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A B S T R A C T

This thesis presents a number of optimisations used for mapping the underly-
ing computational patterns of finite volume CFD applications onto the archi-
tectural features of modern multicore and manycore processors. Their effect-
iveness and impact is demonstrated in a block-structured and an unstructured
code of representative size to industrial applications and across a variety of pro-
cessor architectures that make up contemporary high-performance computing
systems.

The importance of vectorization and the ways through which this can be
achieved is demonstrated in both structured and unstructured solvers together
with the impact that the underlying data layout can have on performance. The
utility of auto-tuning for ensuring performance portability across multiple ar-
chitectures is demonstrated and used for selecting optimal parameters such as
prefetch distances for software prefetching or tile sizes for strip mining/loop
tiling. On the manycore architectures, running more than one thread per phys-
ical core is found to be crucial for good performance on processors with in-
order core designs but not required on out-of-order architectures. For archi-
tectures with high-bandwidth memory packages, their exploitation, whether
explicitly or implicitly, is shown to be imperative for best performance.

The implementation of all of these optimisations led to application speed-
ups ranging between 2.7X and 3X on the multicore CPUs and 5.7X to 24X on
the manycore processors.
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1
I N T R O D U C T I O N

1.1 preamble

The current trend in processor design is parallelism and has led to the advent
of multicore and manycore processors whilst effectively ending the so called
"free lunch" era in performance scaling [85]. Modern multicore and manycore
processors now consist of 10-100 core numbers integrated on the same die,
wide vector units with associated instruction set extensions, multiple back-
end execution ports along with deeper and more complex memory hierarchies.
Consequently, achieving high performance on these architectures mandates
the exploitation of all of the available on-chip parallelism as well as the features
of the memory system.

In the context of Computational Fluid Dynamics (CFD) applications, optim-
ising codes to make full use of the architectural features of modern processors
can result in considerable speed-ups [60],[26]. However, incorporating such
optimisations in existing applications is no small task. First of all, the imple-
mentation of the underlying numerical methods may have to be reconsidered
in order to make them more amenable to parallelism across different granular-
ities. Secondly, accessing certain features of modern processors may mandate
the use of specialised, non-portable code. This may in turn harm performance
portability across the myriad of architectures available in high-performance
computing systems unless suitable abstractions are found to address this.

For the general CFD practitioner, however, the issue remains of finding a
trade-off between programming effort and gains in performance for their ap-
plication, both in the short and in the long term. Thus, it is essential to expose
the CFD community to the whole range of techniques available and their im-
pact on realistic applications and modern processors.

This thesis presents such optimisations across two distinct CFD codes rep-
resenting both structured and unstructured paradigms and evaluates their per-
formance on modern multicore and manycore processors.
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1.2 thesis contributions

This thesis makes the following contributions:

• Demonstrates empirically the existence of a performance gap between
CFD codes that are not optimised for the current era of multicore and
manycore processors and those that are, in structured and unstructured
applications. Although on the multicore CPUs, this difference is in the
region of 3X, on manycore processors such as the Intel Xeon Phi, the gap
in performance grows to more than an order of magnitude.

• Presents techniques useful for extracting good performance out of mod-
ern multicore and manycore processors using a single body of source
code written in a traditional high-level language for structured and un-
structured applications. Architectural specific optimisations are abstrac-
ted away using standard language constructs and machinery such as
classes, templates and pre-processor macros whilst optimal parameters
are identified for different architectures via auto-tuning.

• Demonstrates the importance of making good use of the available vector
units in modern processors and presents the changes required to vec-
torize the computational patterns found in structured and unstructured
applications such as stencil operators and gather and scatter primitives.
This is achieved by exploring a wide variety of techniques ranging from
compiler intrinsics to OpenMP (>=4.0) compiler directives in conjunction
with re-writing various sections of the code in order to expose data-level
parallelism at the algorithmic level. The results in this thesis show that
the best trade-off between performance and portability is obtained via
the use of OpenMP directives throughout the code with specialised ar-
chitectural specific implementations limited to efficiently loading data
into vector registers.

• Establishes the importance of choosing the optimal data layout format
and how this may vary depending on whether the partial differential
equations are discretised on structured or unstructured grids. The res-
ults in this thesis show that the Structures of Arrays (SoA) or the hybrid
Array of Structures Structure of Arrays (AoSSoA) format is the most op-
timal for structured mesh applications due to allowing for efficient vector
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load and store operations. This is in contrast to unstructured mesh applic-
ations where the Array of Structures (AoS) format was found to perform
better due to its superior exploitation of the cache hierarchy in compu-
tational kernels that exhibit gather and scatter operations. Thus, due to
these differences, the recommendation is for applications to implement
suitable abstractions of the underlying data layout format in order to
seamlessly transition between different storage types at compile time.

• Demonstrates the benefit of software prefetching in unstructured mesh
applications due to the indirect memory access patterns and the utility of
auto-tuning in finding the optimal distance parameters across different
multicore and manycore processors.

• Presents the implementation of thread-parallelism for both structured
and unstructured applications on the manycore architectures. This is
shown to be highly beneficial for in-order architectures that require more
than one active thread per physical core to hide memory latencies and
keep the arithmetic units busy although proved to be detrimental to per-
formance on out-of-order architectures.

• Demonstrates the utility of using performance models for appraising and
analysing the performance and merits of optimisations with respect to
the underlying hardware and the characteristics of the computational
kernels and patterns.

• The results in this thesis clearly show that optimisations that aim to
exploit parallelism across different granularities in the underlying al-
gorithms (instruction, data, thread, core) exhibit good performance across
both multicore as well as manycore processors. The same also applies
to optimisations that reduce the amount of data transfers from main
memory and exploit the cache hierarchies or the available high-bandwidth
memory implementations. However, these may not be useful or relevant
for future architectures that deviate in their design from the architectural
principles currently used in multicore and manycore processors. These
are:

– 10-100 cores integrated on the same die via an on-chip interconnect
(ring, mesh)

– multiple execution ports and deep instruction pipelines
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– vector units with associated instruction set extensions

– multiple execution contexts per core (multithreading)

– deep memory hierarchy based on different cache levels and includ-
ing high-bandwidth memory

– multiple processors per node (i.e. multi-socket boards)

1.3 thesis outline

The structure of this thesis is as follows:

chapter 2 presents the changes that have taken place in the design of
processors over the past decades and highlights the shift in paradigm which
has led to the advent of multicore and manycore processors. This is followed
by a description of the key architectural features of modern multicore and
manycore processors and on the increasing gap in performance between ap-
plications that exploit these in their implementation and those that don’t. The
implications that these have on the optimisation and performance of existing
CFD codes is discussed together with a review of some of the approaches that
have been used in literature for mapping CFD algorithms onto modern parallel
architectures.

chapter 3 gives the necessary background on the processor architectures
used in this work in terms of their architectural features and the implications
that these have on application performance. This is followed by a description
of the Roofline performance model and its application in the context of this
work.

chapter 4 presents optimisations for improving the performance of block-
structured CFD codes on modern multicore and manycore processors and
demonstrates a wide range of techniques for mapping the underlying com-
putational patterns of structured mesh solvers such as stencil operators onto
the architectural features of modern processors.

chapter 5 presents a number of optimisations for improving the perform-
ance of unstructured CFD codes on modern multicore and manycore pro-
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cessors. Examples of optimisations include: grid renumbering, vectorization,
face colouring, data layout transformations, on-the fly transpositions, software
prefetching, loop tiling and multithreading. Their implementation and impact
are demonstrated in an unstructured CFD code of representative size and com-
plexity to an industrial application and across a wide range of processor ar-
chitectures such as the Intel Sandy Bridge, Broadwell and Skylake multicore
CPUs and the Intel Xeon Phi Knights Corner and Knights Landing manycore
processors.

chapter 6 discusses the achievements of this thesis, its limitations and
future work.



2
B A C K G R O U N D

This chapter begins by presenting the changes which have taken place in the
design of processors over the past decades and highlights the shift in paradigm
that has led to the advent of multicore and manycore processors. This is fol-
lowed by a discussion on the key architectural features of modern multicore
and manycore processors and on the increasing gap in performance between
applications that are able to exploit their features and those that are not. Fi-
nally, the implications with respect to the optimisation and performance of
CFD codes are also discussed as well as some of the approaches that can be
used for mapping CFD algorithms onto modern hardware.

2.1 trends in processor design

Figure 1 presents trends in microprocessor characteristics over the past five
decades based on data from all major Central Processing Unit (CPU) manufac-
turers such as Intel, AMD and IBM. These are discussed in more detail in the
following sections along with the effects they have on the design of modern
processors and the constraints they place on the performance of applications
that run on them.

2.1.1 Moore’s Law

Moore’s law [56] is based on observations made by Gordon Moore in 1965 that
the number of components (i.e. transistors) per integrated circuit will double
every year as a result of continuous improvements in the fabrication of such
devices. He subsequently revised the pace of transistor doubling a decade later
to every two years.

The semiconductor industry has kept these predictions alive over the past
decades as seen in Figure 1 translating the constant flux of additional transist-
ors into optimisations and architectural features which made new processors
significantly faster and more efficient than their predecessors. Although there
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Figure 1: Trends in microprocessors over the past 46 years. Original data up to the
year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K.
Olukotun, L. Hammond, and C. Batten. Data between 2010-2015 collected by
K. Rupp. Latest data between 2015-2017 collected and plotted by I. Hadade.
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are signs that the rate at which the number of transistors is doubled is slowing
down [27] as demonstrated by the increasing gap between successive genera-
tions of processors that feature smaller transistors, it is believed that Moore’s
law will still survive the next decade by extending photolithography into the
third dimension [81] as well as by revising the pace of exponential growth to
every three to five years. Therefore, in the short to medium term, it is expected
that Moore’s law will continue to provide chip designers with an increase in
the number of transistors at their disposal for the design of processors that will
make up the high-performance computing systems of the next decade.

2.1.2 Frequency and Power

For many years, Moore’s law was accompanied by Dennard scaling [23]. Robert
Dennard demonstrated in 1974 the proportional relationship between the sup-
ply of voltage and current and the linear dimensions of a transistor. Therefore,
as the size of a transistor shrunk, so did the required voltage and current. This
allowed for circuits to operate at higher frequencies for the same power and
thus led to the increases in clock frequencies that we see in Figure 1. The trend
of frequency scaling continued until 2004 and reached its peak during the
1990s when clock rates doubled on average every 18 months. The combination
of extra transistors on the back of Moore’s law coupled with the continuous
increase in clock frequencies at which they operated allowed chip designers to
double the performance of processors with every new generation. The major-
ity of hardware innovations at that time were based on increasing instruction
throughput in order to exploit the high clock rates such as complex branch pre-
dictors, out of order execution and deeper instruction pipelines. Consequently
these improvements would automatically translate into faster execution of ap-
plications while requiring no changes to the programming paradigms. As per-
formance and the number of transistors increased at a similar rate over this
period, this led people to equate Moore’s law with ever increasing perform-
ance [90].

However, Dennard scaling failed to predict that as transistors shrink to smal-
ler and smaller scales, it becomes increasingly challenging to offset the increase
in current leakage as well as dissipating heat efficiently without affecting the
integrity of the device. Consequently, the increase in clock frequencies was
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deemed to be no longer profitable as evidenced by the plateau for both power
and frequency in Figure 1 from circa 2004 onwards.

2.1.3 Multicore and manycore architectures

The end of clock frequency scaling due to power consumption has forced the
semiconductor industry into a shift in paradigm. This has led to the advent
of multicore processors where instead of utilising the additional transistors
guaranteed by Moore’s law to build a single monolithic processor, they were
used to replicate and integrate multiple cores running at a lower frequency on
the same die. The advantages of the multicore approach are based on the fact
that reducing the clock frequency of a single core by 20% results in 50% less
power consumption at a cost of a 13% drop in performance [75]. Consequently,
if one were to divide the work equally among two processors both of which
operate at 80% of the original frequency, the performance would be 73% higher
than on a single core for the same power usage. Moreover, dissipating the
heat across multiple discrete cores is also more efficient than across a single
one. As a consequence, from 2004 onwards (Figure 1), hardware designers
started integrating more and more physical cores on the same die, a trend that
continues to this day where a multicore CPU can implement as many as 28

physical cores per chip [3].
However, the problem with multicore processors is that translating their su-

perior performance and energy efficiency into palpable application accelera-
tion mandates the explicit exploitation of parallelism. Whereas the previous
paradigm of increasing clock frequencies and improving serial performance re-
quired modest code interventions on the application-side, the multicore trend
only favours parallel applications to the exclusion of serial ones. As a result,
the burden is placed on the shoulders of application developers to revisit and
rethink their existing implementations so as to fully exploit the available par-
allelism as more and more cores are integrated unto a die [66].

This burden is further exacerbated by the emergence of manycore processors.
These architectures push the boundaries of the multicore approach even fur-
ther by integrating tens to hundreds of cores on the same die. This integration
is made possible by reducing the clock rates of cores at more than half the
frequency of their multicore counterpart and by discarding architectural fea-
tures geared towards serial performance which require a significant amount
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of on-die logic [65] such as out-of-order execution or complex branch predict-
ors in favour of more space and energy efficient features such as wide vector
units. Thus, although the "slower" core in a manycore architecture will operate
at a lower performance compared to the more powerful core in multicore pro-
cessors, the total compute throughput of the manycore processor when all of
them and their features are exploited in unison will be higher than that of the
multicore system [12]. However, for this to be true in practical terms depends
on whether the application can not only scale linearly with the number of cores
on the device but also across all other existing levels of parallelism (i.e. thread,
data and instruction). Otherwise, applications will see significantly worse per-
formance on manycore devices than on multicore systems due to the slower
cores that lack features oriented towards single thread performance. The one
saving grace is that multicore and manycore processors share much of the
same architectural features. As a result, optimisations for one architecture will
most likely be of benefit on the other.

Thus, one returns to the issue beforehand where making effective use of both
multicore and manycore processors requires the exploitation of parallelism
across different granularities. Therefore, understanding what these levels are
and ways through which one can exploit them will see an application perform
well in the era of multicore and manycore architectures which, judging by the
trends in Figure 1, is here to stay.

2.1.4 Levels of parallelism

instruction Instruction-level parallelism (ILP) is implemented by the un-
derlying architecture transparently via techniques such as instruction pipelin-
ing, out-of-order execution, register renaming, speculative execution or branch
prediction [65]. Consequently, in the majority of cases, these features will be
exploited at a lower level of abstraction than that of the program code. How-
ever, some forms of ILP can be addressed by the application depending on the
choice of algorithms and their implementation. For instance, Figure 2 presents
the execution units of two successive multicore architectures, namely the Intel
Sandy Bridge (2011) and Haswell (2013). The changes to the execution unit
that have been implemented in the newer Haswell architecture can be seen in
orange. A close inspection of both reveals several things. On Sandy Bridge, in
order to fully exploit the available floating point units in ports 0-1, the compu-
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tations would need to exhibit a near perfect balance between multiplications
and additions. Otherwise, in the case of an imbalance represented by a signi-
ficantly larger number of additions over multiplications or vice-versa, one of
the execution ports would be oversubscribed while the other would sit idle
therefore reducing the maximum attainable performance by a factor of two.
On Haswell, both ports 0 and 1 implement Fused-Multiply-Add (FMA) cap-
abilities. As a result, two separate FMA instructions can be executed on both
in parallel. However, applications that have an imbalance between multiplic-
ations and additions will also suffer from imbalance on Haswell since these
won’t be cast to FMA operations. Consequently, a vector multiplication would
only execute on port 0 while an addition only on port 1. Another example is
floating point division which is only implemented on port 0 across both mi-
croarchitectures. As these operations are non-pipelined and can only execute
on 128-bit lanes [40], an algorithm that translates to a high number of divi-
sions will degrade the performance significantly since it will prevent any other
operation to utilise port 0 leading to an instruction bottleneck.

Some of the issues above can be addressed either through a different choice
of algorithms or through programming techniques such as casting all multi-
plications or additions to FMA operations by either multiplying by a constant
or zero addition. This would in theory exploit both ports on Haswell although
it would lead to worse performance on Sandy Bridge due to the higher num-
ber of instructions that will execute on different ports. Moreover, these types
of optimisations are not recommended since the compiler would most likely
remove these transformations at certain optimisation levels. Therefore, the best
approach and advice for application developers is to consider the operational
balance of algorithms and where possible, implement functionality that takes
advantage of parallelism in the execution units by avoiding instructions that
can lead to port pressure such as floating point divisions and favouring imple-
mentations that exhibit a larger degree of parallelism (i.e. vector blend instruc-
tions vs. shuffles).

data Data-level parallelism (DLP) is exposed in conventional multicore
and manycore architectures through the SIMD execution model. This is based
on performing the same instruction be it a floating point, integer or a logical
operation across successive elements of a vector simultaneously. The number
of operands which can be processed by one instruction is limited to the width
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(a) Intel Sandy Bridge (b) Intel Haswell

Figure 2: Schematics of the execution units in the Intel Sandy Bridge and Haswell
microarchitectures. Updates in the Haswell architecture compared to Sandy
Bridge are highlighted in orange. Figures courtesy of [82]

of the vector registers. On modern multicore and manycore architectures, these
vector registers vary between 128, 256 and 512-bits in length and are exploited
via extensions to the ISA such as AVX [30] or variants thereof on x86 pro-
cessors from Intel and AMD, NEON [4] on ARM processors or Vector Scalar
Extension (VSX) on the latest IBM POWER architectures.

Although the implementation of DLP through the SIMD taxonomy was pop-
ular during the 1970s in specialised high-performance computing systems such
as the CRAY-1 [78], its adoption in commodity processors only came later dur-
ing the end of the 1990s when Intel introduced the MMX instruction set on 64-
bit wide registers. This was followed by the Streaming SIMD Extensions (SSE)
instruction set which increased the width of vector registers to 128-bits and
provided support for single precision floating point operations. However, sub-
sequent improvements were based only on incremental updates while the vec-
tor register width remained fixed for over a decade. Thus, the slow pace of
development as well as the lack of support for double precision floating point
operations limited the usability and adoption of SIMD in scientific codes.

The turning point came in 2010 with the introduction of AVX and 256-bit
vector registers in the Intel Sandy Bridge architecture. From then onwards,
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the pace of improvements to SIMD capabilities in Intel architectures gained
significant momentum as seen in Table 1 and led to further increases to the
width of vector registers to 512-bits as well as extensions to the instruction set
such as AVX2, IMCI and AVX-512.

This recent trend of increasing SIMD capabilities in modern processors stems
from the consideration that vector-based architectures are more area and en-
ergy efficient than scalar-based architectures [46],[84]. Consequently, we can
attribute this to the same trends that contributed to the shift to multicore
processors, that of energy efficiency. However, as with multicore architectures,
making best use of vector-based architectures requires the explicit exploitation
of significant amounts of parallelism in the application, albeit at at a different
granularity. This is either done manually through the utilisation of assembly,
compiler intrinsics or libraries implementing the former or by the compiler
based on its internal heuristics or guided through directives. The conversion
from a scalar to a vector implementation is called vectorization which, if ap-
plied automatically by the compiler with limited or no external intervention
becomes known as auto-vectorization. In the best case scenario, the latter is
always true and the compiler is able to cast the majority of instructions in the
program code as vector operations. However, this is only the case in applica-
tions that exhibit regular access patterns and where the safety of vectorization
can be guaranteed by the compiler. Consequently, in the majority of cases, the
vectorization of any scientific code of significant size and complexity is a la-
borious endeavour which is made even more complicated in the presence of
irregular and complex access patterns.

On specialised hardware such as NVIDIA GPUs, data parallelism is imple-
mented through Single-Instruction-Multiple-Thread (SIMT) execution whereby
all threads within a warp execute the same instruction. As a result, these archi-
tectures behave similarly to the general purpose SIMD architectures of conven-
tional multicore and manycore processors with the only difference being the
number of operands that can be processed simultaneously. Consequently, op-
timisations that expose a large degree of data parallelism on vectors of variable
lengths will perform well across all architectures.

thread Thread-level parallelism (TLP) is based on the ability of modern
multicore and manycore architectures to maintain architectural state for more
than one execution context. In multicore architectures such as Intel CPUs,
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year vector width instruction set architecture

1997 64-bit MMX P5

1999 128-bit SSE P6

2001 128-bit SSE2 NetBurst
2004 128-bit SSE3 NetBurst
2006 128-bit SSE4 Core
2007 128-bit SSE4.2 Nehalem
2010 256-bit AVX Sandy Bridge
2013 256-bit AVX2 Haswell
2013 512-bit IMCI Knights Corner
2016 512-bit AVX-512F/CD/ER/PF Knights Landing
2017 512-bit AVX-512F/CD/BW/DQ/VL Skylake Server

Table 1: Evolution of SIMD in Intel processors

TLP is implemented via the Simultaneous Multithreading (SMT) model where
every physical core on the die can appear to the operating system as two lo-
gical cores. This is achieved by duplicating features that maintain execution
state but not the execution units. Therefore, when two threads (i.e. execution
contexts) are scheduled to run on the same physical core, if one of them is
stalled due to a cache miss, its state can be saved while the other thread is
given control and ownership of the execution unit assuming that its instruction
operands are available. Thus, one can hide latencies incurred from dependen-
cies in the instruction pipeline or misses in the cache hierarchy by overlapping
the execution of two threads.

On manycore architectures such as the Intel Xeon Phi, each core is capable
of running up to four concurrent threads. On the Knights Corner architecture,
the execution of more than one thread per physical core is required in order
to compensate for the in-order nature of the core where a miss in the L1 cache
leads to a complete execution stall. Therefore, by running two, three or four
threads concurrently, context can be switched to any thread that has data avail-
able when a miss in L1 occurs therefore circumventing a complete execution
stall. In essence, TLP on the Knights Corner (KNC) coprocessor is used as
a means of accomplishing out-of-order execution. Consequently, although a
KNC coprocessor might integrate up to 61 physical cores, best performance
mandates the exploitation of at least 120 independent execution contexts (i.e.
threads).

This is similar to the approach taken by NVIDIA GPUs where the SIMT
execution model utilises a number of threads grouped in warps which are ex-
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ecuted in a lock-step fashion on a Streaming Multiprocessor (SM). If one group
of threads waits on a memory transaction, context can be quickly switched to
another one thereby hiding the latency incurred by the prior group.

The effectiveness as well as the exploitation of TLP is therefore highly de-
pendent on the application as well as the underlying architecture. On multicore
architectures that feature powerful out-of-order cores, running more than one
thread per core can be detrimental to performance depending on whether the
application is compute or memory bound. On the other hand, on manycore ar-
chitectures, the exploitation of TLP is required for good performance due to the
"slow" in-order cores. For GPUs, the SIMT model somewhat blends data and
thread parallelism together however, on the Intel Xeon Phi architecture, thread
parallelism differs from data parallelism and requires separate consideration
such as another level of domain decomposition for grid-based applications.

core Parallelism at core granularity is based on the exploitation of the avail-
able physical cores that are integrated on the same die. This can be explicitly
addressed on conventional multicore and manycore architectures either via
exploiting the shared memory nature of multicore systems where the discrete
cores of a multicore processor usually exhibit Uniform-Memory-Access (UMA)
properties in respect to main memory or via the Single Program Multiple Data
(SPMD) model. In the latter, copies of the same application are executed inde-
pendently across the physical cores while communication among them is per-
formed explicitly via messages using programming models such as Message
Passing Interface (MPI). To complicate matters further, it is becoming common
practice for scientific codes to implement both types of techniques whereby
one or more cores in a multicore or manycore processor runs in a SPMD fash-
ion whereas the rest take the form of threads spawned from the SPMD context
that communicate via shared memory rather than explicit messages due to the
more favourable latencies. Such programming models are defined as hybrid
and are particularly encouraged on manycore architectures such as the Intel
Xeon Phi due to the need of running more than one thread context per core.

The equivalent of a discrete core on GPUs differs depending on the manu-
facturer. For NVIDIA GPUs, this would be the SM. However, compared to the
physical cores in conventional multicore and manycore systems, the function-
ality and execution of an SM on NVIDIA GPUs is performed exclusively by the
hardware. A group of threads (warp) can be scheduled to run on any available
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SM. As a result, parallelism at such level cannot be exploited explicitly by the
application.

node Compute nodes that form the building block of contemporary high-
performance systems usually host two or more multicore CPUs that are integ-
rated on the same circuit board in separate sockets and connected together via
proprietary high bandwidth interconnects. Alternatively, they can usually con-
tain a single self-hosted manycore processor such as the Intel Xeon Phi Knights
Landing or a multicore CPU as well as one or more accelerators such as GPUs
or the Intel Xeon Phi KNC coprocessor due to the inability of such platforms
to host their own operating system. Consequently, exploiting node parallelism
can mean different things depending on the architectural composition of the
node.

For heterogeneous nodes containing both a conventional multicore CPU and
an accelerator or coprocessor, node parallelism can mean performing symmet-
ric computations on both where some computations are offloaded to the accel-
erator while another stream of independent calculations is performed on the
CPU. The difficulty in this approach is that of load balancing the execution on
two distinct architectures with different levels of throughput and latencies. An-
other type of parallelism at the granularity of an heterogeneous node involves
the exploitation of locality when more than one accelerator or coprocessor are
connected to the same circuit board.

