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Abstract—Acoustic channels are typically described by their
Acoustic Impulse Response (AIR) as a Moving Average (MA)
process. Such AIRs are often considered in terms of their early
and late parts, describing discrete reflections and the diffuse
reverberation tail respectively. We propose an approach for
constructing a sparse parametric model for the early part. The
model aims at reducing the number of parameters needed to
represent it and subsequently reconstruct from the representation
the MA coefficients that describe it. It consists of a representation
of the reflections arriving at the receiver as delayed copies of
an excitation signal. The Time-Of-Arrivals of reflections are
not restricted to integer sample instances and a dynamically
estimated model for the excitation sound is used. We also
present a corresponding parameter estimation method, which is
based on regularized-regression and nonlinear optimization. The
proposed method also serves as an analysis tool, since estimated
parameters can be used for the estimation of room geometry, the
mixing time and other channel properties. Experiments involving
simulated and measured AIRs are presented, in which the AIR
coefficient reconstruction-error energy does not exceed 11.4%
of the energy of the original AIR coefficients. The results also
indicate dimensionality reduction figures exceeding 90% when
compared to a MA process representation.

Index Terms—Sparse Modeling; Reverberation; Acoustic En-
vironments; Reflection TOA Estimation.

I. INTRODUCTION

Reverberation is observed in almost all real-life acoustic
environments as sound emitted by a source is reflected off
the boundaries of the enclosure and the surfaces of objects.
It offers warmth to the sound and it is desirable in the
case of music [1]. In the case of speech, it can degrade
the performance of Automatic Speech Recognition (ASR)
systems and impact intelligibility [2]. Reverberation is the
focus of many applications which aim at either recreating
it or combating its negative effects. The reverberation effect
of a stationary acoustic environment can be described by
the system’s Acoustic Impulse Response (AIR). AIRs consist
of three parts, the direct path sound, the early and the late
reflections [2]. The early part refers to the extent of the AIR
arising from strong, discrete reflections covering a duration up
to the so-called mixing time. The effect of the early reflections
as perceived by the listener is a change in the timbre of the
original sound, with the effect referred to as coloration. The
perceptual effect of the late reflections is a prolonging of the
original sound.

AIRs are typically modeled as a Moving Average (MA)
process which involves thousands of coefficients. However,
in many applications low-dimensionality is needed due to

constraints in memory and computational power. Such ap-
plications involve dereverberation [3], auralization [4] and
environment classification [5]. Low-dimensionality also ben-
efits tasks involving an estimation of the channel as low-
order models are often easier to estimate robustly. Alternative
representations to the MA process representation have been
previously proposed in the literature. Early examples involve
Autoregressive Moving Average (ARMA) modeling [6]. The
main motivation for their use is their ability to model room-
modes, an important aspect of room acoustics [7]. However,
issues such as model order selection and the increase in
room-mode density beyond the Schroeder frequency [7] limit
their practical use. More modern approaches include the
use of Kautz filters [8] and a direct search for the salient
characteristics of acoustic environments from the AIRs using
dimensionality reduction methods [9]. Existing approaches for
the targeted modeling and simulation of the late reflections
[10], [11] are based on their stochastic nature, for which a
statistical description is more appropriate. Early reflections
however follow a structured distribution in time, related to
room geometry and source and receiver positions.

We propose a novel approach for the construction of a
parametric model for the early part of AIRs. Starting from the
MA model coefficients, the number of parameters required for
its representation is reduced. It is also aimed at reconstructing
the coefficients, using the resulting representation. The model
describes the process of sampling a sound field which is
composed of sound rays propagating in the enclosure and
being reflected off its boundaries and the surface of objects. It
incorporates a dynamic representation for the excitation signal
which is emitted by the source and a set of reflections modeled
as superimposed delayed copies of it. A two stage optimization
method is employed for the parameter estimation. In the first
step, an initial set of values is obtained by approximating the
problem using linear regression followed by fine-tuning of the
parameter values by optimization in local time-regions.

The proposed approach offers a variety of advantages over
previously proposed methods. The reduction in dimensionality
it offers is attributed to the exploitation of the structure of the
AIR, which is characterized by the sparse nature of strong
early acoustic reflections. It is not attributed to an approxi-
mation of the channel by under-fitting the underlying model.
During the model fitting process, reflections are detected from
the AIR coefficients, which are subsequently described by
their amplitudes and Times-of-Arrival (TOAs). The proposed



method, during this process, does not bound the TOAs to inte-
ger sample instances, it models the excitation sound and makes
no assumptions about the number of overlapping reflections.
These are some of the disadvantages exhibited by existing
methods [12], [13], [14].

