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Abstract

The thermodynamic modelling of fluid mixtures containing electrolytes using the SAFT-γ
Mie equation of state is addressed in detail in this thesis. The SAFT-γ Mie approach
allows the implementation of heteronuclear molecules using a group-contribution formalism,
and offers a versatile framework for developing models to describe molecules of varying
chemical functionality for a broad range of physical properties. In the present work, the
SAFT-γ Mie equation of state is extended to electrolyte mixtures with the incorporation
of the primitive unrestricted mean spherical approximation (MSA-PM) for describing the
Coulombic ion–ion interactions, and the Born solvation free energy to implicitly treat ion–
solvent polar interactions. Novel reformulations of the MSA-PM and Born theories within a
group-contribution framework are proposed in order to enable ionic species of any size and
chemical structure to be modelled, from small inorganic ions to large non-spherical charged
molecules. Taking carboxylate anions in linear alkyl chain molecules as an illustrative case
study, the proposed theory is shown to effectively account for localised charge effects arising
from the structural topology of the charged species. A holistic description of electrolyte
solutions is employed in this work; in addition to the short-range dispersion forces and
the long-range Coulombic interactions which are pertinent to such mixtures, the models
developed here also account for the formation of hydrogen bonds, ion-pairing phenomena,
and electrolyte dissociation equilibria. The proposed SAFT-γ Mie equation of state is used to
model aqueous solutions of strong electrolytes including alkali halide salts, hydrogen halide
acids, and alkali hydroxide bases. Aqueous solutions of sulphuric acid and nitric acid are
studied in detail by modelling these as speciating weak electrolytes. Finally, the treatment of
ion-pairing phenomena is investigated through a consideration of aqueous alkali nitrate salt
solutions. This work presents a new theoretical formulation and SAFT-γ Mie group models
for twenty species in total.
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Chapter 1

Introduction

Thermodynamic models occupy a central role in engineering and physical sciences, with a

direct impact on many aspects of the chemical industry. Modelling tools are ever evolving

to support the efforts of developing new materials and products, as well as for aiding the

optimisation of unit operations and design of novel processes. A fundamental prerequisite for

pursuing these endeavours is the availability of thermodynamic models which can be used

to reliably describe the physical properties of mixtures under the particular conditions of

interest, especially when experimental information is scarce. Two central features dictating

the efficacy of thermodynamic models can be identified: firstly, their range of application to

mixtures with vastly different chemical properties; and secondly, the ability to do so in an

appreciably predictive manner [1].

A class of thermodynamic models which have the potential to fulfil these desired char-

acteristics are molecular-based approaches which allow for a prediction of macroscopic

properties of mixtures based on a description of fundamental molecular interactions. One

such approach is the Statistical Associating Fluid Theory (SAFT) [2, 3], a formalism for

associating chain-like molecules based on statistical thermodynamics. The SAFT approach

has undergone numerous adaptations and reformulations, making it applicable to a vast array
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of pure fluids and complex mixtures [4, 5]. In pursuit of broader applicability and improved

predictive potential, reformulations of the SAFT formalism have been proposed within a

group-contribution framework, according to which the macroscopic properties of molecular

entities are cumulatively conferred by the functional groups composing the molecules. A

particular strain of SAFT-based group-contribution approaches is the SAFT-γ equation of

state (EOS) [6, 7]. The most recent variant of this approach is the SAFT-γ Mie EOS [8],

which has been extensively applied to a variety of pure fluids and mixtures including linear

and branched alkanes and alkenes, alkylbenzenes and alkyl acetates, primary alcohols, and

carboxylic acids [9, 10].

The objective of the work presented in this thesis is to further develop the SAFT-γ Mie

approach so as to incorporate the capability of modelling systems which contain electrolyte

components. Electrolytes are involved in numerous industrial operations, including environ-

mental applications for waste treatment, electrochemical processes, separation processes,

extraction of petrochemicals, and hydrometallurgical processes [11]. Electrolytes are also

key components in product formulations; for instance, ionic surfactants are used in an array

of household products [12]; and active pharmaceutical ingredients are often preferentially

formulated as organic salts in order to enhance bioavailability [13, 14]. Although a plethora

of studies have been devoted to modelling inorganic salts, those which have dealt with

more complex charged multifunctional molecules are still limited. The group-contribution

modelling framework is naturally suited to treating charged molecules, as it is possible to

specify charged functional groups within the molecular model. By extending the scope of the

SAFT-γ Mie group-contribution approach to charged molecules, the aim here is to contribute

to the development of a comprehensive platform for modelling fluid mixtures.
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1.1 Potential applications of present work

Although the broad applicability of a comprehensive thermodynamic modelling platform

across the chemical and related industries is evident, a particular area of application that acts

as a strong driving force for its development is that of pharmaceutical product formulation.

The physicochemical properties of an active pharmaceutical ingredient have a profound

impact on its efficacy: properties such as hydrophilicity and lipophilicity, aqueous solubility

and dissolution rate, and the type of solid form, ultimately determine the bioavailability of a

drug [15]. With the larger share of active pharmaceutical ingredients being either weakly

acidic or weakly basic [13, 14], salts of these molecules are often chosen as the preferred

formulated form of the drug, as a means of achieving higher solubility and dissolution rate in

the physiological environment, better chemical stability of the dosage form, and desirable

mechanical properties during the manufacturing process [15].

The ability to reliably predict physicochemical properties is crucial in the development

of new active pharmaceutical ingredients and the formulation of drug products, since these

are typically new chemical entities for which very limited experimental data is available.

In silico molecule optimisation tools are therefore commonly used in the pharmaceutical

industry, many of which adopt a group contribution approach [16–18] that gives rise to

quantitative structure–activity or structure–property relationships. Such tools are to a large

extent empirical in nature and their range of application is highly dependent on the training

set of molecules used in the development of the tool [19]. This is a distinct limitation of

these tools, since experimental data sets of adequate size, diversity, and quality are not

readily available for pharmaceutically relevant compounds [20]. As a result, a growing

interest in equation of state modelling approaches for pharmaceutical applications has been

demonstrated in recent years: in particular, the PC-SAFT EOS [21, 22] has been widely

applied for modelling pharmaceutically-relevant fluid mixtures [23–28]. In recent work

by Hutacharoen et al. [10], the SAFT-γ Mie EOS was successfully applied to describe the

properties of active pharmaceutical ingredients – including intrinsic aqueous solubilities and
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octanol-water partition coefficients – in a completely predictive manner, through a group

contribution modelling approach. Having had the pertinence of the SAFT-γ Mie EOS to

pharmaceutical applications demonstrated, it is desirable to extend the method’s range of

applicability to include ionisable active pharmaceutical ingredients. This thesis constitutes

the initial step towards this pursuit: by developing the SAFT-γ Mie EOS for predicting the

thermodynamic behaviour of aqueous strong and weak electrolytes, this thesis contributes

towards a thermodynamic modelling platform that can subsequently be implemented in the

context of pharmaceutical product development and formulation, without discounting its

applicability in the modelling needs of the wider chemical industry.

1.2 Thesis scope

The fluid mixtures targeted in this thesis correspond to systems of a single solvent and a

single electrolyte solute. In particular, aqueous electrolyte solutions of simple salts, acids,

and bases are examined. A common assumption made when modelling electrolyte mixtures

which is also adopted here is that a clear distinction can be made between strong and weak

electrolytes, and the presence or absence of ion pairs. Nevertheless, it is widely recognised

that the physical reality of electrolyte solutions is more complex, with no sharp boundaries

between strong and weak electrolytes, as in each solution there may be to a lesser or greater

extent a distribution of freely solvated ions, ion pairs or clusters, and the undissociated

electrolyte [29, 30]. However, in most cases it is possible to make acceptably reasonable

simplifications regarding the nature of the solvated species present in a given electrolyte

solution, and in this thesis the conventions broadly followed in the scientific literature are

adopted. Three types of aqueous electrolyte solutions are addressed in this thesis: firstly,

solutions of completely dissociated (i.e. strong) salts, acids, and bases are modelled as

mixtures of water + anion + cation; the second type are solutions of partially dissociated

(i.e. weak) acids, modelled as mixtures of water + anion + cation + acid; and finally, in a
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preliminary investigatory manner, solutions of salts demonstrating an extensive degree of ion

pairing are modelled as water + anion + cation + ion pair.

Subsequent to the expansion of the SAFT-γ Mie EOS with the capability to model

electrolytes, the above types of electrolyte mixtures are targeted as an avenue to explore

suitable workflows for developing models for aqueous electrolytes and thus to establish a core

library of models for commonly encountered solvated ionic species. In particular, the present

work seeks to develop models that will not only reproduce experimental data for aqueous

electrolyte mixtures, but which will also do so with physically meaningful parameters such

that the models are intrinsically suited for use in a predictive capacity. Setting the latter

as a priority of the present work requires that a minimal level of empiricism is employed

in model development; however, this need not set conservative expectations regarding the

accuracy of the resultant models. In the body of literature devoted to modelling aqueous

electrolyte mixtures with statistical thermodynamic EOS approaches, the accuracy to which

experimental data for aqueous electrolyte mixtures are reproduced often varies substantially.

Modelling approaches differ most strikingly in their description of the mean ionic activity

coefficient (MIAC) of the electrolyte solute – a property which is central to this thesis as it is

indicative of whether the EOS can be used to reliably perform chemical reaction equilibrium

calculations to predict aqueous solubilities and the solution compositions of weak electrolytes.

What constitutes a good description of the MIAC is difficult to quantify, especially since

the experimental error associated with data for this property is not typically reported. The

absolute average deviation (AAD) of model calculations from experimental data of the MIAC

reported for SAFT-type approaches that consider single-solute aqueous solutions ranges from

∼0.1% [31] to ∼35% [32], with a typical reported accuracy of <10%. Notably, all approaches

so far have employed data for the MIAC were for estimating the model parameters. This

work intends to demonstrate that, with appropriate model development strategies, a similar

level of accuracy as the existing studies can be achieved predictively.
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1.3 Thesis overview

An approach for modelling electrolytes using the SAFT-γ Mie group-contribution formalism

is presented in this thesis together with models for ionic species developed using the extended

functionality of the equation of state. The thermodynamic properties of aqueous strong and

weak electrolytes are investigated, including inorganic and organic salts, and inorganic weak

acids.

Chapter 2 begins with a description of electrolyte solutions in terms of the chemical equi-

libria governing their dissociation in solution, and an illustration of how their thermodynamic

properties can be obtained using an equation of state. The dominant theories that have been

proposed to model electrostatic interactions in solution are outlined, and a review is given of

the wide range of thermodynamic modelling tools which have adopted these theories within

their framework. Particular attention is devoted to the body of work on modelling electrolytes

which has been presented with SAFT approaches. Chapter 3 concerns the premise and

evolution of SAFT equations of state leading to the development of the SAFT-γ Mie group-

contribution approach. Following this is a proposal of two potential avenues for incorporating

electrolyte theories within SAFT-γ Mie for large multifunctional molecules; each option

reflects the formulation arrived at when adopting a particular set of assumptions regarding

the definition of the species contributing to the electrostatic interactions in a mixture.

The rest of the thesis is devoted to the application of the SAFT-γ Mie EOS to the

description of thermodynamic properties of aqueous electrolyte systems. Strong inorganic

electrolytes are studied in Chapter 4, specifically alkali halide salts, hydrogen halide acids,

and alkali hydroxide bases. A simple geometry is assigned to these models, meaning that

the two formulation options presented in Chapter 3 converge. Models for ten monovalent

and four divalent ions are presented. In Chapter 5, attention is returned to the electrolyte

formulations of the SAFT-γ Mie EOS. The two methodologies are used to develop two sets

of models for the functional groups required in the description of sodium carboxylate salts.
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Carboxylate anions with alkyl chain lengths ranging from C2 to C6 are considered. The

methodologies are compared with respect to the adequacy of the performance of each set

of models at describing the thermodynamic properties of aqueous solutions of these salts.

Having selected an appropriate electrolyte group-contribution formulation for SAFT-γ Mie,

the approach is applied in Chapter 6 to model aqueous solutions of weak acids. In particular,

sulphuric acid and nitric acid are studied by developing models for the sulphate, bisulphate,

and nitrate anions. The chapter concludes with a study of ion-pairing phenomena in aqueous

alkali nitrate salts. Finally, Chapter 7 provides an overview of the outcomes of this thesis,

together with the projected outlook for further work based on these findings.





Chapter 2

Theory of electrolyte solutions and their

thermodynamic modelling

The dissolution of electrolytes in a polar solvent can substantially alter the thermodynamic

properties of the fluid mixture, as the charged ionic components introduce strong electrostatic

interactions in the system. In this chapter, the behaviour of electrolyte substances is presented

with respect to the relevant chemical equilibria in solution, and the dominant theories for

describing electrostatic interactions in electrolyte solutions are discussed. A review of ther-

modynamic models developed to describe the behaviour of mixtures containing electrolytes

is presented, with particular attention devoted to models based on SAFT approaches.
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2.1 Classification of electrolytes

2.1.1 Thermodynamic reaction equilibrium

Electrolytes in solution undergo dissociation into their constituent ions, and this speciation

process can be treated as a reversible reaction with an associated equilibrium constant:

Mν+Xν−

Keq−−−⇀↽−−− ν+Mz+ + ν−Xz− . (2.1)

The salt Mν+Xν− dissociates into the cation Mz+ of valency z+ and the anion Xz− of valency

z− with a stoichiometry ν+ : ν−. The extent to which the electrolyte dissociates is related to

the thermodynamic equilibrium constant Keq, which determines the thermodynamic state

at which the Gibbs free energy G of the system is minimised at specified conditions of

temperature and pressure.

The change in the total Gibbs free energy of a system as a result of a change in the

system’s composition at constant temperature T and pressure p is obtained as [33]

dG
��
T,p =

NC∑
i=1

µi(T, p,N)dni , (2.2)

where µi is the chemical potential (or partial molar Gibbs free energy) of component i and ni

is the number of moles of component i. The total number of components in the system is

denoted NC and N is the mixture’s composition vector. The change in amount of a species

i can be written as dni = νidξ, where ξ is the extent of reaction and νi is the stoichiometric

coefficient of species i. The reaction Gibbs free energy ∆rG is defined as the change in G

with respect to the change in the extent of reaction:

∆rG(T, p) =
(
∂G
∂ξ

)
T,p
=

NC∑
i=1

νiµi(T, p,N) , (2.3)
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and the condition for chemical equilibrium is that ∂G/∂ξ = 0 such that ∆rG(T, p) = 0.

The chemical potential of a species i at a specified temperature and pressure is generally

written as a deviation from a known reference state:

µi (T, p,N) = µ̃i
(
T, p, Ñ

)
+RT ln [ai (T, p,N)] , (2.4)

where µ̃i is the chemical potential of component i at the chosen reference state with composi-

tion Ñ, ai is the activity of i at the system composition, and R is the ideal gas constant. The

reaction Gibbs free energy can thus be written by expanding the chemical potential:

∆rG(T, p) =
NC∑
i=1

νi µ̃i
(
T, p, Ñ

)
+RT ln

NC∏
i=1

(ai (T, p,N))νi . (2.5)

The first term in Equation 2.5 corresponds to the standard reaction Gibbs free energy ∆rG⊘,

while the product in the second term corresponds to the thermodynamic reaction quotient.

When chemical equilibrium is satisfied by ∆rG(T, p) = 0, the reaction quotient is referred to

as the thermodynamic equilibrium constant:

Keq(T) =
NC∏
i=1

(ai (T, p,N))νi . (2.6)

2.1.2 Strong and weak electrolytes

Conventionally, electrolyte compounds are divided into two broad categories, namely ‘strong’

and ‘weak’ electrolytes, depending on their degree of dissociation in solution. Strong

electrolytes are compounds whose dissociation in a solvent is complete, i.e., the reaction

shown in Equation 2.1 is fully shifted towards the dissociated ions such that none of the

molecular species is present in the solution mixture at equilibrium. Robinson and Stokes

[34] classify such electrolytes in an equivalent manner as ‘non-associated’ electrolytes,

characterised by “the absence of evidence of any lasting union between the ions” in solution.
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The thermodynamic equilibrium constant used to characterise solvated strong electrolytes in

equilibrium with the pure unsolvated molecular electrolyte is known as the solubility product

Ksp; for a strong electrolyte Mν+Xν− this is expressed as

Ksp(T) = aMz+ (T, p,N)ν+ aXz− (T, p,N)ν− . (2.7)

Compounds which only partially dissociate in solution are referred to as weak electrolytes. At

equilibrium, solution mixtures of weak electrolytes contain the molecular (often covalently

bonded) species as well as the solvated ions. Taking the example of a weak electrolyte

Mν+Xν− , the thermodynamic equilibrium constant is

Keq(T) =
aMz+ (T, p,N)ν+ aXz− (T, p,N)ν−

aMν+Xν− (T, p,N) . (2.8)

Robinson and Stokes [34] classify weak electrolytes as one of two types of ‘associated’

electrolytes; the second type of ‘associated’ electrolytes are those exhibiting ion-pairing

behaviour resulting from electrostatic attraction between oppositely charged ions. According

to the theory of ion association proposed by Bjerrum [35], ions are considered to be paired

when the potential energy resulting from the electrostatic forces between the ions effectively

offsets the kinetic energy of random thermal motion [36]. Ion-pairing behaviour can further

be subdivided into ‘solvent-separated’ ion pairs, in which each ion retains a distinct solvation

shell; ‘solvent-shared’ ion pairs, where part of the solvation shells of the two ions overlap;

and finally ‘contact’ ion pairs which consequently constitute a solvated dipolar species

[36]; these are illustrated in Figure 2.1. The type of ion pair formed by an electrolyte

in solution can be identified by experimental means such as Raman spectroscopy, which

hence allows characterisation of the ion association equilibrium constant. Ion pairing can

be exhibited by both weak and strong electrolytes at sufficiently high solute concentrations

and high temperatures. This means that ion-pairing phenomena are of limited concern in the

present work since the focus lies primarily on modelling electrolyte solutions at dilute and

moderate concentrations. Nevertheless, the profound effect of ion pairing on the properties
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of electrolytes solutions is assessed within the analysis of carboxylate salts in Chapter 5, and

the modelling of weak acids and oxoanions in Chapter 6.

Figure 2.1 Schematic illustration of solvated electrolytes; solvent molecules are shown in
grey and ions are shown in white. Ions in solution may be freely solvated or form ion pairs,
including solvent-separated, solvent-shared, and contact ion pairs. The image has been
adapted from Ref. [37].

2.2 Chemical potential and activity coefficients in

electrolyte solutions

The activity of component i in a mixture is related to the concentration ci (expressed in the

units of choice) through the activity coefficient γi,c:

ai,c =
ci

c◦
γi,c , (2.9)
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where the subscript ‘c’ denotes that the magnitude of γi,c is commensurate with the concen-

tration scale chosen for ci, and the standard concentration c◦ ensures that both the activity

and activity coefficient are dimensionless quantities. The activity coefficient of component i

is therefore defined relative to the chemical potential µi at given conditions of temperature,

pressure, and mixture composition, by invoking Equation 2.4:

µi (T, p,N) = µ̃i
(
T, p, Ñ

)
+RT ln

[
ciγi,c (T, p,N)

]
. (2.10)

Depending on the nature of the system in question, it can be convenient to express the

activity coefficient in one of a variety of ways as concerns both the reference state and

the concentration scale. The standard symmetrical activity coefficient of component i is

typically expressed in terms of the mole fraction, xi, and the reference chemical potential is

taken as that corresponding to the pure component i at the system temperature and pressure,

i.e. µ̃i (T, p, xi = 1) = µ0
i (T, p), where the superscript ‘0’ denotes a pure component. The

symmetrical activity coefficient can therefore be obtained from [38, 39]

µi (T, p,N) = µ0
i (T, p)+RT ln

[
xiγi,x (T, p,N)

]
= µ0

i (T, p)+RT ln
[
ai,x (T, p,N)

]
, (2.11)

and it is commonly used for components whose pure reference state is well-defined.

As a result of the constraint of electroneutrality, a pure ion cannot exist in isolation and

therefore ionic species cannot be related meaningfully to the pure system. The chemical

potential of ions is therefore expressed by employing an asymmetric convention [39, 40],

whereby the activity coefficient of the ion at the specified system conditions is normalised

relative to its activity coefficient at infinite dilution:

γi,∗(T, p,N) = γi,x(T, p,N)
γi,x(T, p,N∗) . (2.12)
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The composition vector N∗ corresponds to ion i infinitely diluted in solvent j, i.e., a mixture

where xi → 0 and x j → 1. According to this normalisation, known as the rational asymmetric

scale [41], the activity coefficient of an ion has a value of one in the limit of infinite dilution

of the ion (xi → 0 ⇒ γi,∗ → 1), thereby providing a practical reference state for the ionic

species. The asymmetric reference chemical potential for ions is taken as that corresponding

to the infinitely dilute solution of ion i [38]:

µ̃i(T, p,N∗) ≡ µ0
i (T, p)+RT lnγi,x(T, p,N∗) . (2.13)

The chemical potential of ionic species is therefore expressed as:

µi(T, p,N) = µ̃i(T, p,N∗)+RT ln
[
xiγi,∗(T, p,N)

]
= µ̃i(T, p,N∗)+RT lnai,∗(T, p,N) , (2.14)

where ai,∗ is the rational asymmetric activity of the ion.

Properties of ions are conventionally reported with reference to the molality concentration

of the electrolyte solution. The molal-based scale (denoted by the subscript m) for reporting

the activity coefficients of ions, γi,m, employs the convention of a hypothetical ideal solution

at unit molality such that mi → 1 ⇒ γi,m → 1. Assuming a solution involving a single

solvent j, conversion between the mole fraction scale and the molality scale concentrations

is achieved through [41]:

xi = mi x j MWj , (2.15)

where MWj is the molecular weight of solvent j. Equation 2.14 can hence be rewritten as:

µi(T, p,N) = µ̃i(T, p,N∗)+RT ln
[
MWjm◦] +RT ln

[
mi x jγi,∗(T, p,N)

m◦

]
, (2.16)

where the unit molality m◦ = 1 mol kg−1 (corresponding to the mixture composition vector

m◦) has been introduced to maintain the activity dimensionless when separating the residual
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term. The reference state chemical potential at unit molality can thus be expressed as:

µ◦i (T, p,m◦) = µ̃i(T, p,N∗)+RT ln
[
MWjm◦]

= µ0
i (T, p)+RT ln

[
MWjm◦γi,∗(T, p,N∗)

]
. (2.17)

Bearing in mind that the magnitude of the chemical potential is unaffected by the concentra-

tion scale adopted (i.e., µi(T, p,m) ≡ µi(T, p,N) provided that the vectors m and N correspond

to the same mixture composition), the chemical potential of an ion written on the molal-based

scale is

µi(T, p,m) = µ◦i (T, p,m◦)+RT ln
[
miγi,m(T, p,N)

m◦

]
. (2.18)

The conversion between the rational asymmetric mole fraction-based scale and the molal-

based scale follows as [41]

γi,m = x jγi,∗ . (2.19)

2.2.1 The chemical potential of a salt

The chemical potential of a dissociated salt in solution may be expressed as a sum of the

chemical potentials of its constituent ions. In the case of a salt Mν+Xν− dissociating according

to Equation 2.1 to form ions Mz+ and Xz− , its chemical potential is obtained by

µMν+Xν− (T, p,N) = ν+µ+(T, p,N)+ ν−µ−(T, p,N) . (2.20)
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By expressing the chemical potential on the molal-based scale and simplifying Equation 2.18

by omitting m◦, the salt’s chemical potential can be written as

µMν+Xν− =µ
◦
+(T, p,m◦)+ µ◦−(T, p,m◦)+RT ln

(
mν+
+ mν−

−
)

(2.21)

+RT ln
[ (
γ+,m(T, p,N)

)ν+ (
γ−,m(T, p,N)

)ν− ] .
Accordingly, the molal-scale mean ionic activity coefficient (MIAC) of the salt, γ±,m, is

defined as

γ±,m ≡
[ (
γ+,m(T, p,N)

)ν+ (
γ−,m(T, p,N)

)ν− ] (1/ν) , (2.22)

where ν = ν++ ν− is the sum of the ions’ stoichiometric coefficients. The MIAC conveniently

collates the properties of the salt’s constituent ions into a single quantity which can be

obtained experimentally, e.g., via electromotive force measurements, thus overcoming the

limitation of not being able to measure the activities of individual ions.

The mean ionic activity coefficient accentuates the deviation from ideal behaviour of

the electrolyte solute by augmenting the variation of the activity coefficients of the ions

through knowledge of the solution’s ionic composition. In a solution of a strong electrolyte

with molal composition msalt, the concentration of an ion i will be mi = νimsalt; however, the

ionic composition in a solution of a weak electrolyte is not determined in straightforward

fashion. Experimental data of the MIAC for solutions of weak electrolytes are conventionally

reported as stoichiometric quantities, γstoich.
±,m , as a means of circumventing the complexity

of experimentally determining the actual solution composition, which would be required in

order to determine the ‘real’ values of these properties in accordance with Equation 2.21.

The stoichiometric definition adopts the assumption that the concentration of the constituent

ions in solution is equal to what it would be if the electrolyte were completely dissociated.

The stoichiometric and real MIAC are related through the relationship:

mν+
+ mν−

−
(
γ±,m

)ν
= (ν+msalt)ν+(ν−msalt)ν−

(
γstoich.
±,m

)ν
. (2.23)
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It follows that the real and stoichiometric MIAC are equivalent for solutions of strong

electrolytes.

2.2.2 The osmotic coefficient

The chemical potential of a neutral solvent species in a mixture is given by Equation 2.11

with the activity coefficient expressed on the symmetric scale. The activity of the solvent is

usually rescaled as the osmotic coefficient, Φ, in order to accentuate its variation in the region

of low solute concentrations, where the solution deviates more from ideal-fluid behaviour. In

a single-solvent solution, the osmotic coefficient is related to the activity of solvent j through

Φ (T, p,N) = − 1∑nion
i=1 (mi)MWj

lna j (T, p,N) , (2.24)

where nion is the number of types of ions in the solution and MWj is the molecular weight of

solvent j.

Relating the activity of the solvent to the osmotic coefficient of the solution requires

knowledge of the mixture composition, leading to a similar practical limitation for weak

electrolytes as has been discussed above for the MIAC. Therefore, for solutions of weak

electrolytes, the osmotic coefficient is reported as a stoichiometric quantity assuming that the

composition of each ion in the solution mixture is equal to the stoichiometric composition

which would arise from complete dissociation. As with the MIAC, the real and stoichiometric

osmotic coefficients are equivalent for strong electrolytes. The stoichiometric osmotic

coefficient of a single-salt solution is obtained as follows:

Φ
stoich. (T, p,N) = − 1

(ν++ ν−)msaltMWj
lna j (T, p,N) . (2.25)

In a given solution mixture, the properties of the solvents and solutes are not independent

and must fulfil the Gibbs-Dühem relation, which relates the changes in chemical potential

to the change in temperature and pressure. The osmotic coefficient and MIAC are related
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through the following relationship [39]:

lnγ±,m = Φ−1+
∫ msalt

0

(Φ−1)
msalt

dmsalt . (2.26)

2.2.3 Obtaining activity coefficients from an equation of state

The expressions for the chemical potentials of both neutral and ionic species, given respec-

tively in Equations 2.11 and 2.14, are expressed in terms of pressure as the independent

variable, in line with the manner in which thermodynamic properties tend to be measured and

reported. Equations of state such as the variants of the SAFT EOS are typically expressed

with volume as the independent variable, thereby requiring a conversion between the two

ensembles in order to compute the activity coefficients at specified conditions of temperature,

pressure, and composition.

The symmetric activity coefficient γi,x of a component i in a mixture of defined composi-

tion is related to its fugacity coefficient φi in the mixture and its fugacity coefficient φ0
i in the

pure state, at the same temperature and pressure [42]:

γi,x(T, p,N) = φi(T, p,N)
φ0

i (T, p)
. (2.27)

The fugacity coefficient is related to the fugacity fi of the species in the mixture [33],

fi(T, p,N) = pxiφi(T, p,N) , (2.28)

which in turn is obtained as a function of the chemical potential of component i [39]:

fi(T, p,N) = pxi exp

[
µi(T, p,N)− µideal

i (T, p,N)
RT

]
. (2.29)
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The residual chemical potential is obtained when the chemical potential of component i at

specified temperature, pressure, and composition is defined with reference to that of the ideal

gas mixture at the same conditions:

µres
i (T, p,N) = µi(T, p,N)− µideal

i (T, p,N) (2.30)

It thereby follows that the fugacity coefficient can be written as

lnφi(T, p,N) =
µres

i (T, p,N)
RT

. (2.31)

In order to obtain φi(T, p,N) using an equation of state written as a function of T , V , and N,

one may invoke the following relation [38]:

µres
i (T, p,N) = µres

i (T,Vp,N)−RT ln Z , (2.32)

where Vp is the volume corresponding to the specified pressure p, and Z is the compressibility

factor:

Z =
pVp

nRT
. (2.33)

The fugacity coefficient at specified (T, p,N) is therefore related to the residual chemical

potential at the corresponding (T,Vp,N) through

φi(T, p,N) = 1
Z

exp
(
µres

i (T,Vp,N)
RT

)
. (2.34)

The residual chemical potential of component i is defined as the derivative of the residual

Helmholtz free energy Ares (given by an equation of state) with respect to the total number of

particles of type i, Ni:

µres
i (T,Vp,N) =

∂Ares(T,Vp,N)
∂Ni

����
T,V,Nj,i

. (2.35)
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Applying Equations 2.34 and 2.35 to the case of a system composed of pure component

i returns φ0
i (T, p), and therefore the activity coefficient of a neutral component may be

determined through Equation 2.27. For ionic species present in a fluid mixture, the ra-

tional asymmetric activity coefficient is related to the ion’s fugacity coefficient at infinite

dilution [41]:

γi,∗ (T, p,N) = φi (T, p,N)
φi (T, p,N∗) , (2.36)

in which case φi(T, p,N∗) can again be obtained by applying Equation 2.34.

2.3 Particle interactions in electrolyte systems

Particles in an electrolyte solution will experience both electrostatic and non-electrostatic

interactions, which will both contribute to the overall intermolecular potential, utotal. Elec-

trostatic contributions to utotal result from long-range Coulombic interactions between ionic

species; these electrostatic interactions are screened by the solvent molecules surrounding

the individual ions. The non-electrostatic contributions arise from short-range dispersive

and, depending on the nature of the electrolyte and solvent, directional physical interactions

such as hydrogen bonding. The formation of a hydrogen bond arises from the approach

of a partial positive charge on an H atom and the partial negative charge on an atom that

possesses a lone pair of electrons; the latter is usually an N, O, or F atom, but in principle an

anionic species (such as Cl−) may also participate in hydrogen bonding [43]. The complexity

of hydrogen bonding is reduced in this work by considering only such interactions of type

O−H· · ·O, i.e. hydrogen bonding is only applied between water molecules and between

oxoanions and water. Hydrogen bonding is directional and necessitates the spatial proximity

of the participating species, as electrostatic interactions arising from partial charges act over

a short range. For this reason, hydrogen bonding is treated distinctly from the comparatively
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long-range and non-directional Coulombic interactions. When polar solvents are involved,

one must also consider the polar interactions between the solvent molecules and the electro-

static ion–solvent interactions arising as a consequence of the solvent molecules’ permanent

or ion-induced dipole. Such ion–dipole interactions together with any ion–solvent hydrogen

bonding will determine the solvation of the electrolyte solute [44]. Due to their long range,

Coulombic interactions are particularly important in dilute solutions where their effect will

dominate, causing the behaviour of electrolyte solutions to be markedly non-ideal even at low

ion concentrations [41]. Short-range dispersion forces and association interactions among

ions and solvent molecules become increasingly significant at higher ion concentrations,

again resulting in non-ideal mixtures as the three types of interactions are simultaneously

manifested to a large extent.

Thermodynamic models for fluids containing electrolytes typically treat the long-range

electrostatic interactions distinctly from short-range directional interactions, by coupling a

theory for electrostatic interactions with a separate framework for the neutral species. This

distinction is practical, as the most prevalent theories for ionic interactions are so-called

‘primitive’ theories which eliminate the explicit representation of the solvent and introduce

in its place a uniform dielectric medium. ‘Non-primitive’ electrolyte theories, by contrast,

treat the solvent molecules explicitly by including a description of the interactions between

ions and dipolar molecules in addition to the ion–ion electrostatic interactions. This type

of approach is less commonly used in thermodynamic modelling of electrolytes due to the

additional effort required to describe the dipole moment of individual molecules as compared

to imposing a dielectric continuum. The two dominant theories for modelling electrolytes are

in fact primitive models, namely the earlier Debye-Hückel theory [45] and the more recent

Mean Spherical Approximation (MSA) [46–48], both of which are further discussed in the

next section.
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2.4 Theories for electrostatic interactions in the fluid

phase

The Debye-Hückel and MSA theories describe the electrostatic interactions between charged

species in a dielectric medium by means of the Coulombic pair potential between two point

charges, qi = zie and q j = z je, given by:

uCoulomb
i j (r) =

ziz je2

4πϵ0Dri j
, (2.37)

where ri j is the separation distance, z is the valency of the ion, ϵ0 is the permittivity of

vacuum, and D is the dielectric constant (relative static permittivity) of the medium. The

theories differ in two main respects: firstly, in their description of the ionic species’ geometry,

and consequently in terms of their approach to obtaining the radial distribution function for

the fluid.

The Debye-Hückel theory represents ions as point charges qi with a defined distance of

closest approach di characterising the radius of a spherical volume. As di is an ion-specific

parameter, the ions can take distinct ‘sizes’. Debye and Hückel approximated the radial

distribution function of the ions as a Boltzmann distribution and, by solving the linearized

Poisson–Boltzmann equation, arrived at an expression for the excess Helmholtz energy

arising from the electrostatic forces between point charges. The resultant closed analytical

theory is exact in the limit of infinite dilution, however it is only valid at low concentrations.

The MSA approach for electrolytes differs from the Debye-Hückel approach in that the

ions are modelled as hard spheres with a diameter σi and a central charge qi. The fact that

ion sizes are explicitly taken into account gives a better description of the fluid which thus

renders it applicable to higher ion concentrations. The MSA model for charged spheres was

first presented by Waisman and Lebowitz [46] as a restricted primitive model (MSA-RPM)

where ions are considered to be of the same size. Blum and Hoye [47, 48] subsequently
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generalised the theory by allowing asymmetric ion diameters (MSA-PM). This unrestricted

version of the MSA finds more practical application in thermodynamic modelling, as it

allows electrolytes to be modelled with ion-specific parameters. The MSA theory has also

been presented within a non-primitive framework by Blum and Wei [49, 50], in which the

interactions between the ions and the dipolar fluid are taken into account in order to emulate

the effects of solvation.

As has already been noted, the Debye-Hückel and MSA theories must be used in combina-

tion with other theories for short-range interactions in order to obtain a complete description

of the fluid, hence sparking a debate as to which theory should be used for this purpose. It

is generally expected [51, 52] that the MSA will provide a better performance over a wider

range of electrolyte concentrations up to high ion concentrations, owing to the hard-sphere

contribution of the MSA which is absent in the Debye-Hückel theory [53]. A comprehensive

analysis by Maribo-Mogensen et al. [54] in which the MSA-PM and the Debye-Hückel theo-

ries are compared with respect to the temperature, volume, and compositional derivatives of

the Helmholtz energy, has demonstrated that both theories perform similarly in reproducing

the properties of strong electrolyte solutions for concentrations up to 5 molal. The authors

argue that neither theory can be considered superior provided that the model parameters

are treated as adjustable. However, Gil-Villegas and co-workers [55, 56] have shown that if

the sizes of the ions are set to specific values, the MSA-PM approach tends to give a better

description for the solution properties compared to the Debye-Hückel theory, even at low

electrolyte concentrations.

A theory commonly used alongside the Debye-Hückel or MSA in thermodynamic models

for electrolytes is the Born solvation model [57], the proposal of which in fact precedes these

electrostatic theories. The Born theory is a primitive model which describes the change in

Helmholtz free energy due to transferring an ion from vacuum to a spherical cavity inside a

dielectric medium. The free energy computed by the Born theory is commonly referred to as

the ‘solvation energy’, however it must be noted it only covers one aspect of ion solvation

and does not consider changes to the structure of the fluid due to any short- or long-range
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intermolecular interactions. Although the necessity of including the Born solvation energy in

thermodynamic modelling of electrolytes has been disputed in the past [58, 59], more recent

modelling efforts have found the contribution significant in improving the thermodynamic

consistency of modelling approaches [60–62].

2.5 Thermodynamic modelling of electrolyte solutions

A broad range of thermodynamic models have been extended with either the Debye-Hückel

or MSA theories in order to make them applicable to electrolyte solution mixtures. Some

prominent implementations will be discussed here; these may be broadly categorised as

either models based on activity coefficient approaches or models based on equation-of-state

approaches. Beyond the fundamental divisions arising from the chosen theory for electro-

static interactions and the base model applied for the non-electrostatic interactions, these

approaches also differ in the type of modelling strategies. Two types of strategies have been

applied for characterising model parameters for electrolytes: models defined with respect to

the dissociated solvated ions are referred to as ‘ion-specific’, whereas models defined with

respect to the molecular electrolyte are said to be ‘salt-specific’. Thermodynamic models for

electrolytes employing a salt-specific approach tend to produce results that are more accurate

since parameters are optimised directly from experimental data of the corresponding salt [63].

