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Abstract

In this thesis two classes of inhomogeneous multiscale grids are proposed and investigated

experimentally. These studies provide further understandings of the idea to generate

bespoke turbulence field using fractal grids as proposed by Vassilicos and colleagues.

The first part of the work introduces the rectangular fractal grid (RFG). Due to the

inhomogeneous grid geometry, the streamwise location of turbulence intensity peak ap-

pears different from the wake interaction length scale calculated from the grid bar di-

mensions, and a region of decreasing length scales with decreasing Reynolds number is

observed. This region is shown to be inhomogeneous and anisotropic. Nevertheless, the

non-equilibrium scaling is found in this region, where the ratio between the integral length

scale and Taylor microscale remains constant.

From the second part of the work, turbulent flows with different mean shear rates are

studied using the new inhomogeneous multiscale grids. By designing the local blockage

ratio and the bar dimensions, this new type of shear generating grid is capable of producing

different mean velocity and turbulence intensity profiles at the same time. The mean

velocity profiles are shown to match the predictive mean velocity model, and a scaling

relation of turbulence intensity is proposed based on the wake interaction length scale.

The streamwise evolution of the Reynolds stress is studied, and a new dimensionless time

scale is proposed.

Finally, the design and scaling methods of the turbulent shear flow generated by the inho-

mogeneous multiscale grid are tested in a low-fidelity engineering wind tunnel with differ-

ent size and background flow quality, and the results are consistent. These results perhaps
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provide a general methodology to produce various types of turbulent flows through the

design of one single passive grid, which is desirable for both fundamental studies of tur-

bulence and engineering applications such as the wind engineering experiments.
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Chapter 1

Introduction

The word turbulence is used to describe a range of phenomena that can be observed or felt

almost everywhere in nature. From the water running in a river to the clouds drifting in

the sky; from the smoke coming out of a chimney to the swirls behinds bridge piers; from

the solar wind to the interstellar clouds, it is the universality of turbulence phenomena

that makes it difficult to solve, but essential to understand at the same time. The necessity

is perhaps twofold, (i) to explore the fundamental physics of turbulence phenomena to

fulfill the curiosity of human nature, and (ii) to apply new theories and/or mathematical

models to benefit the daily activities of human beings. As our understanding of the

subject progresses, questions will be raised requiring more understanding of the problem

so that improvements of existing theories/models can be implemented with more efficiency

and/or accuracy. The study of turbulence is therefore still on going, and will continue for

a foreseeable time frame.

Systematic study of the subject of turbulence generally relies on either computational or

experimental methods. One approach of the computational methods is to solve reduced

versions of the Navier-Stokes (N-S) equations, such as Reynolds-Averaged N-S equations

(RANS) or Large Eddy Simulations (LES). Both methods have been favored by engineers

for their relatively lower costs. Another approach is Direct Numerical Simulation (DNS)

27
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of the N-S equations, which is capable to resolve all scales of the turbulence, at the cost of

considerably longer computational hours. As a result, the Reynolds number in DNS stud-

ies is usually limited. With the development of supercomputers in recent decades, larger

Reynolds numbers have been achieved in DNS simulations (e.g. Laizet and Vassilicos,

2011; Eitel-Amor et al., 2014). However, even the most advanced supercomputer cannot

afford to perform DNS of large scale turbulent flows at realistic Reynolds numbers. For

this reason, experimental approaches have also been widely used to study various types

of turbulent flows.

In order to study large scale turbulent flows, it is ideal to have the same order of Reynolds

number. However, for topics in geophysics such as the Atmospheric Boundary Layer

(ABL), or large scale industrial flows such as the turbulence generated by a wind turbine,

it is still difficult to perform experiments at realistic Reynolds numbers. Although full

scale wind tunnels have been built, the access is extremely limited. Therefore, experiments

in a relatively smaller wind tunnel with properly scaled turbulence characteristics are

desirable, which constitutes the main idea of this study, i.e. to explore the possibility to

generate turbulent flows with desired characteristics.

A topic of specific interest is wind tunnel simulation of the ABL, which requires correct

representations of mean velocity, turbulence intensity, and length scale at the same time,

and is therefore difficult to produce in wind tunnels. It is also the part of atmosphere that

most human activities occur, so the study of the subject is of great importance. In the

following, a brief review is given first on the different methods simulate the ABL in wind

tunnels. Following a manner of reductionism, wind tunnel simulation of the ABL might

be reduced to two subtopics, i.e. homogeneous isotropic turbulence and turbulent shear

flows (the analogy is further discussed in section 1.1). Therefore, previous experiments

of the fractal generated turbulence are reviewed in section 1.2, and various methods to

produce turbulent shear flows are reviewed in section 1.3. The outline of this thesis is

given at the end of this chapter.
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1.1 Wind tunnel simulation of the ABL

The ABL is defined as the lowest part of the troposphere that directly interacts with the

earth’s surface and responds to the surface forcing (Stull, 2012). The size (or thickness)

of the ABL, being its height away from the surface, is rather complex. It depends on a

range of meteorological and geological factors, such as wind intensity and direction, air

properties, terrain roughness type, latitude, etc, and is affected by the presence of clouds.

As a result, the thickness of the ABL varies from the order of 100m to 1000m. Even at

the same site, its thickness exhibits diurnal cycles due to thermal forcing from the earth’s

surface (see e.g. McNider and Pielke, 1981; Svensson et al., 2011).

The study of the ABL is important because it is the layer of atmosphere that most

human activities interact with. The knowledge of turbulent characteristics within the

ABL is critical in the practice of wind load testing of large scale civil structures, pollutant

disposal, weather forecasting, etc. Reviews on studies of the ABL over the past few

decades have been given by Monin (1970); Panofsky (1974); Garratt (1994); Garratt et al.

(1996); Cermak (2003). Both numerical and experimental advances have been made, and

this introduction will focus on the experimental techniques.

The most straightforward way to study the ABL experimentally is to conduct field mea-

surements. Although such measurements are possible (e.g. Clarke et al., 1971; Readings

et al., 1974; Kaimal et al., 1976; Driedonks, 1982; Kader and Yaglom, 1990; Lohou et al.,

1998; Cuxart et al., 2000; Svensson et al., 2011; Pea et al., 2014), it often involves com-

plex set up of large scale anemometer towers or balloons, and greatly depends on the

weather conditions on the measurement site. Wind tunnel simulations of the ABL are

therefore much desired, but the physics has to be simplified to an extent such that it can

be generated using various devices installed in a wind tunnel.

Davenport (1963) proposed that a neutral atmosphere can be obtained in high winds. In

a neutral boundary layer, the buoyancy effects, the variation of wind direction, and the
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Coriolis effect due to the earth’s rotation are all neglected. It is therefore an essential step

to simulate the natural atmospheric boundary layer Armitt and Counihan (1968). Cook

(1978) also suggested that the ABL can be considered adiabatic for strong winds with

U ≥ 10m/s, where U is the local mean velocity. The simulation of a neutral boundary

layer by a standard turbulent boundary layer is then possible as long as the geometric

similarity is maintained, the surface roughness is reduced in proportion, and the Reynolds

number is comparable to the real case.

With such simplifications, a direct approach to simulate a turbulent boundary layer in a

wind tunnel is to let it grow naturally over a very long test section up to 30m (e.g. Jensen

and Franck, 1963; Cermak et al., 1966; Davenport, 1966; Cermak, 1971; Robins, 1975).

However, the thickness of the boundary layer developed in such a manner has been limited

by practical considerations. Here we introduce the scale factor, which is interpreted as the

ratio between the real boundary layer size and the simulated one. This ratio consequently

determines the size of the model to be fitted into the simulated ABL. Ideally one would

try to have as large a model as possible to fully utilize the wind tunnel dimensions to have

more realistic results, and thus generating a thick turbulent boundary layer in a given

wind tunnel is crucial. Different types of wall roughness elements have been used for such

purpose. For example, with a wind tunnel of 25m long, Davenport (1967) produced a

boundary layer with thickness of 380mm over a rural terrain (simulated by carpet) and

900mm over an urban terrain (simulated by arrays of 25mm to 100mm high blocks),

whereas a representative boundary layer thicknesses for these two types of terrains with

1:400 scale factor would be 610mm and 1200mm, respectively. Therefore, more efficient

methods to artificially thicken the boundary layer in wind tunnels are needed.

Several methods have been proposed to produce thick turbulent boundary layers in wind

tunnels, for example, the tripping grid tested by Davenport (1967), the grid-barrier ar-

rangement used by Cook (1973), and the tripping devices proposed by Rodŕıguez-López

et al. (2016). One of the most popular methods was proposed by Armitt and Counihan
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(1968). Their experiments were carried out in a wind tunnel with cross section measuring

4.5m×1.5m, and 11m in length, which is significantly shorter than that used by Cermak

et al. (1966) and Davenport (1967). The authors proposed a system with a barrier of

height 0.15m at the beginning of the working section, followed by four triangular vortex

generators of 1.2m high and placed 1.2m apart. Downstream of the vortex generators,

a surface of Lego blocks measuring 31.75mm × 15.88mm × 9.53mm was placed on the

bottom floor to simulate surface roughness, over a streamwise extent up to the leading

edge of the turn table. With such arrangement, Armitt and Counihan (1968) were able to

generate a turbulent boundary layer with thickness of order 1m (which is similar to the

height of the vortex generators), and concluded that the simulated ABL could facilitate

model tests at a scale of 1:250.

The results of Armitt and Counihan (1968) were, however, unsatisfactory in several ways.

The mean velocity profiles of their results exhibited excessive velocity deficit close to the

floor due to the barrier, but not enough in the outer part of the velocity profile. A square

rod of diameter 50.8mm was then added 635mm horizontally above the barrier as an

effort to remedy the difference, although the results showed unintended variations in the

mean velocity profile. Transverse inhomogeneity was also observed, which was attributed

to the existence of the vortex generators. Armitt and Counihan (1968) then studied

the effects of the incident angle of the vortex generators, and concluded that reducing

the angle of incidence from 10◦ to 5◦ would add unrealistic irregularities in both mean

velocity and turbulence intensity profiles.

Following on from this study, Counihan (1969) redesigned the triangular vortex generators

to redistribute the area into elliptical shapes with a 2:1 major to minor axis ratio as an ef-

fort to correct the unrealistic velocity deficit in the mean velocity profile. Counihan (1969)

tested this improved arrangement in a smaller wind tunnel with test section dimensions

0.6m×0.2m×1.5m. The height of the generators was 152mm, placed 76.2mm apart, and

the boundary layer thickness was about the same as the generator height (152mm). The
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relative position between the barrier and the generators was decided by trial-and-error

through comparisons with theoretical data. It took four to five boundary layers heights to

develop the simulated flow. Counihan (1969) concluded that such a method was suitable

for producing a neutral ABL. The integral length scale, however, was not studied at that

time.

At the end of the paper from Armitt and Counihan (1968), they proposed the idea of a

two vortex generator system with different heights as a means to mix the vortical systems

more effectively. This idea was tested by Cook (1978) using a barrier with serrated or

castellated edge together with two arrays of Counihan-type elliptical vortex generators.

Two types of roughness were also tested. A layer of 14mm gravel, and a fetch of blocks

of 100mm×50mm×50mm, with the 100mm edge aligned with the transverse direction.

The castellated barrier was placed at the beginning of the test section with height from

58mm to 267mm. Two arrays of elliptical vortex generators were mounted downstream

of this barrier. The smaller vortex generators of height 400mm were placed first, and then

the taller generators of height 800mm. Their results suggested that the boundary layer

can be thickened by increasing the barrier height, provided that the mean height of the

barrier was smaller than twice the height of the blocks or fivefold the gravel. Cook (1978)

also comments that completely natural grown boundary layers give the best simulation

of the ABL, but the thickness is limited, which limits the scale factor, and artificial ways

to thicken the simulated boundary layer would inevitably cause unrealistic results so that

one has to prioritize certain characteristics to optimize.

This type of barrier, mixing-device, and roughness method was widely used and further

developed in the subsequent experimental studies by many researchers. Gartshore and

De Croos (1977) proposed a semi-empirical method to calculate the dimensions of the wall

roughness. Farell and Iyengar (1999) applied this method in their wind tunnel simulation

of an urban terrain boundary layer. The boundary layer thickness was the same as the

vortex generators (1.2m), and achieved a good representation of the boundary layer over
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city centers with a scale factor of 1:500. Balendra et al. (2002) further modified the

setup with a different arrangement of roughness elements. In their study, Balendra et al.

(2002) first placed a 12m long fetch of 28mm cubes, and then a 0.75m long fetch of

mixed elements consisting of 28mm cubes and taller cubes of 28mm× 28mm× 56mm to

simulate the scenario of wind blowing over an area with gradually built-up constructions

before reaching a city. The reproduced mean velocity and turbulence intensity profiles

were generally satisfactory, but the integral length scale showed scattering of roughly 20%

around the modeled values as proposed by Walshe (1972).

All of these previous studies have achieved appreciable success of wind tunnel simulation

of boundary layers over different terrain types, yet the implementation involves a consider-

able amount of trial-and-error, and optimization of the setup is mostly empirical. Even if

the mean velocity profiles are satisfied, the turbulence intensity and integral length scales

suffer from large deviations from realistic values, especially the integral length scales,

which are usually insufficient in artificially thickened turbulent boundary layers. Conse-

quently new methods that provide some level of control over the turbulence generating

process especially the turbulence intensities and length scales are desired.

There have been some ideas such as the jet grid, which consists of 2D arrays of individually

controlled jets (e.g. Gad-El-Hak and Corrsin, 1974; Tassa and Kamotani, 1975; Teunissen,

1975), and the oscillating grids (e.g. Ling and Wan, 1972). The jet grid was not widely

used due to its complexity (as it requires modification of the wind tunnel section) and

considerable power requirements (Teunissen, 1975). The agitated grid was later developed

into the idea of active grids, which was perhaps first published by Makita (1991), and then

further studied by many (Mydlarski and Warhaft, 1996b; Kang et al., 2003a; Cekli and

van de Water, 2010; Knebel et al., 2011; Stefan et al., 2013; Thormann and Meneveau,

2014).

An active grid consists of horizontal and vertical arrays of oscillating rods with agitator

wings. These rods are connected to stepping motors installed outside the wind tunnel
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walls. The motion of each rod is controlled by feeding electric pulses to the stepping motor,

which generates different mean velocity and turbulence intensity. The active grids have

also been used in combination with mesh grids to produce mean velocity and turbulence

profiles as described by e.g. Zhu et al. (2006); Thormann and Meneveau (2015). Even

though the method of active grid has shown promising progress in producing turbulence

fields, the grid itself is complicated to set up, and the control protocol is usually determined

through some level of trial-and-error. A passive device that is capable of producing

certain turbulence fields without the need for extensive trial-and-error is therefore highly

desirable.

As mentioned by Cook (1978), it is impossible to simulate every aspect of flow character-

istics of the ABL through artificial methods, and some parameters have to be neglected

for wind tunnel simulations. For example, the boundary layer can be simplified to a ho-

mogeneous turbulent flow with high turbulence intensities and large length scales, e.g. for

wind load testing of a bridge, where the vertical span of the flow is small such that the

local velocity gradient can be neglected. Or it can be simplified to a turbulent shear flow

with desired profiles of mean velocity and turbulence intensities in the vertical direction

with proper length scales. In fact, in the cornerstone paper by Armitt and Counihan

(1968), the authors argued that the three primary aims of wind tunnel simulation of the

ABL are in fact the turbulence intensities, the relevant length scales, and varying mean

velocity with height.

Following this idea, we look at possibilities of tailoring turbulent flows using passive grids.

To continue the introduction, we first review the multiscale grids proposed by Vassilicos

and colleagues, referred to as fractal grids, which have been shown to produce bespoke

homogeneous isotropic turbulent flows with high turbulence intensity and large integral

length scales. The review focuses on both the scaling of turbulence statistics, and the

evolution of various turbulence characteristics such as length scales and dissipation.
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1.2 Fractal generated turbulence

Grid generated turbulence has been studied extensively over the past decades. In most

cases, planar grids with regular mesh sizes were used to produce flows close to a homogeneous

isotropic turbulence. This series of work dates back to Simmons and Salter (1934) and

Taylor (1935), and contributions have been made by many (e.g. Comte-Bellot and Corrsin,

1966, 1971; Gad-El-Hak and Corrsin, 1974; Mohamed and Larue, 1990; Sreenivasan, 1984;

Mydlarski and Warhaft, 1996a; Cardesa et al., 2012) to study the evolution of various

turbulence characteristics. For the past decade, research into space-filling fractal square

grids, henceforth referred to as FSG (Seoud and Vassilicos, 2007) has shown the exis-

tence of a non-equilibrium region where turbulence characteristics (such as various length

scales and the dissipation coefficient) evolve differently from the predictions of classical

theory. These observations have been confirmed in studies using conventional regular and

bi-planar grids (Isaza et al., 2014; Valente and Vassilicos, 2014). The following discussion

focuses mainly on the one point statistics and characteristic length scales of turbulence.

The results of the current experiments are presented in the same manner in Chapter 2,

with a few cases of two-point correlation measurements to look at the integral length

scale. The scaling laws of the dissipation is also discussed in this chapter and investi-

gated further in Chapter 2. Here and for the discussion, x, y, z represent the streamwise,

vertical, and transverse direction, respectively.

1.2.1 Scaling of turbulence statistics

The very first study of fractal-generated turbulence was on turbulence generated by three

dimensional fractal objects Vassilicos (2001). This work was followed by simulations of

periodic turbulence subjected to fractal/multi-scale forcing (Mazzi et al., 2002; Mazzi

and Vassilicos, 2004). The concept of fractal-generated turbulence was further developed

by Hurst and Vassilicos (2007), where two-dimensional grids with three types of fractal-
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Figure 1.1: Example of space-filling square fractal grid, where L0 and t0 give the length
and thickness of the bar at first iteration, respectively.

generating patterns were proposed, i.e. cross, I-shaped, and squares. Each pattern can be

completely characterized by the fractal iteration number Nf , the length Lj and width tj

(where j = 0, 1, ...Nf − 1) of the grid bars, and the number of patterns at each iteration.

With relatively low blockage ratios of approximately 25%, these grids exhibited large

turbulence intensities and Reynolds numbers in comparison to classical grids with blockage

ratios of 44%. The best decaying turbulence homogeneity was returned by space-filling

fractal square grids (FSG), i.e. grids with square patterns. The FSG, as shown in figure

1.1, also have a protracted production region where the turbulence builds up reaching a

maximum value at a streamwise position xpeak beyond which the turbulence decays. The

authors commented that it might be possible to control the distance where the turbulence

intensity peaks by controlling the geometry of the grids and Mazellier and Vassilicos

(2010) followed by Gomes-Fernandes et al. (2012) showed how both this distance and the

turbulence intensity at the peak can indeed be predicted given the dimensions of the grid.

The homogeneity of such space-filling fractal generated turbulence was found satisfactory

by Seoud and Vassilicos (2007) in the decay region, i.e. x > xpeak (where xpeak is the

streamwise location with maximum turbulence intensity), and improved by increasing

the ratio of tr = tmax/tmin, where tmax and tmin is the width of the bar in the first and



1.2. Fractal generated turbulence 37

last iteration of the grid, respectively, according to Hurst and Vassilicos (2007); Seoud

and Vassilicos (2007). The large scale isotropy was achieved at streamwise distance large

enough where U/U∞ ≤ 1.1 (U∞ is the free stream velocity) such that the ratio of u′/v′

reached values between 1.2 and 1.3, and Lu/Lv ≈ 2, where Lu = Luu,x and Lv = Lvv,x are

the longitudinal integral length scales of the fluctuating velocities u and v, respectively.

A thorough study of homogeneity and isotropy in turbulence generated by FSG was

conducted by Valente and Vassilicos (2011) which revealed the presence of significant

transverse turbulent energy and pressure transport in the region up to x ≈ 3xpeak that

they studied.

Mazellier and Vassilicos (2010) conducted further experiments on four different FSGs. By

relating the wake width l with the bar width tj (j = 0, 1, ..., Nf − 1) and the streamwise

distance x from the bar via l ∼ √
xtj (Townsend, 1980), they introduced the wake in-

teraction length scale x∗ = L2
0/t0, where L0 is the length of the largest bar and t0 is the

corresponding width, both shown in figure 1.1. Mazellier and Vassilicos (2010) were then

able to collapse data from their four grids such that the streamwise location of the peak

turbulence intensity was approximately

xpeak ≈ 0.45x∗ = 0.45
L2
0

t0
. (1.1)

Both mean velocities and turbulence intensities from these four different FSGs collapsed

with such scaling. The flow homogeneity was measured by the ratios Uc/Ud and u′

c/u
′

d,

where Uc and u′

c are the mean velocity and streamwise turbulence rms (root mean square),

respectively, along the centerline of the grid, and Ud and u′

d are along the streamwise line

behind the corner of the square of second iteration. Both of these ratios approached

1 ± 10% by x/x∗ = 0.6. This point x/x∗ = 0.6 sets apart different behaviors of various

properties as well. For example, the streamwise fluctuating velocity skewness Su showed

large negative values in the region x/x∗ < 0.6, but was approximately zero where x/x∗ >

0.6.
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Although the scaling relation of equation 1.1 successfully collapsed streamwise devel-

opments of various properties, it failed, however, when Gomes-Fernandes et al. (2012)

compared data from wind tunnels and a water tunnel, i.e. with different incoming flow

conditions. By taking into account the incoming flow turbulence level and the drag coef-

ficient Cd of the grid bars, Gomes-Fernandes et al. (2012) proposed a length scale

x′

∗
=

L2
0

αCdt0
, (1.2)

where α was determined as 0.287 and 0.231 (after Symes and Fink, 1977) for incoming

flows with moderate and negligible free-stream turbulence, respectively, and Cd was eval-

uated from the aspect ratio (defined as AR = d0/t0, where t0 and d0 are the width and

streamwise thickness of the largest grid bar, respectively), following Bearman and True-

man (1972) and Nakamura and Tomonari (1976). After plotting turbulence intensities

against x/x′

∗
, they finally proposed a revised wake interaction length scale

xpeak
∗

= φx′

∗
= 0.21x′

∗
= 0.21

L2
0

αCdt0
, (1.3)

where φ = 0.21 was determined empirically so that xpeak
∗

= xpeak. Starting from the mean

momentum equation of wake flows, the authors also proposed a scaling relation for the

centerline turbulence intensity level

u′

U∞

=
1

β

(Cdt0

xpeak
∗

)1/2
g
( x

xpeak
∗

; ∗
)
, (1.4)

where β is a constant of 2.88 and 2.68 (after Symes and Fink, 1977) for incoming flows

with moderate and negligible free-stream turbulence, respectively, and the function g in-

corporates any residual dependencies that might exist on the boundary or inlet conditions.

The scaled turbulence intensity u′/U∞β(Cdt0/x
peak
∗

)−1/2 collapsed as a function of x/xpeak
∗

for six different inlet conditions.



1.2. Fractal generated turbulence 39

1.2.2 Turbulence dissipation

The study of turbulence dissipation has initiated numerous works on different types of

turbulent flows over the past few decades. The cornerstone of classical turbulence theory

proposed by Taylor (1935) states that ε = Cεk
3/2/Lu (where ε is the dissipation rate, Cε

is the dissipation coefficient, k is the turbulent kinetic energy, and Lu is the longitudinal

integral length scale), with Cε = const, i.e. independent of Reynolds number, for turbulent

flows with large local Reynolds numbersReλ 	 1, where Reλ = u′λ/ν, u′ is the streamwise

turbulence rms, λ is the Taylor micro scale, and ν is the kinematic viscosity. This relation

is referred to as the equilibrium dissipation scaling, and is explained by the Richardson-

Kolmogorov cascade mechanism (see e.g. Pope, 2001). By assuming ε = 15νu′2/λ2, which

holds exactly for isotropic turbulence, it follows directly that Lu/λ ∼ CεReλ. This implies

that a larger range between Lu and λ is required for the turbulent energy to be dissipated

with increasing Reynolds number, or simply, Lu/λ grows proportionally with Reλ.

The dependence or independence of Cε on boundary/inlet/initial conditions, has been

controversial over the decades of turbulence research, with evidence from both experi-

mental and numerical results. Gad-El-Hak and Corrsin (1974) showed a dependency of

Cε = εLu/u
′3 on the initial condition ( i.e. injection rate of their jet grid), and seemed to

suggest a smoothly varying Cε with different initial conditions. Sreenivasan (1984) sum-

marized several data sets up to that time, and showed that for certain grids Cε approached

a constant value for Reλ > 100 when the Reynolds number was varied by varying the

inlet flow velocity. These observations were also included in the review by Lumley (1992).

After that time, new data and evidence from a number of experimental and numerical

works contributed further to the understanding of the behavior of Cε. A summary can

be found in Vassilicos (2015). It was not until the work on fractal grids by Vassilicos and

coworkers, that the dependency of Cε on flow conditions and Reynolds number could be

studied more comprehensively and systematically. One outcome was the discovery of a

region with a new non-equilibrium dissipation scaling such that the dependency of Cε on
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Reynolds numbers is given by Cε ∼ Rem0 /RenL ∼ Re
m/2
0 /Renλ, where m ≈ n ≈ 1, Re0 is a

global Reynolds number such that Re0 = (U∞L0)/ν, and ReL is a local Reynolds number

given by ReL = (u′Lu)/ν. Note that m = n = 1 is equivalent to Lu/λ ∼ √
Re0. This

non-equilibrium dissipation scaling has now been found in various types of turbulent flows

(Hurst and Vassilicos, 2007; Mazellier and Vassilicos, 2010; Valente and Vassilicos, 2011;

Gomes-Fernandes et al., 2012; Stefano et al., 2013; Valente and Vassilicos, 2014; Goto and

Vassilicos, 2015, 2016a; Obligado et al., 2016).

Valente and Vassilicos (2012) studied the non-equilibrium dissipation law by comparing

measurements behind fractal and regular grids and both confirmed and generalized the

finding of Mazellier and Vassilicos (2010) that Lu/λ increases with Re0 showing, in fact,

that Lu/λ ∝ √
Re0. Their results showed two distinct regions for Cε such that Cε ∼

Rem0 /RenL held for xpeak < x < 5xpeak, where Cε ∼ Rem0 /RenL with m ≈ n ≈ 1, and

Cε ≈ const for x > 5xpeak with a rather abrupt transition at x = 5xpeak. The streamwise

extents of these two regions correspond to about the same number of turnover times, which

is in fact a few. This dissipation behavior was confirmed by Hearst and Lavoie (2014);

Valente and Vassilicos (2014). Valente and Vassilicos (2014) also ruled out the dependency

of such a scaling law on the choice of length scales by showing that both longitudinal

and transverse length scales follow this non-equilibrium scaling relation, regardless of the

inhomogeneity and anisotropy of different flows.

To close this section, it is worth mentioning that the aforementioned works were all carried

out with regular grids, single square grids and FSGs (or variants of FSGs such as the grid

used by Hearst and Lavoie (2014)). In all these grids, all corresponding bars, whether

vertical (in the y direction) or horizontal (in the z direction) had the same lengths and

thicknesses, i.e. L0 and t0 are defined irrespective of orientation. In the current study,

we introduce the rectangular fractal grid (RFG). This grid is stretched in the transverse

direction, and consequently two distinctive lengths and thicknesses are present at each

iteration. A detailed description of the grid is presented in section 2.1.2.
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1.3 Turbulent shear flows

Many efforts have been made to develop different types of devices to produce shear flows

in wind tunnel experiments. Some of the most popular methods are briefly discussed

here, and reviews of the earlier methods can be found in Lawson (1968) and Laws and

Livesey (1978). In this section, various methods to generate turbulent shear flows over

the past few decades are briefly discussed first. The evolution of turbulence statistics,

length scales and other turbulent characteristics in turbulent shear flows are reviewed in

the second part. Here and for the rest of the discussion, x, y, z represent the streamwise,

vertical, and transverse direction, respectively.

