w2 − ẇ10w20)

−Gtw

[

2tf
tw

{f ′

1fg
′

2ff2f}x + {f ′

1wcg
′

2wcf2wc}y + {f ′

1wtg
′

2wtf2wt}y
]

(w1ẇ2 − w10ẇ20) .

(A.26)

Moreover, equilibrium also requires the minimization of the total potential energy with

respect to the generalized coordinates qt, qs and ∆, thus leading to three integral conditions:

∂V

∂qt
=Etw

π4b2d

4L
(qt − qt0)

[

1 +
tfb

3twd

]

−GtfbL [(qs − qt) − (qs0 − qt0)] π
2

+ 2πGtf

∫ L

0

[

{g′1f}x u1 + {f ′

1ff1f}x (ẇ1w1 − ẇ10w10) + {g′2f}x u2

+ {f ′

2ff2f}x (ẇ2w2 − ẇ20w20) + {f ′

1ff2f}x (w1ẇ2 − w10ẇ20)

+ {f1ff ′

2f}x (ẇ1w2 − ẇ10w20)

]

cos
πz

L
dz
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− π2Ebtw
2L

∫ L

0

[(

{g1wc}y − {g1wt}y +
4tf
btw

{xg1f}x
)

u̇1

+

(

1

2

{

f 2
1wc

}

y
− 1

2

{

f 2
1wt

}

y
+

2tf
btw

{

xf 2
1f

}

x

)

(

ẇ2
1 − ẇ2

10

)

+

(

{f1wcf2wc}y − {f1wtf2wt}y +
4tf
btw

{xf1ff2f}x
)

(ẇ1ẇ2 − ẇ10ẇ20)

+

(

1

2

{

f 2
2wc

}

y
− 1

2

{

f 2
2wt

}

y
+

2tf
btw

{

xf 2
2f

}

x

)

(

ẇ2
2 − ẇ2

20

)

+

(

{g2wc}y − {g2wt}y +
4tf
btw

{xg2f}x
)

u̇2

]

sin
πz

L
dz = 0, (A.27)

∂V

∂qs
=π2GtfbL [(qs − qt) − (qs0 − qt0)] +

π4EIw (qs − qs0)

L
− P

π2Lqs
2

− 2πGtf

∫ L

0

[

{g′1f}x u1 + {f ′

1ff1f}x (ẇ1w1 − ẇ10w10) + {g′2f}x u2

+ {f ′

2ff2f}x (ẇ2w2 − ẇ20w20) + {f ′

1ff2f}x (w1ẇ2 − w10ẇ20)

+ {f1ff ′

2f}x (ẇ1w2 − ẇ10w20)

]

cos
πz

L
dz = 0, (A.28)

∂V

∂∆
=2EtwdL∆

(

1 +
btf
dtw

)

− Etw

∫ L

0

[(

{g1wc}y + {g1wt}y +
2tf
tw

{g1f}x
)
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+
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1
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{

f 2
1wc

}

y
+

1
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1wt

}

y
+

tf
tw

{

f 2
1f

}

x

)

(

ẇ2
1 − ẇ2
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)

+

(

{f1wcf2wc}y + {f1wtf2wt}y +
2tf
tw

{f1ff2f}x
)

(ẇ1ẇ2 − ẇ10ẇ20)

+

(

1

2

{

f 2
2wc

}

y
+

1

2

{

f 2
2wt

}

y
+

tf
tw

{

f 2
2f

}

x

)

(

ẇ2
2 − ẇ2

20

)

+

(

{g2wc}y + {g2wt}y +
2tf
tw

{g2f}x
)

u̇2

]

dz − PL = 0. (A.29)

Two boundary conditions are obtained from the variational formulation process with re-

gards to the in-plane strain, i.e. :

[

∂L
∂u̇1

δu1

] ∣

∣

∣

∣

L

0

= 0 and

[

∂L
∂u̇2

δu2

] ∣

∣

∣

∣

L

0

= 0, (A.30)
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which can be expressed thus:

−
[

{g1wc}y + {g1wt}y +
2tf
tw

{g1f}x
]

∆ +

[

{

g21wc
}

y
+
{

g21wt

}

y
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2tf
tw

{

g21f
}
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+
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2
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2
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ẇ2
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+
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2wt
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2
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2tf
tw
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]
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]

+
P

2Etw(b + d)

[
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]
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(A.31)

−
[
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+
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+
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[
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]
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(A.32)



Appendix B

Zone 2–3 boundary determination

from double modulus theory

Van der Neut predicted the boundary between zones 2 and 3 using Engesser’s ‘double-

modulus’ theory (Bažant & Cedolin, 1991). The same approach is adopted currently to

predict the boundary for the rectangular hollow section strut.

