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ABSTRACT 

A fully coupled three-dimensional finite-element model for hydraulic fracturing in 

permeable rocks is utilised to investigate the interaction between multiple simultaneous 

and sequential hydraulic fractures. Fractures are modelled as surface discontinuities 

within a three-dimensional matrix. This model simultaneously accounts for laminar flow 

within the fracture, Darcy flow within the rock matrix, poroelastic deformation of the 

rock, and the propagation of fractures using a linear elastic fracture mechanics 

framework. The leakoff of fracturing fluid into the surrounding rocks is defined as a 

function of the pressure gradient at the fracture surface, the fluid viscosity, and the matrix 

permeability. The coupled equations are solved numerically using the finite element 

method. Quadratic tetrahedral and triangle elements are used for spatial discretisation of 

volumes and surfaces, respectively. The model is validated against various analytical 

solutions for plane-strain and penny-shaped hydraulic fractures. Several cases of 

simultaneous fracturing of multiple hydraulic fractures are simulated in which the effects 

of the various parameters (the in situ stresses, the distance between fractures, the 

permeability of the matrix, the Biot poroelastic coefficient, and the number of the 

fractures in a group) are investigated. The results show that the stress induced by the 

opening of the fractures, and the stress induced by the fluid leakoff, each have the effect 

of locally altering the magnitudes and orientations of the principal stresses, hence altering 

the propagation direction of the fractures. Opening of a fracture induces excessive 

compression (also known as the “stress shadow”) that causes adjacent fractures to curve 

away from each other. This excessive compression competes against the differential in 

situ stresses, which tend to cause the fracture to grow in the plane normal to the minimum 

in situ stress. The stress shadow effect is reduced by increasing the distance between 

fractures, or by increasing the leakoff, which may be due to increased permeability of the 

rock, or an increase in the Biot coefficient. 

 

Keywords: Multiple hydraulic fractures; sequential fracturing; simultaneous fracturing; 

linear elastic fracture mechanics 
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1. Introduction 

Hydraulic fracturing can greatly enhance well productivity in unconventional 

reservoirs. Consequently, most drilled horizontal wells are hydraulically fractured [1,2]. 

In practice, hydraulic fracturing of horizontal wells occurs in several stages, from the 

“toe” towards the “heel” of the well. At each fracturing stage, a number of perforation 

clusters are created over a section of the well, and simultaneously pressurised. Each 

perforation cluster serves as the initiation point of a hydraulic fracture [3]. The stress field 

in the surrounding rocks is altered during the hydraulic fracturing process, and additional 

compression is developed due to the fracture opening, and the poroelastic deformation of 

the rock. This compression affects the fracture creation in the nearby rock, known as 

“stress shadowing” in the hydraulic fracturing literature. Despite improvements in 

diagnostic technology, such as micro-seismic monitoring, modelling of hydraulic 

fracturing is an important tool that allows engineers to design and estimate the fracture 

geometry, since it is still difficult to measure the actual fracture geometry directly. Robust 

numerical models that simultaneously account for fluid flow through fractures and matrix, 

fracture propagation, and rock deformation, are required for accurate simulation of 

interacting fractures. 

Although a variety of analytical and numerical solutions have been developed for a 

single hydraulic fracture [2], few studies have been done on multiple hydraulic fractures, 

and the interaction between hydraulic fractures and natural fractures. Different numerical 

approaches have been used for modelling single hydraulic fractures, including the 

boundary integral method [4], the distinct element method [5], the finite element method 

(2D: [6]; 3D: [7,8]), discrete fracture network [9], the embedded fracture model [10], the 

lattice approach [11], the phase-field model [12], and the extended finite element method 

[13-15]. Fluid flow through the fracture is commonly modelled using lubrication theory, 

which is derived from the general Navier-Stokes equation for flow of a fluid between two 

parallel plates [16,17], whereas the fracture aperture is calculated using linear elasticity 

[18,19]. 

In the case of multiple hydraulic fractures driven from a single horizontal well, 

compression due to the nearby fractures tends to close the fracture. This effect is known 

as the “stress shadow effect” [20]. The stress shadow effect causes fractures to deviate 

from the initial plane normal to the minimum in situ stress. Olson and Dahi-Taleghani 

[21] investigated the interaction between the hydraulic and natural fractures using a 2D 

numerical model. Cheng [22] investigated the effect of hydraulic fracture spacing on 
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fracture interactions using a 2D boundary element method. Several studies have been 

proposed for 2D or pseudo-3D models for the problem of multiple hydraulic fractures 

interaction [23-28]. Among 3D models, Peirce and Bunger [29] proposed solutions for 

multiple fractures with simplified interactions. Kumar and Ghassemi [30] proposed a 3D 

numerical model using the Displacement Discontinuity method, in which fluid flow 

through fractures is coupled sequentially to the elastic deformation of the reservoir [31]. 

Sequential coupling, in a highly non-linear system such as in hydraulic fracturing, suffers 

convergence problems, and requires manual interference to converge. Furthermore, the 

effect of poroelasticity has been either neglected by ignoring the leakoff, or simplified by 

assigning a sink term into the flow equation in the fracture in order to account for leakoff 

[32]. In fact, poroelastic effects may have a significant influence on hydraulic fracturing 

variables such as injection pressure, fracture aperture, fracture length, and interactions [7, 

33].  

