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Abstract

This thesis aims to investigate and improve the efficiency of ensemble transform methods for

data assimilation, using an application of multilevel Monte Carlo. Multilevel Monte Carlo

is an interesting framework to estimate statistics of discretized random variables, since it

uses a hierarchy of discretizations with a refinement in resolution. This is in contrast to

standard Monte Carlo estimators that only use a discretization at a fine resolution. A linear

combination of sub-estimators, on different levels of this hierarchy, can provide new statis-

tical estimators to random variables at the finest level of resolution with significantly greater

efficiency than a standard Monte Carlo equivalent. Therefore, the extension to computing

filtering estimators for data assimilation is a natural, but challenging area of study. These

challenges arise due to the fact that correlation must be imparted between ensembles on

adjacent levels of resolution and maintained during the assimilation of data. The method-

ology proposed in this thesis, considers coupling algorithms to establish this correlation.

This generates multilevel estimators that significantly reduce the computational expense of

propagating ensembles of discretizations through time and space, in between stages of data

assimilation.

An effective benchmark of this methodology is realised by filtering data into high-dimensional

spatio-temporal systems, where a high computational complexity is required to solve the un-

derlying partial differential equations. A novel extension of an ensemble transform localisa-

tion framework to finite element approximations within random spatio-temporal systems is

proposed, in addition to a multilevel equivalent.
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}Ñ
i=1

of the linear OU process. Each en-
semble forecast corresponds to one of four different parameter scenarios:
calibrated, overdispersed, underdispersed and biased. The solid line on the
biased parameter scenario panel shows a smoothed kernel of the PIT his-
togram generated from the actual stationary forecast and target distributions. 89

11 The same as Figure 10 only for the finest ensemble
{
XhL,i
tk

}NL
i=1

. The correct
type and magnitude of the bias in the biased scenario panel is less clear than
in Figure 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

12 Root mean square errors of the approximations to the mean, variance, third
and fourth moments of X̃hl−1

tk
using the analysis ensemble from the seam-

less coupling scheme,
{ ˜̂
X
hl−1,i
tk

}N
i=1

. Following the asymptotes shown by the
black dashed lines, these errors decay at a rate of O(N1/2) showing conver-
gence of the analysis statistical approximations. . . . . . . . . . . . . . . . 104

13 Average value of Vl, for l ∈ [1, 6], over 5 independent simulations and all
assimilation steps k ∈ [1, 1280] for the stochastic Lorenz 63 equations filter-
ing example. Following the asymptotes shown by the solid and dashed black
lines, the quantity Vl decays at rates of O(hl) and O(h2l ) for the standard
MLETPF and seamless MLETPF implementations respectively. . . . . . . 105

14 Forward model costs against time-averaged RMSE of the standard ETPF, the
standard MLETPF and seamless MLETPF estimators for decreasing ε values
using the stochastic Lorenz 63 equations filtering example. Following the
asymptotes shown by the solid, dashed and dotted black lines, the forward
model costs scale as O(ε−2), O(ε−2 log(ε)2) and O(ε−3) for the seamless
MLETPF, the standard MLETPF and the standard ETPF respectively. . . . 107

15 Average values of Vl, for l ∈ [1, 6], over all assimilation steps k ∈ [1, 1280]
for the stochastic Lorenz 96 equations filtering example. Following the
asymptotes shown by the dashed black line, the quantity Vl decays at a rate of
O(h2l ) for both the standard and seamless implementations of the MLETPF.
However the magnitude of Vl, for l ∈ [1, 6], is less for the seamless imple-
mentation of the MLETPF than it is for the standard one. . . . . . . . . . . 110

16 Time-averaged RMSE against runtime (seconds) of the standard ETPF, the
standard MLETPF and seamless MLETPF estimators to E[X̃tk ] (top panel)
and E[(X̃tk)

2] (bottom panel) using the stochastic Lorenz 96 equations filter-
ing example. Results are shown for decreasing values of ε. Following the
asymptotes shown by the solid and dashed black lines, the runtimes scale
as O(ε−2) and O(ε−3) for both implementations of the MLETPF and the
standard ETPF respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 111



15

17 The projection from V P0,δxl to V CG1,δxl assigns a basis coefficient at a given
vertex as the sum of all basis coefficients at the centers of the cells containing
that vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

18 The projection from V CG1,δxl to V P0,δxl assigns a basis coefficient at each
cell center as the mean of all basis coefficients at the vertices within the cell. 119

19 The function Grloc(x) = ν∗I(3,rloc)D(x) for the values rloc = 0, 1, 2 and 3
and x ∈ [0, 1]. Here D is a piecewise constant function, with the fifth out of
8 basis coefficients set to 2 and the rest set to 0. As rloc increases, the coarse
cells are assigned the sum of the finer subcells within them. . . . . . . . . . 120

20 The functions F (x) = G2(x) and IsmoothF (x). The functionG2(x) is defined
as it was in Figure 19. With the application of Ismooth, the discontinuity in
F (x) between the two cells on the coarsest mesh is smoothed out. . . . . . 121

21 The values of
{
ψ̃

(h,δxl),i
tk

(x, y)
}N
i=1

evaluated at the coordinate set (xr, yr) and
k ∈ [1, 140], used within the ETPF approximation to the filtered streamfunc-
tion, and are shown by the dark grey area of dots. The reference trajectory,
from which the observations are taken from during assimilation, is shown
evaluated at (xr, yr) by the red line. The variance of the analysis ensemble
members around the reference trajectory is significantly less than that of N
random trajectories of the system without data assimilation, shown by the
light grey lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

22 The state of the streamfunction estimator, ψ̄(h,δxl)
N,42.5 (x, y) (left panel), and the

reference trajectory, ψ(h,δxl),ref
42.5 (x, y) (right panel), at time 42.5. . . . . . . . 133

23 The state of the streamfunction estimator, ψ̄(h,δxl)
N,75 (x, y) (left panel), and the

reference trajectory, ψ(h,δxl),ref
75 (x, y) (right panel), at time 75. . . . . . . . . 133

24 The state of the potential vorticity estimator, q̄(h,δxl)N,42.5 (x, y) (left panel), and
the reference trajectory, q(h,δxl),ref

42.5 (x, y) (right panel), at time 42.5. . . . . . 134
25 The state of the potential vorticity estimator, q̄(h,δxl)N,75 (x, y) (left panel), and

the reference trajectory, q(h,δxl),ref
75 (x, y) (right panel), at time 75. . . . . . . 134

26 The same as Figure 21, only for the scenario where assimilation is delayed by
20 time units. Once again, from the time that data assimilation starts at, the
variance of the analysis ensemble members around the reference trajectory
is significantly less than that of N random trajectories of the system without
data assimilation, shown by the light grey lines. . . . . . . . . . . . . . . . 135

27 The L2-norm error of the ETPF approximation to the analysis mean of the
filtered streamfunction, with respect to the reference trajectory, in the case
where assimilation is delayed by 20 time units. The error during this delay
period increases exponentially until assimilation starts, where it then begins
to stabilise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



16

28 Probability integral transform histogram (with normalized frequency) of the
forecast ensemble

{
ψ

(h,δxl),i
tk

(0.3, 0.3)
}N
i=1

used for the ETPF approximation
to the analysis mean of the filtered streamfunction. Observations are given
at every assimilation step by the reference trajectory evaluated at (0.3, 0.3).
The histogram is approximately uniform suggesting that the forecast from
the ETPF is calibrated with the reference trajectory. . . . . . . . . . . . . . 137

29 The coarse and fine forecast ensembles
{
φ̂(δx0),i(x)

}50
i=1

and
{
φ(δx1),i(x)

}50
i=1

,
and their respective analysis ensembles constructed from the coupling/transformation
scheme in Sec. 6.2. The analysis ensembles are positively correlated due to
the optimal transport problems within the scheme. . . . . . . . . . . . . . . 144

30 Average values of
∫ 1

0

∫ 1

0
|µl|dxdy and Vl, for l ∈ [L0, 7], over all assimilation

steps k ∈ [1, 140] for the MLETPF approximation to the analysis mean of
the filtered streamfunction. Following the asymptotes shown by the dashed
black lines, both of these quantities decay at a rate of O(δx2l ). . . . . . . . . 147

31 The runtimes (seconds) of simulating the stochastic quasi-geostrophic equa-
tions (left panel), solving (5.16) and an individual iteration of solving (5.16)
(right panel), on varying levels of temporal and spatial resolution. Following
the asymptotes shown by the black lines, the total runtime of the simula-
tion grows at a rate of O(δx−4l ), whereas the total and individual iteration
runtimes of solving (5.16) grow at rates of O(δx−3l ) and O(δx−2l ) respectively.148

32 Time-averaged squared L2-norm against runtime (seconds) of the standard
ETPF and MLETPF estimators to E[ψ̃tk(x, y)] for the stochastic quasi-geostrophic
equations. Results are shown for decreasing values of ε. Following the
asymptotes shown by the dashed and solid black lines, the runtimes grow
at rates of O(ε−3) and O(ε−4) for the MLETPF and standard ETPF estima-
tors respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

33 The same as Figure 32 only for the case where assimilation is delayed for 20
time units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

34 The forward model computational cost, and the cost of solving the opti-
mal transport problems during assimilation in an ETPF simulation for the
stochastic quasi-geostrophic equations with various values of ε. Following
the asymptote shown by the dashed black line, the forward model cost scales
as O(δx−4l ), however is not growing as fast as the cost associated with solv-
ing the optimal transport problems. . . . . . . . . . . . . . . . . . . . . . 151

35 Probability integral transform histogram (with normalized frequency) of the
multilevel ensemble forecast generated from the hierarchy of forecast ensem-
bles in (6.9), used for the MLETPF approximation to the analysis mean of
the filtered streamfunction. Observations are given at every assimilation step
by the reference trajectory evaluated at (0.3, 0.3). The histogram is approxi-
mately uniform suggesting that the forecast from the MLETPF is calibrated
with the reference trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . 152



17

Chapter 1

Introduction

1.1 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Statistical estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Variance reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.2 Multilevel methods . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Incorporating data into ensemble forecasts . . . . . . . . . . . . . . . . . . 21

1.3.1 Bayesian approach to data assimilation . . . . . . . . . . . . . . . 22

1.3.2 Linear ensemble transform methods . . . . . . . . . . . . . . . . . 24

1.3.3 The curse of dimensionality . . . . . . . . . . . . . . . . . . . . . 25

1.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter synopsis

The atmospheric processes that govern the weather are extremely complicated and nonlinear.

The complexity of them creates a challenge for the field of forecasting: to predict the future

state of something, given the uncertainty in an initial state or the dynamics within the under-

lying system (e.g. cloud parameterizations in weather forecasting). The thesis is concerned

with precisely this, and in particular the field of ensemble and empirical forecasting. This

chapter explores the mathematical and statistical techniques used in this field to quantify un-

certainty of future forecastable states and provides a literature review of them. This review

motivates the content in the remainder of the thesis.
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1.1 Overview of thesis

This thesis blends together research areas of data assimilation, statistical estimation and nu-

merical analysis. The product of this combination is a proof of concept for an efficient type

of high-dimensional1 ensemble forecasting methodology with the incorporation of data. En-

semble forecasting is essentially a toolbox of methods to quantify the uncertainty in random

systems. This technique is frequently use by operational weather forecasting centers. The

premise of ensemble forecasting is inherently simple (albeit sometimes extremely computa-

tionally expensive): construct an ensemble ofN different ‘realisations’ of the random system

in question and post-process statistics from this. However, the implementation of the post-

processing procedure is in contrast not simple, and is an area of major research. In addition

to this, the verification of the forecasts is an important area of research. This is concentrated

upon in Chapter 3.

Statistics estimated from an ensemble forecast are important in understanding the uncer-

tainty within a system that one is attempting to forecast. This estimation process is a broad

field of research in itself, the Monte Carlo method is a general framework for this. There is a

great range of theoretical literature exploring the accuracy and convergence of this method.

The efficiency of these estimators (defined as a ratio of their accuracy to the computational

cost of constructing them) is an area of great research importance. For example, variance

reduction techniques can reduce the variance and error of these estimators, increasing their

efficiency. Turn to Sec. 1.2.1 for more details on this. A major development in variance re-

duction research is the multilevel Monte Carlo (MLMC) method, and was proposed in Giles

[2008].

Multilevel Monte Carlo uses a hierarchy of discretizations (e.g. time-stepping schemes)

of a random variable at different ‘levels’ of resolution. From these different discretizations it

uses a linear combination of independent Monte Carlo estimators on each level, with sample

sizes dependent on the resolution. These linear combinations can significantly increase the

efficiency of statistical estimation. Multilevel Monte Carlo has been applied to a great num-

ber of applications and variants of ensemble forecasting, many of these are discussed in Sec.

1.2.2. However one of the areas of ensemble forecasting that has only recently had MLMC

applied to it is the area of data assimilation.

1The ‘dimension’ being referred to in the term ‘high-dimensional’ is not the geometric dimension (e.g. 2D,
3D state spaces) but rather the number of degrees of freedom of the state space.
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Data assimilation is the technique that blends data with forecast models, and will be the

subject of interest throughout this thesis. Data assimilation allows one to refine forecasts

based on data (e.g. observations) taken from a certain trajectory that is perceived to be the

truth. In the context of ensemble forecasting, a data assimilation framework is empirical,

forming methodologies such as filters and sequential Monte Carlo. This is discussed in

more detail in Sec. 1.3.1. Empirical data assimilation schemes often struggle to deal with

practical cases that consider high-dimensional systems, due to the issue known as the ‘curse

of dimensionality’. For more information on this turn to Sec. 1.3.3. One of the major

issues surrounding empirical data assimilation schemes in this high-dimensional context is

the computational cost of propagating large ensembles of model simulations in time and

space. These model simulations are often discretizations, and their computational cost grows

significantly as their spatial and temporal resolution increases.

The application of MLMC to empirical data assimilation schemes in this context is there-

fore desirable to increase their efficiency. This is the aim of the thesis. The following sections

in the introduction provide a more detailed review of the topics mentioned in this overview,

starting with the foundation of ensemble forecasting: statistical estimation.

1.2 Statistical estimation

As stated in the previous section, the Monte Carlo method is traditionally used for statistical

estimation. The main principle of the Monte Carlo method is that one can construct esti-

mators to expected values of statistical quantities, e.g. moments, by simply taking means of

ensemble forecasts. These estimators have rigorous error analysis, with the Central Limit

Theorem (CLT) providing convergence rates with the number of ensemble members, N .

More light is shed on this convergence in Sec. 2.2.2.

Unfortunately this convergence rate is relatively slow, and the absolute error from that

of the true statistic scales as O(N−1/2). This makes large ensemble forecasts using the

Monte Carlo method for probabilistic estimates infeasible for weather forecasts, for example.

Typical ensemble sizes of forecasts from operational weather forecasting centers vary from

20 - 40. The reason for the infeasibility is, as highlighted previously, computational cost.

Large weather models (or what is commonly called a forward prediction model) take a long

time to simulate in isolation, let alone many at a time. One can increase the efficiency of the

Monte Carlo method via variance reduction techniques.
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1.2.1 Variance reduction

Using small ensemble sizes for ensemble forecasts (with a feasible computational cost) needs

a small variance within the estimator in order to have sufficient accuracy. Variance reduction

is achieved by considering the following thought:

How should we pick the members in our ensemble (and post-process them) to construct the

most optimal / efficient forecast?

As is demonstrated in Sec. 2.5, the make-up of the ensemble (such as antithetic variates)

together with some statistical tricks (such as control variates) can significantly reduce the

variance of these estimators. This type of statistical manipulation is employed in the multi-

level Monte Carlo method.

1.2.2 Multilevel methods

The computational bottleneck in ensemble forecasting and statistical estimation stems from

the fact that the high-dimensional forward prediction model is discretized in time (and

space). In most cases, the temporal (and spatial) resolution of the model determines the

accuracy of the discretization, as a bias from the truth is associated with a particular dis-

cretization. For accurate approximations to forecast statistics, both the discretization accu-

racy (dependent on the model resolution) and the sample size of the ensemble (given the

convergence of Monte Carlo estimates) need to increase simultaneously. See Sec. 2.4.4 for

more details on this issue. This allows one to see the large computational costs associated

with these estimators when the forward model cost grows at a sufficiently large rate with

increasing resolution.

Variance reduction techniques, as previously discussed, can reduce this computational

cost, but only by a scalar factor, and not by an order of magnitude (proportional to the dis-

cretization accuracy or sample size). Multilevel Monte Carlo (MLMC) [Giles, 2008, Cliffe

et al., 2011, Giles, 2015] does this by trading off error due to the discretization bias and that

due to the sample size. This is achieved by creating independent approximations to statistics

on a hierarchy of different model temporal (and spatial) resolutions, with the sample sizes of

each of these approximations proportional to the discretization bias. It then combines these

approximations in a linear combination, as previously mentioned. The form of this linear

combination, along with the appropriate analysis, is given in depth in Sec. 2.6.
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Applications

It is the simple linear combination of independent Monte Carlo approximations that gives the

MLMC framework the flexibility to work in many applications. Density estimation [Giles

et al., 2015], quasi-Monte Carlo [Giles and Waterhouse, 2009], Sequential Monte Carlo

methods [Beskos et al., 2017, Jasra et al., 2017a, Moral et al., 2017], ensemble Kalman fil-

tering [Hoel et al., 2016, Chernov et al., 2016], Markov chain Monte Carlo [Ketelsen et al.,

2013], atmospheric dispersion modelling [Katsiolides et al., 2018, Cook, 2013] and ensem-

ble transform methods for Bayesian inference [Gregory et al., 2016, Gregory and Cotter,

2017b] have all had MLMC applied to them; the latter of these being the topic of this the-

sis. A great deal of the applications listed above, are discussed in the review article, Jasra

et al. [2017b]. The adaptation of MLMC to sequential Monte Carlo and ensemble transform

methods for Bayesian inference require coupling of ensembles from different model resolu-

tions during resampling or transformation schemes [Sen et al., 2018]. This is a particularly

challenging hurdle to overcome in some cases. The next section provides more detail on the

last of these applications.

There is also a great opportunity for optimality and adaptivity within MLMC, given the

range of parameters that appear in the framework, such as the sample sizes for each inde-

pendent approximation. This optimality and adaptivity can control how efficient the method

is; such examples are Pauli and Arbenz [2015] and Hoel et al. [2012]. Over the last few

years, there has been increased interest in multilevel methods for spatio-temporal systems;

multi-index Monte Carlo [Haji-Ali et al., 2016] has been introduced as the framework to

describe this case. Here, model spatial and temporal resolution are part of hierarchies that

can be refined independently of one another at different rates.

1.3 Incorporating data into ensemble forecasts

Ensemble forecasts can become more powerful when they are combined with data. Data as-

similation schemes provide the ability to do this, and their approaches vary greatly, from lin-

ear (assuming Guassianity of the data and forecast distribution) to non-parametric methods.

Examples of data assimilation tools used by weather forecasting practitioners are Variational

methods (e.g. 3DVar and 4DVar) as well as the famous ensemble Kalman filter (EnKF). For

more information on these, turn to Reich and Cotter [2015], Daley [1997].
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Many modern day data assimilation techniques work by transforming ensemble forecasts

into another ensemble which is closer to the observations. The EnKF uses a linear transform

from one to the other, and approximates the posterior mean and covariance from this new

ensemble (and thus assumes Gaussianity, although mean-field convergence has been inves-

tigated [Law et al., 2016] for nonlinear systems). Bayesian approaches to data assimilation

are another major strand of literature, as explained in the next section.

1.3.1 Bayesian approach to data assimilation

Bayesian inference is one of the most highly-researched topics in statistics, and is centered

around the famous Bayes’ rule:

The probability of X conditioned on Y (posterior) is proportional to the product of the

probability of Y conditioned on X (likelihood) and the prior probability of X .

Bayes’ rule provides a very useful framework in data assimilation, especially where one is

assimilating into a nonlinear system. By interpreting the prior probability mentioned above

as the forecast distribution before assimilation of data, and taking Y as the data then one

can find the posterior probability of the forecast conditioned on the assimilated data. When

applied to ensemble forecasting, one can find likelihoods for each ensemble member and em-

ploy self-normalized importance sampling to compute this posterior distribution [Doucet and

Johansen, 2011]. This is done practically by giving each ensemble member an importance

weight dependent on their likelihood. The property of the Bayesian interpretation which

makes it an attractive framework for data assimilation is the sequential nature of it:

Yesterday’s posterior becomes today’s prior [Rohde, 2014].

This allows one to sequentially assimilate data into the forecast in real-time as data becomes

available, updating the forecast on-the-go. This is known as filtering. Given that one has a

particle approximation to the posterior forecast distribution at any one time, it is a simple

extension to compute posterior statistical estimates from this. Bearing this in mind, it is no

surprise that the name ‘sequential Monte Carlo’ has been given to a whole host of algorithms

that approach data assimilation in this manner. It is also no surprise that it is an attractive

application of multilevel Monte Carlo, as highlighted previously in Sec. 1.2.2.
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Sequential Monte Carlo and the particle filter

Particle filtering is one of the broader headings for sequential Monte Carlo algorithms. Re-

sampling of the ensemble forecast is used occasionally after the assimilation of data to stop

the importance weights of each ensemble member from becoming degenerate 2 [Douc et al.,

2005, Cappé et al., 2007]. This is used to replace ‘unlikely’ ensemble members with more

likely ensemble members, to even out weights. Theoretical work has come a long way in

this field: Chopin [2004] provided a major step in this direction by establishing a CLT for

sequential Monte Carlo methods.

Random resampling adds variance to estimators of posterior statistics in a particle filter

[Hol et al., 2006]. Thus the quality of a particle filter is strongly dependent on the choice

of resampling scheme and the frequency of resampling. For example, a technique known

as residual resampling tends to perform better than the most commonly used multinomial

resampling; it guarantees that ensemble members with high weights get resampled a spe-

cific amount of times rather than leaving this up to chance. More information about these

resampling schemes is given in Sec. 2.7.3.

Couplings and optimal transport

Resampling between a weighted ensemble and an evenly weighted one can be interpreted

as a coupling between two discrete distributions. Whilst there are many possible couplings

between these two discrete distributions (multinomial resampling can be seen as an indepen-

dent coupling, for example), some are more important than others in the field of Bayesian

data assimilation.

An optimal coupling is often described as one that solves the Monge-Kantorovich prob-

lem [Villani, 2008]. This minimizes the Wasserstein metric (expected distance) between two

distributions whilst satisfying the marginal constraints of each distribution. There are many

algorithms to solve such a problem for discrete distributions, including the well-known Fast

Earth Mover’s Distance (Fast EMD) algorithm [Pele and Werman, 2009]. When both dis-

crete distributions have even importance weights, this becomes an assignment problem and

one can solve this using the Hungarian algorithm [Munkres, 1957]. By solving this problem

and using this coupling, it can be shown that the covariance between the two discrete distri-

2One ensemble member will be associated with a very large weight whilst the others all are associated with
negligible weights. This has found to lead to collapsing particle filters.
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butions is maximized [Reich, 2013]. This is beneficial for resampling in a particle filter. The

ensemble transform particle filter (ETPF) is based on this particular type of coupling, and is

a variant of the class of linear ensemble transform filters discussed in the next section.

1.3.2 Linear ensemble transform methods

Linear ensemble transform methods are an ever-increasingly popular set of Bayesian based

filtering algorithms. The class includes the ensemble Kalman filter (EnKF), the ensemble

square root filter (ESRF), and most importantly to this thesis, the ETPF [Reich and Cotter,

2015, Reich, 2013]. It takes up a very interesting position, occupying an area between the

EnKF and the classical particle filter.

The ETPF uses a deterministic transform instead of the random resampling scheme. The

matrix that implements this deterministic transform is found by solving the aforementioned

optimal transport problem. In this case, one tries to minimize the expected distance between

the ‘forecast’ ensemble with associated importance weights and an evenly weighted ‘anal-

ysis’ ensemble. This creates an optimal coupling between forecast and analysis ensembles.

Section 2.7.4 provides an in-depth look at the ETPF. Chustagulprom et al. [2016] proposes a

variant of the method, which builds a hybrid bridging between the EnKF and the ETPF. This

can be changed adaptively depending on how Gaussian the statistics are.

Weak convergence is established for the ETPF in Reich [2013], using properties of the

optimal coupling between forecast and analysis ensembles. There is still some way to go,

however, before the method possesses the theoretical rigor that was shown in Chopin [2004]

for the classical particle filter. Unfortunately, this is primarily due to the optimal transport

problem within the algorithm, which has great appeal in a practical sense, but less so in a

theoretical one. The use of optimal transportation problems within the ETPF has another

drawback: the computational cost of solving them. The next section discusses this aspect.

Fast algorithms to solve optimal transport problems

In one-dimensional cases the optimal transport problems within the ETPF can be solved

very rapidly using a cheap algorithm. However, in cases of dimension greater than one, the

computational cost increases rapidly with the number of samples in the ensemble [Reich and

Cotter, 2015]. In cases where the sample size is great, and the forward prediction model
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is cheap to simulate, then this computational cost can dominate that of the propagation of

ensemble members. This leads to an inefficient filter. Importantly to the aims of this thesis,

it also means that an application of MLMC to the ETPF, that can reduce the computational

cost of this ensemble propagation, would be unnecessary. Localisation, which is detailed in

Sec. 2.7.7, can be used to reduce the complexity of these optimal transport problems and

alleviate this issue.

In addition to localisation, there has been research into using fast, iterative algorithms

to solve optimal transport problems, namely the Sinkhorn iterative algorithm [Cuturi, 2013],

within the ETPF. This algorithm works by finding an approximation to the solution of a

optimal transport problem (see Sec. 2.7.5), which is sufficient for many applications. How-

ever, the error in this approximation causes the ETPF to underestimate the analysis ensemble

variance. A solution to this problem is presented in de Wiljes et al. [2016], where a second-

order accurate linear transform is proposed. This preservation allows the Sinkhorn iterative

algorithm to be used, and is briefly explained in Sec. 2.7.6.

1.3.3 The curse of dimensionality

Whilst there is still a constant stream of research into modifying the Bayesian approach to

data assimilation, covering particle filters and linear ensemble transform methods, one of the

most important directions for future research is applying the approach to high-dimensional

cases. This is not a trivial extension by any means. With increasing dimension, the likeli-

hood becomes more degenerate, and the ensemble size needed to stabilize the particle filter

at each assimilation step (after resampling) becomes exponentially great [Rebeschini and

Van Handel, 2013].

Despite this, it is of great importance to extend these approaches to high-dimensional

cases. They would provide far more flexibility in nonlinear forecast systems than the ones

previously mentioned that are used by weather forecast practitioners, such as the EnKF and

Variational methods. There have been two key developments in this field, Cheng and Reich

[2013] and Poterjoy [2016], that concentrate on localising the likelihood associated with an

ensemble forecast member.

This type of localisation has been inspired by the success of a similar tool used in the

EnKF [Anderson, 2012, Bergemann and Reich, 2010]. It tries to alleviate the curse of di-

mensionality by only allowing likelihoods at a given point in space to be influenced only by
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points local to the given point. Consider the following:

On any given day, the observed pointwise weather in Stanford University, CA, is unlikely to

reduce the uncertainty of the weather forecast in Imperial College London, U.K.

This idea is intuitive, so why not apply it to data assimilation? The likelihood of the observed

pointwise weather at Imperial College London, Y , given forecasted weather X , is unlikely

to be significantly altered by X in California. A naive approach to localisation would be to

then assign a likelihood to each individual component of a forecast state space. However, in

a classical particle filter implementation, this would cause discontinuities in the resampled

forecast. This idea therefore lacks the spatial regularity to work amongst these sequential

Monte Carlo methods.

However, linear ensemble transform methods have been found to incorporate this type

of localisation successfully, due to the linear transform that it uses. This transform, as sup-

posed to the resampling step in classical particle filters, offers sufficient spatial regularity to

localise the likelihood around each local component of a forecast state space, and alleviate

the curse of dimensionality. A proof of concept of this localisation framework for the ETPF

was given in Cheng and Reich [2013]. The localisation used here can also be employed to

reduce the computational cost of the optimal transport problems in some cases as already

mentioned. Both aspects of the localisation used in the ETPF are described in more de-

tail in Sec. 2.7.7. Localisation is not the only methodology that has been considered when

trying to extend Bayesian approaches to spatio-temporal data assimilation. Another key de-

velopment, Beskos et al. [2014], attempts to use the structure of the likelihood (product of

marginal component likelihoods) to filter sequentially in space as well as time (and resample

when needed).

When considering these high-dimensional data assimilation problems that one would

employ localisation for, it is important to remember the computational expense of the fore-

casting process. Of course, this problem is encountered in standard ensemble forecasting

(without the assimilation of data) as previously mentioned. This inspires the main aim of

this thesis: establishing an application of MLMC to filtering algorithms in order to alleviate

the high computational cost associated with the forward model used by them and increase

their efficiency. Towards the end of the thesis, a proof of concept is designed by extending

the localisation strategy in Cheng and Reich [2013] to finite element approximations, in or-

der to see the benefits of applying MLMC to data assimilation problems in high-dimensional
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systems of partial differential equations.

1.4 Outlook

The remainder of this thesis is organised as follows. Chapter 2 will survey many of the

aforementioned techniques, including statistical estimation, multilevel Monte Carlo and data

assimilation. Chapter 3 will introduce verification and scoring for MLMC approximations

before Chapter 4 applies MLMC to the ensemble transform particle filter. Finally Chapters

5 and 6 propose a methodology for using the ETPF and the multilevel version with systems

involving finite element approximations to random fields, providing a proof of concept of

the methods for high-dimensional systems.
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Chapter synopsis

In this chapter, a survey on probability, uncertainty quantification and statistics is provided.

These topics will be introduced in a manner that allow them to build up to the applications

used in the later chapters of this thesis. In particular, the basics of statistical estimation (Sec.

2.2) and the discretization of random systems (Sec. 2.4) allow the topic of multilevel Monte

Carlo to be introduced in Sec. 2.6. Later in the chapter, Bayesian based ensemble data

assimilation (Sec. 2.7) and the ensemble transform particle filter (Sec. 2.7.4) are introduced.

The latter will be the main application of multilevel Monte Carlo in later chapters. More

detail on the following topics is given in Reich and Cotter [2015]. The following background

sections are brief, and are included simply to introduce notation for the remainder of the

thesis.
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2.1 Preliminaries

This section introduces some notation that is frequently used in the field of uncertainty quan-

tification. Let Ω be a sample space on a probability space. A continuous random variable,X ,

is the function, X : Ω→ E, where E is some measurable space. In other words it assigns a

measurable value to each outcome in the sample space. Most commonly, E = R, and thus

the random variable is continuous. However, E can also be a discrete space, for example, in

a coin-toss example, where the sample space is simply

Ω =
{

heads, tails
}
.

