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Abstract

Thin-walled rectangular hollow section (RHS) struts are widely used in current structural
engineering practice due to their mass efficiency and relative ease of manufacture. Owing
to their optimized geometric properties, they are vulnerable to local-global interactive
buckling and exhibit highly unstable post-buckling behaviour with severe imperfection
sensitivity when the local buckling load is close to the global buckling load. The current
work investigates the underlying mechanism of local-global interactive buckling of RHS

struts using both analytical and finite element (FE) approaches.

Variational models formulated using analytical techniques, describing the nonlinear local—
global mode interaction in thin-walled RHS struts with varying flange—web joint rigidity,
different strut lengths and geometric imperfections under pure compression, are presented.
A system of nonlinear differential and integral equations subject to boundary conditions is
formulated and solved using numerical continuation techniques. For the first time, the equi-
librium behaviour of such struts with different cross-section joint rigidities is highlighted
with characteristically unstable interactive buckling paths and a progressive change in the
local buckling wavelength. Studies on the effects of strut length identify the boundaries
for the four distinct length-dependent zones, where different characteristic post-buckling
behaviour are exhibited. The most unstable zone is demonstrated to have a considerably
narrower range than previously determined owing to the consideration of more realistic

corner boundary conditions within the cross-section.



Imperfection sensitivity studies identify the high degree of sensitivity of struts exhibiting
mode interaction. They also reveal that local and global imperfections are relatively more
significant where global and local buckling are critical respectively. Moreover, a unified
local geometric imperfection measurement based on equal local bending energy is proposed
to determine the most severe local imperfection profile. It reveals that the most severe
profile is modulated rather than periodically distributed along the strut length for purely

elastic case.

For verification and extensive parametric study purposes, a nonlinear FE model, which
considers material nonlinearity, geometric imperfections, and residual stresses, is developed
within the commercial package ABAQUS. The classical solutions and experimental results
from two independent studies are used to verify and validate the FE model, both of which
show excellent comparisons. The validated FE model is then used to verify the variational
model, which also shows excellent comparisons in local buckling wavelengths, cross-section

deformation profile, ultimate load and the mechanical behaviour.

Finally, parametric studies on geometric properties, material nonlinearity and residual
stresses are conducted using the developed FE model to understand the behaviour of RHS
struts exhibiting mode interaction in more practically realistic scenarios. Based on the
numerical results and existing experimental results from the literature, the current design
rules for thin-walled welded RHS struts are assessed by means of reliability analysis in
accordance with Annex D of EN1990. A modified Direct Strength Method (DSM) equation
has been proposed and it is shown to provide a better ultimate load prediction than it does

presently:.
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Nomenclature

In this thesis, the following nomenclature is adopted. In the cases where more than one

meaning has been assigned to a symbol, the correct use should be obvious from the context.

Coordinates, stress, strains, loads and energy

Y

Oz,wc

C
Olws OLf

2]

wel

Transverse direction along flange width

Transverse direction along web depth

Longitudinal direction along strut

Normalized longitudinal coordinate

Normalized transverse coordinate

Critical bifurcation point

Secondary bifurcation point

Point of ultimate load

Direct stress in the more compressed web

Local buckling stress for webs and flanges respectively

Critical buckling stress of the more compressed web
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C
0-0
kp

kp auTO,s KpEQ

Vazy Vyz

8z,f’ Ez,wes Ez,wt

8z,wco ) 8z,wto

Pu,FEv Pu,exp
Pu,perfa Pu,imp
p

Pu

Pu,perfs Pu,imp

Global buckling stress

Plate buckling coefficient

k, solved using AUTO and simplified equation respectively
Shear strains in the planes zz and yz respectively

Direct strains in flanges, the more compressed web and less

compressed web respectively

Direct strains in the more compressed web and less compressed

web from the global mode respectively

Applied axial load

Euler buckling load

Global buckling load

Local buckling load

Critical buckling load

Load at the bifurcation point

Load at the secondary bifurcation point

Ultimate load

Ultimate load from FE and experimental results respectively
Ultimate load of perfect and imperfect struts respectively
Normalized axial load applied, p = P/P°

Normalized ultimate load, p, = P,/P°

py for perfect and imperfect struts respectively



NOMENCLATURE

38

M

Mfa MWC

v
Ub,o

Ub,ﬂ7 Ub,wcla Ub,wtl

Um,fa Um,w67 Um,wt

Uf ) Uwc ) th

Moment

Bending moments in the flange and the more compressed web

at the junction respectively
Total potential energy
Global bending strain energy

Local bending strain energy in both flanges, the more com-

pressed web and less compressed web respectively

Membrane strain energy in both flanges, the more compressed

web and less compressed web respectively

Total strain energy in both flanges, the more compressed web

and less compressed web respectively
Strain energy in rotational springs
Lagrangian

Hessian matrix

Geometric and material properties

Flange width

Web depth

Thickness of flange plate
Thickness of web plate

Thickness of plate
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Pe

o

Df7 DW

EI,
C;

Co

Ct

Cort

Strut length

Effective length of the isolated plate element
Cross-sectional area

Cross-section aspect ratio d/b

Ratio of flange plate thickness to web plate thickness t;/t,,

Effective second moment of area of the cross-section owing to

local buckling
Radius of gyration
Young’s modulus
Shear modulus
Poisson’s ratio

Flexural rigidities of the individual flanges and webs

respectively

Flexural rigidity about the local weak neutral axis of the web
Rotational spring stiffness in the Augusti model

Stiffness of rotational spring connecting flanges and webs
Normalized cg

Equivalent rotational stiffness on the more compressed web pro-

vided by the connecting flange
Equivalent rotational stiffness, 1/cgr = 1/cp + 1 /¢y

Normalized global slenderness, A\, = /P, /PC
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Normalized local slenderness, A\ = /P, /P

Reduction factor in the longitudinal stiffness owing to local

buckling of plate

Equivalent axial stiffness reduction factor in the more com-

pressed web

Bending stiffness reduction factor due to local buckling in the
more compressed web and flanges determined using double-

modulus theory

Equivalent bending stiffness reduction factor for the transi-

tional state

Generalized coordinates and displacements

Qs, Gt

@

Generalized coordinates

Lateral displacement (sway component)
Rotation of plane sections (tilt component)
Curvature of the deflected strut

Generalized coordinates defining the normalized amplitude of

the sway and tilt modes respectively
gs at the secondary bifurcation point
Purely in-plane compressive strain

Total end-shortening
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n(2)

we(z, 2)
UJWC(ya Z)
W, <y7 Z)

Wyye,max

ug(x, 2)
UWC(% Z)
Ut (y7 Z)

ff(x)> fwc(y)a fwt(?/)

9:(2), gwe(¥); Gwi(y)

w(z), u(z)

efv ew

Displacement of the centroid of the cross-section owing to plate

local buckling

Local out-of-plane displacement of the flanges

Local out-of-plane displacement of the more compressed web
Local out-of-plane displacement of the less compressed web

Maximum out-of-plane displacement of the more compressed

web

Local in-plane displacement of the flanges

Local in-plane displacement of the more compressed web
Local in-plane displacement of the less compressed web

Cross-section component of we(x, 2), Wywe(y, 2) and wy(y, )

respectively

Cross-section component of wus(z,2), Uwc(y,2) and uy(y, 2)

respectively

Longitudinal component of local out-of-plane and in-plane dis-

placement respectively

Rotations of the flange and the more compressed web at the

junction respectively

Geometric imperfections and residual stresses

Initial out-of-straightness of the global mode

Initial rotation of the plane-section
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dso

aro

wio(, 2)
Weo (Y5 2)
Wi0(Y; 2)
wio(2)

Aio

Q0

Bio

&o

Weo

0
Ub,l

0 0 0
Ub,lf? Ub,lwc’ Ub,lwt

0
AiO

€0

Amplitude of W)

Amplitude of 6,

Initial out-of-plane deflection in flanges

Initial out-of-plane deflection in the more compressed web
Initial out-of-plane deflection in the less compressed web
Longitudinal component of local imperfections
Amplitude of w;

Degree of localization of w;q

Number of sinusoidal half waves of wjg

Total end-shortening of the initial imperfection
Combined geometric imperfection scaling factor

Combined measure of geometric imperfections

W€0:WSO{QSO,tolL> Ao,tol}

Total local bending energy in the entire strut due to the local

imperfections

Local bending energy in both flanges, the more compressed
web and the less compressed web due to local imperfections

respectively

Initial Ao input for determining the worst imperfection profile
Normalized imperfection size

Amplitude of global imperfection measured from tests

Initial compressive residual stress
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Ort

Uw,rm Uw,rt

d

Numerics

Finite element

M,, M,
Ey
Otrue; Onom

Etrue; E€nom

Etrue,pl

Initial tensile residual stress
Initial compressive and tensile residual stresses in the webs

Length of the uniform tensile range in the ECCS residual stress

model for welded box-section members

Vector defining system of first order differential equations
Vector of variables
Continuation parameter

Jacobian matrix

modelling and analysis

Number of elements along the strut length

Number of elements along the web depth

Equivalent rotational stiffness in the FE model

In-plane and out-of-plane bending moment of shell element
Strain hardening modulus

True and nominal stresses

True and nominal strains

True plastic strain
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fy
Ju

Material yield stress

Material ultimate stress

Yield strain

Strain value at which strain hardening commences
Ultimate strain

Linear buckling analysis

Geometric nonlinear analysis

Geometric nonlinear analysis with imperfections
Geometric and material nonlinear analysis with imperfections
Reference level of external load

Stress stiffness matrix associate {P },ef

Stiffness matrix of the structure

Load proportion factor

Load proportion factor at the critical buckling point
Displacement vector

Buckling displacement vector

Generalized displacement
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Design guidelines

Eurocode 3

Aest Effective area of cross-section owing to local buckling
X Buckling reduction factor
N Elastic buckling load for the relevant buckling mode based on

the gross cross-section

Ncra Cross-section resistance under uniform compression
Ny ra Member buckling resistance

Nura Member resistance Ny, gq = min{N¢ ra, Npra}

VMO Partial safety factor for cross-section resistance

VM1 Partial safety factor for member buckling resistance

p Area reduction factor for plate owing to local buckling

Direct strength method
P Nominal axial strength for flexural, torsional or flexural-
torsional buckling
Py Nominal axial strength for local buckling

P, Nominal axial strength P, = min{ Py, Py}
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Subscripts

1y 2

wt

Avuto
ABAQUS
EQ

FE

tol

imp

perf

Cases where local and global buckling is critical respectively
Flanges

Webs

More compressed web

Less compressed web

Local buckling

Global buckling

Solved from AuToO

Solved from ABAQUS

Solved from the equation using the simplified method
Solved from the finite element method

Tolerance level

Imperfect case

Perfect case



Chapter 1

Introduction

Sustainable design and construction has gradually become the mainstream in the structural
engineering discipline. Engineers are increasingly required to take full advantage of every
piece of material to design efficient structural systems so as to minimize the adverse effects
on the environment owing to construction. The advance in material science and manufac-
turing technology makes many light weight and high performance materials available for
structural purposes (Ashby, 2011), such as high strength steel, Carbon Fiber Reinforced
Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP). Moreover, better under-
standing in nonlinear mechanics (Thompson & Hunt, 1973; [Thompson & Hunt, 1984) as
well as advances in computational mechanics (Belytschko et al., 2000; Bathe, 2006) and
optimization theory (Xie & Steven, 1993; Rozvany, 2009), have enabled structural forms
to become increasingly slender, as shown in Figure However, buckling instability is
practically always the governing failure mode of such structures under compression (Bleich,

1952; [Timoshenko & Gere, 1961; Bulson, 1970; Bazant & Cedolin, 2010).

Thin-walled structures are one of the most favourable and material efficient structural
forms. Thin plates can be efficiently manufactured to almost any imaginable structural

forms through a variety of different manufacturing methods, such as cold-forming, hot-

47
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E
e

Figure 1.1: The Steve Jobs Theater in the Apple Campus in California, United States with

the world’s largest carbon fiber roof (Martin, 2017)).

rolling, welding and bolting. Therefore, it has wide applications in engineering structures
particularly where the self-weight of the structure is a key design constraint factor, such
as in aircraft, automotive applications, long-span bridge decks and even computer cases,
as shown in Figure [[.2, However, manufacturing processes and handling can introduce
significant imperfections in structures, such as geometric imperfections, residual stresses,
material strength enhancement and plastic strains. These imperfections have been reported

to have significant effects on the equilibrium behaviour and load-carrying capacity

Neut, 1973 [Thompson & Supple, 1973 [Thompson & Hunt, 1973} |Gioncu, 1994b; Wadee,

2000; Becque & Rasmussen, 2009a; |Quach et al., 2010; |Bai & Wadee, 2015a; |Liu & Wadee,|
2016b)).

The term ‘thin-walled’ is defined by the relative thickness of plates in comparison with other
dimensions of the structures or the relatively high local slenderness in comparison with the
global slenderness. Unlike members with stocky cross-sections or low local slenderness,
thin-walled plated structural systems are likely to exhibit local buckling. When it comes
to thin-walled plated structures made of high strength materials, local buckling is almost

always permitted in order to take full advantage of the material strength. Therefore, the
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(a) Fuselage section of C919 jetliner (Comac (b) Frame structure of BMW-7 series

(919, 2014)). (Howard, 2015).

(c) Steel box girders of A38 Thame Valley (d) Computer case (Powercase Technology|
Viaduct (MISTRAS group, 2017). |(Shenzhen) Co., Ltd., 2015[).

Figure 1.2: Applications of thin-walled structures.

interaction between local and global buckling may influence a very large range of geometric

proportions.

According to linear theory (Bleich, 1952), a given structural form is optimum if the local

buckling and global buckling loads are equal, 7.e. local and global buckling modes are

triggered simultaneously. However, the general theory of elastic stability (Thompson &
Hunt, 1973|) has demonstrated that such an approach is not appropriate. Even though

these modes may be stable when triggered in isolation, the interaction between individual
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modes can lead to completely unstable post-buckling behaviour and severe imperfection

sensitivity (Thompson & Lewis, 1972; Thompson & Supple, 1973} Tvergaard, 1973; van der|

Neut, 1973; Thompson & Hunt, 1974; Koiter & Pignataro, 1976a; |Byskov & Hutchinson,

1977; [Loughlan, 1983; Hunt et al., 1988} Kolakowski, 1989; Kotakowski, 1993; |Gioncu,|

11994b; Hunt & Wadee, 1998; Wadee, 2000; Teter, 2007; Bai & Wadee, 2015a; |Wadee &]

Farsi, 2015; Bai & Wadee, 2016, Liu & Wadee, 2016b). In particular, the load-carrying

capacity erosion from initial imperfections tends to be maximum near the so-called ‘naive

optimum’ point (van der Neut, 1969; Thompson & Hunt, 1973).

The current work aims to investigate the nonlinear behaviour of thin-walled rectangular
hollow-section struts under compression at a fundamental level and then use this to provide

design recommendations.

1.1 Buckling analysis type

1.1.1 Linear buckling analysis

Linear buckling theory or analysis is well known and widely accepted. There are a great

number of textbooks (Bleich, 1952; Timoshenko & Gere, 1961} Bulson, 1970; Bazant &|

Cedolin, 2010|) dealing with the theory and their application in different types of structural

systems. Compared with nonlinear buckling theory, linear buckling analysis neglects higher

order terms in formulating the governing equations or the total potential energy of the
system and thus requires a relatively limited computational effort. For instance, for an
in-compressible, simply-supported strut under pure compression, as shown in Figure |1.3

the complete relationship between the strut curvature xy and the deflection W is presented

as (Bazant & Cedolin, 2010):

1% . 3. 15 .
- v 122 e 22t . 1.1
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where dots represent derivatives with respect to the strut length coordinate z. In linear

(a) (©

Linear post-buckling path

I L | Pg

(b) /
\ / . . .
m Bifurcation point

| —— Fundamental path

()
z . . . 0

Figure 1.3: (a) Simply-supported strut under pure compression. (b) The deflection and
the curvature of the strut. (c¢) Equilibrium path of the strut under pure compression using
linear buckling analysis.

buckling analysis, it is assumed that the slope of W with respect to z is small and thus

Eq. (1.1)) can be reduced to a linearized version:

Y~ W. (1.2)

The governing differential equation for the strut is given thus:

d*w 2w

EI P = 1.3
o TP =0 (1.3)
with the boundary conditions being:

W(0) =W (L) =W(0)=W(L) = 0. (1.4)

The trivial solution for the equation is W(z) = 0 and the non-trivial solutions are given

thus:

2,2
Wl2) = Qsin "1, a—”Zfﬂ (1.5)



CHAPTER 1. INTRODUCTION 52

where n is an integer and () is the amplitude of the deflection. The lowest load of the

non-trivial solution, i.e. where n = 1, corresponds to the famous Euler buckling load, Pg:

2 El

- (1.6)

Py =

The load—deflection relationship, i.e. the equilibrium path, is shown in Figure (c) The
strut is stable when ) = 0 and P < Pg; it becomes unstable and branches at P = Pg with
equal probability of exhibiting deflection in the positive or negative direction. This type of
problem is also known as a bifurcation problem. With a similar approach, which neglects
the membrane components, the critical buckling load of plates under pure compression can
be obtained using linear buckling analysis. The detailed derivation can be also found in
many classical text books (Timoshenko & Gere, 1961; Bulson, 1970; [Brush & Almroth,
1975).

As can be seen from Figure (c) and Eq. , linear buckling analysis can only provide
the critical buckling load and the corresponding buckling mode at which point the struc-
tures initially lose stability. No further information about the post-buckling behaviour is
provided. Therefore, linear buckling analysis can only give a good estimate of the ultimate
load for structures exhibiting neutral or weakly stable post-buckling behaviour, such as
columns with stocky cross-sections. For structures exhibiting strongly stable post-buckling
behaviour, such as simply-supported plates under pure compression, they can sustain a
significantly greater load than the critical buckling load, as sketched in Figure [l.4(a). In
practice, local buckling is often permitted in order to take full advantage of the mate-
rial strength; the critical buckling load from linear buckling analysis would underestimate
the actual load-carrying capacity in such an example. On the other hand, for struc-
tures exhibiting unstable post-buckling behaviour, such as shells under axial compression
and struts on softening elastic foundations, the critical buckling load from linear buckling
analysis provides an upper bound estimate of the ultimate load, i.e. reaching the critical

buckling load is accompanied by stiffness loss and erosion in load capacity, as sketched
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(a) Stable post-buckling equilibrium path ~ Elastica

Perfect P 0
P© P

\\\\ ////\ Plate

\ | / Imperfect
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(b) Unstable post-buckling equilibrium path Shell

S

P Strut on softening elastic
- Perfect path foundations
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T ~ Q0
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l,’ Imperfect path 0
[
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EQ 3

Figure 1.4: Typical post-buckling behaviour and the corresponding example structural
forms (Wadee, 2007)).

in Figure (b) Moreover, since such structures are very sensitive to imperfections, the
perfect critical buckling load cannot be reached in practice. Therefore, higher order terms
need to be included in the analysis and hence nonlinear analysis is required so as to obtain
information about the post-buckling behaviour and understand some potentially highly

nonlinear post-buckling behaviour, such as interactive buckling.

1.1.2 Nonlinear buckling analysis

Since Euler’s work on the classical elastica problem (Euler, 1744)), an actual theoreti-
cal framework was only formulated for the nonlinear post-buckling analysis when W. T.
Koiter devised the general approach to post-buckling analysis of continuous elastic sys-
tems (Koiter, 1945) using the perturbation method. A concise introduction of the theory
can be found in the review by Budiansky and Hutchinson (1979). In Koiter’s theory, as

shown in Figure (a), the fundamental and post-buckling paths are denoted by uy(A) and
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up(A) +v(A) respectively, the latter deviating from the fundamental path at the bifurcation

point with the load factor A = A\.. The normalized bifurcation mode may be defined by:

= li 1.7
up = lim v/l (1.7)
where |[v]| = (v, v)"? and (v, v) is the inner-product functional. By introducing the scalar

parameter £ = (v, u), the post-buckling path can be expressed using power series expan-

sions, thus:

u=1ug(A) +&ur + Eus + -+, where n > 2, (u,, uy) =0, (1.8)

and

A=A+ ME+ N+ (1.9)

Following the standard perturbation procedure, uy, us, etc. and A, A1, A9, etc. can be
deduced by solving the governing equations of equilibrium. In particular, the governing
equation is derived based on application of the calculus of variations on the nonlinear

potential energy functional V', where:

5V =0, (1.10)

and 0V is the first variation of V. The generalized theory can consider both perfect and

(a) (b) (©
A A

u(i/, \ }'1<0 i 11:0, 12<O
_~~bifurcation point erfect path
2 P P oo

c /lu>\§ //\’ .X\\

Uytv ( AN

N
imperfect path

el ¢ ¢

Figure 1.5: Koiter’s theory and its application in determining the post-buckling behaviour
and the ultimate load of imperfect structural systems.
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imperfect structural systems, as shown in Figure (b, ¢). It can not only provide a
qualitative prediction of the post-buckling behaviour of the structural system, but also an
accurate quantitative estimate of the ultimate load, particularly for imperfect structural
systems. The application of the theory for interactive buckling in thin-walled structures

will be introduced in Chapter

Independently, the Stability Research Group at University College London, headed by A.
H. Chilver and J. M. T. Thompson, developed a general theory of elastic stability based
on the perturbation method in the context of discrete elastic systems (Thompson & Hunt,
1973; [Thompson & Hunt, 1984). The fundamentals of the work are based on two axioms

(Thompson & Hunt, 1973) for elastic systems under conservative loading:

Axiom 1. A stationary value of the total potential energy with respect to the generalized

coordinates is necessary and sufficient for the equilibrium of the system.

Axiom 2. A complete relative minimum of the total potential energy with respect to the

generalized coordinates is necessary and sufficient for the stability of an equilibrium state.

The first axiom provides the governing equation for determining the equilibrium state:

ov

R

0, (1.11)

where V' is the total potential energy and defined in terms of generalized coordinates Q;

and the external load P:

V=V(Q1,Q2 Qi ,Qn, P). (1.12)

The second axiom provides the governing criterion to determine the stability of the equi-
librium state. It can also be expressed as the second derivative of V' with respect to the

generalized coordinates:
0*V

Vij = mn.
9.,

(1.13)
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The stability of the equilibrium can also be visualized with the rolling ball analogy. Fig-
ure[L.6|(a) presents the analogy for stability of single degree of freedom (DOF) systems. In
case (a-I), the ball is in a local minimum and perturbation in both directions will make it
return to its original position eventually, which implies that the original position is stable.
In case (a-II), the ball is in a local maximum and perturbation in both directions will
make it permanently move away from the original position, which implies that the original
position is unstable. In case (a-III), the ball is at the point of inflexion and a small per-
turbation will make it effectively move away from the original position, which implies that

the original position is unstable. For systems with n-DOFSs, the potential energy profile

(b-TIT)

@)
(a-I) (a-11) (a-III)

Figure 1.6: Rolling ball analogy for three types of stability of equilibrium for (a) single
degree of freedom system and (b) system with more than one degree of freedom. Case (I)
is stable but (IT) and (IIT) are both unstable.

becomes an n 4 1-dimensional surface. Figure (b) presents the analogy for stability for
systems with two DOFs. Cases (b-I) and (b-II) are essentially the same as (a-I) and (a-II)
for SDOF system. Case (b-1II) illustrates the case where the surface in one direction is a
minimum but one of the other directions is a maximum, which is known as saddle point—

it is essentially unstable also.

For multiple degrees of freedom (MDOF) systems, the stability of the equilibrium state
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should be determined by calculating the determinant of the Hessian matrix V;;, where

‘/11 ‘/12 ' ‘/lj ‘/ln
V21 V22 ' V2] V2n
Vio Vigo oo Vi oo Vi
an VnQ e an T Vnn

The equilibrium state is stable if V;; is positive-definite and vice versa. In particular,
when V;; becomes singular, it corresponds to the bifurcation state. Higher derivatives of

V' are required to determine the stability at the bifurcation point.

Catastrophe theory provides another theoretical tool to classify types of bifurcation in a
more theoretically strict way and facilitated a better overall understanding of the phys-
ical phenomena mathematically (Thompson et al., 1978; Thompson, 1979; Hunt, 1981}

Thompson, 1982 Gioncu, 1994a).

More recently, with the development of computational techniques, nonlinear post-buckling
analysis can be readily performed using general purpose numerical analysis packages, such
as the finite element package ABAQUS (2014)). More details about the numerical approaches

will be introduced in Chapter

1.2 Interactive buckling phenomena

1.2.1 Awugusti model

Since the full modelling of the local-global buckling mode interaction in actual structures

is relatively complex, many efforts have been made to use phenomenological models to
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understand the underlying mechanism of interactive buckling. A systematic review of the
related mechanical models, which are devised using rigid bars and springs, can be found in
Gioncu’s review paper (Gioncu, 1994b)). Even though these models are simple and generally
have a small number of degrees of freedom, their behaviour are essentially equivalent to

those of real and complex structures at least qualitatively.

One of the most famous models is the 2-DOF Augusti model (1964), as shown in Figure[L.7]
which is used to understand the interactive buckling of modes that both have stable sym-
metric post-buckling paths when considered in isolation. The model is made up of a rigid
cantilever with length L that is pinned at its base but restrained by two rotational springs
with stiffnesses ¢; and ¢y that provide the structural integrity. The deflected profile of the
cantilever is described by the angles spanned by the springs, ()1 and (). The detailed
energy formulation and the corresponding equilibrium path solution of the model can be

found in Thompson and Hunt (1973]).

Figure (c, d) present the sketches of the equilibrium paths of the Augusti model with
c1 > ¢ and ¢; = ¢y respectively. When ); and (), are triggered in isolation, i.e. the
cantilever purely deflects either in the zz plane or the yz plane, the system exhibits sym-
metrically stable post-buckling behaviour. However, in realistic scenarios, there is an
interaction between ()1 and ()5 since there is only a finite restraint in the non-critical plane
of deflection. For instance, the cantilever initially remains undeflected in the fundamental
path until P reaches the critical load P® = ¢;/L. After that, the cantilever starts to de-
flect in the direction ()1 corresponding to the relatively smaller spring stiffness ¢;. When
P reaches the buckling load at the secondary bifurcation point PS = (3¢, + ¢)/4L, the
cantilever starts to deflect ()5 in addition to ()1, i.e. interactive buckling is triggered. The
triggering of interactive buckling also leads to unstable post-buckling behaviour. From the
perspective of energy, the unstable interactive buckling path requires less energy compared
with the primary stable post-buckling path (Timoshenko & Gere, 1961; [Hunt et al., 1989).

In particular, when ¢; = cs, the critical and secondary bifurcation points coincide, the post-
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(a) (b)

G

Imperfect

Q> Imperfect Q

Figure 1.7: Augusti model (1964) and sketches of its typical equilibrium paths. (a) The
initial configuration with rotational spring of stiffness ¢; and ¢y acting in the xz and the
yz planes respectively. (b) The buckled configuration with generalized angular coordinates
()1 and @), representing the rotational deformation in the springs. Equilibrium paths
for the cases where (¢) co > ¢; and (d) ¢; = . Symbols C, B, and S represent the
critical buckling point, the higher buckling load point, and the secondary bifurcation point
respectively. The equilibrium paths of the model with initial geometric imperfections are
also shown to demonstrate the erosion in the ultimate load due to geometric imperfections.

buckling behaviour is highly unstable, as shown in Figure (d); the critical buckling load
is followed by a negative post-buckling stiffness and hence a reduction in the load-carrying

capacity.

Moreover, the model also exhibits sensitivity to geometric imperfections, which is maxi-
mized for the case where ¢; = ¢o. Closed-form expressions for the imperfection sensitivity
relationship for cases with ¢; # ¢o and ¢; = ¢y are provided in Thompson and Hunt (1973)),

which both follow the well-known two-thirds power law, i.e. pyimp = Dupert(1 — aeg/ 3) with
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Duimp and Py perf being the ultimate load of imperfect and perfect struts, a being constant

and €y being the normalized imperfection size.

The Augusti model demonstrates that the interaction of two stable-symmetric buckling
modes leads to an unstable-symmetric buckling mode as well as an introduction of imper-
fection sensitivity. It reflects the interactive buckling behaviour of real structures qualita-
tively, such as built-up columns (Thompson & Hunt, 1973), I-section struts (Wadee & Bai,
2014; [Bai & Wadee, 2015a)), stiffened plates (Wadee & Farsi, 2014a; Wadee & Farsi, 2015).
However, the phenomenological models cannot provide the physical similitude of the real
structures. Discrete structural models, which have more DOF's to simulate the most im-
portant aspects of the real structures, are required. Related work will be introduced in

Chapter

1.2.2 Interactive buckling in real structures

Mode interaction in real structures is generally derived from the chosen geometric prop-
erties such that the critical buckling loads of several different buckling modes are equal
or in proximity, since linear theory (Bleich, 1952)) and perhaps some study (Maquoi &
Massonnet, 1976) has suggested that such a scheme is most economical. From the wave-
length of the individual buckling mode, Gioncu (1994b) classified the interactive buckling

in structures into three main categories, as shown in Figure |1.8

The first case represents where the wavelengths of the individual modes, 7.e. modes 1 and
2, are of the same order and the post-buckling behaviour of each mode is either neutral
or weakly stable, as shown in Figure (a). The interactive buckling behaviour of such
structures is weakly unstable and their sensitivity to imperfections is minor or moderate.
An example for such a case is the interaction between flexural buckling and flexural-

torsional buckling in struts with mono-symmetrical sections.
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Figure 1.8: Effect of wavelength of individual buckling mode on the interactive buckling
behaviour (Gioncu, 1994b)). Sub-graphs (I) and (II) present the longitudinal wavelength
and typical equilibrium paths of individual mode; (IIT) presents the interactive buckling
equilibrium path of perfect and imperfect structures.

The second case represents where the wavelength of mode 2 is significantly smaller than
that of mode 1, as shown in Figure (b), the unstable interactive buckling path shows
a relatively larger gradient than in the first case, i.e. exhibiting moderate-to-strong in-
teraction. Accordingly, such types of structures exhibit relatively higher sensitivity to
imperfections. There are many examples for the type of mode interaction, such as the
interaction of element member buckling with global buckling of the whole strut in built-up
columns and the interaction of plate local buckling with Euler buckling in thin-walled sec-
tion struts, as shown in Figure It should be noted that the phenomena investigated

in the current research belongs to this type of mode interaction.

The third case is a specialized case of the second one. In particular, there are a large number
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(a) (b)
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Figure 1.9: Interactive buckling in (a) build-up struts and (b) stiffened plates.

%’

of local buckling modes with the same buckling load in mode 2. The interaction between
the local modes gives rise to unstable post-buckling behaviour. Further interaction with
the global mode leads to extremely unstable behaviour and high imperfection sensitivity,
as shown in Figure [[.§(c). An example for such case is the cylindrical shells (Lord et al.,
1997).

In practice, the effects of mode interaction and imperfections on the load-carrying capacity
in the first case is considered by the safe coefficients (Gioncu, 1994b)) because erosion in the
load-carrying capacity due to the imperfection sensitivity is mild, 7.e. under 10%. However,
for cases 2 and 3, special design methods have been developed based on experimental
and numerical studies to consider the adverse effects in the load-carrying capacity due to
imperfections. Specifically, for thin-walled plated structural systems, the effective width
method (EWM) (EN-1993-1-5:2006E, 2006) and direct strength method (DSM) (Schafer
& Pekoz, 1998b) are used to determine the load-carrying capacity of members susceptible

to interactive buckling.

Localization of buckling pattern due to interactive buckling

In contrast to the periodic buckling modes in the purely local buckling cases, interactive
buckling also leads to the localization of the local mode, which has been widely observed

in both analytical (Hunt & Wadee, 1998} Wadee, 1998; Wadee & Gardner, 2012} Wadee &
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Bai, 2014; Wadee & Farsi, 2014al) and experimental studies (Gardner & Nethercot, 2004a;

Becque & Rasmussen, 2009a; Wadee & Gardner, 2012; [Pavlovéic et al., 2012) on interactive

buckling of thin-walled metallic structures and sandwich panels. Hunt (1989) adopted
simplified rigid-link and springs systems to illustrate the mechanism of the formation of

the localization pattern, as shown in Figure If the post-buckling behaviour is stable,
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Figure 1.10: Link-spring model (Hunt, 1989)) illustrating the effect of localized and periodic
deformation on the equilibrium path.

the localized pattern requires more energy to trigger and thus the practically-observed
post-buckling mode is periodic. If the post-buckling behaviour is unstable, the periodic
pattern requires more energy to trigger and thus the post-buckling mode is localized. In
such cases, a periodic profile assumption on the local mode would overestimate the post-

buckling stiffness and strength and therefore would be unsafe.

1.3 Research Objectives

The aim of the present project is to develop a series of variational and FE models to in-
vestigate the mechanism of interactive buckling of thin-walled rectangular hollow section

(RHS) struts under pure compression and to investigate the influence of different flange—
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web joint rotational rigidities, geometric properties, initial geometric imperfections and
material properties on the nonlinear interactive buckling behaviour. The aim is to pro-
vide practising structural engineers with safe and appropriate design recommendations on

designing hollow-section struts with geometries that are susceptible to modal interactions.

1.4 Outline of the thesis

There are nine further chapters in the current thesis and a brief outline is given below.

1.4.1 Chapter 2: Literature review

This chapter aims to provide a systematic and detailed review of the literature on topics
relevant to interactive buckling of thin-walled RHS struts. Firstly, both analytical and
numerical approaches to modelling the interactive buckling of thin-walled structures are
reviewed. Secondly, imperfection measurement and modelling, the imperfection modelling
recommendations in the Eurocode 3 (EC3) as well as the imperfection sensitivity studies
are reviewed and discussed. Moreover, the review summarises the experimental studies
on mode interaction in thin-walled RHS columns. The ultimate loads of these specimens
are summarized in the framework of current design guidelines. Related results on thin-
walled section beams (Wadee & Gardner, 2012) and struts (Becque & Rasmussen, 2009al)
of other cross-sections, which exhibit mode interaction, are also discussed. Finally, current
design methodologies considering the effects of mode interaction, such as the effective
width method (von Karman et al., 1932)) and the Direct Strength Method (DSM) (Schafer
& Pekoz, 1998b)), are introduced.
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1.4.2 Chapter 3: FE model development

In this chapter, nonlinear FE models for thin-walled RHS struts are developed in the com-
mercial package ABAQUS (ABAQUS, 2014). The modelling details, such as element types,
meshing scheme, strut modelling, boundary and loading conditions as well as geometric
imperfection and residual stress modelling are introduced. Moreover, the analysis type,
procedure and solution strategy are introduced. The verification and validation of the FE
models using some classical solutions and experimental results in the existing literature are
presented, which shows excellent comparisons. The developed FE models are used to ver-
ify variational models developed in the later chapters and to conduct extensive parametric
studies to understand the interactive buckling of thin-walled rectangular hollow section

columns in practically realistic scenarios.

1.4.3 Chapter 4: Behaviour of long struts with semi-rigid flange—

web joints

A variational model formulated using analytical techniques describing the nonlinear inter-
action of global and local buckling modes in long thin-walled RHS struts with semi-rigid
flange—web joints under pure compression is presented. A system of nonlinear differen-
tial and integral equations subject to boundary conditions is formulated and solved using
numerical continuation techniques. For the first time, the equilibrium behaviour of such
struts with different cross-section joint rigidities is highlighted with characteristically un-
stable interactive buckling paths and a progressive change in the local buckling wavelength.
The results from the variational model are verified using the nonlinear FE model devel-
oped in Chapter 3] and show excellent comparisons. A simplified method to calculate
the local buckling load of the more compressed web undergoing global buckling and the

corresponding global mode amplitude at the secondary bifurcation is also developed.
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1.4.4 Chapter 5: Variational modelling of practical cases

The variational model in Chapter [4] is further developed to include the cases where local
buckling is critical as well as introducing the possibility of both local and global geometric
imperfections existing. Two independent sets of in-plane and out-of-plane local displace-
ment fields, which represent the pure local buckling mode and global buckling induced
interactive buckling mode respectively, are introduced to describe the interactive buckling
of struts with different lengths. Global and local imperfections, the profiles of which cor-
respond to the global and local modal descriptions adopted in the variational model, are
introduced. The total potential energy is determined based on the modal description and
the newly introduced geometric imperfections using a very similar formulation adopted in
Chapter [4l By performing the calculus of variations on the total potential energy, the gov-
erning equations for the longitudinal components of the local post-buckling modes subject

to boundary and integral conditions are obtained.

1.4.5 Chapter 6: Length effects

The variational model developed in Chapter |5 is used to investigate how different strut
lengths affect the nonlinear mode interaction of perfect struts. The nonlinear behaviour
of four struts with representative lengths are investigated, which are characterized by the
post-buckling equilibrium paths. The numerical results from the variational model are
verified using nonlinear FE models. Moreover, the van der Neut-type (van der Neut, 1969))
curve for the example thin-walled RHS struts is presented. The four length-dependent

zones are identified and a detailed discussion is made based on the results.
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1.4.6 Chapter 7: Imperfection sensitivity

The variational model developed in Chapter [5]is used to investigate the imperfection sen-
sitivity of RHS struts where global and local buckling loads are in close proximity. The
equilibrium behaviour of struts with varying imperfection sizes is presented and compared.
The numerical results are validated using the nonlinear FE models. A simplified method to
calculate the pitchfork bifurcation load where mode interaction is triggered for struts with
a global imperfection is developed for the first time. The simplified method is calibrated to
predict the ultimate load for struts with tolerance level global imperfections and combined
imperfections based on a parametric study. The relative significance of local and global

imperfections on the load-carrying capacity of struts with different lengths is investigated.

1.4.7 Chapter 8: Sensitivity to manufacturing tolerance level

imperfections

This chapter is an enhancement on the work developed in Chapter The main focus
is on the response of the struts with tolerance level imperfections. A unified local im-
perfection measurement based on equal local bending energy is proposed. The effects
of the cross-section profile, the number of half-waves and the degree of localization of
the local imperfections on the ultimate load and equilibrium path are investigated. A
framework to determine the most severe local imperfection is proposed and a program is
developed in MATLAB, which makes it feasible to conduct an automated parametric study
in an efficient way. A semi-empirical equation to determine the most severe imperfection
profile is proposed based on the parametric study results. Since struts with tolerance
level doubly-symmetric cross-section local imperfections exhibit neutral post-buckling be-
haviour, a semi-empirical equation to calculate the corresponding global buckling load is

proposed since this would provide a reliable strength prediction.
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1.4.8 Chapter 9: Parametric study and suggestions for improved

design guidance

Parametric studies on cross-section geometric properties, material yielding stress level and
strain hardening, as well as residual stresses are conducted using the FE approach to
understand the behaviour of RHS struts exhibiting mode interaction in more practically
realistic scenarios. Based on the numerical results and existing experimental results in
the literature, the current design rules for thin-walled welded RHS struts are assessed by

means of reliability analysis, in accordance with Annex D of EN1990 (BS EN 1990, 2002).

1.4.9 Chapter 10: Conclusions and future work

The principal work conducted and discoveries are summarized in Chapter 10. The original
contributions and practical significance is also explained and highlighted. Suggestions
are made for extending the current work and the potential application of the present

methodology.



Chapter 2

Literature Review

In the preceding chapter, a brief introduction about the general theory of elastic buckling
and the nonlinear coupled instability phenomena was presented. In the current chapter,
the focus moves on to the interactive buckling of thin-walled structures. Previous stud-
ies and corresponding design guidelines related to the interactive buckling of thin-walled
plated structures are reviewed, which aims at providing essential background information
and placing the contribution of the current work into context as well as its relationship
with previous work. Firstly, the analytical approaches to interactive buckling of thin-walled
plated structures are presented. Specifically, both strict theoretical and approximate engi-
neering approaches are introduced. After that, numerical approaches to modelling inter-
active buckling, i.e. the Finite Element Method (FEM), Generalized Beam Theory (GBT)
and the Finite Strip Method (FSM), are discussed. Since thin-walled plated structures
susceptible to mode interaction have been found to be quite sensitive to imperfections,
related work on imperfection measurement and modelling, studies on imperfection sensi-
tivity as well as imperfection modelling recommendations in current design guidelines are
presented. Moreover, experimental studies on determining the ultimate load of thin-walled
box-section struts exhibiting local-global mode interaction alongside some experimental

results on the local-global interactive buckling behaviour of open section struts are pre-
69
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sented. Finally, related parts about the ultimate load prediction of thin-walled struts
susceptible to local-global mode interaction in current guidelines are introduced. A com-
parison between experimental results from the existing literature and the design equations

is also presented.

2.1 Analytical approaches

In terms of analytical approaches, they can be classified into two categories (Gioncu,
1994b)). The first one is the engineering method, based on approximate approaches, which
use the concept of reduced stiffness or a reduced cross-section to consider the effects of local
buckling. The engineering method is relatively simple but can only provide a prediction
on the ultimate load. The second is the theoretical method, based on the general theory of
elastic stability (Koiter, 1945; Thompson & Hunt, 1973). This method establishes the fully
nonlinear governing equations based on energy principles or from direct equilibrium. The
post-buckling behaviour and imperfection sensitivity can be predicted using Koiter’s the-
ory (Koiter, 1945), numerical continuation techniques (Wadee, 1998]), or some combination

of the two.

2.1.1 Engineering approaches

Bijlaard and Fisher (1952; 1953) investigated the global buckling load of locally buckled
square box-section columns using the method of split rigidities (Bijlaard, 1951a; [Bijlaard,
1951b)) in conjunction with the principle of virtual work. The stress distribution and the
cross-section profile change, as shown in Figure [2.1] were solved based on energy methods.
The stress—strain relationship of plates in the post-buckling range as well as the kinematic
conditions of the perturbed profile, as shown in Figure (c), were adopted to establish

the corresponding internal and external virtual work terms. With the stress distribution,



CHAPTER 2. LITERATURE REVIEW 71

(b)

Figure 2.1: Cross-section deformation profile at different stages. (a) Local buckling. (b)
Interactive local-global buckling. Note that the arrows represent the deformation direction
of plate components. Dotted and solid lines represent the cross-section profiles during the
pure local buckling and local-global interactive buckling stages respectively. (c) Local
displacement change caused by the local-global mode interaction.

the bending moment on the section can be obtained, which can be used to determine
the effective bending rigidity of the section and the effective global buckling load, i.e.
the ultimate load. The results from the theoretical model showed good comparisons with
experimental results. However, it was assumed that the post-buckling stiffness of square
box-section columns was constant with the buckling progression, which in fact has been
shown in later work to be decreasing (Hancock, 1981)). This assumption overestimated the
ultimate load. Moreover, the method can only be used for predicting the ultimate load

and no information about the behaviour after that can be obtained.

Little (1979) proposed an approximate solution method to study the local-global mode in-
teraction of thin-walled square box-section struts by transforming the geometric nonlinear
problem due to local buckling of plates to a nonlinear material problem. Based on the as-
sumption that the strain distribution is linear over the cross-section width, the theoretical
moment-rotation—axial load (M—¢—P) relationship for a strut element with length being
equal to the half-wavelength of the local buckling mode was calculated. The stiffness loss
due to local buckling in the more compressed part was considered by applying a suitable
average nonlinear stress—strain relationship. This was taken from the load—end-shortening
curve of a simply-supported rectangular plate under pure compression up to failure us-

ing large deflection elastic-plastic analysis. Since the stress distribution in the webs is
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not uniform, they were divided into 10 elements, in which the stress and strain condition
was assumed to be constant. Then, the M—¢—P relationship was incorporated into an
iterative numerical method for an inelastic complete column, which was an assembly of
such half-wavelength elements. By integrating along the member axis, the load versus
deflection curves of locally buckled columns was obtained. Moreover, local and global geo-
metric imperfections, as well as residual stresses, were considered in the model. However,
as noted by the author, the average stress—strain relationship to consider the effects of
local buckling in plates neglected the interaction between individual plates. Moreover,
the assumption about the strain distribution over the cross-section, as well as the average
strain—stress relationship for the flanges, which are in combined compression and bending,

is also theoretically baseless.

Djubek et al. (1983) proposed a semi-analytical approach to compute the ultimate load
of thin-walled box-section struts susceptible to local-global mode interaction. The effects
of the plate local buckling on the bending rigidity of the cross-section were considered by
using the effective width concept. The expressions of the effective width for uniformly and
non-uniformly compressed plates were provided, which are used for determining the effec-
tive width in webs and flanges respectively. In particular, the Winter empirical equation
(Winter, 1968)) was used to determine the effective width for the uniformly compressed
web. In the formulation, the variation of the effective cross-section along the length of
the strut owing to different ratios of compression and bending moment was considered.
Moreover, the neutral axis movement due to the buckling of the more compressed section
was also included. The governing equation for the local-global mode interaction of struts

was given thus:

{BL[2,W (2, PYW"(2, P)}" + P{W"(z, P) + 0" [z, W (2, P)] + W(/(2)} =0, (2.1)

where I, [z, W(z, P)] is the effective second moment of area of the cross-section, which is

the function of the coordinate z and the column deflection W (z, P); P is the axial force
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applied to the strut; n [z, W (z, P)] represents the displacement of the centroid of the cross-
section owing to the plate local buckling; Wy(z) is the initial global imperfection of the
strut and primes represent derivatives with respect to z. Since the governing differential
equation is nonlinear with coefficients being functions of P, a combination of numerical
continuation and the Runge-Kutta method (Press et al., 2007) was adopted to obtain
the numerical solution. Moreover, the limit state of the strut was defined by the onset
of yielding in the plate. The numerical results identified the erosion in the load-carrying
capacity due to the geometric imperfections. However, as noted by the authors, there is no
theoretical basis for the method to determine the effective stiffness in flanges, where there
is a combination of axial compression and bending. A systematic investigation should be
conducted to obtain the actual effective area distribution. It should also be noted that
the effective width equation proposed by Winter (1968|) is mainly used for the ultimate
strength prediction. Therefore, it may not have been reasonable to describe the effective

stiffness distribution in the buckled plate without verification from experimental results.

Graves Smith (1968]) developed analytical models based on variational principles in con-
junction with the Rayleigh-Ritz method to investigate the effects of material yielding
stress level, cross-section aspect ratio, local-global mode interaction on the ultimate load
of perfect thin-walled box-section columns. The analysis of local-global mode interaction
consisted of two parts: firstly, analysis was conducted to obtain the post-buckling be-
haviour of columns under pure compression; secondly, a perturbation analysis, by applying
an infinitesimal bending strain, was conducted based on the results of the first part. The
corresponding ultimate load was determined by computing the effective bending stiffness
of the section in the post-buckling range. The results revealed that the global-local in-
teractive failure mode has little effect on the ultimate load of square box-section columns
when the slenderness ratio is half of the critical slenderness ratio, defined where the local
buckling load is equal to the global buckling load. An excellent comparison in the ultimate

load was observed between the analytical and test results.
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Using a very similar approach to that proposed by Little (1979), Lee and his collaborators
(Shanmugam et al., 1987; (Chiew et al., 1987) investigated the ultimate load of thin-walled
welded box columns susceptible to local-global mode interaction. The effect of plate local
buckling was considered by adopting a unified and simplified piecewise linear stress—strain
relationship, which could represent the typical load—end-shortening curves of unwelded
plates with plate width-thickness ratios being between 30 and 80 alongside an initial im-
perfection of /1000, where b is the plate width. The analytical model was validated using
experimental results of 17 welded box-section columns under pure compression. It revealed
that the analytical model could provide a reasonably accurate prediction of the ultimate
load. Based on the validated analytical model, a parametric study on the column and
plate slenderness was conducted. The load-carrying capacity erosion due to geometric im-
perfections and residual stresses was identified, particularly for columns with intermediate
lengths. As for the effect of plate slenderness on the interactive buckling, it revealed that
the column strength is independent of column global slenderness ), in the lower range of
Ao and this range increases with the increasing plate width to thickness ratio b/t. More-
over, at low b/t ratios, interactive buckling failure mode governs for the whole range of A,

whereas the failure is mainly due to local buckling up to a certain value of X, for larger

b/t.

It should be noted that the engineering method becomes practically less significant for
research purposes with the advance and availability of computational mechanics tools,
such as commercially available FE packages. However, they played an important role in
understanding the key parameters that affect the physical phenomena. Moreover, owing to
its simplicity and reasonable accuracy, it is acceptable for practical engineering purposes
and some of these studies have played important roles in the development of the codes of

practice.
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2.1.2 Theoretical approaches
Van der Neut model

As far as the author is aware, the Van der Neut model (van der Neut, 1969)) is the first
work to apply the general elastic stability theory to the interactive buckling of thin-walled
structures. The Van der Neut model is an idealized column, which consists of two load-
carrying flanges with width b and thickness h and an unspecified web with height 2¢ that
is rigid in shear and only offers a simple support to the flanges without contributing to
the transmission of the axial force, see Figure (a). With the idealized web assumption,
the force in the flanges is very easy to calculate; Van der Neut investigated the ultimate
load and initial post-buckling behaviour of perfect columns, columns with a pure local
imperfection, and columns with both local and global imperfections with varying lengths.
The application of the model to imperfection sensitivity and load-carrying capacity erosion

study is discussed in a later section specifically about imperfections (§2.3)).

In the model, the interaction between local and global modes is considered by introducing
the reduction factor in the longitudinal stiffness 1 in the post-buckling range of the flanges.

The reduction factor n is given by:

_d(P/PO)

d(e/e)) ’ (2:2)

where P and ¢ are the applied compressive load and the direct strain in the flanges re-
spectively and PC and ¢] are the local buckling load and the corresponding direct strain
in the flanges. For the perfect case, n decreases with the increase of P/P, but it remains
approximately 0.4083 for €/¢; < 3 (Hemp, 1945)). The governing differential equation was

established using direct equilibrium.

Using Koiter’s theory (Koiter, 1945), Van der Neut investigated the characteristics of

the equilibrium response at the buckling load and classified the post-buckling properties
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Figure 2.2: (a) The Van de Neut model of an idealized thin-walled strut (van der Neut,|
. The strut comprises two load-carrying flanges with width b, thickness h, length L
with a pair of rigid webs of depth 2¢ — h with no longitudinal stiffness; P is the concentric
axial load applied to the entire strut. (b, ¢) The Van de Neut curves for the geometrically
perfect case: 7 is the stiffness reduction factor, Ly = [2n/(1 + n)}lﬂLl, Ly = 'L, and
Ly is defined when Py = BF; PP and Py are the plate local buckling load and the column
Euler global buckling load respectively.
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Table 2.1: Types of bifurcation defined by Van der Neut (1969), where P is the axial
load and PC is the local buckling load. The quantity (Wy/c)? is the same order of the
C

deflection at mid-span and —AL is the end-shortening; % represents the slope of the
0

C2
. . dP/PC
load versus mid-span deflection curve and T

ICAL/ST) represents the slope of the load versus
end-shortening curve.

Bifurcation at P,

P P p
End-shortening End-shortening End-shortening
dp/PC
dpP/pPC
m >0 <0 >0
Post-buckli .
OSUDUCRIANE 1 gtable & explosive unstable stable

characteristic

into three categories, as presented in Table Moreover, as shown in Figure (b),
four distinct length-dependent zones were identified, i.e. the column is approximately neu-
trally stable when L < Ls, strongly stable when Ly < L < Ly, strongly unstable when
Ly < L < L; and approximately neutrally stable once again when L > L;. By an axis
transformation, Figure (b) can be presented as the more well-known diagram compris-
ing three straight lines as shown in Figure (C) The boundary for each characteristic
zone was determined based on the Engesser ‘double-modulus’ theory (Bazant & Cedolin,

2010)), where the effective axial stiffness of the buckled plate is assumed to be nFE.

Using almost the same methodology, Van der Neut (1976)) also studied the mode interaction
in stiffened plates used in aircraft wing structures, where the cross-section is unsymmetrical,
i.e. the area of the plate side is larger than the stiffener topside. In particular, the rotational
constraint from adjacent plate elements were included in the analytical model. Unstable
post-buckling behaviour due to mode interaction was also observed but the severity was
mollified. Moreover, compared with the two-flange Van der Neut idealized column, it was

found that the unstable range for the stiffened plate was much smaller.
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Discrete models

Menken et al. (1991} 1994) developed a discrete model (see Figure involving a limited
number of degrees of freedom to analyse the interaction between the local flange buckling
and the overall lateral-torsional buckling in a cantilever T-section beam. Using the general
theory of elastic stability (Thompson & Hunt, 1973), the interactive buckling behaviour
was reproduced and it agreed well with the experimental results qualitatively. Although
discrete models reproduce qualitative behaviour, analytical approaches based on continuous

models are generally superior for reproducing quantitative behaviour.

Figure 2.3: Discrete model for analysing the interaction between the global lateral-torsional
buckling mode and the local flange buckling mode; @) is the rotation and )5 is the lateral
deflection, both describing the global lateral-torsional buckling mode. The independent
angles 5 and Qg represent the local buckling mode of flanges; ()5 characterizes the vertical
deflection and @4 is the end-shortening. Reproduced from Menken et al. (1994).

Continuous models

Based the concept of slowly varying functions, Koiter and Pignataro (1976a)) formulated a
relatively simple and approximate potential energy expression to describe the local-global
mode interaction in stiffened panels. As for the description of the local mode, a simple but
sufficiently accurate approximation based on the solution of initial post-buckling of long

flat plates was adopted. Specifically, the cross-section component of the local out-of-plane
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displacement was given as a piecewise function:

;

gsin(m¢) + (1 — ¢) [1 — cos(3n()] /3 for 0 < ¢ <1/6,
9w(Q) = gsin(n¢) + (1 — q) [1 + 2sin(37¢/2 — /4)] /3 for 1/6 < ( <5/6,  (2:3)

gsin(m¢) + (1 — ¢) [1 + cos(3m()] /3 for 5/6 < ¢ <1,

\

where (=y/b is the normalized transverse coordinate with b being the plate element width
between stiffeners, ¢ is the parameter reflecting the effects of rotational restraints in the
longitudinal edges, the variation of which can mimic a variety of different rotational bound-
ary conditions from the simply-supported (¢=0) to clamped cases (¢g=1). The longitudinal
component of the out-of-plane displacement was assumed to be a sine function, the wave-
length of which depended on the rotational restraint at both longitudinal edges. Moreover,
the modulation in the local mode amplitude owing to local-global mode interaction was
considered by introducing a modulated function. As for the in-plane local mode, both axial
and transverse displacement fields were considered, the wavelength of which in the longitu-
dinal direction was assumed to be half of the out-of-plane component a. The cross-section

components for axial and transverse local modes were assumed to be:

™

where the prime represents the derivative with respect to (. By reducing the functional in
terms of a dimensionless quantity, it revealed that the expression only depends on the ratio
of the global buckling load to the local buckling load as well as the cross-section properties,
the latter of which was found to vary in a relatively narrow range for practically significant
sections. Based on the analytical model, it was found that the unstable post-buckling
behaviour of stiffened panels was less severe than that for the Van der Neut’s two-flange

simplified model.

Recently, the group led by Wadee has developed a series of mathematical models based on



CHAPTER 2. LITERATURE REVIEW 80

variational principles to simulate the nonlinear local-global interactive buckling behaviour
in thin-walled structural components under compression (Wadee & Bai, 2014; |Wadee &
Farsi, 2014a; |Liu & Wadee, 2015) and bending (Wadee & Gardner, 2012)). The fundamen-
tal methodology for the series of works is essentially the same, which was firstly proposed
while studying localized buckling in sandwich structures (Wadee, 1998)). Timoshenko beam
theory was used to model the global behaviour of the structure because Hunt and Wadee
(1998) demonstrated that the shear strains within each individual element were essential to
preserve the energy terms necessary for modelling the interaction. Specifically, the global
mode was divided into two components: a pure lateral displacement W and a pure rotation
0 (see Figure , known as the ‘sway’ and ‘tilt’” modes respectively (Hunt et al., 1988}

Hunt & Wadee, 1998). The local mode was estimated by appropriate boundary conditions,

(a) Sway mode (b) Tilt mode

N N\ | |
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Figure 2.4: Decomposition of the global buckling mode into ‘sway’ and ‘tilt’ components.

in conjunction with the Rayleigh-Ritz method. Geometric nonlinearities were considered
by using large-deflection plate theory (Timoshenko & Woinowsky-Krieger, 1959)). Based
on the modal description, the total strain energy and work done by load terms were deter-
mined. The global buckling load of the compression member was determined by considering
the condition where the Hessian matrix of the total potential energy V is singular on the
fundamental path, where all local and global buckling modes are null. With variational
principles, the total potential energy V' was then minimized with respect to the continuous
variables, the longitudinal local out-of-plane component w and in-plane component u, to
obtain a system of nonlinear differential and integral equations that define the equilibrium

states.
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Since the governing equations are too complex to solve analytically, the numerical continua-
tion software, AUTO (Doedel & Oldeman, 2009)), was used to solve the governing equations.

AUTO is generally used to solve the following problem using numerical continuation:

f(y,n) =0, (2.5)

where f and y denote n-dimensional vectors, and 7 is the continuation parameter, i.e. a free
parameter introduced to observe how the solution of f evolves. The method for orthogonal
collocation (De Boor & Swartz, 1973|) was adopted to discretize the problem using piecewise
polynomials with 2-7 collocation points per mesh interval (Doedel & Oldeman, 2009).
Moreover, the mesh is automatically adapted to the solution so as to distribute the error
from local discretization (Russell & Christiansen, 1978). Although AUTO is principally
designed for autonomous systems (hence the name), n'"-order non-autonomous equations

can be solved by introducing a further variable, f,,.1, where

fn+1 = 17 (26)

with the boundary condition being:

f— (2.7)

As for the numerical continuation routine, pseudo-arclength continuation is adopted in
combination with the modified Newton—Raphson method is adopted (Riks, 1979)). It can
trace the limit points (or folds), which is very helpful to trace the highly nonlinear equi-

librium paths in current study.

Despite the advantage in tracing highly nonlinear equilibrium paths, the modified Newton—
Raphson method cannot detect and identify bifurcation points in the solution space (Cr-
isfield & Wills, 1988]). Since the rank of the Jacobian matrix of the system of equations,
J, reduces by at least one at a bifurcation point, AUTO can locate bifurcation points by

examining it (Doedel & Oldeman, 2009). Moreover, from evaluating the derivative of J at
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the bifurcation point, the trajectories of different post-bifurcation paths can be computed
by finding the roots of the resulting algebraic bifurcation equation (Keller, 1977)). The well-
defined trajectories of the post-bifurcation branch paths also makes it possible to switch
between different post-bifurcation branches. It should be noted that AUTO can also detect
other kinds of critical points, such as torus bifurcations and Hopf bifurcations. However, in

the current thesis, the detection of limit points and bifurcation points is deemed sufficient.

AUTO has been shown in previous studies to be a powerful numerical solver of nonlinear
problems without losing the intrinsic mathematical structure of the solutions and to switch
between, as well as trace, equilibrium paths (Wadee & Bai, 2014 [Wadee & Farsi, 2014a;
Wadee & Farsi, 2014b; Bai & Wadee, 2015b; [Liu & Wadee, 2015)). This puts it to somewhat
of an advantage to the commerical FE package ABAQUS in the sense that the perfect
nonlinear behaviour can be investigated without resorting to perturbing the system to
by-pass the bifurcation. The fourth-order and second-order governing equations are firstly
non-dimensionalized and then transformed into a system of first order differential equations
(Wadee, 1998)) so as to be solved within AuTO. Moreover, it should be mentioned that
the principal parameters used in the continuation process in AUTO are interchangeable.
For the case where global buckling is critical, see Figure (a), the global buckling load
PC is obtained explicitly from the analytical model. Using the continuation method,
the normalized amplitude of the global mode ¢ is then varied to obtain the secondary
bifurcation point S, where local buckling is triggered. Subsequently, the second run is
started at the bifurcation point S using the branch switching facility within the package
and the applied load P is varied to compute the interactive buckling paths. For the case
where local buckling is critical, the first run starts from zero load and the local buckling
load P is obtained numerically. Using the branch switching function, the post-buckling
path of the local buckling mode is computed. The second run is stopped and the branch is
switched in the third run when a secondary bifurcation point S is found. From this point,

the interactive buckling path is found; the procedure is shown in Figure (b)
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Figure 2.5: The numerical continuation procedures for interactive buckling of perfect
columns: (a) global buckling being critical and (b) local buckling being critical. The
thicker line shows the actual solution path. Circles marked C and S represent the criti-
cal and secondary bifurcation points respectively; g5 and wy.x/t represent the respective
normalized amplitudes of the global and local buckling modes.