The structure of the remainder of this paper is as follows:
Section II formulates the model and proposed parameter es-
timation method, Section III describes the experimental work
done and a conclusion is given in Section IV.

II. METHOD

A. Signal Model

AIRs are measured by exciting an acoustic environment
with an excitation signal he(n). A measured AIR can be
modeled as

h(n) =

D∑
i=1

[
βihe(n)∗

sin π(n− ki)
π(n− ki)

]
+ ν(n) (1)

for n ∈ {0, . . . , N−1}, ∗ indicating a convolution process and
ν(n) additive noise. The TOAs of reflections are represented
by ki ∈ [0,∞)∀i ∈ {1, . . . , D}. When the TOA of a reflection
is a sampling instance, the reflection contributes to the AIR as
a delayed copy of he(n), scaled by βi. When this is not the
case and under ideal band-limiting, in addition to the delay
and scaling, he(n) is convolved with the sinc function.

B. Initial Parameter Estimation

Without prior knowledge about any of the unknowns of
(1), fitting the model to a measured AIR leads to a high-
dimensional and nonlinear problem. A simplification to (1)
can be made by temporarily assuming that the additive noise
is negligible, followed by reformulating the problem as

ĥR(n) =

M∑
r=1

wrxr(n) = wTx(n) (2)

xr(n) = he(n)∗
sin π

(
n− r−1

Q

)
π
(
n− r−1

Q

) , (3)

where w = [w1, . . . , wM ]T and x(n) = [x1(n), . . . , xM (n)]T .
M is an integer multiple of the number of coefficients of
the measured AIR, N . The integer Q = M/N defines the
number of candidate TOAs of reflections per AIR coefficient.
This reformulation simplifies the problem by bounding and
quantizing the space of possible TOAs and transforming it
to a linear-regression form [15]. All values in the space are
considered as candidate TOAs of reflections and the only
remaining unknowns are their amplitudes w. The unknown
number of reflections is estimated as D̂ = ‖w‖0, where ‖ · ‖0
counts the number of non-zero elements of the vector. These
elements correspond to the scaling coefficients βi in (1). For
the early part of the AIR, w is expected to be sparse as the
reflection density is low.

A Least Squares (LS) solution is expected to yield many
non-zero values in w [15] and lead to overestimates of D.

One way to deal with this problem is regularization. The Least
Absolute Shrinkage and Selection Operator (LASSO) [16] is
appropriate for the task as it promotes sparsity. Minimizing
the residual error between ĥR(n) and h(n) however will give
emphasis to describing low-order reflections which have the
highest amplitude. In order to account for this, h̃(n) is created
which represents the Energy Decay Curve (EDC) compensated
AIR [14]. LASSO is then used to find w̃ that minimizes the
expression

e =
∥∥∥h̃(n)− ĥR(n)∥∥∥

2
+ λ ‖w̃‖1 , (4)

where λ is a scalar constant. The solution for w̃ corresponds
to the EDC compensated AIR [14]. In order find the vector
w which corresponds to the original AIR, the dot product of
w̃ and the square-root of the EDC is taken.

C. Model Parameter Fitting

Despite the regularization imposed in (4), more than one
nonzero adjacent coefficients in w might correspond to the
same reflection. This can be attributed to the quantization of
the time domain which was done in (2). Regularization might
also lead to underestimates of the reflection amplitudes as it
directly penalizes them. In order to more accurately estimate
the parameter values, further optimization is performed with
w used for its initialization.

The interior-point method [17] is used to optimize parameter
values by minimizing the Mean Square Error (MSE) between
the final model and windows of the AIR. At the beginning
of the process we set D̂ = 0, β̂ = ∅ and k̂ = ∅. Each
optimization process considers Q elements of w, defined as
w0. The initialization for the amplitude and TOA optimization
of a number of possible reflections is then given by

β0 = w0 ∩ R 6=0 (5)

k0 =

{
r − 1

Q
: w0,r 6= 0

}
. (6)

The TOAs are bounded within the range of TOAs described
by w0. Each AIR window used to evaluate the MSE extends
a time τe at each side of this range. Ideally, the entire AIR
could be used for the evaluation of the MSE, however practical
limitations prohibit this. Higher τe values lead to a decrease in
the residual-error but increased computation times. To promote
sparsity, the number of possible reflections tested spans the
range {0, . . . , ‖w0‖0}. This provides a MSE value for each
case. The model with the maximum number of reflections
that provides a decrease of s to the MSE with regards to the
previous one is accepted, where s is a scalar. The accepted
number of reflections is added to D̂ and the parameters are
appended to the vectors β̂ and k̂, before moving to the next
AIR window.