On the other hand, ion-specific models offer the possibility of transferring the optimised

ion parameters to any salt of which they are a constituent, thus minimising the parameter

optimisation effort and providing the prospect of greater predictive power. This constitutes a

significant advantage, as this approach allows one to make predictions for electrolytes for

which no data are available.
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2.5.1 Activity coefficient models

Activity coefficient models are semi-empirical models which express the activity coefficients

of the species in a mixture as a function of temperature and composition at a fixed pressure.

Being independent of pressure, these models are intrinsically limited to describing the liquid

phase, which means that an alternative treatment of the vapour phase needs to be applied

alongside the activity coefficient model. In such approaches, ionic species are excluded

from the vapour phase so that it may be modelled using an equation of state. Despite this

apparent limitation, activity coefficient models are widely used in engineering applications

with considerable success [64]. Owing to the large number of parameters involved in activity

coefficient modelling approaches, the properties of electrolyte solutions can be reproduced

with high accuracy over a wide range of temperatures and solution compositions; however,

these models lack any predictive capability.

The activity coefficient model of Pitzer [65] is one of the most widely used activity

coefficient models for describing the thermodynamic properties of electrolytes. The Pitzer

model is a modification of the Debye-Hückel theory that includes short-range hard-sphere

contributions to the free energy of the mixture, thus allowing the theory to be applied beyond

the limit of dilute solutions to which the Debye-Hückel model is best suited [66]. The model

has been applied to systems of single and mixed strong electrolytes [67, 68], as well as weak

electrolytes by including a description of the dissociation equilibria [69–72]. Among the

abundant work employing the Pitzer model, its capability is perhaps best exemplified by the

work of Kim and Frederick Jr [73, 74], in which model parameters for a total of 353 aqueous

electrolyte solutions are presented.

Models for electrolytes have also been developed by combining the Debye-Hückel

theory with local-composition activity coefficient models. These have included the non-

random two-liquid (NRTL) model of Renon and Prausnitz [75] and the UNIQUAC (universal

quasi-chemical) model of Abrams and Prausnitz [76], both of which are based on the quasi-
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chemical theory proposed by Guggenheim [77, 78], as well as the UNIFAC (UNIQUAC

functional-group activity coefficient) group-contribution model developed by Frendenslund

et al. [79].

The electrolyte-NRTL (e-NRTL) model was developed by Chen et al. [80]; these authors

incorporated the Debye-Hückel term and modified the local-composition conditions for the

ionic species in order to account for local electroneutrality. First applied to single-salt, single-

solvent solutions of strong electrolytes [80] using salt-specific parameters, the e-NRTL model

was later extended for mixed-electrolyte and mixed-solvent systems [81–83] by including

the solvent–solvent and solvent–ion interactions. In order to apply the e-NRTL model to

multicomponent systems, binary interaction parameters for each pair of salt components

must be obtained using experimental data of systems containing the specific combination

of salts. Weak electrolytes have also been described using e-NRTL, for example in the

work of Austgen et al. [84], while Posey and Rochelle [85] have used e-NRTL to obtain fair

predictions of the pH of electrolyte mixtures.

Christensen et al. [86] presented an electrolyte-UNIQUAC model for strong electrolytes

in pure and mixed solvents by combining the UNIQUAC equation with a Debye-Hückel

term and employing an ion-specific modelling scheme. Sander et al. [87] modified the

electrolyte-UNIQUAC model of Christensen et al. [86] to include concentration-dependent

parameters, and used the model to represent salt effects on the vapour-liquid equilibria

of ternary alcohol-water-salt mixtures. Nicolaisen et al. [88] have presented a simplified

version of the model of Sander et al. [87] which requires only binary interaction parameters

with no concentration dependence. Nicolaisen et al.’s simplified model was extended by

Thomsen et al. [89] to also account for the thermal properties of mixtures, thereby adding the

capability to describe solid-liquid equilibria and heat capacities of aqueous solutions of strong

electrolytes. Thomsen and Rasmussen [90] used this model to describe the liquid phase

while using the Soave-Redlich-Kwong (SRK) EOS [91] for the vapour phase, and applied

the resultant approach to ternary mixtures containing mixed weak electrolytes to obtain fair

agreement with experiment for vapour-liquid and solid-liquid equilibria, as well as thermal
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properties. Retaining the form of the extended UNIQUAC, Thomsen [92] later proposed an

improved method for obtaining the model parameters, with which a good representation of

vapour-liquid, liquid-liquid, and solid-liquid equilibria, and thermal properties for a range of

strong and weak electrolyte solutions were obtained.

Despite the high-quality performance of the various electrolyte-UNIQUAC models, the

problem of requiring extensive experimental data persists. For example, for a five-component

electrolyte system investigated by Kaewsichan et al. [93], estimation of the binary interaction

parameters required binary, ternary, and quaternary system VLE data. Such an effort in the

parameter estimation can be reduced using a group-contribution approach, such as UNIFAC,

which allows for an increased predictive capability through the use of transferable parameters.

A UNIFAC model for electrolytes (e-UNIFAC) was developed by Kikic and Fermeglia

[94] by adopting the approach of Sander et al. [87]; the resulting e-UNIFAC model has

concentration-independent group interaction parameters, and the ions are represented as

individual groups. The original e-UNIFAC model has seen a number of modifications which

have effected an enhanced performance with respect to the phase behaviour of mixed-solvent

solutions of strong electrolytes. In the work of Achard et al. [95], for example, solvation

equations were included to account for the hydration of ions. Yan et al. [96] introduced an

additional term to represent the ion-dipole interactions, while also simplifying the UNIFAC

contribution by neglecting the ion-solvent and ion-ion short-rnage interactions, such that

these are only accounted for in the Debye-Hückel term.

2.5.2 Equation of state models

Equations of state provide unified thermodynamic models that can be used to treat all phases

and species in a system. Unlike activity coefficient models, they are less constrained in

their range of application and they can be used to obtain thermodynamic properties beyond

those accessible from activity coefficients. Furthermore, model parameters associated with

equation-of-state approaches are fewer than those required by activity coefficient models,
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while they also tend to be associated with clearer physical meanings, hence their value can

be assessed for correctness and their influence can be tested independently. For these reasons,

equations of state provide a more attractive framework for developing predictive models for

electrolytes.

Electrolyte models have been proposed within the framework of classical cubic equations

of state and Cubic-Plus-Association (CPA) approaches, as well as equations of state based on

statistical mechanics, such as the Perturbed Anisotropic Chain Theory (PACT) and variants

of the SAFT approach. In each approach, the number and type of parameters vary, as does the

choice of theory for the ionic interactions, therefore a direct comparison of the approaches

would be unfair. It is not surprising, however, that due to the explicit treatment of the solvent’s

intermolecular association interactions, approaches based on CPA or SAFT have been among

the most popular.

One of the earliest electrolyte models based on a cubic equation of state was proposed

by Furst and Renon [97]; this model coupled the MSA-PM approach with a version of the

SRK EOS given by Schwartzentruber et al. [98], to which an additional short-range term

for non-electrostatic ion–ion interactions (called the SR2 term) was added so as to account

for solvation effects. The model was found to be successful in describing excess properties

of multi-component strong electrolyte solutions using adjustable ion-specific parameters

[99, 100]. Myers et al. [51] also extended the Peng-Robinson (PR) EOS [101] with the

MSA-PM and also the Born theory for including the effects of solvation. The resultant model

involved salt-specific parameters and gave good descriptions of the properties of the 138

aqueous salt solutions considered.

A turning point in the use of cubic equations of state came with the advent of the Cubic-

Plus-Association (CPA) approach proposed by Kontogeorgis et al. [102], according to which

a cubic EOS is combined with a Wertheim association term. The particular CPA approach

proposed by Kontogeorgis et al. [102] is based on the SRK EOS, and it has been extended

to electrolyte systems by other authors through the implementation of either the MSA
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and Debye-Hückel theories for representing the Coulombic contributions. Lin et al. [103]

examined the possible variations of an electrolyte CPA model by assessing the use of the

MSA-PM and Debye-Hückel theories and the optional inclusion of a Born term, implemented

within a framework utilising ion-specific parameters. Shortly afterwards Inchekel et al. [60]

supplemented this investigation by considering the Born energy contribution alongside

the SR2 solvation term, finally proposing an electrolyte CPA EOS employing the MSA-

PM and the Born term free-energy contributions. This implementation of the electrolyte

CPA proposed by Inchekel et al. [60] was successfully applied by Courtial et al. [104]

to model the phase behaviour of aqueous sodium chloride solutions containing carbon

dioxide and methane at conditions of very high temperature and pressure. The most recent

implementation of the electrolyte CPA EOS has been presented by Maribo-Mogensen et al.

[105], who instead advocated the use of the Debye-Hückel theory together with the Born

term. In this work, the authors implemented a highly accurate composition-dependent

model [106, 107] for establishing the permittivity of the solvent medium, which significantly

improved the description of the solvent medium and thus permitted the use of the simpler

Debye-Hückel theory for the electrostatic interactions even at high ionic concentrations. This

electrolyte CPA EOS has been extensively applied by Maribo-Mogensen et al. [105] and

later Schlaikjer et al. [62] to describe an incredible range of multi-solvent, multi-component

mixtures comprising strong electrolytes and non-electrolyte solutes, and has successfully

described an array of phase-equilibrium properties.

Among statistical mechanical equations of state, the Perturbed Anisotropic Chain Theory

(PACT) of Vimalchand and Donohue [108] was first applied to electrolyte systems in a

series of publications by Jin and Donohue [109–111]. The PACT approach takes into

account the solvent’s multipolar interactions, to which Jin and Donohue [109] added ion–

dipole and ion–induced dipole interactions, thus explicitly incorporating solvation effects.

Electrostatic interactions among ions were incorporated using an MSA-PM approach, and a

salt-specific modelling scheme with the ionic size treated as the only adjustable parameter

was adopted for characterising the models. The comprehensive PACT EOS for electrolytes
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was initially applied to model liquid phase properties for 50 aqueous solutions of strong

electrolytes [109], followed by phase equilibrium properties for solutions of single volatile

weak electrolytes [110]. Shifting to an ion-specific modelling scheme, Jin and Donohue [111]

presented models for a range of monovalent and divalent ions and applied the PACT EOS to

predict the solubilities of strong electrolytes in multi-salt aqueous solutions to a high degree

of accuracy. The Associated Perturbed Anisotropic Chain Theory (APACT) [112, 113] – an

extension of the PACT EOS for associating fluids – was subsequently used by Economou

et al. [114] to model electrolytes solutions at conditions of elevated temperature and pressure,

at which salts exist in solution predominantly as ion pairs rather than free solvated ions. At

these thermodynamic conditions, Economou et al. [114] proposed that the ion pairs may

be modelled as molecular species which posses a strong dipole moment and interact with

solvent molecules through dipole–dipole and association interactions. Using this treatment,

the properties of aqueous alkali metal halide solutions were predicted effectively in the range

of 423–773 K, including vapour-liquid and solid-liquid-vapour equilibria.

The SAFT approach has been more commonly used as a basis for developing electrolyte

models than other equation of state approaches. A contributor to its popularity is the existence

of numerous variants of SAFT-based equations of state, which provide equally many avenues

for proposing electrolytes models. Some dominant strains of work pertaining to electrolyte-

SAFT models are discussed in the next section.

2.6 Extensions of SAFT for electrolyte mixtures

A substantial body of work on thermodynamic modelling of electrolytes with equations of

state has been performed with variants of the Statistical Associating Fluid Theory. As will

be discussed in Chapter 3, SAFT approaches provide a sound physical basis for modelling

molecular interactions in fluid mixtures. Solvent components in particular are typically

modelled well by SAFT approaches due to the ability to explicitly take into account polar
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interactions and hydrogen bonding. An accurate representation of the solvent medium

therefore provides a good foundation for modelling electrolyte solution mixtures.

Besides the various versions of SAFT which have been used as the base EOS, the various

studies differ in the implementation of free energy perturbations relevant to electrolytes, i.e.

the theories accounting for Coulombic forces, dipole-induced electrostatic interactions, and

ion solvation effects. Firstly, the Helmholtz free energy contribution arising from Coulombic

interactions between ionic species has been incorporated using either the Debye-Hückel

theory or the MSA, in either the primitive or non-primitive model. Of these, Debye-Hückel

theory has been a more common choice, although a critical assessment of the two theories

by Maribo-Mogensen et al. [54] has suggested that no significant advantage of one over the

other can be identified in practice. The same conclusion was reached by Gil-Villegas et al.

[56], who compared the MSA and Debye-Hückel theory within a SAFT implementation.

Choices as to the treatment of ion solvation have further divided electrolyte-SAFT

approaches. In primitive models, the Born contribution to the Helmholtz free energy is

sometimes included to account for solvation effects. In solvent-explicit approaches, however,

free energy changes due to solvation can be effected through polar ion–solvent interactions.

A noteworthy simplification adopted in many SAFT modelling approaches for electrolytes

is the omission of dispersion interactions between ions, aiming to reflect the prevalence

of Coulombic forces affecting the ion–ion interactions. Furthermore, each approach using

a primitive modelling framework tends to implement a distinct way of determining the

dielectric constant of the solvent medium, leading to variation in the validity of the implicit

model.

Some of the key implementations of SAFT-based equations of state for electrolytes are

discussed below, focusing first on primitive and then on non-primitive implementations. The

breadth of model variations is compounded by the choices made with regard to parameter

estimation, such as whether to apply a salt-specific or ion-specific strategy, and which types of

experimental data to employ. Common choices of experimental data used for parameterising
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models are the solution density, vapour pressure, osmotic coefficient, and mean ionic activity

coefficient. The MIAC in particular gives the closest indication of the thermodynamic

behaviour of the solvated ionic species (cf. Equation 2.22). Of the EOS approaches described

below, those which quantifiably report the model performance with respect to the MIAC

are summarised in Table 2.1. The percentage average absolute deviation (%AAD) for this

property can vary substantially, even among electrolyte solutions considered within a single

study. Table 2.1 reports the average %AAD value for the particular solutions included in a

given study, hence giving an indication of the performance achievable with these approaches.

Table 2.1 Reported performance of some SAFT-based EOS models with respect to the
description of the MIAC for single-salt aqueous strong electrolyte solutions. All models
included here have used data for the MIAC to optimise model parameters. The %AAD values
correspond to the average value for the particular solutions studied in each work.

EOS Ref. Number of solutions MIAC %AAD

SAFT [31] 15 0.44

SAFT2 [115] 24 0.78

ePC-SAFT [32] 106 9.17

PC-SAFT [116] 16 1.28

PPC-SAFT [117] 19 2.85

SAFT-VRE SW [61] 15 4.07

SAFT2 [118] 8 2.14

2.6.1 Primitive electrolyte-SAFT models

The SAFT-VR family of equations has had several extensions to electrolyte systems, primarily

through application of the MSA theory. Galindo et al. [55] presented the SAFT-VRE EOS,

by coupling the MSA-RPM with the SAFT-VR EOS of Gil-Villegas and co-workers [119,

120], which assumes a square-well (SW) potential form to represent dispersive interactions.
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Dispersion forces between only ion–solvent and solvent–solvent pairs were accounted for,

while those between ions were neglected. Using ion-specific models, SAFT-VRE SW was

used to study bulk phase properties of single-salt solutions of strong electrolytes, including

liquid phase densities and vapour pressures, although more sensitive properties such as

the MIAC were not assessed. Gil-Villegas et al. [56] later used the SAFT-VRE SW EOS

to evaluate the application of associative interactions between ions and the solvent as a

possible route to incorporate ion solvation effects, and also studied ion-pairing by means

of association interactions. Finally, Patel et al. [121] applied the SAFT-VRE SW EOS to

describe the salting out of n-alkanes in aqueous solutions of strong electrolytes up to high

temperature and pressures, achieving reasonable predictions.

A later version of SAFT-VRE SW presented by Schreckenberg et al. [61] used the

MSA-PM and considered the dispersion interactions between ions explicitly alongside the

ion–solvent and solvent–solvent interactions. This SAFT-VRE SW implementation also

included a Born energy contribution to the Helmholtz free energy, thus describing – albeit

implicitly – the ion solvation effects which are otherwise not considered in the primitive

MSA. In parallel to this, Schreckenberg et al. proposed a temperature- and density-dependent

model for the relative static permittivity of the solvent. Following these developments, Dufal

[122] proposed the SAFT-VRE Mie EOS by extending the SAFT-VR Mie EOS with the

incorporation of the MSA-PM and Born energy contributions while also implementing the

aforementioned static permittivity model. Both Schreckenberg et al. [61] and Dufal [122]

applied, respectively, the SAFT-VRE SW and SAFT-VRE Mie EOS to strong electrolytes,

modelling multi-salt and multi-solvent (water + alcohol) brines up to high temperatures and

concentrations.

Behzadi et al. [123, 124] paired the unrestricted MSA-PM with a SAFT-VR EOS em-

ploying the Yukawa intermolecular potential. Single- and multi-salt solutions of strong

electrolytes in aqueous and alcohol solvents were examined using three separate modelling

strategies: ion-specific, cation-specific, and salt-specific. Of these strategies, the salt-specific

approach was found to yield models which perform better at higher salt concentrations.
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This is a reasonable outcome considering that the parameterisation of salt-specific models

intrinsically incorporates the effects on macroscopic properties brought about by increased

occurrence of ion-pairing at higher concentrations.

In a separate line of work, Tan et al. [125, 126] presented the SAFT1-RPM and SAFT2

equations of state for electrolytes, based on the square-well SAFT1 EOS of Adidharma

and Radosz [127]. Both SAFT1-RPM and SAFT2 apply the restricted primitive MSA

and incorporate a temperature-dependent model for the relative static permittivity. These

approaches model ions as hard spheres, neglecting ion–ion dispersion interactions. A salt-

specific ionic size parameter was included as part of implementing the RPM, and the ion

model parameters were assigned a temperature dependence; both these factors contributed

to very good model performance within the temperature range studied. Though Tan and

co-workers [125, 126] considered single-salt solutions, SAFT1-RPM and SAFT2 were later

applied to aqueous multi-salt brines by Ji et al. [115, 128]. Due to the salt-specific modelling

strategy, an additional adjustable parameter was required to characterise pairs of salts. In

subsequent applications of SAFT2 by Ji and Adidharma [129, 130, 131], an ion-specific

modelling strategy was adopted, and it was found that the inclusion of ion–ion dispersion

interactions were needed in order to extend the application of the EOS to high temperatures

and pressures. This may be perceived as an indication that ion pairing is significant at such

conditions. More recently, Jiang et al. [118] paired the SAFT2 EOS with the KMSA theory

[132], which includes a density-dependent correction factor to the MSA-PM. Furthermore,

the size of the anions was modelled as temperature-dependent in this work, which contributes

to an improved description of the fluid density across a wider range of thermodynamic

conditions. As a result, a fair reproduction of the thermodynamic properties of mixed strong

electrolytes was achieved in the temperatures range of 298–473 K.

Extensive work on electrolyte modelling based on the PC-SAFT EOS has also been pre-

sented, typically coupled with the Debye-Hückel theory for incorporating ion–ion Coulombic

interactions. Cameretti et al. [133] first proposed the ePC-SAFT EOS by extending PC-SAFT

with the electrostatic contribution to the free energy obtained through the Debye-Hückel
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theory. The temperature and pressure dependence of the dielectric constant of the solvent was

neglected in this work, as were the dispersion forces between ions. A salt-specific parameter-

isation strategy was used, achieving a good description of bulk phase properties at moderate

conditions of temperature and concentration. However, Held et al. [32] later showed that

the approach led to unsatisfactory predictions for the MIAC, prompting the development

of new models for the ePC-SAFT EOS using an ion-specific strategy [134]. This approach,

together with the introduction of a temperature dependence to the size parameter of the

solvent species, resulted in a better description of the MIAC. The models of Cameretti et al.

[133] were also applied to mixed-solvent (water + alcohol) salt solutions by Held et al. [135],

with the inclusion of a temperature- and composition-dependent model for the dielectric

constant.

Unlike the ePC-SAFT approaches mentioned so far, other work for electrolytes within

the PC-SAFT framework have included a consideration of ion solvation effects to some

extent. Lee and Kim [116] modelled aqueous strong electrolytes with the PC-SAFT EOS

by incorporating the MSA-PM and the Born energy contribution to the free energy, as well

as including association interactions between all ions and the solvent. Rozmus et al. [117]

followed the same approach for extending the PPC-SAFT EOS of Nguyen-Huynh et al.

[136], and further included a free-energy contribution due to polar interactions. Although

dispersion between ions was omitted in the ePPC-SAFT EOS, a good representation of

multi-salt solutions was achieved in both of these approaches.

A number of studies have modelled aqueous solutions of weak electrolytes by taking into

consideration partial dissociation equilibria and formation of ion pairs. Using the ePC-SAFT

EOS [32], Held and Sadowski [137] considered incompletely dissociated salts by treating

the ion pairs in solution as distinct species with a net charge, and the undissociated salts

as neutral species. The equilibrium constants Kip governing the ion pairing reactions were

estimated by regression to experimental data of the mean ionic activity coefficients; vastly

varying degrees of agreement with the experimental values of Kip were attained for each ion

pair species. In subsequent work with ePC-SAFT, Reschke et al. [138] adopted an alternative
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methodology whereby experimentally-determined dissociation equilibrium constants were

used to model aqueous sulphuric and phosphoric acids. By using the anion models obtained

in this manner as constituents of alkali phosphate or alkali sulphate salts – for which the

cation models were taken from previous work [32] – an improved description of the salt’s

properties was attained compared to using the anion models of Held and Sadowski [137].

Thermodynamic modelling of non-spherical ionic species appears only sparingly in the

literature, and the few studies relevant to such systems have been presented in recent years

within primitive modelling frameworks. One such study follows from the line of work

discussed above for weak electrolyte modelling using the ePC-SAFT EOS; it involves the

modelling of aqueous solubilities of partially ionisable pharmaceutical compounds. Cassens

et al. [28] modelled pharmaceutical bases as homonuclear chain molecules, using the same

model parameters for the ionised molecule as for the neutral molecule, with the exception that

a single segment on the ionised molecule was assigned a charge. Electrostatic interactions

were assumed to apply to the individual charged segments of the ionised molecules. The

remaining two studies that have considered non-spherical ions have done so within the context

of aqueous ionic liquids: Shahriari et al. [139] employed a homosegmented PC-SAFT EOS

coupled with the MSA-PM, while Jiang and Adidharma [140] used a heterosegmented (group

contribution) SAFT approach in combination with the MSA-RPM theory. In both of these

approaches, the charge of any non-spherical ion was assigned to a specified segment, and the

electrostatic interactions were assumed to occur among charged segments.

2.6.2 Non-primitive electrolyte-SAFT models

In the SAFT-based models for electrolytes discussed so far, the effect of the dipolar nature of

the solvent is represented implicitly via the dielectric constant of the medium, meaning that

any charge–dipole interactions are neglected. A more formal approach is to treat these dipolar

interactions explicitly, thus giving a more realistic physical representation of the system.

This can be achieved with a solvent-explicit (i.e. non-primitive) theory for electrostatic



76 Theory of electrolyte solutions and their thermodynamic modelling

interactions, commonly pursued with an equation of state including an explicit treatment of

polar forces.

Liu et al. [31] first combined SAFT with the non-primitive semi-restricted MSA, with

a parameter scheme including both salt-specific and ion-specific parameters. The resultant

EOS considers contributions to the free energy arising from ion–ion, dipole–dipole, and

dipole–ion interactions, in addition to ion–solvent association, thereby achieving a compre-

hensive description of electrolyte systems. A non-primitive electrolyte-SAFT model was

also presented by Zhao et al. [141] based on the previously developed SAFT-VR+D EOS for

dipolar fluids [142]. In the electrolyte extension of this theory (SAFT-VR+DE), electrostatic

interactions are incorporated by the non-primitive unrestricted MSA and as a result the fluid

is described by Coulombic ion–ion interactions, dipole–ion interactions, and dipole–dipole

interactions. A highly accurate representation of electrolyte mixture thermodynamics was

achieved by the SAFT-VR+DE EOS, as was verified by comparison to molecular simulation

studies of systems assigned equivalent ionic parameters. The SAFT-VR+DE EOS was later

applied by Das et al. [143] to model concentrated solutions of strong electrolytes up to

20 mol kg−1; in order to achieve a reasonable description of the thermodynamic properties

at high molality, the models included ion–solvent association interactions to facilitate ion

solvation, and ion–ion association to represent ion pairing.

Within the PC-SAFT framework, a non-primitive modelling approach for electrolytes

has been proposed by Herzog et al. [144] by pairing the PC-SAFT EOS with the semi-

restricted non-primitive MSA. Dispersion between ions was neglected (as is typical for

ePC-SAFT models) and a salt-specific modelling scheme was adopted, including cation–

water association modelled on a salt-specific basis. Using this approach, close agreement with

experimental data was achieved for properties of strong inorganic electrolytes at moderate

temperatures up to the solubility limit of each salt.
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2.7 Summary

The review conducted here covering the thermodynamic modelling tools for mixtures contain-

ing electrolytes has aimed to illustrate the great volume of work performed in this area. Over

the years, much effort has been exerted in choosing between the Debye-Hückel and MSA

theories; primitive and non-primitive modelling approaches; whether or not to explicitly

include a distinct treatment for ion solvation; and whether to adopt a parameterisation scheme

that is ion- or salt-specific. In spite of these many considerations, the major difference

between the approaches has been the choice of accompanying model for describing the

non-electrostatic aspects of the fluid thermodynamics; this choice has followed the evolution

of thermodynamic modelling tools, and in recent years it has gravitated towards increasingly

sophisticated equations of state such as the SAFT approach.

A prominent aspect of electrolyte thermodynamic modelling has been the almost exclusive

focus on studying inorganic electrolytes. This is unsurprising considering that both the Debye-

Hückel and MSA theories adopt a spherical geometry for the ionic species – an assumption

which is most closely matched by a real system when ions are monatomic or oligoatomic. The

emergence of SAFT-based approaches has provided an attractive avenue for modelling larger

organic ions and this has been pursued in a small number of publications. However, none

of these have provided insights regarding the methodology and mathematical formulation

for doing so. This particular knowledge gap is addressed in the following chapter, by

reformulating the MSA and Born theories such that they may be used compatibly with the

SAFT-γ Mie EOS.





Chapter 3

Modelling electrolytes with the SAFT

equation of state

3.1 The Statistical Associating Fluid Theory

The Statistical Associating Fluid Theory (SAFT) has its origins in the work of Wertheim

[145–150], who presented a thermodynamic perturbation theory (TPT) based on statistical

mechanics for calculating the free energy of associating fluids, given a hard-sphere reference

fluid with known thermodynamic properties. Employing first-order TPT (TPT1), Jackson

et al. [151] proposed a theory for modelling phase equilibria for hard-core spherical molecules

with multiple bonding sites. The theory was extended to chain molecules by Chapman et al.

[152], leading to the development of the SAFT equation of state for associating fluids [2, 3].

In the SAFT approach, molecules are modelled as chains of bonded spherical monomers,

interacting through a defined intermolecular potential u(r) describing the dispersion interac-

tions. Strong directional interactions, such as hydrogen bonding, are mediated via association

sites on the interacting chains. The SAFT approach expresses the total Helmholtz free energy
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A of a system at specified temperature, volume, and composition (T,V,N) as a sum of the

ideal and residual free energy contributions:

A(T,V,N) = Aideal(T,V,N)+ Ares(T,V,N) (3.1)

= Aideal(T,V,N)+ Amonomer(T,V,N)+ Achain(T,V,N)+ Aassoc(T,V,N) .

Aideal is the contribution to the Helmholtz free energy arising from the ideal-gas system;

Amonomer is the free energy arising due to the interactions between the spherical monomer

segments; Achain accounts for the free energy contributed by the formation of chains through

bonding of the monomer segments; and finally Aassoc is the free energy change due to the

formation of complexes via short-range association interactions. Knowledge of the Helmholtz

free energy of a mixture at specified T , V , and N allows computation of the thermodynamic

properties of the system through standard thermodynamic relations.

The perturbation approach intrinsic to the SAFT equation of state allows a detailed

yet versatile representation of physical systems, making it possible to adapt the theoretical

formulation to specific applications by adapting the contributing terms in Equation 3.1.

Certain Helmholtz free energy terms may be neglected in systems where they do not apply

and additional terms may be included to account for certain interactions explicitly, such

as in the case of mixtures containing electrolytes. As a result of this versatility, as well

as the ability to treat each term independently, there have been numerous adaptations of

the SAFT approach presented in the literature. The most fundamental variation has been

the choice of reference fluid, leading to two dominant strains of the EOS: the original

SAFT formulation [2, 3] employs a hard-sphere reference fluid, whereas a subsequent

PC-SAFT formulation by Gross and Sadowski [21, 22] employs a hard-chain reference

fluid with dispersion forces acting between the chains rather than the monomer segments.

A second prominent difference between versions of the SAFT approach is the form of

intermolecular potential representing the intermolecular dispersion forces. Intermolecular

potentials implemented in SAFT-type models have included, for example, the square-well,

Sutherland [153], Yukawa [154], Lennard-Jones [155], and Mie [156] potentials. The from
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of intermolecular potential has a profound effect on the performance of the EOS, as it not

only influences the monomer term but also the chain and association terms which must be

computed in accordance with the reference fluid.

Numerous variations of SAFT-type equations of state have been presented to accom-

modate the breadth of physical systems through appropriate reformulation of the EOS

and suitably corresponding model development. Some prominent families include SAFT-

HR [157], soft-SAFT [158], SAFT1 [127], SAFT-VR [119, 120], and PC-SAFT [22], many

of which have seen progressive adaptations to contributing Helmholtz free energy terms of

the EOS. The particular family of SAFT equations of state relevant to the present work is

that based on the SAFT-VR approach, as it has acted as the predecessor for the SAFT-γ Mie

approach employed here.

In the SAFT-VR EOS presented by by Gil-Villegas and co-workers [119, 120], molecules

are modelled as chains of tangentially bonded hard-core segments interacting through an

attractive potential of variable range (VR). More specifically, square-well (SW), Sutherland,

and Yukawa potentials of variable range were implemented [119]. Lafitte et al. [159] adapted

the SAFT-VR EOS to allow soft-sphere monomer segments by applying a Mie intermolecular

potential, which allows both attractive and repulsive variable-range interactions. The resultant

SAFT-VR Mie EOS was shown to improve predictions of second-derivative thermophysical

properties of fluids and the description in the near-critical region when compared to its

SAFT-VR predecessor. The SAFT-VR Mie EOS has been shown to be widely applicable to

molecular fluids characterized by a broad range of interactions, from soft potentials to very

repulsive and short-ranged potentials, providing global representation of the thermodynamic

properties and fluid-phase equilibria of pure fluids and mixtures [160].

A subset of SAFT-type approaches have been reformulated within a group-contribution

framework; one of these is SAFT-VR Mie, thereby giving rise to the SAFT-γ Mie EOS.

Before proceeding to a more extensive description of the SAFT-γ Mie EOS in Section 3.2,

an overview will be given of SAFT-based group-contribution efforts.
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3.1.1 Group-contribution methodologies within the SAFT framework

The representation of molecules as bonded monomer segments makes the SAFT approach

inherently compatible with group-contribution (GC) formulations. Group-contribution meth-

ods are a class of thermodynamic methodologies in which the properties of compounds are

approximated by considering contributions from the chemically distinct functional groups

that compose the compounds. The parameters which characterise each functional group

are considered to be transferable between different molecules, hence making it possible to

describe the physical properties of a substance in a purely predictive manner from knowledge

of its constituent functional groups. The formulation of SAFT with respect to monomer

segments means that implementing a group-contribution framework within SAFT arises by

regarding the monomers as distinct functional groups.

Group-contribution implementations of the SAFT approach have been proposed employ-

ing both a homonuclear model, in which all functional-group monomers are approximated as

having the same size, and a heteronuclear model, in which the size is distinct for each type of

functional group monomer. The greater versatility of heteronuclear approaches is especially

desirable as it permits a more detailed representation of the system and consequently affords

greater predictive capability to the thermodynamic model. Homonuclear group-contribution

SAFT models have been developed by Tamouza et al. [161, 162] within the framework of

the SAFT-VR EOS, while Vijande et al. [163] and Tihic et al. [164] developed homonuclear

group-contribution implementations of the PC-SAFT EOS. Heteronuclear models have been

proposed with numerous versions of SAFT as the base EOS, including SAFT-HR [165],

SAFT1 [127], soft-SAFT [158], PC-SAFT [166, 167], and SAFT-VR [168, 169].

As for non-GC SAFT models, the aforementioned heteronuclear and homonuclear group-

contribution models represent molecules as chains of tangentially bonded monomer segments.

A significant step in GC SAFT models came with the novel approach proposed by Lym-

periadis and co-workers [6, 7], whereby chain molecules are composed of fused segments.
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This constitutes the foundation of the SAFT-γ equation of state, which was developed

as a heteronuclear group contribution formulation of the SAFT-VR SW EOS. Since the

SAFT-γ approach considers the degree of overlap between a molecule’s functional groups,

the resultant fused heteronuclear models represent the structural topology of molecules

more accurately. Initially, Lymperiadis et al. implemented a square-well intermolecular

potential to the SAFT-γ EOS, which has been extensively applied to model numerous fluid

systems [170–173].

Following the successful application of the SAFT-γ SW EOS, Papaioannou et al. [8]

reformulated the SAFT-VR Mie EOS of Lafitte et al. [174] in a similar group-contribution

framework, thereby introducing the SAFT-γ Mie EOS. Within SAFT-γ Mie, monomer

segments are represented as soft heteronuclear spheres interacting through a Mie potential of

variable repulsive and attractive range, and molecules are modelled as chains of overlapping

monomer segments. As a result, the SAFT-γ Mie EOS combines favourably the variability

of the Mie potential with the predictive characteristics of the group-contribution approach to

give higher accuracy and confidence in property predictions. A number of publications have

demonstrated the extensive applicability of the SAFT-γ Mie EOS, for both pure fluids and

multicomponent mixtures [9, 10, 175, 176].

3.2 SAFT-γ Mie

In the SAFT-γ Mie group-contribution equation of state, molecules are represented as

heteronuclear chains of fused spherical segments. A united-atom approach is adopted,

whereby a certain chemical functional group k is modelled as a spherical segment or an

aggregation of ν∗k identical fused segments, where each segment comprising group k is

represented as a soft sphere of diameter σk . The shape factor Sk of a segment characterises

the degree of overlap between fused segments (0 < Sk ≤ 1), and therefore determines the

extent to which a segment contributes to the properties of the fluid. More precisely, Sk
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describes the proportion to which a segment contributes to the free energy the fluid, hence

making the united-atom method compatible with Wertheim’s first-order thermodynamic

perturbation theory for chains of tangentially bonded segments.

Two segments k and l interact through a Mie potential [156] of variable attractive and

repulsive range:

uMie
kl = Cklε

Mie
kl

[(
σkl

rkl

)λr,kl

−
(
σkl

rkl

)λa,kl
]
, (3.2)

where rkl is the distance between the centres of the two segments; σkl is defined as the

separation at which uMie
kl = 0; εkl is the depth of the potential well; and λa,kl and λr,kl are the

attractive and repulsive exponents of the inter-segment interaction. When considering the

potential between two similar segments, the σkl parameter corresponds to the diameter of

the segment. The prefactor Ckl is a function of the Mie potential exponents:

Ckl =
λr,kl

λr,kl −λa,kl

(
λr,kl

λa,kl

) λa,kl
λr,kl−λa,kl

(3.3)

Short-range directional attractive forces (such as hydrogen bonding) between certain types

of functional groups are treated within SAFT-γ Mie by assigning association sites on the

appropriate segments. Associating groups are characterised by the number of different site

types NST,k they possess, and the number of sites of each type, nk,a,nk,b, ...,nk,NST,k . The

association interaction between a site of type a on segment k and a site of type b on segment

l is modelled via a square-well potential:

uHB
ab,kl =


−εHB

ab,kl if rab,kl ≤ rc
ab,kl

0 if rab,kl > rc
ab,kl

(3.4)

where rab,kl is the distance between the centres of sites a and b, rc
ab,kl is the cutoff range of

the interaction, and −εHB
ab,kl is the association energy. The cutoff distance rc

ab,kl is equivalently
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represented in terms of a bonding volume KHB
ab,kl . Association sites are positioned at a distance

rd
aa,kk from the centre of the segment; both rd

aa,kk and rc
aa,kk are fixed to 0.4σkk [177].

The form of the SAFT-γ Mie equation of state follows that given by Equation 3.1. The

expressions corresponding to each term of the EOS representing a certain contribution to

the Helmholtz free energy are briefly summarised below. The ideal, monomer, and chain

contribution terms are obtained the work of Papaioannou et al. [8], which is based on the

preceding work of Lafitte et al. [174]. The association contribution term is implemented

according to Dufal et al. [177]. The Helmholtz free energy A(T,V,N) is written for a fluid

mixture of N molecules that comprises a total number of components NC, i.e. N =
∑NC

i Ni. A

total number of functional groups NG form the molecules in the fluid, and a total of number

of association site types NST are possessed by these groups. In the expressions that follow,

the state variables (T,V,N) are omitted for conciseness.