For homogeneous node architectures comprising of a number of multicore
CPUs or a manycore processor, parallelism at this granularity is usually the
same as that at the core granularity with the only consideration that commu-
nication via shared memory across different sockets will most likely involve
Non-Uniform-Memory-Access (NUMA) effects as each socket is affine to the
memory nearest to then.

2.1.5 Amdahl’s Law

Since achieving high performance on both multicore and manycore processors
mandates the explicit exploitation of parallelism across different levels, the
maximum speed-up that an application can exhibit on these architectures will
be limited by Amdahl’s law [38],[13].
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Amdahl’s law [7] states that the speed-up that can be attained by an applic-
ation that is executed in parallel is limited by the percentage of execution that
is performed serially such that:

S(N) =
1

(1− P) + P
N

(1)

where S(N) is the speed-up as a function ofN processors, P the fraction of code
that is executed in parallel and N the number of processors this is parallelised
on. Therefore, as N→∞, S(N)→ 1

(1−P)

In practical terms, the limitations imposed by Amdahl’s law are that the
maximum speed-up that is attainable for an application that spends 25% of its
overall runtime in sequential execution is a factor of four, irrespective of the
number of processors (i.e 1

(1−0.75) = 4).
Consequently, applications that will perform best on multicore and ma-

nycore processors are those that can maximize P as well as make good use
of the underlying architectural features. Furthermore, the limitations in speed-
up imposed by Amdahl’s law are applicable across all of the available levels of
parallelism in modern processors where not exploiting one granularity such
as data parallelism leads to a drastic limitation of the maximum attainable
performance.

2.1.6 The memory hierarchy

A trend that is not featured in Figure 1 although as important is that of the
growing disparity between the performance of the processor and that of the
memory system. Wulf et al [93] observed in 1995 that although both micropro-
cessor speeds as well as memory bandwidth grew exponentially, they did so
at different exponents while the difference between them also grew at an expo-
nential rate. The authors coined this trend as "the memory wall" and argued
that if this were to continue at the same pace, it would limit the performance
of almost all applications to that of the memory system, thus making future
advancements in microprocessors redundant.

As a consequence, chip designers began devoting large amounts of die area
and transistors for the integration of on-chip caches. This improved memory
performance albeit for applications that addressed the principles of spatial and
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temporal locality in their memory access patterns. Nevertheless, the integra-
tion of larger caches across deeper hierarchies combined with their exploitation
by the application proved to be effective in bridging the gap in performance
between the processor and the memory system.

However, with the emergence of multicore and manycore processors, the
disparity between the performance of the processor and that of the memory
system began to grow again. This was due to the fact that as the number of
cores per processor increased, so did floating point performance as arithmetic
units were replicated as well. In contrast, other components such as the num-
ber of memory channels connecting the memory system to the processor did
not scale at a similar pace [57]. Consequently, although peak floating point
performance almost doubled with every processor generation, the ability of
the memory system to keep all cores and their arithmetic units busy with data
lagged further and further behind.

This is evidenced in Figure 3 which presents a comparison between peak
floating point performance and peak memory bandwidth of high-end Intel
multicore CPUs, NVIDIA Tesla GPUs and Intel Xeon Phi processors released
between 2007 and 2017. The highest imbalance between floating point per-
formance and memory bandwidth is seen in the Intel multicore CPUs. We can
explain the reasons behind this by analysing and comparing the last two pro-
cessors which were released in 2016 and 2017 respectively. These are represen-
ted in Figure 3 by the 22-core Intel Broadwell E5-2699 v4 processor and its dir-
ect successor, the 28-core Intel Skylake Platinum 8180 processor. Although the
latter has more than double the floating point performance of its predecessor
due to AVX-512 and the increase in size of vector registers from 256 to 512-bits
as well as six additional cores, the number of memory channels between the
two architectures only increased by 50% from the previous four to six. As a
result, the increases in floating point performance on the Skylake-based pro-
cessor have not been matched with a similar increase in memory bandwidth
therefore leading to a higher imbalance between the arithmetic capabilities of
the processor and the performance of the memory system.

On manycore architectures such as NVIDIA Tesla GPUs or Intel Xeon Phi
processors, this imbalance is alleviated due to the implementation of on-package
high bandwidth memory such as the Multi-Channel DRAM (MCDRAM) in
the Intel Xeon Phi Knights Landing architecture. This is integrated using 3D-
stacked technology and is connected to the Knights Landing die via eight high-
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Figure 3: Comparison between peak floating point performance in double precision
and peak memory bandwidth across Intel Xeon multicore CPUs (CPUs),
NVIDIA Tesla GPUs (GPUs) and Intel Xeon Phi processors (Phis) spanning
the last decade. Data courtesy of K. Rupp [77] with minor updates by I.
Hadade

bandwidth controllers offering a factor of four more bandwidth than the tradi-
tional DDR4 memory [44]. Therefore, although the Knights Landing architec-
ture has increased floating point performance by more than a factor of three
compared to its Knights Corner predecessor, the performance of MCDRAM
over the previous GDDR5 implementation in Knights Corner has scaled at a
similar rate.

A similar approach to that of the Knights Landing architecture is also taken
by NVIDIA Tesla GPUs with the integration of High-Bandwidth Memory 2

(HBM2) and High-Bandwidth Memory 3 (HBM3) in the P100 and V100 GPUs
based on the Pascal and Volta architectures. However, an important difference
between the two is that the MCDRAM implementation on the Knights Land-
ing architecture can be configured in a variety of memory modes by the user
whereas the behaviour of both HBM2 and HBM3 is hard wired on the GPUs.

A consequence of the growing disparity in performance between the pro-
cessor execution speed and the bandwidth and latency of main memory is
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that the number of floating point operations required to keep all of the avail-
able arithmetic units busy for every byte of data retrieved from main memory
has increased considerably. This is highlighted in Figure 4. While this ratio is
dependent on the machine balance and varies across architectures, it is still
growing on the multicore CPUs as previously seen as well as on the NVIDIA
GPUs, albeit at a different rate. The implication that this has on application
performance is that algorithms that were previously bound by the computa-
tional capability of the processor, such as dense matrix-vector operations, are
now limited by the performance of the memory. Consequently, techniques for
improving the exploitation of the cache hierarchy and which limit the expos-
ure of an application to the latency and bandwidth of main memory will have
a high impact on modern architectures and especially on multicore processors.
On the other hand, while the Intel multicore CPUs seem to suffer the most
from this growing imbalance, this can be rectified by integrating on-package
high bandwidth memory systems similar to the one in the Knights Landing ar-
chitecture to counter balance the "memory wall". Thus, it may be only a matter
of time until such implementations are also found in high-end Intel multicore
CPUs. This may somewhat complicate matters for the application developer as
these will potentially require explicit attention for best performance however,
without them, applications will see little benefit from the continuous increases
in floating point performance if these are not corroborated with increases in
memory performance.

2.2 the performance gap

The multicore and manycore trend has led to processors which exhibit paral-
lelism at various granularities along with deeper and more complex memory
hierarchies. Consequently, translating the performance of these modern archi-
tectures into palpable application speed-ups mandates the exploitation of all
of their architectural features.

According to Satish et al [80], this has directly contributed to the so called
"ninja performance gap" where only a limited number of expert programmers
are able to extract the full power of modern processors. In contrast, the av-
erage programmer can only extract a fraction of this or even worse, sees his
performance drop on the more unforgiving manycore processors.
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Intel Xeon Phi processors spanning the last decade. Data courtesy of K. Rupp
[77] with minor updates by I. Hadade



2.3 implications for cfd codes 45

The authors refute the claim that traditional approaches to programming
are at fault for this state of affairs and that the only panacea are radical altern-
atives such as new programming languages. Instead, they demonstrate that
while a gap in performance does exist, this can be mitigated by exploiting the
low hanging fruits such as vectorization via compiler directives and thread-
level parallelism using application interfaces such as Open Multi-Processing
(OpenMP). Through these techniques, the average difference in performance
between an application that was hand tuned for the underlying architecture
and its naively written counterpart dropped from the previous 24X to 3.5X.
Moreover, they demonstrated that more involved algorithmic improvements
such as data layout transformations for making better use of the underlying
vector units as well as memory optimisations for alleviating memory band-
width pressure via cache blocking or loop tiling have further reduced this
difference to an average of 1.4X across 11 real-world applications.

Consequently, although the authors envisage that the "ninja gap" will invari-
ably grow as emerging architectures will only improve the architectural fea-
tures that can only be exploited via explicit hierarchical parallelism, they also
claim that traditional approaches to programming are more than able to extract
performance out of these modern processors. However, they argue that higher
performance will also translate to a considerably higher programming effort.
Nevertheless, without optimisations focused on exploiting the multi-level par-
allelism available on modern processors and the features of the memory sys-
tem, scientific applications will see their execution speed stagnate or drop even
as newer processors will claim increases in their peak performance. The latter
will most likely be reserved exclusively for codes that are able to map to the
architectural features of these processors.

2.3 implications for cfd codes

The majority of existing CFD codes used in both industry and academia were
developed prior to the multicore and manycore era. As these codes were
primarily designed for distributed-memory environments via programming
models such as MPI with one rank per uniprocessor, they already exhibit par-
allelism at the granularity of a core or compute node. However, they do not
exploit the parallelism available at instruction, vector or thread-level which,
as demonstrated in the previous sections, is essential for extracting a high de-
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gree of performance out of modern architectures. Furthermore, on modern
processors, these codes are predominantly limited by memory bandwidth due
to the growing disparity between the peak floating point performance and that
of the available memory bandwidth. Consequently, optimisations that alleviate
the pressure placed on the memory system such as cache blocking and loop
tiling for structured grid applications or grid renumbering for unstructured
grids will most likely deliver palpable speed-ups [31].

On manycore architectures such as the Intel Xeon Phi Knights Landing, ex-
ploiting the on-package MCDRAM is imperative for getting the most out of
the hardware and to that extent, the processor supports a variety of configura-
tions that are traditionally hard wired in architectures such as GPUs. Finding
the best configuration therefore requires an empirical evaluation and depends
on various aspects related to the application. Moreover, on manycore architec-
tures that integrate simple in-order cores such as the Intel Xeon Phi Knights
Corner and NVIDIA GPUs, hiding the latency incurred by the lack of out-of-
order execution as well as complex hardware prefetchers is possible through
multithreading and an optimal software prefetching strategy.

Finally, as the number of cores continue to increase in multicore and ma-
nycore processors, running one MPI rank per core might not be the best solu-
tion especially for manycore architectures and their significantly slower cores.
Consequently, the implementation of hybrid parallelism with multiple threads
per MPI rank could be beneficial not only for manycore architectures but
also for multicore systems due to the ability of exploiting the shared memory
nature that is present in multi-socket compute nodes.

Incorporating these optimisations in existing large scale CFD codes is no
small task and is highly dependent on both the underlying processor architec-
tures as well as the CFD algorithms. In the context of finite volume methods,
such optimisations would vary depending on whether the governing equations
are discretised on structured or unstructured meshes as these exhibit different
computational patterns which mandate different optimisations. As for the un-
derlying processor architectures, the majority of multicore CPUs from Intel,
AMD, ARM and IBM share architectural similarities in that they all require
the exploitation of the underlying vector units and of the memory hierarch-
ies. As a result, the optimisations highlighted above will be transferable to a
large extent among all of them unless architectural specific implementations
are used. This is also applicable to the Intel Xeon Phi processors which can be
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exploited using the same programming models as their multicore counterpart
and where optimisations for the Xeon Phi processors are also beneficial to the
multicore CPUs and vice-versa.

On the other hand, although this is also applicable to more specialised archi-
tectures such as NVIDIA GPUs that also rely on data and thread-level parallel-
ism in their implementation albeit at larger scales, the programming models
required to exploit these architectures differ significantly from those used for
conventional hardware. To that extent, porting a large scale legacy CFD code
to GPUs is almost synonymous to writing the entire code from scratch which,
from the point of view of an industrial practitioner, is not feasible.

One approach to mitigate these portability issues is through the develop-
ment of a Domain Specific Language (DSL) or high level framework. This can
express the underlying algorithms in a form accessible to the CFD practitioner
and generate efficient code across both conventional multicore processors as
well as specialised GPU hardware. Examples of these are SBLOCK [14] de-
veloped by Brandvik et al for optimising the stencil computations arising from
structured CFD mesh applications. Another example in the context of struc-
tured mesh algorithms is OPS [70] which focuses more on the implementation
of optimisations for reducing the memory traffic of such algorithms via the
implementation of loop tiling and cache blocking techniques as well as their
mapping on both multicore as well manycore architectures such as Xeon Phi
and NVIDIA GPUs. Examples of DSLs for unstructured mesh computations
are OP2 [32],[59] and Liszt [22] and more specialised implementations with
application to finite element codes such as FEniCS [48] and Firedrake [69]
which integrates features from both the former as well as the OP2 project.

While the benefits of "writing once, run everywhere" are obvious in the con-
text of current processor trends, and this is certainly achievable with DSL im-
plementations such as the ones presented above, as Giles et al [31] remarked,
the utilisation of DSLs also brings forth a number of challenges. First of all,
there is the issue of expressiveness and whether a high level abstraction can
fully capture the requirements of a CFD practitioner in an industrial or re-
search context. Secondly, maintaining the software is challenging as many of
these implementations arise from highly technical research groups with finite
amounts of funding. Thirdly, there is also the issue of porting an existing large
scale application to such high level implementation which, is not very different
to that of re-writing the application from the very beginning.
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Consequently, in the context of existing codes, the only viable approach is
to revisit and optimise the underlying CFD algorithms so as to map them
onto the architectural features of modern processors. For such endeavours,
the optimisations and techniques presented in this thesis will act as valuable
resource for establishing the return on investment in terms of programming
effort over application speed-up that each particular optimisation can offer on
conventional multicore and manycore processors.

2.4 conclusions

This chapter presented current trends in the development of modern pro-
cessors and the effects these have on the performance of scientific applications
and CFD solvers in particular. A discussion on how best to mitigate these in
CFD applications was also given which serves as the main motivation of this
work along with previous efforts that have been implemented for this purpose.



3
E X P E R I M E N TA L S E T U P

This chapter provides the necessary background on the processor architectures
used in this thesis followed by a discussion on the Roofline performance model
and its application in our work.

3.1 processor architectures

The processor architectures described in this section and used throughout this
thesis as experimental platforms have been selected because: (i) they make
up a very large proportion of current and likely future node architectures in
high-performance computing systems; (ii) they incorporate architectural fea-
tures such as: multiple execution ports, out of order and in-order core designs,
wide vector units, multi-threading capabilities, medium to large core counts
as well as high-bandwidth memory implementations representative of current
multicore and manycore processor designs. Consequently, presenting and eval-
uating optimisations that exploit any or all of these features will make them
applicable for any processor architecture whether multicore or manycore that
implement one or all of them in their design.

3.1.1 Intel Xeon Sandy Bridge

The Intel Sandy Bridge (SNB) microarchitecture was the first to introduce 256-
bit vector registers and an extension to the SIMD instruction set via AVX [30].
The AVX instruction set maintains compatibility with its predecessors and is
implemented on top of SSE by fusing two 128-bit SSE registers. The latter
design consideration has an impact on certain operations that target data ele-
ments across 128-bit lanes such as shuffle operations and permutations. In the-
ory, the load ports in Sandy Bridge can perform 256-bit loads via AVX, however,
achieving this bandwidth requires the simultaneous usage of the two available
load ports. This limitation leads to situations where vectorization might not
deliver the expected performance boost due to load port pressure [40].

49
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For arithmetic purposes, and as already mentioned in Chapter 2, the Sandy
Bridge architecture can execute one vector multiplication and one vector ad-
dition in the same clock cycle thus requiring a balance of such operations for
best performance.

In terms of the cache hierarchy, the L1 is 32KB and 8-way associative and
can sustain two 128-bit loads and a single 128-bit store per cycle. The L2 cache
is 256KB in size and 8-way associativity and a 12 cycle load-to-use latency as
well as a write-back design. The L3 cache is 20MB in size and shared across
the cores on the die. Integration of all physical cores on the chip is done via a
ring-based interconnect [40].

3.1.2 Intel Xeon Haswell

The Intel Haswell (HSW) microarchitecture is based on a 22nm design and is
a successor to the Ivy Bridge architecture. Whereas Ivy Bridge did not contain
any major architectural changes compared to its Sandy Bridge predecessor,
Haswell provides a number of modifications through a new core design, im-
proved execution unit based on the AVX2 extensions and a revamped memory
subsystem [68].

The major improvements to the execution unit in the Haswell microarchi-
tecture regard the addition of two ports, one for memory and one for integer
operations which aids instruction-level parallelism. To that end, there are two
execution ports for performing FMA operations as part of AVX2 with peak
performance of 16 double precision floating-point operations per cycle, double
that of Sandy Bridge and Ivy Bridge. Further improvements provided by AVX2

are gather operations which are particularly useful for packing non-contiguous
elements within a vector register with application to unstructured mesh calcu-
lations and whole register cross-lane permutations and shuffles with the im-
plementation of the vpermpd instruction.

From a memory standpoint, the Haswell fixes the back-end port width is-
sue by providing true 64 byte load (2x256-bits) and 32 byte store (1x256-bits)
per cycle functionality. As a result, vectorization of codes that contain a large
amount of load and store operations should perform significantly better than
on the Sandy Bridge and Ivy Bridge architectures.
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3.1.3 Intel Xeon Broadwell

The Intel Broadwell (BDW) microarchitecture is the successor to Haswell to
which it brings a number of enhancements such as latency improvements for
floating-point multiply operations and FMA as well as increased throughput
of gather instructions [40]. The architecture is based on a 14 nm die shrink
from the previous 22 nm on Haswell which allows high-end multicore CPUs
based on the Broadwell architecture to integrate as many as 24 physical cores
on the same die, six more than on Haswell.

3.1.4 Intel Xeon Skylake Server

The Intel Skylake (SKL) Server microarchitecture was released in July 2017

and is the successor to Broadwell [41]. At core level, Skylake Server increases
the vector register size to 512-bits and adds support for AVX-512 instructions.
Although the execution unit has the same number of ports as Haswell and
Broadwell, port 0 and 1 can either perform AVX/AVX2 vector computations
on 256-bit lanes or fused 512-bit AVX-512 computations. Port 5 is exclusive to
AVX-512 execution. Therefore, to take full advantage of this architecture, vector
computations should target the wider vector lanes via AVX-512 as it utilises the
highest available throughput. Skylake Server can perform 32 double precision
computations per cycle when utilising both AVX-512 FMA units, twice more
than Broadwell and Haswell.

In terms of the cache subsystem, the L1 cache on Skylake offers similar
latency and size to Broadwell, 32KB at 4-6 cycles [40]. The major difference
however is based on the increase in bandwidth to 128 bytes (2x512-bits) for
loads and 64 bytes (1x512-bits) for stores which are required by AVX-512 oper-
ations. In essence, the L1 cache can service up to two entire cache lines (64 bytes
each) to the load ports if AVX-512 is used and the underlying data is aligned to
64 byte boundary which make these considerations crucial for achieving best
performance.

Radical changes are also present in the L2 cache which sees a factor of four
increase in size compared to Broadwell (1MB vs. 256KB)[40]. The L3 cache is
marginally smaller in size than on Broadwell and is configured as a victim
cache (non-inclusive) to the higher levels. The effect of these changes is that
applications making use of communication avoiding algorithms such as loop
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tiling or cache blocking should target the L2 cache rather than L3 with the
same considerations applying for software prefetching.

Access to main memory can be serviced by up to 6 memory channels on
Skylake Server versus 4 on Broadwell which should provide a 50% increase
in available memory bandwidth. This figure has been corroborated with our
own STREAM[53] benchmarks. Consequently, the difference in performance
between Broadwell and Skylake Server depends on whether the application is
compute or memory bound as previously discussed in Chapter 2.

Further changes are also present in regard to the the on-chip interconnect
topology where the previous ring implementation is replaced with a 2D mesh
interconnect which was initially implemented on the Intel Xeon Phi Knights
Landing architecture [40]. This enables the Skylake Server microarchitecture to
scale to as many as 28 cores per die.

3.1.5 Intel Xeon Phi Knights Corner

The Intel Xeon Phi KNC coprocessor can be classed as an x86-based Shared-
Memory-Multiprocessor-on-a-chip [43] with more than 60 physical cores on
the die each supporting four concurrent hardware threads.

A Knights Corner core contains one Vector Processing Unit (VPU) that can
operate on 32 512-bit wide registers and 8 mask registers based on the IMCI
extensions. The IMCI extensions however are not compatible with the SIMD ex-
tensions on x86 multicore CPUs. The functionality offered by the VPU is heav-
ily geared towards floating point computations with support for FMA, gather
and scatter operations useful for unstructured mesh computations. Theoretic-
ally, the VPU can execute one FMA operation per cycle (16 double precision
floating-point operations) however, due to the in-order execution nature of the
core, either software prefetching or more than one in-flight thread is required
to keep the VPU busy. This is due to the fact that every miss in the L1 cache
leads to a complete execution stall unless context can be switched to another
in-flight thread. The cores on the die are connected via a bi-directional ring
interconnect that offers full cache coherence.

Communication with the host CPU is performed via the PCI-Express bus in
a similar fashion to GPUs. Although Knights Corner can be used in a num-
ber of modes such as offload, symmetric or native, the native mode has been
used throughout this work as it removes any unnecessary synchronization
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constructs thus enabling for a more accurate assessment of the platform’s com-
putational characteristics and performance.

3.1.6 Intel Xeon Phi Knights Landing

The Knights Landing (KNL) architecture is the successor of Knights Corner
and second iteration of the Intel Xeon Phi family series. The Knights Land-
ing is the first self-boot manycore processor able to run a standard operating
system [44] and therefore differentiates itself among all other coprocessor and
accelerator platforms. Another important distinction of the KNL architecture
compared to its predecessor is binary compatibility with x86 multicore CPUs
and the integration of a high bandwidth on-package memory (MCDRAM)[83]
alongside standard DDR4 main memory.

The building block of the Knights Landing architecture is the tile which is
replicated across the entire chip on a 2D lattice interconnect. A tile is further
composed of two cores sharing a 1MB L2 cache and associated memory control
agents. The KNL core is based on the Intel Atom (Silvermont) architecture
and includes additional features targeting floating point workloads while also
supporting up to four in-flight threads [44].

For the purpose of compute, the core integrates two VPUs each support-
ing AVX-512 execution. Implementation of SSE/AVX/AVX2 instructions [44]
is present on one of the two vector units and not on both. Therefore, similarly
to the Skylake Server architecture, full throughput can only be achieved via
AVX-512 calculations as SSE/AVX/AVX2 can only utilise half of the available
vector units.

Due to the out of order nature, one thread per KNL core can saturate all
available core resources. The L1 cache can perform two 64 byte (2x512-bits)
loads and one 64 byte (1x512-bits) stores per cycle and supports unaligned
and split load accesses across multiple cache lines which was not previously
possible in KNC. Furthermore, the L1 cache also implements special logic for
gather and scatter operations whereby a single instruction can access multiple
memory locations at once without the need of a blocking loop implementation
as found in KNC [67]. This is particularly important for applications that ex-
hibit indirect and irregular memory access patterns such as unstructured mesh
solvers.
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The L2 cache is shared by the two cores in a tile via the Bus Interface Unit
(BIU) and has a bandwidth of 64 bytes (1x512-bits) for reads and 32 bytes
(1x256-bits) for writes per cycle. This can therefore become a bottleneck for
memory bound workloads when both cores issue AVX-512 vector loads and
store operations.

The Knights Landing architecture can support various clustering and memory
mode configurations which were traditionally hard-wired during the chip man-
ufacturing process but are now exposed as boot-able options [44]. Clustering
modes target ways in which data is routed on the 2D mesh in the event of a
cache miss in the shared L2 cache [83]. An L2 miss in Knights Landing involves
the interaction of three actors: the tile from where the miss originated, the
Cache Homing Agent (CHA) that tracks the location and state of the memory
address for which a miss was generated and the actual memory location (i.e.
MCDRAM or DDR4) [44].

In the All-to-All configuration, all memory addresses are distributed uni-
formly across all CHA’s without any locality considerations. This mode provides
the lowest performance out of all available configurations and is usually used
as fall-back in the event of memory imbalance or errors.

In the Quadrant configuration, the entire die is divided into four distinct
regions and memory addresses are mapped to the caching agents which reside
in the same quadrant. This creates affinity between the memory location and
the CHA which reduces latency and provides an increase in bandwidth.

Finally, in the Sub-Numa-Clustering mode, the die is divided in either four
or two distinct sections analogous to a four or two socket multicore CPU
node where affinity exists between all agents: tile, CHA and memory. This
configuration introduces NUMA considerations that have to be exploited on
the application-side as accessing data owned by a tile from a different region
will lead to increased latency due to the longer path traversed on the 2D mesh.
However, if implemented correctly, this mode of operation can provide the best
performance as all communications are localised.

