
Argumentation-Based Recommendations:
Fantastic Explanations and How to Find Them∗

Antonio Rago, Oana Cocarascu, Francesca Toni
Department of Computing, Imperial College London, UK

{a.rago15, oc511, ft}@imperial.ac.uk

Abstract
A significant problem of recommender systems is
their inability to explain recommendations, result-
ing in turn in ineffective feedback from users and
the inability to adapt to users’ preferences. We pro-
pose a hybrid method for calculating predicted rat-
ings, built upon an item/aspect-based graph with
users’ partially given ratings, that can be naturally
used to provide explanations for recommendations,
extracted from user-tailored Tripolar Argumenta-
tion Frameworks (TFs). We show that our method
can be understood as a gradual semantics for TFs,
exhibiting a desirable, albeit weak, property of bal-
ance. We also show experimentally that our method
is competitive in generating correct predictions,
compared with state-of-the-art methods, and illus-
trate how users can interact with the generated ex-
planations to improve quality of recommendations.

1 Introduction
Recommender systems [Resnick and Varian, 1997] aim to
help users discover items that may be of interest. The
most widely used types of methods for recommender sys-
tems are ‘collaborative filtering’ (looking at similar users
and their preferences for determining recommendation to
users), ‘content-based filtering’ (operating on information
about users and their tastes) and ‘hybrid’ methods (combin-
ing the two). These methods use the vast amount of available
data in a way that human users alone will never be able to.
However, these systems suffer from scalability, data sparsity,
‘cold-start’ problems and lack of explanations for recommen-
dations. The latter is an issue because if the reasoning behind
recommendations is not explained to users then the feedback
they provide may be ineffective in helping the system adapt
to users’ preferences, which in turn may cause users’ unwill-
ingness to follow the recommendations in the future.

In this paper we give a hybrid method for calculating pre-
dicted ratings for items in a recommender system and show
how this method can be used to address the problem of rec-
ommender systems of providing explainable recommenda-

∗Title adapted from the movie ‘Fantastic Beasts and Where to
Find Them’.

tions with which users can naturally interact. We show ex-
perimentally that our method significantly outperforms var-
ious state-of-the-art algorithms, namely Singular Value De-
composition [Billsus and Pazzani, 1998; Vozalis and Mar-
garitis, 2006], Non-negative Matrix Factorization [Luo et
al., 2014], Slope One [Lemire and Maclachlan, 2007], Co-
clustering [George and Merugu, 2005], as well as KNN [Alt-
man, 1992] and KNN with z-score normalization of each user.

Our method is built upon an item/aspect-based graph with
users’ partially given ratings. We show that these graphs can
be mapped onto user-tailored Tripolar Argumentation Frame-
works (TF s) which may be seen as instances of ‘tripolar
frameworks’ as defined in [Gabbay, 2016] and of ‘gener-
alised argumentation frameworks’ as defined in [Baroni et al.,
2017], and extend abstract [Dung, 1995] and bipolar [Cay-
rol and Lagasquie-Schiex, 2005] frameworks by including
a ‘neutralising’ relation in addition to the standard ‘attack’
and ‘support’. The mapping of item/aspect-based graphs onto
user-tailored TF s is determined by predicted ratings for the
user, calculated using our method. These predicted ratings
can be understood as a gradual semantics for the TF , ex-
hibiting a desirable, albeit weak, property of balance.

We illustrate how user-tailored TF s can then be used to
give explanations that can help elicit users’ feedback leading
to positive effects on the quality of future recommendations.

The paper is organised as follows. In Section 2 we provide
background on recommender systems, explanation in recom-
mender systems, argumentation as understood in AI, as well
as existing work on using argumentation to provide expla-
nations for recommender systems. In Section 3 we define
item/aspect-based graphs and provide our method for calcu-
lating predicted ratings. In Section 4 we experiment with a
movie dataset, drawn from Netflix and imdbapi. In Section 5
we map item/aspect-based graphs onto user-tailored TF s and
illustrate explanation and feedback incorporation. In Sec-
tion 6 we conclude, in particular pointing to future work.