3.2.1 Ideal gas term

The Helmholtz free energy Aideal corresponding to an ideal gas mixture of N non-interacting

molecules represented as point particles is given by [178]

Aideal

NkBT
=

(
NC∑
i=1

xi ln
(
ρiΛ

3
i

))
−1 , (3.5)

where xi = Ni/N is the mole fraction of molecules of type i, ρi = Ni/V is the number density

of component i, and Ni is the number of molecules of component i in the mixture. The thermal

de Broglie wavelength Λi implicitly incorporates the effects of translational, rotational, and

vibrational contributions to the kinetic energy of the ideal gas mixture.
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3.2.2 Monomer term

The monomer term describes the contribution to the free energy of the mixture arising from

dispersion forces between spherical monomers characterised by a Mie interaction potential.

It is obtained via a Barker-Henderson [179–181] high-temperature perturbation expansion

up to third order, following Lafitte et al. [174]:

Amonomer

NkBT
=

AHS

NkBT
+

A1
NkBT

+
A2

NkBT
+

A3
NkBT

. (3.6)

The repulsive term AHS represents the free energy of a hard-sphere reference system, obtained

as:

AHS

NkBT
=

(
NC∑
i=1

xi

NG∑
k=1

νk,iν
∗
k Sk

)
aHS , (3.7)

where νk,i is the number of groups of type k in a molecule of type i, and aHS is the dimen-

sionless hard-sphere free energy per segment, obtained using the expression of Boublík [182]

and Mansoori [183]:

aHS =
6
πρs

[(
ζ3

2

ζ2
3
− ζ0

)
ln (1− ζ3)+

3ζ1ζ2
(1− ζ3)

+
ζ3

2

ζ3 (1− ζ3)2

]
. (3.8)

Here, ρs = Ns/V is the segment number density, which is related to the molecular number

density ρ = N/V through

ρs = ρ

(
NC∑
i=1

xi

NG∑
k=1

νk,iν
∗
k Sk

)
; (3.9)

and ζm are the moments of the number density of monomeric segments:

ζm =
πρs

6

NG∑
k=1

xs,k dm
kk m = 0,1,2,3 . (3.10)
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which depend on the Barker-Henderson hard-sphere effective diameter dkk :

dkk =

∫ σkk

0

[
1− exp

(
−

uMie
kk (rkk)

kBT

)]
dr , (3.11)

and the fraction xs,k of segments of type k in the mixture:

xs,k =

∑NC
i=1 xiνk,iν

∗
k Sk∑NC

i=1 xi
∑NG

l=1 νl, jν
∗
l Sl

. (3.12)

The remaining terms of the Barker-Henderson expansion for Amonomer are similarly obtained

by summing over the free-energy contributions per segment, with a corresponding power of

inverse temperature:

Aq

NkBT
=

(
1

kBT

)q
(

NC∑
i=1

xi

NG∑
k=1

νk,iν
∗
k Sk

)
aq q = 1,2,3 . (3.13)

The free-energy contribution per segment aq for each term of order q is obtained by summing

the pairwise interactions aq,kl between groups k and l over all pairs of functional groups

present in the system:

aq =

NG∑
k=1

NG∑
l=1

xs,k xs,laq,kl q = 1,2,3 . (3.14)

The precise expressions for aq,kl are fairly involved and are therefore omitted for the sake of

brevity; these are detailed in the original publication of Papaioannou et al. [8] for the SAFT-γ

Mie EOS.

3.2.3 Chain term

The Achain term contributes the change in Helmhotz free energy due to the formation of

chain molecules through bonding of the spherical group segments. The theory for chain

formation corresponds to association between segments in the limit of infinite association
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strength at contact [149, 152], leading to tangentially bonded segments. In order to align the

chain theory’s description of tangential bonding at regular intervals with the fused group-

contribution formulation of the SAFT-γ Mie EOS, average molecular parameters are defined

for the segments of each molecular component i. These are evaluated according to the

fraction zk,i of each group k in a given molecule i:

zk,i =
νk,iν

∗
k Sk∑NG

l=1 νl,iν
∗
l Sl

. (3.15)

The average molecular segment diameter σ̄ii and the reference hard-sphere effective diameter

d̄ii are defined as follows:

σ̄3
ii =

NG∑
k=1

NG∑
l=1

zk,izl,iσ
3
kl ; (3.16)

d̄3
ii =

NG∑
k=1

NG∑
l=1

zk,izl,id3
kl . (3.17)

Similarly, the average dispersion energy ε̄ii and the average attractive and repulsive exponents

of the Mie potential λ̄y,ii are obtained through:

ε̄ii =

NG∑
k=1

NG∑
l=1

zk,izl,iεkl ; (3.18)

λ̄y,ii =

NG∑
k=1

NG∑
l=1

zk,izl,iλy,kl y = a,r . (3.19)

The contribution to the free energy of the system due to chain formation is therefore given by

Achain

NkBT
= −

NC∑
i=1

xi

(
NG∑
k=1

νk,iν
∗
k Sk −1

)
lngMie

ii (σ̄ii; ζx) , (3.20)
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where the radial distribution function gMie
ii (σ̄ii; ζx) corresponding to the monomeric Mie

system is evaluated at a distance σ̄ii in a hypothetical fluid with a packing fraction of:

ζx =
πρs

6

NG∑
k=1

NG∑
l=1

xs,k xs,l d3
k,l . (3.21)

The detailed expressions related to evaluating the radial distribution function of the Mie fluid

are given the original SAFT-γ Mie publication by Papaioannou et al. [8]; again, for reasons

of conciseness, these are omitted from this summary.

3.2.4 Association term

The contribution to the system’s Helmholtz free energy arising due to association interactions

between molecules is obtained following the TPT1 theory in the following manner:

Aassoc

NkBT
=

NC∑
i=1

xi

NG∑
k=1

νk,i

NST∑
a=1

nk,a

(
ln Xi,k,a +

1− Xi,k,a

2

)
, (3.22)

where Xi,k,a is the fraction of molecules i comprising an associating group k which is not

bonded at site type a. This is given by

Xi,k,a =

1+ ρ
NC∑
j=1

x j

NG∑
l=1

νl, j

NST,l∑
b=1

nl,bX j,l,b∆i j,kl,ab .


−1

(3.23)

∆i j,kl,ab is the integrated association strength between site a positioned on functional group k

within molecule i, and site b on functional group l in molecule j. It is expressed as:

∆i j,kl,ab = Fkl,abKkl,abIi j,kl,ab (3.24)
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where Fkl,ab is the Mayer function:

Fkl,ab = exp

(
εHB

kl,ab

kBT

)
−1 ; (3.25)

Kkl,ab is an empirical bonding-volume parameter; and Ii j,kl,ab is the association integral

expressed as a temperature–density polynomial correlation for a Lennard-Jones monomer:

Ii j,kl,ab =

10∑
p=0

10−p∑
q=0

cpq

(
ρσ3

x

) p
(

kBT
ε̄i j

)q

. (3.26)

for which the set of coefficients cpq (each corresponding to a pair of indexes p and q) are given

in the work Dufal et al. [177]. The remaining averaged segment and molecular parameters of

the polynomial are defined as follows:

σ3
x =

NG∑
k=1

NG∑
l=1

xs,k xs,lσ
3
k,l ; (3.27)

ε̄i j =

√
σ̄3

ii σ̄
3
j j

σ̄3
i j

√
ε̄ii ε̄ j j ; (3.28)

σ̄i j =
σ̄iiσ̄j j

2
. (3.29)

3.2.5 Combining rules for mixtures

The model parameters for a given functional group are typically determined through regres-

sion to bulk-phase experimental data of substances belonging to a particular chemical family

in which the functional group appears. Model parameters characterising the interaction
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between two unlike functional groups k and l can also be obtained in the same manner using

relevant mixture data; however, this is not always possible and it is sometimes necessary

to estimate the magnitude of these cross-interaction parameters by applying appropriate

combining rules. Of course, the interactions between a given pair of unlike groups can only

be obtained through combining rules provided that the parameters of the individual groups

are already known.

In the SAFT-γ Mie EOS, the unlike segment diameter is obtained as a simple arithmetic

(Lorentz) mean [170]:

σkl =
σkk +σll

2
; (3.30)

likewise, the unlike reference hard-sphere diameter is set as

dkl =
dkk + dll

2
; (3.31)

The unlike dispersion energy is obtained using an augmented geometric (Berthelot-like)

mean which accounts for the size asymmetry of the groups [170]:

εkl =

√
σ3

kkσ
3
ll

σ3
kl

√
εkkεll . (3.32)

The unlike attractive and repulsive exponents of the Mie potential are estimated as follows [8,

174]:

λy,kl = 3+
√
(λy,kk −3)(λy,ll −3), y = a, r . (3.33)

Combining rules may also be used to determine the parameters of the association interaction

between an unlike pair of groups associating via site a on group k and site b on group l. A
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simple geometric combining rule is used for the unlike association energy [9, 177]:

εHB
kl,ab =

√
εHB

kk,aaε
HB
ll,bb, (3.34)

and the unlike bonding volume is obtained by an arithmetic mean rule averaging the volumes

of the like-interaction parameters [9, 177]:

KHB
kl,ab =

©«
3
√

KHB
kk,aa +

3
√

KHB
ll,bb

2
ª®®¬

3

. (3.35)

The application of these combining rules is especially useful when it is not practical or

possible to optimise the unlike interaction parameters due to a paucity of mixture data. The

unlike segment diameter is almost invariably taken as the value given by Equation 3.30, even

when data are abundant. By contrast, Equation 3.32 is often used to obtain an initial estimate

of the unlike dispersion energy in order to guide optimisation of this parameter. For non-

associating groups, it is usually possible to match the thermodynamic behaviour of the fluid

by optimising only εkl ; however, when groups k and l comprise distinctly different chemical

compositions it is often found that the Mie potential exponents also require optimisation. For

associating groups, the estimates given by Equations 3.34 and 3.35 also often require further

optimisation; in these cases, an understanding of the type of physical interaction mediated by

a given unlike association interaction often acts as guidance for narrowing the optimisation

landscape.

3.3 Helmholtz free energy terms for electrostatic

interactions

The implementation of electrostatic contributions to the SAFT-γ Mie EOS is performed by

incorporating additional contributions to the Helmholtz free energy of the system, given by
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the MSA and Born theories. Before proceeding to the proposed adaptations of these theories

to comply with a group-contribution formulation in Section 3.6, the regular forms of the

MSA theory and Born theories are presented below.

3.3.1 Mean spherical approximation theory

The MSA approach for an implicit-solvent (i.e. primitive) model for electrolyte solutions

gives the Coulombic contribution to the Helmholtz free energy of the fluid. In the MSA

theory, an ion i is represented as a hard sphere of diameter σi, with a central point charge

qi = zie. Coulomb’s law gives the pair potential between two point charges qi and q j :

uCoulomb
i j (r) =

ziz je2

4πϵ0Dri j
, (3.36)

where ri j is the separation distance, z is the valency of the ion, ϵ0 is the permittivity of

vacuum, and D is the dielectric constant (relative static permittivity) of the medium.

The primitive mean spherical model for asymmetric ions was presented by Blum [47] and

Blum and Hoye [48] by solving the Ornstein-Zernike [184] equation with the mean spherical

approximation closure, giving an analytical solution for the radial distribution function for

a fluid of charged hard spheres interacting through a Coulombic potential in a dielectric

continuum. The Ornstein-Zernike equation is written for a mixture as [185]

gi j(r)−1 = ci j(r)+
∑
y

ρy

∫
(g jy (|r− r′|)ciy(r′)dr′ , (3.37)

where ci j(r) is the direct correlation function, the summation is over all species y, and the

integral is over all positions r′. The mean spherical approximation closure of the Ornstein-
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Zernike equation for the charged-hard-sphere system is


gi j(r) = 0 if ri j ≤ σi j

ci j(r) = −
1

kBT
ziz je2

4πϵ0Dri j
if ri j > σi j

(3.38)

The internal energy of the fluid given by the unrestricted MSA-PM model is expressed as

[47, 48]

UMSA = − e2V
(4πϵ0)D

[
Γ

V

nion∑
ions,i=1

(
Niz2

i

1+Γσi

)
+
π

2∆
ΩP2

n

]
(3.39)

= − e2V
(4πϵ0)D

[
Γρ

nion∑
ions,i=1

(
xiz2

i

1+Γσi

)
+
π

2∆
ΩP2

n

]
,

and the corresponding Helmholtz free energy of the system is given by

AMSA =UMSA+
Γ3kBTV

3π
. (3.40)

The shielding parameter Γ characterises the screening length of the electrostatic forces, i.e.

the range over which these forces act:

Γ
2 =

πe2

(4πϵ0)DkBTV

nion∑
ions,i=1

NiQ2
i . (3.41)

Qi represents an effective charge of ion i and it is given by

Qi =
zi −σ2

i Pn(π/(2∆))
1+Γσi

. (3.42)

Two coupling parameters Pn and Ω relate the charge and size of an ion and its packing

fraction ∆ as follows:

Pn =
1
ΩV

nion∑
ions,i=1

Niσizi

1+Γσi
, (3.43)
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Ω = 1+
π

2∆V

nion∑
ions,i=1

Niσ
3
i

1+Γσi
. (3.44)

The packing fraction ∆ is obtained from the number density of the ions in the fluid:

∆ = 1− π

6V

nion∑
ions,i=1

Niσ
3
i . (3.45)

From Equations 3.41 and 3.42 it can be seen that the MSA theory gives an implicit formulation

of the shielding parameter Γ, which therefore needs to be obtained iteratively. This is easily

achieved through successive substitution starting from an initial guess Γ0 estimated from the

Debye-Hückel screening length κ:

Γ0 =
κ

2
= 0.5

√√√
e2

4ϵ0DkBTV

nion∑
ions,i=1

Niz2
i . (3.46)

Using the Helmholtz free energy electrostatic contribution given by Equation 3.40, the

corresponding contribution to the chemical potential of a species i is derived by partial

differentiation. If the dielectric constant of the medium is assumed not to vary with the

concentration of the ions, one obtains:

µMSA
i =

(
∂AMSA

∂Ni

)
Nj,i,D

(3.47)

=

(
∂AMSA

∂Ni

)
Γ,∆,Ω,Pn,Nj,i,D

+

(
∂AMSA

∂∆

)
N,D

∂∆

∂Ni
+

(
∂AMSA

∂Ω

)
N,D

∂Ω

∂Ni

+

(
∂AMSA

∂Pn

)
N,D

∂Pn

∂Ni
+

(
∂AMSA

∂Γ

)
N,D

∂Γ

∂Ni
,
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and the ionic contribution to an ionic component’s chemical potential is given by expanding

the derivatives in Equation 3.47:

µMSA
i =− e2

4πϵ0D

{
Γz2

i

1+Γσi
+
Ωσ3

i

12

(
πPn

∆

)2
(3.48)

−
π2P2

nσ
3
i

4∆2

(
1

1+Γσi
− 1−Ω

3

)
+

πPnσizi

∆(1+Γσi)

}
.

The dielectric constant does not, however, remain constant with concentration, and it is

common to implement an auxiliary (often empirical) model for predicting the variation of the

dielectric constant with respect to the density or composition of the fluid. This is accounted

for in the derivation of the chemical potential expression via:

µMSA
i =

(
∂AMSA

∂Ni

)
Nj,i,D

+

(
∂AMSA

∂D

)
N

(
∂D
∂Ni

)
Nj,i

(3.49)

=

(
∂AMSA

∂Ni

)
Nj,i,D

− UMSA

D

(
∂D
∂Ni

)
Nj,i

,

and the complete expression for µMSA
i therefore becomes:

µMSA
i =− e2

4πϵ0D

{
Γz2

i

1+Γσi
+
Ωσ3

i

12

(
πPn

∆

)2
(3.50)

−
π2P2

nσ
3
i

4∆2

(
1

1+Γσi
− 1−Ω

3

)
+

πPnσizi

∆(1+Γσi)

}
− UMSA

D

(
∂D
∂Ni

)
Nj,i

.

The MSA’s electrostatic contribution to the free energy of the fluid also contributes to the

pressure of the system. If D is considered to be independent of the ionic composition, this

contribution is given by

PMSA =

(
∂AMSA

∂V

)
N
= −Γ

3kBT
3π

− e2

8Dϵ0

(
Pn

∆

)2
; (3.51)
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and when the compositional dependence of D is taken into account the pressure contribution

becomes

PMSA =

(
∂AMSA

∂V

)
N
+

(
∂AMSA

∂D

)
N

(
∂D
∂V

)
N

(3.52)

= −Γ
3kBT
3π

− e2

8Dϵ0

(
Pn

∆

)2
− UMSA

D

(
∂D
∂V

)
N
.

3.3.2 Born solvation free energy

The change of free energy corresponding to the solvation of ions in a solvent may be taken

into account using the primitive model proposed by Born [57]. Specifically, the Born model

expresses the Helmholtz free energy associated with transferring a charged particle from

vacuum into a spherical cavity in a dielectric medium. This may be conceptualised as an

equivalent thermodynamic cycle incorporating the work of discharging the ions in a solvent,

and recharging them in a uniform dielectric medium which implicitly represents the solvent,

while neglecting the work of transferring the uncharged particles into the solvent medium.

The Born solvation free energy is expressed as

ABorn = − e2

4πϵ0

(
1− 1

D

) nion∑
ions,i=1

Niz2
i

σBorn
i

, (3.53)

where σBorn
i is the effective diameter of ion i in the solvent, representing the size of the cavity

created in the solvent to accept the insertion of the ion.

The Born contribution to the chemical potential of the ion is equivalent to the free energy

of solvation of an ion at infinite dilution. If the concentration dependence of the dielectric

constant is neglected, the chemical potential is obtained as

µBorn
i =

(
∂ABorn

∂Ni

)
Nj,i,D

= − e2

4πϵ0

(
1− 1

D

)
z2

i

σBorn
i

; (3.54)
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whereas by accounting for the change in dielectric constant with ion composition, the

chemical potential becomes

µBorn
i =

(
∂ABorn

∂Ni

)
Nj,i,D

+

(
∂ABorn

∂D

)
N

(
∂D
∂Ni

)
Nj,i

(3.55)

= − e2

4πϵ0

[(
1− 1

D

)
z2

i

σBorn
i

+
1

D2

(
∂D
∂Ni

)
V,T,Nj,i

nion∑
ions,i=1

Niz2
i

σBorn
i

]
.

The Born solvation energy contributes to the pressure of the system only if a composition-

dependent dielectric constant is considered, in which case the following pressure contribution

is obtained:

PBorn = −
(
∂ABorn

∂V

)
N,T
+

(
∂ABorn

∂D

)
N,T

(
∂D
∂V

)
N,T

(3.56)

=
e2

4πϵ0

1
D2

(
∂D
∂V

)
N,T

nion∑
ions,i=1

Niz2
i

σBorn
i

.

3.4 Group-contribution modelling of molecular ionic

species within SAFT-γ Mie

The SAFT-γ Mie equation of state enables thermodynamic modelling of complex molecules

through the versatility of a group-contribution approach, a capability which is hereby extended

to include charged species of all sizes and complexity, ranging from atomic and small

molecular ions to large complex molecules with one or multiple charged sites. To achieve

this, established theories for electrostatic interactions – which are derived for spherical ions

– are carefully rewritten to allow incorporation into the group-contribution framework of

SAFT-γ. This leads to two additional Helmholtz free energy terms, AIon and ABorn.

Within SAFT-γ Mie, charged species may be composed of one or multiple functional

groups such that the overall charge is contributed by the particular groups which are charged.
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The charge of a group k is a group-specific parameter regardless of the number of segments

ν∗ comprising the group. Two possible formulations integrating the MSA and Born theories

with the group contribution framework of SAFT-γ are proposed in the current work; these

are presented here together with their respective reasoning, approximations, and limitations.

In the first formulation presented in Section 3.4.1, charged chain molecules are ap-

proximated as equivalent charged spheres; whereas in the second formulation presented in

Section 3.4.2, it is assumed that the electrostatic interactions occur between the individual

charged groups. Both formulations offer a way to effect a spherical geometry to which the

MSA and Born theories can be applied. Since the Born energy is closely associated with the

implementation of the MSA, the same choice of formulation is used in both for the AMSA

and ABorn terms.

3.4.1 Free-energy perturbation for spherically-approximated charged

species

A charged chain molecule i may be approximated as a sphere with a volume equal to the total

combined volume of the segments comprising the chain. The diameter σ̃ii of this equivalent

sphere is obtained by

σ̃3
ii =

NG∑
k=1

(νk,iν
∗
k Skσ

3
kk) , (3.57)

where νk,i is the number of groups of type k in molecule i, Sk is the shape factor of group

k, and σkk is the diameter of group k. The approximated sphere is assigned a central point

charge equal to the net charge qi of the chain molecule:

qi =

NG∑
k=1

(zk e). (3.58)
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The conversion from chain geometry to equivalent-volume spherical geometry is assumed to

occur at no cost of free energy, i.e., Achain→sphere = 0, and its purpose is to effect a spherical

ion geometry whilst conserving the overall charge density of the ion. Such a conversion can

be considered appropriate for relatively short-length chain molecules for which the charge

is highly delocalised across the molecule. The conversion of the approximated spheres

back to the original chain molecules is also assumed to have no free energy contribution,

Asphere→chain = 0. The set of thermodynamic perturbations involved in the SAFT-γ Mie

EOS when this electrolyte formulation is adopted is illustrated in Figure 3.1, including the

aforementioned nil-contribution perturbations. Since the primitive model of the MSA is

adopted, all neutral molecules in the mixture, including the solvent and any neutral solute

molecules, are treated implicitly in the MSA and Born terms. The mixture of neutral

molecules is represented as a dielectric medium with dielectric constant D.
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Figure 3.1 Schematic representation of the SAFT-γ Mie formulation for charged species
represented as equivalent charged spheres. Groups are illustrated for the case where ν∗ = 1
and Sk = 1. The ideal gas mixture of non-interacting point particles and point charges
(Aideal) is shown in Frame (1). The hard-sphere fluid where ions possess embedded point
charges (AHS) is shown in Frame (2). Frame (3) shows the formation of molecular chains
from groups (Achain). In Frame (4), the charged molecular chains are converted to spheres
of equivalent volume and net charge (Achain→sphere = 0). Frames (5) to (7) represent the
equivalent thermodynamic cycle conceptualising the Born solvation free energy: ions are
discharged, leading to a mixture of hard spheres in vacuum (Adisch); a uniform dielectric
medium is introduced (schematically shown as the shaded background) to the hard-sphere
fluid (Adielec); and the ions are charged in the presence of the dielectric medium (Acharge). The
Born free energy term corresponding to the mathematical model is shown in the transition
from Frame (4) to Frame (7). Coulombic interactions between ions are represented as dashed
lines (Aion) in Frame (8). In Frame (9), the spherically-approximated ions are converted back
to charged molecular chains (Asphere→chain = 0). Dispersion interactions between segments
are schematised as shaded halos (Adisp) in Frame (10). Association sites for mediating
association interactions (Aassoc) are depicted in Frame (11).
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3.4.1.1 MSA term

When the MSA-PM is applied to the mixture in which the charged molecules are approxi-

mated as spheres, the electrostatic Helmholtz free energy contribution is obtained as

AMSA

NkBT
=

UMSA

NkBT
+
Γ3

3πρ
. (3.59)

Here, the free energy is expressed in reduced units, i.e., per molecule, in accordance with the

convention used for the terms of the SAFT-γ Mie EOS. Accordingly, the internal energy is

given by

UMSA

NkBT
= − e2V

(4πϵ0)DNkBT

[
Γρ

nion∑
ions,i=1

(
xiz2

i

1+Γσ̃ii

)
+
π

2∆
ΩP2

n

]
(3.60)

= − e2

(4πϵ0)DkBT

[
Γ

nion∑
ions,i=1

(
xiz2

i

1+Γσ̃ii

)
+
π

2∆
ΩP2

n

]
.

The parameters of the MSA expressions are given within this framework as follows:

Γ
2 =

πe2ρ

(4πϵ0)DkBT

nion∑
ions,i=1

xiQ2
i ; (3.61)

Qi =
zi − σ̃2

ii Pn(π/(2∆))
1+Γσ̃ii

; (3.62)

Pn =
ρ

Ω

nion∑
ions,i=1

xiσ̃iizi

1+Γσ̃ii
; (3.63)

Ω = 1+
πρ

2∆

nion∑
ions,i=1

xiσ̃
3
ii

1+Γσ̃ii
; (3.64)
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∆ = 1− πρ

6

nion∑
ions,i=1

xiσ̃
3
ii . (3.65)

The electrostatic contribution to the chemical potential of such spherically-approximated

charged molecules is derived from Equation 3.59 following the derivatives given by Equations

3.47 and 3.49:

µMSA
i =− e2

4πϵ0D

{
Γz2

i

1+Γσ̃ii
+
Ωσ̃3

ii

12

(
πPn

∆

)2
(3.66)

−
π2P2

n σ̃
3
ii

4∆2

(
1

1+Γσ̃ii
− 1−Ω

3

)
+

πPnσ̃iizi

∆(1+Γσ̃ii)

}
− UMSA

D

(
∂D
∂Ni

)
Nj,i

.

Similarly, by taking the derivative given by Equation 3.52, the electrostatic contribution to

the mixture’s total pressure is obtained:

PMSA = −Γ
3kBT
3π

− e2

8Dϵ0

(
Pn

∆

)2
− UMSA

D

(
∂D
∂V

)
N
. (3.67)

3.4.1.2 Born term

The Born solvation energy accompanying the above MSA formulation also adopts an ap-

proximated spherical geometry for the charged molecules. The cavity size associated with

the insertion of a spherically-approximated charged molecule (cf. Equation 3.57) reflects a

spherical volume equivalent to the combined cavity volume of the individual groups compris-

ing the molecule. The Born cavity diameter σ̃Born
ii of a spherically-approximated charged

species i is obtained as follows:

(σ̃Born
ii )3 =

NG∑
k=1

(
νk,iν

∗
k Sk(σBorn

kk )3
)
. (3.68)
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where σBorn
kk is a group specific parameter characterising the Born cavity diameter of an

individual group k. The Born solvation energy for the primitive system comprising the

spherically-approximated charged molecules is expressed as

ABorn

NkBT
= − e2

(4πϵ0)kBT

(
1− 1

D

) nion∑
ions,i=1

xiz2
i

σ̃Born
ii

, (3.69)

The contribution to the chemical potential of component i is obtained by taking the derivative

shown in Equation 3.55:

µBorn
i = − e2

(4πϵ0)

[(
1− 1

D

)
z2

i

σ̃Born
ii

+
1

D2

(
∂D
∂Ni

)
V,T,Nj,i

ρV
nion∑

ions,i=1

xiz2
i

σ̃Born
ii

]
; (3.70)

and finally, through application of the derivative shown in Equation 3.56, the Born contribu-

tion to the total system pressure is given by

PBorn =
e2

(4πϵ0)
1

D2

(
∂D
∂V

)
N,T

nion∑
ions,i=1

Niz2
i

σ̃Born
ii

. (3.71)

3.4.2 Free-energy perturbations for charged functional groups

For certain types of charged molecules the spherically approximated geometry adopted

in the above formulation may become inappropriate for a number of reasons. Firstly, the

molecule may possess a charged functional group where the charge is highly localised relative

to the size of the molecule, for example when considering long-chain linear molecules.

Furthermore, molecules may possess more than one charged functional group, such as in the

case of zwitterions or polyelectrolytes. In the former case, considering the net charge falsely

leads to a neutral species, while in the latter case a net charge density would oversimplify the

electrostatic forces. The following formulation intends to accommodate such ionic species.

The MSA-PM is applied here to account for the Coulombic interactions between individ-

ual charged groups (CG) in the presence of a dielectric medium representing the remaining
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neutral groups in the system. The AMSA term is calculated for the mixture of unbound groups,

as illustrated in Figure 3.2 which includes the complete set of thermodynamic perturbations

involved in the SAFT-γ Mie EOS when this electrolyte formulation is adopted.

Figure 3.2 Schematic representation of the SAFT-γ Mie formulation for charged groups.
Groups are illustrated for the case where ν∗ = 1 and Sk = 1. The ideal gas mixture of non-
interacting point particles and point charges (Aideal) is shown in Frame (1). The hard-sphere
fluid where ions possess embedded point charges (AHS) is shown in Frame (2). Frames
(3) to (5) represent the equivalent thermodynamic cycle conceptualising the Born solvation
free energy: ions are discharged, leading to a mixture of hard spheres in vacuum (Adisch); a
uniform dielectric medium is introduced (schematically shown as the shaded background)
to the hard-sphere fluid (Adielec); and the ions are charged in the presence of the dielectric
medium (Acharge). The Born free energy term corresponding to the mathematical model is
shown in the transition from Frame (2) to Frame (5). Coulombic interactions between ions are
represented as dashed lines (Aion) in Frame (6). Dispersion interactions between segments are
schematised as shaded halos (Adisp) in Frame (7). Frame (8) shows the formation of molecular
chains from groups (Achain). Association sites for mediating association interactions (Aassoc)
are depicted in Frame (9).
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For charged groups comprising more than one segment, the group is approximated as a

sphere of equivalent volume to the combined volume of the segments comprising the group.

The diameter σ̃3
kk of this equivalent spherical group is obtained as

σ̃3
kk = ν

∗
k Skσ

3
kk . (3.72)

The fraction xk of a group of type k in the system of unbound groups is given by

xk =
Nk

Ng
=

N
∑NC

i=1 xiνk,iSk

Ng
, (3.73)

where Nk is the number of groups of type k, and Ng is the total number of groups:

Ng = N
NC∑
i=1

NG∑
k=1

(xiνk,i) . (3.74)

Accordingly, the total number density of groups ρg is related to the total number density of

molecules through

ρg =
Ng

V
= ρ

( NC∑
i=1

xi

NG∑
k=1

(νk,i)
)
. (3.75)

The ‘solvent’ applicable to this formulation of the MSA-PM consists of the mixture of

unbound neutral groups, so the dielectric constant D must reflect permittivity of this medium.

Since in SAFT-γ Mie charge is a group-specific parameter, the neutral groups comprising

the dielectric medium may belong to both neutral and charged molecules. Determining the

dielectric constant of such a mixture is not straightforward, since there is no analogous real

physical system. An appropriate group contribution model for the relative static permittivity

would be needed in order to carry out this formulation. This issue may be overcome by

adopting the assumption that the fraction of unbound neutral groups arising from the ionic

species in the mixture exert a negligible effect on the magnitude of the dielectric constant.

This may be considered a reasonable simplification provided that moderate concentrations

of electrolyte are considered, such that the fraction of neutral groups belonging to the ionic
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species remains small. The remaining mixture of unbound groups – i.e., those belonging to

neutral molecules – can be expected to have the same dielectric properties as the mixture of

neutral molecules. As a result, it is possible to use a molecular dielectric constant model to

estimate the dielectric constant of this mixture of groups.

3.4.2.1 MSA term

The internal energy UMSA arising from electrostatic interactions in the system of unbound

groups is obtained as follows:

UMSA = − e2

(4πϵ0)D

[
Γ

nCG∑
CG,k=1

( Nk z2
k

1+Γσ̃kk

)
+
π

2∆
ΩP2

n

]
(3.76)

= − e2V
(4πϵ0)D

[
Γρg

nCG∑
CG,k=1

( xk z2
k

1+Γσ̃kk

)
+
π

2∆
ΩP2

n

]
= − e2V

(4πϵ0)D

[
Γρ

nion∑
ions,i=1

nCG∑
CG,k=1

( xiνk,iz2
k

1+Γσ̃kk

)
+
π

2∆
ΩP2

n

]
.

In reduced units, the internal energy per group uMSA is written as

uMSA =
UMSA

NgkBT
(3.77)

= − e2

kBT(4πϵ0)Dρg

[
Γρ

nion∑
ions,i=1

nCG∑
CG,k=1

( xiνk,iz2
k

1+Γσ̃kk

)
+
π

2∆
ΩP2

n

]
,

and the dimensionless Helmholtz free energy per group aMSA is therefore evaluated from

aMSA =
AMSA

NgkBT
= uMSA+

Γ3

3πρ
. (3.78)
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The MSA parameters are obtained as follows:

Γ
2 =

πe2

(4πϵ0)DkBT
ρg

nCG∑
CG,k=1

(xkQ2
k) =

πe2

(4πϵ0)DkBT
ρ

nion∑
ions,i=1

nCG∑
CG,k=1

(xiνk,iQ2
k) , (3.79)

Qk =
zk − σ̃2

kk Pn(π/(2∆))
1+Γσ̃kk

, (3.80)

Pn =
ρg

Ω

nCG∑
CG,k=1

xk σ̃kk zk

1+Γσ̃kk
=
ρ

Ω

nion∑
ions,i=1

nCG∑
CG,k=1

xiνk,iσ̃kk zk

1+Γσ̃kk
, (3.81)

Ω = 1+
πρg

2∆

nCG∑
CG,k=1

xk σ̃
3
kk

1+Γσ̃kk
= 1+

πρ

2∆

nion∑
ions,i=1

nCG∑
CG,k=1

xiνk,iσ̃
3
kk

1+Γσ̃kk
, (3.82)

∆ = 1−
πρg

6

nCG∑
CG,k=1

(xk σ̃
3
kk) = 1− πρ

6

nion∑
ions,i=1

nCG∑
CG,k=1

(xiνk,iσ̃
3
kk) . (3.83)

In order to be incorporated meaningfully alongside the free energy perturbations of the

SAFT-γ Mie EOS, the electrostatic contribution to the free energy should relate to the

mixture of chain molecules. The Helmholtz free energy per molecule (AMSA) can be obtained

from the Helmholtz free energy per group (aMSA) using the relationship between Ng and N

given by Equation 3.74:

AMSA

NkBT
= aMSA Ng

N
= aMSA

nNC∑
i=1

nNG∑
k=1

(xiνk,i) . (3.84)
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Using 3.84, one may obtain the electrostatic contribution to the chemical potential of a

molecule i by applying the chain derivative shown in Equations 3.47 and 3.49:

µMSA
i =− e2

4πϵ0D

{
Γ

nion∑
ions,i=1

nCG∑
CG,k=1

(
νk,iz2

k

1+Γσ̃kk

)
(3.85)

+
Ω

12

(
πPn

∆

)2 nion∑
ions,i=1

nCG∑
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(νk,iσ̃
3
kk)−

π2P2
n

4∆2

nion∑
ions,i=1

nCG∑
CG,k=1

(νk,iσ̃
3
kk)

×
[ nCG∑

CG,k=1

(
1

1+Γσ̃kk

)
− 1−Ω

3

]
+
πPn

∆

nion∑
ions,i=1

nCG∑
CG,k=1

(
νk,iσ̃kk zk

1+Γσ̃kk

)}
− UMSA

D

(
∂D
∂Ni

)
Nj,i

.

Finally, the electrostatic contribution to the total pressure of the system is derived according

to Equation 3.52, which gives:

PMSA = −Γ
3kBT
3π

− e2

8Dϵ0

(
Pn

∆

)2
− UMSA

D

(
∂D
∂V

)
N
. (3.86)

3.4.2.2 Born term

The Born energy corresponding to the mixture of unbound groups may be computed by

defining the cavity diameter σ̃Born
kk applicable to the spherically-approximated group k (cf.

Equation 3.72). The volume of this cavity is equal to the combined cavity volume of the

segments comprising the group; it is obtained as follows:

(σ̃Born
kk )3 = ν∗k Sk(σBorn

kk )3 . (3.87)

The Born energy of the system of unbound groups (aBorn) can be related to the Born contri-

bution to the Helmholtz free energy for the mixture of molecules (ABorn) in a similar manner

as aMSA is related to AMSA through Equation 3.84. First, the dimensionless Born energy per
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group is obtained as

aBorn =
ABorn

NgkBT
(3.88)

= − e2

(4πϵ0)NgkBT

(
1− 1

D

) nCG∑
CG,k=1

Nk z2
k
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= − e2ρ

(4πϵ0)ρgkBT

(
1− 1

D

) nion∑
ions,i=1

nCG∑
CG,k=1

xiνk,iz2
k

σ̃Born
kk

.

The dimensionless Born energy per molecule may be obtained from aBorn by invoking

equation 3.74:

ABorn

NkBT
= aBorn Ns

N
(3.89)

= aBorn
nNC∑
i=1

nNG∑
k=1

(xiνk,i)

= − e2

(4πϵ0)kBT

(
1− 1

D

) nion∑
ions,i=1

nCG∑
CG,k=1

( xiνk,iz2
k

σ̃Born
kk

)
.

The Born contribution to the chemical potential of a component i is then derived following

Equation 3.55:

µBorn
i =− e2

(4πϵ0)

[(
1− 1

D

) nCG∑
CG,k=1

νi,k z2
k

σ̃Born
kk

(3.90)

+
1

D2

(
∂D
∂Ni

)
V,T,Nj,i

ρV
nion∑

ions,i=1

nCG∑
CG,k=1

xiνi,k z2
k

σ̃Born
kk

]
,

and finally, following Equation 3.56, the Born pressure contribution for the mixture of

molecules is

PBorn =
e2N
(4πϵ0)

1
D2

nion∑
ions,i=1

nCG∑
CG,k=1

( xiνk,iz2
k

σ̃Born
kk

) (
∂D
∂V

)
N,T

. (3.91)
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3.5 Ion-ion dispersion interactions

The dispersion energy εkl between any two charged groups k and l may be determined by

analogy to the work of Hudson and McCoubrey [186] and later Haslam et al. [187] in relation

to the prediction of binary intermolecular potential parameters, following Eriksen [188]. In

this approach, the dispersion energy between two ions is obtained by relating the London

dispersion interaction potential [189] with the Mie potential model given by Equation 3.2.