In the present study, a robust three-dimensional, fully coupled, finite element model 

for multiple hydraulic fracturing is presented. The model accounts for laminar flow within 

the fracture, Darcy flow within the rock matrix, the propagation of the fracture, and 

poroelastic deformation of the rock. The three governing equations are solved 

simultaneously. The onset and direction of fracture growth are estimated using three 

modal stress intensity factors computed along the fracture tip [34]. The displacement 

correlation method is used for computing the modal stress intensity factors [35]. The 

model is validated against various analytical solutions for different regimes of 

propagation [36], and subsequently applied to study the interaction between multiple 

hydraulic fractures. The accuracy of the proposed model is evident from the validation 

examples presented in this work. The effects of poroelasticity and differential in situ stress 

(the difference between the minimum in situ stress and the other two in situ stresses) on 

the interaction between fractures are investigated. Both simultaneous and sequential 

fracturing of multiple fractures are simulated. 

 

2. Computational Model 

Fractures are represented discretely using two-dimensional surfaces within a three-

dimensional domain. When deriving the governing equations, each fracture is represented 

by a discontinuity c in the domain with boundary , as shown in Fig. 1. Fluid flow 

through the fractures is modelled based on lubrication theory. Assuming a piecewise 
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planar fracture, in which the lateral extent of the fracture surface is much larger than the 

fracture aperture, the average velocity of fluid along the fracture plane may be calculated 

using the cubic law as [37] 

𝐯𝑓 = −
𝑎𝑓

2

12𝜇𝑓
∇𝑝𝑓     (1) 

where 𝑎𝑓 is the fracture aperture, 𝜇𝑓 is the fluid viscosity, and 𝑝𝑓 is the fracture fluid 

pressure. The fracture aperture is given by the differential displacement between two sides 

of the fracture, 𝑎𝑓 = (𝐮+ − 𝐮−). 𝐧𝑐, where 𝐮+ and 𝐮− are the displacements of the two 

opposing faces of the fracture, and 𝐧𝐶 is the outward unit normal to the fracture surface 

[7,14]. The fluid within the fracture applies hydraulic loading on the fracture surfaces as  

𝐓𝑐 = −𝑝𝑓𝐧𝐶    (2) 

The shear tractions exerted by the fracturing fluid on the fracture walls is assumed to be 

negligible. The variation in the fracture aperture is a consequence of the mechanical 

deformation of the rock matrix under the combined effects of pressure and stress 

perturbations. The mechanical deformation model is based on the condition of stress 

equilibrium for a representative elementary volume of the porous medium, saturated with 

a single fluid. The stress-strain relationship of the element is expressed as 

𝛔′ = 𝐃𝛆            (3) 

where 𝛔′ is the effective stress, 𝐃 is the drained stiffness matrix, and 𝛆 is the strain tensor 

in the porous medium. The effective stress is defined exclusively within the rock matrix, 

linking the change in stress to the change in strain. The effective stress for a rock matrix 

saturated with a single-phase fluid is defined as [38] 

𝛔′ = 𝛔 + 𝛼𝑝𝑚𝐈     (4) 

where 𝛔 is the total stress, 𝛼 is the Biot coefficient, 𝑝𝑚 is the fluid pressure in the matrix, 

and I is the second-order identity tensor. The Biot coefficient is defined as 

𝛼 = 1 − 𝐾 𝐾𝑠⁄      (5) 

where K and KS are the bulk moduli of the porous rock and of the rock matrix material 

(e.g. mineral grains), respectively [39]. The fully coupled governing equations for 

mechanical deformation, fracture flow, and matrix flow can be written respectively as [7] 

∫ [div(𝐃𝛆 − α𝑝𝑚𝐈) + 𝐅]𝑑Ω
 

Ω
− ∫ 𝑝𝑓𝐧𝑐𝑑Γ

 

Γ𝑐
= 0         (6) 
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div (
𝑎𝑓

3

12𝜇𝑓
∇𝑝𝑓) = 𝑎𝑓𝑐𝑓

𝜕𝑝𝑓

𝜕𝑡
+

𝜕𝑎𝑓

𝜕𝑡
−

𝑘𝑛

𝜇𝑓

𝜕𝑝

𝜕𝑛𝑐
   (7) 

∫ div [
𝐤𝑚

𝜇𝑓
(∇𝑝𝑚 + 𝜌𝐠)] 𝑑𝛺

 

𝛺
= ∫ [𝛼

𝜕(div 𝑢)

𝜕𝑡
+ (𝜙𝑐𝑓 +

𝛼−𝜙

𝐾𝑠
)
𝜕𝑝𝑚

𝜕𝑡
] 𝑑𝛺 +

 

𝛺
∫

𝑘𝑛

𝜇𝑓

𝜕𝑝

𝜕𝑛𝑐
𝑑𝛤

 