1.3.1 Shear generating methods

Several methods have been proposed to generate shear flows in laboratories. One of the

methods is to use wire gauze to modify the local solidity, and consequently produce a mean

velocity gradient. The effect of flow passing through wire gauze was described in detail by

Taylor et al. (1949). Then by using resistance and deflection coefficients as grid properties,

a theoretical method of grid design was offered by Owen and Zienkiewicz (1957) relating

the downstream mean velocity profile to the spacing of the wires, and a uniform shear flow

was produced in their study using parallel wires of diameter d = 3.175mm. This method

was further generalized by Elder (1959) to non-uniform gauze with arbitrary shapes. Elder

(1959) tested his theory on linear and parabolic gauze, and proposed a gauze shape to

generate a linear shear flow. Rose (1966) followed the same method and showed that

the shape of the generated downstream mean velocity profile was persistent at different

streamwise locations. The later studies of Livesey and Laws (1973) on flow through

shaped gauze proposed a modification of the theory to exclude a higher order term, which

seemed to cause discrepancies between theoretical solutions and experimental data from

two-dimensional and axisymmetric cases. The most obvious drawback of a method using
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gauze and wires is, as commented by Lawson (1968), that the turbulence characteristics

cannot be varied once the wire is chosen, and it is therefore impossible to generate mean

velocity and turbulence profiles independently.

The parallel wire method relies mostly on the spacing of the wires, and it is therefore hard

to adjust the elements locally. Another type of shear generator was tested by Champagne

et al. (1970), where the authors used plates of 609.6mm long, and 3.175mm thick sep-

arated by 25.4mm to form parallel channels with adjustable internal screens to control

the local solidity. The same method was then used by many, e.g. Harris et al. (1977);

Tavoularis and Corrsin (1981); Karnik and Tavoularis (1987); Rohr et al. (1988); Garg

and Warhaft (1998); Nedić and Tavoularis (2016), with different configurations such as

the size of internal grid size, and the separation distance of the plates. A honeycomb with

uniform cell diameter but varying lengths in the streamwise direction was also tested

by Rose (1970) to generate shear flows. Rose (1970) studied the combination of such a

honeycomb and a grid placed downstream with different sizes and geometries, and the

downstream grid was shown to reduce the mean shear rate. Richards and Morton (1976)

produced a quadratic mean velocity profile using such a honeycomb and grid combination.

Mulhearn and Luxton (1975) used a similar setup where a grid of non-uniform parallel

rods was placed upstream of the honeycomb with uniform length to produce a uniform

sheared flow. Note that no relation between the shear flow and the geometry of the setup

was concluded from these parallel plate methods since all of them were tuned by trial-

and-error. Even though they offer the possibility of local adjustments of the device, which

is an improvement of the previous method, they lack theoretical support to relate the grid

geometry to the generated shear flow. Experiments involving extremely high shear rates,

e.g. ∂U/∂y > 400 s−1 (see Souza et al., 1995), are excluded from our discussion.

The active grid proposed by Makita (1991) and subsequent works by e.g. Mydlarski and

Warhaft (1996b); Shen and Warhaft (2000a); Cekli and van de Water (2010); Knebel et al.

(2011) provided another option to tailor turbulent flows. It is typically used to produce
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a higher turbulence level, and is sometimes combined with other passive devices to pro-

duce shear flows (see e.g. Zhu et al., 2006; Bai et al., 2012; Thormann and Meneveau,

2015). Hearst and Ganapathisubramani (2017) proposed the possibility to obtain inde-

pendent control of the mean flow and turbulence intensity using the active grid. They

produced shear flows with small shear rates ranging approximately 6.25 s−1 to 12.5 s−1

over a physical domain of 0.32m and generated profiles of varying turbulence intensity

and high Reynolds numbers. Hearst and Ganapathisubramani (2017) claimed that such

shear flows would be directly applicable in wind turbine experiments. Amongst many ad-

vantages, the methodology of active grid generated turbulence, however, is rather costly

to implement, and the establishment of control protocols is largely empirical. The work

of Hearst and Ganapathisubramani (2017) did not provide quantitative relations between

the control parameters and the turbulence characteristics. Therefore we explore the pos-

sibility of a type of passive grid design for producing desired turbulence fields. This idea

is also supported by the conclusion of Roach (1987) that the turbulence energy scales

on the bar dimensions rather than the mesh size, which suggests that it is possible to

manipulate the turbulence intensity through the design of the grid bars.

In this context we attempt to combine the known methodology for producing mean shear

with fractal/multiscale ways to produce scalable high turbulence intensities at the same

time. For this reason, we exploit to the studies of fractal grids proposed by Hurst and

Vassilicos (2007), especially the space filling fractal square grids (e.g. Seoud and Vassilicos,

2007; Mazellier and Vassilicos, 2010; Valente and Vassilicos, 2011; Gomes-Fernandes et al.,

2012; Hearst and Lavoie, 2014; Isaza et al., 2014) where the development of downstream

turbulence has been quantitatively related to the grid geometries. These fractal square

grids are characterized by repeated square patterns of different sizes, and the blockage

ratio is usually small (σ ≈ 25% to 30%). Detailed descriptions can be found in Seoud and

Vassilicos (2007); Hurst and Vassilicos (2007); Mazellier and Vassilicos (2010).

Mazellier and Vassilicos (2010) studied the fractal generated turbulence, and proposed the
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wake interaction length scale x∗ = L2
0/t0, where L0 is the largest length of the bars, and

t0 is the largest width. This scaling relation succeeded in collapsing both the centerline

mean velocity and turbulence intensity profiles. The peak of the turbulence intensity was

found at xpeak ≈ 0.45x∗ with maximum level of approximately 15%U∞. Later, Gomes-

Fernandes et al. (2012) extended the study to include the effects of the aspect ratio

of the bars and the free stream turbulence level, and proposed the improved scaling

relation xpeak
∗

= 0.21L2
0/(αCDt0), where α = 0.231 is a constant associated with the wake

development for flows with minimal inlet free stream turbulence intensity, and CD is the

drag coefficient of the bar. This xpeak
∗

provided better collapse of the streamwise turbulence

intensity profiles from different grids, and was taken to be an important parameter for

designing the grids. Gomes-Fernandes et al. (2012) also proposed a scaling relation for the

turbulence intensity levels, and the scaled turbulence intensity (u′/U∞)β(CDt0/x
peak
∗

)−1/2

(where β = 2.88 is a constant for laminar free stream, and U∞ is the inlet free stream

velocity) collapsed six different inlet conditions as a function of x/xpeak
∗

. These scalings are

adapted and discussed further in the design process of our new multiscale inhomogeneous

grids in section 3.1.2.

1.3.2 Shear flow characteristics

The development of turbulence intensity in a grid generated shear flow was perhaps first

discussed by Rose (1966). Rose (1966) generated a homogeneous turbulent shear flow with

a mean shear rate S = ∂U/∂y = 13.69 s−1 which retained its value up to x/H = 9.76,

where H is the height of the grid. The streamwise and vertical turbulence rms u′ and v′

were found nearly uniform along the mean shear direction y at x/H = 1.33, but the two

edges were affected by the growing boundary layers on the tunnel walls and the turbulence

intensities were significantly larger on the sides. Along the centerline, u′ and v′ decayed

to values of u′/Uc = 1.2% and v′/Uc = 0.8%, where Uc is the centerline mean streamwise

velocity.
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Champagne et al. (1970) produced a mean shear rate S = 12.9 s−1 using parallel plates

with internal screens, and the shear rate was maintained in the range x/H = 3 to 9.5.

The centerline turbulence intensity u′/Uc reached a constant value of 1.8% after x/H =

6.5. Rose (1970) created shear flows using different combinations of honeycomb and wire

grid, and produced mean shear rates in the range S = 6 s−1 to 12 s−1. The streamwise

turbulence intensity level u′/Uc in the range x/H = 7 to 9 was shown to be constant,

with a value increased from 0.2% to 2% with increasing grid size.

Harris et al. (1977) improved on the work of Champagne et al. (1970) and produced a

larger mean shear rate S = 44 s−1 which remained almost constant up to a dimensionless

time scale τ ∗ = 12, where τ ∗ ≡ (x/Uc)(∂U/∂y). Their hot-wire results showed a larger

normalized turbulence intensity compared to that in Champagne et al. (1970), and the

turbulence intensity was found to grow with streamwise distance after τ ∗ ≈ 4. The

growth of turbulence intensity along the streamwise direction was then studied by Rohr

et al. (1988) for several cases, where the grid size, centerline velocity, and mean shear

rate were varied. The results clearly showed a region of increasing streamwise turbulence

intensity u′/Uc. The critical point τ ∗c , where u′/Uc reached its minimum was studied by

several authors, and interestingly the turbulence intensity beyond τ ∗c remained constant in

some cases (e.g. Rose, 1966; Champagne et al., 1970; Rose, 1970), but grew in others (e.g.

Harris et al., 1977; Tavoularis and Corrsin, 1981; Rohr et al., 1988; Nedić and Tavoularis,

2016). For the cases where u′/Uc stayed constant, the development was fairly fast, reaching

constant values at τ ∗c = 1.6 to 3, whereas for those cases exhibiting growing u′/Uc the

critical point was observed at roughly τ ∗c = 4 to 5. Tavoularis and Karnik (1989) studied

this more systematically and suggested that when the shear is weak, i.e. ε/P ∼ 1, the

turbulent kinetic energy will remain constant after τ ∗c , whereas for strong shears, where

ε/P < 1, the turbulence kinetic energy will grow exponentially after τ ∗c .

Regarding the Taylor microscale λ, Harris et al. (1977) reported a constant value of λ in

the range τ ∗ = 6 to 11, with S = 44 s−1. Rohr et al. (1988) also reported a constant λ
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from τ ∗ = 6 with approximately S = 1 s−1, while Tavoularis and Karnik (1989) showed

in their experiments that λ approached a constant value at τ ∗ ≈ 16 for mean shear rates

S = 44 s−1 and 84 s−1. More recently Nedić and Tavoularis (2016) reported a constant

λ downstream of their shear generating plates at τ ∗ ≈ 9.25 in a uniformly sheared flow

with S = 62 s−1. By comparing the results from HGC and Rohr et al. (1988), it can be

concluded that the location where λ stops growing is not only a function of the mean

shear rate, but other factors as well.

In terms of integral length scales, all of the previous results showed monotonic increases

with streamwise distance. Results by Nedić and Tavoularis (2016) also showed a decrease

of growth rate of the longitudinal integral length scale Luu,x beyond roughly τ ∗ = 9. Some

studies reported relations between longitudinal and transverse integral length scales such

that Luu,x = 2Luu,y, indicating a large scale isotropy (e.g. Rose, 1966; Champagne et al.,

1970; Harris et al., 1977). Further discussion on length scales is provided in section 3.2.5.

1.4 Outline

Contributions of this thesis will be presented in three chapters. In Chapter 2 the results

of experiments with the rectangular fractal grids are presented from three different wind

tunnels using hot-wire anemometry and Particle Image Velocimetry (PIV). The use of

three different facilities provides an opportunity to study the turbulence generated by

these RFGs in different regions of the decaying turbulence, and gives confidence in the

observed patterns of evolution of various length scales. The mean velocity and turbu-

lence intensity profiles are studied first to discuss the previous scaling relations for the

wake interaction length scale. The evolution of different length scales is examined, and

the homogeneity and isotropy of the flow is studied. The results show regions where the

non-equilibrium scalings are present in all three experiments. Finally the spectra are pre-

sented, demonstrating the single length scale spectra corresponding to the non-equilibrium
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scaling relation. In Appendix A, a simple temperature calibration is proposed for easy

implementations in large wind tunnels without thermal controls, which was the case in

one of the facilities used in this study. Some discussions on calculating the integral length

scale are also given in Appendix B.

In Chapter 3 a group of new multiscale inhomogeneous grids is introduced that offers

the ability to produce desired mean velocity profiles and near-field turbulence intensity

profiles simultaneously. Details of the grid design is given first, and measurements of the

mean velocity profiles are presented. It is shown that predictions using the mean velocity

model derived from Taylor et al. (1949) and McCarthy (1964) are in good agreement

with the experimental data. By modifying the grid thickness, the aspect ratio of the grid

bars are changed, and consequently the drag coefficients. The effect of drag coefficient

on the local mean velocity gradient is discussed. Results on the evolution of turbulence

intensities and length scales are presented, and finally a simplified model is proposed

to describe the downstream development of the turbulence field generated by our grids.

Finally, it is concluded that the proposed inhomogeneous multiscale grids might be used

to tailor the characteristics of turbulent shear flows in a more systematic way.

Two different versions of the grids proposed in Chapter 3 were made for measurements

in a low-fidelity engineering wind tunnel in Mel Consultants to test the robustness of the

methodology. These results are presented in Chapter 4. A detailed setup of the grid is

given first, and the quality of the base flow is examined. Results of mean velocities and

turbulence rms confirm the model and scaling method proposed in Chapter 3. The integral

length scales along the x and y directions are also presented, and the evolution is shown to

be the same as the results from 3. These results all together suggest the possibility to use

the multiscale inhomogeneous grids for further studies to generate different combinations

of mean velocity and turbulence profiles.

Finally, Chapter 5 gives a summary of the main results, and some possible ideas of future

work are proposed.
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Fractal generated turbulence

In this chapter we present works on the modified fractal grid, referred to as the rectan-

gular fractal grid (RFG), which produces turbulence with large integral length scales and

high turbulence intensities. The experiments were carried out in three facilities, i.e. the

Honda and 3× 3 wind tunnels at Imperial College London, and the Lille wind tunnel at

Lille Mechanics Laboratory at Lille-1 University. Since the Honda experiments revealed

unusual length scale evolution patterns in the decay region (as discussed in section 2.2.3),

the Lille experiments were conducted to verify this behavior by extending the streamwise

measurement domain. However, the turbulence at further downstream is inevitably af-

fected by the growing boundary layer at the walls, so the 3×3 experiments were designed

using a repeated pattern of the same grid (as shown in section 2.1.2) to compare the effect

of different boundary conditions.

Hot-wire anemometry is used in all three campaigns, and some Stereo-PIV measurements

were taken in the Lille experiments. The wake interaction length scale xpeak
∗

is shown

to be dependent of the grid geometry, but independent of the inlet Reynolds number.

Due to the inhomogeneous grid geometry, there are two distinct xpeak
∗

in the y and z

directions, giving a region where Lu ∝ Reλ and λ ∝ Reλ is observed, where Lu is the

longitudinal integral length scale, and λ is the Taylor micro scale. Calculated 2D swirling

48
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strength λci from the PIV measurement shows strong vortex interactions in this region.

The non-equilibrium scalings are shown to be present for some part of the decay region.

The self-similarity of spectra are also given, which follows the energy dissipation scalings

in various streamwise regions. Here and for the rest of the discussion, x, y, z represent

the streamwise, vertical, and spanwise directions, respectively.

2.1 Experiments

2.1.1 Facilities and experiments

The Honda wind tunnel experiments

The Honda closed return wind tunnel in the Department of Aeronautics at Imperial

College London has a test section of 3m in width, 1.5m in height, and a working length

of 8m. The air is driven by two 40 hp axial fans with vanes installed in a twin duct to

straighten the flow. Before entering the test section, the flow passes through a honeycomb

followed by a mesh screen mounted before the 9:1 contraction chamber. A turbulence level

of 0.2% for the incoming flow is achieved at free stream velocity of U∞ = 10m/s. Control

of the air velocity was accomplished by a MATLAB script with PID controller, using

pressure readings from a Furness Controls FCO510 flow meter. The pressure tubes are

connected on the walls before and after the contraction chamber, and the readings are

calibrated before each experiment using a Pitot tube placed at the center of the beginning

of the test section.

A computer-controlled traversing system is mounted on the ceiling of the test section.

Two rails are laid on each side of the ceiling, and a moving platform is suspended on

the rails allowing movements in the x direction. On the platform, another traversing

system (referred to as z-traverse) is installed so that spanwise movements can be achieved.

Consequently, the measurement domain for the present study ranges from 2m to 8m in
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the streamwise direction, and −1m to 1m in the spanwise direction. A y-traversing beam

was also mounted to the z-traverse, allowing position adjustments in the y direction in

the range of approximately 0m to 0.3m. The tip of the y traverse was strengthened by

four piano wires attached to the moving platform to avoid vibrations.

For the Honda experiments, a single hot-wire was used for all measurements. The Hot

Wire Anemometry (HWA) system consists of a DANTEC Streamline anemometer op-

erated at constant temperature mode, two DANTEC 55H21 probe supports, and two

DANTEC 55P01 probes with Wollaston wires of 5micron in diameter. The effective

length of the wire is approximately 1mm, and the frequency response is measured to be

approximately 30 kHz by a square wave test. The hot wire data were acquired using MAT-

LAB through a 16-bit NI-6229(USB) data acquisition board. All data were sampled at

100 kHz for 200 s, and a 30 kHz low pass filter was applied in the Streamline anemometer

before the data was recorded.

Two types of experiments were performed, i.e. single point measurements and two point

correlation measurements. The inlet velocity U∞ was varied from 5m/s to 17m/s. For

single point measurements, one hot wire was mounted on the y-traverse, which is attached

to the z-traverse, allowing position adjustments in all directions. Data points were taken

along the centerline of the wind tunnel with Δx = 0.4m at y = z = 0m, and along

the streamwise direction at y = 330mm, z = 0m, henceforth referred to as center and

bar330, respectively. In the y − z plane at x = 2m, the flow was probed across the

span for −1m < z < 1m with Δz = 0.1m at y = 0.1, 0.2, 0.3m, respectively, whereas

at x = 8m, measurements were taken for 0m < z < 1m with Δz = 0.1m at y =

0.1, 0.2, 0.3m, respectively. These arrays of points are assembled into two-dimensional

planes for −0.3m < y < 0.3m and −1m < z < 1m by assuming symmetry to look at

the mean statistics in the production and the decay region, defined as before and after

the turbulence peak location xpeak, respectively.

Two point correlation measurements were also taken to study the integral length scales in
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the y direction. The fixed wire was placed on the center plane at (x, z) = (8m, 0m), and

(x, z) = (6m, 0m), respectively, with Δy = 20mm up to a separation of 360mm to look

at the correlation functions Ruu,y. Note that all data with two hot wires were acquired

using non-adjacent channels to reduce the crosstalk to −90 dB.

The 3× 3 wind tunnel experiments

The 3 × 3 closed loop wind tunnel in the Aeronautics Department at Imperial College

London has a cross sectional area of 0.91m × 0.91m, and a test section length of 4.2m.

The flow goes through a set of perforated screens and a 9:1 contraction before reaching

the test section. The background turbulence intensity without the grid was measured

to be ∼0.1% at U∞ = 10m/s. A computer controlled traversing system is mounted

on top of the working section, allowing movements in the range 0.83m < x < 4.13m,

−0.28m < y < 0.14m, and −0.15m < z < 0.15m.

A Furness Controls FCO510 micro-manometer was used to monitor the tunnel inlet ve-

locity U∞ and the temperature. The system also has a PID controller that stabilizes

the inlet velocity U∞. Velocity signals were measured using an in-house etched platinum

Wollaston cross wire powered by a Dantec Streamline CTA system. The diameter of the

wire was dw = 5micron with length to diameter ratio approximately 200. The cross wire

was mounted on a servo motor, allowing accurate control of the pitching angle during cal-

ibration, and the servo motor was cased in a plastic holder attached to the traverse. The

cross wire was mounted in the holder to align with the x− y plane. The output voltage

was recorded by MATLAB through a 16-Bit National Instruments NI-6229 (USB) board.

All data sets consist of 2 packets of samples recorded at 125 kHz for 300 s, and a low pass

filter of 30 kHz was applied before the data was recorded.

The hot wire was calibrated at the beginning and end of every data set acquired using

the look-up table method by Lueptow et al. (1988) for five velocities from 3m/s to 19m/s

and seven angles ranging from −27◦ to 27◦. The temperature was monitored during
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acquisitions, and the data was discarded if temperature variation ΔTa = Ta,max − Ta,min

was larger than 0.1 ◦C. The inlet velocity U∞ was maintained within ±1.5% of the target

value for all data sets.

Streamwise profiles are taken at U∞ = 6m/s and U∞ = 10m/s along x on the center-

line, and behind the largest horizontal bar of the grid, referred to as center and bar,

respectively.

The Lille wind tunnel experiments

The Lille experiments were carried out in collaboration with the Lille Mechanics Labora-

tory (LML) in their boundary layer wind tunnel at Lille-1 University. The tunnel’s test

section has a 2m wide 1m high cross section, and is 21m in length. Before entering the

test section, the flow passes through two honeycombs, a screen, and a 5:1 contraction

chamber. The maximum free-stream velocity is 9.4m/s at the tunnel entrance with a free

stream turbulence level no bigger than 0.2%. Note that at the tunnel entrance there is a

93mm long grit 40 sandpaper (mean roughness 425μm) attached to the bottom and the

top of the tunnel walls which is not removable, and the turbulence far downstream is in-

evitably affected by the boundary layer, especially for measurements behind the horizontal

bar, which is roughly 0.17m above the bottom wall.

The test section is transparent on all sides with high quality 10mm thick glass for the

purpose of optical access. All the glasses and surfaces at the bottom wall are adjusted so

that there is no step bigger than 0.1mm. The top and bottom walls were also adjusted

so that they are perfectly parallel (locally less than ±0.1◦), so were the lateral walls.

During acquisition, the free stream pressure was measured by a Pitot tube through a

Furness Controls FCO14 micro-manometer to control the inlet velocity. The wind tunnel

is driven by a 37 kW blade fan controlled through MATLAB. The fluctuation of incom-

ing velocity was monitored at all times to be within ±0.5%U∞. The wind tunnel is also



2.1. Experiments 53

equipped with a temperature regulator. The fluctuation of ambient temperature was mon-

itored at all times to be within ±0.15 ◦C of the calibration temperature, which was 17 ◦C.

The data acquisition or calibration was restarted if either the velocity or temperature

variations exceeded these limits.

For hot-wire calibrations, the local pressure was used, measured by a Pitot tube placed

next to the hot-wire (Δz = 5 cm) through a Furness Controls FCO560. Due to the

upper limit of the free stream velocity, the hot-wire was calibrated with the grid in as

an accelerator, but placed very close to the grid (equivalent to x/xpeak = 0.05) on the

centerline so the turbulence intensity is smaller than 0.5%. Between 25 to 60 packets of

4 s samples were taken with decreasing velocities to reduce the error during calibration.

For the hot wire experiments, one DANTEC 55P15 wire was used with 5μm diameter

and 1.25mm long tungsten wire sensor. The hot-wire was mounted on a DANTEC 55H22

right-angled probe support, which was fixed inside a streamlined probe holder extending

from the top of the test section. The whole probe holder was installed on a y (vertical)

traverse on top of the test section. A Lektronix Micro Control TL78 was used to control

the traverse, allowing accurate positioning in the y direction. The traverse was moved

manually in the x direction to complete the streamwise profiles.

The hot-wire was powered by a TSI IFA 300 Constant Temperature Anemometer, and

the voltage signal was recorded by MATLAB through a NI-cDAQ 9188 board, acquiring

at 50 kHz with a low-pass filter of 30 kHz. Two enterline profiles were measured from

x = 0.86m to 18.6m at U∞ = 6m/s and 9m/s, respectively, referred to as center.

Another two streamwise profiles were taken behind the horizontal bar at y = −0.327m

for the same x locations with U∞ = 6m/s and 9m/s, referred to as bar. For each data set,

3 packets of 600 s samples were acquired, and the results are averaged over these packets

to have a better convergence.

Some Particle Image Velocimetry (PIV) experiments were also performed as part of the

Lille experiments to look at the region just behind xpeak where turbulence intensity is
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Figure 2.1: Schematic sketch of the PIV setup from (a) top view, and (b) side view.
Dimensions not in scale.

highest. Four 16-bit LaVision sCMOS cameras with 2160 × 2560 pixels were used to

set up two Stereoscopic PIV systems. Four Nikon Micro-Nikkor 105mm lenses and four

200mm lenses were used to facilitate large and small field of view (FOV) respectively. All

experiments used f# = 8. The cameras were mounted on custom designed Scheimpflug

adapters, allowing independent fine adjustment in all aspects of the camera positioning.

During the PIV measurements, the glass side walls at measurement location were replaced

with coated glasses to allow more light. The cameras were all mounted 1.15m away from

the center plane of the tunnel, and oriented at 45 degrees to the measurement plane.

Figure 2.1 gives a schematic sketch of the setup.

The laser was B.M. Industries custom made dual-cavity Nd:YAG operated at 532 nm
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with an output power of 200mJ/pulse. The flow was seeded with a smoke generator from

Hazebase using Base L Smokefluid. The liquid consists of a mixture of glycol (1%) and

water (99%), and has a mean diameter of order 1μm with a specific gravity of 1.058 g/cm3

at 20 ◦C.

A set of cylindrical (f = −150mm for small FOV, and f = −100mm for large FOV) and

spherical lenses (f = 5m) were used to generate a light sheet through the bottom of the

wind tunnel. The thickness of the light sheet was 0.6mm for the small FOV and 1mm

for the large FOV. The resulting FOVs have sizes of 17× 11 cm and 33× 21 cm, centered

at x = 3.55m on the centerline of the grid.

A calibration target of size 34×74 cm was installed at the center plane of the tunnel, and

it was traversed for ±5mm with 0.5mm steps during the calibration. The target consists

of ”+” marks with size 6× 6mm spaced 0.916 cm and 0.917 cm in the x and y direction,

respectively.

Synchronization was achieved by a LaVision PTU 9 control box using DaVis 8 software.

The Q-switch delay of laser was set to 150ms to maximize the output power. Particle

images were acquired at 4Hz, and a total of 20000 images were acquired for each data set

with 10 separate runs of 2000 images.

2.1.2 Grid design

The original idea to design such a rectangular fractal grid, or RFG, was to (i) stretch

the size in z and therefore increase the integral length scale, (ii) maximize the drag

coefficient CD by giving a depth to each one of the grid bars to obtain a higher turbulence

intensity in the downstream turbulence, and (iii) test the non-equilibrium dissipation

scaling (Vassilicos, 2015) when two length scales of the grid are present.

The first of such grids was designed to fit in the Honda wind tunnel (see figure 2.2).

Detailed dimensions of this grid are given in table 2.1. The grid was designed with a third
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Figure 2.2: Rectangular fractal grid for the Honda wind tunnel. Dimensions mark the
first iteration of the grid.

dimension d, which is the depth of the bar in the streamwise direction. These dimensions

were chosen to give each bar an aspect ratio AR (equal to the streamwise thickness d

over the transverse width t) of 0.61, so that the drag coefficient Cd of each bar could

be maximized (see Bearman and Trueman, 1972). The last two iterations of the grid,

however, have larger aspect ratios of approximately AR = 1 and AR = 3.75, respectively,

due to durability concerns during manufacturing.

The grid was made from CNC routed plywood sheets, and the depth was modified using

foam blocks (illustrated in figure 2.1 in blue color). During the experiments, it was

mounted with two supporting aluminum profiles attached to the lee of the two largest

vertical bars. The gap between the tunnel wall and the edge of the smallest grids was

approximately 3 cm on the top and bottom, and 5 cm on the sides.