With regard to memory modes, the Knights Landing architecture supports
three distinct memory configurations. The first option is Cache mode in which
the 16GB MCDRAM acts as a transparent direct mapped memory side cache.
In Flat mode, the MCDRAM is exposed as an explicit memory buffer that must
be managed by the application and which has a different address space than
standard DDR4 memory. Hybrid mode combines both of the previous options
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where MCDRAM can be used as cache and explicit high bandwidth memory
based on pre-defined ratios.

In this work, experimental results for the Knights Landing processor were
obtained using the ARCHER-KNL [2] evaluation platform. Consequently, all
runs were performed in the Quadrant cluster mode as this was the global con-
figuration across all nodes. With regard to memory modes, separate queues
allowed for the evaluation of both Cache as well as Flat modes.

3.2 the roofline model

In order to determine the effects of our code optimisations rigorously, per-
formance models are built and correlated based on the characteristics of the
processor architectures presented in Section 3.1. A good performance model
can highlight how well the implementation of an algorithm uses the underly-
ing architectural features of the processor as well as the degree of performance
that can still be achieved with further optimisations.

In this thesis, all performance modelling activities were performed using
the Roofline [91],[92],[62] performance model. The model is based on the as-
sumption that the principal vectors of performance in numerical algorithms
are computation, communication and locality [92]. The Roofline model defines
computation as number of floating point operations per second, communica-
tion as units of data from memory required by the computations and locality
as the distance in memory from where the data is retrieved i.e. (cache, DRAM,
MCDRAM etc). However, due to the fact that modelling the performance of
the entire cache system is a complex task for one architecture, let alone six, the
locality component in this work is set to DRAM main memory for the mul-
ticore CPUs, GDDR5 for the Intel Xeon Phi Knights Corner and MCDRAM for
the Intel Xeon Phi Knights Landing processor.

The correlation between computation and communication is defined by the
model as the arithmetic intensity of a given kernel which can be expressed
as the ratio of useful floating point operations to the corresponding number
of bytes requested from memory. As the units of measurement for both flops
and byte transfers in current CPU architectures are given as GigaFLOPS per
second and GigaBYTES per second, the maximum attainable performance of a
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computational kernel, measured in GigaFLOPS per second, can be calculated
as:

Max. GFlops/sec = min
{

Peak floating-point performance
Max. Memory bandwidth×Kernel flops/bytes

(2)

Peak floating point is obtained from multiplying the number of floating
point operations per cycle to the nominal clock frequency together with the
number of physical cores while maximum memory bandwidth is obtained us-
ing the STREAM[54],[53] benchmark.

The model visualises these metrics in a diagram [91] where the attainable
performance of a kernel is plotted as a function of its arithmetic intensity. This
acts as the main roofline of the model and exhibits a slope followed by a plat-
eau when peak FLOPS is reached. The position at which the arithmetic intens-
ity coupled with the available memory bandwidth equals peak FLOPS is called
the "ridge" and signifies the transition from memory to compute bound.

Achieving either maximum memory bandwidth or peak FLOPS on mod-
ern multicore and manycore processors requires the exploitation of a plethora
of architectural features even though the algorithm might exhibit a favour-
able arithmetic intensity. For example, achieving peak FLOPS requires a bal-
ance of additions and multiplications for fully populating all functional units
or for all such operations to be cast as FMA operations on architectures that
support such primitives. Moreover, even where the computational kernels ex-
hibit a perfect balance of operations or can cast all of them into FMA instruc-
tions, they will not automatically extract peak performance if data parallelism
through SIMD and instruction level parallelism through loop unrolling are not
exploited as well.

Achieving performance close to the maximum memory bandwidth of the
system requires that memory accesses are performed at unit stride and include
some form of prefetching either by the hardware or by the software. Further-
more, on two-socket systems, extracting the maximum performance out of the
memory system also requires that NUMA effects are catered for when running
at full node concurrency [92],[11]. Consequently, best attainable performance
will vary significantly between applications that exhibit a high degree of ir-
regular and indirect access patterns and those with regular and unit stride
memory access patterns such as structured and unstructured CFD codes.
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To demonstrate this, roofline diagrams are presented in Figure 5 for the
processor architectures described in Section 3.1 and which are used throughout
this thesis.

The vertical ceilings in Figure 5 that are parallel to the horizontal line repres-
ented as peak floating point performance are optimisations that are required
to improve computational performance. The ceilings that are parallel to the
diagonal represented by peak main memory bandwidth are memory optim-
isations that are necessary for efficiently exploiting the memory system of that
particular architecture. The order of each ceiling or roofline is set based on how
likely it is for the compiler to automatically apply such optimisations without
external interventions [92].

For the Sandy Bridge node, a balance between additions and multiplications
is required due to the design of the execution ports where one multiplication
and one addition can be performed every clock cycle as previously discussed.
An imbalanced kernel will fully utilise the addition or multiplication execution
unit whilst the other sits idle therefore reducing throughput by a factor of two.
Furthermore, lack of SIMD computations via AVX on 256-bit vector registers
further decreases performance by a factor of four from the previous ceiling in
the context of double precision computations.

On the Haswell and Broadwell nodes, lack of FMA operations reduces the
maximum attainable performance by a factor of four since two SIMD FMA
operations can be performed in one cycle on both architectures. Lack of balance
between floating point operations is also detrimental on these architectures
since these can only be performed in one of the two ports, same as on Sandy
Bridge. As a result, this leads to another factor of two drop in the maximum
performance that is attainable. Finally, absence of AVX/AVX2 execution on
Haswell and Broadwell results in a further reduction by a factor of four as a
result of the same considerations as on Sandy Bridge.

On the Skylake Server architecture, lack of FMA operations has a similar
effect to that on Haswell and Broadwell. However, if the wide SIMD units are
not exploited via AVX-512, the maximum attainable performance is reduced
further by a factor of eight due to the wide 512-bit vector registers.

The two-socket compute nodes based on the multicore CPU architectures
share the same ceiling for memory optimisations such as NUMA optimisations
when crossing socket boundaries followed by larger drops in performance in
cases where the kernel exhibits irregular access patterns.
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Figure 5: Example of rooflines for computational nodes based on the processor archi-
tectures presented in Section 3.1
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On the Knights Corner 7120P coprocessor, the in-order cores require the
use of multiple threads to compensate for lack of out-of-order execution. In
theory, the VPU unit can be filled by running between two or three threads
on the core. Running with only one thread in-flight reduces the attainable
peak performance by a factor of four in the worst case scenario. Furthermore,
similarly to Haswell and Broadwell, an imbalanced kernel that cannot fully
exploit FMA operations on Knights Corner will suffer a factor of two drop in
performance. Lack of SIMD results in a factor of eight decrease due to the wide
512-bit vector registers.

Since the Knights Corner architecture does not exhibit NUMA effects due to
the ring topology and interleaved memory bank placement, the first ceiling for
obtaining performance close to maximum memory bandwidth is prefetching.
This is due to the lack of hardware prefetchers. The second ceiling is similar to
the multicore architectures and represents lack of contiguous and unit stride
memory access patterns which results in a factor of four drop in performance
relative to the maximum attainable memory bandwidth.

On the Knights Landing architecture, the first in-core ceiling is based on
lack of FMA operations. As there are two VPUs in a Knights Landing core, if
the kernel’s floating-point operations cannot be executed as FMA instructions,
performance will drop by a factor of four. Furthermore, lack of AVX-512 leads
to a factor of eight drop in performance.

With regard to memory ceilings, the Knights Landing architecture integrates
both an L1 as well as L2 hardware prefetcher. As a result, the first ceiling is
represented by lack of contiguous memory access patterns. The second one is
based on not exploiting the MCDRAM implementation which leads to a factor
of five decrease of the maximum attainable memory bandwidth.

3.3 conclusions

This chapter presented the necessary background on the processor architec-
tures used in this thesis followed by a discussion on the Roofline performance
model and its application in this work.



4
O P T I M I S AT I O N O F B L O C K - S T R U C T U R E D M E S H
A P P L I C AT I O N S

4.1 introduction

This chapter presents a number of optimisations for improving the computa-
tional performance of block-structured CFD solvers across different processors
such as the Intel Sandy Bridge and Haswell multicore CPUs and the Intel Xeon
Phi Knights Corner manycore coprocessor. Code optimisations are demon-
strated on two computational kernels exhibiting different computational pat-
terns: regular and streaming access patterns represented by the update of flow
variables and the stencil-based operations arising from the computation of
fluxes. A discussion on the code transformations required for achieving effi-
cient exploitation of the available vector units, threads and cores for both ker-
nels and across the selected processors is also given while performance results
are correlated with the Roofline performance model.

The remaining chapter is structured as follows. Section 4.2 discusses re-
lated work, Section 4.3 presents the test vehicle for this study, a description
of the two computational kernels and the configuration of the hardware. Sec-
tion 4.4 describes the code optimisations and their implementation, Section 4.5
presents results and discussions while Section 4.6 gives concluding remarks.

4.2 related work

There have been a number of previous efforts concentrated on optimising the
performance of structured grid applications on modern processors and which
are also applicable to block-structured CFD codes.

Henretty et al [37] applied data transpositions for optimising the SIMD exe-
cution of stencil operations. Rostrup et al [76] demonstrated similar techniques
for exploiting data parallelism in structured grid applications with the addition
of implementing hand-tuned primitives for shuffling vector operands in sten-
cil operations in order to allow for aligned vector load and store operations on

60
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the Cell processor. Rosales et al. [74] determined the effect of data layout trans-
formations for improving the performance of vector operations and the issues
of exploiting a large degree of thread-parallelism on the manycore Intel Xeon
Phi Knights Corner processor using a Lattice Boltzmann code as a test vehicle.
Datta et al [21] studied the problem of modelling and auto-tuning the perform-
ance of stencil operations across a wide range of modern processors in order to
exploit their distinct architectural characteristics and therefore extract a higher
degree of performance portability. With regards to the latter, Mcintosh-Smith
et al [55] and Curran et al [19] presented the need for a performance port-
able approach to the optimisation of structured grid applications. According
to them, the solution to this problem is the utilisation of a framework that is
compatible among the majority of manycore processors such as OpenCL [63].
They demonstrated that performance portability across a variety of structured
grid codes can be achieved by re-writing the main computational kernels in
the OpenCL framework. Their results indicate that good performance portab-
ility can be achieved across a wide range of manycore architectures such as
NVIDIA and AMD GPUs as well as Intel Xeon Phi processors although this
does differ significantly depending on the complexity of the application.

Other approaches for ensuring performance portability on both multicore as
well as manycore processors is through auto-tuning as presented by Williams
et al [92] or the implementation of DSLs and source to source code generators
such as the already mentioned SBLOCK [14] and OPS [70] implementations.

The contribution of this chapter is the incorporation of some of the tech-
niques presented in literature together with more novel optimisations in a
block-structured solver of complexity and structure representative of indus-
trial CFD applications. Their impact is demonstrated on two multicore CPU
architectures as well as on the Intel Xeon Phi Knights Corner coprocessor and
shows that performance in structured grid applications can be exploited across
such architectures using traditional programming models coupled with port-
able APIs such as OpenMP.

4.3 background

The test vehicle for this study is an Euler solver used in an industrial setting for
performing quick calculations of transonic turbo-machinery flows. The solver
computes inviscid flow solutions in the m ′− θ coordinate system [87] where θ
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is the angular position around the annulus, m is the arclength evaluated along
a stream surface dm =

√
dx2 + dr2 and m ′ is a normalized (dimensionless)

curvilinear coordinate defined from the differential relation dm ′ = dm
r . The

m ′ − θ system is used in turbomachinery computations because it preserves
aerofoil shapes and flow angles. A typical computational domain is shown in
Figure 6 and consists of a number of blocks connected by stitch lines.

Figure 6: Computational domain consisting of five blocks and corresponding stitch
lines.

4.3.1 Governing Equations

The Euler equations are solved in semi-discrete form

d

dt
Wi,jUi,j = Fi−1/2,j − Fi+1/2,j +Gi,j−1/2 −Gi,j+1/2 +Si,j = RHSi,j (3)
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In equation (3), Wi,j is the volume of cell i, j, Ui,j is the vector of conserved
variables and the vectors Fi−1/2,j, Gi,j−1/2 and Si,j denote fluxes through i-
faces, j-faces and source terms, respectively and are evaluated as follows:

Fi−1/2,j = sζ
i−1/2,j


ρwζ

ρwζum + pnζm

ρwζuθ + pn
ζ
θ

ρwζh− pwζ


i−1/2,j

(4)

Gi,j−1/2 = s
η
i,j−1/2


ρwη

ρwηum + pnηm

ρwηuθ + pn
η
θ

ρwηh− pwη


i,j−1/2

(5)

Si,j = Wi,jρi,j


0

u2θ sinφ
umuθ cosφ

0


i,j

(6)

For the purpose of flux and source term evaluation, the contravariant velo-
cities wζ/η, the normals nζm,θ and nηm,θ and the radial flow angle φ are also
needed.

4.3.2 Spatial discretization

The physical fluxes are approximated with second order TVD-MUSCL [6][39][73]
numerical fluxes

F∗i−1/2,j =
1

2

(
Fi−1,j + Fi,j

)
−12R|Λ|L

(
Ui,j −Ui−1,j

)
−12R|Λ|ΨL∆Ui−1/2,j (7)

The term R|Λ|ΨL∆Vi−1/2,j represents the second order contribution to the
numerical fluxes. Ψ is the limiter and the flux eigenvectors and eigenvalues
R,Λ, L are evaluated at the Roe-average [73] state
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ΨL∆
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(8)

where L is the matrix of the left eigenvectors of the Roe-averaged flux Jacobian.

L =


1 0 0 − 1

ã2

0 tm tθ 0

0 nm nθ − 1
ρ̃ã

0 nm nθ − 1
ρ̃ã

 (9)

The evaluation of the numerical fluxes also requires the Roe-averaged eigen-
values and right-eigenvectors of the flux Jacobian, which are evaluated as fol-
lows:

Λ = diag (ũn, ũn, ũn + ã, ũ− ã) + ε (10)

R =


1 0 1 1

0 tm (ũn + ã)nm (ũn − ã)nm

0 tθ (ũn + ã)nθ (ũn − ã)nθ

k̃ ũt h̃+ ũnã h̃− ũnã

 (11)
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where ε is Harten’s entropy correction [36]. The Roe-averaged state is defined
by

ũm = ωui+1,j
m + (1−ω)ui,jm (12)

ũθ = ωu
i+1,j
θ + (1−ω)ui,jθ (13)

h̃ = ωhi+1,j + (1−ω)hi,j (14)

ã2 = (γ− 1)(h̃− k̃) (15)

ρ̃ =
√
ρi+1,jρi,j (16)

ω =

√
ρi+1,j√

ρi+1,j +
√
ρi,j

(17)

Similar definitions are applied for the G∗i,j−1 numerical flux vector.

4.3.3 Time integration

Convergence to a steady state is achieved by a matrix free, implicit algorithm.
At each iteration, a correction to the primitive variable vector V is determined
as solution to the linear problem [34]

δ
(
Wi,jUi,j

)
δt

= RHSi,j + J
h,k
i,j δVh,k (18)

or, equivalently

(Wi,jKi,j − J
h,k
i,j )δVi,j = −

(
δWi,j

)
IUi,j +RHSi,j (19)

where Vi,j is the vector of primitive variables at the cell i, j and Ki,j is the
transformation Jacobian from primitive variables to conserved variables. The
linear problem in equation (19) can be approximated by a diagonal problem if
the assembled flux Jacobian Jh,k

i,j is replaced by a matrix bearing on the main
diagonal the sum of the spectral radii |Λ̃| of the flux Jacobian contributions for
each cell

Jh,k
i,j ≈ −diag

(∑
s
∣∣Λ̃∣∣

max

)
i,j

(20)
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At a fixed Courant number σ =
δti,j

∑
s|Λ̃|

max

Wi,j
this approximation yields the

following update

δVi,j =
1

Wi,j (1+ σ)
K−1
i,j

(
−Ui,jδWi,j +RHSi,j

)
(21)

The solver has been validated against MISES [50] for turbine testcases. For
the purpose of implementation, the baseline solver stores the primitive vari-
ables Vi,j at each cell as well as auxiliary quantities such as speed of sound
and total enthalpy while all computations are carried out in double precision.
The application is implemented as a set of C++ classes where Eqs. (3)-(21) are
implemented as methods in distinct classes representing an abstraction of a gas
model. These methods are called at appropriate times during application exe-
cution to compute the numerical fluxes, updates etc. The remaining elements
of the application in charge of pre-processing or post-processing are handled
by a different set of classes.

4.3.4 Computational kernels

Inspection of equations (3)-(21) reveals the existence of two types of computa-
tional kernels and patterns. The first type can be defined as a cell-based loop
which evaluates cell attributes and is performed by looping over the cells in the
domain. The evaluation of Si,j in equation 3 or the block diagonal inversion
in equation 21 fall within this category. The second type evaluates stencil op-
erators and needs to be performed by looping over the neighbours of each cell
or by looping over the cell boundaries. The evaluation of the numerical fluxes
Fi±1/2,j and Gi,j±1/2 in equation 3 is an example of such stencil kernels.

The solver spends 75% of time in computing the numerical fluxes and ap-
proximately 15% in evaluating cell-centred attributes, the most time consum-
ing of which is the update of flow variables. Therefore, optimising both of
these kernels will have the highest impact on overall application performance.

flux computations The flux computations kernel iterates over a set of
cell interfaces in separate i and j sweeps and computes numerical fluxes us-
ing Roe’s approximate Riemann solver as seen in Listings 1 and 2. The kernel
accepts pointers to the left and right states (q), to the corresponding residuals
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Figure 7: Schematic of the cell-centred finite volume scheme on structured grids.

(rhs), and to the normals of the interfaces. The computations performed at
each interface are: the evaluation of Euler fluxes for the left and right state -
equations (4,5), evaluation of Roe averages and corresponding eigen-vectors
and eigen-values - equations (9)-(17), assembly of the numerical fluxes, and ac-
cumulation of the residuals. The kernel computes two external products (left
and right Euler flux), and one 4x4 GAXPY. A judicious implementation re-
quires 191 FLOPS and loads 38 double precision values per direction sweep.
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// fluxes in i-direction

for( j=0;j<nj;j++ )

{

for( i=0;i<ni-1;i++ )

{

iq= j*ni+i;

ql[0]=q[0][iq];

qr[0]=q[0][iq+1];

...

riem(ql,qr,...,f,&lmax);

rhs[0][iq]-= f[0];

rhs[0][iq+1]+= f[0];

}

}

Listing 1: i-direction sweep

// fluxes in j-direction

for( j=0;j<nj-1;j++ )

{

for( i=0;i<ni;i++ )

{

iq = j*ni+i;

ql[0]=q[0][iq];

qr[0]=q[0][iq+ni];

...

riem(ql,qr,...,f,&lmax);

rhs[0][iq]-= f[0];

rhs[0][iq+ni]+= f[0];

}

}

Listing 2: j-direction sweep

flow variable update The kernel computes the primitive variables up-
dates, based on the residuals of the discretized Euler equations, as defined in
equation (21). The kernel accesses the arrays storing the flow variables, the re-
siduals, an array storing auxiliary variables and an array storing the spectral
radii of the flux Jacobians. The arrays are passed to the function through their
base pointers. The flow and auxiliary variables are used to compute the entries
of the transformation Jacobian K−1

i,j between conserved variables and primitive
variables. The kernel performs 40 FLOPS per cell and loads 35 double precision
values giving it a 0.14 flops/byte ratio.

4.3.5 Configuration of compute nodes

Table 2 presents details with respect to the configuration of the compute nodes
used in this chapter such as processor architecture and model, memory config-
uration and compiler version.
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SNB HSW KNC

Version E5-2650 E5-2650 5110P
Sockets 2 2 1

Cores 8 10 60

Threads 2 2 4

Clock (GHz) 2.0 2.3 1.053

SIMD ISA AVX AVX2 IMCI
SIMD width 256-bit 256-bit 512-bit
L1 Cache (KB) 32 32 32

L2 Cache (KB) 256 256 512

L3 Cache (MB) 20 25 -
DRAM (GB) 32 64 8

DRAM type DDR3 DDR4 GDDR5

Stream (GB/sec) 71 110 140

Compiler icpc 15.0

Table 2: Hardware and software configuration of the compute nodes used in this
chapter. The SIMD ISA represents the latest vector instruction set architecture
supported by the particular platform.

4.4 optimisations

This section presents in detail a number of optimisation techniques that have
been applied to the selected computational kernels introduced in Section 4.3.

4.4.1 Flow variable update

vectorization Vectorization of the flow variable update kernel has been
achieved through the use of OpenMP 4.0 [64] compiler directives i.e. #pragma
omp simd. The use of OpenMP 4.0 directives is found preferable to compiler-
specific directives such as the ones available in Intel compilers because they
are portable and supported across other compilers. In order to achieve effi-
cient vectorization, the qualifier restrict needs to be added to the function
arguments. This guarantees to the compiler that arrays represented by the ar-
guments do not overlap. In absence of further provisions, the compiler gener-
ates code for unaligned loads and stores. This is a safety precaution, as aligned
SIMD load/store instructions on unaligned addresses lead to bus errors on the
Intel Xeon Phi coprocessor. In contrast, Sandy Bridge and Haswell processors
can deal with aligned access instructions on unaligned addresses, albeit with
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some performance penalty due to the inter-register data movements that are
required.

Aligned vector load and store operations can be achieved by issuing the
aligned qualifier to the original directive and by allocating all the relevant
arrays using the _mm_malloc wrapper function. _mm_malloc takes an extra ar-
gument representing the required alignment (32 bytes for AVX/AVX2 and 64

bytes for the IMCI on Knights Corner). A number of additional directives may
be needed to persuade the compiler that aligned loads can be issued safely, as
shown in the snippet below for a pointer storing linearly four variables in the
SoA arrangement, at offsets id0, id1:

__assume_aligned(rhs, 64);

__assume(id0%8==0);

__assume(id1%8==0);

__assume((id0*sizeof(rhs[0]))%64==0);

__assume((id1*sizeof(rhs[0]))%64==0);

Listing 3: Example of extra compiler hints needed for generating aligned vector load
and stores on 64-byte boundaries.

The assume_aligned construct indicates that the base pointer is aligned with
the SIMD register boundary. The following __assume statements indicate that
subscripts and indices accessing the four sections of the array are also aligned
on the SIMD register boundary. The need for such additional directives is due
to the fact that the OpenMP 4.0 implementation can only generate aligned
load and store operations if the argument passed to the aligned clause i.e.
aligned(rhs:64) is a single pointer and not a pointer to pointer. This some-
what complicates the issue of generating aligned vector load and store oper-
ations even for kernels with regular access patterns since the additional dir-
ectives presented in Listing 3 are specific to Intel compilers and therefore not
portable.

Another way of achieving SIMD execution with aligned load and stores op-
erations is by invoking compiler intrinsics or by using a higher abstraction
layer such as a library. In this work, versions of the cell-based flow variable up-
date kernel have been implemented using both compiler intrinsics specific to
each architecture as well as Agner Fog’s Vector Class Library (VCL) [16]. The
main advantage of the latter is that ugly compiler intrinsics are encapsulated
away allowing for a more readable code. On Knights Corner, an extension of
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the VCL library was used which was developed by Przemyslaw Karpiński at
CERN [86].

software prefetching Software prefetching can also be used to im-
prove the performance of memory-bound kernels. This has been implemented
in the kernel version based on compiler intrinsics and using the functionality
of the _mm_prefetch intrinsics. The latter can take as arguments the cache level
where the prefetch is to appear in. When using _mm_prefetch it is advisable to
disable the compiler prefetcher using the -no-opt-prefetch compilation flag
(Intel 15.0 compilers).

data layout transformations The previous data layout used to store
both cell-centred as well as face quantities such as normals was based on the
SoA format. The SoA layout is advisable for SIMD since it allows for contigu-
ous SIMD load and stores. However, this can lead to performance penalties
such as Translation Look-aside Buffer (TLB) misses for very large arrays while
also requiring that multiple memory streams are kept in-flight for each indi-
vidual vector. A hybrid approach such as the Array of Structures Structure
of Arrays (AoSSoA) can alleviate these issues by offering the recommended
SIMD grouping in sub vectors coupled with improved intra and inter struc-
ture locality.

Therefore, a version of the kernel using the AoSSoA data layout has also
been studied. Four sub vector lengths were tested: 4,8,16,32 double precision
values on the multicore processors and 8,16,32,64 on the coprocessor. The best
performing sub vector length of AoSSoA proved to be the one equal to the
SIMD vector width of the processor (i.e. 4 and 8 respectively).

thread parallelism Thread parallelism of the flow variable update ker-
nel was exploited using the OpenMP 4.0 construct for the auto-vectorized ver-
sion which complements the initial #pragma omp simd construct and further
decomposes the loop iterations across all of the available threads in the en-
vironment. The kernel versions based on compiler intrinsics used the generic
OpenMP loop-level construct. The work decomposition has been carried out
via a static scheduling clause, whereby each thread receives a fixed size chunk
of the entire domain. Additionally, the first touch policy has been applied for
all data structures utilised in this method in order to alleviate NUMA effects
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when crossing over socket boundaries. The first touch is a basic technique
which consists in performing trivial operations - e.g. initialization to zero - on
data involved in parallel loops before the actual computations. This forces the
relevant sections of the arrays to be loaded on the virtual pages of the core and
socket where the thread resides. The first touch needs to be performed with
same scheduling and thread pinning as the subsequent computations. In terms
of thread pinning, the compact process affinity was used for Sandy Bridge and
Haswell running only with one thread per physical core. On Knights Corner,
the scatter affinity brought forth better results compared to compact.