𝛤𝑐
  (8) 

in which 𝛆 =
1

2
(∇𝐮 + ∇𝐮𝑇) is the strain tensor in the porous medium, 𝐮 is the 

displacement vector, 𝐅 is the body force per unit volume, 𝐧𝑐 is the unit normal to the 

fracture, 𝑐𝑓 is the fluid compressibility, 𝐤𝑚 is the permeability tensor of the rock matrix, 

𝑘𝑛 is the permeability of the rock matrix in the direction normal to the fracture, 
𝜕𝑝

𝜕𝑛𝑐
 is the 

gradient of the pressure perpendicular to the fracture, 𝜌 is the fluid density, 𝐠 is the vector 

of gravitational acceleration, and 𝜙 is the rock matrix porosity. The last term in equations 

(7) and (8) represents the fluid exchange between fracture and matrix (leakoff). Leakoff 

is defined in terms of the matrix permeability in the direction normal to the fracture (𝑘𝑛), 

the fluid viscosity, and the pressure gradient at the fracture wall. The above-mentioned 

governing equations have the following properties: 

(a) Setting 𝛼 = 0will decouple the mechanical deformation model and the matrix 

flow model, in which case mechanical loading will have no direct effect on the matrix 

pressures, and vice versa.  

(b) In contrast to the above situation, fracture pressures will always be coupled to the 

mechanical deformation model, irrespective of the value of the Biot coefficient. 

(c) Equation (7) reduces to the lubrication equation [16] for the case of one-

dimensional incompressible flow with no leakoff. 

(d) The time-derivative of the fracture aperture, 𝜕𝑎𝑓 𝜕𝑡⁄ , in eq. (7) provides direct 

coupling between the displacement field and the fracture flow field, which is symmetric 

to the fracture pressure loading term, 𝑝𝑓𝐧𝐶, in eq. (6). 

 

3. Finite Element Approximation 

The finite element method has been utilised to spatially discretise the governing 

equations. Three displacement components (𝐮), and fluid pressures in the fracture (𝑝𝑓) 

and matrix (𝑝𝑚) are defined as primary variables. Using the standard Galerkin method, 

the displacements and pressures within an element are approximated from their nodal 

values. A finite difference technique is employed to march the solution forward in time. 

The final form of the discretised equations are described in the form of 𝕊𝕏 = 𝔽 as [7] 
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[

−𝐊 𝐂𝑚 𝐂𝑓

𝐂𝑚
𝑇 𝐇𝑚𝑑𝑡 + 𝐌𝑚 + 𝐋𝑑𝑡 −𝐋𝑑𝑡

𝐂𝑓
𝑇 −𝐋𝑑𝑡 𝐇𝑓𝑑𝑡 +𝐌𝑓 + 𝐋𝑑𝑡

] {

𝐮̂𝑡+∆𝑡

𝐩𝑚
𝑡+∆𝑡

𝐩𝑓
𝑡+∆𝑡

} = {

−𝐅

𝐂𝑚
𝑇 𝐮̂𝑡 +𝐌𝑚𝐩𝑚

𝑡 + 𝐐𝑚𝑑𝑡

𝐂𝑓
𝑇𝐮̂𝑡 +𝐌𝑓𝐩𝑓

𝑡 +𝐐𝑓𝑑𝑡
}    (9) 

where 

𝐊 = ∫ 𝐁1
T𝐃𝐁1𝑑𝛺

 

𝛺
      (10) 

𝐂𝑚 = ∫ 𝐁2
T𝛼𝐍𝑑𝛺

 

𝛺
      (11) 

𝐂𝑓 = ∫ 𝐍T𝐧𝑐𝐍𝒄𝑑𝛤
 

𝛤𝑐
      (12) 

𝐇𝑚 = ∫ 𝐁3
T 𝐤𝑚

𝜇
𝐁3𝑑𝛺

 

𝛺
      (13) 

𝐇𝑓 = ∫ ∇𝐍𝒄
T 𝑎𝑓

3

12𝜇𝑓
∇𝐍𝒄𝑑𝛤

 

𝛤𝑐
     (14) 

𝐌𝑚 = ∫ 𝐍T (𝜙𝑐𝑓 +
𝛼−𝜙

𝐾𝑠
)𝐍𝑑𝛺

 

𝛺
    (15) 

𝐌𝑓 = ∫ 𝐍𝒄
T𝑎𝑓𝑐𝑓𝐍𝒄𝑑𝛤

 

𝛤𝑐
     (16) 

𝐋 = ∫ 𝐍𝒄
T 𝑘𝑚

𝜇𝑓

𝜕𝐍𝒄

𝜕𝐧𝑐
𝑑𝛤

 