Setting s < 1 favours the choice of models with lower
dimensionality by expecting the addition of more parameters
to significantly reduce the MSE. Sparsity is also promoted
indirectly as multiple elements of w0 that may be targeting a
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(a) Model fitted to a simulated AIR, consisting of 11 detected reflections.
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(b) Model fitted to an AIR measured in a lecture room, consisting of 57 detected reflections.

Fig. 1: Results of model fitting to simulated and recorded AIRs sampled at 16 kHz, Ts indicates the sampling period.

single reflection, are at this point “fused” to a single parameter-
pair, with the same TOA and amplitude. Repeating the process
for all windows, results in a model for the AIR given by

ĥ(n) =

D̂∑
i=1

β̂iĥe(n)∗
sin π(n− k̂i)
π(n− k̂i)

. (7)

D. Excitation Model

Nonidealities of the AIR being modeled include factors
such as band-limiting at the source and receiver. These are
accounted for by considering equivalent nonidealities in a
corresponding excitation for the AIR. In related work, this
excitation was modeled as a modulated Gaussian pulse [18].
This model is adopted here, leading to the following expres-
sion for the excitation signal

ĥe(n) = e−θ
2(nTs)

2

cos(2πfenTs), (8)

hd(n) = β̂dĥe(n) ∗
sin π(n− kd)
π(n− kd)

, (9)

where kd is the TOA of the direct sound and Ts is the sampling
period. We estimate the parameters θ and fe from window
hd(n) of the AIR containing the direct sound. Assuming that
the direct sound will have the highest energy, this window
of length 4 ms is centered around the highest energy sample.
Estimates for the parameters are then found using [19], which
aims to find the global minimum of the MSE between ĥe(n)
and hd(n). For each tested parameter set, kd is varied to best

align ĥe(n) to hd(n) and β̂d is set to match the maximum
values between the two. The benefit of creating a model to
represent the excitation signal over using samples directly
extracted from the AIR is avoiding the inclusion of any
reflections or noise in the representation.

E. Adjusting Regularization

For each AIR the value of λ for (4) is self-adjusted
by first finding λ0, the first value for which ‖w‖0 > 0.
Subsequently, LASSO is run for λψ = λ0 · 10−0.04ψ , where
ψ ∈ {1, . . . , 100}. Based on the MSE values εψ , we find the
λm value which leads to the minimum MSE value εm. The
final λ value is chosen based on the largest ψ index for which
εψ < εm+ σε

3 . This provides a trade-off between sparsity and
accuracy [20].

III. EXPERIMENTS

The results of fitting the model to simulated and measured
AIRs are illustrated in the following experiments. All AIRs
considered are sampled at 16 kHz.

Fig. 1a shows the result for an AIR simulated using [21]
for a “shoe-box” room. The room dimensions were [3.5, 3.9,
2.5] m, with the last dimension indicating the height. The
source and receiver were placed in a random location within
the room, drawn from a uniform distribution, at least 1 m from
the room’s boundaries. For visual clarity, the results are shown
for the first 10 ms after the arrival of the direct sound at the
receiver. The result of the model fitting process (see Fig. 1a)
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appears to almost perfectly model the AIR when comparing
ĥ(t) to h(t).

The same process was repeated for a measured AIR,
part of the Acoustic Characterization of Environments (ACE)
Database [22]. The recording took place in a lecture room with
dimensions [6.9, 9.7, 3.0] m and the receiver is one of the
channels of a 32 microphone array. Similarly to the previous
case, by comparing ĥ(t) to h(t) (see Fig. 1b), we can see that
the model captures the structure of the AIR. The model for the
excitation signal also accurately represents the direct sound at
the indicated position.