The same grid was scaled down by a ratio of 1.54 to fit in the Lille wind tunnel. The Lille

grid was also made of plywood and foam. The thickness of the grid bars were adjusted

using foam blocks to match AR = 0.61. Due to the glass surface of the Lille wind tunnel,

it was mounted on two horizontal aluminum profiles with rubber pads at each end to hold

on the side walls, attached to the lee of the largest horizontal bars of the grid.
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j 0 1 2 3
Ljz (mm) 1954 703 253 91
Ljy (mm) 1004 341 116 39
tjz (mm) 305 73 18 4
tjy (mm) 88 31 11 4
djz (mm) 184 45 15 15
djy (mm) 54 19 15 15

Table 2.1: Dimensions of the rectangular fractal grid, where L, t, d correspond to length,
width and depth of the bar, respectively, and j = 0, 1, ...Nf − 1, where Nf = 4 is the
number of fractal iterations. The subscript y and z gives the direction of the dimension,
e.g. L0y means the length of the bars of the first iteration in the y direction.

Figure 2.3: Rectangular fractal grid for the 3× 3 wind tunnel with frame.
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L0z(m) t0z(m) xpeak
z∗ (m) L0y(m) t0y(m) xpeak

y∗ (m) σ(%)

Honda 1.954 0.308 3.924 1.004 0.088 3.591 33.4
Lille 1.272 0.199 2.557 0.654 0.057 2.339 34.3
3× 3 0.558 0.087 1.123 0.287 0.025 1.032 33.8

Table 2.2: Largest bar size, wake interaction length scales, and the total blockage ratios
of the rectangular fractal grids in all experiments, where xpeak

y∗ = 0.21(L2
0y)/(αCdt0y) and

xpeak
z∗ = 0.21(L2

0z)/(αCdt0z).

For the 3× 3 experiments, the grid was scaled down by a ratio of 3.5, and was repeated

by half at both ends in the vertical direction to fit in the square test section, as shown in

figure 2.3. The grid was made of laser cut acrylic sheets, and it was fitted on a wooden

frame to support the largest bars. The frame was flush with the tunnel walls. As with

the other grids, the bar thickness were adjusted to achieve AR = 0.61 using foam blocks

attached to the lee of the grid bars. Table 2.2 gives a comparison of the dimensions of

the largest bars in each experiment. Since there are two large scales, there are also two

wake interaction length scales xpeak
y∗ = 0.21(L2

0y)/(αCdt0y) and xpeak
z∗ = 0.21(L2

0z)/(αCdt0z),

calculated using the two corresponding dimensions marked by subscripts y or z. Note that

xpeak
y∗ �= xpeak

z∗ due to the difference of grid bar dimensions in the y and z directions, and

the impact of this difference is discussed in section 2.2.2. The blockage ratios, taking

into account the mounting/supporting elements, are approximately 33.8%, which is only

slightly larger than σ = 25% to 32% for the square fractal grids used by Valente and

Vassilicos (2011).

2.1.3 Data processing

Hot-wire processing

Due to the lack of thermal control in the Honda wind tunnel, temperature variations as

large as 5 ◦C were frequently detected, so a practical temperature correction method was
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developed for the Honda experiments. Based on the assumption that E2
0 = A′ + B′Ta,

where E0 is the output voltage from the anemometer, A′ and B′ are constants, and Ta

is the ambient temperature, this method successfully collapsed several calibration curves

taken at different ambient temperatures, and then uses an iterative processing method to

correct the output voltages. The details are explained in Appendix A.

Another issue frequently encountered in experimental works is that the largest scales of

the flow are often insufficiently resolved due to limited sample size. In order to calculate

the longitudinal integral length scale Lu, several methods are compared. The method

of integrating auto-correlation functions is not used here due to the ambiguity in the

choice of integration limit (see O’Neill et al., 2004). These results are also affected by

the piecewise sample size if one takes average of shorter samples (see appendix B). Based

on the Wiener-Khinchin theorom, the auto-correlation function and the power spectral

density is a Fourier pair, and therefore the power spectral density provides another option

to calculate Lu. In practice, the inertial range of the power spectrum density is first fitted

to a model to extrapolate the low wavenumber range of the spectrum, and the integral

length scale is calculated using Lu = πE11(k = 0)/(2u′2), where k is the wavenumber

defined as k = 2πf/U (f is the frequency in time), and u′ is the streamwise turbulence

r.m.s. velocity. To calculate wavenumber k, the spatial signal is converted from the time

series using the Taylor’s hypothesis, where the local mean velocity U is taken as the

convection velocity.

One of the frequently used spectrum models is the von Kármán model (von Kármán,

1937), which can be written in a one-dimensional form as

E+
11(k) =

2u′2Luu,x

π

1

{1 + [kLuu,xB(1/2, 1/3)/π]2}5/6 , (2.1)

where u′ is the streamwise turbulence r.m.s. velocity, k is the wave number, and B is

the beta function related to the Γ function by B(1/2, 1/3) = Γ(1/2)Γ(1/3)/Γ(5/6). More

recently, another form of spectrum model is proposed by Wilson (1998) based on the
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Figure 2.4: Comparison of two spectra models against experimental data taken from
Honda wind tunnel, in the decay region of RFG generated turbulence.

Meijer’s G-function (referred to as the G-model in this text), namely

E∗

11(k) =
2u′2l

3B(1/2, 1/3 + b)
(k2l2)−5/6Bk2l2/(1+k2l2)(5/6, b), (2.2)

where B is the beta function, u′ is the streamwise turbulence r.m.s. velocity, k is the

wavenumber, and Bx is the incomplete beta function. This model includes two fitting

variables l and b, and is therefore more accurate than the von Kármán model (see Wil-

son, 1998) in terms of adjusting the energy level for the inertial sub-range and energy-

containing range separately. This G-model is therefore used for spectrum correction in

the current discussion.

Figure 2.4 shows an example to compare these two models with experimental data, fitted

using nonlinear regression. It is clear that the von Kármán model underestimates the

spectra levels in the energy-containing range, as reported by Wilson (1998). The sum

of squared residuals for the G-model is also smaller. Therefore the G-model is used to

correct the spectra in the energy-containing range and to calculate integral length scales

in the following discussion. Note that the G-model might introduce unwanted error if the

Reynolds number is small, such that the inertial sub-range does not show a definite −5/3

slope. In that case, the von Kármán model might be a better choice.
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While the inertial range of spectra can be corrected by the G-model method, the dissi-

pation range of spectra is also of concern. This part of a spectrum usually suffers from

electrical noise which shows up as spurious rises at the end of the spectrum proportional

to k2 (Seyed and Srinivas, 1996; Antonia, 2003). This rise can lead to overestimation of

the dissipation rate ε because of the k2 term in the integrand. Furthermore, at sufficiently

large Reynolds number, the Kolmogorov length scale sometimes cannot be resolved due

to limited resolution of the hot wire, so it is desired to extrapolate the spectra to obtain

higher wavenumber components. There have been many discussions on spectrum models

for the high wavenumber range (see Sanada, 1992; Antonia et al., 1996). Here we refer to

the method discussed by Pearson (1999) and Zhou et al. (2002), such that for sufficiently

large k, the spectrum E11(k) has the form k−5/3exp(αk+β), where α and β are constants.

Thus a linear extrapolation can be applied to In[k5/3E11(k)] with respect to k. Antonia

(2003) improved the form to have E11(k) ∼ kmexp(αk+β), where the constant −5/3 was

substituted by the variable m as they found that the magnitude of m increases with Reλ.

The actual value of m is chosen first by trial and error to give the best fit, and the value

for current experiments are in the range m = −8/3 to −2.

The dependence of this method on the choice of fitting wavenumber range was found to be

negligible. Extrapolations performed based on ranges from 2 kHz to 5 kHz and 3 kHz to

6 kHz, respectively, give 1.8% difference in the dissipation rate ε calculated by integrating

the corrected and re-sampled spectrum. One example of the corrected result is given

in figure 2.5. It can be observed that the re-sampled spectrum correctly represents the

original one in the inertial sub-range. For calculations using fluctuating velocity signals,

the cutoff frequency is chosen to be fc = 2.3fnoise, where fnoise is the frequency where

f 2E(f) has a minimum in the high frequency range. The constant 2.3 compensates for

the Nyquist limit, and the transition band (the region between pass band and stop band)

of the filter.

The iterative filtering method proposed by Mi et al. (2011) and used by Hearst and Lavoie
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Figure 2.5: Re-sampled spectra (squares) after the extrapolation (red lines) from the
Honda centerline data at x/xpeak = 1.08, U∞ = 10m/s.

(2014) was also tested. This method uses the Kolmogorov frequency fη as a reference to

check the selection of the cutoff frequency fc, and recursively reduces fc until the small

scale properties such as η and fη converge. The results, however, depend theoretically on

the parameters of the filter, such that the filtered spectrum is always attenuated by the

transfer function of the digital filter itself, and the converged results do not necessarily

represent the true values of small scale properties. For these reasons, the extrapolation

method is used to correct for the high frequency range of signals.

Finally, the results of different calculation methods at select locations are summarized in

table 2.3. The uncertainties of the turbulence intensities calculated using the fluctuating

velocity signals and corrected spectra are all well within 1%U∞ difference. The longitu-

dinal integral length scales are computed by L+
u = πE+

11(0)/(2u
′2) (using the spectrum

E+
11(k) corrected by the von Kármán spectrum model), and L∗

u = πE∗

11(0)/(2u
′2) (using

the spectrum E∗

11(k) corrected by the G-function model), and their differences are within

approximately 5%. However, there is always an underestimation by the von Kármán

spectrum model, which is in agreement with the discussions found in Wilson (1998).

To estimate the dissipation rate, we first calculated both ε̃iso = 15ν(du/dx)2 and ε∗iso =

15ν
∫
k2E∗

11(k)dk using the isotropic assumption, where E∗

11(k) is the spectrum corrected

by the G-function model. It is noticed that ε∗iso is always larger than ε̃iso, which comes
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Data set Honda Lille 3× 3 Valente11

x/xpeak 1 1.54 1 1.65 2.73 1 1.48 2.62 1.04
U∞(m/s) 10 10 9 9 9 10 10 10 15

ũ′/U∞ 0.152 0.118 0.167 0.111 0.073 0.149 0.121 0.080 0.053
u′∗/U∞ 0.145 0.117 0.166 0.110 0.072 0.149 0.121 0.079 –
L+
u (m) 0.26 0.23 0.19 0.18 0.22 0.08 0.08 0.10 0.05

L∗

u(m) 0.30 0.26 0.20 0.19 0.23 0.08 0.08 0.10 –
η̃(mm) 0.17 0.19 0.16 0.19 0.25 0.12 0.14 0.18 0.15
η∗(mm) 0.17 0.19 0.14 0.18 0.24 0.12 0.13 0.18 –

λ̃(mm) 11.5 10.9 9.6 9.0 10.2 5.8 5.7 6.9 4.8
λ∗(mm) 10.6 10.3 7.8 8.0 9.6 5.4 5.4 6.5 –

R̃eλ 1161 849 949 593 443 570 458 364 253
Re∗λ 1015 802 773 522 414 532 431 341 –

ε̃iso(m
2 s−3) 3.9 2.7 5.6 2.8 0.9 15.1 10.1 3.0 6

ε̃XW (m2 s−3) – – – – – 9.2 6.2 1.9 4.7
ε∗iso(m

2 s−3) 4.6 2.9 8.3 3.5 1.0 17.3 11.3 3.3 –
ε∗
XW

(m2 s−3) – – – – – 10.5 7.0 2.1 –

Table 2.3: Comparison of turbulence characteristics in different experiments along the
centerline using different methods. The integral length scale are calculated as L+

u =
πE+

11(0)/(2u
′2) and L∗

u = πE∗

11(0)/(2u
′2), where the superscript + and ∗ indicates the use

of the von Kármán spectrum model and the G-function model, respectively. The Taylor

microscale λ̃ is calculated by λ = u′/

√
(du/dx)2, where the velocity gradient is calculated

from the filtered fluctuating velocity signal, and the velocity gradient (du/dx)2 for λ∗ is
calculated by integrating the G-model corrected spectrum. The dissipation is calculated
as εiso = 15ν(du/dx)2, and ε

XW
= 3ν(du/dx)2 + 6ν(dv/dx)2. Quantities with tilde hat

are calculated directly from the filtered fluctuating velocity samples. Quantities with su-
perscript ∗ are calculated by integrating the G-function model corrected spectrum such
that (du/dx)2 =

∫
k2E∗

11(k)dk, and (dv/dx)2 =
∫
k2E∗

22(k)dk, where E∗

11(k) and E∗

22(k)
are calculated by assuming the Taylor hypothesis for the instantaneous u, v velocity, re-
spectively, with the local convection velocity equals to the local mean streamwise velocity
U . The last column is reproduced from Valente and Vassilicos (2011) for comparison.
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from the filtering of the signal and extrapolation method discussed above. For the Honda

and 3×3 experiments, the results exhibit deviations of ±4% to ±7% from the mean value,

and the difference between ε̃iso and ε∗iso decreases with downstream distance for all cases.

For the Lille experiment, however, this discrepancy is ±19% at x/xpeak = 1, and de-

creases to ±6% at x/xpeak = 2.73. This large error comes partly from the lower sampling

frequency fs = 50 kHz (due to hardware limitation), versus fs = 125 kHz for the other

two experiments, such that the higher frequency components are less well-resolved. The

filtering method proposed by Mi et al. (2011) is also tested, and it gives a smaller value,

e.g. ε∗iso = 6.845m2 s−3 at x/xpeak = 1 in the Lille experiment, due to the attenuation in

the higher frequency range, which makes the discrepancy seem smaller between ε̃iso and

ε∗iso. But as discussed before, the result may not be trustworthy. For these reasons, the

corrected spectra using the extrapolation method are used to calculate the small scale

properties for the Lille experiment.

Another issue is the validity of the isotropic assumption used in calculating the dissipation

rates. Comparisons are made between εiso and ε
XW

= 3ν(du/dx)2 + 6ν(dv/dx)2 from the

3× 3 experiments. To calculate the dissipation rate ε∗
XW

from the spectrum, it is assumed

that (du/dx)2 =
∫
k2E∗

11(k)dk, and (dv/dx)2 =
∫
k2E∗

22(k)dk, where E∗

11(k) and E∗

22(k)

are calculated by assuming the Taylor hypothesis for the instantaneous u, v velocity, re-

spectively, with the local convection velocity equals to the local mean streamwise velocity

U . It seems that the isotropy assumption in both methods causes an overestimation of

the values of εiso, and the difference is roughly ±24% at x/xpeak = 1, whereas Valente

and Vassilicos (2011) give a ±12% difference for the square fractal grid at x/xpeak = 1.04.

Note, however, the value of ε
XW

might be underestimated for cross wires since the 1mm

separation of the two wires is approximately 10η (see Valente and Vassilicos, 2011). The

isotropy assumption is further discussed in section 2.2.4.
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Figure 2.6: Probability density function of u′ at x/xpeak = 1 on the centerline and behind
the bar, from the Lille experiments, with U∞ = 9m/s for (a) small FOV, and (b) large
FOV cases.
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Figure 2.7: Spectrum comparison at x/xpeak = 1 on the centerline, from the Lille exper-
iments, with U∞ = 9m/s for small and large FOV PIV cases with HWA result at (a)
behind the bar, and (b) on the centerline.

PIV processing

During the PIV processing, a self-calibration similar to that proposed by Wieneke (2005)

was performed to establish the mapping function. Four passes were used starting with

an interrogation window of size 64× 64 pixels, then 32× 48 pixels, then 26× 32 pixels for

two times. The overlap was 70% for all passes. The final interrogation window size is

1.65mm for the small FOV, and 3.3mm for the large FOV.

Probability density functions (pdfs) from PIV results are compared with the hot-wire
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data in figure 2.6. It can be observed that the PIV results collapse well with the hot-wire

measurements. Small discrepancies at the large scale end are observed for the case behind

the horizontal bar. The spectra are also computed from the PIV results at the center of

each FOV, as shown in figure 2.7, to compare with the HWA data. The small scales of

the PIV spectra show the limit of resolution, which is expected, but they agree well in

the inertial subrange of the spectra with a clear −5/3 slope. This also validates the use

of Taylor’s hypothesis in the hot-wire data processing.

The uncertainty for the PIV comes from several aspects. According to Westerweel et al.

(1997), the interrogation error of a 2D vector field is typically σ0 ≈ 0.1 px. For the current

set-up with cameras aligned 45◦ to the measurement plane, the error carried on to the

reconstructed 3C vector field can be estimated as σ(Δx) ≈ Mσ0, σ(Δy) ≈ 1/
√
2Mσ0,

σ(Δz) ≈ Mσ0, where M is the magnification M = f/(f − do) with the lens focal length

f , and the distance between the lens to the object do (van Doorne and Westerweel,

2007). For the large FOV, these values are calculated to be σ(Δx) = σ(Δz) ≈ 0.01 px,

and σ(Δy) ≈ 0.007 px, while for the small FOV these values are estimated as σ(Δx) =

σ(Δz) ≈ 0.02 px, and σ(Δy) ≈ 0.014 px. The y component bears the smallest error

because it is an average of the two cameras. Comparing to a general displacement of

approximately 8 px of individual particles, the interrogation error seems negligible.

The sampling uncertainty of the mean velocities can be evaluated as σ = ±1.96S/
√
Ns,

where S is the standard deviation of the velocity fluctuation, and Ns = 20000 is the

total number of samples. The errors for each component are given in table 2.4 for the

U∞ = 9m/s case on the centerline. The results suggest the sampling uncertainties are all

small, and the value of y component appears to be the smallest, which agrees with the

discussions above.

Finally, the mean statistics calculated from PIV and HWA at the same location are

compared together in figure 2.8. Discrepancies of approximately 3% are observed for the

mean velocity, and 1% for the turbulence intensity. Note that the free stream velocity
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σu/u
′ (%) σv/u

′ (%) σw/u
′ (%)

Large FOV 1.37 1.05 1.21
Small FOV 1.39 0.97 1.16

Table 2.4: Estimated sampling error for PIV measurements at U∞ = 9m/s.
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Figure 2.8: (a) Mean velocities and (b) turbulence intensities from PIV (lines) and HWA
(symbols) results along the centerline (green and red lines), and behind the bar (blue and
purple lines).

during the PIV measurement is not monitored during acquisition (for HWAmeasurements,

it is monitored to be within ±0.5%U∞), so the 3% error seems reasonable.

2.2 Results

In this section the results are presented in the following order. First of all, the Reynolds

number effect is checked using the Honda data. Then the streamwise evolution of turbu-

lence statistics are examined using the wake interaction length scale, followed by discus-

sions on the evolution of various length scales and flow homogeneity and isotropy. The

PIV data is used to look at the vortical structures of the flow at the turbulence peak

location x/xpeak = 1. Finally, the non-equilibrium scaling relation is presented.
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Figure 2.9: Transverse profiles of (a) mean velocity, and (b) turbulence intensity from the
Honda experiments, at different inlet velocities U∞ at x/xpeak = 0.38, z = 0m.

2.2.1 Reynolds number effect

To study the Reynolds number effect of the turbulence wake, the flow is probed across

the span at x = 2m (or x/xpeak = 0.38) y = 0m to see if there are any differences in

the wake separation for different inlet Reynolds number Re0 = U∞L0y/ν = 6.5 × 105

to 1.9 × 106. Figure 2.9 gives the results for mean velocity and turbulence intensity at

U∞ = 5, 10, 15, 17m s−1. It is obvious that the normalization by inlet velocity U∞ collapses

both mean velocity and turbulence intensity profiles. This suggests that the separation,

and consequently the shape of the wake is independent of the inlet Reynolds number Re0.

2.2.2 Wake interaction length scales

The wake interaction length scale xpeak
∗

1 was originally introduced by Gomes-Fernandes

et al. (2012) to characterize the location where the wakes generated by the largest grid

bars meet, and this length scale successfully collapsed turbulence intensity profiles from

several experiments with FSG. It is defined as xpeak
∗

= 0.21L2
0/(αCdt0), which incorporates

1The notation xpeak
∗ is taken after Gomes-Fernandes et al. (2012) for consistency. In the original

paper this wake interaction length scale physically gives the turbulence intensity peak location xpeak such

that xpeak = xpeak
∗ , but this is not the case for the current study, as the actual turbulence intensity

peak location is further downstream such that xpeak > xpeak
∗ . One should not confuse with the actual

turbulence intensity peak location xpeak.
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Figure 2.10: Turbulence intensity profiles at centerline versus x/xpeak
y∗ from all experiments.

FSG data reproduced from Mazellier and Vassilicos (2010).

the incoming flow turbulence condition via α, the length L0, the width t0, and the drag

coefficient CD of the largest grid element. Since the RFG consist of two distinct large

scales, the wake interaction length-scale can be calculated in either direction, as shown in

table 2.2. For the current discussion, xpeak
z∗ is used to normalize the streamwise develop-

ment as it is assumed that the largest vertical bars generate most of the turbulent energy.

The result is shown in figure 2.10 together with profiles reproduced from Mazellier and

Vassilicos (2010) at U∞ = 5.2m/s.

The length scale xpeak
z∗ fails to collapse the data from FSGs and RFGs. All of the turbulence

intensity profiles from Mazellier and Vassilicos (2010) peak at x/xpeak
∗

= 1 as previously

shown. But for the RFGs, this peak location is at x/xpeak
z∗ = 1.40, which corresponds to

x/xpeak
y∗ = 1.53.

This discrepancy can be explained by a review of the scaling proposed by Gomes-Fernandes

et al. (2012), who followed the results from Symes and Fink (1977) to derive their scaling

for the evolution of the wake half width and intensity. The effect of the free stream tur-

bulence was studied, as reproduced in figure 2.11, and was characterized by the constant
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Figure 2.11: Influence of external turbulence on the development of (a) wake half-width,
and (b) turbulence intensity. Reproduced after Symes and Fink (1977).

coefficients α and β as in

(y1/2
θ

)2
= α

x

2θ
,

(
U∞

u′

cl

)2

= β
x

2θ
, (2.3)

where y1/2 is the wake half width, θ is the momentum thickness, and u′

cl is the turbulence

intensity at the centerline of the wake. The parameters α and β are functions of the

free stream turbulence intensity and were used by Gomes-Fernandes et al. (2012) in their

derivation of x
′

∗
= L2

0/(αCDt0) assuming that L0 = 2y1/2 and 2θ = CDt0. The final

definition of xpeak
∗

= φx
′

∗
incorporates a constant φ = 0.21 to scale the peak turbulence

intensity at x/xpeak
∗

= 1, and the value was chosen empirically based on results from

Mazellier and Vassilicos (2010).

The free stream turbulence is not the only factor that affects the streamwise development

of the wake. This is in agreement with the discussions made by Wygnanski et al. (1986),

where they showed the effect of different initial conditions on the spreading rate of different

types of wakes. Since u′

cl is defined in relation with the wake half width y1/2, it also

suggests a dependency of u′

cl on the initial conditions. George (1989) also commented

that the spreading rate of the plane wake depends on initial conditions. The value of

φ = 0.21 seems to characterize this effect for the FSGs, but not necessarily for other
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Figure 2.12: (a) Mean streamwise velocity profiles normalized by U∞, (b) turbulence
intensity profiles normalized by U∞, and (c) turbulence intensity profiles normalized by
local mean velocity U along the centerline against x/xpeak from all experiments. The data
from fractal square grids (FSG) is reproduced from Mazellier and Vassilicos (2010).

fractal-like grids once the geometry is changed, as suggested by the RFG results.

In fact, Zhou et al. (2014) studied the streamwise evolution of the turbulence intensity

behind a FSG and a single square grid (or SSG), which consists of only the first iteration

of the fractal grid, and they showed a clear discrepancy between the peak locations xpeak

of their results. It was noted that the blockage ratio of the two grids studied by Zhou

et al. (2014) was σFSG = 36% and σSSG = 11%, respectively.

The reason for such discrepancies lies most likely in the geometry of the grid. Firstly,

the spreading rate varies by a scale factor related to the normalized centerline mean

velocity Uc/U∞ on the grid plane due to the effect of the local shear. Secondly, there
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are two distinctive wake interaction length-scales in the flow, and the wakes from both

sides interact and modify the actual turbulence peak location. This modification cannot

be quantified at the moment, so the measured physical turbulence peak location xpeak

is used henceforth to normalize the streamwise distance. Again, one should not confuse

xpeak
∗

with xpeak.

The streamwise mean velocity and turbulence intensity profiles for all experiments are

given in figure 2.12. The mean profiles collapse well except for the Lille experiments,

where both the mean velocity and turbulence intensity are notably higher. The difference

in the mean velocity might be explained by the different measurement methods of U∞.

A Pitot tube is used in the Lille experiments (roughly 10 cm off the centerline and 20 cm

upstream of the grid), and wall pressure across the contraction is used in the other two

experiments, as described in section 2.1.1. Therefore, the exact incoming velocity U∞ is

slightly different due to the inhomogeneous grid geometry. This effect is also seen in the

turbulence intensity, which is normalized as u′/U∞. In fact, when the turbulence intensity

is normalized with the local mean velocity U , the collapse from all experiments clearly

improves (figure 2.12 c). The discrepancies are within 1%, which supports the discussion

above.

2.2.3 Length scales

Integral length scales

The length scales of the RFG-generated turbulence are of interest. Previously, it has been

shown that the longitudinal integral length scale Lu (Lu = Luu,x is the streamwise integral

length scale of fluctuating velocity u) in the FSG-generated turbulence has a magnitude

roughly comparable to 0.2L0 in the decay region, i.e. x/xpeak > 1, where L0 is the length

of the largest grid bar, and that the ratio of Lu/λ remains roughly constant in the non-

equilibrium decay region (Mazellier and Vassilicos, 2010; Gomes-Fernandes et al., 2012;
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Figure 2.13: Longitudinal integral length scale profiles Lu/L0z along the centerline from
(a) the Honda experiment, and (b) all three experiments.

Hearst and Lavoie, 2014).

The integral length scale Lu measured from the Honda experiments is given in figure

2.13 (a), where the length scale Lu/L0z appears to decrease in the decay region from

x/xpeak = 1 to 1.5. This is surprising as the integral length scale is expected to grow in

decaying turbulence. However, results from the 3 × 3 and Lille experiments (figure 2.13

b) revealed that this decrease exists only in the beginning of the decay region. The value

of Lu increases monotonically after x/xpeak = 1.5.

Note that Lu in figure 2.13 is normalized as L0/L0z, and this ratio is doubled if L0/L0y

is used. The average values of Lu/L0z and Lu/L0y in the region from x/xpeak = 1 to 1.5

are 0.14 and 0.28 respectively. This ratio has been previously reported as Lu/L0 ≈ 0.2

in the FSG generated turbulence (Mazellier and Vassilicos, 2010). If the FSG were to fit

in the rectangular wind tunnel, the longest bar length L0 would be equivalent to the L0y

of RFG. Therefore, the rectangular fractal geometry seems to have extended the integral

length scale as expected in the design.

The streamwise profiles of Lu with y offsets are shown in figure 2.14. The Honda case

shows the streamwise profile at y = 0.33m, which is approximately at the height of the

smallest grid bars closest to the center. It seems that the value of Lu decreases slightly
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Figure 2.14: Longitudinal integral length scale profiles Lu/L0z, (a) from the Honda ex-
periment along the streamwise direction at y = 0.33m, and (b) from the 3× 3 and Lille
experiments behind the horizontal bar.
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Figure 2.15: Two-point correlation functions Ruu,y for different inlet velocities U∞ in the
Honda experiments with fixed wire at (a) x/xpeak = 1.15 (x = 6m), and (b) x/xpeak = 1.54
(x = 8m) on the centerline.

in the region from x/xpeak = 0.8 to 1 before monotonically increasing afterward. All of

the profiles behind horizontal bars from the 3 × 3 and Lille experiments in figure 2.14

(b) show a monotonic increase throughout the measurement domain. The increasing rate

seems perhaps reduced slightly in the region of 0.8 < x/xpeak < 1.5, which is recovered at

x/xpeak = 2.