It has been verified that global and local buckling is triggered simultaneously in zone 2.

Prior to buckling (w = 0), the stress distribution is uniform, σ0 = P/A. It has been

assumed in the current work that plane cross-sections remain plane but not normal to

the deflected centre line of the strut at the initial buckling stage. At the commencement

of mode interaction, the compressed side of the strut would remain buckled and undergo

further shortening, hence further loading, and the less compressed side would undergo

relative extension, hence unloading. Somewhere within the cross-section, there is a neutral

axis at which the axial strain would not change; its distance from the more and less

compressed sides of the strut being denoted as b1 and b2 respectively, where b1 + b2 = b,

as shown in Figure B.1(b). The effective axial stiffness in the more compressed side of the

cross-section would drop due to plate buckling. It is assumed that the distribution of the

355
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effective elastic axial stiffness is proportional to ηf(x)E and ηw(y)E in the flanges and the

more compressed web respectively.

P

x

z

P

0=
P
A

b1 b2

(a)

(b) (c)

(d)x

y

E

E

E f(x)E

f(x)E

w(y)E

wE

b1 b2

d

Eb1

wEb2

21

Figure B.1: (a) Local–global mode interaction in a simply-supported rectangular hollow
section strut under the concentric axial load P . (b) Cross-section stiffness distribution at
the starting point of the local–global mode interaction. The function ηf(x) and ηw(y) are
the stiffness reduction factors for the flanges and the more compressed web respectively due
to local buckling. (c) Normal stress distribution before mode interaction is triggered. (d)
The variation in the normal stress due to mode interaction. The curvature due to global
buckling is κ; δF1 and δF2 are the relative load changes in the less and more compressed
sides of the cross-section respectively, which include the unloading and loading of the
flanges and webs.

According to the assumption of plane cross-sections remaining plane and the assumed effec-

tive axial stiffness distribution above, the incremental resultant force at the less compressed

side δF1 and more compressed side δF2 can be obtained, thus:

δF1 =

∫ d/2

−d/2

Etwεwt dy + 2

∫ b1

0

Etfεf dx = Eb1κ (dtw + b1tf) , (B.1)
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δF2 =

∫ d/2

−d/2

ηw(y)Eεwc dy + 2

∫ b2

0

ηf(x)Etfεf dx = Eb2κ

(

η̄wdtw +
tf
b2

∫ b2

0

xηf(x) dx

)

,

(B.2)

where εwt = b1κ and εwc = b2κ are the direct strains in the less compressed and more

compressed webs respectively; εf = xκ is the direct strain in the flanges; κ is the curvature

due to global buckling; η̄w =
∫ d/2

−d/2
ηw(y) dy is the equivalent stiffness reduction factor in

the more compressed web.

The condition of constant axial load requires that the resultants δF1 and δF2 of the incre-

mental normal stress in the more and less compressed sides must be of equal magnitudes,

thus:

δF1 = δF2. (B.3)

As for the moment M in the cross-section,

M = M1 + M2, (B.4)

where:

M1 =

∫ b1+tw/2

b1−tw/2

∫ d/2

−d/2

xEtwεwt dy dx + 2

∫ b1

0

xEtfεf dx (B.5)

= Eκ

(

b21dtw +
dt3w
12

+
2b31tf

3

)

,

M2 =

∫ b2+tw/2

b2−tw/2

∫ d/2

−d/2

xηw(y)Etwεwc dy dx + 2

∫ b2

0

xηf(x)Etfεf dx (B.6)

= Eκ

[

η̄w

(

b22dtw +
dt3w
12

)

+ 2

∫ b2

0

x2ηf(x)tf dx

]

,

this can be rewritten as:

M = ΦrEIκ, (B.7)

where I = b3tf/6 + b2dtw + dt3w/6 is the second moment of area about the weak neutral

axis of the entire cross-section before buckling. Therefore, the bending stiffness reduction
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factor due to local buckling in the more compressed side can be written as:

Φr =
(M1 + M2)

EIκ

=
(b21dtw + dt3w/12 + 2b31tf/3) + η̄w (b22dtw + dt3w/12) + 2

∫ b2
0

x2ηf(x)tf dx

b3tf/6 + b2dtw + dt3w/6
,

(B.8)

where b1 and b2 can be obtained explicitly using the constant axial force condition from

Eq. (B.3). It should be noted that if tf → 0 and b � tw, i.e. making both flanges having

a negligible size, Φr would reduce to the expression developed by Van der Neut, where

Φr = 2η̄w/ (1 + η̄w).