Highly unstable cellular buckling (Hunt et al., 2000) due to the instability of the mode
interaction in combination with the strong post-buckling stability of the local mode was
observed in I-section struts (Wadee & Bai, 2014)), beams (Wadee & Gardner, 2012), stiff-
ened plates (Wadee & Farsi, 2014a) and angles (Bai et al., 2017). Snap-backs in the
equilibrium paths and evolution of the local mode profile from localized to distributed
were captured, which was not well reproduced in the numerical verification (Wadee & Bai,

2014; Wadee & Farsi, 2014a) using ABAQUS, but were observed in physical experiments.

The analytical models for stiffened plates and I-section columns were extended to include
rotational springs at junctions within the cross-sections (Wadee & Farsi, 2014b; Bai &
Wadee, 2015b)). In both cases, a rapid erosion of the snap-backs in the equilibrium paths
was observed with the increase of the rotational rigidity at junction. However, the evolution
of the local mode profile from localized to being more distributed and the wavelength
change was still captured. Moreover, based on the analytical models, parametric analysis
was conducted to investigate the effects of changing the global and local slenderness on
the post-buckling behaviour, thus providing the important practical sizing information to
structural designers (Bai, 2014; |Wadee & Farsi, 2015)). Compared with Van der Neut’s

‘three-straight line’ P,/PF-PC/PC diagrams, as shown in Figure the diagrams in
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present works (Bai, 2014; [Wadee & Farsi, 2015) present quantitative information about

the behaviour of structural components in the interactive buckling range.

The results from these studies reveal amongst other things that progressive cellular buckling
(Hunt et al., 2000) arises from the nonlinear interaction between the weakly stable global
buckling mode and the strongly stable local buckling mode. Moreover, experimental results
from other research groups (Fok et al., 1976} [Becque & Rasmussen, 2009al) have been useful
in validating the analytical work (Wadee & Bai, 2014, |Wadee & Farsi, 2014b)) with excellent
agreement. It should be noted that these models were also extended to include geometric
imperfections. The related work will be discussed in a later section specifically about

imperfection sensitivity.

2.2 Numerical approach to interactive buckling

2.2.1 Finite Element Method (FEM)

Owing to the popularity of general-purpose finite element (FE) packages with powerful
modelling and solution functions, FEM has become a critically important and accessible
method in analysing the nonlinear behaviour of thin-walled structures. Compared with
analytical methods, it can model nearly all the actual physical scenarios, including items
such as residual stresses, initial imperfections and plasticity. Therefore, it is often used for
verifying analytical models (Wadee & Farsi, 2014a; Becque, 2014; Bai & Wadee, 2015b;
Liu & Wadee, 2015), expanding the original simplified analytical model to more general
and actual cases (Kiymaz, 2005)) and conducting parametric studies based on FE models
validated by experiments (Becque & Rasmussen, 2009b; [Yuan et al., 2014)). Related studies
using commercial packages with the FE models calibrated by experimental results are

reviewed later in
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However, compared with analytical methods, it takes more time to run a nonlinear FE
analysis with a fine-mesh scheme. Nevertheless, high precision in the solution was ob-
tained in nearly all these numerical studies except for the aforementioned cases. In the
current study, the FE method is used as a verification tool for the analytical model, to give
hints for refining the analytical models and to conduct parametric studies to increase the

understanding of the behaviour of thin-walled RHS in practical scenarios.

Apart from the usage of generalized FE packages, some researchers have also developed
some specific finite elements to study the local-global mode interaction. Usami and Fuku-
moto (1984) adopted an updated Lagrangian formulation for elastic large displacement
analysis of beam-columns (Cook et al., 2007) to simulate the global response of welded
box-section struts exhibiting mode interaction within the FEM framework. Local buck-
ling was considered by introducing the effective width concept, as shown in Figure [2.6
The effective member sections were determined using the effective width formula at every

loading stage. For uniformly compressed plates, i.e. webs, the expression for the effective

(a) (b) (©)
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Figure 2.6: Effective width of a plate under different stress distribution cases: (a) Uniform
compression with oy, = 03;; (b) eccentric compression with o1, > 05; > 0; (c¢) eccentric
compression with o1; > 0 and oy, < 0.

width at step ¢ was given thus:

t <, (2.8)

where b is the total width; C'is a constant determined based on the stub column tests; o,
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is the local buckling load of a simply supported plate under pure compression; o; is the
edge stress at step ¢. It should be noted that by substituting o; with the yielding stress f,
in Eq. , it is equivalent to the effective width equation to determine the ultimate load
of locally buckled plates. For non-uniformly compressed plates, the following expressions

were used. When o0y ;, 09, > 0:

bel 7 C Ocr

b = 5 Ul,i’ (29)

bers _ {1 +0.44 (1 - ‘72”')} bets (2.10)
b 01,i b

be1,i + be2; < b. (2.11)

When o7; > 0 and 0y; < 0, the expression for be;; is the same as that given by Eq. (2.9)

and
be?i beli
=~ =144— 2.12
: = 2.12)
with
be1,i + bea,i < b — bes s, (2.13)

where 01 ; and 09; are the maximum and minimum edge stresses respectively, as shown in
Figure 2.6 As for the FE formulation for the beam-column element, the shape function
for the axial and lateral displacements was adopted as first and third order polynomials.
Half of each column was discretized into six elements and four point Gaussian quadrature
was adopted to integrate the element stiffness matrix. As for the imperfections, an initial

deflection of a half sinusoidal wave was introduced as the global geometric imperfection.

Ali and Sridharan (1988) developed a one-dimensional finite element model, which can
simulate the interactive buckling of thin-walled columns with an arbitrary cross-section.
In particular, the displacement field of the model includes amplitude modulation of the
local modes and the global mode. As for the global mode, both purely flexural and flexural—-
torsional buckling modes were considered; as for the local mode description, a primary local

mode and two relevant secondary local modes with the same wavelength were considered.
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All the modes were determined using the finite strip method. Some examples on channel-
section columns were presented; it revealed that there is a nonlinear coupling between
flexural and flexural-torsional buckling through the local buckling mode. Moreover, highly
imperfection sensitive behaviour of channel-section columns was identified, which is more

severe than the cases with doubly-symmetric cross-sections.

Degée et al. (2007) developed a new special beam finite element to analyse the local and
interactive post-buckling of Rectangular Hollow Section (RHS) thin-walled members. The
newly developed element was based on the superposition of a displacement field of a clas-
sical strut (global mode) and a field describing local effects (local mode). The nonlinear
analysis results for beams of moderate local and global slenderness matched well with the
results obtained using shell elements. However, the simplified assumption that neglected
some nonlinear local terms in the strain energy expression makes the element only valid in

cases where the geometric nonlinear effect is relatively small.

Since the full nonlinear post-buckling analysis of thin-walled structures requires a consid-
erable computational effort, Lanzo and Garcea (1996) developed an asymptotic approach
based on a finite element implementation of Koiter’s general theory of stability. Com-
pared with the previous approach using the analytical method in conjunction with Koi-
ter’s theory, this method overcame the limitation from the displacement field assumption
and limited boundary condition cases. Compared with the standard nonlinear incremental
path-tracing approach, it was much faster and computationally efficient. The numerical
results also demonstrated that this method can provide a reasonably accurate prediction
of ultimate load and initial post-buckling behaviour. It was also reported that the method
could capture some complex strong modal interaction phenomena, which was difficult to
predict by some, more standard, nonlinear analysis techniques. However, since the selection
of the number of buckling modes is crucial for the accuracy of the method, an a posteriori
study on the number of selected modes should be performed, otherwise all critical modes

must be taken into account. Moreover, owing to the limitation of Koiter’s theory, this
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method is only reliable in the initial post-buckling stage. Therefore, this method has been
more widely used on the imperfection sensitivity studies (Zagari et al., 2016), where only

the ultimate load is of interest.

2.2.2 Generalized Beam Theory (GBT)

GBT was first developed by Schardt (1994) but was only valid for linear buckling theory
initially. Silvestre and Camotim (2003) developed a geometrically nonlinear GBT, which
is valid in the large deformation range but still keeps the advantage of the modal decompo-
sition feature. Compared with traditional GBT, two additional sets of cross-section defor-
mation modes, namely shear and transverse modes, were introduced, thus making complex
cross-section analysis possible. A finite element beam was developed for the solution of the
GBT equations. A predictor—corrector technique based on the Newton—Raphson method
and arc-length control was used to solve the nonlinear equations. In the three illustra-
tive examples on the post-buckling behaviour of a plate, a lipped channel and a Z-section
column under pure compression, the equilibrium paths calculated by the nonlinear GBT
match well with those from ABAQUS using shell elements. The decomposition feature of
GBT helped explain the mechanism of some cross-section modes which cannot be provided
by conventional numerical methods directly. Moreover, the method discretized the system
in terms of modes and hence the number of degrees of freedom is substantially reduced
when compared with shell FE models, which has a marked effect on reducing computing

time.

In recent years, nonlinear GBT has been further extended to solve a variety of different
problems by Camotim and his collaborators, such as the post-buckling behaviour of thin-
walled structures made of nonlinear materials using the active elastic moduli predicted by
deformation and flow plasticity theories (Gongalves & Camotim, 2004)); the elastic post-

buckling behaviour of imperfect thin-walled steel members with arbitrary cross-section pro-
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files with non-standard support conditions (e.g. localised restraints) under general loading
conditions (Basaglia et al., 2011)); the interaction between local and distortional buckling
of thin-walled lipped channel columns (Silvestre & Camotim, 2006|) and beams (Martins
et al., 2018)).

2.2.3 Finite Strip Method (FSM)

The FSM was first developed by Cheung ({1968) alongside Graves Smith and Sridharan
(1978) to reduce the computational efforts. The basic methodology and theory is essentially
identical to FEM. The only difference is the discretization. In the finite strip method, only
a single element is used to model the longitudinal direction. It greatly reduces the number
of degrees of freedom in the model compared with FEM. However, it may also introduce
errors for the cases where the longitudinal displacement field varies and deviates from the
predefined shape function. Hancock et al. (1990) proposed the spline finite strip method
by discretizing the longitudinal direction as well and using spline functions to describe the
longitudinal displacement field. It can somewhat make up the shortcomings of the original
version of FSM but with the price of additional complexity and increased computational

efforts.

Using the FSM, Hancock (1981) studied the effective global bending rigidity of square box-
section columns with initial local imperfections. As shown in Figure 2.7 a perturbation in
global bending was applied by adding a small curvature to the locally deformed sections due
to axial compression and initial geometric imperfections. The resulting stress distribution
was integrated to obtain the bending moment applied on the section. To simulate the
actual stress distribution, half of the cross-section was subdivided into 16 equal width
strips. The effective global bending rigidity of the section then was determined by dividing
the bending moment by the curvature. With this methodology, the effective bending

rigidity of struts with different local imperfection sizes under different compressive stress
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Figure 2.7: Square box-section strut with initial local geometric imperfections: (a) Initial
state. (b) Axial compressive strain A. (c) Axial compressive strain A and bending curva-
ture x. The dotted line in the cross-section graphs represents the deformed profile in the
preceding stage.

levels was determined. A comparison was made with previous studies (Bijlaard & Fisher,
1953; Dewolf et al., 1974), which verified the effectiveness of the methodology. Moreover, it
revealed that the effective bending rigidity is sensitive to imperfection size when the initial

compressive load is smaller than the local buckling load.

Sridharan and his collaborators (Sridharan, 1983; Benitot & Sridharan, 1984} [Sridharan
& Ali, 1986)) used the finite strip method in conjunction with Koiter’s theory to analyse
the mode interaction of thin-walled structural members with different cross-sections. As
for the global mode, both purely flexural and flexural-torsional buckling were considered.
The numerical results (Benitot & Sridharan, 1984) matched the available experimental
results well. However, greater focus was placed on the imperfection sensitivity study. The

evolution or progress of the interactive buckling behaviour was not presented.

Davids and Hancock (1987) combined the influence coefficient method (Han & Chen, 1983])
for beam-columns with the FSM for nonlinear elastic analysis of locally buckled thin-

walled sections to analyse the local-global interactive buckling in beam-columns, as shown
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in Figure 2.8 This method takes advantage of both analysis methods and thus is very
computationally efficient. Moreover, the effects of local and global geometric imperfections,
residual stresses, general boundary conditions as well as the general applied loads were
included in the model. As for the analysis procedure, the column was first replaced by
a series of ‘cell’ elements, the lengths of which were equal to the half-wavelength of the
pure local buckling mode. The moment and axial force resisted by a cell subjected to the
defined curvature and axial strain were determined using the nonlinear elastic FSM. The
average values of moment and axial force then were used for the nonlinear analysis of the
beam-column. The numerical results showed good comparisons with experimental results.
le |, Nodei

-

W(z)

p \\
/ Segment i
le
g e\e(\%eﬂ

Strips
Nodal lines

Figure 2.8: Illustration of the influence coefficient method of beam-column in conjunction
with the finite strip method of nonlinear elastic analysis of locally buckled ‘cell’ element.

In particular, the post-ultimate equilibrium path could be traced well and the amplitude
modulation in the local mode could be captured. The numerical results also revealed that
columns exhibiting mode interaction are sensitive to geometric imperfections. Compared
with previous approximate methods (Bijlaard & Fisher, 1952; Bijlaard & Fisher, 1953;
Dewolf et al., 1974; Djubek et al., 1983) in considering the reduced stiffness owing to local

buckling, this method is more accurate. However, it should be stressed that the wavelength
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of the local mode in the local-global interactive post-buckling range in fact varies along
the strut length and with the interaction progression, which was not considered by the

method due to technical complexity.

Mgllmann and Goltermann (Mgllmann & Goltermann, 1989; |Goltermann & Mgllmann,
1989) also used the finite strip method in conjunction with Koiter’s theory to investigate
the interactive buckling behaviour of an I-section beam under pure bending and a box-
section column under pure compression. Substantial reductions (up to 50%) in the load-
carrying capacity were observed in both examples due to the mode interaction. Guo and
Chen (1991)) extended the method by including plasticity. The method was validated by

their experiments on channel columns under compression.

Hancock et al. (1990) reviewed the application of FSM in buckling and nonlinear analysis
of thin-walled structural members. Compared with the FEM, the FSM is more compu-
tationally efficient. However, in order to make the computation process simplified, some
assumptions or simplifications have to be made, which have been shown to have signifi-
cant effects on the post-buckling behaviour prediction. With the popularity of powerful
commercial FE packages, the principal role of FSM in the nonlinear buckling analysis
was replaced by the FEM. More recently, fewer papers have been forthcoming with FSM
used for nonlinear analysis; it has become more popular as a linear buckling analysis tool
(Schafer et al., 2010)) to facilitate design using the so-called the Direct Strength Method
(Schafer & Pekoz, 1998b)).

2.3 Imperfection sensitivity

Previous studies (van der Neut, 1969; Thompson & Hunt, 1973 [Svensson & Croll, 1975;
Gioncu, 1994b) have shown that structures susceptible to mode interaction can be ex-

tremely sensitive to imperfections, i.e. a tiny imperfection in the initial geometry may lead



CHAPTER 2. LITERATURE REVIEW 93

to a significant erosion in the load-carrying capacity. In view of the design philosophy,
Chilver (1976) classified the imperfection sensitivity of structures into three categories, as

shown in Figure In his opinion, the imperfection sensitivity should be avoided but
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Figure 2.9: Three types of structural imperfection sensitivity classified by Chilver (1976])
from the view of design philosophy. Quantities P, Py pert, €0 represent the ultimate load,
the ultimate load of perfect structures and the generalized imperfection size respectively.
Type 1 represents the structures exhibiting mildly imperfection sensitivity; Type 2 repre-
sents structures exhibiting initial sensitivity to micro imperfections but are mildly sensitive
to imperfections over a wide range of practical imperfection size; Type 3 represents struc-
tures showing strong sensitivity to imperfections.

relatively mild sensitivity can be accommodated. In particular, those structures that are
initially sensitive to micro-imperfections but showing mild sensitivity over a wide range of
practical imperfections, i.e. there is a ‘plateau’ of the ultimate load in the P,—¢( relation-
ship in the practical imperfection range (see curve 2 in Figure , can also be useful in
structures. The main issue for such cases is to determine the load-carrying capacity erosion

due to imperfections.

In this section, imperfection measurement methods in test and modelling techniques are
reviewed. After that, the imperfection tolerance level and modelling suggestions within the
current Eurocode are presented. Finally, imperfection sensitivity studies on thin-walled

members susceptible to interactive buckling are presented.
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2.3.1 Geometric imperfections measurement and modelling

Geometric imperfections of thin-walled section members are affected by a series of factors,
such as variations in material properties and geometry, the manufacturing method and
fabrication techniques. Moreover, additional geometric imperfections may arise due to
transportation, storage and erection, which are almost always localized, such as dents
(Cruise & Gardner, 2006). The existing literature (Schafer & Pekoz, 1998a; [Wadee, 2000
Zemoddini & Schafer, 2012; Wadee & Farsi, 2015; [Bai & Wadee, 2015a; [Liu & Wadee,
2016b; Zagari et al., 2016) has identified that both magnitude and distribution of geometric
imperfections affect the load carrying capacity of the structural members. Hence, a great
deal of effort has been made on geometric imperfection measurement and developing a
consistent and unified method to determine the geometric imperfection distribution and

the magnitudes that reflect actual cases in practice.

Schafer and Pekoz (1998a) measured the local imperfection distribution along the length
for eleven nominally identical cold-formed specimens using a milling machine with a direct
current differential transformer (DCDT') and proposed the concept of the imperfection spec-
trum to describe the measured results. Based on the test results, they also explained the use
of the imperfection spectrum for modal and generalized imperfections. The methodology
was widely used by later researchers working on imperfection measurement and modelling
(Cruise & Gardner, 2006; Theofanous & Gardner, 2009; |Schafer et al., 2010; [Zeinoddini &

Schafer, 2012; [Trouncer & Rasmussen, 2015).

Recently, Zhao et al. (2015)) developed a novel imperfection measurement platform, which
can measure the full three-dimensional (3D) imperfect geometry of a cold-formed steel
member with good accuracy using a laser sensor mounted on transitional and rotary stages.
The data processing system can transform the raw data into a complete 3D numerical model
(point cloud), which provides the basis for further analysis on imperfections or numerical

simulations, such as FE analysis.
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As for the magnitude of local imperfections in cold-formed sections, Schafer and Pekoz
(1998a)) proposed rules of thumb for two types of imperfections for cold-formed sections

based on the collected test data, as shown in Figure [2.10, For internal elements, two ap-

(a) (b)

Figure 2.10: Definition of local geometric imperfections (Schafer & Pekoz, 1998al).

proximate expressions based on linear regression and exponential curve fitting respectively
were given:

woy ~ 6te (2.15)

where d and t are the width and thickness of the plate respectively. The unit in the equation
should be millimetres. For outstand elements, the magnitude of the imperfections can be
predicted by:

It should be stressed that the above rules of thumb are only valid for a plate width—
thickness ratio (d/t) less than 200 for internal members and less than 100 for outstand

members; thicknesses should also be less than 3 mm.

Since large variations exist in the magnitude of local imperfections and the rules of thumb
do not provide a complete characterization of imperfection magnitude, Schafer and Pekoz
(1998a) also suggested a probabilistic treatment, which ignores any trend in the data
attributed to plate width or thickness. The numerically estimated cumulative distribution

function (CDF) values and the summary statics are given in Table 2.2 A CDF value is
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Table 2.2: Numerically estimated cumulative distribution function (CDF) values for max-
imum magnitude of local imperfections (Schafer & Pekoz, 1998a)). Note that P(wy < wo;)
represents probability that a randomly selected local imperfection maximum magnitude,
wy, is less than a discrete deterministic one, wy;.

Type 1 Type 2
P(U)O < wOi) U)Ol/t wog/t
0.25 0.14 0.25
0.50 0.34 0.50
0.75 0.66 0.75
0.95 1.35 0.95
0.99 3.87 0.99
Mean 0.50 1.29
St. dev. 0.66 1.07

written as P(wy < wy;) and indicates that the probability that a randomly selected local
imperfection maximum magnitude, wy, is less than a discrete deterministic value, wy;.
For instance, P(wy < wy;) = 0.75 corresponds to wp; /t = 0.66 for internal elements and
wpe/t = 1.55 for outstand elements. The maximum magnitude of the local imperfection

for a typical member, wy, is expected to less than these values 75% of the time.

As for the magnitude of local imperfections in welded sections, a summary of the measured
data in existing literature (Pavlovcic et al., 2012; [Shi et al., 2014 [Schillo, 2017; Yang et al.,
2017) is presented in Figure 2.11] It reveals that P(Ag/d < 1/200)=0.8 and P(Ay/d <
1/125)=0.91, the latter of which corresponds to the functional manufacturing tolerances
for welded box sections (EN, 2008). As for the local imperfection normalized with respect
to plate thickness, it reveals that the imperfection amplitude is generally smaller than that
for cold-formed sections presented in Table i.e. P(Ap/t < 0.3)=0.83 and P(Ay/t <
0.5)=0.96. This may be attributed to the fact that the plate slenderness in welded sections

is relatively higher than that for cold-formed sections.

Mateus and Witz (2001) proposed an equation to determine the initial imperfection am-
plitude based on the regression analysis of data gathered from surveys of ship and welded

box girder bridge plates:

wo _ od” fy (2.17)
t 2B
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Figure 2.11: Histograms of local imperfection amplitude normalized with respect to (a)
plate width and (b) plate thickness in welded box-section columns in the existing literature.

where d and t are plate width and thickness respectively; f, and E are material yielding
stress and Young’s modulus respectively; o is the fitted factor. It was suggested that o = 0.1
would be most adequate; o = 0.3 and 0.025 would give the related upper and lower bound
of the imperfection amplitude. Figure [2.12| shows the histogram of ¢ determined based on
the measured local imperfection amplitude in welded box section column in the existing
literature. It reveals that Eq. could provide a relatively reasonable prediction of the

local imperfection amplitude in welded box-section struts.

Compared with the magnitude, there seems to be no real consensus on a consistent or
unified method for the distribution of local geometric imperfections. A great deal of ef-

fort has been made in analysing the measurement data using the signal-spectrum analysis

method (Schafer & Pekoz, 1998a; (Cruise & Gardner, 2006; Trouncer & Rasmussen, 2015)

and developing methodologies such that the artifically generated local imperfections can

reflect those in physical reality (Zeinoddini & Schafer, 2012)). However, since local imper-

fections are essentially stochastic parameters, a large number of analyses are necessary to

obtain statistically significant results in terms of the ultimate load (Sarawit et al., 2003).
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Figure 2.12: Histogram of the local imperfection factor ¢ in Eq. (2.17) determined based
on the results in the existing literature.

Therefore, for convenience, the majority of the previous studies adopted the profile of the

lowest local buckling mode as the distribution profile of local imperfections (van der Neut,
11969; Degée et al., 2008 [Yang et al., 2017)). The details of related work on the imperfection

distribution modelling and the effects on the ultimate load prediction will be introduced

later in the current chapter.

2.3.2 Residual stresses measurement and modelling

Residual stresses are internal stresses existing in structural sections in the externally un-

loaded state (Cruise & Gardner, 2008), which are primarily established during the uneven

cooling of a welded or hot-rolled steel member or during non-uniform plastic deformation

due to cold-work (Trahair et al., 2007). They must be distributed through the section

such that all equilibrium conditions are satisfied. The magnitude and distribution of resid-

ual stresses in sections are closely related with the corresponding manufacturing process

(Tebedge & Tall, 1973} |Abambres & Quach, 2016). Generally, the existence of residual

stresses in structural members will cause premature yielding, thus leading to stiffness loss
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and erosion in the load-carrying capacity.

The current study focuses on residual stresses in welded cross-sections. However, it should
be noted that systematic experimental and theoretical studies on residual stresses in cold-
formed sections have been conducted, i.e. development of measuring techniques (Weng &
Pekoz, 1990), test results (Schafer, 1997; |Schafer & Pekoz, 1998al), mechanism of residual
stress formation with its numerical and analytical simulation (Quach et al., 2004 Moen
et al., 2008; (Quach et al., 2010; [Pastor et al., 2013), and modelling methodologies in com-
putational models (Schafer & Pekoz, 1998a; Schafer et al., 2010). Compared with welded
sections and cold-formed sections, work on residual stress distributions and magnitude in
hot-rolled sections is relatively more mature and related studies can be found (Lay & Ward,
1969; [Tebedge & Tall, 1973; [ECCS. TC 8, 1976|). Moreover, owing to post-manufacturing
treatment, residual stresses in hot-rolled sections are relatively small in comparison with

cold-formed and welded sections.

As for the measurement of residual stresses in welded sections, it is mainly conducted using
the sectioning method (Abambres & Quach, 2016). This technique is based on the mea-
surement of residual strains that are released when test sections are cut into small coupon
strips (Tebedge et al., 1973|). The residual stresses can then be obtained by multiplying the
change in the longitudinal strains in each strip coupon surface with the Young modulus.
It should be noted that there are also some non-destructive methods to measure residual
stresses, such as X-ray diffraction, ultrasonic and magnetic methods, but they are very

expensive and not often practical (Yuan et al., 2014).

As for residual stresses in welded sections, it has been observed that only the axial mem-
brane component is of significance (ECCS. TC 8, 1976)). The membrane stress magnitude
depends on the plate cutting method and welding techniques. The distribution for normal
strength steel (NSS) has been investigated extensively and there are some widely-accepted
models (ECCS. TC 8, 1976 |Abambres & Quach, 2016). The ECCS model for four typ-

ical cases is shown in Figure [2.13] The tensile stresses at the corners are assumed to be
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Figure 2.13: Residual stress distribution model for welded box sections (ECCS. TC 8,
1976), where fy is the yielding stress, ¢ is the plate thickness and b is the plate width.

constant with the value equal to the material yielding stress. The length of the tensile
range is related to the welding method. The compressive residual stresses are assumed to
be uniformly distributed in the central part of the section, with the value determined from
the self-equilibrating conditions. With the increase of the plate width—thickness ratio, the
ratio of compressive residual stress to yielding stress decreases. In the current study, the

ECCS model is adopted for modelling the residual stresses.

Recently, as the use of high strength steel (HSS) has increased, numerous studies have
been conducted on residual stress distributions on welded HSS box-section members. Ban
et al. (2013) investigated the residual stress distribution in HSS welded box sections with
a yield stress of 460 MPa via experimental studies on 6 welded square box sections with
various width—thickness ratios and plate thickness. It was found that the residual stress
distribution profile over the sections is very similar to that of NSS sections, which can
also be described using piecewise functions. Moreover, the compressive residual stress was
significantly correlated with the sectional dimensions, unlike the tensile stress. As for the
compressive residual stress in the central portion, it decreased with the increase of the
width-to-thickness ratio. Moreover, no residual stress interaction among four component

plates was identified, 7.e. the compressive and tensile residual stresses were self-equilibrating
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for each plate independently. Based on the test results, a prediction model and its simplified
form were proposed to describe the residual stress distribution. However, as noted by the
authors, the model is only valid for sections with the same steel grade and manufactured

using the same method, in this case from butt welds.

Somodi and Kovedi (2018) measured the residual stresses of welded box-section specimens
with a variety of different steel grades (S235 to S960) and plate width—thickness ratios (14
to 60.5) using the sectioning method. A residual stress distribution model was proposed
based on the test results and some results in the existing literature, which were applicable
for various steel grades between S235 and S960. However, as noted by the authors, since the
residual stress distribution is closely related to the manufacturing method, the proposed
model is only valid for the sections manufactured by the MAG (Metal Active Gas) welding

process.

2.3.3 Imperfection tolerance and modelling recommendations in

Eurocode 3 (EC3)

In Eurocode 3 (EN-1993-1-5:2006E, 2006)), it is recommended that both geometric and
structural imperfections should be included in the FE model where imperfections are con-
sidered. However, equivalent geometric imperfections may be used when a more refined
analysis, which includes both geometric and structural imperfections, is unavailable. The
recommended equivalent initial global imperfection (local bow imperfection) amplitude e,
of hollow section members for nonlinear analysis depends on the many factors, i.e. material

properties, manufacturing method and analysis type, as shown in Tables and

As for the local equivalent geometric imperfections, the magnitude is the minimum of
a/200 and b/200, where a and b is the shorter span of the panel or subpanel, as shown in
Figure [2.14(b). The imperfection shape for global and local imperfections are the corre-

sponding linear buckling modes.



CHAPTER 2. LITERATURE REVIEW 102

Table 2.3: Design values of global imperfections recommended by Eurocode 3 Part 1.1
(EN-1993-1-1:2006E, 2006).

elastic analysis plastic analysis

Buckling curve 50/L 50/ L
ag 1/350 1/300
a 1/300 1/250
b 1/250 1/200
¢ 1/200 1/150
d 1/150 1/100

Table 2.4: Buckling curve types for hollow section columns in Eurocode 3 Part 1.1 (EN-
1993-1-1:2006E, 2006).

Cross-section type Buckling curve

manufacturing buckling S935, S275,
hollow sections method about axis 3355, $420 5460
hot finished any a ag
@ @ @ cold-formed any c c
#Xf general welds (except below) any b b
d b, thick welds: a > 0.5¢;
[ d/t, < 30 any c c
- - b/ty < 30

Moreover, the sign of the applied imperfection should be such that it leads to the lowest
resistance. In combining imperfections, a dominant imperfection shape should be chosen

and the accompanying imperfections may have their values reduced to 70%.

(a) Global imperfection (b) Local imperfection

0o

E=Reis

Figure 2.14: Equivalent global and local imperfection modelling recommended by Eurocode
3 Part 1.5 (EN-1993-1-5:2006E, 2006).

-\

| L | b

A

As for modelling residual stresses explicitly, it is recommended that the imperfection shape

should be based on the critical buckling modes and the amplitudes are 80% of the geometric
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fabrication tolerance. The residual stresses may be represented by a pattern from the

fabrication process with the amplitude equal to the mean values.

However, according to previous studies (Johansson et al., 2007; Degée et al., 2008), adopt-
ing tolerance level imperfections as the imperfection introduced in the model would lead
to an overly conservative prediction of the ultimate load. Therefore, it may not be a rea-
sonable choice in the context of a probabilistic analysis. Moreover, the measured local
imperfection amplitude from the specimens also revealed that the actual local geometric
imperfection amplitude is generally much smaller than the tolerance level (Degée et al.,
2008; [Pavlovcic et al., 2012 [Yang et al., 2017; [Schillo, 2017). Numerical results (Johansson
et al., 2007) also showed that the ultimate load of a plate with a tolerance geometric im-
perfection level and the compressive residual stress being 0.2f, under pure compression is
more than 15% lower than calculated from the well known Winter formula (Winter, 1947).

In order to make them consistent, a reduced imperfection combination should be adopted.

2.3.4 Imperfection sensitivity studies

Based on the idealized ‘two-flange’ model, Van der Neut (1969; 1973|) investigated the
imperfection sensitivity and post-buckling behaviour of such an idealized column with
local and global imperfections using the theory developed by Koiter (1945). For the local
imperfection function, Van der Neut assumed that the ‘worst” imperfection corresponds to
the mode pertaining to the smallest buckling load. The stiffness reduction factor n for the
column with the local imperfection was determined by using a Ritz—Galerkin approximate
solution of the nonlinear plate equation. Unlike the perfect case, 1 is a nonlinear function
and would vary with the local imperfection amplitude Ay and the axial load P. The
governing differential equation was established with direct equilibrium as it was for the
perfect case. From the numerical results with different values of Ay, it was found that

the instability phenomenon would vanish with the increase of the imperfection amplitude.
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Moreover, it was found that struts are sensitive to both global and local imperfections. In
particular, the global imperfection was found to be more significant in the range where
local buckling is critical. However, the validity of the results was restricted to small global
imperfections of amplitudes less than 2% of the web depth due to the approximation from

the Taylor series expansion of the load, P(e).

Based on Van der Neut’s idealized column with local imperfections, Thompson and his
collaborators (Thompson & Lewis, 1972; [Thompson & Hunt, 1974) investigated an effi-
ciency chart of such an idealized column, which shows the relationship of the ultimate
load for thin-walled struts versus the ratio of the global and local buckling loads under

a constant weight constraint for optimum design purposes, as shown in Figure It

(a) (b)
P
local buckling
Pu / global buckling
t pertect case
L i | | post-buckling strength
t
| |
J F—b— | imperfect case
l
L=constant = A=2bt=constant bopti b

Figure 2.15: Optimum design and efficiency chart of a square Van der Neut ideal two-flange
strut with fixed length L and fixed cross-section area A.

was found that the optimum point shifted to one side of the ideal optimum point, i.e. to
where PC/PC|x < 1. More importantly, it was demonstrated that reaching the so-called
‘naive optimum’ load, where the local buckling load is equal to the global buckling load,
was practically unachievable for such components with realistically sized initial imperfec-
tions. Moreover, using the asymptotic approach, they determined the local imperfection
sensitivity law in each zones and found that the imperfection sensitivity is fundamentally
more severe for the case where local buckling is critical than it is for case where the global

buckling is critical. This discovery was contrary to the received wisdom at the time where
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local buckling is permissible due to its stable post-buckling behaviour, but this is due to

the consideration of mode interaction.

Since the Van der Neut model did not include the contribution of both webs, Maquoi and
Massonnet (1976) investigated the efficiency chart for thin-walled square hollow section
columns with various different sizes of geometric imperfections using the software developed
by Kloppel nd Schubert (1971)). A significant erosion in the load-carrying capacity near
the naive optimum point was also observed. Moreover, it was also found that the profile
of the efficiency chart curve was affected by the imperfection size. When the imperfection
size is tiny, the maximum efficiency is located to one side of the naive optimum point
(PC/PF = 1), where P¢/PC < 1; with increasing imperfection size, it moves to the other
side and is finally located at some point where P¢/PF > 1. However, they found that the
respective curves were very flat in the vicinity where the local and global buckling loads
are equal. Therefore, it was concluded that the optimum scheme based on the equal local
and global buckling loads was still valid, even though the design load should be reduced
based on the imperfection sensitivity study results. It should also be noted that the effects
of material nonlinearity were investigated in their work. This affected the profile of the
efficient curve significantly, i.e. the capacity erosion was even larger and the efficiency curve

was essentially flat when the local buckling stress was close to the yielding stress.

Using the finite strip method with mode interaction theory, Sridharan (1983)) found that in
the case of narrow stiffened plates supported along the longitudinal edges, no catastrophic
failure was observed where interactive buckling occurred for stiffened plates with initial
imperfections. It was also pointed out that previous research (Tvergaard, 1973|) ignored
some key terms in the energy function that would affect the imperfection sensitivity results.
Moreover, it was highlighted that the severity of the imperfection sensitivity depended on
the structural profiles; cross-sections with unstiffened plate elements were more sensitive

than those with stiffened (mutually interconnected) elements.

Kiymaz (2005)) investigated the effects of column out-of-straightness, plate imperfections,
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residual stresses and material plasticity on the ultimate load and post-buckling behaviour of
square hollow section columns exhibiting mode interaction using the FE package ABAQUS.
Three example columns with typical slendernesses were analysed, where (i) global buckling
was clearly critical, (ii) global and local buckling were triggered simultaneously, and (iii)
local buckling was clearly critical. The severe erosion in the load-carrying capacity due
to imperfections in the case where the local and global buckling loads were the same was

again observed.

Degée et al. (2008)) investigated the effects of various imperfections, i.e. residual stresses,
local and global geometric imperfections, on the load-carrying capacity of slender welded
RHS columns exhibiting mode interaction through experimental and numerical methods.
Since the residual stress is relatively complex to model, they proposed an equivalent ge-
ometric imperfection modelling method by amplifying the local and global geometric im-
perfections based on the parametric study results. They found that a model with a local
imperfection of 1/250 of the cross-section width and a global imperfection of 1/725 of the

column length showed good agreement with a model including residual stresses.

Based on a validated FE model from experimental results of two heavily welded box-section
struts, Pavlovcic et al. (2012) studied the effects of different measured imperfections (lo-
cal imperfection, global imperfection and residual stresses) and their combinations on the
ultimate load. It revealed that the residual stresses appeared to have the most significant
effect on the capacity erosion among all three imperfections, which reduces the column ca-
pacity up to 37%. It was also found that the equivalent geometric imperfection modelling
suggestion given by Degée et al. (2008), i.e. global imperfection L/725 plus local imperfec-
tion d/200 (L and d are the strut length and web depth respectively), may underestimate
the effects of actual imperfections on the heavily welded box-section struts. Moreover, it
was reported that the imperfection combination with pure geometric imperfections and
residual stresses, i.e. global imperfection L/1000 plus local imperfection d/1000 plus resid-

ual stresses, provided a safe, yet accurate, prediction of the ultimate load. However, the
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parametric study only focused on the two specimens. A more extensive parametric study

would have been required to draw general conclusions.

Since the Van der Neut’s idealized ‘two-flange’ model is only limited to the purely elastic
case, Becque (2014)) introduced material nonlinearity into the classical model and studied
its effects on the imperfection sensitivity and ultimate load. The Von Mises yield criterion
was adopted with an associated flow rule and isotropic hardening to model the material
plasticity. The governing equations, derived based on equilibrium conditions, were written
in an incremental form. Moreover, compared with elastic plate theory, the stress resul-
tants were used instead of the stresses at mid-span because the stress distribution is no
longer linear in the inelastic range. The finite difference method was adopted to solve the
governing equations. The theoretical model was verified using the FE package ABAQUS
and showed good comparisons. With the verified theoretical model, the effects of material
strain hardening and yielding stress level on the profile of the Van der Neut-type curve
and the strut imperfection sensitivity were investigated. As for the nonlinear material
model, the Ramberg-Osgood model was adopted. Two values of the Ramberg-Osgood
parameter n were considered, i.e. n = 7 and n = 50 corresponding to a strain—hardening
material similar to stainless steel and an approximately two-stage piecewise linear stress—
strain relationship. It was found that when the proof stress was significantly higher than
the local buckling stress of the cross-section (0¢2 > 20,), plasticity curtailed the Van der
Neut curve for short length struts (Zone 4) into a plateau with low to moderate imper-
fection sensitivity; when the proof stress was the same order as the local buckling stress
(002 < 1.50¢;), the plateau in zone 4 would extend and merge with that for transitional
length struts (zone 2) and struts would exhibit high imperfection sensitivity. Indeed, the
length of the extended plateau depended on the amount of strain hardening. At the same

value of 0g2/0c, the width of plateau for n = 50 is much larger than that for n = 7.

Based on the developed variational model, Wadee and his collaborators investigated the

imperfection sensitivity analysis of I-section columns (Bai & Wadee, 2015a; [Liu & Wadee,
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2016b|) and stiffened plates (Wadee & Farsi, 2015) under compression. The effects of
local imperfections, global imperfections and their combination on the ultimate load and
post-buckling behaviour were investigated. It was found that the compression members
susceptible to local-global mode interaction are very sensitive to imperfections. Moreover,
with the increase of imperfection size, the severity of unstable post-buckling behaviour is
mollified to some degree, but cellular buckling phenomena could still be observed (Wadee

& Farsi, 2015; Bai & Wadee, 2015a).

Effect of imperfection profile

Owing to its relative simplicity and the lack of efficient and advanced computational tools,
early researchers mainly adopted a local imperfection profile that was affine to the lowest
local buckling eigenmode to investigate the imperfection sensitivity of thin-walled compres-
sion members susceptible to mode interaction (van der Neut, 1969; Koiter & Pignataro,
1976a; Koiter & Pignataro, 1976b). These works identified serious erosion in the load-
carrying capacity for the cases where the local and global buckling loads are in close
proximity. Moreover, these provided the ultimate load prediction with good accuracy for
the cases studied. Therefore, it is still one of the most widely used methodologies (Schafer

et al., 2010)).

In spite of its convenience, local imperfections modelled with this approach may not reflect
the actual imperfection profiles in physical reality. Equally importantly, they may not rep-
resent the most severe local imperfection profile (Wadee, 2000; [Schafer et al., 2010). With
the advance of computational tools and physical testing techniques, numerous investiga-
tions on the effects of local imperfection profiles on the ultimate load and post-buckling
behaviour have been conducted. Rasmussen and Hancock (1988) proposed an analytical
technique to expand the range of measured geometric imperfections in the longitudinal and
cross-sectional dimensions based on the buckling modes. In particular, the secondary local

buckling components triggered by the interaction of global and local buckling modes were
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also considered, i.e. the modulated longitudinal profile and the mono-symmetric cross-

section profile.

Dubina and Ungureanu (2002) studied the effects of cross-section imperfection profiles on
the load erosion of channel section columns susceptible to mode interaction using the FE
method. They found that the ultimate loads for example struts with symmetrical and
asymmetrical cross-section imperfection profiles, which are affine to the lowest and higher
local buckling modes, were 12% lower and 15% higher than the test results respectively.
They also emphasized that using the sinusoidal shape from linear buckling analysis may

not represent the most appropriate imperfection mode introduced in nonlinear analysis.

Zeinoddini and Schafer (2012) introduced three methods to simulate the geometric im-
perfections in cold-formed steel members and compared their effects for predicting the
peak load and final failure mode using geometric and materially nonlinear FE models. All
three methods were based on the imperfection spectra (Schafer & Pekoz, 1998a), which
is built on a large number of imperfection measurement tests. It was found that the ‘1D
Modal Spectra Method’, which adopted the cross-section imperfection component from
linear buckling analysis and the longitudinal component from spectral analysis, provided

the most accurate prediction for the ultimate load and the final failure mode.

Trouncer and Rasmussen (2015) conducted a spectral analysis of the ultimate load as a
function of imperfection spectra for 20 storage rack columns susceptible to mode interac-
tion. From a large number of FE simulations, they found that local imperfections in the
shape of higher order modes with half-wavelengths in close proximity to the half-wavelength
of the critical buckling mode have little effect on the ultimate load; this also applies if the
local imperfections were introduced to the cross-section non-symmetrically, which would

naturally break the symmetry and hence trigger mode interaction.

Zagari et al. (2016)) investigated the imperfection sensitivity of thin-walled perforated rack

members in compression using an FE implementation of the Koiter method in conjunction
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with a Monte Carlo simulation. The most severe combination of imperfections and the
erosion of the ultimate load due to imperfections were identified. From the probability
distribution of the ultimate load for specimens exhibiting mode interaction, it was found
that the deviation is very small, which implies that the imperfection profile has very minor
effects on the ultimate load for such cases. However, even though a great number of
imperfection combinations were adopted in the study, only the geometric imperfections in

the space of the linear buckling modes were considered.

Wadee and his collaborators investigated the most severe imperfection profile of thin-walled
[-section struts (Bai & Wadee, 2015a; [Liu & Wadee, 2016b) and stiffened panels (Wadee
& Farsi, 2015|) exhibiting mode interaction using an analytical approach. By introducing
a local imperfection function that matches the least stable localized post-buckling mode
for the strut on a softening foundation — derived from a first order approximation of a
multiple scale perturbation analysis (Wadee et al., 1997)), the most severe local imperfection
profiles have been determined in terms of the wavelength of the oscillating component and
the degree of localization. Unlike preceding work that compared different imperfection
profiles with the same amplitude, a unified and consistent approach was implemented
adopting the concept of initial end-shortening of the extreme fibre of flange plate &. This
was initially proposed by Wadee (2000) for identifying the most severe local imperfection
profile in sandwich panels under compression that are susceptible to local-global mode
interaction. Based on the unified and consistent imperfection measurement approach,
these works determined that the most severe local imperfection profiles correspond to a
localized profile with a smaller wavelength of the oscillating component than that for the
local buckling eigenmodes. It was also found that the most severe imperfection profile
is related to imperfection size, i.e. the wavelength of the longitudinal component of local

imperfection decreases with the increasing imperfection size.
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2.4 Experimental studies

Experimental studies are essential to validate the effectiveness of the existing theoretical or
numerical models and to provide suggestions for more reasonable or accurate models that
reflect the actual underlying physical mechanisms. In this section, experimental studies on
the interactive buckling of box-section columns are reviewed. Since the existing experimen-
tal studies on box-section columns principally focus on the ultimate load-carrying capac-
ity, very limited information about the mode interaction mechanism is generally provided.
Some experimental studies on members with other cross-sections under pure compression
or pure bending, which provide more information on local-global mode interaction and

facilitate a better understanding of the underlying mechanism, are introduced.

Usami and Fukumoto (1982) tested 24 welded box struts made from high strength steel
(nominal yielding stress f, = 690 N/mm?) and with various slenderness ratios (L/r=10,
35, 50 and 65) and width—thickness ratios (d/t = 22,27, 33, 38,44). Both global geometric
imperfection and residual stresses were measured before the test. From the test, it was
observed that the triggering of local-global mode interaction did not lead to the ultimate
state of specimens. Moreover, the tested specimens exhibited a large deformation capacity

even after reaching the ultimate load, which implies that the failure mode was ductile.

Chiew et al. (1987) performed experimental studies on a series of 17 steel welded box-
section struts with square and rectangular hollow sections with various column and plate
slendernesses. Local-global mode interaction was observed in long columns with high
plate slendernesses. The final failure mode was gradual in most cases, even though in some
specimens, the failure occurred rapidly with almost no visible warning, which was followed

by very rapid unloading.

Degée et al. (2008) presented the test results of six welded rectangular hollow section
columns that failed by local-global mode interaction. The initial imperfections of the test

columns were measured before the test and it was found that all of them were below the
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tolerance level recommended by Eurocode 3. The ultimate loads of all the specimens were
found to be higher than that predicted by the current Eurocode 3 provisions. Based on
the test results, FE models were developed and calibrated. Since the current Eurocode 3
was shown to be relatively conservative, a proposal was made about the modification of
the non-dimensional slenderness used in the global buckling calculation and the selection

of the buckling curve a instead of b in the Eurocode 3.

Pavlov¢ic et al. (2010;2012) conducted full-scale tests on four welded and cold-formed box-
section columns subject to concentric compression. Material properties, local and global
geometric imperfections and residual stress distributions were measured before loading
tests. As for the test results, the ultimate loads of the four example struts were all higher
than those predicted by the current Eurocode 3 provisions. In particular, the displacement
in the mid-line of the more compressed flange was provided in two specific stages, i.e. the
ultimate load and the ultimate displacement stages. It revealed that the amplitudes of the
local and global mode were the same magnitude in both stages. The profile of the local
mode was modulated before and at the ultimate load point and became highly localized

due to the development of plasticity at some specific location.

Kwon and Seo (2013) conducted a series of compression tests on welded rectangular hollow
section columns fabricated from 6.0 mm thick steel plates with a nominal yielding stress of
315 MPa and susceptible to local-global interactive buckling. A significant erosion in the
load-carrying capacity due to imperfections was identified in the specimens. The local—
global mode interaction was also observed in the tests, with the final failure mode being a
localized kink in the plate due to plasticity. It was also found that localized imperfections
may lead to a premature localized failure at the loaded end. Since most of the example
struts clearly had local buckling being critical (P¢/PF > 1.5), a significant post-buckling
reserve was observed before the visible local-global mode interaction, which occurred before
the ultimate load was reached. However, when the ultimate load was reached, it was always

followed by a sharp drop in the load-carrying capacity. Moreover, the ultimate load of the
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test columns was compared against the current design guidelines, such as the DSM based
on the American Institute of Steel Construction (AISC) guidelines and the effective width
method given in Eurocode 3, which showed that these guidelines can predict the ultimate

load properly and safely.

Yang et al. (2017) tested 12 steel medium-length welded steel box-section columns. Before
the tests, the geometric imperfections were measured and were revealed to be smaller than
the recommended tolerance level in the current design guidelines. The failure mode of
all specimens was observed in a form of local-global buckling, i.e. local buckling occurred
initially and then the global mode was triggered. The test results were compared against
Eurocode 3 and showed that the current guidelines slightly overestimate the ultimate load,
with the average ratio of the design equation to the test results being 1.05. Moreover,
FE models calibrated based on the experimental results were developed and parametric
studies were conducted in a wider range of parameters, such as material strength, column
slenderness, plate width to thickness ratio, geometric imperfection size and residual stress
levels. The numerical results further confirmed the potentially unsafe prediction of the
current guidelines. A design proposal on the buckling curve selection for designing box-
section columns susceptible to local-global interactive buckling was presented. A summary
of the slenderness range and the ultimate load of box-section columns in the literature are

presented in Figures 2.16] and [2.17] respectively. A discussion about the comparison is

presented in the following section specifically about design guidelines (§2.5)).

Several experiments, more related with the mechanism investigation, were conducted on
T-section beams under pure bending (Menken et al., 1991), I-section columns under com-
pression (Davids & Hancock, 1986; Becque & Rasmussen, 2009a)) and I-section beams under
uniform bending (Wadee & Gardner, 2012)). In the experiments of the simply-supported
T-section beams under pure bending (Menken et al., 1991), the interactive buckling be-
tween the local flange buckling and the overall lateral-torsional buckling was observed. In

particular, a wavelength change in the local mode was captured.
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Figure 2.17: Summary of the ulitmate load from experimental studies in the existing
literature and comparison with the Direct Strength Method (DSM) (Schafer, 2008) and
the Effective Width Method (EWM) (EN-1993-1-1:2006E, 2006). Note that the symbol
legend in graph (b) is the same as that in (a).
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Davids and Hancock conducted an experimental study on interactive buckling of
long I-section columns under compression, a local buckling mode with uniform wavelength
and amplitude along the full length of the column was first observed with a decrease in
axial stiffness. When global buckling was triggered, modulation in the maximum amplitude
of the local buckling mode along the length was observed, accompanied by an increase in
the number of local buckle halfwaves and a decrease in the wavelength. Moreover, the
equilibrium path of the load—end-shortening relationship also showed a rapid unloading,

indicating the unstable post-buckling behaviour.

Tests to investigate the interactive buckling behaviour of pin-ended thin-walled stainless
steel I-columns under the concentric compressive load were conducted by Becque .
Compared with previous research, more details about the interactive buckling behaviour,
i.e. the evolution of the local buckling mode, were presented (see Figure . Amplitude
modulation in the local mode with the increase of the load was clearly observed in the

tests.

Figure 2.18: Interactive buckling observed in a stainless steel I-section strut (Becque, 2008).

In the tests presented by Wadee and Gardner on I-section beams under uniform
bending, a highly unstable response was observed once interactive buckling was triggered.
In particular, cellular buckling was observed in some of the tests, i.e. a new local buckling
peak appearing soon after the initial one. Amplitude modulation, with the peak at the

mid-span and decaying to the lateral restraints, was also clearly observed, particularly for
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the cases where lateral torsional buckling was critical. Some of the test results showed
good comparisons for cases where global lateral buckling was critical with those from a

variational model developed using analytical techniques.

2.5 Related design guidelines

Current design guidelines mainly focus on the load-carrying capacity erosion at the in-
teraction point of material yielding and pure global buckling (Perry—Robertson formula)
or pure local buckling (Winter formula) due to imperfections. The basic methodology to
consider the effects of mode interaction is to replace the yielding stress or squash load with
the limiting stress of a mode that may interact with the original buckling mode or to adopt
reduced cross-section properties, with calibrated factors for the original design equations

based on experimental or numerical results.

2.5.1 Eurocode 3 approach

In the current version of EC3 (EN-1993-1-1:2006E, 2006; [EN-1993-1-5:2006E, 2006), the
effect of local buckling on the ultimate load is considered by using an effective cross-section
instead of the gross cross-section properties. Both cross-section and member buckling
resistance checks are required. The cross-section resistance under uniform compression is

given thus:

Nera = Aett fy/ M0, (2.18)

where 1o is a partial safety factor for cross-section resistance with a recommended value
of 1.0; Aeg = D Acerr, which is the summation of all the effective areas of compression
elements within the cross-section. The effective area of each individual plate A. . is given
by:

Ac,eff = pA., (2'19)
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where A, is the gross area of each individual plate, and for box-section members under
pure compression the expression for the factor p is given by:

(Aps — 0.22)

2 <1, (2.20)

p =
with the normalized plate slenderness Xps defined as:
Aps =/ —, (2.21)

where o, = k,m?E/[12(1 — v?)(b/t)?] is the local buckling stress of a rectangular plate
with width b, thickness ¢ and the adopted value of the buckling coefficient £, is 4, which
is a safe assumption. It implies that the interaction between individual plates within the

cross-section is neglected.

For member buckling design resistance, Ny rq, the expression is given thus:

Nora = XAett fy /1, (2.22)

where vy is a partial safety factor for member buckling; x is the buckling reduction factor
and is given by the following expression from the Perry—Robertson model (Trahair et al.,
2007)):

1 for A < 0.2,
X = (2.23)

—\ —1 _
(cp /P2 — /\2) for A > 0.2,

2=05[1+a(l-02)+ 3], A = /% (2.24)

with N being the elastic buckling load for the relevant mode based on the gross cross-

where

section and « being an imperfection factor that determines a distinct buckling curve; in
EC3, there are five separate buckling strength curves, as presented in Table The

buckling curve is assigned on the basis of the cross-section type, material properties and
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the axis of buckling. In particular, the column buckling curves for generally welded and

Table 2.5: Imperfection factors for the separate buckling curves for compression members
made from steel (EN-1993-1-1:2006E, 2006|) in EC3.

Buckling Curve ag a b c d
Imperfection factor o | 0.13 0.21 0.34 0.49 0.76

heavily welded steel sections are recommended as b and ¢ respectively (EN-1993-1-1:2006E,

2006). The nominal ultimate load Ny rq is thus given as the minimum of N.gq and Ny rq.

The comparison of experimental results in the existing literature with the effective width
method can be seen in Figure 2.17(b). The scatter in the comparison is quite large. The
range, mean and the coefficient of variation (COV) of P, pxp/Pugcsp are presented in
Table Generally, the test results from some researchers (Degée et al., 2008; |Pavlovéic
et al., 2012; |[Kwon & Seo, 2013) showed that the current EC3 formulae can provide a
conservative prediction of the ultimate load but it can be overly conservative for some
specimens. However, some test results from Yang et al. (2017) showed that the Eurocode
3 provisions may provide unconservative predictions under certain circumstances. The

Table 2.6: Comparison of the ulitmate load from experimental studies in the existing
literature with the Effective Width Method (EWM) with the column buckling curve being
b (EN-1993-1-1:2006E, 2006) and the Direct Strength Method (DSM) (Schafer, 2008).

Tests Pu,Exp/Pu,ECS,b Pu,Exp/Pu,DSM
Range Mean COV Range Mean COV
U. & F. (1984)) 0.882—1.210 1.016 9.66% | 0.799—1.029 0.921 7.69%

Chiew et al. (1987) 0.688—1.253 1.020 11.73% | 0.604—1.195 0.937 13.87%
Degée et al. (2008) 1.110—1.347 1.222  7.26% | 1.034—1.189 1.106 5.01%
Pavlovéic et al. (2012)) | 1.066—1.104 1.085  2.50% | 0.868—0.943 0.906 5.87%
Kwon & Seo (2013) | 0.917—1.206 1.164 10.05% | 0.820—1.114 1.024 8.91%
Yang et al. (2017) 0.816—1.071 0.915 9.03% | 0.722—0.954 0.844 9.72%

reason for the scatter of the data mainly comes from the welding method and the local
imperfection size. Currently, the effective width in each plate is determined by Eq. ,
which is only related to the plate slenderness. However, the actual effective width is also
related with the local imperfection size, which can vary considerably between different

cases (Schillo, 2017). This may explain that the scatter for each set of experimental data
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is relatively small. Therefore, in order to describe the load-carrying capacity of thin-walled
welded box-section struts better, a calibration of the Winter curve, i.e. Eq. , should
be conducted. Moreover, it should be noted that the abnormally low data point in Chiew
et al. (1987) may be resulting from deflects in the specimen, since the rest of the data all

range from 0.95 to 1.20.

2.5.2 Direct Strength Method

The Direct Strength Method (DSM) was developed by Schafer and Pekoz (Schafer & Pekoz,
1998b|) for considering the local, distortional and global buckling of cold-formed carbon steel
sections (Schafer, 2006¢} [Schafer, 2006b; [Schafer, 2008). It has been included in Appendix
1 of the AISI specification (AISI:S100-2007, 2007). Instead of determining the effective
width for each individual plate and calculating the effective cross-section properties, only
the critical buckling loads of the member with gross section properties are required for
the DSM, which can be obtained very conveniently using available free software, such as
CUFSM (Schafer, 2006a) based on the so-called constrained finite strip method or GBTUL

(Bebiano et al., 2008) based on Generalized Beam Theory.

The nominal axial strength, P,, is the minimum of P, and P, as given below. The nominal

axial strength, P,., for flexural, torsional or flexural-torsional buckling is:

p 0.658%  for A\, < 1.5,
il (2.25)

P _ _
v 0.877/A% for A\, > 1.5,

where the global slenderness A\, = /P, /PC, the squash load of the gross cross-section
P, = A, f,, PC is the minimum of the critical elastic buckling loads in flexural, torsional,

or flexural-torsional buckling and A, is the gross cross-sectional area. As for local buckling,
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the nominal axial strength, P, is given by:

P, 1 for \; < 0.776,
Pu_ (2.26)
w1015 (BRG] (BE/P)™ for X > 0.776,

where \| = /Py / PlC with PlC being the critical elastic local buckling load and P,. being
defined in Eq. ([2.25]).

Compared with the effective width method currently in EC3, the DSM is more simple and
straightforward. The comparison of experimental results on welded box-section columns in
the existing literature with the DSM prediction can be seen in Figure a) and Table
It can be seen that the scatter in the comparison is large. Generally, the DSM provides an
unconservative prediction of the ultimate load. This is in fact reasonable since the DSM is
mainly based on fitting the test and numerical results of cold-formed thin-walled columns.
As for welded sections, the effects of residual stress may have a detrimental effect on the
ultimate load. Therefore, in order to make the DSM valid for the welded sections, further

calibration is necessary with respect to experimental or validated numerical results.

2.6 Concluding remarks

In the current chapter, a literature review about the interactive buckling of thin-walled
plated structures has been presented. Analytical approaches, including both approximate
engineering and strict theoretical approaches, alongside their advantages, disadvantages
and findings have been introduced. In particular, the seminal work by Van der Neut as
well as the extensive work by Wadee and his collaborators, the methodology of which is
adopted in the current work is introduced in detail. Subsequently, related studies using
numerical approaches to the local-global mode interaction, i.e. from FE, GBT and FSM

approaches, are presented. Moreover, imperfection measurement and modelling, the imper-
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fection modelling recommendations in EC3 as well as the imperfection sensitivity studies
have been reviewed and discussed. Furthermore, existing experimental studies on thin-
walled box-section columns exhibiting local-global mode interaction were reviewed. The
ultimate load of these specimens were also summarized in the framework of current design
guidelines. It is revealed that the DSM formulae based on the cold-formed steel sections
generally provides an unconservative ultimate load prediction for the welded box-section
struts. As for the effective width method in the current EC3 methodology, it is revealed
that it can provide a conservative ultimate load prediction for most tested specimens. How-
ever, a large scatter in the results is observed, which suggests that the current simplified

design equation may be improved.