𝛤𝑐
      (17) 

where 𝐊 is the mechanical stiffness matrix, 𝐂𝒇 and 𝐂𝒎 are the hydro-mechanical and 

poroelastic coupling matrices, respectively, 𝐇 is the conductance matrix, 𝐌 is the 

capacitance mass matrix, 𝐋 is the leakoff mass matrix, 𝐅 is the applied load vector, 𝐐 is 

the fluid flux, and  𝐮̂ and 𝐩̂ are the vectors of nodal values of displacement and fluid 

pressure, respectively. The matrices [𝐁1]6×3𝑛 = ∇̅𝐍, [𝐁2]1×3𝑛 = 𝛅𝐓𝐁1, and, [𝐁3]3×𝑛 = ∇𝐍 

are derivatives of the shape function, 𝛅 = {1 1 1 0 0 0}𝑇 , and ∇ is the gradient 

operator. Superscript 𝑡 represents the time at the current step, superscript 𝑡 + 𝑑𝑡 

represents time at the next step, and 𝑑𝑡 is the time increment. The non-diagonal 

components of the stiffness matrix are populated with the coupling matrices 𝐂𝑓 for hydro-

mechanical coupling in the fracture, 𝐂𝑝 for poroelastic coupling in the matrix, and 𝐋 for 

fracture-matrix flow coupling. The operator ∇̅ for three-dimensional displacement field 

is defined as 

∇̅=

[
 
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

 ]
 
 
 
 
 
 
 
 
 
 

     (18) 



Paper published in: Int. J. Rock Mech. Min. Sci., vol. 99, pp. 9-20, 2017 

 7 

Two types of discretisation are used: quadratic tetrahedra for volume elements, and 

quadratic triangles for surface elements (fractures). The triangles on two opposite surfaces 

of a fracture are matched with each other, but they don’t share nodes, and duplicate nodes 

are defined for two sides of a fracture (except for the nodes on fracture tip). The triangles 

are matched with faces of the tetrahedral connected to the fracture, and therefore share 

the same nodes. However, the model presented in this study can also be applied to non-

matching elements. The fracture flow equation (Eq. 2) is solved only on one-side of the 

fracture (i.e., matrices 𝐇𝑓 and 𝐌𝑓 are accumulated over triangle elements on one side of 

the fracture), whereas the coupling matrices (𝐂𝑓 and 𝐋) are accumulated on both sides of 

the fracture. Mechanical deformation and matrix flow equations are accumulated over the 

tetrahedral elements. As the components of the stiffness matrix 𝕊 are dependent on the 

primary unknown variables 𝕏, a Picard iteration procedure is adopted to reach the correct 

solution within acceptable tolerance. For the current iteration 𝑠 + 1 in current step 𝑛 + 1, 

the solution-dependant coefficient matrices in the stiffness matrix are updated using 

weighted average solution vector 𝕏𝑛+1
𝑠+𝜃  defined as 

𝕏𝑛+1
𝑠+𝜃 = (1 − 𝜃)𝕏𝑛+1

𝑠−1 + 𝜃𝕏𝑛+1
𝑠      (19) 

where 𝕏𝑛+1
𝑠−1  and 𝕏𝑛+1

𝑠  are the solution vectors of two most recent iterations in the current 

timestep 𝑛 + 1, and 𝜃 = 2/3 is the weighing coefficient. For the first iteration 𝑠 = 1, the 

previous timestep solution is used as 

𝕏𝑛+1
0 = 𝕏𝑛+1

1 = 𝕏𝑛
      (20) 

where 𝕏𝑛
  is the solution vector from timestep 𝑛. The iterations are repeated, until 

consecutive values of 𝕏𝑛+1
𝑠  agree to within a specified tolerance 𝜀 

‖𝕏𝑛+1
𝑠+1−𝕏𝑛+1

𝑠 ‖

‖𝕏𝑛+1
𝑠+1 ‖

<  𝜀     (21) 

The discretised coupled equations are implemented as part of the Imperial College 

Geomechanics toolkit [40], which interacts with an octree volumetric mesher (ANSYS 

ICEM) and the Complex Systems Modelling Platform (CSMP++, also known as CSP), 

an object-oriented application programme interface (API), for the simulation of complex 

geological processes and their interactions (formerly CSP, cf. [41]). The set of linear 

algebraic equations are solved with the algebraic multigrid method for systems, SAMG 

[42].  
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4. Stress Intensity Factors and Growth Model 

The mechanical deformation of the rock leads to concentrations of stress around the 

fracture tips, which can be quantified locally at each tip by the stress intensity factors 

(SIFs). The SIFs are key parameters in evaluating and predicting the onset of fracture 

growth, and the growth direction. In this study, three stress intensity factors (SIFs) for 

three modes of fracture opening are computed using the displacement correlation (DC) 

method. The DC method is computationally very cheap and is able to yield very good 

approximations to the SIFs [35]. The three SIFs are mode I (𝐾𝐼) for opening due to tensile 

loading, mode II (𝐾𝐼𝐼) for in-plane shearing due to sliding, and mode III (𝐾𝐼𝐼𝐼) for out-of-

plane shearing due to tearing. The crack grows if and when the equivalent stress intensity 

factor 𝐾𝑒𝑞 overcomes the material toughness (𝑘𝑖𝑐). The equivalent SIF in the direction of 

propagation (𝜃𝑝) is calculated as [43] 