2 Background
The main methods used in recommender systems are ‘latent
factor models’ and ‘neighbourhood models’ between items
or users. Latent factor models, based on matrix factoriza-
tion, describe the items as vectors of factors inferred from
data. Neighbourhood models have been used to support var-
ious collaborative filtering algorithms for recommender sys-



tems. These models include non-negative matrix factoriza-
tion models [Luo et al., 2014], Singular Value Decomposition
[Billsus and Pazzani, 1998; Vozalis and Margaritis, 2006],
Slope One techniques [Lemire and Maclachlan, 2007], and
Co-clustering, a simultaneous clustering of users and items
[George and Merugu, 2005]. In addition, collaborative fil-
tering and content-based filtering can be combined to give
hybrid models [Burke, 2002; 2003]. The Netflix Prize com-
petition1 has shown that matrix factorization models are su-
perior to nearest-neighbour models, such as KNN, as, in-
deed, many of the best performing algorithms in the compe-
tition were based on matrix factorization [Koren et al., 2009;
Töscher et al., 2009]. Whilst these models are scalable and
effective, they are not easily explainable, as the way they rep-
resent factors makes them non-interpretable. We show that
our proposed model is competitive with respect to the state-
of-the-art, and how it lends itself to providing explanations.

[Tintarev and Masthoff, 2007] give an overview of expla-
nations in recommender systems and identify four desirable
features of recommender systems: transparency, by explain-
ing how systems work and showing how they predict ratings;
scrutability, by allowing feedback based on these explana-
tions; trust, by correcting the systems based on user feedback;
and effectiveness, by increasing the systems’ accuracy with
regards to users’ preferences. None of the systems surveyed
in [Tintarev and Masthoff, 2007] fulfilled all four of these
aims. Of those which aimed to improve scrutability, [Billsus
and Pazzani, 1998; Czarkowski, 2006] both use template re-
sponses based on factors affecting the recommendation. Our
method identifies these factors and the reasons why they play
a role by generating user-tailored argumentation frameworks.

Abstract argumentation frameworks (AFs) are pairs con-
sisting of a set of arguments and a binary relation between
arguments, representing attacks [Dung, 1995]. Formally, an
AF is any ⟨AR,attacks⟩ where attacks ⊆ AR×AR. Bipolar
argumentation frameworks (BFs) extend AFs by considering
two separate binary relations between arguments: attack and
support [Cayrol and Lagasquie-Schiex, 2005]. Formally, a
BF is any ⟨AR,attacks, supports⟩ where ⟨AR,attacks⟩ is
an AF and supports ⊆ AR × AR. Various other types of
argumentation frameworks have been proposed in the liter-
ature, including tripolar frameworks, as in [Gabbay, 2016],
and generalised argumentation frameworks, as in [Baroni et
al., 2017], both allowing for additional dialectical relations
(in addition to attack and support). The argumentation frame-
works we use in the paper for explanation can be seen as a
special instance of these latter types of frameworks.

Several argument-based recommender systems have been
proposed in the literature. For example, some [Chesñevar et
al., 2009; Briguez et al., 2014; Teze et al., 2015] use Defeasi-
ble logic programming (DeLP) [Garcı́a and Simari, 2004] to
enhance recommendation technologies with argument-based
analysis. DeLP uses defeasible reasoning dialectically, can
handle incomplete and contradictory information, and uses a
comparison criterion to solve conflicting situations between
arguments. [Chesñevar et al., 2009] models user preferences
as facts, strict rules and defeasible rules. Along with back-

1https://www.netflixprize.com/

ground information, user preferences can be used in a DeLP
program to make recommendations which are modelled as ar-
guments in favour of or against a particular decision. [Teze et
al., 2015] enhances the argument-based recommender system
of [Chesñevar et al., 2009] to allow for an argument compari-
son criterion on user’s preferences to be encoded by means of
conditional expressions. The movie recommender system of
[Briguez et al., 2014] relies on a set of predefined postulates
describing the conditions in which a movie should be recom-
mended to a given user and which can be translated into DeLP
rules. Examples of postulates are “A user may like a movie
if the actor of the movie is one of the user’s favorite ones” or
“A user may like a movie if the movie is liked by a group of
similar users”. Explanations are extracted from the dialectical
tree supporting a recommendation. Our argumentation-based
explanations are generated automatically from data without
any need for knowledge to be manually incorporated.