Following Haslam et al. [187], the London interaction potential is expressed as a function of

the ionization potentials Ik and electronic polarisabilities α0,k of the interacting species:

uLondon
kl = −3

2
α0,kα0,l

r6
kl (4πϵ0)2

Ik Il

Ik + Il
, (3.92)

where rkl is the centre–centre distance between the charged groups.

In order to obtain a physical relation for the dispersive interaction energy, the London

and Mie potentials must be related. For reasons of practicality, it is easier to operate with

the van der Waals integrated form of each potential. The spherically symmetric potentials

are integrated over the azimuthal (ϕ) and polar (θ) angles. Since the potentials tend towards

infinity for short separations, a lower cut-off range of σkl is imposed for the distance of

centre–centre separation distance, in order to suppress the sensitivity of this methodology to

the steepness of the potential at close range. The integrated form ψkl of a centro-symmetric

potential is

ψkl =

∫ π

θ=0

∫ 2π

ϕ=0

∫ ∞

rkl=σkl

uklr2
kldrkl sinθdθdϕ . (3.93)

For the London interaction, this leads to the expression:

ψLondon
kl

4π
= − α0,kα0,l

2σ3
kl(4πϵ0)2

Ik Il

Ik + Il
; (3.94)
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and following the same procedure for the Mie potential, one obtains:

ψMie
kl

4π
= −

Cεkl(λr,kl −λa,kl)σ3
kl

(λr,kl −3)(λa,kl −3) . (3.95)

Equating and rearranging the expressions for the integrated potentials leads to a relation for

the dispersive interaction energy parameter:

εkl =
(λr,kl −3)(λa,kl −3)

2C(λr,kl −λa,kl)
α0,kα0,l

(4πϵ0)2σ6
kl

Ik Il

Ik + Il
. (3.96)

This approach may be used to estimate the value of the εkl parameter for any pair of charged

groups, provided that the polarisabilities and ionisation potentials are known. These quantities

are usually well documented in the literature for the a wide range of ionic species and charged

functional groups.

3.6 Relative static permittivity model

Thermodynamic modelling of electrostatic interactions employing a primitive approach

requires a means of determining the dielectric constant of the implicitly represented solvent

medium. The electric properties of the solvent change according to the system temperature

and composition, which means that the change in the dielectric constant with electrolyte

solute concentration should be taken into account when implementing the Aion and ABorn

terms.

The empirical model presented by Schreckenberg et al. [61] is applied in the present

work. This model expresses the dielectric constant of a solvent as a function of temperature

and the density of the solvent; for single-solvent solutions, it takes the following form:

D = 1+ ρsolvdi , (3.97)
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where ρsolv = Nsolv/V is the number density of the solvent species and di is a temperature-

dependent parameter for solvent component i. In turn, di is obtained as a function of two

component-specific parameters:

di = dV,i

(
dT,i

T
−1

)
, (3.98)

where dV,i and dT,i are expressed in units of dm3 mol−1 and K, respectively.

An important aspect of this particular model is that the ionic composition of the solution

is only taken into account implicitly, through the change in the solvent density ρsolv effected

by a change in electrolyte solute composition. The model is nevertheless chosen firstly due to

its relative simplicity, and secondly due to its proven performance in describing the dielectric

properties of a wide range of solvents and solvent mixtures. Although only single-solvent

mixtures are considered in the current work, this allows the prospect of applying the ionic

models to mixed aqueous + organic solvents. Despite not explicitly taking into account

the ionic composition of the mixture, the model has been used effectively alongside the

SAFT-VRE EOS [61] for modelling strong electrolyte solutions up to 10 mol kg−1, so it can

be considered suitable for use alongside the SAFT-γ Mie approach for electrolytes.

3.7 Summary

The SAFT-γ Mie equation of state expresses the Helmholtz free energy of fluid mixtures

at equilibrium, knowledge of which allows computation of the system’s thermodynamic

properties. In particular, the free energy is calculated as perturbative free energy contri-

butions to the hard sphere reference system, therefore the SAFT-γ Mie approach provides

an adaptable thermodynamic framework in which specific molecular interactions may be

described explicitly. The present work extends the applicability of the SAFT-γ Mie EOS

by introducing the two additional free energy terms arising form the presence of charged

species. Firstly, the MSA-PM theory is employed to account for electrostatic forces between
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charged species interacting through a Coulomb potential. Secondly, the Born theory is used

to account for the electrostatic component of the solvent–ion interaction contributing to ion

solvation.

In this chapter, these two theories have been formulated so as to be compatible with the

group-contribution framework of SAFT-γ Mie, in which molecules are composed of fused

functional-group segments, some of which may carry a charge. An appropriate formulation

for such molecules should adopt suitable assumptions as to the spherical charged species to

which the theories are applicable; two options have been proposed for achieving this. The first

formulation described in Section 3.4.1 assumes that a charged heteronuclear molecule may

be approximated as a spherical species with a equivalent volume and thus equivalent charge

density, which is speculated to be better suited to smaller molecules with delocalised charge.

The second formulation presented in Section 3.4.2 applies the MSA and Born theories to the

individual charged functional groups, and it is speculated to be better suited to larger and

more linear molecules, and molecules possessing multiple charged functional groups.

The expressions for these two group-contribution electrolyte formulations converge to

the general MSA and Born expressions (cf. Section 3.3). In other words, the formulations

can be used interchangeably when modelling mixtures in which all ionic components are

spherical. This scenario is encountered in Chapter 4 when modelling inorganic electrolyte

solutes. Non-spherical organic ions are encountered in Chapter 5, in which the performance

of the two proposed avenues for modelling electrolytes using SAFT-γ Mie will be evaluated.



Chapter 4

Strong inorganic electrolytes: salts, acids,

and bases

This chapter considers the thermodynamic properties of solutions of strong electrolytes,

including salts, acids, and bases, at conditions of equilibrium. Specifically, aqueous solutions

of alkali halide salts, hydrogen halides, and alkali hydroxides are modelled. The types of

charged components involved in these systems are small, mostly atomic, inorganic ions,

which are generally accepted as having a spherical geometry [190, 191]. This assumption

is also made for the oligoatomic inorganic ions in this chapter, which means that the two

SAFT-γ Mie avenues for electrolytes described in Chapter 3 may be used interchangeably,

because they simplify to the general expressions for the MSA and Born equations when

describing spherical ionic components. Given that all ionic components modelled in this

Chapter are spherical, the SAFT-γ Mie formalism simplifies to the SAFT-VRE Mie model

which was first presented in the work of Dufal [122]. The thermodynamic model adopted

throughout this chapter is therefore referred to as SAFT-VRE Mie. Nevertheless, the models

presented here are consistent with the group-contribution framework of SAFT-γ Mie.
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A range of thermodynamic properties are investigated for the aqueous electrolyte solutions

studied in this chapter. Besides the common properties of equilibrium fluids, such as saturated

vapour pressures and densities, the mean ionic activity coefficients of the salt solutes and

the osmotic coefficient of the solution are key properties commonly reported for electrolyte

solutions. These two properties are directly linked to the activities of the electrolyte solute

and the solvent, thereby manifesting the behaviour of each component in the solution mixture.

Two further important properties for electrolyte solutions are the Gibbs free energy of

solvation of the ions, which relates to the properties of the ions at the infinite dilution

reference state, and the solubility limit of the salt, which gives an indication of the predictive

capability of the proposed ionic models.

4.1 Thermodynamic properties

Strong electrolytes are considered to be completely dissociated in solution, with the equilib-

rium defined by Equation 2.1 lying fully to the right such that no neutral salt molecule exists

in the solution mixture and the dissociated ions exist as free solvated ions. The concentration

of an electrolyte Mν+Xν− is quantified here in terms of the molality mMX, defined as the molar

amount (mol) of salt per kilogram of solvent j. In the case of fully dissociated electrolytes,

the mole fraction of a given ion i can be calculated from the molality as:

xi =
νimMX

νmMX+1/MWj
, (4.1)

where νi is the stoichiometric coefficient of ion i, ν = ν++ ν−, and MWj denotes the molecular

weight of the solvent in units of kg mol−1.

The electrolytic properties of the solution of a fully dissociated electrolyte are typically

collated in the mean ionic activity coefficient (MIAC), γ±, calculated as an average of cationic
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and anionic contributions (cf. Section 2.2.1):

γ±,m (T, p,N) =
( (
γ+,m (T, p,N)

)ν+ (
γ−,m (T, p,N)

)ν− )1/(ν++ν−) . (4.2)

The contribution of the solvent j to the thermodynamics of the system can be characterised

through the osmotic coefficient, Φ (cf. Section 2.2.2):

Φ (T, p,N) = − 1
(ν++ ν−)mMXMWj

lnaj (T, p,N) . (4.3)

According to Equation 2.26, the MIAC and the osmotic coefficient are directly related

such that the thermodynamic properties of the solvents and solutes in a mixture are not

independent. It is required, therefore, that a correct thermodynamic model for electrolytes

should predict both of these properties to a similar degree of agreement with experimental

data. Achieving this is a core target of this chapter.

4.1.1 Ion solvation

The Gibbs free energy of solvation ∆Gsolv,i of an ion i corresponds to the residual chemical

potential of the ion at infinite dilution, according to the definition of Myers et al. [51], which

relates the solvation energy to the fugacity φ∗i of the ion at infinite dilution:

∆Gsolv,i = −NkBT ln
(
φ∗i (T, p,N∗)

pMWjm◦

pref

)
, (4.4)

Here, pref is the pressure of the reference state (1 bar) for the change in the Gibbs free energy,

and m◦ is the standard state molality of 1 mol kg−1; these arise, respectively, from taking into

account the difference in pressure between the state of interest and the reference pressure,

and from converting between the mole-fraction and molality scales.
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4.2 Phase equilibria

The conditions which enforce phase equilibrium of electrolyte solutions are similar to those

of non-electrolyte systems, with additional constraints related to the charge balances and the

necessary charge neutrality of a given phase. For a number of phases Nphases, with individual

phases denoted by superscript Greek letters, the thermal and mechanical phase equilibrium

conditions must be satisfied, i.e.

Tα = T β = · · · = T Nphases, (4.5)

pα = pβ = · · · = pNphases . (4.6)

In addition, a relationship in each equilibrium phase is required for the chemical potentials of

each species in the mixture. As a consequence of treating strong electrolyte solutes as fully

ionised in solution, the additional constraints required to characterise phase equilibrium will

depend on the nature of the phases considered.

4.2.1 Vapour-liquid equilibrium

In the consideration of equilibrium between two (or more) fluid phases, equality of chemical

potentials is required for each neutral species. For the single-solvent solutions of fully

dissociated electrolytes considered here, the solvent j is the only neutral species present such

that:

µαj = µ
β
j = · · · = µ

Nphases
j . (4.7)
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For any pair of charged species i and i′, a constant relative difference of chemical potentials

across electroneutral phases must be satisfied, according to Grossmann and Maurer [192]:

(
µαi − µ

β
i

)
/zi =

(
µαi′ − µ

β
i′

)
/zi′,

...(
µαi − µ

Nphases
i

)
/zi =

(
µαi′ − µ

Nphases
i′

)
/zi′ ∀i, i′ ∈ (zi, zi′ , 0). (4.8)

The solution of the equilibrium conditions is obtained with a Levenberg-Marquardt [193, 194]

algorithm, allowing for the presence of ions in all fluid phases; including the gas phase.

The volume dependence of the relative static permittivity model and the inclusion of the

Born free energy term in the underlying theory deliver a model where the ions naturally

partition predominantly into the denser liquid phase, with only trace amounts (of the order of

xsalt = 10−70) in the gaseous phase, in agreement with experimental observation.

4.2.2 Solid-liquid equilibrium

The description of phase equilibrium between solid and liquid phases containing electrolytes

is linked to the chemical equilibrium governing the dissociation of the solvated electrolyte

leading to the formation of charged species in solution. The solid phase consists of the

pure unsolvated crystalline salt Mν+Xν− in equilibrium with a liquid phase saturated in salt.

Assuming complete dissociation of the dissolved salt, the phase and chemical equilibria

require that the chemical potential µMX(s) of the crystalline salt in the solid phase is equal to

the sum of the chemical potentials of the solvated ions µi(aq) , with i =M, X:

µMX(s)(T, p) = ν+µM(aq)(T, p,msat)+ ν−µX(aq)(T, p,msat), (4.9)

where M represents the cation and X the anion. The molal composition vector of the saturated

aqueous phase is represented by msat, and the molality of solvated ion i is related to the salt
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molality through

msat
i = νimsat

MX , (4.10)

where msat
MX is the solubility limit of salt Mν+Xν− .

The solid phase is taken to be the unhydrous crystalline salt, for which the chemical

potential is obtained from

µMX(T, p) = µ0
MX(T, p)+RT ln(aMX(T, p))

= ∆G f
MX(s)

(T, p) .
(4.11)

The chemical potential of the pure solid salt, µ0
MX, is equivalent to the molar Gibbs free

energy of formation ∆G f
MX(s)

of the solid from its constituent elements in their standard

states; aMX is the activity of the pure salt, which takes the value of 1 according to the rational

symmetric standard state.

The chemical potential of solvated ion i in the saturated liquid phase is expressed on a

molality basis as

µi(T, p,msat) = µ◦i (T, p,m◦)+RT ln
(
miγi,m(T, p,msat)

m◦

)
= ∆G f

i(aq)
(T, p)+RT ln

(
miγi,m(T, p,msat)

m◦

)
,

(4.12)

where the reference chemical potential µ◦i (T, p,m◦) of ion i (defined by Equation 2.17) refers

to a hypothetical ideal solution of unit molality (m◦ = 1 mol kg−1) and is equivalent to the

molar Gibbs free energy of formation ∆G f
i(aq)

of a 1 mol kg−1 solution of the solvated ion

from its constituent elements in their standard states.

Employing the expressions for the chemical potential of the solid salt and solvated ions

given by Equations 4.11 and 4.12 and relating the ion molality to the salt molality through
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Equation 4.10, the solid-liquid equilibrium condition for fully dissociated salts given by

Equation (4.9) can be rewritten to obtain a working solubility equation for the salt:

msat
MX

(ν++ν−) =
Ksp,MX(T, p)(

ν+γ+,m(T,p,msat)
m◦

)ν+ (
ν−γ−,m(T,p,msat)

m◦

)ν− , (4.13)

where, Ksp(T, p) is the solubility product of the salt, expressed as:

Ksp,MX = exp
(
−
ν+∆G f

M(aq)
(T, p)+ ν−∆G f

X(aq)
(T, p)−∆G f

MX(s)
(T, p)

RT

)
. (4.14)

The working solubility equation used in the present work inherently includes a temperature

dependence through the variation of the solubility product with temperature, although it is

not dealt with explicitly.

4.3 Model development

Aqueous solutions of strong electrolytes are considered in this work, focusing particularly

on the halide salts of alkali metals and alkaline earth metals as well as aqueous strong acids

and bases. These solutions are modelled as ternary mixtures composed of water, anions,

and cations, under the assumption of a fully dissociated solute. The electrolyte solutes are

therefore modelled by means of the constituent monovalent and divalent atomic ions in the

case of salts, while molecular ions are also considered for the acid and base solutions.

In order to model these aqueous solutions, the solvent is treated using the model for water

presented by Dufal et al. [177]. In this model, the water molecule comprises a single segment

possessing four off-centre association sites, two of which are of type ‘H’ (nH = 2) and two

of type ‘e’ (ne = 2), which mediate hydrogen bonding interactions. The molecular potential
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parameters for this model of water are presented in Table 4.1, together with the parameters

required for the correlation of the dielectric constant.

In this work the ions are modelled as spherical, consisting of a single segment (mseg,i = 1),

and carrying a single point charge qi = zie. All ions experience dispersion interactions,

represented with Mie potentials of variable range, both with the solvent and with other ions.

A full description of the intermolecular potential necessitates the like-interaction energetic

parameters as well as the cross-interaction parameters. The like-interaction parameters of

an ion i include the segment diameter σii, the interaction energy εii, and the repulsive and

attractive exponents of the Mie potential, λr,ii and λa,ii respectively. Similarly, the cross-

interaction parameters between ions i and j include the unlike diameter σi j , the unlike

interaction energy εi j , and the unlike repulsive and attractive Mie exponents, λr,i j and λa,i j .

Molecular ions which interact with the solvent via hydrogen bonding are further charac-

terised by additional association parameters: the number of sites of a certain type a on ion i

(na,i), the unlike bonding energy εHB
ab,i j , and the corresponding bonding volume Kab,i j between

site a on ion i and site b on solvent j. For the development of molecular ions, the model

of such ions should be physically consistent with the model of the smallest neutral parent

molecule giving rise to the ion. In this work, the SAFT-VR Mie model of the neutral parent

molecule is used as a reference for developing the model for the molecular ion. Consequently,

the parameters of the two species – including the association parameters – will be related.

The parametrization of the intermolecular potentials for the solvent and solute species

naturally dictate the fidelity of the proposed model. However, the complexity of the SAFT

model demands a significant number of parameters to be determined, both for pure species and

for binary interactions. This results in a large, complex parameter space with high degeneracy,

yielding significant variability in the description of individual species. Model development for

charged species with equations of state is further complicated by the underlying premise that

ionic species can only be assessed in solution. In order to simplify the parameter estimation

problem, the number of free parameters is limited here by assigning reasonable estimates
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to those parameters for which it is possible to use physical relationships to determine their

value in the model. Depending on the type of the two interacting species i and j, the cross-

interaction parameters are obtained either via combining rules or by optimisation, while

pure-component parameters are assigned values a priori whenever reasonably possible.

4.3.1 The ion segment diameter and Born diameter

Addressing first the physical geometry of the ions, the size parameters required to treat the

ions in the SAFT model are the segment diameter σii and Born cavity diameter σBorn
ii . The

segment diameters of the ion models in previous work with SAFT-VRE were determined

either by assigning the values of experimentally determined sizes of bare ions [55, 56, 121],

or by fitting to experimental data of salt solution properties [61]. In the latter case, the

optimised segment parameters were found to take similar values to the experimentally

determined ion diameters reported by Shannon [191] and Pauling [190]. Out of consideration

for the number adjustable model parameters, the values for σii are assigned in this work

based on experimental results for the ionic sizes, where these are available. The segment

diameters chosen for the atomic ions are the experimentally derived ionic diameters presented

by Shannon [191] corresponding to the ions with a coordination number of 6 in a crystal

lattice. Shannon has reported a number of values of the crystal ionic diameters for a range of

coordination numbers; of these, a coordination number of 6 was reported for all of the ions

of interest in the present work, therefore the ionic size corresponding to this structure was

selected for consistency. Furthermore, the work of Shannon includes data for a comprehensive

collection of ionic species, thus providing an internally consistent source for the sizes of ions.

The diameters of the hydrated ions are also reported, and certain electrolyte solution

simulation studies [195, 196] have suggested that the hydration coordination numbers of the

ions are important for modelling their behaviour accurately. This is a factor that needs to be

accounted for by models in which the ion’s segment size is not distinguished from its cavity

size, and when the model is intended to be used only in single-solvent aqueous environments.
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The present implementation of the SAFT-VRE Mie approach does account for the difference

between the structural size of the ion and the effective size it occupies. The choice of σii is

freed from any considerations relating to the solvent environment as a direct consequence of

introducing a distinct Born cavity diameter, which implicitly accounts for the structure of

solvent molecules around the ions. As a result, the size for the ions is assigned to be equal to

the experimentally derived crystal ionic diameter, rather than the effective ionic diameter of

the solvated ion in water, as the former is expected to better represent the real size of the ions

in the absence of any influence from the solvent.

In the case of the molecular ion H3O+, the SAFT-VR model of water being the closest

neutral parent molecule is taken as a reference in order to characterise its size. Taking the

assumption that the protonation of water does not effect a significant change in the size of

the molecule, the diameter of the H3O+ ion can be assigned to be equal to that of H2O. This

is considered to be a reasonable approximation, given that H3O+ occurs only in aqueous

solution as a solvated ion. By contrast, OH− also exists in crystalline form so, for consistency

with the diameters of other ions, the ionic diameter assigned for OH− is that reported in the

work of Shannon [191]. This choice nevertheless leads to a OH− segment diameter value

which is in proportion to the diameter of water in the SAFT-VR Mie model.

The Born cavity diameter has commonly been treated in other work to be equal to the

structural ionic diameter [31, 51, 61, 116]. Rashin and Honig [197] have defined the value of

the Born cavity diameter σBorn
ii such that the ion cavity experiences a minimum contribution

of electrons from the surrounding dielectric medium. By analysis of electron-density maps of

crystals of alkali fluoride salts, combined with a 7% correction increase in the cavity diameter

attributed to non-sphericity of the actual ion cavity, Rashin and Honig have proposed an

approach for deriving internally consistent Born diameters. The ion cavity diameters for the

atomic ion models developed in this work are taken directly from the original work of these

authors [197]. An equation of state for electrolytes presented by Harvey and Prausnitz [58]

also draws upon the analysis of Rashin and Honig to define the cavity diameter of ions as an
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independent parameter from the structural ionic diameter, though it omits the non-sphericity

correction factor recommended by the latter.

The parent neutral molecule is again used as a reference for the molecular ions H3O+ and

OH− by considering that the Born diameter of both these ions must be well represented by

the magnitude of the segment diameter of the H2O model, which has been determined by

comparison to bulk fluid properties [177]. Rashin and Honig do not report an optimal Born

diameter for H3O+, but the value they report for OH− (σBorn
OH− = 2.9960 Å) is very similar to

that of the H2O model diameter (σH2O = 3.0063 Å), which corroborates the chosen approach

for characterising this parameter. Helgeson and Kirkham [198] have shown that a linear

correlation exists between the enthalpy of solvation of ions and the inverse of the effective

ionic radius, while Marcus [199] has also demonstrated a correlation between the Gibbs free

energy of solvation and the ionic radius. In Figure 4.1 these observations are applied as a

means of evaluating the choice of Born cavity diameters for the ions, which are indeed found

to correlate linearly with their Gibbs free energy of solvation. This lends confidence to the

values of σBorn
ii chosen for the ions, especially to the approximation for that of the H3O+ ion.

The linear correlation of σBorn
ii with ∆Gsolv,i can therefore be used for estimating the cavity

diameter of ions as an alternative to the approach of Rashin and Honig, and in the absence of

other means of determination such as molecular simulation studies.

4.3.2 Ion–ion dispersion interactions

The like and unlike ion–ion dispersion energies are calculated using Equation (3.96) with the

polarisabilities α0,i and ionisation potentials Ii presented in Tables 4.2 and 4.3. The ionisation

potential of anions is taken to be the negative of the electron affinity of the parent species,

and that of the atomic cations is taken as the higher-order ionisation potential of the parent

species. The values of these properties are obtained from Ref. [202] for the atomic ions, and

from Ref. [203–206] for the molecular ions.
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Figure 4.1 The values of the Born cavity diameter, denoted by symbols, are shown to correlate
linearly with the experimentally measured Gibbs free energy of solvation reported in Refs.
[199–201] for 298 K and 1 bar. This provides a means of validating the values assigned to
the σBorn

ii parameter in the SAFT-VR Mie models of the ions. (The dashed lines are provided
as guides for the eye.)

Equation (3.33) for determining the unlike Mie potential exponents λr and λa for pairs

of species requires knowledge of the species’ like-interaction Mie exponents. In the case of

ions, the Mie exponents are set a priori depending on the nature of the ion: for atomic ions,

the Lennard-Jones potential [155] (which is a special case of the Mie potential with λr = 12

and λa = 6) is applied, following the work of Dufal [122]; while the molecular ions adopt the

form of the potential of their reference parent molecule.

The resulting values for εii and εi j , shown in Tables 4.4 and 4.5 respectively, follow

physically reasonable trends relative to the size and charge of the ions. For atomic ions of

a given charge, εii becomes larger with increasing ionic size. Furthermore, within a given

period, the εii of the divalent cation is stronger than that of the monovalent cation but weaker

than that of the monovalent anion. The ion–ion dispersion energy is strongly dependent not

only on the size of the ions but also on the form of the intermolecular potential. As well as
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following the correct trends, the ion–ion dispersion interactions are of a reasonable order

of magnitude. This substantiates both the choice of using the Lennard-Jones potential for

the atomic ions and the application of the Mie potential of the water model to represent the

H3O+ and OH− molecular ions.
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4.3.3 Ion–solvent interactions: dispersion and hydrogen bonding

Two types of interactions between the ionic and solvent species are relevant to systems of

electrolytes: firstly, the dispersive ion–solvent interaction which is applicable to all ions;

and secondly the hydrogen-bonding interaction between the solvent and the molecular ions

possessing association sites.

For both molecular ions considered in the context of strong electrolytes, H3O+ and OH−,

the smallest neutral parent molecule is water. Consistency between these three interrelated

species is achieved in part by relating their association parameters. Specifically, the ion–water

association parameters are determined by scaling the cross-association energy and bonding

volume to those of the water–water association interaction. To achieve this, the ion–water

bonding volume KHB
ab,H2O−i is scaled by the corresponding unlike ion–water diameter σH2O-i

(obtained from equation (3.30)):

KHB
ab,H2O−i

(σH2O-i)3
=

KHB
ab,H2O−H2O

(σH2O−H2O)3
. (4.15)

Subsequently, the ion–water association energy εHB
ab,H2O−i is scaled to the resulting bonding

volume:

εHB
ab,H2O−i

KHB
ab,H2O−i

=
εHB

ab,H2O−H2O

KHB
ab,H2O−H2O

. (4.16)

4.3.4 Parameter estimation methodology

Having established ways of determining the ion size parameters, the ion–ion dispersion

interaction parameters, and the ion–solvent association parameters, the ion–solvent dispersion

interaction parameters now remain to be determined. The exponents of the cross-interaction

Mie potential are obtained using the combining rule of equation (3.33), while the interaction
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energy εH2O−i is treated as an adjustable parameter optimised by comparison to appropriate

thermodynamic experimental data. As a result, the model development procedure requires

only one adjustable parameter per ion in the case of single-solvent solutions.

The optimisation approach for determining the εH2O-i parameters makes use of exper-

imental data for aqueous single-solute solutions, which are modelled as ternary mixtures

consisting of water and the solvated ions arising from complete dissociation of the electrolyte

solute. The assumption of complete dissociation is commonly adopted in the modelling of

strong electrolytes using an EOS, nevertheless the physical reality of the system under con-

sideration is known to deviate to varying degrees from this approximation [207], especially

at higher salt concentrations. Furthermore, as the concentration of ions in solution increases,

the treatment of the solvent as a continuous dielectric medium becomes less appropriate. In

previous work with SAFT-VRE, Schreckenberg et al. [61] adopted an upper salinity limit

for the approximation of a dielectric continuum as 10 molal: in solutions of 1:1 electrolytes,

this translates to less than six solvent molecules per pair of ions. Assuming a coordination

number of six for all ions, this would allow on average only the first solvation shell to form

around each ion.

In order to maintain the integrity of these assumptions in the theory (complete dissociation

and a uniform dielectric continuum), experimental data only at moderate concentrations are

used in this work for optimising the ion–water interaction energy parameters. By limiting

the range of experimental data to solute molalities up to 3 molal, one can avoid biasing

the ion models towards either extreme of salinity, whilst simultaneously providing a good

description of the non-ideal solution behaviour at low concentrations. Aside from the careful

selection of the data set’s molality range, the temperature range considered is also restricted

to a range between 278 and 473 K, so as to avoid the density anomaly of water close to its

freezing temperature as well as the region close to the critical temperature of water.

The properties considered in the optimisation procedure are limited to the saturated

vapour pressure (p), the liquid and saturated liquid densities (ρ), and the osmotic coefficient
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(Φ) of aqueous single-salt solution mixtures. Osmotic coefficient data, being a magnifying re-

scaling of the activity of the solvent, are crucial to determining the strength of the ion–water

dispersion energy, as this property gives a direct indication of how well the model reproduces

the behaviour of the solvent under the influence of the electrolyte solute. Saturated vapour

pressure data are also useful for characterising εH2O-i, as the strength of this interaction

directly influences the partition of the water between the liquid and vapour phases. Finally,

density data not only provides insight as to the strength of the attraction between the ions

and the solvent, but also regarding the structural parameters of the species in the mixture,

thus allowing an evaluation of the size parameters assigned to the ions.

The use of these properties leads to robust, physically sound models for the ionic species

in solution, thus allowing other thermodynamic properties, such as the MIACs of the salts to

be determined in a fully predictive manner with the resulting models. In previous work with

SAFT-VRE, Schreckenberg et al. [61] included the MIAC of the salts in the optimisation

of the ion models instead of the osmotic coefficient. The experimental data chosen for this

work reflect the fact that the osmotic coefficient has been studied experimentally much more

extensively than the MIAC, with the latter often determined indirectly via measurements of

the former using the relationship given by Equation (2.26).

The εH2O−i model parameters are optimised by minimising an objective function consist-

ing of the relative difference between the experimental and calculated values of the selected

properties. A least-squares objective function is used following the Levenberg-Marquardt

method [193, 194]:

min Fobj =
∑

o

(
ωo

np,o

np,o∑
j

[ Xexp
o, j − Xcalc

o, j

Xexp
o, j

]2)
, (4.17)

where np,o is the number of data points j for property of type o; ωo is the weight given to

property o (ωo = 1 was used for all properties of the strong electrolyte systems considered);

and Xexp
o, j and Xcalc

o, j are the experimental and calculated values of the property, respectively.
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The ranges of the experimental data considered are summarised in Table 4.6, and the

sources are listed in Table 4.8. The optimisation was carried out in stages, starting first by

considering all the monovalent atomic cations and anions simultaneously, using experimental

aqueous solution data for 15 1:1 salts. This was followed by simultaneous estimation for all

divalent atomic cations, with experimental data for 12 1:2 salts. The molecular ions were

parametrised individually, using data for KOH(aq) and HBr(aq) to optimise the OH−-water

and H3O+-water dispersion energies, respectively.

4.4 SAFT-VRE Mie electrolyte models

The ion models developed in this work include five monovalent cations: Li+, Na+, K+, Rb+,

H3O+; five monovalent anions: F−, Cl−, Br−, I−, OH−; and four bivalent cations: Ba2+, Ca2+,

Mg2+, Sr2+. Each of these ions can be used as constituent components to describe multiple

electrolytes in solution mixtures.

The optimal unlike εi−H2O parameters are shown in Table 4.4 and are seen to follow

physically meaningful trends relative to the size and charge of the ions. The dispersion

interactions between the atomic cations and water molecules increase in strength as the

cations become smaller, due to the higher charge density and therefore greater polarising

effect on the water molecules. The ion–water interaction of each divalent cation is also

larger than that of a monovalent cation in the same period, correctly reflecting stronger

polarising effect of the smaller, higher-charge-density, divalent ions on the water molecules.

For the interactions of atomic anions with water, a stronger dispersion energy is obtained

with increasing ionic size, as the ion becomes more polarisable.

The εi−H2O parameters of the molecular ions also adopt physically reasonable values,

although a direct evaluation relative to the atomic ions is not possible as they both differ in

the range of the Mie potential, having been assigned the Mie potential parameters of the

water model rather than those of the Lennard-Jones potential. More importantly, OH− and
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H3O+ are modelled as associating ions. The hydronium ion is assigned three ‘H’-type sites

to mediate hydrogen bonding with water. Experimental evidence for this hydrogen bonding

interaction scheme has been reviewed by Eigen [208], and it has also been substantiated

by means of molecular dynamics simulations of the hydration shell of H3O+ in water by

Markovith and Agmon [209]. The hydroxide ion is modelled with three ‘e’-type association

sites, in line with the spectroscopic evaluation of the OH− hydration shells presented by

Robertson et al. [210]. In the aqueous solutions of strong acids and bases under consideration

here, OH− and H3O+ form hydrogen bonds with water molecules only. The association

parameters of these ion–water interactions are determined by scaling the hydrogen-bonding

energy and bonding volume to those of pure water, using Equations 4.15 and 4.16, based on

the sizes of the segment cores. The H3O+-water association parameters obtained with this

approach are therefore the same as for pure water since the ion diameter is equal to that of

water in this case.
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Table 4.5 Dispersion energies εi j between unlike ions, calculated using Equation 3.96.

(εi j/kB)/K

F− Cl− Br− I− OH−

Li+ 7.6879 8.2904 7.1802 5.8749 9.1482

Na+ 22.891 27.938 24.990 21.383 27.898

K+ 43.681 61.010 56.592 50.963 54.733

Rb+ 53.634 78.254 73.489 67.344 67.944

H3O+ 51.100 70.552 65.806 59.657 66.439

Mg2+ 23.847 24.942 21.711 17.864 33.269

Ca2+ 52.716 63.171 57.024 49.340 77.245

Sr2+ 60.690 78.247 72.007 64.012 80.711

Ba2+ 72.079 98.707 92.369 84.073 97.975

4.5 Description of thermodynamic properties

The adequacy of the models presented in Table 4.4 is assessed by comparing the SAFT-VRE

Mie predictions with experimental data for the vapour pressure, liquid density, osmotic

coefficient, and mean ionic activity coefficient of 32 aqueous electrolyte solutions, as well as

with experimental data for the Gibbs energy of solvation of the ions and the solubility limit of

the salts. The quality of the SAFT-VRE Mie description for these thermodynamic properties

is quantified by the percentage average absolute deviation (%AAD) of each property with

respect to the experimental data for that property:

%AAD =
100
np,o

np,o∑
j

����Xexp
o, j − Xcalc

o, j

Xexp
o, j

����. (4.18)
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The SAFT-VRE Mie electrolyte methodology provides a good description of the ther-

modynamic properties used in the development of the ion models within the range of

thermodynamic conditions of the experimental data points used for parameter optimisation.

The %AAD values corresponding to the experimental dataset of Table 4.6 are shown in

Table 4.9. On average, across all solutions considered, the optimisation dataset is described

with %AAD of 1.85% for the saturated vapour pressure, 1.64% for the liquid density, and

2.49% for the osmotic coefficient. For comparison, Table 4.10 gives the %AAD values of

the properties of the aqueous electrolyte solutions calculated with SAFT-VRE Mie from

experimental data across a wide range of conditions, well beyond those considered in the

model development. This expanded dataset, summarised in Table 4.7, includes higher salt

concentrations up to 10 mol kg−1, as well as data for acid and base solutions not included in

the parameter optimisation procedure. The expanded dataset is described – on average across

all solutions considered – with %AAD of 3.87% for the saturated vapour pressure, 2.96% for

the liquid density, 4.90% for the osmotic coefficient, and 10.8% for the mean ionic activity

coefficient. The sources of all aforementioned data are listed in Table 4.8.

As a means of assessing the influence of variation in the parameters on the performance

of the model, the parameters relevant to an aqueous NaCl solution are taken as case study,

with each ionic group interaction and cross-interaction parameter varied by ±10%, and the

effect on the calculated properties’ %AAD checked with reference to the expanded dataset.

Variation in the εii and σBorn
ii parameters (for both the anion and cation species), as well as

the εi j parameter for unlike ion–ion interaction, were found to have a limited effect on all

properties, with absolute changes in %AAD varying from a minimum of +3.74E-4% to a

maximum of +0.84%. An increase in σanion changes the %AAD of the solution density by

+1.73% and a decrease changes it by -1.28%. Changes in σcation have a large effect on the

descriptions of the MIAC and osmotic coefficient: increasing σcation changes the %AAD by

+9.81% for the MIAC and +1.88% for Φ, while decreasing σcation changes the %AAD by

+4.16% for the MIAC and +2.56% for Φ. The sensitivity of the models to the segment size

assigned to the species is attributed firstly to the change in charge density of the ions, and also
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to the packing of the segments in the fluid mixture. Changes in the εion−water parameter also

have a large effect on the MIAC: an increase in εanion−water changes the %AAD by +1.27%,

and an increase in εcation−water changes the %AAD by +5.30%. A decrease in εcation−water

changes the %AAD by +1.45% for the MIAC and by +1.77% for Φ. The sensitivity of the

model to the ion–water dispersion interaction can be attributed to the resultant effect on the

hydration of the solvated ions, which is treated implicitly by this parameter. The effect of

the σion and εion−water parameters is small on all other properties in the extended dataset not

noted above, with changes in %AAD smaller than ±0.85%.

The performance of the SAFT-VRE Mie models is exemplified in the following sections

by calculating the osmotic coefficients, MIACs, Gibbs energies of solvation, and solubility

limits at ambient conditions (298 K and 1.01 bar), and the densities and vapour pressures at a

range of temperatures. The results obtained for these key thermodynamic properties validate

the implementation of the SAFT-VRE Mie approach for electrolytes, together with the ion

models developed in this work. A good description of the electrolyte solution properties is

achieved across a breadth of conditions and compositions, with predictive capability beyond

the molality range considered in the optimisation.
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Table 4.6 Overview of the experimental solution data used in the optimisation procedure for
the intermolecular parameters. The ranges of temperatures, maximum molality, pressure, and
the number of data points per property per salt are summarised.