𝐾𝑒𝑞 =
1

2
cos (

𝜃𝑝

2
) {𝐾𝑐𝑠 +√𝐾𝑐𝑠2 + 4𝐾𝐼𝐼𝐼

2 }    (22) 

where 𝐾𝑐𝑠 = 𝐾𝐼 cos
2 (

𝜃𝑝

2
) −

3

2
𝐾𝐼𝐼 sin(𝜃𝑝), and 𝜃𝑝 is the propagation angle. The in-plane 

propagation angle (𝜃𝑝) and out-of-plane deflection angle (𝜓𝑝) are determined using a 

modified maximum circumferential stress method that takes into account modal stress 

intensity factors under mixed loading [43]. The in-plane propagation angle (𝜃𝑝) is 

assumed to be perpendicular to the maximum circumferential stress 𝜎1, thus, 𝜃𝑝 can be 

calculated by 

𝜕𝜎1

𝜕𝜃
= 0,  and  

𝜕2𝜎1

𝜕𝜃2
< 0   (23) 

The out-of-plane deflection angle 𝜓𝑝 is defined by the orientation of 𝜎1 as 

𝜓𝑝 =
1

2
tan−1 (

2𝜏𝜃𝑧

𝜎𝜃−𝜎𝑧
)     (24) 

The SIFs and growth computations are performed at fifty locations along the fracture tip. 

 

5. Model Validation 

The finite element code has been previously validated against various analytical 

solutions [7] and experimental data [33]. In this section, two examples of model validation 

are presented: the simulation of plane-strain and penny-shaped hydraulic fractures under 

viscosity and toughness propagation regimes. Analytical solutions for these two 

geometries are available in the literature for both the viscosity-dominated and toughness-

dominated regimes. 
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5.1. Plane-strain (KGD) hydraulic fracture 

A plane-strain hydraulic fracture is modelled in this section to test the accuracy of 

the proposed computational approach. The plane-strain assumption is suitable for short 

fractures, i.e., when the fracture length is much smaller than its height. This fracture is 

also known as a KGD fracture, as the analytical solution for hydraulic fracturing variables 

of pressure, aperture and fracture length was first proposed by Khristianovic and Zheltov 

[44], and Geertsma and de Klerk [18]. In this simulation, a viscous fluid with viscosity 

𝜇 = 0.1 Pa s, is injected into a fracture with initial half-length of 1 m and height of 20 m. 

The injection rate is set to 𝑞 = 1 m3/min. The host formation has a Young’s modulus of 

𝐸 = 1 MPa, and a Poisson’s ratio of 𝜈 = 0.3. Fracture toughness is set to Kic = 1106 Pa 

m0.5. This set of parameters corresponds to the viscosity-dominated regime [36]. Due to 

the symmetry of the problem, only half of the fracture geometry is modelled, as shown in 

Fig. 2. The spatial discretisation, and the results for injection pressure, fracture width 

(aperture), and fracture length, are shown in Fig. 2. Injection pressure decreases as the 

hydraulic fracture grows, while the fracture aperture increases with time. Included in this 

figure is the analytical solution by Geertsma and de Klerk [18]. Very good agreement is 

found between the present model and the analytical solutions. 

 

5.2. Penny-shaped (radial) hydraulic fracture 

A single penny-shaped fracture of initial radius 1 m is located in the centre of a 

609090 m cubic region. The model is spatially discretised using 51,441 triangular and 

tetrahedral elements. Fracturing fluid is injected at a constant rate of Q = 0.01 m3/s into 

the centre of the fracture. The Young’s modulus, Poisson’s ratio, viscosity and fracture 

toughness are set to 𝐸 = 17 GPa, 𝜈 = 0.25, f = 0.0001 Pa s, and Kic = 2106 Pa m0.5. 

This set of parameters corresponds to toughness-dominated regime, as the dimensionless 

viscosity defined as [45] 

𝑀 = 𝜇′ (
𝑄3𝐸′13

𝐾′18𝑡2
)
1/5

    (25) 

is less than 1 (M << 1) during the simulation time; in this equation, 𝜇′ = 12𝜇𝑓, and 𝐾′ =

4(2 𝜋⁄ )1/2𝐾𝑖𝑐. The simulated fracture pressure, fracture aperture, and fracture radius 

match very well with the analytical solutions of Savitski and Detournay [45], as shown 

in Fig. 3. A convergence test has been also performed to investigate the robustness of the 
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model. For this test, three different meshes are considered: coarse (9,540 elements), 

medium (17,441 elements) and fine (29,080 elements). The error between injection 

pressures calculated from the present simulations and from the analytical solution at a 

time of 20s is computed and shown for different meshes in Fig. 4. The error decreases 

from 5% for the coarse mesh, to close to 1% for the fine mesh. 

 

6. Simulation Results 

The simulation cases are categorised into two groups, based on whether the rock 

matrix is permeable or not. In the impermeable cases, the effect of the fracture spacing, 

differential in situ stresses, and the position of the fracture in a series, are investigated. In 

cases with a permeable matrix, the effect of poroelasticity on the interaction between two 

fractures is investigated. Due to the simultaneous solution of the fully coupled equations, 

the convergence of the solution in all simulations occurs relatively fast, with three to five 

iterations per each timestep for an error tolerance of 𝜀 = 1%. 