To confirm the decrease of integral length scale in the region 1 < x/xpeak < 1.5, two-

point correlations are also measured at x = 6m and 8m, or x/xpeak = 1.15 and 1.54 in

the Honda experiments. The correlation coefficients are given in figure 2.15. The values
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of Luu,y are calculated by integrating up to the first zero-crossing point, which shows a

decrease in their values from Luu,y ≈ 116mm at x/xpeak = 1.15 to Luu,y ≈ 111mm at

x/xpeak = 1.54. This supports our discussion of the decreasing integral length scale Lu in

the beginning of the decay region.

Taylor microscales

The evolution of the Taylor microscale is given in figure 2.16 for each experiment with

streamwise profiles along the centerline and along the streamwise direction with y offset.

The Taylor microscale λ is calculated by λ = u′/

√
(du/dx)2, where the velocity gradient is

calculated by integrating the G-model corrected spectrum assuming Taylor’s hypothesis.

It shows a similar trend to the integral length scales, where their values decrease in the

region of x/xpeak = 1 to 1.5 along the centerline, and grow monotonically elsewhere. The

Taylor microscale also shows a dependency on the Reynolds number Re0. The value of λ

at two y locations becomes similar after approximately x/xpeak = 1.8.

We now follow Mazellier and Vassilicos (2010) and Gomes-Fernandes et al. (2012) by

plotting λ/(νxpeak/U∞)1/2 as a function of x/xpeak in figure 2.17. The normalized data does

not collapse well. The values of λ are roughly constant in the region of 1 < x/xpeak < 1.5,

before monotonically increasing afterwards. These observations agree with the results

of Gomes-Fernandes et al. (2012), where their normalized Taylor micro scale λ stays

roughly constant in the range 0.9 < x/xpeak < 1.3. It is also interesting to note that λ

grows proportionally to x for x/xpeak ≥ 2 and that λ/(νxpeak/U∞)1/2 ∝ x/xpeak collapses

the Lille data in this streamwise range. The collapse is not so good for the 3×3 data where

the local Reλ is lower and presumably not high enough for the (νxpeak/U∞)1/2 dependence

to collapse the data. This collapse is related to the non-equilibrium dissipation scaling

discussed in section 3.5 which was found by Goto and Vassilicos (2015, 2016a,b) to be

valid for high enough values of Reλ.
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Figure 2.16: Streamwise profiles of the Taylor microscale λ from (a) Honda experiments,
(b) 3× 3 experiments, and (c) Lille experiments.
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Figure 2.18: Contours of U/U∞ at x/xpeak = 0.38 (a), and x/xpeak = 1.54 (b) at U∞ =
10m/s From the Honda experiments. Contour plots (a) and (b) are assembled from (c)
and (d), respectively.

2.2.4 Homogeneity, isotropy and Gaussianity

Homogeneity

The homogeneity of the RFG-generated turbulent flow is assessed first using the mean

statistics from the Honda wind tunnel experiments. The transverse profiles at different y

locations and the two-dimensional assembly contours are given in figure 2.18 and 2.19.

At x = 2m (x/xpeak = 0.38), the mean velocity contour was plotted assuming z symmetry

of the flow, and it suggests that there is a rectangular jet-like structure in the middle of the

grid with higher mean velocities. The shape of the wake of the largest bars is altered by

the small grids in the corners. In figure 2.18 (c), the mean velocity profile at y = 300mm

appears different. This difference is attributed to the presence of the smaller grids and

the horizontal bar.
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Figure 2.19: Contours of u′/U∞ at x/xpeak = 0.38 (a), and x/xpeak = 1.54 (b) at U∞ =
10m/s From the Honda experiments. Contour plots (a) and (b) are assembled from (c)
and (d), respectively.

At x = 8m (x/xpeak = 1.54), the flow was measured across half of the span and symmetry

was assumed in both y and z directions to produce figure 2.18 (b). The variations are

much reduced, which suggests that the flow is approaching a homogeneous state. The

velocity contour in figure 2.18 (b) show an oval shape at x/xpeak = 1.54, in contrast to

the rectangular shape at x/xpeak = 0.38. This is different from the FSG results where

axisymmetric shapes are observed in the decay region (Zhou et al., 2014; Laizet et al.,

2015).

The turbulence intensity profiles and the assembled contours are given in figure 2.19. The

turbulence intensity has its minimum near the centerline, and it peaks just off the side

of the biggest bars, where the gradient of the mean velocity is largest as seen in figure

2.18. This peak location moves aside with increasing height corresponding to the shape

of the wake, which is altered by the smaller grids. In general, the turbulence intensity

profiles becomes more homogeneous with increasing y, which seems to support the idea
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that the smaller grids tend to homogenize the flow. At x/xpeak = 1.54, the variation of

u′/U∞ across the span is reduced to approximately 3%, as shown in figure 2.19.

To further quantify the homogeneity in the streamwise direction, we refer to the criteria

proposed by Corrsin (1963), namely

∂Lu/∂x � 1, (2.4a)

(Lu/λ)∂λ/∂x � 1, (2.4b)

(Lu/u2)∂u2/∂x � 1. (2.4c)

The results for relations 2.4 from all experiments are presented in figure 2.20. The values

of ∂Lu/∂x and (Lu/λ)∂λ/∂x are all approximately 0 in the decay region. The results for

(Lu/u2)∂u2/∂x, however, show a larger deviation from 0. The minimum appears to occur

at x/xpeak ≈ 1.5, which corresponds to the start of the growth of Lu in the decay region.

The maximum deviation is approximately 0.075, which is larger than the reported value

of 0.05 from the FSG generated turbulence (Hearst and Lavoie, 2014). The results along

the streamwise direction with y offset are also given in figure 2.20, which appear similar to

that along the centerline, and the most obvious deviation from homogeneity is observed in

figure 2.20 (f). In previous figures 2.13 and 2.14, the length scales are shown to increase

along the streamwise direction, which might seem to contradict figure 2.20 where the

gradients are almost zero in the decay region. These results are in fact consistent with

each other as the increase of the integral length scales Lu is indeed small, as presented

in figure 2.21, where non-normalized integral length scale profiles from different cases are

plotted. These results seem to suggest that the turbulence in the beginning of the decay

region 1 < x/xpeak < 1.5 is not strictly homogeneous, but the rest of the decay region can

be considered homogeneous under the criteria of relations 2.4.
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Figure 2.20: Streamwise homogeneity of (a, d) ∂Lu/∂x, (b, e) (Lu/λ)∂λ/∂x, and (c, f)
(Lu/u2)∂u2/∂x from three experiments along the centerline (left) and along the stream-
wise direction with y offset (right).
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Figure 2.21: Longitudinal integral length scale profiles Lu from all experiments along the
centerline and along streamwise direction with y offset.
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Figure 2.22: Profiles of (a, c) skewness, and (b, d) flatness along the centerline (left) and
along the streamwise direction with y offset (right).
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Figure 2.23: Profiles of u3 along the streamwise direction against x/xpeak for all experi-
ments. The figure on the right is exactly the same data, only zoomed in over the range
x/xpeak > 2.

Gaussianity

The skewness and flatness for different experiments are presented in figure 2.22 along

the centerline and along the streamwise direction with y offset. In figure 2.22 (a), the

skewness approaches zero only after x/xpeak ≈ 0.9 along the centerline, but stays nega-

tive throughout the measurement domain, which corresponds to a prevalence of negative

velocity fluctuations. After approximately x/xpeak = 2.7, the value of Su decreases away

from 0 to −0.35 at x/xpeak = 5.3 (the end of the measurement domain). These observa-

tions are quite different from those reported by Mazellier and Vassilicos (2010); Melina

et al. (2016), where Su crosses zero at x/xpeak = 1.5 in the FSG-generated turbulence,

and then stays positive.

In figure 2.22 (b), the flatness Fu returns to 3 at x/xpeak ≈ 1.5, whereas Mazellier and

Vassilicos (2010) and Melina et al. (2016) reported Fu = 3 at x/xpeak ≈ 1, and remained

at 3 throughout the measured decay region. In the current data, the value of Fu after

x/xpeak = 3 in fact increases slightly, although the deviation from Gaussianity is not

as obvious as that of Su. Figure 2.22 (c) and (d) give the results along the streamwise

direction with y offset. It is observed that the streamwise variation is much smaller off

the centerline.
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These observations are quite interesting, especially the decreasing values of Su away from

0, as shown in figure 2.22 (a). However, the streamwise profiles of u3, as shown in figure

2.23, seem to give a rather constant value of u3 after x/xpeak ≈ 2. The value of u3 in

the region x/xpeak > 2 is decreasing from roughly -0.01 to -0.05. Note however, even

though it looks constant over the decay region, the actual variation is large (see figure

2.23). On the other hand, the term u′3 monotonically decreases towards 0, which leads to

the exaggerated decrease of Su = u3/u′3 as observed in figure 2.22 (a). This suggests that

the decrease of Su is indeed caused by the decreasing triple correlation u3 term. In fact,

Maxey (1987) has showed the importance of the triple correlation term in determining

the Skewness. Based on analysis of homogeneous and isotropic turbulence, Maxey (1987)

reported positive non-zero values of u3. This does not necessarily contradicts the current

results as it has been shown above that the flow is not strictly homogeneous or isotropic.

Furthermore, the decreasing u3 might have to do with the growing boundary layers on the

Lille wind tunnel walls such that negative velocity fluctuations are induced as the flow

becomes a channel flow towards the end of the measurement domain, which is x = 18m.

Maxey (1987) also concluded that the decay of turbulent energy has stronger effects on

the odd-order moments than on the even-order moments, which seems to explain the

smaller variations observed in the Flatness profiles, as shown in figure 2.22 (b) and (d).

These results also relate to the probability density functions (pdf) of the streamwise

fluctuating velocity. Figure 2.24 (a) shows the pdf of u/u′ at the peak location x/xpeak = 1

from different experiments with different inlet Reynolds numbers. The collapse of the pdf

confirms the independence on inlet Reynolds number. The distribution is clearly non-

Gaussian, and skewed to the left, which means more negative velocity fluctuations, in

agreement with the negative velocity skewness. From the 3×3 experiments, the pdf from

different streamwise locations along the centerline are shown in figure 2.24 (b). In the

production region x/xpeak = 0.5, the distribution is clearly non-Gaussian. The pdf at

x/xpeak = 1.4 and x/xpeak = 2.6 are both representative of a Gaussian distribution, and

the latter is slightly better (figure 2.24 b). As demonstrated in figure 2.24 (c), the pdf
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Figure 2.24: Probability density function of u/u′ (a) at x/xpeak = 1 with different inlet
Reynolds numbers Re0 = U∞L0z/ν, (b) at different streamwise locations along the center-
line in the 3× 3 experiment with U∞ = 10m/s, and (c) at different streamwise locations
along the centerline in the Lille experiment with U∞ = 9m/s. The dashed lines give the
Gaussian distribution.
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of u/u′ beyond x/xpeak = 2.6 from the Lille experiments are skewed to the left again,

suggested by the deviation of Skewness Su.

Isotropy

To look at the isotropy of the flow, we use the data from the 3 × 3 experiments where

both u and v components of the velocity were measured. Ideally, large scale isotropy of

turbulent flow requires u′/v′ = u′/w′ = 1 and Lu/Lv = Lu/Lw = 2 (where Lv = Lvv,x

is the streamwise integral length scale of fluctuating velocity v). The results from the

3× 3 experiments are presented in figure 2.25. In figure 2.25 (a), the ratio of u′/v′ behind

the centerline and behind the bar are both larger than 1, and gradually converges to

u′/v′ = 1.35. This value is larger than the previously reported values of e.g. u′/v′ = 1.14

for regular grid generated turbulence (Kang et al., 2003b), and u′/v′ = 1.1 ∼ 1.25 for

fractal grid generated turbulence (Valente and Vassilicos, 2011; Hearst and Lavoie, 2014).

This anisotropy is also evident in figure 2.25 (b), where the integral length scale ratio

Lu/Lv is everywhere well above 2 on the centerline. This is comparable to the results of

Hearst and Lavoie (2014), where they reported values of Lu/Lv of 2.4 to 2.5 in the decay

region. These observations of large scale anisotropy seem to come from the two distinct

length scales L0y and L0z, such that the largest eddy scales in these two directions are

different.

The large scale isotropy indicators u′/v′, and v′/w′ are presented in figure 2.26 from PIV

data. The centerline value of u′/v′ is roughly 1.5 at x/xpeak = 1, and decreases down-

stream, which is consistent with the HWA results as shown in figure 2.25 (a). Figure 2.26

(b) shows that the value of v′/w′ increases from roughly 0.8 to 0.86 along the centerline.

The fact that v′/w′ < 1 also indicates that the turbulence intensity is larger in the z

direction so that v′ < w′. It seems to correspond to the grid geometry as the largest bars

are separated in the z direction. The ratio of u′/w′ (implied by the ratios of u′/v′ and

v′/w′), is approximately 1.2, which is similar to that reported for the FSG experiments.
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Figure 2.25: Large scale isotropy criteria of (a) u′/v′, and (b) Lu/Lv from the 3 × 3
experiment.

Behind the horizontal bars, the value of u′/v′ is roughly 1.2 (at y = −0.33m) in the Lille

experiment, as shown in figure 2.26 (a), which is similar to that 1.3 observed in the 3× 3

experiment around x/xpeak = 1, as shown in figure 2.25 (a). As shown in figure 2.26 (b),

the ratio of v′/w′ is approximately 1 behind the horizontal bar. These observations seem

to suggest that the isotropy level of the flow is better behind the horizontal bars than

that on the centerline in the region x/xpeak ≈ 1, and it is consistent with the HWA results

given in figure 2.25.

The small scale isotropy indicator (dv/dx)2/(du/dx)2 is shown in figure 2.27. It is clear

that this ratio is much smaller than the isotropic value of 2, even though the values are

increasing monotonically. The values behind the horizontal bars are slightly larger (closer

to 2 that indicates isotropy) than that on the centerline, which is in agreement with the

previous observation on the large scale isotropy. The ratio of (dv/dx)2/(du/dx)2 is smaller

than that from the FSG-generated turbulence reported by Valente and Vassilicos (2011),

where they showed (dv/dx)2/(du/dx)2 ≈ 1.4 in the decay region. The anisotropy partly

explains the discrepancies of the dissipation rate ε calculated with different methods, as

discussed in section 2.1.3.

Finally, to further evaluate the isotropy assumption in discussing the decaying turbulence,

the advection is computed as Aiso = (3/2)U(∂u2/∂x), assuming u2 = v2 = w2, and
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Figure 2.26: PIV measurements of the large scale isotropy criteria of (a) u′/v′, and (b)
v′/w′ from the Lille experiments.
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Figure 2.28: Ratios of (a) −A
XW

/ε
XW

and −Aiso/εiso at different locations using the XW
measurements from the 3× 3 experiments, and (b) −Aiso/εiso from all three experiments
using the isotropy assumption. The dashed line marks ratio of 1.

A
XW

= U(∂k/∂x), where k = (u2 + 2v2)/2, and the ratios −Aiso/εiso and −A
XW

/ε
XW

are

examined. Results from the 3× 3 experiments are given in figure 2.28 (a). It can be seen

that the ratio collapses for both cases with and without the isotropy assumption, and stays

roughly constant in the region x/xpeak > 1.1. This is slightly different from the results

discussed by Valente and Vassilicos (2011) as the ratio in their case becomes constant at

x/xpeak ≈ 0.8, which indicates that the turn to isotropy of the FSG-generated turbulence

is faster. To evaluate the consistency, the ratio of −Aiso/εiso for the Honda and Lille

measurements along the centerline are also given in figure 2.28 (b). It is observed that

this ratio evolves in the same pattern, and stays close to 1 in the decay region. Following

these discussions, we might argue that, although the flow is not strictly isotropic, the

isotropy assumption can be used to look at the evolution of the dissipation rate, although

care must be taken in the region x/xpeak < 1.1, which is roughly the production region of

the flow.

2.2.5 Vortical structures

Some PIV data are presented to look at the vortices generated by the RFG around the

turbulence peak location x/xpeak = 1. Here the 2D swirling strength λci is used to extract
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Figure 2.29: Examples of instantaneous 2D swirling strength λci in the x − y plane
at U∞ = 9m/s. Data taken from the Lille experiment. Black lines indicate possible
alignments of the vortices.

the vortical structures from the PIV data. It is defined as the imaginary part of the

eigenvalues of the velocity gradient, which eliminates the effects of local shear (Zhong

et al., 1998; Zhou et al., 1999). In practice, the two dimensional velocity gradient D
matrix is calculated from the PIV velocity field, and the eigenvalue problem is written

as D = V λeV
−1, where V is the eigenvector, and λe is the eigenvalue matrix. If the

eigenvalue is complex, the imaginary part of the complex conjugate is extracted and the

absolute value is stored as λci, which is the 2D swirling strength. The value of λci is then

signed by the local vorticity to give direction of the swirl. Two instantaneous fields are

given as examples in figure 2.29. Small values are shown in white to highlight only the

stronger swirling structures. It seems that each group is packed with counter-rotating

swirls, and they are oriented towards the center of the grid. This is a signature of vortices

shed from the horizontal bars.

The averaged results over 20000 instances are given in figure 2.30 around the centerline

and behind the horizontal bar. The averaged magnitude of the swirl is much smaller than

that of the instantaneous ones. The swirling strength is observed on both sides of the

centerline with opposite signs in figure 2.30 (a). Figure 2.30 (b) gives the mean swirling

strength behind the horizontal bar, which suggests that the vortices in this region is more

Gaussian so the mean goes to zero, which is in agreement with the observations in the
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Figure 2.30: Averaged 2D swirling strength λci in the x−y plane centered (a) around the
centerline, and (b) behind the horizontal bar at U∞ = 9m/s. Data taken from the Lille
experiment.

previous sections.

It has been shown in table 2.2 that there are two different interaction length scales, i.e.

xpeak
y∗ and xpeak

z∗ (again, this is not to be confused with the physical turbulence intensity

peak location xpeak, as discussed in section 2.2.2), due to the two length scales in the

grid geometry. The calculated value gives xpeak
z∗ > xpeak

y∗ , suggesting that the vortices shed

from the vertical bars would meet later than those from the horizontal bars. The results

computed here are in the x − y plane, and therefore the vortices observed around the

centerline are predominantly associated with the horizontal bars. It follows that vortices

shed from the vertical bars should meet on the centerline at a later streamwise location

x/xpeak > 1. This suggests that the shedding vortices from the rectangular fractal grid

interact over a wide range of x locations due to the different anisotropic length scales.

For a FSG generated turbulence, the shedding vortices from the largest bars are expected

to meet at the peak location xpeak only. This difference seems to be the cause of the

inhomogeneity and anisotropy, and consequently affect the evolution of length scales Lu,

λ, the Skewness Su, and Flatness Fu.



2.2. Results 91

0 1 2 3 4 5
x/xpeak

0

5

10

15

20

25

30

35

40

L
/λ

(a)

0 1 2 3 4 5
x/xpeak

0

5

10

15

20

25

30

35

40

L
/λ Honda U∞=5

Honda U∞=10
Honda U∞=15
3x3 U∞=6
3x3 U∞=10
Lille U∞=6
Lille U∞=9

(b)

Figure 2.31: Streamwise profiles of Lu/λ for different inlet velocities (a) along the cen-
terline, and (b) along the streamwise direction for the bar330 data set from Honda ex-
periments and the bar data set from other experiments. Red and black colors mark the
production and decay region, respectively. Blue marks the region in Lille experiments
where x/xpeak > 3.

2.2.6 Non-equilibrium energy dissipation scaling

The values of Lu and λ are shown to have increasing values along the streamwise direction

except for a regional decrease between x/xpeak = 1 to 1.5 along the center lines, as dis-

cussed in section 2.2.3. The ratio Lu/λ along the centerline and the streamwise direction

with a y offset are shown in figure 2.31.

Along the centerline, it seems that the ratio Lu/λ stays roughly constant in the decay

region. The results from the Honda experiments seem to decrease slightly along the

centerline. It is noted that the local Reynolds number is the highest amongst all cases,

and both length scales have a estimated error of ∼ 5%. Therefore the slight decrease of

Lu/λ in the Honda experiment might be attributed to measurement error. In the region of

x/xpeak = 1.5 to 3, the invariance of Lu/λ is consistent with the non-equilibrium scalings

from fractal generated turbulence (see Mazellier and Vassilicos, 2010; Gomes-Fernandes

et al., 2012; Hearst and Lavoie, 2014). The blue data points in figure 2.31 (a) mark

the region where Reλ stays roughly constant, as shown in figure 2.32 (a) and (b), and

therefore should not be interpreted as evidence for the non-equilibrium scaling relation.

With the y offset, as shown in figure 2.31 (b), the value of Lu/λ seems roughly constant in
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Figure 2.32: Streamwise profiles of Reλ (a) along the centerline from different experiments,
(b) normalized by the inlet Reynolds number Re0 = U∞L0/ν along the centerline, and
(c) normalized along the streamwise direction with y offset.

the decay region for data from Honda and 3×3 experiments, but increases monotonically

in the Lille experiment. The reason for such observations can be partly explained by the

growing of Reλ as shown in figure 2.32, which might be caused by the growing boundary

layer.

The profiles of Taylor Reynolds number Reλ = u′λ/ν from different experiments with

different U∞ are given in figure 2.32 (a). The values of Reλ increase with inlet Reynolds

number Re0 = U∞L0z/ν, and figure 2.32 (b) shows the collapse of Reλ/Re
1/2
0 for all

the experiments along the centerline. Note that the value of Reλ/Re
1/2
0 stays roughly

constant in the region of x/xpeak > 3, which corresponds to the blue data points in figure

2.31 (a). These data points are therefore not to be interpreted as the non-equilibrium

scaling relation.
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Along the streamwise direction with y offset, the normalization Reλ/Re
1/2
0 does not col-

lapse the data as shown in figure 2.32 (c). It suggests that the streamwise evolution of

Reλ/
√
Re0 varies differently along the streamwise direction off the centerline of the grid.

The values of Reλ/
√
Re0 does not vary as much as that along the centerline, and the data

from the Lille experiment grows monotonically.

For turbulence generated by various grids, the Reynolds number Reλ usually decreases

along the streamwise direction x in the decay region (see e.g. Melina et al., 2016). The

constant or increasing Reynolds numbers Reλ observed in these experiments suggest that

the decreasing rate of u′ is similar or smaller than the growth rate of λ. From figure

2.16, it can be observed that in the decay region x/xpeak > 2, the growth rate of λ is the

same as they collapse in the figure. Therefore, the main reason for the differences in the

evolution of Reλ perhaps lies in the wall effects on the turbulence intensity u′.

This might make sense as the growing boundary layer would increase the turbulence

intensity level of the flow. The turbulence intensities on the centerline would then decrease

slower than the power law usually observed in a free decaying turbulence, which explains

the slower decay rate of u′ at x/xpeak > 3 as shown in figure 2.12 (b) and (c). Behind

the horizontal bar, especially in the Lille experiment, the measurement location would be

inside the wall boundary layer as the boundary layer thickness grows in the x direction.

The turbulence intensity at given height is therefore expected to grow. This would imply

that, in the Lille experiment, the decay of u′ behind the bar would be much slower than

that along the centerline. The results are given in figure 2.33. In figure 2.33 (a), the data

along the centerline and those with y offset become closer with increasing x/xpeak distance

in the Honda and 3×3 experiments. These two cases are free from the wall effects. In figure

2.33 (b), the decay rate of the centerline data decreases from approximately x/xpeak > 3,

and the difference between the centerline data and those behind the bar is visible. This

shows the increased turbulence intensity due to the growing boundary layer from the wall

of the Lille wind tunnel, which explains the unusual observations made above.
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Figure 2.33: Profiles of u′2/U2
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against x/xpeak from (a) Honda and 3 × 3 experiments,
and (b) Lille experiments, plotted in log scale.
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Figure 2.34: Profiles of Lu/λ as a function of Reλ (a) along the centerline, and (b) along
the streamwise direction with y offset. Blue marks the region in Lille experiments where
x/xpeak > 3.
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The dependence of Lu/λ on Reλ is Lu/λ ∝ Reλ according to the equilibrium energy

dissipation scaling. But more and more evidence has shown that there exists a region

where Lu/λ remains roughly constant while Reλ decreases (Valente and Vassilicos, 2011,

2012; Hearst and Lavoie, 2014). The results from the current measurements along the

centerline are given in figure 2.34 (a). The clear constancy of Lu/λ is observed in the

decay region of 3× 3 and Lille experiments, with increasing values as Re0 increases.

The ratio of Lu/λ from the Honda experiments in the region of x/xpeak = 1 to 1.5 seems

to vary as Lu/λ ∝ Reλ, as shown in figure 2.34 (a). However, this might be attributed

to the measurement error due to the large Reynolds number of Reλ ≈ 1000 in the Honda

experiments. Indeed, the uncertainty of the length scales from the Honda experiments

is about 5%, and the variation of Lu/λ is within this range. The data from Honda

experiments are therefore interpreted as constant values. The data marked in blue come

from the region of x/xpeak > 3, where Reλ ≈ const and consequently L/λ ≈ const, as

shown in figure 2.34 (a).

Along the streamwise direction with y offset, as shown in figure 2.34 (b), the value of

Lu/λ from Honda and 3 × 3 experiments seems to be constant at different Reynolds

numbers, which is also evident in figure 2.31 (b), and the value of Lu/λ increases with

increasing Re0. The data from Lille experiments follows Lu/λ ∝ Reλ, corresponding to

the monotonic growth of Lu/λ as shown in figure 2.31 (b). This is not further interpreted

as the region is expected to be affected by the boundary layer in the Lille wind tunnel.

The dissipation coefficient is calculated as Cε = εLu/u
′3. If we assume λ2 = νu′2/ε, it

implies that Lu/λ ∼ CεReλ. For regions with Lu/λ ≈ const, it follows that Cε ∝ Re−1
λ .

Results along the centerline and along the streamwise direction off the centerline are given

in figures 2.35 and 2.36, respectively.

Figure 2.35 (a) shows that the decreasing rate of Cε decreases with increasing Reynolds

number Reλ, and that the values collapse with the non-equilibrium scaling such that

Cε ∝ Re
1/2
0 /Reλ, as the data collapse in figure 2.35 (b). Figure 2.36 gives the results off
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Figure 2.37: Dissipation coefficient Cε as a function of x/xpeak (a) along the centerline,
and (b) along the streamwise direction with y offset. Red and black colors mark the
production and decay region, respectively. Blue marks the region in Lille experiments
where x/xpeak > 3.

the centerline, and a clear deviation from the scaling relation can be observed in the Lille

data, where the local Reynolds number Reλ increases as discussed regarding figure 2.32.

Finally, the dissipation coefficient Cε is plotted as a function of x/xpeak in figure 2.37.

Figure 2.37 (a) has been shown in previous works (e.g. Hearst and Lavoie, 2014; Vas-

silicos, 2015), demonstrating the non-equilibrium scaling. However, the data from Lille

experiments at x/xpeak > 3 should be interpreted with caution as Reλ ≈ const was ob-

served in this region, so this constancy of Cε may not be depicted as the non-equilibrium

scaling relation. Nevertheless, the values of Cε collapse well in the production region and

the beginning part of the decay region, which agrees with the non-equilibrium scalings.