Salt p ρ Φ

T mmax np T p mmax np T mmax np

(K) (mol kg−1) (K) (bar) (mol kg−1) (K) (mol kg−1)

LiCl 293–423 3.0 31 278–343 1.01 2.7 200 298 3.0 43

LiBr 313–368 2.9 12 278–343 1.01 2.9 114 298 3.0 23

LiI 291–343 2.5 13 298–373 1.01 3.0 74 298 3.0 23

NaF 373–448 0.01 24 298–323 1.01 0.9 161 298 1.0 17

NaCl 283–383 3.0 100 283–353 1.01 3.0 48 298 3.0 52

NaBr 303–368 3.0 20 283–343 1.01 2.9 76 298 2.9 28

NaI 298–368 2.7 28 293–303 1.01 1.7 34 298 3.0 23

KF 291 2.8 4 298 1.01 3.0 138 298 3.0 23

KCl 298–368 3.0 74 278–353 1.01 3.0 48 298 3.0 36

KBr 298–368 2.8 30 283–348 1.01 3.0 188 298 3.0 23

KI 303–343 3.0 24 278–368 1.01 1.0 283 298 3.0 23

KOH 293–473 3.0 8 298–348 1.01 3.0 73 298 3.0 23

RbF 291 2.6 5 298 1.01 0.5 7 298 3.0 23

RbCl 263–368 3.0 32 298 1.01 3.0 23 298 3.0 23

RbBr 291 2.4 16 298–323 1.01 3.0 23 298 3.0 23

RbI 291 2.7 9 298–310 1.01 0.4 15 298 3.0 23

HBr 298–327 2.6 6 298–348 1.01 3.0 78 298 3.0 42

MgBr2 373 3.0 4 298 - 2.9 12 298–323 3.0 46

MgCl2 295–394 3.0 140 288–372 - 2.9 118 298–343 3.0 65

MgI2 - - - - - - - 298 3.0 36

CaBr2 298–373 3.0 33 298 - 2.7 26 298–473 3.0 84

CaCl2 291–391 3.0 356 288–298 - 3.0 42 288–473 3.0 282

CaI2 298–343 2.9 29 - - - - - - -

SrBr2 303–373 3.0 39 298 - 2.4 13 298 2.1 40

SrCl2 303–343 2.9 30 - - - - 298 3.0 36

SrI2 303–43 2.9 30 - - - - 298 2.0 38

BaBr2 303–373 3.0 39 298 - 1.6 12 298–343 2.5 92

BaCl2 298–343 1.7 51 288–298 - 1.5 49 298–372 2.5 45

BaI2 - - - - - - - 298 2.0 38
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Table 4.7 Overview of the experimental solution data used for evaluating the SAFT-VRE
Mie ion models. The ranges of temperatures, maximum molality, pressure, and the number
of data points per property per salt are summarised.

Salt p ρ Φ γ±,m

T mmax np T p mmax np T mmax np T mmax np

(K) (mol kg−1) (K) (bar) (mol kg−1) (K) (mol kg−1) (K) (mol kg−1)

LiCl 298–423 9.1 106 278–343 1.01 10.0 236 298–473 10.0 75 298 10.0 48

LiBr 291–373 9.8 94 278–343 1.01 10.0 249 298–498 10.0 33 298 9.0 34

LiI 291–343 9.8 35 298–373 1–1.01 4.9 84 298 3.0 23 298 3.0 33

NaF 373–448 0.0 24 297–498 1.01 1.0 161 298 1.0 17 298 1.0 6

NaCl 273–383 6.8 203 298–473 1.01 5.0 64 298–373 6.1 94 298 6.1 30

NaBr 283–368 9.9 71 283–343 1.01 8.3 162 298–473 9.5 100 298 8.2 47

NaI 298–368 9.3 88 298 1.01 1.7 34 298 10.0 33 298 3.5 14

NaOH 293–298 10.0 20 298–348 1.01 3.0 86 298 10.0 33 298 10.0 34

KF 291 9.2 9 297–372 1.01 8.9 167 298 10.0 23 298 4.0 15

KCl 298–373 6.9 125 298–353 1.01 4.0 64 273–473 6.0 49 298 4.0 80

KBr 283–368 6.2 79 283–348 1.01 5.8 265 298–498 7.4 28 298 5.5 36

KI 303–343 5.6 40 278–373 1.01 1.0 283 298–343 5.6 26 298 4.0 35

KOH 293–473 10.0 30 298–348 1.01 3.0 73 298 10.0 33 298 10.0 34

RbF 291 9.8 7 298 1.01 0.5 7 298 3.5 24 298 3.5 14

RbCl 291 7.1 89 298 1.01 5.0 27 298 7.8 32 298 5.0 17

RbBr 263–368 4.8 32 298–323 1.01 6.8 27 298 5.0 27 298 5.0 32

RbI 291 5.6 10 298–310 1.01 0.4 15 298 5.0 27 298 5.0 34

HCl 298–373 10.0 154 298–348 1.01 9.9 117 298 10.0 64 298 10.0 34

HBr 298–338 7.9 26 298–348 1.01 3.0 78 298 10.0 60 298 10.0 34

HI 298 8.8 5 298–348 1.01 2.5 79 298 10.0 33 298 10.0 34

MgBr2 373 4.0 5 298 - 3.7 13 298–323 5.0 54 298 3.0 15

MgCl2 295–398 5.0 210 288–372 - 4.8 153 298–343 5.0 95 298 5.9 53

MgI2 - - - - - - - 298 5.0 44 298 1.6 13

CaBr2 298–373 5.7 53 298 - 3.4 27 298–473 5.0 100 298 3.0 15

CaCl2 291–403 5.0 541 288–328 - 4.0 49 288–498 5.4 362 298 3.0 67

CaI2 298–343 2.9 29 - - - - - - - 298 1.8 14

SrBr2 303–373 4.0 45 298 - 2.4 13 298 2.1 40 298 2.0 30

SrCl2 303–343 4.2 40 - - - - 298 4.0 42 298 4.0 78

SrI2 303–343 4.2 40 - - - - 298 2.0 38 298 2.0 30

BaBr2 303–373 3.4 44 298 - 1.6 12 298–343 3.4 97 278–318 2.3 49

BaCl2 298–343 1.7 51 288–328 - 1.5 49 298–372 2.5 45 298 1.4 14

BaI2 - - - - - - - 298 2.0 38 298 2.0 30
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Table 4.8 Sources of the experimental solution data summarised in Tables 4.6 and 4.7.

Salt p ρ Φ γ±,m

KBr [211–214] [215–218] [219] [219]

KCl [212–214, 220–223] [216, 218] [219, 224–226] [219]

KF [227] [228–230] [219] [219]

KI [212] [228, 229, 231–233] [212, 219] [219]

LiBr [213, 234–237] [216, 217, 238] [219, 239] [219]

LiCl [213, 240–242] [216, 243, 244] [219, 245] [219]

LiI [227, 235] [246–248] [219] [219]

NaBr [211–213] [216, 217, 249] [219, 239, 250] [219]

NaCl [223, 251, 252] [216, 218] [219, 224, 250, 252–254] [219]

NaF [255] [228–230, 256] [219] [219]

NaI [212, 213, 257] [228, 229, 258, 259] [219] [219]

RbBr [227, 260] [228, 261, 262] [219] [219]

RbCl [212, 213, 227, 260] [229, 258, 263] [219] [219]

RbF [227] [228] [219] [219]

RbI [227] [228, 264] [219] [219]

HCl [265–267] [268, 269] [219, 266] [266]

HBr [270, 271] [268] [219, 272] [219]

HI [273] [268] [219] [219]

NaOH [242] [274, 275] [219] [219]

KOH [242, 276] [274, 277] [219] [219]

MgBr2 [278] [279] [280] [281]

MgCl2 [212, 278, 282–284] [285, 286] [212, 287] [287, 288]

MgI2 - - [280] [289, 290]

CaBr2 [212, 273, 278] [279, 291] [292] [281, 292]

CaCl2 [212, 278, 283, 284, 293–302] [303] [212, 292, 304–309] [281, 292, 310–312]

CaI2 [212, 273] - - [290]

SrBr2 [212, 278] [279] [280] [290, 313]

SrCl2 [212] - [280] [314–316]

SrI2 [212] - [280] [290, 313]

BaBr2 [212, 278] [279] [212, 280, 290] [281, 317]

BaCl2 [212, 294] [303] [280, 318] [281]

BaI2 - - [280] [290, 313]
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Table 4.9 %AAD of the vapour pressure (p), liquid density (ρ), and osmotic coefficient (Φ)
of the aqueous salt solutions calculated with SAFT-VRE Mie, from the experimental solution
data used in the parameter optimisation (cf. Table 4.6). (Dashes indicate that experimental
data for the comparison are unavailable.)

Salt p ρ Φ

LiCl 1.32 0.75 2.41
LiBr 1.82 0.85 2.53
LiI 1.56 1.25 1.81
NaF 1.16 0.41 0.80
NaCl 1.23 3.09 1.69
NaBr 1.48 2.18 4.99
NaI 2.17 0.57 5.42
KF 5.78 2.13 1.64
KCl 1.65 3.70 2.94
KBr 0.92 3.16 0.48
KI 0.70 0.82 1.25
KOH 1.69 2.87 0.41
RbF 2.19 0.23 1.20
RbCl 1.26 1.74 2.25
RbBr 2.11 2.12 0.48
RbI 2.20 0.22 0.89
HBr 1.04 1.05 0.88
MgBr2 1.23 0.61 3.82
MgCl2 1.29 1.42 5.09
MgI2 – – 5.12
CaBr2 1.13 1.83 5.11
CaCl2 3.79 2.01 4.31
CaI2 4.25 – –
SrBr2 1.42 1.51 2.11
SrCl2 3.54 – 2.04
SrI2 1.10 – 2.41
BaBr2 0.81 2.92 2.83
BaCl2 1.24 2.02 2.81
BaI2 – – 2.11
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Table 4.10 %AAD of the vapour pressure (p), liquid density (ρ), osmotic coefficient (Φ),
and MIAC (γ±,m) of the aqueous salt solutions calculated with SAFT-VRE Mie, from
experimental data across a wide range of temperature and pressure conditions, subject to the
availability of data (cf. Table 4.7). (Dashes indicate that experimental data for the comparison
are unavailable.)

Salt p ρ Φ γ±,m

LiCl 2.22 1.85 2.47 16.79
LiBr 4.45 1.09 1.49 14.22
LiI 6.20 2.18 2.02 10.98
NaF 1.40 1.02 2.21 8.40
NaCl 1.71 5.07 3.04 20.43
NaBr 1.98 4.36 4.24 7.92
NaI 4.91 10.10 10.71 5.01
NaOH 3.96 2.44 3.51 17.34
KF 4.56 1.69 1.59 8.02
KCl 3.29 7.03 1.40 11.60
KBr 1.65 2.91 8.42 1.73
KI 3.71 3.02 17.34 11.73
KOH 7.48 3.28 4.61 5.33
RbF 4.84 7.11 1.99 4.74
RbCl 2.23 0.76 4.18 1.03
RbBr 3.20 4.56 5.72 7.68
RbI 3.60 3.07 14.36 26.51
HCl 15.29 2.12 5.96 21.89
HBr 3.94 1.05 4.75 8.53
HI – 1.21 4.88 8.12
MgBr2 1.87 0.74 5.33 8.52
MgCl2 2.95 2.50 7.44 16.49
MgI2 – – 6.07 18.21
CaBr2 3.67 1.98 7.27 11.43
CaCl2 4.24 2.59 5.10 8.31
CaI2 4.25 – – 21.34
SrBr2 2.20 1.51 2.11 7.95
SrCl2 7.02 – 3.42 5.87
SrI2 3.15 – 2.41 6.57
BaBr2 1.03 2.92 3.03 5.60
BaCl2 1.24 2.02 2.81 10.61
BaI2 – – 2.11 7.62
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4.5.1 Solution densities and saturated vapour pressures

Liquid-phase densities at 298 K and 323 K at 1.01 bar are shown in Figure 4.2 for a selection

of salt solutions. The SAFT-VR Mie representation of the density allows an assessment of

the methodology for the choice of diameters used to describe the ions, since this property

is heavily dependent on the sizes of the species in the mixture. The lithium salts are of

particular interest in this respect, because Li+ is the smallest ion considered in this work and

the assumptions made regarding the ion sizes are expected to have a greater impact on the

smaller ions. Given the fair agreement between the calculated densities and experimental

data, the selected crystal ionic diameters are considered to provide a reasonable estimate of

the ion size. The depression of the vapour pressure with increasing salt concentration is of
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Figure 4.2 The concentration dependence of the liquid-phase density ρ for aqueous solutions
of lithium salts LiI, LiBr, and LiCl. The continuous curves and squares represent the SAFT-
VRE Mie calculations and experimental data, respectively, at 298 K and 1.01 bar. The dashed
curves and circles represent the SAFT-VRE Mie calculations and experimental data at 323 K
and 1.01 bar. The experimental data were obtained from the sources listed in Table 4.8.
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central importance for evaluating the proposed models, considering the vast difference in

composition between the vapour and liquid phases. Exemplified by the calculated vapour

pressures of aqueous NaCl solutions for a range of temperatures depicted in Figure 4.3, the

capability of the proposed model to reproduce the temperature dependence of the vapour

pressure to a high level of accuracy is demonstrated.

0

20

40

60

80

100

0 1 2 3 4 5 6

p/
(k

Pa
)

m/(mol kg−1)

373 K

353 K

323 K
298 K

Figure 4.3 The concentration dependence of the saturated vapour pressures p of aqueous
solutions of NaCl for temperatures ranging from 298 to 373 K. The continuous curves
represent the SAFT-VR Mie calculations and the squares represent the experimental data
obtained from the sources listed in Table 4.8.
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4.5.2 Osmotic coefficient and mean ionic activity coefficient

The description of osmotic coefficients of a range of 1:1 and 1:2 salts solutions is illustrated

in Figures 4.4 and 4.5, while the osmotic coefficients of acid and base solutions are shown in

Figure 4.6. The SAFT-VR Mie calculations are seen to follow the trends of the experimental

data, with particularly good quantitative agreement in the highly non-ideal low-molality

region. One may perceive that greater deviations between the model predictions and the

experimental data are observed for 1:2 salts in Figure 4.5 and acids and bases in Figure

4.6, as compared to the 1:1 salts in Figure 4.4. This is to be expected, as the monovalent

ion models were optimised first, meaning that the subsequent model optimisation for the

bivalent cations, hydroxide ion, and hydronium ion was restricted by the fixed parameters

of the counterion in the solution mixture. Nevertheless, from these results for the osmotic

coefficient of a wide range of electrolyte solutions it is deduced that the models provide a

good representation of the change in the behaviour of the dipolar water solvent as a result of

its interaction with the charged ions.
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Figure 4.4 The concentration dependence of the osmotic coefficients Φ for a selection of
aqueous solutions of 1:1 salts at 298 K and 1.01 bar. The continuous curves represent the
SAFT-VRE Mie calculations and the squares represent the experimental data obtained from
the sources listed in Table 4.8.
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Figure 4.5 The concentration dependence of the osmotic coefficients Φ for a selection of
aqueous solutions of 1:2 salts at 298 K and 1.01 bar. The continuous curves represent the
SAFT-VRE Mie calculations and the squares represent the experimental data obtained from
the sources listed in Table 4.8.
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Figure 4.6 The concentration dependence of the osmotic coefficients Φ for a selection of
aqueous solutions of acids and bases at 298 K and 1.01 bar. The continuous curves represent
the SAFT-VRE Mie calculations and the squares represent the experimental data obtained
from the sources listed in Table 4.8.



4.5 Description of thermodynamic properties 149

A direct way of assessing the reliability of the ion models and the predictive capability of

the SAFT-VRE approach is via the MIAC of the aqueous salts, which is directly related to

the chemical potential of the solvated ions and consequently provides a measure of how well

the thermodynamic properties of the ions are represented in solution. In the present work,

the MIAC has not been used for the development of the ion models, and the prediction of

this property can hence serve as a benchmark for ensuring that the model parameters are

physically sound. The MIAC of a selection of salts, acids, and bases in aqueous solution are

shown in Figures 4.7, 4.8, and 4.9; the %AAD of the predicted values from the corresponding

experimental data for all of the salts considered are reported in Table 4.10. The SAFT-VRE

Mie predictions for the MIAC are in very good agreement with the experimental data despite

not having been used in the model development. By limiting the molality range of the dataset

used in the parameter optimisation procedure, the non-ideality of the solution at low salinity

is well accounted for by the resultant models, as has been already illustrated through the

description of the osmotic coefficient. As a result, this leads to very good predictions for the

MIAC.
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Figure 4.7 The concentration dependence of the mean ionic activity coefficients γ±,m condi-
tions at of vapour-liquid equilibrium for a selection of aqueous solutions of 1:1 salts at 298 K.
The continuous curves represent the SAFT-VR Mie calculations and the squares represent
the experimental data obtained from the sources listed in Table 4.8.
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Figure 4.8 The concentration dependence of the mean ionic activity coefficients γ±,m at
conditions of vapour-liquid equilibrium for a selection of aqueous solutions of 1:2 salts at
298 K. The continuous curves represent the SAFT-VR Mie calculations and the squares
represent the experimental data obtained from the sources listed in Table 4.8.
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Figure 4.9 The concentration dependence of the mean ionic activity coefficients γ±,m at
conditions of vapour-liquid equilibrium for a selection of aqueous solutions of acids and
bases at 298 K. The continuous curves represent the SAFT-VR Mie calculations and the
squares represent the experimental data obtained from the sources listed in Table 4.8.
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Four isotherms of the MIAC of aqueous NaCl solutions are shown in Figure 4.10 for

temperatures in the range of 288–333 K. Correctly representing the experimental trend at

low concentrations, the SAFT-VRE Mie model is able to predict the decrease of the MIAC

with increasing temperature for aqueous solutions of NaCl, thereby illustrating the predictive

capability of the approach with regard to property’s dependence on temperature. At higher

salt concentrations the SAFT-VRE Mie predictions continue to follow the order demonstrated

by the data in the low-salinity region. The predictions at higher salinities appear to be at

odds with the experimental trend which shows the MIAC at 333 K becoming larger than

that at 288 K; the deviations of the theoretical predictions from the experimental data are

∼20% at the highest concentrations considered. It should be noted, however, that the trend

depicted by the experimental data for the MIAC is inconsistent with that presented by the

data for the osmotic coefficient in Figure 4.11. As the MIAC and osmotic coefficient are

directly related through Equation 2.26, one would expect a similar trend with temperature;

the apparent absence of this connection between the two types of data casts some doubt on

the quality of the experimental data for the MIAC at higher temperatures and concentrations.

On the other hand, keeping in mind that the approximate description of the polarity of the

solvent with a dielectric continuum within the SAFT-VRE approach is expected to be less

adequate at very high salt concentrations, the approach is intrinsically hindered from highly

accurate predictions of sensitive properties such as the MIAC at high salinities. Regardless

of these uncertainties, it should be noted that the temperature dependence predicted with the

presently proposed SAFT-VRE method and accompanying models is in agreement with that

predicted with other methods; for example, the SAFT2-KMSA EOS of Jiang et al. [118], the

ePPC-SAFT EOS of Rozmus et al. [117], and the semi-empirical model of Pitzer et al. [319]

have also predicted that the MIAC of aqueous strong electrolytes decrease with increasing

temperature.
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Figure 4.10 The concentration dependence of the mean ionic activity coefficient γ±,m for
aqueous solutions of NaCl at 1.01 bar for temperatures ranging from 288 to 333 K, shown
both at low (top) and high (bottom) salinity. The continuous curves represent the SAFT-VR
Mie predictions, and the squares represent the experimental data [320–326].
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Figure 4.11 The concentration dependence of the osmotic coefficient Φ for aqueous solutions
of NaCl at 1.01 bar for temperatures ranging from 288 to 373 K. The continuous curves
represent the SAFT-VR Mie predictions, and the squares represent the experimental data
obtained from the sources listed in Table 4.8.
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4.5.3 Gibbs free energy of solvation

The approach proposed for the implementation of the Born contribution in the SAFT-VRE

Mie EOS is evaluated by assessing the description of the Gibbs free energy of solvation

∆Gsolv,i of the individual ions in aqueous solution. The predictions of ∆Gsolv,i are presented

in Table 4.11, alongside the experimentally determined values [199–201]. These predictions

are a significant improvement over those achieved in previous implementations of SAFT-

VRE [61], where the Born diameter was not differentiated from the segment diameter of the

ion. By adhering to the appropriate definition of the Born diameter as the cavity formed by the

ion in the solvent, it has been possible to obtain not only qualitative agreement with the trend

of the solvation energies, but also good quantitative agreement with the experimental values.

The level of the description of solvation effects achieved with the current implementation

of SAFT-VRE Mie is similar to that of SAFT approaches in which the ion–solvent polar

interactions are treated explicitly [31, 141, 144].

4.5.4 Aqueous solubility of salts

In addition to the ions’ Gibbs free energy of solvation, it is also interesting to consider

the limit of solubility of the salts, which can be calculated with a classical thermodynamic

approach using equation 4.13. This requires the activity coefficients of the salt’s constituent

ions, which are calculated using the SAFT-VRE Mie methodology, as well as the solubility

product Ksp,MX of the salt. One way of estimating the Ksp,MX is via tabulated data of the

Gibbs formation free energies ∆G f of the species using equation 4.14. The ∆G f of the salts

and ions considered here are taken from the literature [327] and summarised in Table 4.12.

It is important to note that these values should be used with caution as they are not direct

measurements, but rather deduced from a wide array of reported experimental data so as

to provide ‘best estimates’ rather than absolute quantities. Alternatively, the experimental

solubility product Kexp.
sp,MX can be calculated directly from experimental data for the mean
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Table 4.11 Free energy of solvation energy, ∆Gsolv of ions in aqueous solution: SAFT-
VRE Mie predictions are compared to the experimentally derived values reported in Refs.
[199–201].

-∆Gsolv,i/(kJ mol−1)

Ion, i SAFT-VR Mie Experiment

Li+ 535.72 529.00
Na+ 403.85 424.00
H3O+ 461.92 461.39
K+ 304.00 352.00
Rb+ 283.55 329.00
F− 444.60 429.00
OH− 432.58 437.94
Cl− 313.04 304.00
Br− 286.54 278.00
I− 249.59 243.00
Ba2+ 1331.45 1250.00
Ca2+ 1524.81 1505.00
Mg2+ 1946.03 1830.00
Sr2+ 1378.75 1380.00

ionic activity coefficient of the salt in saturated aqueous solution γexp
±,m, by rearrangement of

4.13:

Kexp.
sp,MX = msat,exp.

MX
(ν++ν−)

γ
exp
±,m

(ν++ν−) νν++ ν
ν−−

m◦(ν++ν−)
. (4.19)

The solubility product of a salt obtained from equation 4.19 can be used with greater

confidence since the data used for its calculation is specific to the salt in question. By

contrast, the ∆G f
i reported for ion i is a value which has been computed from experimental

data of an array of salts in which this ion i is a constituent [327]. The experimental γexp
±,m

values at salt saturation were obtained from Refs. [219, 223, 290, 304, 312, 328–332], and

the values of Ksp calculated from Equation 4.19 or taken from Ref. [128] are presented in

Table 4.13.
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The solubility limits for a number of salts, predicted using Equation 4.13 and the SAFT-

VRE Mie EOS, at conditions of 298 K and 1.01 bar are presented in Table 4.14 alongside

the experimental solubility data. Predictions using both the solubility product obtained from

Equation 4.14 and that obtained from Equation 4.19 are shown. It is immediately evident

that the predicted solubilities for the most commonly studied salts are in better agreement

with the reported experimental solubilities; it is plausible that the tabulated reference data

of the formation Gibbs free energy and the solubility product for these more common salts

are more reliable. This is supported by the fact that for such salts the two routes for the

calculation of the solubility lead to similar predicted values. It should be noted that many of

the salts considered here have a solubility limit which is well above the salt concentration

for which SAFT-VRE Mie is applicable. The range of application for the SAFT-VRE Mie

approach can be estimated to be at a maximum salt molality of 10 mol kg−1 [61], assuming

a 1:1 salt and a solvation shell for the ions with six coordinated water molecules. Beyond

this salt concentration the dielectric constant of the mixture can no longer be expected to

be the same as that of the pure solvent, as is inherently assumed by the current SAFT-VRE

Mie approach. As a consequence, it is not surprising that better predictions are achieved for

the solubility limits of the salts whose solubility falls within the limits of applicability of

the theory. By contrast, for salts which have a solubility limit well beyond the capability of

SAFT-VRE Mie, such as lithium salts, the solubility is highly over-predicted.

The prediction of aqueous solubilities of inorganic salts has also been extensively pursued

in the literature through molecular simulation studies of electrolyte solutions, therefore it

is interesting to compare the predictions obtained in such studies with those obtained with

the present approach. The predicted salt solubilities reported in three molecular simulation

studies [333–335] have also been included in Table 4.14. Although most such studies focus

on solutions of NaCl, the work of Moucka et al. [335] has included multiple salts and has

obtained aqueous salt solubilities using three different sets of models. When the solubility of

a given salt falls within the concentration range of applicability of the SAFT-VRE Mie EOS,

the predictions obtained in this work are typically in better agreement with experimental data
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as compared to the molecular simulation predictions, which typically underpredict the salt

solubilities. However, for salts whose solubilities are beyond the applicable concentration

range of SAFT-VRE Mie, the molecular simulation approaches provide a much better

prediction of this property, owing to their explicit representation of the solvent’s polarity

rather than implementing a uniform dielectric medium as in the present model.
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Table 4.12 Values used in equation 4.14 for the Gibbs free energies of solvation, ∆G f , of the
solid salts and solvated ions, obtained from Ref. [327]. The ∆G f of the salts correspond to
the crystalline anhydrous salt at 298 K and 1 bar; and the ∆G f of the ions correspond to the
ion in aqueous solution at unit molality at 298 K and 1 bar.

Salt −∆G f
salt(s)

/(kJ mol−1) Ion −∆G f
ion(aq)

/(kJ mol−1)

LiCl 384.37 Li+ 293.31
LiBr 342.00 Na+ 261.91
LiI 270.29 K+ 283.27
NaF 543.49 Rb+ 283.98
NaCl 384.14 F− 278.79
NaBr 348.98 Cl− 131.23
NaI 286.06 Br− 103.96
KCl 409.14 I− 51.570
KBr 380.66 Ca2+ 533.58
KI 324.89 Sr2+ 559.48
RbCl 407.80
RbBr 381.79
CaCl2 748.10
CaBr2 663.60
SrCl2 781.10

Table 4.13 Values for the experimental solubility product Kexp.
sp at 298 K and 1.01 bar used

for the calculation of the solubilities of the salts in aqueous solution.

Salt Kexp.
sp Salt Kexp.

sp

LiCl 1.388×106 a CaCl2 1.309×107 a

LiBr 1.021×108 a CaBr2 1.011×1011 a

LiI 2.180×106 a SrCl2 459.3 a

NaF 3.397×10−1 a

NaCl 38.05 b

NaBr 114.7 b

KCl 8.003 b

KBr 13.53 b

KI 48.82 a

RbCl 20.24 a

a Values calculated using Equation 4.19.
b Values taken from Ref. [128].
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Table 4.14 Solubility limits, msat, for salts at conditions of 298 K and 1.01 bar: SAFT-
VRE Mie predictions are compared to the experimentally obtained values reported in Refs.
[202, 220, 336, 337]. Dashes denote that the Kexp.

sp for the salt was unavailable due to lack of
data for the MIAC of the salt in saturated aqueous solution γexp

±,m.

msat/(mol kg−1)

Salt SAFT-VRE Mie Experiment Molecular simulation

using ∆G f using Kexp.
sp Ref. [333] Ref. [334] Ref. [335]

cf. Eqn. 4.14 cf. Eqn. 4.19

LiCl 49.11 34.16 19.94 – – –
LiBr 138.0 64.93 20.83 – – 22.80
LiI 468.51 24.71 12.35 – – –
NaF 1.010 1.039 0.980 – – 1.030–1.850
NaCl 6.830 6.900 6.150 5.400 4.800 4.740–5.410
NaBr 17.33 12.50 9.190 – – 7.000–8.180
NaI 54.87 – 12.28 – – 11.06–16.30
KCl 4.870 4.683 4.770 – – 3.600–4.800
KBr 5.963 5.761 5.700 – – 3.740–4.110
KI 10.73 10.07 8.920 – – 5.790–8.220
RbCl 8.518 8.61 7.717 – – 5.680–8.350
RbBr 7.072 – 6.916 – – 4.550–4.700
RbI 6.855 – 7.630 – – 4.240–4.490
CaCl2 10.65 8.571 7.320 – – –
CaBr2 44.47 13.29 7.820 – – –
SrCl2 11.56 3.825 3.350 – – –
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4.6 Summary

In this chapter, the SAFT-VRE Mie EOS has been taken as the limiting case to which the

SAFT-γ Mie EOS converges to when applied to spherical ionic components. The contents of

this chapter have been published in a co-authored article which presents the SAFT-VRE Mie

EOS [338] and the accompanying models for the ionic species presented here.

Models have been developed for five monovalent cations, five monovalent anions, and

four bivalent cations. The parameterisation of models was performed with a methodology

that combines literature values of ionic properties with an established theory relating to

molecular interactions. Each ionic species requires only one unlike interaction parameter,

namely the ion–solvent dispersion energy, to be adjusted using experimental mixture data.

This is the case even for the hydronium and hydroxide ions which interact with the solvent

via association, as the unlike association parameters of these ion–solvent pairs have been

determined by relation to the hydrogen-bonding parameters of the water model.

A distinguishing feature of the methodology employed in this work is the choice to limit

the range of concentration considered for the determination of this parameter to less than

3 mol kg−1 in order to adhere to the inherent assumptions of the MSA primitive model,

i.e., the representation of the solvent as a uniform dielectric medium, and the assumption

of complete dissociation of ionic species. In doing so, the ion models developed here can

also be employed in other work in which more complex phenomena such as ion pairing

are accounted for, since the models have not been skewed by high-concentration data to

implicitly encompass these interactions.

The models developed for the ionic species were applied to describe the properties of

32 single-salt aqueous solutions. The performance of the models is accurate up to high salt

concentrations for thermodynamic properties including the liquid-phase solution densities,

vapour pressure, and osmotic coefficients. A high level of agreement with experimental data
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is also seen in the predictions of the mean ionic activity coefficients of a range of salts, and

the predictions of the Gibbs free energy of solvation of the ions. Finally, for salts whose

solubility limit falls within the range to which this modelling approach is applicable, i.e.

≤ 10 mol kg−1, the aqueous solubility at ambient conditions was reproduced very well.





Chapter 5

Complex organic electrolytes

The application of SAFT-γ Mie to mixtures comprising non-spherical molecular ions first

requires characterisation of the ions’ charged functional groups and their unlike interactions

with other neutral and charged groups in the mixture. In this chapter, sodium carboxylate salts

of varying alkyl chain length are modelled. This requires model parameters to be developed

for the carboxylate functional group, COO−, while the model for the Na+ ion is obtained

from Chapter 4. A convenient feature of SAFT-based models is that chemical species adopt

model parameters whose magnitude can be assessed for correctness relative to other closely

similar species. This arises due to the sound physical meaning of the model parameters, and

it has been exemplified in Chapter 4 by the similarity between the model for water and the

models for the hydronium and hydroxide ions. In order to leverage this characteristic in the

development of the COO− group, the SAFT-γ Mie model for the carboxyl group (COOH) is

examined first, by studying alkyl carboxylic acids. The COO− group is then parameterised

using both SAFT-γ Mie electrolyte formulations proposed in Chapter 3, and the efficacy of

each approach is assessed with respect to the reproduction of bulk-phase properties of the

solutions.
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5.1 Insights from carboxylic acid modelling

The SAFT-γ Mie group parameters required for modelling alkyl carboxylic acids include

CH2, CH3, and COOH, models for which have been developed in previous work [8, 175]

and are collected in Tables 5.1 and 5.2. A model for the COOH group has been presented

by Sadeqzadeh et al. [175], where COOH is represented as a single segment possessing

four ‘e’-type sites and one ‘H’-type site. The dimerisation of carboxylic acids is taken into

account via self-association interactions mediated by the ‘H’-type site on each of the COOH

groups. The ‘e’-type sites represent the lone-pair orbitals on the oxygen atoms, and are

labelled as two ‘e1’ and two ‘e2’ sites to distinguish between the different behaviour of

each oxygen. Sadeqzadeh et al. focused on modelling alkyl carboxylic acids of moderate

length, specifically butanoic acid through to decanoic acid molecules, while the smaller

molecules of this homologous series – ethanoic and propanoic acids – were excluded from

the scope of model development due to the strong polarity of the COOH group. In these

molecules, the CH2 and CH3 functional groups adjacent to the COOH group are highly

polarised and are expected to behave differently than in longer-chain acid molecules where

the polarisation effect is more diffuse. Due to polarisation being much more pronounced in

the shorter homologues, Sadeqzadeh et al. have recommended the application of so-called

“second-order" 1 group parameters for describing the unlike interactions between COOH and

alkyl groups in short-length acids.

1Second-order parameters address the limitation of the group-contribution approach with regard to the
challenge of modelling vastly differing mixtures with a unique set of group parameters. For a mixture of
components where the generic group parameter set is inadequate in reproducing the behaviour of the fluid,
certain group-group interactions relevant to that mixture can be adjusted in order to improve the performance of
the model. These adjusted parameters are referred to as “second-order" and are applied only in the particular type
of mixture for which they have been developed, in place of the equivalent value for the parameter corresponding
to the generic parameter set. However, in order to maintain the integrity of the group-contribution methodology,
this approach is only resorted to for group interactions within a molecular component for which appropriate
reasoning can be identified from the topological environment of the groups comprising the molecule.
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Table 5.1 SAFT-γ Mie group model parameters relevant to alkyl carboxylic acids. The
carboxyl group applicable to short-chains is denoted shortCOOH but shares the same like-
interaction parameters as the COOH group developed for longer-chain acids by Sadeqzadeh
et al. [175]. Similarly, the alkyl groups adjacent to carboxyl group in short-chain acids are
denoted adjCH2 and adjCH3, but share the same like-interaction parameters as the standard
SAFT-γ Mie groups presented by Papaioannou et al. [8].

Group, k ν∗k Sk σkk /Å λr,k λa,k (εkk/kB)/K nH,k ne1,k ne2,k Source

CH2 / adjCH2 1 0.22932 4.8801 19.871 6.0000 473.39 – – – [8]

CH3 / adjCH3 1 0.57255 4.0773 15.050 6.0000 256.77 – – – [8]

COOH / shortCOOH 1 0.55593 4.3331 8.0000 6.0000 405.78 1 2 2 [175]

Table 5.2 SAFT-γ Mie group cross-interaction parameters for modelling medium- and long-
length alkyl carboxylic acids and mixtures of these with water, taken from the work of
Papaioannou et al. [8], Sadeqzadeh et al. [175], and Hutacharoen et al. [10]. CR indicates
that the unlike repulsive exponent λr,kl of the Mie potential is obtained using the combining
rule given by Equation 3.33. The unlike attractive exponent of the Mie potential is assigned to
λa,kl = 6.0000 for all groups. The unlike segment diameter σkl is obtained from the arithmetic
combining rule given by Equation 3.30.

Group Site (εHB
ab,kl/kB)/K KHB

ab,kl /Å3 λr,kl (εkl/kB)/K Source

k l k,a l,b

CH2 CH3 – – – – CR 350.77 [8]

CH2 COOH – – – – CR 413.74 [175]

CH3 COOH – – – – CR 255.99 [175]

CH2 H2O – – – – 100.00 423.63 [10]

CH3 H2O – – – – 100.00 358.18 [10]

COOH COOH H H 6427.9 0.8062 8.0000 405.78 [175]

COOH H2O e1 H 1451.8 280.89 CR 289.76 [10]

COOH H2O e2 H 1252.6 150.98 CR 289.76 [10]

COOH H2O H e 2567.7 270.09 CR 289.76 [10]
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In order to model mixtures of carboxylic acids and water, the COOH group’s cross

interaction parameters with the H2O group are required. These are obtained from the work

of Hutacharoen et al. [10] and are also shown in Table 5.2. Hydrogen bonding between the

alkyl carboxylic acids and water is mediated through the ‘e1’ and ‘e2’ association sites on

the COOH group (where the distinction between ‘e’-type sites reflects the difference between

the lone pairs on each oxygen atom in the group), interacting with the ‘H’-type sites on the

H2O group. These hydrogen bonds consequently compete with the acid self-association

interactions. An important aspect of the established SAFT-γ Mie modelling approach for

water–carboxylic acid mixtures is that the partial dissociation of carboxylic acids is not taken

into account [339], as their degree of ionisation can be treated as negligible (c.f. Table 5.3 for

a comparison of the pKa values of carboxylic acids with that of other strong and weak acids

modelled in this work). Furthermore, the COOH–H2O cross interactions satisfy only the

phase behaviour of carboxylic acid mixtures containing acids of moderate length (butanoic

to decanoic acids) and are ineffective in reproducing the behaviour of mixtures comprising

ethanoic and propanoic acids.

Table 5.3 pKa values (taken from Refs. [340–342]) for some strong and weak acids in water,
and the modelling approach taken for each acid in this work.

Acid pKa Dissociation modelling approach

HI -9.500 complete

HBr -8.800 complete

HCl -5.900 complete

H2SO4 -3.000 partial

HNO3 -1.400 partial

CH3COOH 4.756 undissociated

C3H7COOH 4.822 undissociated

C5H11COOH 4.879 undissociated
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Modelling of short-chain carboxylic acids with SAFT-γ Mie is pursued in this work by

developing second-order group interaction parameters for ethanoic and propanoic acids. The

pure acids are examined first, followed by mixtures of these with water, ultimately leading to

the proposal of three new second-order group interactions arising from the strong polarising

nature of the COOH group. The insights gained into developing second-order groups to

account for the effect of polarisation on group-contribution models are then taken forward to

inform the development of models for alkyl carboxylate salts.