 

6.1. Multiple Hydraulic Fractures in an Impermeable Rock Matrix 

In these simulations, multiple parallel vertical penny-shaped fractures are 

considered, and the fluid is injected through a horizontal well that perforates the centre of 

the fractures. The size of the well is assumed to be negligible with respect to the size of 

the fracture, and so the wellbore is modelled as a point source boundary condition in the 

simulations. A total of eight cases are simulated in this section, and a summary of 

simulation cases is given in Table 1. 

 

6.1.1 The effect of fracture spacing 

In this case (case 1), two fractures with initial radius of 1 m are located at a distance 

d apart from each other. Injection rate is set to Q = 0.01 m3/s per fracture, and the fluid 

viscosity is set to 0.1 Pa s. The elastic properties of the rock are set to a Young’s modulus 

E = 20 GPa, and a Poisson’s ratio  = 0.2. An isotropic in situ stress is assumed, with x 

= y =z = 10 MPa. The spacing d between fractures takes on values from 5 m to 20 m. 

The fracture propagation paths for different spacing are shown in Fig. 5. The induced 

compression from the opening of the nearby fractures causes the fractures to grow away 

from each other. As the spacing increases, the magnitude of the induced compression felt 

at the growing fracture is reduced, and so the fractures tend to remain parallel to each 
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other. The simulation time varies between 6 to 8 hours on an Intel Xeon CPU E5-1680 

v4 @ 3.40 GHz 3.40 GHz for 36,000 quadratic elements.   

 

6.1.2 The effect of differential in situ stresses 

In these simulations, three parallel vertical penny-shaped fractures of 1 m radius are 

considered in a 909080 m cubic box. Fractures are located three metres apart from each 

other. The model is discretised spatially using 62,843 quadratic triangle and tetrahedral 

elements. A total injection rate of Q = 0.003 m3/s is distributed among three injection 

points, apportioned inversely to the injection pressure of each fracture. The fluid viscosity 

is set to 0.1 Pa s, the elastic properties of the rock are set to Young’s modulus E = 17 GPa, 

and Poisson’s ratio  = 0.2. The propagation increment is set to 0.5 m. Three cases are 

considered: one with an isotropic stress field (case 2) and two cases with anisotropic stress 

fields (cases 3 and 4). In case 2, all in situ stresses are set to 10 MPa; in case 3 it is 

assumed 𝜎𝑥 = 10, 𝜎𝑦 = 𝜎𝑧 = 12 MPa; and in case 4: 𝜎𝑥 = 10, 𝜎𝑦 =11, 𝜎𝑧 =12 MPa. The 

induced fractures at time 𝑡 = 20s for cases 2 to 4 are shown in Fig. 6. As the fractures 

become larger than three metres in length, the interaction between fractures starts to affect 

their growth. The additional compressive stress from the central fracture forces the two 

side fractures to grow away, causing them to bend outwards. The central fracture is also 

under compressive stresses from the two side fractures. This excessive compression 

results in higher injection pressure and thus, lower injection rate in the central fracture. 

As these compressions are symmetric, the central fracture grows in a planar mode. In case 

2, an isotropic stress field is assumed; therefore the growth of fractures is only affected 

by the excessive compression from the nearby fractures. But, in anisotropic cases 3 and 

4, there is a competition between the differential in situ stresses (𝜎𝑣 − 𝜎ℎ and 𝜎𝐻 − 𝜎ℎ) 

and the excessive compression from the nearby fractures, to determine the direction of 

growth of the side fractures. The differential in situ stresses along the y and z directions 

force the side fractures to grow along the plane normal to the minimum in situ stress (yz 

plane). The poroelastic compression, on the other hand, pushes the side fractures to bend 

away from the central fracture. These opposite driving stresses result in lower curvature 

of the side fractures as compared to the isotropic case. In cases 3 and 4, the higher in situ 

stress acting along the yz plane, overcomes the excessive compression from nearby 

fracture, and forces the side fractures to grow in the vertical plane at some points during 

simulations. The central fracture continues to grow in a planar mode, due to the symmetric 
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compression it receives from the two side fractures. In case 3, the maximum and 

intermediate in situ stresses are equal, and so the fracture grows identically along the y 

and z directions. 

In case 4, the higher differential in situ stress along the z direction forces the side 

fractures to grow vertically, while lower differential in situ stress along the y direction 

allows more curvature along the y axis. This results in the distortion of the side fractures, 

as shown in Fig. 6. The side fractures in the three cases described above are compared in 

Fig. 7 for the top and side views. The isotropic stress field produces higher curvature for 

side fractures, as there is no resistance from the differential in situ stresses. Higher 

differential in situ stresses produces lower curvature, forcing the fractures to grow 

vertically. The side fractures in case 4 along the z axis (both cases have similar vertical 

stress of 12 MPa) follow the same direction as in case 3, while along the y axis, its 

curvature is among those fractures in cases 2 and 3. 