Figure 2.37 (b) shows the results along the streamwise direction with y offset. Note the

relative measurement location in Honda experiments (bar330) and the other two is not

the same, so the grouped collapse is not surprising. The evolution of Cε seems to suggest

Cε ∼ Re−1
λ as well, and different slopes are clearly observed in different offset locations

relative to the centerline.
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2.2.7 Self-similarity of spectra

In the decaying homogeneous and isotropic turbulence, the classical equilibrium theory

depicts that the spectra are expected to collapse at small scales when normalized using

inner variables (ε and η), and at large scales using outer variables (u2 and Lu). For tur-

bulent flows with the non-equilibrium scaling such that Lu/λ ≈ const, it has been shown

that either Lu or λ can be used to collapse the entire range of spectra, corresponding to

a single-length scale spectra E11(k) = u′2lF11(kl), where l is a characteristic length scale

(Mazellier and Vassilicos, 2010; Valente and Vassilicos, 2011; Hearst and Lavoie, 2014).

Mazellier and Vassilicos (2010) also showed a dependance of the spectra on the initial

conditions, such that E11(k) = u′2lF11(kl, Re0, ∗), where the initial condition is charac-

terized by Re0, and ∗ represents any other possible factors. To evaluate this scaling, the

compensated spectra E11(k) = u′2lF11(kl) at given Re0 are plotted at different streamwise

locations, as shown in figure 2.38.

The spectra are compensated with the −5/3 slope, and the inertial subrange shows a

clear plateau in all cases. For the Honda experiments, the ratio of Lu/λ shows a slight

decrease in the region 1 < x/xpeak < 1.5, as shown in figure 2.31, which was attributed to

measurement error as the difference is within the uncertainty. In figure 2.38 (a) and (b),

this slight variation of Lu/λ is also observed, such that the small scales are not collapsed

exactly when normalized using u′ and Lu. For the current discussion, this is attributed

to the measurement error as the local Reynolds number is of order 1000. In the 3 × 3

experiments, it has been shown that, even though Lu and λ decreases individually in the

beginning of the decay region, the ratio of Lu/λ is roughly constant. This corresponds to

the well collapsed spectra in the entire range as shown in figure 2.38 (c) and (d). For the

Lille experiments, the constancy of Lu/λ is only observed throughout the decay region,

which is consistent with figure 2.38 (e) and (f). Note that the collapse of spectrum at

x/xpeak > 3 is mainly due to the roughly constant Reynolds number Reλ as discussed in

the previous section.
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Figure 2.38: Compensated one-dimensional spectra along the centerline using the inner
variables (left) and outer variables (right) at different streamwise locations normalized
as x/xpeak from Honda experiments with U∞ = 10m/s (a, b), 3 × 3 experiments with
U∞ = 10m/s (c, d), and Lille experiments with U∞ = 9m/s (e, f).
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Figure 2.39: Compensated one-dimensional spectra along the centerline using (a) inner
variables and (b) outer variables at x/xpeak ≈ 2.45 with different Re0 from 3 × 3 ex-
periments with U∞ = 6m/s and 10m/s, and Lille experiments with U∞ = 6m/s and
9m/s.

To examine the dependency on Re0, and to avoid the effect of the region 1 < x/xpeak < 1.5,

selected data from 3×3 and Lille experiments at x/xpeak ≈ 2.45 are plotted in figure 2.39.

The spectra in figure 2.39 do not collapse as expected. Note that the spread of spectra

in the dissipative range is smaller for normalization using the inner variables. This also

agrees with the analysis proposed by Valente and Vassilicos (2011), such that for a given

Reynolds number ratio Reλ1
/Reλ2

the spread using outer variables are about 3 times

larger than that using inner variables.

2.3 Summary

In this chapter, a variation of the classical space-filling fractal grid (FSG) was designed,

referred to as the rectangular fractal grid (RFG), and tested in three different facilities to

document the turbulence field.

The wake interaction length scale was examined first, which failed to collapse the FSG

and RFG data. There are two reasons for this observation. First, the spreading rate of the

wake generated by grid bars varies by a scale factor related to the normalized centerline
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mean velocity Uc/U∞ on the grid plane due to the effect of the local shear. Secondly, there

are two distinctive length scales in the RFG generated turbulence, and the wakes meet at

different streamwise locations on the centerline and influence the actual turbulence peak

locations.

The homogeneity of the flow was examined using different criteria, and results suggest

that the beginning part of the decay region is more inhomogeneous, but the homogeneity

for the rest of the flow is similar to previously reported FSG generated turbulence. The

conclusions are also supported by the probability density functions at different locations.

The velocity Skewness gives negative values, and decreases with x distance. It was shown

that this was mainly caused by the triple correlation term u′3, which behaves differently

from the predictions for homogeneous isotropic turbulence.

The anisotropy level in both large and small scales was shown to be greater than that

for FSG generated turbulence. Nevertheless, it was shown that the ratio of ε/A with and

without the isotropy assumption is similar, and therefore the isotropy assumption can be

used to study the turbulence characteristics during decay.

Due to the existence of two length scales, the beginning of the decay region exhibits inter-

esting turbulence characteristics. Both the integral length scale Lu and Taylor microscale

λ decrease in this part of the decay region. This might relate to the interaction of the

two vortex systems from the two pairs of largest grid bars. The 2D swirling strength λci

calculated from the PIV measurement seems to support this scenario.

The ratio of L/λ remains constant in most of the data examined, except for the data

acquired behind the bar in the Lille experiment. It was explained by showing the decay

of turbulence intensity at these locations, which seems to be affected by the growing

boundary layer from the wall. The evolution of Cε in the decay region generally follows

Cε ∼ Re
1/2
0 /Reλ. The spectra also demonstrates the single-length scale solution, and

shows a dependency on the initial conditions.
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The geometry of the RFG has shown interesting features in turbulence characteristics, and

further work to examine the interaction between the wakes might be interesting in several

ways. First of all, by varying the ratio of the two lengths of the largest grid bars, the

spreading rate of the wakes can be revisited (with the opening in the center of the grid, and

consequently a local shear). The results can be used to update the definition of the wake

interaction length scale, which can be used to predict the turbulence peak location xpeak.

This will benefit a large number of experiments that requires high turbulence intensity at

specific downstream location. Further measurement of the terms in the turbulent kinetic

energy equation in the beginning of the decay region may reveal the interactions between

the two different scales, and perhaps contribute to the understanding of the evolution of

turbulence length scales in a more general way.



Chapter 3

Turbulent shear flow

In this chapter a new class of turbulence generating grid is designed and tested to find the

possibility to scale the mean velocity and turbulence intensity profiles to the geometry of

the grid, which might provide the ability to produce desired mean velocity and near-field

turbulence intensity profiles simultaneously. The details of the grid design is given first,

and measurements of the mean velocity profiles are presented. It is shown that predictions

using the mean velocity model derived from Taylor et al. (1949) and McCarthy (1964)

are in good agreement with our experimental data. By modifying the grid thickness, the

aspect ratio of the grid bars are changed, and consequently the drag coefficients. The

effect of drag coefficient on the local mean velocity gradient is discussed. The turbulence

intensity profiles at given streamwise location x are found to scale with the geometry of

the grid bars. The scaling relations between the turbulence field and the geometry of the

grid might be used in the future to generate other types of turbulence flows of interest.

A general procedure of the grid design method is proposed in section 3.2.3. Results

on the evolution of turbulence intensities and length scales are presented, and finally a

simplified model is proposed to describe the downstream development of the turbulence

field generated by our grids. Finally, it is concluded that the proposed inhomogeneous

multiscale grids might be used to tailor the characteristics of turbulent shear flows in a

103
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more systematic way. Again, x, y, z represent the streamwise, vertical, and transverse

directions, respectively.

3.1 Experiments

3.1.1 Facility

All experiments in this chapter were conducted in the 3 × 3 closed loop wind tunnel in

the Aeronautics Department at Imperial College London. The test section has a cross

sectional area of 0.91m×0.91m, and a measurable length of 4.2m. The flow goes through

a set of perforated screens and a 9:1 contraction before reaching the test section. The

background turbulence intensity without the grid was measured to be ∼0.1% at U∞ =

10m/s. A computer controlled traversing system is mounted on top of the working section,

allowing movements in all three directions. The origin of the coordinate system is set at

the bottom of the grid on the windward side.

3.1.2 Grid design

In this section we outline the design principles of our new multiscale grids. A schematic

sketch is given in figure 3.1. Three such grids were made for the current investigation

producing flows with different shear rates and different turbulence profiles, even though

the geometries are very similar. The first grid was designed to generate a turbulent flow

without mean shear, and a non-uniform turbulence intensity, while the other two were

designed to generate turbulent flows with gradients in both mean velocity and turbulence

intensity. The grids are numbered in order of increasing shear rates. They were laser cut

in acrylic with a uniform thickness (in the x direction) of D = 10mm.

There are several parameters involved in the design process, and a summary is given
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(a) (b) (c)

Figure 3.1: Schematic sketch of (a) grid 1, (b) grid 2, and (c) grid 3, respectively, in
z − y (horizontal-vertical) plane with N = 9 layers numbered from bottom to top as
n = 1, 2, ...N .

H,W External height and width of grid
D Thickness of the original grid (in x), and the horizontal supporting bars
N Number of layers
hn Height of layer n
σn Blockage ratio at layer n
cn Number of vertical bars in layer n
wn Width of the vertical bars (in z) at layer n
gn Distance between two adjacent vertical bars at layer n
dn Thickness of the vertical bars (in x) at layer n
an Aspect ratio of the vertical bars, defined as an = dn/wn, at layer n
tb Width of horizontal bars (in y)

Table 3.1: Design parameters of multiscale shear grids.
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Figure 3.2: Profiles of (1 − σ)/(1 − σc) for grid 1, 2 and 3, respectively, where σc is the
blockage ratio at layer 5, the center of the grid, i.e. σc = σ5.
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in table 3.1. The external height H and width W of the grid are determined by the

dimensions of the wind tunnel test section in the y and z directions, respectively. For the

current study we have H = W = 0.91m. The number N of horizontal layers is chosen

to be N = 9 for all three grids in the current study. This number can be increased to

obtain finer control over the local velocity gradient. The height of each layer hn is set

here to be hn = constant = 101.67mm. There are also eight horizontal supporting bars.

Their width (in the y direction) for the present grids is tb = 5mm, and an aspect ratio of

D/tb = 2 was achieved to minimize the wake shed from them.

The most important parameters for the design of the mean flow profile are the blockage

ratios σn of each layer. The normalized blockage ratio profiles for each grid are given in

figure 3.2. The mean blockage ratio (σ1+σ2+...+σn)/N (with N = 9 here) was set to 25%

for all three grids, while the maximum local blockage ratio was set as σ9 = σmax = 35%

to avoid flow recirculation. This is consistent with the observations of Rose (1966), who

limited the maximum local solidity to σmax = 40% for this reason.

While the blockage profile controls the mean velocity of the flow, the lateral widths and

spacing of the vertical bars in each layer of the grid are tailored to vary the wake interaction

mechanisms in order to generate different turbulence characteristics. Three parameters

are introduced here, namely cn the number of vertical bars, wn the lateral width of each

individual bar, and an the aspect ratio of the bars (defined as an = dn/wn). Note that

since the thickness of the original grid is constant, i.e. dn = D = 10mm, an varies with

vertical bar width wn, and the drag coefficient CD of each bar therefore varies with n,

which affects the wake characteristics. The number of bars for each layer is set to be

cn = 2(n+M) + 1 for n = 1, 2, ...N , where M = 2 is a control parameter for the current
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grids. The width of the bars are calculated from

wn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W

cn

(hnσn − tb
hn − tb

)
, n = 2, 3, ...N − 1

W

cn

(hnσn − 0.5tb
hn − 0.5tb

)
, n = 1, N.

(3.1)

As shown in figure 3.1, there are no horizontal bars at the top and bottom edges of the

grids, and the area is distributed in the vertical bars at layer 1 and N using the second

equation in 3.1. At each layer, the vertical bars are evenly separated by a distance gn,

and are placed symmetrically about z = 0.

Note that the uniform thickness of the original grid inevitably causes variable aspect

ratios an = dn/wn of the vertical bars as the width wn varies. Figure 3.3 (a) gives the CD

profiles of the three grids evaluated using the relation between CD and the aspect ratio an

given by Bearman and Trueman (1972). The Reynolds number of the vertical bars with

U∞ = 10ms−1 is within the range 6, 000 to 20, 000, and the Reynolds number dependence

of the drag coefficient CD is therefore negligible. The grids were also modified by attaching

blocks behind the vertical bars to achieve a uniform aspect ratio an by effectively varying

dn, and hence a uniform CD. Due to the dimensions of the vertical bars, the aspect ratio

is set equal to that of the eighth layer a8. For grid 3, however, the modification was only

applied to the bottom layer n = 1, because the additional thicknesses to be attached to

the other layers were all smaller than 1mm, and therefore difficult to manufacture. The

drag coefficient profiles after the modificaction are given in figure 3.3 (b).

Now if we refer to the scalings for grid-generated turbulence proposed by Vassilicos and

colleagues as outlined in the introduction, we can calculate the wake interaction length

scale for each layer n as xpeak
∗

(n) = 0.21g2n/(αCDwn) by substituting L0 = gn and t0 = wn

in their original equation (Gomes-Fernandes et al., 2012). The results for the original and

modified grids are plotted in figure 3.4 (a) and (b), respectively. It can be observed that
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Figure 3.3: Vertical drag coefficient profiles of (a) original grids with uniform thickness
D = 10mm, and (b) modified grids with variable thickness but uniform aspect ratio.
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Figure 3.4: The wake interaction length scale xpeak
∗

(n) for (a) original grids, and (b)
modified grids.

the variation of xpeak
∗

with n becomes much more smooth due to the modification of CD,

and the maximum xpeak
∗

is about x = 0.38m from the grid. From the results of Gomes-

Fernandes et al. (2012), where the turbulence intensity profiles from several experiments

and different grids collapsed against x/xpeak
∗

, it can be expected (see Gomes-Fernandes

et al., 2012) that the streamwise turbulence intensity at level n scales with (xpeak
∗

)1/2.

Further results and discussions on this scaling relation are presented in section 3.2.2.
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3.1.3 Experimental set-up and method

The tunnel inlet velocity U∞ was monitored using a Furness Controls FCO510 micro-

manometer which measures the static pressure head across the contraction and the tem-

perature. The inlet velocity U∞ was maintained using a PID controller to be within ±1.5%

of 10m/s for all data sets in the current study. Only one inlet velocity is tested as previous

studies showed that the turbulence statistics produced by grid with square bars is indepen-

dent of the Reynolds number (see Roach, 1987). Data was then acquired with MATLAB,

using a 16-Bit National Instruments NI-6229(USB) board. Instantaneous velocity signals

were measured using an in-house etched platinum Wollaston cross wire powered by a

Dantec Streamline CTA system. The diameter of the wire was dw = 5μm with length to

diameter ratio approximately 200. Resolution of the wire are estimated to be l/η = 2.6 to

7.2, where the Kolmogorov length scale η was estimated using η = (ν3/ε)1/4. To calculate

ε, we compute ε∗ = 15ν(∂u/∂x)2 and ε∗∗ = 3ν(∂u/∂x)2 + 6ν(∂v/∂x)2, and then use the

average ε = (ε∗ + ε∗∗)/2 in this paper.

The hot-wire probe was mounted on a servo motor to allow accurate control of the pitch-

ing angles. It was calibrated at the beginning and end of every data set acquired using the

look-up table method for five velocities from 3m/s to 19ms−1 and seven angles ranging

from −27◦ to 27◦. The temperature was monitored during acquisitions, and the data

was discarded if temperature variation ΔTa = Ta,max − Ta,min was larger than 0.1◦C.

Two packets of ts = 300 s samples were acquired to ensure convergence in mean statistics.

Longer samples (ts > 300 s) were not possible as the drift of the ambient temperature dur-

ing acquisition will add artificial large scale variation. The acquisition rate was 125 kHz,

and a low pass filter of 30 kHz was applied before the data was recorded to avoid aliasing.

The data is also low-pass filtered before the processing to eliminate high frequency noise.

To calculate the longitudinal integral length scales Luu,x, one either integrates the corre-

lation function Ruu,x or uses the streamwise turbulence kinetic energy spectrum E11(k)

as Luu,x = πE11(0)/(2u
′2) (see Tennekes and Lumley, 1972). It is noted that the spec-
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trum and the correlation function is a Fourier pair. Yet the zero frequency asymptote

of the digitally acquired spectrum has large uncertainty and the integral length scale is

usually extrapolated from a number of the low frequency spectral estimates. For the

other method, the integral of the correlation function cannot be taken to infinity, and

thus an upper limit of the integration has to be chosen. Moreover, this upper limit of the

integration is not well defined, and the integration result using different upper limit varies

as large as 20% (ONeill et al.). We therefore seek a way to correct the lower frequency

range of the spectra before estimating the longitudinal integral length scale Luu,x.

Several models have been proposed for estimating the power spectra density E(k), and the

most frequently used is the von Kármán model, which can be written in a one-dimensional

form as

E11(k) =
2u′2Luu,x

π

1

{1 + [kLuu,xB(1/2, 1/3)/π]2}5/6 , (3.2)

where u′ is the turbulence r.m.s. velocity, k is the wavenumber defined as k = 2πf/U

(f is the frequency in time), and B is the beta function related to the Γ function by

B(1/2, 1/3) = Γ(1/2)Γ(1/3)/Γ(5/6). The previously mentioned G-model (in Chapter 2)

is not used because the Reynolds number in this study is relatively small, and the extent

of the inertial sub-range is less definite. Therefore, the extra degree of freedom in the

G-model introduces undesired errors sometime. In practice, an average of the spectra of

two packets of data is taken first, and use equation 3.2 to fit the data in a least square

sense. One example is given in figure 3.5, where it is shown that the small wavenumber

range of the original spectrum (black) is slightly tilted upward leading to a larger value

of E11(0). This effect is most obvious at locations close to the grid where x = 0.83m, but

much less further downstream. This method is used in section 3.2.5 to correct the lower

frequency part of the spectrum.

It is acknowledged that most spectrum models have potential flaws in the low frequency

range. There have been other models, e.g. Wilson (1998), where a two parameter spec-

trum model is proposed that allows more freedom in fitting the inertial range and inertial
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Figure 3.5: Example spectrum for grid 2 at centerline x = 0.83m.

sub-range of the spectrum. However, that model works well only in turbulent flows with

sufficiently large Reynolds numbers that has more decades of -5/3 slope, otherwise the ex-

tra parameter causes large uncertainties in the fitted spectrum. For the current study, the

Reynolds number is moderate so that models such as Wilson’s (1998) are not considered.

3.2 Results

3.2.1 Mean velocity

Before showing the measured vertical mean velocity profiles produced by the grids, we

refer to previous works that used wire gauzes to produce non-uniform mean flow profiles.

Following Taylor et al. (1949); McCarthy (1964), the streamwise velocity near the grid

(upstream denoted by “− 0”and downstream denoted by “ + 0”) can be related by

U+0

U−0

=
1 + αn − αnKn

1 + αn +Kn

, (3.3)
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where the subscript n denotes the layer number, αn is the refraction coefficient at layer

n, and Kn is the resistance coefficient of the grid, which can be calculated from

Kn =
rσn

(1− σn)2
, (3.4)

where σn is the local blockage ratio of the grid at layer n, and r is an empirical constant

in the range 0.65 < r < 1 (see McCarthy, 1964). Cornell (1958) reported a constant

value of r = 0.7 for the range 2, 000 < Re < 40, 000. For the current grids, the Reynolds

number based on U∞ = 10ms−1 and bar width w is calculated to be in the range 6, 000 to

20, 000. The value of r is therefore chosen to be r = 0.7 in this work. Although there are

other ways to calculate the value of Kn (as summarized in Karnik and Tavoularis, 1987),

equation 3.4 seems to give the best result at least for the current cases.

Finally, an empirical expression of the refraction coefficient at layer n of the grid is given

in both Taylor et al. (1949) and McCarthy (1964) as

αn = 1.1(1 +Kn)
−1/2, (3.5)

which was also concluded by these authors to be insensitive to Reynolds number.

In figure 3.6 (left), we present the vertical profiles of streamwise velocity U measured at

x = 0.83m and x = 4.13m for the original grids (i.e. with non-uniform CD as shown in

figure 3.3 a), together with the profiles calculated using equations 3.3 to 3.5 with r = 0.7.

Measurements were taken from the middle of the second layer up to the middle of the

seventh layer. Note that there was no trial-and-error involved in generating the velocity

profiles. The normalized profiles U/Uc (where Uc is the centerline mean velocity) are

presented because the measured incoming velocity (at the beginning of the test section)

is different from U−0 in equation 3.3 by a constant factor.

A wave-like deviation of the mean velocity profiles across these original grids is observed,

especially for grid 1 where the variation of CD is the largest. The non-uniform drag
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Figure 3.6: Vertical profiles of the normalized streamwise velocity U/Uc (symbols) and
equation 3.3 (dashed lines) for original (left column) and modified (right column) grids.
Empty symbols, x = 0.83m; filled symbols, x = 4.13m.
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coefficient CD of the vertical bars in the grid at each layer effectively modifies the local

blockage ratio and consequently the local mean velocity. Other than that, the shapes

of the velocity profiles generally follow the model, and the shape of the mean profiles

is maintained within the measurement range of approximately x/H = 1 to 4.5. This is

consistent with previous conclusions from the parallel wire-generated or plate-generated

shear flows (e.g. Rose, 1966; Champagne et al., 1970; Shen and Warhaft, 2000a).

The measurements behind the modified grids, as described in section 3.1.2, are given in

figure 3.6 (right). It is obvious that both grid 1 and 2 collapse better with the predicted

profile when the non-uniformity of CD is eliminated. This shows that the drag coefficient

indeed affects the mean velocity profile quite significantly. As for grid 3, the only modified

layer is the bottom one, which is outside the measurement range, and thus the mean

velocity profiles of the original and modified grids are almost identical. Again, these

results are obtained without trial-and-error, suggesting that equations 3.3 to 3.5 can

serve as a guideline for bespoke design of desired mean velocity profiles using our proposed

inhomogeneous multiscale geometries.

For the modified grids, the shape of the mean profiles is also maintained, in fact better

than that for the original grids. The absolute values of the averaged mean shear rate

|∂U/∂y| are 0.29 s−1, 2.97 s−1, and 4.99 s−1 for grids 1, 2, and 3, respectively. These

shear rates are rather small compared to those of Champagne et al. (1970) and Harris

et al. (1977). Nevertheless, higher shear rates could in theory be achieved by increasing

the gradient of blockage ratio σn of the grid, as long as σmax does not exceed the limit

required to avoid recirculations, e.g. σmax = 35% for the current case.

Figure 3.7 shows the mean velocity profiles along the streamwise direction downstream of

the modified grids measured at y = 0.25m, y = 0.46m and y = 0.66m with streamwise

step of Δx = 0.3m. The difference between the profiles at each y position indicates

the shear rate of the flow. The linear fit of the centerline profiles along x gives slopes

of 0.0092, −0.043, and −0.067, respectively, and it is concluded that the mean velocity
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Figure 3.7: Streamwise velocity profiles for modified (a) grid 1, (b) grid 2 and (c) grid 3,
at y = 0.25m (white), y = 0.46m (grey) and y = 0.66m (black).

is roughly constant along the streamwise direction. This also coincides with the self-

preserved velocity profiles observed in figure 3.6.

In the rest of the paper, only modified grids are discussed to exclude the unwanted velocity

variations caused by the non-uniform CD of the original grids.

3.2.2 Turbulence intensities

To begin this section, we present the turbulence intensities measured at different stream-

wise locations. The profiles of u′/U∞ and v′/U∞ are plotted along the centerline at

y = 0.46m in figure 3.8 (a). The decay of both u′ and v′ is obvious, and the value of v′ is

always smaller than u′ for each individual grid at all locations, and approximately follows
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Figure 3.8: Profiles of turbulence intensity u′/U∞ (empty symbols), v′/U∞ (filled symbols)
along (a) streamwise direction x at the centerline y = 0.46m, and (b) vertical direction
at x = 0.83m for grid 1 (square), grid 2 (circle), and grid 3 (triangle).

u′2 = 2v′2, which is consistent with many previous observations in various turbulent shear

flows (e.g. Champagne et al., 1970; Tavoularis and Corrsin, 1981; Garg and Warhaft, 1998;

Vanderwel and Tavoularis, 2014). The averaged ratio of u′2/v′2 throughout all x locations

along the centerline for grid 1, 2, 3 is 1.93, 1.90, 2.07, respectively. The value of u′/U∞ for

all grids at different y locations drops from approximately 7% to 2% along the streamwise

direction, and it seems for grid 3 that the streamwise turbulence level u′ remains higher

than the others. This might be explained by the higher drag coefficient CD as shown in

figure 3.3, and the larger mean shear rate of grid 3, which generates turbulence intensity

through production and keeps the turbulence level higher than the other grids.

In figure 3.8 (b), we plot u′/U∞ and v′/U∞ along the shear direction y at x = 0.83m. Both

components of the turbulence profiles show a gradient along the shear direction, and the

largest value of u′/U∞ reaches above 10% even at x = 0.83m (or x/H = 0.9). This is quite

large compared to conventional grid generated turbulence, where the turbulence decays

rapidly downstream of the grid, and it suggests that it is possible to increase the turbulence

level using the vertical bars. This can be of practical importance for experiments that

require large turbulence intensities at a distance downstream of the grid. From this point

of view, it is desired to have a quantitative scaling relation for u′(x, y).
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Figure 3.9: Schematic sketch to show the scaling method of the normalized turbulence
intensities along y. Different lines in (a) and (b) represent the streamwise turbulence
intensity developments behind different layers of the grid.



118 Chapter 3. Turbulent shear flow

0.05 0.1 0.15 0.2 0.25 0.3
xpeak
∗

0.05

0.1

0.15

0.2
0.25
0.3

0.35
0.4

(u
′ /
U
β
(C

D
w

n
/
x
p
ea

k
∗

)−
1
/
2
)2

Fit
Measured, Grid 1

(a)

Increasing y

0.05 0.1 0.15 0.2 0.25 0.3
xpeak
∗

0.05

0.1

0.15

0.2
0.25
0.3

0.35
0.4

(u
′ /
U
β
(C

D
w

n
/
x
p
ea

k
∗

)−
1
/
2
)2

Fit
Measured, Grid 2

(b)

Increasing y

0.05 0.1 0.15 0.2 0.25 0.3
xpeak
∗

0.05

0.1

0.15

0.2
0.25
0.3

0.35
0.4

(u
′ /
U
β
(C

D
w

n
/
x
p
ea

k
∗

)−
1
/
2
)2

Fit
Measured, Grid 3

(c)

Increasing y

Figure 3.10: Scaling of the normalized turbulence intensity profiles u′(y) measured at
x = 0.83m for (a) grid 1, (b) grid 2, (c) grid 3, respectively.
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To scale the turbulence intensity profiles u′(y) at given x closely downstream of the grid,

we refer to the work of Gomes-Fernandes et al. (2012) mentioned in the introduction. The

streamwise turbulence intensity level therefore depends on the streamwise development of

the turbulence behind each layer of the grid, as shown in figure 3.9 (a), where the turbu-

lence level and peak location varies from layer to layer. This peak location xpeak is different

for different layers but scales with the wake interaction length scale xpeak
∗

, which is itself

different at different layers n, as illustrated in figure 3.9 (b). Note that the ratio of x/xpeak
∗

is not necessarily one as discussed in the previous chapter, but the fact that the vertical

bars at different layers are self-similar guarantees the ratio of x/xpeak
∗

is the same at differ-

ent layers. The results of (Gomes-Fernandes et al., 2012) also suggest that the turbulence

intensity at the peak location can be collapsed in the form (u′/Un)β(CDwn/x
peak
∗

)−1/2,

where β = 2.88 is a constant corresponding to the wake development with laminar in-

coming flow condition, and Un is the mean velocity at layer n. Figure 3.9 (c) shows how

the streamwise turbulence intensities u′(x, y)/Un can be collapsed.