Chapter 3

Finite element model development

and validation

3.1 Introduction

In order to verify the variational models developed in the study, a robust and accurate
numerical method should be adopted. Owing to the popularity of general-purpose finite
element (FE) packages with powerful modelling and accurate solution functions, the FE
method has become an important and accessible technique in analysing the nonlinear
behaviour of thin-walled structures (Schafer et al., 2010|). Compared with other numerical
methods, it can model relatively easily nearly all the actual physical scenarios, including
items such as residual stresses, initial geometric imperfections and plasticity. Therefore,
it is often used for verifying analytical models (Wadee & Farsi, 2014a; Bai & Wadee,
2015b), expanding an originally simplified analytical model to more general and actual
cases (Kiymaz, 2005) and conducting parametric studies based on the FE model validated
by experiments (Degée et al., 2008; Becque & Rasmussen, 2009b; Yuan et al., 2014} [Yang
et al., 2017).

122



CHAPTER 3. FINITE ELEMENT MODEL DEVELOPMENT AND VALIDATION 123

In the current chapter, details of models, developed within the commercial general pur-
pose FE package ABAQUS (2014)), are presented. Firstly, the strut modelling details, i.e.
boundary conditions, the use of symmetry to improve computational efficiency, semi-rigid
flange—web joint modelling, the chosen element type and mesh scheme, are described. The
material model, geometric imperfection modelling and the introduction of residual stresses
are also presented. Moreover, the analysis types and the corresponding solution strategy
as well as the analysis objectives are described. Finally, the verification of finite element
models against classical solutions and validation against experimental results from the

literature are presented.

3.2 Development of finite element models

A thin-walled rectangular hollow section strut of length L with simply-supported boundary

conditions under an axial load P is considered, as shown in Figure (3.1

3.2.1 Strut modelling
Boundary conditions

As shown in Figure (c), there are two planes of symmetry in the interactive buckling
mode. Therefore, the current FE model exploits symmetry for computational efficiency, as
shown in Figure (a). As for the boundary condition at the loaded-end, the displacements
and rotations of the end section (z = 0) of the strut are linked to a reference point at the
centre of the cross-section through rigid body kinematic coupling. This ensures that all
the boundary conditions, defined at the reference point, are uniformly transmitted to the
entire cross-section. The translational degrees of freedom (DOFs) in the x and y directions

at the reference point are restrained and thus the pinned-roller support assumption is
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(a) Simply-supported strut under a concentric load P (b) Cross-section
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Figure 3.1: (a) Plan view of the thin-walled rectangular hollow section strut of length L
under an axial load P. Lateral and longitudinal coordinates are x and z respectively. (b)
Cross-section properties of the strut; the vertical coordinate is y. (¢) Plan and cross-section
view of the interactive buckling mode.

(a) (b)

Rigid body coupling between V=
reference point and loaded section

-
0%

=

Reference point
(u=v=0) Symmetry boundary condition

about xy plane at z=L/2

Symmetry boundary condition
y y=d/2 about xz plane at y=0

Figure 3.2: (a) Illustration of the FE model for thin-walled RHS struts. Global buckling
bends the strut about the weak axis y. (b) Distributively applied load at the end-section;
the magnitude of the load on the nodes at the symmetric line (y = 0) is half of that in the
other nodes. Note that the mesh in the figure is only for illustration purposes and does
not represent the mesh scheme implemented in actual analyses.
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satisfied. The axial load P is applied distributively to each node of the end section in the
z-direction, as shown in Figure (b) In particular, the magnitude of the applied load
on the two nodes on the symmetric line (y = 0) is half of those on the other nodes. It
should be noted that the choice of double symmetry and the way the load was applied was
made after careful verification against the half-strut (Shen & Wadee, 2018b) and full-strut

models, where it was found that they produce identical results.

It should also be noted that the symmetric boundary condition at mid-span makes the
number of half-waves in the local mode always be odd, which may lead to large errors in
the cases where the strut length is within a factor of 5 of the half wavelength of the local
buckling mode. In such cases, the symmetric boundary condition at mid-span is removed
and full-length strut model is adopted, as can be seen in However, such cases are

not significant for strut design in term of practical geometries.

Semi-rigid flange—web connection modelling

Compared with open sections, the interaction between individual plates in closed cross-
sections is more significant. Therefore, a study on the effects of flange—web joint rigidity is
conducted in Chapter[d To capture the local deformation of each individual plate and the
effects of the rotational stiffness at the junction, each plate is modelled separately. The
nodes at the junctions of the webs and the flanges are defined and labelled separately but
share the same coordinates. The translational DOF's of these nodes are then tied together
but the rotational DOF's are not, thus approximating a pinned joint. A rotational spring
element, ‘SPRING2’ in the ABAQUS element library, is then introduced to connect the end

nodes of each flange and web, as shown in Figure [3.3{a).

With the varying stiffness of the spring element, cross-section joint properties ranging from
pinned to rigid can be modelled. Since the rotational springs are discretely distributed in

the FE model, as shown in Figure [3.3(b), in order to make them equivalent to that in the
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Figure 3.3: Semi-rigid flange-web connection modelling in the FE model. (a) Node-to-
node rotational springs in the cross-section; (b) Springs along the length of the strut; m
represents the number of elements along the length of the strut; ky is the stiffness of an
individual rotational spring.

variational model, which is continuous, the following relationship is applied:

CgL
my + 1

ky = , (3.1)

where ¢y is the rotational stiffness of the rotational spring at flange-web joints in the
analytical model defined in the analytical formulation in Chapter @} L is the strut length;
kg is the rigidity of an individual rotational spring in the FE model with its units being
Nmm and m; is the number of elements along the length of strut. For the two limiting joint
cases, i.e. the pinned and rigid cases, special treatments are adopted. In the FE model, if
k¢ were set to be zero, the strut would in fact be a mechanism and hence would not satisfy
static equilibrium. Therefore, ky is set to be a very small nominal value of 10~® Nmm such
that potential kinematic mechanisms can be avoided and the pinned case is essentially
satisfied numerically. As for the rigid joint case, the rotational DOFs at the junctions of

the webs and flanges are tied together in the same way as the translational DOF's.

It should be noted that since there are two nodes at the flange-web joints that share the
same coordinate and all the transitional DOF's are tied, the distributed load is only applied

on one of the nodes — currently being the nodes on the top edges of both webs. Moreover,
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in order to make the model more concise, only one node is defined at the junction for FE

models used in the remaining chapters.

Element choice

Owing to the geometry of the thin-walled rectangular hollow section struts, 3D finite
elements are not suitable for the analysis. If the 3D elements were made very thin only in
the thickness direction, there would be problems of shear locking and ill-conditioning. In
order to overcome the problem, a great number of 3D elements should be used. Therefore,
three dimensional conventional shell elements were used, which take full advantage of the
geometric property conditions to discretize the structure by defining the geometry at a

reference surface and the thickness being defined through the section property definition.

Specifically, the 4-node general-purpose, reduced integration shell element with hourglass
control S4R (ABAQUS, 2014) was adopted. The general-purpose element can provide
robust and accurate solutions in all loading conditions for both thin (Kirchhoff plate theory)
and thick shear flexible (Mindlin plate thoery) plates. It should be noted that 4-node
bilinear elements suffer from shear locking in both the in-plane (membrane) and the out-of-
plane (transverse) dimension, as shown in Figure Spurious shear strains are introduced
due to the bilinear displacement field assumption. However, it has been demonstrated that
the problem can be solved using reduced integration (Cook et al., 2007)), since the shear
strain at the integration point, the solid square symbol in Figure is zero. The reduced
integration method can overcome the shearing lock problem but it introduces the ‘zero
strain’ or ‘hourglass’ mode, as shown in Figure [3.5] These modes would lead to zero
strain in the integration point and hence zero energy in the element, thus making the
stiffness matrix singular. In ABAQUS, there is an hourglass control /stabilization procedure
for both transverse and in-plane displacement (ABAQUS, 2014). Therefore, the type of
element chosen does not suffer from shear locking, nor does it have any unconstrained

hourglass modes.
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Figure 3.4: Shear locking for the four-noded bilinear plate element. (a) Four-noded bilinear
shell element and its coordinate system. (b) Deformation of plate and the four-noded
bilinear plate element under in-plane bending moment M,. (c) Deformation of plate and
four-noded bilinear shell element under out-of-plane bending moment M.

About the cross-sectional properties of the shell element, Simpson’s rule is adopted for the
numerical integration. The default number of the integration points for a homogeneous
section is five, which is sufficient for predicting the response of an elastic—plastic shell up
to the limit load (ABAQUS, 2014). However, for the cases with more complex nonlinear
behaviour involving strain reversals or cases with complex residual stresses and strain
distributions (Schafer et al., 2010|), more section points would be required, but normally

no more than nine.

It should also be noted that the S4R element is capable of handling large strains and
large rotations, which is suitable for modelling the geometric nonlinearity due to the mode
interaction. Moreover, numerous previous research studies (Becque & Rasmussen, 2009b;
Schafer et al., 2010; Sadowski & Rotter, 2013; [Yuan et al., 20145 Wadee & Farsi, 2014a;
Bai & Wadee, 2016; [Liu & Wadee, 2016b) have demonstrated this element can model plate

buckling problems with very good accuracy.
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Figure 3.5: (a) Undeformed 2 by 2 four-noded bilinear elements. Solid circle and square
symbols represent the nodes and integration points respectively. The horizontal and ver-
tical displacements are u and v respectively. Hourglass modes (Cook, 1994) with (b)
u=—czy,v=0; (c) u=0,v=cey; and (d) u = cy(l —z), v = cx(l — y), where c is a
non-zero constant.

Meshing scheme

Since the wavelength of the local buckling mode is considerably smaller than that of the
global mode, a meshing scheme suitable for capturing the local buckling mode naturally
would be sufficiently good for the global and local-global interactive buckling mode. More-
over, to increase computational accuracy, the shape of the elements is made to be as square
as possible (Cook et al., 2007). A mesh sensitivity study has been conducted to find an
acceptable meshing scheme that not only yields accurate results but also is computational
efficient, which may be found in Currently, the meshing scheme of 20 elements per

wavelength has been adopted.
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3.2.2 Material Modelling

Apart from models formulated in Chapter [0 the material is assumed to be linear elastic,
homogeneous and isotropic with Young’s modulus F, Poisson’s ratio v and shear modulus
G = E/[2(1 + v)]. In Chapter [9] where the effects of material nonlinearity is considered,
the idealized piecewise linear elastic—plastic stress—strain relationship, presented in Fig-
ure (b), is employed to simulate the actual engineering stress—strain relationship for

carbon steel, as shown in Figure (a). The parameters f, and e, are the yielding stress

(a) Qualitative (b) Idealized
o o
Ultimate strength
Upper yield point /
Su ;
Yield plateau u
i (plastic flow) Necking Fracture 7 Yield plateau /l‘{
Y Strain hardening Y (n=0 for no Linear strain
Lower yield point; plateau) hardening
. (£,=0 for no
Elastic i hardening)
g €y esx=(1+n)gy & ¢

Figure 3.6: Typical constitutive curve for structural carbon steel: (a) qualitative descrip-
tion of actual stress—strain relationship and (b) idealized piecewise linear relationship. In
particular, n = 0 and Ey, = 0 represents the elastic—perfectly plastic model; n = 0 but
Ey, > 0 represents the elastic-linear strain-hardening model; n > 0 and F}, > 0 represents
the model that has a yielding plateau before the linear strain hardening. Note that the
strains and stresses are both engineering strains and stresses.

and strain respectively; (1 +n)ey is the strain value, at which the strain hardening begins;
E}, is the modulus in the strain hardening range; f, and e, are the ultimate stress and
strain respectively. Moreover, the isotropic hardening and the Von Mises yield criterion

with associated plastic flow are adopted in the material model.

It should be noted that the graphs presented in Figure|3.6| are for nominal values of strain
and stress, where the cross-section area reduction during the loading is not included. How-
ever, the constitutive formulations are based on the true ‘Cauchy’ stress—strain relationship

in ABAQUS. Therefore, the transformation of data from nominal stress o,,, and strain
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€nom tO true stress oyue and strain . is required, thus:

Otrue = Unom(l + 8nom)7 (32)

and

Etrue = IN(1 4 €nom)- (3.3)

Moreover, in defining the data on the stress—strain curves, ABAQUS also requires that the

plastic strains rather than the total strains, as shown in Figure The true plastic strain

O'true

1 2
Iy

8}’ 8pl,2 8pl,i Etrue

Figure 3.7: A typical nonlinear stress—strain relationship and the corresponding input
parameters in ABAQUS.

can be expressed as:

Otrue (34)

Etrue,pl = Etrue — E

3.2.3 Geometric imperfection modelling

There are two different methods to introduce the geometric imperfections in FE models
in ABAQUS. The first is to use the keyword “*IMPERFECTION’ to introduce the shape
of eigenmodes from linear buckling analysis, which is very straightforward and convenient.
Currently, it is used for introducing the necessary geometric perturbation to simulate the

post-buckling behaviour response of the perfect case and the cases where only a global
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imperfection exists. However, it should be stressed that this approach is quite cumbersome
and inefficient in cases where local buckling is clearly critical, since a large number of less
important local modes would also be produced apart from the target local and global
modes. Moreover, since the sequence order of the global mode is not known in advance,
a post-processing script would need to be written to distinguish the target modes for the
nonlinear analysis. Therefore, the approach is not suitable for automation and naturally

limits the number of cases that can be considered.

The second approach is to use MATLAB (MATLAB, 2010) to generate the nodal coordinates
input file for the FE model with pre-defined global or local imperfections respectively, which
can model more general imperfection cases. In particular, this approach can be used for
the investigation of the most severe local imperfection profile. Moreover, it can improve the
computational efficiency since no linear buckling analysis is required before the nonlinear
analysis, which also makes an automated parametric study possible. It should be noted
that the local and global imperfection profiles in the this approach is based on the local
and global buckling mode obtained from the variational model, which is introduced in

Chapter

3.2.4 Residual stress modelling

Residual stresses are modelled as initial conditions in the current FE models in ABAQUS.
Currently, only membrane residual stresses are considered. Unless otherwise specified,
the ECCS (1976) residual stress distribution pattern for welded box-section members is
adopted, as shown in Figure 3.8 The tensile residual stresses at the corners are assumed
to be equal to yielding stress f,. The compressive residual stress in the flanges and webs

are determined based on the equilibrium condition. For instance, the compressive residual
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Figure 3.8: ECCS residual stress distribution for welded box-section members. Note that
the uniform tensile range length d; for heavily-welded and lightly-welded box-section mem-
bers are 3t and 1.5¢ respectively; o¢,. and oy ,. are compressive residual stresses in the
flanges and webs respectively; o, and oy, are tensile residual stresses in the flanges and
webs respectively.

stresses in the webs can be determined as:

3dto-w,rt

T =0 3d,

(3.5)

A script has been developed in MATLAB to produce the residual stress distribution in the

FE model automatically.

Moreover, it should be noted that for the models including residual stresses, the coordinate
system is re-defined such that the longitudinal direction of the strut parallels to the z
coordinate, as shown in Figure [3.9(b). In ABAQUS, the local coordinate orientation of shell
elements, which is related to the residual stress components, is defined by the projection
of the global axis on the surface, as shown in Figure Owing to the local imperfections
introduced in both webs, the local coordinate orientation, particularly the local 1-direction,
would vary along the length with the curvature of the initially deformed plate if the global
coordinate orientation in Figure is adopted, as shown in Figure [3.9(a). It would make
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(a) Local coordinate direction before transformation
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Figure 3.9: The orientation of local coordinates in perfect and imperfection struts within
different global coordinate systems.

the introduction of residual stresses in the model very complex. Therefore, the x-direction
of the global coordinate transformed to be the same as the longitudinal direction of the
plate, as shown in Figure (b), which makes the local 1-direction in all plates be the

same and consistent along the length.

3.3 Analysis type and solution strategy

As presented in Table four different types of analyses are adopted in the current study
for specific objectives. The solution strategy and objective of each type of analysis is

introduced in this section.
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Table 3.1: Summary of analysis types and their objectives.

Abbreviation Geometric Material Imperfections  Analysis objective
nonlinearity — model

LBA None Linear None Critical buckling load and
elastic eigenmodes for nonlinear
analysis (Chapters [4] [6] [7)
GNA Yes Linear None Interactive  buckling be-
elastic haviour of perfect elastic
RHS struts (Chapters [4 [6)
GNIA Yes Linear Geometric Interactive  buckling be-
elastic imperfections haviour of elastic RHS
only struts with geometric im-

perfections  (Chapters [7]

GMNIA Yes Piecewise  Geometric Ultimate load of imperfect
linear with imperfections RHS struts susceptible to
yielding and/or resid- local-global buckling with

ual stresses different material yielding
stress levels (Chapter [9)

3.3.1 Linear buckling analysis

As mentioned in the linear buckling analysis in the current study is conducted
principally to acquire the critical buckling load and the corresponding eigenmodes to be
introduced as perturbations or imperfections for further nonlinear analyses. Moreover, it is
used to provide guidance on the proposal of cross-section shape functions for the variational

model and to verify the linear buckling analysis of the variational model.

As for the solution process of linear buckling analysis, the first step is to load the structure
by an arbitrary reference level of external load, {P}f, and then a standard linear static
analysis is conducted to determine element stresses. For the stress associated with load
{P} e, the stress stiffness matrix is [K,|ref. Since it is assumed that the problem is linear,
the stiffness matrix of the structure [K| remains the same and the stress stiffness matrix
would be proportional to the load level with respect to the reference external load, i.e.

K, ]=A\K,]ref, where A = {P}/{P},r. Therefore, at the bifurcation point, the following
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relationship should be satisfied:

([K] + )\cr[Ka]ref) {d} = {P}cr = Acr{P}refa (36)

where {d} is the displacement of nodes at reference configuration of the primary path.
From the concept of perturbation, let the buckling displacement {dd} occur relative to the

displacement {d} of the reference configuration with the load level remaining unchanged:

([K] + )‘CF[KU]ref) {d + 6d} = )\cr{P}ref- (37)

By subtracting Eq. (3.6]) from Eq. (3.7]), the classical eigenvalue problem can be obtained:

([K] + )\CI‘[KU]I‘ef) {5d} = {0} (38)

The smallest root A, defines the level of the critical buckling load, i.e. Ay = {P}e/{P}.
The eigenvector {dd} associated with A is the buckling mode. Since the magnitude of
{6d} is indeterminate in a linear buckling problem, it would be output as a normalized

shape with the amplitude being unity.

In order to model the interactive buckling behaviour, both the local and global buckling
buckling mode is required to be introduced as geometric perturbations. Particularly, for
short struts with larger ratios of global buckling load to local buckling load PE/PC, the
eigenvalue of the global buckling mode would be much larger than that of the critical local
buckling mode. A large number of eigenvalues and eigenmodes are required to be output.
Therefore, the Lanczos method (Bathe, 2006)) is adopted to extract the eigenvalues and
eigenmodes. It is generally much faster when a large number of eigenmodes are required
for a system with many degrees of freedom compared with the subspace iteration method,
the latter of which is faster for the cases where only a small number of (fewer than 20)

eigenmodes are required (ABAQUS, 2014]).
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3.3.2 Nonlinear analysis

The linear buckling analysis can only provide the critical buckling load and the corre-
sponding buckling mode. In order to obtain the nonlinear post-buckling behaviour and
the behaviour of struts with imperfections and nonlinear material properties, nonlinear

analysis should be conducted.

Geometric Nonlinear Analysis (GNA)

GNA is mainly used to analyse the local-global mode interaction of perfect struts. Owing to
the discontinuous pitchfork bifurcation response at the initial instability, it is not possible to
analyse the interactive post-buckling behaviour of perfect struts as well as struts with only
global imperfections or only symmetric local imperfections exist, in ABAQUS directly, unless
imperfections exist naturally from the discretization. Therefore, an initial perturbation
in the geometry is introduced to transform the discontinuous bifurcation problem into a
continuous one (Belytschko et al., 2000)). In the current study, the eigenmode shapes from
linear buckling analysis are adopted as the profiles for the initial local or global geometric
perturbations and the scale factors for the local and global perturbations are set to 103t
and 1079 respectively. These sufficiently small sizes ensure that the response essentially
mimics the perfect cases as far as possible, without encountering the pitchfork bifurcations

that would have led to convergence problems.

As for the solution method, the modified Riks arc-length method (Riks, 1979) is adopted.
Compared with the load-controlled or displacement-controlled methods, the method can
allow the load or displacement to increase and decrease, as shown in Figure [3.10)(a). Pre-
vious studies on thin-walled compression members (van der Neut, 1969; Wadee & Farsi,
2014a; [Wadee & Bai, 2014) have demonstrated that there is a snap-back and sharp dy-
namic drop in the load-carrying capacity after the ultimate load for perfect members and

members with tiny imperfections, where local buckling load is close to global buckling load.
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Figure 3.10: (a) Comparison of equilibrium paths with a snap back after the ultimate
load from different nonlinear solution strategies. Dotted, dashed and solid lines repre-
sent the load-controlled, displacement controlled and Riks arc-length method respectively.

Note that P and &£ represent the load and end-shortening respectively. (b) Sketch for the
modified Riks arc-length method. Note that u represents the generalized displacement.

Therefore, the highly unstable nonlinear response can be traced accurately. Moreover, it
should be noted that the basic algorithm of the Riks method remains the Newton-Raphson
method. However, compared with the Newton—-Raphson method, it can overcome the con-
vergence difficulties for the cases where there is a ‘limit” point (Cook et al., 2007)), which

is very common in the current study.

As for the incremental step size control, the initial step size is set to be 0.05 of the critical
buckling load. Moreover, the step size can be automatically adjusted with the progression
of the analysis and the step size limit is also 0.1. All of these can avoid the problem of

overshooting and make the computation efficient as far as possible.

Nonlinear Analysis with Imperfections

Geometric Nonlinear Analysis with Imperfectons (GNIA) principally deals with the im-
perfection sensitivity of purely elastic struts susceptible to local-global mode interaction,

which is used for the verification of the variational model that includes geometric imperfec-
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tions. Geometric and Material Nonlinear Analysis with Imperfections (GMNIA) is mainly
used to analyse the ultimate load of imperfect struts (including geometric imperfections
and residual stresses) with different yielding stress levels. It helps understand the actual
nonlinear behaviour of struts in practice and facilitates the establishment of robust design

guideline for such members.

Both GNTA and GMNIA adopt the same nonlinear solution method, i.e. the Riks arclength
method, as that of the GNA. Therefore, the analysis procedure is essentially the same. The
only difference is that geometric imperfections, residual stresses and material nonlinearity
are introduced into the FE models. It should be noted that for the cases where both
geometric imperfections and residual stresses are introduced in the FE model, a pre-analysis
is required before the nonlinear analysis, since the strut with the predefined geometric
local imperfections and residual stresses may not be in equilibrium (Little, 1980). The pre-
analysis step may amplify the initial geometric imperfection amplitude significantly where
the compressive residual stress is close to the plate buckling load, as shown in Figure |3.11

Therefore, an iterative solution process needs to be conducted to determine the initial

(a) Initial geometric imperfections (b) Initial geometric imperfections with  (c) Initial geometric imperfections with
without residual stresses residual stresses before self-equilibrium  residual stresses after self-equilibrium
o o o o

It It It It

/ e /
o o o A,
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Figure 3.11: Illustration of the effects of initial residual stresses on the initial geometric
imperfections introduced within the plate.

imperfection amplitude A introduced in the FE model so that the initial imperfection

amplitude after the pre-analysis step is the same as the prescribed value Ag.
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Automated termination of analyses

Currently, ABAQUS does not provide a satisfactory facility for automatically terminating
a nonlinear analysis when the failure criterion is met. This can make the parametric
study inefficient. Recently, Sadowski et al. (2017a) developed a FORTRAN code for an
ABAQUS user subroutine, which is able to terminate the nonlinear Riks arc-length analysis
automatically once certain criteria are met. In the current study, a code with similar

functions is developed within MATLAB, the details of which can be found in Chapter [§]

3.4 Verification against classical solutions

In this section, linear buckling analysis is conducted to obtain the local and global buckling

load of square box-section columns and comparisons are made with the classical solutions.

3.4.1 Local buckling

Firstly, the mesh sensitivity study is presented. Since the wavelength of the local buckling
mode is much smaller than that of the global one, a good meshing scheme suitable to
capture the local buckling mode naturally would be satisfactory to capture the global one.
A mesh sensitivity analysis was conducted for an example square box section strut where
local buckling was critical. The cross-section geometric properties are shown in Table [3.2

Owing to the square section, each plate would essentially buckle independently. Therefore,

Table 3.2: Material and cross-section properties of square box section strut for mesh sen-
sitivity analysis and verification.

E (kN/mm?) v b (mm) d (mm) ¢ (mm)
210 0.3 90 90 1

the unloaded edges of each plate can be treated as simply-supported. Moreover, the length
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of the example strut is 3890 mm, which makes the strut length sufficiently long such that
the local buckling coefficient %, can be treated as 4, which appears in the local critical
buckling stress of a plate o, expression thus:

k‘p7T2E

1201 — 12 (012 (39)

Ocr =

The mesh sensitivity results are presented in Figure Considering both the accuracy
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Figure 3.12: (a) Local buckling coefficient of the example strut using different mesh sizes.
(b) CPU (Intel Core i7-4790 CPU@3.60GHz) running time versus the number of elements
along the web depth m,,. Note that the material and cross-section properties of the example
strut are presented in Table , and the strut length is 3890 mm.

and computational effort, it was deemed that 20 elements for per half wave, i.e. m = 20,

was sufficient to simulate the local buckling mode currently.

Based on the mesh sensitivity study, the strut length is varied to obtain the local buckling
coefficient of square box-section struts with different length to width ratios, as shown in
Figure It should be noted that the symmetric boundary condition at mid-span, as
shown in Figure|3.2] is removed and the whole length strut is modelled so as to capture the

even number of half-waves in the longitudinal direction. The results from linear buckling
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Figure 3.13: Local buckling coefficient of struts with different length-web depth ratios.
Solid line represents the analytical solutions from Bulson (1970) and circles represent the
results from FE models using linear buckling analysis. Note that the material and cross-
section properties of the example strut are presented in Table

analysis show good comparisons with the analytical solutions from Bulson (1970), partic-
ularly in the practically significant range where the strut length is at least 5 times greater
than the flange width. Finally, it should be noted that the buckling coefficient £k, = 4
is obtained based on classical Kirchhoff plate theory (Timoshenko & Woinowsky-Krieger,
1959), where shearing effects are neglected. However, the FE model for struts is modelled
using S4R shell elements, where shearing effects are included. This explains the critical
buckling coefficient from FE model being smaller than that from the classical solution since

the former has more degrees of freedom.

3.4.2 Global buckling

The comparison with the Euler buckling equation is mainly to verify the effectiveness of
the simply-supported condition at the ends and symmetric boundary conditions adopted

at mid-span and the mid-lines of the webs. The material and cross-section geometric
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properties are the same as those in the previous subsection. The strut length is varied
from the case where the local buckling load is equal to the global buckling load, i.e.

PC/PF =1, to the cases where global buckling is clearly critical, i.e. P°/PF < 0.4. As

1.1 T T T T

1] Euler buckling curve

0.4

0-3 1 1 1 1
4000 5000 6000 7000 8000 9000

L (mm)

Figure 3.14: Global buckling load of example struts from linear buckling analysis using
FE models (circles) and Euler buckling equation (Timoshenko & Gere, 1961). Note that
the material and cross-section geometric properties of example struts are presented in

Table

shown in Figure the results from the FE models show excellent comparisons with

those predicted by the classical Euler buckling equation.

Based on the excellent comparisons with the classical solutions on plate local buckling
and strut global buckling, it may be concluded that the current developed FE models are
verified. However, it should be noted that the comparison with the classical solutions only
verify the ‘linear’ behaviour of the perfect models. Therefore, in the next section, existing
experimental results from literature are adopted to validate the nonlinear behaviour of FE

models, where the geometric imperfections as well as residual stresses are included.
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3.5 Validation against experimental results

In order to validate the FE model, experimental results on welded box-section columns
susceptible to local-global mode interaction under pure compresssion from two independent
sources (Usami & Fukumoto, 1984; Yang et al., 2017) were adopted. The cross-section

geometries of the specimens are shown in Figure [3.15

(a) (b) | |
Axis of bending Axis of bending
—flom
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Figure 3.15: Cross-section geometry of specimens from (a) Usami & Fukumoto (1984) and
(b) Yang et al. (2017).

3.5.1 Test results from Usami & Fukumoto (1984)

The geometric and material properties of the columns are presented in Table [3.3] As for

Table 3.3: Material and geometric properties of the welded box section columns (Usami &
Fukumoto, 1984)).

Specimen E fy b d t L
No. (kN /mm?) g (N/mm?) (mm) (mm) (mm) (mm)
R-40-29 93 147 446 1650
R-40-44 143 214 4.46 2150
R-40-58 191 277 447 3310
R-65-29 213 0.225 o068 94 147 4.44 2690
R-65-44 143 214 4.44 4080

R-65-58 191 277 446 5370
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the global imperfection, the deflected shapes in the perpendicular direction to the buckling
axis were determined by measuring the deflection at nine sections along the members. The
shapes were reported to be close to the half-sine wave shape and the maximum values of
initial deflection dy are listed in Table |3.4. Therefore, in the FE model, it was assumed
that the global mode is a half sine wave with the amplitude being dy. As for the local
imperfection, the amplitude and distribution were not presented. The amplitude of the
local imperfection was adopted from the manufacturing tolerance recommended by EC3,
i.e. Ag=d/200, and its distribution was assumed to be affine to the lowest local buckling
mode.

Table 3.4: Geometric imperfections and residual stresses in the welded box section columns
(Usami & Fukumoto, 1984)).

Specimen No.  Ag/d do/ L R.=o0w/fy Ri=o0u/fy

R-40-29 3.02 x 1074 0.32
R-40-44 2.06 x 1074 0.22
R-40-58 1.46 x 10~* 0.15
R-65-29 1/200 2.42 x 1074 0.32 08
R-65-44 2.48 x 1074 0.22
R-65-58 1.18 x 10~* 0.15

As for the residual stresses, the sectioning method was adopted to measure the distribution
and it showed that there are rather high tensile stresses (about 0.8f,) near the web—flange
junctions and the compressive residual stresses remain constant over the central portion of
each plate with the normalized magnitude being listed in Table Therefore, the residual

stress model, as presented in Figure |3.16| is adopted in the FE model.

As for material modelling, since the material is mild steel, an elastic—perfectly plastic model
was adopted in the material modelling. The comparison in the ultimate load from FE and
experimental results is shown in Figure |3.5 For the six tested specimens, the ratio of the
ultimate load from FE to the experimental results ranged from 0.939 to 1.001, with the
average value and the coefficient of variation (COV) being 0.972 and 2.62% respectively.
Moreover, a sensitivity study on the local imperfection size in the FE model was conducted.

As shown in Figure P, vi/ Py pxp 1s always in the range of [0.9, 1.1] with the normalized
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Figure 3.16: Residual stress distribution model adopted in FE models for columns tested
in Usami & Fukumoto (Usami & Fukumoto, 1984). The values of R. and Ry for different
specimens are presented in Table .

Table 3.5: Ultimate load of columns from the tests of Usami & Fukumoto (1984) and FE
results. Also shown are the ratios of the column global buckling load P® and the squash
load P, to the local buckling load PF.

o

Specimen No. PY/PY P,/PF Puep (kN) Purr (kN)  Puirp/Puesp
R-40-29 1.40 0.64 970.0 960.4 0.991
R-40-44 4.14 1.38 1160.0 1093.6 0.943
R-40-58 5.21 2.32 1180.0 1158.6 0.982
R-65-29 0.54 0.65 753.0 754.0 1.001
R-65-44 1.16 1.39 939.0 881.9 0.939
R-65-58 1.99 2.33 1040.0 1015.6 0.977

Average 0.972
COV 2.62%

local imperfection size varying from 1/1000 to 1/200.

3.5.2 Results from Yang et al. (2017)

Since the results from Usami & Fukumoto (1984) only provided the ultimate load, test

results from Yang et al. (2017), where the load—end-shortening relationship was provided,

are adopted to validate the FE models further. The geometric properties and initial ge-



CHAPTER 3. FINITE ELEMENT MODEL DEVELOPMENT AND VALIDATION 147

T T T T T P T

1200 | 4 .

//
1150 | e - ]
7

v o

1100 7 5
pu,FE = 1~1Pu$Exp //

1050 - % _

Z ‘ I,

2 1000 - // 1
@ 950 - 2 .
F )l A

A7 900t +Z 5 \ 1

s o
850 | /,/ PL\,FE = O'9Pu,Exp_
800F 7 o Ag/d=1/200 |-
L v o Ag/d=1/300
750r Ag/d =1/400 |7
700 + : A Ao/d = 1/1000 i
700 800 900 1000 1100 1200
Py pxp (kN)

Figure 3.17: Sensitivity of the local geometric imperfection size introduced in the FE
models on the ultimate load and their comparison with the experimental results.

ometric imperfection size of the two specimens are shown in Table |[3.6] The initial local

Table 3.6: Geometric properties and geometric imperfection sizes of two specimens from
Yang et al. (2017)).

Specimen No. b (mm) d (mm) ¢ (mm) L, (mm) Ay/d  do/Le
R-235-2 155.25  305.35 2.45 2780.4  0.340% 0.063%
R-345-1 125.39  245.89 5.81 2250.0  0.479% 0.114%

out-of-plane deformation of cross-sections at five different sections were measured in the
test (Yang et al., 2017). It revealed that the largest amplitude often occur in the webs
but cross-section profiles did not resemble the local buckling mode and showed significant
scatter. The initial out-of-straightness deformation of the columns was measured at the
quarter-points of the span and the largest value was recorded as dy. In the FE modelling,
the maximum displacement in the web Ay was adopted as the amplitude of the local imper-
fection and the imperfection profiles were assumed to be affine to the lowest local buckling
mode; the global imperfection was modelled as a half-sine wave and the amplitude was set

to be dp.
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Although only one detailed stress—strain curve for the material of a specimen was provided
in Yang et al. (2017)), the key parameters in the stress—strain curves for each specimen are

presented in Table A preliminary sensitivity study on the effects of material strain-

Table 3.7: Material properties of two specimens from Yang et al. (2017)).

Specimen no. F (kN/mm?) f,(N/mm?) f, (N/mm?) &g Eu
R-235-2 207 315.30 462.48 0.0265 0.210
R-345-1 203 416.25 575.91 0.0145 0.132

hardening has shown that strain-hardening has little effect before the ultimate load is
reached. Therefore, the piecewise linear model with yielding, the parameters of which were

based on tests, was adopted in the FE models.

As for the residual stresses, the actual distribution was not provided in Yang et al. (2017).
Therefore, the ECCS residual stress distribution model was adopted, as presented in Fig-
ure It was assumed that specimens were heavily welded, i.e. the width of the uniformly

residual tensile stress range is 3t and the tensile residual stresses at edges o, = fy.

The comparisons in the load—end-shortening relationship between experimental and FE
results are presented in Figure |3.18] Generally, the FE results show a good comparison
with the experimental results, particularly the initial stiffness. As for the specimen R-235-
2, the FE model can capture the stiffness change in the entire loading history well, with the
FE model exhibiting a slightly stiffer response. The ultimate load ratio P, rg/ Py gxp=1.038.
As for the specimen R-345-1, there is stiffness reduction near P=1000 kN for the FE model

but the FE model shows a slightly higher ultimate load with P, pg/ Py Exp=1.029.

Based on the good comparisons with two independent experimental studies, it may be
concluded that the developed FE model has been validated and may be used to verify the
variational models developed in later chapters and be implemented to perform extensive

parametric studies.
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Figure 3.18: Load-end-shortening relationship for specimens (a) R-235-2 and (b) R-345-1
from experimental (Yang et al., 2017) and FE results.

3.6 Concluding remarks

In the current chapter, the details of finite element modelling, the solution strategy along-
side their verification and validation were presented. Firstly, strut modelling details, i.e.
simply-supported boundary conditions, semi-rigid flange-web joints, usage of symmetry to
improve computational efficiency, the selected element type and the meshing scheme, were
described. Moreover, the adopted material model, geometric imperfections and residual
stresses introduced in the models were presented. The analysis types: the linear buckling
analysis (LBA), geometric nonlinear analysis (GNA), geometric nonlinear analysis with
imperfections (GNIA) and geometric and material nonlinear analysis with imperfections

(GMNIA) were introduced alongside their solution strategies and application scenarios.

The developed FE models were firstly verified against the classical solutions from the linear
buckling of simply-supported plates under pure compression and the FEuler buckling load
of a simply-supported column, which show excellent comparisons. This verifies the effec-

tiveness of the boundary conditions, element type and mesh scheme adopted in the current
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FE model. Subsequently, the verified FE models were validated against experimental re-
sults from two independent studies, which also shows good comparisons. It validates the
effectiveness of nonlinear material modelling, geometric imperfections and residual stress
modelling as well as the nonlinear solution strategy. Therefore, it may be concluded that
the developed FE model has been validated. In the following chapters, the validated FE
models will be used to verify the developed variational models and to conduct extensive
parametric studies to provide suggestions on the establishment of robust guidance for thin-

walled rectangular hollow section columns.



Chapter 4

Behaviour of long struts with

semi-rigid flange—web joints

4.1 Introduction

The current chapter investigates global-local mode interaction in rectangular hollow sec-
tion struts with semi-rigid flange—web joints. It aims at providing a quantitative description
of the interaction between flanges and webs in the interactive post-buckling stage, which
has not been addressed well in previous studies due to technical complexity (van der Neut,
1969). It facilitates a better understanding of the underlying mechanics of local-global
mode interaction in practical cross-sections. A variational model describing the behaviour
of a thin-walled rectangular hollow section strut with semi-rigid flange—web joints under
axial compression is developed using analytical techniques. The primary aim is to analyse
the interaction of global and local buckling modes for the case where global buckling is
critical. A relationship describing how the cross-section joint rigidity affects the properties
of the system is obtained explicitly from the developed equilibrium equations. These equa-

tions are solved using numerical continuation techniques through the well-known software

151
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AuTo-07p (Doedel & Oldeman, 2009)). The resulting equilibrium paths are presented for
various different cases and potentially dangerous unstable interactive buckling is found.
The numerical results from the variational model show excellent comparisons through-
out the post-buckling range with numerical results obtained using a nonlinear finite ele-
ment (FE) model developed within the commercial package ABAQUS (2014)). A simplified
method to predict the local buckling load of the more compressed web undergoing global
buckling and the corresponding amplitude at the secondary bifurcation point is developed
based on the verified variational model. A couple of parametric studies concerning the

geometric properties are also presented that successfully verify the simplified methodology.

4.2 Development of the variational model

A thin-walled simply supported rectangular hollow section strut of length L, loaded by an

axial force P at the centroid of the cross-section is considered, as shown in Figure The

(a) Simply-supported strut under pure compression (b) Cross-section

P Neutral axis of bending C§ ; Ly
w
X
% 1. S
Y

X

| < L -
— o

Figure 4.1: (a) Plan view of the rectangular hollow section strut of length L under the
concentric axial load P. The lateral and longitudinal coordinates are x and z respectively.
(b) Cross-section geometry of the strut with semi-rigid joints including definitions of the
rotational stiffness at junctions; the vertical axis coordinate is y.

web depth and thickness are d and t,, respectively; the flange width and thickness are b and
t¢ respectively. The joints between the webs and the flanges are assumed to be semi-rigid

and connected by a rotational spring with stiffness cy. It should be stressed that as ¢y — oo,
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the joints tend to full rigidity; when ¢y — 0, the joints tend to being pinned, i.e. there
is no rotational interaction between individual plate and they buckle individually. The
strut material is assumed to be linearly elastic, homogeneous and isotropic with Young’s
modulus £, Poisson’s ratio v and shear modulus G = E/[2(1 4+ v)]. It is assumed that

global buckling occurs about the weak axis of bending.

4.2.1 Modal descriptions

The formulation begins with the definition of both the global and the local modal displace-
ments based on a recent purely numerical study (Shen et al., 2015|). Since previous studies
(Hunt & Wadee, 1998; Wadee et al., 2010; Wadee & Bai, 2014; Wadee & Farsi, 2014a;
Wadee & Farsi, 2014b; Bai & Wadee, 2015b)) have clearly demonstrated that it is essential
to include the shear strain contributions into the total potential energy formulation to
model the interactive buckling behaviour, Timoshenko beam theory is assumed currently.
The global mode is decomposed into two components: a purely lateral displacement W
and a pure rotation of the plane sections 6, see Figure known as the ‘sway’ and ‘tilt’
modes (Hunt et al., 1988; Hunt & Wadee, 1998)) respectively. The global buckling lateral

displacement W and the corresponding rotation # are defined by the following expressions:

W(z) = —qsLsin (%) , 0(z) = —qcos (%) , (4.1)

where ¢s and ¢; are the generalized coordinates defining the normalized amplitudes of the
sway and tilt modes respectively. The shear strain in the flanges from global buckling is

given by the following expression:

dw

Tz
Yoz =~ 0 =—(qs — q) mcos (f) : (4.2)
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Figure 4.2: (a) Sway and tilt components of the global buckling mode bending about the
weak axis y. (b) Out-of-plane local mode in the flanges w¢(z, z) and in the more compressed
web wye(y, z). Also shown are the in-plane local mode in the flanges u¢(x, z) and in the
more compressed web Uy (y, 2).

uwe(V, 2)=gwe(¥)u(z)

In the current study, the focus is on the cases where global buckling occurs first and
so the local displacement in the less compressed web is assumed to be zero. The local
buckling mode, including out-of-plane and in-plane displacement components, shown in

Figure [1.2(b), is defined with the following variables:

wf('ra Z) = ff(x)w(z), wwc(y7 Z) = fwc(y)w(z)v (43)

Uf(xa Z) = gf(x)u<z)7 uwc(y7 Z) - gwc(y)u<z>7 (44)
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where f and ¢ are the cross-section components for the out-of-plane and in-plane dis-
placement components respectively; w(z) and u(z) are the longitudinal out-of-plane and

in-plane displacement components respectively.

From an earlier numerical study (Shen et al., 2015), it was determined that the cross-
section shape functions for the out-of-plane and the in-plane components, f and g, are
approximately the same. Therefore, currently, these components are in fact assumed to be
the same, i.e. g¢(x) = fi(x) and gwe(y) = fwc(y). The cross-section components, fi(z) and
fwe(y), as shown in Figure [4.3|a), are estimated by applying appropriate kinematic and
static boundary conditions for each plate in conjunction with the Rayleigh—Ritz method.
It is assumed that f,. has the functional form that is derived from the conditions of a
simply-supported strut (a cosine wave) and a beam under pure bending (a parabola) such
that the cases for a fully pinned joint or a joint that rotates as a rigid body can be modelled,

thus:

fwe = By cos (%y) + (1 — By) (1 — 4d—y22> : (4.5)

For f¢, the functional form is derived from a beam with one end clamped and the other end
simply-supported with an end moment arising from the transfer of moment at a non-pinned

joint. This naturally leads to a cubic polynomial form:
b b\’ b\’
fr = Ay x+§ + A x+§ + A, x+§ . (4.6)

The coefficients By in fy. and Ag, A; and As in f; are determined by applying appropriate
boundary conditions at the junctions. The form of f,. automatically satisfies the natural
boundary conditions for the web displacement function, i.e. fy.(+d/2) = 0. Since global
buckling occurs first and the resulting less compressed web is assumed to have zero out-of-
plane displacement, the flanges near the less compressed side also have zero out-of-plane
displacement. Therefore, the junction between the less compressed web and the flanges is

assumed to be rigid, as shown in Figure (a). At the junction between the less compressed
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(a) (d) Cof
Ow
d
Ow
Cof

Figure 4.3: Semi-rigid joint with corresponding kinematic and static boundary conditions
at the web—flange junctions. (a) Cross-section component of the local mode in the flanges
fi(z) and the more compressed web fy.(y); the stiffness of the rotational spring at the
joints is ¢g. (b) Kinematic boundary condition at the junction; #; and 6, are the rotations
of the flange and the more compressed web at the junction respectively. (c¢) Equilibrium
condition at the junction; M; and M, are the bending moments in the flange and the
more compressed web at the junction respectively. (d) Equivalent rotational springs with
stiffness cygr attached to the more compressed web.

web and flanges, * = —b/2 and y = £d/2, the boundary condition for the flanges are:

fe(=b/2) = f; (=b/2) = 0, (4.7)

where the prime denotes differentiation with respect to x.

Another boundary condition can be obtained by considering moment continuity at the
junction between the flanges and the more compressed web given that there is a rotational
spring of stiffness ¢y present, as shown in Figure (b—c). Hence, the following boundary

conditions need to be satisfied:

M (x = b/2) + My (y = —d/2) = co(By — ), (4.8)

where:

82wf 82wf
M (z =1b/2) = {Df ( 0x? v 072 )Lm’ 9
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0*w 0%w
MWC _ —d 2 _ DW wceC wWC : '
Y /) [ ( dy? v 0z* >:|y—d/2 (4.10)
0, = dfse . dft : (4.11)
dy y=—d/2 dz x=b/2

with Dy = Et}/[12(1 — v?)] and Dy, = Et3 /[12(1 — v?)] being the flexural rigidities of the

individual flanges and webs respectively.

As for the purely pinned or rigid joint, one more boundary condition at the more com-
pressed web and flange junction can be obtained. For the purely pinned joint case, the

flanges do not buckle, hence:

0r = fl(x =b/2) = 0. (4.12)

For the case where the joint rotates as a rigid body, the rotation of the more compressed

web and flange are the same, hence:

0 = file = b/2) = 0y = fluly = —d/2). (4.13)

These four equations above, i.e. Eqs. (4.7H4.8]), (4.12) and (4.13]), can resolve the four

undetermined coefficients in f,. and f; for the pinned and rigid joint cases respectively.

However, for the semi-rigid joint case, the fourth boundary condition cannot be obtained
directly as for the pinned and rigid joint cases above. When the more compressed web
buckles, both the flanges and the joint rotational springs provide the web with restraints.
Therefore, by isolating the more compressed web plate, the total rotational stiffness pro-
vided by the flanges together with the rotational spring can be replaced by an equivalent
rotational spring cy¢, as shown in Figure (d) Moreover, since the flanges and the rota-

tional springs are effectively in series, the following standard relationship can be used:

S (4.14)

where c¢; is the equivalent rotational stiffness accounting for the rotational restraint provided
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by the flanges, as shown in Figure (a). In the rigid joint case, where ¢y — co and cgr = ¢,

(a) (b)

Cf gw Mfw o
O ~—IRM
‘ \%%
X |
‘ L)
7 O
" _’ﬁg_gﬂfw

cf ew Mfw
Figure 4.4: (a) Equivalent rotational springs with stiffness ¢; on the more compressed
web provided by the connecting flange. (b) Cross-section component of the local mode in
the flanges f;(z) and the more compressed web fy.(y) for the rigid joint case due to the
rotation of the flange and the more compressed web at the junction, 6. (c) Free-bodies of
the more compressed web—flange junctions; My, is the bending moment within the flange
and the more compressed web at the junction.

the rotational stiffness ¢y can be determined by considering the continuity of moment and

rotation at the junctions, as shown in Figure [1.4{b—c), hence:

_ _ 82?1) aQw
M — 0 — D wcC WC
fw CtUw |: W ( 8y2 + 1% 62’2 >:|y_d/2, (415)
where:
n a’wwc /
O = — =w[fy (y = —d/2)], (4.16)
Yy y=—d/2
0w
> =wl[fy.(y=—d/2)], (4.17)
ayQ y=—d/2
D Wi .
522 = [fue (y = —d/2)] = 0. (4.18)
y=—d/2

Substituting the displacement function for the more compressed web in the rigid joint case,
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the rotational stiffness ¢; can be obtained:

cF:%? (4.19)

and an expression for the equivalent rotational spring stiffness cg¢ can be expressed thus:

Co

Cot = CG/CT

(4.20)

Therefore, the final boundary condition to determine the undetermined parameters is given

by the relationship:

0 Wye O Wyye ) }
corby = | Dy +v . 4.21
” |: ( ay2 822 y=—d/2 ( )

Based on these conditions, the coefficients A;, where i = {0, 1,2} and By can be determined:

Ay =0,
A= 27¢q (Cop + 2)
V¢ (Co + 1) (Toedity — 4Pty — 2¢9 — 2) 199
A, = 27?59(594-2) ( ' )
V3¢ (Co + 1) (mpedico — dpedicy — 2¢9 — 2)’
B — 2 (2007 + Cp + 1)

T3y — AdeddCy — 269 — 2

where ¢y = cp/ct, ¢y = tg/ty and ¢. = d/b. It should be stressed that when ¢y — oo, f;
and fy. converge to the rigid joint case, i.e. 6y = f{(z = b/2) = 0, = fi..(y = —d/2); when

cg — 0, fr and fy. converge to the pinned joint case, i.e. ff = 0 and fy. = cos (7y/d).

4.2.2 Total potential energy

The total potential energy V' comprises the contributions from the strain energy U stored

from the global bending of the strut, axial and shear stresses in the whole cross-section,
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the local bending of the flanges and the more compressed web, the rotational springs and

the work done by the external load P&, where £ is the total end-shortening.

The only contribution to the global bending strain energy U, is from the webs through
the sway mode, since the membrane strain energy contributions from the flanges and webs
account for the effect of global bending through the tilt mode, as shown in Figure a).

Therefore, the global bending strain energy, Uy, ,, can be expressed thus:
E[ L 4
Upo = 2/ =W dz = B, / ¢ sin? == dz, (4.23)
0 0

where E1,, = Edt3 /12 is the flexural rigidity about the local weak neutral axis of the web
and dots represent differentiation with respect to z. The factor of 2 is included to account

for both webs.

The local bending strain energy stored in both flanges and the more compressed web can

be determined with the following standard expressions:

b/2 82wf 82Wf 2 62wf 02’LUf 82UJf 2
Uns = Df/ /b/Q{ ( 022 8I2 ) —20-v) [ 022 0z (82827) } dzdz,

(4.24)
D, d/2 Pwge  Pwge )2
Ubwel = / / o { ( RN ) (4.25)
0 Wy O Weye 0wy \ 2
_2(1—1/){ 02 oy (023y) ]}dydz.

Since it is assumed that there is no buckling displacement in the less compressed web, it

naturally follows that there is zero local bending strain energy in that element.

The membrane strain energy in the flanges Uy, ¢ is derived from considering the direct
strains (&) and the shear strains (7). The complete direct strain expression for the flanges

can be written as:

8ut oue 1 [ow\?
_ il m i I 4.26
T T T < 0z ) A (4.26)
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where the first term is from the global mode and u, = x6(z), being the ‘tilt’ in-plane
displacement; the second and third terms are the local components obtained based on
von Karman plate theory; the final term is the purely in-plane compressive strain. The

corresponding shear strain component can be written thus:

dus  OW . Ourd
York = o+ e =

oz T as e (4.27)

From the previous numerical study (Shen et al., 2015), the transverse stress component
was shown to be very small when compared with the other two components, a finding
that also coincides with earlier analytical work (Koiter & Pignataro, 1976a), hence it is
not included presently. The complete expression for the membrane strain energy stored in

both flanges can be written thus:

te/2 b/2
Unt = 2/ / / —(Bels + GyZg)dadydz. (4.28)
te/2J—bj2 2

The membrane strain energy stored in the more compressed web also comprises direct and
shear strain energy contributions. As for the less compressed web, the expression is more
straightforward since it is assumed that there are no local buckling related terms. The

complete expressions for the direct strain in the more and less compressed webs are:

ou 1 [ Owge )
z,we — €z,wco A = a — s 4.29
£ £ * 0z * 2 ( 0z ) (4.29)

Ez,wt = Ez,wto — A; (430)

where the direct strains from the global mode, i.e. €, weo and €, w0, can be written thus:

b, br? | w2z

Ez,weo — —50 = —qti S — L (431)
b . b2 | 7wz

Ez,wto — 28 qtﬁ Sin f (432)
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Unlike the flanges, the shear strain within the webs only contain terms from the local
mode. The shear strain in the less compressed web is zero and the shear strain in the more

compressed web can be written thus:

_ Ouye | Oy Oy
Tyzwe = Oy oy 0z

(4.33)

The transverse stress is once again neglected in the current formulation for the same reasons
as outlined above, thus the membrane strain energy contributions from the webs Uy, . and

Unmwt can be given respectively thus:

tw/2 d/2
Un ,we / / / €2 we + Gﬂ}lyz WC) dy dx dZ (434)

tw/2J—ds2 2
/2 pd/2

Un,wt / / / —Eez wi dydzdz. (4.35)
tw/2J—dj2 2

The strain energy stored in the rotational springs, Uy, accounting for the web-flange joints

in the side of the more compressed web, is given by the following expression:

L
1 wa
Up =2 =
=2l
The factor of 2 is included to account for the rotation of both corners, as shown in Fig-

ure [£.3((a).

OWye

y

x=b/2

2
) dz. (4.36)
y=—d/2

The total end-shortening £ comprises components from pure squash, the global sway mode
and the local in-plane displacement. Hence, the work done by the external load P is given

by the expression:

L 2
PE = P/ (qsﬁ— cos? == + A — Am) dz, (4.37)
with:
Bt .
2b (¢t + ¢C)

where {g;}, and {gy.}, are definite integrals with respect to their corresponding subscript
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x or y, thus:

b/2 d/2
{o¢t, = / grdz,  {gwc}, = / Gwe dy- (4.39)
2 d/2

In summary, the total potential energy V' can be expressed by the summation of all the

strain energy terms minus the work done by the external load:

V= Ub,o + Um,f + Um,wc + Um,wt + Ub,ﬁ + Ub,wcl + Usp — P€. (440)

4.2.3 Governing equations

By performing the calculus of variations on the total potential energy V', the governing
equations of equilibrium can be obtained. The integrand of the total potential energy V'

can be written as a Lagrangian (£) of the form thus:
L
V = / L(w, w, w, i, u, z)dz. (4.41)
0

The equilibrium states of the system can be obtained by invoking the condition that V' is

stationary by setting the first variation of V', i.e. 0V, to zero, where:

Lroc_ . oL, oL oc_.. oL
oV = /0 (%&U + %511) + 8_w5w + %(M + %511) dz. (4.42)

Since dw = d(dw)/dz, dow = d(dw)/dz and 64 = d(du)/ dz, integration by parts allows
the development of the Euler-Lagrange equations for w and u, resulting in a fourth order

nonlinear ordinary differential equation (ODE) in w and a second order nonlinear ODE in
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3Bty

D2t (), + {2, | = 25 [po (A1), + (k] v
— Gty [qut{ f’zf?}xnt {f @C}y} (Ww? + w)

— Bt [20{0n 2}, + {gue 2}, ] (i + i)

%qut {4@ {af2}, + {12}, 1 (sin %w + 7 cos ) (4.43)
+ {2Dwu {wf {Fifi}+ {fwcfxc}y] - 2D { UL }
+ B0 20 (), + (F},) o - e, [2@ (Y, + (o), | 0

- 2TG Y, (= a) sin T+ K =0,

Bt 200 (a2}, + {02, |+ Bt 200 2, + (e}, |

- Gt |20 LRI+ {aheacfuc), [0+ 260 i), (- ameos T2 (1)
E b t 4 t / /
%[ ¢ {z gf}x+{gwc} } COS%Z—Gt {2@{ 2} +{9V3c}y}u:0,

where K is the coefficient of the linear term w, sometimes also referred to as the foundation
term, which is well known to affect the local buckling load (Hunt & Wadee, 1998)). Cur-
rently, it comprises a plate-related term K, and a spring-related term Ky, i.e. K = K, + K,

where:

Ko [wt { //2} +{f" y] o Ko =209 (Flely-arz — filapp2)” (4.45)

Moreover, equilibrium also requires the minimization of V' with respect to the generalized

coordinates ¢, ¢ and A, leading to three integral equations:

oV 9 T Elyqs 72 Lgs
= m°GtebL (qs — - P
aqs ™ f (q Qt) + L 2

L
— 27rth/ {{gé}x uw+{fife}, ww| cos W—LZ dz =0,
0

(4.46)
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8_\/ B T Bt b2 dg, 1+ﬂ
oq AL 3.

+ 271Gty /OL {{gg}x u+{fife}, ww] Cos %Z dz
-l [ gt 2 G
+ B {fict, + 5 2@ {afi}, } }Smfdz =0
o=t [ {[towc), +20 {gf}x} it |G UR), rodL] ot aay

+ 2Et,dLA (1 zt) PL = 0.

C

} — PGUBL (g - ) (4.47)

Since the strut is an integral member, Eq. (4.47)) provides a relationship between ¢s and ¢

before the local mode is triggered, i.e. when u = w = w = 0:

gs = (1+8) g, (4.49)
where:
w2 Eb? gbc
_ - 4.
G ( @) (450)

The boundary conditions for w and w and their derivatives are for a simple-support at

z =0 and for symmetry at z = L/2:

w (0) = 1 (0) = (L/2) = i (L/2) = u (L/2) = 0. (4.51)

A further boundary condition can be obtained from minimizing V' and it is a condition

that relates to matching the in-plane strain at the ends:

0) [{g2.}, + 200 {g2},] + =
-A [{gwc}y +2¢y {gf}z] +

O (guesze), + 200 {acst) ]

[{gwc}y + 2¢t{gf}x}
2Btwd (1 + ¢¢/¢c)

(4.52)
= 0.




CHAPTER 4. BEHAVIOUR OF LONG STRUTS WITH SEMI-RIGID FLANGE-WEB JOINTS 166

Linear eigenvalue analysis for the perfect column is conducted to determine the critical load
for global buckling P®. This is achieved by considering the condition where the Hessian

matrix V;; is singular when ¢; = ¢t = w = u = 0, where:

lEA% 9%V
q2 9gs0

V’L] — qs qsOQqt ’ (453)
92V 2V

0g+0gs dq?

which produces the following expression:

PC

2m2E1, T2 Et:b? 1 ¢
= =. 4.54
° L? + 2(1+s) L2 ( ) ( )

—+
3 o
Note that if Euler-Bernoulli bending theory had been assumed, the shear modulus G — oo,
which implies that s — 0, and P® would reduce to the classical Euler load, as would be

o

expected.

4.3 Numerical results

In this section, representative numerical examples from the variational model with a varying
rotational stiffness ¢y are presented. The geometric properties of the example strut are

presented in Table [£.1] The Young’s Modulus F and Poisson’s ratio v of the material are

Table 4.1: Geometric properties of the rectangular hollow section strut in the numerical
example, selected to ensure global buckling is critical.

Length  Flange width Web depth Flange thickness Web thickness
L b d t¢ tw
5250 mm 60 mm 120 mm 1 mm 1 mm

chosen to be 210 kN/mm? and 0.3 respectively. For the case where ¢y = 0, the theoretical
buckling stresses and critical mode are presented in Table The global buckling stress
is calculated using Eq. (4.54) where 0¥ = PY/A and A is the total area of the cross-

section. The local buckling stress is estimated by using the classical plate buckling stress
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Table 4.2: Theoretical values of the global and local critical buckling stresses for the pinned
cross-section case.

oS (N/mm?) of (N/mm?) o5(N/mm?) Critical mode
52.70 52.72 210.88 Global

01y = kpDym?/(dty,) for the webs and oy} = k, Dem?/(b%t) for the flanges (Bulson, 1970).
Since it is initially assumed that ¢y = 0, all the plates have effectively pinned edges and the
length of the strut is much larger than the width of the plate, k, = 4 is adopted for the plate
buckling coefficient to obtain a lower bound. With the increase of the rotational stiffness ¢y,
the local buckling load P would also increase whereas the global buckling load PS would
remain the same. Therefore, the selected geometric dimensions and material properties
ensure that global buckling is always critical for any positive value of ¢y in the examples

presented.

The system of nonlinear differential equations, i.e. Egs. —, subject to the cor-
responding integral (Egs. (4.46)—(4.48)) and boundary conditions (Egs. and ({£.52)),
is solved numerically using the continuation and bifurcation software AuTO (Doedel &
Oldeman, 2009). The software is not only capable of solving the nonlinear ordinary dif-
ferential equations numerically, but it also maintains the intrinsic bifurcational structure
of the solutions. Moreover, importantly, the software can switch between, as well as trace,
different equilibrium paths, allowing the evolution of the geometrically perfect cases to be

studied.