Appendix C

Buckling load, wavelength and

cross-section profiles of pure local

buckling mode

Since the longitudinal component of the pure local buckling mode under compression is

periodic, a plate element with length le, which is equal to the half wavelength of the

local buckling mode in the longitudinal direction, is isolated for consideration, as shown

in Figure C.1(a). The formulation begins with the definition of the buckling displacement

field in the webs ww(y, z) and flanges wf(x, z):

ww (y, z) = Qf1w(y) sin
πz

le
, wf (x, z) = Qf1f(x) sin

πz

le
, (C.1)

where Q is a generalized coordinate representing the amplitude of the local buckling mode;

f1w and f1f are cross-sectional components of the local buckling mode in the webs and

flanges respectively. The functions f1w and f1f , which are valid from square hollow sections

to rectangular hollow sections, are derived based on a semi-analytical method. Since the

pure local buckling mode is symmetric, symmetric shape functions are used for both flanges

359
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b

le

d

wf(x,z)

ww(y,z)

x

z

y

0

b

f 1f(x)

x

y

f 1w(y)

fM

Mwx

y

x

y

f

w

(a) (b)

d

f 1w(y)

f 1f(x)

Figure C.1: (a) Deformed shape of an isolated thin-walled RHS strut element under pure
compression. Effective length of the element is le with depth d and width b. The buckling
displacement distributions in the webs and flanges are defined as ww(y, z) and wf(x, z)
respectively. (b) Cross-section profile of the local buckling mode and the static and kine-
matic boundary conditions at the corner joint, where M and θ represent bending moments
and rotations at the cross-section corners respectively.

and webs. For convenience, it is assumed that the amplitude of the buckling mode in the

web is unity, thus:

f1w(y) = B0 cos
(πy

d

)

+ (1 − B0)

(

1 − 4y2

d

)

, (C.2)

f1f(x) = A1

(

1 − 4x2

b

)

+ A2 cos
(πx

b

)

. (C.3)

Three boundary conditions are required for determining the three unknowns A1, A2 and B0.

However, there are only two available from the kinematic and static boundary conditions,

as shown in Figure C.1(b):

Mf + Mw = 0, (C.4)

θf = θw, (C.5)

where:

Mf(x = b/2) =

[

Df

(

∂2wf

∂x2
+ ν

∂2wf

∂z2

)]

x=b/2

=

(

Df
d2f1f
dx2

∣

∣

∣

∣

x=b/2

)

Q sin
πz

le
, (C.6)
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Mw(y = d/2) =

[

Dw

(

∂2ww

∂y2
+ ν

∂2ww

∂z2

)]

y=d/2

=

(

Dw
d2f1w
dy2

∣

∣

∣

∣

y=d/2

)

Q sin
πz

le
, (C.7)

θf = − df1f
dx

∣

∣

∣

∣

x=b/2

, θw =
df1w
dy

∣

∣

∣

∣

y=d/2

. (C.8)

The third condition is obtained in conjunction with data generated from the FE results.

A parametric study was conducted to obtain the ratio of the amplitudes in the flange and

the web for different cross-section aspect ratios, ranging from 1 to 3. The results are shown

in Figure C.2 and a function describing the relationship is fitted:

φc

1 1.5 2 2.5 3

f 1
w
,m

a
x
/f

1
f,
m
a
x

1

2

3

4

5

6

7

FE

Fitting function

Figure C.2: Ratio of the local buckling modal amplitude in the web and flange for thin-
walled RHS struts with different cross-section aspect ratios φc=d/b.

f1w,max

f1f,max

=
1

A1 + A2

= −0.23φ2
c + 3.73φc − 2.5, (C.9)

with φc = d/b being the cross-section aspect ratio. The mean ratio of the results from Eq.

(C.9) to the FE results in the range shown is 0.993 and the maximum COV is 0.94%.

From Eqs. (C.4)–(C.5) and (C.9), the coefficients in Eqs. (C.2) and (C.3) can be deter-



APPENDIX C. BUCKLING LOAD, WAVELENGTH AND CROSS-SECTION PROFILES OF PURE LOCAL

BUCKLING MODE 362

mined:

A1 =
π (250 − 273φc + 23φ2

c)

φc (214.60 − 105.58φc − 300.44φ2
c + 19.74φ3

c)
, (C.10)

A2 =
−3926.99 + 3859.07φc − 790.49φ2

c

5φc (214.60 − 105.58φc − 300.44φ2
c + 19.74φ3

c)
, (C.11)

B0 =
214.60 + 679.81φc − 1158.10φ2

c + 92φ3
c

214.60 − 105.58φc − 300.44φ2
c + 19.74φ3

c

. (C.12)

Based on the fitted functions for the webs and flanges in Eqs. (C.2) and (C.3), the linear

buckling load and the corresponding wavelength is derived using small deflection theory

(Timoshenko & Gere, 1961). The methodology used is very similar to that adopted in