 

6.1.3 The effect of the fracture completion sequence 

In these simulations, three fractures are created sequentially from a single well, each 

for an injection time of 102 seconds. The fractures initially have a radius of 1 m, and the 

growth increment is set to 0.5 m. A constant injection rate of Q = 0.001 m3/s is assumed 

for each fracture, and the fluid viscosity is set to 0.1 Pa s. The elastic properties of the 

rock are set to E = 17 GPa, and  = 0.2. Two cases (5 and 6) are considered: case 5 

corresponds to an isotropic stress field (𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 =10 MPa), and case 6 represents 

the anisotropic stress field (𝜎𝑥 = 10, 𝜎𝑦 = 𝜎𝑧 =12 MPa). The induced fractures are 

shown in Figs. 8 and 9, for cases 5 and 6, respectively. The first fracture in the series 

grows planar, while the second and third fractures in the series grow away from the 

completed fracture. Again, this is due to the poroelastic compression induced by the 

completed fractures. The creation of the second fracture also induces compression on the 

completed fracture, which results in additional growth and curvature of the completed 

fracture. The third fracture is under even more compression from both of the previously 

induced fractures, and bends outward, away from the second fracture. Higher curvature 

is observed for the third fracture for both the isotropic and anisotropic cases. Again, the 

curvature of the fractures is higher for the isotropic case, as there is no resistance from 

the differential in situ stresses. As time progresses, the pressure inside the completed 

fractures equilibrates, and the maximum aperture of those fractures decreases. Thus, the 
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delay in the fracturing process may result in the pressure equilibrium within the completed 

fractures, and therefore, reduces their interactions. The evolution of the fluid pressures at 

the injection point for the three fractures is shown in Fig. 10. When injection is ceased in 

a fracture, the pressure dissipation within the fracture causes a drop in the pressure at the 

injection point. The compression induced from the subsequent fracture, on the other hand, 

slightly increases the pressure within the completed fracture.  

 

6.1.4 The effect of the fracture position in a series 

In these simulations, the number of fractures is increased to five, to investigate the 

effect of the position of each fracture within the series on the growth of each fracture. The 

fractures are spaced 3 m apart located in a 1009090 m cubic box, and injection is 

modelled through a single well. The model is discretised spatially using 79,133 quadratic 

triangle and tetrahedral elements. The total injection rate is set to Q = 0.005 m3/s, 

distributed among fractures inversely proportional to their injection pressure. Two cases, 

7 and 8, are assumed for simultaneous injection under isotropic (𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 =10 MPa) 

and anisotropic stress conditions (𝜎𝑥 =10, 𝜎𝑦 =11, 𝜎𝑧 =12 MPa), respectively. The 

induced fractures are shown in Figure 11. The fracture in the centre continues to grow in 

a planar mode, due to the symmetric compression, while the other four fractures bend 

outward, away from the central fracture. The further the distance from the central fracture, 

the more curvature the fracture exhibits, due to the non-symmetric compression it receives 

from the other fractures. The furthest fractures on both sides show larger curvature. The 

second furthest fractures are under unequal compression from both sides, therefore curve 

less. The differential in situ stresses reduce fracture curvatures in anisotropic case 8. In 

this case, the differential in situ stress is pushing the fractures back to the vertical plane. 

The induced fractures in these two cases are compared in Fig. 12 on a horizontal cut-plane 

(xy plane) passing through the centre of the fractures. Differential in situ stress reduces 

the curvature of the fractures further. 

 

6.2. Multiple Hydraulic Fractures in a Permeable Rock Matrix 

In this section, the effect of leakoff and poroelasticity on the interactions between 

two fractures is investigated. Two parallel fractures are placed 5 m apart. The injection is 

performed simultaneously at a rate of Q = 0.01 m3/s, with a fluid with viscosity of 0.0001 

Pa s. The elastic properties of the rock are set to E = 20 GPa, and  = 0.2, and fracture 
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toughness is set to Kic = 2106 Pa m0.5. With these parameters, the hydraulic fracturing 

process falls under the toughness-dominated regime. An isotropic in situ stress is 

assumed, with  = 10 MPa.  

The leakoff is allowed by introducing matrix permeability. Several cases are 

simulated in which the matrix permeability (km) varies between 1 × 10−16, and 

1 × 10−15 m2, and the Biot coefficient (𝛼) also varies between 0, 0.5 and 1. The 

permeability of 1 × 10−15 m2 corresponds to the leakoff-toughness regime [7]. The 

curvature of one of the fractures is shown in Fig. 13, where it is compared with the results 

for an impermeable matrix for both toughness- and viscosity-dominated cases. Interesting 

remarks can be concluded from the results shown in Fig. 13. 

(a) In the absence of poroelastic effects (𝛼 = 0), the matrix permeability does not 

affect the curvature of the fracture. Higher permeability increases the leakoff and it takes 

longer injection time and higher volume of the fluid to create the fracture; however, due 

to the uncoupled flow-deformation in the matrix, the interaction between fractures 

remains purely mechanical and a consequence of the fracture aperture opening.  

(b) In lower matrix permeability, the leakoff and poroelastic interactions between 

fractures has minimal effect on the propagation direction.  

(c) In leakoff-dominated cases, poroelastic effects are significant and affect the 

propagation direction of two interacting fractures. Additional compression from the 

expanded matrix pushes the fractures to propagate away from each other and that 

increases the curvature of the induced fracture. 

(d) The effects of poroelasticity increases with increasing Biot coefficient. This can 

be seen in both low and high permeability cases. 