Given someone bets a stake, S, on this coin-toss being heads, a discrete random variable for

the payoff in this example would be

X(ω) =

S, ω = heads,

0, ω = tails.

From here on in however, assume that X is continuous and X : Ω→ RNX , unless stated oth-

erwise. Notice that random variables state nothing about the probabilities of the measurable

values being taken. This aspect gets addressed in the next section. The following definitions

can be generalised to dimensions greater than one (NX > 1), however for the simplicity of

presentation here we assume that NX = 1.

2.1.1 Probability density functions

A probability density function (PDF), πX(x), of a continuous random variable X is ex-

pressed by a map π : RNX → [0, 1]. 1 It describes the probability of a random variable X

taking a certain value. It must satisfy∫ ∞
−∞

πX(x)dx = 1.

1In the discrete case it is known as the probability mass function.
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Example: normal distribution

Many PDFs have explicit functional forms, such as the normal (Gaussian) distribution, with

mean µ and variance σ2, denoted by N(µ, σ2). This has PDF

πX(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
.

In the case where µ = 0 and σ2 = 1, X is known as the standard normal distribution.

2.1.2 Cumulative distribution functions

The cumulative distribution function (CDF), FπX : RNX → [0, 1], of the distribution πX ,

describes the probability that X will take a value less than or equal to a specific value. It is

given by

FπX (x) =

∫ x

−∞
πX(x)dx.

A CDF is a critical ingredient in sampling from distributions, primarily through the in-

verse transform sampling technique, which will be covered in the next section.

2.1.3 Sampling

The ability to sample outcomes from a probability distribution is common-place in uncer-

tainty quantification. For example, in ensemble forecasting, one would like to build an en-

semble of scenarios that could occur from a random process; therefore being able to generate

the scenarios correctly is crucial. Given the probability distribution, πX , one can denote in-

dependently, identically distributed (i.i.d.) random variables sampled from πX as X i ∼ X ,

for i = 1, 2, 3, .... These ensembles of random variables will also be denoted by the set

notation
{
X i
}N
i=1

, for an ensemble of size N . Independently identically distributed sam-

ples mean that each random variable X i has the same probability distribution πX , and are

mutually independent.

Many standard distributions such as Gamma, Beta or Gaussian distributions can be sam-

pled from using readily available computational software. Typically this works by generating

pseudo-random samples of the uniform distribution and inverting the standard distribution’s

CDF. This method is called probability inverse transform sampling.
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Probability inverse transform sampling

The most common method of sampling from distributions is to use a probability inverse

transform. Given a univariate random variable X : Ω → R, with distribution πX , then

inverse transform sampling is the process of evaluating an inverse CDF, F−1πX
(u), u ∈ [0, 1],

also known as the quantile function. In the case where the CDF of a random variable is

strictly increasing and absolutely continuous (as is the case with FπX ), then there exists

a unique value x ≡ F−1(u) for which F (x) = u. One can sample from πX by noting

F−1πX
(U) ∼ X , where U ∼ U [0, 1] (uniformly distributed random variable). Therefore a

sample X i ∼ X can be generated by

X i = F−1πX
(u), u ∼ U [0, 1].

This is a standard, quick method to sample from a distribution πX , however it only works

when the inverse CDF is tractable. In many practical scenarios, this is not the case. In these

cases, and where one is able to evaluate πX(x), other sampling methods such as Markov

chain Monte Carlo and rejection sampling can be used [Gilks et al., 1995].

2.1.4 Couplings

Given two probability distributions, πX , and πY , associated with the random variables X :

Ω → RNX and Y : Ω → RNY respectively, one can form joint probability distributions in

order to define the probabilities of X , Y taking certain values when considered together. Let

the joint probability density function, π(X,Y ), ofX and Y to be the map π : RNX×NY → [0, 1].

One can recover the marginal PDFs, πX and πY via the following equation

πX(x) =

∫ ∞
−∞

πX,Y (x, y)dy,

and vice-versa for πY . This joint PDF can be referred to as a coupling between two distribu-

tions. A simple example of a coupling could be the independent coupling, i.e.

π(X,Y )(x, y) = πX(x)πY (y).

In many cases, which are explored later in the thesis, it might be appropriate to design cou-

plings that can impose either positive or negative correlation between the marginals of X
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and Y . Methods to do this include optimal transport [Villani, 2008]. Optimal transport is

used throughout this thesis (as early as Sec. 2.7.4) to find transformations between forecast

and analysis ensembles in data assimilation.

2.2 Statistical estimation

Statistics of random variables are important in quantifying the expected behavior and uncer-

tainty of them and their associated distributions. For example, computing the mean quantity

of a random variable allows expected outcomes to be derived. Statistics of random variables

sometimes have analytic expressions, and in other, more practical cases they need to be es-

timated empirically. Whether one is required to do this depends entirely on the distribution

associated with the random variable.

2.2.1 Statistical quantities

There are many statistical quantities of a random variable that one is practically interested

in, and they can be defined through expected values.

Definition 1 (Expected values). An expected value of a measurable functional g : RNX → Rd

of a random variable X , is defined by

E[g(X)] =

∫ ∞
−∞

g(x)πX(x)dx.

This definition motivates two very common statistical quantities of a random variable,

X: the mean and variance.

Definition 2 (Mean). The mean of a random variable is E[X], defined by

E[X] =

∫ ∞
−∞

xπX(x)dx. (2.1)

Definition 3 (Variance). The mean of a random variable is V[X], defined by

V[X] = E
[
(X − E[X])2

]
=

∫ ∞
−∞

(x− µ)2πX(x)dx, (2.2)

where µ = E[X].
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In a great deal of practical cases, these integrals are intractable, and have to be estimated

discretely. Statistical estimation is most commonly done via the Monte Carlo.

2.2.2 Monte Carlo

As previously mentioned in Chapter 1, statistics to forecast distributions can be estimated

via the Monte Carlo method. An ensemble forecast is a ensemble of i.i.d. random variables,

typically simulations of a random system. Given an ensemble forecast, Monte Carlo methods

can be employed to create estimators, with rigorous error bounds, to statistics of the system

for which the ensemble members are realisations of. Consider the estimator X̄ of the statistic

E[g(X)]. Here, as in the last section, g : RNX → Rd is an arbitrary, measurable function of

X , that is simply used to generalise quantities of interest. If X̄ is unbiased, then E[X̄] =

E[g(X)]. With that in mind, denote E[X̄ − g(X)] as the bias of the estimator X̄ .

Definition 4. A Monte Carlo estimator of a statistic E[g(X)] can be computed via sampling

N i.i.d. realisations of X , denoted by
{
X i
}N
i=1

. The estimator is then given by

X̄N =
1

N

N∑
i=1

g(X i). (2.3)

This is unbiased, since

E[X̄N ] = E

[
1

N

N∑
i=1

g(X i)

]
=

1

N

N∑
i=1

E[g(X)] = E[g(X)].

The Central Limit Theorem (Lindeber-Levy) provides us with the tools to work out the

variance within an estimator of this form and therefore deduce a rate of convergence; see

(2.16). Assume V[g(X)] = σ2 < ∞ and that E[g(X)] = µ, then as N → ∞, the random

variable
√
N(X̄ − µ) converges in distribution to N(0, σ2). I.e.

(
X̄N − µ

)
∼ S√

N
,

where S ∼ N(0, σ2). Typically the variance of S/
√
N , which is σ2/N , is referred to as the

sampling variance or estimator variance. Sometimes it is important to estimate the variance
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of S, and one can do this via the sample variance

1

N

N∑
i=1

(g(X i)− X̄N)2.

It can be shown that this estimate is biased with respect to (2.2) by a factor of (N − 1)/N .

An unbiased estimate can therefore by given by

1

N − 1

N∑
i=1

(g(X i)− X̄N)2. (2.4)

2.2.3 Error analysis of estimators

Error is quite a general term when referring to statistical estimators. Although it can mean

the reciprocal of any metric of accuracy, one most often considers the mean square error

(MSE) or root mean square error (RMSE). One can suitably analyse convergence rates when

using these two metrics. Let the MSE of (2.3) be given by

E
[(
X̄N − E[g(X)]

)2]
,

and the RMSE be given by √
E
[(
X̄N − E[g(X)]

)2]
.

One typically estimates the RMSE using√√√√ 1

NE

NE∑
j=1

(
X̄j
N − E[g(X)]

)2
,

where
{
X̄j
N

}N
j=1

are NE independent simulations of the estimator X̄N . When the estimator

varies over a temporal grid, tk, with k ∈ [1, Nt] (e.g. X̄N,tk), then the time-averaged RMSE

can be used as an appropriate accuracy estimate,√√√√ 1

Nt

Nt∑
k=1

(
X̄N,tk − E[g(Xtk)]

)2
.

These metrics motivate the introduction of the (rates of) convergence for estimators.
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Convergence of estimators

There are two types of estimator convergence which will be used throughout this thesis.

Definition 5 (Convergence in probability). Convergence in probability, also known as the

‘consistency of estimators’, is used to show consistency of estimators, in the limit of infinite

samples, and is defined by

lim
N→∞

P
(
|X̄N − E[g(X)]| > ε

)
= 0,

for a small ε > 0. This is often described as the weak convergence, in the number of samples,

of an estimator.

Definition 6 (Mean square convergence). Mean square convergence, also known as ‘L2 con-

vergence’, is a stronger sense of convergence than the above, and is defined by

lim
N→∞

E
[
(X̄N − E[g(X)])2

]
= 0.

It guarantees that the MSE tends to 0 in the limit of infinite samples.

One can use the Central Limit Theorem from Sec. 2.2.2 to explore the rates of conver-

gence of (2.3). Note that the MSE equals the sampling variance in the absence of bias and

therefore the MSE of the estimator in (2.3) can be constrained to

E
[(
X̄N − E[g(X)]

)2] ≤ c1
N
, (2.5)

where c1 is a constant. This states, that for a MSE of O(ε2), for a small ε, one requires a

sample size for (2.3) ofO(ε−2). In this respect, one often refers to (2.3) as having aO(N−1)

rate of (mean square) convergence.

2.3 Stochastic differential equations

In most practical cases, the random variable X is the solution to a stochastic differential

equation (SDE), and therefore varies over time, i.e. Xt. Stochastic differential equations

typically have a trajectory modelled by a Brownian motion, and motivate a great deal of the

rest of the thesis. To start with, it is important to define the following. A Brownian motion (or
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a Wiener process), Wt ∈ RNX , is a continuous-in-time stochastic process at time t [Higham,

2001]. It is used in many applications, from finance [Giles, 2008] to atmospheric dispersion

and turbulence parameterizations [Cook, 2013], to incorporate stochasticity into systems.

Definition 7 (Brownian motion). A Brownian motion, Wt ∈ RNX , satisfies the following

properties:

(i) W0 = 0,

(ii) Wt is continuous in t,

(iii) Wt+s −Wt, for s > 0, is independent of what has occurred before then, Wτ , τ ≤ t,

(iv) Wt+s −Wt is normally distributed, with mean 0 and variance s.

These properties allow us to deduce that E[Wt] = 0 and V[Wt] = t. Using a Brownian

motion, an SDE can be written in the form of

dXt = a(Xt, t)dt+ b(Xt, t)dWt, (2.6)

with Xt ∈ RNX , and Wt ∈ RNX is a Brownian motion. Here, a and b are arbitrary functions.

By re-writing the SDE in (2.6) in terms of integrals over the time interval [t, t + s], the key

components of it can be pulled apart:∫ t+s

t

dXu = Xt+s −Xt =

∫ t+s

t

a(Xu, u)du+

∫ t+s

t

b(Xu, u)dWu. (2.7)

The second integral is clearly just one over time. The last integral in the expression above is

called an Îto integral.

Depending on what a and b are, there are several well known types of SDEs that have

explicit properties. For example, consider the case of a = θ(µ − Xt) and b = σ, where

σ > 0, µ and θ are constants. This represents the well-known Ornstein-Uhlenbeck (OU)

process; explained in more detail later in the chapter. The limiting probability distribution,

as t→∞, of the trajectories of this process can be described by the Fokker-Planck equation

(given in Reich and Cotter [2015] for example). For example, the stationary distribution for

trajectories in this limit is a Gaussian distribution with mean µ and variance σ2/2θ. Typically,

as with their deterministic ODE counterparts, most SDEs need to be discretized over time

(and possibly space); this leads us on to the discretization of random variables.
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2.4 Discretization of random variables

Let Xh represent the random variable X with some discretization parameter h (such as a

time-step or spatial resolution). The end of this section shows how this parameter adds bias,

in addition to the sampling variance of a statistical estimator, in contributing towards the

MSE of an estimator involving these discretized random variables.

2.4.1 Numerical methods to solve SDEs

Suppose one wishes to numerically solve the ordinary differential equation (ODE)

dXt

dt
= f(Xt, t). (2.8)

There are a whole host of available of options to do this, including the forward Euler method.

When there is a stochastic term in the differential equation, there are corresponding methods

employed to numerically solve them. Two will be introduced: the Euler-Maruyama method

and the Milstein method. For a more in-depth look into them, Higham [2001] presents an

excellent review.

Underlying Brownian paths

Consider the case where b(Xt) = 1 and a(Xt) = 0. Then dXt = dWt and Xt is a Brownian

motion, as introduced earlier in the chapter. The discretization of this can be used to intro-

duce the Euler-Maruyama method. By using the fourth property of a Brownian motion one

notes that

δW := Wt+h −Wt ∼ N(0, h).

Therefore a discretization of a Brownian motion is equivalent to simply making a summation

of increments δW ∼ N(0, h), for an arbitrary time-step h. Denote the discretization as W h
t .

It is otherwise known as a Gaussian random walk. As h → 0, these increments get smaller

and smaller, withXh
t tending to the continuous process, Wt. Figure 1 shows a single discrete

Brownian path, W h
t , t ∈ [0, 3], discretized with time-steps h = 0.25, h = 0.5 and h = 1.

Given a fine discretization of a pathW h
t , one can compute coarser versions of the path, W nh

t ,
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Figure 1: A single Brownian path discretized with a number of different time-steps.

for n = 2, 3, . . . , using

W nh
t+nh =

n∑
i=1

W h
t+ih −W h

t+(i−1)h. (2.9)

Euler-Maruyama method

The Euler-Maruyama scheme is a natural extension of the forward Euler scheme for ordinary

differential equations. An iteration of the Euler-Maruyama scheme to solve the SDE given

in (2.6) is

Xh
t+h = Xh

t + a(Xh
t , t)h+ b(Xh

t , t)δW, (2.10)

where δW ∼ N(0, h) and Xh
t is a Euler-Maruyama discretization of Xt. This iteration

integrates the SDE over the time interval [t, t + h], by using a single time-step, of size h.

More will be discussed about the accuracy and order of error for this method later on in the

chapter.
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Stratonovich integrals

Apart from the Îto integral in (2.7), there is another stochastic integral type, namely the

Stratonovich integral. It is denoted by ∫ T

0

Xt ◦ dWt.

It differs from that of the Îto integral in the last term of (2.7) by the fact that it is the limit, as

h→ 0, of
k−1∑
i=0

(
X(i+1)h −Xih

2

)
δW,

where δW ∼ N(0, h) and T = kh. This type of integral is considered again in Chapter 5.

Milstein method

The Milstein method adds a correction term to the Euler-Maruyama method. This can im-

prove its convergence properties, which will be described in the next section. An iteration of

the Milstein scheme is given by

Xh
t+h = Xh

t + a(Xh
t , t)h+ b(Xh

t , t)δW +
1

2
b(Xh

t , t)b
′(Xh

t , t)(δW
2 − h),

where δW ∼ N(0, h) and Xh
t is a Milstein discretization of Xt. Again, this iteration inte-

grates the SDE over the time interval [t, t+ h], using a single time-step, of size h.

2.4.2 Weak and strong convergence of numerical methods

Earlier in the chapter, the convergence of statistical estimators was considered. In the same

way, one can evaluate the numerical convergence of discretized random variables. At the

end of the chapter, these numerical convergence rates are shown to impact the convergence

rates of statistical estimators involving discretized random variables.

Definition 8 (Weak convergence of numerical approximations). The weak convergence rate

(discretization bias) of a numerical approximation, Xh, is defined by

∣∣E [g(Xh)− g(X)
]∣∣ ≤ cgh

α, (2.11)
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where α is a positive constant and cg <∞ is a constant for any polynomial g, e.g. g(x) = x2

(second moment).

Whilst this can be see as the error of means [Higham, 2001] and invariant of the individ-

ual paths of X , there is a rate of convergence for the numerical approximation of paths of X:

strong convergence.

Definition 9 (Strong convergence of numerical approximations). The strong convergence

rate of a numerical approximation, Xh, is defined by the following

E
[∣∣Xh −X

∣∣] = O(hp), (2.12)

where p ≤ α is a positive constant. This is a stronger condition than weak convergence.

The Euler-Maruyama method has a weak numerical convergence rate of α = 1, given

that the deterministic explicit Euler method converges with order 1. Apart from in cases of

additive noise (explained in the next section), the scheme has a strong numerical convergence

rate of p = 1/2. As a demonstration of these numerical convergence types, it is useful to

consider the Geometric Brownian Motion,

dXt = µXtdt+ σXtdWt,

and both the Euler-Maruyama and Milstein approximations of it. They are given by

Xh
t+h = Xh

t + µXh
t h+ σXh

t δW,

and

Xh
t+h = Xh

t + µXh
t h+ σXh

t δW +
1

2
σ2Xh

t (δW 2 − h),

respectively, where δW ∼ N(0, h). The parameter values of µ = 2, σ = 1.5 and X0 = 1 are

taken and h varies from 2−4 to 2−8. The strong and weak rates of numerical convergence,

where expected values are estimated via a Monte Carlo approximation over 106 samples, for

both numerical schemes are plotted in Figure 2. The approximations are taken over such

a large sample size simply to eliminate sampling error to be negligible in our results. As

one can see, the extra correction term in the Milstein method provides an increase (from the

Euler-Maruyama method in this case) in the strong convergence rate to p = 1, the same as
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the weak convergence.
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Figure 2: Strong and weak convergence rates for Euler-Maruyama and Milstein numeri-
cal schemes approximating the solution to a Geometric Brownian Motion. Both schemes
achieve first order weak convergence. However the Milstein scheme achieves a strong con-
vergence rate that is twice the value of the rate obtained by the Euler-Maruyama scheme.

The Geometric Brownian Motion is used later in this chapter for a demonstration of

multilevel Monte Carlo; the rates of weak and strong numerical convergence are important

for the analysis within this demonstration.

2.4.3 Ornstein Uhlenbeck processes

The general form for an Ornstein Uhlenbeck (OU) process is given by

dXt = −V ′(Xt)dt+ σdWt, (2.13)

where Xt ∈ R, Wt ∈ R is a one-dimensional Brownian motion. Two common cases of the

potential V are:
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(i) V (Xt) = θ
(
µ− κ

2
Xt

)
Xt,

(ii) V (Xt) = κ
4
X4
t − κ

2
X2
t ,

for constants κ, µ and θ. The former is traditionally known as the linear case, where the

process reverts back towards a mean µ in the long-time limiting distribution. The latter is an

example of a nonlinear OU process, where the trajectories ‘jump’ between two attractors, -κ

and κ.

Implementing numerical schemes on the Ornstein Uhlenbeck process

One can solve the OU process via the two numerical schemes presented earlier in this chapter.

It shall be seen that using the Euler Maruyama method is the same as using the Milstein

method, due to the additive stochasticity in this system. Additive stochasticity means that

the state is not within the Îto integral. Another type of stochasticity is multiplicative. Take

b(Xt) = σXt in (2.6). The stochasticity in the corresponding system is multiplicative; that is

to say the term in the Îto integral involves a product of the noise and state. Back to the case

of additive stochasticity, one can solve the OU process, using the Euler-Maruyama scheme

via:

Xh
t+h = Xh

t − hV ′(Xh
t ) + σδW.

Interestingly, this is equivalent to solving it using the Milstein scheme via:

Xh
t+h = Xh

t − hV ′(Xh
t ) + σδW +

1

2
σ
dσ

dXh
t

(δW 2 − h)

= Xh
t − hV ′(Xh

t ) + σδW + 0 = Xh
t − hV ′(Xh

t ) + σδW.

Therefore, both schemes produce a weak and strong numerical convergence rate of O(h)

[Higham, 2001].

2.4.4 Error analysis of discretized estimators

As in Sec. 2.2.3, it is important to now discuss the convergence of estimators to statistics of

discretized random variables. With this in mind, consider the discretized estimator

X̄h
N =

1

N

N∑
i=1

g(Xh,i), (2.14)
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where h is the discretization parameter and
{
Xh,i

}N
i=1

are i.i.d. sample paths of Xh. The

MSE of the estimator above can be split up into the two contributions from the discretization

bias and sampling error. This can be done by the following Lemma.

Lemma 1. Consider the estimator in (2.14). Then

E
[(
X̄h
N − E[g(X)]

)2]
= E

[(
X̄h
N − E[g(Xh)]

)2]
+ E

[
g(Xh)− g(X)

]2
(2.15)

Proof.

E
[(
X̄h
N − E[g(X)]

)2]
= E

[((
X̄h
N − E[g(Xh)]

)
−
(
E[g(X)]− E[g(Xh)]

))2]
= E

[(
X̄h
N − E[g(Xh)]

)2]
+ E

[(
E[g(X)]− E[g(Xh)]

)2]
− 2E

[(
X̄h
N − E[g(Xh)]

) (
E[g(X)]− E[g(Xh)]

)]
= E

[(
X̄h
N − E[g(Xh)]

)2]
+ E

[
g(Xh)− g(X)

]2

Therefore using the Central Limit Theorem from Sec. 2.2.2 and Lemma 1, the MSE of

the estimator in (2.14) can be constrained to

E
[(
X̄h
N − E[g(X)]

)2] ≤ c1
N

+ c2h
2α, (2.16)

where c1 and c2 are constants and α is the rate of discretization bias as in (2.11). This is

an important bound, as it shows that the error within a discretized estimator is controlled by

both the discretization and the number of samples. In particular, both the number of samples

and the discretization accuracy need to be increased for the estimator to converge.

2.5 Variance reduction techniques

Whilst the discretization bias term in the (2.16) can be improved by using higher order

discretization techniques, the sampling error term is hindered by the fixed rate of decay,

O(N−1). However the constant c1 can be improved to achieve (potentially significant) vari-

ance reductions and thus lower error. To do this, variance reduction techniques can be em-
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ployed. Typically they play on the idea of correlation and covariance, as the following two

techniques do.

2.5.1 Control variates

Consider the following random variable

Z = X + c(Y − E[Y ]), (2.17)

where c is a constant, and Y is another random variable (known as the control variate) with

a known expectation. The first thing to note is that the estimator is unbiased for any c, as

E[Z] = E[X]. An example of such a control variate could be a Brownian motion, where the

expectation is known and one can easily sample paths of it. One can construct an estimator

of E[Z], in (2.17), by

Z̄ =
1

N

(
N∑
i=1

X i + c

(
N∑
i=1

Y i − E[Y ]

))
,

where
{
X i
}N
i=1
∼ X and

{
Y i
}N
i=1
∼ Y . Studying the variance of Z̄,

V[Z̄] =
1

N

(
V[X] + c2V[Y ] + 2cCov[X, Y ]

)
,

one notes that to minimise this variance the optimal value of c is

c∗ = −Cov[X, Y ]

V[Y ]
.

Given this value, the variance of Z̄ is

V[Z̄] =
V[X]

N
− Cov[X, Y ]2

NV[Y ]
,

which is a reduction from V[X̄], where X̄N is given in (2.3), for any Cov[X, Y ] 6= 0. The

larger this covariance, the greater the variance reduction. In practice, one can estimate

Cov[X, Y ] (and V[Y ], although this might well be known as well) to generate the optimal

value c∗.
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2.5.2 Antithetic variates

Antithetic variates play on the identity

V[X + Y ] = V[X] + V[Y ] + 2 Cov[X, Y ]

to reduce the variance of an estimator X̄N , in (2.3). Consider the following estimator

X̄ ′ =
1

2N ′

N ′∑
i=1

(X i
1 +X i

2),

where
{
X i

1

}N ′
i=1
∼ X ,

{
X i

2

}N ′
i=1
∼ X and 2N ′ = N . Studying the variance of X̄ ′, it is found

that

V[X̄ ′] =
N ′

4(N ′)2
V[X1 +X2].

Further,

V[X̄ ′] =
1

2N

(
2V[X] + 2 Cov[X1, X2]

)
,

and so V[X̄ ′] < V[X̄N ] (for the same computational cost), if Cov[X1, X2] < 0. Crucially, X̄ ′

is also unbiased since

E[X̄ ′] =
1

2

(
E[X1] + E[X2]

)
= E[X].

Now how does one constructX1 andX2 such that Cov[X1, X2] < 0? In complicated systems

of X , this can be difficult, however it could be as simple as taking X1 ∼ −Wt, where

X2 ∼ Wt and Wt is a standard Brownian motion. Antithetic variates are useful, and have

been applied to lots of areas of uncertainty quantification, including sequential Monte Carlo

[Olsson and Bizjajeva, 2016].

A major development in variance reduction is the novel multilevel Monte Carlo tech-

nique. This is a generalisation of the control variate idea in Sec. 2.5.1 and uses the numerical

discretization aspect of Sec. 2.4 as well.

2.6 Multilevel Monte Carlo

In the following section, the statistical framework of multilevel Monte Carlo (MLMC),

which will be used throughout the remainder of this thesis, will be described and introduced.
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This framework was coined in Giles [2008] for the efficient computation of estimators for

statistics of discretized random variables, representing the underlying stock price in option

pricing. Since then, the range of literature using this framework has exploded into many ar-

eas of uncertainty quantification including Markov chain Monte Carlo [Ketelsen et al., 2013],

atmospheric dispersion modelling [Katsiolides et al., 2018] and data assimilation [Gregory

et al., 2016, Jasra et al., 2017a].

The idea is based on control variates, previously introduced in this chapter, and so in

principle it is a variance reduction method for Monte Carlo estimators. It is important to

remember that this methodology is very general and can be applied in a great variety of

settings, as already highlighted by the range of applications it has appeared in. For a fixed

size of MSE, the multilevel estimator can return significant computational cost reductions

from its standard Monte Carlo counterpart.

2.6.1 The high price paid for uncertainty quantification

Section 2.2.3 motivates the use of such a methodology; it is clear there is a very high com-

putational complexity associated with producing accurate estimators via the Monte Carlo

method when considering high-dimensional state spaces for discretized random variables.

To increase the accuracy of the estimator, one must increase the resolution and the number

of samples used simultaneously. The following proposition explains this.

Proposition 1. Consider a Monte Carlo estimator of a discretized random variable, in

(2.14), then the computational complexity / cost of it is

Cost(X̄h
N) = O(Nh−γ).

This is simplyN times the cost of producing one sample of g(Xh), where γ is a constant.

In a temporally discretized system, where h is a time-step, then γ = 1. Theoretically, given

the proposition above, the cost of producing a Monte Carlo estimator of the form in (2.14),

with MSE O(ε2), for a small ε, is

Cost(X̄h
N) = O(ε−2−(γ/α)). (2.18)

Here α is the rate of weak convergence for the numerical discretization scheme. For a tempo-
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rally discretized system, where γ = 1, this complexity is feasible for high accuracy estima-

tors, however when γ is higher (encountered in the implementation of the quasi-geostrophic

equations in Chapters 5 and 6), this complexity can become very large. Statistical techniques,

such as the multilevel framework discussed in this chapter, are therefore aimed at reducing

this complexity whilst fixing the order of accuracy above.

Computational cost is estimated by runtime (seconds) on a HP Z420 Workstation Linux

OS computer (Python implementation) throughout the rest of this thesis.

2.6.2 A hierarchy of discretization levels

Recall h relates to a discretization parameter (assumed to be temporal resolution, e.g. time-

step, in this section). A hierarchy of these parameters can be governed by the rule hl ∝ m−l,

with m > 1. Denote the ‘level’ of the discretized random variable Xhl as l. It is important to

the multilevel method that the hierarchy of levels creates a hierarchy of accuracy as well. A

theorem formally stated later in the chapter contains a condition that makes this clear. This

condition is centered around weak convergence stated in Sec. 2.4.2; the assumption of this

hierarchy of levels is that ∣∣E [Xhl −X
]∣∣ = O (hαl ) ,

for an α > 0. Another important assumption that is made within the multilevel literature is

that γ > 0. Put simply, there has to be some price-to-pay in computational complexity for

the increase in accuracy one gets from increasing l.

2.6.3 A multilevel estimator

Suppose one wishes to estimate E[g(XhL)], for a sufficiently large L, and for a scalar func-

tional g : RNX → R, then the standard Monte Carlo estimator in (2.14) can be used,

X̄hL
N =

N∑
i=1

g(XhL,i).

However E[g(XhL)] can also be written as

E[g(XhL)] = E[g(Xh0)] +
L∑
l=1

E[g(Xhl)]− E[g(Xhl−1)]. (2.19)
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Consider estimating this ‘telescoping sum of expectations’ with the following linear combi-

nation of Monte Carlo estimators, µl, with sample sizes Nl, for l = 0, ..., L respectively,

X̄hL
N0,...,NL

=
L∑
l=0

µl, (2.20)

where

µl =


1
N0

∑N0

i=1 g(Xh0,i), l = 0,

1
Nl

∑Nl
i=1 g(Xhl,i)− g(X̂hl−1,i), l ≥ 1,

(2.21)

and
{
X̂hl,i

}Nl+1

i=1
∼ Xhl but are independent of the samples

{
Xhl,i

}Nl
i=1

. Note that under i.i.d.

sampling of the discretized random variables, as in the standard Monte Carlo estimator, this

multilevel estimator is unbiased. That is to say,

E
[
X̄hL
N0,...,NL

]
= E

[
g(XhL)

]
.