4.4.2 Flux computations

vectorization Code vectorization of the kernel computing Roe’s numer-
ical fluxes has been achieved by evaluating a number of avenues such as auto-
vectorization via compiler directives, compiler intrinsics and the VCL vector
class, similar to the cell-based kernel.

In order for the code to be vectorized by the compiler, a number of modi-
fications had to be performed. First of all, in the original version, the face
neighbours were obtained using indirect references in order to also allow for
calculations on unstructured meshes. These were removed and their position
explicitly computed for each iteration. As these increase in a linear fashion by
unit stride once their offset is computed, the compiler was then able to replace
gather and scatter instructions with unaligned vector loads and stores, albeit
with the help of the OpenMP 4.0 linear clause. This had a particularly large
effect on Knights Corner where performance of unaligned load and stores was
a factor of two higher compared to gather and scatter operations. Furthermore,
the restrict qualifier was also necessary for any degree of vectorization to be
attempted by the compiler.

In structured and block-structured codes, it is natural to group the faces ac-
cording to the transformed coordinate that stays constant on their surface, e.g.
i-faces and j-faces. As a result, fluxes can be evaluated in two separate sweeps
visiting i-faces or the j-faces, respectively. Each operation consists of nested i-
and j-loops as seen in Section 4.3. When visiting i-faces, if the left and right
states are stored at unit stride, they cannot be simultaneously aligned on vector
register boundary thus preventing efficient SIMD execution as demonstrated
in Figure 8. When visiting j-faces this problem does not appear, as padding is
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sufficient to guarantee that left and right states of all j-faces can be simultan-
eously aligned on the vector register boundary.

As a result, vectorized versions of the flux computation kernel were im-
plemented based on compiler intrinsics and the VCL library that utilise un-
aligned loads and stores when visiting the i-faces but aligned operations for
the sweeps along the j-faces. On the Knights Corner architecture, the VPU ISA
does not contain any native instructions for performing vector load and stores
operations at unaligned addresses. To this extent, the programmer has to rely
upon the unpacklo, unpackhi, packstorelo and packstorehi instructions and
their corresponding intrinsics to emulate such behaviour. Examples of meth-
ods used in this work for performing unaligned load and store operations on
Knights Corner can be seen in Listings 4 and 5. As one can observe, emulat-
ing an unaligned load on Knights Corner requires two aligned load/store and
register manipulations hence the penalty in performance compared to their
aligned counterparts.

inline __m512d loadu(double *src)

{

__m512d ret;

ret = _mm512_loadunpacklo_pd(ret, src);

ret = _mm512_loadunpackhi_pd(ret, src+8);

return ret;

}

Listing 4: Unaligned SIMD loads on Knights Corner

inline void storeu(double *dest, __m512d val)

{

_mm512_packstorelo_pd(dest, val);

_mm512_packstorehi_pd(dest+8,val);

}

Listing 5: Unaligned SIMD stores on Knights Corner

The lack of alignment for the loop over the i-faces can be resolved by two
techniques: shuffle operations or via transposition. Shuffling consists in per-
forming the loads using register-aligned addresses, and then modifying the
vector registers to position correctly all the operands. On AVX, performing
these shuffle operations requires three instructions as register manipulations
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can only be performed on 128-bit lanes. The implementation using compiler
intrinsics and register shuffles issues aligned load and stores combined with
shuffle operations when handling i-faces. The use of register shuffling also
saves a load for each iteration, as the current right state can be re-used as left
state when evaluating the following face therefore allowing for register block-
ing. The issue of unaligned loads for the i-sweep direction as well as the rem-
edy of performing inter-register shuffling can be seen in Figures 8, 9 an 10. For
best performance, the optimisation of the vector register rotations and shifts
(i.e. the shuffle operations) is critical. On AVX, this was achieved by using
the vperm2f128 instruction followed by a shuffle. AVX2 supports the vpermd

instruction which can perform cross-lane permutations, therefore a more effi-
cient approach can be used which requires fewer instructions. Knights Corner
also supports vpermd although the values have to be cast from epi32 (integers)
to the required format (doubles in the present case). The choice of compiler
intrinsics for each operation is based on their latency and throughput: instruc-
tions with throughput larger than one can be performed by more than one
execution port, if these are available, leading to improved instruction level par-
allelism. As an example, the AVX/AVX2 _mm256_blend_pd compiler intrinsic
which converts to a vblendpd instruction has a latency of one cycle and a
throughput of 3 on Haswell, and one cycle latency and throughput of 2 on
Sandy Bridge. Consequently, it is preferable to the AVX _mm256_shuffle_pd

intrinsic (vshufpd), which has one cycle latency, but unit throughput on both
architectures. The code snippets below show how shuffling can be achieved
across the three architectures.

// vl= 3 2 1 0

// vr= 7 6 5 4

__m256d t1=_mm256_permute2f128_pd(vl,vr,33); // 5 4 3 2

__m256d t2=_mm256_shuffle_pd(vl,t1,5); // 4 3 2 1

Listing 6: Register shuffle for aligned accesses on the i-face sweep with AVX.

// vl= 4,3,2,1

// vr= 8,7,6,5

__m256d blend = _mm256_blend_pd(vl,vr,0x1); // 4,3,2,5

__m256d res =_mm256_permute4x64_pd(blend,_MM_SHUFFLE(0,3,2,1)); // 5,4,3,2

Listing 7: Register shuffle for aligned accesses on the i-face sweep with AVX2.
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// vl= 8,7,6,5,4,3,2,1

// vr= 16,15,14,13,12,11,10,9

__m512i idx = {2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,1};

// 8,7,6,5,4,3,2,9

__m512d blend = _mm512_mask_blend_pd(0x1,vl,vr );

// 9,8,7,6,5,4,3,2

__m512d res = _mm512_castsi512_pd(_mm512_permutevar_epi32(idx,

_mm512_castpd_si512(blend)));

Listing 8: Register shuffle for aligned accesses on the i-face sweep with IMCI.

Generating aligned load/stores in the VCL library can be performed by us-
ing the blend4d method which requires as argument an index shuffle map.
However, this was found to be less efficient than the implementation based
on compiler intrinsics as the blend4d primitive did not utilise the instructions
with the best latency and throughput for each distinct architecture.

Another technique for addressing the stream alignment conflict issue is by
transposing the cell-centred variables before the sweep over the i-faces and
transposing them back prior to the sweep over the j-faces. This is somewhat
similar to Henretty’s dimension-lifted transposition [37] however, the version
implemented in this work has the disadvantage of requiring that data be re-
transposed prior to the sweep on the j-faces due to the independent evaluation
in the i and j directions.

cache blocking In the implementations up to this point, the loops visit-
ing i-faces and j-faces have been kept separate. Spatial and temporal locality
can be improved by fusing (blocking) the evaluation of fluxes across the j-face
and the i-face of each cell. This technique is known as cache blocking. The
cache blocking kernel fuses both i- and j-passes and it is based on the kernel
versions that perform inter-register shuffles as described above for allowing
aligned loads and stores on the i-faces. The cache blocking kernel further be-
nefits from the fact that it can save an extra load/store operation when writing
back results for each evaluated face. The blocking factor should be a multiple
of the SIMD vector length as to allow for efficient vectorization.

data layout transformations Discussion so far for the flux computa-
tions has assumed a SoA data layout format. A kernel using the AoSSoA data
layout and based on inter-register shuffling for aligned SIMD load operations
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for( j=1;j<min(j+jBF,nj);j+=jBF )
{

for( i=1;i<min(i+iBF,ni);i+=iBF )
{

fluxi(...);
fluxj(...);

}
}

Listing 9: Implementation of cache blocking by nesting both i and j sweeps together.

was also tested. The best performing sub-vector size was the size of the SIMD
register, similar to the flow variable update kernel.

thread parallelism For the purpose of studying performance at full
chip and node concurrency, domain decomposition is performed at block-level.
This can be performed in two ways. One option is to split a block into slabs
along the i- and j-planes depending on sweep, the number of slabs being equal
to the number of available threads. The second option is to split each block into
tiles. This method increases locality and complements the cache-blocking pro-
cessing of the kernel computing fluxes as discussed above. For the non-fused
kernels where separate plane sweeps are performed, the first decomposition
method was chosen due to the elimination of possible race conditions. For the
fused kernels, the latter decomposition was required together with the hand-
ling of race conditions at the tile boundary. In the second option, the decom-
position mimics that on distributed-memory machines via MPI and requires
treatment for updating boundaries in a serial fashion once the fluxes are com-
puted in the inner regions.

Thread and process affinity have been applied in a similar fashion to the
flow variable update kernel i.e. compact for the multicore CPUs and scatter

for the coprocessor. Task and chunk allocation have been performed manually
as required by the custom domain decomposition within the OpenMP parallel
region. Another reason for doing the above and not relying on the OpenMP
runtime was the high overhead that this caused on the Knights Corner pro-
cessor when running on more than 100 threads. Furthermore, all parallel runs
of the optimised flux computation kernels implement NUMA-aware place-
ment via applying the first touch technique.
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4.5 results and discussions

This section presents the results of the optimisations on both computational
kernels and a discussion on their effectiveness.

4.5.1 Flow variable update

Figure 11 presents the effect that the optimisations had on the performance of
the flow variable update kernel when running on a single core. Results at full-
chip and full-node concurrency for each optimisation are presented in Figure
12.

vectorization On Sandy Bridge and Haswell, even the auto-vectorized
kernel performs twice and three times faster than the baseline kernel. On
Knights Corner, the improvement is almost one order of magnitude as the
VPU and therefore wide SIMD lanes are exploited whereas they were not pre-
viously.

Aligned versus unaligned load and stores see no benefit on Sandy Bridge
and for smaller problem sizes a marginal improvement on Haswell, due to bet-
ter L1 cache utilisation. The aligned access version outperforms its unaligned
counterpart on Knights Corner as a 512-bit vector register maps across an
entire cache line therefore allowing for efficient load and store operations to/-
from the L1 cache. The reason there is no significant difference between aligned
and unaligned SIMD load and store operations on the multicores is possibly
due to the fact that the kernel is already limited by memory bandwidth on
these platforms. On the other hand, on Knights Corner, the difference in in-
struction count as well as throughput between aligned and unaligned load
and store operations leads to a noticeable difference in performance.

The utilisation of compiler intrinsics or the VCL implementation did not
bring forth any speed-ups over the directive based vectorization for this partic-
ular kernel. This would indicate the fact that the compiler is able to vectorize
kernels with regular access patterns competitively provided it is aided with
additional hints such as the ones presented in Listing 3 and compiler direct-
ives.
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software prefecthing Software prefetching for the cell-based flow up-
date kernel sees no benefit across any of the three architectures.

thread parallelism The kernel under consideration is memory-bound
on all three architectures and is therefore very sensitive to NUMA effects. For
Haswell, not using the first touch technique can lead to a large performance
degradation as soon as the active threads spill outside a single socket. This
can be seen by the behaviour of the data sets that lack NUMA optimisations
in Figure 12. A reason for why the discrepancies between NUMA and non-
NUMA runs are larger on Haswell compared to Sandy Bridge is the larger
core count on the former which means that the Quick Path Interconnect (QPI)
system linking the two sockets gets saturated more quickly due to the increase
in cross-socket transfer requests as more cores are serviced.

On Knights Corner there are no NUMA effects due to the ring-based inter-
connect and the interleaved memory controller placement. However, aligned
loads play an important role on this architecture: the SIMD length is 64 bytes
(8 doubles) which maps to the size of an L1 cache line. If unaligned loads
are issued, the thread is required to go across cache boundaries, loading two
or more cache lines and performing inter register movements for packing up
the necessary data. This wastes memory bandwidth and forms a very dam-
aging bottleneck. This can be seen from the drop in performance above 60

cores in the version written in compiler intrinsics with unaligned accesses and
the auto-vectorized version data set in Figure 12. Consequently, although un-
aligned accesses did not produce such issues when run across a single core, the
overhead of additional memory traffic across the cache hierarchies as a result
of unaligned memory accesses grew as the number of cores increased as well.

The best performing version was based on the hybrid AoSSoA format. The
version based on aligned load and store operations via compiler intrinsics and
combined with manual prefetching performed second best followed by the
version implementing aligned compiler intrinsics as well as compiler issued
prefetches.
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4.5.2 Flux computations

Figure 13 presents the effects that the optimisations had on the single-core
performance of the flux computations kernel. Results at full-chip and full-node
concurrency are shown in Figure 14.

vectorization For the kernel computing Roe’s numerical fluxes, the ver-
sion based on auto-vectorization via compiler directives brought forth a 2.5X
improvement on Sandy Bridge, 2.2X on Haswell and 13X on Knights Corner
when compared to their respective baseline. The penalty for unaligned ac-
cess on the i-faces is better tolerated on the multicore processors, where inter-
register movements can be performed with small latency, but is very damaging
on Knights Corner, as already seen.

The kernel version based on unaligned load and store operations and com-
piler intrinsics delivers a 4X speed-up over the baseline implementation on
Sandy Bridge and Haswell and 13.5X on Knights Corner. Comparisons with
the auto-vectorized version sees a 60% speed-up on Sandy Bridge and 50%
on Haswell although no noticeable improvements on the coprocessor. The in-
crease in performance for the compiler intrinsics version on the multicore pro-
cessors is due to the manual inner loop unrolling when assembling fluxes
which allows for more efficient instruction level parallelism.

The compiler intrinsics and shuffle kernel performs similarly on Sandy Bridge
compared to the unaligned version due to AVX cross-lane shuffle limitations
whilst performing 30% and 10% faster on Haswell and Knights Corner. The
kernel versions based on the VCL library perform worse on both multicore
CPUs compared to the version using compiler intrinsics due to the inefficient
implementation of shuffling in the blend4d routine. On Knights Corner, these
were replaced with the hand-tuned compiler intrinsics primitives presented
in Listing 4.4.2 as they were not implemented in the VLCKNC library. For
this reason, the aligned VCL version on the coprocessor delivers very similar
performance compared to the version based on compiler intrinsics.

The kernel version based on aligned vector load and store operations on
both sweeps thanks to transpositions performs worse than the version that is
based on inter-register shuffles. This is due to the fact that transposing the cell-
centred variables prior to the sweep on the i-faces and back for the following
sweep on the j-faces can have a degrading effect on performance due to the
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working set not fitting into the cache. As a result, this technique is discouraged
due to the overhead it produces and which is not offset by the difference in
performance between unaligned and aligned vector operations. However, it is
important to note that such transpositions might be beneficial if the data is
only transposed once as seen in the work of Henretty et al [37]. In hindsight,
this could have been accomplished by fusing both i and j sweeps (i.e. in the
cache-blocked version).

cache blocking Across all three platforms, cache blocking did not bring
forth any palpable benefits for single core runs. The reason for this is that al-
though data cache reuse is increased, fusing both loops brings forth an increase
in register pressure and degrades performance as the fused kernel performs
382 FLOPS for every iteration.

thread parallelism The performance on both Sandy Bridge and Haswell
nodes at full concurrency is 53 GFLOPS and 101 GFLOPS respectively. On
Knights Corner, the best performing version achieves 94 GFLOPS when run-
ning on 180 threads. While on the multicore CPUs, the best performing kernels
were the versions based on compiler intrinsics, cache-blocking as well as the
hybrid AoSSoA layout, the scaling on the coprocessor of this particular kernel
was second best. This can be attributed to register pressure as more threads
get scheduled on the same core which compete for available resources. This
assumption can be validated by examining the scaling behaviour of the cache-
blocked kernel without the hybrid AoSSoA data layout which suffers from
poor scalability as more than one thread gets allocated per core.

Comparing best performing results to their respective baselines reveals a
3.1X speed-up on Sandy Bridge and Haswell and 24X on the Knights Corner
coprocessor at full concurrency.

4.5.3 Performance modelling

A visualisation of the Roofline model based on the results of the applied optim-
isations can be seen in Figure 15. For brevity, the main classes of optimisations
are grouped as:

• Reference: for the initial baseline
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• Vectorization (OMP): for versions vectorized using compiler directives;

• Vectorization (Shuffle): assuming best performing version based on com-
piler intrinsics on that particular kernel and platform (i.e. shuffle, trans-
position etc)

• Memory Opt.: for best performing version implementing aligned vector
load and store operations, compiler intrinsics and specific memory op-
timisation (cache-blocking, AoSSoA etc)

single core Observations on the single core diagrams highlight interest-
ing aspects on the two computational kernels and their evolution in the optim-
isation space.

For the cell-based flow variable update kernel, vectorization using compiler
directives pierces through the IMCI roofline on the coprocessor. This is due
to the fact that vectorization on Knights Corner allows for instructions to be
routed towards the more efficient VPU unit. Furthermore, this kernel performs
as well as the hand-tuned kernels based on compiler intrinsics across all three
platforms (see Figures 11 and 12) as its performance is limited by memory
bandwidth.

For flux computations, vectorization using compiler directives pierces through
their respective SIMD wall whilst hand tuned compiler intrinsics and sub-
sequent memory optimisations deliver close to the attainable performance pre-
diction. On Haswell and Knights Corner however, speed-up is limited by the
fact that the FMA units are not fully utilised due to the algorithmic nature
of stencils operators and their inherent lack of FMA operations. Even so, for
single core runs, the best optimised version incorporating SIMD as well as
memory optimisations achieves between 80-90% of the available performance
compared to the baseline which delivers 20% on the multicore CPUs and only
1.67% on the coprocessor.

full node At full node concurrency, the sizeable increase in memory band-
width permits the reference implementation to obtain a larger degree of per-
formance across all architectures.

For the cell-based flow variable update kernel, NUMA first touch optimisa-
tions applied to all of the optimised kernel versions allows them to bypass
the NUMA wall. On the coprocessor, software prefetching only works when
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coupled with SIMD optimisations due to the poor performance of the scalar
processing unit compared to the VPU. As more memory bandwidth becomes
available, subsequent optimisations such as the hybrid data layout transforma-
tion that prevents TLB misses and provides better data locality performs better
than the vectorized SoA-based hand tuned compiler intrinsics version.

For flux computations, vectorization through compiler directives and intrins-
ics results in performance that is close to the main roofline represented by
peak DRAM memory bandwidth while subsequent memory optimisations by-
pass the model’s prediction. This is due to the fact that some of the data in
the optimised kernels is reused from the higher cache levels as a result of
memory optimisations such as cache-blocking and is therefore not transferred
from main memory. This in effect improves the arithmetic intensity of the ker-
nel since fewer loads are in fact serviced by main memory and is a limitation
of this analysis that is worth considering. An alternative would be to also up-
date the arithmetic intensity of each kernel as optimisations are implemented
that improve upon the locality of the data. However, the difficulty for such
an approach is how to accurately determine the proportion of loads that are
serviced by the higher cache levels and those serviced by main memory.

4.5.4 Architectural comparison

On a core-to-core comparison among the three processors, the Haswell-based
Xeon E5-2650 core performs on average 2X and 4-5X faster compared to a
single Sandy Bridge Xeon E5-2650 and Xeon Phi Knights Corner 5110P core
across both kernels. However, at full node and chip concurrency, the two socket
Haswell Xeon E5-2650 node is approximately on par with the Knights Corner
coprocessor for flux computations and 25% faster for updating the flow vari-
ables. The Xeon Phi Knights Corner coprocessor and Haswell node outperform
the two socket Sandy Bridge Xeon E5-2650 node by approximately a factor of
two on flux computations and 50% to 2X on the flow variable update. How-
ever, on a flop per watt and flop per dollar metric, the Knights Corner 5110P
coprocessor delivers superior performance compared to both multicore CPUs
at the cost of higher development and optimisation time needed for exploiting
its underlying features in numerical computations. The increase in time spent
on fine tuning the code on the coprocessor is attenuated by the fact that the ma-
jority of optimisations targeting fine and coarse grained levels of parallelism
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such as SIMD and threads are transferable between both types of platforms
including GPGPUs.

4.6 conclusions

In this chapter, a variety of optimisation techniques have been implemented
in two distinct computational kernels within a block-structured CFD code
and across three modern architectures. A detailed description was given on
the exploitation of all levels of parallelism available in modern multicore and
manycore processors through efficient code vectorization and thread parallel-
ism. Memory optimisations described in this work included software prefetch-
ing, data layout transformations through hybrid data structures such as the
AoSSoA layout and cache blocking.

The practicalities of enabling efficient vectorization were discussed which
established that for relatively simple kernels such as cell-based loops for up-
dating state vectors, the compiler can generate efficient SIMD code with the
aid of portable OpenMP 4.0 directives. This approach however does not fully
extend to more complex kernels such as flux computations involving a stencil-
based access pattern where best SIMD performance is mandated through the
use of aligned vector load and store operations made possible via inter-register
shuffles and permutations. Implementations of such operations were performed
in this work using compiler intrinsics and the VCL framework and included
bespoke optimisations for each architecture. Vectorized and non-vectorized
computations exhibit a 2X performance gap for the flow variable update ker-
nel and up to 5X for flux computations on the Sandy Bridge and Haswell
multicore CPUs. The difference in performance is significantly higher on the
manycore Knights Corner coprocessor where vectorized code outperforms the
non-vectorized baseline by 13X in updating the flow variables and 23X for
computing the numerical fluxes. These figures, when correlated with projec-
tions that future multicore and manycore architectures will contain further im-
provements to the width and latency of SIMD units, mandates efficient code
SIMDization as a crucial avenue for attaining performance in structured grid
applications on current and future architectures.

Modifying the data layout from SoA to a hybrid AoSSoA led to improve-
ments for the vectorized kernels by minimizing TLB misses when running on
large grids and by increasing data locality. Performance gains were particu-
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larly noticeable when running at full concurrency and performed best on the
Knights Corner coprocessor. Cache-blocking the two separate sweeps within
the flux computation kernel coupled with the hybrid data layout delivered best
results on the multicore CPUs when running across all available cores however
performed second best on the coprocessor due to increased register pressure.

Core and thread parallelism has been achieved through the use of OpenMP
4.0 directives for the cell-based flow variable update kernel which offers mixed
parallelism at SIMD and thread granularities through common constructs. For
the numerical fluxes, the domain was decomposed into slabs on the i and j
faces for implementations that performed separate plane sweeps and into tiles
for the fused sweep implementation with cache blocking. The flow variable up-
date kernel achieved a 2X speed-up on the Sandy Bridge and Haswell nodes
and 20X on the Knights Corner coprocessor when compared to their respect-
ive baselines. Computations of the numerical fluxes at full concurrency also
obtained a 3X speed-up on the multicore CPUs and 24X on the coprocessor
over the baseline implementation.

The Roofline performance model has been used to appraise the optimisation
process with respect to the algorithmic nature of the two computational kernels
and the three architectures. For single core execution, the optimised flow vari-
ables update kernel achieved approximately 80% efficiency on the multicore
CPUs and 90% on the coprocessor. Flux computations obtained 90% efficiency
on Sandy Bridge, 80% on Haswell and approximately 60% on Knights Corner.
The reason for the relatively low efficiency on the coprocessor is due to the
in-order core design which requires at least two threads for fully populating
the coprocessor VPU. The computational efficiency at full concurrency outper-
forms the model’s predictions for both kernels across the multicore platforms
due to the fact that some of the data in the optimised kernels is retrieved from
the higher cache levels and not main memory.



5
O P T I M I S AT I O N O F U N S T R U C T U R E D M E S H
A P P L I C AT I O N S

5.1 introduction

The solution of fluid flow problems in the vicinity of complex geometries man-
date the utilisation of unstructured grids. However, compared to structured
and block-structured mesh applications, computations on unstructured grids
are known to exhibit unsatisfactory performance on cache-based architectures
[9]. This is due in great part to the data structures required for expressing grid
connectivity and the resulting indirect and irregular access patterns.

In finite volume discretizations, these data structures and access patterns
appear when iterating over the faces or edges of the computational domain for
the purpose of evaluating fluxes, gradients and limiters. These computational
kernels are usually structured as a sequence of gather, compute and scatter
operations where variables are gathered from pairs of cells or vertices sharing
a face or edge followed by the calculation and scatter of results to the respective
face or edge end-points.

An example of a typical face-based loop can be seen in Listing 10 where un-
knowns are gathered from q and used together with mesh geometrical attrib-
utes in geo to compute the flux residuals f that are subsequently accumulated
and scattered back to rhs. For edge-based solvers, one can simply replace faces
with edges and cells with vertices or nodes.

for( ic=0;ic<num_faces;ic++ )

{

u1= q[ifq[0][ic]];

u2= q[ifq[1][ic]];

f= geo[ic]*(u2-u1);

rhs[ifq[0][ic]]-= f;

rhs[ifq[1][ic]]+= f;

}

Listing 10: Example of a face-based kernel.