5.1.0.1 Short-length carboxylic acids

The predictions obtained for pure ethanoic and propanoic acids using the standard SAFT-γ

Mie group model parameters are illustrated by the dashed lines in Figures 5.1 and 5.2. As

mentioned above, the deviation observed from the experimental data for these systems is

attributed to the strong polarising effect of the COOH group on the neighbouring alkyl group

in these molecules. In order to model such molecules with the SAFT-γ group-contribution

approach, these polarisation effects can be taken into account by introducing second-order

group interactions applicable to the specific molecules.

In this work, the unlike interactions between the alkyl and carboxyl groups in short-chain

carboxylic acid molecules are described by second-order parameters optimised specifically to

satisfy the thermodynamic behaviour of ethanoic acid and propanoic acid, using experimental

data for vapour-liquid equilibrium properties of the pure acids. Specifically, data for the

vapour pressure and liquid density of pure ethanoic acid at 290–500 K [343–348] are used to

optimise the cross interaction between the short-acid COOH group (denoted shortCOOH) and

the adjacent CH3 group (denoted adjCH3). The same types of VLE data for pure propanoic

acid at 250–500 K [346, 349–357] are used to optimise the cross interaction between the
shortCOOH group and the adjacent CH2 group (denoted adjCH2).
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The new SAFT-γ Mie second-order cross interaction parameters applicable to the ethanoic

acid and propanoic acid molecules are shown in Table 5.4. Both the adjCH3–shortCOOH and
adjCH2–shortCOOH cross interactions are found to be characterised by a stronger attractive

dispersion energy εi j than the corresponding cross interaction applicable to the longer

carboxylic acid homologues (cf. Table 5.2). This reflects the strong polarising effect of the

COOH group on the neighbouring functional groups, which is more pronounced in these

smaller molecules. The description of the thermodynamic behaviour of the short-chain

acids achieved with the introduction of second-order cross interactions is illustrated by the

continuous curves in Figure 5.1 for ethanoic acid and in Figure 5.2 for propanoic acid.

A significant improvement is seen in the case of ethanoic acid: the stronger interaction

between adjCH3 and shortCOOH lowers the predicted vapour pressure and increases the

liquid phase density at VLE, compared to the parameter set developed for the longer acids.

This improvement corresponds in a decrease of the %AAD from 83.9% to 3.66% for the

vapour pressure, and from 5.91% to 2.78% for the density of ethanoic acid. The quality of

the predictions achieved for propanoic acid are improved in a similar way by the stronger

interaction between adjCH2 and shortCOOH, although the effect is less pronounced as the

original deviation from experimental values was smaller to begin with. This improvement

for propanoic acid corresponds in a decrease of the %AAD from 17.6% to 3.14% for the

vapour pressure, and from 2.79% to 1.99% for the density. The importance of maintaining

the adjCH2–shortCOOH cross interaction becomes even more evident in the prediction of

mixture behaviour as discussed in Section 5.1.0.2.
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Figure 5.1 Vapour–liquid phase coexistence properties of pure ethanoic acid: the vapour
pressure p for temperatures between 280–420 K (top), and the liquid phase density ρ for
temperatures between 290–500 K (bottom). The continuous curves represent the results
obtained using the second-order group-interaction model parameters for short chain acids
shown in Table 5.4. The dashed curves represent the result given by the generic set of cross
interaction parameters shown in Table 5.2. The symbols correspond to experimental data for
p [343–345] and ρ [346–348].
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Figure 5.2 Vapour–liquid phase coexistence properties of pure propanoic acid: the vapour
pressure p for temperatures between 280–440 K (top), and the liquid phase density ρ for
temperatures between 250–500 K (bottom). The continuous curves represent the results
obtained using the second-order group-interaction model parameters for short chain acids
shown in Table 5.4. The dashed curves represent the result given by the generic set of cross
interaction parameters shown in Table 5.2. The symbols correspond to experimental data for
p [349–352] and ρ [346, 353–357].
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Table 5.4 SAFT-γ Mie group cross interaction parameters for modelling mixtures comprising
short-length alkyl carboxylic acid homologues: ethanoic acid and propanoic acid. The inter-
actions of the carboxyl group shortCOOH with the adjacent alkyl groups adjCH2 and adjCH3
reflect the strong polarisation of these groups. The shortCOOH–H2O interaction reflects the
different type of dimers formed by shorter acids compared to their longer homologues (see
text). The strength of the CH2–CH3, CH2–H2O, and CH3–H2O interactions are independent
of whether the alkyl groups is adjacent to COOH; these cross interactions are obtained
from Ref. [8]. For each pair of groups, the unlike segment diameter σkl is obtained from
Equation 3.30. ‘CR’ indicates that the unlike Mie potential exponent λr,kl is obtained using
Equation 3.33 (this is always applied for λa,kl).

Group Site (εHB
ab,kl/kB)/K KHB

ab,kl /Å3 λr,kl (εkl/kB)/K

k l k,a l,b

adjCH2/CH2
adjCH3/CH3 – – – – CR 350.77

adjCH2
shortCOOH – – – – CR 454.46

CH2
shortCOOH – – – – CR 413.74

adjCH3
shortCOOH – – – – CR 301.20

CH3
shortCOOH – – – – CR 255.99

CH3/adjCH3 H2O – – – – 100.00 358.18

CH2/adjCH2 H2O – – – – 100.00 423.63
shortCOOH H2O e1 H 1451.8 280.89 CR 289.76
shortCOOH H2O e2 H 1252.6 150.98 CR 289.76
shortCOOH H2O H e 2172.6 228.00 CR 289.76
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5.1.0.2 Mixtures of short-length carboxylic acids and water

An important aspect to modelling mixtures of carboxylic acids and water is the hydrogen

bonding between these species and the resultant impact on the acid dimerisation. The

approach taken for representing the carboxylic acid dimerisation in SAFT-γ Mie is not

mediated by ‘true’ hydrogen bonding between an ‘e’-type site and a ‘H’-type site, but rather

through the ‘H’-type sites on each COOH group [175]. However, it has been demonstrated

both by experimental observation [358] and through theoretical calculations [359] that

the nature of the dimers in aqueous solution varies as a function of the acid chain length.

In particular, long-length carboxylic acids tend to form extended dimers with only one

C=O· · ·HO hydrogen bond forming between the carboxyl groups, whereas short-length acids

predominantly form cyclic dimers with two C=O· · ·HO hydrogen bonds forming between the

carboxyl groups; the two forms of dimerization are illustrated in Figure 5.3. In the extended

dimers, a single hydrogen bond is more favourable as it allows the two carboxylic acid

molecules to experience maximum interaction between their alkyl chains, hence minimising

hydrophobic interactions with water. The association sites (three lone pair orbitals and one

hydrogen on one COOH group, and four lone pair orbitals on the second COOH group)

which are not involved in this dimer-forming bond are consequently available to form four

more hydrogen bonds with water per group. In cyclical dimers, the C=O and OH on both

molecules are engaged in dimer-forming hydrogen bonds, thus leaving only three lone-pair

orbitals per group available for hydrogen bonding with water. A lesser degree of association

therefore occurs between water and the short-length carboxylic acid molecules, as opposed

to longer-length homologues, as a consequence of cyclical acid dimers occupying more of

the available association sites.

The fact that the pure short acids are not accurately represented with the standard SAFT-γ

Mie models results also in errors in the prediction of mixture phase behaviour, as shown

by the dotted curves in Figures 5.4–5.6 for mixtures composed of water and ethanoic or

propoanoic acids. Replacing the group cross interactions for the alkyl–carboxyl pair with
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Figure 5.3 Dimerization of carboxylic acids: (a) extended dimers; (b) cyclic dimers.

the newly optimised second-order parameters for short-chain acids (adjCH3–shortCOOH and
adjCH2–shortCOOH) improves the prediction of the mixture’s phase behaviour, especially in

the case of the water–ethanoic acid mixture, as shown by the dashed lines in Figures 5.4 and

5.6. This improvement is attained without readjustment of any of the groups’ cross-interaction

parameters with water. The remaining deviation from the correct mixture behaviour may be

attributed to the different type of acid dimerisation and resultant difference in the associative

interaction between water and the carboxylic acid molecules. In order to address this be-

haviour, second-order group cross interactions are developed for describing the association

between the shortCOOH group and the H2O group. Experimental data for the vapour-liquid

phase equilibrium properties of water–ethanoic acid mixtures, namely isobaric phase compo-

sition data [360], were employed in this procedure, by minimising an objective function of

the form given by Equation 4.17.

The new second-order association parameters relevant to the shortCOOH–H2O cross

interaction in mixtures containing ethanoic acid or propanoic acid are shown in Table 5.4.

The association energy between ‘e’-type sites on H2O and ‘H’-type sites on shortCOOH

is found to be weaker than the equivalent interaction of H2O with COOH (cf. 5.2). This

mimics the fact that when cyclic dimers are favoured over extended dimers, fewer free OH

donor sites are available on the carboxyl groups for associating with water lone pair orbitals.

Equivalently, the carboxyl groups engaged in cyclic dimers will also have fewer free C=O
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lone pair orbitals available to bond with donor sites on water molecules, yet modifying the

parameters for this type of associative interaction doe not exert a particularly large influence

on the acid–water mixture behaviour. This happens because the SAFT-γ Mie model mediates

acid dimerisation only through the ‘H’-type sites on the carboxyl groups, therefore the

acid–water association parameters related to the ‘H’ site of the COOH group are found

to exert much more influence over the thermodynamic behaviour of the mixture. For the

same reason, modifying the cross-interaction dispersion energies for the shortCOOH–H2O

or adjCH3–H2O pairs also has a relatively small impact the mixture behaviour. This firstly

emphasises that the difference in the thermodynamic behaviour between mixtures of long

and short carboxylic acids is in fact a result of the shorter acids hydrogen bonding differently

to water; and secondly, it demonstrates that the SAFT-γ Mie equation of state can be a useful

tool for elucidating the nature of molecular interactions.

The thermodynamic properties calculated with the SAFT-γ Mie EOS for the water–

ethanoic acid mixture using the new set of parameters are shown by the continuous curves in

Figures 5.4 and 5.5, which demonstrate the improved description of the isobaric temperature–

composition (T–x) phase diagram and the predicted saturated liquid density, respectively.

Having established the benefit of using second-order shortCOOH–H2O associative parameters,

these are also applied to the water–propanoic acid mixture, data for which were excluded

from the optimisation procedure. The resultant predictions for this mixture’s VLE properties,

which are represented by the continuous curve in Figure 5.6 depicting the T–x phase diagram,

are in much better agreement with the experimental data compared to the modelling approach

employing the generic cross-interaction parameters. Figure 5.7 depicts the saturated liquid

density of the the water–propanoic acid mixture; a comparison with the results using the

generic parameter set is omitted as the improvement in the predictions is small for this

property.
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Figure 5.4 Isobaric temperature–mole fraction (T–x) phase diagram for the vapour-liquid
equilibrium of ethanoic acid + water mixtures at 1.01 bar. The continuous curve represents
the result obtained using the second-order group-interaction model parameters shown in
Table 5.4 for the adjCH3–shortCOOH and shortCOOH–H2O pairs. The dashed curve represents
the result obtained using the second-order adjCH3–shortCOOH interaction parameters shown
in Table 5.4 and the generic shortCOOH–H2O interaction parameters shown in Table 5.2.
The dotted curve represents the result obtained using the generic group-interaction model
parameters shown in Table 5.2. The symbols correspond to experimental data [360].
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Figure 5.5 The concentration dependence of the density of ethanoic acid + water mixtures at
1.01 bar for temperatures between 293–303 K. The continuous curves represent the result
obtained using the second-order group-interaction model parameters shown in Table 5.4 for
the adjCH3–shortCOOH and shortCOOH–H2O pairs. The dotted curves represent the result
obtained using the generic group-interaction model parameters shown in Table 5.2. The
symbols correspond to experimental data [361].



5.1 Insights from carboxylic acid modelling 179

370

380

390

400

410

420

0.0 0.2 0.4 0.6 0.8 1.0

T
/(

K
)

xH2O, yH2O

Figure 5.6 Isobaric temperature–mole fraction (T–x) phase diagram for the vapour-liquid
equilibrium of propanoic acid + water mixtures at 1.01 bar. The continuous curve represents
the result obtained using the second-order group-interaction model parameters shown in
Table 5.4 for the adjCH2–shortCOOH and shortCOOH–H2O pairs. The dashed curve represents
the result obtained using the second-order adjCH2–shortCOOH interaction parameters shown
in Table 5.4 and the generic shortCOOH–H2O interaction parameters shown in Table 5.2.
The dotted curve represents the result obtained using the generic group-interaction model
parameters shown in Table 5.2. The symbols correspond to experimental data [362].
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Figure 5.7 The concentration dependence of the density of propanoic acid + water mixtures
at 1.01 bar for temperatures between 283–323 K. The continuous curves represent the result
obtained using the second-order group-interaction model parameters shown in Table 5.4 for
the adjCH3–shortCOOH and shortCOOH–H2O pairs. The symbols correspond to experimental
data [354].
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5.2 Modelling alkyl carboxylate salts with SAFT-γ Mie

The approaches proposed in Chapter 3 for modelling charged molecules within the SAFT–γ

Mie EOS are applied to aqueous solutions of sodium carboxylate salts, R–COONa, of various

alkyl chain lengths (R). Sodium carboxylate salts are treated here as strong electrolytes,

dissociating in aqueous solution according to:

R–COONa(aq) −→ R–COO−(aq)+Na+(aq) . (5.1)

Certain behaviours of carboxylate salts in aqueous solution are neglected in this work as

a means of simplifying the model and allowing an easier comparison of the SAFT-γ Mie

modelling approaches for charged molecules. The first neglected behaviour is the formation

of ion pairs between the carboxylate anions and the alkali metal counter ions in solution. This

is commonly reported for the shorter homologues of the alkyl carboxylate anions (the formate

and acetate ions) [363–367], which are better solvated and have higher charge density. Still,

the extent of ion pairing is very small, with association constants reported similar to those of

NaCl or HCl. The second behaviour which is neglected here is the formation of micelles at

high concentrations in aqueous solution [368–371]. This phenomenon is most pronounced

for the longer homologues of alkyl carboxylate anions, with the critical micelle concentration

decreasing as the alkyl chain length increases [372]. Sodium acetate and sodium propanoate

demonstrate typical 1:1 electrolyte behaviour, whereas homologues longer than sodium

butanoate demonstrate increasingly atypical behaviour due to anion aggregation.

Reducing the complexity of the electrolyte mixture by approximating the sodium carboxy-

late salts as simple 1:1 strong electrolytes constrains the applicability of the modelling ap-

proach to low concentrations where the extents of ion pairing and anion aggregation are small

enough to neglect. Dilute and moderately concentrated salt solutions up to msalt ≤ 4 mol kg−1

are considered in this work. Furthermore, the size of the carboxylate anions is limited, with
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the largest homologue included in the study being the hexanoate anion while the smallest is

acetate.

5.2.1 Parameter estimation methodology

The methodology adopted for characterising the COO− group follows the approach proposed

in Chapter 4 regarding the development of models for molecular charged groups by estimating

its parameters with reference to the optimised model of the smallest neutral parent group.

The SAFT-γ Mie model parameters for the COO− group are based on those optimised for

the COOH group, assuming that the loss of a proton does not change the geometry of the

COOH functional group to any appreciable extent. Firstly, the structural parameters of the

COO− group (σkk , Sk , ν∗k) are assigned as equal to those of the COOH group. The Born

cavity diameter of COO− is obtained by applying the method proposed by Rashin and Honig

[197] whereby σBorn
COO− = 1.07σCOO− , as discussed in Chapter 4. The form of like-interaction

intermolecular potential is also assumed to resemble that of the COOH group, so the Mie

potential exponents for COO− are assigned to those previously optimised for COOH. Finally,

the depth of the potential is calculated by applying Equation 3.96, which relates the ion–ion

εkk parameter to the polarisability α0 and ionisation potential I (electron affinity) of the

COO− functional group, experimental values for which are shown in Table 5.6. The SAFT-γ

Mie model parameters for COO− are collected in Table 5.5; the association sites assigned to

this group to mediate cross-association (as will be discussed later on) are also included in

this table for completeness, even though no self-association applies to the COO− ion.

Table 5.5 SAFT-γ Mie model parameters for the carboxylate functional group.

Group, k ν∗ Sk σkk /Å σBorn
kk /Å λr,k λa,k (εkk/kB)/K ne,k

COO− 1 0.55593 4.3331 4.6364 8.0000 6.0000 21.264 4
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Table 5.6 Values for the polarisability α0 and electron affinity I of the COO− ion developed
in this work, taken from Refs. [203] and [373] respectively.

Group, k α0,k / (10−24cm3) Ik / eV

COO− 4.2042 3.4700

With all model parameters for the carboxylate ion having been characterised either by

referring to the parent carboxyl group or by applying appropriate combining rules, only the

cross interaction parameters between COO− and the relevant functional groups remain to be

determined. For each cross interaction, the σkl , λr,kl , and λa,kl model parameters are assigned

to combining rule estimates using Equations 3.30 and 3.33. The unlike ion–ion dispersion

energy for the COO−–Na+ pair is obtained through Equation 3.96, using the experimental

values of α0 and I shown in Tables 5.6 and 4.3. The ability of carboxylate ions to associate

via the lone pair orbitals on the oxygen atoms must also be considered in mixtures containing

water. In principle, the hydrated carboxylate ion may hydrogen bond with up to five water

molecules. Some studies [374–376] have concluded through ab initio calculations that a

hydrogen bonding scheme involving only three water molecules bound to the carboxylate

ion is more favourable, since a bifurcated bonding scheme (in which a single water molecule

associates with both oxygen atoms on the carboxylate group) is more stable; in this case, the

maximum number of hydrogen bonds formed is four. The SAFT-γ Mie model for the COO−

group is assigned four ‘e’-type association sites, capable of binding to the ‘H’-type sites

on the H2O group. These COO−–H2O cross association model parameters (εHB
ab,kl , KHB

ab,kl),

together with the dispersion energy for the interaction between COO− and each neutral group

(εkl), are treated as adjustable parameters.

Group-contribution models for the carboxylate group are developed using the two SAFT-γ

Mie approaches for molecular ions proposed in Chapter 3, employing a common optimisation

procedure in both cases. The methodology involves a stepwise procedure using experimental

data for the osmotic coefficient Φ of aqueous solutions of R–COONa salts with increasing

alkyl chain lengths, obtained from Refs. [219, 368, 377]. The simplest molecular ion is

chosen for identifying each unknown unlike group-interaction parameter, in a sequential



184 Complex organic electrolytes

procedure. First, experimental data for aqueous sodium acetate at msalt ≤ 1 mol kg−1 are used

to optimise the H2O–COO− and adjCH3–COO− interactions. Then, data for aqueous sodium

propanoate at msalt ≤ 0.5 mol kg−1 are used to optimise the CH3–COO− and adjCH2–COO−

interactions. Finally, data for aqueous sodium butanoate at msalt ≤ 0.5 mol kg−1 are used to

obtain the CH2–COO− interaction. The range of concentrations included in the optimisation

procedure takes into account the simplifying approximations regarding ion pairing and

micelle formation in these solutions, therefore data at more dilute concentrations are used as

the carboxylate ion’s alkyl chain length increases.

5.2.2 Comparison of SAFT-γ Mie electrolyte formulations for alkyl

carboxylate salts

The optimal model parameters obtained by applying the SAFT-γ Mie approach correspond-

ing to spherically-approximated molecular ions (cf. Section 3.4.1) are shown in Table 5.7,

and those obtained using the SAFT-γ Mie approach corresponding to free charged groups (cf.

Section 3.4.2) are shown in Table 5.8. An important resemblance between the two sets of

parameters is that the unlike cross-interaction parameters for the H2O–COO− pair (including

εkl , εHB
kl , and KHB

kl ) are found to adopt very similar values in both modelling approaches.

The H2O–COO− cross interaction parameters are therefore assigned the same values in both

models, namely those optimised for the spherically-approximated ion. This resemblance

potentially signifies that the two different approximations applied for the electrostatic free

energy contribution primarily impact the charged group’s interactions with other groups

constituting the molecular ion; of course, more multicomponent mixtures need to examined

to test this hypothesis. A further resemblance between the two SAFT-γ Mie modelling ap-

proaches is that, in both cases, the optimisation procedures conclude that the CH3 interaction

with COO− is similar irrespective of whether the CH3 group is adjacent to the COO− group.

A second-order group parameter representing the adjCH3–COO− interaction is therefore

omitted from both cases, as it does not impart an improvement to the performance of the
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models. This is an unexpected result considering the improvement effected by the secondary
adjCH3–COOH interaction for the neutral acid, as discussed in Section 5.1.0.1. A possible

reason is that the Coulombic interactions dominate the behaviour of the acetate ion such that

the effect of polarisation of the CH3 group is overshadowed.

Table 5.7 SAFT-γ Mie group cross-interaction parameters corresponding to the approach
where electrostatic interactions are accounted for by representing molecular ions as
spherically-approximated charged species, following Section 3.4.1. The unlike segment
diameter σkl and Mie potential exponents λy,kl are obtained using the combining rules given
by Equations 3.30 and 3.33.

Group Site (εHB
ab,kl/kB)/K KHB

ab,kl /Å3 (εkl/kB)/K

k l k,a l,b

COO− H2O e1 H 1129.6 158.63 128.49

COO− CH2 – – – – 161.00

COO− adjCH2 – – – – 287.13

COO− CH3 – – – – 559.99

COO− Na+ – – – – 9.9120
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Table 5.8 SAFT-γ Mie group cross-interaction parameters corresponding to the approach
where electrostatic interactions are accounted for by considering the charged functional group
only, following Section 3.4.2. The unlike segment diameter σkl and Mie potential exponents
λy,kl are obtained using the combining rules given by Equations 3.30 and 3.33.

Group Site (εHB
ab,kl/kB)/K KHB

ab,kl /Å3 (εkl/kB)/K

k l k,a l,b

COO− H2O e1 H 1129.6 158.63 128.49

COO− CH2 – – – – 202.08

COO− adjCH2 – – – – 251.01

COO− CH3 – – – – 581.01

COO− Na+ – – – – 9.9120

The performance of the two SAFT-γ Mie modelling approaches for aqueous sodium

carboxylate salts are evaluated by assessing the description of the solutions’ thermodynamic

properties which were not considered during optimisation: the mean ionic activity coefficient

γ±,m, liquid phase density ρ, and saturated vapour pressure p. The description of the osmotic

coefficient beyond the concentration range included in the parameter estimation procedure

is also assessed. Furthermore, the properties of sodium pentanoate and sodium hexanoate,

which have been excluded from the optimisation procedure, are examined as a means of

evaluating whether the two modelling approaches would be applicable to larger molecular

ions.

5.2.2.1 Mean ionic activity coefficient and osmotic coefficient

Due to the combined effects of micellisation and ion pairing, the osmotic coefficients and

MIACs of sodium carboxylate salts exhibit an increasingly atypical trend with composition

as the anion chain length increases. In dilute solutions, the concentration dependence of

these properties follow typical strong electrolyte behaviour, and the magnitude of Φ or γ±,m
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is reported to be higher as the anion chain length increases [219, 368, 377]. As the salt

concentration rises, the experimental data show that Φ and γ±,m reach a maximum and then

decrease with further increase in salt concentration. This inversion ofΦ and γ±,m signifies that

the adhesive forces between the particles are becoming stronger, and this is attributed to the

formation of micelles. The critical micelle concentration is interpreted as the concentration

at which Φ and γ±,m reach a maximum. Since micelle formation is neglected in this work,

the models are not expected to accurately reproduce the behaviour of highly concentrated

solutions. Nevertheless, concentrations much higher than some solutions’ critical micelle

concentration are shown in the following plots in order to show the different predictions

obtained from the two modelling approaches.

The concentration dependence of the osmotic coefficients at 298 K for aqueous solutions

of each of the five sodium carboxylate salts (sodium ethanoate through to sodium hexanoate)

are shown in Figure 5.8. The predicted MIACs at 298 K for these solutions are depicted in

Figure 5.9. In these figures, results are shown for calculations performed with the SAFT-γ

Mie approach for spherically-approximated ions (cf. Section 3.4.1) as well as with the

approach for free charged groups (cf. Section 3.4.2). The two approaches describe the

osmotic coefficient and MIAC similarly for the solutions consisting of shorter-length anions.

Within the range of concentrations where the simplifying assumptions of the model are

reasonable for each solution, i.e. below the critical micelle concentration of a given solution,

the carboxylate salt solutions comprising long-chain anions appear to be better described by

the SAFT-γ Mie approach for spherically approximated anions. In Figure 5.10 for sodium

ethanoate solutions, the activity of water aH2O predicted as a function of temperature and

concentration is consistently better predicted by the SAFT-γ Mie approach for free charged

groups.

Differences between the two approaches are most distinct in the prediction of solution

properties at higher concentrations for sodium butanoate, sodium pentanoate and sodium

hexanoate. For the larger pentanoate and hexanoate anions, the approach in which elec-

trostatic interactions are applied to the free charged groups is more effective in predicting
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the reversal of the trend in osmotic coefficient and MIAC with respect to the anion chain

length. This is an important feature despite the expected lack of quantitative agreement with

the experimental data at concentrations beyond the critical micelle concentration: in the

electrolyte approach corresponding to individual charged groups, the electrostatic interactions

are not tied to a particular molecular geometry or configuration, and this appears to be advan-

tageous when modelling fluid mixtures comprising organic ions exhibiting behaviours that

cannot be explicitly included in the SAFT-γ Mie EOS. This aspect of the models’ behaviour

is considered here to be of greater significance for assessing their performance than the

quantitative agreement attained with MIAC or Φ experimental data, especially considering

that this type of data for these solutions originate from fairly old sources. This argument is

supported by Figure 5.10 for sodium ethanoate solutions, where the activity of water aH2O

predicted as a function of temperature and concentration is consistently better predicted –

as compared to a recent set of experimental data – by the SAFT-γ Mie approach for free

charged groups.
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Figure 5.8 The concentration dependence of the osmotic coefficient Φ for aqueous sodium
carboxylate salt solutions at 298 K. The continuous curves represent the predictions obtained
with the SAFT-γ Mie EOS using the approach for spherically-approximated ions (top) and
the approach for free charged groups (bottom). The symbols represent the experimental data
[219, 368, 377].
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Figure 5.9 The concentration dependence of the MIAC γ±,m for aqueous sodium carboxylate
salt solutions at 298 K. The continuous curves represent the predictions obtained with
the SAFT-γ Mie EOS using the approach for spherically-approximated ions (top) and the
approach for free charged groups (bottom). The symbols represent the experimental data
[219, 368, 377].
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Figure 5.10 The temperature dependence of the activity of water aH2O for aqueous sodium
ethanoate solutions at conditions of vapour–liquid equilibrium, at molalities in the range of
0.06464–3.0315 mol kg−1. The continuous curves represent the predictions obtained with
the SAFT-γ Mie EOS using the approach for spherically-approximated ions, and the dashed
curves represent the predictions obtained with the SAFT-γ Mie EOS using the approach for
free charged groups. The symbols represent the experimental data [378].

5.2.2.2 Solution densities and saturated vapour pressures

Evaluating the performance of the SAFT-γ Mie models with respect to the density and

saturated vapour pressure of aqueous R–COONa solutions is difficult, as experimental data

for these types properties are scarce for mixtures comprising the carboxylate anions larger

than CH3COO−. The isobaric liquid density ρ of aqueous sodium ethanoate solutions at

temperatures between 288–318 K is shown in Figure 5.11. The degree of agreement with

experimental data achieved by each modelling approach is not consistent across temperature

range considered, although this may be due to an apparent, yet unspecified, experimental error

in the density measurements at the lowest considered temperature. If only the density data

at higher temperatures is taken into account, then the SAFT-γ Mie approach for spherically
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approximated molecules is seen to give a better description of the fluid phase. This is also

observed in Figure 5.12 for the the density of aqueous solutions of sodium ethanoate and

sodium butanoate at 298 K; however, in the same figure, the liquid phase density of sodium

hexanoate is distinctly better described by the SAFT-γ Mie approach for individual charged

groups. This is a reasonable outcome, as the approximation of an equivalent spherical ion

becomes less structurally sound as the size of the ion increases.
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Figure 5.11 The concentration dependence of the of the liquid phase density ρ of aqueous
solutions of sodium ethanoate at 1 bar, for temperatures in the range 288–318 K. The
continuous curves represent the predictions obtained with the SAFT-γ Mie EOS using the
approach for spherically-approximated ions, and the dashed curves represent the predictions
obtained with the SAFT-γ Mie EOS using the approach for free charged groups. The symbols
represent the experimental data [379–381].

In the less dense vapour phase, the differences in the structural approximations made

in each SAFT-γ Mie modelling approach have a smaller impact on the predicted properties

of the fluid. Very similar results are obtained by the two approaches for molecular ions for

predictions of the solution’s saturated vapour pressure p, as seen in Figure 5.13 for aqueous

sodium ethanoate at 298 K and 308 K, and in Figure 5.14 for aqueous sodium ethanoate
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Figure 5.12 The concentration dependence of the of the liquid phase density ρ of aqueous
solutions of sodium ethanoate, sodium butanoate, and sodium hexanoate at 298 K and 1 bar.
The continuous curves represent the predictions obtained with the SAFT-γ Mie EOS using the
approach for spherically-approximated ions, and the dashed curves represent the predictions
obtained with the SAFT-γ Mie EOS using the approach for free charged groups. The symbols
represent the experimental data [379, 380, 382].

and sodium pentanoate at 373 K. Even at higher concentrations of solutions comprising

larger molecular ions, the two approaches provide a similar representation of the saturated

vapour pressure. It must be noted that the data in Figure 5.14 obtained from Ref. [278]

are very old, however they are included in this assessment as this is the only known source

reporting on the vapour pressure of multiple solutions of sodium carboxylate salts; these

measurements display a systematic yet unspecified measuring error, as seen from the fact

that the value reported for the vapour pressure of water is slightly higher than its accepted

value of 101.3 kPa. In combination with the SAFT-γ Mie model’s ∼1% underprediction of p

for pure water, this leads to an apparently constant offset in the vapour pressure prediction

for these solutions.
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the predictions obtained with the SAFT-γ Mie EOS using the approach for spherically-
approximated ions are almost completely overlapped with the dashed curves representing the
predictions obtained with the SAFT-γ Mie EOS using the approach for free charged groups.
The symbols represent the experimental data [378].
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curves represent the predictions obtained with the SAFT-γ Mie EOS using the approach for
spherically-approximated ions, and the dashed curves represent the predictions obtained with
the SAFT-γ Mie EOS using the approach for free charged groups. The symbols represent the
experimental data [278].
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5.3 Summary

In this chapter, the SAFT-γ Mie EOS was applied for the purpose of modelling sodium

carboxylate salts. The two formulations for modelling molecular ions in a group-contribution

framework, which were proposed in Chapter 3, were both used to develop models for COO−

functional group and its unlike interactions with coexisting groups in the mixture. The model

for the COO− group was determined without adjusting any self-interaction parameters to

experimental data, by transferring the size and Mie potential parameters of the neutral group

(COOH) to the deprotonated group (COO−) and computing the dispersion energy using

a combining rule. As a result, the same model for COO− is applicable to both SAFT-γ

Mie formulations and the difference in the models associated with each formulation lies in

the unlike interactions of the carboxylate anion with other neutral groups comprising the

molecular ion.

A modelling strategy for developing the SAFT-γ Mie model for the COO− group’s

unlike interactions was determined by first carrying out a re-evaluation of the COOH group’s

interactions when modelling carboxylic acid molecules in pure and aqueous systems. Two

phenomena were taken into account: firstly, the polarising effect of COOH on adjacent

functional groups which is more pronounced in short-chain acids; and secondly, the effect

of alkyl chain length on the hydrogen-bonding scheme between the carboxylic acid and

water. This study led to the proposal of second-order cross-interaction parameters in order to

achieve an accurate representation of the properties of pure short-chain carboxylic acids and

their mixtures with water. The use of second-order parameters was therefore also adopted

in the modelling strategy for the carboxylate group’s unlike interactions, although it was

found to be necessary for only one type of interaction as opposed to the three second-order

interactions required for the carboxylic acid systems.

Two sets of models – one for each SAFT-γ Mie formulation – were obtained by op-

timisation to experimental data for aqueous solutions of sodium carboxylates with anion
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alkyl chain lengths of C2–C4, and the properties of carboxylate salt solutions were evaluated

for anion chain lengths up to C6. The range of concentrations to which the SAFT-γ Mie

approach is applicable varies for each salt due to the formation of micelles occurring at

lower concentration as the anion chain length increases. Nevertheless, both formulations

are found to give comparable predictions for the appropriate concentration range of each

sodium carboxylate salt. Even though quantitative agreement with experiment is not at-

tained in concentrated solutions where micelles are present, the predictions obtained with the

electrolyte formulation corresponding to individual charged groups depict a more realistic

tendency of the solutions’ behaviour with respect to anion chain length. This formulation is

thus recommended as the more promising avenue for pursuing electrolyte thermodynamic

modelling within the SAFT-γ Mie group-contribution framework.





Chapter 6

Weak electrolytes: inorganic acids and

ion-paired salts

Thermodynamic modelling work on electrolytes has largely focused on solutions of com-

pletely ionised salts, as the composition of these mixtures is straightforwardly known from

the stoichiometry of the salt. On the contrary, in order to determine the solution composition

of weak electrolytes, the relevant chemical equilibria must be accounted for in the modelling

procedure. In this chapter, the thermodynamic modelling of two types of aqueous electrolyte

solutions is undertaken: solutions of incompletely dissociated weak acids, and solutions of

weakly associated salts. Two common inorganic acids are selected, namely sulphuric acid

and nitric acid, for which abundant information is available in the literature regarding their

dissociation equilibria and bulk-phase solution properties. In the context of associated salts,

the manifestation of ion pairing in solutions of alkali nitrate salts is examined.
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6.1 Sulphuric acid

Sulphuric acid is a diprotic acid which is generally regarded as a ‘strong’ electrolyte owing

to its complete first deprotonation step, although the second deprotonation step is incom-

plete. The ionic composition of aqueous H2SO4 depends on the equilibrium between the

bisulphate (HSO−
4 ) and sulphate (SO−2

4 ) ions, and it is typically quantified through the degree

of dissociation of the bisulphate ion, αHSO−
4

(see Equation 6.9). The difficulty of ascertaining

the true ionic composition of a sulphuric acid solution has led to diverging values reported

in the literature for the thermodynamic equilibrium constant of the bisulphate dissociation.

Properties linked to the ionic composition of the solution, for example the mean ionic activity

coefficient, are therefore usually reported by adopting the assumption of stoichiometric

solution composition.

Before attempting to model aqueous sulphuric acid, it is important to first understand the

chemical equilibria relevant to this system and assess the available experimental data. Based

on an analysis of these, a methodology for developing models for sulphuric acid is proposed.

The resultant SAFT-γ Mie models for the sulphate and bisulphate ions are then applied to

predict the bulk-phase thermodynamic properties of the aqueous acid.

6.1.1 Dissociation equilibrium

Sulphuric acid in aqueous solution undergoes two sequential dissociation steps, both of

which entail a proton-transfer reaction with water:

H2SO4+H2O
Ka1−−−⇀↽−−− H3O++HSO−

4 , (6.1)

HSO−
4 +H2O

Ka2−−−⇀↽−−− H3O++SO−2
4 . (6.2)
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The acid dissociation constants Ka1 and Ka2 correspond to the first and second dissociation

steps, respectively, and characterise the thermodynamic equilibrium for these reactions.

According to the convention of approximating the activity of water as unity, these acid

dissociation constants are defined on a molality scale as follows [383]:

Ka1(T) =
aH3O+,m (T, p,m)aHSO−

4 ,m (T, p,m)
aH2SO4,m (T, p,m) , (6.3)

Ka2(T) =
aH3O+,m (T, p,m)aSO−2

4 ,m (T, p,m)
aHSO−

4 ,m (T, p,m) , (6.4)

There is a consensus in the literature that the first dissociation step is complete, i.e. Ka1(T) =

∞, except at very high acid concentrations >14 mol L−1 [34, 384, 385], whereas the second

dissociation step is comparatively weak. Within the composition range where the SAFT-γ

Mie EOS is applicable (≤10 mol kg−1), the first dissociation step of sulphuric acid may be

considered complete and therefore the reaction equilibrium for the first dissociation step

does not need to be solved. The second dissociation step is solved by satisfying the acid

dissociation constant Ka2 is at the temperature of interest.

Significant experimental research effort has been put into determining the second acid

dissociation constant of sulphuric acid. Dickson et al. [386] employed electrochemical

cell measurements to determine Ka2 and proposed an empirical equation applicable in the

temperature range 283–523 K. Holmes and Mesmer [387] used Dickson’s correlation together

with new and previously published [383] isopiestic data to propose their own correlation

for Ka2. A thorough examination of the thermodynamic data (osmotic coefficient, vapour

pressure, e.m.f., enthalpy of dilution, heat capacity, and degree of dissociation) available at the

time was performed by Clegg et al. [388], on the basis of which the value of 0.0105 mol kg−1

was recommended for Ka2 at 298 K. Using this benchmark, Clegg et al. evaluated various

correlations for Ka2 based on their reproduction of critically assessed experimental data in

the ranges of m = 0–6.1 mol kg−1 and T = 273–328 K using an extended Pitzer model, finally
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recommending a truncated version of Dickson’s equation, given as:

log10 Ka2 =562.69486−102.5154ln(T)−1.117033×10−4(T2) (6.5)

+0.2477538T − 13273.75
T

.