The estimators µl, for l = 0, ..., L, are referred to as ‘difference estimators’, due to the

expected difference between the coarse and fine approximations they estimate. The variance

of the multilevel estimator, X̄hL
N0,...,NL

, is then

V
[
X̄hL
N0,...NL

]
=

Nl∑
l=0

Vl
Nl

, (2.22)

where

Vl =

V[g(Xh0)], l = 0,

V
[
g(Xhl)− g(Xhl−1)

]
, l ≥ 1,

(2.23)

assuming that the µl’s are independent of one another and that the Xhl,i’s and the X̂hl,i’s are

sampled i.i.d. for i = 1, ..., Nl. An important requirement of the multilevel estimator is to

have some balance of the contributions from each term within the summation in (2.22). That

is to say if Vl was to asymptotically decrease as l → ∞, Nl likewise could asymptotically

decrease. Manipulating this balance, to reduce the computational cost of computing (2.20)

as much as possible, is primarily dependent on choosing Nl carefully, and is discussed in

more detail in a later section.
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2.6.4 Efficiency of the multilevel estimator

The true power of the multilevel estimator can be realised from an efficiency perspective.

Efficiency, in this thesis, is measured via the ratio of computational complexity with respect

to accuracy; this is defined as the Cost/Accuracy Ratio (CAR). For example, consider two

estimators, a and b, both estimating E[c]. If they both have the same order of accuracy, say

E
[
(a− E[c])2

]
= O(ε2), E

[
(b− E[c])2

]
= O(ε2),

for some small ε, then if Cost(a) = O(ε−p) and Cost(b) = O(ε−q), with p < q, a is more

efficient than b. This motivates a formal definition of the CAR and thus efficiency to be

given.

Definition 10 (Cost/Accuracy Ratio). An estimator, θ, of E[X], has a CAR value given by

CAR(θ) =
Cost(θ)

E [(θ − E[X])2]−1
= E

[
(θ − E[X])2

]
Cost(θ).

If an estimator has a lower CAR value than another, it is more efficient.

Using this, the CAR of a is O(ε2−p) and the CAR of b is O(ε2−q). Moving back to the

multilevel estimator, if one obtains a MSE for (2.20) of

E

[(
X̄hL
N0,...NL

− E[g(X)]
)2]

= O(ε2), (2.24)

then Giles [2008], Cliffe et al. [2011] state that if

∣∣E [g(Xhl)− g(Xhl−1)
]∣∣ = O(hαl ), (2.25)

and

V
[
g(Xhl)− g(Xhl−1)

]
= O(hβl ), (2.26)

for some positive constants β, γ and α ≥ (1/2) min(β, γ) then there exist values of L and
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Nl, for l = 0, ..., L, such that (2.20) has a complexity cost of

Cost(X̄hL
N0,...,NL

) =


O(ε−2), β > γ

O(ε−2 log(ε)2), β = γ

O(ε−2−(γ−β)/α), β < γ.

(2.27)

For a proof of this, see Cliffe et al. [2011]. Finally, it can be derived that the complexity cost

growth rates in (2.27) dictate the following CAR rates:

CAR(X̄hL
N0,...,NL

) =


O(1), β > γ

O(log(ε)2), β = γ

O(ε(β−γ)/α), β < γ

(2.28)

which are less than that of the Monte Carlo estimator,

CAR(X̄hL
N ) = O(ε−(γ/α)), (2.29)

for any β > 0, and ε < e−1.

2.6.5 The multilevel Monte Carlo algorithm

There is an adaptive algorithm to select the values of Nl and L that obtain the efficiency

advantages stated in (2.28) [Giles, 2008]. For a general setting, this proceeds as follows,

starting with L = 0:

(1) Compute µL and estimate VL with a small number of samples n.

(2) Calculate the optimal Nl, for l = 0, ..., L via

Nl =

⌈
2ε−2

√
Vlh

γ
l

(
L∑
l=0

√
Vlh

−γ
l

)⌉
. (2.30)

(3) Generate extra samples, if needed, given the updated Nl, for l = 0, ..., L, and re-

estimate µl.

(4) Check for convergence by |µL| ≤ (M − 1) ε√
2
.
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(5) If converged, stop the algorithm and estimate X̄hL
N0,...NL

via (2.20). If not converged,

return to step (1) and set L = L+ 1.

One can estimate the variances Vl by using the sample variance in (2.4). This actually

bounds the MSE by ε2 rather than establishing an order of accuracy. The generality of

instead using an order of accuracy here is useful for the application of these estimators to

data assimilation later in the thesis, where estimators are only consistent and have small

biases (see self-normalized sequential importance sampling estimators in Sec. 2.7.2).

In this algorithm, Nl is chosen adaptively based on the variance reduction rate, with

respect to the cost-per-sample rate, γ. Thus for a positive β, one expects that Nl decreases

asymptotically as l→∞.

2.6.6 Variance reduction between fine and coarse estimators

From the efficiency rates in (2.28), it is clear that the greater β is in the condition (2.26), the

greater the efficiency of the multilevel Monte Carlo algorithm will be, up until the optimal

case of β > γ. Indeed, this β parameter is very significant in the quality of multilevel

Monte Carlo applications, and henceforth it will be referred to as the variance reduction

parameter. The reason for which the efficiency is greater when β is large, is that the sample

sizes for the estimators, µl, with l = 0, ..., L, decay faster as l → L as apparent in (2.30).

Therefore estimators at a finer resolution, which cost more to compute, are made up of less

samples. This creates a balance in computational cost of each difference estimator. As a

demonstration of this, consider the case where β = γ = α = 1, and thus Vl = O(hl).

Following the algorithm in the previous section, this creates a decay of

Nl = O
(

(L+ 1)ε−2
√
h2l

)
= O((L+ 1)hlε

−2),

and an overall variance of

V[X̄hL
N0,...,NL

] =
L∑
l=0

Vl
Nl

=
L∑
l=0

O((L+ 1)−1hlh
−1
l ε2) = O(ε2). (2.31)
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Using (2.15), (2.19), (2.22) and also (2.31) one can constrain the MSE of the multilevel

Monte Carlo estimator to

E

[(
X̄hL
N0,...NL

− E[g(X)]
)2]
≤ c1ε

2 + c2h
2α
L ,

where c1 and c2 are constants. Therefore this estimator achieves a MSE of O(ε2), as the

overall bias is
∣∣E[g(XhL)− g(X)]

∣∣ = O(hL) = O(ε) (from the convergence condition in

the algorithm). However the computational cost is only

Cost(X̄hL
N0,...,NL

) = O

(
L∑
l=0

Nlh
−1
l

)
= O((L+ 1)2ε−2h−1l hl)) = O

(
ε−2 log(ε)2

)
,

given that

m−L = O(ε) =⇒ −L log(m) = O(log(ε)) =⇒ L+ 1 = O
(
log(ε−1)

)
,

if ε < e−1 and m = O(1). This creates a CAR value of O
(
log (ε)2

)
; this is less than the

CAR value of the Monte Carlo estimator for γ = 1, which is O(ε−1).

One can gain more of an insight into this parameter variance reduction parameter β by

re-writing Vl, for l = 1, ..., L, as

Vl = V[g(Xhl)] + V[g(Xhl−1)]− 2 Cov[g(Xhl), g(Xhl−1)].

By enforcing positive correlation between
{
Xhl,i

}Nl
i=1

and
{
X̂hl−1,i

}Nl
i=1

one can reduce Vl

(see variance reduction techniques, Sec. 2.5). If this correlation is sufficiently strong, an

asymptotic rate of this reduction as l → ∞, can be established. A way of enforcing corre-

lation between
{
Xhl,i

}Nl
i=1

and
{
X̂hl−1,i

}Nl
i=1

is by using the same underlying random input

in the system for each pair of samples. This could be a case of using the same initial con-

dition, or the same underlying Brownian path for an SDE, as in Sec. 2.4.1. For example,

given 2hl = hl−1, if Xhl
t ∼ W hl

t and X̂hl−1

t ∼ W
hl−1

t , then one can correlate
{
Xhl,i

}Nl
i=1

and{
X̂hl−1,i

}Nl
i=1

by sampling
{
Xhl,i

}Nl
i=1
∼ W hl

t and setting

X̂
hl−1,i
t+hl−1

=
2∑
j=1

(
Xhl,i
t+jhl

−Xhl,i
t+(j−1)hl

)
.
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The parameters α = 1 and γ = 1 used in the analysis above, correspond to using an Euler-

Maruyama scheme to discretize a Geometric Brownian Motion [Giles, 2008], as seen pre-

viously in the chapter. For such a simple case, a rate of β can be found from the strong

rate of convergence (assuming that one correlates
{
Xhl,i

}Nl
i=1

and
{
X̂hl−1,i

}Nl
i=1

by using the

same underlying Brownian paths, via (2.9)). Suppose g is a scalar function, and is Lipschitz

continuous, i.e. |g(a)− g(b)| ≤ c2‖a− b‖, where c is a constant. Note that

V[g(Xhl)−X] ≤ E
[(
g(Xhl)− g(X)

)2] ≤ c2E
[∥∥Xhl −X

∥∥2] ,
and therefore

V[g(Xhl)−X] = O(hl), (2.32)

since the strong rate of convergence for the Euler-Maruyama scheme for the Geometric

Brownian Motion is p = 1/2. Now consider

g(Xhl)− g(Xhl−1) =
(
g(Xhl)− g(X)

)
−
(
g(Xhl−1)− g(X)

)
.

Recall that V[A−B] = V[A] + V[B]− 2 Cov[A,B], for random variables A and B, and also

Cov[A,B] = ρ(A,B)V[A]1/2V[B]1/2, where ρ(A,B) is the correlation coefficient between

A and B. Then if ρ
(
g(Xhl), g(Xhl−1)

)
> 0 it holds that

V[g(Xhl)− g(Xhl−1)] ≤
(
V[g(Xhl)− g(X)]1/2 + V[g(Xhl−1)− g(X)]1/2

)2
.

This finally gives us V[g(Xhl) − g(Xhl−1)] = O(hβl ), where β = 1. In this case, following

the MLMC algorithm, Nl would decrease asymptotically with a linear rate. If the Milstein

scheme is used for the analysis above, the strong rate of convergence would increase to

p = 1. Therefore, (2.32) becomes V[g(Xhl)−X] = O(h2l ), and the variance reduction rate

increases to β = 2 in the same way as above. Following the efficiency rates in (2.28), this

variance reduction rate gives us a more efficient estimator than with β = 1.

2.6.7 An example

The effectiveness of the multilevel Monte Carlo method will be demonstrated with a simple

problem. Consider the Geometric Brownian Motion,Xt, discussed previously in the chapter,

discretized via the Milstein method; our goal is create the most efficient estimator of E[XT ]
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as possible, with T = 2 and MSE of O(ε2). Both standard Monte Carlo and multilevel

Monte Carlo estimators will be considered. Take µ = 0.2, σ = 0.15 and X0 = 1. For the

multilevel Monte Carlo estimator, the coarse and fine samples in each difference estimator,

(2.21), will be coupled by using the same underlying Brownian motion, via (2.9). Of course,

for this problem, E[XT ], is known, it is indeed eµt. Mean square errors away from this are

estimated over NE = 25 simulations of the estimators. The algorithm described earlier in

this chapter will be used to construct the multilevel Monte Carlo estimator, whilst standard

Monte Carlo estimators will be computed by the following algorithm:

(1) Choose L =
⌈(

log(ε−1
√

2)/α log(m)
)⌉

.

(2) Estimate V[XhL
T ] using a small number of samples n.

(3) Calculate N =
⌈
2ε−2V[XhL

T ]
⌉

.

(4) If needed, generate N − n extra samples and estimate E[XhL
T ] using (2.14).

Firstly, one can estimate the statistics, µl and Vl, for a multilevel Monte Carlo estimator

of E[XT ] to observe the asymptotic analysis, with increasing l, that was presented earlier.

Take hl = m−l−1 and m = 2 for this example. These statistical quantities, for fixed l ∈
[0, 7] and Nl = 100000 are shown in Figure 3. Note the ‘jump’ down from l = 0 to l =

1, where expected differences and variance of differences are being computed rather than

simply E[Xh0
T ] and V[Xh0

T ] on the coarsest level. The quantities, |E[Xhl
T −X

hl−1

T ]| and V[Xhl
T −

X
hl−1

T ], then continue to decay asymptotically at rates of O(hαl ) and O(hβl ), with α = 1

and β = 2 respectively. This asymptotic behaviour is expected given the weak and strong

convergence rates of the Milstein numerical method.

Secondly, the efficiency of the multilevel Monte Carlo and standard Monte Carlo estima-

tors of E[XT ] is considered for various values of ε. Figure 4 shows the computational cost of

these estimators against the MSEs of them. Given that γ = 1 for the Geometric Brownian

Motion, and the variance reduction rate of β = 2 is achieved, the computational cost of the

MLMC estimator scales as O(ε−2), instead of O(ε−3) for the standard MC estimator. These

scalings result in the theoretical CAR values of O(1) and O(ε−1) respectively.
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Figure 3: Estimates of the statistical quantities, |µl| and Vl, for l ∈ [0, 7], from a multilevel
Monte Carlo estimator of the expected value of a Geometric Brownian Motion. Following
the asymptotes shown by the black dashed lines, the quantity |µl| decays at a rate of O(hl)
whilst the quantity Vl decays at a rate of O(h2l ).
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Figure 4: The runtime (seconds) of Monte Carlo (MC) and multilevel Monte Carlo (MLMC)
estimators against their MSEs away from the expected value of a Geometric Brownian Mo-
tion, E[XT ], for various values of ε. Following the asymptotes shown by the black dashed
and solid lines, the computational cost of the MLMC and MC estimators scale as O(ε−2)
and O(ε−3) respectively.
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2.6.8 Vector functionals

Now consider the case where g : RNX → Rd, d > 1, and d is finite. One can extend the MSE

metric for the multilevel estimator in (2.20) to this case:

E
∥∥∥X̄hL

N0,...,NL
− E[X]

∥∥∥2 =
d∑

m=1

E

[(
X̄hL
N0,...,NL

(m)− E
[
g
(
X
)
(m)

])2]
, (2.33)

where X(m) is the m’th component of X . Assuming that d = O(1) (and therefore not

dependent on ε), then

E
∥∥∥X̄hL

N0,...,NL
− E[X]

∥∥∥2 = O(ε2),

is obtained if the MSE of all components of X is O(ε2). For the multilevel Monte Carlo

algorithm given earlier in the chapter, Nl is adaptively set to actually bound the error by

ε2. This algorithm can be modified to bound the error by dε2 for vector functionals. It is

suggested in Giles [2015] that one uses

Vl = max
m

(Vl,m) ,

where

Vl,m =

V[g
(
Xh0

)
(m)], l = 0,

V
[
g
(
Xhl

)
(m)− g

(
Xhl−1

)
(m)

]
, l ≥ 1,

(2.34)

for the formula for the optimal sample sizes, Nl, in (2.30). This means that the variance of

all components will be bounded by ε2/2 at the very least.

In the case that d is dependent on ε, e.g. d = O(ε), which may occur when Xhl is

spatially discretized, the above analysis does not hold. This occurs later on in this thesis, and

an alternative metric will be given that involves integral quantities for functions of space and

time.

This chapter will now consider ensemble data assimilation, another major research area

within ensemble forecasting. Multilevel Monte Carlo will be applied to this area of research

later in the thesis.
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2.7 Bayesian ensemble data assimilation

Bayesian methods are an extremely important field in statistics, and motivate many data

assimilation schemes. Bayes’ rule is the underlying law of this field, given simply by

πX|Y (x|ydata) =
πY (ydata|x)πX(x)∫
πY (ydata|x′)πX(x′)dx′

. (2.35)

Bayesian inference is a term to describe using the above rule to infer information about a

random variable X : Ω → RNX , with associated distribution πX , given observed data ydata,

with associated distribution πY . Here, πX(x) is the prior belief of X , πY (ydata|x) is the

likelihood of ydata given X and πX|Y (x|ydata) is the posterior belief of X given ydata. The next

section will use Bayes’ rule to introduce the Bayesian interpretation of a specific type of data

assimilation: filtering.

2.7.1 Filtering

Filtering will be concentrated upon on throughout this thesis. Filtering is used when X

and ydata are temporal (and possibly spatial) processes, Xt and ydata,t, at time t ≥ 0, with

associated distributions πXt and πYt respectively. To propagate the process Xt from time t to

time s > t, a (possibly random) forward prediction model is required:

Xs = M(t,Xt, ω), ω ∈ Ω. (2.36)

Then Bayes’ rule is applied sequentially over numerous ‘assimilation steps’ tk, for k =

1, 2, 3, ..., with ∆t = tk+1 − tk. For example, at time t1, the posterior of Xt1 given the data

ydata,t1 is

πXt1 |Yt1 (x|ydata,t1) =
πYt1 (ydata,t1|x)πXt1 (x)∫
πYt1 (ydata,t1 |x′)πXt1 (x′)dx′

.

Then recursively at an arbitrary time tk, k > 1, the posterior of Xtk given the data at every

time up to and including the k’th assimilation step, ydata,t1:tk , is

πXt1 |Yt1:tk (x|ydata,t1:tk) =
πXtk |Yt1:tk−1

(x|ydata,t1:tk−1
)πYtk (ydata,tk |x)∫

πXtk |Yt1:tk−1
(x′|ydata,t1:tk−1

)πYtk (ydata,tk |x′)dx′
. (2.37)
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The distributions πXt1 and πXtk |Yt1:tk−1
, for k > 1, are known as the forecast distributions

in a data assimilation context. If the underlying prediction model M is Markovian, then the

forecast distributions for k > 1 are given by the Chapman-Kolmogorov equation:

πXtk |Yt1:tk−1
(x|y) =

∫
πXtk |Xtk−1

(x|xtk−1
)πXtk−1

|Yt1:tk−1
(xtk−1

|y)dxtk−1
, (2.38)

where y := ydata,t1:tk−1
and πXtk |Xtk−1

is the distribution associated with the random vari-

able Xtk given the prediction model M and the state of the random variable Xtk−1
. The

posterior distributions πXtk |Yt1:tk are known as analysis distributions or filtering distributions

in this context. Define the random variable associated with this posterior distribution as

X̃tk : Ω→ RNX . This will be referred to as the analysis random variable. With this is mind,

let the distribution πX̃tk be equivalent to the distribution πXtk |Yt1:tk . In a weather forecasting

scenario, one is interested in obtaining analysis distributions for the future weather, based on

real-time observations, ydata, from sources such as satellite data and in-situ measurements.

There are a number of challenges surrounding the filtering problem in such practical scenar-

ios.

Firstly, the forecast distributions are typically not known explicitly. Indeed, the normal-

izing integral constants of these distributions are also not typically known. In this case, it

is required to approximate these distributions using ensembles and self-normalize within the

ensemble to approximate the normalization constant. If the forecast distribution and likeli-

hood are at least known to be Gaussian, there is an efficient approximate filtering algorithm

known as the Ensemble Kalman Filter (EnKF) to find analysis distributions. For more details

on this see Reich and Cotter [2015], Daley [1997]. However, commonly they are not. There-

fore other algorithms have to be used, such as sequential importance sampling and particle

filtering. This is because the EnKF does not converge to the true Bayesian posterior in these

cases.

Secondly, the dimensions of the forecast distribution and the likelihood are typically

large in these practical cases. This causes an issue known as degeneracy in an empirical

approximation of the filtering distribution. It will be looked at in the next section.
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2.7.2 Sequential importance sampling

The former of these challenges lead us on to the basic outline for many Bayesian filtering

algorithms: sequential importance sampling. Earlier in the chapter, the ensemble forecast of

the random variable X was defined by an i.i.d. sampled ensemble,
{
X i
}N
i=1
∼ X , which

can form an approximation to the distribution of X , πX . E.g.

πX(x) ≈ 1

N

N∑
i=1

δx(X
i). (2.39)

Here, δ is the Dirac delta measure. Statistics can also be estimated from this ensemble as

previously covered, e.g. Monte Carlo estimators. If X is a function of time (and possibly

space), Xt, then this ensemble can be interpreted as an approximation to the forecast distri-

bution in the previous section, πXt . It is referred to as the forecast ensemble, and likewise Xt

is referred to as the forecast random variable.

Given some data ydata,tk , at assimilation times tk, for k = 1, 2, 3, . . . , one can recursively

define the so-called importance weight of the i’th ensemble member as

witk = witk−1
πYtk (ydata,tk |X i

tk
), (2.40)

where wi0 = 1/N and therefore one assumes all N ensemble members are sampled i.i.d.

from πXt0 at time t0 = 0. Assume that the data is given by

ydata,tk = H(X ref
tk

) + φ, (2.41)

where H : RNX → RNY is some local operator, X ref
t is some reference trajectory of Xt that

one would like to forecast, and φ ∼ N(0, R) is some Gaussian measurement error with mean

zero and covariance R. Then the importance weight of the i’th ensemble member is

witk = witk−1

1
√

2π|R|NY /2
e−

1
2(ydata,tk−H(Xi

tk
))
T
R−1(ydata,tk−H(Xi

tk
)). (2.42)

An approximation to the filtering posterior (analysis) distribution in (2.37) can then be given

by a weighted sum of Dirac delta measures,

πX̃tk
(x|ydata,t1:tk) = πXtk |Yt1:tk (x|ydata,t1:tk) ≈

∑N
i=1w

i
tk
δx(X

i
tk

)

Z
, (2.43)
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where Z is some normalization constant. This is the basic sequential importance sampling

approximation. A self-normalized sequential importance sampling approximation is given

by

Z =
N∑
j=1

wjtk ,

such that ∫
πX̃tk

(x|ydata,t1:tk)dx = 1.

Then, the approximation in (2.43) becomes

πX̃tk
(x|ydata,t1:tk) ≈

∑N
i=1w

i
tk
δx(X

i
tk

)∑N
j=1w

j
tk

. (2.44)

Statistics of this distribution can be estimated too. The expectation of g(X̃tk), can be approx-

imated by the weighted Monte Carlo estimate

X̄N,tk =
N∑
i=1

w̃itkg(X i
tk

), (2.45)

where

w̃itk =
witk∑N
j=1w

j
tk

.

This estimator converges in probability to the true analysis mean (in other words it is a

consistent estimator) [Doucet and Johansen, 2011]. However, it is not unbiased, i.e.

E[X̄N,tk ] 6= E[g(X̃tk)],

since the posterior approximation is self-normalized.

Sequential importance sampling is a simple methodology for constructing filtering es-

timates of posterior (analysis) statistics, and can be simulated in an on-line manner. For

example, consider the very simple recursive algorithm:

(1) Propagate
{
X i
tk−1

}N
i=1

with prediction model M to time tk.

(2) Update importance weights

witk = witk−1
πYtk (ydata,tk |X i

tk
),
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for i = 1, ..., N .

(3) Normalize the weights using w̃itk = witk/
∑N

j=1w
j
tk

, for i = 1, ..., N .

(4) Estimate E[g(X̃tk)] via (2.45), and iterate k = k + 1.

This is an example of a sequential Monte Carlo algorithm. Despite its simplicity, se-

quential importance sampling is not an ideal nonlinear data assimilation tool in practice. As

the number of assimilation steps increase, the importance weights tend to degenerate. This

means that one weight becomes one, and the rest take the value of zero. In this case, the fil-

ter becomes unstable. Degeneracy can also occur with a small number of assimilation steps

when the number of degrees of freedom for the data, Ny, is large. The problem of degen-

eracy, both with the number of assimilation steps and the number of degrees of freedom, is

demonstrated with the following example.

Degeneracy describes the increase in variation amongst weights. A suitable metric to

evaluate this variation is the effective sample size, defined below:

Neff =
1∑N

i=1(w̃
i
tk

)2

This can take values anywhere between 1 and N . When for any given n,w̃itk = 1, i = n,

w̃jtk = 0, j 6= n,
(2.46)

the effective sample size takes the minimum value of 1, and the filter is completely degener-

ate. As an example, consider the following discrete system of Xtk , for k = 1, 2, ..., Nt, with

the initial condition Xt0 = 0:

Xtk = Xtk−1
+ ξ,

where ξ ∼ N(0, 0.01) and observations are given by

ydata,tk = X ref
tk

+ φ,

with φ ∼ N(0, 0.01), and some reference trajectory X ref
tk
∼ Xtk . A sequential importance

sampling estimator of E[X̃tk ], with N = 500, is simulated over Nt = 50 assimilation steps,

and the effective sample size at each step is shown in Figure 5. The effective sample size
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decays as the number of assimilation steps increase showing degeneracy in the ensemble

importance weights.

Now consider using the (sequential) importance sampling estimator over one assimilation

step, for the discrete system

Xt1 ∼ N(µ,Σ),

where µ is a zero vector length d, and Σ = 0.01I . Here I is the d × d identity matrix.

Observations are given by

ydata,t1 = X ref
t1

+ φ,

with φ ∼ N(µ,Σ), and some reference trajectory X ref
t1
∼ Xt1 . The importance sampling

estimator is taken over 500 ensemble members, and estimates E[X̃t1 ], over increasing number

of degrees of freedom, d. The effective sample sizes after one assimilation step for each of

the simulations is shown in Figure 6. As with increasing number of assimilation steps in the

previous experiment, the effective sample size decays as the number of degrees of freedom

increases.

These two forms of degeneracy can be avoided with resampling and localisation tech-

niques respectively. The latter is an active area of research, and is a major extension to the

type of filter investigated later in the thesis [Cheng and Reich, 2013]. The former is a very

well known solution to degeneracy with an increasing number of assimilation steps. Particle

filters are a general framework to incorporate resampling into sequential importance sam-

pling estimators. Different types of resampling are the main difference between variants of

the particle filter [Douc et al., 2005].

2.7.3 Particle filtering

Particle filtering is a modified framework to the sequential importance sampling method-

ology described in the last section. The use of the word ‘particle’ refers to the individual

members of the ensemble approximating the posterior distribution after assimilation. At a

certain assimilation step tk, it aims to replace the forecast ensemble
{
X i
tk

}N
i=1

and impor-

tance weights
{
w̃itk
}N
i=1

, with an evenly weighted, ‘resampled’ analysis ensemble
{
X̃ i
tk

}N
i=1

.

The analysis ensemble provides an ensemble forecast of the aforementioned analysis dis-

tribution, πX̃tk . The new estimate for the first moment of X̃tk at each assimilation step as
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supposed to (2.45) is then

X̄N,tk =
1

N

N∑
i=1

X̃ i
tk
. (2.47)

This replacement is concerned with replicating highly weighted ensemble members whilst

removing low weighted members in the analysis ensemble. This replacement should satisfy

E

[
N∑
i=1

w̃itkX
i
tk

]
= E

[
1

N

N∑
i=1

X̃ i
tk

]
.

This means that the replacement is unbiased. Despite being unbiased, many resampling

schemes contribute variance to the estimate of the analysis mean; the consequences of this

on the theoretical error bounds of the estimate are investigated in Chopin [2004]. As pre-

viously mentioned, it is this stage of the particle filtering framework in which most particle

filter variants differ. There are many different types of resampling, such as multinomial and

residual resampling schemes [Douc et al., 2005].

Multinomial resampling

Multinomial resampling is the most simple resampling scheme. It is very cheap, however

it contributes the most variance. The analysis ensemble members are simply sampled from

the multinomial distribution with N draws and probability vector (w̃1
tk
, ..., w̃Ntk ), defined as

Mult(N ; w̃1
tk
, ..., w̃Ntk ). To sample from this distribution, sample u ∼ U [0, 1] and resample

Xj
tk

where j is given by

j = min

{
n ∈ (1, ..., N);

n∑
i=1

w̃itk ≥ u

}
.

Residual resampling

Residual resampling aims to produce a proportion of the analysis ensemble deterministically

from the weighted forecast ensemble. It then uses multinomial resampling to resample the

rest of the ensemble. More specifically, if an ensemble member X i
tk

has a weight of w̃itk ,

then it should be resampled an expected number of times: w̃itkN . However an ensemble

member cannot be resampled a non-integer amount of times. Therefore one should take the
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Figure 5: Effective sample size for the sequen-
tial importance sampling estimator of E[X̃tk ],
with N = 500, against the number of assim-
ilation steps. This decays exponentially with
an increasing number of assimilation steps.
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Figure 6: Effective sample size for the sequen-
tial importance sampling estimator of E[X̃t1 ],
with N = 500, against the number of degrees
of freedom. This decays exponentially with an
increasing number of degrees of freedom.
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Figure 7: Same as in Figure 5 only with a particle filtering estimator for E[X̃tk ], where
resampling is implemented on every resampling step. The effective sample size does not
decay with an increasing number of assimilation steps.
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lower integer bound of w̃itkN and guarantee that many copies of the i’th ensemble member

to appear in the analysis ensemble. With this in mind, let
⌊
w̃itkN

⌋
copies of the i’th ensemble

member be in the analysis ensemble, and then compute

N ′ = N −
N∑
i=1

⌊
w̃itkN

⌋
.

Then draw the remaining N ′ analysis ensemble members via a multinomial distribution,

Mult(N ′; ṽ1tk , ..., ṽ
N
tk

), where

ṽitk =
w̃itk −

⌊
w̃itkN

⌋∑N
j=1

(
w̃jtk −

⌊
w̃jtkN

⌋) ,
for i = 1, ..., N . Whilst the multinomial resampling scheme has a small probability that a

highly weighted ensemble member will not get resampled, the residual resampling scheme

tries to guarantee that it will be resampled a certain number of times at least. Due to the

deterministic selection of a proportion of the analysis ensemble, the variance contributed to

the overall posterior estimate from resampling is less than that of the multinomial resampling

scheme [Hol et al., 2006].

A general algorithm for the particle filter

Using the resampling modification to the sequential importance sampling algorithm in the

previous section, the general particle filter algorithm is shown below.

(1) Propagate
{
X i
tk−1

}N
i=1

with prediction model M to time tk.

(2) Update importance weights

witk = witk−1
πYtk (ydata,tk |X i

tk
), (2.48)

for i = 1, ..., N .

(3) Normalize the weights using w̃itk = witk/
∑N

j=1w
j
tk

, for i = 1, ..., N .

(4) Resample the analysis ensemble
{
X̃ i
tk

}N
i=1

from the weighted forecast ensemble
{
X i
tk

}N
i=1

.

(5) Reset the importance weights to even weights, witk = 1/N , for i = 1, ..., N .
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(6) Reset the forecast ensemble X i
tk

= X̃ i
tk

, for i = 1, ..., N , and iterate k = k + 1.

The particle filter is now used to create an estimator for E[X̃tk ] for increasing k, where

Xtk is as in the examples in Sec. 2.7.2. The particle filter is run with 500 samples. The effec-

tive sample size for each assimilation step is shown in Figure 7. Unlike with the sequential

importance sampling estimator (where resampling is not implemented), the effective sample

size does not decay and stays relatively constant.