The solution strategy for using AuUTO is shown diagrammatically in Figure [4.5] The
critical load P¢ is obtained explicitly from Eq. . Using the continuation method,
the generalized global sway mode amplitude ¢ is first varied, while P = P, to obtain the
secondary bifurcation points S;, where the first one (S; = S) pinpoints the location where
interactive buckling is practically triggered. Subsequently, the second run is started at the

secondary bifurcation point S using the branch switching facility within the software and

P is varied to compute the interactive buckling path. With the increase of ¢y, the value
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F Global bucking path
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Interactive buckling path

Run 2 Sa A A
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ds qs
Figure 4.5: Numerical continuation procedure for determining the interactive buckling
equilibrium path for perfect struts where global buckling is critical. The thicker solid
line shows the actual solution path. Circles marked C and S; represent the critical and

secondary bifurcation points respectively. The generalized coordinate of the sway mode at
the secondary bifurcation point is defined as ¢5.

of g at the secondary bifurcation point ¢° increases due to the higher local buckling stress

for the more compressed web relative to the constant global buckling load.

However, before conducting numerical continuation in AUTO, the effects of the rotational
springs on the nonlinear ODEs are investigated. The explicit spring related term in the
ODE:s is the coefficient of linear term w, K, in Eq. (4.43). Figure [4.6(a) shows the rela-
tionship between the individual components of K, i.e. K, and Ky defined in Eq. ,
while varying the normalized joint rigidity ¢4. It can be seen that the plate-related term
K, rises with the increase of the rotational spring stiffness. Moreover, it reaches a plateau
with the value being the same as the rigid joint case when the normalized joint stiffness
Cp is close to 7. As for the spring-related term Kj, it reaches a peak and then decays
to zero as ¢y is increased further. This can be attributed to the fact that the rotation
of the flange and the more compressed web at the joint are approximately the same and
thus f! (y=d/2) = fI.(x=b/2). Based on this analysis, struts with the cross-section joint

stiffness ¢y listed in Table are used in the subsequent numerical study.

Unstable post-buckling behaviour arising from the triggering of interactive buckling is
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Figure 4.6: (a) The influence of the rotational spring stiffness on the coefficient of the
linear term w in Eq. for the example strut with the properties listed in Table
The quantities K, and K, are the plate and spring related terms respectively, given in Eq.
(4.45). (b) The normalized values of the coefficient of the linear term K and the generalized
coordinate of the global sway mode ¢> versus the normalized joint rigidity cp.

Table 4.3: Rotational stiffness ¢y and the corresponding normalized stiffness ¢y values used

in the numerical studies.

co (Nm/m) 0 160.26 641.03 2564.10 oo
Zo 0 0125 05 2
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observed in all example struts presented in Figure Figure a) shows that the severe
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Figure 4.7: Numerical equilibrium paths for struts with varying joint rigidity ¢y. Graphs
of the normalized load p = P/PS versus (a) the normalized end-shortening £/L, (b) the
generalized coordinate of the sway mode g5 and (c) the normalized peak amplitude of local
deformation in the more compressed web Wy max/tw; (d) Wye max/tw VErsus gs.

snap-back phenomenon in the normalized load p = P/PS versus the normalized end-
shortening £/L relationship is mollified with the increasing joint rigidity ¢g. Moreover,
stiffer joints within the cross-section also lead to a higher residual post-buckling capacity.
A gradual transition from highly unstable behaviour to less unstable behaviour can be
observed. At the same load level in the post-buckling range, a higher joint rigidity case
corresponds to larger global and local mode amplitudes, as shown in Figure (b, c). The
generalized global mode amplitude to trigger the mode interaction ¢S increases significantly

especially between ¢y = 0 and ¢y = 0.5. The rate of increase in ¢°, however, begins to reduce
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significantly as ¢, is increased further; for example, the equilibrium path of the case with
o = 2 is very similar to the rigid case. By normalizing K and ¢° between the pinned and

rigid cases, thus:

sk — 50
where K| is the coefficient of the linear term for the pinned case (¢ = 0); Kg is the
coefficient of the linear term for the rigid case (cg — o0); ¢35, is the value of ¢5 for the
pinned case (¢ = 0); and ¢ is the value of ¢ for the rigid case (cg — o00). It can
be observed in Figure [4.6(b) that the respective distributions of K and g5 with respect
to ¢y are practically identical, which is understandable since K is known to control the

local buckling load (Hunt & Wadee, 1998)) and that in turn controls when the secondary

bifurcation occurs.

From the solutions of the out-of-plane components of the local mode w, a wavelength
variation is observed with the progress of interactive buckling, as shown in Figure 4.8
The initially localized buckling mode spreads outwards from the mid-span of the column,
developing with more peaks and troughs alongside a clear reduction in wavelength as the
modal amplitude becomes larger and the load drops in the post-buckling range. Since the
global buckling mode amplitude at the secondary bifurcation is relatively larger for struts
with a higher joint rigidity, the local buckling profile is initially more localized at mid-span
at p = 0.995. Moreover, the higher joint rigidity also leads to a smaller wavelength at the
same load level. This is in accord with results in previous work on I-section struts (Bai
& Wadee, 2015b) and on struts on elastic softening—hardening foundations (Budd et al.,
2001).

Three dimensional representations of the numerical solutions with ¢y = 0, ¢g = 0.5 and the
rigid case (¢g — 00) at load levels p = 0.995 and p = 0.790 in the post-buckling range are

shown in Figure It should be emphasized that there is no buckle in the flanges for the
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Figure 4.8: Numerical solutions of the normalized local out-of-plane displacement in the
more compressed web wy./ty, for the cases where: (a) ¢ = 0 (pinned), (b) ¢ = 0.5 and
(c) ¢ — oo (rigid). The left and right columns correspond to the normalized load in
the post-buckling range p = 0.995 and p = 0.790 respectively. Note that the longitudinal
coordinates are normalized with respect to half the strut length z = 2z/L and that the
buckling wavelengths are reduced at the lower load.

¢p = 0 case, as shown in Figure a), owing to the lack of interaction between adjacent

plates within the cross-section.

4.4 Verification and discussion

The validated FE model developed in Chapter |3 was used to verify the variational model.
A linear eigenvalue analysis is first conducted in ABAQUS to obtain the global buckling load
of the FE model with the same geometric properties as the variational model. The global
critical load is found to be 18.90 kN, approximately 0.21% smaller than the analytical
solution PC using Eq. . The insignificant error is postulated to be derived from the

global mode displacement field assumption in Eq. (4.1]), which comprises only a single term.

In terms of the nonlinear behaviour, equilibrium paths obtained from both the variational

and FE models show excellent agreement for all rotational stiffness cases listed in Table[4.3]
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Figure 4.9: 3D visualization of the numerical solutions from the variational model, plotted
using MATLAB (MATLAB, 2010). The results are shown for the post-buckling equilibrium
states for the cases where: (a) ¢ = 0 (pinned), (b) ¢ = 0.5 and (c) ¢ — oo (rigid)
from the top to the bottom row respectively. The left and right columns correspond to the
normalized load in the post-buckling range p = 0.995 and p = 0.790 respectively. Note that
the deformations shown have been amplified by a factor of 5 and the longitudinal coordinate
(z) has been scaled by a factor of 0.25, both to aid visualization. All dimensions are in
millimetres.

with the variational model exhibiting a very slightly stiffer response in the advanced post-
buckling range. Three typical cases, i.e. ¢g = 0 (pinned), ¢ = 0.5 and ¢g — oo (rigid),
are presented and discussed currently, as shown in Figure [4.10, From both the p—¢s and
Wyemax¢s equilibrium diagrams, it can be observed that the values of qsS for all cases are
extremely close between the two models. As for the local-global mode relationship, the

present model matches better with the FE results, when compared to previous studies on
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Figure 4.10: Comparison of the post-buckling equilibrium paths for the cases where: (a)
¢gp = 0 (pinned), (b) ¢g = 0.5, and (c) ¢g — oo (rigid) from the variational (solid line)
and FE (dashed line) models. Graphs of the normalized load ratio p = P/PC versus the
normalized end-shortening £/L in the first column, the generalized coordinate of the sway
mode g5 in the second column, and the normalized maximum amplitude of local deflection
in the more compressed web Wyemax/tw in the third column; the fourth column shows
Wyye.max/w VEISUS Gs.

I-section struts (Bai & Wadee, 2015b; [Liu & Wadee, 2015|) using the same methodology.
Apart from the fact that the cross-section functions fr, fwe, gr and gy have assumed forms,
an additional source for the stiffer response of the variational model is derived from the
underlying assumption that the neutral axis location remains unchanged. In fact, the
neutral axis of bending would move to the less compressed web side when local buckling
occurs in the more compressed web and flanges, as shown in Figure however, it is

worth emphasising presently that the errors are fundamentally small.

Figure [4.12 shows the evolution of the cross-section deformation at mid-span for the cases
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Figure 4.11: Neutral axis shifting due to local buckling in the more compressed web and
flanges. The variation in the normal stress due to the global curvature x (a) before local
buckling and (b) after local buckling in the more compressed web and flanges; d F; and § F..
are the relative load changes in the less and more compressed sides of the cross-section
respectively, which include the unloading and loading of the flanges and webs; 7 is the
stiffness reduction factor for the more compressed web due to local buckling.

where ¢y = 0 (pinned), ¢y = 0.5, and ¢y — oo (rigid). The excellent comparisons through-
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Figure 4.12: Local deformation of the cross-section for the example struts at mid-span
at different load levels for the cases where: (a) ¢g = 0 (pinned), (b) ¢ = 0.5, and (c)
¢9p — oo (rigid) from the variational (solid line) and FE (dashed line) models. Note that
the displacements shown have been amplified by a factor of 20 to aid visualization.
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out verify the effectiveness of the assumed cross-sectional shape functions. At ¢y = 0, there
is no out-of-plane displacement in the flanges. With the increase of the joint rigidity ¢y,
the flanges bulge increasingly and finish with the rotation at the joint being equal to the
more compressed web, i.e. O(z = b/2) = Oy(y = d/2), as shown in Figure[£.12|(c). A small
difference in the more compressed web deflection can be observed between the FE and the
variational results in the advanced post-buckling range; the difference increases as ¢y is
increased, as shown in the fourth column of Figure (b, ¢). Moreover, the discrepancy
in the less compressed web is caused by the large amount of bending in that web (Shen
et al., 2015), which is currently not included as an extra local displacement function in the

variational model.

Figure[4.13|shows the comparison for the normalized solutions of the out-of-plane displace-
ment in the more compressed web wy,./t,, for the cases where ¢ = 0 (pinned), ¢ = 0.5,

and ¢y — oo (rigid), at p = 0.950 and p = 0.790 respectively. An excellent comparison
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2r 2r
1=
_ aad
=0 T of————————— 0 W\/\/\/\/\/\/\/\/\
3
2 ‘ ‘ ‘ ‘ j 2 ‘ ‘ ‘ ‘ j
(b) 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
2r 2r
g 4
_ )i I\ I
9=1/2 5o 22 YAVAVAVAVAN 0 \/\\/I\\/\\I’\\I\l’\l
£ A\
2 | | | | j 2 | | | | ]
(C) 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
2r 2r
B
- = \
Rigid \; 0 AN 0 /
3
2 | | | | j 2 | | ‘ . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

z

I\

Figure 4.13: Comparisons of the numerical solutions for the normalized local out-of-plane
displacement wy,/ty, in the more compressed web from the variational (solid line) and FE
(dashed line) models for ¢y = 0 (pinned), ¢y = 0.5 and ¢y — oo (rigid) cases respectively.
Note that the longitudinal coordinate is normalized with respect to half of the strut length
z=2z/L.

is observed in all the cases, especially for the case where ¢y = 0. However, the slight
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error increases with the commensurate increase of the joint rigidity and the progression
of interactive buckling, as described for Figure In the variational model, the pro-
file of the local mode is assumed to be the same in the whole strut and the amplitude
is allowed to vary, see Egs. and . This assumption holds true for the ¢g = 0
case, where the profile is always the sine function, since the flanges provide no rotational
restraints to the buckled web. For the cases where ¢y > 0, the cross-section profile depends
on the bending moment at the web—flange junctions, which varies along the length. Fig-
ure demonstrates that the currently assumed shape function matches well with the
cross-section deformation at mid-span. Therefore, the errors, although very small, become
increasingly larger towards the ends, where the profile is slightly different from that at

mid-span.

Since the FE package ABAQUS can automatically calculate and output the strain energy
in individual plates and the work done by load as standard, it provides an additional
perspective for validating the variational model. Figure presents the comparisons
between the components of the potential energy during the loading for the cases where
¢p = 0 (pinned), ¢g = 0.5 and ¢y — oo (rigid). As for the energy in the variational model,
the strain energy in the flanges U; comprises the local bending energy Uy g, given in Eq.
, and the membrane strain energy U, given in Eq. . The strain energy in
the more compressed web Uy, comprises half of the total global bending energy Uy, ,/2,
given in Eq. , the local bending energy Uy, wa, given in Eq. , and the membrane
strain energy Up we, given in Eq. . The strain energy in the less compressed web
Uyt comprises half of the total global bending energy Uy, /2, given in Eq. , and the
membrane strain energy Uy, ws, given in Eq. . The work done by load term P& is

given in Eq. (4.37).

There are three individual stages that may be observed in the energy relationships versus
the generalized coordinate of the sway mode ¢s. The first stage corresponds to the purely

axial deformation of the struts under compression before the buckling load is reached. The
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Figure 4.14: Comparisons of the potential energy components from the example struts
with joint rigidities ¢g = 0 (pinned), ¢ = 0.5 and ¢y — oo (rigid) from the variational
(solid line) and FE (dashed line) models. Graphs of the total strain energy stored in the
flanges U, more compressed web Uy, less compressed web Uy and the work done by the
load PE& respectively, all versus the generalized coordinate of the sway mode ¢s.

second stage is where pure global buckling is triggered and the third stage is where inter-
active buckling progresses with the simultaneous increase of the global and local modes.
Except for the strain energy in the more compressed web, an energy reduction can be ob-
served at the initial stage of interactive buckling. For the strain energy in the flanges and
the work done by the load, the reduction corresponds to the ‘snap-back’ that features in the
load—end-shortening relationship shown in Figure [4.7(a) for small values of ¢. With the
increase of the joint rigidity, the reduction diminishes; for the rigid joint case, the energy
reduction is essentially negligible, which perhaps explains why no snap-back is observed

for that case.
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The comparisons of the strain energy terms and the work done by the load between the
FE and the variational models are generally excellent for all values of ¢y. The main source
of discrepancy resides in the strain energy stored in the less compressed web Uy, with the
relative errors being 40%, 33% and 28% at ¢ = 0.01 for ¢ = 0 (pinned), ¢ = 0.5 and
¢p — oo (rigid) cases respectively. However, the proportion of the strain energy stored
in the less compressed web compared to the total strain energy stored in the rectangular
hollow section strut, Uy /U, is relatively small; for the rigid joint case, Uy /U ~ 0.07 when
g¢s = 0.01. Therefore, the errors for the entire system due to errors from the less compressed
web are in fact below 3%. Referring to Figure [1.7(d), at the same value of g5, the local
mode amplitude is higher for smaller values of ¢y. Therefore, any neutral axis movement
would be larger for smaller values of ¢y. This contributes to the reason why the error in the
strain energy stored in the less compressed web is the largest in the effective pinned joint
case at the same value of ¢;. The neutral axis movement due to the plate buckling and the
assumed cross-section shape functions (see Figure are the two principal factors that
are postulated to be responsible for the small overall discrepancy in the strain energy of
the more compressed and less compressed webs. All of these factors taken together lead
to a very marginally stiffer response in the variational model, but it is not particularly
large and is only really significant in the far-field post-buckling range. Hence, it may be
concluded that the developed variational model has been satisfactorily verified and may

now be exploited further.

4.5 Simplified approach to predicting the location of
secondary bifurcation
From the numerical results, as presented in Figure [4.7] unstable post-buckling equilibrium

paths were observed after the secondary bifurcation point and the severely unstable be-

haviour is somewhat mollified with the increase of ¢y, which in turn shows an increase in
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the generalized coordinate of the sway mode at the secondary bifurcation point ¢5. Earlier
studies (van der Neut, 1969; van der Neut, 1973} Thompson & Hunt, 1973; [Thompson &
Hunt, 1984; |Wadee & Farsi, 2015) on thin-walled structures susceptible to mode interaction
suggest that the imperfection sensitivity decreases with the relative increase of ¢5 since the
proximity of the critical and secondary bifurcation points is reduced. A simplified approach
for predicting ¢ based on the verified variational model is presented currently since this

quantity provides a valuable indication of the potential sensitivity to imperfections.

When the strut buckles in a purely global mode, the direct strain €,. can be written as

Eq. (4.29) by assuming the local buckling components are zero:

Ez,we = Ez,weo Aa (456)

where €, weo is obtained from Eq. (4.31)); A is also obtained by assuming the local buckling
components in Eq. (4.48)) are zero. Since the transverse strain is neglected, the compressive

stress in the more compressed web o, . can be written thus:

m?Ebg, . Tz P¢
Z,WC Ee,we = — n— — ° . 4.57
7z = 2L UL 2t,d(1+ éu/oe) (4.57)

From the numerical results in Figure the local mode is initially localized. Instead
of analysing the whole web with the entire strut length, a plate element at mid-span
with length [, is isolated to compute the approximate local buckling coefficient £, as
shown in Figure It is assumed that within this plate element, the axial stress is
constant along the length with the value of the direct stress at mid-span. Therefore,
when the direct stress in the more compressed web o, . reaches the local buckling stress,
ol = k,mE/[12(1 — v?)(d/t,)?], it may be assumed that interactive buckling will also be

triggered.

Since the cross-section shape function for the more compressed web has already been

obtained, with reference to Eq. (4.5) and Figure d), the local buckling coefficient k,
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Figure 4.15: Deformed shape of the isolated plate element of the more compressed web
under the critical buckling stress o€ ;. The effective length of the element is [, with depth

wel*

d and thickness t,,. The equivalent rotational stiffness provided by the flanges and the
rotational springs at the web—flange joints is cys.

may be calculated by applying minimum potential energy principles on the isolated plate
element of the more compressed web. The buckled displacement field is thus assumed to

be:

U4

Wye(Y, 2) = Q fue(y) sin T (4.58)

where () is a new generalized coordinate representing the amplitude of the local buckling

mode within the plate element shown in Figure

The strain energy U in the plate element comprises two components: the strain energy
stored from local buckling Uy, wa and the strain energy stored in the equivalent rotational

springs Ugp r:

D, [l [Y? Pwee Py \ 2
_ Dy 1
Ub7wcl 2 /0 /—d/Q{( 22 + ayQ ) ( 59)
O Wye O*Wype 0wy \ 2
_9(] — _
( V){ 022 Oy* (f%é’y) ”dy 4

!
°1 ow

Usp.ot = 2/ —Cef( =
P 0o 2 dy

2
> dz, (4.60)
y=—d/2
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where the expression for ¢y was presented in Eq. (4.20). The work done by load term is

given by the following standard expression:

¢) le pd/2 2
PA = M/ / (aw“> dy dz. (4.61)
2 Jo Joap\ 0z

The total potential energy can thus be written as:

V= Ub,wcl + Usp,@f - PA) (462)
and by setting dV/d@Q = 0 for equilibrium, the following expression for k, is obtained:

1
k’p =ag + a1¢12 + o (463)
1

where ¢ = [,/d with ay and a; being constants that are functions of ¢., ¢, and ¢, thus:

10 {4¢. 03 [pc?co (57 — 48) + 3 (72 — 8) (Gp + 1)] + 372 (Go + 1)*}

G = 3 3= (4 2 2 z 2 (& 3 (464)
Aoepicy [pepico (m* 4+ 15m2 — 240) + 15 (72 — 8) (¢p + 1)] + 1572 (o + 1)
v — 15 {40329 [pedicy (72 — 8) + (x* — 4) (e9 + 1)) + 72 (e9 + 1)*} (4.65)
463 [Geity (m + 1572 — 240) + 15 (2 — 8) (e + 1)] + 1572 (6 + 1)
Defining ¢, = (al)_l/ *, an expression for the minimum value of k, is found:
k‘p = Qq + 2\/(1_1 (466)

By referring to the relationship between g5 and ¢; given in Eq. (5.37)), an explicit expression

for the secondary bifurcation point ¢° is duly obtained:

wel

S_Z(JC UOC)(l—i-S)L
% = m2Eb '

(4.67)
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4.6 Parametric studies

To verify the simplified approach, a couple of parametric studies are presented where
the length and the cross-section aspect ratios are varied. The results from the simplified
approach are compared to the full variational model solved using numerical continuation

in AuTO.

4.6.1 Length variation

The strut geometries have the same cross-section properties as shown in Table 4.1] and the
joint rigidity values are ¢y = {0, 0.5, 1, co}. The length of the struts is varied from the

case where global buckling is marginally critical to L = 7200 mm.

The comparison of the generalized coordinate of the sway mode at the secondary bifurcation
point ¢° between the full variational model using numerical continuation and the simplified
approach using Eq. is shown in Figure With the increase of the length L, ¢
increases; the simplified approach predicts ¢° with good accuracy and is always on the safe
side. The source of error arises from the fact that the simplified model assumes that the
stress is constant along the length of the plate element. However, the stress distribution is
effectively a combination of the uniform stress from the axial load and the superposition

of the sine function from global buckling, as given in Eq. (4.57).

4.6.2 Cross-section aspect ratio variation

For the cross-section aspect ratio parametric study, the geometric properties of the struts
are shown in Table The cross-section aspect ratio ¢, ranges from 1 to 2.5; the width
of the flange b is fixed and the wall thickness is fixed and uniform throughout the cross-

section. The length of each strut is selected to ensure that global buckling is marginally
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Figure 4.16: Comparison of the generalized coordinate of the sway mode at the secondary
bifurcation point ¢5 using numerical continuation with AUTO for the full variational model
alongside the presented simplified method.

Table 4.4: Geometric properties of the rectangular hollow section struts in the parametric
study, selected to ensure global bucking is critical. The flange width b = 60 mm and the
wall thickness ty = t,, = 1 mm throughout.

Cross-section aspect ratio Web depth d Length L

Pe (mm) (mm)
1 60 2430
1.25 75 3120
1.5 90 3830
1.75 105 4540
2 120 5250

2.5 150 6700
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critical (P€/PC ~ 0.995) for the pinned joint case. Since ¢° is related to the strut length,

the current focus is on the local buckling coefficient %, at the secondary bifurcation point.

Table shows the comparisons between the evaluation of the local buckling coefficient

Table 4.5: Comparison of the local buckling coefficient k, for the more compressed web
at the secondary bifurcation point from the full variational model, %, suTo, solved using
numerical continuation with AUTO and the simplified method, k, gq, using Eq. from
the pinned case (¢9 = 0) to the rigid case (¢y — oo) for different cross-section aspect ratios.

5 Ranges kprq/kp.auTo
¢ kp,AUTO kp,EQ/kp,AUTO Mean COV

1 4.01 — 5.03 | 0.968 — 0.998 | 0.980 | 1.16%
1.25 | 4.01 — 5.32 | 0.941 — 0.998 | 0.959 | 2.22%
1.5 | 4.01 — 5.47 | 0.936 — 0.997 | 0.956 | 2.38%
1.75 | 4.01 — 5.56 | 0.938 — 0.998 | 0.957 | 2.31%

2 4.01 — 5.63 | 0.941 — 1.000 | 0.960 | 2.28%
2.5 | 4.01 — 5.76 | 0.947 — 0.998 | 0.964 | 1.93%

k, at the secondary bifurcation point from the full variational model solved by numerical

continuation and the approximation presented in Eq. (4.66)).

In the same way, as shown in the length parameter study results, the simplified method
is demonstrated to predict k, with very good accuracy yet being always on the safe side
for the cases studied. Defining k, gq as the prediction of k, from the simplified method
using Eq. and kp auto as the value of k, from the full variational model, for each
cross-section case, the mean value of k, gq/kyauTo ranges between 0.956 and 0.980 and
the maximum COV (coefficient of variation) is 2.38%. With the increase of the aspect ratio
¢c, an increase in k, is observed due to the rotational restraint provided by the relatively
narrower flanges. Therefore, a larger cross-section aspect ratio would lead to a relatively

higher post-buckling strength.

Since cases with rigid joints (¢ — oo) and uniform thickness (¢; = 1) are most common
in practice, a power series approximation for Eq. (4.66)) can be derived to order ¢? for such

cases:

kp = 4.33 + 0.766, — 0.10¢?. (4.68)
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The comparison between this function and Eq. (4.66) is shown in Figure and can be

seen to be practically perfect for the range shown.
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541

<£'53F1
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5 o Simplified method
Power series approximation

1 1.5 2 25
Pe

Figure 4.17: The relationship between the local buckling coefficient k;, and the cross-section
aspect ratio ¢, for the rigid joint case from the simplified method using Eq. (4.66]) and the

curve fit function given in Eq. (4.68).

4.7 Concluding remarks

A nonlinear variational model describing the interactive buckling of a thin-walled rect-
angular hollow section strut with varying rigidities of the web—flange joints under pure
compression has been developed using variational principles. Numerical examples, focus-
ing on cases where global buckling is critical, have been presented and verified using the
FE package ABAQUS. Unstable post-buckling behaviour due to mode interaction was ob-
served. A progressive change in the local buckling mode is identified in terms of both
the wavelength and the amplitude. As far as the author is aware, it is the first time that
this has been demonstrated in rectangular hollow section struts. With the increase of the
cross-section joint rigidity, a transition from highly unstable to more mildly unstable post-
buckling behaviour is observed. The excellent comparisons between the variational and

FE results verified the effectiveness of the presented methodology.



CHAPTER 4. BEHAVIOUR OF LONG STRUTS WITH SEMI-RIGID FLANGE-WEB JOINTS 187

A simplified method to predict the local buckling coefficient in the more compressed web
and the global buckling amplitude at the secondary bifurcation point is proposed based on
the verified variational model; it is demonstrated to be simple, yet safe and accurate for

the cases studied.

The study in this chapter verifies the analytical methodology adopted and provides a
preliminary understanding of the highly nonlinear system. The following chapters build
on the findings in this chapter and extend them to analyse cases where local buckling is
critical and flange—web joints are rigid alongside more practically realistic cases with initial

geometric imperfections.



Chapter 5

Variational modelling of practical

cases

The previous chapter introduced a variational model for RHS struts with semi-rigid flange—
web joints, but the model was only valid for long length struts where global buckling is
critical. Moreover, no geometric imperfections were introduced in the variational model.
However, in practice, a large proportion of thin-walled RHS struts are designed with local
buckling being critical so as to take full advantage of the high strength to self-weight ratio.
The actual flange—web joint properties are rigid more often than not. More importantly,
there is always some imperfection in real structures, either in the geometry or in the
loading. Previous studies (Koiter & Pignataro, 1976a; [Thompson et al., 1976; Loughlan,
1983; |Goltermann & Mgllmann, 1989; Wadee, 2000; Bai & Wadee, 2015a; \Wadee & Farsi,
2015; [Liu & Wadee, 2016b|) have identified that thin-walled plated structures susceptible
to interactive buckling tend to be highly sensitive to imperfections; a tiny imperfection
may lead to a significant erosion in the load-carrying capacity. Therefore, in the current
chapter, the variational model is extended to include the scenarios where local buckling is

critical as well as where both local and global geometric imperfections exist.

188
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The material and cross-section geometric properties of the RHS struts in this chapter are
almost the same as those presented in Chapter [} The only difference is that the joints
between the webs and the flanges are assumed to be rigid, hence the following two as-
sumptions are satisfied (Bulson, 1970)): (i) the webs and the flanges at their common
edges remain orthogonal during buckling; (ii) the wavelengths of the local buckling mode,
which simultaneously appear in all constituent plates, are the same. Recalling the varia-
tional model in Chapter [ the same definitions for material and geometric properties are

adopted and shown in Figure

5.1 Modal descriptions

The formulation begins with the description of both the global and the local modal dis-
placements. The global mode description is the same as that in Chapter which is
decomposed into two components, a pure lateral displacement W and a pure rotation of

the plane sections 6, as presented in Eq. (4.1)) and Figure [1.2)(a).

The local buckling mode, including out-of-plane and in-plane displacement components,
shown in Figure [5.1] is expressed as a combination of the local modes in the pure local
buckling case and the case where global buckling is critical, as shown in Figures [5.1] and

[5.2] which can be expressed as:

we(x, 2) = fre(@)wi(2) + for(2)wa(2),
Wye(Ys 2) = frwe()w1(2) + fowe(y)w2(2),
Wyt (Y, 2) = frwe(@)wi(2) + fawe(y)w2(2),
(5.1)
us(x, 2) = gig(x)ui(2) + gor(2)ua(2),
Uwe(Y, 2) = Grwe(Y)u1(2) + gowe(y)ua(2),

Uyt (Y, 2) = Grwt(Y)u1(2) + Gaws (y)ua(2),
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(a) Out-of-plane
wi(x, 2)=f 11 (W(2)H 26 (0)Wa(2)

Y&% AN

T Ll
JEEN

WWC(y’ Z):flWCO})WI(Z)+f2WC()})W2(Z)

(b) In-plane

x\ﬁ up(x, 2)=g1p(X)ur(2)+&ap(¥)tur(2)

| Zz
T?
»

Uwe(Vs 2)=81we()t(2) T8owc(V)12(2)

Figure 5.1: (a) Out-of-plane local mode in the flanges w¢(x, z) and in the more compressed
web wye(y, z). (b) In-plane local mode in the flanges u¢(x, z) and in the more compressed
web Uy (y, 2).

(a) Local mode 1 (b) Local mode 2
Sae(x)

b fzf(x)

T

Figure 5.2: Local out-of-plane displacement fields of the cross-section. (a) Pure local
buckling case. (b) Interactive buckling case where global buckling is critical.
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where f and g are the cross-section components for the out-of-plane and in-plane com-
ponents respectively; w; and w;, where i = {1,2}, are the longitudinal out-of-plane and
in-plane displacement components respectively. Subscripts 1 and 2 represent the cases
where local and global buckling are critical respectively, as shown in Figure [5.2 The
subscripts ‘t” and ‘w’ represent the flanges and webs respectively; subscripts ‘¢’ and ‘t’

represent the more and less compressed webs respectively.

The cross-section out-of-plane components f, as shown in Figure are estimated by
applying kinematic and static boundary conditions for each plate. For the pure local
critical mode, as shown in Figure a), it is assumed that the out-of-plane displacement
in the webs fi, has the functional form that is derived from the conditions of a simply-
supported strut (a cosine wave with the current coordinate system) and a beam under pure
bending (a parabola from applying Euler-Bernoulli beam theory), thus:

492

flwc = flwt = AlO COS % + (]. — AIO) <]. — ?) . (52)

For the out-of-plane displacement in the flanges fi¢, the functional form is derived from a
simply-supported beam with equal and opposite end moments arising from the transfer of

moment at the flange—web joints. This naturally leads to the following parabolic form:
2 1
=Bpl|l—=—-—-]. 5.3
fe=u (5~ 1) (5.3

The coefficients Ajg in fiw and By in fi are determined by applying appropriate boundary
conditions at the junctions, as shown in Figure [5.3] The form of fiy. and fi; automati-
cally satisfies the natural boundary conditions at the junctions, i.e. fiw.(£d/2) = 0 and
fie(£0/2) = 0. Owing to the symmetric form of the functions, the junction between the

flange and the web with the coordinate (z = b/2, y = d/2) is considered. For rotational
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(b) (©)

Figure 5.3: (a) Pure local buckling mode. (b) Kinematic boundary condition at the junc-
tion; 61¢ and 6. are the rotations of the flange and the web at the junction respectively.
(¢) Equilibrium condition at the junction; My and My are the bending moments in the
flange and the more compressed web at the junction respectively.

continuity, the following boundary condition also needs to be satisfied:

d WwWC
rr = e = 1 (5.4)

dz x=b/2 dy y:d/Q'

Moreover, moment equilibrium at the junction leads to a further condition:

Mae (2 = b/2) + Mse (y = d/2) = 0, (5.5)

where:

0% wis 0wy d® fie
M =b/2)=|D = Dy ——= 5.6
1t (x=10/2) { f( 52 TV 5 )L_W = o (5.6)
alewc 82Ujlwc d2 flwc
Miwe (y =d/2) = [DW ( +v >] = Dyw, , (5.7)
dy? 022 y=d/2 dy? [,_aye

where Dy = Et}/[12(1 — v*)] and Dy, = Et3 /[12(1 — 1?)] are the flexural rigidities of the
individual flange and web plates respectively. The terms related to the Poisson’s ratio v

disappear due to the fact that fif = fiw. = 0 at the junction. Based on the boundary
conditions presented in Eqs. ((5.4)) and (5.5)), the coefficients A;y and By are thus:

A (o + 1) _ Ar
T At 9 R (1—7) 0T G A+ B (1 —m)

Ao (5.8)
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where the cross-section aspect ratio ¢. = d/b, and the flange—web thickness ratio ¢y = t¢/ty,.
It should be stressed that the above assumption for fi¢ and fi,, is only valid for rectangular
sections (d > b), where the critical stress in the webs is smaller than in the flanges. A set
of shape functions, which is valid from a square to a rectangular hollow section, is derived

from a semi-analytical method, the details of which may be found in Appendix [C]

The cross-section components describing mode interaction, where global buckling is critical,

can be determined by letting ¢y — oo in the cross-section shape functions Eqgs. (4.5)—(4.6])
and (4.22) in Chapter [}

Jowe = cos —- - —r (5.9)

2+ ¢} (4—m)  d 2+ ¢t} (4— )

for = — (f 3)2 + & (f + 1)3 5.10)
e (bc [2 + ¢c¢§ (4 - ﬂ')] b " 2 ¢c [2 + ¢c¢‘? (4 - W)] b 2 ’ ( .
Jowt = 0. (5.11)

200D 1w (i)

As for the cross-section shape functions for the in-plane components, g, it was determined
that they are same as those of out-of-plane components currently, i.e. g;t = fir, Giwe = fiwe
and g;wt = fiwt, based on the same assumption adopted in It should be noted
that this assumption may not be consistent with classical theory (Koiter, 1945|) for an in-
plane displacement field, but the shape function forms do satisfy the kinematic boundary
conditions. Moreover, since the energy would be minimized by the longitudinal components
of the in-plane displacement, i.e. ui(z) and ug(z), the approximate nature of the shape

function should be mitigated somewhat.

5.2 Geometric imperfections description

An initial out-of-straightness in the z-direction, W}, and an initial pure rotation of the

plane section 6y, corresponding to the sway and tilt components of the global buckling
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mode in Eq. (4.1]), are introduced to the whole strut respectively as components that form

the global imperfection:

T2 Tz

Wo(z) = —¢gs0L sin (f) , O (2) = —quom cos (f) , (5.12)

with g5 and g¢;o being the respective normalized amplitudes.

The local imperfection is introduced by defining an initial out-of-plane deflection in both

flanges and webs, corresponding to the local mode description in Eq. (5.1)):

wio(x, 2) = fre(z)wio(2) + for(@)wao(2),
Wweo (Y, 2) = frwe(Y)w10(2) + fowe(y)wao(2), (5.13)

Wywto(Y, 2) = frwt(¥)wi0(2) + fowe (Y)wao(2),

where the cross-section components f are the same as described in Eqgs. f and
(6-9)-(5-11); the longitudinal component of the local imperfection wy(z) is derived from
a first-order approximation from a multiple scale perturbation analysis of a strut on a
nonlinear softening foundation, which has been demonstrated to match the least stable

localized post-buckling mode shape very well (Wadee et al., 1997):

z zZ

wy (2) = Ajosech [ai (Z - )} cos [/Bﬂr <Z - )} , (5.14)

where ¢ = {1,2}, z € [0, L] and the imperfection is symmetric about z/L = 7. Since
previous work on sandwich panels (Wadee, 2000), I-section struts (Bai & Wadee, 2015a),
stiffened plates (Wadee & Farsi, 2015) and functionally graded carbon nanotube-reinforced
composite beams (Wu et al., 2016) have demonstrated that the drop in the stiffness is
largest when the local imperfection is symmetric about midspan, i.e. n=1/2, the value of 7
is selected to be 1/2 in the current study. The quantity A;o controls the amplitude of the
imperfection component. The parameters a; and §; control the degree of localization of

the imperfection and the number of sinusoidal half waves of the longitudinal imperfection
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component respectively, as shown in Figure When «; = 0, the function is periodic;
with the increase of «;, the function becomes increasingly localized. Moreover, in order to

be in accord with the boundary condition at ends, (3; has to be an odd number.

I \
.//' B increasﬁq‘g

M Al B . A B v I BV N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
z2/L

Figure 5.4: Profile of local imperfection function, w;y(z)/A. (a) Localized imperfections
introduced by varying the localization parameter «; from zero to 10. (b) Periodic im-
perfections (a; = 0) with different numbers of half sine waves by varying the frequency
parameter 3; from 1 to 9.

5.3 Potential energy formulation

The formulation of the total potential energy functional follows a similar approach as that
in Chapter 4] but currently accounts for the scenarios where local buckling may also be

critical as well as where both global and local geometric imperfections exist.

5.3.1 Strain energy due to bending

The unloaded strut with initial global and local imperfections is assumed to be stress-
relieved (Thompson & Hunt, 1984; Wadee, 2000; Bai & Wadee, 2015a; Wadee & Farsi,
2015)). The case of the global imperfection Wy is illustrated in Figure For the local
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imperfection case, wy would replace Wy and the flexural rigidity of the flanges D; =
Et}/[12 (1 — v*)] or the webs Dy, = Et3 /[12 (1 — v*)] would replace the flexural rigidity

of the web about the local weak neutral axis ET,, = Edt3 /12.

(a) (b)

- L _

(i o

O%»z == WS \g(z)

| o b1
x  &o @ x@bM
M 02
u=x(0-6,)
Flexural rigidity Elw
M
Stress relieved
M

| d6

X0 X

Figure 5.5: Introduction of the global imperfection. (a) The out-of-straightness sway
component Wy and (b) the pure rotation tilt component 6.

Therefore, the global bending energy, Uy, ,, can be expressed thus:

L E[W L 4
Ubo = 2/ — (= Xo)’ dz = Efw/ (s — Geo)” — sin® "=dz, (5.15)
0 0

with y = W and Xo = Wy, where dots represent derivatives with respect to z. The factor

of 2 is included to account for both webs.

The local bending energy stored in both flanges, the more compressed web and the less
compressed web can be determined by the standard expression for the strain energy of

bending of a plate (Timoshenko & Woinowsky-Krieger, 1959), hence:

L b2 2 _ 2 _ 2
Upa = Dy / / {[a (e~ wm) | & (wr — wn) (5.16)
0

—b/2 822 01‘2
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9 (we — wyy) 0% (wr — wp)
—2(1-v) [ 022 0x?
82 (wf — ’LUfo) 2
- (W) ] de dz,

D, V2 (T2 (wye — Waeo) 02 (Wye — Wyeo) ]
_ 17
Ub swel — / /d/Q { { 022 + ayg } (5 )

0? (wwc - wch) 0° (wWC - wWCO)

82 (wWC_wWCO) 2
() e

DW L d/2 82 (wwt — wwto) 82 (wwt - wwtO) ?
=7 18
Ub7wt1 2 /0 /—d/2 { |: 022 + ayQ :| (5 )
0? (Wit — Wyto) 0% (Wt — Wito)
—2(1—v) [ 522 0

82 (wwt_wwt(]) ?
_< = H dy =

By substituting w; from Eqgs. (5.1)) and (5.13]) into Eq. (5.16f), the explicit expression for

the local bending energy in the flanges is written thus:

Upa = Df/ { {fir}, (i — i) f 4 {f3r}, (2 — tba0) ? - {fif}, (w — wip)” (5.19)

{2, (w2 — wao) + 2 {fuafir}, (i, — divo) (52 — )
DAY (w1 — w10) (s — wso) + 20 L e}, (i — dine) (11 — w1o)
20 Lot} (s — i) (w3 — wao) + 20 L e fi}, (i — o) (13 — wao)
20 i) a1 = ) (i = ) + 200 = 0)| {12), (01 = i)

+{f55}, (2 — timo)” + 2 { f{¢ foc}, (01 — tino) (b2 — w%)} } dz.

The respective expanded expressions for the local bending strain energy stored in the more
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and less compressed webs are obtained in the same way and have a very similar format.

The total local bending energy Uy, can be written as:

Ubi = Upa + Upwa + Up i (5.20)

5.3.2 Membrane strain energy

The membrane strain energy in the flanges Uy, ¢ is derived from considering the direct
strains (e,) and the shear strains (7,,) in the flanges. The direct strains comprise three
contributions, the first term from the global tilt mode, the next three terms from the local
mode obtained based on von Kéarman plate theory and finally a purely in-plane compressive

strain A:

ou;  Our 1 [Ows\® 1 [Owp\’
B T TR (e B R (et U RN
L=, * 0z +2<8z) 2\ 0z
™ . Tz . o1 . .
= —2 (¢ — Gro) TS +{g1}, t + {gar}, U2 + 5 {f12f}x (w% - w%o)

T % { £}, (w3 —w3g) + {fiefor}, (i — trgting) — A. (5.21)

The shear strain component can be written thus:

an 8 (W — W(]) 8wf 8wf _ 8wf0 (9wa
or 0z or 0z

TS e T e
Tz

= {dhs}, w1 + {956}, u2 — [(gs — q¢) — (gs0 — quo)] 7 cos T

— (0 —6y) +

(5.22)

+ {fitfie}, (Wrwy — wigwio) + { fog far}, (Waws — agwan)

+ {f{fof}x (wle - wlOwZO) + {flfféf}x (w1w2 - w10w20)-

From the previous numerical study (Shen et al., 2015), the transverse stress component was
shown to be tiny when compared with the longitudinal stress, a finding that also coincides
with earlier work (Koiter & Pignataro, 1976a)). Therefore, the complete expression for the

membrane strain energy stored in the flanges can be written thus if the transverse strain
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is simplified to be €, = —ve, s

te/2 [b/2 q
Unt = Usqg + U = 2/ / / - EE ot G’ym f)dx dy dz. (5.23)
te/2 b/2 2

The membrane strain energy in the webs also comprises direct and shear strain energy
contributions. The complete expressions for the direct strain in the more compressed and

less compressed webs are very similar to those for the flanges presented in Eq. (5.21]), thus:

_ aut,wc auwc 1 au}wc ? 1 aUJWCO ?
Fawe = 7o, +(’3z +_<5’z) _5(32 —a
br? TZ )
5L sin — + {glwc} ul + {g2wc} u2 + 5 {flwc} (’U)% - w%O) (524)

1
+ 5 {f?zwc}y (’lUg - wgo) + {flwcf?wc}y (w1w2 - wlOwQO) - A,

O w Oy 1 [ Owy 2 1 awwtO ?
= & - _Z —A
Sawt 0z * 0z * 2 ( 0z ) 2\ 0z
b7T2 T2

. . 1 . .
2L T + {glwt}y Uy + {g2wt}y Uz + 5 {ffwt}y (w% - w%O)

1 . . o .
+ b {f22wt}y (w% - wgo) + {flwtf2wt}y (Wrg — Wipan) — A.

- (Qt - Qto)

(Qt - Qto) (5'25)

Unlike the flanges, the shear strains in the webs only contain the terms from the local

mode owing to their relatively small thickness, thus:

auvvc au)\zvc awWC afwch a Wwco

Tyzwe = oy oy 0z oy 0z

= {Grwety U1 + {Gowet, U2 + {fiwefiwe}, (Wr1w1 — tiowio) (5.26)

+ {foweSawe by, (W2ws — apwan) + { fiyefowe }, (W1t — wigtivgo)

+ {flwcféwc}y (wle - w10w20) ;
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8uwt aijt aU)VW: 8ijtO aU}W‘EO

Tzt = oy oy 0z oy 0z

- {giwt}y up + {géwt}y Uz + {fiwtflwt}y (wlwl - wlowl())

(5.27)
+ {fowe fowe b, (2wz — haowao) + { flyeSowt b, (withs — wiptizo)
+ { frwt fowe }, (W1w2 — iowap) -
Again, assuming that €, w = —Ve,we and €, = —Ve,w, the membrane strain energy

stored in both webs is given thus:

1 L d/2 tw/2
o =5 [ [ ] [E (2t 2) 4O (Pone £ 70me) [dr dy dz. (5.28)
0 Jodi2J-ty/2

5.3.3 Work done by the load and total potential energy

The total end-shortening £ comprises terms from pure squash, the global sway mode and
the local in-plane displacement. The expression for the work done by the external load is
given by:

re=r | ’ - ) LNCLER P (5.20)

where:

(20 {1}, + {g1we}, + {g1wi }, )in + (26 { g2}, + {92wc}, + {92wi }, )u2‘

0060 T 00) (530)

A, =

In summary, the total potential energy V' can be expressed by the summation of all the

strain energy terms minus the work done by the external load:

V=Upo+Up)+Unt +Unw — PE. (5.31)
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5.4 Variational formulation and eigenvalue analysis

The governing equations for equilibrium are obtained by performing the calculus of varia-
tions on the total potential energy V' following the same procedure for the case in Chapter
The integrand of the total potential energy V' can be expressed as a Lagrangian (L) of
the form:

L
V= / E(wi,wi,wi,ui,ui,z)dz, (532)
0

where ¢ = {1,2}. Equilibrium of the system requires that V' is stationary for any small
changes in w; and wu;. Therefore, the governing equilibrium equations can be obtained by

setting the first variation of V' to zero:

oV = /0 |:8—w15wz + a—wléwz + a—wléwz + a—%(sul + a—uZ(SUZ dz = 0. (533)

Since 0w; = d(dwy;)/dz, dw; = d(dw;)/dz and 01; = d(du;)/dz, integration by parts allows
the development of the Euler—Lagrange equations for w; and wu;, which comprise a fourth

order ordinary differential equation (ODE) for w; and second order ODE for w;, thus:

& o\ d [oL\ oL
a2 <awi> T (aw,-) T ow (5.34)

d (9L\ oL
- <8ui> “ 50 O (5.35)

Moreover, equilibrium also requires the minimization of V' with respect to the generalized

coordinates ¢,, ¢; and A, leading to three integral equations:

ov

o W
0N

=0, 2 = 0. 5.36
8(]8 aQt ( )

0,

The first expression in Eq. (5.36]) provides a relationship between the global imperfection

parameters g9 and ¢ that is obtained by setting global mode amplitudes ¢, and ¢;, and
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local buckling mode functions, i.e. u;, w; and their derivatives with respect to z, to zero:

gso = (1 + 5) quo, (5.37)

where s is the shear correction factor and the expression is the same as presented in Eq.
(4.50). Moreover, it should be mentioned that the corresponding relationship, ¢s = (14$)qy,
also applies before local buckling is triggered as it did for the perfect long strut length cases

presented in Chapter

The boundary conditions for w;, u; and their derivatives are for simply-supported condi-

tions at z = 0 and for symmetry conditions at z = L/2:
w;(0) = w;(0) = w;(L/2) = w;(L/2) = u;(L/2) = 0. (5.38)

Two further boundary conditions can be obtained from the variational formulation with

regards to the in-plane displacements u;, hence:

ac . 1*
%45,]" <o 539
aui 0

The global buckling load P® can be determined by conducting linear buckling analysis for
the imperfect strut with the same methodology adopted in Chapter [] by considering the
Hessian matrix V;; being singular, where ¢; = ¢; = 0 and w; = wy = u; = up = 0. It turns

out that the expression for PC is the same as Eq. (4.54). Moreover, it should be noted
that the full expressions for Eqgs. (5.34)—(5.36]) and (5.39) may be found in Appendix

5.5 Concluding remarks

The nonlinear variational model in Chapter |4 has been extended to describe the interac-

tive buckling of elastic thin-walled RHS struts in scenarios where local buckling may be
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critical as well as where both local and global geometric imperfections exist. Two indepen-
dent sets of in-plane and out-of-plane local displacement fields, which represent the pure
local buckling mode and global buckling induced interactive buckling mode respectively,
are introduced to describe the interactive buckling mode of struts with different lengths.
In particular, the cross-section components of these local modes are approximated by ap-
plying approximate kinematic boundary conditions for each plate in conjunction with the
Rayleigh—Ritz method. The total potential energy was determined based on the modal de-
scription and introduced geometric imperfections. By performing the calculus of variations
on the total potential energy, the governing equations for the longitudinal components of
the local post-buckling modes subject to boundary and integral conditions are obtained.
The verification of the variational model and a series of parametric studies for both perfect

and imperfect cases are presented in Chapters [6] and [7] respectively.



Chapter 6

Length effects

In the current chapter, the variational model developed in Chapter |5| is used to inves-
tigate how different strut lengths affect the nonlinear modal coupling of perfect struts,
i.e. ¢so=q=w1o=w90=0. The interactive buckling responses of four representative struts,
which are defined qualitatively in sequence as the length is progressively reduced as ‘long’,
‘transitional’; ‘intermediate’ and ‘short’ length struts, thus corresponding to the four dif-

ferent zones shown in Figure 6.1| respectively, are studied. The characteristic post-buckling

C
Dy /P Strut length decreasing

neutral

unstable ﬂy
IO

neutral g

H® ® @

1 PS/P¢

Figure 6.1: The Van der Neut type curve (see Figure for geometrically perfect struts.
The quantities P,, P, PC are the ultimate, the global buckling and the local buckling
loads respectively, also each part of the curve has a specific post-buckling characteristic
behaviour.

equilibrium paths are determined and a p58%ressive change in the local buckling wave-
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length is found in each case. The numerical results from the variational model largely
show excellent comparisons with numerical results obtained using a nonlinear FE model
developed within ABAQUS (2014) in terms of the ultimate load and the initial post-buckling
behaviour. A parametric study on the strut length identifies the boundaries of the four
distinct length-dependent domains and places the current results within the context of the

classical work by Van der Neut ((1969)).

6.1 Numerical solution strategy for variational model

Since the complete system of the nonlinear coupled ordinary differential equations is too
complicated to be solved analytically, it is therefore solved numerically using the con-
tinuation and bifurcation software AuTO-07P (Doedel & Oldeman, 2009). According to
previous studies on mode interaction in thin-walled compression members (van der Neut,
1969; Koiter & Pignataro, 1976a; Wadee & Farsi, 2015; |Bai & Wadee, 2016} [Liu & Wadee,
2016al), the behaviour can be classified into four distinct zones that are related to the strut
length L. Currently, these have been assigned the qualitative names ‘long’; ‘transitional’,
‘intermediate’ and ‘short’ length struts and respectively correspond to the zones labelled
1-4, as shown in Figure [6.1} The different equilibrium diagrams alongside the numeri-
cal continuation procedures to compute the equilibrium paths of the four representative
struts using AUTO are shown diagrammatically in Figure Figure (a) depicts the
equilibrium behaviour for the case where global buckling is critical and was described in

Chapter [4

However, for the cases where local buckling is critical, i.e. for zones 2-4, as presented in
Figure there is known to be some numerical difficulty in switching from the pure local
buckling path to the interactive buckling path (Wadee & Bai, 2014} [Liu & Wadee, 2016b;
Yiatros et al., 2015). Therefore, the numerical continuation strategy known as ‘homotopy’

was adopted to obtain the solution, as described in Figure [6.3] The solution begins from
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Figure 6.2: Sketches of the equilibrium paths for struts of different lengths exhibiting mode
interaction. Graphs (a)—(d) correspond to the zones labelled 1-4, as presented in the Van
der Neut type curve in Figure Circles marked C and S represent the critical and
secondary bifurcation points for each case respectively. Note that the abscissa changes
from g5 in (a-b) t0 Wyemax i (c-d), which reflects the appropriate measure of the critical
buckling mode.

determining the equilibrium path for a strut with length L, a case where global buckling
is critical, referring to Runs 1 and 2 depicted in Figure |6.3] Then by replacing ¢; with L
as the principal varying parameter in AUTO, the interactive buckling equilibrium states of
struts with different lengths can be obtained, referring to Run 3, depicted in Figure [6.3
which begins at point R;. The interactive buckling path of the strut with the new length
Lo, where local buckling is critical, can be computed from the point Ry by re-setting the
principal varying parameter back to ¢ and keeping L constant. The solution of this branch

ends at the new secondary bifurcation point Ss.

As for the fundamental and pure local buckling equilibrium path, as shown in Run 1 in
Figure[6.2(b) and Runs 1 and 2 in Figure [6.2f(c—d), the continuation process initiates from
zero load and the local buckling load B is obtained numerically. The post-buckling path
is then computed by using the branch switching facility and the local buckling equilibrium
path ends at the secondary bifurcation point S, where critical local buckling is initially

destabilized due to contamination from the global buckling mode.
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Geometric properties
b, d, Ly, tw, t;

With P=P§; and ¢s as the principal
Run1 varying parameter, compute the
secondary bifurcation point S.
Global
With gs as the principal varying bUCklil’lg
parameter, using the branch / critical

switching facility in AUTO to
compute the global-local interactive
post-buckling path to point Ry.

i
With L as the principal varying
parameter, using the branch switching
Run 3 facility in AUTO to find Ry, one solution
point of the local-global interactive
buckling path with length L,.

Run 2

With gs as the principal varying parameter,
trace solution back to the secondary Local
Run 4 |bifurcation Point Szvto obtain.the whole bucklin g
local-global interactive buckling path for o

the strut with length L,. critical

Figure 6.3: Sketch and flowchart of the numerical continuation procedure for determining
the interactive buckling equilibrium path for perfect struts where local buckling is critical.
Circles marked C; and S; represent the critical and secondary bifurcation points respec-
tively; triangles marked R; represent generic equilibrium states on the interactive buckling
paths with strut lengths L;. Strut lengths L; and L, represent the cases where global
buckling and local buckling are critical respectively; PS is the global buckling load of the
strut with length L.

6.2 Numerical results and verification

Four representative numerical examples from the variational model with the same cross-
section properties but different lengths are presented. The cross-section geometric and
material properties of the example struts are the same as the example strut presented
in §4.3] The same material and cross-section properties are used throughout the current
chapter. The length, critical buckling loads and corresponding zones of the example struts

are presented in Table
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Table 6.1: Theoretical values of the global (P¢) and local (P°) buckling loads for the four
representative length cases.

L (mm) PY (kN) PGy (kN) PYpiqus KN) PS/PC Zone Length description
4800 22.67 24.61 24.57 0.92 1 ‘Long’
4500 25.79 24.61 24.58 1.05 2 ‘Transitional’
4000 32.54 24.57 24.58 1.32 3 ‘Intermediate’
3600 40.30 24.67 24.58 1.63 4 ‘Short’

6.2.1 Long length strut

The interactive buckling behaviour of long struts has been investigated in Chapter [ which
showed excellent comparisons with the FE model. For the present long length strut, where
L = 4800 mm, a sharp snap-back in the load—end-shortening relationship is observed, as
shown in Figure [6.4(a). Severely imperfection sensitive behaviour would be expected for

such a strut with P¢/PL being close to unity (Bai & Wadee, 2015a; Wadee & Farsi, 2015)).

From the solutions of the out-of-plane components of the local mode in the more compressed
web wy.e, the increase of the global buckling mode amplitude not only leads to an increase
in the local mode amplitude, as shown in Figure (d), but also forces a change of the local
buckling profile from being localized to being more distributed alongside a corresponding

reduction in the local buckling mode wavelength, as shown in Figure [6.5

Compared with the FE model, the variational model shows a slightly stiffer post-buckling
response, as shown in Figure One of the sources for the stiffer response is derived from
the assumption that the location of the neutral axis remains unchanged in the variational
model. In fact, the neutral axis would move towards the less compressed web as the
effective stiffness of the more compressed web drops due to it buckling locally, as shown in
Figure Moreover, in the variational model, the cross-section profile of the local mode
is assumed to be the same along the length of strut and throughout the post-buckling range
with the only variable being the modal amplitude of local buckling. However, the profile is
in fact affected by the bending moment and axial stress on the cross-section, which varies

along the strut length and with the progression of mode interaction. This may explain
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Figure 6.4: Nonlinear equilibrium paths for the example long length strut with L = 4800
mm from the variational and FE models. Graphs of the normalized load ratio p = P/PC,
where PC is the critical buckling load, versus (a) the normalized end-shortening £/L,
(b) the generalized coordinate of the sway mode ¢, and (¢) the normalized maximum
amplitude of the local buckling deflection in the more compressed web Wye max/tw: (d)
Wyye max/bw VEISUS 5.

the small discrepancy in the longitudinal solutions of the local deflection amplitude in the
more compressed web wy./ty, as shown in Figure and the ‘bulging-out’ effect due to
the high axial stress in the more compressed web in Figure [6.6(d). It should be mentioned
that there is a tiny out-of-plane displacement in the less compressed web in the initial
post-buckling stage of the FE results, as shown in Figure[6.5[e-h) and Figure[6.6|(a). With
the increase of the global mode amplitude, the change in the profile of the local mode
nearly follows the same pattern as that in the more compressed web, i.e. from localized

to more distributed, but its amplitude remains approximately the same. The kinematic
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Figure 6.5: Evolution of the numerical solutions for the normalized local out-of-plane
displacement in (a—d) the more compressed web wy./ty and (e-h) the less compressed web
Wy /[ty for the long length strut with L = 4800 mm. The dashed and solid lines represent
the numerical results from the FE and the variational model respectively. Note that the
longitudinal coordinate is normalized with respect to half of the strut length z = 2z /L and
that wye/ty is an order of magnitude greater than w.yy /ty.

compatibility between the buckled flanges and the less compressed web leads to the tiny
deformation. When the generalized coordinate of the global mode ¢, is relatively larger,
the entirety of the less compressed web deforms inwards slightly, as shown in Figures (h)
and (d) This is caused by the out-of-plane force introduced by the global mode that
is identical to the phenomenon that causes the ‘Brazier effect’ in cylindrical shells under
uniform bending (Brazier, 1927; Wadee et al., 2006), as shown in Figure which is not
included in the current variational model. All of these factors taken together lead to the
very marginally stiffer response in the variational model for the long strut, but it is, in

fact, very small.
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Figure 6.6: Local deformation of the cross-section at mid-span for the long length strut
with L = 4800 mm with the increase of the generalized sway mode coordinate ¢,. The
dashed and solid lines represent the numerical results from the FE and variational mod-
els respectively. The dot-dashed line represents the undeformed shape. Note that the
displacements shown have been amplified by a factor of 20 to aid visualization.

Figure 6.7: (a) Out-of-plane forces due to the large bending displacement with Fy repre-
senting the effective vertical component, as shown, of the axial force within each web (F.
or F}). (b) Corresponding effects on the local mode profile — the dotted line and the thick
solid line represent the cross-section profile before and after considering the global bending
effects respectively.
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6.2.2 Transitional length strut

For the transitional length strut considered, where L = 4500 mm, an even more severe
snap-back is observed in the load—end-shortening relationship, as shown in Figure a).

This is caused by the fact that when local buckling initially occurs, the actual stiffness of
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Figure 6.8: Nonlinear equilibrium paths for the transitional length strut with L = 4500
mm from the variational and FE models. Graphs (a)—(d) are as described in Figure

the strut is reduced, effectively leading to a reduced global buckling load, which becomes
instantaneously smaller than the critical local buckling load P®. Hence, both buckling

modes are effectively triggered simultaneously, as shown in Figure d).