93
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The gather and scatter operations arising from the indirect access in q and
rhs via the ifq index array can operate across large and irregular strides in
memory and is determined by the mesh topology. As a result, these face-based
kernels are an example of a class of computational patterns that do not nat-
urally map to the architectural features of modern cache-based multicore and
manycore architectures. First of all, accessing memory in an irregular fashion
is detrimental to performance as it fails to exploit both spatial and temporal
locality required for efficient utilisation of the memory hierarchy. Secondly, the
existence of indirect addressing when accessing cell-centred variables inhibits
vectorization by the compiler as well as the exploitation of thread parallelism
due to potential data dependencies when scattering back the results in rhs.
Finally, accessing memory indirectly also has a detrimental impact on the op-
eration of hardware prefetchers thus reducing any opportunity for memory
parallelism.

A typical unstructured finite volume code will spend more than two thirds
of its execution time in face-based loops for computing fluxes across cell in-
terfaces and boundaries. Consequently, addressing the limitations that pre-
vent optimal use of the vector units, threads and memory hierarchy will have
the highest impact in achieving improved performance on modern processors.
However, optimisations that are beneficial to face-based kernels might be to the
detriment of cell-based loops where the remaining execution time is spent. As
a result, this could potentially offset any performance gains with respect to the
whole application. Moreover, as face-based loops are optimised, the computa-
tional bottleneck will invariably shift towards cell-based loops. Consequently,
for best full application performance, one must optimise both face-based and
cell-based kernels and assess the impact this has on improving overall perform-
ance.

This chapter presents a wide range of such optimisations in an unstructured
finite volume CFD code typical in size and complexity of an industrial applic-
ation. Their implementation and impact are demonstrated on kernels comput-
ing inviscid, viscous and linearised fluxes as an example of face-based loops
and on a kernel computing updates to primitive variables as an example of a
cell-based loop. The benefits of each distinct optimisation are evaluated across
a wide range of multicore and manycore compute nodes based on architec-
tures such as the Intel Sandy Bridge, Broadwell, Skylake and the Intel Xeon
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Phi Knights Corner and Knights Landing processors and across two different
computational domain sizes.

The remaining chapter is structured as follows. Section 5.2 presents related
work, Section 5.3 provides details of the code, test case and hardware setup.
Section 5.4 presents an in-depth description of each optimisation followed by
results and discussions in Section 5.5 and concluding remarks in Section 5.6.

5.2 related work

The flexibility of unstructured mesh CFD solvers in dealing with complicated
geometries have led to their wide adoption in industry and across the CFD
community as a whole [52]. Consequently, there has always been significant
interest in the optimisation and acceleration of unstructured mesh solvers on
the latest computer architectures.

Anderson et al [8] presented the optimisation of FUN3D [28], a tetrahedral
vertex-centered unstructured mesh code developed at the National Aeronaut-
ics and Space Administration (NASA) Langley Research Center for the solu-
tion of the compressible and incompressible Euler and Navier-Stokes equations
and for which they received the 1999 Gordon Bell Prize [1]. Their optimisations
were based on the concept of memory centric computations whereby the aim
was to minimize the number of memory references as much as possible in
the recognition that flops are cheap relative to memory load and store opera-
tions. The authors achieved this by increasing spatial locality with the help of
interlacing in which data items that are required in close succession such as
unknowns are stored contiguously in memory using data structures such as
AoS. They also reduced the impact of the underlying gather and scatter oper-
ations by renumbering the mesh vertices using the Cuthill-Mckee [20] sparse
matrix bandwidth minimizer. Their work was subsequently extended in the
context of the FUN3D code by a number of studies such as Gropp et al [35]
which introduced performance models in order to guide the optimisation pro-
cess by classifying the operational characteristics of the computational kernels
and their interaction with the underlying hardware, Mudigere et al [60] who
demonstrated shared memory optimisations on modern parallel architectures
including vectorization and threading through a hybrid MPI/OpenMP imple-
mentation, Al Farhan et al [29] who presented optimisations specific to the
Intel Xeon Phi Knights Corner processor as well as Duffy et al [25] who ported
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FUN3D for execution on graphical processing units obtaining a factor of two
speed-up as a result.

More recently, Economon et al [26] presented the performance optimisa-
tion of the open-source SU2 [79] unstructured CFD code on Intel architectures.
Their work demonstrated the impact of a number of optimisations such as vec-
torization, edge reordering, data layout transformations for improving single
core performance on modern multicore architectures as well as optimisations
of the linear solver in order to remove the impact of performing collective op-
erations at large scales. As a result, they obtained speed-ups of more than a
factor of two at single node and multi node granularities.

A different approach of optimising unstructured grid applications is by im-
plementing such optimisations at a higher level of abstraction through a DSL.
Examples of such initiatives with respect to unstructured CFD solvers can be
found by examining the work in the OP2 framework [32],[59],[71],[72] as well
as the other examples that are discussed in Chapter 2.

The work presented herein complements the above in that it presents the
impact of some of the described optimisations on new architectures such as the
Intel Xeon Skylake and Intel Xeon Phi Knights Landing processors while also
demonstrating a number of improvements and novel approaches for exploiting
the architectural features across both multicore and manycore platforms in a
large scale unstructured CFD application.

5.3 background

The test vehicle for this study is the in-house CFD solver AU3X[24],[88]. AU3X
uses a cell-centred finite volume approach to solve the unsteady Favre-averaged
Navier-Stokes equations on unstructured meshes. Steady solutions are obtained
by pseudo time marching and time accurate solutions by dual time stepping
[42]. The governing equations, spatial discretization and time integration schemes
are briefly described in the following sections in order to complement the im-
plementation details and code optimisation study although some similarities
with the numerical algorithms presented in Chapter 4 will be evident.
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5.3.1 Governing Equations

The Favre-averaged Navier-Stokes equations for compressible flows in the dif-
ferential form read:

∂ρ
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+
∂(ρṽi)

∂xj
= 0
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∂xj
= −

∂p

∂xi
+
∂

∂xj
( ˜τij + τtij)

∂(ρẼ)
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The tilde "∼" and overbar "−" represent Favre averaging and Reynolds aver-
aging respectively. The working fluid is air and it is treated as calorically per-
fect gas while γ and the Prandtl number Pr are held constant at 1.4 and 0.72

respectively. µ is evaluated by Sutherland’s law and is based on a reference
viscosity of 1.7894× 10−5 kgms together with a reference temperature of 288.15K
and Sutherland’s constant at 110K. If the Boussinesq assumption holds, the
Reynolds stress τtij can be written as a linear function of the mean flow gradi-
ent:

τtij = 2µt(S̃ij −
1

3

∂ṽk
∂xk

δij) (24)

Turbulent viscosity µt is computed by turbulence models. In this work, the
Wilcox k−ω turbulence model is used and additional equations are required
for k and ω. Readers can refer to Wilcox [89] for more details.

5.3.2 Spatial Discretization

The flow variables are stored at the cell centres and the boundary conditions
are applied at the ghost cells, the positions of which are generated by mirroring
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Figure 16: Schematic of the cell-centred finite volume scheme on unstructured grids.

the positions of the cells immediately adjacent to the boundary. The inviscid
and viscous fluxes are evaluated at the cell-to-cell and boundary-to-cell inter-
faces. The schematic of the finite volume scheme is shown in Figure 16. Flow
gradient is computed at the cell centre using the weighted least square proced-
ure [51]. The matrix of the weighted least square gradient is evaluated once
at pre-processing for static grids and at every nonlinear iteration for moving
meshes.

The inviscid fluxes are computed by the upwind scheme using the approx-
imated Riemann solver of Roe [73]. Second order spatial discretization is ob-
tained by extrapolating the values from the cell centre to the interface via the
Monotonic Upwind Scheme for Conservation Laws (MUSCL) [47] with the
van Albada limiter [39]. The viscous fluxes at the interface are computed by
using the inverse of the distance weighting from the ones evaluated at the cell
centres on both sides of the interface while source terms are evaluated at the
cell centres and are assumed to be piecewise constant in the cell.
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5.3.3 Time integration

After inviscid, viscous fluxes and source terms are computed for each cell, the
coupled system in Equation 22 can be described as the following:

Ωi
dUi
dt

= −

N∑
j=1

Ri(Uj) (25)

Where Ui are the conservative variables of cell i, namely (ρ, ρṽi, ρẼ)T , Ωi
the cell volume, Uj the conservative variables of the neighbouring cells of Ui,
N the number of neighbouring cells and Ri the right hand side of cell i, which
are the fluxes evaluated at each cell. Here we assume no mesh motion and Ωi
remains a constant for each cell in the computation.

The system in Equation 22 is solved implicitly by first applying the backward
Euler scheme:

Ωi
∆Ui
∆t

= −

N∑
j=1

Ri(U
n+1
j ) (26)

Where n is the solution at the current level, n+ 1 is the solution to be solved
in the next level and ∆Ui = Un+1i −Uni

Expanding Ri(Un+1j ) in Taylor series, Equation 26 becomes:
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Where
∂(Ri(U

n
j ))

∂Uj
is the flux Jacobian. Equation 27 can be re-arranged and

the flux Jacobian is approximated by its spectral radius. The resulting linear
system reads:

[Jni (
Ωi
Jni ∆t

+ 1)]∆Uni = −

N∑
j=1

Ri(U
n
j ) (28)
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Equation 28 is the resulting linear system to march the solution from time
level n to n+ 1, and it is solved by the Newton-Jacobi method where Jni is the
spectral radius of the flux Jacobian matrix which is accumulated across the cell
interfaces. Linearised fluxes

∂(Ri(U
n
j ))

∂Uj
∆Unj are required to update the solutions

at each Newton-Jacobi iteration and they are evaluated exactly for the inviscid
and viscous fluxes. For the Wilcox k−ω turbulence models, an approximation
is used for linearising the governing equations for k andω. The Newton-Jacobi
is executed for user-specified iterations to march the solution from n to n+ 1,
the right and left hand sides are then updated, and the Newton-Jacobi is in-
voked again. This process proceeds until a user-specified convergence criteria
is met.

5.3.4 Test case

The numerical test case used for the optimisation study represents an aero-
engine intake operating near ground. Validation and numerical investigation
using the AU3X code have been previously presented by Carnevale et al [17],[18]
using experimental data provided by Murphy et al [61]. The computational
domain based on an unstructured mesh can be seen in Figure 17. Near wall
regions have been discretized with hexahedral elements for boundary layer
prediction whilst prismatic elements have been used in the free stream do-
main. Furthermore, two mesh sizes have been utilised throughout this work,
namely mesh 1 which contains 3.3x106 elements and mesh 2 with 6x106 ele-
ments respectively.

5.3.5 Computational kernels

Table 3 presents details of the face-based and cell-based kernels used to demon-
strate the implementation and the impact of optimisations. Face-based loops
are represented by four kernels computing the inviscid, viscous and linearised
fluxes while cell-based loops are represented by linearised updates to the prim-
itive variables. Face-based loops are characterised by a relatively high arith-
metic intensity as they involve a large number of floating point operations per
pair of adjacent cells whereas cell-based loops tend to exhibit a modest num-
ber of calculations per memory load operation. Therefore, it is expected that
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Figure 17: Unstructured mesh of intake with hexahedra elements at near wall regions
and prisms in the free stream domain.

Figure 18: Solution of ground vortex ingestion highlighting the vorticity in the normal
to the ground direction.

face-based loops, and especially the second order inviscid MUSCL fluxes, will
benefit the most from optimisations that improve the throughput of floating
point computations such as vectorization and to scale with the available num-
ber of computational cores. For cell-based loops, it is expected that they scale
with the available memory bandwidth although it will be of interest to assess
the impact that other optimisations have on their performance such as vectoriz-
ation or data layout transformations and whether optimisations for face-based
kernels have any negative impact on their performance.
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The optimisations presented for the kernels in Table 3 have been implemen-
ted across all other face-based and cell-based kernels in the application. This is
reflected in the results presenting whole application performance as time per
solution update (Newton-Jacobi iteration).

kernel loop runtime (%) flops/bytes description

iflux faces 13 1.30 second order TVD MUSCL fluxes
vflux faces 8 0.80 viscous fluxes
diflux faces 32 0.84 linearised inviscid fluxes
dvflux faces 30 0.80 linearised viscous fluxes
dvar cells 5 0.18 update to primitive variables

Table 3: Computational kernels representing face-based and cell-based loops used for
demonstrating the implementation and impact of our optimisations.

5.3.6 Configuration of compute nodes

Table 4 presents details with respect to the configuration of the compute nodes
used in this chapter in terms of processor model, memory configuration and
software environment. A broader discussion on the characteristics and archi-
tectural features of each processor is given in Chapter 3.

SNB BDW SKL KNC KNL

Version E5-2650 E5-2680 Gold 6140 7120P 7210

Sockets 2 2 2 1 1

Cores 8 14 18 61 64

Threads 2 2 2 4 4

Clock (GHz) 2.0 2.4 2.3 1.2 1.3
SIMD ISA AVX AVX2 AVX-512 IMCI AVX-512

SIMD width 256-bit 256-bit 512-bit 512-bit 512-bit
L1 Cache (KB) 32 32 32 32 32

L2 Cache (KB) 256 256 1024 512 1024

L3 Cache (MB) 20 35 25 - -
DRAM (GB) 32 128 196 16 96/16

DRAM type DDR3 DDR4 DDR4 GDDR5 DDR4/MCDRAM
Stream (GB/sec) 71 118 186 181 82/452

Compiler icpc 17.0
MPI Library Intel MPI 2017

Table 4: Hardware and software configuration of the compute nodes used in this
chapter. The SIMD ISA represents the latest vector instruction set architecture
supported by the particular platform.



5.4 optimisations 103

5.4 optimisations

5.4.1 Grid renumbering

In order to improve the exploitation of the cache hierarchy in face-based loops,
the distance between memory references when gathering and scattering cell-
centred data has to be minimized. In this work, this is achieved using the
Reverse Cuthill Mckee (RCMK) [20] sparse matrix bandwidth minimizer. The
RCMK algorithm reorders the non-zero elements in the adjacency matrix de-
rived from the underlying mesh topology so as to cluster them as close as
possible to the main diagonal [15]. An example of the resulting bandwidth
reduction when applying RCMK on mesh 1 can be seen in Figure 19 where
the maximum distance to the diagonal has been reduced by 53X. Following
the renumbering, the list of faces is sorted in ascending order based on the
first index which results in a sequence of first indices that increase monotonic-
ally. A subsequent sort is performed on the second index so that in groups of
consecutive faces where the first index is constant, the second index reference
will be visited in ascending order. This leads to improvements in both spatial
and temporal locality as the cells referenced by the first index will be quasi
contiguous in memory and therefore able to better exploit the cache hierarchy
and hardware prefetchers. Furthermore, minimizing the stride in memory ac-
cesses can also reduce the number of TLB misses which are particularly ex-
pensive on manycore architectures based on more simple core designs that
cannot handle a page walk as efficiently as conventional multicore CPUs. The
final sort on the second index further improves memory performance since
hardware prefetchers operate best on streams with ordered accesses whether
in a forward or backward direction. The mesh reordering is performed im-
mediately after solver initialisation and across all MPI ranks. Each rank is in
charge of renumbering its local cells after which it traverses its list of halos in
order to relabel the corresponding internal cells with their new value. Since the
reordering is performed only once at solver start-up and scales linearly with
the number of processors, its effect on the overall application execution time is
negligible.
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(a) β = 2808603 (b) β = 52319

Figure 19: Example of reducing the bandwidth (β) via Reverse Cuthill Mckee on mesh
1 (3x106 elements). Figure (a) highlights the initial bandwidth where β =
2808603while figure (b) presents the improved bandwidth where β = 52319
as a result of renumbering.

5.4.2 Vectorization

The continuous increase in size of the underlying vector registers combined
with steady improvements to the associated SIMD ISA have seen vectorization
become indispensable for exploiting the computational power of modern pro-
cessors. Although compilers have evolved over the years and are generally bet-
ter at vectorizing non-trivial kernels, they can only do so when they can guar-
antee safety. Consequently, computational kernels such as face-based loops are
not vectorized due to the existence of indirection and potential dependencies
when accumulating and scattering back to the cell-centres. Furthermore, even
in the case of kernels with regular access patterns such as cell-based loops,
compiler auto-vectorization is not always possible due to various reasons such
as pointer aliasing, inner function calls or conditional branching. As a result, re-
lying on the compiler to generate vector instructions based only on its internal
analysis is not recommended as the success rate will invariably differ across
different compilers, programming languages and computational kernels.
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The alternative to compiler auto-vectorization is explicit vectorization via the
utilisation of directives, lower level intrinsics or inline assembly. In this work,
the predominant approach for achieving vectorization was based on OpenMP
4.0 [64] directives. The use of compiler directives has been preferred over other
alternatives since they offer far greater flexibility and portability across SIMD
architectures and compilers at a small cost in performance compared to lower
level implementations such as compiler intrinsics or assembly.

In cell-based loops, vectorization was made possible through the addition of
directives either at loop level or at function declaration which not only forces
the compiler to vectorize the construct but also enables the generation of ef-
ficient vector code based on auxiliary data attributes such as alignment, vari-
able scoping and vector lane length. An example of this can be seen in Listing
11 based on a simplified example of a cell-based loops for updating the un-
knowns.

#pragma omp simd simdlen(VECLEN) safelen(VECLEN) \

aligned(q:ALIGN,dq:ALIGN)

for( iq=0;iq<num_cells;iq++ )

{

q[iq]+=dq[iq];

}

Listing 11: Example of a cell-based kernel vectorized with OpenMP 4.0 directives.

For face-based loops however, a complete re-write was necessary in order to
switch to a vector programming paradigm. Listing 12 presents the improved
vector-friendly layout which replaces the original example in Listing 10 (Sec-
tion 5.1).

In the new implementation, the original loop is divided into three distinct
stages which naturally map to the underlying gather, compute and scatter
pattern. In essence, each main loop iteration will process a number of con-
secutive faces in parallel by exploiting the available vector lanes as defined
by the VECLEN macro. The first nested loop gathers the unknowns into local
short vector arrays. Depending on the underlying architecture, the compiler
will either generate SIMD gather instructions or serial load sequences if the
architecture does not support such operations. Once all data is loaded into the
short vectors, the second nested loop performs the computation. Similarly to
the previous stage, computations are carried out in parallel on the available
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vector lanes. In AVX/AVX2, four faces would be processed concurrently or
eight for IMCI and AVX-512 architectures in double precision. Since all inter-
mediate short vectors are allocated on the stack as static arrays of sizes known
at compile time as defined by the pre-processor macros, the compiler can easily
generate efficient vector code specific to the underlying architecture as all de-
pendencies have been eliminated. This includes loading contiguous data such
as face geometrical properties at aligned addresses as expressed through the
aligned clause in the directive. The last stage involves the accumulation and
scatter of the residuals to their respective cells. This is done sequentially since
generating vector code for this section would lead to incorrect results due to
data dependencies as multiple successive faces are processed in parallel.

Grouping the operations specific to the gather, compute and scatter patterns
in distinct sections enabled the vectorization of the first two where the major-
ity of instructions are issued while the scatter, which prevented vectorization
in the first place, is still performed sequentially. Vectorizing the gather and
the computation stages is important since finite volume discretizations involve
a large number of floating point operations per pair of cells which if vector-
ized, can lead to significant speed-ups. The additional nested loops in the new
implementation are unrolled automatically at compilation as they decay into
single or multiple SIMD instructions therefore removing potential overhead as
long as the iteration space (VECLEN) is equal or a relatively small multiple of
the underlying vector lane size. The promotion from scalar to short vectors is
performed only for variables that appear in at least one of the three distinct
stages (i.e. f representing the flux residual, computed in stage two and written
back in stage three).

In addition to re-writing all face-based kernels in the solver following the
principles set out in Listing 12, a number of other optimisations were also
performed at this stage such as: (i) allocating face and cell data structures on
aligned 32 or 64 byte boundaries using _mm_malloc depending on the SIMD
architecture. (ii) padding of the list of faces through the addition of redundant
entries up to a size that is a multiple of VECLEN. (iii) the replacement of divisions
with reciprocal multiplications in places where the divisors were geometrical
variables as SIMD division operations are non-pipelined across the majority of
architectures and suffer from very high latencies.
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# if defined __MIC__

# define VECLEN 8
# define ALIGN 64

# elif defined __AVX512F__

# define VECLEN 8
# define ALIGN 64

# elif defined __AVX__

# define VECLEN 4
# define ALIGN 32

# elif defined __SSE3__

# define VECLEN 2
# define ALIGN 16

# else
# define VECLEN 1
# define ALIGN 16

# endif

double u1[VECLEN];
double u2[VECLEN];
double f[VECLEN];

for( ic=0;ic<num_faces;ic+=VECLEN )
{

// gather data from adjacent cells
#pragma omp simd simdlen(VECLEN)
for( iv=0;iv<VECLEN;iv++ )
{

u1[iv]= q[ifq[0][ic+iv]];
u2[iv]= q[ifq[1][ic+iv]];

}
// computation
#pragma omp simd simdlen(VECLEN) \
aligned(geo:ALIGN,u1:ALIGN,u2:ALIGN)
for( iv=0;iv<VECLEN;iv++ )
{

f[iv]= geo[ic+iv]*(u2[iv]-u1[iv]);
}
// scatter, serially due to dependencies
for( iv=0;iv<VECLEN;iv++ )
{

rhs[ifq[0][ic+iv]]-= f[iv];
rhs[ifq[1][ic+iv]]+= f[iv];

}
}

Listing 12: Example of a SIMD friendly implementation of face-based kernels
vectorized with OpenMP 4.0 directives.
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5.4.3 Colouring

The dependencies that prevent vectorization when scattering back to the face
end-points can be removed by further colouring and reordering the list of
faces. Löhner et al [49] presented two algorithms for this purpose and which
were implemented in this work. The first algorithm (Löhner 1) uses a simple
colouring approach whereby it reorders the list of faces such that groups of
consecutive faces of size equal to the specified vector length (i.e. VECLEN) have
no dependencies across their end-points. The second algorithm (Löhner 2) is
an extension of the first algorithm with the difference that it also attempts
to minimize the jumps in the second index within the vector groups. This is
achieved by performing additional iterations as defined by a search distance
parameter in order to find suitable faces that exhibit no dependencies and
keep the one that contributes to the smallest jump in the second index when
compared with the first entry of the vector group.

Table 5 presents the jumps in both the first and the second index after re-
ordering the faces using both algorithms on mesh 1. The entries jump1 and
jump1a represent maximum and average jumps across the first index while
jump2 and jump2a have the same meaning but for the second index. It can be
observed that Löhner 2 decreases the jumps in the second index as the search
distance is increased although these lead to significant increases in the first in-
dex. As a result, one has to choose a combination that provides the best trade
off between the two (i.e. largest decrease in jumps in the second index over the
smallest increases in the first). Consequently, throughout this work, the Löhner
2 algorithm was used with a vector length of 4 and a search distance of 16 for
AVX/AVX2 architectures and a vector length of 8 and and a search distance of
16 for the IMCI and AVX-512 platforms.

After removing the dependencies at the face end-points in groups of faces
equal to the underlying SIMD length (i.e. VECLEN), the scatter sections across all
face-based loops were also vectorized using OpenMP 4.0 directives in a similar
fashion to the gather and computation sections.

5.4.4 Array of Structures

The reference implementation used the SoA layout to store both face and cell-
centred variables. For example, unknowns were stored in individual vectors as
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algorithm vector length search distance jump1 jump1a jump2 jump2a

Original - - 7 0.4 79490 18869

Löhner 1 4 - 12 1.4 79490 18869

Löhner 2 4 16 69 11.5 79235 6540

Löhner 2 4 32 116 19 79023 6064

Löhner 2 4 64 201 31 79028 5853

Löhner 1 8 - 25 1.9 79028 17296

Löhner 2 8 16 85 11.7 79261 4708

Löhner 2 8 32 158 21.3 79977 3541

Löhner 2 8 64 272 35 79030 3153

Löhner 1 16 - 48 2.3 79039 16258

Löhner 2 16 16 89 10.6 78801 5235

Löhner 2 16 32 224 20.3 79051 2858

Löhner 2 16 64 376 37.5 78922 1941

Löhner 1 32 - 94 2.6 79490 15683

Löhner 2 32 32 208 18.6 79274 3267

Löhner 2 32 64 428 35 79453 1767

Löhner 2 32 128 791 67.3 78750 1104

Löhner 1 64 - 173 2.9 79670 15399

Löhner 2 64 64 412 31.7 97813 2143

Löhner 2 64 128 948 63.2 79521 1119

Löhner 2 64 256 1607 126.1 79287 698.5

Table 5: Jump in indices for mesh 1 after reordering the faces based on the two al-
gorithms in Löhner et al [49].
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u0 u1 u2 u3 u4 u5 ... un

v0 v1 v2 v3 v4 v5 ... vn

w0 w1 w2 w3 w4 w5 ... wn

t0 t1 t2 t3 t4 t5 ... tn

p0 p1 p2 p3 p4 p5 ... pn

k0 k1 k2 k3 k4 k5 ... kn

ω0 ω1 ω2 ω3 ω4 ω5
... ωn

Figure 20: SoA layout for cell-centred variables such as unknowns.

seen in Figure 20 where n is equal to the number of cells in the computational
domain.