Resampling is not required to occur on every assimilation step, in fact it is detrimental to

the particle filter if resampling is done when it is not needed (i.e. weights are approximately

even) [Doucet and Johansen, 2011]. One can use the effective sample size to determine

whether or not to resample at a particular assimilation step. For example, if one updates the

importance weights
{
w̃itk
}N
i=1

, one should resample only if

Neff < τN,

where τ ∈ [1/N, 1]. If τ = 1/N , the filter will never resample (asNeff ≥ 1) and corresponds

to sequential importance sampling. On the other hand, if τ = 1, the filter resamples on every

assimilation step, corresponding to the algorithm above.

2.7.4 Ensemble transform methods for Bayesian data assimilation

There has been a great deal of research into linear ensemble transform filters (LETFs) re-

cently, and their use in a Bayesian approach to nonlinear filtering. A particular type of linear

ensemble transform filter, called the ensemble transform particle filter (ETPF), replaces the

resampling step in the particle filter algorithm with a deterministic transform step.

Linear ensemble transform filters

Linear ensemble transform filters (LETFs) are a framework for implementing Bayesian data

assimilation [Reich and Cotter, 2015]. Consider the following definition.

Definition 11 (Linear ensemble transform filters). A LETF forms the analysis ensemble{
X̃ i
tk

}N
i=1

at time tk, for k = 1, 2, 3, ..., from a linear transform to the forecast ensemble{
X i
tk

}N
i=1

, i.e.

X̃j
tk

=
N∑
i=1

Di,jX
i
tk
.
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Here, D ∈ RN×N depends on the observations, ydata, in some way and satisfies

N∑
i=1

Di,j = 1, (2.49)

for each j = 1, ..., N .

For example, the EnKF is a type of LETF, where one uses a transform to the analysis

ensemble to estimate the posterior mean and covariance. The transform is as follows:

X̃j
tk

=
N∑
i=1

DEnKF
i,j X i

tk
,

where

DEnKF
i,j = δi,j −

1

N − 1

((
X i
tk
− X̄EnKF

N,tk

)T
(C +R)−1(Xj

tk
− ydata,tk)

)
,

and C is the sample covariance matrix of Xtk [Reich and Cotter, 2013]. Here it is as-

sumed that the operator H is the identity matrix and that X̄EnKF
N,tk

is the forecast mean, namely
1
N

∑N
i=1X

i
tk

.

The ensemble transform particle filter

The ensemble transform particle filter (ETPF) is a particularly interesting variant of the

LETF. It uses a deterministic transformation that takes one from the weighted forecast en-

semble
{
X i
tk

}N
i=1

in a particle filter to the evenly weighted analysis ensemble
{
X̃ i
tk

}N
i=1

.

Using the framework for the LETF described in the previous section, one can write this

transform as

X̃j
tk

=
N∑
i=1

Pi,jX
i
tk
, (2.50)

for j = 1, ..., N . The matrix P ∈ RN×N , can be written as a product NT , where T satisfies∑N
i=1

∑N
j=1 Ti,j = 1. Here, T is often referred to as a coupling matrix. It also has to satisfy

the marginal constraint
N∑
i=1

Ti,j =
1

N
, (2.51)
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given the condition in (2.49) of
∑N

i=1 Pi,j = 1 and recalling that the analysis ensemble

members are evenly weighted. The transform in (2.50) allows a new estimator for statistics

of the posterior to be defined, as supposed to (2.45):

X̄N,tk =
1

N

N∑
i=1

g(X̃ i
tk

). (2.52)

To preserve the mean of the first moment (g being the identity) in the weighted form of

(2.45), the marginal constraint
N∑
j=1

Ti,j = w̃itk , (2.53)

is required such that

1

N

N∑
j=1

X̃j
tk

=
1

N

N∑
j=1

N∑
i=1

Pi,jX
i
tk

=
N∑
j=1

N∑
i=1

Ti,jX
i
tk

=
N∑
i=1

w̃itkX
i
tk
, (2.54)

from [Reich, 2013]. Denote the space of couplings that such a T belongs to by T ∈ RN×N .

The transform T associated with the ETPF solves the Monge-Kantorovich problem [Villani,

2008], and is found by using optimal transportation. The so-called Monge-Kantorovich

problem concerns finding a T ∈ T that minimizes a certain cost metric,

arg min
T∈T

Ti,j
∥∥X i

tk
−Xj

tk

∥∥2. (2.55)

The solution minimises the expected Euclidean difference between Xtk and X̃tk and in turn

maximises the covariance between them via

ET [‖Xtk − X̃tk‖2] = E[‖Xtk‖2] + E[‖X̃tk‖2]− 2E[Xtk ]
TE[X̃tk ]− 2Tr

(
CovT [Xtk , X̃tk ]

)
.

Here, the statistical operators ET and CovT are the expectation and covariance with respect

to the coupling T . This coupling therefore minimises the variance of the difference between

Xtk and X̃tk , i.e. VT [Xtk − X̃tk ]. Whereas the classical particle filter resampling step adds

variance to the posterior approximation, this transformation attempts to minimize the vari-

ance added to such an approximation. The Monge-Kantorovich problem in practice can be

solved using optimal transportation algorithms.

These algorithms vary in cost, and can be quite expensive. In one-dimensional cases of
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one degree of freedom, where Xtk ∈ R, there is a cheap algorithm that solves the problems

in O(N logN) complexity; for an example of the psuedocode see Reich and Cotter [2015].

However, in higher dimensional cases, the cost is solely dependent on N and can only be

solved in O(N3 logN) complexity. This expense can therefore be a computational bottle-

neck of the ETPF in some cases; a technique called localisation can be employed here to

provide some complexity relief (see Sec. 2.7.7).

The transformation in (2.50) will now be studied in more detail. Let the ensembles{
Zi

1

}N
i=1

and
{
Zi

2

}N
i=1

be i.i.d. random variables associated with the distributions πZ1 and

πZ2 respectively. Furthermore suppose they are assigned weights
{
pi
}N
i=1

and
{
qi
}N
i=1

re-

spectively, by importance sampling via a third probability distribution πZ3 , all absolutely

continuous with respect to the Lesbegue measure. Suppose one wishes to resample
{
Zi

2

}N
i=1

with weights
{
qi
}N
i=1

, to obtain a new ensemble
{
Z̃i

2

}N
i=1

with weights
{
pi
}N
i=1

. To do this,

consider the following transform (a general version of the one in (2.50)):

Z̃j
2 =

N∑
i=1

Ti,j(p
j)−1Zi

2, (2.56)

for j = 1, ..., N . Here, T ∈ T is a coupling matrix satisfying

N∑
i=1

Ti,j = pj,
N∑
j=1

Ti,j = qi.

Notice that this is equivalent to the transform used in (2.50) with pi = 1/N , for i = 1, ..., N .

In Reich and Cotter [2015], the following was proved. If the ensemble
{
Z̃i

2

}N
i=1

is computed

via the transform in (2.56), then the maps ΨN : Zi
1 → Z̃i

2, given by

Z̃i
2 = ΨN(Zi

1), i = 1, ..., N,

weakly converge to a map Ψ : RNX → RNX as N → ∞. In addition to this, the random

variable given by Z̃2 = Ψ(Z1) is associated with the distribution πZ2 . Hence, for arbitrary

test functionals g, weak convergence for estimates to E[g(Z2)] can be obtained. I.e.

N∑
i=1

pig(Z̃i
2)→

N∑
i=1

qig(Zi
2)→ E[g(Z2)], (2.57)
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Figure 8: The forecast ensemble
{
X i
tk

}N
i=1
∼ N(0, 1) and analysis ensemble

{
X̃ i
tk

}N
i=1

, after
importance weighting with an observation sampled from the distribution N(0.35, 0.1). They
are positively correlated due to the transformation, from forecast to analysis ensemble in
(2.50), that maximises the covariance between them.

as N → ∞. Returning to the transformation in (2.50), this theory results in weak conver-

gence for the estimate to posterior statistics in (2.52), so that

1

N

N∑
i=1

g(X̃ i
tk

)→
N∑
i=1

w̃itkg(X i
tk

)→ E[g(X̃tk)], (2.58)

as N →∞.

As a demonstration of the transformation in the ETPF, consider an ensemble of N = 50

particles sampled from the forecast distribution Xtk ∼ N(0, 1). The observation is sampled

from the distribution N(0.35, 0.1). The forecast ensemble is weighted, and the transforma-

tion in (2.50) is used to obtain an evenly weighted analysis ensemble,
{
X̃ i
tk

}N
i=1

. The forecast

and analysis ensembles are shown in Figure 8. Note that they are positively correlated due to

the coupling, that solved the optimal transport problem, maximising the covariance between

them.
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An algorithm for the ensemble transform particle filter

This ensemble transform particle filtering framework inspires a modification to the algorithm

presented in Sec. 2.7.3.

(1) Propagate
{
X i
tk−1

}N
i=1

with prediction model M to time tk.

(2) Update importance weights

witk = πYtk (ydata,tk |X i
tk

), (2.59)

for i = 1, ..., N .

(3) Normalize the weights using w̃itk = witk/
∑N

j=1w
j
tk

, for i = 1, ..., N .

(4) Using a coupling matrix T , found by solving (2.55) whilst satisfying (2.51) and (2.53),

compute the analysis ensemble
{
X̃j
tk

}N
j=1

by

X̃j
tk

=
N∑
i=1

NTi,jX
i
tk
.

(5) Reset the forecast ensemble X i
tk

= X̃ i
tk

, for i = 1, ..., N , and iterate k = k + 1.

A matrix interpretation of the ensemble transform particle filter

In order to understand the extensions of the ETPF that are investigated in the following two

sections, it is beneficial to frame the associated transform and posterior approximations in

matrix algebra. Firstly, note that the forecast ensemble
{
X i
tk

}N
i=1

can be written as the matrix

Xtk = (X1
tk
, ..., XN

tk
)T ∈ RNX×N . In addition to this, by writing the importance weights as

w̃tk = (w̃1
tk
, ..., w̃Ntk )T ∈ RN×1, one can re-write the weighted posterior mean in (2.45) as

X̄N,tk = Xtkw̃tk .

The analysis ensemble X̃tk = (X̃1
tk
, ..., X̃N

tk
)T ∈ RNX×N , can be found by transforming the

forecast ensemble like so

X̃tk = XtkP. (2.60)
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In addition to this, by defining 1 = (1, ..., 1)T ∈ RN×1, one can re-write the ETPF estimator

to the analysis mean as

X̄N,tk =
1

N
X̃tk1.

From the last section, T = (1/N)P allows

1

N
T1 = w̃tk

to be written and therefore the transformation is first-order accurate:

1

N
X̃tk1 = Xtkw̃tk .

This is equivalent to (2.54). Here, first-order accuracy of the transformation refers to the

weighted forecast mean and the analysis mean being equal.

2.7.5 The Sinkhorn approximation to an optimal coupling

The optimal transport algorithm in the transform mentioned in the last section can be expen-

sive when NX > 1. Fortunately, there is an iterative algorithm that can achieve approxima-

tions to a slightly modified problem for significantly less complexity: the Sinkhorn algorithm

[Cuturi, 2013]. The regularized cost matrix, K ∈ RN×N , is defined as

Ki,j = exp
(
−λC(X i

tk
, Xj

tk
)
)
, (2.61)

for i, j = 1, ..., N , where λ is a positive constant and C(x, y) = ‖x− y‖2. One now finds

the transform matrix Ti,j that minimises the modified problem

N∑
i=1

N∑
j=1

(
Ti,jC(X i

tk
, Xj

tk
) +

1

λ
Ti,j log

(
Ti,j
T 0
i,j

))
,

where T 0 = w̃tk1T [Cuturi, 2013, de Wiljes et al., 2016]. As λ→∞, the modified problem

tends back to the full optimal transport problem in the last section. The dual fixed point

iterations of the N × 1 vectors u and v are used:(
Nw̃tk

Kv

)
→ u,

(
1

Ku

)
→ v.
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In practice, one iterates u first, starting with v = 1, until
∥∥w̃∗tk − w̃tk

∥∥ < ε is achieved, where

w̃∗tk = T1 and

T = diag(u)Kdiag(v).

As λ becomes large, the algorithm takes longer to converge.

2.7.6 A second-order accurate correction to the ensemble transform particle

filter

The Sinkhorn algorithm is used within de Wiljes et al. [2016], alongside a second-order

accurate correction to the transform matrix, T , for the ETPF. Here, second-order accuracy

refers to the weighted forecast covariance and the analysis covariance being equal. This

is required as the analysis ensemble underestimates the forecast ensemble spread when the

Sinkhorn algorithm is used, and in the long-time limit could cause the filter to collapse. The

study proposed a correction matrix, ∆, to the transform matrix, P = NT , in (2.60). It

satisfies ∆1 = 0, such that (2.60) is still first-order accurate, and in addition satisfies the

following condition:

N
(
diag(w̃tk)− w̃tkw̃T

tk

)
−BBT = B∆T + ∆BT + ∆∆T ,

where B = P − w̃tk1T . This condition allows the analysis covariance and the weighted

forecast covariance matrices to be equal, thus preserving ensemble spread. The corrected

transformation therefore replaces (2.60) with

X̃tk = Xtk(P + ∆). (2.62)

The correction matrix ∆, assumed to be symmetric, can be found by numerically solving a

continuous-time algebraic Riccati equation

A = B∆T + ∆BT + ∆∆, (2.63)
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where A = N(diag(w̃tk) − w̃tkw̃T
tk

) − BBT . The following Euler discretization, with a

step-size of δt, can be used to numerically solve (2.63):

∆(l+1)δt = ∆lδt + δt
(
−B∆lδt −∆lδtB

T + A−∆lδt∆lδt

)
.

The initial condition ∆0 = 0 is used and the numerical method is stopped when

∥∥∆(l+1)δt −∆lδt

∥∥
∞ < 10−3.

Take the final iterate ∆(l+1)δt to be the ∆ used in (2.62). Due to this correction, this filter is

more stable than the standard ETPF. In addition to this, the Sinkhorn algorithm in the last

section has a complexity of O(N2), and so is a reduction from that of solving the optimal

transport problems using exact algorithms.

This extension of the ETPF is not considered further, given that the computational cost

of solving the optimal transport problems within the ETPF framework is not found to hinder

the benchmark results presented in this thesis. Either this is due to a reasonably low order of

magnitude of sample sizes being used, as in Chapters 5 and 6, or because of localisation, a

technique that will be discussed now.

2.7.7 Localisation

Localisation, in the context of filtering, is used to stabilise the filter in the case of high-

dimensional state spaces and alleviate degeneracy. It is frequently used in the EnKF for

high-dimensional and spatially-extended systems [Anderson, 2012], and can also be applied

to the ETPF [Cheng and Reich, 2013]. The type of localisation used alongside the ETPF

is known as ‘R-localisation’ or ‘radius localisation’ as it assumes that only a localised area

within a particular radius of each state component is considered during assimilation.

In addition to stabilising the ETPF, localisation can also be used to alleviate the high

computational cost of the optimal transport problem in the transformation stage. Both bene-

fits will be discussed in the following two sections. An important thing to remember about

localisation is that using it will result in inconsistent estimators for the analysis statistics

E[g(X̃tk)]. That is to say that the claim in (2.58) does not hold. Despite this, empirical

results suggest that the ETPF with localisation implemented can effectively compensate be-

tween accuracy and stability in some systems, including the chaotic and highly nonlinear
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Lorenz equations [Cheng and Reich, 2013].

Cost metric localisation

In the most extreme form, applying localisation to the ETPF means that one can reduce the

computational cost of constructing a multivariate coupling matrix T to the cost of construct-

ing NX separate univariate coupling matrices, Tm, for m = 1, ..., NX , for each component

of Xtk . More generally, localisation allows one to construct an individual transformation

in (2.50) for each of the NX components of a multivariate Xtk . The modification to the

ETPF framework required for localisation, concerns constructing local cost metrics instead

of the one in (2.55) that are based on Euclidean differences of local components only. The

alternative cost metrics use a localisation matrix, alongside a user-defined radius parameter,

rloc,c, to determine these local components. A simple example of a localisation matrix C

[Cheng and Reich, 2013] that describes an idealised decay in spatial correlations amongst

state components of Xtk could be

Cm,n =

1− 1
2

( sm,n
rloc,c

)
,
( sm,n
rloc,c

)
≤ 2,

0, otherwise.
(2.64)

Here m,n = 1, . . . , NX are the indices of the spatial components of Xtk . Let ℘(m) denote

the spatial position of component m of Xtk , and then define

sm,n = ‖℘(m)− ℘(n))‖2. (2.65)

Refer to Reich and Cotter [2015] for a similar example of sm,n, where spatial periodicity of

the domain of Xtk is accounted for. This can be used to decompose the cost metric in (2.55)

into NX separate metrics. For each component m = 1, ..., NX in Xtk , one finds the coupling

matrix Tm ∈ T m ∈ RN×N , that satisfies

N∑
i=1

Tmi,j =
1

N
,

N∑
j=1

Tmi,j = w̃itk(m), (2.66)

and solves

arg min
Tm∈T m

N∑
i=1

N∑
j=1

Tmi,jfm(X i
tk
, Xj

tk
), (2.67)
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where

fm(X i
tk
, Xj

tk
) =

NX∑
n=1

Cm,n
(
X i
tk

(n)−Xj
tk

(n)
)2
. (2.68)

Here, X(m) is the m’th component of the random variable X , and w̃tk(m) is a separate

importance weight for each component of Xtk . This technicality will be useful in the next

section, but with simplicity in mind for now, take w̃tk(m) = w̃tk , for m = 1, ..., NX . Using

the transformation

X̃j
tk

(m) =
N∑
i=1

NTmi,jX
i
tk

(m), (2.69)

for m = 1, ..., NX , to compute the components of the analysis ensemble members, one can

define an approximation to posterior statistics in the usual way. I.e.

X̄N
tk

=
1

N

N∑
j=1

g(X̃j
tk

). (2.70)

Note that the cost functions in (2.68) no longer achieve the minimum of (2.55). This means

that implementing localisation results in inconsistent estimates of posterior statistics. When

rloc,c = 0, exhibiting the most computationally efficient scenario, one is required to solveNX

univariate optimal transport problems. Therefore this is equivalent to transforming all com-

ponents individually. One can simply use the cheap univariate algorithm described in Reich

and Cotter [2015], with a complexity of O(Nlog(N)), for these transformations. In total,

for all NX transport problems, this results in an overall complexity of O(NXNlog(N)). In

practice, when rloc,c = 0, one should re-order the component sets in the analysis ensemble

members into the rank structure of the forecast ensemble members. This preserves the ap-

proximate copula structure of the forecast ensemble [Schefzik et al., 2013]. Such extreme

localisation is useful when the computational cost of the forward model, M , is heavily dom-

inated by the complexity of solving the optimal transport problems.

Likelihood localisation

In Sec. 2.7.2 it was found that degeneracy within the importance weights associated with

the forecast ensemble
{
X i
tk

}N
i=1

can be caused by the high dimension of the state space. A

localisation method, slightly different to the one explained above, can prevent this degen-

eracy in the importance weights. It is implemented by modifying the likelihood of each
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forecast ensemble member in
{
X i
tk

}N
i=1

. The degeneracy it alleviates is an issue inherent

to sequential Monte Carlo (SMC) methods in general for high-dimensional systems [Rebes-

chini and Van Handel, 2013]. Standard SMC methods, with computationally feasible sample

sizes, fail to track signals / reference trajectories of high-dimensional systems due to expo-

nentially decaying effective sample size. Localisation in the likelihood can not directly be

applied to standard particle filters, due to the lack of spatial regularity in random resampling

schemes [Cheng and Reich, 2013]. There have been methods proposed to get around this

issue, such as tempering of likelihoods and spatial resampling [Beskos et al., 2014]. These

methods typically concentrate on maintaining the theoretical properties of particle filters,

such as consistency, whilst alleviating the curse of dimensionality. On another hand, the

form of the linear transform in (2.50) for the ETPF can provide sufficient spatial regularity

to produce analysis ensembles under localisation in the likelihood [Reich and Cotter, 2015].

This is done via the following modification to the importance weight update of the forecast

ensemble members in the ETPF. Here it is assumed that NX = NY and observations are

given by (2.41). For each component, m = 1, ..., NX , of the i’th forecast ensemble member,

one can generate a separate importance weight, w̃itk(m),

w̃itk(m) ∝ 1
√

2π|R|NX/2
e−

1
2

(
H(Xi

tk
)−ydata,tk

)T
(C̃m)R−1

(
H(Xi

tk
)−ydata,tk

)
. (2.71)

Let ℘H(m) denote the spatial position of component m of H(Xtk) and also

sHm,n =
∥∥℘H(m)− ℘H(n)

∥∥
2
.

Then define the diagonal matrices C̃m, for m = 1, ..., NX , by

(C̃m)n,n =

1− 1
2

(
sHm,n
rloc,R

)
,
(
sHm,n
rloc,R

)
≤ 2,

0, otherwise,
(2.72)

for n = 1, ..., NX and where rloc,R is another radius parameter (independent of rloc,c). Defin-

ing a separate importance weight for each component of Xtk , motivates the technicality of

using different importance weights in the optimal transport problem for each individual com-

ponent in (2.66). See Anderson [2012] for details of a similar use of localisation within the

EnKF.
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This chapter is based upon Gregory and Cotter [2017a]

Chapter synopsis

This chapter concerns the evaluation of forecasts from multilevel Monte Carlo approxima-

tions to statistics of discretized random variables, away from the traditional mean square

error (MSE) metric. It was discussed in the introduction that ensemble forecasts of probabil-

ity distributions, associated with random variables, can be verified to evaluate their predictive

performance, relative to observations and measurements. Observations were also utilised in

the previous chapter to refine forecasts via ensemble data assimilation methods. For standard

N -member ensemble forecasts, where Monte Carlo can be used to compute statistics of the

random variable in question, their evaluation is a well researched topic in literature [Gneiting
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and Raftery, 2007, Ferro et al., 2008, Gneiting et al., 2007]. These verification techniques

are frequently referred to as scoring rules and try to answer the following question:

How much should one trust forecasts, and is the uncertainty within the forecast

representative of the uncertainty in the underlying system that one is trying to forecast?

This chapter investigates how to implement these verification techniques when the en-

semble forecast is not given by a single forecast at a certain resolution, but by a hierarchy of

ensembles from different resolutions of the random variable, utilised in the multilevel Monte

Carlo method. This would enable scoring rules to verify the effectiveness of these types of

forecasts, and is the aim of this chapter. The assumption that the random variable of interest

is univariate, or is the scalar functional of a multivariate random variable, is made throughout

this chapter.

3.1 Scoring rules for ensemble forecasts

Consider the i.i.d. ensemble forecast of the univariate random variable X ∈ R, with as-

sociated distribution πX and ensemble members
{
X i
}N
i=1
∼ X . The empirical cumulative

distribution function (CDF) of this forecast is given by the summation

FN
πX

(x) =
1

N

N∑
i=1

H(x−X i), (3.1)

where H is the Heaviside step function, namely

H(x) =

1, x ≥ 0,

0, x < 0.

This empirical estimate approximates the analytical CDF given earlier in Sec. 2.1.2,

FπX (x) =

∫ x

−∞
πX(x).

One can use this empirical approximation of the forecast CDF to generate scoring rules, that

evaluate the effectiveness of the forecast with respect to an observed process, Y , with asso-

ciated distribution πY . In practice one has access to Y by samples / individual measurements{
yjdata

}Ndata

j=1
∼ Y . A scoring rule is defined below.
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Definition 12 (Scoring rule). A scoring rule is a random variable

S
(
FN
πX
, Y
)

representing a scalar score, evaluating different qualities of a forecast, relative to an ob-

served process Y .

3.1.1 A probability integral transform histogram

An example of a scoring rule is the probability integral transform. This evaluates the cali-

bration of a forecast; calibration is the measure of whether the observations
{
yjdata

}Ndata

j=1
are

statistically indistinguishable from the members of the ensemble forecast
{
X i
}N
i=1

[Carney

and Cunningham, 2006]. The probability integral transform is as defined below.

Definition 13 (Probability integral transform). The probability integral transform of a fore-

cast, with underlying CDF FπX , given an observed process Y , is the random variable

P = FπX (Y ).

A forecast is said to be calibrated if P ∼ U [0, 1]. This is the case in an identical twin

scenario, where the observations are taken from a reference trajectory produced by the same

model as the one used to produce the forecast ensemble.

To compute an estimate of this score for an ensemble forecast, one traditionally calculates

a histogram of samples Pj ∈ [0, 1], for j = 1, ...., Ndata, corresponding to the observations{
yjdata

}Ndata

j=1
, and tests whether this is a flat, uniform histogram [Gneiting et al., 2007]. This

is often referred to as the probability integral transform histogram or rank histogram. In the

case that it is uniform, one infers that P ∼ U [0, 1], and that the forecast is calibrated. If the

histogram is convex, it suggests that the ensemble forecast is overdispersed with respect to

Y . On the other hand if the histogram is concave, it suggests that the ensemble forecast is

underdispersed.

Definition 14 (Probability integral transform histogram). To construct a probability integral

transform (PIT) histogram, start by evaluating the empirical CDF of the ensemble forecast,
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FN
πX

, with each observation yjdata:

Pj = FN
πX

(yjdata) =
1

N

N∑
i=1

H(yjdata −X i). (3.2)

A frequency histogram is then computed for
{
Pj
}Ndata

j=1
.

As an example, consider an ensemble of Brownian motion paths
{
W i
t

}20
i=1

at times t =

1, 2, ..., 100000. One observation is taken at each time, from the distribution Yt ∼ N(0, t),

and used to calculate Pt with the ensemble
{
W i
t

}20
i=1

. A probability integral transform his-

togram using the samples Pt, for t = 1, ..., 100000, is shown in Figure 9. Taking sam-

pling error into account, this histogram is approximately uniform. This is expected since

P = FπWt (Yt), and the distribution of Wt is πWt ∼ N(0, t).
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Figure 9: Probability integral transform histogram (with normalized frequency) of a 20-
member ensemble forecast for a standard Brownian motion, Wt, with distribution πWt ∼
N(0, t). Observations are sampled from Yt ∼ N(0, t), at times t = 1, 2, 3, ..., 100000. The
histogram is approximately uniform because the ensemble forecast is calibrated with Yt, i.e.
P = FπWt (Yt) ∼ U .
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3.2 A multilevel Monte Carlo ensemble forecast

Assume Xhl
t is a discretization of the random variable Xt ∈ R, with associated distribution

π
X
hl
t

. This discretization uses a time-step hl, for l = 0, 1, 2, ... with hl ∝ m−l and m > 1, as

utilised in the multilevel Monte Carlo framework (see Sec. 2.6). Suppose a multilevel Monte

Carlo approximation to statistics of XhL
t , for a sufficiently large L, has been computed. The

following section proposes a method to generate a single ensemble forecast
{
XF,i
t

}Ñ
i=1

from

the hierarchy (l = 0, ..., L) of ensembles,
{
Xh0,i
t

}
i=1,...,N0

, l = 0{
Xhl,i
t , X̂

hl−1,i
t

}
i=1,...,Nl

, l > 0.
(3.3)

used in the MLMC approximation. Put simply, one can generate a single large ensemble

(much larger than the finest ensemble with l = L) that represents the entire MLMC approx-

imation to the forecast distribution. This is more useful for the scoring / verification of the

hierarchy of ensembles rather than just using standard scoring rules on the finest ensemble in

this hierarchy. As aforementioned, the sample sizes for the pairs of ensembles on different

levels, Nl, decrease asymptotically. Therefore the finest ensemble is the smallest ensemble

in the hierarchy. Using the finest ensemble for the verification of the entire MLMC approx-

imation of the forecast distribution would neglect the majority of samples, on lower levels,

from which the approximation was composed.

It is important to note that the ensemble
{
XF,i
t

}Ñ
i=1

does not contain i.i.d. samples from

the finest resolution forecast distribution, π
X
hL
t

. Instead they will be approximations to these

samples. However, this single ensemble has the properties to form a consistent empirical es-

timate to the finest resolution forecast distribution and associated distribution functions. This

will become clearer later on in the chapter. Assume that values of the MLMC parameters Nl

and L have been either set or found, and that the hierarchy of ensembles (3.3) has been gen-

erated. Predominantly, this is because the following framework is designed for evaluating

any given MLMC approximation. Each approximation has a hierarchy of ensembles that use

values of Nl and L that have been optimised around minimising the cost of that particular

approximation. This optimisation occurs within an algorithm such as the one in Sec. 2.6.5.

Thus, by making the aforementioned assumption, the framework can be kept general to all

approximations. In addition to this, it is likely that in real forecasting practice one would
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pick the desired finest level L and then set fixed values of Nl based on the maximum com-

putational expense one can use on a particular level. This method of choosing Nl and L is

implemented in an example at the end of the chapter.

Inverse transform sampling is used to generate the single ensemble forecast. This tech-

nique was previously introduced in Chapter 2. The inverse CDF, F−1, used in inverse trans-

form sampling must typically be empirically estimated. If the true CDF of the forecast

distribution is known to be absolutely continuous, as is the case with Xt ∈ R, and the sam-

ples are sorted to form order statistics, then some of these estimates have been shown to

be consistent approximations to F−1(u) [Ma et al., 2011]. A simple consistent estimate for

an evaluation to the quantile function of the distribution πX , using the (ascending) sorted

samples
{
X i
}N
i=1
∼ X is

F̂−1πX ,N
(u) = R(X)dN×ue, (3.4)

where u ∈ [0, 1] and R(X)i is the i’th order statistic of
{
X i
}N
i=1

such that R(X)1 <

R(X)2 < .... < R(X)N . Here, the estimate is a consistent one in the sense that it converges

in probability to F−1πX
(u) as N →∞. One can also use linear interpolation and extrapolation

to smooth this consistent estimate. Other inconsistent techniques include fitting a parametric

distribution to the ensemble, such as a Gaussian, and sampling from a closed form quantile

function (e.g. Φ for a Gaussian distribution). Inverse transform sampling can be used with

these approximations, by sampling u ∼ U [0, 1] and evaluating them.

The use of inverse transform sampling alongside MLMC was first suggested in Giles

[2013]. Here it was proposed to be used to minimise the discrete Wasserstein distance be-

tween the two paired ensembles in each difference estimator within (2.20) and thus posi-

tively couple them. Instead, the proposed method in this chapter will use inverse transform

sampling in the context of a MLMC approximation to the quantile function of the forecast

distribution. I.e.

F̂−1π
X
hL
t

,(N0,...,NL)
(u) = R(X)

h0,dN0×ue
t +

L∑
l=1

(
R(X)

hl,dNl×ue
t −R(X̂)

hl−1,dNl×ue
t

)
. (3.5)

Note that there is not an exact cancellation in expected values of the terms in (3.5), as was the

case in (2.19), because the individual approximations on each level are not unbiased, only

consistent in the limit of Nl → ∞. The following algorithm demonstrates how to generate

an ensemble
{
XF,i
t

}Ñ
i=1

of arbitrary size Ñ , approximating samples of XhL
t .