3 The Aspect-Item Recommender System
We consider recommender systems where items (e.g. movies)
are associated with aspects (e.g. comedy), which in turn have
types (e.g. genre), and users may have provided ratings on
some of the items and/or aspects. We refer to the frameworks
underlying these recommender systems as aspect-item:

Definition 1 An Aspect-Item framework (A-I) is a 6-tuple
⟨I,A,T ,L,U ,R⟩ such that:

• I is a finite, non-empty set of items;

• A is a finite, non-empty set of aspects and T is a finite,
non-empty set of types, where each aspect in A has a
unique type in T ; for any t ∈ T , we use At to denote
{a ∈ A∣ the type of a is t};

• the sets I and A are pairwise disjoint; we use X to de-
note I ∪A, and refer to it as the set of item-aspects;

• L ⊆ (I ×A) is a symmetrical binary relation;

• U is a finite, non-empty set of users;

• R ∶ U ×X → [−1,1] is a partial function of ratings.

We assume that ratings, when defined, are real numbers in
the [-1,1] interval. Other types of ratings can be translated
into this format, for example a rating x∈{1,2,3,4,5} can be
translated into a rating y ∈[−1,1] using y = ((x − 1)/2) − 1.

The I,A, T andL components of an A-I may be visualised
as a graph, as illustrated in Figure 1 for the movie domain.

In the remainder of the paper we assume as given a generic
A-I F = ⟨I,A,T ,L,U ,R⟩, unless otherwise specified.

Definition 2 The set of linked item-aspects of x ∈ X is
L(x) = {y ∈ X ∣(y, x) ∈ L}. We also use Lt(i) to denote
{a ∈ L(i)∣a ∈ At, i ∈ I}.

For the example shown in Figure 1, the set
Lactor(Catch Me If You Can) comprises Leonardo Di-
Caprio and Tom Hanks.

Generally, the primary models for the goals of recom-
mender systems [Aggarwal, 2016], formulated for A-Is, are

• Prediction - for a user u ∈ U , ∀i ∈ I such that R(u, i) is
undefined, compute a predicted rating Pu

I (i);



Figure 1: Example components of an A-I visualised as a graph, with
items given by red stars and three types: genres (whose aspects are
blue squares), actors (whose aspects are yellow circles) and direc-
tors (whose aspects are green diamonds). Each node’s label is of the
form (Name - x,R(u,x),R(v, x), Pu

X
(x)), with U = {u, v} and

standing for ‘undefined’.

• Ranking - for a user u ∈ U , compute a ranking on {i ∈
I ∣R(u, i) is undefined}.

In this paper we focus on prediction. Before giving our
method for predicting ratings, we define users’ profiles.
Definition 3 The profile πu of user u ∈ U consists of:

• a ‘collaborative filtering’ constant µu
c.f. ∈ [0,1];

• for each t ∈ T a ‘type importance’ constant µu
t ∈ [0,1];

• for each v ∈ U such that u ≠ v, a ‘similarity’ constant
ωu,v ∈ [0,1].

Intuitively, µu
c.f. defines how much u wishes collabora-

tive filtering to be taken into account, and a larger µu
c.f. will

give other users’ ratings more prevalence in the calculations
of predicted ratings. Also, µu

t defines how important type t is
to u and how much u wants aspects of type t to be taken into
account, and larger values of µu

t will give these aspects, and
the user’s own ratings on items which are linked to them, a
higher impact. Finally, ωu,v defines how similar u and v are,
and how much v′s ratings should impact the calculations.

Our method for calculating predicted ratings of items,
based on users’ profiles, makes use of the following notion
of weighted average rating:
Definition 4 For any u ∈ U and any i ∈ I, let Υu(i) = {v ∈
U/{u}∣R(v, i) is defined} be the set of users other than u
who have rated item i. Then, the weighted average rating
ρu ∶ I → [−1,1] is obtained as follows, for u ∈ U and i ∈ I:

if Υu(i) ≠ ∅ and ∑v∈Υu(i) ωu,v > 0

then ρu(i) = ∑v∈Υu(i)
ωu,vR(v,i)

∣Υu(i)∣ .

Thus, the weighted average rating of an item for a user is
undefined when no other user or no other similar users have
given any ratings for the item.

The predicted rating for an item is given in terms of the
predicted rating for aspects, defined as follows.