The solutions of the local deflection in the more and less compressed webs are shown in

Figure The amplitude in the more compressed web increases with the progression of
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Figure 6.9: Evolution of the numerical solutions for (a—d) wyc/ty and (e~h) wy/ty for the
transitional length strut with L = 4500 mm. Graphs are as described in Figure

mode interaction, while the amplitude in the less compressed web remains approximately
unchanged. This leads to a transition of the cross-section deformation from being close
to the pure local mode (symmetrical about the y-axis) to being dominated by the global

mode (asymmetrical about the y-axis), as shown in Figure Since local buckling is

Figure 6.10: Local deformation of the cross-section at mid-span for the transitional length
strut with L = 4500 mm as ¢s is increased. The graphs are as described in Figure

critical for the transitional length strut, the longitudinal profile of the local mode is initially
distributed rather than localized. However, a reduction in the local buckling wavelength
with the increase of the global mode amplitude is also observed as the axial end-shortening

is increased.

The variational model for the transitional length strut also shows a stiffer post-buckling re-

sponse when compared to the corresponding FE model, as can be seen from the equilibrium
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path comparison in Figure the reasons listed for the long strut also apply presently.
The excellent comparisons between the solution of the out-of-plane displacement in the
more compressed web and the cross-section deformation, particularly when ¢, is relatively
small, verify the current methodology. As shown in Figure [6.7] with the increase of the
global buckling amplitude, the less compressed web bulges inwards. It can be seen clearly
from the solution of the out-of-plane displacement in the less compressed web from the
FE model in Figure (g—h), where the solution wave drifts to the negative direction.
This can also help to explain the discrepancy in the cross-section deformation for the less

compressed web at mid-span when ¢ is large, as shown in Figure [6.10(c—d).

6.2.3 Intermediate length strut

For the intermediate length strut, where L = 4000 mm, there are three stages in the equi-
librium paths for the load versus end-shortening and versus the local buckling amplitude,
as shown in Figure m(a,c). The first stage involves purely axial deformation of the strut
before the critical buckling load P is reached (p < 1). The second stage is the local buck-
ling of the whole cross-section and the third stage is the local-global mode interaction.
Before the secondary bifurcation, the strut is stable; however, the triggering of the global
mode leads to unstable post-buckling behaviour. In the interactive buckling range, there
are several snap-backs in the equilibrium path, which correspond to the local mode in-
creasing its number of peaks hence reducing its wavelength, as shown in Figure|6.12] This
type of cellular buckling (Hunt et al., 2000) has also been observed in previous studies on
I-section beams (Wadee & Gardner, 2012)), I-section struts (Wadee & Bai, 2014)), stiffened

panels (Wadee & Farsi, 2014al) and struts with equal angle cross-sections (Bai et al., 2017)).

From the solutions of the out-of-plane displacements in the more and less compressed
webs, the progression of mode interaction forces a reduction in wavelength. Since the

local buckling mode is well developed before mode interaction occurs, the wavelength



CHAPTER 6. LENGTH EFFECTS 215

(a) (b)
1 e — | R —— ¢ ..............................................................................................
y 1.04 == ===
08! 1.04 1 08|
1.02
06l 1.02 ] sl
SH ISH
04f 1 ] 045 !
0.98 0.98
021 4 6 8 | 02f 2 4 6 8 10 12
x107 %1073
0 ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 0 2 4 6 8 10 12
g/l 10 as x103

— o : :
=7 ] — — —FE model
| Variational model
|
051
06k 1.02 \;
& £
o1
0.4} ! s
0.98
0.27 2 15 A -0.5 1 450
0 |
1.5 1 -0.5 0 12
wwc,max/tw ds x1 0-3

Figure 6.11: Nonlinear equilibrium paths for the intermediate length strut with L = 4000
mm from the variational and FE models. Graphs (a)—(d) are as described in Figure
Insets in (a)—(c) present close-ups of graphs that show the snap-backs in the interactive
post-buckling range.

reduction leads to an increase in the number of peaks and troughs, as shown in Figure|6.12
which is not observed in the previous two relatively slender example struts. Moreover, the
displacement amplitude increases at mid-span but remains approximately unchanged at
the ends, leading to the profile changing from periodic to being more localized. The mode
interaction makes the relative contributions from local modes 2 and 1, i.e. ws /wy, increase,

thus breaking the initial symmetric deformation of the local mode gradually, as can be

seen in Figure

Compared with the long and transitional length struts, the numerical results from the

variational model for the intermediate length strut shows a relatively stiffer post-buckling
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response when compared with the FE model. The reason is partly due to local buckling
being more developed before the triggering of the secondary instability; for example, the
assumed cross-section profile of the local mode, which fits well with the FE results at mid-
span, is not necessarily valid for the whole length. The errors would be relatively small for
slender struts, since the longitudinal deflection profile is more localized. However, for the
intermediate length strut, the longitudinal component is further distributed and the error

therefore would be significantly larger.

However, it should be emphasized that the current model can capture the evolution of the
longitudinal and cross-section components of the local mode well, as shown in Figures[6.12

and It should also be noted that even though the progressive change in the local mode

(a) gs =0.001 (e) gs =0.001
2 , , , , 5 2 , , ,
= =
~ ~
3 . . . . 3 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(b) g =0.002 (f) g5 =0.002
2 2 T T T T 2 . .
= =
g 0 ’W\/\/\/\/\/\/\/\/‘ < [0 i i T i i e R el Sy
S | | | | s A A A A
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(c) gs =0.004 (g) g5 =0.004
z 2 T T T T = 2 T T T
= =
S 0 W/\/\/\/\/\/j S (] i i T
S . . . . 3 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(d) g, =0.006 (h) g, =0.006
=z 2 T T T T = 2 T T T T
5 p =
3 o . . . . 3 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z Z

Figure 6.12: Evolution of the numerical solutions for (a—d) wy/ty and (e-h) wyy/ty, for
the intermediate length strut with L = 4000 mm. Graphs are as described in Figure [6.5
Note that wy./ty is now less than an order of magnitude greater than wy/ty.

is also captured by the FE model, there are no snap-backs observed in the corresponding
equilibrium paths. The variational model shows a stiffer response after the secondary
bifurcation, but the predictions of the critical and secondary bifurcations agree well with
the FE model and provide the correct trend for the post-buckling behaviour after the

secondary instability.
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Figure 6.13: Local deformation of the cross-section at mid-span for the intermediate length
strut with L = 4000 mm with the increase of g,. Graphs are as described in Figure

6.2.4 Short length strut

Previous studies (van der Neut, 1969; Koiter & Pignataro, 1976a) have shown that short
length struts exhibit an approximately neutral post-buckling behaviour after the secondary
bifurcation point. Therefore, the main focus presently is to determine the axial stiffness
reduction factor n for the whole cross-section due to local buckling and the load at the
secondary bifurcation point. The current variational model for short struts shows excel-
lent comparisons with the FE model before the secondary bifurcation, as shown in Fig-
ure However, after the secondary bifurcation, the variational model exhibits stable
post-buckling behaviour, even though there are several snap-backs. The FE model shows
an approximately neutral, in fact weakly unstable, post-buckling behaviour and there are
also several snap-backs observed. Although the variational model shows a relatively stiffer
response after the secondary bifurcation, the location of the secondary bifurcation point
agrees very well with the FE model, as shown in Figure d), which is meaningful for

practical considerations in terms of ultimate load predictions.

It should be noted that even though the variational and FE models exhibit different post-
buckling trends in the interactive buckling range, they show excellent comparisons for
the local mode, i.e. the solutions for the normalized local out-of-plane displacement in the
more compressed web wy., the less compressed web w.y (Figure and the cross-section
deformation profile at mid span (Figure . In a similar fashion to the intermediate

length strut, the ratio wy/w; increases alongside the increase of ¢, leading to the transition
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Figure 6.14: Nonlinear equilibrium paths for the short length strut with L = 3600 mm
from the variational and FE models. Graphs (a—d) are as described in Figure The
dot-dashed line in (a—c) represents the normalized effective global buckling load nP¢/PF =
1.051, where 7 is the axial stiffness reduction factor for the whole cross-section due to the
local buckling. Insets in (a)—(c) present close-ups of graphs that show the snap-backs in

the interactive post-buckling range.
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Figure 6.15: Evolution of the numerical solutions for (a—d) wye/ty and (e=h) wyy/ty for
the short length strut with L = 3600 mm. Graphs are as described in Figure Note
that wyc/ty is the same order of magnitude as wy/ty.
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Figure 6.16: Local deformation of the cross-section at mid-span for the short length strut
with L = 3600 mm with the increase of ¢,. Graphs are as described in Figure

of wy. from being initially distributed to localized and the decay of the wy; amplitude.
Moreover, a change in the number of peaks and troughs is also observed, which corresponds
to the snap-back in the equilibrium path, as shown in Figure As for the cross-section
deformation at mid-span, a profile transition from that dominated by mode 1 to one being

dominated by mode 2 is also observed.

Compared with the other example struts, the strain level is much higher at and beyond
the secondary bifurcation point, which makes the assumptions that are applicable to slen-
der struts less valid. All the reasons leading to the stiffer post-buckling response in the

transitional and intermediate length struts can also be used to explain the relatively stiffer
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response of the strut predicted by the variational model. Moreover, it should be recalled
that any explicitly transverse displacements within the cross-section are omitted in the
current variational model and only Poisson’s ratio effects are accounted in those direc-
tions. However, the corner joints of the cross-section would move with the progress of
mode interaction, even though the magnitude is quite small, as illustrated in Figure 6.1

The effects become more significant in the short length struts, as shown in Figure [6.18

(a) Before buckling (b) Pure local buckling (c) Interactive buckling
Acricl ] Fhcpe Acrict “Acr e Acg e ¥ SI1T Acg me
x| | | | |

b )\ | W\
L | L= d

Figure 6.17: In-plane displacements within the cross-section. (a) Expansion due to the
Poisson’s ratio effect before local buckling occurs. (b) Symmetrical contraction due to pure
local buckling. (c¢) Asymmetrical contraction due to interactive buckling. The thick solid
line and the dot-dashed line represent the deformed and undeformed shape respectively.
The dashed line in (b) represents the deformed shape before buckling. Also shown are
the vertical displacements of the more and less compressed web-flange joints Acg mc and
Acrc. The small reduction in the overall cross-section depth and width would account
for some reduction in the post-buckling stiffness.

which presents results from the FE model. The omission of the explicitly transverse dis-
placements has also been discussed recently in a related study (Garcea et al., 2017). To
capture the full post-buckling path accurately, a local mode description that includes the
cross-section in-plane displacement field, i.e. the transverse displacements in both flanges
and webs, would be required (Garcea et al., 2017)), but this would complicate the current

variational formulation considerably.

From the FE results and previous studies (Bai & Wadee, 2016), it has been shown that
the strut is approximately neutrally stable after the secondary bifurcation. Therefore,
locating the secondary bifurcation point is in fact sufficient for practical strength prediction.
Moreover, since the variational model shows excellent agreement with the FE model before

the secondary bifurcation, the stiffness reduction factor n can be obtained precisely from
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Figure 6.18: Normalized vertical in-plane displacement in the more compressed web
Acrmc/d at mid-span (see Figure versus (a) normalized load P/P° and (b) ¢, for
struts with different lengths from the FE results. The variational model currently omits
this displacement.

the load—end-shortening relationship, thus:

(dP/dE) 0
1= Taprae . - 0 (6.1)

pre

Therefore, the Euler buckling load for the locally buckled strut nPC can be calculated and
is plotted with the dot-dashed line in Figure In comparison with the ultimate load
from the FE model, P, g, the variational model provides a safe, yet accurate strength
prediction where nP¢/ P,rr = 0.976. Hence, it may be concluded that the developed
variational model has been satisfactorily verified for all the zones considered and may now

be investigated further.
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6.3 Discussion and comparison with Van der Neut’s
model
A parametric study is now presented to determine the respective boundaries for the four

distinct length domains using the developed variational model. The numerical results are

presented in Figure [6.19 in the style of the classical Van der Neut curve that was shown
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Figure 6.19: The numerically obtained Van der Neut curve for struts with cross-section
properties presented in Table It should be noted that the slope of dashed line is in fact
equal to the axial stiffness reduction factor for the whole cross-section due to pure local
buckling.

in Figure [6.1} The shape of the curve is very similar to previous similar results for stiff-

ened panels (Koiter & Pignataro, 1976a; Wadee & Farsi, 2015) and I-section struts (Bail

& Wadee, 2016} Liu & Wadee, 2016a). The ultimate load for perfect long and transitional

length struts is the corresponding critical buckling load P®. The triggering of mode inter-
action leads to unstable post-buckling behaviour. Particularly for transitional length struts
(zone 2), since the critical and secondary bifurcations are practically coincident, reaching

the ultimate load in practice may not be possible due to the inherently high degree of

sensitivity to imperfections that would be expected (Thompson & Hunt, 1973; Thompson|
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& Supple, 1973} Tvergaard, 1973; van der Neut, 1973} Thompson & Hunt, 1974; |Wadee
& Farsi, 2015; Bai & Wadee, 2015a; Liu & Wadee, 2016b). For intermediate length struts
(zone 3), stable post-buckling behaviour is exhibited after the critical bifurcation, as shown
in Figure [6.11] Therefore, the ultimate load is higher than the critical (local) buckling
load. For the ultimate load prediction, the variational model shows excellent agreement
with the FE model, as shown in Figure For the short length struts (zone 4), stable
post-buckling behaviour is also exhibited after the critical bifurcation and approximately
neutrally stable post-buckling behaviour after the secondary bifurcation. The variational
model can also predict the ultimate load with good agreement compared to the FE model

and nP¢ provides a safe, yet relatively accurate, prediction for the ultimate load.

Since the struts exhibit distinct behaviour in different zones, it is beneficial to determine
the boundary between each zone for practical engineering purposes. The boundary between
zones 1 and 2 is very straightforward since this is by definition where the global buckling

load P¢ and the local buckling load P¢ precisely coincide.

The boundary between zones 2 and 3 corresponds to the competing mode between pure
local and global buckling due to the cross-section bending stiffness reduction caused by local
buckling of the compressed side of the cross-section, as shown in Figure[6.20] The buckling
loads for the depicted modes (I) and (II) are the local buckling load PC and the reduced
global buckling load ®,P¢ respectively, where @, is the bending stiffness reduction factor
due to local buckling of the more compressed web and flanges. At the zonal boundary, the

ultimate load for the two competing modes would be the same, i.e. ®.P¢ = PC, which

leads to the value P¢/PC = 1/®,.

For the ideal two-flange model originally presented by Van der Neut, ®, can be obtained
from Engesser’s so-called ‘double modulus’ theory (Bazant & Cedolin, 1991). The current
variational formulation cannot in fact replicate the results of Van der Neut’s idealization
precisely since shear strain is neglected in the latter. However, a simplified rectangular

hollow section strut model with pinned corners within the cross-section, which is very sim-
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Figure 6.20: (a) The Van der Neut-type curve sketched with the competing buckling modes
in zone 2. (b) Cross-section flange-web conditions for Van der Neut’s model (VdN), a
rectangular hollow section with pinned corners and a rectangular hollow section with rigid
corners. (c¢) Competing buckling modes in zone 2 for three different models: (I) pure local
buckling; (II) global buckling from the cross-section bending stiffness reduction caused by
local buckling in the compressed web and flanges; (III) transitional state between (I) and
(IT). The bending stiffness reduction factor due to local buckling in the more compressed
web and flanges is ®, and the equivalent reduction factor for the transitional state (III) is
D,

ilar to van der Neut’s ideal model, may be used for validation and illustration purposes, as
shown in Figure M(b) Since each corner within the cross-section is pinned, the web and
flange plates buckle independently. In zone 2, when global buckling is triggered, only the
more compressed web remains buckled, as shown in Figure (c), and the corresponding
effective cross-section stiffness distribution is shown in Figure[6.21j(a). Based on the cross-

section stiffness distribution, using the double modulus theory, the details of which are in

Appendix [B] by setting 7¢(z) in Egs. (B.2) and (B.8)) to unity, the following expression for
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®, is obtained:

g, = LB A D76 + 120 ] 62+ 2[00 + DI+ 4 (0 + DI Sed +40%F )
- 2[260 + (14 7u)9c] (86 + £) g + D0 -

For the strut with the same cross-section and material properties as the example struts in
the current chapter, 1/®, = 1.462, which is very close to the value computed using the
variational model, where P¢/B’ = 1.461; this verifies the effectiveness of the double mod-
ulus theory for predicting the boundary between zones 2 and 3 for such cases. Moreover,
it should also be noted that the value is much smaller than that obtained by van der Neut,
where 7, = 0.408 and 1/®, = (1+17y) /(27w) = 1.725, even though the equivalent axial
stiffness reduction factor 7, in the more compressed web is adopted as the same value due
to the pinned corners within the cross-section. The difference arises owing to the inclusion

of both flanges, which contribute the full elastic modulus F.

For the hollow section with rigid flange—web joints, which is the most widely applicable
for engineering practice, the axial stiffness distribution in the cross-section for the com-
peting mode is not as straightforward as the pinned corner case due to the interaction of
the flanges and webs within the cross-section. Therefore, three different stiffness distri-

bution candidate schemes are considered, as shown in Figure [6.21}) and the corresponding

(a) Scheme 1 (b) Scheme 2 (c) Scheme 3

E E| El _
ﬁwE nwE

|
E 1—") wE E ‘ TX, wE E 1—)2 wE
Y ‘ 'y 'y

T 3 mE z Mk
Figure 6.21: Cross-section axial stiffness distribution schemes where the stiffness is directly

proportional to the material Young’s modulus E and 7, is the equivalent axial stiffness
reduction factor due to local buckling of the more compressed web.
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relationship between 1/®, and 7, can be

16N N\~ === Scheme 1

— — —Scheme 2

151 Scheme 3
S R van der Neut Model

established using Eq. (B.g]). Figure shows

Figure 6.22: Relationship between 1/®, and 7}, for the cross-section stiffness distributions
presented in Figure [6.21] and the expression proposed by Van der Neut. The asterisk line
represents the equivalent 1/®, for the example struts obtained from the current variational
model results that are verified by FE.

the relationship for the strut with the same cross-section and material properties as the
example struts. The value of 1/®,, i.e. the ratio PC/PC at the boundary between zones 2
and 3, increases with the reduction of the effective axial stiffness of the whole section from
schemes 1 to 3 as well as with the reduction of the equivalent axial stiffness of the more
compressed web 7. Since the actual effective axial stiffness of the more compressed side
of the flanges for the competing mode would be reduced due to local buckling, as shown
in Figures and b), scheme 1 would provide the lowest limiting prediction for 1/®,
if the double modulus approach were to be applicable for the cross-section case with rigid

flange—web joints.

However, the parametric study (see Figure shows that the value of PC/PC at the
boundary of zones 2 and 3 for the example struts with rigid joints between flanges and webs
is 1.085, which corresponds to the asterisk line in Figure Since it has been noted that
scheme 1 provides the lowest limiting prediction of 1/®,, the corresponding value of 7, for

the more compressed web should be even larger than 0.8, as shown in Figure [6.22] Even
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though the rigid flange—web joints can provide more restraint to the more compressed web,
thus leading to a higher post-buckling stiffness, the value of 7, for the more compressed
web using the isolated more compressed web model is 0.46 (Shen et al., 2017)). Therefore,
it would seem that including the contribution of the flanges and the rigid flange—web joints
not only introduces additional stiffness when compared to the pinned cross-section case
but also potentially more competing modes, which diminishes the validity of the double

modulus approach in such cases.

It should be stressed that in both the Van der Neut model and the case where the cross-
section has pinned corners, the effective axial stiffness in the more compressed web remains
approximately the same before and after the transition from the pure local buckling mode
to local-global interactive buckling due to the simply-supported boundary condition of the
unloaded edges, as shown in Figure M(c) However, for the rigid flange—web joint case,
there is a reduction in the deformation of the more compressed side after the transition,

which is particularly apparent in the flanges, as can be seen from Figure It suggests

701
60 r
50 r

40t
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> 30

201
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Figure 6.23: Cross-section deformation for the pure local buckling case (dot-dashed line)
using Egs. (5.2) and (5.3]) and the global buckling induced local buckling case (solid line)
using Eqs. (5.9)—(5.11). The deformation has been amplified by a factor of 20 to aid

visualization.

that the unloading of the less compressed web and flanges affects the stiffness distribution

in the more compressed side of the cross-section, which does not occur in Van der Neut’s
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ideal model and the case of the cross-section with pinned corners. It implies that there
is an increase in the axial stiffness of the more compressed side of the cross-section and
it can thus resist higher compressive stresses. The condition for the boundary between
zones 2 and 3 can thus be written as B = ®,PC + P, where P is the load increase
due to the stiffness redistribution in the cross-section caused by the less compressed side of
the cross-section. Therefore, there should be an additional transitional stage (IIT) between
these two more distinct states, as shown in Figure |6.20 This is also confirmed by the
numerical results of the cross-section deformation shape for the transitional length strut.
The existence of this further transitional stage moves the boundary between zones 2 and
3 to the left when compared with stage (II), as shown in Figure [6.20(a), where PC/PC
is equal to (1 —dP/PF) /®,. This finding is also in accord with results from previous
work on stiffened panels (Koiter & Pignataro, 1976a; |Wadee & Farsi, 2015) and I-section
struts (Bai & Wadee, 2016} [Liu & Wadee, 2016a)). Since the unstable range is notorious
for its imperfection sensitivity (Bai & Wadee, 2015a; Wadee & Farsi, 2015)), a somewhat
reduced imperfection sensitivity range may be expected for such struts; these matters are

investigated further in the subsequent chapters.

The boundary between the intermediate length struts (zone 3) and the short length struts
(zone 4) is the same as that in Van der Neut’s curve, where P¢/P¢ = 1/n = 1.550. From
Figure M(afc), with the decrease of the strut length, the peak load would converge to
nPC, as shown in Figure m However, it should be noted that the straight line in zone
4 would in fact be curved with a decreasing slope due to the decreasing stiffness reduction
factor caused by the effects of large deflections in plates; a similar effect would occur if a

yield stress were introduced into the material model (Liu & Wadee, 2016a).

Finally, it should be stressed that the factors listed for the movement of the boundary
between zones 2 and 3 also affect the value of P¢/PC at the boundary of zones 3 and
4. However, since the local buckling mode is more developed before mode interaction is

triggered, the effects of stiffness redistribution would be much smaller. Moreover, adopting
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7 as the bending stiffness reduction factor would provide an accurate, yet safe ultimate

load prediction.

6.4 Concluding remarks

The nonlinear variational model in Chapter [5[ has been adopted to analyse the interactive
buckling behaviour of perfect elastic thin-walled rectangular hollow section struts with
different lengths under pure compression. Numerical examples, considering four repre-
sentative lengths corresponding to distinct parts of the Van der Neut curve, have been
presented and verified using the commercial FE package ABAQUS. Using the verified
variational model, the boundaries of four distinct length-dependent domains have been

identified for realistic cross-section characteristics for the first time.

Unstable post-buckling behaviour due to mode interaction was observed in long, transi-
tional and intermediate length struts. Potentially dangerous behaviour, i.e. a sharp drop
in the load capacity immediately after the ultimate load is reached, has been identified
where the global buckling load is close to the local buckling load. A progressive change in
the local buckling mode is observed within the nonlinear post-buckling range in all struts.
In particular, for intermediate and short length struts, snap-backs that correspond to the
change in the number of troughs and peaks in the local mode that are akin to cellular
buckling, are observed. The parametric study on strut length shows that the notoriously
unstable post-buckling range for rectangular hollow-section struts is in fact significantly
smaller than that predicted by Van der Neut’s idealized model and the stiffness reduction
factor is also considerably higher. The reason for this difference has been identified as
being derived from the interaction between the individual plates due to the rigid corners
within the cross-section, which lead to some stiffness redistribution. This is in contrast
with the assumption that the corners are pinned where the web and flange plates behave

independently.
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The highly unstable post-buckling behaviour of struts in the transitional range between
zones 1 and 2 and the whole range of zone 2 indicate that they may be very sensitive to
initial imperfections, 7.e. a tiny imperfection may lead to significant erosion in the load-
carrying capacity. Therefore, in the following chapter, the variational model is adopted to
investigate the imperfection sensitivity of such struts exhibiting local-global mode inter-

action.



Chapter 7

Imperfection sensitivity

The previous chapter investigated the effect of the strut length on the nonlinear inter-
active buckling behaviour of perfect thin-walled RHS struts. However, there are always
imperfections in real structures, either in the geometry or in the loading. More impor-
tantly, thin-walled plated structures susceptible to interactive buckling tend to be highly
sensitive to imperfections (Koiter & Pignataro, 1976a; [Thompson et al., 1976; Loughlan,
1983; |Goltermann & Mgllmann, 1989; Wadee, 2000; Bai & Wadee, 2015a; \Wadee & Farsi,
2015; |[Liu & Wadee, 2016b); a tiny imperfection may lead to a significant erosion in the

load-carrying capacity evaluated from a linear analysis.

In the current chapter, the effects of geometric imperfections on the ultimate load and
equilibrium behaviour of thin-walled RHS struts is investigated using the full variational
model developed in Chapter In a similar way to Chapter [0 the developed system of
nonlinear ordinary differential and integral equations subject to boundary conditions is
solved using the numerical continuation software AUTO-07P. The resulting equilibrium
paths are presented for various different cases and the erosion in the load-carrying capacity
due to imperfections is observed. The results from the variational model show good com-

parisons with the numerical results from GNIA using the nonlinear FE method developed

231
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in Chapter [3| A simplified method to calculate the pitchfork bifurcation load where mode
interaction is triggered for struts with global imperfections is developed for the first time.
The relative significance of global and local imperfections for struts with different lengths is
investigated. Based on the numerical results, the simplified method is calibrated to predict
the ultimate load for struts with tolerance level global imperfections and combined local
and global imperfections. The current work provides an improved understanding of the
imperfection sensitivity of thin-walled rectangular hollow section struts exhibiting mode
interaction, which will allow the establishment of more rational and robust design guidance

for such structural components in Chapter [9]

7.1 Numerical results, verification and discussion

Chapter [6] demonstrated that there is a redistribution of stiffness across the cross-section
in the transition from the pure local buckling mode to the global buckling induced inter-
active mode, as shown in Figure Specifically, owing to the rigid connection between
each individual plates, the less compressed web provides additional restraint to the more
compressed side (Bijlaard & Fisher, 1953; [Hancock, 1981; Young & Rasmussen, 1997} |Shen
& Wadee, 2018b). Hence, there is an effective increase in the axial stiffness of the more
compressed web and flanges, thus leading to a higher resistance to compressive stresses.
It implies that the mono-symmetric cross-section imperfection profile would be effectively
more severe than the doubly-symmetric case. Therefore, in the current chapter, only the
mono-symmetric cross-section deformation profile, as shown in Figure [5.2(b), is used as
the cross-section component for the local imperfection. Therefore, the local out-of-plane

imperfection, Eq. (5.13)), can be reduced to:

wio(7, 2) = fa(T)wo(2),  Weeo(Y,2) = fowe(Y)wo(2),  Wwio(y; 2) = fawt(y)wo(2), (7.1)

where the cross-section components f are the same as described in Egs. ((5.9)—(5.11]).
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Previous studies on the imperfection sensitivity of thin-walled struts (van der Neut, 1969;
Koiter & Pignataro, 1976a; [Bai & Wadee, 2015a; Wadee & Farsi, 2015; [Liu & Wadee,
2016a) found that the maximum erosion in the load-carrying capacity principally occurs
within the range where the global buckling load is close to the local buckling load, i.e.
the transitional range between zones 1 and 2 and the whole range of zone 2, as shown

schematically in Figure [7.1] Therefore, the imperfection sensitivity of two typical length

Pu/Pf

Perfect case Erosion balance point

1+ N | /
. Impérfect case
> @ o @

S .
1 (1+m/2n 2 1/n Pg/pZC

Figure 7.1: The Van der Neut curve for the geometrically perfect and imperfect cases
(van der Neut, 1969). The quantity 7 is the stiffness reduction factor due to the local
buckling of the flanges. The imperfect case line shows that within zones 1-3, there is a
reduced ultimate load compared to the perfect case. There is also an ‘erosion balance
point’ marked where the curve for the imperfect case intersects with the perfect case.

struts, where global and local buckling are critical respectively but the ratio of the global
and local buckling loads is close to unity in both cases, are analysed in detail. The cross-
section geometry and material properties of the example struts are the same as that in
Chapter [6] Table summarizes the strut lengths, the buckling loads and corresponding
zones, as defined in Chapter [6] The effects of global imperfections, local imperfections
and their combination on the nonlinear equilibrium path and load-carrying capacity of the
two example struts are investigated. The solution of the governing equilitrium equations

is obtained within the numerical continuation and bifurcation software AUTO-07P.

Typical equilibrium paths for perfect and imperfect example struts alongside the numerical

continuation procedures to solve the equilibrium paths using AUTO are shown diagram-
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Table 7.1: Theoretical values of the global and local buckling loads for the two separate
lengths studied.

L (mm) PY (kN) PGy (kN) PYpiqus KN) PS/PC Zone Length description
4800 22.67 24.61 24.57 0.92 1 ‘Long’
4500 25.79 24.61 24.58 1.05 2 ‘Transitional’

matically in Figure For the case where only the global imperfection exists two stages

(a) (b)

Wy w Wy w

Figure 7.2: Sketches of the equilibrium paths and their numerical continuation procedures
in AuTO for the imperfect struts primarily in zones 1 and 2. (a) Global buckling being
critical with an initial out-of-straightness global imperfection gy only; (b) local buckling
being critical with g5 only; (c) global buckling being critical with a mono-symmetric local
imperfection wq only or with both wq and g¢s; (d) local buckling being critical with wq only
or with both wy and gs. The thicker and thinner lines represent the imperfect and perfect
systems respectively. Circles represent critical (C) and secondary (S) bifurcation points
for the perfect systems and a pitchfork bifurcation point (B) for the imperfect system; P2
represents the load at the pitchfork bifurcation point.

are required to obtain the whole equilibrium path, as shown in Figure (a—b). Branch
switching is necessary at the pitchfork bifurcation point (B) (Glendinning, 1994), which is
the generic term for a conventional symmetric (stable or unstable) bifurcation (Thompson

& Hunt, 1973), where local and hence interactive buckling is triggered, to trace the post-
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buckling equilibrium path. For the cases with pure local imperfections and with combined
local and global imperfections, only one run is required to obtain the whole equilibrium
path, as shown in Figure (c, d). The mono-symmetric local imperfection immediately
breaks the symmetry as the numerical run begins and therefore ¢; and ¢; are introduced

without the need for branch switching.

7.1.1 Global imperfections (gsy # 0, wy = 0)

In this section, the effects of a purely global imperfection are studied. Only initial sway
and tilt imperfections, i.e. gs0 and gy, which satisfy the relationship from Eq. , are
introduced. A set of values for the normalized initial sway imperfection amplitude gy
ranging from 107* to 1073 is selected for analysis. Figures and show a family of
equilibrium paths with increasing global imperfection size and the relationship between the
ultimate load and the global imperfection amplitude for the long (zone 1) and transitional
length (zone 2) struts respectively. It is clearly observed that the ultimate load decreases
as the imperfection size increases. For gs0 = 1/1000, which is the tolerance level for
global imperfections recommended in the relevant part of Eurocode 3 (EN-1993-1-3:2006E,
20006)), the erosion in the load-carrying capacity is approximately 25% compared with the
critical buckling load of the perfect system for both struts. From the equilibrium path,
the transition from highly unstable to approximately neutral post-buckling behaviour can
be observed with the increase of the global imperfection size ¢4. Specifically, the snap-
back and the sharp load drop at the secondary bifurcation in the load—end-shortening
relationship for the perfect case disappear gradually with the increase of the imperfection
size. It can also be seen that all equilibrium paths converge asymptotically to the same

state, as would be expected from classical studies (Thompson & Hunt, 1973)).

Moreover, for the perfect case and the cases where the imperfection size is vanishingly

small, the triggering of local buckling represents the ultimate state, which is followed by
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Figure 7.3: Equilibrium paths and the imperfection sensitivity graph for the long length
strut (L = 4800 mm) with different global imperfection sizes ¢y0. Graphs of the normalized
load ratio p = P/PC, where P is the critical buckling load for the perfect strut, versus
(a) the normalized end-shortening £/L, and (b) the normalized amplitude of the sway
mode ¢s; (c¢) shows the normalized maximum amplitude of the local buckling deflection
in the more compressed web Wye max/tw versus gs; (d) shows the normalized ultimate load
pu = Pu/ PC€ from both the FE and variational models and the normalized load at the
pitchfork bifurcation point for the imperfect system p® = PB/PC against ¢y showing
the sensitivity to initial global imperfections. Circles in (a) and (b) represent bifurcation
points.

unstable post-buckling behaviour. However, with increasing imperfection size, there is a
further increase in the load-carrying capacity after local buckling in the more compressed
web is triggered, as shown in Figures[7.3] and which has also been reported previously
(van der Neut, 1969; van der Neut, 1973; Bai & Wadee, 2016; Liu & Wadee, 2016b).

Therefore, it would seem that determining the load at the pitchfork bifurcation point P®
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Figure 7.4: Equilibrium paths and the imperfection sensitivity graph for the transitional
length strut (L = 4500 mm) with different global imperfection sizes g5. Graphs (a)—(d)
are as described in Figure

would provide a safe, yet accurate, method to predict the ultimate load for struts with

purely global imperfections.

As shown in Figure [7.5|(a) and (c), the global imperfection size also affects the profile of
the interactive buckling mode in the proximity of the pitchfork bifurcation point. For the
long length strut, the interactive buckling mode becomes more localized with increasing
imperfection size. As for the transitional length strut, the global imperfection imme-
diately breaks the symmetry, making the profile change from approximately periodically
distributed along the length to localized at mid-span. The increasing imperfection size also

increases the degree of localization of the interactive buckling mode as that for the long



CHAPTER 7. IMPERFECTION SENSITIVITY 238

(a) (c)
1 . T 1 X A 7 T
a ) A O A L
2 NAVANAN AN AN AN N AN
E 0 N NV AVREERE 0} I S N2 AR
I N AR i T | [ | [ RN A N |
3 AR VRN N A RGNV VAR
pf IYERY | Vot \’ vy \\I [ \\~/ W [
| ‘ ‘ ‘ LY B A VA VUL U VA AL VAR VY .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
1 (b) 1 (d)
. N AN N [ v oo N AT
~ A ARy l/\ \ A a AR ll‘\ AN
g AWANANIRANANANANANANA NANINANANANENANARAANE
ER S \‘/\l"‘j‘\"il\\;"ll‘ UH\‘ Or\"/“"\1]”°!"'ﬂi"\" 1'\"‘1‘;‘
R VERVER VIR i Vi EARVERVERTERYERYIRY/ AR
1 | Y "J'I \v{ \/) \ ‘\./I ‘\I’ \ 1 | :'! Y \-1‘ \\,/ /I \\/ \,,' \
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z z

Figure 7.5: Numerical solutions of the longitudinal profile of the local out-of-plane displace-
ment in the more compressed web Wy, = Wye/Wywe(Z = 1) at (a, ¢) the pitchfork bifurcation
point and (b, d) where ¢, = 8 x 1072 for the long length strut (a-b) and the transitional
length strut (c—d) respectively. The dashed, dot-dashed and solid lines represent the cases
with perfect and imperfect (g0 = 107 and 1073) geometries respectively. Note that the
longitudinal coordinate is normalized with respect to half of the strut length z = 2z/L.

length strut. It should be noted that in both cases the increase in the degree of localization
is accompanied by a reduction in the wavelength. With the progress of mode interaction,
the post-buckling mode spreads towards the boundary and becomes distributed along the
whole length of the strut, as shown in Figure (b, d). It can be concluded that, in a
similar way to the equilibrium path, the post-buckling mode also converges approximately

to the same profile in the far-field post-buckling range.

7.1.2 Local imperfections (wy # 0, g5 = 0)

For the study where only local imperfections exist, the global imperfection parameters gy
and ¢y are set to zero. The cross-section profile of the local imperfection is assumed to
be mono-symmetric and defined by Eqgs. f. The longitudinal component of the
local imperfection wy is determined based on fitting the longitudinal component of the first
local buckling mode from the FE models using Eq. . The profile of the imperfection
is shown in Figure For the long length strut, it is determined that o = 4.314 and
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[ = 47; whereas for the transitional length strut, a = 5 and § = 47. A set of values for

(a) L=4800 mm

Iwo(z)/Ao

Iwo(Z)/Ao

Figure 7.6: Longitudinal component of initial local imperfections for (a) the long length
strut and (b) the transitional length strut. Solid and dashed lines represent fitting func-
tions and the first local buckling mode from FE respectively. Note that the longitudinal
coordinate is defined as in Figure

the normalized local imperfection amplitude Ag/t,, ranging from 0.01 to 0.6 is selected for

analysis.

Figures [7.7] and show a family of equilibrium paths with increasing local imperfection
sizes and the relationship between the ultimate load and the local imperfection amplitude
for the long and transitional length struts respectively. = The ultimate load drops sub-
stantially with increasing local imperfection amplitude. For Ag/t, = 0.6 = d/(200ty,),
which is the tolerance level for local imperfections recommended in Eurocode 3 (EN-1993-
1-3:2006E, 2006), the erosion in the load-carrying capacity is greater than 20% compared
with the perfect case for both struts considered. As for the equilibrium paths, in a similar
way to the global imperfection case, a transition from highly unstable to mildly stable
behaviour is observed in both struts with increasing local imperfection size. Specifically,
for the perfect case and the cases where the imperfection size is vanishingly small, reaching
the ultimate load is accompanied by potentially unstable behaviour, i.e. snap-backs in the
load—end-shortening relationship and a simultaneous sharp load drop may be expected.
However, for the cases with larger imperfection sizes, the behaviour is relatively stable, i.e.

the stiffness decreases with an increase of the applied load but remains positive and the
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Figure 7.7: Equilibrium paths and the imperfection sensitivity graph for the long length
strut with different local imperfection amplitudes Ay. Graphs (a—c) are as described in
Figure[7.3] Graph (d) shows the normalized ultimate load p, from both FE and variational
models against Ay showing the sensitivity to initial local imperfections.

deformation level at the ultimate load is relatively large.

It should be noted that there is a snap-back in the gs—wy./t, relationship for the long
length strut with a normalized local imperfection amplitude Ay/t, = 0.01, as shown in
Figure (c) It corresponds to a jump in the local mode, as shown in Figure Before
the mode jump occurs at ¢, = 0.002, the number of peaks and troughs in the form of
Wye With Ag/ty, = 0.01 is the same as that for the strut with Aq/t, = 0.14, which is
determined by the pre-defined local imperfection function, as shown in Figures (a) and

7.9a).

However, after the mode jump, there are more peaks and troughs for the strut
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Figure 7.8: Equilibrium paths and the imperfection sensitivity graph for the transitional
length strut with different local imperfection amplitudes Ay. Graphs (a)—(d) are as de-
scribed in Figure [7.7]

with Ag/ty, = 0.01 and the number is the same as that for the perfect case, as shown in

Figure [7.9(b); this finding is also in accord with previous studies (Bai & Wadee, 20154}

‘Wadee & Farsi, 2015). With increasing local imperfection size, the formation of new peaks

or troughs requires more membrane strain energy, which would necessitate a longer snap-
back path. This, perhaps, explains why no mode jump is observed for the cases with larger
imperfection sizes in the current deformation range, i.e. where g, < 1072, It should also be
noted that the mode jumping phenomenon is not observed in the transitional length strut

< 1072, which in fact occurs at

~

with the same imperfection size (Ay/ty, = 0.01) while g;

¢s = 1.2x 1072, This may, in turn, be explained by the fact that local buckling is critical in
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Figure 7.9: Evolution of the numerical solutions for the normalized local out-of-plane
displacement in the more compressed web where (a) g; = 0.002 and (b) ¢s = 0.008 for
the long length strut with different local imperfection amplitudes Ag. The solid, dot-
dashed and dashed lines represent where Ag/ty, = 0.14, Ay/ty, = 0.01 and the perfect case
respectively.

that case and the local mode defined by the imperfection is well developed, thus requiring
an excessive amount of strain energy (and hence a longer snap-back path) to trigger any

jump in the post-buckling mode.

7.1.3 Combined imperfections (g # 0, wy # 0)

The effects of combining local and global imperfections are now studied. As mentioned
earlier, according to Eurocode 3 (EN-1993-1-3:2006E, 2006} Degée et al., 2008), the tol-
erance levels for global and local imperfections are gt = L/1000 and Ayt = d/200
respectively. Hence, the imperfection combination selected currently is set to be pro-
portional to and also normalized with respect to this combination, which is defined as

Weo = Weo{gso,001L, Ao o1}, Wwhere Weg is a non-dimensional scaling factor.

Figures and[7.11]show the nonlinear equilibrium paths and the imperfection sensitivity
relationship for both example struts. With increasing imperfection size, a transition from
highly unstable to mildly stable behaviour is also observed. It should be noted that there

remains a snap-back in the relationship between the local and global mode amplitudes for
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the long length strut with Wgy = 1/60, where the global and local imperfection amplitudes

are L /60000 and d/12000 respectively; this implies that there is a jump in the local mode.
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Figure 7.10: Equilibrium paths and the imperfection sensitivity graph for the long length
strut with different normalized combined imperfection sizes Wgo. Graphs (a)-(c) are as
described in Figure . Graph (d) shows the normalized ultimate load p, from both the
FE and variational models against Wg showing the sensitivity to the combined local and
global imperfections. Note that Wey = 1 corresponds to the global imperfection amplitude
gsoL being L/1000 and the local imperfection amplitude Ay being d/200.

Moreover, compared with purely global or local imperfection cases, the introduction of the
other imperfection-type leads to a further 10% load drop. For the imperfections at the
Eurocode 3 tolerance levels (Wgy = 1), the load-carrying capacity erosion in comparison

with the perfect case is over 30% for both struts. According to the definition suggested
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Figure 7.11: Equilibrium paths and the imperfection sensitivity graph for the transitional
length strut with different normalized combined imperfection sizes Wgo. Graphs (a)—(d)

are as described in Figure

by Gioncu ((1994b), this may be classified as a strong interaction. A larger load-carrying

capacity erosion would be expected for the cases where PC/PC is approximately unity.

7.1.4 Verification and discussion

The FE model developed in Chapter |3| is adopted to verify the variational model using

GNIA. The comparison of the ultimate load from the FE and the variational models

are shown in (d) of Figures (inclusive). The results from the

variational models generally show good comparisons with those from the FE models, with
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the variational models generally predicting slightly higher ultimate loads. The discrepancy
increases with increasing imperfection size and the maximum relative difference (P, —
P,rr)/P.rr, which occurs at the tolerance imperfection combination case (Wgy = 1) for

the transitional length strut, is slightly below 8%.

The reasons for the stiffer response or higher ultimate load prediction of the variational
model for the perfect case have been discussed in and also apply currently. Firstly,
when the more compressed web buckles, the neutral axis for strut flexure would move to the
less compressed side, thus introducing an additional bending moment to the strut. The
effect becomes more significant with the progression of interactive post-buckling, which
facilitates the load reaching the ultimate value and subsequently dropping. To consider
this effect, an additional displacement function would need to be introduced in the current
model to describe the movement of the neutral axis. Secondly, in the current formulation, it
is assumed that the effect of local buckling on the transverse stress in each plate is negligible,
which leads to the relationship e, = —ve, in the flanges and €, = —ve, in the webs. In
fact, this assumption is valid only when the local out-of-plane displacement of the plate is
small. In the advanced post-buckling range, the assumption would be no longer valid, as
demonstrated in Figure The assumption also simplifies the transverse displacement
field, i.e. the in-plane displacement field across the cross-section (see Figure , which
may lead to a ‘locking’ problem (essentially, a stiffer response), as reported by a recent
study (Garcea et al., 2017). Moreover, the in-plane cross-section displacement would also
reduce the effective flexural rigidity of the strut. To resolve the problem, an independent
local mode to describe the transverse in-plane displacement field in both flanges and webs

would be required, but this would complicate the variational model considerably.

Thirdly, in the current formulation, the cross-section component of the direct in-plane
displacement field is assumed to be the same as that of the out-of-plane one. Although this
assumption satisfies the kinematic boundary conditions, it does not represent the actual

cross-sectional displacement field very well. To describe the cross-section component of



CHAPTER 7. IMPERFECTION SENSITIVITY 246

T S S S S S S S |

Figure 7.12: Membrane stress distributions along the strut corner line of the more com-
pressed web at the ultimate load from FE for the transitional length strut with the tolerance
imperfection combination (Wgy=1). Solid and dot-dashed lines represent the longitudinal
and transverse stresses respectively, showing that the transverse stresses are definitely not
zZero.

the direct in-plane displacement field better, the solutions from classical theory (Koiter,
1945) could be adopted with the introduction of more functions to describe the variation
of the cross-section component along the strut length. However, the positive comparison
of the current model versus the FE model suggests that any advantage would be minor
and be mostly offset by the additional model complexity. Finally, the cross-section profile
of the local mode is assumed to remain unchanged along the length of the strut and also
throughout the progression of mode interaction with the only variable being the modal
amplitude, as can be seen in Eq. . However, the profile is affected by the ratio of axial
force and bending moment, which varies along the length and also throughout the entire
loading history. Furthermore, some higher order effects, such as the bending effects on the
cross-section profile as presented in Figure would also affect the cross-section profile.
All of these factors taken together lead to the stiffer response of the variational model, thus
overestimating the ultimate load especially in the cases where the imperfection size is close
to the recommended tolerance levels within the Eurocode. However, the errors are within
generally acceptable bounds and the variational model does provide a better insight into

the system mechanics.

Based on the FE results, curves have been fitted to describe the ultimate load—normalized
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imperfection size relationship, as shown in (d) of Figures (in-

clusive). For the pure global imperfection case, the expressions for both example struts
indicate approximately a 1/2 power law relationship to leading order; for the pure local
imperfection and combined imperfection cases, the expressions for both example struts in-
dicate approximately a 1/3 power law relationship, which is also observed in I-section struts
susceptible to mode interaction (Liu, 2016|). Moreover, the transitional length strut ex-
hibits relatively more sensitivity to global imperfections and the long length strut exhibits

relatively more sensitivity to pure local and combined imperfections.

7.2 Variational model application and parametric study

7.2.1 Simplified method to predict load at pitchfork bifurcation

(gs0 # 0, wy = 0)

From the numerical results hitherto, it was demonstrated that for the case where only a
global imperfection exists, the load at the pitchfork bifurcation point P® can be used to
predict the ultimate load that is safe and compares very well to the FE model, as shown
in Figures (d) and (d) Therefore, a simplified method to predict PP is proposed
based on the method developed in §4.5) which determined the local buckling load of the
more compressed web undergoing global buckling and the corresponding global buckling
amplitude at the secondary bifurcation point for perfect thin-walled rectangular section

struts exhibiting global-local mode interaction.

Equation (5.36|) provides the governing equation for the relationship between ¢,, ¢; and P
along the equilibrium path. By setting the terms related to the local mode to be zero, the
first two expressions of Eq. (5.36]) can be written as:

av 7T4EIW s = Us 7T2L s
S = T GUOL (6.~ ) — (g — qu)] + TE 00 pT

=0, (7.2)
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0q 4L

(% " %) (@ — o) — w*GtsbL [(g5 — 1) — (gs0 — Gro)] = 0. (7.3)

Substituting Eq. (7.3]) into Eq. (7.2)) to remove the shear term and using the relationship

in Eq. (5.37) gives the following expression:
p=PC (%) . (7.4)

If no local buckling occurs, P would increase with ¢, and tend towards PC in the limit.

However, the bending stiffness would drop due to local buckling in the more compressed
web and flanges. Since the transverse stress component is neglected currently, the direct

stress in the more compressed web o, before local buckling occurs can be written thus:

2Eb(q — P
Twe = Bege = — & <2q£ o) sin % ~ 4 (7.5)

where A, = 2(bts+dty,) is the gross cross-sectional area. From the numerical results shown
in Figures (a, c), the local mode is initially localized. Instead of analysing the whole

web with the entire strut length, it was demonstrated in that when oy, at mid-span

C

wce?

reaches the local buckling stress of the more compressed web o, interactive buckling can
be assumed to have been triggered. The expression for the local buckling stress of the more

compressed web element restrained by both flanges is given by:

kym?E
Tve = ol B (dJEL ] (7.6)

and the plate buckling coeflicient k, can be determined by Eq. (4.63)). For the practically

significant case where the cross-section has a uniform wall thickness (¢, = 1), the expression

for k, was determined by Eq. (4.68). By substituting Eqs. (5.37)) and (7.4]) into Eq. (7.5,
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the relationship between P® and the global imperfection size g, is obtained:

i PC N USC
21+s)L A,

PC 2 12FEbqy m2FEbqyy  2PC
_ o _ ,C il s o 25C ]
\/(Ag “WC) 0T 9L <2(1+5)L+ A, “WC)

Figure shows the comparison of the normalized load p® = PB/P® obtained from Eq.

Q | o)

pr e
2

(7.7)
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Figure 7.13: Comparison of the normalized load p® using the simplified method and the full
variational model against the normalized ultimate load p, from the FE models for (a) the
long length strut and (b) the transitional length strut. Note that only global imperfections
are included in both example struts.

and the full variational model against the normalized ultimate load p, = P,/P® from
the FE model for example struts with purely global imperfections for different imperfection
sizes. For the long length strut, the simplified method shows excellent comparisons with
the full variational model for P®, as shown in Figure (a). For the transitional length
strut, the comparison is good for the cases where the global imperfection size is larger
than 10~%. For tiny global imperfections, the simplified method would overestimate P5.
This is caused by the fact that when the imperfection size is vanishingly small, the system

would behave very similarly to the perfect system, i.e. the less compressed web would
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also buckle, as shown in Figure |6.10, Therefore, the restraints on the more compressed
web would be smaller, which leads to a smaller value of k,. In general, for the current
two example struts, the simplified method provides a safe, yet accurate prediction of the
ultimate load for different imperfection sizes. Finally, it should be mentioned that if the
material yield stress f, replaced o<, in Eq. , the equation would revert to the classical

Perry—Robertson formula (Trahair et al., 2007) for the failure load of an imperfect column.

7.2.2 Simplified method to predict the ultimate load (g, = 1073,

”LU():O)

Figure presents the relationship between the ultimate and pitchfork bifurcation loads

for different length struts with tolerance level global imperfections (g0 = 107%). In the
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Figure 7.14: Length effects on the ultimate and pitchfork bifurcation load of thin-walled
RHS struts with purely tolerance level global imperfections (g5 = 1073). Note that the
cross-section and material properties of the struts are the same as the example struts in
previous section.

range where global buckling is critical (PS/BP° < 1), the ultimate load is approximately

the same as the pitchfork bifurcation load. Therefore, Eq. (|7.7) can be used as an accurate
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prediction of the ultimate load for such cases. However, in the range where local buckling
is critical, the pitchfork bifurcation load is significantly smaller than the ultimate load
and the difference increases with decreasing strut length, which implies that the triggering
of local-global mode interaction in such cases does not lead to unstable post-buckling

behaviour.

The prerequisite of the simplified method for predicting the ultimate load is that the
effective global buckling load ®,PC¢ is less than or very close to PB, where ®, is the
bending stiffness reduction factor due to local buckling of the more compressed web and
flanges and is given by Eq. . Otherwise, the load would still increase beyond P? with
a reduced stiffness and would tend to ®, P, even though mode interaction is triggered, as
shown in Figures and Therefore, more calibration parameters could be introduced
in Eq. to fit it for the whole length range. An equation is proposed based on the FE

results in the range where P/P° < 4:

Py for Py'/R° < 1,

Pu,glob,tol = (78)

PB [0.32(PE/PC —1) +1] for1< PY/PF < 4.
The average ratio of Eq. ([7.8]) to Py rg glob,tol s 0.998 and the coefficient of variation (COV)
is 0.96%, which represents an excellent fit. However, it should be noted that the equation
is only valid for the current geometric parameter space; an extensive parametric study on

geometric properties, i.e. plate width—thickness ratio and cross-section aspect ratio, would

be required to make the equation more generic. This will be left for future study.

7.2.3 Simplified method to predict the ultimate load (g = 1073,

Ay = d/200)

In the current subsection, the ultimate load for thin-walled RHS struts with purely toler-

ance level local imperfections, purely tolerance level global imperfections and their combi-
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nations for different length struts is investigated. The aim is to establish the relationship
between the ultimate load for the cases with purely tolerance level global imperfections

and those with tolerance level combined imperfections alongside calibrating Eq. ([7.8)) to

be valid for the latter cases.

Figure [7.15(a) shows the ultimate load for thin-walled RHS struts with purely tolerance
level local imperfections, purely tolerance level global imperfections and their combinations

in the range: PY/Pf=[0.2,2.0]. It can be observed that the struts exhibit sensitivity to

(a) (b)
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Figure 7.15: (a) Effects of tolerance level local imperfections, global imperfections and
their combination on the ultimate load for thin-walled RHS struts with different lengths.
(b) Ratio of P, 101 t0 Py globtol Versus the strut length, where P, o1 and P, giob tol T€present
the ultimate load with tolerance level combined imperfections and tolerance level global
imperfections respectively. Note that local imperfection profiles are affine to the lowest
local buckling mode from linear buckling analysis using FE models.

both local and global imperfections and the load erosion is most significant at the point
where PY/PF=1. For the current example struts with the cross-section properties as pre-
sented in Table 4.1/ and the imperfection tolerance level (Ay/t=0.6 and g,n=10"%) selected,
the ultimate load erosion due to purely tolerance level local and global imperfections is
nearly equal at the point where PC/P“=1. Therefore, an opportunity to determine the

relative significance of both imperfection types on the ultimate load erosion for different
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length ranges is provided. The principal finding from Figure (a) is that the ultimate
load with purely local imperfections is lower than that with purely global imperfections in
the range where global buckling is critical and vice versa. This observation implies that
struts where global buckling is critical are more sensitive to local imperfections than global

imperfections and vice versa.

The underlying mechanism of the critical buckling mode dependent imperfection sensitivity
may be explained based on the interactive buckling behaviour of perfect systems. No matter
to which type the critical buckling mode belongs, the failure of perfect thin-walled RHS
struts is controlled by the symmetry breaking action of mode interaction (Supple, 1967}
Shen & Wadee, 2018b). In the perfect case or the case with imperfections purely in the
shape of the primary buckling mode, the secondary buckling mode would be triggered
when the primary mode is fully developed. Since the primary mode is stable or neutral,
the imperfect system would approximate to the perfect case in the purely elastic scenarios.
The imperfections with interactive post-buckling mode profiles would have an immediate
destabilization effect on the system, i.e. a reduction in stiffness, which would facilitate the
triggering of the secondary mode and expedite the reaching of the ultimate state (Supple,
1967).

As for the effects of superposing a tolerance level global imperfection on a local imperfec-
tion, the ratio of the ultimate load for struts with purely tolerance level local imperfections
to that of struts with combined imperfections, P, joc tol/Putol, almost remains constant in
the range where global buckling is critical, with the average and the COV being 0.896 and
1.2% respectively. It should be noted that the value is very close to the strength reduction
factor 0.877 of the nominal strength for slender elastic columns from the current Direct
Strength Method (DSM) (Schafer, 2008). In the range where local buckling is critical,
Pyocto/ Putol increases with increasing PC/PE, with Py 10c t01/ Puto1=0.965 at PC/PF=2.
The ratio remains approximately constant beyond the point. As for the effects of superpos-

ing a tolerance level local imperfection on struts with a tolerance level global imperfection,
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Py glob tol/ Patol increases with the increasing PC/PF from 0.839 at PC/PF=0.2 to 0.985 at
PE/PF=2, as shown in Figure[7.15(b), and the ratio converges gradually to unity beyond

this point.

As shown in Figure[7.15(b), a curve is fitted based on the numerical results to describe the

relationship between P, o1 and Py giob tol:

0.18

Pyto1 = |0.836 + -
ol 1.2+ (PS/PO) 124

Pu,glob,tol~ (79)

The average ratio of Eq. (7.9) to FE results in the range P¢/PF=[0.2,4] is 1.000 and the
COV is 0.63%. In a similar way to Eq. (7.8]), the current equation is also limited to the
current geometric space and further parametric studies are necessary to make it apply to

a wider range of cases.

7.3 Concluding remarks

Based on the nonlinear variational model developed in Chapter [5, the imperfection sen-
sitivity of axially-loaded thin-walled rectangular hollow section struts with initial global
and local geometric imperfections is investigated. Numerical examples, focusing on cases
where the global buckling load is close to the local buckling load, have been presented
and verified using the FE model developed in Chapter |3l The sensitivity of two example
struts exhibiting mode interaction to initial geometric imperfections has been quantified.
With the increase of the geometric imperfection size, a transition from highly unstable to
neutrally or mildly stable post-buckling behaviour is observed. A progressive change in
the local buckling mode is identified in terms of both wavelength and amplitude. In par-
ticular, mode jumping within the interactive buckling mode, 7.e. the change in the number
of troughs and peaks of the local mode and snap-backs in the equilibrium path, is also

observed in the cases where the local imperfection size is vanishingly small. A simplified
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method to predict the load at the pitchfork bifurcation point, where interactive buckling
is triggered, is proposed for struts with purely global imperfections based on the verified
variational model; it is demonstrated to be simple, yet safe and accurate for the cases

studied.

A parametric study on the effects of global tolerance imperfections, local tolerance im-
perfections and their combinations on the ultimate load for struts with different lengths
was conducted. It was revealed that for struts with tolerance level global imperfections,
the post-buckling behaviour after the pitchfork bifurcation point is unstable and stable
for struts with global buckling and local buckling being critical respectively. It was also
found that local imperfections are more significant than global imperfections for struts
with global buckling being critical and global imperfections are more significant for struts
with local buckling being critical. This is attributed to the characteristic behaviour where
the alternative imperfection type would facilitate the necessary symmetry breaking to trig-
ger interactive buckling. Based on the parametric study results, the simplified method to
predict the pitchfork bifurcation load is calibrated to calculate the ultimate load for struts

with tolerance level global and combined imperfections.

It should be stressed that, in the current chapter, only one type of local imperfection
profile was investigated, i.e. a mono-symmetric cross-section profile with the longitudinal
component based on fitting the eigenmode from linear buckling analysis. This may not
represent the most severe imperfection profile. Therefore, the effects of imperfection profiles

on the ultimate load is investigated in the following chapter.



Chapter 8

Sensitivity to manufacturing

tolerance level imperfections

The current chapter is a continuation of the preceding one on the imperfection sensitivity
of thin-walled RHS struts susceptible to interactive buckling. However, it focuses on the
behaviour of such struts with imperfections, the sizes of which are related to the recom-
mended manufacturing tolerances. A measurement method for different local imperfection
profiles based on the concept of equal local bending strain energy is proposed. A proce-
dure to terminate the nonlinear analysis within ABAQUS when certain failure criteria are
met is developed, which makes an automated parametric study more efficient. The effects
of the imperfection profile, i.e. cross-section profile, the longitudinal wavelength and the
degree of localization, on the ultimate load and equilibrium path of four characteristic
length struts are investigated and the most severe local imperfection forms are identified.
The effects of localized imperfections on the behaviour of struts are also discussed. A
parametric study on the wavelength of the most severe imperfection profile is conducted
and a semi-empirical relationship to determine the corresponding wavelength is proposed.
The mechanism of global buckling in struts with tolerance level doubly-symmetric local

imperfections is discussed and an explicit equation to calculate the global buckling load is
256
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proposed.

8.1 Imperfection description and modelling

Since the variational model exhibits a relatively stiffer response where the imperfection
size is close to the tolerance level, all the analyses in the current chapter were conducted
using the FE model developed in Chapter In order to model bespoke imperfection
profiles, MATLAB was used to generate the nodal coordinates input file for the FE model
with pre-defined global and local imperfections. As shown in Figure the geometric
imperfection description follows the same principles as presented in for the variational
model, which is based on the local and global buckling mode description. These modal
functions have been demonstrated to be capable of describing purely local and global
buckling modes, as well as the interactive buckling mode, for perfect struts with different
lengths very well. Specifically, the global and local imperfections are defined by Eq.

and Eq. (5.13) respectively. However, it should be noted that the set of functions for the

(a) Global imperfection (b) Local imperfection

Sway component

Doubly-symmetric Mono-symmetric

z Jiw®)
-]

.