To gain objective insight into the performance of the model,
the normalized error, Pearson’s correlation coefficient and di-
mensionality reduction values were extracted from the results.
These are respectively denoted by ψ, ρ and ζ. The normalized
error is defined as

ψ =
‖h(n)− ĥ(n)‖2
‖h(n)‖2

× 100%, (10)

which expresses the residual error as a percentage of the
overall AIR energy. The dimensionality reduction is evaluated
as the percentage

ζ =

(
1− 2D̂ + 4

N

)
× 100%, (11)

where N the number of taps required for a MA process
representation. In these examples N = kd + (10 · 10−3 s) ·
(16 · 103 Hz) as the first 10 ms after the arrival of the direct
path are considered. The number of parameters used by the
model involve the TOAs and amplitudes of D̂ reflections and
four parameters to describe the direct excitation model of (8).
In terms of Fig. 1a, ψ = 0.28%, ρ = 0.999 and ζ = 96%. In
terms of Fig. 1b, ψ = 2.61%, ρ = 0.987 and ζ = 67%. For
the model fitting process (see Sec. II-C), s and τe were set to
0.90 and 0.5 ms respectively. This provided sparse solutions
and a trade-off between residual error and computation times.

To further illustrate the performance of the proposed mod-
eling approach two larger experiments are presented. In the
first one, 480 AIRs were simulated. This involved 15 rooms
of different dimensions with a single source and 32 receivers.
Source and receivers were randomly placed, at least 1 m away
from the boundaries. The model was fitted to the first 24 ms
after the arrival of the direct sound for each. This is defined
as the mixing time in [23]. The results are shown in Fig. 2.
Rooms have been split into 8 groups based on their volume.
The normalized error in Fig. 2a and correlation in Fig. 2b
highlight that the modeling accuracy remains constant across
all room volume groups. The dimensionality reduction results
in Fig. 2c show that more parameters are required to model



smaller rooms. This increase in dimensionality for decreasing
room sizes is due to the more rapidly increasing reflection
density in smaller enclosures.

For the second experiment the task was to model the 42
AIRs recorded using a 3 microphone mobile phone array in 7
rooms provided in the ACE database [22]. This corresponds
to 2 sets of measurements, with the receiver positions varying
between the two and the rest of the setup unchanged. In this
case, results are grouped by individual rooms instead of room
volume and are sorted by room type. Furthermore, higher
indices for a specific room type indicate a higher room volume,
i.e. Lecture Room 2 has a higher volume than Lecture Room
1 and so on. The higher error in Fig. 3a and lower correlation
values in Fig. 3b for this experiment indicate the increased
challenges in modeling measured AIRs. The dimensionality
reduction is also lower overall, as shown in Fig. 3c. For
measured AIRs, the model has to include further parameters to
account for reflections from objects other than the enclosure’s
boundaries. For instance, reflections from microphone-stands
involved in the setup are expected to be present in measured
data, which is not the case for simulations. Furthermore,
ambient and sensor noise in AIR recordings is expected to
impact the residual error.

In contrast to the first experiment which involved simulated
AIRs, larger real rooms do not consistently lead to a higher
dimensionality reduction. Nevertheless, higher reductions in
dimensionality are still shown between rooms of the same type
as their volume increases. This indicates that volume is again a
factor to be considered in terms of the model’s dimensionality.
The normalized error in Fig. 3a shows high variability for
specific rooms across AIRs. The two rooms with the highest
variability are the Building Lobby and Office 1. Investigating
further indicates that the measurement position was highly
correlated to the level of error. For both rooms, the AIRs with
the highest modeling error involved the receiver being placed
closest to a room wall. The opposite was true for receiver
locations closest to the middle of the room. AIRs closer to
the room boundaries therefore appear to be more challenging
to model. This is attributed to the fact that reflection spacing
will be smaller, making the modeling task more difficult.

Another remark which further illustrates the usefulness of
the proposed method is its ability to estimate the TOAs of
reflections in AIRs, which makes it a valuable analysis tool.
This is illustrated by Figs. 1a and 1b. Estimated TOAs can
be used to estimate room geometry [12], the mixing time [14]
and other channel properties.

IV. CONCLUSION

A novel approach for the construction of a low dimensional
parametric model of the early part of AIRs has been presented.
Experiments involving simulated and measured AIRs, showed
that using the proposed modeling approach can reduce the
dimensionality by more than 90% and 60% respectively. The
corresponding AIR coefficient reconstruction normalized-error
does not exceed 3.2% for simulated and 11.4% for measured
AIRs.
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