More recently, Sippola [389, 390] examined six dissociation constant equations, including

those of Pitzer et al. [383], Matsushima and Okuwaki [391], Dickson et al. [386], Hovey

and Hepler [392], Clegg et al. [388], and Knopf et al. [393]. The equations of Matsushima

and Okuwaki [391], Dickson et al. [386], Hovey and Hepler [392], and Clegg et al. [388]

were found to give the best values for Ka2 overall, although the equation of Knopf was found

more suitable for use at high temperatures. Sippola concludes that the choice of correlation

ultimately depends on the temperature range of the intended application. For the purpose

of this work, we choose to apply Clegg’s correlation given by Equation 6.5. This equation

has been developed so as to give an accurate Ka2 value at 298 K, which is the temperature at

which the most thermodynamic data is available for sulphuric acid.

6.1.1.1 Ion association

The precise reaction mechanisms for the dissociation of sulphuric acid in water are still

disputed in the literature [394], with investigators proposing a range of intermediate proton

transfer steps, hydrogen bonded ion-solvent complexes, and ion association equilibria [395–

398]. In equation-of-state modelling approaches the intermediate reaction steps are not

usually explicitly considered; however, it will be argued here that these intermediate reactions

can give valuable insight into association interactions which can be incorporated in the present

SAFT-γ Mie modelling approach.

Edward and Wang [395] measured the ultraviolet absorption of aqueous sulphuric acid

solutions and also used the Raman spectral data of Young et al. [399] to propose the exis-

tence of sulphate-hydronium ion pairs [H3O+ ·SO−2
4 ] and ion triplets [H3O+ ·SO−2

4 ·H3O+],
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predominantly at high concentrations >7 mol L−1. The authors argue this results from the

abundant hydronium ions binding to water molecules through hydrogen bonds, thus limiting

the amount of water available to hydrate the other ions and consequently promoting ion

association for the unhydrated sulphate ions. A similar conclusion was reached by Irish and

Chen [398], who examined Raman spectra of aqueous sulphuric acid and suggested that the

second dissociation step is driven by a proton transfer equilibrium between the hydrated

bisulphate ion (H2O)HSO−
4 and the sulphate–hydronium ion pair [H3O+ ·SO−2

4 ]:

(H2O)HSO−
4 −−⇀↽−− H3O+ ·SO−2

4 . (6.6)

The bisulphate ion was argued to exist only in the hydrated form, while the sulphate–

hydronium ion pair was suggested to persist in solution in favour of the free ions. In

subsequent work, Chen and Irish [396] extended this argument by proposing the formation of

the bisulphate–hydronium ion pair [H3O+ ·HSO−
4 ] through a further proton-transfer reaction

equilibrium:

H3O+ ·HSO−
4 +SO−2

4 −−⇀↽−− HSO−
4 +H3O+ ·SO−2

4 . (6.7)

Cox et al. [397] also analysed Raman spectra and put forward a dissociation sequence for

sulphuric acid involving three equilibrium steps. In this scheme, the fist acid dissociation

reaction given by Equation 6.1 is replaced by two equilibrium steps: first the formation of a

hydrated bisulphate–hydronium ion pair,

H2SO4+H2O −−⇀↽−− (H2O)HSO−
4 ·H3O+ , (6.8)

followed by this ion pair’s equilibrium with the free bisulphate and hydronium ions. The

existence of the [(H2O)HSO−
4 ·H3O+] ion pair at high concentrations was first proposed by

Irish and Chen [396, 398], as an alternative interpretation of the [H3O+(H2SO4)] species

suggested by Wyatt [400]. Cox et al. argued instead that the bisulphate–hydronium ion pair
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is formed in the initial dissociation step and is present at all acid concentrations, including

dilute solutions.

It should be noted that the presence of these various ion pair species has not been

conclusively verified and the true composition of the aqueous sulphuric acid solution is still

under debate [394]. The hydration state of the sulphate and bisulphate ions also remains

unresolved. Both ions would be expected to form multiple hydrogen bonds with water and, in

fact, studies have suggested that both HSO−
4 and SO−2

4 ions form complex hydrogen bonded

clusters with water in solution. Yacovitch et al. [401] studied the hydration of the bisulphate

ion using infrared spectroscopy, observing HSO−
4 (H2O)n clusters involving up to 16 water

molecules with inter-water bonding within these clusters starting at n ≥ 2. In a study using

photoelectron spectroscopy to study the hydration of the sulphate ion, Wang et al. [402]

observed SO−2
4 (H2O)n clusters involving up to 10 water molecules. A minimum of three

water molecules were found necessary to stabilise the SO−2
4 ion, and inter-water bonding

within the cluster was proposed to start at n ≥ 5. Despite doubt over the longevity of the

hydration clusters and inconclusive evidence of ion pairing, hydrogen bonding of HSO−
4 and

SO−2
4 with water and with hydronium are examined in the SAFT-γ Mie modelling approach,

the latter interaction intended to mimic the ion pairing phenomena.

6.1.2 Model development

Aqueous sulphuric acid is modelled as a mixture of the following components: H2O, H3O+,

HSO−
4 and SO−2

4 . The models for water and the hydronium ion are obtained from Chapter 4,

while the SAFT-γ Mie models for the sulphate and bisulphate ions and their cross interactions

are developed here. The model optimisation procedure considers bulk phase thermodynamic

properties for aqueous sulphuric acid, limiting the use of experimental data only to those

essential for representing the various aspects of the constituent species’ thermodynamic

behaviour. The solution of chemical equilibrium for the second acid dissociation step

is performed by satisfying Equation 6.4, using the value for Ka2 given by Equation 6.5.
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The SAFT-γ Mie models are optimised such that the thermodynamic activities of the ions,

and thereby their equilibrium compositions, are correctly reproduced with respect to the

imposed Ka2. To this end, it is important to include speciation data of the acid in the

optimisation procedure. Speciation data for sulphuric acid are typically reported as the

degree of dissociation of the bisulphate ion, αHSO−
4
, which is given as follows:

αHSO−
4
=

mSO−2
4

mHSO−
4
+mSO−2

4

=
mSO−2

4

macid
. (6.9)

Compositions of all species can be related to αHSO−
4

and the acid molality macid through the

following material balances corresponding to the reactions given by Equations 6.1 and 6.2:

mHSO−
4
= macid(1−αHSO−

4
) (6.10)

mSO−2
4
= macidαHSO−

4
(6.11)

mH3O+ = macid(1+αHSO−
4
) (6.12)

mH2O = m0
H2O −macid(1+αHSO−

4
) , (6.13)

where m0
H2O = 1/MWH2O is the molal concentration of water were it not to react with the acid.

According to experimental data for αHSO−
4

[396, 403, 404] (see Figure 6.1) an infinitely

dilute solution of sulphuric acid contains a negligible fraction of bisulphate ions, with

αHSO−
4

approaching unity. The degree of dissociation quickly falls to a minimum of ∼0.17,

indicating that the majority of HSO−
4 ions do not dissociate, then rises to a maximum of

∼0.37 before again decreasing steadily with increasing acid concentration. The optimisation

dataset includes the minimum number of data points necessary to encompass these changes

in ionic composition within the concentration range of interest, so data for molalities of up to

4.8 mol kg−1 are used.

Additional data included in the optimisation procedure for the HSO−
4 and SO−2

4 models

must be consistent with the acid speciation data. For this reason, stoichiometrically defined

properties are not well suited for use in this optimisation procedure, as they do not give a
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direct link to the species’ real activities or composition in solution. Instead of these proper-

ties, experimental data for the activity aH2O of the solvent are used, as these can be directly

measured experimentally without knowledge of the either the stoichiometric or true solution

composition. This choice aims to avoid inconsistencies in the data while providing the

necessary information regarding the thermodynamic behaviour of the solvent. Experimental

data for the liquid phase density is also included in order to facilitate the determination

of cross-interaction parameters. The final optimisation dataset and the corresponding lit-

erature sources are given in Table 6.1. Model parameters for the HSO−
4 and SO−2

4 species

are optimised simultaneously with their unlike interactions with coexisting species in the

solution, namely H2O and H3O+, by minimising an objective function of the form given by

Equation 4.17.

The model parameters of the ionic groups are determined first following the methodology

described in Chapter 4. A complete optimisation exercise for the remaining cross-interactions

that need to be characterised in the aqueous sulphuric acid solution involves 16 parameters,

including the dispersion energies, repulsive Mie exponents, association energies, and bond-

ing volumes for each unlike pair of groups: HSO−
4 –H3O+, SO−2

4 –H3O+, HSO−
4 –H2O, and

SO−2
4 –H2O. This leads to a complex parameter space, which would have to be navigated

using limited experimental data. Instead, a step-wise procedure is adopted by which the

influence of each of these unlike group interaction parameters on the behaviour of the solution

mixture is examined, so that a complete understanding of the parameter interdependence

is understood. This procedure is discussed below, following the presentation of the ionic

models.

The intermolecular potential models of the HSO−
4 and SO−2

4 ions are developed by

determining the structural and energetic parameters using information for well-studied

properties of the ions. The ionic diameters σkk assigned to these ions must reflect the size

and charge density of the species relative each other. The more negative charge and hence

stronger repulsions in the SO−2
4 ion lead to a larger diameter compared to HSO−

4 , in which

the gain of a proton leads to more tightly held electrons. The sizes of these ions, specifically
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the thermochemical radius of the ions which corresponds to the radius of the ions in a crystal

lattice, are reported in the literature. The thermochemical ionic sizes given by Krestov [405]

are selected for both ions in this work; using a single internally consistent source for these

parameters also satisfies the requirement of relative size mentioned above.

The Born diameter for the SO−2
4 model is obtained from the extensive study of Babu and

Lim [406], in which the Born cavity size of ions was identified using molecular dynamics

simulations. The bisulphate ion was not considered in their study, therefore the Born cavity

diameter of HSO−
4 is determined by implementing the method proposed by Rashin and Honig

[197], namely that a reasonable measure of the cavity size of anions can be obtained by

applying a 7% increase to the ionic diameters of the ions. The diameter that Babu and Lim

[406] recommend for the sulphate ion is 12% larger than the crystal ionic diameter assigned

to this ion in this work. This is comparable to the 7% increase recommended by Rashin and

Honig, hence the two sources are considered compatible.

The dispersion energy corresponding to the attractive interaction between any two ions is

established by applying the ion–ion combining rule given by Equation 3.96. The polarisabili-

ties of HSO−
4 and SO−2

4 are obtained from Pyper et al. [203] and Hou et al. [407], respectively,

and the ionisation potentials of both ions are obtained from Wang et al. [408]; these values

are collected in Table 6.4. The ion–ion combining rule also requires the exponents charac-

terising the form of the Mie potential. Following the strategy described in Chapter 4, the

Lennard-Jones potential is assigned to both HSO−
4 and SO−2

4 models, i.e. λa,k = 6, λr,k = 12.

The HSO−
4 –H3O+ and SO−2

4 –H3O+ εkl parameters are characterised by the implementing

the ion–ion combining rule (Equation 3.96), with the information for the H3O+ species given

in Tables 6.4 and 6.2. Optimising the HSO−
4 –H3O+ pair interaction results in a relatively

weak dispersion energy, so the comparably weak value obtained through the combining rule

is taken as a reasonable estimate of the parameter. On the other hand, optimising the SO−2
4 –

H3O+ pair interaction results in a very strong dispersion energy, thereby indicating potential

ion pairing or hydrogen bonding. This finding for the interaction between the SO−2
4 –H3O+

pair aligns with the association schemes discussed previously in Section 6.1.1.1, specifically
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the existence of the sulphate–hydronium ion pair [H3O+ ·SO−2
4 ] proposed in multiple studies

[396, 398, 399]. The weak dispersion energy obtained for the HSO−
4 –H3O+ pair further

suggests that the proposed equilibria given by Equations 6.6 and 6.7 would be shifted heavily

towards the sulphate–hydronium ion pair such that any bisulphate–hydronium association

would be negligible, thus also diminishing the likelihood of the proposed equilibrium given

by Equation 6.8. Given these considerations, the combining rule estimate for εSO−2
4 −H3O+ is

maintained and association between the sulphate and hydronium ions is investigated instead.

Additional association interactions considered in the optimisation procedure for the

aqueous sulphuric acid system include association between bisulphate and hydronium ions as

well as association between water and the two ions. The HSO−
4 model was initially assigned

four ‘e’-type sites and one ‘H’-type site following the work of Yacovitch et al. [401], and

congruently the sulphate ion was assigned four ‘e’-type sites following the work of Wang

et al. [402]. The dispersion energy εH2O−ion between water and each of the ions is optimised

alongside the association interactions. Both the dispersion and association energy parameters

for each ion–water pair are found to tend towards very weak energies, suggesting that the

ions are weakly hydrated. This finding is in accordance with the work of Simonin et al. [409],

who proposed that the bisulphate ion is "unhydrated" in solution (i.e. lacking a coordinated

solvation shell of water molecules), based on modelling solutions of associating acids with

a MSA-NRTL model including ionic hydration and association. Association interactions

between water and the ions are therefore omitted from the model. It would be physically

unreasonable, however, to neglect the ion-water dispersion energies, therefore these are

assigned to the moderate strength obtained from the geometric combining rule for unlike

attractive energies calculated from Equation 3.32.

On optimising, it is found that association between the HSO−
4 –H3O+ pair is negligible,

whereas the association between the SO−2
4 –H3O+ pair is found to exert an overwhelming

influence over the thermodynamic behaviour of the solution mixture, specifically on the

degree of dissociation of the bisulphate ion. This interaction appears to act as a driving

force for the equilibrium governing the reaction shown in Equation 6.4, so it is unsurprising
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that the magnitude of the energetic parameters for this pair’s interaction is large irrespective

of whether they are treated as dispersion or as association. In order to comply with the

experimental evidence for the existence of the [H3O+ ·SO−2
4 ] ion pair entity, association is

favoured over dispersion for representing the strong attraction between these species.

Ultimately, an optimal model for sulphuric acid is presented in which only two cross-

interaction parameters are actually optimised by regression to experimental data, namely

εHB
ab,kl and KHB

ab,kl between ‘H’-type sites on H3O+ and ‘e’-type sites on SO−2
4 . The remaining

parameters are found to be adequately assigned by making use of available data from the

literature and implementing appropriate combining rules. The quality of the optimised

SAFT-γ Mie model for aqueous sulphuric acid is quantified by the %AAD for each property

with respect to the experimental data for that property using Equation 4.18; these are shown

in Table 6.1.

Table 6.1 Experimental solution data and their sources included in the optimisation procedure
for the SAFT-γ Mie models for the HSO−

4 and SO−2
4 ions. The ranges of temperature (T),

maximum molality (mmax), and the number of data points per property (np) are summarised.
Data include the degree of bisulphate dissociation αHSO−

4
, the liquid-phase density of the

solution ρ at 1 atm, and the activity of water aH2O. The percentage average absolute deviation
%AAD for each property is calculated with the SAFT-γ Mie EOS for each property.

αHSO−
4

ρ aH2O

T mmax np T mmax np T mmax np
(K) (mol kg−1) (K) (mol kg−1) (K) (mol kg−1)

Dataset 298 4.8 22 283–298 1.02 16 298 3.0 41
Sources [395, 396, 403] [392, 410–412] [413–415]
%AAD 13.14 0.33 0.33

6.1.3 Description of thermodynamic properties

Aqueous sulphuric acid is modelled using the parameters presented in Tables 6.2 and 6.3,

which collect the parameters for HSO−
4 and SO−2

4 and for their cross interactions with H2O
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and H3O+. The performance of the models is examined against a range of thermodynamic

properties, including some which were not considered during model optimisation, namely the

saturated vapour pressure and stoichiometric mean ionic activity coefficient, in addition to

the bisulphate’s degree of dissociation, the solution density, and the activity of water, which

are also evaluated beyond the range included in the optimisation dataset.

6.1.3.1 Degree of dissociation and solution composition

The degree of dissociation of the bisulphate ion encompasses information for both the

thermodynamic behaviour and speciation of the sulphuric acid solution, both of which must

be described accurately by a successful modelling approach. Figure 6.1 illustrates the degree

of dissociation of the bisulphate ion obtained with SAFT-γ Mie coupled with the reaction

equilibrium condition defined by the thermodynamic acid dissociation constant given by

Equation 6.4. The corresponding solution composition implied by the calculated degree of

dissociation is shown in Figure 6.2. The ionic equilibrium composition of the solution is

calculated in very good agreement with the experimental data, which leads one to expect

similar agreement for a wider spectrum of thermodynamic properties.

6.1.3.2 Mean ionic activity coefficient and water activity

Further evaluation of the SAFT-γ Mie model performance is made by assessing the prediction

of the stoichiometric MIAC γstoich.
± of sulphuric acid, which allows one to examine the model

performance with respect to the ionic components. According to Equation 2.23, γstoich.
± is

obtained as:

γstoich.
±,m (T, p,N) =

(
γH3O+,m (T, p,N)

)2
γSO−2

4 ,m (T, p,N)
(

m2
H3O+mSO−2

4

4m2
acid

)
. (6.14)
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Figure 6.1 The degree of dissociation of the bisulphate ion (αHSO−
4
) in aqueous solution

as a function of the sulphuric acid concentration at 298.15 K. HSO−
4 dissociates in water

according to the reaction equilibrium shown in Equation 6.2, producing SO−2
4 and H3O+ ions.

The continuous curve represents the SAFT-γ Mie prediction, and the symbols represent the
experimental data (squares [396], circles [403], triangles [404]).

The SAFT-γ Mie predictions for the stoichiometric MIAC of sulphuric acid are shown in

Figure 6.3 for temperatures in the range 298–448 K. Despite not considering this property in

the model development, the SAFT-γ Mie predictions agree closely with the experimental

data. The accurate prediction of this property at high temperatures not only demonstrates

the predictive capability of the modelling approach, but also further validates the association

scheme applied to the sulphuric acid solution. The model performance with respect to the

solvent is examined by the description of the water activity aH2O. The calculation of this

property with SAFT-γ Mie is shown at 298 K in Figure 6.4, which shows that the model

gives a good description of the water activity even at high acid concentrations well beyond

the limit considered in the parameter estimation procedure.
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Figure 6.2 The composition of each type of ion in aqueous sulphuric acid solution as a
function of the acid concentration at 298.15 K. Sulphuric acid dissociates in water according
to the reaction equilibrium shown in Equations 6.1 and 6.2, producing HSO−

4 , SO−2
4 , and

H3O+ ions. The continuous curves represent the SAFT-γ Mie predictions, and the symbols
represent the experimental data [396].



6.1 Sulphuric acid 213

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

γ
sto

ic
h.

±,
m

√
macid/(mol kg−1)1/2

298.15 K
323.15 K
373.15 K
448.15 K

Figure 6.3 The concentration dependence of the stoichiometric MIAC γstoich.
±,m for aqueous

sulphuric acid solutions at temperatures between 298.15 and 448.15 K. The continuous
curves represent the SAFT-γ Mie predictions, and the symbols represent the experimental
data [416, 417].
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Figure 6.4 The concentration dependence of the activity of water aH2O in aqueous sulphuric
acid solutions at 298.15 K. The continuous curve represents the SAFT-γ Mie predictions,
and the symbols represent the experimental data [413–415].
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6.1.3.3 Solution density and saturated vapour pressure

The liquid-phase density is a key property for quantifying the performance of the sulfuric

acid model since most of the SAFT-γ Mie parameters exerting the greatest influence on

the fluid density, namely the intermolecular attractive dispersion interactions, are all set by

combining rules. Liquid-phase densities of aqueous sulphuric acid from 298–328 K at 1.01

bar are shown in Figure 6.5. Fair agreement is achieved between the SAFT-γ Mie prediction

and the experimental data for the solution density beyond the concentration and temperature

range considered in optimisation, indicating that suitable ionic diameters were assigned to

the HSO−
4 and SO−2

4 ions, and that the choice to implement combining rules is appropriate

for assigning the dispersion interactions in this system.
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Figure 6.5 The concentration dependence of the liquid density of aqueous sulphuric acid
solutions at 1.01 bar. The continuous curve represents the SAFT-γ Mie predictions, and the
symbols represent the experimental data [392, 410].

The vapour pressure of the solution is also significantly impacted by the ion–solvent

attractive dispersion interactions. The vapour pressure of aqueous sulphuric acid calculated
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with SAFT-γ Mie for temperatures from 283–373 K are depicted in Figure 6.6. The vapour

pressure is consistently well predicted, as compared to experimental data, across a wide

temperature range. One can conclude, therefore, that setting the H2O–HSO−
4 and H2O–SO−2

4

dispersion interactions by combining rule gives a reasonable estimate of these parameters.
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Figure 6.6 The concentration dependence of the saturated vapour pressure of aqueous
sulphuric acid solutions at temperatures between 283 and 373 K. The continuous curves
represent the SAFT-γ Mie predictions, and the symbols represent the experimental data
[418, 419].



6.1 Sulphuric acid 217

Ta
bl

e
6.

2
SA

FT
-γ

M
ie

m
od

el
pa

ra
m

et
er

s
fo

rt
he

sp
ec

ie
s

pr
es

en
ti

n
aq

ue
ou

s
su

lfu
ric

ac
id

an
d

ni
tri

c
ac

id
so

lu
tio

ns
.T

he
m

od
el

s
fo

rH
2O

an
d

H
3O
+

ar
e

ta
ke

n
fr

om
th

e
w

or
k

of
D

uf
al

et
al

.[
17

7]
an

d
C

ha
pt

er
4,

re
sp

ec
tiv

el
y.

Sp
ec

ie
s,

k
ν
∗ k

S k
σ

kk
/Å

σ
B

or
n

kk
/Å

λ
r,k

k
λ

a,
kk

(ε
kk
/k

B
)/

K
n H

n e
(ε

H
B

ab
,k

k/
k B

)/
K

(K
H

B
ab
,k

k)/
Å

3

H
2O

1
1.

00
00

3.
00

63
–

17
.0

20
6.

00
00

26
6.

68
2

2
19

85
.4

10
1.

69
H

3O
+

1
1.

00
00

3.
00

63
3.

00
63

17
.0

20
6.

00
00

68
.1

90
3

–
–

–
H

SO
− 4

1
1.

00
00

4.
12

00
4.

40
84

12
.0

00
6.

00
00

82
.0

86
–

–
–

–
SO

−2 4
1

1.
00

00
4.

60
00

5.
16

00
12

.0
00

6.
00

00
84

.0
82

–
4

–
–

H
N

O
3

2
0.

67
26

3.
61

75
–

16
.3

47
6.

00
00

49
5.

33
1

3
13

00
.0

8.
99

78
N

O
− 3

1
1.

00
00

3.
58

00
4.

00
00

12
.0

00
6.

00
00

97
.8

53
–

3
–

–



218 Weak electrolytes: inorganic acids and ion-paired salts

Table 6.3 SAFT-γ Mie cross-interaction parameters for species present in aqueous solutions
of sulphuric acid and nitric acid. Structural cross-interaction parameters σkl and λy,kl are
omitted from this table as they are obtained by combining rules. The unlike ion dispersion
energies are calculated using Equation 3.96. The procedures for arriving at the remaining
parameters are detailed in the text.

Species Site (εHB
ab,kl/kB)/K KHB

ab,kl /Å3 (εkl/kB)/K

k l k,a l,b

SO−2
4 H2O – – – – 114.65

SO−2
4 H3O+ e H 2236.0 43.700 52.983

HSO−
4 SO−2

4 – – – – 83.246
HSO−

4 H2O – – – – 142.57
HSO−

4 H3O+ – – – – 53.932
NO−

3 H2O e H 1591.1 97.014 91.970
NO−

3 H3O+ e H 2494.1 6.1585 61.788
NO−

3 HNO3 – – – – 220.15
HNO3 H2O e H 3611.6 1.4998 358.82
HNO3 H2O H e 1606.6 1.4998 358.82
HNO3 H3O+ – – – – 181.44

Table 6.4 Values for the polarisability and electron affinity of the ions developed in this work.
Data for HSO−

4 and SO−2
4 are taken from Ref. [203, 407, 408], and data for NO−

3 ion are
taken from Ref. [203, 420].

i α0,i / (10−24cm3) Ii / eV

HSO−
4 5.0890 4.7500

SO−2
4 6.3270 5.1000

NO−
3 4.4800 3.1450
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6.2 Nitric acid

Nitric acid dissociates incompletely, yet appreciably, in aqueous solution, producing a

solution mixture composed of solvated nitrate ions (NO−
3 ) and hydronium ions (H3O+), as

well as the molecular acid (HNO3). It is generally regarded as a ‘strong’ acid due to its high

degree of dissociation (αHNO3), with ≥ 95% of the acid ionised at compositions ≤ 2 mol kg−1.

Within this range of solution compositions, nitric acid could be reasonably approximated

as a strong electrolyte. However, in order to model nitric acid across as wide range of

compositions it is useful to develop a general model that incorporates dissociation. Both

approaches are pursued here as a means of demonstrating the relative benefit of explicit weak

electrolyte modelling. A model for the molecular nitric acid species is also developed, as

required for modelling the aqueous acid as a weak electrolyte.

6.2.1 Pure nitric acid model

Nitric acid is a challenging compound to work with in practice, with its unstable chemical

behaviour making the pure acid difficult to maintain for experimental purposes. In the fluid

phase, nitric acid undergoes spontaneous decomposition as well as self-ionic dissociation,

meaning that a quantity of ‘pure’ acid would also contain nitrate, nitronium (NO+2 ), and

hydronium ions, as well as water and nitrogen dioxide [421]. Nevertheless, experimental data

for nitric acid are typically not accompanied by any such information regarding the degree to

which HNO3 decomposes or ionises, hence it is not possible to take this into account for the

purpose model development. The assumption adopted here is that these reactions may be

considered negligible such that experimental data may be taken to correspond to pure HNO3.
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6.2.1.1 Association scheme

A distinctive characteristic of the HNO3 molecule is its strong affinity to hydrogen bonding.

A spectroscopic study by Guillory and Bernstein [422] has suggested that nitric acid self-

associates via intermolecular hydrogen bonding, forming doubly hydrogen bonded cyclic

dimers – a structure that Odutola and Dyke [423] later confirmed. Nitric acid dimerisation is

mediated in the SAFT-γ Mie model via association sites on the HNO3 segment. In principle,

the dimerisation can be achieved with one donor (‘H’-type) site and one acceptor (‘e’-type)

site. However, since the HNO3 group will also be used in aqueous mixtures, it is prudent

to design the association scheme in such a way as to facilitate its association with water.

McCurdy et al. [424] have concluded through spectroscopic observation and theoretical

calculations that HNO3 molecules form stable clusters with up to four water molecules,

although they agree with previous work by Canagaratna et al. [425] that in any given cluster

no more than two water molecules are directly bonded to the nitric acid molecule. Given

the limited experimental evidence, the chosen association scheme includes one donor (‘H’-

type) site and three acceptor (‘e’-type) sites on the HNO3 segment, aiming to be able to

simultaneously take into account the thermodynamic influence of both dimerisation and

association with water.

6.2.1.2 Model development

The SAFT-γ Mie model for the HNO3 molecule is developed by optimising the model

parameters against the saturated vapour pressure and the saturated liquid density, making use

of the whole temperature range for which data are available (see Table 6.5). Experimental

data near the critical region are not available, possibly due to the aforementioned difficulties

associated with nitric acid stability. Although predictions of the acid properties at the critical

point have been reported by means of extrapolation from measurements at lower temperatures

[426], these are excluded from the optimisation dataset.
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The optimal model for nitric acid is presented in Table 6.2. All parameters are optimised,

apart from the attractive Mie exponent which is set to λa = 6.0 and the number of association

sites assigned as nH = 1 and ne = 3. The optimised parameters ν∗ and Sk prescribe a non-

spherical geometry, a finding which is in accordance with the planar structure of the HNO3

molecule [421]. Taking into account also the optimised segment diameter σ, the overall size

of the HNO3 group is ∼ 26% larger than the size experimentally determined for the NO−
3

ion (see Section 6.2.2.3), as would be appropriate. In terms of the energetic parameters, the

strong self-association energy at close range parallels the expected dimerisation behaviour.

The performance of the model is illustrated in Figures 6.7 and 6.8 in terms of the saturated

vapour pressure and saturated density of pure nitric acid, respectively. The SAFT-γ Mie

model predictions are in good agreement with the available experimental data. The model

predictions for the critical point properties of the acid do not agree with the extrapolated

values quoted in the literature; however, due to the scarcity of experimental data near the

critical region, it is difficult to verify the acid’s critical properties. The model nevertheless

reproduces the acid’s thermodynamic properties within the range of temperature and pressure

conditions relevant to aqueous electrolyte solutions.

Table 6.5 Experimental data (and their sources) for pure nitric acid used in the optimisation
procedure for the HNO3 model. The ranges of temperature (T) and the number of data points
per property (np) are summarised. The optimisation dataset includes phase equilibrium data
for the vapour pressure (p) and saturated liquid density (ρ) of nitric acid.

ρ p

T (K) np %AAD Ref. T (K) np %AAD Ref.

253–323 33 0.38 [427–429] 273–355 27 1.74 [430–433]
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Figure 6.7 Saturated vapour pressure of pure nitric acid at temperatures between 250 and
550 K. The continuous curve represents the SAFT-γ Mie predictions, and the symbols
represent the experimental data [426, 430–433]. Note that the critical point datum obtained
from Ref. [426] is reported as an estimated value.

6.2.2 Aqueous nitric acid

Aqueous nitric acid is modelled here both as a strong electrolyte and as a weak electrolyte.

In the weak acid implementation, the polarity of the HNO3 molecule should contribute to the

dielectric constant of the solvent medium assumed by the SAFT-γ Mie EOS. Considering

the high degree of dissociation of nitric acid, however, the contribution of molecular nitric

acid to the relative permittivity of the solvent medium is neglected as a means of simplifying

the model.
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Figure 6.8 Saturated density of pure nitric acid at vapour-liquid phase coexistence. The
continuous curve represents the SAFT-γ Mie predictions, and the symbols represent the
experimental data [426–429]. Note that the critical point datum obtained from Ref. [426] is
reported as an estimated value.

6.2.2.1 Dissociation equilibrium

In aqueous solution, nitric acid partially dissociates according to the following proton-transfer

reaction with water [436]:

HNO3+H2O
Ka−−⇀↽−− H3O++NO−

3 . (6.15)

The acid dissociation constant Ka characterising the thermodynamic equilibrium of this

reaction is defined on a molality scale as:

Ka(T) =
aH3O+,m (T, p,m)aNO−

3 ,m (T, p,m)
aHNO3,m (T, p,m) . (6.16)

Studies have determined the thermodynamic acid dissociation constant for nitric acid in

water at specified temperatures, employing a range of experimental techniques. In an



224 Weak electrolytes: inorganic acids and ion-paired salts

Table 6.6 Experimental solution data used in the optimisation procedure for aqueous nitric
acid models. An initial dataset is compiled for developing the model for the NO−

3 ion
assuming nitric acid is a strong electrolyte completely dissociated in solution. A second
dataset is used to optimise the cross interactions for the HNO3 molecule in a solution
mixture where the acid is treated as a partially dissociated weak electrolyte. The ranges of
temperature (T), maximum molality (mmax), and the number of data points per property (np)
are summarised. The optimisation datasets include data for the osmotic coefficient ϕ, and the
saturated vapour pressure p of the solution.

Dataset ϕ p

T mmax np %AAD Ref. T mmax np %AAD Ref.
(K) (mol kg−1) (K) (mol kg−1)

Strong acid 298 1.00 16 1.36 [219] 323 3.00 14 0.68 [434, 435]
Weak acid 298 6.00 29 1.32 [219] - - - - -

early study, Hood and Reilly [437] determined the acid dissociation constant for aqueous

nitric acid at three temperatures between 273–343 K by using proton magnetic resonance

to obtain the dissociation quotient of the reaction and then combining this with activity

coefficient measurements from previous studies to calculate Ka. Using flow calorimetry,

Oscarson et al. [438] obtained Ka for three temperatures between 523–592 K, and later

Chlistunoff et al. [439] measured the Ka at 653 K and 673 K using UV-vis spectroscopy.

Taking an indirect approach, Marshall and Slusher [440] determined the thermodynamic

dissociation constant of nitric acid by measuring the solubilty of calcium sulphate in aqueous

nitric acid solutions. The measured solubility product for the salt and the known second

acid dissociation constant of sulphuric acid were used to deduce the Ka of nitric acid by

extrapolation. Marshall and Slusher [441] used the same approach to obtain the Ka of

nitric acid from solubility measurements of magnesium sulphate in aqueous nitric acid,

with comparable results. In each study, these authors proposed a correlation for calculating

Ka as a function of temperature; the two correlations predict the nitric acid dissociation

constant similarly. In the former publication [440], the authors included also data from

other studies in the regression, obtaining a correlation which is applicable for temperatures

between 273–623 K:

log10 Ka = 5.424− 134.37
T

−0.01199T . (6.17)
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The above equation is chosen as the best means for calculating the nitric acid dissociation

constant in the present work.

6.2.2.2 Association scheme

Nitrate ions have been shown to possess a strongly bound primary solvation shell, as in-

terpreted by Irish and Davis [442] from Raman and infrared spectra. Payne [443] studied

the adsorption of nitrate ions on mercury electrodes and proposed that hydrated nitrate ions

engage in hydrogen bonding with water molecules in the primary solvation shell, each ion

binding with three water molecules. This interpretation has been supported by ab initio

theoretical calculations performed by Howell et al. [444], who showed that NO−
3 forms stable

clusters with three water molecules, each of which doubly hydrogen bonds to the oxygen

atoms on the NO−
3 ion. A study by Wang et al. [445] demonstrated using photoelectron

spectroscopy that the first solvation shell of the nitrate ion consists of three water molecules,

and also confirmed Howell’s aforementioned hydrogen bonding scheme between NO−
3 and

H2O via density functional theory (DFT) calculations (see Figure 6.9). Subsequent DFT

studies [446–448] concerning the nitrate–water solvation shell have suggested that the nitrate

ion may directly hydrogen bond with up to six water molecules; however, these proposals

are not accompanied by clear support from experiment.
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Figure 6.9 The hydrogen bonding scheme between the nitrate ion and three water molecules
comprising the primary solvation shell, as proposed by Wang et al. [445]: each H2O molecule
doubly hydrogen bonds to NO−

3 through one strong hydrogen bond (represented by solid thin
lines) and one weak hydrogen bond (represented by dashed thin lines). The image has been
adapted from Ref. [445].

Spectroscopic and theoretical studies of hydrogen bonding between molecular nitric

acid and water have suggested that HNO3 associates with up to four H2O molecules, with

the acid ionising upon associating with the fourth water molecule. McCurdy et al. [424]

identified HNO3(H2O)n clusters with n =1–3 using FTIR spectroscopy. Using first principles

electronic structure calculations, the authors obtained the structures for clusters with n =1–4

and showed that for n =4 two stable hydrogen bonded clusters are feasible: HNO3(H2O)4 as

a global minimum and the solvated ion pair NO−
3 (H2O)3H3O+ as a local minimum. Shortly

afterwards, Scott and Wright [449] studied the same HNO3(H2O)n clusters using ab initio

and DFT molecular orbital calculations. Although this work proposed a different geometry

for the nitrate–hydronium ion pair, the existence of both HNO3(H2O)4 and NO−
3 (H2O)3H3O+
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species was supported. The following reaction equilibrium is possible:

HNO3(H2O)4 −−⇀↽−− NO−
3 (H2O)3H3O+ . (6.18)

However, the NO−
3 (H2O)3H3O+ has not been experimentally observed and, since it is calcu-

lated to be less stable than the HNO3(H2O)4 cluster, it is likely to be an intermediate product

of the acid’s dissociation. Indeed, Marinković et al. [450] have demonstrated that nitrate ions

form contact ion pairs with hydronium ions, in a study using in-situ IR reflection spectroscopy

to examine the electrolyte double layer on gold electrodes in nitric acid solutions. Whether

the contact ion pairs observed in the double layer would also form in bulk solution remained

undetermined.

The above studies are taken into consideration to inform the association interactions

that must be accounted for in the SAFT-γ Mie model for aqueous nitric acid solutions. The

NO−
3 –H2O and HNO3–H2O hydrogen bonding interactions are straightforwardly assigned

following the experimental evidence, while the formation of nitrate–hydronium ion pairs is

investigated by allowing association between the two ions. Three ‘e’-type sites are assigned

to the NO−
3 group, allowing hydrogen bonding with ‘H’-type sites of H2O groups as shown

in Figure 6.10. The ‘e’-type sites the NO−
3 are also allowed to associate with the ‘H’-type

sites of H3O+ groups, i.e. the H2O and H3O+ groups will compete for association with the

NO−
3 group.