Tilt component

R A
TN

—

Figure 8.1: Imperfection descriptions. (a) Global imperfection bending about weak axis
y: sway and tilt components. (b) Cross-section component of local imperfections: doubly-
symmetric and mono-symmetric profiles.

doubly-symmetric cross-section profile in the local mode, i.e. Egs. (5.2)) and (5.3)), is only

valid for rectangular hollow section struts with relatively large cross-section aspect ratios,
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i.e. d/b > 1.5. Therefore, a new set of functions is used, which is valid from a square to a
rectangular hollow section. These expressions are derived from a semi-analytical method,
the details of which may be found in Appendix [C] The longitudinal component of the local
imperfection w;o(z) has the same format as Eq. . As shown in Figure , the degree
of localization and the number of half-waves in the local imperfection profile can be varied

by adjusting the parameters «; and ; respectively.

8.2 Unified local imperfection measurement criterion

Since A;g, §; and «; in Eq. are parameters that have various different combinations,
purely using the imperfection amplitude A,y as the sole measurement of imperfection size
inevitably neglects important features and does not provide meaningful comparisons. Pre-
vious studies (Wadee, 2000; Bai & Wadee, 2015a; |Wadee & Farsi, 2015; |Liu & Wadee,
2016b) adopted the concept of the total end-shortening arising from introducing the local

imperfection to measure various different longitudinal distributions of local imperfections:

1 L
Eio = —/ U'f?o dz, (8.1)
2 Jo

which includes the contribution from all the parameters in Eq. . However, this 1-D
approach is not easily adaptable for the comparison of the doubly-symmetric and mono-
symmetric cross-section imperfection profiles in the current case. Hence, a 3-D approach
based on the local bending energy is proposed currently. It should be noted that a similar
methodology was also adopted previously in an investigation on the effects of local im-
perfection profiles in the response of simply-supported rectangular plates (Sadovsky et al.,
2005). From classical plate bending theory (Bulson, 1970) and the energy formulation in

preceding chapters, the total local bending energy stored in the entire strut due to the
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initial local imperfections USJ can be expressed as:
Ugl :Ul()] If + Ult()]lwc + Ulglwt
=D / / e Pwr 672?1)fo ?
! b2 072 ox?
821Uf0 (92wa (92wa 2
—-2(1 - — dr d
( V){ 022 0Ox? (82833) } v
/ /d/2 a2wwc0 + a2wwc0 ?
/2 072 0y? (8.2)
82UJWCO aQwWCO a271)w00 2
—9(1 — _
( V){ 022 0y? ( 020y ) } dy dz
/ /d/2 82rwwtO + 82rwwtO ?
42 072 oy?
aQU)WtO awatO a2lujwt(] 2
—9(1 — _
=2 { 022 Oy’ ( 020y ) } =

where Uy, U 1yer Uy are the local bending energies due to the initial local imperfections

in both flanges, the more compressed web and the less compressed web respectively; Dy =
Et}/[12(1 — v?)] and Dy, = Et3 /[12(1 — v?)] are the flexural rigidities of the flanges and

webs respectively.

By substituting wyy, wyeo and wyo from Eq. (5.13) into Eq. (8.2)), the local bending energy
due to local imperfections with the doubly-symmetric (i = 1) and mono-symmetric (i = 2)

cross-sectional components can be expressed thus:

Ubh_D / [(Qtf } +{ zwc} +{ zwt} )
2t 112 //2 ,,2
v (B ey, + LR, + (2, ) i
+2v <t_f {flffz,é}x + {fiwc ZWC} + {fZWtfzwt} ) wi(]wio

o (Qtf{ o {ny )wgoldz,
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where dots represent differentiation with respect to z; primes denote differentiation with
respect to z and y for flanges and webs respectively. From Eqgs. and , it can
be seen that the variation of local imperfections in both cross-sectional and longitudi-
nal dimensions can be considered. Moreover, the advance in imperfection measurement
facilities (Zhao et al., 2015) has made it possible to obtain the 3D distribution of local
imperfections. Using numerical integration, the corresponding local bending energy can
be obtained, which can be adopted as a reference value to compare different imperfection

profiles.

It should be noted that from the perspective of linear buckling theory (Timoshenko &
Gere, 1961), the local bending strain energy in struts due to local imperfections is equal
to the work done by load due to local imperfections at the initial instability. Therefore,
the current method based on the equal local bending energy is essentially equivalent to

previous concepts based on the equal work done by load or equal end-shortening (Wadee,

2000).

8.3 Effects of local imperfection profiles

Chapter [6] has demonstrated that there are four distinct length-dependent zones for thin-
walled RHS struts, which exhibit different post-buckling behaviour, as shown in Figures[6.2]
and Therefore, four representative example struts with the same material and geo-
metric properties as those in Table are adopted. Table presents the strut length and

the corresponding number of half-waves 3y in the local buckling mode. It should be noted

Table 8.1: Number of half-waves [y in the local buckling mode for the struts in four
characteristic length-dependent zones. The theoretical values of global and local buckling
loads as well as the length description for the struts can be found in Table

Zone 1 2 3 4
L(mm) 4800 4500 4000 3600
5o 49 45 41 37
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that the number of half-waves [, in the pure local buckling mode from both analytical
and FE models are the same for all four characteristic struts, even though the profiles are

periodic and modulated for the analytical and FE models respectively.

For each characteristic length strut, four different imperfection cases are studied, as pre-

sented in Table For the first one, the imperfection profile is the critical local buckling

Table 8.2: Initial local imperfection parameters for the most severe local imperfection case
study. Note that ‘Eval’ in the table represents quantities evaluated based on the other
input parameters and the number of half-waves 3;=4,.

Case Uy, Ay  Cross-section profile f; Notes
1 N/A d/200 doubly-symmetric Linear buckling mode
2 Uy, d/200 mono-symmetric Afy=0, AY=d/200
3 0}y, Ewval doubly-symmetric ~ Up; is equal to that in case 2
4 Eval d/200 doubly-symmetric AYy=d /200, A,=0

mode obtained from linear buckling analysis using the FE model and the corresponding
imperfection amplitude is d/200, which is the tolerance level for the local imperfection
amplitude, as recommended by Eurocode 3 (EN-1993-1-3:2006E, 2006). It is used as a
reference to compare with the imperfection profiles in other cases. The second case adopts
the mono-symmetric cross-section imperfection profile, with the number of half-waves along
the strut length [y being equal to those listed in Table [8.1] and the initial imperfection am-
plitude AY also being d/200. The third case adopts the doubly-symmetric cross-section
imperfection profile and the local bending energy due to local imperfections is equal to that
in the second case, which aims to study the more severe case between the mono-symmetric
and doubly-symmetric ones with the same local bending energy stored from the initially
imperfect geometry. The fourth case adopts the doubly-symmetric cross-section imper-
fection profile, with 3y and AY, being the same as those in the second case; this aims to
study the more severe case between the mono-symmetric and doubly-symmetric cases with
the same local imperfection amplitude. Moreover, it should be stressed that the global
imperfection is not included in the example struts in the current section. For convergence

purposes, a global perturbation distribution defined by Eq. (5.12)) with the normalized
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amplitude ¢,0=107% is introduced.

8.3.1 Algorithm for determining most severe local imperfection

profile

The investigation to determine the most severe local imperfections comprises two stages,

as shown in Figure[8.2] A similar methodology has already been adopted for studying the

a=0, B=Po, A} fi
llb,]l: a fixed given value

[ Calculate A, with the
‘| combination of &, g; and U

b,li

Compute the ultimate load of
‘[the strut with the

Increase o;

{the combination of a;, §; and
| A;p using GNIA in ABAQUS
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Periodic local
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I
I
I
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I
I
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|
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|

Figure 8.2: Algorithm for determining the most severe case periodic and modulated lo-
cal imperfections under the constraint of the equal local bending energy of the initially
imperfect geometry.

most severe local imperfection profile in sandwich panels (Wadee, 2000), I-section struts

(Bai & Wadee, 2015a; |Liu & Wadee, 2016b) and stiffened plates (Wadee & Farsi, 2015)):

1. Periodic imperfections are investigated by adopting ; as the principally varying pa-

rameter. Initially, the value of Ugh- is determined and fixed based on the combination



CHAPTER 8. SENSITIVITY TO MANUFACTURING TOLERANCE LEVEL IMPERFECTIONS 263

of a; = 0, f; being the number of half waves of the pure local buckling mode ;o from
the variational model in Chapter @, AY) being the local imperfection amplitude tol-
erance level value adopted from Eurocode 3 (EN-1993-1-3:2006E, 2006). Then, the
quantity (; is varied as the principal parameter and increased from a sufficiently small
but reasonable odd integer while the value of a; remains zero. Note that the value
of B; only takes odd integer values to satisfy the boundary and symmetry conditions.
The amplitude A;p is varied accordingly to keep Ug,u at the selected value; hence,
increasing [; would naturally lead to a decrease in A;y. GNIA is conducted to obtain
the ultimate load of the strut with each combination of 8; and A;5. In particular,
the combination of §; and A, that gives the lowest ultimate load P, is recorded and

used for the modulated imperfection study.

2. Modulated local imperfections are investigated by adopting «; as the principally
varying parameter. The quantities 5; and Uﬁli are the same as those corresponding
to the lowest ultimate load in stage 1. The localization parameter «; is set as the
principally varying parameter and the amplitude A,y is varied accordingly to keep
Ugvh- constant; increasing «; naturally leads to a higher value of A;p; GNIA is also
conducted to obtain the ultimate load of the strut with each imperfection combination
of a; and A;9. In particular, the combination of a; and A;y that gives the lowest

ultimate load P, is recorded.

Automated termination of nonlinear analysis in Abaqus

In order to make the process presented in Figure [8.2] automated, the principal challenge
is to terminate the nonlinear analysis automatically once certain failure criteria are met,
since current versions of ABAQUS do not provide such a functionality satisfactorily. As
mentioned in §3.3.2] there are some existing FORTRAN codes using an ABAQUS user sub-
routine (Sadowski et al., 2017a)) that are able to terminate the nonlinear Riks arc-length

analysis automatically once certain criteria are met.
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Currently, the main body of the program, as presented in Figure 8.2] is developed within
MATLAB, such as the determination of key imperfection related parameters (i.e. Ao, v, 5;
and U,g”h-), FE model creation, nonlinear analysis job submission and data post-processing
and output. In order to make the program self-consistent, a function is developed within
MATLAB to terminate the nonlinear analysis once the failure criteria are met, the algorithm
of which is presented in Figure [8.3] Based on the equilibrium paths obtained in previous
chapters, two failure criteria are adopted in the function, as shown in Figure [8.4] The first
one represents the cases where there is a clear maximum load in the load—end-shortening
relationship, as shown in Figure [8.4a). This failure mode can be easily determined when
the incremental load proportionality factor (LPF) becomes negative or smaller than the
tolerance value (1077). In ABAQUS, the LPF of each step is output in the ‘.sta’ file.
Therefore, by monitoring the incremental LPF in the ‘.sta’ file, the limit point can be
easily detected. Once the negative incremental LPF is detected, the nonlinear analysis can

be terminated using the system command in MATLAB.

The second failure criterion mainly deals with the cases where the post-buckling behaviour
is essentially neutral, as shown in Figure (b) In such cases, it may take over hundreds
of steps to reach the point where the incremental LPF becomes negative or smaller than
the tolerance value (1077). Moreover, in practice, reaching the plateau can be treated as
the failure of a column, since a tiny increase in the load capacity would lead to a large
structural deformation. To improve the computational efficiency, the Modified Southwell
(MS) method (Doerich & Rotter, 2011; [Sadowski et al., 2017a) is adopted to determine

the termination point.

For illustration purposes, the equilibrium path of the short length strut with a tolerance
level mono-symmetric cross-section profile local imperfections is presented, as shown in
Figure [8.5] Firstly, the load and end-shortening are extracted from the ‘odb’ file by run-
ning the post-processing python script within MATLAB. Then, the equilibrium path is

transformed into the Modified Southwell (MS) plot, as shown in Figure[8.5(b), which com-
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Figure 8.3: Algorithm for function to terminate the nonlinear analysis when the load begins
to drop or the load—end-shortening curve reaches the plateau. Note that ALPF represents
the incremental load proportionality factor; AP, is the tolerance value for ALPF; pflfg
represents the estimated ultimate load at the i*" step; ‘Errtol’ is the error tolerance for the
difference between the estimated ultimate loads. Note also that the ‘odb’ file is ABAQUS
output database and stores the entirety of the computed nodal and element variables; the
‘sta’ file is the ABAQUS status output file and stores the status of increment summaries of

nonlinear analysis.
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(a) (b)
P P

End-shortening End-shortening

Figure 8.4: Sketch of two typical equilibrium paths describing failure for thin-walled RHS
struts: (a) clearly unstable post-buckling behaviour; (b) weakly stable post-buckling be-
haviour.

prises a nearly vertical part at the start corresponding to the nearly linear response and

a plateauing part corresponding to the global buckling of locally buckled struts. The es-

est
u,t

timated ultimate load p¢: is computed by the tip of the non-vertical portion of the MS
curve on the vertical axis, which can be determined by linear fitting through the three
adjacent data points on the MS curve. If the absolute relative difference between any
two adjacent estimated ultimate loads is below the error tolerance, which is set as 0.05%

currently, it is assumed that the plateau has been reached and the command is sent to the

est
u,?

ABAQuUS/Standard solver to terminate the nonlinear analysis. Currently, p®! is only used
for convergence judgement purposes and the load corresponding to the final step before the
analysis termination is adopted as the ultimate load in such cases. Moreover, the failure

criterion is used when the ultimate load is not reached within 100 steps, which can also

avoid the effect of vertical portion in the MS plot. It should be noted that there may be

est
u,i—1

some jumps in the |pif — pi 4 |/p

due to the piecewise numerical solution, as shown
in Figure B.5|c), but the absolute difference decreases with the increase of load increment
steps generally. As shown in Figure (a), the termination point determined by the second

criterion can detect the plateau well.
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Figure 8.5: Numerical illustration example for the Modified Southwell (MS) method to
estimate the failure load from partial nonlinear analysis data and terminate the nonlinear
analysis once certain failure criterion is met. (a) The normalized load-end-shortening
relationship. Symbol (*) represents the termination point determined based on the current
failure criterion. (b) Modified Southwell (MS) plot from (a). Note that the curve is nearly
vertical at the initial stage of loading. (c¢) Convergence and the termination criterion. The
quantities pfff and pfj}_l represent the estimated ultimate load using the MS method at
step 7, which are determined based on a linear fit through the three most recent adjacent
data points in (b). The dashed line represents the error tolerance for the absolute relative
difference between any two adjacent estimated ultimate loads through MS method, i.e.

0.05%.
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8.3.2 Effects of number of sinusoidal half-waves [;

The imperfection sensitivity of struts with various different local periodic imperfection

profiles is shown in Figure With the increase of the number of half-waves (;, the
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Figure 8.6: Normalized ultimate load of struts p, = P,/P® versus number of half-waves

B; with different local imperfection cases presented in Table for different length struts.
Symbols o, >, * represent cases 2, 3 and 4 respectively; the dashed line represents case 1.
The pentagram and hexagram on the horizontal axis represent the number of half-waves in
the pure local buckling mode and in the local-global interactive post-buckling mode of the
perfect struts respectively; recall that the interactive post-buckling mode has a naturally
modulated amplitude.

normalized ultimate load p,=P,/PC, where PC is the critical buckling load for the perfect
strut, decreases and then increases again. This trend resembles the relationship between

the plate length to width aspect ratio and the critical buckling load of simply-supported
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rectangular plates under axial compression (Bulson, 1970). It should be noted that under
the equal local bending energy constraint, the imperfection amplitude naturally decreases

with increasing ;, as shown in Figure .7} Therefore, the amplitude of the most severe

(a) L=4800 mm (b) L=4500 mm (¢) L=4000 mm (d) L=3600 mm
1 0.8

(6}

0.6
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0.4
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40 50 60 70 40 50 60 70 40 50 60 70
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Figure 8.7: Normalized amplitude of local imperfections versus number of half-waves j;
for different imperfection cases presented in Table [8.2] The symbols in the graphs are the
same as described in Figure Note that the value of 3; at the intersection of o and *
symbols with the dashed line is the number of half-waves in the longitudinal direction of
the pure local buckling mode.

imperfection profile is smaller than that of imperfection profiles with fewer half-waves,
which correspond to a much higher ultimate load. It is therefore demonstrated that the
imperfection amplitude itself only cannot be used as the unique reference for determining

the most severe imperfection profile.

For all four different length struts, the most severe imperfection profile is from the doubly-
symmetric cross-section profile imperfection (case 4) with the second most severe being
from the mono-symmetric cross-section profile imperfection (case 2). The differences be-
tween these two cases are within 1%. It should be noted that the relationship of the
imperfection amplitude and the number of half-waves is very close to each other for these
two cases, as shown in Figure However, the local bending strain energy due to the
local imperfection in case 4 is nearly double of that in case 2. When the local bending
energy is equal, i.e. taking cases 2 and 3, the mono-symmetric cross-section local imper-
fection profile is more severe than the doubly-symmetric one. Specifically, the difference

is approximately 5% for the long length strut with L = 4800 mm, while the difference
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becomes smaller with decreasing strut length. It should also be noted that the ratio of the
local imperfection amplitude for cases 2 and 3 is approximately 1.4 in the range of f3;, as
presented in Figure[8.7] It reveals that the ultimate load is principally affected by the local
imperfection profiles, i.e. the number of half-waves and amplitude, in the more compressed
web. Moreover, the difference in p, for cases 3 and 4 also decreases as the strut length
decreases, which implies that short struts with relatively larger values of P¢/B° would
exhibit relatively less sensitivity to local imperfections. This finding is also in accord with

that presented in Figure [7.15]

As for the number of half-waves in the most severe case, it is larger than that in the
pure local buckling mode and the local-global interactive post-buckling mode for perfect
cases from Chapter [6] as shown in Figure Moreover, cases 3 and 4 have the same
cross-section imperfection profiles but different imperfection amplitudes, i.e. different local
bending energy levels due to local imperfections. The values of §; corresponding to the
lowest ultimate load are different for these two cases, which implies that the most severe
imperfection profile is also related to the imperfection amplitude. This finding is in accord
with previous studies on the most severe local imperfection profile of I-section struts (Bai &
Wadee, 2015a)) and stiffened panels (Wadee & Farsi, 2015). However, it should be stressed
that a small increase or decrease in the value of 3; would only lead to a tiny change in the
ultimate load, which has also been reported in a study on the imperfection sensitivity of

open-section storage rack columns (Trouncer & Rasmussen, 2015)).

Figure also shows the ultimate load of struts with imperfection profiles corresponding
to the lowest local buckling mode from linear buckling analysis using the FE model. The
difference with the most severe case decreases from approximately 5.4% for the long length
strut to approximately 4.3% for the short length strut, as shown in Table 8.3l Therefore, it
may be concluded that the lowest local buckling mode does not always represent the most

severe imperfection profile.
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Table 8.3: Ultimate load and local imperfection amplitude of the most severe local periodic
imperfection profile. Note that for case 1, P,/P, 1A re=1.0 by definition and A;,/t=0.6
for all lengths.

I P,/ Py 1BAFE A/t
case 2 case 3 case4d | casel case?2 cased case4
4800 0.959 1.007 0.955 0.494 0.377 0.508
4500 0.961 0.998 0.953 0.6 0.488 0.358 0.480
4000 0.969 0.991 0.959 ' 0.475 0.349 0.467
3600 0.968 0.984 0.958 0.463 0.323 0.455

8.3.3 Effects of the degree of localization «;

As described in Figure the study on the effect of localization is based on the results
of the immediately preceding section. The number of half-waves (; for each case is kept
to the value corresponding to the lowest ultimate load as presented in Figure 8.6 The
equivalent local bending energy due to local imperfections Ugl also remains the same in
each case. The relationship of the normalized imperfection amplitude A;y/t versus «; under

the constraint of equal local bending energy is shown in Figure In contrast with the

(a) L=4800 mm (b) L=4500 mm (¢) L=4000 mm (d) L=3600 mm

ijo/t

Q; Qg % Q;

Figure 8.8: Normalized amplitude of the local imperfection versus the degree of localization
«a; for different imperfection cases as presented in Table 8.2l The dashed, solid, dotted and
dot-dashed lines represent the imperfection profiles from cases 1, 2, 3 and 4 respectively.

Ao/t versus f3; relationship, the increase in «; would lead to an increase in A;o/t under the
equal local bending energy constraint. However, the A;y/t versus «; relationships for cases

2 and 4 are still very close to each other, as they were in the A;o/t versus 3; relationship,

see Figure



CHAPTER 8. SENSITIVITY TO MANUFACTURING TOLERANCE LEVEL IMPERFECTIONS 272

The relationship between the normalized ultimate load p, and the degree of localization «;

for different length struts is shown in Figure Initially, the ultimate load decreases from

(a) L=4800 mm (b) L=4500 mm
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Figure 8.9: Normalized ultimate load of the strut p, = P,/ PC versus the degree of local-

ization «; for different local imperfection cases presented in Table Line types in the
graphs represent the same cases as those described in Figure

the periodic profile to the localized one in all four cases. The modulation of the longitudinal
profile does affect the ultimate load but the effects are relatively small. Specifically, the
modulation only leads to a further 0.6% to 2.6% drop in the ultimate load. Among cases
24, the effect is most minor for the mono-symmetric case, where the further drop is below
0.8%. With further increase in the degree of localization, the ultimate load begins to
increase, even though the imperfection amplitude increases. This, again, demonstrates

that the imperfection amplitude is not suitable to be used as the unique criterion for
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imperfection measurement. Moreover, at least for the current purely elastic case, a highly
localized local imperfection with a large imperfection amplitude does not represent the

most severe imperfection profile.

The comparison of the lowest ultimate load and the normalized imperfection amplitude for
each case with the profile that is affine to the lowest linear buckling mode from FE models

is shown in Table For all four cases, the largest and the second largest differences in

Table 8.4: Ultimate load and local imperfection amplitude of the most severe local modu-
lated imperfection profile.

I Pu/Du,LBA,FE A/t
case 2 case3 case4d |casel «case2 cased case4d
4800 0.952  0.985 0.932 0.711 0.570 0.817
4500 0.953 0.980 0.933 0.6 0.702 0.542 0.776
4000 0.963 0.979 0.942 ' 0.684 0.555 0.756
3600 0.963 0974 0.944 0.666 0.514 0.770

the ultimate load occur in cases 4 and 2 respectively, with the largest percentage difference
value being 6.8% in case 4 for the long length strut. However, the corresponding imper-
fection amplitude in cases 2 and 4 is larger than that of the linear buckling mode profile,

1.e. the tolerance level value.

For all four characteristic length struts, the values of «; corresponding to the lowest ultimate
load for doubly-symmetric imperfection cases are very close and are slightly larger than that
for the mono-symmetric imperfection case. The longitudinal component of the most severe
imperfection profiles in cases 3 and 4 for the long length strut are shown in Figure m (a,
b). For comparison purposes, the longitudinal component of the local buckling mode from
linear buckling analysis and the interactive buckling mode in the advanced post-buckling
range of the perfect system from Chapter |§| are also shown in Figurem (c, d) respectively.
As identified in the preceding subsection, the wavelength of the most severe imperfection
profile is considerably shorter than the linear buckling mode and slightly smaller than the

interactive post-buckling mode in the advanced post-buckling range.
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Figure 8.10: Normalized longitudinal profile in the more compressed web of (a) most
severe imperfection profile for the mono-symmetric imperfection (case 2), (b) most severe
imperfection profile for the doubly-symmetric imperfection (case 4), (c) local buckling mode
from linear buckling analysis and (d) interactive mode in the advanced post-buckling range
of the perfect system where ¢, = 0.009 for the long length strut with L = 4800 mm. Note
that Wyeo = Wiweo/ Wieo max aNd Wye = Wye/Wive max-
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8.3.4 Equilibrium paths for struts with the most severe imper-

fection profile

Figure [8.11] presents the nonlinear equilibrium paths of example struts with the most
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Figure 8.11: Equilibrium paths of example struts in zones 1-4 presented in columns (a)—
(d) respectively, with the most severe imperfection profiles of the four cases presented in
Table Graphs of normalized load ratio p = P/P® versus normalized end-shortening
&/ L in the first row and the normalized global amplitude ¢ in the second row; the third row
shows the normalized maximum amplitude of local deflection in the more compressed web
Wye,max/tw Versus gs. Line types in the graphs correspond to the same cases as described

in Figure

severe local imperfection profiles for each case described in Table Unlike the perfect
case, where the equilibrium paths for four example struts are qualitatively different, the

struts with tolerance level local imperfections exhibit approximately the same behaviour,
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i.e. column-like weakly stable, practically neutral, post-buckling behaviour. This is also
reported in previous work using simplified models (van der Neut, 1969; |Gilbert & Calladine,
1974)) and experimental studies (Gilbert & Calladine, 1974)).

For cases with doubly-symmetric cross-section imperfection profiles, the symmetry in the
deformation remains until mode interaction is triggered and the interaction leads to the
approximately neutral post-buckling behaviour. For the case with the mono-symmetric
imperfection profile, the symmetry in the deformation is broken from the start, ¢.e. the
global mode is introduced at the beginning of the numerical run, thus making the initial
bending stiffness much lower than those in the doubly-symmetric cases. However, the
equilibrium path converges to the doubly-symmetric case when the global mode is fully
developed, i.e. when g > 0.005. Therefore, it may be inferred that the ultimate behaviour
of such struts with tolerance level imperfections would be governed by eventual material
failure, rather than the cases where imperfection size is tiny and a drop in stiffness due
to mode interaction governs as reported in Chapter [6] Moreover, it is concluded that
determining the global buckling load of struts with tolerance level local imperfections may

provide a good approximation for the ultimate load in such cases.

8.4 Discussion

In a similar way to the local imperfection amplitude, the equivalent local bending energy of
imperfection profiles also cannot be used as the sole criterion to determine the severity of
imperfection profile. However, it gives an insight into how the imperfection profiles affect
the ultimate load. Therefore, it can still be used as an important reference to judge the

severity of local imperfections.

In this subsection, a discussion is presented that considers why very localized local imper-

fections with high imperfection amplitudes exhibit higher ultimate loads than the periodic
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ones with the same local bending energy. Moreover, the most severe imperfection profile
and the wavelength under the constraint of the manufacturing tolerance level is discussed,

as is the effect of global imperfections on the most severe local imperfection profiles.

8.4.1 Effects of localization on tangent stiffness and ultimate load

As shown in Figure[8.9] struts with very localized imperfections exhibit considerably higher
ultimate loads than periodic imperfections, even though the corresponding amplitude is
much larger than that of the periodic case. These findings are similar to those in earlier

work on thin plates (Dow & Smith, 1984).

Since the global buckling load of struts with doubly-symmetric cross-section imperfection
profiles is related to the axial stiffness distribution, the axial tangent modulus of the cross-
section versus load relationship is analysed. It should be stressed that the relationship for
different lengths is approximately the same before global buckling is triggered. Therefore,
the relationship of the tangent axial stiffness and the normalized axial load for the perfect
short length strut and the short length strut with periodic (a3 = 0) and highly localized
local imperfections (a3 = 20) with the cross-section profile being doubly-symmetric are
presented in Figure [8.12(a) for illustration. It should also be noted that the cross-section
imperfection profiles, the number of half-waves and initial local bending energy due to local

imperfections for both imperfect struts are the same as that for case 4 in Figure [8.11fd).

The strut with localized imperfections exhibits a higher tangent stiffness than the periodic
case from the commencement of loading. This is attributed to the fact that the local
out-of-plane displacement in the webs is affine to the localized imperfection profile and
that there is no out-of-plane displacement at the loaded end before the local buckling
load is reached, as shown in Figure M(b) It implies that there is no progression of the
local out-of-plane displacement from the localized to being more distributed, as seen in

the local-global interactive buckling for the perfect case. The zero displacement in the
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Figure 8.12: (a) Cross-sectional axial tangent modulus of the short length strut with
increasing load level. (b—d) Longitudinal component of the local buckling mode in the webs
(solid line) at different load levels and the initial imperfection (dashed line), where p =
P/PF. Note that the cross-section profile of the local imperfections is doubly-symmetric
and global imperfections are not included.

plate represents no loss in the axial stiffness, which helps to explain the relatively higher
tangent axial stiffness compared to the periodic imperfection case. When the load reaches
the local buckling load of the strut, there is a sharp drop in the axial stiffness, which is
also observed in the perfect case. This corresponds to local buckling of the unbuckled plate
near the loaded-end, as shown in Figure (c) After that, the out-of-plane displacement
in the webs becomes more distributed. However, it should be noted that the wavelength
near the loaded end is relatively larger than at mid-span, which is determined by the
imperfection, as shown in Figure M(d) Moreover, it is worth mentioning that although
struts with highly localized local imperfection profiles exhibit higher ultimate loads, there
is a tiny drop in the load capacity afterwards and it converges to that of the periodic case
with the lowest ultimate load, which implies that the post-buckling behaviour is weakly
unstable. This is also observed in plates with localized imperfections (Dow & Smith, 1984).
However, it should also be mentioned that the current discussion only applies for purely

elastic cases. As reported by Gardner & Nethercot (2004al), the localization of deformation
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profile could well lead to the premature failure of material. A study on the most severe
imperfection profile where the effects of the material nonlinearity are included is left for

future work.

8.4.2 Most severe imperfection profile under amplitude tolerance

constraint

As presented in Figure and Table the most severe imperfection profile for each
strut corresponds to case 4 with the modulated longitudinal components, 7.e. the doubly-
symmetric cross-section with a;#£0 (see Egs. and for the definition of the
modulated imperfection). However, since current manufacturers principally adopt the
tolerance level of imperfection amplitude as the quality control, the worst profile determined
in would be practically insignificant owing to its excessive amplitude, as shown in
Table Therefore, based on the algorithm presented in Figure the value of a; that
makes the imperfection amplitude be the tolerance value under the constraint of equal
local bending energy is determined using the interval bisection method. It should be noted
that the value of oy purely corresponds to the horizontal coordinate at the intersection
of the dashed line and the dot-dashed line in Figure [8.8 where the amplitude of the
imperfection is equal to the tolerance level under the equal local bending energy constraint.
The longitudinal component of the most severe imperfection profile under the amplitude

tolerance constraint is presented as the solid line in Figure [8.13

It should be stressed that the modulated imperfection profiles are relatively complex to
model when compared with the periodic imperfection profiles, the latter of which can
be obtained directly from some software, such as CUFSM (Schafer, 2006a). Moreover,
as can be seen from Table |8.5] the ultimate load for struts with a periodic imperfection
profile is lower than the corresponding modulated imperfection with the same amplitude.

Therefore, for modelling convenience, the periodic imperfection profile with the tolerance
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Figure 8.13: Longitudinal component of the most severe imperfection profile (case 4) wiq
under the amplitude tolerance constraint (solid line), with the degree of localization pa-
rameter a; being (a) 2.269, (b) 2.742, (c¢) 2.977 and (d) 3.213 respectively for different
length struts. Dashed lines represent the periodic imperfection profile with the amplitude
being the tolerance value, which is currently used for a safe approximation of the most

severe imperfection profile.

Table 8.5: Normalized ultimate loads of struts with the most severe modulated local im-
perfection and approximations using periodic profiles under the amplitude tolerance con-
straint; P, 1,8a,an represents the ultimate load of struts with periodic imperfection profiles
from linear buckling analysis using the analytical model presented in Appendix [C] with

tolerance level imperfections.

L Pu/Pu,LBA,FE P P
(mm) Modulated Periodic winaAn/ P, pe
4800 0.944 0.932 0.967
4500 0.941 0.925 0.970
4000 0.949 0.929 0.977

3600 0.949 0.927 0.980
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level amplitude could be adopted as a safe approximation of the most severe imperfection
profile, as presented with the dashed line in Figure [8.13] The following discussion and
parametric study focuses on local imperfection profiles with doubly-symmetric cross-section

and periodic longitudinal components.

8.4.3 Effects of superposing tolerance level global imperfections

In the preceding sections, the most severe local imperfection profile is determined based
on the cases with pure local imperfections. In order to investigate whether the most
severe local imperfection profile would change with the inclusion of tolerance level global
imperfections, a parametric study on the most severe local imperfection is conducted for
the cases where both tolerance level local and global imperfections exist using the algorithm

presented in Figure (8.2

The normalized wavelength of the most severe imperfection profile for the two cases are
shown in Figure Compared with the pure local imperfection cases (hollow circles),
the introduction of the global imperfection (solid circles) leads to a further decrease in the
wavelength. However, the increase and decrease in the number of waves near the most
severe imperfection profiles Syorst has minor effects on the ultimate load. Specifically, for
the example struts in the current paper, 4 half-waves would lead to errors within 0.5%
for both cases, which are shown in Figure m Therefore, the range between Beomb, worst —4
and Biocworst 4, 4.€. the range enclosed by the dashed lines in Figure is the overlap
of the two cases, which can be used for the approximation of the most severe imperfection
profile with excellent accuracy for both cases, as outlined above. It may therefore be
concluded that the most severe imperfection profile determined in the case with purely

local imperfections is still valid for the cases with both local and global imperfections.

Moreover, instead of determining Syost for each characteristic strut length individually

using the iterative process, it is postulated that a fixed reduced wavelength can be used
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Figure 8.14: Normalized wavelength of the most severe local imperfection profile with
a doubly-symmetric cross-section profile for different length struts. The quantity A, 1pa
represents the wavelength of the lowest local buckling mode, which is determined using
Eq. ; quantities Biocworst aNd Beombworst T€present the number of half-waves of the
most severe imperfection profile with purely local imperfections and combined local and
global imperfections respectively. Range enclosed by the dashed line represents the overlap
of the two cases, which can estimate the most severe local imperfection profile with good

accuracy.
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to approximate the most severe profile for the current case. Specifically, if a reduced
wavelength Ayorst = 0.825A, 1pa is adopted, which are shown as the plus (+) symbols
in Figure the largest differences in the corresponding ultimate load with the lowest
ultimate load is 0.33% among the four example struts. Therefore, in the following section,
an explicit expression is proposed to determine the wavelength of the worst imperfection

profile based on the results of the parametric study.

8.5 Application and parametric study

8.5.1 Wavelength of most severe local imperfection profile

The parametric study in this section comprises two parts: the first part focuses on the
effects of geometric properties and the second part focuses on the effects of imperfection
size. In the first part, parametric studies on the wavelength of the most severe local
imperfection profile for struts with different geometric properties, i.e. cross-section aspect
ratios ¢. = [1,2.5] and web depth to thickness ratios ¢q; = [60,240], are conducted. The
web width is fixed to 120 mm as that of the example struts in the preceding section. Since
the ultimate load erosion is most significant in the range where P¢/PF ~ 1, the strut
length is determined based on the condition that PS/PF=1. Moreover, the initial local

imperfection amplitude AY, is 0.6t.

Figure m(a) shows the normalized wavelength of the most severe imperfection profile
determined using the algorithm presented in Figure [8.2, The variation of the wavelength
is small in the range, i.e., the average value is 0.836, 1,5a and the coefficient of variation
(COV) is 2.14%. It implies that the normalized wavelength of the most severe imperfection
profile can be treated to be constant for different ¢. and ¢4, cases. Moreover, the effects
of the strut length varying (P¢/BPF = 0.6,1.0 and 1.5) are also investigated; it is revealed

that the average value almost remains the same with a slight increase in the COV to be
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Figure 8.15: (a) Normalized wavelength of the most severe imperfection profile
Aworst/ Ap.LBa for struts with different cross-section aspect ratios and different plate width
to thickness ratios. (b) Relationship of Ayorst/Ap,.a and the normalized imperfection size
Ap/t for struts with different aspect ratios. Note that the length of all struts is determined
based on the condition PC/PCf=1.

3.36%. This may be attributed to the constraint that the number of half-waves should be
an integer; for the cases where the number of half-waves is small, £2 half-waves along the

length would lead to a relatively larger variation in the wavelength.

Since it has been demonstrated that the wavelength of the most severe imperfection profile
decreases with the increase of imperfection size, a parametric study on the effects of im-
perfection size is conducted based on the results in the first part. The web depth and plate
thickness are fixed to 120 mm and 1 mm respectively as those of the example struts in
preceding section. It should be noted that the manufacturing tolerance of local imperfec-
tions is expressed as a ratio of plate width, i.e. d/200, in Eurocode 3 (EN-1993-1-3:2006E,
2006)). However, a theoretical study (Supple, 1970) demonstrated that the imperfection
related parameter in the governing equations for the buckling of imperfect plates can be
normalized with respect to plate thickness Ay/t. Therefore, the dimensionless quantity

Ap/t is adopted as the varying imperfection parameter.
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The results of the parametric study are presented in Figure [8.15(b). With the increase of
imperfection size, the wavelengths of the most severe imperfection profiles decrease. For
a fixed value of imperfection size, the maximum COV in the wavelength for struts with
different cross-section aspect ratios among all cross-section aspect ratio cases is found to be
only 2.83%. Therefore, an equation is fitted based on the least squares method to describe

the relationship between the most severe wavelength and the imperfection size:

A() 0.36
)\worst//\p,LBA =1-0.2 (T) . (84)

The average ratio of the FE results to that predicted by Eq. (8.4]) is 1.002 and the COV is

2.14%, which represents an excellent fit.

8.5.2 Global buckling loads of struts with tolerance level doubly-

symmetric cross-sectional local imperfections

A simplified method to calculate the load at the pitchfork bifurcation point (Glendinning,
1994), which is a generic term for a symmetric bifurcation point, of thin-walled RHS struts
with purely global imperfections was proposed in §7.2.1l This has been demonstrated
to provide a safe prediction with excellent accuracy. Currently, attempts are made to
understand the mechanism of the global buckling of struts with tolerance level doubly-
symmetric cross-sectional local imperfections and develop a simplified method to calculate
the buckling load. The latter would also be a good approximation of the ultimate load

since the post-buckling behaviour has been shown to be weakly stable in such cases.

As shown in Figure m(a), local buckling leads to the axial stiffness dropping to below
60% of the pre-buckling value for the perfect strut. The post-buckling axial stiffness is
much larger than that in Van der Neut’s model (approximately 40%), where the compressed

plates are simply-supported and there is no interaction between individual plates within the
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cross-section (van der Neut, 1969). However, after local buckling is triggered, the tangent
axial stiffness does not remain constant but drops further with increasing deformation.
Specifically, the cross-section profile would not remain in the initially buckled shape but
bulge out gradually, as shown in Figure [6.16| This finding is also reported in Young &
Rasmussen (1997) and Loughlan et al. (2011), but has been omitted in other previous
studies (Bijlaard & Fisher, 1953; van der Neut, 1969; Koiter & Pignataro, 1976a; Graves
Smith, 1972) owing to technical complexity. As for the imperfect case, the tangent axial
stiffness is lower than that of the perfect case at the start of loading and decreases as
further loading is applied. When the load exceeds the local buckling load, the tangent

stiffness of the imperfect strut would converge to that of the perfect strut.

In Van der Neut’s idealized model (van der Neut, 1969), where there are only two simply-
supported flanges contributing to the bending rigidity through their axial stiffness, the
corresponding global buckling load for the locally buckled strut is 7PC, which can be
determined using double-modulus theory (Bazant & Cedolin, 2010)), as discussed in Chap-
ter [f] The stiffness reduction factor n can be determined from the normalized tangent
stiffness Ey/FE of purely local buckling struts directly because both flanges are parallel to
the neutral axis of bending and thus E;/FE represents the actual stiffness reduction ratio

in both flanges.

In the current case, however, the normalized tangent stiffness E;/FE from the load versus
end-shortening relationship only represents the general stiffness reduction of the whole
cross-section in the purely local buckling case. The transition from the purely local buckling
mode to the global-local interactive post-buckling mode involves a stiffness redistribution
across the entire cross-section due to the interaction of individual plates (Bijlaard & Fisher,
1952; Hancock, 1981; |[Shen & Wadee, 2018b). This implies that the tangent stiffness
distribution would be different from that of the purely local buckling case at the same load
level. Moreover, the restraint from both flanges on the webs also decreases with increasing

load and thus the actual stiffness distribution profile is also affected by the load level,
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i.e. it is related to the strut length. In order to obtain the corresponding global buckling
load for the locally buckled struts, the actual tangent stiffness distribution at the pitchfork
bifurcation point is required (Rasmussen, 1997)). The problem itself is highly complex and

requires geometrically nonlinear analysis to solve.

A systematic parametric study is conducted currently to investigate the key parameters
that may affect the global buckling load of thin-walled RHS struts with purely tolerance
level local imperfections PC. This is used to develop an expression to determine the
value of PC. Firstly, the effect of geometric properties is investigated. The principal
varying parameters are the cross-section aspect ratio ¢., web depth to thickness ratio ¢q,
and the strut length P¢/PC. The web depth is fixed to the value of 120 mm and the
dimensionless local imperfection size is fixed to Ag/t = 0.6. The cross-section profile of
local imperfections is doubly-symmetric and determined using Egs. and ; the
longitudinal component is periodic and the wavelength is determined using Eqs. and

(C21).

The results from the parametric study on geometric properties are presented in Figure[8.16
As can be seen, PC/PC decreases with decreasing strut length. It reflects that the tangent
stiffness of the cross-section decreases with increasing load level, as shown in Figure a).
Moreover, P /PC decreases with increasing cross-section aspect ratio ¢, at a fixed value
of P€/PF, but the difference is small and reduces with decreasing strut length, as seen
in Figure ). This may be attributed to the fact that the interaction between each
individual plate becomes weaker with increasing load level. Compared with the cross-
section aspect ratio ¢., the effect of the plate width to thickness ratio ¢g; is much smaller, as
shown in Figure b). This is reasonable since the thickness has a relatively minor effect
on the cross-section second moment of area for thin-walled section members. Therefore, it
may be concluded that the effect of cross-section aspect ratio and web depth to thickness

ratio on the relationship between PC/P¢ and P¢/PF may be safely neglected.

The second part of the parametric study focuses on the effect of local imperfection size. The
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Figure 8.16: Reduced global buckling load of struts P¢/P¢ with dimensionless local im-
perfection size Ay/t = 0.6 versus PY/P° from FE results and Eq. for different (a)
¢ values and (b) ¢q; values. Note that the web depth d is fixed to 120 mm; the plate
thickness ¢ is fixed to 1 mm in (a); in (b) ¢ is fixed to 2.

imperfection profiles are determined in the same way as the parametric study on geometric
properties, which, in turn, is based on the parametric study on the worst imperfection
profile. The cross-section geometric properties of the struts are the same as the example
struts in with the results presented in Figure (a). It is observed clearly that with
increasing imperfection size, the value of P¢/PC decreases. In particular, the drop is much
larger when global buckling is critical, i.e. where PC/P“<1, which implies that struts with
global buckling being critical are more sensitive to local imperfections. The difference in
the reduced normalized global buckling load for different length struts becomes small when

the normalized imperfection size Ay/t is large.

The following equation is fitted based on the results of the two-part parametric study using

the least squares method:

iy e ()
P_(? = <C1 — O P_oc> (P—OC) ) (85)
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Figure 8.17: (a) Relationship of the normalized reduced global buckling load PC/PS versus
PE/PL at different imperfection amplitude levels. (b) Ratio of the normalized reduced
global buckling load of struts with different imperfection sizes from FE results and Eq.
; the dashed line represents the average with the value being 0.993.

where C, Cy and C3 are imperfection size related parameters, thus:

Cy = 4.67 —4(Ag/t)*%,  Cy=10.15 —0.24(Ag/t) "3, Cs5=15.02 — 4.8(Ay/t)**. (8.6)

As shown in Figures [8.16a) and (b), the average ratios of Eq. to the FE results
for struts with different geometric properties are 0.998 and 1.000 respectively, and the
COVs are 1.20% and 0.46% respectively. As for imperfection size effects, as shown in
Figure B.17(b), the average ratio is 0.993 and the COV is 1.71%. It implies that Eq.
provides excellent agreement with FE models for the reduced global buckling load of

thin-walled RHS struts with different geometric properties and imperfection sizes.

8.6 Concluding remarks

The behaviour of thin-walled RHS struts with tolerance level imperfections was investigated

using GNTA based on the FE model developed in Chapter [3] alongside findings from the
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variational model in Chapter [7] Focus has been on the effect of local imperfection profiles

on the ultimate load and equilibrium behaviour.

A unified local imperfection measurement based on equal local bending energy has been
proposed. An algorithm for determining the most severe local imperfection profile is pro-
posed. A function to terminate the nonlinear analysis automatically once certain failure
criteria is developed within MATLAB, which greatly improves the computational efficiency.
Within the automated computational framework, the most severe local imperfection pro-
files for struts with different lengths have been determined. The study revealed that the
ultimate load is principally affected by the imperfection in the more compressed web. The
wavelength of the most severe periodic local imperfection was found to be smaller than
that of the purely local buckling mode or the local-global interactive post-buckling mode
for the perfect case, which implies that the lowest local buckling mode from linear buckling
analysis does not necessarily represent the most severe local imperfection profile. Intro-
ducing a modulated amplitude in the local imperfection profile leads to a further decrease
in the ultimate load. However, struts with highly localized local imperfection profiles ex-
hibit a relatively stiffer response, thus leading to a higher ultimate load. Moreover, it was
revealed that under the constraint of the manufacturing imperfection tolerance level, the
most severe imperfection profile can be safely approximated using the case with doubly-
symmetric cross-section initial deformation and periodic longitudinal components. An
equation to approximate the corresponding wavelength has been proposed based on the

results of the parametric study.

As for the equilibrium behaviour, the example struts with doubly-symmetric cross-section
local imperfections with a tolerance level amplitude exhibit approximately neutral or
weakly stable responses after the local-global mode interaction is triggered. This is differ-
ent from the perfect case, where there are four representative length-related ranges that
exhibit distinct interactive post-buckling responses. Although the mono-symmetric cross-

section imperfection profile breaks the symmetry of the strut deformation at the beginning,
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the equilibrium path converges to the doubly-symmetric case when the global mode is fully
developed. An explicit equation to predict the global buckling load of thin-walled RHS
struts with tolerance level doubly-symmetric cross-section imperfections has been proposed
and shows excellent agreement with the FE results for different plate width to thickness

ratios, cross-section aspect ratios and imperfection size levels.

Hitherto, the behaviour of perfect and imperfect purely elastic RHS struts have been
investigated. In the next chapter, the effect of material nonlinearity on the behaviour
of RHS struts susceptible to local-global mode interaction is investigated. Moreover, a
systematic and extensive parametric study on geometric properties, material yielding stress
levels, and residual stresses is conducted to understand the behaviour of RHS struts in

practical scenarios.



Chapter 9

Parametric study

The previous chapters introduced a series of variational models and identified unstable
interactive post-buckling behaviour, length effects and imperfection sensitivity of thin-
walled rectangular hollow section struts susceptible to mode interaction. In the current
chapter, systematic parametric studies on geometric properties (cross-section aspect ratio
and plate width—thickness ratio), material yielding stress levels, imperfections (geometric
imperfections and residual stresses) are conducted using the validated FE models in Chap-
ter B Moreover, the numerical results are compared with the current design guidelines.

Recommendations on the designing of such specimen are provided at the end.

9.1 Algorithm for Automated GMNIA

In the current chapter, a multitude of nonlinear analyses are required so as to understand
the effects of different parameters on the interactive buckling behaviour of RHS struts.
Processing so many nonlinear FE models is time-consuming and the volume of data gen-
erated can be very large. Moreover, the traditional nonlinear analysis procedure requires
Linear Buckling Analysis (LBA) to acquire the geometric perturbation or imperfection

292
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profile into the model for nonlinear analysis. The computational burden is therefore quite
high, particularly for short columns with high PC/PC ratios, where a large number of unre-
lated eigenmodes would be produced simultaneously in order to obtain the global buckling
mode. A post-processing script would have to be written to distinguish the desired eigen-

mode automatically. The whole process would have been quite cumbersome.

Therefore, based on the findings in preceding chapters, an algorithm to automate the
Geometric and Material Nonlinear Analysis with Imperfection (GMNIA) is proposed, as
presented in Figure Since the global and local buckling modes for struts with different
geometric properties have been defined using Eq. and Eqgs. — and
respectively, which showed good comparisons with that from LBA, the nonlinear FE model
for struts with predefined geometric imperfections is developed directly based on these
analytical expressions and thus the nonlinear analysis can be conducted directly without
LBA. Moreover, the function developed in Chapter [§] as shown in Figure 8.3} is adopted
to terminate the nonlinear analysis automatically once a certain failure criterion is met.
Moreover, the post-processing is conducted immediately afterwards to extract the ultimate
load and the equilibrium path (if required) using a Python script generated together with
the model input file. After that, the capacious output database (.odb) file, which stores all
details of model information and analysis results, is deleted to save memory storage since
they are no longer used. The automated GMNIA process makes it possible to conduct a

systematic and extensive parametric study.

9.2 (Geometric parameter

In preceding chapters, the cross-section geometry of the example struts remains constant
in most cases and the principal varying parameter is the strut length. In this section, the
effects of plate width—thickness ratio and cross-section aspect ratio on the profile of the

Van der Neut-type curve are investigated.
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Geometry of RHS struts (b, d, t, L)
Material properties (E, v, fy, fu, &, &)

Geometric imperfection size and residual stresses

Determine the local and global buckling

loads as well as the lowest local buckling

mode using analytical expressions from
Chapter 5 and Appendix C

Create the input file for FE model with
predefined local and global geometric
imperfections, residual stresses,
nonlinear material model

Conduct the Geometric and
Material Nonlinear Analysis with
Imperfection (GMNIA) in ABAQUS

Yes

4' Resume GMNIA |
| Terminate GMNIA |<7

Extract Pu from sta file and
equilibrium path from odb file

| Delete odb file |

Figure 9.1: Algorithm for automated GMNIA for RHS struts. Codes were developed in
MATLAB to achieve the entire process.

9.2.1 Plate width—thickness ratio

The flange width and web depth are fixed as presented in Table .1} The principally
varying parameter is the plate thickness. The Van der Neut type curves of perfect RHS
struts and struts with tolerance level geometric imperfections with different plate width—

thickness ratios are shown in Figure [9.2] For both perfect and imperfect cases, the effect
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Figure 9.2: The effect of plate width—thickness ratio on the Van der Neut type curve for
perfect rectangular hollow section struts and struts with tolerance level imperfections. Solid
and hollow symbols represent the ultimate load of perfect struts and struts with tolerance
level imperfections respectively. Solid and dashed lines represent the average ultimate load
of perfect and imperfect struts with different d/t ratios. Symbols o, vV, [0 and A represent
the web depth—thickness ratio being 120, 80, 60 and 40 respectively. Note that the width
depth and flange width are fixed being 120 mm and 60 mm respectively.

of web depth—thickness ratios on the curve is small. Specifically, the COVs with respect
to the corresponding average value ranges from 0.13% to 1.76% for the perfect and 0.68%

to 3.82% imperfect cases respectively.

Specifically, for the perfect case, with the decrease of plate width—thickness ratio, the
normalized ultimate load P,/P¢ decreases. The effect is very small in zones 2 and 3
and the difference increases with increasing P¢/PC. As for the zonal boundary between
zones 2 and 3, the differences are negligible. For illustration purposes, a simplified model
presented in Figure[6.20] where the corners of the four plates are pin connected, is adopted.
Figure (a) presents the effect of plate width—thickness ratio on the zonal boundary of
such strut using Eq. based on the double modulus theory. It can be seen that the

effect of d/t on the zonal boundary is tiny. Moreover, it should be stressed that there is
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Figure 9.3: Effect of the cross-section aspect ratio and web depth—thickness ratio on the
zonal boundary of zones 2 and 3 for rectangular hollow section struts with pinned corners.
Note that web depth and flange width are 120 mm and 60 mm respectively in (a); the
web depth and plate thickness are 120 mm and 1 mm respectively in (b). The stiffness
reduction factor in the more compressed web is 0.408.

stiffness re-distribution in the rigid joint case, which may further alleviate the difference.

For the case with tolerance level imperfections, the trend seems to be to the contrary of
that for the perfect case, particularly in the range where global buckling is critical. This
may be attributed to the fact that the effect of the local imperfection on the ultimate
load is essentially governed by the dimensionless parameter Ag/t (Supple, 1970; Little,
1980). However, in the current study, the amplitude of the tolerance level local imper-
fections is set to d/200. Therefore, Ay/t for sections with larger d/t is relatively higher
and the corresponding erosion on the ultimate load would be more significant. Moreover,
as demonstrated in Chapter [7] the effect of local imperfections is more significant in the
range where global buckling is critical. This may explain why the trend is to the contrary
of the range where global buckling is critical and becomes similar to that of the perfect

case when P¢/PF becomes large.



CHAPTER 9. PARAMETRIC STUDY 297

9.2.2 Cross-section aspect ratio

The parametric study on the cross-section aspect ratio is based on parametric study on
the plate width—thickness ratio in the preceding subsection. The plate thickness and web
depth are fixed to 1 mm and 120 mm respectively. The cross-section aspect ratio varies
from 1 to 2.5. As shown in Figure the change in the cross-section aspect ratios also
has a small effect on the Van der Neut type curves for both perfect and imperfect struts.

Specifically, the COVs for the ultimate load with respect to the average values within the
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Figure 9.4: The effect of cross-section aspect ratio on the Van der Neut type curve. Solid
and hollow symbols represent the ultimate load of perfect struts and struts with tolerance
level geometric imperfections respectively. Symbols o, V, [J and A represent the cross-
sections with aspect ratio being 1, 1.5, 2, and 2.5 respectively. The solid and dashed lines
represent the average ultimate load of perfect and imperfect cases with different cross-
section aspect ratios.

ranges shown are from 0.5% to 2.53% for the perfect struts and from 0.81% to 2.41% for

the struts with tolerance level imperfections.

However, it should be noted that the zonal boundary value of PC/PC for zones 2 and
3 for the perfect struts increases with the increasing cross-section aspect ratio d/b. For

illustration purposes, the simplified RHS strut model with the corners of four plates being
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pin connected is adopted once again. As shown in Figure (b), with the increase of the
cross-section aspect ratio for the pinned connection case, the value of PC/PC at the zonal
boundary increases. It should be noted again that there is stiffness redistribution in the
rigid connection case, which may alleviate the difference, but the simplified model can

generally describe the trend.

From the parametric study on the plate width—thickness ratio and cross-section aspect
ratio, it can be seen that the effects of these two parameters on the Van der Neut-type
curve are minor, at least for the purely elastic case. It provides support to the Direct
Strength Method (DSM) for the ultimate load prediction of RHS struts exhibiting mode

interaction where the effects of cross-section geometry are excluded.

9.3 Material properties

In the current section, the effects of the yielding stress level on the profile of Van der Neut
type curve and imperfection sensitivity as well as the effect of material strain-hardening

on the ultimate load is investigated.

9.3.1 Yielding stress levels
Effect on the Van der Neut-type curve profile

The principally varying parameter in the study is the yielding stress level. As shown in
Figure the normalized ultimate load P,/PC decreases with the decreasing yielding
stress levels. The ultimate load drop is not significant in the range where global buckling
is critical but it becomes increasingly significant with the increase of P/PC in the range
where local buckling is critical. This finding is in accord with the previous study on the

effect of yielding stress level on the Van der Neut model (Becque, 2014).
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Figure 9.5: The effect of yielding stress levels on the Van der Neut-type curve of strut
with tolerance level geometric imperfections. The solid line represents the ultimate load
of elastic and perfect RHS struts. Note that the cross-section properties of the struts are
presented in Table

Effect on the strut imperfection sensitivity

An imperfection sensitivity study is conducted on the four characteristic length struts,
as presented in Table at different material yielding stress levels. In particular, four
typical yielding stress levels are selected, i.e. fy/of = {1,1.5,2,4} and the corresponding
normalized local slenderness \, = +/f,/oC = {1,1.225,1.414,2} respectively (Trahair

et al., 2007). Moreover, four different imperfection cases are investigated:

1. local imperfection Ay = 0, but global imperfection gy # 0 to investigate the sensi-

tivity to global imperfections;
2. Ag # 0, but g5 = 0 to investigate the sensitivity to local imperfections;

3. Ay # 0 and g5 # 0 to investigate the sensitivity to combined imperfections. In par-

ticular, the combined imperfections are proportional to the tolerance level local and
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global imperfections recommended in EC3, i.e. Wgy = WSO{QSO,tolL;AO,tol}; where

Weo is a non-dimensional scaling factor, gyt = 1/1000 and Ago1/d = 1/200.

4. g = 1072 and Ag # 0 to investigate the local imperfection sensitivity of struts with

a tolerance level global imperfection.

For case 1, as shown in Figure (a), the global imperfection sensitivity of all struts

increases with the decreasing \,. In order to describe the imperfection sensitivity better, as

(a) Case 1 (b) Case 2

Pu / P, u,perf
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X,=1.000
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Figure 9.6: Imperfection sensitivity of four characteristic length struts to geometric imper-
fections at different cross-sectional local slenderness Xp levels. Also shown are the fitted
imperfection sensitivity curves, the details of which may be found in Table Each family
of curves represent zones 1 to 4 in sequence from right to left.

well as understanding the underlying mechanism, curves are fitted based on the numerical
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results with the following function:

Pu,eg = 1-— Aen (EO)beo y (91)

where p, ¢, is the normalized ultimate load of imperfect struts with respect to that of
the perfect struts or struts without certain types of imperfection; ¢y is the normalized
imperfection, which is, for example, ¢, for case 1; a. and b,y are constants determined
using the least squares method. As presented in Table 0.} the sensitivity to purely global
imperfections indicates approximately a 1/2 power law relationship to leading order for all
four characteristic length struts at different cross-sectional local slendernesses, which is in
accord with the finding in (Shen & Wadee, 2018al) for the purely elastic system. At the
same cross-sectional local slenderness level, struts in zones 3 and 4 exhibit less imperfection
sensitivity compared to struts in zones 1 and 2. However, the imperfection sensitivity for
struts in zones 3 and 4 is quite dependent on cross-sectional local slenderness levels. For
instance, the imperfection sensitivity constant a. at 5\p = 1 is approximately double of
that at Xp = 2. On the contrary, the effects of 5\p on the imperfection sensitivity for struts
in zones 1 and 2 are relatively small. Specifically, for the example struts in zones 1 and
2, the nonlinear behaviour is almost identical for A, = 2 and the purely elastic cases. It
implies that the strut failure in such cases is governed by stiffness loss due to instability
rather than material failure. Moreover, the example strut in zone 2 also shows a relatively
higher sensitivity to imperfections than struts in other zones owing to the severely unstable

post-buckling behaviour that is intrinsic in such struts (Shen & Wadee, 2018b).

As for the sensitivity to purely local imperfections (case 2), as shown in Figure [0.6{(b),
similar trends are observed as that for the purely global imperfection case (case 1). The
fitted imperfection sensitivity curves show a 1/3 power law relationship, as presented in
Table In particular, the short length strut in zone 4 exhibits mild imperfection sen-
sitivity in the range where A, > 1.414. This kind of imperfection sensitivity behaviour is

most desirable for structural applications according to Chilver’s stability design concept
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Table 9.1: Constants for the fitted imperfection sensitivity curves and their comparison
with FE results for four characteristic struts. Note that an average below unity represents
a safe estimation by the fitted curve.