As faces are processed in consecutive order within face-based loops, access-
ing face variables such as normals, coordinates and frame speed is done via
contiguous vector load operations which map effectively to the CPU vector
registers. However, the access for cell-centred variables is indirect and irregu-
lar since cells are traversed non-consecutively according to the correspondence
array. As a result, for each cell, all cell-centred variables have to be gathered
from their respective vectors and into the SIMD registers. For SIMD architec-
tures that do not support vector gather operations, the compiler will generate
sequential loads in order to fill in the vector registers. Similarly, scattering
values such as residuals back to the corresponding arrays translates into se-
quential stores if scatter vector instructions are not available. On architectures
with available gather and/or scatter support, the number of issued instruc-
tions is reduced by a factor equal to the underlying number of vector lanes.
However, when compared to regular SIMD load and store operations, gather
and scatter primitives are known to suffer from significantly higher latencies
[40] especially on the Knights Corner architecture [67]. Consequently, the data
structures storing cell-centred variables have been modified to an AoS imple-
mentation whilst face data structures were kept in the SoA format.

In the AoS layout, cell-centred variables are stored contiguously in short
arrays for every cell as seen in Figure 21 rather than being stored in individual
vectors. As a result, although the AoS format does not fully remove all gather
and scatter operations, irregular load and stores are only executed once for
each cell vector as subsequent successive elements are loaded automatically at
cache line granularity as long as the short arrays are padded. This improves
locality and minimizes cache misses although the disadvantage compared to
SoA is that variables have to be transposed into their respective vector register
and lane positions.
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u0 v0 w0 t0 p0 k0 ω0 u1 v1 w1 t1 p1 k1 ω1
... un vn wn tn pn kn ωn

Figure 21: AoS layout for cell-centred variables such as unknowns including padding.

The advantage of using AoS over SoA in loops with gather and scatter op-
erations can be demonstrated by analysing the number of cache lines required
to gather the unknowns in a single vector iteration for both layout formats. For
the purpose of such analysis, VLEN represents the vector register size, NVAR
the number of variables to be gathered per cell,NCELL the number of cells and
CLEN the number of variables that can be stored in one cache line. Therefore,
VLEN is equal to either 4 or 8 depending on the underlying SIMD architec-
ture (i.e. AVX/AVX2 or IMCI/AVX-512), NVAR = 7 for the unknowns since
there are 5 variables for the flow and 2 for the turbulence model, CLEN = 8 in
double precision since eight variables will occupy an entire 64-byte cache line
and finally, NCELL = 2× VLEN as each face is shared by two cells and the
indices referencing the cells are unique across every iteration due to colouring.
In the best case scenario, the indices referencing the pairs of neighbouring cells
within a vector iteration are ordered consecutively among themselves while in
the worst case, the cell indices will be at a distance greater than the size of a
cache line (i.e. > CLEN). As a result, the number of cache lines accessed by the
SoA layout in the best case scenario would beNVAR× (NCELL÷CLEN) while
for AoS, this would be NCELL× (NVAR÷CLEN). In the worst case scenario,
SoA would require NCELL×NVAR cache lines whereas for AoS this would
remain as NCELL× (NVAR÷CLEN) due to the fact that all of the successive
unknowns within a cell fit across a single cache line after padding. Therefore,
for AVX/AVX2, the SoA layout would require 7 cache lines in the best case
scenario and 56 in the worst. In the AoS layout, both the best and worst case
would require 8 cache lines. For IMCI/AVX-512, one can simply multiply the
above numbers by a factor of two where the best and worst case for SoA would
be 14 and 112 respectively and 16 across both cases for AoS.

Consequently, although SoA is superior in the best case scenario where the
visited cells are contiguous in memory, it performs worse by a factor equal to
the number of variables that are gathered per cell compared to AoS when the
distance between the face end-points is larger than the size of the cache line.
Judging by the average indices in Table 5, one can clearly observe that for both
the first and the second index, the average jumps resulting from reordering the
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list of faces using the Löhner 2 algorithm are larger than the size of a single
cache line (>8). As a result, the AoS layout is in theory the optimal choice since
it significantly reduces the number of cache lines required per vector iteration
and should therefore improve the performance of the cache hierarchy.

The transition from SoA to AoS was by no means a trivial endeavour as it
required significant changes to the message passing interface, array access se-
mantics and switching the order of all nested loop constructs that manipulated
cell centred data. It is therefore recommended that some form of abstraction is
implemented with regards to the layout in memory of such data structures so
that a switch between different implementations can be performed at compile
time which would be a useful design trait. This is important when considering
that for structured codes, SoA or a hybrid thereof, is the better performing
implementation as demonstrated in Chapter 4 since cells are traversed con-
secutively following an i,j,k indexing system which therefore allows for effi-
cient vector load and store operations. Finally, with regard to unstructured
grid applications, modifying cell data to the AoS layout has an impact on
cell-based kernels. Whereas previously with SoA, these kernels could exploit
SIMD contiguous load store operations as cells were traversed in successive
order, switching to AoS means that variables for each cell have to be loaded in
vector registers and subsequently transposed into the SoA format which adds
extra latency and decreases performance. It is therefore important to empir-
ically evaluate the impact of this optimisation as performance will be lost in
the cell-based loops although improvements are expected for the face-based
constructs which are the main bottleneck in the application.

5.4.5 Gather Scatter Optimisations

The AoS memory layout for cell-centred variables requires that gathers, arising
from indirect addressing, are only executed once per structure and not for
every variable as it is the case with SoA if the distance between cells is larger
than that of the underlying cache line. However, successive elements in AoS
although contiguous in memory, need to be transposed into the correct vector
register and lane positions. If one considers the seven unknowns in the AoS
layout with padding in the last position at a given cell index i, depending
on the underlying SIMD architecture (i.e 256-bit or 512-bit wide register), all
of the eight double precision values can be loaded from the structure with
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either one or two aligned vector load instructions for each cell end-point. As
vectorization is applied across consecutive faces, the unknowns of all cell end-
points need to be re-arranged on the fly and packed into the SoA format. This
process is described in Figure 22 which presents the on the fly transposition
from AoS to SoA on AVX/AVX2 architectures with 256-bit registers. In this
work, the transpose primitives were implemented using compiler intrinsics
for each individual SIMD architecture by using instructions that exhibit the
lowest latency and highest degree of instruction parallelism as presented in
Listings 13,14 and 15 for AVX/AVX2, AVX-512 and IMCI respectively. This is
relevant since the SIMD implementations across processors differ significantly
and a generic solution would leave performance on the table. For example, the
Knights Corner architecture provides swizzle operations which can perform
on the fly data multiplexing prior to execution from the register. Consequently,
some permutations and shuffles can be done with "zero" penalty whereas on
all other architectures, these will be forwarded to an execution port (port 5 on
multicores) which can lead to port pressure. Similarly, scatters for writing back
results to the face end-points are implemented by transposing back from SoA
to AoS and utilising aligned vector stores which is possible since faces have
been coloured. Listing 16 presents the integration of the AoS to SoA conversion
primitives in a simplified face-based loop. The conversion primitives are also
used in cell-based kernels such as the candidate for updating flow variables in
order to convert to and from AoS and SoA as efficiently as possible with the
distinction that the indices for performing the gather and scatters in cell-based
loops are linear and at unit stride.

Finally, similar work to the above has been presented by Pennycook et al
[67] for optimising the gather/scatter patterns in molecular dynamics applica-
tions. The solution presented here extends their work by supporting additional
SIMD architectures and by applying them to unstructured computational fluid
dynamics solvers.

5.4.6 Array of Structures Structure of Arrays

While the SoA format is ideal for mapping face data to SIMD registers, it re-
quires that multiple memory streams are serviced in parallel for each vector of
variables. Since prefetchers can only operate on a limited number of streams,
maintaining a large number of them in flight wastes memory bandwidth and
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inline void aos2soa(AOS_t *src, int *pos, double dest[NVAR][VECLEN])
{

__m256d v[NVAR],s[NVAR],p[NVAR];

// load variables in 256-bit registers
v[0] = _mm256_load_pd(&src[pos[0]].var[0]); // u0,v0,w0,t0
v[4] = _mm256_load_pd(&src[pos[0]].var[4]); // p0,k0,o0
v[1] = _mm256_load_pd(&src[pos[1]].var[0]); // u1,v1,w1,t1
v[5] = _mm256_load_pd(&src[pos[1]].var[4]); // p1,k1,o1
v[2] = _mm256_load_pd(&src[pos[2]].var[0]); // u2,v2,w2,t2
v[6] = _mm256_load_pd(&src[pos[2]].var[4]); // p2,k2,o2
v[3] = _mm256_load_pd(&src[pos[3]].var[0]); // u3,v3,w3,t3
v[7] = _mm256_load_pd(&src[pos[3]].var[4]); // p3,k3,o3

// 64-bit wide interleave
s[0] = _mm256_shuffle_pd(v[0],v[1],0x0); // u0,u1,w0,w1
s[4] = _mm256_shuffle_pd(v[4],v[5],0x0); // p0,p1,o0,o1
s[1] = _mm256_shuffle_pd(v[0],v[1],0xF); // v0,v1,t0,t1
s[5] = _mm256_shuffle_pd(v[4],v[5],0xF); // k0,k1
s[2] = _mm256_shuffle_pd(v[2],v[3],0x0); // u2,u3,w2,w3
s[6] = _mm256_shuffle_pd(v[6],v[7],0x0); // p2,p3,o2,o3
s[3] = _mm256_shuffle_pd(v[2],v[3],0xF); // v2,v3,t2,t3
s[7] = _mm256_shuffle_pd(v[6],v[7],0xF); // k2,k3

// 128-bit wide interleave
p[0] = _mm256_permute2f128_pd(s[0],s[2],0x20); // u0,u1,u2,u3
p[1] = _mm256_permute2f128_pd(s[1],s[3],0x20); // v0,v1,v2,v3
p[2] = _mm256_permute2f128_pd(s[0],s[2],0x31); // w0,w1,w2,w3
p[3] = _mm256_permute2f128_pd(s[1],s[3],0x31); // t0,t1,t2,t2
p[4] = _mm256_permute2f128_pd(s[4],s[6],0x20); // p0,p1,p2,p3
p[5] = _mm256_permute2f128_pd(s[5],s[7],0x20); // k0,k1,k2,k3
p[6] = _mm256_permute2f128_pd(s[4],s[6],0x31); // o0,o1,o2,o3

// store in SoA format
_mm256_store_pd(&dest[0][0],p[0]);
_mm256_store_pd(&dest[1][0],p[1]);
_mm256_store_pd(&dest[2][0],p[2]);
_mm256_store_pd(&dest[3][0],p[3]);
_mm256_store_pd(&dest[4][0],p[4]);
_mm256_store_pd(&dest[5][0],p[5]);
_mm256_store_pd(&dest[6][0],p[6]);

}

Listing 13: Example of AVX/AVX2 compiler intrinsics kernel for in-register
transposition from AoS to SoA of unknowns.
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inline void aos2soa(AOS_t *src, int *pos, double dest[NVAR][VECLEN])
{

__m512d v[NVAR],u[NVAR],p[NVAR],s[NVAR];

// load variables in 512-bit registers
v[0] = _mm512_load_pd(&src[pos[0]].var[0]); // u0,v0,w0,t0,p0,...
v[1] = _mm512_load_pd(&src[pos[1]].var[0]); // u1,v1,w1,t1,p1,...
// truncated, repeat for rows 2-7

// 64-bit wide interleave
u[0] = _mm512_unpacklo_pd(v[0],v[1]); // u0,u1,w0,w1,p0,p1,o0,o1
u[1] = _mm512_unpacklo_pd(v[2],v[3]); // u2,u3,w2,w3,p2,p3,o2,o3
u[2] = _mm512_unpacklo_pd(v[4],v[5]); // u4,u5,w4,w5,p4,p5,o4,o5
u[3] = _mm512_unpacklo_pd(v[6],v[7]); // u6,u7,w6,w7,p6,p7,o6,o7
u[4] = _mm512_unpackhi_pd(v[0],v[1]); // v0,v1,t0,t1,k0,k1
u[5] = _mm512_unpackhi_pd(v[2],v[3]); // v2,v3,t2,t3,k2,k3
u[6] = _mm512_unpackhi_pd(v[4],v[5]); // v4,v5,t4,t5,k4,k5
u[7] = _mm512_unpackhi_pd(v[6],v[7]); // v6,v7,t6,t7,k6,k7

// 128-bit wide interleave
p[0] = _mm512_mask_permutex_pd(u[0],0xCC,u[1],0x44); // u0-3,p0-3
p[2] = _mm512_mask_permutex_pd(u[4],0xCC,u[5],0x44); // v0-3,k0-3
p[4] = _mm512_mask_permutex_pd(u[1],0x33,u[0],0xEE); // w0-3,o0-3
p[6] = _mm512_mask_permutex_pd(u[5],0x33,u[4],0xEE); // t0-3
p[1] = _mm512_mask_permutex_pd(u[2],0xCC,u[3],0x44); // u4-7,p4-7
p[3] = _mm512_mask_permutex_pd(u[6],0xCC,u[7],0x44); // v4-7,k4-7
p[5] = _mm512_mask_permutex_pd(u[3],0x33,u[2],0xEE); // w4-7,o4-7
p[7] = _mm512_mask_permutex_pd(u[7],0x33,u[6],0xEE); // t4-7

// 256-bit wide interleave
s[0] = _mm512_shuffle_f64x2(p[0],p[1],0x44); // u0,u1,u2,u3,u4,...
s[1] = _mm512_shuffle_f64x2(p[2],p[3],0x44); // v0,v1,v2,v3,v4,...
s[2] = _mm512_shuffle_f64x2(p[4],p[5],0x44); // w0,w1,w2,w3,w4,...
s[3] = _mm512_shuffle_f64x2(p[6],p[7],0x44); // t0,t1,t2,t3,t4,...
s[4] = _mm512_shuffle_f64x2(p[0],p[1],0xEE); // p0,p1,p2,p3,p4,...
s[5] = _mm512_shuffle_f64x2(p[2],p[3],0xEE); // k0,k1,k2,k3,k4,...
s[6] = _mm512_shuffle_f64x2(p[4],p[5],0xEE); // o0,o1,o2,o3,o4,...

// store in SoA format
_mm512_store_pd(&dest[0][0],s[0]);
_mm512_store_pd(&dest[1][0],s[1]);
// truncated, repeat for dest[2-6] <- s[2-6]

}

Listing 14: Example of AVX-512 compiler intrinsics kernel for in-register transposition
from AoS to SoA of unknowns.
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inline void aos2soa(AOS_t *src, int *pos, double dest[NVAR][VECLEN])
{

__m512d tmp0,tmp1;
__m512d v[NVAR],b[NVAR],p[NVAR];

// load variables in 512-bit registers
v[0] = _mm512_load_pd(&src[pos[0]].var[0]); // u0,v0,w0,t0,p0,...
v[1] = _mm512_load_pd(&src[pos[1]].var[0]); // u1,v1,w1,t1,p1,...

// u0,u1,t0,t1,u0,u1,t0,t1
tmp0 = _mm512_mask_blend_pd(0x22,v[0],

_mm512_swizzle_pd(v[1],_MM_SWIZ_REG_CDAB));
// u2,u3,t2,t3,u2,u3,t2,t3
tmp1 = _mm512_mask_blend_pd(0x88,

_mm512_swizzle_pd(v[2],_MM_SWIZ_REG_BADC),
_mm512_swizzle_pd(v[3],_MM_SWIZ_REG_AAAA));

// u0,u1,u2,u3,t0,t1,t2,t3
b[0] = _mm512_mask_blend_pd(0xCC,tmp0,tmp1);
// u4,u5,t4,t5,u4,u5,t4,t5
tmp0 = _mm512_mask_blend_pd(0x22,v[4],

_mm512_swizzle_pd(v[5],_MM_SWIZ_REG_CDAB));
// u6,7,t6,t7,u6,u7,t6,t7
tmp1 = _mm512_mask_blend_pd(0x88,

_mm512_swizzle_pd(v[6],_MM_SWIZ_REG_BADC),
_mm512_swizzle_pd(v[7],_MM_SWIZ_REG_AAAA));

// u4,u5,u6,u7,t4,t5,t6,t7
b[1] = _mm512_mask_blend_pd(0xCC,tmp0,tmp1);
// u0,u1,u2,u3,u4,u5,u6,u7
p[0] =_mm512_castsi512_pd(

_mm512_mask_permute4f128_epi32(
_mm512_castpd_si512(b[0]), 0xFF00,
_mm512_castpd_si512(b[1]),_MM_PERM_BABA));

// t0,t1,t2,t3,t4,t5,t6,7
p[3] =_mm512_castsi512_pd(

_mm512_mask_permute4f128_epi32(
_mm512_castpd_si512(b[1]), 0xFF,
_mm512_castpd_si512(b[0]),_MM_PERM_DCDC));

// repeat for v-k,w-o,p-0

_mm512_store_pd(&dest[0][0],u0u1u2u3u4u5u6u7);
_mm512_store_pd(&dest[4][0],t0t1t2t3t4t5t6t7);
// repeat for other v,w,p,k,o

}

Listing 15: Example of IMCI compiler intrinsics kernel for in-register transposition
from AoS to SoA of unknowns.
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Figure 22: On the fly transposition from AoS to SoA of the unknowns on AVX/AVX2

architectures. Corresponding compiler intrinsics can be seen in listing 13.

double u1[NVAR][VECLEN];
double u2[NVAR][VECLEN];
double r1[NVAR][VECLEN];
double r2[NVAR][VECLEN];
double f[NVAR][VECLEN];

for( ic=0;ic<num_faces;ic+=VECLEN )
{

// gather
aos2soa(q,&(ifq[0][ic]),u1);
aos2soa(q,&(ifq[1][ic]),u2);
aos2soa(rhs,&(ifq[0][ic]),r1);
aos2soa(rhs,&(ifq[1][ic]),r2);

// compute
#pragma omp simd simdlen(VECLEN) \
aligned(geo:ALIGN,u1:ALIGN,u2:ALIGN)
for( iv=0;iv<VECLEN;iv++ )
{

for( jv=0;jv<NVAR;jv++ )
{

f[jv][iv]= geo[ic+iv]*(u2[jv][iv]-u1[jv][iv]);
r1[jv][iv]-= f[jv][iv];
r2[jv][iv]+= f[jv][iv];

}
}
// scatter
soa2aos(r1,&(ifq[0][ic]),rhs);
soa2aos(r2,&(ifq[1][ic]),rhs);

}

Listing 16: Integration of primitives for on the fly conversion between AoS and SoA
data layouts in a face-based kernel.



5.4 optimisations 118

other valuable resources. Consequently, the SoA layout can be replaced with
the hybrid AoSSoA layout. Essentially, in the AoSSoA layout, face attributes
such as normals and coordinates are clubbed together in short vectors equal
to the underlying vector register size or a multiple of it. As an example, if one
considers the normals to the face in three dimensions: x,y,z on AVX/AVX2

with 256-bit wide registers, the hybrid AoSSoA implementation would map
these to the layout presented in Figure 23. This increases locality since distinct
variables are stored at a stride equal to one or more vector load and store oper-
ations. Furthermore, whereas before, three independent streams were required
to load normals in each dimension, the new layout merges this into a single
stream whilst still allowing for aligned vector load and store operations.

x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 ... xn xn xn xn yn yn yn yn zn zn zn zn

Figure 23: AoSSoA layout for storing the normals to the face in three dimensions.

5.4.7 Loop tiling

The transfer of data to and from the underlying memory hierarchy is the main
bottleneck in unstructured mesh applications based on finite volume discretiz-
ations. Thus, the implementation of techniques and algorithms that minimize
this movement will most likely yield improvements in performance. In this
work, this was accomplished via loop tiling, also known as loop blocking or
strip mining, with the purpose of reusing data across multiple kernels before
writing the results back to main memory. The benefits of such optimisations in
unstructured mesh applications have previously been demonstrated by Giles
et al [33] via an analytical study.

The implementation of loop tiling in this work was limited to the linear
solver, and more specifically, to the computation of linearised fluxes where
the largest amount of time was being spent. This consisted in evaluating both
linearised inviscid and viscous flux computations over a unified iteration space.
In essence, the inviscid fluxes would be computed first for a pre-set amount
of faces followed by viscous computations. This sequence would be repeated
until all faces of the domain have been processed. The number of faces to be
processed in each set of iterations was determined after telescoping through
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various multiples of the underlying register size in order to block the data in
the L2 cache on each architecture.

5.4.8 Software Prefetching

In structured codes with contiguous and regular access patterns, memory par-
allelism is exploited by the hardware transparently via the available hardware
prefetchers across the different cache levels. In unstructured codes, the irregu-
lar and indirect access patterns make prefetching more difficult to accomplish
by the hardware. In the majority of cases, hardware prefetchers are unable
to anticipate which data is required in the upcoming iterations of face-based
loops due to indirection and the non-consecutive traversal of the face end-
points. However, this limitation can be addressed through the programmer’s
domain knowledge since the order of traversal is known at run-time and can
be deduced from the associated connectivity arrays.

The prefetch strategy implemented in this work is based on compiler intrins-
ics and auto-tuning. Prefetch instructions are executed inside the routines that
gather and transpose cell-centred data from AoS to SoA as demonstrated in
Listing 17. In this manner, as data is gathered and transposed from the group
of cells traversed in vector iteration i, prefetches are also issued for the data of
all the cells that will be visited in the vector iteration i+dwhere d is a distance
parameter.

For software prefetching to be effective, the value of d has to be chosen care-
fully. If too small, it will fetch data into the higher cache levels that is no longer
needed resulting in unnecessary memory traffic and therefore consuming valu-
able memory bandwidth. On the other hand, if d is too large, the prefetched
data will be evicted by the time it is referenced therefore increasing the num-
ber of cache misses and cache line replacements. The challenge of selecting
the optimal value of d is exacerbated by the fact that this will invariably differ
across computational kernels and processors since it depends on architectural
specific metrics such as latencies of caches and main memory as well as kernel
specific characteristics such as number of instructions executed per loop itera-
tion [58],[45]. As a result, finding the optimal value of d across all kernels and
for every distinct architecture can only be achieved by means of auto-tuning.
In this work, an auto-tuning phase is executed once on every processor in or-
der to telescope through a range of values for d as well as for assessing the
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optimal placement of prefetch instructions across the available cache levels (i.e.
L1 only, L1 and L2, L2 only).

In face-based loops, prefetch instructions are issued for both cell-centred
data and for the indices in the connectivity arrays that are used for referencing
the face end-points. Otherwise, cache misses that result from accessing the con-
nectivity array would offset any benefits of prefetching the actual data. Further-
more, Ainsworth et al [5] demonstrated that the optimal distance for prefetch-
ing the indices is twice the distance used for prefetching the data. Thus, within
the auto-tuning phase, the auto-tuner telescopes through multiple ranges of in-
dex and data prefetch distances whilst maintaining this ratio and selects the
distances that result in the highest speed-up for every face-based kernel. This
is demonstrated more clearly in Listing 17.

In cell-based loops, prefetch instructions are issued only for cell-centred data
as there is no indirection. The optimal prefetch distance is obtained during the
same auto-tuning phase that is performed for the face-based loops.

The efficiency of the software prefetching implementation is also improved
by the choice of data structures for the cell-centred variables. A side effect of
using the AoS data layout is that all successive variables within the structure
are loaded at cache line granularity. This means that compared to SoA, the AoS
layout only requires that a single prefetch instruction is issued per structure
using the address of the first variable since consecutive entries will be loaded
as well in the same cache line.

5.4.9 Multithreading

Thread-level parallelism has been exploited in the application via the util-
isation of OpenMP directives and specifically targets the Intel Xeon Phi ma-
nycore architectures. For the multicore CPUs, multi-threading in conjunction
with MPI did not bring forth any performance improvement and was there-
fore abandoned. However, on the Intel Xeon Phi architecture, running more
than one thread context per physical core is highly encouraged especially for
Knights Corner where it can hide memory latencies due to the in-order core
execution engine. Although exposing parallelism in loops over cells is trivial,
exposing thread parallelism in face loops is more challenging and requires
colour concurrency. There are a number of approaches which can be utilised
in respect to the latter [10]. In this work, the available colouring algorithms
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# if defined L1_INDEX
# define L1_DATA (L1_INDEX >> 1)

# endif
# if defined L2_INDEX

# define L2_DATA (L2_INDEX >> 1)
# endif

inline void prefetchi( int *pos )
{
# if defined L2_INDEX

_mm_prefetch((char *)&(pos[L2_INDEX]),_MM_HINT_T1);
# endif
# if defined L1_INDEX

_mm_prefetch((char *)&(pos[L1_INDEX]),_MM_HINT_T0);
# endif
}

inline void prefetchd( AOS_t *data, int *pos )
{
# if defined L2_INDEX

for( int i=0;i<NVAR;i++ )
_mm_prefetch((char *)&(data[pos[L2_DATA]].var[i]),_MM_HINT_T1);

# endif
# if defined L1_INDEX

for( int i=0;i<NVAR;i++ )
_mm_prefetch((char *)&(data[pos[L1_DATA]].var[i]),_MM_HINT_T0);

# endif
}

inline void aos2soa(AOS_t *src, int *pos, double dest[NVAR][VECLEN])
{

...
// prefetch the data
prefetchd(src,pos);
...