Definition 5 For any user u ∈ U and aspect a ∈ A,
let Λu(a) = {i ∈ L(a)∣R(u, i) is defined} be the set of
linked items with ratings from u and let Λ−u(a) = {i ∈
L(a)∣ρu(i) is defined}/Λu(a) be the set of linked items with
defined weighted average ratings but without ratings from u.
Then, the predicted aspect rating Pu

A ∶ A → [−1,1] for a is
obtained as follows, for u ∈ U and a ∈ A:

ifR(u, a) is defined then Pu
A(a) =R(u, a); else

if Λu(a) = Λ−u(a) = ∅ then Pu
A(a) = 0; else

if Λu(a) = ∅ then

Pu
A(a)=µc.f.

∑i∈Λ−u(a) ρ
u(i)

∣Λ−u(a)∣ /[1+µc.f.]; else

if Λ−u(a) = ∅ then

Pu
A(a) =

∑i∈Λu(a)R(u, i)
∣Λu(a)∣ ; else

Pu
A(a)=[

∑i∈Λu(a)R(u, i)
∣Λu(a)∣ +µc.f.

∑i∈Λ−u(a)ρ
u(i)

∣Λ−u(a)∣ ]/[1+µc.f.]

Intuitively, the predicted aspect rating weights the average
ratings on linked items from the user and from similar users
based on µc.f., but is overridden by a rating on the aspect
itself from the user. Aspects without ratings (from the user or
similar users) have the neutral predicted aspect rating of zero.

We finally use the predicted aspect ratings to calculate the
predicted item ratings, as follows.
Definition 6 For any u ∈ U , the predicted item rating Pu

I ∶
I → [−1,1] is obtained as follows, for any i ∈ I:

ifR(u, i) is defined then Pu
I (i) =R(u, i); else

if ρu(i) is defined and ∑
t∈T

µt = 0 then Pu
I (i) = ρu(i); else

if ρu(i) is undefined and ∑
t∈T

µt > 0 then

Pu
I (i) =

∑t∈T µt[∑a∈Lt(i)Pu
A(a)]/∣Lt(i)∣

∑t∈T µt
; else

if ρu(i) is defined and µu
c.f. +∑

t∈T
µt > 0 then

Pu
I (i)=

µu
c.f.ρ

u(i)+∑t∈T µt[∑a∈Lt(i)Pu
A(a)]/∣Lt(i)∣

µu
c.f. +∑t∈T µt

; else

Pu
I (i) = 0

The predicted item rating is again overridden by a rating
from the user. This calculation weights the average ratings
on the item from similar users with µc.f. against the pre-
dicted aspects ratings from each of the linked aspects using
their corresponding µt. Thus, aspects with a positive, neg-
ative or neutral predicted ratings have positive, negative or
neutralising, respectively, effects on items to which they are
linked. Note that our method can be seen a form of hybrid rec-
ommender system as it combines collaborative filtering with
content-based factors.

In the remainder of the paper, for simplicity we use Pu
X (x)

to refer to Pu
I (x) or Pu

A(x) depending on whether x ∈ I or
x ∈ A, respectively. We also refer to Pu

X as the predicted
rating of an item-aspect.



As an illustration, consider the A-I with I, A, T and L
as in Figure 1, U = {u, v} and R such that: R(u, a3) = 1,
R(u, d1) = 0.5, R(u, f2) = −1, R(u, g2) = −0.5 and
R(v, f1) = 0.5. Assume that µc.f. = µactors = µgenres =
µdirectors = 1 and ωu,v = 0.5. Then, by Definitions 5 and
6, the predicted rating for the item-aspects that u has rated
is equal to these ratings, e.g. Pu

A(u, a3) = R(u, a3) = 1
(likewise for d1, f2 and g2). For a1, Λu(a1) = ∅ and
Λ−u(a1) = {f1} thus Pu

A(a1) = µu
c.f. × ωu,v ×R(v, f1)[1 +

µu
c.f.] = 1 × 0.5 × 0.5/[1 + 0.5] = 0.167. For x any of a2,
d2 and g1, Pu

A(u,x) = R(u, f2) = −1 since Λu(x) = {f2}
and Λ−u(x) = ∅. For g3, Λu(g3) ≠ ∅, Λ−u(g3) ≠ ∅ and
Pu
A(g3) = [−1

1
+ 1 0.5∗0.5

1
]/[1 + 0.5] = −0.5. Finally, for f1:

µu
c.f.ρ

u(f1) = µu
c.f. × ωu,v×R(v, f1) = 1 × 0.5 × 0.5 = 0.25;

µu
actors[ ∑

a∈Lactors(f1)
Pu
A(a)]/∣Lactors(f1)∣

= 1 × [0.167 + 1]/2 = 0.584;

µgenres[ ∑
a∈Lgenres(f1)

Pu
A(a)]/∣Lgenres(f1)∣

= 1 × [−0.5 − 0.5]/2 = −0.5;

µdirectors[ ∑
a∈Ldirectors(f1)

Pu
A(a)]/∣Ldirectors(f1)∣

= 1 × [0.5]/1 = 0.5;

Pu
I (f1) =

0.25 + 0.584 − 0.5 + 0.5

4
= 0.209.