The current grids are designed such that the xpeak
∗

at all levels n are smaller than the first

measurement location x = 0.83m (see figure 3.4 b), and all the data are therefore in the

decay region x/xpeak
∗

> 1. We now attempt to use the scalings given in figure 3.9 (c) to

establish the y-profile of u′ at x = 0.83m.

For a streamwise location x = xm, (u
′/Un)β(CDwn/x

peak
∗,n )−1/2 is a function of xm/x

peak
∗,n ,

where xpeak
∗,n varies along the y direction, as shown in figure 3.4. If we assume this function

to be a power law, i.e. (u′/Un)
2β2(CDwn/x

peak
∗,n )−1 ∼ (xm/x

peak
∗,n )b, and fit our measure-

ments of u′(y)/Un obtained at xm = 0.83m, we have b = 1.47, 1.26, and 1.14 for grids 1,

2, and 3, respectively. It can be observed in figure 3.10 that the fitted power law functions

(dotted line) matches our measurements quite well.

This scaling method quantitatively relates the downstream turbulence intensities with the

geometry of the grid bars, i.e. CD, wn, and gn. When the mean shear rate is weak and

the streamwise location x = xm is not too far downstream of the grid but xm/x
peak
∗

> 1,
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Figure 3.11: Measured (white symbols) u′(y)/U∞ at x = 0.83m for (a) grid 1, (b) grid
2, (c) grid 3, respectively. Red symbols are calculated values of u′(y)/U∞ using the top,
center and bottoms measurements.

this scaling method allows us to estimate the vertical profile at a streamwise location xm

with three u′(y) measurements to fit the power law function. As an example, we take

three points from the bottom (y = 0.15m), center (y = 0.46m), and top (y = 0.76m)

of our turbulence intensity profile u′(y) at xm = 0.83m, and then apply the scaling

method mentioned above to calculate the turbulence intensity u′ at other y locations.

The fitted exponents b are 1.49, 1.3, and 1.18 for grid 1, 2, and 3, respectively, similar to

the values fitted using all measurement points. The y profiles of u′/U∞ calculated from

(u′/Un)
2β2(CDwn/x

peak
∗,n )−1 ∼ (xm/x

peak
∗,n )b are shown in figure 3.11, and the difference from

measured values are all small.

3.2.3 A general grid design approach

Based on the mean velocity model from section 3.2.1, and the turbulence intensity scaling

from section 3.2.2. We now outline a possible procedure to design a grid to produce a

flow with bespoke mean velocity and turbulence profiles.

First, the desired mean velocity profile Utarget,n is used as an input for equation (3.3), (3.4),

and (3.5) to solve for the blockage ratio σn, subject to σn < 0.4 to prevent recirculation.

The average blockage ratio σn can be set to limit the pressure drop, which is σn =
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Figure 3.12: Calculated mean velocity profile to demonstrate the maximum mean shear
rates achievable in a wind tunnel test section for the case of a uniform shear flow (solid
line), and the case where only part of the test section is of interest (dashed line).

0.25 in this case. The problem can be solved by minimizing the error E1 between the

calculated value of Un and the desired value Utarget,n, which can be defined as E1 =∑
[Un(σn)− Utarget,n]

2. Therefore the problem becomes to find

min E1(σn),

s.t. σn < 0.4, σn = 0.25. (3.6)

This can be realized using the fmincon routine in MATLABTM. For a uniform shear

flow across the test section, the maximum mean shear rate one can achieve using this

method depends on the physical size of the wind tunnel because the maximum blockage

ratio is always limited by σ ≤ 0.4, and the maximum variation of blockage ratio is

(Δσ)max = 0.4, which constrains the maximum variation of the mean velocity ΔU . The

mean shear rate dU/dy will therefore become larger for a smaller physical domain. For

example, for a uniform shear flow, the maximum mean shear rate could be achieved in

the current facility (with test section of height H = 0.91m) is approximately 9 s−1, but

higher mean shear rates could be achieved if only part of the test section is of interest, as

demonstrated in figure 3.12.
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Sn a b
Grid 1 0.29 3.93 1.47
Grid 2 2.97 2.32 1.26
Grid 3 4.99 1.78 1.14

Table 3.2: Variation of the fitting constants a and b at different mean shear rates, fitted
using measurements at x = 0.83m along the y direction.

Secondly, as shown in the previous section, at a streamwise location x = xm, such that

xm/x
peak
∗

> 1, we have the scaling relation for the turbulence intensity profile along the

y direction u′(y) that (u′/Un)
2β2(CDwn/x

peak
∗,n )−1 = a(xm/x

peak
∗,n )b, where β = 2.88, and

CD = 2.9 for the current study. The turbulence intensity along the y direction can be

therefore expressed as u′/Un = f1(β, CD, wn, xm, x
peak
∗,n , a, b), where wn is the width of the

vertical bars at layer n, a and b are constants, and xpeak
∗,n is the interaction length scale at

layer n. The width of the grid bar wn is determined by wn = f2(σn, cn, ∗) (where cn is the

number of the grid bars at layer n, and ∗ stands for other geometry details of the grid such

as the overall width W and thickness of the horizontal bars, see equation 2.1). Since the

gap between adjacent vertical bars is defined by gn = W/cn, the interaction length scale

xpeak
∗,n = 0.21g2n/(αCDwn) (α is a constant characterizing the incoming flow condition) can

be written as xpeak
∗,n = f3(cn, CD, ∗). Finally, we have u′ = f(Un, β, CD, σn, cn, xm, a, b, ∗).

Given a target shape of the turbulence rms velocity profile u′

target,n, the solution of the

problem might be solved by minimizing the error E2 =
∑

[u′ − u′

target,n]
2. Note that the

values of a and b cannot be determined analytically based on the current measurements,

but their values seem to vary as a function of the mean shear rate Sn for a profile u′(y)

measured at a given streamwise location xm, as shown in table 3.2. This table gives a

possible range of the values of a and b, which might be used as a reference to set up the
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optimization problem. The problem becomes the minimization of

min E2(β, CD, σn, cn, xm, a, b, ∗),

s.t. a ∈ R, b ∈ R, a = fa(Sn), b = fb(Sn),

cn ∈ Z, cn ∈ [lb, ub], (3.7)

where a and b are expressed as functions of the mean shear rate. The solution of the

problem fully determines the geometry of the grid, and the target turbulence rms velocity

profile u′(y) could be achieved at a streamwise location xp/x
peak
∗

> 1. The exact location

of xp cannot be predicted yet, because the exact values of a and b cannot be prescribed

explicitly based on the current results. However, this procedure does go some way to

ensure that the target profile is produced somewhere downstream of xpeak
∗,n . The lower

bound lb of cn, is set to 2, which ensures that each layer has at least two vertical bars.

The upper bound ub of cn is determined using equation (3.1) and varies between setups.

For example, assuming a 10mm streamwise thickness of the grid, the minimum width of

the vertical bar is wmin = 0.017 given an aspect ratio AR = 0.6, which gives the maximum

possible cn for each layer.

Since the number of bars cn is restricted to be integers, the problem is solved by Mixed

Integer Non-Linear Programming (MINLP), which is an active subject of research in

optimization. There are many solvers available, and the results can be compared between

different algorithms to give confidence. In principle, a homogeneous shear seems possible

using this method where a linear profile of Utarget,n and a constant u′

target,n are used as

input to each one of these steps. This approach gives the framework of the grid design

method, and the constraints in the problem can be improved and broadened to a wider

range of turbulent shear flows with further studies.



124 Chapter 3. Turbulent shear flow

3.2.4 Reynolds shear stress

In preparation of the model that we develop in section 3.2.5 to describe the streamwise

evolution of the profiles u′(y) from x = 0.83m to larger values of x, we study in this

section the streamwise development of the shear correlation coefficient ρ ≡ −uv/u′v′

given in figure 3.13 (a). It can be observed that, except for grid 1, all values decrease

monotonically with streamwise distance. It is interesting to explore if there is a scaling

relation that collapses these data. We first look at the dimensionless time scale τ ∗ ≡
(x/Uc) |Sn| = (x/Uc)

∣∣∣∂Un/∂y
∣∣∣ (where Uc is the streamwise mean velocity averaged over

the x along the centerline at y = 0.46m) used in previous studies as this is an important

parameter to describe the evolution of shear flows. The results are shown in figure 3.13

(b), and Un and Sn ≡ ∂Un/∂y are the averages of values measured at x = 0.83m and

x = 4.13m. It is clear that the data does not collapse, especially for grid 2 and 3. If we

use a modified local dimensionless time scale defined as τ ≡ [(x − xpeak
∗

)/Un] |Sn|, it can
be seen that ρ is collapsed fairly well for τ ≥ 0.8. This definition of τ replaces Uc with

Un, and includes the wake interaction length scale xpeak
∗

as the virtual origin, since xpeak
∗

marks the starting location of decay that varies from layer to layer for each grid. This

new definition of τ is equivalent to a translation of τ ∗ for regular grids, where xpeak
∗

is

constant at all positions. The results can be compared between figure 3.13 (b) and (c),

where the profiles of ρ of grids 2 and 3 collapse much better with τ .

In several previous experiments (e.g. Rose, 1966; Harris et al., 1977; Tavoularis and

Corrsin, 1981; Tavoularis and Karnik, 1989; Nedić and Tavoularis, 2016) it has been

shown that the value of the shear correlation coefficient ρ increases downstream along

the centerline and eventually reaches a magnitude of approximately 0.45 to 0.5. For the

current results, it is interesting that the shear coefficient ρ changes sign for grids 2 and

3, but not for grid 1. Figures 3.13 (b), (c) suggest that the flow is greatly disrupted by

the initial conditions that have an effect up to about τ = 0.8, downstream of which the

Reynolds shear stress starts to play a significant role. This makes sense by comparing
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Figure 3.13: Streamwise development of −uv/u′v′ for grid 1 (square), grid 2 (circle) and
grid 3 (triangle) along the streamwise direction at y = 0.25m (white), y = 0.46m (grey)
and y = 0.66m (black) versus (a) streamwise location x, (b) local dimensionless time
scale τ ∗ ≡ (x/Uc) |Sn|, and (c) local dimensionless time scale τ ≡ [(x − xpeak

∗
)/Un] |Sn|

with virtual origin xpeak
∗

.
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Figure 3.14: Vertical profiles of −uv/u′v′ for grid 1 (square), grid 2 (circle) and grid 3
(triangle) at (a) x = 0.83m (empty symbols) and (b) x = 4.13m (filled symbols).

y=0.26m y=0.46m y=0.66m
ρv ρs CI ρv ρs CI ρv ρs CI

Grid 1 0.1146 0.113 0.0016 0.1993 0.1989 0.0004 0.2531 0.2534 0.0003
Grid 2 0.102 0.1017 0.0003 0.1633 0.1594 0.0038 0.1378 0.1335 0.0042
Grid 3 0.1163 0.1058 0.0103 0.1102 0.1021 0.0079 0.0989 0.0923 0.0065

Table 3.3: Comparison of shear correlation coefficients measured from independent ex-
priments at x = 0.83m and different y locations. The 95% confidence interval CI is
calculated as CI = 1.96cov(ρv, ρs)/

√
2, where ρv, ρs is the shear correlation coefficient

measured from the vertical and streamwise profiles, respectively, and cov(ρv, ρs) is the
covariance of ρv, ρs.

with grid 1 whose shear coefficient remains positive all the time and close to zero. Even

though the time scale τ is not large enough to show the expected constant value of ρ in

the range 0.45 < |ρ| < 0.5, it can be nevertheless observed that the decrease of ρ with

increasing τ slows down after τ = 1, which is consistent with previous literature.

The shear correlation coefficients −uv/u′v′ along the y direction at x = 0.83m and x =

4.13m are shown in figure 3.14. The oscillatory behavior at x = 0.83m around−uv/u′v′ =

0 is most obvious as the probe moves behind the horizontal bars of the grid at every other y

locations. The large fluctuation of shear correlation coefficients with change of signs were

also observed in e.g. Rose (1966) in a streamwise location close to the grid (x/H = 1.33).
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The positive-valued data points in figure 3.14 (a) are from measurements taken at the

center of each layer (i.e. behind the vertical bars), which corresponds to the data at

x = 0.83m given in figure 3.13 (a). This also supports the assumption that direct effects of

the grid dominate in the region of τ < 0.8 as shown in figure 3.13. Table 3.3 gives the error

of the shear correlation coefficients from two independent experiments to give confidence

in the measurement, indicated by the 95% confidence interval CI = 1.96cov(ρx, ρy)/
√
2,

where cov(ρsρv) is the covariance of ρs, ρv measured from the streamwise and vertical

profiles, respectively. In figure 3.14 (b), it is observed that the magnitude of the shear

coefficients increases from grid 1 to grid 3 (with increasing shear rate), and the variation of

−uv/u′v′ along the y direction is much reduced comparing to that measured at x = 0.83m.

This is consistent with the streamwise profiles discussed above, and previous observations

made by Rose (1966); Garg and Warhaft (1998); Nedić and Tavoularis (2016).

3.2.5 A simplified model for turbulent kinetic energy

To look at the evolution of the y profiles of u′ along the streamwise direction x, we

have to consider the turbulence production by the mean shear rate, and we propose

a simplified model to describe how u′(x, y) evolves in the x direction downstream of our

grids. To begin with, we neglect the pressure, transport, and viscous diffusion terms in the

turbulent kinetic energy equation. HGC estimated the significance of the transport term

by showing that the ratio |(∂u3/∂x)/(Uc∂u2/∂x)| is smaller than 0.03 in their experiment,

and concluded that the transport term can be omitted. In the current study, this ratio

decreases rapidly with streamwise distance away from the grid, and the maximum values

on the centerline (at x = 0.83m) are 0.0105, 0.0102, 0.0113 for grids 1, 2, 3, respectively.

We therefore assume that the transport is relatively small compared to the advection

term, and that it can be neglected.

With these assumptions, we keep only the production and dissipation terms in the right

hand side of the kinetic energy equation following HGC and Tavoularis and Corrsin (1981),
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i.e.

U
∂k

∂x
= P − ε. (3.8)

Then we write P ∼= −uvSn = ρSnu
′v′ = ρ∗Snu

′2, where Sn ≡ ∂Un/∂y is the local mean

shear rate, and ρ∗(x) = ρ(x)/
√
2 because v′ = u′/

√
2 as discussed in section 3.2.2. By

assuming that the transverse r.m.s. fluctuating velocity w′ equals v′, i.e. w′ = v′, the

turbulent kinetic energy can then be written as k = 1
2
(u′2 + 2v′2) = u′2. Finally we write

the dissipation ε as ε = Cε
k3/2

L
= Cε

u′3

L
, where L = Luu,x(x) is the longitudinal integral

length scale.

Equation 3.8, for a given n or y (therefore omitted in the equations for simplicity), now

becomes

U
∂u′2

∂x
= ρ∗(x)Su′2 − Cε(x)

L(x)
u′3. (3.9)

To continue with a quantitative description of u′(x, y), we write equation 3.9 at given n

as

∂k

∂x
+ ξ(x)k = ζ(x)km, (3.10)

where ξ(x) = −ρ∗(x) S
U
, ζ(x) = − Cε(x)

UL(x)
, and m = 3/2.

The solution of equation 3.10 is given by

k =

(
(1−m)

∫
e(1−m)

∫
ξ(x)dxζ(x)dx+ C

e(1−m)
∫
ξ(x)dx

)1/(1−m)

=

⎛
⎝−1

2

∫ x

xp
e
−1/2

∫ x
xp

−ρ∗S/Udx
(−Cε

UL
)dx+ C

e
−1/2

∫ x
xp

−ρ∗S/Udx

⎞
⎠

−2

, (3.11)

where we write xp ≡ xpeak
∗

for simplicity. To close equation 3.11, we need the expressions

of ρ∗(x), L(x), Cε(x), and the integration constant C. Since ρ(τ) collapses well in the way

shown in figure 3.13 (c), we fit ρ∗ = ρ/
√
2 using a second order polynomial (dashed lines)

as shown in figure 3.15 to calculate ρ∗(x) since xpeak
∗

, Un, and Sn in τ are known at given
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Figure 3.15: Streamwise profiles of ρ∗ for grid 1 (square), grid 2 (circle) and grid 3
(triangle) at y = 0.25m (white), y = 0.46m (grey), and y = 0.66m (black) with second
order polynomial fit (dashed lines).

y. Here we fit the data with the centerline values of each grid (i.e. grey symbols), and the

result captures the evolution of ρ∗ quite well. This fitted function is then used to prescribe

ρ∗(x) given local constants xpeak
∗

, Un, and Sn. This fitting method inevitably carries larger

error for grid 1 (see figure 3.15) due to the scatter of ρ∗(x) at τ ≈ 0. But the mean shear

rate produced by grid 1 is approximately 0, and the power (−0.5S/U
∫ x

xp
−ρ∗dx) in the

exponential is effectively 0 too, which makes the error for grid 1 insignificant in equation

3.11.

Integral length scale

Now we look at the development of the longitudinal integral length scale L as a function

of the streamwise location x for all grids, see figure 3.16. The length scales are calculated

using the corrected spectra as discussed in section 3.1.3. It is obvious that L increases

with the streamwise location monotonically. The value of L for a given grid at different

y locations seems to grow linearly at a rate which is practically similar at all y locations.

This also implies that L increases approximately linearly against the local dimensionless

time scale τ as well, which is consistent with Champagne et al. (1970) and Harris et al.

(1977).
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Figure 3.16: Longitudinal integral length scale L profiles for grid 1 (square), grid 2 (circle)
and grid 3 (triangle) at y = 0.25m (white), y = 0.46m (grey) and y = 0.66m (black)
versus the streamwise location x.
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Figure 3.17: Longitudinal integral length scale L profiles for grid 1 (square), grid 2 (circle)
and grid 3 (triangle) along the y direction at x = 0.83m (filled symbols) and x = 4.13m
(empty symbols).
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Figure 3.18: Profiles of longitudinal integral length scale L for grid 1 (square), grid 2
(circle) and grid 3 (triangle) along the centerline with linear fitted results (dashed lines).

By looking at the profiles along y in figure 3.17, it seems that L remains roughly constant

at x = 0.83m. At x = 4.13m, the value of L increases from grid 1 (square) to grid 3

(triangle). This makes sense if L ∝ τ , as τ increases with the mean shear rate S at given

x and U .

From figure 3.16 and 3.17, we notice that the values of L at y = 0.66m are smaller

for grid 1 and larger for grid 3, yet the values calculated at this location from the two

independent measurements are the same (as shown in figure 3.16 and 3.17), which rules

out the possibility of measurement/calculation error. The reason for this larger value is

not completely clear, but might have to do with the different inlet grid conditions and

the related different mean shear rates.

For the purpose of the current discussion, we ignore this outlier, and assume that the rate

of increase of L for a given grid is independent of y. We therefore estimate the streamwise

evolution of L based on its centerline profile only. The fitted results are given in figure

3.18, where all three profiles show a linear increase with streamwise distance x away from

the grid. This is also consistent with previous works such as Champagne et al. (1970)

and Harris et al. (1977). We write L(x) = px+ q, where p, q are fitting coefficients. The

fitted constants are p = 0.0034, 0.0056, 0.012, and q = 0.024, 0.019, 0.011 for grid 1, 2, 3,

respectively.
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along the centerline with linear fitted results (dashed lines).
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Figure 3.20: Ratio of ε and modeled term (cx+ d)/(px+ q)u′3 grid 1 (square), 2 (circle)
and 3 (triangle), respectively, along the centerline.

Dissipation coefficient Cε

The behavior of Cε in turbulent shear flow with uniform mean shear rate has been studied

by Nedić and Tavoularis (2016), where they showed different stages of development with

respect to τ . In figure 3.19, we show the streamwise development of Cε = εL/u′3 along

the centerline for all three grids. It can be observed that all three profiles increase linearly

as Cε = cx + d, where the coefficients c, d are fitted in a least square sense. The fitted

constants are c = 0.088, 0.15, 0.11, and d = 0.51, 0.41, 0.45 for grids 1, 2, 3 respectively.

This linear increase of Cε with x is in agreement with Nedić and Tavoularis (2016) in their

initial region.
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To check the quality of our linear fits of Cε(x) and L(x), we plot the ratio ε/(Cεu
′3/L)

as ε/((cx + d)u′3/(px + q)) in figure 3.20. It is observed that this ratio is within ±5% of

unity for all three grids, with the exception of the first point.

Predicting streamwise evolution

With the fitted functions of ρ∗(x), L(x), and Cε(x), we can now rewrite equation 3.11.

Using k = u′2 we have

u′ =
e

S
2U

∫ x
xp

ρ∗(x)dx

1
2U

∫ x

xp
e

S
2U

∫ x
xp

ρ∗(x)dx cx+d
px+q

dx+ C

=
e

S
2U

[P ∗(x)−P ∗(xp)]

1
2U

e
S
2U

[P ∗(x)−P ∗(xp)][dp−cq
p2

log( px+q
pxp+q

) + c
p
(x− xp)] + C

(3.12)

where P ∗ =
∫
ρ∗dx, and the constant C = C(y) in equation 3.12 can be calculated from

the vertical turbulence intensity profile u′(y) at x = 0.83m.

Figure 3.21 shows the result of both the measured turbulence intensity profiles u′(x, y)/U∞,

and profiles calculated using equation 3.12, where S = Sn and U = Un. The vertical pro-

file measured at x = 0.83m (where the turbulence intensity is highest, i.e. the first profile

on the right) is used as initial values to calculate the constant C = C(n) so the collapse

of this profile is perfect. The fitted values of C at selected y locations are given in table

3.4. The measured streamwise profiles are plotted at their corresponding height y, and

are used to check the results calculated at different x locations. Each profile is separated

by Δx = 0.3m. Small discrepancies between the measured and calculated values are

observed, which might come from the neglected terms in equation 3.9 and the fitting

of the centerline profiles. Nevertheless, the results are in appreciable agreement up to

x = 2.33m, which is equivalent to x/H = 2.6, where H is the height of the grid (i.e.

height of the tunnel). For grid 3, it is noticed that the discrepancy between measured

turbulence intensity and modeled result at x = 4.13m (first profile on the left) is the
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Figure 3.21: Turbulence intensity profiles u′/U∞ for (a) grid 1 (square), (b) grid 2 (circle),
and (c) grid 3 (triangle). Empty symbols are vertical profiles measured at x = 0.83m and
x = 4.13m. Cross symbols are streamwise profiles measured at given y location. Dashed
red lines are predictions calculated using the vertical profile and centerline profile.
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y (m) Grid 1 Grid 2 Grid 3
0.66 0.82 0.82 0.29
0.46 0.67 0.67 0.31
0.25 0.43 0.50 0.33

Table 3.4: Fitted constant C in equation 3.12 at selected y locations for all grids.

largest, especially at higher y locations. This can be partially explained by the discussion

in section 3.2.5 about L increasing faster for grid 3 around y = 0.7m. Also, stream-

wise turbulence intensity developments of shear flows such that u′/U∞ stops decaying (or

starts increasing) at larger τ have been reported by e.g. Rohr et al. (1988); Tavoularis

and Karnik (1989). In such case, flow characteristics such as Cε, ρ, and L all evolve in

different ways compared to their initial development as discussed by Nedić and Tavoularis

(2016). A more comprehensive model of the problem will require measurements at further

stages of the turbulent kinetic energy evolution in terms of τ . Nevertheless, the current

method provides a practical solution for the near-region turbulent kinetic energy develop-

ment of our multiscale grid generated shear flow, and can be of practical use in the study

of turbulent shear flows and engineering applications.

3.2.6 Taylor microscales

In this section we report Taylor microscale values calculated from λ = u′/((∂u/∂x)2)1/2.

Figure 3.22 (a) gives the streamwise development of λ versus x. It can be observed that

λ increases with x in all cases. This agrees well with several previous experiments such as

Rose (1966); Champagne et al. (1970). Tavoularis and Karnik (1989) also showed a region

τ ∗ > 16, where λ remains constant against τ . This is not observed here due to the small

mean shear rates. We also report the local Reynolds number Reλ = u′λ/ν along the x

direction, where ν is the kinematic viscosity. Their values decrease monotonically for grid

1 and grid 2. For grid 3, a mild increase after x = 2.5m is observed, which corresponds
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Figure 3.22: Streamwise profiles of (a) Taylor microscale λ, and (b) local Reynolds number
Reλ for grid 1 (square), grid 2 (circle) and grid 3 (triangle) at y = 0.25m (white),
y = 0.46m (grey) and y = 0.66m (black).

2 4 6 8 10
x 10−3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y
(m

)

λ (m)

Figure 3.23: Taylor microscale λ profiles for grid 1 (square), grid 2 (circle) and grid 3
(triangle) along the y direction at x = 0.83m (filled symbols) and x = 4.13m (empty
symbols).

to its higher turbulence intensity u′ (see figure 3.8 a), and the larger value of λ (see figure

3.22 a). This is in agreement with the observation of Nedić and Tavoularis (2016) where

they showed an increase of Reλ after τ ∗ > 4.5.

Along the shear direction y, Rose (1966) reported decreasing values of λ with increasing

local mean velocity, whereas Champagne et al. (1970)showed roughly constant values of

λ along the shear direction. The shear rates of the two cases are similar, i.e. ∂U/∂y =

13.6 s−1 and 12.9 s−1, respectively, so it seems the shear rate is not the reason for this

difference. Note however, Rose (1966) used wire gauze with different spacings along the
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Grid 1 Grid 2 Grid 3

x(m/s) 0.83 2.33 4.13 0.83 2.33 4.13 0.83 2.33 4.13
x/H 0.91 2.55 4.52 0.91 2.55 4.52 0.91 2.55 4.52
U/U∞ 1.006 1.012 1.011 1.004 1.004 0.996 0.999 0.987 0.979
u′/U∞ 0.07 0.031 0.021 0.068 0.031 0.021 0.070 0.033 0.025
Reλ 153.4 119.3 111.4 143.6 104.1 80.06 142.3 119.3 111.4

−uv/u′v′ 0.199 0.065 0.095 0.159 -0.053 -0.131 0.102 -0.166 -0.296
u′/v′ 1.41 1.37 1.39 1.40 1.37 1.36 1.44 1.42 1.46

Luu,x/Lvv,x 2.12 1.84 1.58 1.98 1.89 1.67 1.96 1.94 2.12
(∂v/∂x)2

(∂u/∂x)2
0.941 1.071 1.091 0.938 1.074 1.091 0.963 1.099 1.129

Table 3.5: Summary of centerline turbulence characteristics at different streamwise loca-
tions for different grids at ReD = 8500 based on the width of the vertical grid bar.

shear direction as a generator, while Champagne et al. (1970) used parallel plates with

equal spacing but different local blockage ratios to generate the shear flow. There are no

more data available for a more comprehensive conclusion, but the current study is similar

to that of Champagne et al. (1970), in that the layer height is constant with varying local

blockage ratios, and therefore it might be expected to have a roughly constant y-profile

of λ. The results of the Taylor microscale λ along the y direction at x = 0.83m and

x = 4.13m are given in figure 3.23, and it indeed seems roughly constant.