}
for( ic=0;ic<num_faces;ic+=VECLEN )
{

// prefetch the indices once per iteration
prefetchi(&(ifq[0][ic]));
prefetchi(&(ifq[1][ic]));
// gather
aos2soa(q,&(ifq[0][ic]),u1);
...

}

Listing 17: Implementation of software prefetching in face-based loops.
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were used to reorder the list of faces such that the number of dependency-
free faces was not only a multiple of the underlying vector register size but
could also be divided so that each active thread per core can process an equal
amount of vector iterations. The iteration space was then scheduled as static
at a chunk equal to one vector iteration whereby each thread executes vector
iterations in a round robin fashion. The main rationale behind this approach
is that it guarantees correctness and integrates well with MPI whereby each
rank is pinned to a physical core with subsequent threads spawned within the
same core domain. This maintains data locality and affinity to the underlying
cache hierarchy, reduces traffic caused from the protocols in charge of cache
coherence and mitigates against the risk of false sharing. Most importantly,
this approach hides latency best especially for Knights Corner since it guaran-
tees that each thread will access different cell-centred data in face-based loops
due to colouring and that every miss and stall in L1 can be circumvented by
switching between active threads that have data available.

5.5 results and discussions

5.5.1 Effects of optimisations

Figures 24, 25, 26, 27, 28, 29, 30 and 31 present the impact that each optimisa-
tion has on the performance of both classes of computational kernels and on
the overall application run-time. Results are averaged across 10 Newton-Jacobi
iterations while running on 1 MPI rank. For the Knights Landing system, res-
ults in this section were obtained while running in the Quadrant/Cache con-
figuration.

grid renumbering Renumbering the grid via the RCMK algorithm led
to minor improvements in performance for face-based kernels. Unsurprisingly,
the highest impact is observed in kernels with a lower flop per byte ratio repres-
ented by the computation of linearised inviscid and viscous fluxes and where
the speed-up is as high as 10%.

vectorization Vectorization results in the largest increases in perform-
ance across all architectures and computational patterns. In face-based ker-
nels, these increases range between 2-5X on the multicore CPUs and 2-3X on
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Figure 24: Effects of optimisations on the performance of face-based loops (flux com-
putations) on the Sandy Bridge (SNB E5-2650) system. Results are reported
as GFLOPS and Speed-up and were collected by running the application on
1 MPI rank (i.e. single-core).
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Figure 25: Effects of optimisations on the performance of face-based loops (flux com-
putations) on the Broadwell (BDW E5-2680) system. Results are reported as
GFLOPS and Speed-up and were collected by running the application on 1

MPI rank (i.e. single-core).
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Figure 26: Effects of optimisations on the performance of face-based loops (flux com-
putations) on the Skylake (SKL Gold 6140) system. Results are reported as
GFLOPS and Speed-up and were collected by running the application on 1

MPI rank (i.e. single-core).
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Figure 27: Effects of optimisations on the performance of face-based loops (flux com-
putations) on the Knights Corner (KNC 7120P) system. Results are reported
as GFLOPS and Speed-up and were collected by running the application on
1 MPI rank (i.e. single-core).
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Figure 28: Effects of optimisations on the performance of face-based loops (flux com-
putations) on the Knights Landing (KNL 7210) system. Results are reported
as GFLOPS and Speed-up and were collected by running the application on
1 MPI rank (i.e. single-core) and in Quadrant/Cache mode.
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Figure 29: Effects of optimisations on the performance of cell-based loops (update to
primitive variables) reported as GFLOPS. Results were collected by running
the application on 1 MPI rank (i.e. single-core). The Knights Landing (KNL
7210) system was configured as Quadrant/Cache.
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Figure 30: Effects of optimisations on the performance of cell-based loops (update to
primitive variables) reported as speed-up relative to the reference imple-
mentation. Results were collected by running the application on 1 MPI rank
(i.e. single-core). The Knights Landing (KNL 7210) system was configured
as Quadrant/Cache.
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Figure 31: Effects of optimisations on the average time per solution update within a
Newton-Jacobi iteration obtained through each optimisation. Results were
collected by running the application on 1 MPI rank (i.e. single-core). The
Knights Landing (KNL 7210) system was configured as Quadrant/Cache.
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Figure 32: Effects of optimisations on the speed-up per solution update within a
Newton-Jacobi iteration obtained through each optimisation relative to the
reference implementation. Results were collected by running the applica-
tion on 1 MPI rank (i.e. single-core). The Knights Landing (KNL 7210) sys-
tem was configured as Quadrant/Cache.
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the Knights Corner and Knights Landing processors. As one can observe, the
gains are considerably higher in kernels with a high arithmetic intensity such
as the computation of the inviscid second order MUSCL fluxes (iflux) since
efficient vector computations are mandatory for achieving a high instruction
throughput on modern processors. A similar impact is seen for cell-based ker-
nels where vectorization provided the highest performance impact compared
to all other optimisations. Furthermore, all of these translate to an overall ap-
plication speed-up between 2-3X relative to the original baseline.

colouring The colouring/reordering of faces for enabling vectorized scat-
ters of data to the face end-points does not yield any benefits on the multicore
CPUs where it is in fact detrimental to performance. In contrast, this is benefi-
cial on the manycore processors and leads to marginal speed-ups although not
higher than 10%. This difference might stem from the fact that non-vectorized
serial stores are significantly slower on the manycore processors than the SIMD
scatter instruction. On the multicore CPUs, the Sandy Bridge and Broadwell
architectures implement AVX/AVX2 which do not provide vector scatter func-
tionality. On these processors, scatters are performed as a series of vector insert
and store that have a higher cumulative latency than their serial store coun-
terpart. On Skylake, the AVX-512F implementation does provide support for
vector scatters. Thus, the small decrease in performance is attributed on this ar-
chitecture to the increase in the distance across the first and second index due
to face reordering which leads to an increase in cache misses due to the limita-
tions of the SoA layout in kernels with irregular access patterns. Nevertheless,
colouring is important further down the line once additional optimisations
are implemented since it exposes parallelism in writing back values across all
face-based loops and allows for the exploitation of thread parallelism.

array of structures The conversion of cell centred data structures from
SoA to AoS provides improvements in performance for some of the face-based
kernels on the multicore CPUs. In face-based kernels with a high arithmetic
intensity, the speed-up as a result of this conversion is as much as 25% although
this is not replicated across the board. On Knights Landing, the AoS layout sees
significant speed-ups of as much as 50% across the majority of studied face-
based loops. This is opposite to Knights Corner where there is no noticeable
improvement. Furthermore, modifying the memory layout of cell-centred data
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structures has a negative effect in cell-based loops. This is important when
bearing in mind that the overall solver performance decreases after conversion
from SoA to AoS. However, as with colouring, this optimisation is required for
further optimisations which will exploit the additional data locality available
within each vector of cell-centred variables.

gather scatter optimisations The on the fly transposition from AoS
to SoA using specialised intrinsics-based functions improves performance across
all processors. The impact is significantly higher on architectures with wider
vector registers such as Skylake and the Intel Xeon Phi processors. This is due
to the fact that consecutive variables are gathered via a single aligned vector
load and subsequently transposed and arranged into the correct lane via ar-
chitectural specific permute instructions and the fact that the number of SIMD
instructions required for the transposition scales logarithmically compared to
the serial implementation. It is worth mentioning that on Knights Landing
and Skylake with AVX-512F, permute instructions using a single source op-
erand (vpermpd) perform better compared to the newly available two source
operand instructions (vpermi2pd) since they exhibit superior throughput. On
Sandy Bridge and Broadwell with AVX/AVX2, the best version is also the one
presented in Listing 13 even when compared with other implementations that
performed the first step of the shuffle on the load ports with the utilisation of
the vinsertf128 instruction on a memory operand. This would indicate that
the bottleneck on these architectures is not port 5 pressure where all of the
interleave and shuffle operations are executed.

In cell-based loops, performing the conversion between AoS and SoA on the
fly via compiler intrinsics leads to a moderate improvement in performance
for the candidate kernel and in some cases, it offsets the performance dropped
from switching to AoS from SoA in the first place. More importantly, the im-
plementation of these primitives leads to whole application speed-up on all
processors between a few percentages on the multicore CPUs where it amends
for the loss in performance due to the switch to AoS in cell-based loops to as
much as 50% on the Xeon Phi processors on top of the previous optimisations.

array of structures structure of arrays The conversion of face
data structures to the hybrid AoSSoA layout concerns only face-based loops
and yields minor improvements in performance. However, these are not signi-
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ficant enough to warrant its usefulness as it did not generate any substantial
speed-ups on any architectures. As a result, the effort of implementing such
hybrid memory layout within a code of representative size might not be war-
ranted.

loop tiling Loop tiling yields a large increase in performance for the
computation of the linearised viscous fluxes since groups of consecutive faces
processed during the computation of the linearised inviscid fluxes are then
passed to the viscous routine and blocked in L2. The best performing tile sizes
were 128 for Sandy Bridge, Broadwell and Knights Corner and 512 for Skylake
and Knights Landing due to the larger L2 cache. It is therefore believed that
extending the scope of such optimisations across the entire application and not
just the linear solver would be beneficial across all cache-based architectures.
This could be implemented by encapsulating the entire solver over a unified
iteration space at a stride equal to the vector register size or a multiple of it.
However, the difficulty in such implementation is resolving the dependencies
between face-based and subsequent cell-based loops which is mesh dependent
and can only be done at run-time.

software prefetching Software prefetching exhibits substantial speed-
ups on the Knights Corner architecture due to the in-order core design and
on the Skylake and Knights Landing processors as a result of the larger L2

cache. On Knights Corner, the best performing strategy was to issue prefetch
instructions at a distance of 32 and 64 for the indices in L1 and L2 respectively
and half of that for the actual data as described previously in the methodology.
For Knights Landing and Skylake, the best strategy was to only issue prefetch
instructions for the L2 cache at a distance of 32 for the index and therefore
16 for the data as any prefetch instructions for L1 were in fact detrimental
to performance. The reason for this is most likely related to the smaller size
of the L1 cache (32KB) which remained unchanged from Sandy Bridge and
Broadwell while the L2 was increased by a factor of four. Furthermore, in the
case of Knights Landing, this approach bears fruit since the L1 prefetcher can
operate on irregular streams however the L2 is not able to hence why issuing
prefetch instructions for L2 in software is advisable. On Sandy Bridge and
Broadwell, the advantage of software prefetching is minimal and virtually non
existent. This is probably due to the smaller L2 caches on these architectures
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which leads to capacity misses. The effect that various combinations of prefetch
distances have on the performance of face-based kernels and the overall solver
across all architectures obtained as a result of auto-tuning can be inspected in
A.1.

For the cell-based loop kernel, software prefetching has no effect on Sandy
Bridge and Broadwell but is beneficial on Skylake, Knights Corner and Knights
Landing. This is not surprising for Knights Corner where the lack of an L1

hardware prefetcher mandates the utilisation of prefetch instructions either in
software or through the compiler even for regular unit stride access patterns.
The prefetch distances for cell-based kernels with linear unit stride loads have
been selected via auto-tuning as well. For L1, the best linear prefetch distance
was found to be 32 and 64 for L2 respectively across Knights Corner, Knights
Landing and Skylake.

Finally, an important consideration to take into account is that if software
prefetching is implemented explicitly as described above, compiler prefetching
should be switched off in order to avoid for competing prefetch instructions to
be issued which can degrade performance.

multithreading Multithreading via OpenMP on Knights Corner yields
significant speed-ups with performance increasing almost linearly with the
number of threads. The reason for this lies again in the in-order nature of
the Knights Corner core where a missed load in the L1 cache leads to a com-
plete pipeline stall. Having more than one thread in flight can help minimize
memory latency as context can be switched to a thread for which data is avail-
able. Since both software prefetching and multithreading on Knights Corner
have the same purpose, the runs with 2,3,4 threads per MPI rank and physical
core have been done with software prefetching disabled while for the SwP & 4

Thrds analysis, both software prefetching and 4 active threads were utilised per
MPI rank. The results indicate that best performance on Knights Corner is ob-
tained when both threading and prefetching are enabled, however, if required
to choose between the two, careful software prefetching based on an auto-
tuning approach yields better performance than multithreading alone. This is
an important aspect to take into account since the implementation of software
prefetching is less intrusive and error prone than exposing another level of par-
allelism in the application for multithreading within an MPI rank. Surprisingly,
on Knights Landing, multithreading was actually detrimental to performance.
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This most likely due to the fact that the core architecture of Knights Landing is
out of order and therefore capable of utilising all core resources with a single
thread per core. Running more than one thread per core leads to the division
of core resources among the in-flight threads.

5.5.2 Performance scaling across a node

Performance strong scaling is performed for each computational kernel and
the whole solver across all architectures. For the multicore-based two-socket
compute nodes, the baseline implementation is compared across both mesh
sizes with the best optimised version. On the Knights Corner co-processor,
strong scaling studies are performed for three different versions besides the
baseline in order to assess their scalability across the entire chip. These are
the optimised version with software prefetching enabled and multithreading
disabled, the optimised version with four threads per MPI rank and no soft-
ware prefetching and lastly, the optimised version with both software prefetch-
ing and four threads per rank enabled. On Knights Landing, the difference
in performance between baseline and optimised versions is studied with the
additional exploration of the memory configurations that are available on this
architecture. In cache mode, the MCDRAM is configured as a direct mapped
cache and acts as a memory side buffer transparent to the user. In flat mode, all
memory allocations are performed explicitly in MCDRAM using the numactl

utility. For the larger mesh 2, approximately 10% of the allocations were re-
routed to DRAM memory after utilising all of the available 16GB in MCDRAM.
In DRAM mode, the allocation of memory has been done only in DDR memory
and MCDRAM has not been utilised at all. The last option was a hybrid
evaluation where the storage of cell-centred data structures is allocated in
MCDRAM whilst face data is allocated in DDR together with MPI buffers in
order to interleave the memory access and therefore exploit the bandwidth of
both memories. This has been implemented in the code using the libmemkind
interface.

5.5.2.1 Face-based Loops

The performance scaling of face-based loops on the multicore nodes (Figure
33) is dependent on the arithmetic intensity of each individual kernel. Best
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performance is exhibited by the kernel computing the inviscid second order
fluxes (iflux) due to its high arithmetic intensity (i.e 1.3) and which scales
almost linearly with the number of cores on each node. Good performance is
also exhibited by the kernel computing the linearised viscous fluxes (dvflux)
due to loop tiling which improves its arithmetic intensity since data is accessed
from the higher cache levels rather than main memory. Therefore, it can be seen
how optimisations that reduce the amount of data movements from the lower
memory hierarchies to the processor are beneficial when scaling is performed
across the entire device as well.

On the manycore processors (Figures 34 and 35), the difference between
baseline and best optimised version for the face-based loops and at full con-
currency varies between 12-16X on Knights Corner (60 cores x 4 threads) and
7.3-11.7X on Knights Landing (64 cores) and remain similar to the results on 1

MPI rank.
On Knights Corner (Figure 34), for the compute bound TVD MUSCL fluxes

(iflux), the best version as one scales across all physical cores is the one that
performs both software prefetching and runs with four threads per core. This is
followed by the version with no software prefetching and multithreading while
software prefetching only is last by a significant margin. However, for the more
memory bound face-based loops such as the computation of linearised inviscid
fluxes (diflx) or the non-linear viscous fluxes (vflux), the second best version
is software prefetching only while the worst out of the optimised versions is
the one consisting of multithreading only (i.e. four threads per MPI rank). This
demonstrates that for compute bound kernels, the best approach for exploit-
ing the performance of an in-order architecture is via running more threads
whereas for memory bound kernels, a good software prefetching strategy will
be more beneficial.

With regard to the performance of the various memory modes on Knights
Landing, not exploiting the MCDRAM either as a cache or explicitly as a
memory side buffer leads to a factor of three drop in performance once the
application scales past 16 cores on the processor. This is to be expected since
the difference in bandwidth between MCDRAM and DDR4 is more than a
factor of four as measured with STREAM. The best performing version is the
interleaved implementation where both MCDRAM and DDR4 are utilised to-
gether and where allocation of specific data structures is performed across
both interfaces. This is due to the fact that through this approach, one is able



5.5 results and discussions 138

to not only utilise all eight MCDRAM memory channels but also the four avail-
able DDR4 controllers. As DDR4 exhibits lower bandwidth but better latency
compared to MCDRAM, allocating latency sensitive data structures in DDR4

(i.e. MPI buffers) and all other data structures in MCDRAM allows for the ex-
ploitation of both interfaces simultaneously therefore increasing the available
memory bandwidth.

5.5.2.2 Cell-Based Loops

For the cell-based kernel (Figure 36), the baseline implementation slightly
outperforms the optimised version on Skylake and Broadwell as the kernel
scales across the node. This is most likely due to the extra latency incurred by
the transposition from AoS to SoA in the optimised implementations which
becomes more of a bottleneck as memory bandwidth is saturated. The op-
timised implementation outperforms the baseline on Sandy Bridge and the
Xeon Phi processors since serial instructions are significantly slower on the
manycore architectures than their vector counterparts and the Sandy Bridge
node is more balanced compared to Broadwell and Skylake. As cell-based ker-
nels are memory bound with low flop per byte ratios, they tend to scale with
the available memory bandwidth. Therefore, optimisations focused on improv-
ing floating-point performance such as vectorization are not as effective as the
number of cores are increased.

The negative effect that the conversion from SoA to AoS had on the perform-
ance of cell-based loops is made evident in the results for the Broadwell and
Skylake systems where the overhead of performing the transposition between
the two formats are the main bottleneck at full node concurrency.

On Knights Corner, as with the face-based kernels, best performance was
obtained by a large margin when running with 4 threads per MPI rank and
software prefetching.

On Knights Landing, the DDR4 interface scales better than with face-based
kernels due to the regular unit stride access pattern however, it is almost 3X
worse than the other alternatives that exploit the MCDRAM.

5.5.2.3 Full Application

Results for whole application strong scaling can be seen in Tables 6, 7 and
8. At full concurrency and on both mesh sizes, the best optimised version is
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between 2.6 to 2.8X faster on the multicore CPUs, 8.6X on Knights Corner and
5.6X on the best performing configuration of Knights Landing in Quadrant
and Flat mode with MCDRAM and DDR4 accesses interleaved. As expected,
running only with DDR4 is 2.5X slower than the other modes that involve the
utilisation of MCDRAM. The approach of utilising both memories explicitly is
the fastest version although by a very small percentage. On Knights Corner,
running 4 concurrent threads per MPI rank combined with software prefetch-
ing or performing software prefetching only exhibit the same performance as
the application scales across the whole coprocessor and saturates the available
memory bandwidth.

5.5.3 Performance modelling

A visualisation of the Roofline model based on applying the optimisations
presented in Section 5.4 can be seen in Figure 37 for the two-socket multicore
CPU nodes and Figure 38 for the manycore Intel Xeon Phi nodes. For brevity,
face-based loops are represented only by the kernel with the highest arithmetic
intensity (i.e. iflux).

single core Analysis of the single core rooflines on the multicore sys-
tems demonstrates that the performance of cell-based loops is limited by the
memory bandwidth while the performance of face-based loops is limited by
the imbalance in floating point operations since the FMA units are not ex-
ploited on Broadwell and Skylake. The same considerations also apply to the
manycore systems at this granularity.

full node At full node concurrency, the presence of irregular access pat-
terns in face-based loops is the main impediment to performance for these
classes of kernels. In contrast, the performance of cell-based loops is very close
or slightly surpasses that of the memory bandwidth. This is possible due to a
combination of prefetching and the fact that some of the data is available in
the cache hierarchy and does not come from main DRAM as assumed by the
performance model. This is a limitation that is worth considering and therefore
allows for certain optimisation that involve the exploitation of the cache hier-
archy or memory parallelism to pierce through the peak memory bandwidth
roofline.
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mesh 1 mesh 2

# cores
reference

(s)
optimised

(s)
speedup

(x)
reference

(s)
optimised

(s)
speedup

(x)

SNB E5-2650

1 83.0 29.0 2.8 184.0 61.0 3.0
2 42.0 15.3 2.7 86.8 29.7 2.9
4 23.0 8.9 2.5 44.7 15.1 2.9
8 13.6 5.8 2.3 24.7 9.0 2.7
10 10.7 4.5 2.3 19.5 7.5 2.6
12 9.4s 3.7 2.5 18.3 7.2 2.6
16 7.4s 2.8 2.6 14.4 5.5 2.6

BDW E5-2680

1 46.5 16.8 2.7 91.0 35.7 2.5
2 24.9 9.1 2.7 47.4 20.2 2.3
4 14.6 5.5 2.6 26.5 11.2 2.3
8 8.4 3.8 2.2 16.1 7.4 2.1
14 6.4 3.0 2.1 10.4 5.9 1.7
16 5.8 2.5 2.3 9.1 5.2 1.7
18 5.3 2.4 2.2 8.8 4.6 1.9
22 4.6 1.9 2.4 7.9 3.8 2.0
28 3.8 1.4 2.7 7.6 2.8 2.7

SKL Gold 6140

1 47.8 15.5 3.0 91.3 32.1 2.8
2 25.5 8.0 3.1 49.9 16.4 3.0
4 13.4 4.5 2.9 28.1 8.8 3.1
8 7.4 2.9 2.5 15.5 5.5 2.8
14 5.1 2.2 2.3 10.7 4.2 2.5
18 4.7 2.1 2.2 9.0 3.7 2.4
22 3.9 1.6 2.4 7.8 3.1 2.4
24 3.8 1.5 2.5 7.2 2.8 2.5
26 3.5 1.4 2.5 6.6 2.6 2.5
32 2.9 1.2 2.4 6.0 2.2 2.7
36 2.8 1.0 2.8 5.3 1.9 2.7

Table 6: Comparison between time to solution update measured in seconds of baseline
and best optimised implementation on the multicore CPUs.
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mesh 1

# cores
reference

(s)

optimised
x 4 threads

(s)

optimised
prefetch

(s)

optimised
prefetch

x 4 threads
(s)

speedup
(x)

KNC 7120P

1 1349.0 193.6 183.4 149.1 9.0
2 703.0 111.9 89.7 78.9 8.9
4 385.8 56.7 48.2 40.8 9.4
8 192.9 34.4 28.5 25.1 7.6
16 110.1 17.5 14.3 13.6 8.0
32 62.5 10.0 8.4 7.9 7.9
60 43.8 6.0 5.0 5.0 8.7

Table 7: Comparison between time to solution update measured in seconds of baseline
and optimised versions with 4 hyperthreads and no software prefetching, soft-
ware prefetching and no hyperthreading and both software prefetching and 4

hyperthreads on the Intel Xeon Phi Knights Corner coprocessor. The speed-up
is calculated relative to baseline results and the timings of the best optimisa-
tion (prefetch x 4 threads). On this architecture, we could only perform
experimental runs on mesh 1 at full concurrency due to the 16GB memory
limit.

On the Knights Landing architecture, the difference between using MC-
DRAM as cache or explicit memory buffer as well as exploiting both MC-
DRAM and DDR4 is very small. It is however believed that better performance
of the interleaved version can be obtained by auto-tuning and testing a variety
of data structure allocations in order to find the right balance.

5.5.4 Architectural Comparison

face-based loops In face-based loops (Figure 39), the high arithmetic
intensity means that architectures with wider SIMD units and larger number
of cores will perform best since these kernels tend to scale well across vector
lanes and across cores and sockets. Consequently, best performance at single
core granularity for kernels computing fluxes at cell interfaces was obtained
on the Skylake processor followed by Broadwell. The performance of a single
Knights Landing core compared to Sandy Bridge was on par while the Knights
Corner core performed the worst which is to be expected due to the in-order
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mesh 1 mesh 2

# cores
reference

(s)
optimised

(s)
speedup

(x)
reference

(s)
optimised

(s)
speedup

(x)

KNL 7210 Cache

1 205.0 33.7 6.0 411.0 71.1 5.7
2 116.0 17.8 6.5 238.4 37.8 6.3
4 57.1 9.4 6.0 120.4 19.3 6.2
8 29.0 5.3 5.4 63.3 10.0 6.3
16 16.2 2.8 5.7 32.1 5.3 6.0
32 9.1 1.6 5.6 18.23 3.1 5.8
64 5.9 1.0 5.9 10.5 2.0 5.2

KNL 7210 MCDRAM

1 204.5 33.2 6.1 405.1 69.1 5.8
2 115.0 17.8 6.4 230.9 37.4 6.1
4 57.3 9.4 6.0 119.4 18.9 6.3
8 28.9 5.3 5.4 61.6 9.8 6.2
16 16.0 2.8 5.7 31.2 5.3 5.8
32 8.9 1.6 5.5 17.9 3.0 5.9
64 5.7 1.0 5.7 10.3 1.9 5.4

KNL 7210 DDR

1 190.7 31.9 5.9 377.1 66.2 5.6
2 106.8 17.1 6.2 213.6 35.9 5.9
4 53.1 9.1 5.8 111.2 18.3 6.0
8 27.1 5.2 5.2 57.3 9.7 5.9
16 15.4 3.0 5.1 29.6 5.7 5.1
32 9.2 2.6 3.5 18.1 4.9 3.6
64 7.6 2.6 2.9 13.6 4.9 2.7

KNL 7210 DDR+MCDRAM

1 - 30.2 - - 62.5 -
2 - 17.5 - - 36.4 -
4 - 9.1 - - 18.7 -
8 - 5.3 - - 9.6 -
16 - 2.8 - - 5.1 -
32 - 1.6 - - 3.0 -
64 - 0.9 - - 1.8 -

Table 8: table
Comparison between time to solution update measured in seconds of baseline and
best optimised implementation on the Intel Xeon Phi Knights Landing 7210 processor
and across different memory modes.
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execution unit. However, it is interesting to observe the improvements in single
core performance between successive Intel Xeon Phi generations.