85

(1) For l = 1, ..., L sort
{
X̂
hl−1,i
t

}Nl
i=1

and
{
Xhl,i
t

}Nl
i=1

so that

R(X̂)
hl−1,1
t < ... < R(X̂)

hl−1,Nl
t ,

and

R(X)hl,1t < ... < R(X)hl,Nlt ,

in addition to sorting
{
Xh0,i
t

}N0

i=1
so that

R(X)h0,1t < ... < R(X)h0,N0 .

(2) Initialize XF,i
t = 0, for i = 1, ..., Ñ .

(3) For l = 0, ..., L sample
{
uil
}Ñ
i=1
∼ U [0, 1] and compute

XF,i
t + =

R(X)h0,dui×N0e, l = 0

R(X)hl,dui×Nle −R(X̂)hl−1,dui×Nle, l > 0.

As previously mentioned, the members of the ensemble
{
XF,i
t

}Ñ
i=1

are not samples from

π
X
hL
t

, they are only consistent approximations to the evaluations of F−1π
X
hL
t

(u) for a particular

u. More specifically, for an uniform random variable u ∼ U [0, 1], if

x = F̂−1π
X
hL
t

,(N0,...,NL)
(u), (3.6)

then as Nl →∞ for all l, it holds that

x
p−→ F−1π

X
hL
t

(u). (3.7)

Then in this limit, x converges in probability to a sample from the forecast distribution on the

finest resolution, i.e. x ∼ XhL
t . Therefore given the definition of inverse transform sampling

in Sec. 2.1.3, the single ensemble
{
XF,i
t

}Ñ
i=1

can form valid and consistent approximations

to statistics of the forecast distribution from the finest resolution, π
X
hL
t

. For example, a
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consistent approximation to the CDF of π
X
hL
t

can be given by

F Ñ
π
X
hL
t

(x) =
1

Ñ

Ñ∑
i=1

H(x−XF,i
t ). (3.8)

This is valid; it is non-decreasing for XF,i
t ∈ R and has the support of [0, 1].

One assumes that in practice the computational effort of evaluating the above algorithm a

large number of times to generate the ensemble
{
XF,i
t

}Ñ
i=1

is negligible in comparison to the

expense of generating the original samples on all of the different levels of resolution. Thus,

the method seems likely to be admissible even when Ñ is much larger than N0. Having

said this, it makes sense here to set Ñ ∝ N0 so that both aspects of the approximation

(inverse CDF estimator and the ensemble forecast) converge in probability simultaneously

with Nl →∞, for l = 0, ..., L and Ñ →∞ respectively. Henceforth, assume that Ñ = αN0

with α ∈ Z and α ≥ 1 for simplicity.

The proposed ensemble forecast also preserves the unbiasedness of the approximation to

the first moment of XhL
t from the original MLMC approximation. To show this let X̄hL

Ñ
=

1
αN0

∑αN0

i=1 X
F,i
t be the sample mean of the ensemble forecast from the multilevel hierarchy

of ensembles. Then,

X̄hL
Ñ

=
1

αN0

αN0∑
i=1

XF,i
t

=

(
1

αN0

αN0∑
i=1

F̂−1π
X
h0
t

,N0
(ui)

)
+

L∑
l=1

((
1

αN0

αN0∑
i=1

F̂−1π
X
hl
t

,Nl
(ui)

)
−

(
1

αN0

αN0∑
i=1

F̂−1π
X
hl−1
t

,Nl
(ui)

))
,

=

(
1

αN0

αN0∑
i=1

R(X)
h0,dN0×uie
t

)
+

L∑
l=1

(
1

αN0

αN0∑
i=1

(
R(X)

hl,dNl×uie
t −R(X̂)

hl−1,dNl×uie
t

))
,

(3.9)
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and given that
{
ui
}αN0

i=1
∼ U [0, 1] are i.i.d. uniform random variables, then

E[X̄hL
Ñ

] =

(
1

αN0

αN0∑
i=1

E[Xh0
t ]

)
+

L∑
l=1

(
1

αN0

αN0∑
i=1

(
E[Xhl

t ]− E[X
hl−1

t ]
))

= E[Xh0
t ] +

L∑
l=1

E[Xhl
t −X

hl−1

t ] = E[XhL
t ].

(3.10)

3.3 Multilevel Monte Carlo scoring rules

Having a method to build the single ensemble forecast representing the multilevel Monte

Carlo approximation to π
X
hL
t

, leaves us with a simple analogy for a multilevel Monte Carlo

scoring rule.

Definition 15. A multilevel Monte Carlo scoring rule is a random variable

S

(
F Ñ
π
X
hL
t

, Y

)
representing a scalar score, evaluating different qualities of a multilevel Monte Carlo fore-

cast, relative to an observed process Y . Here, F Ñ
π
X
hL
t

is the empirical CDF using the ensem-

ble forecast
{
XF,i
t

}Ñ
i=1

in (3.8).

3.3.1 A multilevel probability integral transform histogram

Given the definition of a multilevel Monte Carlo scoring rule, one can investigate the cali-

bration of a multilevel Monte Carlo approximation to π
X
hL
t

by using the probability integral

transform histogram. This is done in exactly the same way as it was for the standard en-

semble forecast earlier on in the chapter, only evaluating the empirical CDF of
{
XF,i
t

}Ñ
i=1

instead. Consider the following example from Sec. 2.4.3. The linear mean reverting OU

process, Xt ∈ R, given by

dXt = α(µ−Xt)dt+ σ2dWt, (3.11)
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over the time interval t ∈ [0, T ], where Wt is a univariate Brownian motion and T = 40000,

will be used to demonstrate a multilevel Monte Carlo scoring rule. An Euler-Maruyama

numerical scheme will be used to discretize Xt with time-step hl = 2−l−1, for l = 0, ..., L.

In particular, the system with pre-defined parameter sets Sp = (α, σ, µ) for different sce-

narios of calibration will test PIT histograms from a single ensemble forecast representing a

MLMC approximation to π
X
hL
t

. Observations are assumed to come from the above model,

discretized with time-step h4 = 2−5, with Sp = (0.1, 0.1, 0).

In order to frame this problem in a likely forecasting setting:

(1) First choose a desired fixed finest resolution L = 4 and so l ∈ [0, 4].

(2) Then set a maximum computational expense allowance (the number of floating point

operations, in this case) for the propagation of all samples on each level of the ensem-

ble hierarchy, Cmax = 1.536 × 107. The number of floating point operations for each

sample in the l’th difference estimator in (2.20) is
(
Th−1l (1 + 1/2)

)
(as all but the first

difference estimator require coarse and fine time-steps of the discretization) and so Nl

is given by

Nl =

⌊
Cmax

T
(
h−1l (1 + 1/2)

)⌋

=

⌊(
2

3

)
CmaxT

−1hl

⌋
.

(3.12)

This corresponds to N0 = 27.

Pairs of samples from coarse and fine ensembles in each difference estimator in (2.20)

are positively coupled by using the same underlying Brownian motion via (2.9), as utilised

in Sec. 2.6.7. Observations are collected at times tk = k, k ∈ [1, T ]. At each of these

times, a single ensemble forecast
{
XF,i
tk

}Ñ
i=1

is generated from the hierarchy of ensembles

that make up the MLMC approximation to the forecast distribution. These are then used

to verify the calibration of the approximation via a PIT histogram. In this example, Ñ =

8N0 = 210 is used. Model parameter sets for four experimental setups are given as follows:

Sp = (0.1, 0.1, 0) for the calibrated scenario, Sp = (0.1, 0.02, 0) for the underdispersed

scenario, Sp = (0.1, 0.5, 0) for the overdispersed scenario and Sp = (0.4, 0.1, 0.2) for the

biased scenario.
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Figure 10: Probability integral transform histograms (normalized frequency), using the mul-
tilevel ensemble forecast

{
XF,i
tk

}Ñ
i=1

of the linear OU process. Each ensemble forecast cor-
responds to one of four different parameter scenarios: calibrated, overdispersed, underdis-
persed and biased. The solid line on the biased parameter scenario panel shows a smoothed
kernel of the PIT histogram generated from the actual stationary forecast and target distribu-
tions.

This setup allows us to establish that the correct calibration behaviour is being shown by

the PIT histogram of the multilevel ensemble forecast for each of the Sp scenarios. Figures

10 and 11 show the PIT histograms using the multilevel ensemble forecast and the finest

ensemble in (3.3) respectively, for the four scenarios of Sp listed above. Due to the small

sample size of the finest ensemble in (3.3), the associated PIT histograms can only represent a

very small number of bins of probability. Both sets of PIT histograms show similar behavior

for the Sp scenarios above.
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Figure 11: The same as Figure 10 only for the finest ensemble
{
XhL,i
tk

}NL
i=1

. The correct type
and magnitude of the bias in the biased scenario panel is less clear than in Figure 10.

Recall from Sec. 2.3 that for arbitrary Sp, the stationary distribution of Xt is

N

(
µ,
σ2

2α

)
.

One notes that the stationary forecast distribution using the biased scenario of Sp above is

given by f ∼ N
(
0.2, 1

8

)
and the stationary target distribution is given by y ∼ N

(
0, 1

2

)
.

Therefore the actual PIT histogram of P = F (y), where F is the CDF of f , can be generated

by taking an arbitrarily large number of samples of F (y). A smoothed density kernel of this

histogram is superimposed on the corresponding empirical PIT histograms of the multilevel

ensemble forecast and the finest ensemble in (3.3). The empirical histograms approximately
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match this, however, due to the lack of samples in the finest ensemble, this particular his-

togram is not as clear to the type or magnitude of the bias as the one shown in Figure 10.

Therefore the calibration and the extent/type of bias in the MLMC approximations to πXt
can be shown with more clarity using the PIT histogram from

{
XF,i
tk

}Ñ
i=1

than the one from

just the finest ensemble in (3.3).

3.4 Conclusions

This chapter proposed a method used to compute scoring rules for multilevel Monte Carlo

forecasts, which can estimate statistics via a hierarchy of ensemble forecasts on sequential

levels of resolution. Scoring rules allow the verification of ensemble forecasts, away from

simple error estimates, relative to a set of observations of a reference trajectory that one

wishes to forecast.

One scoring rule in particular is considered in this chapter, the probability integral trans-

form histogram. This allows one to test the calibration of an ensemble forecast; calibration

is a measure of whether the observations are statistically indistinguishable from the fore-

cast. Therefore, using the methodology proposed in this chapter, one is able to define what

it means for a multilevel Monte Carlo forecast to be calibrated.
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Chapter synopsis

Multilevel Monte Carlo, surveyed in Chapter 2, has recently been posed as an efficient frame-

work for ensemble based data assimilation [Gregory et al., 2016, Gregory and Cotter, 2017b,

Jasra et al., 2017a, Hoel et al., 2016]. This is because the filtering estimates discussed in

Chapter 2 are a natural extension of the Monte Carlo method. Where the multilevel methods

are applied effectively, these so-called ‘multilevel filtering estimates’ can be significantly

more efficient than standard estimates introduced in Chapter 2. This chapter proposes a

methodology to apply this theory.

4.1 A multilevel ensemble transform particle filter estimator

A multilevel filtering estimate utilises a hierarchy of models Mhl , for l = 0, . . . , L, denoting

discretizations of the prediction model M used in (2.36) (Chapter 2). This was used to

transition a forecast random variable Xt between assimilation steps tk−1 and tk, for k =

1, 2, 3, ... with ∆t = tk − tk−1. Let the associated discretizations of the forecast random

variable be Xhl
tk

. Recall that the parameter hl represents the resolution of the prediction

model Mhl (e.g. the time-step), as in Chapter 2. This parameter is governed by hl ∝ m−l

and m > 1. It is assumed that the models increase in accuracy as l → ∞, but also become

more expensive. Therefore, as evidenced in Chapter 2, the computational cost of evaluating

the model Mhl is O(hγl ) with γ > 0.

Suppose one wishes to approximate statistics of an analysis random variable on the finest

level, X̃hL
tk

, with associated distribution π
X̃
hL
tk

(x|ydata,t1:tk). This represents the posterior of

the random variable XhL
tk

given some observations ydata,t1:tk . This can be achieved by the

ensemble transform particle filter (ETPF), introduced in Chapter 2. An ETPF estimator for

E[g(X̃hL
tk

)] can be given by

X̄hL
N,tk

=
N∑
i=1

w̃hL,itk
g(XhL,i

tk
), (4.1)

where
{
XhL,i
tk

}N
i=1

is the forecast ensemble associated with the importance weights
{
w̃hL,itk

}N
i=1

.

This can also be written as

X̄hL
N,tk

=
1

N

N∑
i=1

g(X̃hL,i
tk

), (4.2)

where
{
X̃hL,i
tk

}N
i=1

is the analysis ensemble, which has been transformed from the forecast
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ensemble. Assume that g : RNX → R is a scalar function as in Sec. 2.6. Alternatively one

can estimate E[g(X̃hL
tk

)] with a linear combination of ETPF estimators µl, with sample sizes

Nl, for l = 0, ..., L. From Chapter 2, note that

E[g(X̃hL
tk

)] = E[g(X̃h0
tk

)] +
L∑
l=1

E[g(X̃hl
tk

)]− E[g(X̃
hl−1

tk
)],

and therefore an estimate of E[g(X̃hL
tk

)] can be written as,

X̄hL
(N0,...,NL),tk

=
L∑
l=0

µl, (4.3)

where

µl =


∑N0

i=1 w̃
h0,i
tk
g(Xh0,i

tk
), l = 0,∑Nl

i=1 w̃
hl,i
tk
g(Xhl,i

tk
)− ˜̂w

hl−1,i
tk

g(X̂
hl−1,i
tk

), l > 0.
(4.4)

Here,
{
Xhl,i
tk

}Nl
i=1
∼ Xhl

tk
are the forecast ensembles on level l, for l = 0, ..., L, with im-

portance weights
{
w̃hl,itk

}Nl
i=1

and
{
X̂
hl−1,i
tk

}Nl
i=1
∼ X

hl−1

tk
are the forecast ensembles on level

l−1, for l = 1, ..., L, with importance weights
{

˜̂w
hl−1,i
tk

}Nl
i=1

. Indeed, the latter set of forecast

ensembles are independent of
{
X
hl−1,i
tk

}Nl−1

i=1
.

Each forecast ensemble can be transformed to analysis ensembles, as outlined in Chapter

2. The ETPF estimators, µl, for l = 0, ..., L, can then be written as

µl =


1
N0

∑N0

i=1 g(X̃h0,i
tk

), l = 0,

1
Nl

∑Nl
i=1 g(X̃hl,i

tk
)− g(

˜̂
X
hl−1,i
tk

), l > 0.
(4.5)

Recall from Chapter 2 that the pairs of analysis ensembles in each µl, for l = 1, ..., L, must be

correlated. Between assimilation steps, one can use the same random forcing for each pair of

forecast ensembles (if the prediction modelM incorporates this, e.g. Brownian paths). Given

that the first estimator, µ0, uses a single independent ensemble
{
Xh0,i
tk

}N0

i=1
then this ensemble

can be transformed in the standard way for the ETPF framework. However, a challenge is

posed to find a transformation strategy, despite the forecast ensembles on different levels

being associated with different importance weights, that produces pairs of correlated analysis

ensembles
{
X̃hl,i
tk
,

˜̂
X
hl−1,i
tk

}Nl
i=1

in each difference estimator, µl, for l = 1, ..., L. In particular



95

they must remain correlated so that

Vl = V
[
g(X̃hl

tk
)− g(X̃

hl−1

tk
)
]

decays asymptotically with hl → 0. This constraint is pivotal for the multilevel estimator

in (4.3) to show computational cost reductions (for a fixed order of accuracy) from (4.2).

As was the case in Chapter 2, the user is interested in finding an asymptotic rate, β > 0,

such that Vl = O(hβl ). In addition to this, recall from Chapter 2 that the greater β is, the

greater the computational cost reductions from the multilevel estimator. A methodology to

preserve a (albeit low) value of β during the assimilation step in a standard particle filter,

with random resampling, was proposed in Jasra et al. [2017a]. The work in Sen et al. [2018]

also considered this problem in the general context of positively coupling two particle filters,

and investigated using optimal transport for this. The next two sections will address this

issue in the context of the ETPF, again drawing on optimal transport.

4.2 Sampling from a coupling between analysis ensembles

4.2.1 Coupling from an assignment problem

This section proposes one possible transformation scheme for the pairs of coarse and fine

forecast ensembles
{
Xhl,i
tk
, X̂

hl−1,i
tk

}Nl
i=1

within each difference estimator µl, for l = 1, ..., L,

whilst preserving positive correlation between the two resulting analysis ensembles. This

scheme was proposed in Gregory et al. [2016] and attempts to sample a coupling between

both analysis ensembles from a discrete space of couplings. The steps of the scheme are

detailed below:

(1) Independently apply an ensemble transform to both the forecast ensembles
{
Xhl,i
tk

}Nl
i=1

and
{
X̂
hl−1,i
tk

}Nl
i=1

with importance weights
{
w̃hl,itk

}Nl
i=1

and
{

˜̂w
hl−1,i
tk

}Nl
i=1

following the

approach from Sec. 2.7.4. This step results in two independent analysis ensmebles{
X̃hl,i
tk

}Nl
i=1

and
{ ˜̂
X
hl−1,i
tk

}Nl
i=1

.

(2) Given both analysis ensembles
{
X̃hl,i
tk

}Nl
i=1

and
{ ˜̂
X
hl−1,i
tk

}Nl
i=1

associated with equal
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weights 1/Nl respectively, find the coupling matrix TC ∈ T C ∈ RNl×Nl that solves

arg min
TC∈T C

Nl∑
i=1

Nl∑
j=1

TCi,j

∥∥∥X̃hl,i
tk
− ˜̂
X
hl−1,j
tk

∥∥∥2, (4.6)

where TCi,j must take non-negative integer values for i, j = 1, ..., Nl. In addition to

this, it is required to satisfy the constraints

Nl∑
i=1

TCi,j =

Nl∑
j=1

TCi,j =
1

Nl

. (4.7)

This is called an assignment problem, and can be solved by the Hungarian algorithm

[Munkres, 1957], with the sameO(N3 logN) complexity as solving the optimal trans-

port problem in multidimensional cases.1 Solving this results in a matrix TC with all

entries equal to either 1/Nl or 0. The analysis ensemble
{ ˜̂
X
hl−1,i
tk

}Nl
i=1

may then be

reordered so that TC becomes a diagonal matrix.

The filtering estimate in (4.3) with the difference estimators µl, for l = 0, ..., L, computed

by (4.5) and by using the above transformation scheme, is henceforth referred to as the

standard multilevel ensemble transform particle filtering estimator [Gregory et al., 2016].

Given that each analysis ensemble in the pair
{
X̃hl,i
tk
,

˜̂
X
hl−1,i
tk

}Nl
i=1

is simply rearranged and

not modified in Step (2), the actual states of ensembles members will be the same as if they

were just transformed in the manner of Sec. 2.7.4. Therefore the equality of (4.4) and (4.5)

when g is the identity (mean estimator), is guaranteed via (2.54). The asymptotic consistency

of (4.5) with (4.4) when g is arbitrary can also just be shown via (2.58).

4.2.2 A seamless coupling from optimal transport problems

The method proposed in the previous section is inelegant in one sense, as the pairs of fore-

cast ensembles are decorrelated through independent ensemble transformation, before sub-

sequently restoring correlation of the analysis ensembles by using an assignment problem.

This assignment problem can be seen as a re-arrangement of the members in both analysis

ensembles. Therefore, the coupling TC of both analysis ensembles is on a discrete space of

1The cheaper algorithm described in Reich and Cotter [2015], with complexity O(N logN), may be used
to solve the assignment problem in one-dimensional cases.
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couplings T C . It is expected that the coupling between the pairs of analysis ensembles will

be stronger if the coupling is optimised over a continuous space instead.

A new transformation scheme for both forecast ensembles
{
Xhl,i
tk
, X̂

hl−1,i
tk

}Nl
i=1

is pro-

posed below to correct this inelegance and optimize over a continuous space of couplings.

This is achieved by avoiding the assignment problem and instead seamlessly transforming

and coupling the two forecast ensembles simultaneously. To implement this new scheme,

the following steps are carried out after updating the importance weights for each pair of

forecast ensembles within the difference estimators µl, for l = 1, ..., L.

(1) Generate a coupling matrix D ∈ D ∈ RNl×Nl that solves

arg min
D∈D

Nl∑
i=1

Nl∑
j=1

Di,j

∥∥∥X̂hl−1,i
tk

−Xhl,j
tk

∥∥∥2, (4.8)

subject to the marginal constraints

Nl∑
i=1

Di,j = w̃hl,jtk
,

Nl∑
j=1

Di,j = ˜̂w
hl−1,i
tk

. (4.9)

Define a so-called ‘intermediate ensemble’ as

X∗,jtk =

Nl∑
i=1

Di,j
˜̂
X
hl−1,i
tk

(w̃hl,jtk
)−1, (4.10)

for j = 1, ..., Nl, where each member is associated with the importance weight w̃hl,jtk
.

This step transforms the forecast ensemble
{
X̂
hl−1,i
tk

}Nl
i=1

with importance weights{
˜̂w
hl−1,i
tk

}Nl
i=1

, to the intermediate ensemble with the importance weights associated

with the forecast ensemble
{
Xhl,i
tk

}Nl
i=1

, i.e.
{
w̃hl,itk

}Nl
i=1

.

(2) Apply an ensemble transform to the forecast ensemble
{
Xhl,i
tk

}Nl
i=1

with importance

weights
{
w̃hl,itk

}Nl
i=1

following the approach within Sec. 2.7.4. This results in the anal-

ysis ensemble
{
X̃hl,i
tk

}Nl
i=1

.

(3) Find the coupling matrix TC ∈ T C ∈ RNl×Nl that solves

arg min
TC∈T C

Nl∑
i=1

Nl∑
j=1

TCi,j

∥∥∥X∗,itk − X̃hl,j
tk

∥∥∥2, (4.11)
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subject to the marginal constraints

Nl∑
i=1

TCi,j =
1

Nl

,

Nl∑
j=1

TCi,j = w̃hl,itk
. (4.12)

Note that this transformation has the same marginal constraints as the transformation in

Step (2), i.e. (2.51) and (2.53), only with importance weights
{
w̃hl,itk

}Nl
i=1

. Importantly,

the result is that the space of couplings, T C , is continuous, unlike in Sec. 4.2.1. Finally

the analysis ensemble
{ ˜̂
X
hl−1,j
tk

}Nl
j=1

is given by

˜̂
X
hl−1,j
tk

=

Nl∑
i=1

Nl∑
n=1

TCi,jNlDn,i

(
w̃hl,itk

)−1
X̂
hl−1,n
tk

, (4.13)

or more simply,

˜̂
X
hl−1,j
tk

=

Nl∑
i=1

TCi,jNlX
∗,i
tk
. (4.14)

The evenly weighted analysis ensemble
{
X̃hl,i
tk

}Nl
i=1

is used in (4.11) to keep itself and

the resulting analysis ensemble
{ ˜̂
X
hl−1,i
tk

}Nl
i=1

closely coupled.

The filtering estimate in (4.3) with µl, for l = 0, ..., L, computed by (4.5) and by using the

above transformation scheme, is henceforth referred to as the seamless multilevel ensemble

transform particle filtering estimator [Gregory and Cotter, 2017b]. Since the analysis ensem-

ble
{
X̃hl,i
tk

}Nl
i=1

is generated from a transform in the manner of Sec. 2.7.4, it can be shown via

(2.54) that the mean of it is equal to the weighted mean of the forecast ensemble
{
Xhl,i
tk

}Nl
i=1

.

However, to fully demonstrate the equality of (4.4) and (4.5) when g is the identity, one must

utilise:

1

Nl

Nl∑
j=1

˜̂
X
hl−1,j
tk

=

Nl∑
j=1

Nl∑
i=1

Nl∑
n=1

1

Nl

TCi,jNlDn,i

(
w̃hl,itk

)−1
X̂
hl−1,n
tk

=

Nl∑
i=1

Nl∑
n=1

Dn,iX̂
hl−1,n
tk

=

Nl∑
n=1

˜̂w
hl−1,n
tk

X̂
hl−1,n
tk

.

(4.15)

In the same way, the asymptotic consistency of the estimates to higher moments of X̃hl
tk

is evidenced via (2.58). However, when considering the asymptotic consistency of the esti-

mates to higher moments of X̃hl−1

tk
, the transformation of the forecast ensemble

{
X̂
hl−1,i
tk

}Nl
i=1
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should be seen as a combination of two ensemble transforms. By (2.57) [Reich, 2013], the

first transform generating the intermediate ensemble satisfies

Nl∑
i=1

g(X∗,itk )w̃hl,itk
→

Nl∑
i=1

g(X̂
hl−1,i
tk

) ˜̂w
hl−1,i
tk

, (4.16)

as Nl →∞, and by the same logic

1

Nl

Nl∑
i=1

g(
˜̂
X
hl−1,i
tk

)→
Nl∑
i=1

g(X∗,itk )w̃hl,itk
, (4.17)

also as Nl →∞. Therefore by combining them and (2.58),

1

Nl

Nl∑
i=1

g(
˜̂
X
hl−1,i
tk

)→ E[g(X̃
hl−1

tk
)] (4.18)

as Nl →∞. This is demonstrated numerically in a later section.

4.3 Algorithm

The algorithm set out in this section differs from that of the standard MLMC algorithm

in Sec. 2.6.5, in that it does not attempt to bound the MSE, or any other error metric,

by adaptively fitting the parameters L and Nl, for l = 0, ..., L. Instead, for the benefit

of simplicity at the assimilation stages, it assumes these parameters are specified already.

In practice, and in the numerical demonstrations throughout this chapter, the parameters are

designed to give a certain order of accuracy following known values of β and α. In summary,

the multilevel ensemble transform particle filter (MLETPF) algorithm is as follows:

(1) For l = 0, ..., L, propagate the forecast ensembles
{
Xh0,i
tk−1

}
i=1,...,N0

, l = 0,{
Xhl,i
tk−1

, X̂
hl−1,i
tk−1

}
i=1,...,Nl

, l > 0,
(4.19)

forward to assimilation step tk using the forward prediction models Mhl .
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(2) Compute importance weights for each of the forecast ensemble members using
w̃h0,itk

= πYtk (ydata,tk |X
h0,i
tk

), i = 1, ..., N0, l = 0,w̃
hl,i
tk

= πYtk (ydata,tk |X
hl,i
tk

),

˜̂w
hl−1,i
tk

= πYtk (ydata,tk |X̂
hl−1,i
tk

),
i = 1, ..., Nl, l > 0.

(4.20)

(3) Normalize the weights using
w̃h0,itk

= w̃h0,itk
/
∑N0

j=1 w̃
h0,j
tk

, i = 1, ..., N0, l = 0,w̃
hl,i
tk

= w̃hl,itk
/
∑Nl

j=1 w̃
hl,j
tk
,

˜̂w
hl−1,i
tk

= ˜̂w
hl−1,i
tk

/
∑Nl

j=1
˜̂w
hl−1,j
tk

,
i = 1, ..., Nl, l > 0.

(4.21)

(4) Transform the weighted forecast ensemble members to the evenly weighted analysis

ensembles, 
{
X̃h0,i
tk

}
i=1,...,N0

, l = 0,{
X̃hl,i
tk
,

˜̂
X
hl−1,i
tk

}
i=1,...,Nl

, l > 0,
(4.22)

using either one of the schemes in Sec. 4.2.1 or 4.2.2.

(5) Estimate statistics via (4.3) with µl, for l = 0, ..., L, as in (4.5).

(6) For l = 0, ..., L, reset the forecast ensembles
Xh0,i
tk

= X̃h0,i
tk

, i = 1, ..., N0, l = 0,X
hl,i
tk

= X̃hl,i
tk
,

X̂
hl−1,i
tk

=
˜̂
X
hl−1,i
tk

,
i = 1, ..., Nl, l > 0,

(4.23)

and iterate k = k + 1.

The computational cost of Step (1) depends on the rate γ introduced in Chapter 2, whilst

the cost of Step (4) depends on the optimal transportation cost associated with the transforms

in either Sec. 4.2.1 or 4.2.2. Both transform schemes require three optimal transport (or

assignment) problems to be solved, and so the order of complexity of the algorithm above

is invariant to which scheme is used. The weak convergence of the estimator in (4.3) to
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E[g(X̃hL
tk

)], as Nl →∞, with l = 0, ..., L, for both of the proposed transformation schemes,

is evidenced through the each estimator µl satisfying

lim
Nl→∞

µl =

E[g(X̃h0
tk

)], l = 0

E[g(X̃hl
tk

)]− E[g(X̃
hl−1

tk
)], l > 0.

(4.24)

This statement was clarified in the arguments at the end of both Sec. 4.2.1 and 4.2.2. There-

fore

X̄hL
(N0,...,NL),tk

=
L∑
l=0

µl → E[g(X̃hL
tk

)],

as Nl → ∞, with l = 0, ..., L. It is important to note that an open problem is establishing

L2-convergence rates for this estimator. Indeed, this is a problem inherent of the standard

ETPF (and self-normalized sequential Monte Carlo estimators in general) rather than only

the multilevel adaptation proposed in this chapter.

4.4 Computational cost considerations

Localisation can be used to reduce the dimensionality of the likelihood computations and cost

metrics here (in order to reduce the computational cost of the optimal transport problems)

in the same way as done in Sec. 2.7.7. This is done by implementing the algorithm in the

previous section for every individual component of Xhl
tk

, for l = 0, ..., L.

When localisation is not utilised, the forward model cost of the standard ETPF (with a

fixed order of accuracy) must dominate over the optimal transportation cost of the MLETPF

in order for the overall computational cost of the ETPF to be reduced.2 Even when γ = 1,

if NX = 1 this scenario is likely as the cheap optimal transportation algorithm can be used.

However, when NX > 1, optimal transportation becomes significantly more expensive, at

least asymptotically. Suppose one desires a MSE of O(ε2), then N0 = O(ε−2) is required

for the MLETPF and N = O(ε−2) is required when using the standard ETPF. Also, assume

hL = O(ε) is required for a first order accurate discretization technique (i.e. where α = 1).