3.2.7 Flow isotropy

Having shown the streamwise development of turbulence intensities and length scales,

we now examine the isotropy of the flow. Some of the results are given in table 3.5

at different x locations along the centerline at y = 0.46m. The small scale isotropy

indicator (∂v/∂x)2/(∂u/∂x)2 seems to suggest that the flow is anisotropic as the ratio is

much smaller than the isotropic value of 2, even though they are increasing along the x

direction. These results are in agreement with previous observations made by Shen and

Warhaft (2000b) and Schumacher (2001).
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It is interesting that the results close to the grid suggest large scale isotropy of the flow such

that Luu,x/Lvv,x = 2, but u′/v′ ≈ 1.4 on the other hand. These values are maintained best

by grid 3 if we compare the values at different streamwise locations in table 3.5. Intuitively,

the shearing stress is expected to strain the large scale structure along the mean shear

direction and impose anisotropy to the flow, which seems to counter our observation that

Luu,x/Lvv,x = 2. Similar observations have been reported before, for example Rose (1966)

showed Luu,x/Luu,y = 2 and u′/v′ ≈ 1.5 in a turbulent shear flow generated by a parallel

wire grid, and Tavoularis and Corrsin (1981) reported Luu,x/Lvv,x = 4.34 with u′/v′ ≈ 1.4

in a parallel plate generated turbulent shear flow. These observations seem to suggest

that the ratio of Luu,x/Lvv,x and u′/v′ reflect different aspects of anisotropy of the flow,

and do not need to take their isotropic values concordantly.

3.2.8 Transverse homogeneity

The transverse homogeneity of the shear flow is discussed in this section. The mean

velocity and turbulence intensity profiles are given in figure 3.24 (a) and (b), respectively,

measured at x = 0.83m (or x/H = 0.91, open symbols) and x = 4.13m (or x/H = 4.52,

filled symbols) across the center of the grid at y = 0.46m or y/H = 0.5. From figure 3.24

(a), it is observed that the transverse profiles of the streamwise mean velocity are more

homogeneous closer to the grid, whereas the vertical mean velocity is more homogeneous

further downstream (filled symbol with dashed line in the inserted figure). A sinusoidal

variation seems to be present for the streamwise mean velocity profiles measured at x =

4.13m, and the profiles seem to be symmetric about the center plane z = 0m, although

the variations are all within 8%U∞. For the mean velocity profiles of V/U∞, the sinusoidal

variation is also observed symmetric about the center plane, and the amplitude is smaller

(within 5%U∞). The symmetry is due to the alignment of the vertical bars at z = 0m,

and might be reduced by arranging the vertical bars in a staggering pattern.

This symmetry is also observed in the transverse profiles of streamwise turbulence inten-
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Figure 3.24: Transverse profiles of (a) mean velocity U/U∞ (symbols with solid line)
and V/U∞ (inserted figure, symbols with dashed line); (b) turbulence intensity u′/U∞

(symbols with solid line) and v′/U∞ (symbols with dashed line) across the center of the
grid where y/H = 0.5.

sity u′/U∞ at x = 0.83m, as shown in figure 3.24 (b) with open symbol and solid line.

Nevertheless, the variation of the turbulence intensity is within 1%U∞. The transverse

profiles of v′/U∞ seems to be more homogeneous in all cases. We therefore further quan-

tify the homogeneity of the streamwise properties in the transverse direction, referring to

the criteria proposed by Corrsin (1963), namely

∂Lu/∂z � 1, (3.13a)

(Lu/λ)∂λ/∂z � 1, (3.13b)

(Lu/u2)∂u2/∂z � 1. (3.13c)

The results are given in figure 3.25 for measurements taken at x = 0.83m (open symbols),

and x = 4.13m (filled symbols).

The values of the homogeneity criteria, as shown in figure 3.25, are all smaller at the

streamwise location closer to the grid. The values calculated at x = 0.83m are all within

±0.05 as seen in figure 3.25 (a-c). These figures suggest that the transverse homogeneity

of the shear flow is better at x = 0.83m, or x/H = 0.91, which is a nice trait as the

turbulence intensity level is higher in this region.
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Figure 3.25: Homogeneity of the transverse profiles for grid 1 (square), grid 2 (circle),
and grid 3 (triangle) at x = 0.83m (or x/H = 0.91, open symbols) and x = 4.13m (or
x/H = 4.52, filled symbols) across the center of the grid at y/H = 0.5.
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Figure 3.26: Turbulence spectra E11(k) at four x locations along the centerline at height
y = 0.46m for grid 1 (a, b, c), grid 2 (d, e, f), and grid 3 (g, h, i), compensated for η, λ,
and L, respectively.

3.2.9 Spectra

The spectra for all three grids are presented here at four streamwise locations, namely

x = 1.13m, 2.03m, 2.93m, 3.83m. The Reynolds number is in the range of 70 < Reλ <

190. First of all, considering grid turbulence, the one dimensional spectra are expected

to collapse at corresponding range when normalized with Luu,x, λ, and η, respectively.

Figure 3.26 shows the spectra measured at different x locations along the centerline at

height y = 0.46m. It shows that the spectra collapse well in the small wavenumber range

when normalized with L, and in the large wavenumber range when normalized with η.
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Figure 3.27: Turbulence spectra E11(k) at several y locations compensated for L at (a)
x = 0.83m, and (b) x = 4.13m.

This is consistent with those conclusions for homogeneous isotropic turbulence.

It is also observed from figure 3.26 such that for all scaling methods, the quality of collapse

improves from grid 1 to grid 3, and it is interesting that for grid 3, the integral length

scale Luux seems to collapse the spectra at all wave numbers. The reason for this is not

exactly clear.

When the spectra of grid 3 at different y locations are plotted together, as shown in figure

3.27, the collapse is not observed even when compensated using the longitudinal integral

length scale Luu,x, and the difference seems to increase with streamwise distance. These

observations suggests the dependency of E(k) on the initial conditions of the grid, but

this dependency cannot be quantified at the moment.

3.3 Summary

In this chapter a new class of inhomogeneous multiscale grids is proposed and the turbulent

shear flows generated by these grids are investigated using hot-wire anemometry. There

are three major advantages of such grids in generating turbulent shear flows:

(i) Generation of a desired mean velocity profile is possible by optimizing the blockage
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ratio profile σn, while maintaining a constant CD profile of the vertical bars. The drag

coefficient of the vertical bars was found to affect the mean velocity profiles significantly,

and it is therefore important to maintain a constant CD. The mean velocity model after

Taylor et al. (1949) and McCarthy (1964) based on the local blockage ratio σn was shown

to agree with our measurements, with mean shear rates of 0.29 s−1, 2.97 s−1, and 4.99 s−1

for grids 1, 2, and 3, respectively. The maximum possible mean shear rate generated by

these grids depends on the size of the test facility as the maximum local blockage ratio is

always constrained by σn < 0.4.

(ii) High turbulence intensities can be generated simultaneously with the desired mean

velocity profile. The maximum turbulence intensities generated by the present grids are

of the order 10%U∞, which is much larger than those generated by previously reported

passive shear generators, and it seems possible to prescribe the shape of the turbulence

intensity profile. From the scalings proposed by Gomes-Fernandes et al. (2012), and

by considering the non-uniform convection velocity, it was shown that at a streamwise

location x = xm such that xm/x
peak
∗

> 1 (xm/H = 0.9 for the current cases), the y-profiles

of turbulence intensity u′(y) scale as (u′/Un)
2β2(CDwn/x

peak
∗,n )−1 ∼ (xm/x

peak
∗,n )b, where

β = 2.88 is a constant, Un is the local (in y or equivalently n) mean velocity, and b is

a power law constant. Based on this scaling relation, it seems possible to optimize the

grid geometry to produce a desired shape of turbulence intensity profile. From the mean

velocity model and the scaling of turbulence intensity, a general approach to the design

of multiscale inhomogeneous grids is proposed and briefly discussed in section 3.2.3. The

methodology can be improved by adding more constraints to the optimization problem,

as new results of such experiments emerge.

(iii) For a given grid, the generated turbulence field can be described using one centerline

measurement along the streamwise direction and one vertical profile at x/xpeak
∗

> 1. For

the current study, the proposed model successfully predicts the y-profiles of u′ at different

x locations up to x/H ≈ 2.5 for all cases as shown in figure 3.21. The evolution of various
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flow characteristics included in the model was also studied and compared with previous

literature.

There are some other interesting observations of the shear flows generated by these mul-

tiscale grids such as the spectra, as briefly discussed in the appendix. In terms of future

work, the potential of the grid design method should be explored further to establish the

range of turbulent shear flows that can be produced. The special case of homogeneous

turbulent shear flows could be attempted with our grid design method because of the

long standing fundamental interest in such flows. Due to the small mean shear rate, the

dimensionless time scale ranges from τ = 0 to 2.3. So it is also interesting to extend the

range of measurement to larger dimensionless time scale τ , where the development of var-

ious turbulence characteristics and length scales could be further examined. This can be

achieved by either extending the measurement distance or increasing the mean shear rate.

Measurements with multiple hot-wires will also help to understand the neglected terms

in the turbulent kinetic energy model. Such studies, if successful, would provide another

option to design a shear flow with desired mean velocity and turbulence intensity profiles,

which will benefit both fundamental studies and a wide range of practical applications.



Chapter 4

Engineering wind tunnel testing of

the multiscale inhomogeneous grids

In this chapter, a modified version of the inhomogeneous multiscale grids introduced in

Chapter 3 is tested in a low-fidelity engineering wind tunnel to verify the mean velocity

model, the turbulence intensity scaling, and the evolution of turbulence characteristics as

discussed in the previous chapter. The grids were re-engineered to fit in a new completely

different wind tunnel, and therefore the robustness of the previously proposed mean ve-

locity model and scaling relation can be tested. A description of the grid is first given in

section 4.1.2. In section 4.1.3, the measurement method is introduced, and measurements

of the background flow are presented. Some modifications to the flow conditioner were

implemented by trial-and-error to improve the incoming flow quality in the wind tunnel.

In section 4.2, the mean velocity results are first presented, with comparisons to the mean

velocity model discussed in section 3.2.1. The scaling of turbulence intensities along the

shear direction is examined according to the relation proposed in section 3.2.2, and the

streamwise evolution is discussed. The evolution of the streamwise integral length scale

Luu,x is also presented at the end of section 4.2.3.

145
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Figure 4.1: Schematic sketch of the Mel Consultants wind tunnel. Dimensions not in
scale.

4.1 Experiments

4.1.1 Facility

All experiments in this chapter were performed in the wind tunnel at Mel Consultants

Ltd located in Melbourne, Australia. The Mel Consultants wind tunnel is a close return

wind tunnel designed for wind engineering testings, which has a lower and upper test

section, as shown in figure 4.1. The upper test section, which was used for current

experiments, is 4.8m wide, 2.5m high, and 25m in length. The air is driven by a fan at

the beginning of the lower test section. Then the flow goes through a flow straightener

and a 1.5:1 contraction before entering the lower test section. After the turning vanes

on the upper test section, a screen (as illustrated in figure 4.1) is installed to reduce the

turbulence intensity and to homogenizes the incoming flow. A second screen was installed

on site to improve the flow quality, which is discussed in details in section 4.1.3. In the

following discussions, x, y, z represents the streamwise, vertical, and transverse direction,

respectively.
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Figure 4.2: The inhomogeneous multiscale grid, (a) Grid 1, and (b) Grid 3, for the Mel
Consultants wind tunnel.

4.1.2 Grid design

As discussed in Chapter 3, the inhomogeneous multiscale grid produces mean velocity

and turbulence intensity profiles that relate to the geometry of the grid. Two of the grids

(Grid 1 and Grid 3, as defined in section 3.1.2), are modified to fit in the Mel Consultants

wind tunnel. The grid is repeated in the z direction to cover the entire cross section of

the tunnel. The sketches of Grid 1 and Grid 3 are given in figure 4.2.

The grids are cut in plywood sheets of 18mm thickness. Each grid is made in eight pieces,

which are mounted on the walls using L-brackets, and the connections in between are glued

and reinforced using aluminum foils rapped around the horizontal bars. The dimensions
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Figure 4.3: Profiles of the normalized blockage ratios of Grid 1 and Grid 3 at different y
locations, where σc is the blockage ratio at layer 5, the center of the grid.

of the grids were designed to represent the Grid 1 and Grid 3 defined in section 3.1.2 with

the same blockage ratio profiles across the wind tunnel height, as shown in figure 4.3. The

total height of the grids is H = 2.4m. As discussed in section 3.2.1, the aspect ratio of

the vertical bars an = dn/wn is crucial in generating the mean velocity profiles, where dn

is the depth of the bar in the streamwise direction, and wn is the width of the bar in the

transverse direction. The maximum drag coefficient of a rectangular bar is achieved with

an = 0.6 (Bearman and Trueman, 1972). Therefore, the aspect ratio of the grid bars is

adjusted by attaching laser cut acrylic pieces to the lee of the grid. For Grid 1, the top

three levels are not modified because the aspect ratio is already larger than the target

value of 0.6. The local drag coefficients CD at different y locations of Grid 1 and Grid 3

after the modification are calculated after Bearman and Trueman (1972), and the results

are given in figure 4.4. The top three levels of Grid 1 have smaller drag coefficients CD

due to the limits of the modification.

The wake interaction length scale (as defined by Valente and Vassilicos, 2012) is calculated

as xpeak
∗

(n) = 0.21g2n/(αCDwn), where gn is the distance between adjacent vertical bars at

layer n, α is a constant, and wn is the lateral width of each individual bar. The constant

α characterizes the turbulence intensity of the incoming flow, and α = 0.287 is used

following Symes and Fink (1977) since the free stream turbulence intensity in the Mel
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Figure 4.5: The wake interaction length scale xpeak
∗

(n) of Grid 1 and Grid 3 at different y
locations.

Consultants wind tunnel is non-negligible (approximately 3%), as opposed to α = 0.231

for incoming flows with negligible turbulence intensity.

4.1.3 Experimental setup and methods

All experiments in this chapter were conducted in the upper test section of the wind tunnel,

where the only flow conditioner was a mesh screen installed about 5m downstream of the

turning vanes to homogenize the flow. During experiments, the grid was mounted 3m

downstream of the screen, leaving a measurable length of roughly 17m. The two rails on

the ceiling where the traverse is mounted gives a measurable range from 3.5m to 17.5m
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downstream of the grid. The origin of the coordinate system is set at the lee of the bottom

center of the grid. The measurement method is introduced first in the following, and the

base flow quality is examined before the description of measurement setup is given.

Cobra probe

For current measurements, a four-hole pressure probe was used referred to as the Cobra

probe. This specific type of four-hole pressure probe was perhaps first proposed by Bryer

and Pankhurst (1971), and has been subsequently validated and improved by many (see

e.g. Shepherd, 1981; Sitaram and Treaster, 1985; Hooper and Musgrove, 1991; Musgrove

and Hooper, 1993; Hooper and Musgrove, 1997; Chen et al., 1998, 2000). The Cobra probe

from Turbulent Flow Instrumentation (TFI) is a pressure probe designed to measure three-

component fluctuating velocities. A sketch of the probe is given in figure 4.6. The overall

length of the probe is 155mm, and 14mm in body diameter. Figure 4.6 (b) shows the

truncated triangular pyramid-shaped head of the probe. Four 0.5mm diameter pressure

tappings are arranged at the center of four faceted faces. The tappings are connected to

pressure transducers in the body of the probe via tubing inside the stem. Further details

of the probe design can be found in Hooper and Musgrove (1997); Chen et al. (2000).

The specific type of Cobra probe used in the current measurements has a linear frequency

response from 0Hz to more than 2 kHz, with a measurable velocity range from 2m/s to

100m/s. A commercial data acquisition interface with proprietary control software from

TFI was used. The sampling frequency was fs = 5kHz, and the signal was re-sampled at

fs = 3kHz to avoid electrical noise.

The calibration of such probes requires rotation of the probe in a range of different pitch

and yaw angles. The pressure from each one of the tappings and reference stagnation

pressure are recorded to give the calibration function for different flow directions, which

makes three dimensional measurements possible. Details of the calibration method can

be found in Sitaram and Treaster (1985); Chen et al. (1998).
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Figure 4.7: Normalized (a) mean velocity and (b) turbulence intensity along the vertical
direction before and after fitting the extra screen at x = 3.5m and z = 0m, where Uc is
the centerline velocity.

Note that the calibration functions provided by the manufacturer were used for each probe,

because on-site calibration was not possible. The calibration functions are independent of

temperature variations (assuming constant air properties) and Reynolds number effects

(assuming the Reynolds number is sufficiently high). However, the v and w components

of the velocity are quite sensitive to the pitch and yaw angles of the probe (Sitaram and

Treaster, 1985; Chen et al., 1998). Therefore, only the streamwise velocity u is used for

further discussions.

The measurement accuracy of the Cobra probe, as provided by the manufacturer, is gen-

erally within ±0.5m/s, but also depends on the turbulence level. By comparing with pre-

liminary measurements using Hot-Wire Anemometry, the uncertainty of u is estimated

to be 5% of U∞ for current experiments. Hot-wire was not used in the measurements

because the electrical noise eliminates the advantage of HWA in high frequency measure-

ments of velocity signals, and the on-site temperature measurement was not accurate (by

wall temperature gauge) so the temperature correction method proposed in appendix A

could not be applied accurately.
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Figure 4.8: Normalized (a) mean velocity and (b) turbulence intensity along the transverse
direction before and after fitting the extra screen at x = 3.5m and y = 1.2m, where Uc

is the centerline velocity.

Base flow

The quality of the base flow in the empty Mel Consultants wind tunnel was examined

first as shown in figure 4.7 and figure 4.8, along the the vertical and transverse directions,

respectively (empty symbols). From figure 4.7 (a), it can be observed that the mean

velocities at y > 1.5m suffer from a velocity deficit as large as 12%, and the turbulence

intensities given in figure 4.7 (b) are all larger than 5%, which is significant for a back-

ground flow. The transverse profiles from figure 4.8 demonstrate the same problem in

the flow homogeneity, where the mean velocity deficit is nearly 20%, and the turbulence

intensity reaches up to 7%.

To correct the inhomogeneity of the background flow profiles, and to reduce the turbulence

intensity, an extra screen was fitted on to the original screen following some trial and error.

The final layout is given in figure 4.9, where the extra screen covers −1.5m < z < 1.5m,

and 0m < y < 2.5m. The four blue supports that appear in figure 4.9 are non-removable

parts of the wind tunnel to prevent structural deformation.

After the modification, the variation of the mean velocity along the vertical direction is

reduced to ±3%, as shown in figure 4.7 (a), labeled as ’extra screen’. The turbulence

intensities are reduced, as given in figure 4.7 (b), to approximately 3% normalized by
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Figure 4.9: Extra screen mesh (marked by red) to improve the quality of the background
flow.
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Figure 4.10: Normalized (a) mean velocity and (b) turbulence intensity of the background
flow measured in the y − z plane at x = 3.5m.

local mean velocity. For the transverse profiles, the mean velocities vary roughly within

5% of the centerline velocity Uc, and the turbulence intensities are reduced from 6%− 7%

to roughly 3%− 4%, as shown in figure 4.8. Figure 4.10 gives the results of mean velocity

and turbulence intensity of the base flow measured at x = 3.5m across the y − z plane.

It can be observed that the mean velocities are generally within ±10% of the centerline

velocity Uc, and the turbulence intensity is in the range of 2.5% to 4% (except the corner

at z = −1.5m and y = 2m). This will be further discussed in section 4.2 to interpret the

measurement results.
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U�

Cobra probe

Figure 4.11: Setup of the cobra probe to measure the free stream velocity U∞. Steel wires
are used to reinforce the probe support and the grid. One panel of the grid is temporarily
removed in the figure to access the section upstream of the grid.

Measurement setup

During the measurement, the free stream velocity U∞ is measured by a fixed Cobra probe

mounted on a streamlined support extending from the bottom wall of the wind tunnel to

a height of 1.5m as shown in figure 4.11. The probe is fixed at a location 1.8m upstream

of the grid. Steel wires are used to reinforce the support to make sure it is upright,

which also reduces the vibration caused by the incoming flow. Wires were also used to

strengthen the grid to prevent deformation of the grid under the incoming flow pressure.

The wires are fixed during the adjustment of the level of the grid to make sure it is in the

same y − z plane.

The free stream velocity was calibrated with and without the grid to determine the fan

speed for velocity control, and the results are given in figure 4.12. The calibration data

is fitted by a linear function. The free stream velocities chosen for the acquisition are

5.5m/s and 7m/s, corresponding to fan speeds of 264 rpm and 330.8 rpm (within the
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Figure 4.12: Calibration of the free stream velocity of the wind tunnel with and without
the grid. The dashed lines give fan speeds of 264 rpm and 330.8 rpm, for free stream
velocities of 5.5m/s and 7m/s, respectively.

safety limit of 350 rpm), respectively. The Reynolds number based on the width of the

grid bars ReD = wnU∞/ν range from 10000 to 37000, where wn is the width of the vertical

bar at layer n, U∞ is the free stream velocity, and ν is kinematic viscosity.

For each grid, streamwise profiles were acquired at z = 0m, y = 668mm, y = 1200mm,

and y = 1732mm at a free stream velocity of U∞ = 7m/s. Another centerline profile

at z = 0m and y = 1200mm was acquired at U∞ = 5.5m/s for comparison at different

Reynolds number and different dimensionless time scale τ ≡ [(x − xpeak
∗

)/Un] |Sn| as

defined in section 3.2.4, where xpeak
∗

is the wake interaction length scale, Un, Sn are the

mean velocity and shear rate at layer n, respectively. At z = −1.2m, two centerline

profiles were acquired at y = 1200mm along the streamwise direction at U∞ = 7m/s to

look at the streamwise evolution of the turbulence characteristics behind different grid

positions.

Vertical profiles were taken at three different streamwise locations (x = 3.5m, x = 10.5m,

and x = 17.5m) at z = 0m with free stream velocities of U∞ = 5.5m/s, and U∞ = 7m/s,

respectively. For comparison, measurements were also taken at z = −1.2m at the same

streamwise locations with U∞ = 7m/s. The measurement locations relative to the grid
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x

Figure 4.13: Illustration of measurement locations relative to the grid. The dot gives the
locations of streamwise measurements, and the dashed lines give the measurement range
of the vertical profiles. The red x symbol shows the origin of the coordinate system.

are demonstrated in figure 4.13.

4.2 Results

In this section, the mean velocity profiles are first presented referring to the mean velocity

model discussed in section 3.2.1. The turbulence intensities are examined based on the

scaling method proposed in section 3.2.2, and the streamwise evolution is studied. This

section is then closed by discussions on the streamwise integral length scales and spectra.

4.2.1 Mean velocity

Following the mean velocity model discussed in section 3.2.1, equations (3.3) to (3.5), the

mean velocity profiles are first calculated using the blockage ratio profiles of the grids,

and the results are shown in figure 4.14 (dashed lines).

The vertical profiles measured behind grid 1 and grid 3 at three streamwise locations,
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Figure 4.14: Vertical profiles of normalized mean velocity U/Uc, where Uc is the centerline
velocity, measured at z = 0m, U∞ = 5.5m/s (filled symbols) and U∞ = 7m/s (empty
symbols) for (a) grid 1 and (b) grid 3, respectively.

i.e. x = 3.5m, x = 10.5mm, and x = 17.5m, are given in figure 4.14, normalized by the

centerline velocity Uc. Grid 1 is designed to produce a uniform flow, and the measured

velocity at different y locations are all within ±5% of the calculated value as given in

figure 4.14 (a). This is also in agreement with the observations of section 3.2.1, where the

vertical profiles are self-preserved at different streamwise locations.

The profiles measured behind grid 3 are given in figure 4.14 (b). The deviations of

the measured mean velocities from the calculated profile are all within ±5%, which is

reasonable considering the inhomogeneity of the background mean flow profile as shown

in figure 4.7 (a). The mean shear rates of the vertical profiles averaged at three locations

with U∞ = 7m/s are |∂U/∂y| = 0.40 s−1, and 1.49 s−1 for grid 1 and grid 3, respectively.

Measurements with U∞ = 5.5m/s at the same locations are also presented in figure 4.14

(a) and (b) for grid 1 and grid 3, respectively, and the collapse of the profiles suggest that

the mean velocity is independent of the Reynolds number effect.

The vertical profiles measured at z = −1.2m with U∞ = 7m/s are presented in figure

4.15. This is the location behind the openings of the grid, as illustrated in figure 4.13.

Comparing to the results at z = 0m from figure 4.14, the deviations from the predicted

values seem larger for both grids. Nevertheless, the differences are well within ±10%.
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Figure 4.15: Vertical profiles of normalized mean velocity U/U5, where U5 is the mean
velocity at layer 5 (y = 1200mm), measured at z = −1.2m, U∞ = 7m/s for (a) grid 1
and (b) grid 3, respectively.

The wave-like deviation observed in figure 4.15 is attributed to the non-uniformity of the

background flow at z = −1.2m, as shown in figure 4.10 (a), where the mean velocity

appears to be faster at smaller y, and slower at larger y. To confirm this conclusion, the

vertical profiles at z = −1.2m measured without the grid are extracted and compared

with measurements at the same location with grid 1. The results are given in figure 4.16.

The variation of the mean velocity seems correlated, and therefore supports the previous

explanation of the deviations observed in figure 4.15.

In figure 4.17, the streamwise profiles of the normalized mean velocity U/U∞ of grid 1

and grid 3 are presented, measured at y = 668mm, y = 1200mm, and y = 1732mm,

respectively. For both grids, the values of U/U∞ increases by approximately 3% over the

measurement domain. The gradients of the streamwise velocity along the centerline at

U∞ = 7m/s are calculated as ∂U/∂x = 0.02 s−1, and ∂U/∂x = 0.01 s−1 for grid 1 and grid

3, respectively. The measurements at U∞ = 5.5m/s along the centerline are also shown in

figure 4.17 (filled symbols). The centerline profiles at both free stream velocities collapse,

which is in agreement with the conclusion that the mean velocity is independent of the

Reynolds number effect.
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Figure 4.16: Comparison of the vertical profiles of U/U5, where U5 is the mean velocity
at layer 5 (y = 1200mm) measured at z = −1.2m, with (empty symbols) and without
(filled symbols) grid 1.
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Figure 4.17: Streamwise profiles of normalized mean velocity U/U∞ at three y locations
for (a) grid 1 and (b) grid 3, respectively, at U∞ = 7m/s (empty symbols). The centerline
profiles measured at U∞ = 5.5m/s are shown in filled symbols.
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Figure 4.18: Vertical profiles of u′/U∞ measured at x = 3.5m, z = 0m with different free
stream velocities for grid 1 and grid 3.

4.2.2 Turbulence intensity

In this section, the streamwise turbulence intensity profiles along the vertical and stream-

wise directions are presented. The vertical profiles of u′/U∞ measured at x = 3.5m and

z = 0m are given in figure 4.18 at U∞ = 7m/s (empty symbols) and U∞ = 5.5m/s (filled

symbols). The profiles at different free stream velocities seem to collapse within the un-

certainty of 5%U∞. The turbulence level reaches approximately 6% at y = 535mm, and

gradually decreases with increasing y location, which is consistent with the observations

in section 3.2.2.