These predicted ratings, alongside the given ratings, if any,
are visualised in Figure 1.

4 Evaluation on a Movie Dataset
We evaluate experimentally the A-I recommender System on
a movie dataset extracted from the Netflix dataset2 and imd-
bapi3. The Netflix dataset consists of 17K movies with over
100 million datestamped (beween 31st Dec 1999 - 31st Dec
2005) 5-star ratings by 480K users. Our movie dataset con-
tains information about 528 movies with 500 reviews each,
giving a total of 260K ratings from 37K users; the movies
are those in the Netflix dataset in which some 745 most pop-
ular/star actors have acted, as obtained from imdbapi.4 In
addition to these 745 actors, our dataset contains information
about 389 directors and 20 movie genres, also collected us-
ing imdbapi. Finally, as in all illustrations until now, we
focus on three types: genre, actors and directors. This is
based on the fact that most users prefer certain genres, they
follow specific actors, or are interested in the work of some
directors. Formally, in our experiments, we consider vari-
ous A-Is ⟨I,A,T ,L,U ,R⟩ where ∣I ∣ = 528, ∣U ∣ = 37K,
T = {genre, actor, director} and the other components, as

2https://www.netflixprize.com/
3http://www.theimdbapi.org
4We use popularity of actors as a filter to obtain movies that, hav-

ing been seen by more users, may be divisive, while still including
less popular movies from actors’ early careers. The resulting dataset
is still of ample size to explore our method’s potential.

Model
Min #movies training set/

#movies ‘cold-start’
10/5 20/5 20/7 20/10

Co-clustering 83.4% 84.1% 85.1% 86.7%
KNN 85.5% 85.7% 85.9% 86.6%
KNN with z score 85.5% 85.3% 86.4% 87.5%
NMF 83.7% 84.2% 85.3% 86.1%
Slope one 86.2% 86.0% 87.2% 88.2%
SVD 85.9% 86.3% 87.3% 87.8%
A-I model 94.9% 94.0% 93.3% 93.4%

Table 1: Experimental accuracy results on our movie dataset using
various baseline algorithms, with training sets including different
numbers of minimum movies seen by users and various numbers of
movies to address the ‘cold-start’ problem.

well as the association of types with aspects, are straightfor-
wardly obtained from the original datasets.

In our experiments, we use the following constants for
the profile of all users u ∈ U : µu

c.f. = 0.3, µu
genre = 0.3,

µu
actor = 0.5, µu

director = 0.2, and, to determine the ‘sim-
ilarity’ constants between any two (different) users, we use
the cosine distance between the users’ preferences for all as-
pects of type genre. Formally, ωu,v = uuu⋅vvv

∣∣uuu∣∣⋅∣∣vvv∣∣ where uuu and
vvv are vectors representing user u’s and user v’s preferences,
respectively, for each aspect a in Agenre. In the experiments,
for each u, we use this definition of ωu,v only for v any of the
most similar 20 users to u, and use ωu,v = 0 for all other v.

Further, in our experiments we vary the number of users in
the training set, considering all users who have rated at least
10 movies or, alternatively, 20 movies, and make predictions
for users who have rated fewer than 10 or 20 movies, respec-
tively (in other words these users are part of our test set). To
address the ‘cold-start’ problem, our training sets also include
5, 7 or 10 movies for users who have rated fewer than 10 or
20 movies, with these (5, 7 or 10) movies not included in the
test sets. The movies rated by users who overall rated fewer
than 5, 7 or 10 movies all belong to the training sets.

Since ratings are highly subjective, users who might like
the same movie could give different ratings, e.g. two users
who both liked a movie could give 5 and 4 stars, respectively.
Thus, in all of our experiments, we consider predicted ratings
differing from an actual rating by 1 star to be suitable to cater
for variations in subjective judgement.