Imperfection B L =3600 mm | L =4000 mm | L = 4500 mm | L = 4800 mm
type Ap (zone 4) (zone 3) (zone 2) (zone 1)
) beO 0] beO 2] beO ) beO
1 6.469 9.211 10.435 10.431
Case 1: 1.225 5.732 7.051 9.558 9.275
pure global 1.414 4.982 1/2 6.343 1/2 9.343 1/2 9.162 1/2
imperfection 2 3.102 5.768 9.284 9.151
Elastic | 2.999 5.761 9.284 9.151
Average 0.997 0.998 0.998 0.997
Puka/Pure | ooy 1.36% 1.15% 0.87% 0.81%
1 0.325 0.246 0.403 0.383
Case 2: 1.225 0.133 0.206 0.347 0.355
pure local 1414 008 1/3 |0.199 1/3 | 0.347 1/3 | 0355 1/3
imperfection 2 0.076 0.196 0.347 0.355
Elastic | 0.073 0.195 0.347 0.355
Average 0.995 0.993 0.998 0.995
Puka/Pure | ooy 1.02% 1.31% 1.12% 2.29%
1 0.425 0.413 0.501 0.496
Case 3: 1.225 0.322 0.384 0.424 0.424
combined | 1414 |0254 1/2 0320 1/2 | 0391 1/3 | 0398 1/3
imperfection 2 0.148 0.254 0.363 0.377
Elastic | 0.124 0.244 0.360 0.376
Average 0.997 0.999 0.997 0.995
Pupa/Pure | ooy 1.47% 1.04% 1.95% 2.66%
1 0.377 0.374 0.363 0.362
Case 4: 1.225 0.207 0.230 0.241 0.255
qso = 1073, 1.414 0.141 1/2 0.164 1/2 0.181 1/2 0.199 1/2
varying Ag 2 |0.067 0.081 0.102 0.135
Elastic | 0.025 0.058 0.094 0.131
Average 0.996 0.996 0.995 0.996
Puka/Pure | ooy 1.03% 0.91% 0.84% 0.73%

(Chilver, 1976|). However, when ;\p becomes close to unity, the strut becomes increasingly

sensitive to imperfections owing to the interaction of material yielding and local buckling.

Moreover, it should be noted that for the example struts in zones 1 and 2, the imperfec-

tion sensitivity relationship is almost identical compared to the purely elastic cases when

5\p > 1.225. This bound is much smaller than that for case 1. This is reasonable since the

local imperfection has a direct and immediate destabilization effect on the strut stiffness
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in zones 1 and 2, which facilitates the stiffness-governed failure mode.

Figure [0.6{c) presents the sensitivity of struts to the combined imperfections (case 3). It
also reveals that the sensitivity increases with the decrease of A, and the effect is most
significant in the example strut that lies in zone 4. The fitted imperfection sensitivity
curves exhibit a 1/2 power law for example struts in zones 3 and 4 and a 1/3 power law
for struts in zones 1 and 2, as presented in Table It implies that the struts in zones
3 and 4 are more sensitive to global imperfections and those in zones 1 and 2 are more
sensitive to local imperfections. This finding is also in accord with the finding for purely
elastic struts with tolerance level imperfections (Shen & Wadee, 2018al). Moreover, unlike
the previous two cases, the struts in zones 1 and 2 become sensitive to the cross-sectional
local slenderness, i.e. a gradual increase in the imperfection sensitivity is observed with

the decrease of Xp.

The effects of cross-sectional local slenderness on the imperfection sensitivity in case 4
are presented in Figure [0.6(d). The fitted imperfection sensitivity curves exhibit a 1/2
power law relationship for all example struts, as presented in Table 0.1} Relatively mild
imperfection sensitivity is observed in the example struts in zones 2, 3 and 4 in the purely
elastic case, but the severity of imperfection sensitivity increases dramatically with the
decrease of /_\p. For the example strut in zone 4, the trend is the same as that in case
2. However, for the example struts in zones 2 and 3, the results are very different from
any previous case. Moreover, an increasing sensitivity to the yielding stress level is also
observed in the example strut in zone 1. All these findings imply that material yielding may
be the governing failure mechanism in the current case for all four example struts. This is
reasonable owing to the following facts: (1) the relatively large initial global imperfection
would lead to a relatively large degree of bending in the strut; (2) as found in (Shen &
Wadee, 2018c|), the introduced local imperfection further undermines the effective axial
stiffness of the cross-section, thus leading to increased global deflection. The latter may

also explain why the imperfection sensitivity curves satisfy a 1/2 power law, the same as



CHAPTER 9. PARAMETRIC STUDY 304

for the purely global imperfection case.

Effect on equilibrium paths

Since Degée et al. (Degée et al., 2008) suggested that the equivalent geometric imper-
fection combination for struts, where the residual stresses are not explicitly modelled, is
gso = 1/1000 and Ay/d = 200, this particular combination is now adopted. As shown in

Figure[0.7] all four example struts exhibit highly unstable behaviour after the ultimate load
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Figure 9.7: Equilibrium paths of four characteristic length struts with purely geometric
imperfections with g, = 1/1000 and Ag/d = 1/200 at different \, levels. Dashed, solid,
dotted and dot-dashed lines represent /_\pzl, 1.225, 1.414, and 2 respectively; the outer thin
dark solid line represents the purely elastic case. Graphs of normalized load ratio p = P/P¢
versus normalized end-shortening £/L in the first row; the second row shows the normalized
maximum amplitude of local deflection in the more compressed web Wy max/tw versus the
normalized global amplitude ¢s. Note that the point where loading commences is marked

by .

point when A\, = 1 due to the coupling of plate local buckling and material yielding. The
severity of unstable behaviour is mollified with the increase of A,. It may help explain the

reason why the imperfection sensitivity of struts decreases with the increase of 5\p. For the

0



CHAPTER 9. PARAMETRIC STUDY 305

practically significant range, i.e. the serviceability limit |g,| < 0.01, A, = 2 can be treated
to be the same as the purely elastic case, particularly for the long length and transitional
length struts. Moreover, from the Wye max/tw—¢s relationship, it can be determined that
the final failure mechanism is due to the localized failure of the more compressed web at

mid-span.

In order to understand the failure mechanism better, a simply-supported plate with the
same geometric and material properties as well as initial geometric imperfections as the
more compressed web is selected for illustration purposes. Figure presents the relation-
ship between the normalized axial tangent stiffness of the plate and the normalized axial
load level. For the case where 5\p is small, the tangent stiffness decreases dramatically

1r
0.8r

0.6

. —

E./E

0.4r

0.2r

Figure 9.8: Axial tangent modulus of a simply-supported plate with d = 120 mm, ¢ = 1
mm and initial imperfection size Ay = d/200 with increasing axial load level. Line types
in the graphs correspond to the same cases as described in Figure

with a tiny increase of the axial load after the first yield. This is quite similar to the
stiffness drop in the more compressed web owing to the local buckling in perfect struts
in Chapter [6] which leads to highly unstable post-buckling behaviour after the secondary
bifurcation point and a commensurate high degree of sensitivity to imperfections. It can
explain the highly unstable behaviour of struts with relatively small \,. With the increase

of j\p, this severity is mollified. Specifically, for the case /_\p = 2, the decrease in E;/FE is
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accompanied by an obvious increase in p. This can, in turn, explain the mildly unstable
behaviour of struts with Xp = 2. However, it should be noted that the actual boundary
condition of the more compressed web is not simply-supported. A study on the effect
of rotational restraints from both flanges, which may quantify the tangent axial stiffness

change in the more compressed web, is left for future study.

9.3.2 Effect of material strain-hardening

Three different material models are adopted to investigate the effects of strain-hardening

with the parameters shown in Table Type 1 corresponds to an elastic—perfectly plastic

Table 9.2: Parameters for different elastic—plastic material models. Note that the defini-
tions of the parameters n and Ej, can be found in Figure

Type n En/E o./fy Note
1 0 0 1 Elastic—perfectly plastic
2 0 1/50 1.2 Elastic-linear strain-hardening

3 9 1/50 1.2 Elastic-linear strain-hardening with plastic flow

model, where there is no strain—hardening. Type 2 corresponds to the elastic—linear strain-
hardening model but there is no plastic flow. The material model represented by type 3 is
more realistic particularly for carbon steel (Sadowski et al., 2017b; [Yun & Gardner, 2017)),
where there is a yield plateau before the linear strain-hardening. In particular, for types 2
and 3, the same strain-hardening modulus Ey, = 1/50 is adopted. Moreover, the strain at
the beginning of strain-hardening (1 + n)ey is taken to be 10e,. These values are chosen

based on the material model for hot-rolled steel recommended by ECCS (1984)).

Figure presents the effect of material strain-hardening on the ultimate load for the four
characteristic length struts with tolerance level combined imperfections. The ultimate load
ratios of types 1 and 3 material model are almost the same for all four example struts,
which implies that the strain-hardening after the plastic low has no practical effect on

the ultimate load for the current case. For the strain-hardening model without plastic
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Figure 9.9: Effect of strain-hardening on the ultimate load of struts with tolerance level
imperfections at different material yielding stress levels. Symbols A and * represent non-
linear material types 2 and 3 in Table the ordinate in each graph is normalized with
respect to the ultimate load found from type 1, i.e. the elastic—perfectly plastic case; the
abscissa A\, = \/ f, /o, where o = PC/A, with A, being the gross cross-sectional area.

flow (type 2), the ultimate load is relatively higher due to the material strain-hardening,

but the percentage increase is tiny, i.e. less than 1% at Xp = 0.5. Moreover, it should be

noted that the increment in the ultimate load decreases with the increasing cross-sectional

slenderness as well as the strut length. Therefore, it may be concluded that the effect of

material strain-hardening on the ultimate load is tiny and it can be neglected currently.
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9.4 Residual stress

In this section, the effects of residual stresses on the equilibrium path and imperfection
sensitivity of struts are investigated. Unlike the stocky welded sections, the compressive
residual stresses in slender sections would lead to premature local buckling at a lower
external load level. Therefore, the ratio of the compressive residual stress o,. to the plate
local buckling stress of versus the plate width-thickness ratio d/t is investigated. By
transforming Eq. , the relationship between the compressive residual stress o,. and

the local buckling stress of in the ECCS residual stress distribution model for welded

box-section members can be expressed as:

oG = 9.2)

Orc - 3dt Ort - 3dtd2 (1 — VQ)O'rt
d — 3d, ko?E |

For illustration purposes, the o../o"—d/t relationship for a heavily welded cross-section

with an aspect ratio of 2 is presented in Figure As shown in Figure [0.10[a), for a

(a) (b)
1.2 . . . 0.8 ; ,
—— X, = 1.000 —— fy = 250 N/mm?
B A Ap=1.225] | 0.7H -~ fy = 450 N/mm?
——-X =1414 —— - fy =550 N/mm?
X, = 2.000 . = 650 N/mm? e
£ 06 , /
0.8}
fy increasing "
= o
5 06¢ . Ap increasing
b
K; .
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d/t d/t

Figure 9.10: Ratio of compressive residual stresses o, to local plate buckling stresses o

versus plate width—thickness ratios d/t in heavily welded box-section members for different
(a) cross-sectional local slendernesses and (b) practical yielding stress levels. Note that the
buckling coefficient for the local buckling stress is adopted with the cross-section aspect
ratio being 2.
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fixed value of the normalized local slenderness \,, 0. /0l decreases with the increase of d/t;
for a fixed value of d/t, o,./of increases with the increase of \,. Figure m(b) presents
the o,../ol—d/t relationship at some practical yielding stress levels. It can be seen that
0w/of increases with d/t as well as with increasing yielding stress levels. In particular,
for high strength steel components (fy > 460 N/mm?), the compressive residual stress in

cross-sections with a high d/t ratio is larger than 50% of the local buckling stress.

9.4.1 Effects on imperfection sensitivity

Based on the numerical results, the effects of residual stress on the imperfection sensitivity
are now investigated. Emphasis is placed on the local imperfection sensitivity of struts with
the normalized global imperfection size gy being 1/1000, i.e. case 4 in Moreover,
the same four characteristic length struts are selected, as presented in Table As for
the residual stress distribution, the ECCS model is again adopted. Two different cases
for the length of the uniform tensile range are considered. The first case, where d; = 3t,
corresponds to the ECCS model for heavily welded box-section members. Since the plate
width—thickness ratio d/t for the web of the current example strut is 120, o../o only
varies from 0.081 to 0.324 in the range of A, = [1,2], as shown in Table . Therefore,
the second case, where d; = 6t, is adopted to understand the effects of residual stresses at

high o,./0f levels, which reflects the effects of residual stress in relatively stocky sections.

Table 9.3: Ratio o,/ JIC for the example struts with the ECCS residual stress distribution
model for welded box-section members with two different uniform tensile range lengths at
different plate slenderness levels.

5 Ove /0t
P case 1: di = 3t case 2: d, = 6t
1 0.081 0.176
1.225 0.122 0.265
1.414 0.162 0.353
2 0.324 0.706

Figure [9.11] presents the sensitivity of four characteristic length struts to local geometric
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imperfections for cases 1 and 2. In both cases, the imperfection sensitivity decreases
with the increase of Xp, which is very similar to those cases with no residual stresses,
as presented in Figure [0.6(d). Imperfection sensitivity curves are fitted to describe the
imperfection sensitivity relationship, which exhibit a 1/2 power law relationship for all
example struts, as presented in Table This is also the same as for the struts without
residual stresses. However, compared with the residual stress-free case, the imperfection
sensitivity decreases with the increase of o,./of. For instance, the parameter a. of the
imperfection sensitivity curve for the long length strut (L = 4800 mm) with /_\p = 21is
0.135 for the residual stress-free case, 0.098 for the case where d; = 3t and 0.039 for the
case where d; = 6t respectively. Moreover, struts in case 2 with A\, = 2 exhibit relatively

moderate sensitivity to imperfections, as shown in Figure[9.11(b) and Table

(b) d, = 6t
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Figure 9.11: Local imperfection sensitivity relationship for four characteristic length struts
with residual stresses and the normalized global imperfection amplitude gy being 1/1000
at different A\, levels. Also shown are the fitted imperfection sensitivity curves, the details
of which may be found in Table
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Table 9.4: Constants for the fitted imperfection sensitivity curves Eq. (9.1) and their
comparison with FE results for four characteristic struts with ECCS welding residual stress

distributions.

Imperfection B L =3600 mm | L =4000 mm | L = 4500 mm | L = 4800 mm
type Ap (zone 4) (zone 3) (zone 2) (zone 1)
) beO 0] beO ) bEO ) beO
1 0.317 0.327 0.336 0.343
Case 1: 1.225 0.177 0.254 0.231 0.250
dy = 3t 1.414 0.127 1/2 0.166 1/2 0.207 1/2 0.195 1/2
2 0.061 0.074 0.084 0.098
Average 1.000 1.000 1.000 1.000
Pupa/Pure | ooy 0.91% 1.14% 0.86% 0.77%
1 0.246 0.274 0.300 0.315
Case 2: 1.225 0.121 0.176 0.189 0.213
d, = 6t 1.414 0.077 1/2 0.106 1/2 0.127 1/2 0.149 1/2
2 0.068 0.039 0.015 0.039
Average 1.000 1.000 1.000 1.000
Puka/Pure | ooy 1.15% 0.92% 1.40% 1.17%

9.4.2 Effects on equilibrium paths

In order to understand the underlying mechanism of the effects of residual stress on the
imperfection sensitivity better, the effects of residual stresses on the equilibrium paths
of struts are investigated. The equilibrium paths for the four characteristic length struts
with a global imperfection g5 = 1/1000 and a local imperfection Ay/d = 1/1000, which
are recommended in previous studies (Degée et al., 2008; |[Pavlovécic et al., 2012)) as a
reasonable geometric imperfection combination for welded box-section struts with residual
stresses being explicitly modelled, are presented in Figures and The general
trends of the equilibrium paths are very similar to those in the residual stress-free case as
presented in Figure[0.7] All four characteristic example struts exhibit similar responses, i.e.
struts with A, = 2 exhibit weakly stable behaviour and struts with lower A, values exhibit
unstable behaviour after the ultimate load point. However, compared with the residual
stress-free case, the severity of the behaviour after the ultimate load point is mollified with

the increase of o,./0f. This may help explain the decreasing imperfection sensitivity of

struts with increasing o,./oy.
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Figure 9.12: Equilibrium paths of four characteristic length struts with the ECCS resid-
ual stress distribution for welded box-section members with d; = 3t at different yielding
stress levels. Note that the global and local imperfection sizes are gso = 1/1000 and
Ap/d = 1/1000 respectively. Graphs (a)—(d) and the line types are the same as described
in Figure except there is no purely elastic case.

The residual stress also leads to an erosion in the ultimate load, as can be seen from Fig-
ure which presents the equilibrium paths for intermediate length struts with different
yielding stress magnitudes at various cross-section slenderness levels. A summary of the
load capacity erosion of the four example struts is presented in Table It should be
noted that the length effects on the erosion percentage is tiny. Therefore, only the average
value and COV are presented. Moreover, struts with a higher o,./o{ ratio exhibit stiffness
erosion at a relatively lower load level. This is attributed to the fact that the compressive
residual stress facilitates premature buckling of the more compressed web at a relatively
lower external axial load level, thus leading to the loss of strut stiffness. For illustration
purposes, the normalized tangent stiffness FE;/E of a simply-supported plate at different
load levels are presented in Figure [9.15] The geometric properties, local imperfection size
and the residual stress distributions are the same as for the more compressed web of the

short length strut. It can be seen that the compressive residual stresses lead to an erosion
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Figure 9.13: Equilibrium paths of four characteristic length struts with the ECCS residual
stress distribution for welded box-section members with d; = 6t at different yielding stress
levels. Graphs (a)—(d) and the line types are the same as described in Figure except
there is no purely elastic case.

in the axial tangent stiffness of the example plate. For the current case, the erosion is most

significant in the case with A\, = 2, where o,./0C is 0.324 and 0.706 for cases 1 (d; = 3t)

and 2 (dy = 6t) respectively. Moreover, it should be noted that there is no material yielding

in the case with A\, = 2 before E;/E = 0.40, which is the tangent stiffness value within the

initial post-buckling range of a simply-supported plate. The difference in p with respect

to the residual stress-free case at the point is equal to the corresponding o,./o{ for each

case respectively. However, it should be noted that Figure [9.15|is only for qualitative il-

lustration purposes. A more refined model that includes the effects of rotational restraint

from both flanges is required to quantify the actual axial tangent stiffness change, but this

is left for future study.
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Figure 9.14: Equilibrium paths of the intermediate length strut (L = 4000 mm) with
no residual stress (solid line), with the ECCS residual stress distribution with d; = 3t
(dashed line) and 6t (dot-dashed line). Note that the global and local imperfection sizes
are ¢so = 1/1000 and Ay/d = 1/1000 respectively and the point where loading commences

ko

is marked by

Table 9.5: Effect of residual stress on the ultimate load of example struts with global
imperfection g0 = 1/1000 and local imperfection Ay/d = 1/1000. Note that py caseo,
Ducasel aNd Py case2 Tepresent the cases with no residual stress, with the ECCS residual
stress distribution with dy = 3t and 6t respectively; the ratio oy./ JIC for each case is
presented in Table

5\ Pu,casel /pu7case0 pu,caseQ/pmcaseO pu,caseQ/pmcasel
P Average COV Average COV Average COV

1 0.890 0.89% 0.860 1.18%  0.967 0.30%
1.225 0.894 1.55% 0.860 1.46%  0.962  0.12%
1.414 0897 1.86% 0.855 0.96%  0.953  0.91%

2 0.883  0.75%  0.806  0.49% 0913  1.22%

9.4.3 Simplified method to determine initial local imperfection

amplitude A}

As illustrated in Figure the initial imperfection amplitude AY introduced in the FE

model is amplified owing to the compressive residual stresses after the self-equilibrating
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Figure 9.15: Effects of residual stresses on the axial tangent modulus—axial load relationship
of a simply-supported plate with d = 120 mm and £ = 1 mm. Note that the initial geometric
imperfection size Ag = d/1000. The dotted line represents the purely elastic case with no
residual stress; the other line types in the graphs correspond to the same cases as described

in Figure

step. Since the self-equilibrating step involves geometric nonlinearity, an iterative solution
process is required to determine the initial imperfection amplitude A, such that Ay is
equal to the desired value after the self-equilibrating step. However, this process is very
cumbersome, even though an automated solution searching program has been developed
within MATLAB in conjunction with ABAQUS. Currently, an investigation is conducted
to understand the amplification of the amplitude at different o,./oC levels and propose a

simplified equation to describe the relationship.
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The self-equilibrating process is essentially an equilibrium problem of an initially deformed
plate under initial residual stresses. From the perspective of linear theory, the total poten-

tial energy of an initially deformed plate under pure compression can be expressed as:

V=U-PE

ST R e R =

(Y P () (2

(9.3)

where D is the plate flexural rigidity; L and d are length and width of the plate respectively;
z and y are the longitudinal and transverse coordinates respectively. By assuming that
the total out-of-plane deflection w = Qf(y)w(z) and the initial out-of-plane deflection
wo = Qof(y)w(z), the relationship between @), @y and P can be obtained by applying the
stationary potential energy condition for equilibrium 0V/0@Q = 0 and can be expressed
thus:

Qo P

where P, is the critical buckling load of the plate. It should be noted that Eq. is
a general expression that is independent of the selected functions for f(y) and w(z) and
its format is practically identical to the load—deflection amplitude relationship for initially
imperfect columns (Timoshenko & Gere, 1961). However, since plates have a considerable
post-buckling stiffness compared with columns, this expression may only be valid for cases
where the deflection and load levels are small, otherwise strain energy contributions from

membrane stresses would need to be included.

Figure m presents the ratio of the initial imperfection amplitude AJ to the imperfection
amplitude Ay = d/1000 after the self-equilibrating step at different o,./o levels. The
cross-section aspect ratio is fixed to 2 and the web depth is 120 mm; A, ranges from 1 to

2. It can be seen that with the increase of o../or, AJ/Ag decreases. A linear function is
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Figure 9.16: Relationship of the imperfection amplitude ratio before and after the self-
equilibrating step AS/Ag and o,./oC. Note that the cross-section aspect ratio is 2, the web
depth d is fixed to 120 mm, and the ECCS residual stress distribution model for heavily
welded box-section members is adopted; the targeted Ay value is d/1000.

fitted based on the numerical results:

Ag_l_arc

Dol (9.5)

The mean ratio from the FE results to the fitting equation in the parameter range shown

is 1.000 and the COV is 1.33%. It can be seen that this relationship is essentially identical

to Eq. (0.4).

A more extensive study is conducted to establish the sensitivity of Eq. to other
parameters, such as the cross-section aspect ratio, plate width—thickness ratio and targeted
imperfection size Ag. As shown in Figure Eq. shows good comparisons with the
FE results for the cases where o,/ O'IC is small and Ay is relatively small. The difference
increases with the increase of o, /o and Ay. This is reasonable since Eq. is essentially

based on linear theory, which is only valid for small deflections.

However, Table shows that the sensitivity of struts to local imperfections decreases
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Figure 9.17: Comparison of FE results with Eq. (9.5) for different cross-section aspect
ratios, targeted imperfection sizes and compressive residual stress levels.

commensurately with A, and struts exhibit only moderate sensitivity to local imperfections
when )\, = 2. Figure m presents the envelope of two curves (solid line) defined by A, =
(dashed line) and f, = 690 N/mm? (dot-dashed line) based on Eq. (9.2) with d, = 3t,

which represents heavily welded sections. The range below the envelope is practically
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Figure 9.18: Ratio 0../0oC at the boundary of local geometric imperfection sensitivity
range for practically realistic box-section members The solid line envelope is defined by
Ap = 2 (dashed line) and f, = 690 N/mm? (dot-dashed line) by Eq. ( ., as illustrated in
Flgure “ 0 for the case where d/b = 2.

significant. It can be seen that o,./0ol is generally less than 0.6 for most cases, where
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Eq. can provide a relatively accurate estimation of A3, as shown in Figure w
Specifically, for the target Ay = d/1000, which is the local geometric imperfection size
recommended in previous work (Degée et al., 2008; Pavlovéic et al., 2012) for numerical
modelling of welded box-section members with residual stresses being explicitly modelled,
A87FE /A&Eq varies between 0.95 and 1.05. As for higher strength steels, previous studies
(Ban et al., 2013; Somodi & Kovesdi, 2018|) have reported that the width of the uniform
tensile zone would decrease with the increase of steel strength grade. This would make the
size of the envelope decrease with the increase of the steel strength grade. Therefore, it
may be concluded that Eq. provides a simple yet relatively accurate estimation of the
initially introduced imperfection size AY for the cases where residual stresses are explicitly

accounted within the FE model.

9.5 Comparison with the current design guidelines

and reliability analysis

Based on the findings in preceding sections, an extensive parametric study on geometric
parameters, material yielding stress levels, as well as strut length is conducted and the
results are placed in the context of the current design methodologies, i.e. the Effective
Width Method (EWM) and the Direct Strength Method (DSM). The principal parameters
and their ranges are presented in Table As for imperfections introduced in the model,

Table 9.6: Principal parameters and their ranges for the parametric study for the guideline
reliability assessment. Note that the critical buckling load ratio is altered by varying the
strut length.

Principal parameters Range
Cross-section aspect ratio d/b 1—25
Critical buckling load ratio P°/PF 0.6 — 4
Cross-sectional slenderness A, 0.6 — 2
Welding options d; 1.5t and 3t

the combination recommended by Degée et al. (Degée et al., 2008) is adopted, i.e. the
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global imperfection being L/1000, the local imperfection being d/1000 and the ECCS
residual stress distribution model for welded box-section members. The comparisons with

the existing experimental results are shown in Figure It can be seen that the FE
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Figure 9.19: Comparison of ultimate loads between the experimental and FE results using
the imperfection combination recommended by Degée et al. (Degée et al., 2008).

model with the imperfection combination can provide a reasonably safe ultimate load
prediction for welded box-section members exhibiting mode interaction. Specifically, the
average of P, rr/Pyrxp 18 0.914 with the COV being 12.07% for d; = 3t and 0.960 with
the COV being 11.88% for d; = 1.5t respectively. This is attributed to the fact that
the amplitudes of the currently chosen imperfections are generally larger than those of
specimens in tests, particularly for the compressive residual stress level. In most cases,
the compressive residual stress level is much closer to the ECCS model for lightly welded
sections. Therefore, in the reliability analyses that follow, a variability term Vg = 0.1144,
determined by considering the deviation of the current numerical models to actual welded
specimens, is adopted to add artificial variability to the numerical results. The procedure
to determine Vg is precisely the same as that presented in Bock et al. (Bock et al., 2015)),
which was also adopted by a later study (Wang & Gardner, 2017)) to consider the deviation

of the numerical model. Currently, Vgg is determined based on the correlation between
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the experimental results and the FE model with the lightly welded residual stress model
and it is assumed that it also applies to the cases in heavily welded members, since there

is a lack of available experimental data.

9.5.1 Assessment of the Effective Width Method in EC3 and

reliability analysis

In the current version of EC3 (EN-1993-1-1:2006E, 2006} EN-1993-1-5:2006E, 2006), the
column buckling curves for generally welded and heavily welded sections are recommended
as b and ¢ respectively, as shown in Table[2.4] The comparisons of the FE results for lightly
welded and heavily welded members are presented in Figure It can be seen that
the current design approach based on the EWM can generally provide a good prediction
for the ultimate load of thin-walled welded RHS struts susceptible to mode interaction.
Specifically, for lightly welded struts, the average of P, pptests/Parcs is 1.001 and the
COV is 9.24%; for heavily welded struts, the average and its COV are 1.011 and 9.96%

respectively.

However, in some parameter ranges, the current design guidelines may give unsafe predic-
tions. Therefore, a reliability analysis is conducted within the framework of the first order
reliability method (FORM) in Annex D of EN 1990 (BS EN 1990, 2002). The objective
of reliability analysis is to ensure that the probability of failure F; is below a certain level,

1.6.

by =Pr[(R = E,) <0] = ¢(=F), (9.6)

where R is the resistance and F, represents the action effects; ¢ is the cumulative distri-
bution function of the standardized normal distribution; 3, is the total reliability index,

which is equal to 3.8 for the ultimate limit state design of building structural members
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with a 50-year design life (BS EN 1990, 2002).

(a) Lightly welded (b) Heavily welded
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P, rc3/Py P, rc3/ Py

Figure 9.20: Comparison of the ultimate loads for lightly welded and heavily welded struts
from the validated FE model and the design equation from EC3. Symbols ‘o’ and ‘*’
represent FE and experimental data respectively. Note that the column buckling curves
for lightly and heavily welded struts are adopted as ‘b’ and ‘c’ respectively, as presented
in Table [2.5

In the FORM, the variabilities of the load effects and resistance functions are assessed
separately. As for design resistance Ry, the probability of the resistance of structural

members being smaller than Ry is given thus:

Pr(R < Ryg) = ¢(a.f:) = 0.001, (9.7)

where «, is the sensitivity factor and is adopted to be 0.8. The principal task in reliability

analysis is to determine the partial safety factor vy defined thus:

™ = rn/rdv <98>

where r, is the nominal resistance determined from the design resistance equation using the

nominal geometric and material properties; rq is the design resistance determined from the
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reliability analysis procedure using the actual or measured data from tests. The detailed
procedure to determine 7y can be found in design guidelines (BS EN 1990, 2002|) and

previous studies (Afshan et al., 2015; Bock et al., 2015)):

1. Compare the ultimate load from the FE model and design equation to obtain the
mean value of the correction factor b and the corresponding COV of the error terms

Vs:

2. Define the COVs for the basic variables Vy, in the resistance function and calculate

the COV of the resistance function V,; as well as the COV of the FE model Vig;
3. Calculate the combined COV V2 such that: V2 = Vs + V2 + Vi

4. Determine the design resistance value rq4 using the expression given in Annex D of

EN 1990 (BS EN 1990, 2002), which is a function of V;, V5 and Vi;

5. Calculate the nominal resistance value r, using the nominal geometric and material

properties;

6. Calculate the partial safety factor using Eq. .

Compared with previous studies, the key challenge in the current study is to determine

the deviation of the resistance function V;? defined thus:

2 Var(g,(X)] N 1 ) d OGrt ) ?
Vs a ~aExs 2 lex ) (69)

where g, is the resistance function; X and X  represent the variables in the resistance
function and their respective mean values; Vy, is the COV of variable X;, which is generally
determined based on prior knowledge. The COVs of basic variables in the current study are
presented in Table However, the current resistance function, i.e. Egs. —,
is not a continuous function and comprises two parts, which means that a continuous

and explicit expression may be difficult to obtain. Moreover, the value of V2 is not a
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constant but varies with the geomeric properties and yielding stress levels (Afshan et al.,
2015)). Therefore, the resistance function is developed as a function in MATLAB and V;?
is evaluated numerically for each specimen. Figure m presents the relationship of V2
versus P¢/PC at different cross-section local slenderness levels for heavily welded RHS

struts with d=120 mm, b = 60 mm and ¢ = 1 mm. It can be seen that V2 increases with
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Figure 9.21: Relationship between V2 and PC/PC at different plate slendernesses deter-
mined based on Eq. for heavily welded RHS struts with d = 120 mm, b = 60 mm and
t =1 mm. The dotted line represents the value of V.2 determined based on a mean squre
formula (Schillo, 2017). Note that the coefficients of variation of geometric and material
properties are presented in Table

the increase of P¢/PC and also varies with the local slenderness A,. The variation is caused
by the change of dg,;/0X; in different parametric ranges, which reflects the corresponding

governing failure mechanism of struts (Afshan et al., 2015).

As for the calculation of the nominal resistance r,, it is assumed that the mean to nominal
yielding strength ratio fy mean/fynominat = 1.135 (Wang & Gardner, 2017). Based on the

rn; and rq; values for each specimen, the overall y is determined based on least squares
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Table 9.7: Coefficient of variation (COV) for geometric and material property parameters
based on the data presented in (Schillo, 2017).

Parameter COV
Plate thickness (¢, ty) 0.05
Plate width (b, d) 0.005
Strut length (L) 0.005

Material yielding stress (fy,) 0.07

regression:
S
i=1"n,i

™ =L
Zi:l Tn,iTd,i

A summary of the results of the reliability analysis is presented in Table For both

(9.10)

Table 9.8: Summary of reliability analysis results for the Effective Width Method in EC3.
Note that kq, is the fractile factor, which is related to the number of tests in each data
set; by, and Vj are the mean value and the COV of the correction factor for the ultimate
load from the tests, FE models and design equation.

Welding option No. of simulations or tests  kqp, b Vs M1
Light 790 FE models + 57 tests  3.102 1.013 0.087 1.138
Light 57 tests 3.271 1.056 0.136 1.386
Heavy 885 FE models 3.101 1.036 0.102 1.172

cases, the values of v\ are larger than unity, where unity is the recommended value in
EC3 for member buckling. It implies that the current design equation may fail to meet the
Eurocode reliability requirement if yy; = 1 is adopted. However, it should be noted that
the current parametric study includes extensive geometric and material property ranges,
some of which may not be practically significant and may also contribute to the relatively
higher values of yy. A further parametric study on struts with practically significant
geometric and material properties is required to assess the reliability of the design equation

further but this is left for future study.
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9.5.2 Assessment of the Direct Strength Method (DSM) and re-

liability analysis

The comparisons of the FE results and the DSM prediction are presented in Figure [9.22
Since the DSM was proposed based on systematic experimental and numerical studies
specifically on cold-formed steel sections, it is not entirely surprising that the current
DSM generally provides an overprediction for the ultimate load of thin-walled welded RHS
struts. Specifically, for lightly welded struts, the average of P, pttests/ Pupsm is 0.887 and
the COV is 7.77%; for heavily welded struts, the average and COV are 0.823 and 7.28%

respectively. Following the same procedure presented in the preceding section as well as

(a) Lightly welded (b) Heavily welded
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Figure 9.22: Comparison of the ultimate loads for lightly welded and heavily welded struts
from the validated FE model and the DSM. Also shown are the correction factor functions
fitted based on least squares.

adopting the same COVs for the basic parameters, reliability analysis has been conducted

and a summary of results is presented in Table
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Table 9.9: Summary of reliability analysis results for the DSM with quantities being defined

in Table

Welding option No. of simulations or tests  kqp b Vs M1
Light 790 FE models + 57 tests  3.102 0.904 0.070 1.223
Light 57 tests 3.271 0.962 0.132 1.495
Heavy 885 FE models 3.101 0.855 0.075 1.319

9.6 Proposal and reliability analysis of a modified DSM

procedure

Because the current DSM method cannot be applied directly to the ultimate load prediction
of thin-walled welded RHS struts, efforts have been made currently to propose a new design
equation. As presented in Table the effects of welding options should be considered and
separate equations need to be adopted for each case. Currently, the EC3 column curves for
lightly welded and heavily welded members are b and ¢ respectively (EN-1993-1-1:2006E,
2006)). The column buckling curve adopted in the current DSM lies in the range between

buckling curves a and b (see Table , as shown in Figure m This is an additional
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Figure 9.23: Column buckling curves. Solid and the dashed lines represent the column
strength curve in the DSM and the five curves, ag—d, in EC3 respectively.
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reason why the ultimate load prediction is on the unsafe side. Therefore, in the proposed
modified DSM, the column buckling curves b and ¢ from EC3 are adopted for the lightly
welded and heavily welded members respectively to determine the nominal global failure

load Pyen, t.e.:

Pne,N = XAgfy, (911)

with x defined as that in Eq. (2.23) and the gross cross-sectional area being adopted to de-
termine the relevant quantities in Eq. (2.24)). The imperfection factors « for lightly welded
and heavily welded members are 0.34 and 0.49 respectively, as presented in Table As

for local buckling, the nominal axial strength, P is given by:

Pux 1 for A n < 0.536, 0.12)
Pne B . .46 N '
N 1= 020 (B Pae) ™| (PO Pae)™™ for Ay > 0536,

where 5\1,N = /PN /PIC with P n being defined in Eq. (9.11). The nominal axial

strength, P, n, is the minimum of P, n and Py x.

The comparisons of the modified DSM with the FE and experimental results are presented
in Figure Compared with the current DSM equations, the modified DSM equations
provide a superior prediction of the ultimate loads. Specifically, for lightly welded struts,
the average of P, p+tests/ Punpsu 1 1.006 and the COV is 8.04%; for heavily welded struts,
the average and its COV are 1.005 and 8.41% respectively. Moreover, a reliability analysis

has been conducted and a summary of the results is presented in Table [9.10

Table 9.10: Summary of reliability analysis results for the modified DSM equations with
quantities being defined in Table

Welding option No. of simulations or tests  kqp b Vs M1
Light 790 FE models 4+ 57 tests 3.102 1.013 0.074 1.105
Light 57 tests 3.270 1.055 0.140 1.404
Heavy 885 FE models 3.101 1.029 0.087 1.135

The modified DSM takes advantage of the EC3 column buckling curves to consider the
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(a) Lightly welded (b) Heavily welded
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Figure 9.24: Comparison of the ultimate load for lightly and heavily welded struts from
the validated FE model and the modified DSM. Graphs (a) and (b) are as described in

Figure [0.20]

effects of welding options but remains within the framework of the DSM, which makes the
calculation process relatively simple. More importantly, compared with the current DSM
and EWM, it is demonstrated to provide superior accuracy and reliability for the ultimate
load prediction, in terms of mean b,, and the partial safety factor ~y;. Therefore, it may
be concluded that the proposed modified DSM provides a simple and reliable approach in

designing welded thin-walled RHS members.

9.7 Concluding remarks

In the current chapter, the effects of cross-section geometry, material properties, residual
stress on the behaviour of thin-walled RHS struts exhibiting mode interaction were in-
vestigated using the validated FE model developed in Chapter [3| but also drawing on the
developments presented in the subsequent chapters. An assessment of the current design

guidelines was made by means of structural reliability analysis in accordance with Annex
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D of EN1990.

Firstly, a program that could automatically generate, submit, terminate and process ge-
ometric and material nonlinear analyses with imperfections (GMNIA) was developed in
MATLAB. With the program, an extensive parametric analysis can be conducted efficiently

and systematically.

The parametric study on the cross-section geometry, i.e. plate width to thickness ratio
and cross-section aspect ratio, showed that they generally have minor effects on the profile
of the Van der Neut-type curve in the purely elastic case. It also indicated that the
Direct Strength Method (DSM) can be used for the ultimate load prediction in such cases.
Moreover, for perfect struts, the extent of the notoriously unstable range, i.e. zone 2, was
observed to increase with the increase of cross-section aspect ratio, while there was little

effect found from varying the plate width to thickness ratio.

The effects of the yielding stress level on the Van der Neut-type curve were also investi-
gated. With the decrease of material yielding stress level, the Van der Neut-type curve
was curtailed. The load-carrying capacity drop is not significant in the range where global
buckling is critical but it becomes increasingly significant with the increase of P¢/PC in
the range where local buckling is critical. Based on the results, the imperfection sensitivity
of four representative length struts at different yielding stress levels was investigated. In
particular, four typical imperfection cases were studied, i.e. with purely a global imperfec-
tion, purely a local imperfection, a combined local and global imperfection with amplitudes
normalized to the tolerance value combination and a varying local imperfection with the
global imperfection being at the tolerance level. Curves were fitted to describe the im-
perfection sensitivity based on numerical results for different cases. It was found that the
leading power law relationship order is not affected by the yielding stress level but the
imperfection sensitivity increases with the decrease of the yielding stress level, particu-
larly for ‘short’ struts. Moreover, it was found that the leading order in the power law

relationship is related to the strut failure mechanism. Following that, the effects of ma-
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terial yielding stress level on the equilibrium path of the four characteristic length struts
were investigated. For struts with lower cross-sectional slenderness, the final failure mech-
anism is localized failure of the more compressed web at mid-span and the failure mode
is highly unstable. With the increase of cross-sectional slenderness, the severity of the
unstable behaviour is mollified, which helps explain the imperfection sensitivity of struts
with different yielding stress levels. The failure mechanism of struts was explained using
the axial tangent stiffness versus axial load relationship of a simply-supported plate under
pure compression. Moreover, the study on the effect of material strain-hardening showed
that the effect of strain-hardening slope in practical steels on the ultimate load of struts

susceptible to local-global mode interaction is tiny and may be neglected.

As for the effect of residual stress, the local imperfection sensitivity of struts with the
normalized global imperfection size g5 being 1/1000 was investigated. The example struts
exhibited a 1/2 power law relationship, which is the same as the residual stress-free case.
With the increase of the ratio of the compressive residual stress to local buckling stress,
mollification in the imperfection sensitivity was observed. The effects of residual stress on
the equilibrium path of the four characteristic length struts with different normalized cross-
section slenderness were investigated. Erosion in the load-carrying capacity was observed
in all four example struts compared with the residual stress-free case and it was also found
that the length effect on the erosion is negligible. Moreover, a reduction in the initial
strut stiffness, as well as a mollification in the severity of unstable behaviour owing to the
coupling of plate local buckling and material failure, were observed. This is attributed
to the fact that the compressive residual stress promotes premature buckling of the more
compressed web at a relatively lower external axial load level, thus leading to the loss of

strut stiffness.

Since the initial imperfection size A) would be amplified after the self-equilibrating step for
the cases where residual stresses are explicitly accounted within the FE model, a simplified

method was proposed to determine AJ. Parametric studies showed that it does provide a
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simple yet relatively accurate estimation of AJ.

Finally, based on the numerical results, an assessment of the current design rules for thin-
walled welded RHS struts, i.e. the effective width method (EWM) in EC3 and the DSM,
were made by means of reliability analysis in accordance with Annex D of EN1990. It
revealed that the EWM can generally provide a good ultimate load prediction but may
be unsafe in some parametric ranges; the DSM generally gives an unsafe ultimate load
prediction. Partial safety factors vy were determined for both cases such that make the
current design equations meet the Eurocode reliability requirement. Moreover, a modified
DSM equation has been proposed based on the numerical and experimental results and it

is shown to provide a better ultimate load prediction than it does at present.



Chapter 10

Conclusions and future work

10.1 Conclusions

The current thesis has presented a series of variational and finite element (FE) models, de-
scribing the local-global mode interaction of thin-walled rectangular hollow section struts.
The effects of flange—web joint rigidity, strut length and geometric imperfections were in-
vestigated using the developed variational model and verified by FE models. The highly
unstable post-buckling behaviour and imperfection sensitivity due to interactive buckling
have been highlighted. The behaviour of RHS struts exhibiting mode interaction in more
practically realistic scenarios, which include material nonlinearity and residual stresses,
were also investigated using FE models validated from existing experimental results, high-

lighting that particular attention should be paid while designing such structural members.

Firstly, nonlinear FE models using shell elements were developed in the commercial FE
package ABAQUS. The classical solutions from linear theory for the buckling of simply-
supported plates under pure compression and the Euler buckling load of simply-supported
columns were used to verify the FE model and showed good comparisons. Moreover,

experimental results on local-global mode interaction of welded box-section columns under
333
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pure compression from two independent studies were used to validate the effectiveness of
the nonlinear material modelling, geometric imperfections and residual stress modelling as
well as the nonlinear solution strategy in the current FE model. Good comparisons were

also observed.

The analytical study started with the focus on the global buckling induced local-global
mode interaction of thin-walled RHS struts with semi-rigid flange—web joints. Unstable
post-buckling behaviour due to mode interaction was observed. A progressive change in
the local buckling mode was identified in terms of both the wavelength and the amplitude.
As far as the author is aware, it is the first time that this has been demonstrated in
rectangular hollow section struts. With the increase of the cross-section joint rigidity,
a transition from highly unstable to more mildly unstable post-buckling behaviour was
observed. The results from the variational model showed excellent comparisons with the
FE results, which verified the effectiveness of the presented methodology. A simplified
method to predict the local buckling coefficient in the more compressed web and the global
buckling amplitude at the secondary bifurcation point was proposed based on the verified
variational model; it was demonstrated to be simple, yet safe and accurate for the cases

studied.

The variational model was then extended to describe the interactive buckling of elastic
thin-walled RHS struts in scenarios where local buckling may be critical as well as the
existence of both local and global geometric imperfections. Two independent sets of in-
plane and out-of-plane local displacement fields, which represent the pure local buckling
mode and global buckling induced interactive buckling mode respectively, were introduced
to describe the interactive buckling mode of struts with different lengths. In particular,
the cross-section components of these local modes were approximated by applying approx-
imate kinematic boundary conditions for each plate in conjunction with Rayleigh-Ritz
method. Global and local imperfections, the profiles of which correspond to the global

and local modal descriptions adopted in the variational model, were introduced. The total
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potential energy was determined based on the modal description and introduced geomet-
ric imperfections. By performing the calculus of variations on the total potential energy,
the governing equations for the longitudinal components of the local post-buckling modes

subject to boundary and integral conditions were obtained.

Based on the developed variational model, a parametric study on strut length was con-
ducted. Numerical examples, considering four representative lengths corresponding to dis-
tinct parts of the Van der Neut curve, were presented and verified using the validated FE
model developed in Chapter [3] Using the verified variational model, the boundaries of four
distinct length-dependent domains were identified for realistic cross-section characteristics
for the first time. Unstable post-buckling behaviour due to mode interaction was observed
in long, transitional and intermediate length struts. Potentially dangerous behaviour, i.e.
a sharp drop in the load-carrying capacity immediately after the ultimate load is reached,
has been identified where the global buckling load is close to the local buckling load. A
progressive change in the local buckling mode was observed within the nonlinear post-
buckling range in all struts. In particular, for so-called ‘intermediate’ and ‘short’ length
struts, snap-backs that correspond to the change in the number of troughs and peaks in
the local mode that are akin to cellular buckling, were observed. The parametric study on
strut length also showed that the notoriously unstable post-buckling range for rectangular
hollow-section struts is in fact significantly smaller than that predicted by Van der Neut’s
idealized model and the stiffness reduction factor is also considerably higher. The reason
for this difference has been identified as being derived from the interaction between the
individual plates due to the rigid corners within the cross-section, which lead to some stiff-
ness redistribution. This is in contrast with the assumption that the corners are pinned

where the web and flange plates behave independently.

Following the study of perfect systems, the imperfection sensitivity of thin-walled RHS
struts with initial global and local geometric imperfections was investigated. Numerical

examples, focusing on cases where the global buckling load is close to the local buckling
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load, were presented and verified using the FE model developed in Chapter |3 The sensi-
tivity of two example struts exhibiting mode interaction to initial geometric imperfections
was quantified. With the increase of the geometric imperfection size, a transition from
highly unstable to neutrally or mildly stable post-buckling behaviour was observed. A
progressive change in the local buckling mode was identified in terms of both wavelength
and amplitude. In particular, mode jumping within the interactive buckling mode, i.e. the
change in the number of troughs and peaks of the local mode and snap-backs in the equilib-
rium path, was also observed in the cases where the local imperfection size is vanishingly
small. Curves were fitted to describe the ultimate load versus normalized imperfection
size relationship. For the purely global imperfection case, the expressions for both exam-
ple struts indicated approximately a 1/2 power law relationship to leading order; for the
purely local imperfection and combined imperfection cases, the expressions for both exam-
ple struts indicated approximately a 1/3 power law relationship. A simplified method to
predict the load at the pitchfork bifurcation point, where interactive buckling is triggered,
was proposed for struts with purely global imperfections based on the verified variational

model; it was demonstrated to be simple, yet safe and accurate for the cases studied.

A further parametric study on the effects of tolerance level global imperfections, local
imperfections and their combinations on the ultimate load for struts with different lengths
was conducted. It was revealed that for struts with tolerance level global imperfections,
the post-buckling behaviour after the pitchfork bifurcation point is unstable and stable for
struts with global buckling and local buckling being critical respectively. It was also found
that local imperfections are more significant than global imperfections for struts where
global buckling is critical and global imperfections are more significant for struts where
local buckling is critical. This was attributed to the characteristic behaviour where the
alternative imperfection type would facilitate the necessary symmetry breaking to trigger
interactive buckling. Based on the parametric study results, the simplified method to
predict the pitchfork bifurcation load was calibrated to calculate the ultimate load for

struts with tolerance level global and combined imperfections.
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Based on the FE model developed in Chapter |3| alongside findings from the variational
model in Chapter [7] the behaviour of thin-walled RHS struts with tolerance level im-
perfections was investigated using the Geometric Nonlinear Analysis with Imperfections
(GNIA). Focus was on the effect of local imperfection profiles on the ultimate load and
equilibrium behaviour. A unified local imperfection measurement based on equal local
bending energy was introduced, which could provide a consistent and meaningful compar-
ison between different imperfection profiles. An algorithm for determining the most severe
local imperfection profile was proposed. A function, which can terminate the nonlinear
analysis automatically once certain failure criteria is met, was also developed within MAT-
LAB. This greatly improved the computational efficiency and made an efficient parametric
study feasible. Within the automated computational framework, the most severe local
imperfection profiles for struts with different lengths were determined. The study revealed
that the ultimate load is principally affected by the imperfection in the more compressed
web. The wavelength of the most severe periodic local imperfection was found to be smaller
than that of the purely local buckling mode or the local-global interactive post-buckling
mode for the perfect case, which implies that the lowest local buckling mode from linear
buckling analysis does not necessarily represent the most severe local imperfection profile.
Under the equal local bending energy constraint, introducing a modulated amplitude in the
local imperfection profile leads to a further decrease in the ultimate load. However, struts
with highly localized local imperfection profiles exhibited a relatively stiffer response, thus
leading to a higher ultimate load. Moreover, it was determined that under the constraint
of the manufacturing imperfection tolerance level, the most severe imperfection profile can
be safely approximated using the case with doubly-symmetric cross-section initial deforma-
tion and periodic longitudinal components. An equation to approximate the corresponding

wavelength was proposed based on the results of the parametric study.

As for the equilibrium behaviour, the example struts with doubly-symmetric cross-section
local imperfections with a tolerance level amplitude exhibit approximately neutral or

weakly stable responses after the local-global mode interaction is triggered. This is differ-
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ent from the perfect case, where there are four representative length-related ranges that
exhibit distinct interactive post-buckling responses. Although the mono-symmetric cross-
section imperfection profile breaks the symmetry of the strut deformation at the beginning,
the equilibrium path converges to the doubly-symmetric case when the global mode is fully
developed. An explicit equation to predict the global buckling load of thin-walled RHS
struts with tolerance level doubly-symmetric cross-section imperfections was proposed and
showed excellent agreement with the FE results for different plate width to thickness ratios,

cross-section aspect ratios and imperfection size levels.

Finally, based on findings in preceding chapters, a program that can automatically gener-
ate, submit, terminate and process geometric and material nonlinear analyses with imper-
fections (GMNIA) was developed in MATLAB. With the program, an extensive parametric
analysis was conducted in an efficient and systematic way. The parametric study on the
cross-section geometry, i.e. plate width to thickness ratio and cross-section aspect ratio,
showed that they generally have minor effects on the profile of the Van der Neut-type curve
in the purely elastic case. It also indicated that the Direct Strength Method (DSM) can
be used for the ultimate load prediction in such cases. Moreover, for perfect struts, the
length of the notoriously unstable range, i.e. zone 2, was observed to increase in size with
the increase of cross-section aspect ratio while there was little effect from varying the plate

width to thickness ratio.

The effects of the yielding stress level on the Van der Neut-type curve have been inves-
tigated. With the decrease of material yielding stress level, the Van der Neut-type curve
was curtailed. The load-carrying capacity drop is not significant in the range where global
buckling is critical but it becomes increasingly significant with the increase of P¢/BPC in
the range where local buckling is critical. Based on the results, the imperfection sensitivity
of four representative length struts at different yielding stress levels was investigated. In
particular, four typical imperfection cases were studied. Curves were fitted to describe the

imperfection sensitivity based on numerical results for different cases. It was found that the
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leading power law relationship order is not affected by the yielding stress level but the im-
perfection sensitivity increases with the decrease of the yielding stress level, particularly for
‘short’ struts. Moreover, it was found that the leading order in the power law relationship
is related to the failure mechanism. Following that, the effects of material yielding stress
level on the equilibrium path of the four characteristic length struts were investigated. For
struts with lower cross-sectional slenderness, the final failure mechanism is localized failure
of the more compressed web at mid-span and the failure mode is highly unstable. With the
increase of cross-sectional slenderness, the severity of the unstable behaviour is mollified,
which helps explain the imperfection sensitivity of struts with different yielding stress lev-
els. The failure mechanism of struts was explained using the axial tangent stiffness versus
axial load relationship of a simply-supported plate under pure compression. Moreover, the
study on the effect of material strain hardening showed that the effect of strain-hardening
slope in practical steels on the ultimate load of struts susceptible to local-global mode

interaction is tiny and may be neglected.

As for the effect of residual stress, the local imperfection sensitivity of struts with the
normalized global imperfection size gy being 1/1000 was investigated. The example struts
exhibited a 1/2 power law relationship, which is the same as the residual stress-free case.
With the increase of the ratio of compressive residual stress to the local buckling stress,
mollification in the imperfection sensitivity was observed. The effects of residual stress on
the equilibrium path of the four characteristic length struts with different normalized cross-
section slenderness were investigated. Erosion in the load-carrying capacity was observed
in all four example struts compared with the residual stress-free case and it was also found
that the length effect on the erosion is negligible. Moreover, a reduction in the initial
strut stiffness, as well as a mollification in the severity of unstable behaviour owing to the
coupling of plate local buckling and material failure, were observed. This is attributed
to the fact that the compressive residual stress promotes premature buckling of the more
compressed web at a relatively lower external axial load level, thus leading to the loss of

strut stiffness. Since the initially introduced imperfection size AJ would be amplified after
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the self-equilibrating step for the cases where residual stresses are explicitly accounted
within the FE model, a simplified method was proposed to determine AJ. Parametric

studies showed that it does provide a simple yet relatively accurate estimation of Aj.

Finally, based on the numerical results, an assessment of the current design rules for thin-
walled welded RHS struts, i.e. the effective width method (EWM) in EC3 and the DSM,
were made by means of reliability analysis in accordance with Annex D of EN1990. It
revealed that the EWM can generally provide a good ultimate load prediction but may
be unsafe in some parametric ranges; the DSM generally gives an unsafe ultimate load
prediction. Partial safety factors vy were determined for both cases such that make the
current design equations meet the Eurocode reliability requirement. Moreover, a modified
DSM equation has been proposed based on the numerical and experimental results and it

is shown to provide a better ultimate load prediction than it does at present.

10.2 Future work

Following the work presented in the current thesis, the following subsections outline areas

for further investigation.

10.2.1 Further enhancements of variational model

Modal description scheme As noted in preceding chapters, some simplifications have
been made in the modal descriptions in the variational models, which account for the
relatively over-stiff response of the variational model. Therefore, in order to simulate and
predict the mode interaction behaviour more accurately, the following enrichment can be

made in the modal description:

1. Introduce an independent set of transverse displacement field functions to consider
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the effects of transverse stress in plates, which have been assumed to be zero in the

current formulation.

2. Introduce higher order terms in the cross-section profile of the local buckling mode,
which could capture the progressive change in the cross-section profile owing to the
increasing compressive strain levels as well as the global inward deformation in the

less compressed web due to global bending effects in the far-field post-buckling range.

3. Re-define the cross-section components of the direct in-plane displacement field based
on the solutions from classical theory (Koiter, 1945) and results from FE models so

that the actual in-plane displacements can be better simulated.

Material nonlinearity The current variational model only limits to the linear elastic
material properties. However, as demonstrated in Chapters [§ and [9] as well as in the
existing physical test results, the ultimate failure of the thin-walled RHS struts with prac-
tical imperfection levels is mainly governed by material failure. Therefore, including the
nonlinear effects of the material in the variational model would help to understand the un-
derlying mechanism in the failure of RHS structures in realistic scenarios better. The novel
framework proposed by Kollner (2017]), which extends the general elastic stability theory
to certain non-conservative deformation processes, may be used to enhance the variational
model. Moreover, the developed model may also be used to simulate mode interaction in
thin-walled RHS struts made from nonlinear materials, such as stainless steel (Gardner &

Nethercot, 2004b)).

10.2.2 Inclusion of other factors

Cold-formed sections In the current thesis, mode interaction in welded RHS struts
has been investigated using the FE method. In practice, cold-formed thin-walled RHS

struts are also widely used. Compared with welded members, the process of cold working
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leads to the enhancement of material strength at the corners. Moreover, the residual stress
distribution pattern is also different (Schafer et al., 2010; Quach et al., 2010). Therefore,
FE models considering these effects could be developed to investigate the mode interaction

in cold-formed thin-walled RHS sections.

Boundary conditions of columns In the current thesis, the boundary condition of
the columns are assumed to be simply-supported and the load is applied at the cross-
section centroid. In practice, the boundary condition of column is always semi-rigid and
the load condition is always a combination of axial load and bending moment. Therefore,
a model including these factors would help better understand the effects of local-global
mode interaction on the beam-column strength curves and provide suggestions for robust

design guidelines.

10.2.3 Statistical analysis of geometric imperfections in welded

RHS members

Chapters [7], [§] and [9] have demonstrated that the ultimate load of thin-walled RHS struts
susceptible to mode interaction is sensitive to size of any geometric imperfections. Great
efforts have been made to collect and analyse the geometric imperfections in cold-formed
thin-walled members and some widely accepted equations to determine the statistically
significant imperfection size have been proposed (Schafer & Pekoz, 1998aj Schafer et al.,
2010). However, as far as the author is aware, there is no such kind of database for welded
members. Therefore, a consistent and reasonable geometric imperfection size expression,
which is based on the statistical analysis of the measured data and can reflect realistic
imperfections, would be very helpful for developing a rational computational models for

research and design purposes.
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10.2.4 Extension of methodology to similar problems

Mode interaction in thin-walled RHS fibre-reinforced polymer struts Owing
to its advantages over conventional structural materials (steel, concrete, wood, etc.), such
as high strength-to-weight ratio, high failure stress and high corrosion resistance, fibre-
reinforced polymer (FRP) members are gaining increasing popularity recently and this will
probably continue (Barbero & Tomblin, 1994; [Jones, 1998} |Barbero, 2013). Since the FRP
material remains linearly elastic for large strains, buckling is always the governing failure
mode of such members (Barbero et al., 2000). Therefore, thin-walled RHS struts with
certain geometric properties would be susceptible to interactive buckling. Changing the
isotropic material to an orthotropic material within the current model framework would
make it possible to investigate mode interaction of such members. With the developed
model, the effects of the lay-up of the laminates or orientation of the laminates on the
local-global mode interaction, imperfection sensitivity, and Van der Neut-type curve can

be investigated, which could be used to provide recommendations to design such members.

Mode interaction in thin-walled struts with other cross-section profiles As far
as the author knows, the current methodology has not been used to investigate the local—
global mode interaction in channel-section and polygonal section struts. The challenge
in modelling these sections is a good local modal displacement scheme, which is more
complex compared with that of RHS struts. More local mode components would have
to be introduced to describe the actual local displacement field fully, which may make
the formulation process very complex and cumbersome. Therefore, the automation of the
formulation of the governing equations in the context of the symbolic computation package

MAPLE (2017) is essential.