At full node concurrency, the MCDRAM in the Knights Landing architecture
as well as the higher core numbers and wide SIMD units contribute to the best
overall performance. Unsurprisingly, the second best performance was exhib-
ited by the Skylake node followed by Broadwell, Sandy Bridge and Knights
Corner. As previously mentioned, the difference in performance between Sky-
lake and Broadwell is a factor of two for kernels with high arithmetic intensities
(iflux) due to AVX-512, however, in kernels that are memory bound such as
the viscous fluxes and linearised inviscid fluxes (vflux and diflux), the differ-
ence between the two is 50%. This correlates well with their respective memory
bandwidth performance.

cell-based loops As cell-based loops are heavily bound by memory per-
formance, the best performance at single core is obtained by the Skylake sys-
tem due to the highest per core bandwidth. At full node concurrency, best
performance is obtained on the Knights Landing processor due to the superior
bandwidth of MCDRAM. As mentioned earlier, the difference in performance
between architectures for memory-bound kernels is significantly lower even
though some of the processors such as the Sandy Bridge system are up to five
years older than the two-socket Skylake node. This further epitomises the issue
of processor speeds increasing at a significant higher rate than the performance
of the memory system.

full application In terms of the whole solver represented as average
time per Newton-Jacobi iteration, the overall winner is the Knights Landing
processor at full node concurrency followed closely by the multicore Skylake
node and the remaining multicore systems. The difference between the Knights
Landing and Skylake systems and the Broadwell node is approximately 50%,
3X compared to Sandy Bridge and more than 5X compared to the Knights
Corner coprocessor.

5.6 conclusions

This chapter presented a number of optimisations for improving the perform-
ance of unstructured CFD applications on multicore and manycore processors
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and demonstrated their implementation and impact in a code of representative
size and complexity to an industrial application. Examples of optimisations
included grid renumbering, vectorization, colouring, data layout transforma-
tions, in-register transpositions, software prefetching, loop tiling and multith-
reading.

Renumbering the mesh using the Reverse Cuthill-Mckee algorithm led to a
reduction in the distance between memory references in face-based loops by
up to 53X although this only resulted in actual speed-ups for such kernels of
up to 10%.

Vectorization contributed to the largest speed-ups ranging between 2-5X and
2-3X on the multicore CPUs and the Intel Xeon Phi manycore processors for
both face-based and cell-based loops and 2-3X for the whole application across
all architectures. Although vectorizing cell-based loops was relatively straight
forward using the features of the OpenMP 4.0 API, the vectorization of face-
based loops required that these kernels are re-written and re-structured due to
their more complex access patterns.

Colouring the faces enabled the vectorization of scatter operations in face-
based loops. This resulted in relatively worse performance for these kernels on
the multicore CPUs mainly due to the increase in cache misses as the distances
between face-end points increased as well. Despite this, the usefulness of col-
ouring was demonstrated further down the line when evaluated in conjunction
with other optimisations.

The advantage of the AoS memory layout compared to SoA has been demon-
strated in kernels that contain indirect and irregular access patterns such as the
computation of fluxes due to their more efficient utilisation of the cache hier-
archy. However, this was shown to have a detrimental effect on the perform-
ance of cell-based loops. To alleviate this, hand-tuned conversion primitives
were presented based on compiler intrinsics which performed fast transposi-
tions to and from the AoS and SoA layouts. These improved performance in
face-based and cell-based kernels and were found to be particularly beneficial
on the manycore processors and on architectures with wide SIMD lengths.

The utility of auto-tuning for finding parameters such as prefetch distances
or tile size across all processors has been demonstrated and the large impact
that this can have on performance. Moreover, it has been shown that software
prefetching is highly recommended on architectures with large L2 caches and
on the Knights Corner co-processor due to the in-order core design and lack



5.6 conclusions 153

of hardware prefetchers. Another optimisation that made use of auto-tuning is
loop tiling which improved performance of the linear solver by blocking data
in the L2 cache.

On the Intel Xeon Phi Knights Landing processor, the performance of all
available memory modes was studied together with the introduction of a third
option in which both MCDRAM and DDR are utilised. The best approach
was found to be the latter although by a small margin when compared to
the other options that make use of the MCDRAM. The utilisation of only the
DDR interface came last by a significant margin which demonstrates that the
exploitation of the high-bandwidth memory package is imperative for best
performance.

The utilisation of multiple threads per MPI rank led to very good perform-
ance on the Knights Corner architecture, especially when combined with soft-
ware prefetching. In contrast, this was not beneficial on the Knights Landing
processor where it led to worse performance since the KNL core is out-of-order
and multiple threads were competing for the available core resources.

Finally, all of the presented techniques were implemented in a single code
base with abstractions for architectural specific optimisations being based on
traditional language constructs available in the C++ programming language
and on compiler pre-processing machinery. As for their overall performance be-
nefit, their implementation led to full application speed-ups ranging between
2.6-2.8X on the multicore CPUs and 5-8X on the manycore Xeon Phi processors
at double precision and across two different mesh sizes of a realistic industrial
test case.



6
C O N C L U S I O N S

This chapter reviews the achievements of this thesis, discusses its limitations
and outlines the most important aspects worth taking into account when map-
ping existing or new CFD applications onto the architectural features of mod-
ern processors. This is presented in the form of advice to CFD practitioners and
is applicable to future processors following similar architectural paradigms. Fi-
nally, future research directions are discussed that could improve the work
presented herein.

6.1 summary of findings

Chapter 2 presented the processor trends that have led to the advent of mul-
ticore and manycore processors. This was followed by a discussion of their
architectural features and the importance of exploiting parallelism across mul-
tiple granularities in order to obtain high performance on them. The implica-
tions that these have on the performance of CFD codes have also been reviewed
with the conclusion that current legacy applications used in industry and in
research, although able to exploit coarse grained parallelism across processor
nodes via message passing, are not amenable to parallelism at finer granularit-
ies and therefore exhibit poor performance on modern processors unless their
implementation is revisited. This state of affairs has led to the main motiva-
tion behind this work based on evaluating and presenting the optimisations
required for mapping CFD algorithms within the finite volume framework
onto the architectural features of modern multicore and manycore processors.

To this end, chapter 4 presented a number of optimisations for structured
mesh applications in a block-structured Euler code used for turbomachinery
computations. The optimisations were evaluated across three distinct archi-
tectures such as: the Intel Xeon Sandy Bridge and Haswell multicore CPUs
and the Intel Xeon Phi Knights Corner coprocessor and in two computational
kernels with distinct access patterns: stencil operations arising from the com-
putation of fluxes at cell interfaces and the evaluation of cell attributes in ker-

154
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nels that perform updates to state vectors. The practicalities of enabling effi-
cient vectorization across both types of computational kernels was discussed
along with the trade-off between performance and portability by evaluating
a number of approaches such as compiler directives, compiler intrinsics and
Agner Fog’s vector library class. For stencil operators, it was demonstrated
that efficient vectorization relies upon the use of aligned vector load and store
operations which can only be made possible through techniques such as inter-
register shuffle operations or transpositions. In kernels with regular and stream-
ing access patterns such as cell-based kernels, efficient vectorization can be
achieved by relying solely on compiler directives found in OpenMP 4.0 and
the addition of padding and aligned memory allocations. The importance of
the underlying data layout was also discussed and it was demonstrated that
the hybrid AoSSoA format leads to superior performance compared to SoA
in structured mesh applications as it allows for more efficient vector load and
store operations and utilises fewer memory resources. The utility of cache-
blocking the separate sweeps when computing fluxes at the interfaces was also
demonstrated along with a number of domain decomposition approaches for
extracting thread-level parallelism. The best version of the latter was based on
decomposing each block into two dimensional tiles and mimicking the same
behaviour as the message passing layer where halo swaps were performed ex-
plicitly via shared memory. Finally, the impact of each optimisation across the
three architectures was appraised using the Roofline performance model. The
difference in performance between the optimised version of the kernel based
on stencil computations at full node concurrency was 3X on the multicore
architectures and 24X on the manycore Knights Corner coprocessor when run-
ning on 180 threads. For the cell-based state vector update kernel that features
a regular memory access pattern and is bound by memory bandwidth, the
difference in performance between the optimised and reference implementa-
tion was approximately 2X on the multicore CPUs and 13X on the manycore
Knights Corner platform.

Chapter 5 presented optimisations and techniques useful for improving the
performance of unstructured CFD applications on modern multicore and ma-
nycore processors. The optimisations were implemented in a code of repres-
entative size and complexity to an industrial application and demonstrated in
two distinct classes of computational patterns that form the backbone of un-
structured CFD codes: gather and scatter operations in face-based loops for the
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evaluation of fluxes and regular and streaming access patterns that are present
in cell-based loops for updating state vectors. It was demonstrated that vec-
torization of face-based loops is possible using compiler directives based on
the OpenMP 4.0 API as long as such kernels are re-written in order to isol-
ate the scatter operations which prevent vectorization thus allowing for both
the gather and the computation stage to be vectorized. Full vectorization of
all face-based loops was achieved via the implementation of reordering al-
gorithms which not only allowed for SIMD scatter operations by removing
the dependencies at the face-end points but also minimized the jump in the
second indices. Prior to that, a renumbering of the grid was performed via
the Reverse Cuthill Mckee algorithm which reduced the distance between ref-
erences in face-based loops and therefore allowed for a better exploitation of
the memory system. The advantage of the AoS data layout over SoA was also
demonstrated in kernels with irregular access patterns due to their more ef-
ficient utilisation of the cache hierarchy. Conversion between AoS and SoA
data layouts for vector operations was performed using hand tuned compiler
intrinsics along with ways by which architectural specific implementations of
such primitives can be abstracted away in the application code. Another im-
portant contribution in this chapter was the implementation of an auto-tuning
strategy for finding optimal parameters such as prefetch distances or tile sizes
across all of the evaluated platforms. This resulted in palpable speed-ups on
the back of software prefetching as well as loop tiling especially on newer ar-
chitectures that integrate large L2 caches and on the in-order Knights Corner
coprocessor. Other optimisations included the evaluation of the AoSSoA lay-
out for face attributes in order to reduce the number of memory streams and
improve memory performance and the implementation of multithreading as
a separate layer of parallelism by extending the functionality of the reodering
algorithms.

On the Knights Landing architecture, the performance of the available memory
modes has been assessed together with a hybrid approach that exploited both
DDR4 and the MCDRAM interface. Finally, all optimisations were also cor-
related with the Roofline model and led to full application speed-up ranging
between 2.6X and 2.8X on the multicore CPUs and 5-8X on the manycore Xeon
Phi processors at double precision and across two different computational do-
main sizes.
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6.2 advice for cfd practitioners

The findings in this thesis can be used to construct a list of recommendations
and procedures aimed at CFD practitioners and developers who wish to map
their new or existing application onto the architectural features of current and
future multicore and manycore processors. These are described in more detail
below.

vectorization As seen from the results for both structured and unstruc-
tured applications, vectorization is the most important optimisation on mod-
ern processors. This is likely to be the case for future architectures as well
which are expected to increase the underlying vector register width further
and continue to improve the SIMD ISA.

As a result, developers should make sure that their application is flexible
in such manner that data parallelism can be exploited across different vec-
tor lengths. This is important for ensuring best performance across a variety
of multicore and manycore processors. Another important consideration for
making good use of the vector units is how to efficiently load data into them.
As seen in Chapters 4 and 5, this differs depending on the underlying access
pattern i.e. stencil operators or gather and scatter operations. Consequently,
although best performance is achieved by using architectural specific optimisa-
tions that fully harness the capability of each platform i.e. AVX-512 or IMCI,
abstractions for these implementations are necessary in order to ensure portab-
ility. Furthermore, applications such as unstructured mesh solvers also require
colouring and reordering algorithms so that efficient vector accumulate and
store operations can be utilised.

data layout Another important optimisation with respect to CFD applic-
ations is the format used for storing cell-centred and face variables. For struc-
tured mesh codes, the SoA or the hybrid AoSSoA are the best choice, as demon-
strated in Chapter 4. This is due to the fact that these translate to efficient SIMD
load and store operations due to the regular and streaming access patterns of
structured solvers. However, for unstructured mesh solvers, the AoS format
is in fact more efficient for cell-centred data structures as it leads to a reduc-
tion in cache misses in kernels with gather and scatter operations, as seen in
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Chapter 5. With regard to face attributes, SoA is still the preferred choice in
unstructured grid codes since faces are evaluated in consecutive order.

Changing the underlying data layout of an application is an arduous and
error prone task, especially in a code of representative size. Consequently, a key
advice to CFD developers is to provide an abstraction layer in the application
for the storage format of such data structures. This would allow for any layout
to be changed at compile time depending on both the underlying architecture
and the computational patterns.

auto-tuning Although the majority of processor architectures in high-
performance computing adhere to an abstract processor model as seen in
Chapter 2, they all exhibit certain particularities which are important to con-
sider for best performance. Examples of these are: size and latency of caches,
length of vector registers, core design i.e. in-order or out-of-order, single threaded
or n-way multithreaded, memory or cluster modes etc. Consequently, for op-
timisations that rely on these attributes in their implementation, performance
portability can only be achieved by means of auto-tuning. This has been demon-
strated in this thesis in Chapter 5 where an auto-tuning phase was used to
select the best distance parameter for software prefetching across a wide range
of architectures as well as the appropriate tile size for the implementation of
loop tiling.

As a result, applications should be modified or developed to allow for "ma-
gic" values such as tile size or prefetch distance to be automatically chosen at
an initial auto-tuning stage every time the application is executed on a new
architecture.

multithreading Running more than one thread per physical core is not
always useful for multicore processors since one thread can fully utilise the
entire execution pipeline and available resources. However, for in-order archi-
tectures such as the Intel Xeon Phi Knights Corner or GPGPUs, running more
than one thread per core can help hide memory latencies and avoid pipeline
stalls as seen in both Chapters 4 and 5.

Consequently, the advice for CFD developers is to consider enabling another
level of parallelism in their application for multithreading that can be enabled
or disabled depending on the underlying architecture. This was demonstrated
in Chapter 5 with the help of colouring algorithms where faces with depend-
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ency free end-points were processed by each thread in groups equal in size to
the width of the underlying vector register and in a round robin fashion.

6.3 limitations

In chapter 4, one existing limitation in the presented approach is the lack of
loop tiling. In structured codes, temporal blocking or skewed tiling is signific-
antly easier to achieve than in their unstructured counterpart and could have
had a sizeable impact on performance. This could have been implemented by
hoisting the entire solver under the same iteration space which would proceed
in steps equal or a multiple of the underlying SIMD size thereby exploiting
data parallelism as well as minimizing traffic to main memory. Another lim-
itation in chapter 4 is the implementation of Henretty’s [37] dimension lifted
transposition for aligned vector load and stores in stencil operations. In this
work, the transposition operations were only performed in one dimension as
the fluxes were computed in two distinct passes in the i and j direction. This
required that data is re-transposed again after the i and before the j sweep.
However, in Henretty’s original work, the transposition of the data can be per-
formed more efficiently and only once by fusing both sweeps.

The work in chapter 5 could have been improved with respect to the hy-
brid MPI/OpenMP implementation. In such an implementation, the domain
owned by each MPI rank is further decomposed across existing threads thereby
mimicking the same execution model as the message passing layer while ex-
ploiting the superior latency of shared memory. Such approaches were first
presented by Aubry et al [10] and it is believed that as the number of cores
per node continue to increase, a hybrid approach of one rank per socket with
subsequent threads pinned to all other physical cores and communicating via
shared memory would lead to even better performance and scalability.

6.4 future work

The most natural extension of this work would be to validate the claims that the
optimisations presented herein for both structured and unstructured solvers
are also applicable to more specialised manycore processors such as NVIDIA
GPUs. Thus, a good avenue to test this claim would be through a compiler
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directive approach such as OpenACC or OpenMP 4.0/4.5 in the first instance.
This would make a fair comparison between the performance that can be ex-
tracted across all architectures whilst maintaining the same code structure.
Following from this, hand-tuned kernels can be implemented in OpenCL or
CUDA with results being correlated via performance models.
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a.1 results of auto-tuning prefetch distances

Speedup

L1i L2i L1d L2d iflux vflux diflux dvflux
newton
jacobi

4 - 2 - 1.10 0.99 0.99 0.92 0.99

4 8 2 4 1.04 1.05 0.95 0.97 0.99

4 16 2 8 1.09 1.07 0.93 0.96 0.97

4 32 2 16 1.11 1.08 0.92 0.96 0.97

8 - 4 - 1.10 1.05 0.96 0.94 0.99

8 16 4 8 1.01 1.04 0.93 0.93 0.95

8 32 4 16 1.02 1.04 0.92 0.93 0.95

8 64 4 32 1.02 1.06 0.92 0.93 0.96

16 - 8 - 1.11 1.06 0.96 0.94 0.99

16 32 8 16 1.01 1.04 0.92 0.92 0.94

16 64 8 32 1.01 1.05 0.93 0.99 0.96

16 128 8 64 1.00 1.03 0.91 0.98 0.95

32 - 16 - 1.11 1.08 0.95 0.92 0.98

32 64 16 32 1.00 1.04 0.91 0.98 0.96

32 128 16 64 0.99 1.02 0.91 0.97 0.95

32 256 16 128 0.98 1.00 0.89 0.95 0.94

64 - 32 - 1.11 1.08 0.94 0.94 0.99

64 128 32 64 0.98 1.01 0.90 0.88 0.92

64 256 32 128 0.97 0.99 0.89 0.86 0.91

64 512 32 256 0.94 0.94 0.85 0.84 0.89

Table 9: Speed-up of flux computation kernels and whole solver (newton-jacobi) de-
pending on prefetch distance on Sandy Bridge E5-2650 CPU.
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Speedup

L1i L2i L1d L2d iflux vflux diflux dvflux
newton
jacobi

4 - 2 - 0.95 0.93 0.92 0.92 0.95

4 8 2 4 0.97 0.91 0.91 0.83 0.92

4 16 2 8 0.96 0.90 0.95 0.82 0.93

4 32 2 16 0.95 0.89 0.92 0.81 0.91

8 - 4 - 0.96 1.00 0.97 0.86 0.95

8 16 4 8 0.94 0.87 0.91 0.80 0.91

8 32 4 16 0.95 0.89 0.92 0.87 0.93

8 64 4 32 0.94 0.88 0.90 0.85 0.91

16 - 8 - 0.94 0.99 0.94 0.84 0.93

16 32 8 16 0.93 0.87 0.90 0.86 0.93

16 64 8 32 0.93 0.88 0.90 0.84 0.91

16 128 8 64 0.93 0.87 0.90 0.83 0.91

32 - 16 - 0.94 0.99 0.93 0.83 0.93

32 64 16 32 0.93 0.87 0.90 0.84 0.91

32 128 16 64 0.92 0.86 0.88 0.83 0.90

32 256 16 128 0.89 0.83 0.86 0.79 0.88

64 - 32 - 0.93 0.99 0.93 0.89 0.94

64 128 32 64 0.92 0.83 0.88 0.75 0.88

64 256 32 128 0.89 0.82 0.86 0.72 0.86

64 512 32 256 0.85 0.76 0.79 0.68 0.82

Table 10: Speed-up of flux computation kernels and whole solver (newton-jacobi) de-
pending on prefetch distance on Broadwell
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Speedup

L1i L2i L1d L2d iflux vflux diflux dvflux
newton
jacobi

8 - 4 - 1.06 1.04 1.03 1.06 1.03

8 16 4 8 1.13 1.17 1.16 1.28 1.13

8 32 4 16 1.11 1.16 1.17 1.28 1.13

8 64 4 32 1.10 1.14 1.15 1.23 1.12

16 - 8 - 1.12 1.15 1.14 1.30 1.13

16 32 8 16 1.12 1.16 1.16 1.21 1.12

16 64 8 32 1.09 1.13 1.15 1.20 1.11

16 128 8 64 1.08 1.10 1.13 1.18 1.09

32 - 16 - 1.11 1.15 1.14 1.29 1.12

32 64 16 32 1.09 1.13 1.15 1.20 1.11

32 128 16 64 1.07 1.09 1.13 1.17 1.09

32 256 16 128 1.05 1.07 1.12 1.14 1.08

64 - 32 - 1.11 1.14 1.14 1.25 1.11

64 128 32 64 1.08 1.10 1.13 1.15 1.09

64 256 32 128 1.05 1.06 1.11 1.12 1.07

64 512 32 256 1.04 1.04 1.10 1.09 1.06

- 16 - 8 1.15 1.20 1.18 1.36 1.15

- 32 - 16 1.13 1.18 1.18 1.35 1.15

- 64 - 32 1.12 1.17 1.16 1.31 1.14

- 128 - 64 1.10 1.15 1.15 1.29 1.13

- 256 - 128 1.09 1.13 1.15 1.26 1.12

Table 11: Speed-up of flux computation kernels and whole solver (newton-jacobi) de-
pending on prefetch distance on Skylake
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Speedup

L1i L2i L1d L2d iflux vflux diflux dvflux
newton
jacobi

8 - 4 - 1.65 2.76 2.40 1.99 1.66

8 16 4 8 1.80 4.49 3.93 1.97 1.97

8 32 4 16 1.81 4.52 4.10 2.27 1.92

8 64 4 32 1.79 4.50 4.10 2.25 1.99

16 - 8 - 1.72 3.65 3.60 1.97 1.85

16 32 8 16 1.74 4.09 3.96 2.04 1.90

16 64 8 32 1.71 3.96 3.87 2.00 1.93

16 128 8 64 1.69 3.98 3.85 1.98 1.87

32 - 16 - 1.68 3.40 3.48 1.88 1.68

32 64 16 32 1.67 3.65 3.63 1.90 1.60

32 128 16 64 1.66 3.61 3.62 1.88 1.70

32 256 16 128 1.63 3.53 3.51 1.83 1.76

64 - 32 - 1.65 3.18 3.26 1.76 1.74

64 128 32 64 1.64 3.37 3.38 1.79 1.73

64 256 32 128 1.60 3.25 3.25 1.68 1.65

64 512 32 256 1.56 3.12 3.14 1.65 1.64

Table 12: Speed-up of flux computation kernels and whole solver (newton-jacobi) de-
pending on prefetch distance on KNC with no hyperthreading
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Speedup

L1i L2i L1d L2d iflux vflux diflux dvflux
newton
jacobi

8 - 4 - 1.09 1.02 1.01 0.81 0.96

8 16 4 8 1.39 1.65 1.48 1.07 1.19

8 32 4 16 1.36 1.60 1.47 1.00 1.18

8 64 4 32 1.33 1.57 1.49 0.96 1.16

16 - 8 - 1.26 1.34 1.46 1.06 1.17

16 32 8 16 1.32 1.52 1.53 0.96 1.16

16 64 8 32 1.30 1.47 1.44 0.92 1.13

16 128 8 64 1.29 1.41 1.45 0.88 1.12

32 - 16 - 1.27 1.37 1.49 1.05 1.11

32 64 16 32 1.29 1.45 1.46 0.91 1.13

32 128 16 64 1.24 1.37 1.43 0.86 1.10

32 256 16 128 1.21 1.30 1.38 0.82 1.07

64 - 32 - 1.26 1.36 1.44 1.00 1.15

64 128 32 64 1.23 1.33 1.42 0.84 1.09

64 256 32 128 1.17 1.25 1.35 0.78 1.05

64 512 32 256 1.11 1.16 1.26 0.74 1.00

- 16 - 8 1.54 1.96 1.80 1.22 1.31

- 32 - 16 1.53 1.93 1.80 1.20 1.33

- 64 - 32 1.47 1.83 1.70 1.11 1.27

- 128 - 64 1.42 1.69 1.63 1.03 1.23

- 256 - 128 1.31 1.54 1.48 0.95 1.17

Table 13: Speed-up of flux computation kernels and whole solver (newton-jacobi) de-
pending on prefetch distance on KNL quadrant cache mode
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