We use various algorithms as baselines, implemented using
the Suprise library [Hug, 2017]. In particular, we use Singu-
lar Value Decomposition (SVD), Non-negative Matrix Fac-
torization (NMF), Slope One, KNN and KNN with z-score
normalization of each user, and Co-clustering. Our approach,
the A-I model, outperforms all other methods in terms of
accuracy in all experiments (using the subset of the Netflix
dataset we have considered), as reported in Table 1. Note
that the average root-mean-square error across the four ex-
periments for the A-I model, looking at actual vs. predicted
ratings, was 0.58.

The experiments show that the A-I model can make com-
petitive predictions. In the next section we show how, un-
der this model, A-Is may be given an argumentative reading



from which explanations can be extracted to elicit and inte-
grate users’ feedback for improved predictions over time.

5 Argumentative Explanations
In abstract [Dung, 1995] and bipolar [Cayrol and Lagasquie-
Schiex, 2005] argumentation, any information which may be
in dialectical relationships of disagreement (attack) or, in the
bipolar case, agreement (support) with other information may
be considered to be an argument, and arguments (according
to this loose interpretation of the term) typically have a neg-
ative or positive impact on the (gradual) acceptability of ar-
guments they attack or support, respectively. In this spirit,
item-aspects in A-Is may be seen as arguments: if a user (or
another similar user) rates an item highly/lowly then this item
can be seen as an argument for/against, respectively, the as-
pects connected with the item and, similarly, if a user rates an
aspect highly/lowly then this aspect can be seen as an argu-
ment for/against, respectively, the items connected with the
aspect. Moreover, if an A-I is viewed from an argumentative
perspective, a user’s (or similar user’s) opinion (rating) on an
aspect/item may impact the estimation of the user’s opinion
(rating) of items/aspects connected with that aspect/item in
the absence of actual ratings. This argumentative reading of
A-Is facilitates the extraction of explanations for predictions
that users can fruitfully interact with to provide feedback.

In order to capture A-Is as argumentation frameworks,
however, a novel dialectical neutralising relationship is
needed, in addition to the standard relationships of attack and
support as in bipolar argumentation frameworks, to represent
item-aspects which have neither a positive nor a negative ef-
fect on other arguments but rather neutralise them, by moving
their strength towards the middle point:
Definition 7 A Tripolar Argumentation Framework (TF ) is
a quadruple ⟨X ,L−,L+,L0⟩ whereX is a set of arguments, and
L−, L+, L0 are binary relations over X . For x, y ∈ X , we say
that x attacks y if (x, y) ∈ L−, x supports y if (x, y) ∈ L+, and
x neutralises y if (x, y) ∈ L0. With × as any of −, + or 0, for
any x ∈ X , we will use L×(x) to denote {y ∈ X ∣(y, x) ∈ L×}.

Note that our TF s may be seen as instances of ‘tripo-
lar frameworks’ as defined in [Gabbay, 2016] and of ‘gen-
eralised argumentation frameworks’ as defined in [Baroni et
al., 2017]. Whereas these works envisage the use of relations
other than attack and support we commit (in our concrete in-
stance) to the additional relation ‘neutralise’.

Straightforwardly, any TF ⟨X ,L−,L+,L0⟩ with L0 = ∅ is
a bipolar argumentation framework and if L+ = L0 = ∅ then
the TF is an abstract argumentation framework. As in the
case of abstract and bipolar argumentation frameworks, a TF
may also be equipped with some gradual evaluation method
σ which calculates the strength of any argument over a given
interval based on the strength of the arguments in dialectical
relationships with the argument, as in [Gabbay, 2016].

We map an A-I onto a user-tailored TF , as follows. First
we direct the A-I’s links in L, based on the existence of the
user’s and other (similar) users’ ratings for item-aspects:
Definition 8 The directed A-I for u ∈ U is Fu =
⟨I,A,T ,Lu,U ,R⟩, where Lu = {(i, a) ∈ L∣R(u, i) is de-
fined or ∃v ∈ U such thatR(v, i) is defined and ωu,v ≠ 0} ∪

{(a, i) ∈ L∣R(u, i) is undefined}. For x ∈ X , we refer to
Lu(x) = {y ∈ X ∣(y, x) ∈ Lu} as the set of item-aspects af-
fecting x. Also, for i ∈ I we use Lu

t (i) to denote the set
{a ∈ Lu(i)∣a ∈ At}.