Following the discussion in section 3.2.2, the scaled turbulence intensities along the y

direction scale with xpeak
∗

in a power law, such that (u′/Un)
2β2(CDwn/x

peak
∗

)−1 ∼ (xpeak
∗

)γ,

where Un is the local mean velocity, β2 = 7.2 is a constant characterizing the development

of the wake for incoming flows with non-negligible turbulence level (∼ 5%, see Symes and

Fink, 1977), CD, wn, and xpeak
∗

are the drag coefficient, width of the vertical bar, and

wake interaction length scale at layer n, respectively, and γ is a constant for the power

law fitting. The results of the current measurements are given in figure 4.19. It is observed

that these measurements follow the power law quite well, with fitting constants γ = 0.80
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Figure 4.19: Scaling of the normalized turbulence intensity profiles u′(y) measured at
x = 3.5m, z = 0m for (a) grid 1, (b) grid 3, respectively.
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Figure 4.20: Streamwise profiles of normalized turbulence intensity u′/U∞ at z = 0m
and three y locations for (a) grid 1 and (b) grid 3, respectively, at U∞ = 7m/s (empty
symbols). The centerline profiles measured at U∞ = 5.5m/s are shown in filled symbols.

and 0.76 for grid 1 and grid 3, respectively. These values are different to the fitting

constants reported in section 3.2.2, where γ = 1.46 and 1.14 were calculated, this is due

to the fact that the value of the constant γ varies with the mean velocity, turbulence

intensity and grid geometries.

The streamwise profiles of the turbulence intensities measured at z = 0m and different

y locations behind grid 1 and grid 3 are shown in figure 4.20. For grid 1, the turbulence

intensities at all y locations monotonically decay along the streamwise direction from

x = 3.5m to 17.5m, which is consistent with the results in section 3.2.2.
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Figure 4.21: Comparison of streamwise profiles of normalized turbulence intensity u′/U∞

at y = 1200mm along the centerline (empty symbols) and at z = −1.2m (filled symbols)
for (a) grid 1 and (b) grid 3, respectively, at U∞ = 7m/s.

For grid 3, the value of u′/U∞ remains higher than that of grid 1. The centerline value

decreases only from x = 3.5m to 10m, and stays approximately constant thereafter at a

level of u′/U∞ ≈ 3.5%. This is consistent with the observation in figure 3.8 (a), where

the level of u′/U∞ for grid 3 is higher than the other grids at the end of the measurement

domain. Since the local drag coefficients of grid 1 and grid 3 are the same for the current

measurement, as shown in figure 4.4, the higher turbulence intensity is explained by

the higher shear rate of the turbulent flow generated by grid 3, such that the rate of

turbulence production is increased, and the overall level of turbulence intensity decays

more slowly. The centerline profiles measured at different free stream velocities seem to

collapse as well, as shown in figure 4.20, which suggests that the streamwise evolution of

the u′/U∞ is independent of the Reynolds number, at least in the range investigated here

ReD = 10000 to 37000.

In figure 4.21, two streamwise profiles of the turbulence intensity u′/U∞ at z = −1.2m

and y = 1200mm are compared with the centerline profiles. The initial values (u′/U∞

at x = 3.5m) of the turbulence intensities at different z locations are approximately the

same, which seem to imply the transverse homogeneity of the flow at this streamwise

location, but it has to be kept in mind that the background turbulence of the wind tunnel

is not exactly homogeneous.
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z 0m −1.2m
Grid 1 0.29 s−1 0.76 s−1

Grid 3 1.88 s−1 2.14 s−1

Table 4.1: The local shear rate |∂U/∂y| of the mean velocity profiles at x = 3.5m,
y = 1.2m for different grids and z locations.

However, the profiles of u′/U∞ at z = −1.2m and y = 1200mm along the streamwise

direction start to increase at approximately x = 10m and x = 7m for grid 1 and grid 3,

respectively. This difference is consistent with some of the previous experiments where

the turbulence intensity beyond a critical value of the dimensionless time scale τ ∗c (where

τ ∗ ≡ (x/Uc) |Sn| = (x/Uc)
∣∣∣∂Un/∂y

∣∣∣) remained constant in some cases (e.g. Rose, 1966;

Champagne et al., 1970; Rose, 1970), and grew in others (e.g. Harris et al., 1977; Tavoularis

and Corrsin, 1981; Rohr et al., 1988; Nedić and Tavoularis, 2016). This was explained by

the ratio of turbulence production P to dissipation ε according to Tavoularis and Karnik

(1989), such that the turbulence kinetic energy k grows exponentially when P/ε > 1,

and stays constant when P/ε ≈ 1. This is in agreement with the mean velocity profiles

at z = 0m and z = −1.2m, as shown in figure 4.14 and figure 4.15. The local shear

rates |∂U/∂y| at these locations are given in table 4.1. It is clear that the shear rate at

z = −1.2m is much larger than that on the centerline, and is thus likely to be the cause

of the growth of turbulence kinetic energy, and hence u′.

Figure 4.22 presents the streamwise evolution of the u2/U2
∞
against the dimensionless time

scale τ ≡ [(x− xpeak
∗

)/Un] |Sn| as introduced in section 3.2.4, where the wake interaction

length scale xpeak
∗

is included. For grid 1, the dimensionless time scale is rather limited

due to the small shear rate Sn. For grid 3, the value of u2/U2
∞

at z = 0m stays roughly

constant at τ > 2, while the value at z = −1.2m increases beyond the same location

τ = 2. It seems that the critical location of τ for a given grid is the same in this study, i.e.

τ = 2, for the case with constant or growing turbulence kinetic energy. In some previous
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Figure 4.22: Streamwise profiles of u2/U2
∞

measured at different y and z locations with
U∞ = 7m/s.

works, it has been shown that for the cases where u2/U2
c stays constant (Rose, 1966;

Champagne et al., 1970; Rose, 1970), the development was fairly fast, reaching constant

values at τ ∗c = 1.6 to 3, while the critical values of τ ∗c are roughly τ ∗c = 4 to 5 for cases

with growing turbulence kinetic energy (Rose, 1966; Champagne et al., 1970; Rose, 1970).

This seems to suggest that the critical value of τ is grid dependent, and such dependency

of the grid geometry is compensated by including the xpeak
∗

in the definition of τ for the

inhomogeneous multiscale grids, which explains the same critical value of τ = 2 for two

different types of streamwise evolution (constant or growing) of u2/U2
∞
.

4.2.3 Integral length scale

In this section, the streamwise integral length scales at various locations are presented.

The von Kármán spectrum model is used to compute the integral length scale using

Luu,x = πE11(0)/(2u
′2), as described in section 3.1.3. The streamwise evolution of the

calculated Luu,x is shown in figure 4.23. In figure 4.23(a), a linear increase of Luu,x from

x = 3.5m to x = 12m is observed for both grids. The increase of Luu,x seems to slow

down between x = 11m to 17.5m. This is consistent with the observations in section

3.2.5.
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Figure 4.23: Longitudinal integral length scale Luu,x profiles for grid 1 and grid 3 at (a)
different y locations and (b) different z locations with U∞ = 7m/s.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Luu,x (m)

0.5

1

1.5

2

y
(m

)

Grid 1, x=3.5m
Grid 3, x=3.5m
Grid 1, x=10.5m
Grid 3 x=10.5m
Grid 1, x=17.5m
Grid 3, x=17.5m

Figure 4.24: Longitudinal integral length scale Luu,x profiles for grid 1 and grid 3 along
the y direction at z = 0m and three x locations with U∞ = 7m/s.

Figure 4.23(b) shows the streamwise evolution of Luu,x at z = 0m and z = −1.2m. The

profiles at these two transverse locations collapse quite well. This is interesting as the

turbulence intensities at these two locations are quite different, as shown in figure 4.21.

This observation might suggest that the evolution of the integral length scale Luu,x is

primarily dependent on the external dimension/geometry of the grid, rather than bar

dimensions.

The vertical profiles of Luu,x at z = 0m and different x locations are given in figure 4.24.

The values seem to be constant along the y direction at all x locations. Further, the

values of Luu,x at x = 10.5m and 17.5m seem to collapse (perhaps slightly larger for the
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Figure 4.25: Example of normalized spectrum of grid 1 using u′ and Luu,x, measured at
(a) different x locations and (b) different y locations with U∞ = 7m/s.

latter), which corresponds to the slower increase in the range x = 12m to 17.5m observed

in figure 4.23. This is also in agreement with the results discussed in section 3.2.5.

To close section 4.2, it is noted that the spectra measured at different x and y directions

were also studied. In section 3.2.9, it was concluded that spectra measured at different

x locations at the same relative location to the grid would collapse at all wave numbers

when normalized using the external variables u′ and Luu,x, and that such a collapse ceases

when spectra measured at different y locations are compared. Spectra measured for grid

1 are given in figure 4.25 along different x and y locations. As evident in figure 4.25 (b),

even though there seems to be a collapse, the higher wave number may not collapse. Due

to the lack of the dissipative range of the spectrum, however, the small wave number

range of spectra always collapse when normalized using u′ and Luu,x, and therefore no

comparison can be made.

4.3 Summary

In this chapter, the turbulent flow generated by two modified versions of the inhomoge-

neous multiscale grids proposed in Chapter 3 are investigated in a low-fidelity engineering

wind tunnel using the Cobra probe. The grid was designed to have the same blockage
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ratio profiles at different levels of the wind tunnel height. Based on the width of the grid

bars, the Reynolds number ReD = wn ∗ U∞/ν ranged from 10000 to 37000.

The mean velocity model after Taylor et al. (1949); McCarthy (1964) based on the local

blockage ratio σn was shown to match the measurements, with an uncertainty attributed

to non-uniformity of the background flow. The mean shear rate was measured as 0.40 s−1

and 1.49 s−1 for grid 1 and grid 3, respectively. The mean velocity profiles at different

incoming flow velocities show that the mean flow is independent of the Reynolds number

effect, and the shape of the profiles are self-preserved in the streamwise direction.

The scaling relation of the turbulence intensity profiles u′(y) are verified using measure-

ments at x = 3.5m, such that (u′/Un)
2β2(CDwn/x

peak
∗

)−1 ∼ (xpeak
∗

)γ, where β is a con-

stant, CD, wn, and xpeak
∗

are the drag coefficient, width of the vertical bar, and wake

interaction length scale at layer n, respectively, and γ is a constant for the power law fit-

ting. This confirms the conclusion in Chapter 3 that the shape of the turbulence intensity

profile can be prescribed through the design of the wake interaction length scales xpeak
∗

.

The streamwise evolution of u′/U∞ of grid 3 shows regions of constant turbulence and

growing turbulence at different z locations relative to the grid. The growth of u′/U∞ as

shown in figure 4.21 is attributed to the higher local mean shear rate. The streamwise

evolution of u2/U2
∞

against our proposed dimensionless time scale τ ≡ [(x−xpeak
∗

)/Un] |Sn|
shows that the critical point of τ is indeed the same, which seems to support the inclusion

of the wake interaction length scale xpeak
∗

in the definition, as opposed to the previously

used scale τ ∗ ≡ (x/Uc) |Sn| = (x/Uc)
∣∣∣∂Un/∂y

∣∣∣, where Uc is the centerline velocity. The

integral length scale is shown to increase monotonically along the x direction, with values

that are roughly constant across the y direction, also in agreement with the conclusions

in Chapter 3.

In summary, these observations altogether support our idea to generate bespoke turbulent

shear flows with varying mean shear rate and turbulence intensity profiles by tailoring

the geometry of the inhomogeneous multiscale grids. The proposed mean velocity model
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and the scaling methods for turbulence intensities are verified in both experiments, and

the evolution of the turbulence characteristics are consistent. As a next step, it would

be interesting to explore the limit of such idea, i.e. what is the largest mean shear rate

one can achieve using these grids, and what is the largest turbulence intensity one can

produce by designing the dimension of the grid bars. With the answer to these questions,

such grids can be readily applied to produce bespoke turbulent flows for a variety of

applications.



Chapter 5

Conclusions and future works

In this thesis two classes of inhomogeneous multiscale grids were proposed and investigated

experimentally using Hot-wire Anemometry, Particle Image Velocimetry, and pressure

probes. These studies provides further understandings of the idea of tailoring turbulence

field using fractal grids as proposed by Vassilicos and colleagues. The work was presented

in three parts, and the main results are summarized in the following.

In the first part of the study, three rectangular fractal grids (RFG) were tested in three

different facilities to compare with the turbulence field generated by the classical space-

filling fractal grids (FSG). As one of the most important variable in characterizing the

generated turbulence field, the wake interaction length scale xpeak
∗

was examined first.

It is important because the value of xpeak
∗

in the turbulence generated by FSGs defines

the streamwise location of maximum turbulence intensity. This length scale is therefore

crucial in tailoring turbulent flows in a given wind tunnel, where maximum turbulence

intensity is expected at certain streamwise location. For the RFGs, the previous definition

of xpeak
∗

failed to give the correct streamwise location of maximum turbulence intensity.

There are perhaps two reasons for this based on our observations. First, the spreading

rate of the wake generated by grid bars is varied by the local velocity gradient due to

the inhomogeneous grid geometry. Secondly, there are two distinctive xpeak
∗

in the RFG

170
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generated turbulence anisotropic grid geometry, and the wakes are expected to meet at

different streamwise locations on the centerline, which in all affects the actual turbulence

peak location. Nevertheless, the actual turbulence intensity peak location is proportional

to the wake interaction length scale, i.e. xpeak/x
peak
∗

= constant ≈ 1.4 as long as the ratio

of the largest grid bars in the two transverse direction remains the same.

Another difference with the FSG generated turbulence is the turbulence characteristics in

the beginning of the decay region. In this region, approximately 1 < x/xpeak < 1.5, the

flow was found to be inhomogeneous and anisotropic. Both the integral length scale Lu

and Taylor microscale λ decreases in this region along the streamwise direction, where the

Reynolds number Reλ decreases. This observation has not been reported in any previous

studies of the fractal generated turbulence, and was therefore surprising at first. However,

the ratio of the length scales Lu/λ remained roughly constant in this region for all the

experiments, which corresponds to the non-equilibrium scaling relation Cε ∼ Re
1/2
0 /Reλ

as proposed for the FSG generated turbulence. The relation Lu/λ ≈ constant was also

confirmed by normalized spectra where all wave number ranges were collapsed using a

single length scale.

In the second part of the study, a new class of inhomogeneous multiscale grids was pro-

posed to generate turbulent shear flows with desired shape mean velocity and turbulence

intensity profiles at the same time. The mean velocity model after Taylor et al. (1949);

McCarthy (1964) based on the local blockage ratio σn was shown to match our measure-

ments with mean shear rates from approximately 0 s−1 to 5 s−1. The drag coefficient of the

vertical bars was found to affect the local mean velocity significantly, and a constant drag

coefficient CD is essential in the calculation of the mean velocity profile. The turbulence

intensity level was found to scale with the wake interaction length scale xpeak
∗

such that

at given streamwise location x = xm, we have (u′/Un)
2β2(CDwn/x

peak
∗

)−1 ∼ (xm/x
peak
∗

)γ,

where Un is the local at layer n, β is a constant, CD, gn, wn are the drag coefficient, gap,

and width of the vertical bars, respectively, at layer n, and γ is a dimensionless power law
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exponent. With such scaling, one could prescribe the shape of the turbulence intensity

profiles through the design of xpeak
∗

, which can be determined completely from the grid

geometry. A general approach of grid design method is also presented. This sets out

the framework of a possible grid design method based on optimization, and can be easily

improved by including more constraints as new experimental results come out.

The mean velocity model and turbulence intensity scaling, and in general the design

principles of the inhomogeneous multiscale grids was further tested in a low-fidelity engi-

neering wind tunnel for its robustness. The mean velocity model was verified by correctly

predicting turbulent shear flows with mean velocity profiles calculated from equations

(3.3) to (3.5). The scaling relation of the turbulence intensity profiles u′(y) were also

verified. These results confirmed the conclusion in Chapter 3 that the shape of the turbu-

lence intensity profile can be prescribed through the design of the wake interaction length

scales xpeak
∗

.

In terms of the fundamentals of turbulent shear flows, a new dimensionless time scale was

proposed in Chapter 3 that τ ≡ [(x − xpeak
∗

)/Un] |Sn|, where Sn is the local mean shear

rate. This definition of τ includes the wake interaction length scale xpeak
∗

as the virtual

origin, since xpeak
∗

marks the beginning of decay that varies with grid geometries. This

dimensionless time scale τ successfully collapsed the Reynolds stress at different locations

behind different grids at τ > 0.8. The streamwise evolution of u2/U2
∞

against τ was also of

interest as the critical location of τ determines where the turbulence kinetic energy starts

growing or stays constant, for different ratios of production over dissipation P/ε. It has

been shown that for the cases with constant turbulence kinetic energy, the development

is fairly fast, reaching constant values at τ ∗c = 1.6 to 3, while the critical values of τ ∗c are

roughly τ ∗c = 4 to 5 for cases with growing turbulence kinetic energy. The critical location

of τ for the inhomogeneous multiscale grid is the same in the final part of the study. This

seems to suggest that the critical value of τ is grid dependent, and such dependency of

the grid geometry is compensated by including the xpeak
∗

in the definition of τ for the
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inhomogeneous multiscale grids.

These results all together improves our understanding of the fractal/multiscale grid gen-

erated turbulence, and suggests a possible direction to design bespoke turbulent flow in

a wind tunnel using a single passive grid. However, some questions still remain, and the

following questions might be of interest.

(i) For the rectangular grids, how does the turbulence characteristics vary if the ratio

of the largest bars of the RFG is changed? This ratio of large dimension is important

in determining the xpeak
∗

, and therefore is expected to change the location of maximum

turbulence intensity and the integral length scales.

(ii) If we further differentiate the xpeak
∗

calculated using the bar dimensions in the two

transverse directions, does the region with decreasing length scales still exist in the decay

region? If so, what exactly is the reason and how does each term in the t.k.e. equation

look like, and how does the evolution differ from the rest of the decay region?

(iii) For turbulent shear flow studies, what is the maximum mean shear rate one can

achieve using the inhomogeneous multiscale grids? What is the maximum turbulence

intensity one can produce? Based on the current results, it seems also possible to produce

a shear flow with increasing turbulence intensity and integral length scales, both of which

would be desired in wind engineering testings. So it would be interesting to understand

what is the minimum mean shear rate to produce growing turbulent kinetic energy. Since

the growth of the turbulent kinetic energy is related to the P/ε ratio, it would be inter-

esting to look at the other terms in the t.k.e. equation to improve the simplified model

as proposed in section 3.2.5.

By answering these questions, this idea to produce bespoke turbulent flows with desired

turbulent characteristics might be completed. The results will benefit the group of re-

searchers interested in experimental studies of turbulence, and will of course improve

the work flow in engineering applications where simulation of various turbulent flows is
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needed.
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Appendix A

A novel temperature calibration method

The voltage output fluctuation of a hot-wire can result from both a velocity fluctuation

and a temperature fluctuation, so it is crucial to have a stable ambient fluid temperature

for hot-wire measurements, or to have calibrations at different temperatures accompanying

each data set. However, due to the lack of thermal control in the Honda wind tunnel,

temperature variations as large as 5 ◦C were frequently detected. It was also impossible to

calibrate before and after each data set, because removing the grid takes approximately

15 minutes and the ambient temperature would drop during that period of time. Such

temperature difference causes drift of the voltage output that consequently gives biased

mean velocity. A temperature compensation method is therefore needed to eliminate the

influence of varying ambient temperature.

When the ambient temperature variation is small (i.e. Ta − T0 < 2 ◦C, where Ta is

the ambient temperature, and T0 is the reference temperature), the correction method

proposed by Kanevce and Oka (1973); Bruun (1995) works well such that

Ecorr = E0

(
Tw − Ta

Tw − T0

)0.5

(A.1)

where E0 is the measured voltage, Ecorr is the corrected voltage, and Tw is the wire

191



192 Chapter A.

operating temperature calculated from Rw = R20 [1 + α20(Tw − T20)], where Rw and R20

are the hot-wire resistance at working temperature and 20 ◦C, respectively, and α20 is the

temperature coefficient of the wire at 20 ◦C. This correction method fails, however, in the

scenario for our Honda experiments where Ta − T0 > 2 ◦C.

To correct for the voltage output at different temperatures, a heat transfer relation for a

finite wire should be established first. The most commonly used form of such relation is

proposed by Collis and Williams (1959) such that

Nu = A+BRen (A.2)

where A, B, n = 0.45 ∼ 0.5 are constants, Nu = hd/κ is the Nusselt number, Re = Ud/ν

is the Reynolds number, h = qw/(Tw − Ta) is the heat transfer coefficient, qw is the

heat transfer rate per unit area from the wire, and Tw and Ta are the wire and ambient

temperatures, respectively, d is the wire diameter, κ is the thermal conductivity, and ν is

the kinematic viscosity. Some of these quantities, i.e. h, κ, and ν are dependent on the

ambient temperature, and thus the evaluation of equation A.2 relies on the estimation of

these varying fluid properties at given temperature.

Several correction methods have been derived for hot-wires operated in the constant

temperature mode based on equation A.2 (see Abdel-Rahman et al., 1987; Shibl, 1987;

Bowers et al., 1988; George et al., 1989; Dijk and Nieuwstadt, 2004; Hultmark and Smits,

2010). To evaluate the temperature dependent quantities, various empirical expressions

for the thermal conductivity κ and kinematic viscosity ν have been proposed. For instance,

κ

κ0

=

(
T

T0

)a

,
ν

ν0
=

(
T

T0

)b

(A.3)

as discussed by Collis and Williams (1959); Morrison (1974); Bruun (1995), where 0.8 <
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a < 0.86 and 1.76 < b < 1.9 , or

κ = 5.75 ∗ 10−5(1 + 0.0317Ta − 0.0000021T 2
a ) (A.4)

as proposed by Kannuluik and Carman (1951).

These methods rely completely on the estimation of the fluid properties, but the temper-

ature at which they should be evaluated is not well defined (see Bremhorst, 1985; Bruun,

1995), even though the film temperature Tf = (Tw + Ta)/2 is often used. The calculated

values depend on the selection of the power law constants a and b, and the evaluation of

Tw. The compensated output of these reported methods failed to collapse the calibrations

taken at different ambient temperatures Ta. Therefore, a simple temperature calibration

procedure was developed as follows.

It starts with the heat transfer relation for a finite wire, as shown by Bruun (1995)

E2
w

Rw(Tw − Ta)
= Aκ+ κ(

ρ

μ
)nBUn (A.5)

where A, B, n are constants, μ is the air dynamic viscosity, and ρ is the air density. Now if

we accept the relations in equation A.3 with a = 0.83 and b = 1.83, the second coefficient

becomes

κ0

(
T

T0

)0.83

ν−n
0

(
T

T0

)
−1.83n

, (A.6)

where ν = μ/ρ is used. Since n = 0.45 ∼ 0.5, if we take the mean value of n = 0.475, then

1.83n = 0.87, the temperature dependency effectively cancels out, leaving only a constant

coefficient B∗ = κ0ν
−n
0 B. For Aκ, if we further assume that T = Tf as discussed above,

and that Tw >> Ta, then the variation of κ is negligible. Equation A.5 now becomes

E2
0 = (A∗ +B∗Un)(Tw − Ta)

= A′ +B′Ta (A.7)
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Figure A.1: Temperature dependency of E2 at U∞ = 5, 8, 11, 14, 17, 20m s−1.

where the output voltage E0 is related to the hot wire voltage Ew by a constant factor

related to the resistance of the hot wire probe and the internal bridge of the anemometer,

and it is included in the constants A′ and B′. Equation A.7 implies that for a given

velocity, E2
0 varies linearly to the ambient temperature Ta. This conclusion has been shown

by e.g. Bremhorst (1985); Dijk and Nieuwstadt (2004), where Bremhorst (1985) showed

a linear dependency of E2
0 on Ta in the range 20 ◦C to 80 ◦C. Based on this observation,

Bremhorst (1985) has also mentioned the possibility that the fluid properties should be

evaluated at the wire temperature Tw, which naturally implies the linear dependency in

equation A.7 for constant-temperature anemometers.

The calibration procedure starts with measurements of the output voltage E2
0 at various

temperatures with different free stream velocities. Voltage data is taken with the tunnel

running at several velocities, and the temperature naturally increases with time. It is a

common practice for large wind tunnels without temperature control as to stabilize the

ambient temperature before taking measurements. Therefore, in practice, this method

does not cost extra time.

One example of such measurement routine is given in figure A.1. It is clear that E2
0

decreases linearly with Ta, with different slope CoefT = B′ under different free stream

velocities, which means that CoefT∼f(U). These numbers are then fitted against veloc-

ities, which quantifies the relation of CoefT as a function of U , as shown in figure A.2.
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Figure A.2: Velocity dependency of CoefT at U∞ = 5, 8, 11, 14, 17, 20m s−1, black curve
shows the second order polynomial fit.
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Figure A.3: Original calibration curves at different temperatures from 20.5 ◦C to
24.8 ◦C(red), and corrected curves (black).

This relation CoefT (U) is well represented by a second order polynomial, but note that

the actual function depends on individual wires, which is expected since the heat transfer

relation is known to be affected by the wire geometry.

To correct the measured voltage of the hot wire E0
2, the specific CoefT is calculated

by substituting the velocity U into CoefT∼f(U). Then the corrected voltage Ecor
2 is

calculated simply by

Ecor
2 = E0

2 − CoefT · (Ta − T0) (A.8)

where T0 is the reference temperature, which is measured at the start of the routine.
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Figure A.4: Flow chart of temperature correction procedures for acquisition data.

Finally, calibration data taken at all velocities can be corrected following this procedure.

Figure A.3 gives an example of the results, where all three red curves taken at different

Ta collapse together after the correction (black lines). For a fixed voltage, the converted

velocity difference at different temperature was reduced from 15% to a maximum of 1%.

The final calibration coefficients for the hot wire are referred to as Coefw .

Note, however, the correction procedure relies on the flow velocity U , which is known

during calibrations, but unknown during data acquisition. This is solved by an iterative

post-processing method as illustrated in figure A.4. The original data E0 is converted

to velocity Uini using Coefw first, where Uini serves as an initial guess of the local mean

velocity. With this guessed velocity, the Ecor is then calculated and converted to velocity

Ucor using the same procedure mentioned for calibration. After the first pass, Uini and

Ucor are compared to look at the difference. If the difference is larger than 0.01%, Uini is

substituted by Ucor and then sent back for another iteration, otherwise Ucor is passed on

as the corrected velocity signal.



Appendix B

Effects of integration on the integral length scale

In order to calculate the longitudinal integral length scale Lu, the correlation function

was examined. It is noticed that the auto-correlation function drops below zero and

fluctuates around R = 0 as the separation distance increases. This phenomenon raises

the question of the integration domain, which affects the calculation of Lu. O’Neill et al.

(2004) discussed several methods using either the entire available domain, or up to where

R = Rmin, or up to the first zero-crossing if negative R is present, and they concluded that

there may not be a clear relation between the integral length scale and the integration

domain. For the discussion here, the first zero-crossing point is used for comparison.
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Figure B.1: Convergence of Lu with increasing integral domain. The symbols give the
results by integrating the correlation function only up to the first zero-crossing.
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Figure B.2: Convergence of piecewise length in the calculation of Lu at U∞ = 10m s−1.

Figure B.1 shows the variation of Lu as a function of the integration domain as well as

the results by integrating only up to the first zero-crossing (red symbols). It is hard to

argue whether the values integrated up to the first zero-crossing point are representative

due to the large variations (almost 20%) with increasing integration domain.

Another popular method to calculate Lu is to divide the sample into smaller piecewise

samples, calculate Lu for each piecewise sample by integrating up to the first zero-crossing

point, and then take an average. This method, however, is sensitive to the selection of

the sample piece length, as shown in figure B.2. It is clear that for pieces with dt smaller

than 5 s, where dt is the sample time length for each piece, the results are converged. Also

notice that the streamwise development of Lu is fluctuating more than expected, and the

discrepancy of the results using different piecewise length at a given location is about

10%. This seems to imply the ambiguity of this integration method, as the integration

domain cannot be well defined.