The result is a forward model cost for the standard ETPF of CFM = cmε
−2−γ , as stated in

(2.18), where cm is a constant.
2From the arguments in Chapter 2, the MLETPF has reduced forward model cost from that of the standard

ETPF.
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Assuming that 2Nl = Nl−1 for simplicity, the optimal transportation cost of the MLETPF

can then be written as

COT = ctN
3
0

L∑
l=0

(1/2)3l log
(
N0 (1/2)l

)
≤ (8/7)ctε

−6 log
(
ε−2(1/2)1/7

)
, (4.25)

using standard (arithmetico) geometric series results [Gregory and Cotter, 2017b]. Here ct
is a constant. In the case where γ is not extremely large, CFM will become less than COT as

ε → 0, and the optimal transportation cost will dominate. As a result, forward model cost

reductions from the multilevel framework in the MLETPF would be worthless. However

the expectation is that the MLETPF will offer overall cost reductions in a certain ε-regime,

provided that cm/ct � 1.

It is important to note that the total optimal transport cost in the MLETPF is dominated

by the complexity of solving those problems in the coarsest ETPF estimator, where the sam-

ple size, N0, is the greatest. The size of the ε-regime, where overall computational cost

reductions from the MLETPF will be achieved, is heavily dependent on the number of sam-

ples in the coarsest ETPF estimator. Therefore, for an even more efficient implementation

and to extend the ε-regime, iterative methods such as the Sinkhorn approximation could be

considered for the coarser estimators, as described in Sec. 2.7.5. Naturally, significant modi-

fications to the algorithm in Sec. 4.3 (second moment preservation) would need to be applied

in this scenario as demonstrated in de Wiljes et al. [2016].

4.5 Numerical demonstrations

4.5.1 Consistency of posterior statistics

During the transformation and coupling scheme in Sec. 4.2.1, both analysis ensembles{
X̃hl,i
tk

}Nl
i=1

and
{ ˜̂
X
hl−1,i
tk

}Nl
i=1

are simply rearranged and remain the same as if they were

independently transformed (via Sec. 2.7.4). Therefore, (4.24) can be confirmed numeri-

cally for this scheme with the evidence in Reich [2013]. The same can be said about the

transformation of
{
Xhl,i
tk

}Nl
i=1

for the scheme in Sec. 4.2.2. However, the forecast ensemble{
X̂
hl−1,i
tk

}Nl
i=1

is transformed to the analysis ensemble
{ ˜̂
X
hl−1,i
tk

}Nl
i=1

via two separate trans-

forms in the second scheme. The numerical confirmation of the asymptotic consistency of

this ensemble approximation with E[g(X̃
hl−1

tk
)] is given below.
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Consider the following single Bayesian inference step. Let

X
hl−1

tk
∼ N

(
1, 1
)
, Xhl

tk
∼ N

(
0.5, 1

)
.

A single observation is sampled from the distribution N(0.1, 2). Using Bayes’ Theorem, the

true posterior distribution, π
X̃
hl−1
tk

, given the observation, and the prior distribution π
X
hl−1
tk

,

is N
(
0.7, 2/3

)
. The ensembles

{
X̂
hl−1,i
tk

}N
i=1

and
{
Xhl,i
tk

}N
i=1

of varying size N , are sampled

from X
hl−1

tk
and Xhl

tk
respectively, then weighted with respect to the observation. Finally the

analysis ensemble
{ ˜̂
X
hl−1,i
tk

}N
i=1

is found using the transformation in Sec. 4.2.2. Figure 12

shows the estimated RMSE of the approximations to the mean, variance, third and fourth

moments of X̃hl−1

tk
using

{ ˜̂
X
hl−1,i
tk

}N
i=1

, over NE = 10 independent ensembles.

4.5.2 Stochastic Lorenz 63 equations

Consider the stochastic Lorenz 63 equations for Xt = (xt, yt, zt),

dXt

dt
= f(Xt, dWt) =


(σ(yt − xt)) + ν2dWt,

(xt(ρ− zt)− yt) + ν2dWt,

(xtyt − βzt) + ν2dWt,

(4.26)

with ρ = 28, σ = 10, β = 8/3 and ν = 0.1. The scalar Brownian motion Wt in the system

will be the same for each of the three components to maximise the impact of the strong non-

linearity in the equations, i.e. to make it a more challenging filtering example. Let Xtk be

the solution to the above Lorenz 63 equations at time tk, and let Xhl
tk

be the discretization of

Xtk using the Euler-Maruyama numerical scheme with time-step hl = m−9−l, with m = 2.

This coarsest time-step of h0 = 2−9 is used for stability reasons. Here, ∆t = 22h0 and take

k ∈ [1, 1280]. Observations taken from a reference trajectory ofXtk , are given by a measure-

ment error with R = 0.25I , where I is the 3× 3 identity matrix. No localisation is used for

the importance weighting and the cost metrics in the forecast to analysis transformation, (see

Sec. 2.7.7 and 2.7.7 respectively). Between each assimilation step, the same Brownian path

is used for each pair of samples in the difference estimators of the MLETPF approximations,

µl, for l = 1, ..., L, via (2.9).

First, this example will be used to demonstrate the effects of the coupling / transformation
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Figure 12: Root mean square errors of the approximations to the mean, variance, third and
fourth moments of X̃hl−1

tk
using the analysis ensemble from the seamless coupling scheme,{ ˜̂

X
hl−1,i
tk

}N
i=1

. Following the asymptotes shown by the black dashed lines, these errors decay
at a rate of O(N1/2) showing convergence of the analysis statistical approximations.

schemes in Sec. 4.2.1 and 4.2.2 on the rate of asymptotic decay (β) of

Vl =

Tr
(

Cov[X̃h0
tk

]
)
, l = 0

Tr
(

Cov[X̃hl
tk
− X̃hl−1

tk
]
)
, l > 0

(4.27)

with increasing l. The MLETPF estimator alongside a pre-defined set of sample sizes,

Nl = 28−l, for l ∈ [0, 6], is used to compute an approximation to E[X̃tk ], where X̃tk is

the random variable associated with the posterior πX̃tk , given all of the observations up until

time tk. Figure 13 shows the average rates of asymptotic decay in Vl, using 5 independent

implementations of the standard and seamless MLETPF estimators. The seamless estima-
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tor produces a variance decay close to β = 2, whilst β ≈ 1 is obtained for the standard

MLETPF estimator. In this case, the coupling produced by the scheme in Sec. 4.2.2 appears

to be stronger than the one in Sec. 4.2.1, causing the greater rate of decay in Vl.

Remark 1. Given the additivity of the noise in this system, and indeed the system in the next

section, one can expect an O(hl) strong rate of convergence, even for the Euler-Maruyama

method. This suggests an optimal value of β = 2 via arguments in Sec. 2.6.6. The coupling

produced by the scheme in Sec. 4.2.2 appears to achieve close to this.
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Figure 13: Average value of Vl, for l ∈ [1, 6], over 5 independent simulations and all assimi-
lation steps k ∈ [1, 1280] for the stochastic Lorenz 63 equations filtering example. Following
the asymptotes shown by the solid and dashed black lines, the quantity Vl decays at rates of
O(hl) andO(h2l ) for the standard MLETPF and seamless MLETPF implementations respec-
tively.

Second, this example shows the effect that these two values of β, shown in Figure 13,

have on the overall forward model cost of the MLETPF estimator and also the forward model
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cost reductions from that of the standard ETPF. Since the cost of solving multivariate opti-

mal transport problems dominates over the cheap forward model in this example (associated

with γ = 1), one does not expect the MLETPF to offer overall speed-ups in convergence.

However, the hope is that the greater rate of variance decay in the seamless MLETPF esti-

mator will produce greater reductions in the forward model costs than that of the standard

MLETPF from the ETPF estimator. This suggests that there would be an overall runtime

benefit whenever the forward model cost of the standard ETPF dominates that of solving the

multivariate optimal transport problems (see Sec. 4.4).

Define a desired order of time-averaged RMSE, O(ε), and this can be used to determine

the parameters L and Nl. The scaling L = O(−log(ε)/log(2)) is used for both the standard

and seamless MLETPF estimators. The scaling Nl = O(ε−22−l) is used for the standard

MLETPF and Nl = O(ε−22−(3/2)l) is used for the seamless MLETPF. The geometric decay

in Nl is used primarily for simplicity and a proof of concept, these are not necessarily op-

timal, nor are they set adaptively to bound the error exactly as done in Sec. 2.6.7. Instead,

the different rates of geometric decay in Nl are designed to exploit the different values of β

shown in Figure 13, in order to achieve particular reductions in forward model cost for the

MLETPF estimators of a fixed order of estimator variance
(∑L

l=0 Vl/Nl

)
, and thus accuracy.

For the standard ETPF, N = O(ε−2) and L is set to be the same as in the MLETPF estima-

tors. The growth rates of forward model cost for the standard ETPF, in addition to both the

standard and seamless MLETPF estimators are shown in Figure 14 for decreasing values

of ε. The rates of O (ε−2) for the seamless MLETPF and O (ε−2 log(ε)2) for the standard

MLETPF are observed, and are consistent with the analysis in (2.27) for when β > γ and

β = γ respectively. These are both reductions from the rate of O (ε−3) associated with the

standard ETPF. Here computational cost is measured by the total number of floating point

operations for the forward model computation.

4.5.3 Stochastic Lorenz 96 equations

A slightly different system of arbitrary dimension is now considered: the stochastic Lorenz

96 equations. It is given by the following spatial discretization,

dX(j)

dt
= −

(
X(j − 1)X(j + 1)−X(j − 2)X(j − 1)

)
3∆

−X(j) + F + σ2dWj

dt
. (4.28)
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Figure 14: Forward model costs against time-averaged RMSE of the standard ETPF, the stan-
dard MLETPF and seamless MLETPF estimators for decreasing ε values using the stochastic
Lorenz 63 equations filtering example. Following the asymptotes shown by the solid, dashed
and dotted black lines, the forward model costs scale as O(ε−2), O(ε−2 log(ε)2) and O(ε−3)
for the seamless MLETPF, the standard MLETPF and the standard ETPF respectively.

Here, F is a forcing term, typically taken to be F = 8 for chaotic behavior, j ∈ [1, 40], ∆ =

0.5, and Wj are independent standard Brownian Motions, with σ2 = 0.1. This independence

in the stochasticity between components decreases the correlations between them. Therefore

localisation, which will be used for this problem, has little effect on the performance of the

assimilation. In systems with strong spatial dependence structures, localisation will have

more of an effect on the ETPF and the multilevel versions proposed in this chapter [Cheng

and Reich, 2013]. The choice of some parameters, such as the frequency of assimilation, is

another important aspect to consider when choosing if localisation is suitable for a particular

problem. For example, if assimilation is more frequent, spatial dependence will be altered

more frequently in the presence of localisation, which in turn could lead to an unstable filter.

Let Xhl
tk

(j) represent the j’th component of X at time tk (with time-index k), discretized
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by the Euler-Maruyama numerical scheme with time-step hl = m−8−l, where m = 2. The

coarsest time-step, h0 = 2−8, is again used for stability purposes. Here, ∆t = h0, and take

k ∈ [1, 1280]. Observations are given at these assimilation steps by using a measurement

error variance of R = 0.25I , where I is the 40 × 40 identity matrix. Again, between each

assimilation step, the same Brownian path is used for each pair of samples in each difference

estimator of the MLETPF approximations, µl, for l = 1, ..., L, via (2.9).

This system will be used to investigate the overall computational cost reductions of the

standard and seamless MLETPF estimators, from that of the standard ETPF, with a pre-

defined order of accuracy. Due to the use of localisation for this example (with the settings

rloc,c = rloc,R = 0), the forward model cost is now expected to dominate over the cost of

solving the optimal transport problem in the standard ETPF. It is therefore expected that the

MLETPF estimators will return overall computational cost reductions. As stated in Chapter

2, the use of localisation does lead to an inconsistent approximation to statistics of X̃hL
tk

,

where X̃hL
tk

is the random variable associated with the posterior π
X̃
hL
tk

, given all of the ob-

servations up until time tk. Therefore, the time-averaged RMSE is estimated relative to

a localised (with the same settings), high accuracy ETPF approximation that the localised

ETPF and MLETPF estimates are asymptotically consistent with. The time-step of the dis-

cretization used in this approximation is h13 and the sample size is N = 40000.

It is useful to assume here that one has already chosen to use the localised ETPF for this

problem and are using the multilevel framework to improve the efficiency of this. Hence

evaluating the convergence of the MLETPF to a localised ETPF approximation rather than

the unlocalised truth is sensible in this setting. If this convergence was computed with respect

to this truth, the speed-up in convergence from the application of the multilevel framework

would plateau at some accuracy due to the localisation bias. This bias is a problem inherent

of localisation in general and not specifically the multilevel framework.

As done in the last example, pre-defined values of L and Nl will be used in the stan-

dard and seamless MLETPF estimators. The scalings L = O(− log(ε)/ log(2)) and Nl =

O(ε−22−(3/2)l) are used in both the standard and seamless MLETPF estimators. These sam-

ple sizes are chosen in respect of Figure 15. Here the rates of decay (with increasing l) in

the average value of Vl in (4.27) (over all assimilation steps) for the MLETPF estimators

are shown. Unlike the example in Sec. 4.5.2, the standard MLETPF estimator achieves the

same quadratic rate of decay in Vl (as the seamless MLETPF) now that localisation (with
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rloc,c = rloc,R = 0) is used. However the magnitude of variance is still smaller for the

seamless MLETPF.

For the standard ETPF estimator the sample sizes are set to scale as N = O(ε−2) and

L scales as it did in the last example. The time-averaged RMSEs against overall compu-

tational costs for the standard and seamless implementations of the MLETPF estimator to

E[X̃tk ], in addition to the standard ETPF estimator approximating E[X̃tk ], are displayed for

various ε values in Figure 16. Noting that γ = 1, the forward model cost and thus the overall

computational cost of the standard ETPF estimator follows a O(ε−3) scaling, due to (2.18).

Computational cost reductions, down to approximately a O(ε−2) scaling, are present in both

the standard and seamless MLETPF estimators. This scaling agrees with (2.27). The lower

magnitude of time-averaged RMSEs for the seamless MLETPF estimator are a consequence

of the lower variances in Figure 15. Similar rates are shown for the three estimators approx-

imating E[(X̃tk)
2]. For both sets of estimators, the CAR values, introduced in Chapter 2,

for the standard ETPF, standard MLETPF and seamless MLETPF therefore scale asO(ε−1),

O(1) and O(1) respectively. These match the theoretical rates in (2.28) and (2.29).

4.6 Conclusions

This chapter has presented an application of multilevel Monte Carlo (MLMC), to an ensem-

ble transform method for Bayesian inference, specifically the ensemble transform particle

filter (ETPF), to form the multilevel ETPF estimator. This has been rationalized to signifi-

cantly speed up the propagation of ensembles used within high discretization accuracy esti-

mators to posterior statistics. The application of MLMC requires coupling schemes, in order

to maintain positive correlation between pairs of coarse and fine resolution analysis ensem-

bles during the assimilation of observations. Two schemes have been proposed, the second

being a seamless combination of transformation and coupling of the weighted coarse and fine

resolution forecast ensembles. The stronger the coupling, the less variance the multilevel es-

timator has, and therefore the more efficient it is. The multilevel estimator, alongside either

coupling scheme, achieves speed-ups in forward model complexity for increasing accuracy,

over the standard ETPF, in numerical examples.

However, the computational cost of the ETPF can be dominated by large optimal trans-

portation costs for multivariate problems, if the forward model is not expensive to evaluate.

In this case the application of MLMC, to reduce the ensemble propagation cost, is negated.
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Figure 15: Average values of Vl, for l ∈ [1, 6], over all assimilation steps k ∈ [1, 1280] for
the stochastic Lorenz 96 equations filtering example. Following the asymptotes shown by
the dashed black line, the quantity Vl decays at a rate of O(h2l ) for both the standard and
seamless implementations of the MLETPF. However the magnitude of Vl, for l ∈ [1, 6], is
less for the seamless implementation of the MLETPF than it is for the standard one.

Localisation (introduced in Chapter 2) can be used to lower the complexity of the assimi-

lation steps containing the optimal transport problems. When localisation is implemented,

numerical examples show that even for a cheap temporal forward model (e.g. γ = 1), the

application of MLMC can achieve overall speed-ups with respect to the ETPF.

In some cases, the forward model will be expensive to evaluate, especially in spatio-

temporal models, and dominate over the (multivariate) optimal transportation costs of the

ETPF for lower sample sizes / orders of accuracy. In this case, applying MLMC to the ETPF

will offer overall runtime benefits. The next two chapters consider this case further.
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Figure 16: Time-averaged RMSE against runtime (seconds) of the standard ETPF, the stan-
dard MLETPF and seamless MLETPF estimators to E[X̃tk ] (top panel) and E[(X̃tk)

2] (bot-
tom panel) using the stochastic Lorenz 96 equations filtering example. Results are shown for
decreasing values of ε. Following the asymptotes shown by the solid and dashed black lines,
the runtimes scale as O(ε−2) and O(ε−3) for both implementations of the MLETPF and the
standard ETPF respectively.
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Chapter synopsis

This chapter uses the ensemble transform particle filter (ETPF), introduced in Chapter 2,

for data assimilation concerning systems of partial differential equations. This extends the

spatial considerations of the ETPF in Sec. 2.7.7 to practical problems in geosciences. To

do this, the ETPF is modified to fit random functions of both time and space, φt(x, ω), with

ω ∈ Ω, t ≥ 0 and x ∈ Γ. These functions are discretized using finite element methods.

It is therefore an extension to the seminal localisation strategy for the ETPF in Cheng and

Reich [2013], in that it is designed specifically for finite element approximations to random

functions.

5.1 Preliminaries

The function φt(x, ω), existing on the space V , is assumed to require discretization, as it

evolves over time and space according to a random PDE,

f

(
t, φ,

∂φ

∂t
, ...,∇φ,∇∇φ, ...;ω

)
= 0. (5.1)

This PDE can define the propagation of the function φt(x), from time t to time s > t, using

the forward prediction model in (2.36), i.e.

φs(x) = M(t, φt(x), ω).

Let the discretization be denoted by φ(h,δx)
t (x), where the discretization parameter, that has

been considered throughout this thesis, is now a vector of temporal (h) and spatial (δx)

discretization resolutions: (h, δx). Assume this approximation is on the space V δx.

5.2 Finite element approximations

A finite element approximation of a function, φ(h,δx)
t (x), can be written as

φ
(h,δx)
t (x) = vδx(x) · aδx,
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where vδx(x) is the vector of nodal basis functions associated with the vector of basis co-

efficients, aδx. Denote the mesh by Mδx. Here, the mesh has cells cδxi that each contain

nodes. The basis coefficients represent the value of the function at these nodes. In the next

two chapters, motivated by the form of φ(h,δx)
t (x) above, the multivariate random variable

X
(h,δx)
t (ω) : Ω → RN

δx
X is considered in the context of data assimilation. This is a vector of

all the basis coefficients of φ(h,δx)
t (x), namely

X
(h,δx)
t =

(
aδx1 , ..., a

δx
Nδx
X

)
.

Note that the number of basis coefficients of φ(h,δx)
t (x), and therefore the dimension of

X
(h,δx)
t is now variable on the spatial resolution δx. Let δx be the resolution ofMδx, e.g.

each cell width/area. Now, assume that in the manner of Chapter 2, the spatial discretization

parameter δx is part of a hierarchy governed by δxl ∝ m−l, for l = 0, 1, 2, ..., with m > 1,

where the associated meshes,Mδxl , are nested such that

· · · ⊂ Mδxl ⊂Mδxl−1 · · · ⊂ Mδx0 . (5.2)

The function spaces existing on these meshes are also part of a hierarchy,

· · · ⊂ V δxl ⊂ V δxl−1 · · · ⊂ V δx0 . (5.3)

The meshMδx0 is the coarsest mesh, with subsequent meshesMδxl , with l > 0, being finer

meshes. Due to the meshes existing within a nested hierarchy, it means that a set of cells in

a finer mesh
{
cδxli

}n
i=1

are sub-cells of a cell cδxl−1 in a coarse mesh. I.e.

⋃
i=1,...,n

cδxli = cδxl−1 . (5.4)

For the remainder of this chapter, the temporal resolution of φ(h,δxl)
t (x) is left fixed, unlike

in MLMC, see Chapters 2 and 4. The sole reason for the spatial resolution being part of a

hierarchy, is for use within a localisation scheme described later in this chapter. This scheme

first requires the introduction of projection.
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5.3 Projection

In projection one is interested in transferring the functional approximation φ(h,δxl)
t (x) ∈ V δxl

to another function space U δxl . In the case of L2-projections, this is done by finding the

function approximation f(x) ∈ U δxl that satisfies∫
f(x)udx =

∫
φ
(h,δxl)
t (x)udx, ∀u ∈ U δxl .

Let the operator IU
δxl

V δxl
represent the L2-projection of φ(h,δxl)

t (x) onto the function space U δxl .

There are two special cases of projections, for when U δxl is part of the hierarchy in (5.3).

5.3.1 Prolongation

Here, one would like to project φ(h,δxl)
t (x) on to the function space V δxq , where q > l. For

brevity, let the operator Iql represent the prolongation of φ(h,δxl)
t (x) onto the function space

V δxq . This is the equivalent to interpolation of the nodal basis coefficients.

5.3.2 Injection

Here, one would like to project φ(h,δxl)
t (x) on to the function space V δxq , where q < l. For

brevity, let the operator Iql represent the injection of φ(h,δxl)
t (x) onto the function space V δxq .

This can be done by L2-projection or mass lumping for efficiency [Duan et al., 2006].

5.4 Filtering framework

This section will consider a forecast ensemble
{
X

(h,δxl),i
t

}N
i=1
∼ X

(h,δxl)
t in ETPF approxi-

mations to the statistics ofX(h,δxl)
tk

conditioned on observations, ydata,t1:tk . Here, as in Chapter

2, the time indices k = 1, 2, 3, ... define the assimilation steps, and ∆t = tk+1−tk. The actual

structure of the observations, ydata,t1:tk , will be studied in the next section. Let X̃(h,δxl)
tk

rep-

resent the analysis random variable, associated with the posterior distribution π
X

(h,δxl)
tk

|Yt1:tk
,

given the data ydata,t1:tk . Let πYt1:tk be the distribution associated with the underlying random

variables of the observations ydata,t1:tk and π
X

(h,δxl)
tk

be the distribution associated with the

random variable X(h,δxl)
tk

. Ensemble transform particle filter approximations of E[X̃
(h,δxl)
tk

]

for example, provide vectors of basis coefficients for an approximation to E[φ̃
(h,δxl)
tk

], where
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φ̃
(h,δxl)
tk

is a so-called analysis function. These statistical estimates are the aim of the follow-

ing filtering framework.

Let
{
φ
(h,δxl),i
t (x)

}N
i=1

be the discretizations of φt(x) with the basis coefficients making

up the random variables
{
X

(h,δxl),i
t

}N
i=1

. The discretized forward prediction model, M (h,δxl),

will be used to propagate the ensemble
{
φ
(h,δxl),i
t (x)

}N
i=1

from one assimilation step to an-

other.

5.4.1 Observations

The way observations are incorporated into this framework is different than previously done

in Chapter 2. Using a reference trajectory, φ(h,δxl),ref
t (x), the observation vector ydata,tk =

(y1data,tk , ..., y
NY
data,tk) ∈ RNY at each assimilation step k is given by the following steps:

(1) For each i = 1, ..., NY , choose coordinates, xicoord, where observations are available at.

(2) Define the observations as

yidata,tk = φ
(h,δxl),ref
tk

(xicoord) + ξi, (5.5)

where ξi ∼ N(0, R), and R > 0 is a scalar measurement error variance.

To proceed in the filtering framework, one is required to find the importance weights for

the forecast ensemble
{
X

(h,δxl),i
t

}N
i=1

and transform them into an evenly weighted analysis

ensemble
{
X̃

(h,δxl),i
t

}N
i=1

. To do this, one could simply find weights and transformations for

each of the basis coefficients within X(h,δxl)
t individually. However, the function approxi-

mations resulting from the analysis ensemble of basis coefficient vectors,
{
φ̃
(h,δxl),i
tk

(x)
}N
i=1

,

would almost certainly lack spatial regularity and the state would be extremely discontin-

uous. Therefore, in contrast to Sec. 2.7.7 where localisation is used to reduce the dimen-

sionality of the likelihood functions, a localisation scheme is required here to smooth out the

expected discontinuities in the analysis function approximations.

5.4.2 Localisation and implementation

This localisation scheme is an extension of the one presented in Sec. 2.7.7 for the ETPF,

however instead of using a localisation matrix in the likelihood and transformation com-

putations, a projection operator is used. This is explained in more detail in the following
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sections: Sec. 5.4.2 covers the computation of importance weights for the forecast en-

semble
{
X

(h,δxl),i
tk

}N
i=1

and Sec. 5.4.2 covers the construction of a transformation to the

analysis ensemble
{
X̃

(h,δxl),i
tk

}N
i=1

. The experiments used throughout the current and next

chapter employ Firedrake, developed by Imperial College London [Rathgeber et al., 2016,

Zenodo/Firedrake, 2017]. This allows one to construct mesh and function space hierar-

chies, projection operators, and simulate the discretized forward prediction model, M (h,δxl).

The package FADE (Firedrake and Assimilating Data using Ensembles) is built on top of

Firedrake to implement the localisation scheme below, and is available open source from

https://github.com/alsgregory/FADE, where one can also find documentation

and examples.

Importance weights

At each assimilation step, k = 1, 2, 3, ..., one is required to update importance weights for

each of the forecast ensemble members
{
X

(h,δxl),i
tk

}N
i=1

given the observations, as done in

(2.59). The likelihood of the i’th forecast ensemble member, πYtk (ydata,tk |X
(h,δxl),i
tk

), needs to

be evaluated in order to do this. This likelihood can be approximated as follows.

(1) Start by initialising the piecewise constant functions D(h,δxl),i
tk

(x) ∈ V P0,δxl , for i =

1, ..., N , where V P0,δxl is a piecewise constant function space, for which there is one

basis coefficient per cell, cδxl ∈Mδxl . Then compute

D
(h,δxl),i
tk

(cδxl) =
∑
j∈S

(
yjdata,tk − IV

P0,δxl

V δxl
φ
(h,δxl),i
tk

(cδxl)
)2
, (5.6)

for i = 1, ..., N . Here S =
{
j; xjcoord ∈ cδxl

}
. This cumulates all squared differences

between the value of each forecast ensemble member, projected onto V P0,δxl , at a

particular cell on the mesh and all observations taken at coordinates within that cell.

(2) Project D(h,δxl),i
tk

(x) onto the function space V δxl , computing IV
δxl

V P0,δxl
D

(h,δxl),i
tk

(x), for

each i = 1, ..., N .

(3) For a given parameter, rloc ∈ [0, l], compute the injected function

I(l−rloc)l IV
δxl

V P0,δxl
D

(h,δxl),i
tk

(x),

https://github.com/alsgregory/FADE
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for each i = 1, ..., N .

(4) Compute the prolonged function

Il(l−rloc)I
(l−rloc)
l IV

δxl

V P0,δxl
D

(h,δxl),i
tk

(x),

for each i = 1, ..., N . Whilst this may seem counterintuitive (IV
δxl

V P0,δxl
D

(h,δxl),i
tk

(x) has

been injected onto a coarser mesh only to prolong it back to the original mesh), it serves

a good purpose. It has cumulated all the squared differences between the forecast

ensemble members and observations together from all finer subcells within a coarser

cell. It then replaced these individual differences with that cumulated total. Therefore,

a level of localisation is achieved. The greater the value of rloc, the greater number of

finer subcells are cumulated together. For the benefit of notation, denote the operator

Il(l−rloc)I
(l−rloc)
l by I(l,rloc).

(5) To smooth out discontinuities in I(l,rloc)IV
δxl

V P0,δxl
D

(h,δxl),i
tk

(x) at the boundaries of the

coarser cells on the mesh Mδxl−rloc , this function can be projected onto V P0,δxl (to

give each cell a single basis coefficient) and then onto a continuous piecewise linear

function space, V CG1,δxl . This allows the basis coefficients associated with the vertices

of each cell to take contributions from the basis coefficients of all the cells that contain

that vertex. One needs to then project this function back to onto V P0,δxl , and then

finally onto the original function space V δxl . Denote the operator of this process by

Ismooth. The effects of both components within this operator are shown in Figures 17

and 18.

(6) Initialise the functions (importance weights), w̃(h,δxl),i
tk

(x), on the space V δxl , for each

i = 1, ..., N and set

w̃
(h,δxl),i
tk

(x) =

1√
2πR

exp
(
− 1

2R
ν∗IsmoothI(l,rloc)IV

δxl

V P0,δxl
D

(h,δxl),i
tk

(x)
)

∑N
j=1

1√
2πR

exp
(
− 1

2R
ν∗IsmoothI(l,rloc)IV

δxl

V P0,δxl
D

(h,δxl),j
tk

(x)
) . (5.7)

Here, ν∗ is a scaling constant, namely the number of finer subcells, cδxl , in the cell

cδxl−rloc ∈ Mδxl−rloc that contains them. This also assumes that w̃(h,δxl),i
tk−1

(x) = 1/N ,

for i = 1, ..., N , as utilised in the ETPF framework for the case where a transform is

implemented on every assimilation step.
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Figure 17: The projection from V P0,δxl to
V CG1,δxl assigns a basis coefficient at a given
vertex as the sum of all basis coefficients at the
centers of the cells containing that vertex.

b b

b

b

Figure 18: The projection from V CG1,δxl to
V P0,δxl assigns a basis coefficient at each cell
center as the mean of all basis coefficients at
the vertices within the cell.

These are the weighting functions that approximate the likelihood of each ensemble

member in
{
φ
(h,δxl),i
tk

(x)
}N
i=1

. Finally define the vectors of basis coefficients for each of

these weighting functions
{
w̃

(h,δxl),i
tk

(x)
}N
i=1

as

W
(h,δxl),i
tk

=

(
bδxl,i1 , ..., bδxl,i

N
δxl
X

)
, (5.8)

for i = 1, ..., N . As a demonstration of the localisation technique above, the following

functions will be investigated:

Grloc(x) = ν∗I(3,rloc)D(x), rloc ∈ [0, 3],

where D ∈ V P0,δx3 is a piecewise constant function in one geometric dimension on the

mesh Mδx3 . Here, Γ is the unit interval. The mesh Mδx3 belongs on a hierarchy defined

by δxl = 2−l being the cell width. Therefore the coarsest mesh in the hierarchy, Mδx0 ,

has just one cell. One also notes that ν∗ = 2rloc here. All basis coefficients, apart from

the one associated with the fifth cell, are set to 0. The fifth basis coefficient, aδx35 , is set to

2. Figure 19 shows the functions Grloc(x), with rloc = 0, 1, 2 and 3 respectively. Now let

F (x) = G2(x). Figure 20 shows F (x) and IsmoothF (x). The discontinuity that appeared in

G2(x), at x = 0.5, has now been partially smoothed by the introduction of Step (5) in the

localisation scheme.