For the remainder of the paper we will assume as given
a generic directed A-I Fu = ⟨I,A,T ,Lu,U ,R⟩ for u ∈ U ,
unless otherwise specified. A TF can then be obtained from
Fu by determining the polarity of pairs in Lu, as follows:

Definition 9 For any i ∈ I, let ru(i) be R(u, i) if defined,
else ρu(i) if defined, and otherwise be undefined.5 The TF
corresponding to Fu is ⟨X ,L−,L+,L0⟩ such that:

L− = {(i, a) ∈ Lu∣ru(i) < 0} ∪ {(a, i) ∈ Lu∣Pu
A(a) < 0}

L+ = {(i, a) ∈ Lu∣ru(i) > 0} ∪ {(a, i) ∈ Lu∣Pu
A(a) > 0}

L0 = {(i, a) ∈ Lu∣ru(i) = 0} ∪ {(a, i) ∈ Lu∣Pu
A(a) = 0}

Here, ru and Pu
A are used to determine the polarity of an

affecting argument’s effects on affected arguments.
For illustration, the TF corresponding to the directed A-I

Fu for user u obtained from the A-I shown in Figure 1 is vi-
sualised in Figure 2. Here, there are no arguments affecting
f2 since it is rated by u. Given that this rating is negative and
all aspects linked to f2 are not rated by u, f2 attacks all such
aspects. Conversely, f1 is not rated by u but has a positive rat-
ing from v and thus f1 supports all (linked) aspects without a
rating, i.e. a1 and g3. The fact that f1 is not rated by u means
that all aspects linked to f1 affect it. Note that, in general,
the neutralising relation is needed to represent the diluting ef-
fect of arguments on other arguments. For example, consider
a movie f1 with n > 1 linked aspects L(f1) = {a1, . . . , an}
such thatPu

A(a1) = 1 and ∀i > 1Pu
A(ai) = 0, and movies f2,

f3 with L(f2) = {a1}, L(f3) = {a2, . . . , an}. The impact of
the aspects on Pu

A(f2) should be greater than that on Pu
A(f1)

(given that all of f2’s linked aspects have maximum predicted
rating) - thus we need dialectical relations from a2, . . . , an
which reduce the strength of f1. Moreover, the impact of
the aspects on Pu

A(f3) should be null (given that all of f3’s
aspects have neutral predicted rating) - thus the dialectical re-
lations from a2, . . . , an cannot be attacks. We use a neutral-
ising relation that only dilutes the positive effect of a1 so that
the estimation of whether our user (dis)likes a2, . . . , an does
not decrease or increase our estimation of whether the user
(dis)likes f3 nor does it necessarily decrease our estimation
of whether the user (dis)likes f1.

If Pu
X is taken to be a strength σ ∶ X ↦ [−1,1] for argu-

ments in X , the TF corresponding to Fu is guaranteed to
satisfy the following simple but intuitive property, which is a
generalisation to the setting of TF s of one of the implications
of ‘strict balance’ in [Baroni et al., 2018].

Definition 10 A TF ⟨X ,L−,L+,L0⟩ satisfies the property of
weak balance if, for any x, y ∈ X :

• if L−(y)={x}, L+(y)=∅ and L0(y)=∅ then σ(y)<0;

• if L−(y)=∅, L+(y)={x} and L0(y)=∅ then σ(y)>0;

• if L−(y)=∅, L+(y)=∅ and L0(y)={x} then σ(y)=0.
5It is easy to see, by definition of Lu, that if ∃(i, a) ∈ Lu, then

ru(i) is defined.



Figure 2: A graphical representation of the TF corresponding to the
directed A-I Fu for user u from A-I in Figure 1. Here, ‘+’ indicates
‘support’ (L+ in Fu) and ‘-’ indicates ‘attack’ (L− in Fu). Note
that, in this simple illustration, there are no neutralisers (L0 in Fu).

Figure 3: Example explanation for the recommendation of f1 to u
(based on the predicted rating of 0.21) using the TF in Figure 1.

Proposition 1 Given the TF corresponding to any Fu, σ =
Pu
X satisfies the property of weak balance.

The TF corresponding to Fu can be used to form expla-
nations for predicted ratings, i.e. sub-graphs of the TF , that
users can naturally interact with for providing feedback when
presented with inaccurate predictions. In the remainder of
this section we illustrate explanations and the feedback that
they may help elicit from users.