Appendix A

Expressions for ODEs, integral and

boundary conditions

Currently, the extended expressions for the ODEs, integral and boundary conditions de-
rived in Chapter [5] for struts with both local and global geometric imperfections ranging
from local buckling being critical to global buckling being critical are presented. Moreover,
it should be noted that by setting local and global imperfection related terms to zero, these

expressions are the governing equations for the perfect struts presented in Chapter [6]

The fourth order ODE for w; and w, are given thus:

(A11 A2 — A9 Ag) (W' — Who) — Aga (Co1 + Co2) + Ao (Ch1 + Ch2) =0, (A1)
(A11Ags — AjpAgy) (Wo — W) + A1y (Cog + Cag) — A9y (Chy + Ci2) =0, (A.2)
where
2D
A= (Y4 U, + L), ) (A3)

344



APPENDIX A. EXPRESSIONS FOR ODES, INTEGRAL AND BOUNDARY CONDITIONS 345

s =D (sz (12, + {2, +{f2m}) (A4)

Az = Dy, {QD—Df {iefart, + {fiwefowe}, + {flwtf?wt}y:| ; (A.5)

Aoy = [Q—Df {fiefor}, + {fiwefowe}, + {flwthwt}y:| )

2D
CH :2DWV |: f

(Rafihs + Ueflad), +{flwtffm}y} (i1 — o)
- 20,0 =) |22+ ), + (U2, | - i)

2D
D[} e, U, | =

2b
+ Et,, woT (@ — qro) {bt { flf} + {fm;} {flwt} ] ( CoS fzwl +sm7T—sz1>
+ Bt A [—f {fieh, + {fivet, + {fth}y} 1
Et |:2tf {flf} + {flwc} + {flwt} :| (3'11}%11}1 - 2w10w10w1 o wfowl)

— Ety, {Qtf {91ff1f} + {glwcflwc} + {glwtflwt} } digay + g 1iy)

7T2 Tz

— 2Gt; {f{fflf}z [(gs — at) — (g0 — o)) T sin fwl

— Gt,, [Qtf {91 fiefie}e + G wefiwefrwety + {1we 1w frwe by, }ulwl

_ Gt |:2tf { {f2f12f} + {flwcflwc} + {flwtflwt}y:| (wlw% -+ w%wl

W

. .9
— WioW1ioW1 — w10w1)7



APPENDIX A. EXPRESSIONS FOR ODES, INTEGRAL AND BOUNDARY CONDITIONS 346
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The detailed expressions of the ODEs for u; and us are given thus:

(B11B2y — B12Ba1) iy — By (Da1 + Dag) 4+ Bas (D11 + Ds2) =0, (A.17)
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- at, ”‘wa%gx}+{ﬁm%mﬁm}+4ﬁm%mﬁm} (w1t — wroting)
) (A.26)

Moreover, equilibrium also requires the minimization of the total potential energy with

respect to the generalized coordinates ¢;, ¢, and A, thus leading to three integral conditions:

ov ©v*d tb

90 ZEth (¢t — qwo) {1 + Bt_d} — Gt:bL [(qs — @) — (g0 — quo)| ™

L
+umm/‘ﬁ%bm+wmmng—wmmww@hm
0

+ { farfor}, (Wows — Wagwag) + { fig far}, (withy — wipthao)

. . mZ
+ {fiefae}, (irws — wwwzo)} cos — dz
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T Ebt,, " At .
2T /0 {( {g1wet, — {g1wi}, + . {zgir}, ) Uy

# (U, — U, 2 (o), ) Gt — i)

( 4tf
(
(

+ ({frwefd, = U fowid, + 5ot (e fiefrh, ) (tnity — t10tia)
1

§{f2wc {f2wt} + { f2f} >( _wzo)

{

gzwc} {ggwt} —|— {xQQf} )ug] sin % dz =0, (A.27)

_|_

_|_

ov

Bl (¢s — gs0) 7 Lgs
- P
Igs

L 2

=1?GtebL [(gs — ¢) — (g0 — quo)] +
L
— 27rth/ {{g’lf}x uy + { fiefie}, (wr — wrowio) + {96}, o
0

+ {fafor}, (Wows — Wagwag) + { fig for}, (withe — wigthao)

. . Tz
-+ {flfféf}x (w1w2 — wlow20>:| COSs f dz = 0, (A28)

oV bi¢ L 2t .
aA 2Et dLA (1 + E) - EtW/O |: ({glwc}y + {glwt}y + E {glf}x) U1

# (5 U, + 5 U, + {12, (= i)

+ ({f1wcf2wc}y + {flwtf2wt}y t el {f1ff2f} ) (W1t — tigthz)
(R, U 0. ) 2
- ({gzwc} +{gwm}, + = 2t {ggf} ) ug} dz — PL = 0. (A.29)

Two boundary conditions are obtained from the variational formulation process with re-

gards to the in-plane strain, i.e. :

oL
[a—ml}

L
=0, (A.30)
0

oL
=0 and [8_&@}

Uz

0
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which can be expressed thus:

— {{glwc}y +{g1w}, + % {91}, } A+ [{gm} +{ gt} + {glf} }
+[3 {ghwfgw} + 3l fud, + o (o), }[ — i(0)]
[{glwcgzwc} # (ammgnad, + 5 )| a0
{5 {metd, + 5 (ot + 1 s | [030) - i) (A3
(oS, + eSS, + 52 (e s, | [n(0)iz0)
o (0)tino(0)]

+Wi+d) {Q{glf}x +{g1we by + {glwt}y:| =0,

2t¢

- |:{92WC}y + {92wt}y + i_if {ng}x:| A + |:{g%vvc}y + {ggwt}y + {92f} :|
+me&Jﬁé@mﬁMﬁ€”mﬁhM@@—@Mﬂ
+ |:{g2wcg1wc}y + {gzwtglwt}y + % {ngglf}x] i1 (0)

[ {g2WCf1wC} + 5 {92wtf1wt} + {ngflf} ][ w%o(o)}

+ [{92we fowe frwe }, + {G2wt fowt frwi )y + {92ff2ff1f} } [2002(0)1ir1 (0) — a0 (0)1ir10(0)]

(A.32)



Appendix B

Zone 2—3 boundary determination

from double modulus theory

Van der Neut predicted the boundary between zones 2 and 3 using Engesser’s ‘double-
modulus’ theory (Bazant & Cedolin, 1991). The same approach is adopted currently to

predict the boundary for the rectangular hollow section strut.

It has been verified that global and local buckling is triggered simultaneously in zone 2.
Prior to buckling (w = 0), the stress distribution is uniform, oy = P/A. It has been
assumed in the current work that plane cross-sections remain plane but not normal to
the deflected centre line of the strut at the initial buckling stage. At the commencement
of mode interaction, the compressed side of the strut would remain buckled and undergo
further shortening, hence further loading, and the less compressed side would undergo
relative extension, hence unloading. Somewhere within the cross-section, there is a neutral
axis at which the axial strain would not change; its distance from the more and less
compressed sides of the strut being denoted as b; and by respectively, where by + by = b,
as shown in Figure [B.1[b). The effective axial stiffness in the more compressed side of the

cross-section would drop due to plate buckling. It is assumed that the distribution of the

353



APPENDIX B. ZONE 2-3 BOUNDARY DETERMINATION FROM DOUBLE MODULUS THEORY 356

effective elastic axial stiffness is proportional to n¢(x)E and ny(y)FE in the flanges and the

more compressed web respectively.

(a)

P
Z
x
(b) (© P
E n(0E o ZP
nwk
d|E >
V w(V)E
E ne(x)E
by b

Figure B.1: (a) Local-global mode interaction in a simply-supported rectangular hollow
section strut under the concentric axial load P. (b) Cross-section stiffness distribution at
the starting point of the local-global mode interaction. The function 7¢(z) and 7 (y) are
the stiffness reduction factors for the flanges and the more compressed web respectively due
to local buckling. (c¢) Normal stress distribution before mode interaction is triggered. (d)
The variation in the normal stress due to mode interaction. The curvature due to global
buckling is k; 6 F} and 0 F5 are the relative load changes in the less and more compressed
sides of the cross-section respectively, which include the unloading and loading of the
flanges and webs.

According to the assumption of plane cross-sections remaining plane and the assumed effec-
tive axial stiffness distribution above, the incremental resultant force at the less compressed

side 6 F; and more compressed side d F5 can be obtained, thus:

d/2 b1
0F, = / Etyeg dy + 2/ Etier de = Ebik (dty + bity), (B.1)
—d/2 0
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b

/2 b e
0F, = / Nw(Y) Eewe dy + 2/ ne(x) Eties do = Ebok (nwdt + — 2 xnf(x) dx) ,
—d/2 0 2

(B.2)

where e, = b1k and ey = byk are the direct strains in the less compressed and more
compressed webs respectively; e; = xk is the direct strain in the flanges; « is the curvature
due to global buckling; 7, = ffg% nw(y) dy is the equivalent stiffness reduction factor in

the more compressed web.

The condition of constant axial load requires that the resultants d F; and 6 F5 of the incre-
mental normal stress in the more and less compressed sides must be of equal magnitudes,

thus:

OF, = 6F. (B.3)

As for the moment M in the cross-section,

M == M1 —|— MQ, (B4)
where:
b1+tw/2 d/2 b1
M, = / / rEtyew dyda + 2 / rEtiee do (B.5)
b1 — tw/2 d/2 0
dt3 203t
_ E 2 w 1
K (b dty + B + 3 ) )
b2+tw/2 d/2 bo
M, = / 2Ny (y) Etyewe dy dz + 2/ xne(z) Eteer do (B.6)
bo—tw/2 J—d/2 0

2 dty, =
= FEx bydty + —— B +2 xne(x)teda|
0

this can be rewritten as:

M = ®,Elk, (B.7)

where I = b3t;/6 + b2dt,, + dt3 /6 is the second moment of area about the weak neutral

axis of the entire cross-section before buckling. Therefore, the bending stiffness reduction
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factor due to local buckling in the more compressed side can be written as:

o — Mt M)
' Flk
(B3dty, + dt3, )12 + 2031 /3) + i (B3dtw + 3 /12) + 2 [ a2e(2)t da
b3t /6 + b2dt,, + dt3 /6 ’

(B.8)

where b; and by can be obtained explicitly using the constant axial force condition from
Eq. (B.3). It should be noted that if ¢t — 0 and b > ¢, i.e. making both flanges having

a negligible size, ®, would reduce to the expression developed by Van der Neut, where

¢, = 277W/ (1 + ﬁW)



Appendix C

Buckling load, wavelength and
cross-section profiles of pure local

buckling mode

Since the longitudinal component of the pure local buckling mode under compression is
periodic, a plate element with length [,, which is equal to the half wavelength of the
local buckling mode in the longitudinal direction, is isolated for consideration, as shown
in Figure[C.I}a). The formulation begins with the definition of the buckling displacement

field in the webs wy(y, z) and flanges we(x, 2):

T2 T2

wy (Y, 2) = Q frw(y) sin 7 we (7, 2) = Q fir(z) sin 7 (C.1)

where () is a generalized coordinate representing the amplitude of the local buckling mode;
fiw and fiy are cross-sectional components of the local buckling mode in the webs and
flanges respectively. The functions fiy, and fif, which are valid from square hollow sections
to rectangular hollow sections, are derived based on a semi-analytical method. Since the

pure local buckling mode is symmetric, symmetric shape functions are used for both flanges

359
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(b)

S1r(x)
Siw®) Siw®)
T&‘ d
Y
S1e(x) .
b
N

Figure C.1: (a) Deformed shape of an isolated thin-walled RHS strut element under pure
compression. Effective length of the element is [, with depth d and width b. The buckling
displacement distributions in the webs and flanges are defined as wy(y, z) and wg(z, z)
respectively. (b) Cross-section profile of the local buckling mode and the static and kine-
matic boundary conditions at the corner joint, where M and 6 represent bending moments
and rotations at the cross-section corners respectively.

and webs. For convenience, it is assumed that the amplitude of the buckling mode in the

web is unity, thus:
fiw(y) = B COS(—y>+(1—B) 1——y2 (C.2)
1wl\lY 0 l 0 l ) .

fu(z) = A, (1 = %) + Azcos (0). (C.3)

Three boundary conditions are required for determining the three unknowns A, A, and B.

However, there are only two available from the kinematic and static boundary conditions,

as shown in Figure [C.I|(b):

5 @ sin 7T—2, (C.6)
x=b/2 le
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0% wy, 0wy, d* fiw
My(y=d/2)=|D = p. =1
w(y d/ ) |: w ( 8y2 +v 922 ):| V)2 ( w dy2

9W _ dflw
dy

e

@ sin W—Z, (C.7)
y=d/2 !

df

9 P—
f dx

(C.8)

, .
=b/2 y=d/2
The third condition is obtained in conjunction with data generated from the FE results.
A parametric study was conducted to obtain the ratio of the amplitudes in the flange and

the web for different cross-section aspect ratios, ranging from 1 to 3. The results are shown

in Figure and a function describing the relationship is fitted:

7

(&)
T

flw,max/flf,max
A~

o FE
Fitting function

w
T

1 1.5 2 25 3
Pe

Figure C.2: Ratio of the local buckling modal amplitude in the web and flange for thin-
walled RHS struts with different cross-section aspect ratios ¢.=d/b.

flw max 1 2
: = = —0.23¢; + 3.73¢. — 2.5, C.9
flf,ma.x Al + A2 ¢ ¢ ( )

with ¢. = d/b being the cross-section aspect ratio. The mean ratio of the results from Eq.

(C.9) to the FE results in the range shown is 0.993 and the maximum COV is 0.94%.

From Egs. (C.4)—(C.5) and (C.9), the coefficients in Eqgs. (C.2)) and (C.3|) can be deter-
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mined:

7 (250 — 273¢. + 23¢2)

A, — C.10
" 6 (214.60 — 105.58¢, — 300.44¢2 + 19.74¢43)’ (C.10)
—3926.99 + 3859.07¢, — 790.49¢>
A2 — 5 (Cll)
50 (214.60 — 105.58¢, — 300.44¢2 4 19.74¢3)
214.60 + 679.81¢, — 1158.10¢2 + 92¢3

™ 214.60 — 105.58¢, — 300.44¢2 + 19.74¢3°

Based on the fitted functions for the webs and flanges in Eqs. and - the linear
buckling load and the corresponding wavelength is derived using small deflection theory
(Timoshenko & Gere, 1961)). The methodology used is very similar to that adopted in
§4.5] The strain energy U in the strut element comprises the local bending energy in both

flanges Uy ¢ and webs Uy, :
U="Us+ Uy,
lo  b/2 2 2 2
o [ [ (G )
b2 0z ox
82wf 82wf 82wf 2
—9(1 — — dxd
(1-v) { 022 0x? (8281’) } v (C.13)
le d/2 2 2 2
LD, / / (8 w;NC 0 w;m)
/2 0z oy
awac azwwc aQwWC ?
—2(1 - — dy dz.
( y){azQ oy? <828y> }} vas
The work done by the load term is given by the following standard expression:
le rb/2 le (d/2 7 5, \ 2
PA = ot / / (—) drdz +/ / ( W) dydz| . (C.14)
b/2 d/2

The total potential energy can thus be written:

V =U - PA, (C.15)
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and by setting 9V /9Q) = 0 for equilibrium, the following expression for the local buckling
coefficient k&, of the more compressed web, where of = k,m2E/[12(1 — v?)(d/t)?], can be

obtained:

1
k’p = ag + algblz + 2 (016)
1

with ¢ = l,/d alongside ag and a; being constants that are functions of ¢., A;, As and

By, thus:
10¢. (H, H, 15¢c (Hi¢2 + H
ay — 0 (Ho1¢c + 02)? a = 5¢c (Hy17 + 12)’ (C.17)
Hozpe + Hoy 7 (Hospe + Hoa)
where:
Hyy = 32w AT + 1924, Ay + 373 A3,
Hoo = (37 + 321 — 192) Bf + (—64m + 192) B, + 32,
Hos = (317° — 960) Bj + (—327° + 960) By + 1677,
(C.18)

H04 = 1614%71'3 -+ 1514371'3 + 9601411427
Hyy = 7 A5 + 641 A Ay + 12843,

Hyp = (7" — 641 + 128) Bf + (64w — 256) By + 128.

Defining ¢, = (al)_l/ 4 an expression for the minimum value of k, can be determined:

ky = ag + 2+/a, (C.19)

with the half-wavelength lo = A\p1pa/2 = d (a1) /%,

The comparison between the analytical model expression obtained in Eq. (C.19)) and the
FE results is shown in Figure (a). In the range of ¢. from 1 to 3, the average value of
kprr/kprq is 1.001 and the COV is 0.04%, which demonstrates an excellent fit. Moreover,

since Eq. ((C.19) is relatively complex, an explicit expression was fitted:

k, = 5.44 — 1.44¢ %, (C.20)

which is also shown in Figure The mean ratio of the results from Eq. (C.20) to the
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5.2} 0951 ¥ > Analytical
i o FE
> Analytical
4.8¢ ——Eq. (A.20)
&»’L
46+
44t
0.7
42t 0651
‘ : 0.6 : A
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2 2
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Figure C.3: (a) Relationship between local buckling coefficient &, and cross-section aspect
ratio ¢. for thin-walled rectangular hollow section struts from the fitted function Eq. (C.20)

and FE results. (b) Relationship of normalized longitudinal wavelength versus ¢. from FE,
analytical models and the fitted function Eq. (C.21)).

FE results k, pr is 0.999 and the COV is 0.50%.

Figure (b) presents the relationship of the normalized wavelength of the pure local
buckling mode versus the cross-section aspect ratio. The results from the analytical model
show excellent comparisons with the FE model. It should be noted that the value of [, is
the length corresponding to the lowest k,. However, the actual wavelength is also affected
by the strut length since the number of half-waves should be an integer. This may explain
the jump in the results when the cross-section aspect ratio is relatively large, i.e. when the

wavelength is relatively large. A function is also fitted for the relationship:

¢ = A\prea/(2d) = 0.78 + 0.22¢, 2. (C.21)

The average ratio of ¢, from the fitted equation to the analytical model is 1.008 and the
COV is 0.29%.

Figure presents the cross-section profile of the local buckling mode from FE and the
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(a) ¢ =1.0 (b) ¢ =1.2 (c) ¢ =1.5

Figure C.4: Cross-section profile of the linear buckling mode for different cross-section
aspect ratios ranging from 1 to 3. Dashed and solid lines represent the results from FE
and analytical models respectively; the dot-dashed line represents the undeformed shape.
Note that displacements shown have been amplified by a factor of 20 to aid visualization,
but the differences are barely visible.

fitted functions, i.e. Egs. (C.2) and (C.3)), the differences being barely distinguishable.
The excellent comparisons verify the effectiveness of the currently chosen cross-section

functions.



References

Abambres, M., & Quach, W. M. 2016. Residual stresses in steel members: a review of

available analytical expressions. Int. J. Struct. Integr., 7(1), 70-94.
ABAQUS. 2014. Version 6.14. Providence RI, USA: Dassault Systemes.

Afshan, S., Francis, P., Baddoo, N. R., & Gardner, L. 2015. Reliability analysis of structural

stainless steel design provisions. J. Constr. Steel. Res., 114(Supplement C), 293-304.

AISI:S100-2007. 2007. North American specification for the design of cold-formed steel

members. American Iron and Steel Institute.

Ali, M. A., & Sridharan, S. 1988. A versatile model for interactive buckling of columns

and beam-columns. Int. J. Solids Struct., 24(5), 481-496.

Ashby, M. 2011. Materials selection in mechanical design (4th edition).  Oxford:

Butterworth-Heinemann.

Augusti, G. 1964. Some problems in structural instability with special reference to beam of

I-section. Ph.D. thesis, University of Cambridge.

Bai, L. 2014. Interactive buckling in thin-walled I-section struts. Ph.D. thesis, Imperial

College London.

Bai, L., & Wadee, M. A. 2015a. Imperfection sensitivity of thin-walled I-section struts

susceptible to cellular buckling. Int. J. Mech. Sci., 104, 162—-173.
366



REFERENCES 367

Bai, L., & Wadee, M. A. 2015b. Mode interaction in thin-walled I-section struts with

semi-rigid flange-web joints. Int. J. Non-Linear Mech., 69, 71-83.

Bai, L., & Wadee, M. A. 2016. Slenderness effects in thin-walled I-section struts susceptible

to local-global mode interaction. Eng. Struct., 124, 128-141.

Bai, L., Wang, F., Wadee, M. A., & Yang, J. 2017. Nonlinear mode interaction in equal-leg
angle struts susceptible to cellular buckling. Proc. R. Soc. A, 473(2207), 20170583.

Ban, H., Shi, G., Shi, Y., & Wang, Y. 2013. Residual stress of 460mpa high strength steel
welded box section: Experimental investigation and modeling. Thin-Walled Struct.,

64, 73-82.

Barbero, E. J. 2013. Finite element analysis of composite materials using abaqus. CRC

press.

Barbero, E. J., & Tomblin, J. 1994. A phenomenological design equation for FRP columns
with interaction between local and global buckling. Thin- Walled Struct., 18(2), 117
131.

Barbero, E. J., Dede, E. K., & Jones, S. 2000. Experimental verification of buckling-mode
interaction in intermediate-length composite columns. Int. J. Solids Struct., 37(29),

3919-3934.

Basaglia, C., Camotim, D., & Silvestre, N. 2011. Non-linear ght formulation for open-
section thin-walled members with arbitrary support conditions. Comput. Struct.,

89(21), 1906-1919.
Bathe, K.-J. 2006. Finite element procedures. Prentice-Hall.

Bazant, Z. P., & Cedolin, L. 1991. Stability of structures: Elastic, inelastic, fracture, and

damage theories. Oxford: Oxford University Press.

Bazant, Z. P., & Cedolin, L. 2010. Stability of structures: FElastic, inelastic, fracture and

damage theories. World Scientific.



REFERENCES 368

Bebiano, R., Pina, P., Silvestre, N., & Camotim, D. 2008. GBTUL-buckling and vibration

analysis of thin-walled members. Available from http://www. civil. ist. utl. pt/gbt/.

Becque, J. 2008. The interaction of local and overall buckling of cold-formed stainless steel

columns. Ph.D. thesis, University of Sydney.

Becque, J. 2014. Local-overall interaction buckling of inelastic columns: A numerical study

of the inelastic Van der Neut column. Thin-Walled Struct., 81, 101-107.

Becque, J., & Rasmussen, K. J. R. 2009a. Experimental investigation of the interaction of
local and overall buckling of stainless steel I-columns. ASCE J. Struct. Eng., 135(11),
1340-1348.

Becque, J., & Rasmussen, K. J. R. 2009b. Numerical investigation of the interaction of
local and overall buckling of stainless steel I-columns. ASCE J. Struct. Eng., 135(11),
1349-1356.

Belytschko, T., Liu, W. K., Moran, B., & Elkhodary, K. 2000. Nonlinear finite elements

for continua and structures. New York: Wiley.

Benitot, R., & Sridharan, S. 1984. Mode interaction in thin-walled structural members. J.

Struct. Mech., 12(4), 517-542.

Bijlaard, P. P. 1951a. Analysis of the elastic and plastic stability of sandwich plates by the
method of split rigidities-1. J. Aeronaut. Sci., 18(5), 339-349.

Bijlaard, P. P. 1951b. Analysis of the elastic and plastic stability of sandwich plates by the

method of split rigidities-11. J. Aeronaut. Sci., 18(12), 790-796.

Bijlaard, P. P.; & Fisher, G. P. 1952. Interaction of column and local buckling in compres-

sion members. Tech. rept. National Advisory Committee for Aeronautics.

Bijlaard, P. P., & Fisher, G. P. 1953. Column strength of H-sections and square tubes in
postbuckling range of component plates. Tech. rept. National Advisory Committee for

Aeronautics.



REFERENCES 369

Bleich, F. 1952. Buckling strength of metal structures. New York: McGraw-Hill.

Bock, M., Mirada, F.X., & Real, E. 2015. Statistical evaluation of a new resistance model
for cold-formed stainless steel cross-sections subjected to web crippling. Int. J. Steel

Struct., 15(1), 227-244.

Brazier, L. G. 1927. On the flexure of thin cylindrical shells and other “thin” sections.

Proc. R. Soc. A, 116(773), 104-114.
Brush, D. O., & Almroth, B. O. 1975. Buckling of bars, plates, and shells. McGraw Hill.
BS EN 1990. 2002. Basis of structural design. British Standards Institution.

Budd, C. J., Hunt, G. W., & Kuske, R. 2001. Asymptotics of cellular buckling close to the
Maxwell load. Proc. R. Soc. A, 457(2016), 2935-2964.

Budiansky, B., & Hutchinson, J. W. 1979. Buckling: Progress and challenge. Pages 93116
of: Besseling, J. F., & van der Heijden, A. M. A (eds), Trends in solid mechanics: Ded-
icated to the 65th birthday of W. T. Koiter. Delft, the Netherlands: Delft University

Press.
Bulson, P. S. 1970. The stability of flat plates. London, UK: Chatto and Windus.

Byskov, E.; & Hutchinson, J. W. 1977. Mode interaction in axially stiffened cylindrical
shells. AIAA J., 15(7), 941-948.

Cheung, Y. K. 1968. The finite strip method in the analysis of elastic plates with two

opposite simply supported ends. Proc. Inst. Civil Eng., 40, 1-7.

Chiew, S. P., Lee, S. L., & Shanmugam, N. E. 1987. Experimental study of thin-walled
steel box columns. ASCE J. Struct. Eng., 113(10), 2208-2220.

Chilver, A. H. 1976. Design philosophy in structural stability. Pages 331-345 of: Budian-
sky, B. (ed), Buckling of Structures. International Union of Theoretical and Applied

Mechanics. Springer Berlin Heidelberg.



REFERENCES 370

Comac (C919. 2014. (919 fuselage section of first C919 aircraft delivered in Shang-
hai. http://english.comac.cc/news/latest/201409/03/t20140903-1895735.shtml. [On-

line; accessed March 12, 2018].
Cook, R. D. 1994. Finite element modeling for stress analysis. Wiley.

Cook, R. D., David, S. M., & Michael, E. P. 2007. Concepts and applications of finite

element analysis. New York: Wiley.

Crisfield, M. A., & Wills, J. 1988. Solution strategies and softening materials. Comput.

Meth. Appl. Mech. Eng., 66(3), 267-289.

Cruise, R. B., & Gardner, L. 2006. Measurement and prediction of geometric imperfections

in structural stainless steel members. Struct. Eng. Mech., 24(1), 63-89.

Cruise, R. B., & Gardner, L. 2008. Residual stress analysis of structural stainless steel

sections. J. Constr. Steel. Res., 64(3), 352-366.

Davids, A. J., & Hancock, G. J. 1986. Compression tests of long welded I-section columns.
ASCE J. Struct. Eng., 112(10), 2281-2297.

Davids, A. J., & Hancock, G. J. 1987. Nonlinear elastic response of locally buckled thin-
walled beam-columns. Thin- Walled Struct., 5(3), 211-226.

De Boor, C., & Swartz, B. 1973. Collocation at Gaussian points. SIAM J. Numer. Anal.,
10(4), 582-606.

Degée, H., Boissonnade, N., & Rossi, B. 2007. Local and interactive post-buckling of
RHS thin-walled members—comparing a new special beam finite element with shell

FE models. Int. J. Struct. Stab. Dyn., 7(02), 213-241.

Degée, H., Detzel, A., & Kuhlmann, U. 2008. Interaction of global and local buckling in
welded RHS compression members. J. Constr. Steel. Res., 64(7), 755-765.



REFERENCES 371

Dewolf, J. T., Peokoz, T., & Winter, G. 1974. Local and overall buckling of cold-formed
members. J. Struct. Div. ASCE, 100(10), 2017-2036.

Djubek, J., Kodnar, R., & Skaloud, M. 1983. Limit state of the plate elements of steel

structures. Vol. 39. Birkhéauser.

Doedel, E. J., & Oldeman, B. E. 2009. AUTO-07p: Continuation and bifurcation software

for ordinary differential equations. Available from http://indy.cs.concordia.ca/auto/.

Doerich, C., & Rotter, J. M. 2011. Accurate determination of plastic collapse loads from
finite element analyses. J. Pressure Vessel Technol., 133(1), 011202-011202-10.

Dow, R. S., & Smith, C. S. 1984. Effects of localized imperfections on compressive strength

of long rectangular plates. J. Constr. Steel. Res., 4(1), 51-76.

Dubina, D., & Ungureanu, V. 2002. Effect of imperfections on numerical simulation of
instability behaviour of cold-formed steel members. Thin-Walled Struct., 40(3), 239—
262.

ECCS. TC 8. 1976. Manual on stability of steel structures. Tech. rept.

ECCS. TC 8. 1984. Ultimate limit state calculation of sway frames with rigid joints. Tech.

rept.

EN, BS. 2008. 1090-2: 2008+ al: 2011. FEzecution of steel structures and aluminium
structures. Technical requirements for steel structures. London, UK: British Standards

Institution, BSI.

EN-1993-1-1:2006E. 2006. FEurocode 3: Design of steel structures part 1-1. General rules

and rules for buildings.

EN-1993-1-3:2006E. 2006. FEurocode 3: Design of steel structures part 1-3. General rules-

Supplementary rules for cold-formed members and sheeting.



REFERENCES 372

EN-1993-1-5:2006E. 2006. Eurocode 3: Design of steel structures part 1-5. Plated structural

elements.

Euler, L. 1744. Methodus inveniendi lineas curvas mazimi minimive proprietate gaudentes.

(Appendix, De curvis elasticis), Marcum Michaelem Bousquet, Lausanne and Geneva.

Fok, W. C., Walker, A. C., & Rhodes, J. 1976. Local buckling of outstands in stiffened

plates. Aeronaut. Quart., 27, 277-291.

Garcea, G., Leonetti, L., Magisano, D., Gonalves, R., & Camotim, D. 2017. Deformation
modes for the post-critical analysis of thin-walled compressed members by a Koiter

semi-analytic approach. Int. J. Solids Struct., 110-111, 367-384.

Gardner, L., & Nethercot, D. A. 2004a. Experiments on stainless steel hollow sections
— Part 2: Member behaviour of columns and beams. J. Constr. Steel. Res., 60(9),

1319-1332.

Gardner, L., & Nethercot, D. A. 2004b. Experiments on stainless steel hollow sections—part

1: Material and cross-sectional behaviour. J. Constr. Steel. Res., 60(9), 1291-1318.

Gilbert, R. B., & Calladine, C. R. 1974. Interaction between the effects of local and
overall imperfections on the buckling of elastic columns. J. Mech. Phys. Solids, 22(6),
519-540.

Gioncu, V. 1994a. Consistent simplified theory for elastic coupled instability. Thin- Walled

Struct., 19(2-4), 147-159.

Gioncu, V. 1994b. General theory of coupled instabilities. Thin-Walled Struct., 19(2),
81-127.

Glendinning, P. 1994. Stability, instability and chaos: an introduction to the theory of
nonlinear differential equations. Cambridge Texts in Applied Mathematics, vol. 11.

Cambridge University Press.



REFERENCES 373

Goltermann, P., & Mgllmann, H. 1989. Interactive buckling in thin-walled beams: II.
Applications. Int. J. Solids Struct., 25(7), 729-749.

Gongalves, R., & Camotim, D. 2004. Gbt local and global buckling analysis of aluminium

and stainless steel columns. Comput. Struct., 82(17), 1473-1484.

Graves Smith, T. R. 1968. The post-buckled strength of thin-walled columns. Pages

311-320 of: IABSFE congress report.

Graves Smith, T. R. 1972. The post-buckled behaviour of a thin-walled box beam in pure
bending. Int. J. Mech. Sci., 14(11), 711-718.

Graves Smith, T. R., & Sridharan, S. 1978. A finite strip method for the post-locally-

buckled analysis of plate structures. Int. J. Mech. Sci., 20(12), 833-842.

Guo, Y. L., & Chen, S. F. 1991. Elasto-plastic interaction buckling of cold-formed channel
columns. ASCE J. Struct. Eng., 117(8), 2278-2298.

Han, D. J., & Chen, W. F. 1983. Buckling and cyclic inelastic analysis of steel tubular

beam-columns. Eng. Struct., 5(2), 119-132.

Hancock, G. J. 1981. Nonlinear analysis of thin sections in compression. J. Struct. Div.

ASCE, 107(ST3), 455-471.

Hancock, G. J., Davids, A. J., Key, P. W., Lau, S. C. W., & Rasmussen, K. J. R. 1990.
Recent developments in the buckling and nonlinear analysis of thin-walled structural
members. Thin-Walled Struct., 9(1), 309-338. Special Volume on Thin-Walled Struc-

tures: Developments in Theory and Practice.

Hemp, W. S. 1945. The theory of flat panels buckled in compression. Reports and Memo-

randa No. 2178. Aeronautical Research Council.

Howard, B. 2015. Frame structure of BMW 7-series made from carbon fi-

bre reinforced plastic (CFRP) along with aluminum and high-strength steel.



REFERENCES 374

https://www.extremetech.com/extreme/209812-how-bmw-weaves-bakes-and-builds-
the-carbon-fiber-7-series/attachment /bmw-7-series-1f-frame-p90176663_highres.

[Online; accessed March 12, 2018].

Hunt, G. W. 1981. An algorithm for the nonlinear analysis of compound bifurcation. Proc.

R. Soc. A, 300(1455), 443-471.

Hunt, G. W. 1989. Bifurcations of structural components. Proc. Inst. Civil Eng., 87,

443-467.

Hunt, G. W., & Wadee, M. A. 1998. Localization and mode interaction in sandwich

structures. Proc. R. Soc. A, 454(1972), 1197-1216.

Hunt, G. W., Da Silva, L. S., & Manzocchi, G. M. E. 1988. Interactive buckling in sandwich
structures. Proc. R. Soc. A, 417(1852), 155-177.

Hunt, G. W., Bolt, H. M., & Thompson, J. M. T. 1989. Structural localization phenomena

and the dynamical phase-space analogy. Proc. R. Soc. A, 425(1869), 245-267.

Hunt, G. W., Peletier, M. A., Champneys, A. R., Woods, P. D., Wadee, M. A., Budd,
C. J., & Lord, G. J. 2000. Cellular buckling in long structures. Nonlinear Dyn., 21(1),
3-29.

Johansson, B., Maquoi, R., Sedlacek, G., Miiller, C., & Beg, D. 2007. Commentary and
worked examples to EN 1993-1-5 ‘Plated structural elements’. Tech. rept. EUR 22898
EN.

Jones, R. M. 1998. Mechanics of composite materials. CRC press.

Keller, H. B. 1977. Numerical solution of bifurcation and nonlinear eigenvalue problems. In:
Rabinowitz, P. H. (ed), Applications of bifurcation theory. New York, USA: Academic

Press Inc.

Kiymaz, G. 2005. FE based mode interaction analysis of thin-walled steel box columns

under axial compression. Thin-Walled Struct., 43(7), 1051-1070.



REFERENCES 375

Kloppel, K, & Schubert, J. 1971. The calculation of the carrying capacity in the postbuck-
ling range of thin-walled box columns loaded by concentric and excentric compressive

force. Publications of the Institute for Statics and Steel Construction, Darmstadt.

Koiter, W. T. 1945. On the stability of elastic equilibrium. Ph.D. thesis, Delft University

of Technology. (English translation available: NASA, Tech. Trans., F 10, 833, 1967.).

Koiter, W. T., & Pignataro, M. 1976a. An alternative approach to the interaction between
local and overall buckling in stiffened panels. Pages 133-148 of: Budiansky, B. (ed),
Buckling of Structures. International Union of Theoretical and Applied Mechanics.

Springer Berlin Heidelberg.

Koiter, W. T., & Pignataro, M. 1976b. A general theory for the interaction between local
and overall buckling of stiffened panels. Tech. rept. WTHD 83. Delft University of

Technology, Delft, The Netherlands.

Kotakowski, Z. 1989. Some thoughts on mode interaction in thin-walled columns under

uniform compression. Thin- Walled Struct., 7(1), 23-35.

Kotakowski, Z. 1993. Interactive buckling of thin-walled beam-columns with open and

closed cross-sections. Thin-Walled Struct., 15(3), 159-183.

Kollner, A. 2017. An analytical framework for the structural stability analysis of damageable

structures and its application to delaminated composites. Ph.D. thesis, TU Berlin.

Kwon, Y. B., & Seo, E. G. 2013. Prediction of the compressive strength of welded RHS

columns undergoing buckling interaction. Thin- Walled Struct., 68, 141-155.

Lanzo, A. D., & Garcea, G. 1996. Koiter’s analysis of thin-walled structures by a finite
element approach. Int. J. Numer. Methods Eng., 39(17), 3007-3031.

Lay, M. G., & Ward, R. 1969. Residual stresses in steel sections. J. Aust. Inst. Steel

Construction, 3(3), 2-21.



REFERENCES 376

Little, G. H. 1979. The strength of square steel box columns: Design curves and their

theorectical basis. Struct. Eng., 57(2), 49-61.

Little, G. H. 1980. The collapse of rectangular steel plates under uniaxial compression.

Struct. Eng., 58B(3), 45-61.

Liu, E. 2016. Interactive buckling in thin-walled I-section struts of uniform thickness. Ph.D.

thesis, Imperial College London.

Liu, E. L., & Wadee, M. A. 2015. Interactively induced localization in thin-walled I-section

struts buckling about the strong axis. Structures, 4, 13-26.

Liu, E. L., & Wadee, M. A. 2016a. Geometric factors affecting I-section struts experiencing
local and strong-axis global buckling mode interaction. Thin- Walled Struct., 109, 319—
331.

Liu, E. L., & Wadee, M. A. 2016b. Mode interaction in perfect and imperfect thin-walled
[-section struts susceptible to global buckling about the strong axis. Thin-Walled
Struct., 106, 228-243.

Lord, G. J., Champneys, A. R., & Hunt, G. W. 1997. Computation of localized post
buckling in long axially compressed cylindrical shells. Phil. Trans. R. Soc. Lond. A,
355(1732), 2137-2150.

Loughlan, J. 1983. The ultimate load sensitivity of lipped channel columns to column axis

imperfection. Thin- Walled Struct., 1(1), 75-96.

Loughlan, J., Yidris, N., & Cunningham, P. R. 2011. The effects of local buckling and
material yielding on the axial stiffness and failure of uniformly compressed I-section

and box-section struts. Thin- Walled Struct., 49(2), 264-279.

Maple. 2017. version 2017.3. Waterloo, ON Canada: Maplesoft Inc.



REFERENCES 377

Maquoi, R., & Massonnet, C. 1976. Interaction between local plate buckling and overall
buckling in thin-walled compression members — theories and experiments. Pages 365
382 of: Budiansky, B. (ed), Buckling of Structures. International Union of Theoretical

and Applied Mechanics. Springer Berlin Heidelberg.

Martin, J. 2017. The Steve Jobs Theater. http://solarhousehistory.com/blog/2017/12/18 /apple-

park-by-foster-partners. [Online; accessed March 12, 2018].

Martins, A. D.; Camotim, D., Gongalves, R., & Dinis, P. B. 2018. On the mechanics
of local-distortional interaction in thin-walled lipped channel beams. Thin-Walled

Struct., 125, 187-202.

Mateus, A. F., & Witz, J. A. 2001. A parametric study of the post-buckling behaviour of

steel plates. Eng. Struct., 23(2), 172-185.
MATLAB. 2010. version 7.10.0 (R2012a). Natick, Massachusetts: The MathWorks Inc.

Menken, C. M., Groot, W. J., & Stallenberg, G. A. J. 1991. Interactive buckling of beams
in bending. Thin-Walled Struct., 12(5), 415-434.

Menken, C. M., Kouhia, R., & Groot, W. J. 1994. An investigation into non-linear inter-

action between buckling modes. Thin- Walled Struct., 19(2-4), 129-145.

MISTRAS group. 2017. Steel box girders A38 Thame Valley Viaduct.
http://mistrasgroup.co.uk/projects-archive /structural-monitoring-tame-valley-

viaduct/. [Online; accessed March 12, 2018].

Moen, C. D., Igusa, T., & Schafer, B. W. 2008. Prediction of residual stresses and strains
in cold-formed steel members. Thin- Walled Struct., 46(11), 1274-1289.

Mgllmann, H., & Goltermann, P. 1989. Interactive buckling in thin-walled beams: 1.

Theory. Int. J. Solids Struct., 25(7), 7T15-728.

Pastor, M. M., Bonada, J., Roure, F., & Casafont, M. 2013. Residual stresses and initial

imperfections in non-linear analysis. Eng. Struct., 46, 493-507.



REFERENCES 378

Pavlovéic, L., Froschmeier, B., Kuhlmann, U., & Beg, D. 2010. Slender thin-walled box

columns subjected to compression and bending. J. Civ. Eng. Manag., 16(2), 179-188.

Pavlovéic, L., Froschmeier, B., Kuhlmann, U., & Beg, D. 2012. Finite element simulation

of slender thin-walled box columns by implementing real initial conditions. Adv. Eng.

Softw., 44(1), 63-74.

Powercase Technology (Shenzhen) Co., Ltd. 2015. Computer case PW-4.

http://www.powercase.com.cn/product/pw-4/. [Online; accessed March 12, 2018].

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 2007. Numerical

recipes: The art of scientific computing (3rd edition). Cambridge University Press.

Quach, W. M., Teng, J. G., & Chung, K. F. 2004. Residual stresses in steel sheets due
to coiling and uncoiling: a closed-form analytical solution. Eng. Struct., 26(9), 1249—

1259.

Quach, W. M., Teng, J. G., & Chung, K. F. 2010. Effect of the manufacturing process
on the behaviour of press-braked thin-walled steel columns. FEng. Struct., 32(11),
3501-3515.

Rasmussen, K. J. R. 1997. Bifurcation of locally buckled members. Thin-Walled Struct.,

28(2), 117-154.

Rasmussen, K. J. R., & Hancock, G. J. 1988. Geometric imperfections in plated structures

subject to interaction between buckling modes. Thin-Walled Struct., 6(6), 433-452.

Riks, E. 1979. An incremental approach to the solution of snapping and buckling problems.
Int. J. Solids Struct., 15(7), 529-551.

Rozvany, G. I. N. 2009. A critical review of established methods of structural topology

optimization. Struct. Multidisc. Optim., 37(3), 217-237.

Russell, R. D., & Christiansen, J. 1978. Adaptive mesh selection strategies for solving
boundary value problems. SIAM J. Numer. Anal., 15(1), 59-80.



REFERENCES 379

Sadovsky, Z., Teixeira, A. P., & Soares, C. G. 2005. Degradation of the compressive
strength of rectangular plates due to initial deflection. Thin-Walled Struct., 43(1),
65-82.

Sadowski, A. J., & Rotter, J. M. 2013. On the relationship between mesh and stress field
orientations in linear stability analyses of thin plates and shells. Finite Elem. Anal.

Des., 73, 42-54.

Sadowski, A. J., Fajuyitan, O. K., & Wang, J. 2017a. A computational strategy to establish
algebraic parameters for the reference resistance design of metal shell structures. Adwv.

Eng. Softw., 109, 15-30.

Sadowski, A. J., Rotter, J. M., Stafford, P. J., Reinke, T., & Ummenhofer, T. 2017b. On
the gradient of the yield plateau in structural carbon steels. J. Constr. Steel. Res.,

130(Supplement C), 120-130.

Sarawit, A. T., Kim, Y., Bakker, M. C. M., & Pekoz, T. 2003. The finite element method

for thin-walled members-applications. Thin-Walled Struct., 41(2-3), 191-206.

Schafer, B. W. 1997. Cold-formed steel behavior and design analytical and numerical mod-
eling of elements and members with longitudinal stiffener. Ph.D. thesis, Cornell Uni-

versity.

Schafer, B. W. 2006a. CUFSM: elastic buckling analysis of thin-walled members by finite

strip analysis. Available from http://www.ce.jhu.edu/bschafer/cufsm/.

Schafer, B. W. 2006b. Designing cold-formed steel using the direct strength method. In:
Proceedings of the Fighteenth International Specialty Conference on Cold-formed Steel

Structures.

Schafer, B. W. 2006¢. Direct Strength Method design guide. Tech. rept. American Iron and

Steel Institute, Washington (DC).



REFERENCES 380

Schafer, B. W. 2008. Review: The Direct Strength Method of cold-formed steel member
design. J. Constr. Steel. Res., 64(7-8), 766-778.

Schafer, B. W., & Pekoz, T. 1998a. Computational modeling of cold-formed steel: charac-
terizing geometric imperfections and residual stresses. J. Constr. Steel. Res., 47(3),

193-210.

Schafer, B. W., & Pekoz, T. 1998b. Direct strength prediction of cold-formed steel mem-
bers using numerical elastic buckling solutions. In: Yu, W. W., & LaBoube, R. A.
(eds), Fourteenth International Specialty Conference on Cold-formed Steel Structures.

Missouri S&T (formerly the University of Missouri-Rolla).

Schafer, B. W., Li, Z., & Moen, C. D. 2010. Computational modeling of cold-formed steel.
Thin-Walled Struct., 48(10), 752-762.

Schardt, R. 1994. Generalized beam theory—an adequate method for coupled stability
problems. Thin-Walled Struct., 19(2-4), 161-180.

Schillo, N. 2017. Local and global buckling of box columns made of high strength steel. Ph.D.
thesis, RWTH Aachen.

Shanmugam, N. E.; Chiew, S. P., & Lee, S. L. 1987. Strength of thin-walled square steel
box columns. ASCE J. Struct. Eng., 113(4), 818-831.

Shen, J., & Wadee, M. A. 2018a. Imperfection sensitivity of rectangular hollow section

struts susceptible to interactive buckling. Int. J. Non-Linear Mech., 99, 112-130.

Shen, J., & Wadee, M. A. 2018b. Length effects on interactive buckling in thin-walled

rectangular hollow section struts. Thin- Walled Struct., 128, 152-170.

Shen, J., & Wadee, M. A. 2018c. Sensitivity of elastic thin-walled rectangular hollow section

struts to manufacturing tolerance level imperfections. FEng. Struct., 170, 146-166.



REFERENCES 381

Shen, J., Wadee, M. A., & Sadowski, A. J. 2015. Numerical study of interactive buckling
in thin-walled section box columns under pure compression. In: Camotim, D., Dinis,
P. B., Chan, S. L., Wang, C. M., Goncalves, R., Silvestre, N., Basaglia, C., Landes-
mann, A., & Bebiano, R. (eds), Proceedings of the 8th International Conference on
Advances in Steel Structures (ICASS’ 2015). Paper number: 44.

Shen, J., Wadee, M. A., & Sadowski, A. J. 2017. Interactive buckling in long thin-walled

rectangular hollow section struts. Int. J. Non-Linear Mech., 89, 43-58.

Shi, G., Zhou, W., Bai, Y., & Lin, C. 2014. Local buckling of 460mpa high strength
steel welded section stub columns under axial compression. J. Constr. Steel. Res.,

100(Supplement C), 60-70.

Silvestre, N., & Camotim, D. 2003. Nonlinear generalized beam theory for cold-formed
steel members. Int. J. Struct. Stab. Dyn., 3(04), 461-490.

Silvestre, N.; & Camotim, D. 2006. Local-plate and distortional postbuckling behavior
of cold-formed steel lipped channel columns with intermediate stiffeners. ASCE J.

Struct. Eng., 132(4), 529-540.

Somodi, B., & Kovesdi, B. 2018. Residual stress measurements on welded square box

sections using steel grades of S235-S960. Thin- Walled Struct., 123, 142-154.

Sridharan, S. 1983. Doubly symmetric interactive buckling of plate structures. Int. J.
Solids Struct., 19(7), 625-641.

Sridharan, S.,; & Ali, M. A. 1986. An improved interactive buckling analysis of thin-walled

columns having doubly symmetric sections. Int. J. Solids Struct., 22(4), 429-443.

Supple, W. J. 1967. Coupled branching configurations in the elastic buckling of symmetric

structural systems. Int. J. Mech. Sci., 9(2), 97-112.

Supple, W. J. 1970. Changes of wave-form of plates in the post-buckling range. Int. J.
Solids Struct., 6(9), 1243-1258.



REFERENCES 382

Svensson, S. E., & Croll, J. G. A. 1975. Interaction between local and overall buckling.

Int. J. Mech. Sci., 17(4), 307-321.

Tebedge, N., & Tall, L. 1973. Residual stresses in structural steel shapes—a summary of

measured values. Tech. rept. Fritz Laboratory, Lehigh University.

Tebedge, N., Alpsten, G., & Tall, L. 1973. Residual-stress measurement by the sectioning

method. Ezp. Mech., 13(2), 88-96.

Teter, A. 2007. Static and dynamic interactive buckling of isotropic thin-walled closed
columns with variable thickness. Thin-Walled Struct., 45(10-11), 936-940.

Theofanous, M., & Gardner, L. 2009. Testing and numerical modelling of lean duplex

stainless steel hollow section columns. Eng. Struct., 31(12), 3047-3058.

Thompson, J. M. T. 1979. Stability predictions through a succession of folds. Proc. R.
Soc. A, 292(1386), 1-23.

Thompson, J. M. T. 1982. Catastrophe theory in mechanics: progress or digression. .J.
Struct. Mech., 10(2), 167-175.

Thompson, J. M. T., & Hunt, G. W. 1973. A general theory of elastic stability. London:
Wiley.

Thompson, J. M. T., & Hunt, G. W. 1974. Dangers of structural optimization. FEng.

Optimiz., 1(2), 99-110.
Thompson, J. M. T., & Hunt, G. W. 1984. Elastic instability phenomena. London: Wiley.

Thompson, J. M. T., & Lewis, G. M. 1972. On the optimum design of thin-walled com-
pression members. J. Mech. Phys. Solids, 20(2), 101-109.

Thompson, J. M. T., & Supple, W. J. 1973. Erosion of optimum designs by compound
branching phenomena. J. Mech. Phys. Solids, 21(3), 135-144.



REFERENCES 383

Thompson, J. M. T., Tulk, J. D., & Walker, A. C. 1976. An experimental study of
imperfection-sensitivity in the interactive buckling of stiffened plates. Pages 14/9-159
of: Budiansky, B. (ed), Buckling of Structures. International Union of Theoretical and

Applied Mechanics. Springer Berlin Heidelberg.

Thompson, J. M. T., Tan, J. K. Y., & Lim, K. C. 1978. On the topological classification
of postbuckling phenomena. J. Struct. Mech., 6(4), 383-414.

Timoshenko, S. P., & Gere, J. M. 1961. Theory of elastic stability. New York: McGraw-Hill.

Timoshenko, S. P.; & Woinowsky-Krieger, S. 1959. Theory of plates and shells. New York:
McGraw-Hill.

Trahair, N. S., Bradford, M. A., Nethercot, D. A., & Gardner, L. 2007. The behaviour and

design of steel structures to EC3. CRC Press.

Trouncer, A. N., & Rasmussen, K. J. R. 2015. A rational procedure for modelling imper-
fections in advanced analysis of frames with locally unstable members. Thin-Walled

Struct., 96, 183-201.

Tvergaard, V. 1973. Imperfection-sensitivity of a wide integrally stiffened panel under

compression. Int. J. Solids Struct., 9(1), 177-192.

Usami, T., & Fukumoto, Y. 1982. Local and overall buckling of welded box columns. J.

Struct. Div. ASCE, 108(3), 525-542.

Usami, T., & Fukumoto, Y. 1984. Welded box compression members. ASCE J. Struct.

Eng., 110(10), 2457-2470.

van der Neut, A. 1969. The interaction of local buckling and column failure of thin-
walled compression members. Pages 389-399 of: Proceedings of the 12th International

Congress on Applied Mechanics. Springer.

van der Neut, A. 1973. The sensitivity of thin-walled compression members to column axis

imperfection. Int. J. Solids Struct., 9(8), 999-1011.



REFERENCES 384

van der Neut, A. 1976. Mode interaction with stiffened panels. Pages 117-132 of: Budian-
sky, B. (ed), Buckling of Structures. International Union of Theoretical and Applied

Mechanics. Springer Berlin Heidelberg.

von Karman, T., Sechler, E. E.; & Donnell, L. H. 1932. The strength of thin plates in
compression. ASME Trans., 54(2), 53-57.

Wadee, M. A. 1998. Localized buckling in sandwich structures. Ph.D. thesis, University of

Bath.

Wadee, M. A. 2000. Effects of periodic and localized imperfections on struts on nonlinear

foundations and compression sandwich panels. Int. J. Solids Struct., 37(8), 1191-1209.

Wadee, M. A. 2007. Nonlinear mathematics in structural engineering. Mathematics Today,

43(3), 104-108.

Wadee, M. A., & Bai, L. 2014. Cellular buckling in I-section struts. Thin- Walled Struct.,
81, 89-100.

Wadee, M. A., & Farsi, M. 2014a. Cellular buckling in stiffened plates. Proc. R. Soc. A,
470(2168), 20140094.

Wadee, M. A., & Farsi, M. 2014b. Local-global mode interaction in stringer-stiffened

plates. Thin-Walled Struct., 85, 419-430.

Wadee, M. A., & Farsi, M. 2015. Imperfection sensitivity and geometric effects in stiffened

plates susceptible to cellular buckling. Structures, 3, 172-186.

Wadee, M. A., & Gardner, L. 2012. Cellular buckling from mode interaction in I-beams

under uniform bending. Proc. R. Soc. A, 468(2137), 245-268.

Wadee, M. A., Yiatros, S., & Theofanous, M. 2010. Comparative studies of localized
buckling in sandwich struts with different core bending models. Int. J. Non-Linear

Mech., 45(2), 111-120.



REFERENCES 385

Wadee, M. K., Hunt, G. W., & Whiting, A. I. M. 1997. Asymptotic and Rayleigh—Ritz
routes to localized buckling solutions in an elastic instability problem. Proc. R. Soc.

A, 453(1965), 2085-2107.

Wadee, M. K., Wadee, M. A., Bassom, A. P.,; & Aigner, A. A. 2006. Longitudinally
inhomogeneous deformation patterns in isotropic tubes under pure bending. Proc. R.

Soc. A, 462(2067), 817-838.

Wang, J., & Gardner, L. 2017. Flexural buckling of hot-finished high-strength steel SHS
and RHS columns. ASCE J. Struct. Eng., 143(6), 04017028.

Weng, C. C., & Pekoz, T. 1990. Residual stresses in cold-formed steel members. ASCE J.
Struct. Eng., 116(6), 1611-1625.

Winter, G. 1947. Strength of thin steel compression flanges. Trans Am. Soc. Civil Eng,
112(1), 527-554.

Winter, G. 1968. Thin-walled structures, theoretical solutions and test results. Pages

101-112 of: Preliminary Publication of the Eighth Congress, IABSE.

Wu, H.L., Yang, J., & Kitipornchai, S. 2016. Imperfection sensitivity of postbuckling
behaviour of functionally graded carbon nanotube-reinforced composite beams. Thin-

Walled Struct., 108, 225-233.

Xie, Y. M., & Steven, G. P. 1993. A simple evolutionary procedure for structural opti-

mization. Comput. Struct., 49(5), 885-896.

Yang, L., Shi, G., Zhao, M., & Zhou, W. 2017. Research on interactive buckling behavior

of welded steel box-section columns. Thin-Walled Struct., 115, 34-47.

Yiatros, S., Marangos, O., Wadee, M. A., & Georgiou, C. 2015. Localized buckling in sand-
wich struts with inhomogeneous deformations in both face plates. Compos. Struct.,

133, 630-641.



REFERENCES 386

Young, B., & Rasmussen, K. J. R. 1997. Bifurcation of singly symmetric columns. Thin-
Walled Struct., 28(2), 155-177.

Yuan, H. X., Wang, Y. Q., Gardner, L., & Shi, Y. J. 2014. Local-overall interactive buckling

of welded stainless steel box section compression members. Eng. Struct., 67, 62-76.

Yun, X., & Gardner, L. 2017. Stress-strain curves for hot-rolled steels. J. Constr. Steel.

Res., 133(Supplement C), 36-46.

Zagari, G., Zucco, G., Madeo, A., Ungureanu, V., Zinno, R., & Dubina, D. 2016. Evaluation
of the erosion of critical buckling load of cold-formed steel members in compression

based on koiter asymptotic analysis. Thin-Walled Struct., 108, 193-204.

Zeinoddini, V. M., & Schafer, B. W. 2012. Simulation of geometric imperfections in cold-
formed steel members using spectral representation approach. Thin-Walled Struct.,

60, 105-117.

Zhao, X., Tootkaboni, M., & Schafer, B. W. 2015. Development of a laser-based geometric
imperfection measurement platform with application to cold-formed steel construction.

Ezp. Mech., 55(9), 1779-1790.



	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Buckling analysis type
	Linear buckling analysis
	Nonlinear buckling analysis

	Interactive buckling phenomena
	Augusti model
	Interactive buckling in real structures

	Research Objectives
	Outline of the thesis
	Chapter 2: Literature review
	Chapter 3: FE model development
	Chapter 4: Behaviour of long struts with semi-rigid flange–web joints
	Chapter 5: Variational modelling of practical cases
	Chapter 6: Length effects
	Chapter 7: Imperfection sensitivity
	Chapter 8: Sensitivity to manufacturing tolerance level imperfections
	Chapter 9: Parametric study and suggestions for improved design guidance
	Chapter 10: Conclusions and future work


	Literature Review
	Analytical approaches
	Engineering approaches
	Theoretical approaches

	Numerical approach to interactive buckling
	Finite Element Method (FEM)
	Generalized Beam Theory (GBT)
	Finite Strip Method (FSM)

	Imperfection sensitivity
	Geometric imperfections measurement and modelling
	Residual stresses measurement and modelling
	Imperfection tolerance and modelling recommendations in Eurocode 3 (EC3)
	Imperfection sensitivity studies

	Experimental studies
	Related design guidelines
	Eurocode 3 approach
	Direct Strength Method

	Concluding remarks

	Finite element model development and validation
	Introduction
	Development of finite element models
	Strut modelling
	Material Modelling
	Geometric imperfection modelling
	Residual stress modelling

	Analysis type and solution strategy
	Linear buckling analysis
	Nonlinear analysis

	Verification against classical solutions
	Local buckling
	Global buckling

	Validation against experimental results
	Test results from Usami & Fukumoto (1984)
	Results from Yang et al. (2017)

	Concluding remarks

	Behaviour of long struts with semi-rigid flange–web joints
	Introduction
	Development of the variational model
	Modal descriptions
	Total potential energy
	Governing equations

	Numerical results
	Verification and discussion
	Simplified approach to predicting the location of secondary bifurcation
	Parametric studies
	Length variation
	Cross-section aspect ratio variation

	Concluding remarks

	Variational modelling of practical cases
	Modal descriptions
	Geometric imperfections description
	Potential energy formulation
	Strain energy due to bending
	Membrane strain energy
	Work done by the load and total potential energy

	Variational formulation and eigenvalue analysis
	Concluding remarks

	Length effects
	Numerical solution strategy for variational model
	Numerical results and verification
	Long length strut
	Transitional length strut
	Intermediate length strut
	Short length strut

	Discussion and comparison with Van der Neut's model
	Concluding remarks

	Imperfection sensitivity
	Numerical results, verification and discussion
	Global imperfections (qs0=0, w0=0)
	Local imperfections (w0=0, qs0=0)
	Combined imperfections (qs0=0, w0=0)
	Verification and discussion

	Variational model application and parametric study
	Simplified method to predict load at pitchfork bifurcation (qs0=0, w0=0)
	Simplified method to predict the ultimate load (qs0=10-3, w0=0)
	Simplified method to predict the ultimate load (qs0=10-3, A0=d/200)

	Concluding remarks

	Sensitivity to manufacturing tolerance level imperfections
	Imperfection description and modelling
	Unified local imperfection measurement criterion
	Effects of local imperfection profiles
	Algorithm for determining most severe local imperfection profile
	Effects of number of sinusoidal half-waves i
	Effects of the degree of localization i
	Equilibrium paths for struts with the most severe imperfection profile

	Discussion
	Effects of localization on tangent stiffness and ultimate load
	Most severe imperfection profile under amplitude tolerance constraint
	Effects of superposing tolerance level global imperfections

	Application and parametric study
	Wavelength of most severe local imperfection profile
	Global buckling loads of struts with tolerance level doubly-symmetric cross-sectional local imperfections

	Concluding remarks

	Parametric study
	Algorithm for Automated GMNIA
	Geometric parameter
	Plate width–thickness ratio
	Cross-section aspect ratio

	Material properties
	Yielding stress levels
	Effect of material strain-hardening

	Residual stress
	Effects on imperfection sensitivity
	Effects on equilibrium paths
	Simplified method to determine initial local imperfection amplitude A00

	Comparison with the current design guidelines and reliability analysis
	Assessment of the Effective Width Method in EC3 and reliability analysis
	Assessment of the Direct Strength Method (DSM) and reliability analysis

	Proposal and reliability analysis of a modified DSM procedure
	Concluding remarks

	Conclusions and future work
	Conclusions
	Future work
	Further enhancements of variational model
	Inclusion of other factors
	Statistical analysis of geometric imperfections in welded RHS members
	Extension of methodology to similar problems


	Appendices
	Expressions for ODEs, integral and boundary conditions
	Zone 2–3 boundary determination from double modulus theory
	Buckling load, wavelength and cross-section profiles of pure local buckling mode
	References