Remark 2. It is important to note that the methodology assumes independence between

the measurement error associated with each observation. Therefore for two observations

ypdata, yqdata, where p, q = 1, ..., NY and p 6= q, one notes that Cov[ξp, ξq] = 0, even if
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Figure 19: The function Grloc(x) = ν∗I(3,rloc)D(x) for the values rloc = 0, 1, 2 and 3 and
x ∈ [0, 1]. Here D is a piecewise constant function, with the fifth out of 8 basis coefficients
set to 2 and the rest set to 0. As rloc increases, the coarse cells are assigned the sum of the
finer subcells within them.

‖xpcoord − x
q
coord‖ < δ, for some small δ.

Using these importance weight vectors, one can compute an approximation to the poste-

rior mean E[X̃
(h,δxl)
tk

] via

E[X̃
(h,δxl)
tk

] ≈
N∑
i=1

(
X

(h,δxl),i
tk

�W (h,δxl),i
tk

)
, (5.9)

where � is the Hadamard product. As detailed in Chapter 2, the ETPF now proceeds by

replacing this approximation with another one that uses an analysis ensemble
{
X̃

(h,δxl),i
tk

}N
i=1

constructed from a transformation to the weighted forecast ensemble. The next section shows
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Figure 20: The functions F (x) = G2(x) and IsmoothF (x). The function G2(x) is defined as
it was in Figure 19. With the application of Ismooth, the discontinuity in F (x) between the
two cells on the coarsest mesh is smoothed out.

how this can be done in a localised manner for the spatio-temporal case considered in this

chapter.

A transformation from forecast to analysis ensembles

Let the components of the analysis ensemble members in
{
X̃

(h,δxl),i
tk

}N
i=1

be the basis co-

efficients
{
ãδxl,ij

}Nδxl
X

j=1
, for i = 1, ..., N , of a member in an analysis ensemble of function

approximations
{
φ̃
(h,δxl),i
tk

(x)
}N
i=1

. I.e.

φ̃
(h,δxl),i
tk

(x) = vδxl(x) · ãδxl,i,

where

X̃
(h,δxl),i
tk

=

(
ãδxl,i1 , ..., ãδxl,i

N
δxl
X

)
. (5.10)

The transformation is given in the form

ãδxl,jn =
N∑
i=1

NT ni,ja
δxl,i
n , (5.11)

for each basis coefficient, n = 1, ..., N δxl
X , and for j = 1, ..., N . Here, T n ∈ T n ∈ RN×N is

an individual coupling matrix for each basis coefficient. The transformation matrices satisfy

the following marginal constraints using the components of the importance weight vector,
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W
(h,δxl),i
tk

:
N∑
i=1

T ni,j =
1

N
,

N∑
j=1

T ni,j = bδxl,in .

The matrices are found by solving

arg min
Tn∈T n

N∑
i=1

N∑
j=1

T ni,je
(i,j)
n .

Here, e(i,j)n is a cost metric, defined by the n’th basis coefficient of the following function

J (i,j)(x) ∈ V δxl:

J (i,j)(x) = IsmoothI(l,rloc)
{(

φ
(h,δxl),i
tk

(x)− φ(h,δxl),j
tk

(x)
)2}

. (5.12)

As done for the computation of the importance weights, this function cumulates the squared

differences between the i’th and j’th forecast ensemble members for all local finer subcells,

onMδxl , within a coarse cell, onMδxl−rloc . It also utilises the smoothing operator introduced

earlier to smooth discontinuities between coarse cell boundaries. Note that, as was the case

within the ETPF framework for multivariate random variables, the parameter rloc used in

(5.12) can be independent of that used during the importance weight computation.

This transformation allows us to re-write the approximation for the expected value of

X̃
(h,δxl)
tk

in (5.9) as

E[X̃
(h,δxl)
tk

] ≈ 1

N

N∑
i=1

X̃
(h,δxl),i
tk

. (5.13)

These estimates can be re-written in terms of the analysis ensemble of function approxima-

tions
{
φ̃
(h,δxl),i
tk

(x)
}N
i=1

whose basis coefficients are the components of the random variables{
X̃

(h,δxl),i
tk

}N
i=1

. Importantly, define an estimate to E[φ̃
(h,δxl)
tk

(x)] as

φ̄
(h,δxl)
N,tk

(x) =
1

N

N∑
i=1

φ̃
(h,δxl),i
tk

(x). (5.14)

This chapter will now proceed by introducing an example of a system of equations that

can be approximated via finite element methods, the stochastic quasi-geostrophic equations.

In Sec. 5.5.1, it is then used in combination with the ETPF localisation framework, that has

been proposed throughout this section, for data assimilation.
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5.5 The stochastic quasi-geostrophic equations

The stochastic quasi-geostrophic system of equations is given by,

dqt(x, y) +∇ ·

(
qt(x, y)

(
∇⊥ψt(x, y)dt+

N∑
i=1

∇⊥ζi(x, y) ◦ dWt

))
= 0, (5.15)

where ψt(x, y) is the streamfunction and the potential vorticity is

qt(x, y) = ∇2ψt(x, y) + βy + fψt(x, y). (5.16)

Here f = 1 and the β-plane constant takes the value of 0.5. The equation (5.16) can be

written as an elliptic function of ψt(x, y),

qt(x, y) = L (ψt(x, y)) ,

and therefore,

ψt(x, y) = L−1 (qt(x, y)) .

This model was introduced in Holm [2015]. For the remainder of this thesis, the Kahunen-

Loeve (KL) expansion in (5.15) truncates at N = 4 and

ζi(x, y) =



ν sin(πx) sin(πy), i = 1

ν sin(2πx) sin(πy), i = 2

ν sin(πx) sin(2πy), i = 3

ν sin(2πx) sin(2πy), i = 4.

(5.17)

The parameter ν is the variance of the stochasticity in the system. The domain is set to

(x, y) ∈ [0, 1]2 = Γ and the initial condition takes the value of

q0(x, y) =
3∑
i=1

(−1)i+1 (p(x, y, zi, 0.7)− p(x, y, zi, 0.3)) , (5.18)

where

z = (0.25, 0.5, 0.75) and p(x, y, x0, y0) = exp

(
−(x− x0)2

0.02
− (y − y0)2

0.02

)
.
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The initial condition for ψt(x, y) is then given by

ψ0(x, y) = L−1 (q0(x, y)) .

The equations will be spatially and temporally discretized with a finite element method

[Bernsen et al., 2006, Zenodo/Firedrake, 2017] and a SSP Runge-Kutta three-step time-

stepping scheme. More detail will be given on the time-stepping scheme later in the chapter.

Denote these discretizations of qt(x, y) and ψt(x, y) by q(h,δxl)t (x, y) and ψ(h,δxl)
t (x, y) respec-

tively. These are discontinuous piecewise linear, q(h,δxl)t (x, y) ∈ V DG1,δxl , and continuous

piecewise linear, ψ(h,δxl)
t (x, y) ∈ V CG1,δxl , functions respectively. The spatial resolution,

δxl = 2−l−1, for l = 5, is the width and height of each cell in a regular, triangular mesh,

Mδxl . Therefore one must use a rloc value between 0 and 5 for this problem. Note that the

time-step used in the Runge-Kutta scheme remains fixed and not part of a hierarchy - it is set

to h = 0.005.

For brevity, the following spatial discretization of (5.15) adopts the short-hand notation

ψt and qt for ψ(h,δxl)
t (x, y) and q(h,δxl)t (x, y) respectively,

d

∫
cδxl

pqtdxdy −
∫
cδxl
∇p · (qtdu) dxdy +

∫
∂cδxl

p(n · du)f̂dS = 0, (5.19)

with

du = ∇⊥ψtdt+
N∑
i=1

∇⊥ζi ◦ dWt,

where p(x, y) ∈ V DG1,δxl is a test function, n is the unit normal, and ∂cδxl represents the

boundary of the cell cδxl . Here, f̂ , is an upwind numerical flux [Cockburn and Shu, 2001],

where it takes the value of qt inside the cell if (n ·du) ≥ 0 and outside the cell if (n ·du) < 0.

Let the random variable X(h,δxl),q
t be the vector of the basis coefficients for the approx-

imation q(h,δxl)t (x, y). In the same way, let the random variable X(h,δxl),ψ
t be the vector of

basis coefficients for the approximation ψ(h,δxl)
t (x, y). One can interpret the temporal dis-

cretization of (5.15) as simply a Stratonovich SDE with respect to the basis coefficients of

q
(h,δxl)
t (x, y):

dX
(h,δxl),q
t = µ

(
X

(h,δxl),q
t

)
dt+ σ

(
X

(h,δxl),q
t

)
◦ dWt, (5.20)

where the functions µ and σ relate to the spatial discretization above. The following three-

step SSP Runge-Kutta scheme [Gottlieb et al., 2001] is used for the temporal discretization
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of this SDE, with O(h) weak convergence and O(h1/2) strong convergence. It is given by

k1 = X
(h,δxl),q
t + µ

(
X

(h,δxl),q
t

)
h+ σ

(
X

(h,δxl),q
t

)
δWt, (5.21)

k2 =
3

4
X

(h,δxl),q
t +

1

4
(k1 + µ (k1)h+ σ (k1) δWt) , (5.22)

X
(h,δxl),q
(t+h) =

1

3
X

(h,δxl),q
t +

2

3
(k2 + µ (k2)h+ σ (k2) δWt) , (5.23)

where δWt ∼ N(0, h). The stability of this scheme for the case where
{
ζi
}N
i=1

= 0, used in

combination with the spatial discretization considered in this chapter, with details about the

associated critical Courant numbers, is discussed in Cockburn and Shu [2001]. Finally then,

to propagate the system from time t to t+ h, one implements the following algorithm:

(1) Find k1 using (5.21).

(2) Find k2 using (5.22).

(3) Find q(h,δxl)(t+h) (x, y) using (5.23) and solve ψ(h,δxl)
(t+h) (x, y) = L−1

(
q
(h,δxl)
(t+h) (x, y)

)
.

5.5.1 An ensemble transform particle filter approximation

Using the stochastic quasi-geostrophic equations in combination with the filtering framework

presented in Sec. 5.4, the aim of this section is to approximate statistics of the analysis func-

tions ψ̃(h,δxl)
tk

(x, y) and q̃(h,δxl)tk
(x, y), for k = 1, 2, 3, ..., given observations ydata,t1:tk . These

observations are in the form of (5.5), taken at coordinates
{
xjcoord

}NY
j=1

. Only a reference

trajectory of the streamfunction ψ(h,δxl)
tk

(x, y) is observed for this example. To estimate the

statistics of both ψ̃(h,δxl)
tk

(x, y) and q̃(h,δxl)tk
(x, y), the ETPF approximation in (5.14) is used in

combination with the filtering and localisation framework proposed in Sec. 5.4.

For the forecast ensemble, pairs of function approximations
{
q
(h,δxl),i
tk

(x, y)
}N
i=1

and{
ψ

(h,δxl),i
tk

(x, y)
}N
i=1

are used. Recall the definitions of the two random variables X(h,δxl),q
tk

andX(h,δxl),ψ
tk

from the last section. Ensembles of these random variables will be transformed

to analysis ensembles, using (5.11). The importance weights for each forecast ensemble pair

will only be dependent on the observed streamfunction. Those importance weight func-

tions will then be projected to the spaces V CG1,δxl and V DG1,δxl for the transformations of{
ψ

(h,δxl),i
tk

(x, y)
}N
i=1

and
{
q
(h,δxl),i
tk

(x, y)
}N
i=1

respectively. These procedures are explained in

more depth in the algorithm below.
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(1) Whilst t < tk, set h = min(0.005, tk − t) and propagate
{
ψ

(h,δxl),i
t (x, y)

}N
i=1

and{
q
(h,δxl),i
t (x, y)

}N
i=1

to time tk.

(2) Generate observations
{
yjdata,tk

}NY
j=1

using a reference trajectory of the streamfunction

via

yjdata,tk = ψ
(h,δxl),ref
tk

(xjcoord, y
j
coord) + ξj, (5.24)

given coordinates (xjcoord, yjcoord), for j = 1, ..., NY .

(3) Define the forecast ensemble of random variables
{
X

(h,δxl),ψ,i
tk

}N
i=1

and
{
X

(h,δxl),q,i
tk

}N
i=1

whose components are the basis coefficients of
{
ψ

(h,δxl),i
tk

(x, y)
}N
i=1

and
{
q
(h,δxl),i
tk

(x, y)
}N
i=1

respectively.

(4) From Sec. 5.4.2, compute the following piecewise constant functions using

D
(h,δxl),i
tk

(cδxl) =
∑
j∈S

(
yjdata,tk − IV

P0,δxl

V CG1,δxl
ψ

(h,δxl),i
tk

(cδxl)
)2
,

for i = 1, ..., N and each cell cδxl ∈ Mδxl , where S =
{
j; (xjcoord, y

j
coord) ∈ cδxl

}
.

Then the importance weight vectors are defined as the basis coefficients of the follow-

ing functions:

w̃
(h,δxl),ψ,i
tk

(x) =

1√
2πR

exp
(
− 1

2R
ν∗IsmoothI(l,rloc)IV

CG1,δxl

V P0,δxl
D

(h,δxl),i
tk

(x)
)

∑N
j=1

1√
2πR

exp
(
− 1

2R
ν∗IsmoothI(l,rloc)IV

CG1,δxl

V P0,δxl
D

(h,δxl),j
tk

(x)
)

and

w̃
(h,δxl),q,i
tk

(x) =

1√
2πR

exp
(
− 1

2R
ν∗IsmoothI(l,rloc)IV

DG1,δxl

V P0,δxl
D

(h,δxl),i
tk

(x)
)

∑N
j=1

1√
2πR

exp
(
− 1

2R
ν∗IsmoothI(l,rloc)IV

DG1,δxl

V P0,δxl
D

(h,δxl),j
tk

(x)
)

on the spaces V CG1,δxl and V DG1,δxl respectively, for i = 1, ..., N .

(5) Using Sec. 5.4.2, transform the weighted forecast ensembles of random variables

{
X

(h,δxl),ψ,i
tk

}N
i=1

and
{
X

(h,δxl),q,i
tk

}N
i=1
,
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to analysis ensembles of random variables

{
X̃

(h,δxl),ψ,i
tk

}N
i=1

and
{
X̃

(h,δxl),q,i
tk

}N
i=1
,

whose components are the basis coefficients for analysis ensembles of functions

{
ψ̃

(h,δxl),i
tk

(x, y)
}N
i=1

and
{
q̃
(h,δxl),i
tk

(x, y)
}N
i=1
,

respectively. The importance weight vectors
{
W

(h,δxl),ψ,i
tk

}N
i=1

and
{
W

(h,δxl),q,i
tk

}N
i=1

are

used for each of these transformations respectively.

(6) Estimate E[ψ̃
(h,δxl)
tk

(x, y)] using

ψ̄
(h,δxl)
N,tk

(x, y) =
1

N

N∑
i=1

ψ̃
(h,δxl),i
tk

(x, y), (5.25)

and E[q̃
(h,δxl)
tk

(x, y)] using

q̄
(h,δxl)
N,tk

(x, y) =
1

N

N∑
i=1

q̃
(h,δxl),i
tk

(x, y). (5.26)

(7) Reset the forecast ensembles ψ(h,δxl),i
t (x, y) = ψ̃

(h,δxl),i
tk

(x, y) and q
(h,δxl),i
t (x, y) =

q̃
(h,δxl),i
tk

(x, y), for i = 1, ..., N , and iterate k = k + 1.

It is important to remember that this framework is an example of an identical twin exper-

iment. This creates an idealised environment to test a data assimilation algorithm given that

there is no model error, only approximation error.

5.6 Numerical demonstrations

The algorithm in Sec. 5.5.1 is now demonstrated. For the following section, the random

component of ψ(h,δxl)
t (x, y), is removed until t = 10. One can do this by setting

{
ζi
}N
i=1

= 0.

This is because the state at t = 10 is a more complex and interesting initial condition than the

state at t = 0. It speeds up the implementation of the algorithm in Sec. 5.5.1 considerably

by only simulating one deterministic realisation of ψ(h,δxl)
t (x, y) over the interval t ∈ [0, 10]
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and then starting all random ensembles from this point. The ensembles are then simulated

over the time interval t ∈ [10, 80].

The assimilation in the following numerical demonstrations use ∆t = 0.5. For simplicity,

the coordinates of the observations are given on the grid specified by

xjcoord =
b(j − 1)/32c+ 1/2

32
, yjcoord =

((j − 1) mod 32) + 1/2

32
,

for j = 1, ..., 1024. Two scenarios will be considered, one where assimilation is started right

from the time t = 10, and thus k ∈ [1, 140], and one where assimilation starts from a delayed

point in time, t = 30, and thus k ∈ [1, 100]. The latter of these scenarios should be more

challenging, testing the filter in honing down on a reference trajectory from an ensemble at

t = 30 with large variance. The observations are defined by (5.24), where R = 2 × 10−9.

The following demonstrations will use ν = 3.125×10−4. The localisation setting of rloc = 2

is used. Finally, N = 30 ensemble members will be used in both experiments.

5.6.1 Assimilation from a known state

For the first scenario, the algorithm in Sec. 5.5.1 is used to assimilate over the time interval

t ∈ [10, 80], and so assimilation starts from the time when all forecast members start from a

known state at time t = 10. The analysis ensemble
{
ψ̃

(h,δxl),i
tk

(x, y)
}N
i=1

at each assimilation

step is recorded and the timeseries of these ensemble members evaluated at the coordinates

(xr, yr) =
{

(0.3, 0.3), (0.7, 0.3), (0.3, 0.7), (0.7, 0.7)
}
,

are shown in Figure 21 in the dark grey dots. Together they form a highlighted region honed

down on the reference trajectory, ψ(h,δxl),ref
t (x, y), shown in red. The spread of this analysis

ensemble over time is significantly less than the spread of 30 simulations of ψ(h,δxl)
t (x, y),

denoted by
{
ψ̂

(h,δxl),i
t (x, y)

}N
i=1

, without the use of filtering. This ensemble is shown by the

light grey lines. These simulations give an indication of the variance within the system in

comparison to the variance of the filtered analysis distribution.

The state of the streamfunction estimator, ψ̄(h,δxl)
N,tk

(x, y), and the associated reference tra-

jectory, ψ(h,δxl),ref
tk

(x, y), at times t = 42.5 and t = 75 are shown in Figures 22 and 23 respec-

tively. In the same manner, the state of the potential vorticity estimator, q̄(h,δxl)N,tk
(x, y), and the

trajectory, q(h,δxl),ref
tk

(x, y), associated with the reference streamfunction through (5.16), at
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times t = 42.5 and t = 75 are shown in Figures 24 and 25 respectively. Despite the potential

vorticity not being observed, the ETPF estimator tracks the state of this reference field well.

Localisation has been used in this problem, with the parameter rloc = 2, and so the

optimal transport problems within the transformation scheme (see Sec. 5.4.2) still have to

be solved via an expensive algorithm (e.g. the problems are multivariate). Despite this,

it is interesting to note that the computational cost of the forward prediction model in this

problem is still marginally superior to that of the total optimal transportation cost: ∼75

minutes to ∼50 minutes. This superiority will be accentuated in the next chapter when the

multilevel ETPF estimator is introduced.

5.6.2 Delayed assimilation

For the second scenario, the forecast ensemble is simulated from t = 10, however the start

of assimilation is delayed by 20 time units from t = 10 to t = 30. The algorithm in Sec.

5.5.1 is then used to assimilate over the time interval t ∈ [30, 80]. This allows the forecast

ensemble to spread out significantly and test the assimilation strategy in its attempts to lower

the variance of this ensemble. As with the previous section, the dark grey dots in Figure 26

show the timeseries of each analysis ensemble member in
{
ψ̃

(h,δxl),i
tk

(x, y)
}N
i=1

evaluated at

(xr, yr). The reference trajectory and an ensemble of N random simulations of ψ(h,δxl)
t (x, y)

without the use of filtering, all evaluated at (xr, yr), are also shown.

It is also interesting to study the error of the approximation to the analysis mean in (5.25)

for this delayed assimilation scenario. A suitable error metric is the L2-norm. The benefit of

this integral quantity is that it is normalized over the number of degrees of freedom (N δxl
X )

used in the approximations, and therefore will be useful in the next chapter when comparing

estimators from varying resolutions. The L2-norm of ψ̄(h,δxl)
N,tk

, with respect to the reference

trajectory, is given by∥∥∥ψ̄(h,δxl)
N,tk

(x, y)− ψ(h,δxl),ref
tk

(x, y)
∥∥∥

L2

=

√∫ 1

0

∫ 1

0

(
ψ̄

(h,δxl)
N,tk

(x, y)− ψ(h,δxl),ref
tk

(x, y)
)2
dxdy.

(5.27)

Figure 27 shows this error stabilising from the time when assimilation begins, at t = 30.
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5.6.3 Probability integral transform histogram

As an extension to the data assimilation problems considered in the previous two experi-

ments, this section draws on evaluating the calibration of an ensemble forecast using the

probability integral transform (PIT) histogram introduced in Chapter 3. A PIT histogram can

be generated from the data assimilation simulation in Sec. 5.6.1. More specifically the obser-

vations used to construct the filtering distribution can now be used to evaluate the calibration

of the forecast ensemble at every assimilation step. To do this, the states of the forecast en-

semble of streamfunctions
{
ψ

(h,δxl),i
tk

(x, y)
}N
i=1

at each assimilation step k = 1, ..., 140, are

evaluated at (0.3,0.3). These evaluations form a scalar ensemble forecast at each assimilation

step. One would like to evaluate the calibration of these using a PIT histogram. The observa-

tions used in the evaluation of the forecast ensemble CDF at every assimilation step, are not

perturbed as they are in (5.24), instead they are equal to the reference trajectory evaluated at

(0.3,0.3). Note that this is because the observations in Chapter 3 are unperturbed.

Recall from Chapter 3 that an empirical CDF for
{
ψ

(h,δxl),i
tk

(0.3, 0.3)
}N
i=1

can be defined

as

FN
πtk

(x) =
1

N

N∑
i=1

H
(
x− ψ(h,δxl),i

tk
(0.3, 0.3)

)
,

where H is the Heaviside function, and πtk is the distribution associated with the random

variable ψ(h,δxl)
tk

(0.3, 0.3). One can then use the reference trajectory observations, at every

assimilation step k = 1, ..., 140, alongside (3.2) to generate a frequency histogram of the PIT

samples. The resultant histogram is shown in Figure 28. It shows approximately uniform

frequency suggesting a calibrated forecast ensemble, at this spatial coordinate, throughout

the filtering. Indeed, this further supports the performance of the spatio-temporal ETPF

framework proposed in this chapter.

5.7 Conclusions

This chapter has applied the ensemble transform particle filter (ETPF), to finite element

discretizations of random functions, via a projection-based localisation technique. The lo-

calisation technique is a variant of the one proposed in Cheng and Reich [2013] for the ETPF.

This allows data assimilation to be carried out on spatio-temporal systems with random com-

ponents, using observations taken from a reference trajectory evaluated at coordinates on the
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domain. This technique is utilised in both the importance weight updates and the ensemble

transform stages of the ETPF algorithm in Sec. 2.7.4.

A stochastic version of the quasi-geostrophic equations [Holm, 2015] is used to demon-

strate the effectiveness of this localisation technique for the ETPF. This was done in a stan-

dard (from a known state) and a delayed assimilation setting. An effective proof of concept

has been presented, with the ETPF approximation to the filtering distribution tracking a

reference trajectory of both the potential vorticity and the associated streamfunction. The

variation in the forecast system, without data assimilation, appears relatively large, even

when only using four Sine modes in the truncated KL expansion forming the random forcing

function in the system.

For the simulations carried out in this chapter, the computational cost of the algorithm

appears to be dominated by the forward prediction model rather than that of solving the op-

timal transport problems in the assimilation steps. Therefore the multilevel ETPF, proposed

in Chapter 4, has the potential to be beneficial at reducing the overall computational cost of

generating these spatio-temporal filtering estimators, even if only for a range of accuracies.

This is considered in the following chapter.
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Figure 22: The state of the streamfunction estimator, ψ̄(h,δxl)
N,42.5 (x, y) (left panel), and the ref-

erence trajectory, ψ(h,δxl),ref
42.5 (x, y) (right panel), at time 42.5.

Figure 23: The state of the streamfunction estimator, ψ̄(h,δxl)
N,75 (x, y) (left panel), and the ref-

erence trajectory, ψ(h,δxl),ref
75 (x, y) (right panel), at time 75.
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Figure 24: The state of the potential vorticity estimator, q̄(h,δxl)N,42.5 (x, y) (left panel), and the
reference trajectory, q(h,δxl),ref

42.5 (x, y) (right panel), at time 42.5.

Figure 25: The state of the potential vorticity estimator, q̄(h,δxl)N,75 (x, y) (left panel), and the
reference trajectory, q(h,δxl),ref

75 (x, y) (right panel), at time 75.
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Figure 27: The L2-norm error of the ETPF approximation to the analysis mean of the filtered
streamfunction, with respect to the reference trajectory, in the case where assimilation is
delayed by 20 time units. The error during this delay period increases exponentially until
assimilation starts, where it then begins to stabilise.
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Figure 28: Probability integral transform histogram (with normalized frequency) of the fore-
cast ensemble

{
ψ

(h,δxl),i
tk

(0.3, 0.3)
}N
i=1

used for the ETPF approximation to the analysis mean
of the filtered streamfunction. Observations are given at every assimilation step by the refer-
ence trajectory evaluated at (0.3, 0.3). The histogram is approximately uniform suggesting
that the forecast from the ETPF is calibrated with the reference trajectory.
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Chapter synopsis

This chapter proposes a multilevel extension to the framework presented in the previous

chapter, applying the ensemble transform particle filter (ETPF) to systems of partial differ-

ential equations. The high computational cost associated with propagating realisations of

random fields within the ETPF (apparent in the previous chapter) is the main motivation for

this application. The efficiency of the multilevel ETPF (MLETPF) presented in Chapter 4,
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relative to its standard counterpart, can be beneficial here by alleviating this high computa-

tional cost.

6.1 A multilevel ensemble transform particle filter estimator

In the previous chapter, the extension of the ETPF to spatio-temporal systems primarily

concerned the estimator for E[φ̃
(h,δxL)
tk

(x)], where φ̃(h,δxL)
tk

(x) ∈ V δxL is a finite element ap-

proximation of the function φtk(x). It is conditioned on partial observations of the form

(5.5) from all assimilation steps up to and including time tk. Unlike in the previous chap-

ter, the time-step h used for each approximation will now also be refined over l (in addition

to the spatial resolution), as was the case in Chapter 4. Denote the new approximation by

φ̃
(hL,δxL)
tk

(x). Here L denotes a sufficiently high level of temporal and spatial resolution. In

practice the time-step for these approximations can be adaptively set given δxl, typically

based on stability criteria or Courant numbers, but for the scope of this chapter, the assump-

tion that hl ∝ δxl ∝ m−l, with m > 1, is made.

The estimator for E[φ̃
(hL,δxL)
tk

(x)] in the previous chapter was given by

φ̄
(hL,δxL)
N,tk

(x) =
1

N

N∑
i=1

φ̃
(hL,δxL),i
tk

(x), (6.1)

where the so-called analysis ensemble
{
φ̃
(hL,δxL),i
tk

(x)
}N
i=1

was generated by transforming

a forecast ensemble of function approximations
{
φ
(hL,δxL),i
tk

(x)
}N
i=1

, associated with impor-

tance weight functions
{
w̃

(hL,δxL),i
tk

(x)
}N
i=1

given by (5.7). The hierarchy of meshes and

spaces in (5.2) and (5.3) that these function approximations exist on is now used not only in

the localisation scheme proposed in the previous chapter, but also to construct a multilevel

version of (6.1). The injection and prolongation operators are also used in this respect. In

the style of Chapter 4, one can write E[φ̃
(hL,δxL)
tk

(x)] as

E[φ̃
(hL,δxL)
tk

(x)] = E[φ̃
(hL0 ,δxL0 )
tk

(x)] +
L∑

l=L0+1

E[φ̃
(hl,δxl)
tk

(x)]− E[φ̃
(hl−1,δxl−1)
tk

(x)], (6.2)

where 0 ≤ L0 < L and therefore an alternative, multilevel estimator for (6.2) can be given
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by

φ̄
(hL,δxL)
(NL0 ,...,NL),tk

(x) =
L∑

l=L0

µl. (6.3)

The difference between this spatio-temporal multilevel estimator and the one given in (4.3)

lies in the difference estimators,

µl =


1

NL0

∑NL0

i=1 ILL0φ̃
(hL0 ,δxL0 ),i
tk

(x), l = L0

1
Nl

∑Nl
i=1 ILl φ̃

(hl,δxl),i
tk

(x)− ILl−1
˜̂
φ
(hl−1,δxl−1),i
tk

(x), l > L0.
(6.4)

The multilevel estimator starts at level L0 of resolution so that one is still able to use local-

isation from the hierarchy of meshes in (5.2) for the approximation on the coarsest level of

resolution. In (6.4), one is required to prolong the analysis ensembles to the finest function

space, V δxL . This allows one to gain a statistical estimator comparable to a standard ETPF

estimator using samples
{
φ̃
(hL,δxL),i
tk

(x)
}N
i=1

all on the finest function space.

The analysis ensembles
{
φ̃
(hl,δxl),i
tk

(x)
}Nl
i=1

and
{ ˜̂
φ
(hl−1,δxl−1),i
tk

(x)
}Nl
i=1

for l > L0, where{ ˜̂
φ
(hl−1,δxl−1),i
tk

(x)
}Nl
i=1
∼ φ̃

(hl−1,δxl−1)
tk

(x), have been transformed in some manner from fore-

cast ensembles
{
φ
(hl,δxl),i
tk

(x)
}Nl
i=1

and
{
φ̂
(hl−1,δxl−1),i
tk

(x)
}Nl
i=1

with importance weight func-

tions
{
w̃

(hl,δxl),i
tk

(x)
}Nl
i=1

and
{

˜̂w
(hl−1,δxl−1),i
tk

(x)
}Nl
i=1

. The importance weight functions for

each forecast ensemble are computed following the procedure in Sec. 5.4.2. For the trans-

formation used in µL0 , one can follow the same methodology that was presented in Sec.