(e) The fractures in toughness regime have lower interactions than those in viscosity 

regime. This can be explained by lower fracture aperture in fractures under toughness 

regime [7]. 

 

7. Conclusions 

A fully coupled three-dimensional finite element model has been presented for the 

simulation of the growth of multiple hydraulic fractures in permeable rocks. The model 

was validated against various analytical solutions and experimental data, including plane-

strain and penny-shaped fractures in different regimes of propagation. Several cases of 

simultaneous and sequential fracturing are simulated. Results show that the compression 
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induced from the nearby fractures, and by the differential in situ stresses, have opposite 

effects on the growth of the hydraulic fractures. The fractures tend to grow away from 

each other due to the effect of nearby fractures, whereas the differential in situ stresses 

force the fracture to grow in a plane perpendicular to the minimum in situ stress. The 

interaction between two nearby fractures reduces by increasing spacing. The competition 

between the compressive stresses due to fracture interactions, and the in situ differential 

stresses, dictates the shape of the hydraulic fracture. Non-identical differential in situ 

stresses i.e. 𝜎𝑧 − 𝜎𝑥 ≠ 𝜎𝑦 − 𝜎𝑥, causes distortion in the fracture shape along the y and z 

directions. The fractures in a series of hydraulic fractures, induced simultaneously from 

a single well, may have different curvatures, due to non-symmetric compression they 

receive from the nearby fractures. Fractures located closer to the centre of the series are 

expected to grow straight, while fractures located close to the end of the series may show 

higher curvature. In sequential fracturing, the completed fractures may also affect the new 

induced fractures and make them bend outward, away from the completed fractures. 

Poroelastic effects can be significant when the leakoff is significant, i.e., when fractures 

are propagating in the leakoff-dominated regime. Without poroelastic coupling, the 

matrix permeability has no effect on the interactions between two fractures, and the 

fractures propagate in the same direction as in the no-leakoff case. 
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Table 1- Material properties of the simulation cases in impermeable matrix 

 

  

  

Cas

e 

No. 

Description 

In situ 

Stress 𝜎𝑥 

(MPa) 

In situ 

Stress 𝜎𝑦 

(MPa) 

In situ 

Stress 𝜎𝑧 
(MPa) 

Young’s 

Modulus 

(GPa) 

Poisson’s 

Ratio 

1 
Simultaneous – 2 

Fractures 
10 10 10 20 0.2 

2 
Simultaneous – 3 

Fractures 
10 10 10 17 0.2 

3 
Simultaneous – 3 

Fractures 
10 12 12 17 0.2 

4 
Simultaneous – 3 

Fractures 
10 11 12 17 0.2 

5 
Sequential – 3 

Fractures 
10 10 10 17 0.2 

6 
Sequential – 3 

Fractures 
10 12 12 17 0.2 

7 
Simultaneous – 5 

Fractures 
10 10 10 17 0.2 

8 
Simultaneous – 5 

Fractures 
10 11 12 17 0.2 
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Figure 1. Schematic representation of the problem with discrete fracture, af is the 

fracture aperture, pf is the fluid pressure in the fracture, pm is the fluid pressure in the 

matrix, qf is flow rate in the fracture, qL is the leakoff, and Ks is the bulk modulus of the 

solid grains. 
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Figure 2. Validation example: plane-strain hydraulic fracture (KGD fracture). 

Analytical solution is given by Geertsma and de Klerk [18] 
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Figure 3. Validation example: penny-shaped hydraulic fracture (radial fracture). 

Analytical solution is given by Savitski and Detournay [46]  
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Figure 4. Convergence test for the penny-shaped fracture with three different meshes. 

Error is calculated for injection pressure at time of 20s. 
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Figure 5. The effect of the spacing between fractures on the propagation paths of the 

fractures 
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Figure 6. Simultaneous injection of three hydraulic fractures under isotropic and 

anisotropic stress fields (cases 2 to 4)  

  

y = 10 MPa y = 12 MPa y = 11 MPa 
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Figure 7. Comparison between the direction of growth of hydraulic fractures under 

different stress field: case 2 (black), 3 (blue) and 4 (red), in simultaneous injection (side 

and top views)  
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 Figure 8. Sequential injection of three hydraulic fractures under isotropic stress field 

(case 5) 
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Figure 9. Sequential injection of three hydraulic fractures under anisotropic stress field 

(case 6) 
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Figure 10. Fracture net pressure at injection point versus time for different fractures in 

sequential fracturing  
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Figure 11. Simultaneous injection of five hydraulic fractures under isotropic (a) and 

anisotropic (b) stress field (cases 7 and 8)  
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Figure 12. Comparison between the direction of growth of five hydraulic fractures 

under isotropic and anisotropic stress fields (cases 7 and 8), in simultaneous injection 

(top view). Blue lines represent the isotropic stress field (case 7), and black lines show 

anisotropic stress field (case 8) 
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Figure 13. The effect of leakoff on the curvature of a fracture: matrix permeability (km) 

varies between 0, 𝟏 × 𝟏𝟎−𝟏𝟔, and 𝟏 × 𝟏𝟎−𝟏𝟓 m2; and Biot coefficient (𝜶) varies between 

0, 0.5 and 1  
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