As an illustration, in the context of our running example,
let us assume that u is presented with a recommendation to
watch f1 (based on the computed, positive predicted rating
of 0.21 for u), but the user is unhappy with the recommen-
dation. Given that u presumably wants to reduce the chance
of items like f1 being recommended in the future, it would
be desirable that the feedback from u would help reduce f1’s
predicted rating (and thus items like f1 since they would share
aspects and similar users’ ratings), if possible. Consider the
graph in Figure 3 (which is a sub-graph of that in Figure 2):
this can be seen as a qualitative explanation for the recom-
mendation, indicating in particular which aspects affected the
recommendation. A refined explanation may be as in Fig-

Figure 4: Another example explanation when the type directors has
the largest positive effect on f1’s predicted rating.

ure 4, generated (directly from the graph in Figure 2 as a sub-
graph of the graph in Figure 3) if the aspects of type directors
have the largest positive effect on f1’s predicted rating, i.e.6

directors = argmaxt∈T (µt[ ∑
a∈Lu

t (f1)
Pu
A(a)]/∣Lu

t (f1)∣) > 0

In the refined explanation, aspects of type directors are
given prominence. User feedback on the (prominent) aspects
affecting f1 in Figure 3 or in Figure 4 may then turn into
modifications of the constants used in the A-I method and re-
sult in improved future predictions. For example, if user u
states that ‘Directors of movies are not important to me’, then
the recommender system may opt for decreasing µu

directors.
In some cases this will guarantee improved predictions in the
future, for example if the similarity constants do not change
and the collaborative filtering had a minor effect relative to
the aspects, namely

µu
c.f.ρ

u(f1) < ∑
t∈T

µt[ ∑
a∈Lu

t (f1)
Pu
A(a)]/∣Lu

t (f1)∣

then decreasing µu
directors decreases Pu

I (f1).

Several other forms of explanation and feedback can be
obtained from (sub-graphs of) argumentation graphs (omit-
ted here for lack of space). Thus, these (sub-)graphs can be
seen as providing a ‘back-end’ for a variety of explanations in
different formats (e.g. graphical, visual or linguistic) for dif-
ferent contexts and types of users. For example, from Figure
4 one could draw a linguistic explanation ‘f1 is recommended
for the most part due to its director’. If unhappy with the rec-
ommendation or the justification, the user could then react by
reducing the effect of the director aspect, or by requesting the
reasons that the system believes that this aspect should have
such an impact: this may in turn require looking at a larger
graph and provide feedback on the extended explanation. The
feedback could be provided by selecting amongst predeter-
mined responses with predetermined follow-up actions by the
system (e.g. a modification to the user profile, as shown in
the example, or to the ratings of aspects, in particular overrid-
ing predicted ratings with actual ratings). Note that, in some
cases, the feedback may adversely affect accurate recommen-
dations, for example if µu

directors is decreased the predicted
rating of movies that the user would rate highly may decrease

6argmaxs∈Sf(s) >0={s∈S∣f(s)>0∧∀t∈S/{s}∶f(t)≤f(s)}.



in turn. We posit that if the user explicitly states that this as-
pect is unimportant, then other aspects should be recalibrated
to recover recommendations. Overall, our method could be
integrated within an iterative process of explanation and feed-
back that could lead to overriding predicted with actual rat-
ings of aspects that matter to a user, giving a recommender
system which adapts to a user’s feedback effectively.

6 Conclusions
We have proposed a hybrid method for making predictions in
recommender systems, shown experimentally that it is com-
petitive in the movie domain, and illustrated how it can be
used to generate effective explanations based on an argumen-
tative reading of the framework via the method. Our method
could be improved in several directions, for example, we
started with arbitrary values for the parameters in our user
profiles, but envisage improvements in accuracy by generat-
ing the constants systematically and optimally (e.g. by learn-
ing on bootstrapping), by allowing user-tailored tuning of the
constants via feedback and by taking into account that users’
tastes and preferences change over time. We also plan to con-
duct further experiments in the movie as well as other do-
mains. From the argumentation view-point it would be use-
ful to provide a dialectical re-interpretation of the notion of
strength given by our method for predicting ratings, and iden-
tify additional properties of this notion of strength. Further,
we plan to conduct in the future a systematic overview and
user studies to ascertain suitability of the types of explana-
tion and feedback that our method could support.
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[Chesñevar et al., 2009] C. I. Chesñevar, A. G. Maguitman,
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