5.4.2. The form of the transformations used in µl, for l = L0 + 1, ..., L, will follow the

seamless scheme presented in Sec. 4.2.2, and is further explained in the next section. Again,

as utilised in Chapter 4, the same random components of the spatio-temporal system are re-

quired to be used between assimilation steps for each pair of samples
{
φ
(hl,δxl),i
tk

(x)
}Nl
i=1

and{
φ̂
(hl−1,δxl−1),i
tk

(x)
}Nl
i=1

.

The approximations on each level of resolution, l, will use a localisation parameter, rloc,l,

in the computation of the importance weights within (5.7). Note that the constraint rloc,l ∈
[0, l] from the previous chapter still holds. In order for (6.3) to be consistent, the parameter

rloc,l used within the computation of µl has to be the same as the parameter rloc,l used within

the computation of µl+1. A suitable choice is that rloc,l = O(1) and doesn’t depend on l, i.e.

the physical area of localisation will decrease as l increases.
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6.2 A seamless coupling for spatio-temporal systems

The aim of this section is to describe an extension of Sec. 4.2.2 to the spatio-temporal case

considered in this chapter, to use in combination with the MLETPF estimator in (6.3). This

replaces the forecast ensembles of functions
{
φ
(hl,δxl),i
tk

(x)
}Nl
i=1

and
{
φ̂
(hl−1,δxl−1),i
tk

(x)
}Nl
i=1

alongside importance weight functions
{
w̃

(hl,δxl),i
tk

(x)
}Nl
i=1

and
{

˜̂w
(hl−1,δxl−1),i
tk

(x)
}Nl
i=1

with

the evenly weighted analysis ensembles used in (6.4). However, it does this whilst preserving

the coupling between them, such that

Vl =


∫

V
[
ILL0φ̃

(hL0 ,δxL0 )
tk

(x)
]
dx, l = L0∫

V
[
ILl φ̃

(hl,δxl)
tk

(x)− ILl−1φ̃
(hl−1,δxl−1)
tk

(x)
]
dx, l > L0,

(6.5)

decays at an asymptotic rate for increasing l, i.e. Vl = O(δxβl ) = O(hβl ). For l > L0,

the three steps of the seamless coupling algorithm in Sec. 4.2.2 need to be modified for the

spatio-temporal case as follows:

(1) The first step transforms the forecast ensemble
{
φ̂
(hl−1,δxl−1),i
tk

(x)
}Nl
i=1

alongside as-

sociated importance weight functions
{

˜̂w
(hl−1,δxl−1),i
tk

(x)
}Nl
i=1

, into an intermediate en-

semble of functions
{
φ∗,itk (x)

}Nl
i=1

, on the space V δxl−1 , alongside importance weight

functions
{
Il−1l w̃

(hl,δxl),i
tk

(x)
}Nl
i=1

. Note these weight functions are the injected impor-

tance weight functions on the finer resolution level.1 Let the n = 1, ..., N
δxl−1

X basis

coefficients of these intermediate ensemble members be
{
a∗,jn
}Nl
j=1

. They can be found

by using the coupling matrices Dn ∈ Dn ∈ RNl×Nl , for n = 1, ..., N
δxl−1

X , alongside

a∗,jn =

Nl∑
i=1

Dn
i,j(b

δxl−1,j
n )−1âδxl−1,i

n ,

where âδxl−1,i
n is the n’th basis coefficient of φ̂(hl−1,δxl−1),i

tk
(x) and bδxl−1,j

n is the n’th

basis coefficient of Il−1l w̃
(hl,δxl),j
tk

(x) respectively for i, j = 1, ..., Nl. The matrices are

required to satisfy the marginal constraints

N∑
i=1

Dn
i,j = bδxl−1,j

n ,
N∑
j=1

Dn
i,j = b̂δxl−1,i

n ,

1In practice, one might be required to renormalize these importance weight functions once injected such
that

∑Nl

i=1 Il−1
l w̃

(hl,δxl),i
tk

(x) = 1, ∀x ∈ Γ.
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where b̂δxl−1,i
n is the n’th basis coefficient of ˜̂w

(hl−1,δxl−1),i
tk

(x) for i = 1, ..., Nl. The

matrices are then found by solving the optimal transport problems,

arg min
Dn∈Dn

Nl∑
i=1

Nl∑
j=1

Dn
i,je

(i,j)
n .

Here, e(i,j)n is defined by the n’th basis coefficient of the function J (i,j)(x) ∈ V δxl−1 ,

given by

J (i,j)(x) = IsmoothI(l−1,rloc,l−1)

{(
φ̂
(hl−1,δxl−1),i
tk

(x)− Il−1l φ
(hl,δxl),j
tk

(x)
)2}

. (6.6)

Note that the localisation parameter rloc,l−1 ∈ [0, l − 1] is used in this step.

(2) The second step can be modified by simply implementing the transform of the forecast

ensemble
{
φ
(hl,δxl),i
tk

(x)
}Nl
i=1

with the importance weight functions
{
w̃

(hl,δxl),i
tk

(x)
}Nl
i=1

,

to the evenly weighted analysis ensemble
{
φ̃
(hl,δxl),i
tk

(x)
}Nl
i=1

, explained in Sec. 5.4.2.

The localisation parameter rloc,l ∈ [0, l] is used in this step.

(3) The last step transforms the intermediate ensemble of functions
{
φ∗,itk (x)

}Nl
i=1

with the

importance weight functions
{
Il−1l w̃

(hl,δxl),i
tk

(x)
}Nl
i=1

, to an evenly weighted analysis

ensemble
{ ˜̂
φ
(hl−1,δxl−1),i
tk

(x)
}Nl
i=1

. Let ˜̂a
δxl−1,i
n and ãδxl−1,i

n be the basis coefficients of
˜̂
φ
(hl−1,δxl−1),i
tk

(x) and Il−1l φ̃
(hl,δxl),i
tk

(x) (injections of the analysis ensemble members on

the finer resolution level) respectively, for i = 1, ..., Nl. The former of these can be

found by using the coupling matrices T n ∈ T n ∈ RNl×Nl , for n = 1, ..., N
δxl−1

X ,

alongside

˜̂aδxl−1,j
n =

Nl∑
i=1

NT ni,ja
∗,i
n ,

for j = 1, ..., Nl. The matrices are required to satisfy the marginal constraints

N∑
i=1

T ni,j =
1

Nl

,
N∑
j=1

T ni,j = bδxl−1,i
n ,

where
{
b
δxl−1,i
n

}Nl
i=1

are as in step (1) and are then found by solving the optimal trans-
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port problems,

arg min
Tn∈T n

Nl∑
i=1

Nl∑
j=1

T ni,je
(i,j)
n .

Here, e(i,j)n is defined by the n’th basis coefficient of the function J (i,j)(x) ∈ V δxl−1:

J (i,j)(x) = IsmoothI(l−1,rloc,l−1)

{(
φ∗,itk (x)− Il−1l φ̃

(hl,δxl),j
tk

(x)
)2}

. (6.7)

Note that the localisation parameter rloc,l−1 ∈ [0, l − 1] is also used in this step.

The estimator in (6.3), used in combination with the seamless coupling scheme above,

will be henceforth known as the spatio-temporal MLETPF estimator. As a demonstration

of the modified transformation/coupling scheme presented above, consider the following

‘coarse’ and ‘fine’ forecast ensembles (ignore temporal resolution here):

φ̂(δx0),i(x) ∈ V P0,δx0 , φ(δx1),i(x) ∈ V P0,δx1 , i = 1, ..., 50,

Here, each ensemble member is a piecewise constant function, and is an interpolation of

η sin(2πx), with η ∼ N(0, 0.25), on the unit interval mesh, with grid cell lengths δx1 = 0.1

and δx0 = 0.2. A reference function is sampled on the finer mesh, and 10 observations are

taken from this at coordinates

xjcoord = (j − 1)/9, j = 1, ..., 10,

using (5.5) and R = 0.1. Using the parameters rloc,0 = rloc,1 = 0, the weight functions for

the coarse and fine forecast ensembles are constructed via the methodology in Sec. 5.4.2.

Then both forecast ensembles with associated weight functions are transformed into analysis

ensembles,

˜̂
φ(δx0),i(x) ∈ V P0,δx0 , φ̃(δx1),i(x) ∈ V P0,δx1 , i = 1, ..., 50,

via the transformation/coupling scheme presented earlier in this section. Both of these en-

sembles and the forecast ensembles, evaluated at x = 0.5, are shown in Figure 29. One notes

that the analysis ensembles are positively correlated and coupled.
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Figure 29: The coarse and fine forecast ensembles
{
φ̂(δx0),i(x)

}50
i=1

and
{
φ(δx1),i(x)

}50
i=1

, and
their respective analysis ensembles constructed from the coupling/transformation scheme
in Sec. 6.2. The analysis ensembles are positively correlated due to the optimal transport
problems within the scheme.

6.3 Numerical demonstrations

The stochastic quasi-geostrophic equations are now used to present benchmark results for

the MLETPF applied to spatio-temporal cases. These equations were introduced in the pre-

vious chapter. Our aim is to reduce the overall computational cost of the ETPF estimators

attained in Sec. 5.6.1 and Sec. 5.6.2. These sections considered the estimation of the analy-

sis mean for the streamfunction, E[ψ̃
(hL,δxL)
tk

(x, y)], on a sufficiently fine resolution level L,

conditioned on partial observations taken from a reference trajectory.

As done in Chapter 4, such increases in efficiency will be demonstrated by constructing

MLETPF and ETPF estimators with pre-defined orders of accuracy. The order of accuracy,

O(ε2), will dictate the parameters L and Nl, for l = L0, ..., L, used within the MLETPF

estimator as well as N and L used within the standard ETPF estimator. In order to evaluate

the accuracy, an error metric needs to be defined for the spatio-temporal case. This error

metric is defined with respect to an accurate ETPF approximation of E[ψ̃tk(x, y)], the true

analysis mean of the streamfunction. In practice this approximation of E[ψ̃tk(x, y)] uses

one level of spatial resolution greater than any used in the experiments, and is taken over
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four times as many samples as used in any of the experiments. The time-averaged squared

L2-norm for the MLETPF estimator is then given by

1

Nt

Nt∑
k=1

∥∥∥ψ̄(hL,δxL)
(NL0 ,...,NL),tk

(x, y)− E[ψ̃tk(x, y)]
∥∥∥2

L2

=
1

Nt

Nt∑
k=1

∫ 1

0

∫ 1

0

(
ψ̄

(hL,δxL)
(NL0 ,...,NL),tk

(x, y)− E[ψ̃tk(x, y)]
)2
dxdy,

(6.8)

where Nt is the number of assimilation steps. This will compare the MLETPF and ETPF

estimators, both localised in a particular manner, with respect to their convergence to a lo-

calised, higher discretization accuracy approximation, as done with the stochastic Lorenz 96

equations in Chapter 4. With this in mind, the standard ETPF estimator will use the same

localisation parameter as the approximation at the finest resolution in the MLETPF approxi-

mations, rloc,L. In addition to this, the ETPF approximation used as a proxy for E[ψ̃tk(x, y)]

in the error metric above utilises a localisation parameter of (rloc,L + nl). Here nl is the

difference between L and the level of resolution that the approximation is on. This is so that

the approximation uses the same physical area of localisation as the standard ETPF estimator

and the finest approximation in the MLETPF estimators. Recall that in the previous chapter,

the forward model cost for this system was superior to that of solving the optimal transport

problems in the ETPF assimilation stages for a certain order of accuracy. Therefore one

expects that overall computational cost reductions can be obtained, at least for a regime of ε.

As stated earlier, the assumption that hl ∝ δxl is made throughout this chapter. For the

case of the quasi-geostrophic equations, the analysis in Cockburn and Shu [2001] allows one

to adaptively set hl given δxl, a Courant constant and the velocity of the system. For the

simplicity of the framework proposed in this chapter, a constant time-step is preferred. The

time-step hierarchy used in the following simulations will be given by hl = 0.4δxl. This is

based on the Courant constant associated with the linear degree of the function approxima-

tions and the type of Runge-Kutta scheme used. It also assumes anO(1) velocity [Cockburn

and Shu, 2001]. The spatial resolution follows the same hierarchy as it did in the previous

chapter, i.e. δxl = 2−l−1.



146

6.3.1 Coupling performance

As was the case in Chapter 4, the sample statistics, µl and Vl, can be computed for a sim-

ulation of the MLETPF for the filtering of the stochastic quasi-geostrophic equations. For

this particular case, the statistics µl and Vl are given by (6.4) and (6.5) respectively with

φ(x) = ψ(x, y). In particular, the asymptotic decay of Vl, as l increases, can demonstrate

the effectiveness of the coupling scheme in Sec. 6.2.

This simulation uses most of the major parameter values that were used in the assimila-

tion experiment in Sec. 5.6.1. The time interval over which the assimilation takes place is

kept as t = [10, 80], and the assimilation frequency is set to ∆t = 0.5.2 For this particular

task of computing sample statistics, it suffices to use a fixed number of samples Nl = 70

to compute each of the difference estimators, µl, for l = L0, ..., L, in (6.4). Here, the finest

level of the mesh hierarchy is assumed to be L = 7. The minimum level of spatial / temporal

resolution used in the MLETPF estimator is L0 = 3. This is to allow the coarsest simulation

to still utilise localisation, i.e. rloc,L0 ∈ [0, 3].

The average integrated (over the domain Γ ∈ [0, 1]2) values of |µl| and values of Vl,

for l = L0, ..., L, over all assimilation steps are shown in Figure 30. They both decay at

a rate of O(δx2l ) = O(h2l ). This corresponds to α = β = 2 and therefore second order

weak convergence, as supposed to the first order weak convergence that was examined in

temporally discretized problems throughout Chapter 4. A similar rate of variance decay for

quantities of interest in two-dimensional systems of partial differential equations is found in

Cliffe et al. [2011] for a standard multilevel Monte Carlo estimator (without assimilation).

These rates will be important in the following sections.

6.3.2 Computational cost considerations

It was straightforward to pre-define an order of magnitude for the sample sizes within the

MLETPF in Chapter 4, given that the rate of computational cost growth associated with the

increase in resolution, γ, was known. Here, the value of γ will depend on both the spatial

and temporal resolution of the problem. The runtime of simulating the stochastic quasi-

geostrophic equations over the time interval t ∈ [0, 2] is shown in Figure 31. This simulation

uses the implementation with temporal and spatial resolutions both being refined together,

2As utilised in the previous chapter, a deterministic system is used up until time t = 10, with all filtering
simulations starting from this point in time.
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Figure 30: Average values of
∫ 1

0

∫ 1

0
|µl|dxdy and Vl, for l ∈ [L0, 7], over all assimilation steps

k ∈ [1, 140] for the MLETPF approximation to the analysis mean of the filtered streamfunc-
tion. Following the asymptotes shown by the dashed black lines, both of these quantities
decay at a rate of O(δx2l ).

explained in Sec. 6.3, and the figure suggests a value of γ = 4.

This runtime can be decomposed into the time-stepping of (5.15) and solving the elliptic

problem in (5.16). The first part has a computational cost that scales at O(h−1l ) = O(δx−1l ).

The second part, which therefore has a computational cost that scales as O(δx−3l ), can be

further decomposed into the number of iterations used in the elliptic solver from Firedrake,

and the time of each iteration. Figure 31 also shows the growth rates, with increasing l, of

each of these parts. The runtime of each iteration used scales as O(δx−2l ), and therefore the

number of iterations scales as O(δx−1l ). Whilst parallelisation could decrease the growth

rate of the former, multi-grid methods can be employed to make the number of iterations

independent of δxl.

6.3.3 Assimilation from a known state

The experiment from Sec. 5.6.1 will now be repeated with the MLETPF to compare the effi-

ciency of it against that of the ETPF. Recall that in the previous chapter the spatio-temporal

forward model cost was superior to that of solving the optimal transport problems in the

ETPF algorithm, at least only for a given accuracy. This suggests that one can expect the

MLETPF to achieve overall computational cost reductions over the standard ETPF, but only

for a regime of accuracy given that γ = 4, as stated in Sec. 4.4. This size of this regime
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Figure 31: The runtimes (seconds) of simulating the stochastic quasi-geostrophic equations
(left panel), solving (5.16) and an individual iteration of solving (5.16) (right panel), on
varying levels of temporal and spatial resolution. Following the asymptotes shown by the
black lines, the total runtime of the simulation grows at a rate of O(δx−4l ), whereas the total
and individual iteration runtimes of solving (5.16) grow at rates of O(δx−3l ) and O(δx−2l )
respectively.

depends on the scalar constants associated with the forward model cost, O(δx−4l ), and the

cost of solving the optimal transport problems within the scheme outlined in Sec. 6.2.

The assimilation parameters used in the experiment in Sec. 5.6.1 remain the same, and

the coarsest resolution used in the MLETPF is set to L0 = 3. The localisation parame-

ters for each level of resolution are set to rloc,l = L0. The reference trajectory, that the

observations are taken from in (5.5), is given by a single simulation of the stochastic quasi-

geostrophic equations with temporal and spatial resolution hL and δxL, for a given ε, i.e.

ψ
(hL,δxL),ref
tk

(x, y).

Following the generalised version of (2.30) in Cliffe et al. [2011], the sample sizes of

each estimator µl are set to scale as Nl = O(δxβl δx
γ
l )

1/2. Given that α = 2, β = 2 and

γ = 4, therefore Nl = 2−3Nl−1. Therefore the coarsest estimator will have many more

samples than the estimators on higher levels. This reflects the high rate of growth for the

forward model computational cost, as l increases. The sample size on the coarsest level will

scale as N0 = O(ε−2), as in all experiments in Chapter 4. The finest level of resolution used

in the MLETPF and standard ETPF estimators scales at L = O(− log(ε1/2)/ log(m)). This

is because of the second order weak convergence (α = 2), and means that δxL = O(ε1/2) is

required.
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Figure 32: Time-averaged squared L2-norm against runtime (seconds) of the
standard ETPF and MLETPF estimators to E[ψ̃tk(x, y)] for the stochastic quasi-
geostrophic equations. Results are shown for decreasing values of ε. Following the
asymptotes shown by the dashed and solid black lines, the runtimes grow at rates
ofO(ε−3) andO(ε−4) for the MLETPF and standard ETPF estimators respectively.
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Figure 33: The same as Figure 32 only for the case where assimilation is delayed
for 20 time units.
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The MLETPF and standard ETPF estimators are constructed for various values of ε and

their computational cost against time-averaged squared L2-norms are shown in Figure 32.

Given the values of α, β and γ noted above, it is apparent that the rate of computational

cost growth for the MLETPF and standard ETPF estimators, O(ε−2−(γ−β)/α) = O(ε−3) and

O(ε−2−γ/α) = O(ε−4) respectively, are as they are in (2.27). These reductions from the

MLETPF suggest that the forward model cost in these simulations is superior to the cost of

solving the optimal transport problems within the MLETPF and ETPF estimators, at least

for the orders of accuracy considered here. In fact this claim is supported in Figure 34

where the forward model cost and the cost of solving the optimal transport problems in an

ETPF simulation over t ∈ [10, 12] is shown for various values of ε. The computational

cost of solving the optimal transport problems increases with ε at a greater rate than the

forward model cost, as one would expect given a value of γ = 4. Therefore in support of

Sec. 4.4, the MLETPF would not offer overall computational cost reductions for all values

of ε, but the forward model cost appears to be large enough to give a regime of ε values

for which overall cost reductions can be achieved for. Note that the MLETPF estimator

and standard ETPF estimator for the smallest value of ε both use a finest mesh M δxL , with

L = 6, which has 128×128 cells. The rates of CAR values for the MLETPF and standard

ETPF estimators are then O(ε−1) and O(ε−2) respectively. Therefore the MLETPF delivers

overall computational cost reductions, over the standard ETPF, for the assimilation of the

stochastic quasi-geostrophic equations.

6.3.4 Delayed assimilation

It is also interesting to compare the MLETPF and standard ETPF estimators for the delayed

assimilation case in Sec. 5.6.2. This is when assimilation does not start until t = 30, and

then proceeds as it did in the last example until the end of the time interval at t = 80.

All of the parameters used in the previous section for the MLETPF and standard ETPF

estimators remain the same. Figure 33 shows the same as Figure 32 only for the delayed

assimilation case considered in this section. These results broadly follow those shown in

the previous section, with a O(ε−1) speed-up in computational cost being achieved by the

MLETPF estimators.
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Figure 34: The forward model computational cost, and the cost of solving the optimal trans-
port problems during assimilation in an ETPF simulation for the stochastic quasi-geostrophic
equations with various values of ε. Following the asymptote shown by the dashed black line,
the forward model cost scales as O(δx−4l ), however is not growing as fast as the cost associ-
ated with solving the optimal transport problems.

6.3.5 Probability integral transform histogram

In Sec. 5.6.3 the calibration of the forecast ensemble of streamfunction approximations{
ψ

(h,δxl),i
tk

(x, y)
}N
i=1

in a data assimilation example was considered. To do this, observations

taken from the reference trajectory, ψ(h,δxl),ref
tk

(x, y), evaluated at a coordinate on the domain,

were used to generate a probability integral transform histogram via the methodology in Sec.

3.1.1. This is now done for the hierarchy of forecast ensembles, evaluated at (0.3, 0.3),
{
ψ

(hL0 ,δxL0 ),i
tk

(0.3, 0.3)
}
i=1,...,NL0

, l = L0,{
ψ

(hl,δxl),i
tk

(0.3, 0.3), ψ̂
(hl−1,δxl−1),i
tk

(0.3, 0.3)
}
i=1,...,Nl

, l > L0,
(6.9)

that were used in the data assimilation example in Sec. 6.3.3. The hierarchy above corre-

sponds to that produced in the MLETPF simulation associated with the smallest ε value used

in Sec. 6.3.3. At each assimilation step, a single ensemble forecast of size N0 is generated

from the hierarchy above via the methodology in Sec. 3.2, and the probability integral trans-
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form histogram is then constructed in the same way as in Sec. 5.6.3 using this ensemble

forecast. The histogram is shown in Figure 35. This approximately uniform histogram, very

much like the one shown in Sec. 5.6.3, suggests that the MLETPF approximation to the

forecast distribution at each assimilation step is calibrated with the reference trajectory, at

the spatial coordinate considered.
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Figure 35: Probability integral transform histogram (with normalized frequency) of the mul-
tilevel ensemble forecast generated from the hierarchy of forecast ensembles in (6.9), used
for the MLETPF approximation to the analysis mean of the filtered streamfunction. Obser-
vations are given at every assimilation step by the reference trajectory evaluated at (0.3, 0.3).
The histogram is approximately uniform suggesting that the forecast from the MLETPF is
calibrated with the reference trajectory.

6.4 Conclusions

This chapter has extended the multilevel ensemble transform particle filtering (MLETPF)

framework, and the seamless transformation / coupling scheme in Sec. 4.2.2, to spatio-

temporal cases. More specifically, these cases consider filtering partial observations into

forecasts of finite element discretizations of random functions. The observations come from
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evaluating a reference trajectory at coordinates on the domain. A proof of concept is pre-

sented with the stochastic quasi-geostrophic equations, introduced in the previous chapter.

This extension of the MLETPF creates an estimator that is found to be significantly more

efficient than the standard ETPF estimators for this problem, proposed in the previous chap-

ter. This overall speed-up is a result of the forward prediction model cost dominating that of

solving the optimal transport problems during assimilation. The efficiency gains are products

of a seamless coupling scheme that successfully transforms weighted forecast ensembles of

finite element discretizations of random functions, with fine and coarse resolutions, to anal-

ysis ensembles that are positively correlated with one another. This coupling holds in two

cases, where assimilation starts from a known state and where assimilation is delayed until

later in the simulation.

Due to the spatial discretization of the problems in this chapter, the sample sizes of the

difference estimators in the multilevel framework should be set to decay more rapidly than

in only temporally discretized problems. Therefore approximations on a coarse level of

resolution will be the bottle-neck to the computational cost of solving the optimal transport

problems required at assimilation stages in the MLETPF. Although it is not investigated here,

due to effective results being established regardless, it is a likely future research direction to

implement the iterative optimal transport algorithms [Cuturi, 2013] for these coarser approx-

imations, possibly by using a second-order accurate framework [de Wiljes et al., 2016]. This

would extend the regime of ε values that the MLETPF achieves speed-ups over the standard

ETPF for, see Sec. 4.4.
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Chapter 7

Conclusions

This thesis has presented a way of using multilevel Monte Carlo (MLMC), a novel variance

reduction technique for statistical estimators, to increase the efficiency of ensemble data as-

similation. Multilevel Monte Carlo [Giles, 2008, Cliffe et al., 2011] is a generic framework

applicable to many areas within computational statistics, including ensemble data assimila-

tion. The technique can significantly reduce the computational expense of estimating statis-

tics to discretized random variables. A number of unique challenges arise when applying

MLMC to ensemble data assimilation, and these have been carefully addressed throughout

this thesis by utilising a wide range of existing techniques, such as optimal transportation

[Villani, 2008].

Ensemble data assimilation, in particular filtering, is a natural application for MLMC,

due to the large computational cost associated with propagating ensembles of model simu-

lations forward in time and space, especially in high-dimensional cases. These ensembles

make up approximations to potentially nonlinear forecast distributions of states from random

systems, conditioned on partial observations. Ensemble transform methods for data assimila-

tion, such as the ensemble transform particle filter (ETPF) [Reich, 2013], are effective algo-

rithms to generate these ensembles. As a benchmark for applying MLMC to ensemble data

assimilation, the ETPF has been considered in this thesis. A particular localisation scheme

can be used in combination with this algorithm to make it applicable to high-dimensional

cases [Cheng and Reich, 2013]. The resultant methodology of this application is referred to

as ‘the multilevel ETPF’ (MLETPF) throughout.

Multilevel Monte Carlo generates statistical estimates via a linear combination of a se-

quence of independent Monte Carlo estimators, each approximating the difference between
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two adjacent levels of discretization for the same random variable. It is important that the

coarse and fine ensembles in each of these sub-estimators are positively correlated. This al-

lows for a ‘trade off’ between bias, from the levels of discretization, and sampling variance,

in each sub-estimator. In turn this leads to computational cost reductions relative to a stan-

dard Monte Carlo equivalent with the same order of accuracy. Maintaining such a coupling

between coarse and fine ensembles during resampling in nonlinear filtering algorithms is the

challenge unique to applying MLMC to this research area.

Additionally, this thesis extends the scope of evaluation for MLMC approximations past

that of just error analysis. A framework for applying scoring rules for ensemble forecasts

to MLMC approximations is proposed. In standard ensemble forecasting literature, scor-

ing rules use observations from a process that one is trying to forecast in order to evaluate

properties of the forecast. Indeed, data assimilation can be utilised in combination with the

observations used in this context. The proposed framework allows the hierarchy of ensem-

bles, that form the difference estimators in the MLMC method, to be transformed into a

single ensemble where it is possible to apply the aforementioned scoring rules.

Unlike the standard MLMC framework proposed by Giles [2008], where the computa-

tional cost of propagating the ensembles forward in time and space (the so-called forward

model cost) made up the entire cost of the estimators, multilevel ensemble data assimilation

algorithms have an additional cost of the assimilation stages. Therefore, for the MLMC ap-

plication to have a significant impact on the overall computational cost of producing filtering

estimators, the forward model cost must dominate the cost of the assimilation stages. This

dominating cost has been found to occur in two different ways:

• Firstly, localisation that alleviates likelihood degeneracy from high-dimensional states,

can also be used to reduce the computational cost of the assimilation stages in the

ETPF algorithm that require optimal transport problems to be solved. ‘Full localisa-

tion’ is used in order for this to occur, meaning all correlations amongst state com-

ponents are assumed to be negligible during assimilation. Like the localisation used

in the ensemble Kalman filter, this does lead to inconsistency. However the resulting

filters are still found to be stable in models such as the Lorenz 96 equations [Gregory

and Cotter, 2017b].

• Secondly, for high-dimensional systems, the forward model cost of the ETPF can be

large enough, for some orders of accuracy, to dominate the assimilation cost of the
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MLETPF. Therefore MLETPF estimators can be computed with overall computational

cost reductions relative to that of the standard ETPF. However as the desired order of

accuracy of these estimators increases, the assimilation cost will likely dominate that

of the forward model, hindering the cost reductions that the MLETPF achieves.

In order to investigate the latter point, this thesis has explored an extension to the lo-

calisation technique for the ETPF presented in Cheng and Reich [2013], specifically for

finite element approximations. The extension uses L2-projection on a hierarchy of meshes

to localise likelihoods and distance metrics associated with the optimal transport problems

solved during assimilation stages. This framework enables observations, taken from a ref-

erence field, to be filtered into an ensemble of finite element discretizations of a random

field. An example of this is illustrated by the stochastic quasi-geostrophic equations, where

stochasticity in the streamfunction is modelled via Stratanovich noise. The ETPF filtering

approximation, applied in combination with the proposed localisation technique, can suc-

cessfully track the reference field, even when assimilation is delayed for a period of time at

the start of simulation.

The MLETPF framework using this localisation technique is also applied to the stochas-

tic quasi-geostrophic equations. Here, filtering estimators have been computed for a sig-

nificantly reduced computational cost relative to that of the standard ETPF method. It is

because of the large, dominating computational cost of the forward model in this case that

these overall cost reductions are achieved, even with solving only partially, and not fully,

localised optimal transport problems1 at each assimilation stage. This demonstrates how

the MLETPF can achieve computational cost reductions relative to the ETPF in partially

localised as well as fully localised cases.

A future direction of this research is to apply iterative schemes for solving the optimal

transport problems that appear within the assimilation stages of the MLETPF framework.

Used in combination with a second order correction, as done in de Wiljes et al. [2016], this

could reduce the computational cost of these assimilation stages. Given that the majority of

this computational cost is from the coarsest sub-estimators in the MLETPF estimator, using

iterative schemes for solving the optimal transport problems within just these sub-estimators

could extend the regime of accuracies that the MLETPF achieves cost reductions relative to

the ETPF for.
1Without full localisation, the expensive O(N3 logN) algorithm has to be used.
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The MLETPF framework offers an efficient, powerful tool for ensemble data assimila-

tion. This field of research is being utilised in an increasing number of applications, includ-

ing incorporating in-situ observations into weather forecasts. As such it is important that re-

search into both high-dimensional ensemble nonlinear filtering, and the associated efficiency

of the process is progressed as a priority. This thesis attempts to increase understanding of

both of these aspects.
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