6.2.2.3 Model development

The SAFT-γ Mie groups required for modelling nitric acid solutions depend on the whether

acid is considered to be strongly or weakly dissociated. The case of complete dissociation is

considered first, eliminating the HNO3 species such that only the NO−
3 parameters and its

cross interactions with water and hydronium ions are necessary. For this assumption to be

reasonable, the optimisation dataset (see Table 6.6) includes experimental osmotic coefficient
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Figure 6.10 SAFT-γ Mie model interpretation of the hydrogen bonding scheme between
NO−

3 and H2O shown in Figure 6.9. The ‘e’-type sites (shown as white circles) on NO−
3

interact with the ‘H’-type sites (shown as black circles) on H2O. Only three ‘e’-type sites are
assigned to the model for the nitrate ion, so that is possible to associate with a maximum of
three water molecules.

data only up to 1 mol kg−1, at which composition the acid is ≥ 97% dissociated [385, 437].

Vapour pressure and density measurements are scarce at such low concentrations, so data for

these are included up to 3 mol kg−1, at which the acid is still ≥ 90% dissociated.

The optimal set of model parameters for the NO−
3 ion and its cross interactions are

shown in Tables 6.2 and 6.3. The diameter σNO−
3

of NO−
3 is assigned according to the value

corresponding to the ion’s diameter in a crystal lattice, as reported by Marcus [451]. The

corresponding Born diameter σBorn
NO−

3
is obtained from the molecular dynamics simulation

study of Babu and Lim [406], in which the Born cavity diameter of NO−
3 was calculated to

be 10.5% larger than the ionic diameter chosen here. This relative magnitude of the two sizes

for the NO−
3 ion is aligned with the 7% increase recommended by Rashin and Honig [197],

hence the value proposed by Babu and Lim is considered to be reasonable. A Lennard-Jones

intermolecular potential (λa,NO−
3
= 6, λr,NO−

3
= 12) is found to be suitable for the NO−

3 group,

and the group dispersion energy εNO−
3

is obtained by applying the combining rule given by
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Equation 3.96. The polarisability [203] and ionisation potential (negative electron affinity)

[420] of NO−
3 are shown in Table 6.4.

The attractive dispersion energy εkl between the nitrate and hydronium ions is also calcu-

lated with Equation 3.96, using the parameters for H3O+ given in Chapter 4. Optimisation to

experimental data is employed for ascertaining the nitrate–water dispersion energy as well

as the association strength for the NO−
3 –H2O and NO−

3 –H3O+ interactions, all of which are

shown in Table 6.3. Comparing the relative strength of the association interaction optimised

between the NO−
3 group and either H2O or H3O+, one can discern a difference between

the two physically different types of interactions. The strong association energy and small

bonding volume between NO−
3 and H3O+ characterises a short-range attraction; this can

be interpreted either as supporting the formation of contact ion pairs or, alternatively, the

occurrence of the reaction shown in Equation 6.18, thereby driving the dissociation of nitric

acid in solution. The association between NO−
3 and H2O, on the other hand, is characterised

by a weaker energy and larger bonding volume, of the order which is more characteristic of

hydrogen bonding, hence substantiating the proposed hydration of the nitrate ion.

In principle, the parameters optimised for the nitrate ion assuming complete dissociation

at low concentrations should be reasonably applicable in a model treating the acid as weakly

dissociated. As a means of verifying this, the properties of weak nitric acid were computed

using the nitrate ion parameters from the strong acid optimisation and applying combining

rules to estimate the cross interaction parameters applicable to the HNO3 group. With this

approximated parameter set, a good prediction was achieved for the degree of dissociation of

nitric acid, which is defined as:

αHNO3 =
mNO−

3

mHNO3 +mNO−
3

=
mNO−

3

macid
. (6.19)

Here macid = mHNO3 +mNO−
3

corresponds to the molality of the solution. Having established

that the correct speciation behaviour is predicted, the transferability of the NO−
3 model is

further assessed by predicting the stoichiometric osmotic coefficient and stoichiometric
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mean ionic activity coefficient of nitric acid assuming it is weakly ionised. Due to the 1:1

stoichiometry of HNO3, the stoichiometric definitions of these properties for the weak acid

are the same as the those corresponding to the strong acid:

γstoich.
±,m = γ±,m =

(
γNO−

3 ,mγH3O+,m

)1/2
, (6.20)

ϕstoich. = ϕ = −
lnaH2O

2macidMWH2O
. (6.21)

These two properties are also predicted reasonably well by the approximated parameter set

at concentrations up to 6 mol kg−1, indeed with improvement of the osmotic coefficient

prediction compared to the strong acid case. However, the prediction of this property

deteriorates at higher concentrations where the degree of dissociation of the acid falls below

80%. Given these observations, the nitrate ion model parameters are retained for the weak

acid model, and only the cross interaction parameters of the HNO3 group are taken forward

for optimisation. The dataset used for this purpose includes only the osmotic coefficient

of aqueous nitric acid, but considers data for higher acid concentrations where the HNO3

species is more abundant (see Table 6.6).

The optimal cross-interaction parameters for the HNO3 group are shown in Table 6.3.

The association between nitric acid and water is mediated via the four association sites (one

‘H’-type and three ‘e’-type sites) already incorporated in the HNO3 group, thus replicating

the decrease of nitric acid dimer formation in solution due to the competition for association

sites introduced by hydrogen bonding with water. The HNO3–H2O association is treated as

asymmetric to reflect the proposition that a water molecule associating with the hydrogen

site on the nitric acid molecule can lead to ionisation of the acid. Since the cross-interaction

parameters calculated by combining rule are found to already provide a good description

of the thermodynamic properties, only the asymmetric association interactions are included

in the optimisation procedure. By assessing the sensitivity of the model predictions to
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the magnitude of the remaining association parameters, it is found that the thermodynamic

behaviour of the solution mixture is dominated by the εeH, HNO3−H3O+ parameter characterising

the strength of association between the ‘e’-type sites on HNO3 and the ‘H’-type sites on

H2O. The optimisation problem is therefore further simplified to include only this parameter,

while all other cross interactions for the HNO3 group are estimated by combining rules. The

optimal model supports the reaction mechanism given by Equation 6.15, with H2O found to

bind strongly to the ‘e’-type sites on the HNO3 group and weakly to the ‘H’-type site.

6.2.3 Thermodynamic properties of nitric acid solutions: comparison

of the strong and weak acid models

Aqueous nitric acid is taken as an opportunity to assess the benefit in terms of predictive

capability of modelling weak electrolytes explicitly by directly including reaction equilibria

considerations in the modelling approach. The thermodynamic properties of the aqueous

acid treated as both fully and partially ionised are evaluated by comparison to an experi-

mental dataset including data for concentrations beyond the range considered during model

development.

6.2.3.1 Degree of dissociation

A first step to comparing the relative performance of the strong and weak electrolyte ap-

proaches of modelling aqueous nitric acid is to verify that the degree of αHNO3 is predicted

correctly. This is especially important since no information for αHNO3 is taken into account

during the model development process. The prediction of αHNO3 , which uses the NO−
3 model

developed assuming complete dissociation and a single adjustable cross-interaction parameter

for the weak electrolyte mixture, is shown in Figure 6.11. A good level of agreement with the

experimental measurements is achieved, hence validating the efficacy of the weak electrolyte
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approach in reproducing the mixture composition. Consequently, a fair comparison of the

weak and strong acid approaches can be made.
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Figure 6.11 The degree of dissociation of nitric acid αHNO3 in aqueous solution as a function
of the acid concentration at 298.15 K and 1.01 bar. The degree of dissociation is defined by
Equation 6.19. The continuous curve represents the SAFT-γ Mie prediction, and the symbols
represent the experimental data (squares [385], circles [437], triangles [452]).

6.2.3.2 Osmotic coefficient and mean ionic activity coefficient

The osmotic coefficient for aqueous nitric acid as predicted by the two modelling approaches

is shown in Figure 6.12. At low concentrations where the acid is extensively ionised the

two approaches are comparable, although this is also in part due to the fact that the model

parameters are optimised using information for this property at these concentrations. The

predictive description of the osmotic coefficient at higher concentrations is more interesting:

the weak electrolyte modelling approach offers a distinct improvement in the predictions

attained, with the calculations closely following the trend of the experimental data even for
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a very concentrated solution. The mean ionic activity coefficient of aqueous nitric acid is

predicted similarly by the two approaches, as shown in Figure 6.13. This can be explained

by the fact that the difference in the thermodynamic behaviour between the two modelling

approaches is driven by the association interaction between HNO3 and H2O, which has a

more direct effect on the chemical potential of the solvent rather than the electrolyte, and

therefore will impact the osmotic coefficient to a greater extent than the MIAC.
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Figure 6.12 The concentration dependence of the osmotic coefficient Φ of aqueous nitric acid
solutions at 298 K and 1.01 bar. The continuous curve represents the SAFT-γ Mie prediction
for weak nitric acid, while the dashed curve represents the prediction for strong nitric acid.
The symbols represent the experimental data [219].

6.2.3.3 Vapour pressure and liquid density

The description of the saturated vapour pressure of aqueous nitric acid is illustrated in Fig-

ure 6.14, from which the improved predictive capability gained by adopting a weak acid

model is evident at higher concentrations. Including the HNO3 species in the solution by ex-
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Figure 6.13 The concentration dependence of the mean ionic activity coefficient γ± of
aqueous nitric acid solutions at 298 K and 1.01 bar. The continuous curve represents the
SAFT-γ Mie prediction for weak nitric acid, while the dashed curve represents the prediction
for strong nitric acid. The symbols represent the experimental data [219].

plicitly modelling the acid’s partial ionisation allows all association interactions experienced

by the solvent to be accounted for. The hydrogen bonding interactions between HNO3 and

H2O partially inhibit the association between water molecules, thus disturbing the hydrogen

bonded network of water in the liquid phase and making the solution more volatile. This

leads to a corresponding increase in the predicted vapour pressure, as compared to what is

obtained when assuming fully ionised nitric acid. In Figure 6.15, the liquid phase density of

the solution predicted with the SAFT-γ Mie strong and weak acid approaches is shown up

to high concentrations. The dependence of the solution density (which was not considered

during model optimisation) with acid concentration is much better predicted when modelling

the acid as partially ionised. This can again be explained with reference to the additional type

of association interactions in the solution mixture which disrupt the network of inter-water

hydrogen bonds thereby leading to a fluid phase with lower density.
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Figure 6.14 The concentration dependence of the saturated vapour pressure of aqueous nitric
acid solutions at temperatures between 298 and 373 K. The continuous curves represents
the SAFT-γ Mie predictions for weak nitric acid, while the dashed curves represent the
predictions for strong nitric acid. The symbols represent the experimental data [434, 453].
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Figure 6.15 The concentration dependence of the liquid density of aqueous nitric acid
solutions at 323.15 K and 343 K. The continuous curves represent the SAFT-γ Mie predictions
for weak nitric acid, while the dashed curves represent the predictions for strong nitric acid.
The symbols represent the experimental data [454].
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6.3 A consideration of ion pairing in aqueous electrolyte

solutions

Ion pairing equilibria are common in electrolyte solutions, especially in solutions containing

oxoanions such as those discussed earlier in this chapter, yet consideration of ion pairing

within the framework of SAFT equation-of-state modelling of electrolytes has been limited so

far. An early study investigating ion pairing within the SAFT-VRE SW EOS was presented by

Gil-Villegas et al. [56], in which ion pairing was mediated either through a single association

site on each ion of the pair, or through an attractive square-well potential between the

associating ions. The method was implemented only illustratively and did not solve for

chemical reaction equilibrium. The study demonstrated the effect of ion pairing on the

thermodynamic behaviour of an electrolyte solution by taking the example of vapour pressure

over an aqueous NaCl solution: as the ions interact more strongly through ion pairing at

higher salinity, the predicted vapour pressure was higher in models where ion pairing was

included compared to models where it was omitted.

Using the ePC-SAFT equation of state, Held and Sadowski [137] treated ion pairs as

distinct species with a net charge, by including the chemical reaction equilibrium associated

with ion pairing. The associated ion pairing equilibrium constant (KIP) was treated as an

adjustable parameter (similarly to the approach employed in the preceding work of Tikanen

and Fawcett [455]), optimised together with the ion pair’s dispersive energy parameter against

experimental data for the MIAC. The approach was effective in reproducing the behaviour of

aqueous weak electrolyte solutions, including acetate, sulphate, and halide salts. However,

the estimated KIP values often deviated significantly from those determined experimentally,

and the study did not consider whether the compositions of the solutions were reproduced

well by the estimated KIP.

In this work, ion pairing is examined with reference to aqueous solutions of nitrate salts.

Having established a SAFT-γ Mie model for the NO−
3 ionic species, it used here together



238 Weak electrolytes: inorganic acids and ion-paired salts

with the ion models developed in Chapter 4 to model alkali metal nitrates: NaNO3, LiNO3,

KNO3, and RbNO3. In these solutions, the NO−
3 ion and the alkali metal counter-ion have

been shown to form ion pairs extensively even at moderate conditions of temperature and

pressure [36, 442]. By studying these salt solutions using Raman spectroscopy, Frost and

James [456–458] deduced that a sequence of ion association equilibria occurs similarly in all

the above aqueous nitrate salt solutions. For a generic 1:1 nitrate salt MNO3, ion association

was proposed to occur as follows:

M+(aq)+NO−
3 (aq)

K1−−⇀↽−−
[
M+ ·H2O ·NO−

3
]
(aq)

K2−−⇀↽−−
[
M+ ·NO−

3
]
(aq) . (6.22)

The equilibrium between free ions, solvent-shared ion pairs, and contact ion pairs is

governed by the two thermodynamic equilibrium constants, K1 and K2, however these have

not been quantified. In the absence of this information, ion pairing can be treated implicitly

through strong attractive dispersion interactions, similarly to the approach examined by

Gil-Villegas et al. [56]; this is pursued in Section 6.3.1. When quantitative experimental

data on the degree of ion pairing is available, it is possible to model ion pairs explicitly as

distinct species. The SAFT-γ Mie EOS presents the opportunity to model ion pairs in a group

contribution manner using the already parameterised models for the individual ions. This

will be discussed in Section 6.3.2 for the case of aqueous sodium nitrate.

6.3.1 Implicit treatment of ion pairing with ion-specific SAFT

parameters

For electrolyte solutions modelled so far in Chapters 4 and 6, the approach to determining

the strength of ion–ion dispersive interactions was to apply the combining rule given by

Equation 3.96, usually resulting in the attractive energy εkl being fairly weak. This was found

to be a reasonable approximation in solutions of strong electrolytes in which Coulombic

interactions dominate the attraction between the free ions, and also in solutions of weak acids



6.3 A consideration of ion pairing in aqueous electrolyte solutions 239

where the ion pairing is treated by association. However, the strength of the ion–ion attraction

approximated by Equation 3.96 proves to be too weak in solutions where a high degree of

ion pairing is known to occur. For these solutions, the εkl parameter can be optimised so as

to implicitly model ion pairing through strong ion–ion attraction. The Mie intermolecular

potential characterising a given NO−
3 –M+ interaction is determined by optimising εkl against

data for the osmotic coefficient of the aqueous MNO3 salt solution. The corresponding

Mie potential exponents λa,kl and λr,kl are calculated using the combining rule given by

Equation 3.33. Since the extent of ion pairing varies with salt concentration, it is found

necessary to include experimental data across the whole range of concentrations of interest

(≤10 mol kg−1) in the optimisation exercise. The cross interaction parameters between the

nitrate ion and four cations (Li+, Na+, K+, Rb+) obtained in this way are shown in Table 6.7.

In each case the εkl parameter signifies a very strong attractive interaction between NO−
3 and

the cation, which emulates the formation of ion pairs in these nitrate salt solutions.

The performance of these optimised models in reproducing the thermodynamic properties

of the aqueous salt solutions is illustrated by means of the MIAC and the osmotic coefficient

in Figures 6.17 and Figure 6.16, respectively. The SAFT-γ Mie calculations for the osmotic

coefficient have good quantitative agreement with the experimental data in both the low-

salinity region where ion pairs are scarce as well as the high-salinity region where ion pairs

are more abundant. Similarly, the SAFT-γ Mie predictions for the MIAC of the nitrate salts

are in very good agreement with the experimental data across the range of concentrations

considered here, despite not having considered this property in the model development. The

behaviour of the whole concentration range is described well despite the change in solution

composition with regard to ion pairs.

The fact that these electrolyte solutions can be modelled well even without regarding ion

pairs as distinct species conforms to the interpretation of ion pairing as physically associated

ions. Modelling ion pairing implicitly through strong dispersion interactions is shown to be

adequate and effective for use in cases where quantitative data is not available for the ion

pairing equilibrium constant.
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Table 6.7 Optimised cross interaction parameters between the NO−
3 ion and four cations (Li+,

Na+, K+, Rb+). Parameters labelled “Implicit IP” correspond to the modelling approach in
which ion pair entities are neglected. Parameters labelled “Explicit IP” correspond to the
modelling approach which explicitly includes ion pairs as distinct entities. In all cases, λa,kl
and λr,kl are set using the combining rule given by Equation 3.33.

Group (εkl/kB)/K
k l Implicit IP Explicit IP

NO−
3 Li+ 497.11 –

NO−
3 Na+ 595.02 525.70

NO−
3 K+ 632.80 –

NO−
3 Rb+ 607.99 –

6.3.2 Explicit treatment of ion-pairing within a group-contribution

approach

Modelling ion pairs explicitly with the SAFT-γ Mie equation of state requires a number

of interrelated choices to be made concerning the geometry, net charge, and the nature of

intermolecular interactions appropriate for the ion pair species. One can conceive a model for

the ion pair entity either as distinct from the constituent ions, such that the model parameters

need not bear resemblance to those of the free ions; or as being composed of the constituent

ions in a group-contribution manner.

In the first case, a distinct ion pair species i would possess a net charge qi equivalent to

the sum of the charge on the individual ions. This means that the ion pair would experience

attenuated Coulombic interactions compared to the free ions, or even no electrostatic interac-

tions at all in cases where qi = 0. All model parameters, including the structural parameters

(σii, ν∗ii, Sii), the form of the intermolecular potential (εii, λa,ii, λr,ii), and the cross-interaction

intermolecular potential parameters between the ion pair i and the solvent j would need to be

determined.

In the case of modelling ion pairs using a group-contribution approach, the ion pair would

be formed of charged groups k and l corresponding to previously parameterised models for
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Figure 6.16 The concentration dependence of the osmotic coefficient of aqueous alkali
metal nitrate salt solutions at 298.15 K and 1.01 bar, calculated using the model parameters
corresponding to an implicit representation of ion pairing. The continuous curves represent
the SAFT-γ Mie predictions and the symbols represent the experimental data [219].

the constituent ions. Each ionic group would retain its charge, such that the ion pair entity

experiences electrostatic interactions regardless of the pair’s net charge. Only intermolecular

potential parameters describing the cross interaction between the ion pair’s constituent ions

k and l would need to be determined. A question arising here is whether a given pair of

charged groups would interact similarly whether they represent free ionic species or form

part of an ion pair species. If the interaction is considered to be the same then only one cross

interaction needs to be optimised, but if the interactions are considered dissimilar then two

types of cross interactions need to be determined.

Regardless of how the ion pair entity is modelled, an explicit treatment of ion pairing

requires taking into consideration the equilibrium composition of ion pairs and free ions in

the solution. The ability to model ion pairs explicitly therefore relies on the availability of

experimental data of the equilibrium constant KIP. Of the four nitrate salts considered in this

work, such information is available for NaNO3, which is consequently taken forward as a
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Figure 6.17 The concentration dependence of the mean ionic activity coefficient of aqueous
alkali metal nitrate salt solutions at 298.15 K and 1.01 bar, calculated using the model
parameters corresponding to an implicit representation of ion pairing. The continuous curves
represent the SAFT-γ Mie predictions and the symbols represent the experimental data [219].

case study for explicit modelling of ion pairs. The group-contribution approach to modelling

ion pairs is pursued in this work, as it is felt to align more closely with the physical system.

This instance SAFT-γ Mie electrolyte formulation appropriate for this purpose is that where

the electrostatic interactions correspond to the individual groups.

6.3.2.1 Case study: ion pairing in aqueous sodium nitrate

Ion pairing in aqueous NaNO3 was studied by Riddell et al. [459] using Raman and infrared

spectroscopy to determine the composition of the solution. The following ion pairing

equilibrium was proposed:

Na+(aq)+NO−
3 (aq)

KIP−−−−−⇀↽−−−−− Na+ ·NO−
3 (aq) . (6.23)
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The thermodynamic equilibrium constant, KIP, is related to the equilibrium concentration

quotient, QC, as follows:

Keq =
a[Na+·NO−

3 ]

aNO−
3
aNa+

=
γ[Na+·NO−

3 ],m

γNO−
3 ,mγNa+,m

QC , (6.24)

Given that mNO−
3
= mNa+ due to the 1:1 stoichiometry of the salt, the concentration quotient

is given by

QC =
m[Na+·NO−

3 ]

m2
NO−

3

. (6.25)

The fraction of freely dissociated nitrate ions, i.e. those not bound in an ion pair, is equivalent

to the degree of dissociation of the ion pair, αIP. In a sodium nitrate solution of molality msalt,

αIP is expressed as

αIP =
mNO−

3

mNO−
3
+mIP

=
mNO−

3

msalt
. (6.26)

The compositions of each solute species in the solution can be related to αIP and m through

the following material balances:

mNO−
3
= mNa+ = αIPmsalt , (6.27)

mIP = msalt (1−αIP) , (6.28)

while the concentration quotient can also be rewritten as

QC =
1−αIP

msaltα
2
IP
. (6.29)

Riddell et al. [459] measured the solution concentrations of the bound (m[Na+·NO−
3 ]) and

free (mNO−
3
) nitrate ions and calculated QC for concentrations between 1.23–9.38 mol kg−1

at 298.15 K. The equilibrium concentration quotient was found to be almost constant in

this concentration range and also approximately equal to the thermodynamic equilibrium
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constant, which was calculated as KIP(298 K) = 0.06±0.006 kg mol−1 by extrapolation to

infinite dilution. As shown in Figure 6.18, the composition of the aqueous NaNO3 solution

is computed accurately across the whole range of applicable concentrations relevant to this

work by setting QC = 0.06 kg mol−1. Since it is possible to obtain the solution composition

by satisfying a practically concentration-independent QC, the chemical equilibrium condition

given by Equation 6.29 is not solved here. To be clear, the QC is dependent on concentration,

but the change in QC for this particular system is small enough to be considered negligible

and is hence assumed to be constant.
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Figure 6.18 The fraction of freely dissociated nitrate ions in aqueous sodium nitrate solution,
or, equivalently, the degree of dissociation of the [Na+·NO−

3 ] ion pair, αIP, at 298.15 K.
The symbols represent the experimental data [459] and the continuous curve represents
the concentration dependence of αIP computed using Equations 6.28. Note that αIP is not
a prediction of the model, as the composition of the solution is obtained by setting the
concentration quotient QC to a constant value.

The [Na+·NO−
3 ] ion pair is modelled using the group contribution approach inherent

in the SAFT-γ Mie equation of state: the Na+ ion developed in Chapter 4 and the NO−
3

ion developed earlier in this chapter are used as charged groups comprising the [Na+·NO−
3 ]
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species. The only unknown SAFT-γ Mie model parameters for the ion pair species are those

describing the Mie cross interaction potential between the Na+ and NO−
3 groups. The Mie

potential exponents (λa,kl and λr,kl) for the cross interaction are obtained using the combining

rule given by Equation 3.33, while the depth of the potential (εkl) is estimated by optimisation

using experimental data for the osmotic coefficient of the solution.

The optimisation procedure includes data for concentrations ≤10 mol kg−1 (where still

less than 30% of nitrate ions are bound in ion pairs), so that sufficient concentration of ion

pairs exist in solution to allow proper characterisation of their interactions. Two modelling

approaches are investigated as part of the optimisation procedure: in the first approach, the

bound ions experience different unlike interactions than free ions (i.e. second-order cross-

interaction parameters are employed); while in the second approach, the unlike interactions

are independent of the whether the ions are paired or free. The optimal model for the

interaction between Na+ and NO−
3 is found to be that following the second approach, where

the εNa+−NO−
3

parameter corresponding to a free Na+ ion interacting with a free NO−
3 ion is of

equal magnitude as the εNa+−NO−
3

parameter corresponding to ions Na+ and NO−
3 when they

are bound in an ion pair. The unlike interaction between the Na+ and NO−
3 groups obtained

with this explicit ion pair modelling approach is shown in Table 6.7 and the description of

the solution’s thermodynamic properties is illustrated in Figures 6.19, 6.20, and 6.21.

6.3.3 Comparison of implicit and explicit modelling of ion-pairing

phenomena

The magnitude of the εNa+−NO−
3

parameter when ion pairs are modelled explicitly is fairly

similar to that obtained when the formation of ion pairs is excluded from the model. The

similarity is reasonable considering that the strong ion–ion attraction necessary for mediating

ion pairing is ultimately treated via dispersive interactions in both approaches. Nevertheless,

as seen in Table 6.7, the existence of ion pair entities in the explicit modelling approach does
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result in εNa+−NO−
3

being slightly weaker, as would be expected considering that a proportion

of the ions are already defined as bound in ion pairs.

The performance of the two modelling approaches is compared with reference to the

osmotic coefficient and MIAC, bearing in mind that the stoichiometric definition is applicable

when ion pairs are explicitly modelled. For aqueous NaNO3, the stoichiometric definitions

of these properties are obtained by applying Equations 2.23 and 2.25, yielding:

γstoich.
±,m =

(
γNO−

3 ,mγNa+,m

) mNO−
3

msalt
= γ±,mαIP , (6.30)

ϕstoich. = ϕ = −
lnaH2O

2mMWj
, (6.31)

where the stoichiometric osmotic coefficient is equal to the real osmotic coefficient due to

the salt’s 1:1 stoichiometry.

The description of the osmotic coefficient of aqueous NaNO3 given by the two modelling

approaches is shown in Figure 6.19. Data for Φ were used for optimising both models,

nevertheless the description of Φ given by the approach in which ion pairs are modelled

explicitly is seen to follow the trend of the experimental data more closely, even though

the two models perform similarly in the low-salinity region where the degree of ion pairing

is low. The fact that the two models predict the MIAC of NaNO3 equally well, as seen

in Figure 6.17, suggests that the difference between the two modelling approaches lies in

the manner in which the solvent interacts with the charged solute species. In Figure 6.21

the prediction of the aqueous NaNO3 solution density as a function of salt concentration

is shown at 298 K and 343 K. At high concentrations, where the degree of ion pairing is

high, a notable improvement in the prediction of the density is achieved by modelling ion

pairs explicitly. The presence of ion pairs as distinct species means that at a specified salt
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concentration the ions bound in an ion pair occupy less space compared to the case where

ion are free in solution, hence the solution will have higher density.

Based on this case study, it appears that the approach of modelling ion pairs explicitly

provides a better physical representation of associated electrolyte solutions. Of course, more

salts must be examined before a conclusion can be reached. Ion pairing mediated through

Wertheim association is also worth investigating, this method having been shown earlier

in this chapter to be successful for representing ion pairs in weak acid solutions. Further

indication that this could be a suitable modelling approach for ion pairs arises from the

work of Chremos et al. [460], in which the SAFT-γ SW EOS was used to describe chemical

reactions via a physical association model. By introducing strong intermolecular association

among reacting molecules, the reaction products were modelled without introducing these as

distinct species in the mixture. Without having pursued further work on ion pairing, one can

only suggest that explicit ion pairing is effective in the manner it is performed here, yet it

warrants further study following indications from both the present and prior work.
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Figure 6.19 The concentration dependence of the osmotic coefficient of aqueous sodium
nitrate salt 298.15 K and 1.01 bar, obtained by models in which the formation of ion-pairs
is treated implicitly (dashed curve) and in which the ion-pairing equilibrium is explicitly
modelled (continuous curve). The symbols represent the experimental data [219].
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Figure 6.20 The concentration dependence of the mean ionic activity coefficient of aqueous
sodium nitrate salt 298.15 K and 1.01 bar, obtained by models in which the formation of
ion-pairs is treated implicitly (dashed curve) and in which the ion-pairing equilibrium is
explicitly modelled (continuous curve). The symbols represent the experimental data [219].
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Figure 6.21 The concentration dependence of the liquid density of aqueous sodium nitrate
salt at 298.15 K and 343.15 K, at 1.01 bar, obtained by models in which the formation
of ion-pairs is treated implicitly (dashed curves) and in which the ion-pairing equilibrium
is explicitly modelled (continuous curves). The symbols represent the experimental data
[216, 461, 462].
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6.4 Summary

The SAFT-γ Mie EOS has been applied in this chapter in the context of modelling solutions

of weak electrolytes. This has included two incompletely dissociated acids, H2SO4(aq) and

HNO3(aq), and ion pairing in alkali nitrate salts.

Aqueous sulphuric acid has been described by explicitly solving the chemical reaction

equilibrium governing the second dissociation step, i.e. the deprotonation of the bisulphate

ion, using the thermodynamic equilibrium constant obtained from the literature. The molec-

ular acid is not present in aqueous sulphuric acid solutions at the conditions of interest in

this work, therefore the model development procedure involved the HSO−
4 and SO−2

4 ions

only. The association parameters characterising the interaction between the sulphate ion and

hydronium ion were found to be the only ones requiring adjustment to experimental data. The

fact that a highly accurate description of the thermodynamic properties of aqueous sulphuric

acid has been achieved with only two adjustable cross-interaction parameters for only one of

the two newly proposed ionic species acts as a testament to the predictive capability of the

SAFT-γ Mie approach and the reliability of the parameterisation procedure employed in this

work.

Modelling of aqueous nitric acid was performed in two ways: firstly, by treating the acid

as a completely dissociated in solution; and secondly, by considering its partial dissociation

by using the thermodynamic acid dissociation constant from the literature. In order to

model aqueous nitric acid as a weak electrolyte, the molecular acid was first modelled by

developing a SAFT-γ Mie model for the HNO3 species using experimental information for

the pure acid. A comparison of the two modelling approaches for nitric acid has shown

that – provided the same experimental information is used to develop the models – a much

more accurate prediction of the weak acid’s thermodynamic properties can be achieved by

explicitly modelling the incomplete dissociation.
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Ion-pairing phenomena in solutions of alkali nitrate salts have been considered in this

chapter both implicitly, through strong unlike dispersion interactions, and explicitly, by

introducing in the solution mixture a distinct contact ion pair component formed of two

charged groups representing the paired ions. The former approach is convenient as it does

not require knowledge of the ion pairing equilibrium constant. However, a comparison of the

implicit and explicit ion pairing approaches for solutions of sodium nitrate has suggested

that the latter should be favoured when KIP data are available.



Chapter 7

Conclusions and outlook

The SAFT-γ Mie equation of state has found widespread application in recent years as

a thermodynamic modelling tool for fluid systems. Owing to the heteronuclear group-

contribution nature of the formalism, it has been applied successfully across numerous

chemical families [9, 10, 175, 176]. In this thesis, the SAFT-γ Mie EOS has been extended

with additional capabilities that permit it to be used for modelling fluid mixtures containing

electrolytes, thereby further broadening its scope of application in the chemical industry and

beyond.

Thermodynamic modelling approaches for the properties of electrolytes are abundant in

the scientific literature, as has been discussed in Chapter 2. In recent years, the increasing

popularity of statistical-mechanical equation-of-state approaches that take into account

the structure of molecules has provided a platform for the consideration of non-spherical

ionic species. New avenues have thus been opened for pursuing thermodynamic modelling

of systems such as those containing ionisable pharmaceutical compounds [28] or ionic

liquids [139, 140]. A contribution is presented in the current work towards this pursuit,

by delivering a fit-for-purpose thermodynamic modelling tool within the framework of the

SAFT-γ Mie approach.
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The extension of SAFT-γ Mie to mixtures with charged components has been performed

through the addition of two contributions to the Helmhotz free-energy expression of the

EOS. A free-energy contribution term representing electrostatic charge–charge interactions

in the system was included using the primitive model of the mean spherical approximation

(MSA-PM) integral-equation theory. This theory describes how hard spheres with embedded

point charges interact via the Coulombic potential in the presence of a uniform dielectric

medium. The second addition made to the SAFT-γ Mie EOS is the Born theory of solvation,

which accounts for the contribution to the free energy of transferring charged particles into

spherical cavities in the dielectric medium at infinite dilution. The Born free-energy term

therefore incorporates an important aspect of ion solvation effects. Although both the MSA

and Born theories treat the solvent implicitly, the remaining terms of the SAFT-γ Mie free-

energy expression treat the solvent explicitly. This type of semi-explicit approach has been

adopted successfully in the past within the SAFT-VR family of models (to which SAFT-γ

Mie belongs), and it is also found to be effective within the SAFT-γ Mie framework in this

work.

An important part of this work has been the reformulation of the MSA-PM theory and the

Born theory so as to make them compatible with the group-contribution formalism of SAFT-γ

Mie. This has necessitated a redefinition of what constitutes the spherical charged species

to which the Coulomb potential applies. Two possible formulations have been proposed in

Chapter 3: one involves the conversion of a non-spherical ionic species into an equivalent-

volume sphere for the purposes of the MSA and Born calculations; the second formulation

considers that the MSA and Born terms apply to the specific charged functional groups

comprising the ionic components. Each option presents a different set of advantages and

limitations, which were discussed in Chapter 3. In Chapter 5, the two electrolyte formulations

were applied to develop two sets of SAFT-γ Mie models for the COO− functional group and

its interactions with other groups, by considering alkyl carboxylate anions. Both electrolyte

formulations – with their corresponding group models – were found to perform in a similar

manner within the range of solution compositions to which the assumptions of the theory hold.
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This should not come as a surprise, considering that the assumptions made when proposing

each formulation are ultimately absorbed in the adjustable parameters of the model as part of

the optimisation procedure. A selection of the most appropriate formulation to adopt in future

applications of the SAFT-γ Mie EOS should therefore be made by weighing the relative

advantages of each option. From this perspective, the formulation in which electrostatic

interactions are applicable to individual charged groups is considered preferable as it aligns

more closely with the group-contribution methodology. A more stringent assessment of the

adequacy of the theoretical approximations is needed nonetheless, and this can be performed

by direct comparison with molecular simulation data. This future avenue of work is already

being pursued in the Molecular Systems Engineering group at Imperial College.

A large proportion of the work performed for this thesis has been devoted to the develop-

ment of models for ionic species. In Chapter 4, models were developed for twelve atomic

ions (group I & II metal cations, and halide anions) and two polyatomic ions (hydroxide

and hydronium), by considering aqueous solutions of strong electrolytes. This is a neces-

sary first step, as it establishes a set of models for commonly encountered ions. Since it

was decided a priori that these ions would be treated as spherical monomers, the SAFT-γ

Mie EOS simplifies to the SAFT-VRE Mie formalism [122] and is thus referred to as such

throughout Chapter 4. By carrying out the parameter optimisation using only carefully se-

lected experimental data – with a particular emphasis on the osmotic coefficient – at solution

concentrations where the assumption of complete dissociation is reasonable, a robust set of

models has been obtained. These models have been applied to aqueous single-salt solutions

and good descriptions of a wide range of thermodynamic properties have been achieved.

Having established this fundamental set of models, more challenging ionic species were

pursued. The caboxylate functional group was developed with reference to aqueous sodium

carboxylate salts, as discussed above. In Chapter 6, models for the sulphate, bisulphate, and

nitrate ions were presented; these were developed within the context of weak electrolytes.

Aqueous solutions of sulphuric acid and nitric acid were modelled by explicitly taking into

consideration the acid dissociation equilibria, by satisfying the condition of chemical equilib-
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rium set by the corresponding thermodynamic equilibrium constant. A significant challenge

in modelling these weak acids is the ambiguity regarding the association interactions – in-

cluding both hydrogen bonding and ion pairing – relevant to these mixtures, especially in the

case of sulphuric acid. A review of the proposed ion-pairing equilibria in aqueous sulphuric

acid and nitric acid was undertaken in order to inform the development of model parameters

for the ionic species. Ultimately, ion pairing in these solutions was mediated by including

unlike ion–ion association interactions.

Ion pairing was further examined in Chapter 6 by considering the formation of ion pairs

in alkali nitrate salt solutions. In these systems, ion pairing was implicitly accounted for

via strong dispersion interactions between the anion and cation. This is a simplistic yet

effective approach for cases where quantitative data regarding the ion-pairing equilibria are

not available. Explicit consideration of ion-pairing equilibria was possible for solutions of

sodium nitrate, as the ion-pairing equilibrium constant for this salt is reported in the literature.

In this case, the ion-pair species was composed in a group-contribution manner using the

anion and cation as constituent groups, using the SAFT-γ Mie electrolyte formulation

for individual charged groups (and hence validating the choice of carrying forward this

formulation). A third option for modelling ion pairs is to assign association sites specifically

for the formation of these species, similarly to the approach adopted for ion pairing in

sulphuric and nitric acid solutions. This option has not been pursued for the alkali nitrate

salts in this thesis, but it is considered worthy of consideration in future work.

The primary objective of this thesis was to extend the scope of the SAFT-γ Mie equation

of state to fluid mixtures containing electrolytes, with the purpose of contributing towards

the development of a comprehensive thermodynamic modelling platform for fluid mixtures.

The intricacies associated with the application of group-contribution methods to electrolyte

systems have been addressed, and an appropriate formulation has been proposed by suitably

adapting established theories for electrostatic interactions. With this framework in place,

models for a range of common ionic species have been developed, and the properties of

both strong and weak electrolytes were described to a high level of accuracy. Using these
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models as a foundation, as well as the insight gained for treating weak electrolytes and ion

pairing, the SAFT-γ Mie EOS can be applied in future work to model ever more complex

ionic molecules and multicomponent electrolytes solutions.
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