§4.5. The strain energy U in the strut element comprises the local bending energy in both

flanges Ub,f and webs Ub,w:

U = Ub,f + Ub,w,

= Df

∫ le

0

∫ b/2

−b/2

{

(

∂2wf

∂z2
+

∂2wf

∂x2

)2

− 2(1 − ν)

[

∂2wf

∂z2
∂2wf

∂x2
−
(

∂2wf

∂z∂x

)2 ]
}

dx dz

+ Dw

∫ le

0

∫ d/2

−d/2

{

(

∂2wwc

∂z2
+

∂2wwc

∂y2

)2

− 2(1 − ν)

[

∂2wwc

∂z2
∂2wwc

∂y2
−
(

∂2wwc

∂z∂y

)2 ]
}

dy dz.

(C.13)

The work done by the load term is given by the following standard expression:

P∆ = σC
l t

[

∫ le

0

∫ b/2

−b/2

(

∂wf

∂z

)2

dx dz +

∫ le

0

∫ d/2

−d/2

(

∂ww

∂z

)2

dy dz

]

. (C.14)

The total potential energy can thus be written:

V = U − P∆, (C.15)
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and by setting ∂V/∂Q = 0 for equilibrium, the following expression for the local buckling

coefficient kp of the more compressed web, where σC
l = kpπ

2E/[12(1 − ν2)(d/t)2], can be

obtained:

kp = a0 + a1φ
2
l +

1

φ2
l

, (C.16)

with φl = le/d alongside a0 and a1 being constants that are functions of φc, A1, A2 and

B0, thus:

a0 =
10φc (H01φc + H02)

H03φc + H04

, a1 =
15φc (H11φ

3
c + H12)

π (H03φc + H04)
, (C.17)

where:

H01 = 32πA2
1 + 192A1A2 + 3π3A2

2,

H02 =
(

3π3 + 32π − 192
)

B2
0 + (−64π + 192)B0 + 32π,

H03 =
(

31π3 − 960
)

B2
0 +

(

−32π3 + 960
)

B0 + 16π3,

H04 = 16A2
1π

3 + 15A2
2π

3 + 960A1A2,

H11 = π4A2
2 + 64πA1A2 + 128A2

1,

H12 =
(

π4 − 64π + 128
)

B2
0 + (64π − 256)B0 + 128.

(C.18)

Defining φl = (a1)
−1/4, an expression for the minimum value of kp can be determined:

kp = a0 + 2
√
a1, (C.19)

with the half-wavelength le = λp,LBA/2 = d (a1)
−1/4.

The comparison between the analytical model expression obtained in Eq. (C.19) and the

FE results is shown in Figure C.3(a). In the range of φc from 1 to 3, the average value of

kp,FE/kp,Eq is 1.001 and the COV is 0.04%, which demonstrates an excellent fit. Moreover,

since Eq. (C.19) is relatively complex, an explicit expression was fitted:

kp = 5.44 − 1.44φ−2.54
c , (C.20)

which is also shown in Figure C.3. The mean ratio of the results from Eq. (C.20) to the
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Figure C.3: (a) Relationship between local buckling coefficient kp and cross-section aspect
ratio φc for thin-walled rectangular hollow section struts from the fitted function Eq. (C.20)
and FE results. (b) Relationship of normalized longitudinal wavelength versus φc from FE,
analytical models and the fitted function Eq. (C.21).

FE results kp,FE is 0.999 and the COV is 0.50%.

Figure C.3(b) presents the relationship of the normalized wavelength of the pure local

buckling mode versus the cross-section aspect ratio. The results from the analytical model

show excellent comparisons with the FE model. It should be noted that the value of le is

the length corresponding to the lowest kp. However, the actual wavelength is also affected

by the strut length since the number of half-waves should be an integer. This may explain

the jump in the results when the cross-section aspect ratio is relatively large, i.e. when the

wavelength is relatively large. A function is also fitted for the relationship:

φl = λp,LBA/(2d) = 0.78 + 0.22φ−2
c . (C.21)

The average ratio of φl from the fitted equation to the analytical model is 1.008 and the

COV is 0.29%.

Figure C.4 presents the cross-section profile of the local buckling mode from FE and the
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Figure C.4: Cross-section profile of the linear buckling mode for different cross-section
aspect ratios ranging from 1 to 3. Dashed and solid lines represent the results from FE
and analytical models respectively; the dot-dashed line represents the undeformed shape.
Note that displacements shown have been amplified by a factor of 20 to aid visualization,
but the differences are barely visible.

fitted functions, i.e. Eqs. (C.2) and (C.3), the differences being barely distinguishable.

The excellent comparisons verify the effectiveness of the currently chosen cross-section

functions.
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