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Abstract

Elementary magnetic monopoles have never been experimentally observed but

there are credible theoretical reasons to believe that they may nonetheless exist.

This thesis gives partial answers to the questions: if magnetic monopoles do exist,

can we create them? And if so, how?

Surprisingly little is known about the answers to these simple-sounding ques-

tions. The fundamental stumbling block is the strong coupling of magnetic monopoles.

This prevents the usual arsenal of techniques from being used, which have proved so

useful in understanding the creation of everything from electrons to Higgs particles

to quarks.

I consider magnetic monopole creation in strong magnetic �elds and at high

temperatures. I show that the semiclassical approximation is valid, despite the

strong coupling, and calculate the rate using the worldline formalism. The leading

order results suggest that magnetic monopoles will be created amply above a certain

threshold magnetic �eld strength and temperature. This is independent of many

details of the particles, in particular their spin and whether they are elementary or

composite.

Strong magnetic �elds and high temperatures are present in neutron stars and

in terrestrial heavy ion collisions. By comparison with known properties of neutron

stars, and with a search for magnetic monopoles at CERN, I derive the strongest

yet, model-independent bounds on the mass of any possible magnetic monopoles.

However, investigating higher order corrections to my results, I encounter an insta-

bility in the equations which casts doubt on the validity of my approximations and

hence the mass bounds.

In answer to my questions: if magnetic monopoles do exist, we may be able to

create them in su�ciently high energy heavy ion collisions. However, more theoret-

ical work is needed to decide upon this, both to overcome the issue of the instability

and to understand the e�ects of the spacetime evolution of such collisions.
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Preface

I begin, in Chapter 1, with an introduction to magnetic monopoles, focusing on

matters important to this thesis. I brie�y review the history of thought on magnetic

monopoles and give the main arguments for their existence. I then compare and

contrast the two main types of magnetic monopoles: elementary and composite, or,

rather, Dirac and 't Hooft-Polyakov. In the last section of the chapter, I discuss

experimental searches for magnetic monopoles and their implications for possible

physical theories of magnetic monopoles.

Chapter 2 reviews various approaches to calculating cross sections for mag-

netic monopole pair production from, what I call, few particle collisions, the most

pertinent example being the proton-proton collisions currently happening at the

Large Hadron Collider. I start by reviewing arguments which suggest that magnetic

monopoles will never be produced in few particle collisions, noting that the mat-

ter remains unsettled. In the following sections I outline several approaches which

could in principle substantiate these arguments, pointing out weaknesses and, in

some cases, suggesting how these might be overcome.

Chapter 3, based on Ref. [1], contains the central theoretical calculation of

the thesis, about which the rest hangs. It is the calculation of the rate of mag-

netic monopole production in strong magnetic �elds and high temperatures. The

calculation uses the worldline formalism and relies on a semiclassical approximation.

In Chapter 4, based on Ref. [2], I apply the results of the previous chapter to

the creation of magnetic monopoles in two di�erent physical circumstances: neu-

tron stars and heavy ion collisions. From this I am able to show that if magnetic

monopoles exist, they must be heavier than a certain lower bound.

Chapter 5, based on Ref. [3], builds on some of the work of Chapter 3. For

a particular region of parameter space, I give an improved theoretical estimate for

the rate of magnetic monopole production. This is important as it is the region

of parameter space relevant for heavy ion collisions. In performing this calculation

I encounter a subtle pathology of the approximations I make which reduces the

validity of the approach to within a subspace of the full parameter space. This

15
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raises doubts about the validity of the mass bounds derived in Chapter 4 and calls

for more theoretical work to settle the matter.

In Chapter 6 I summarise the achievements of this thesis and suggest possible

future directions of study.

Throughout I use the natural units common in high energy particle physics,

where c = ~ = kB = ε0 = 1. I adopt the mostly minus signature for the spacetime

metric, (+,−,−,−). I use i, j, k, l, . . . to run over spatial directions; µ, ν, ρ, σ, . . . to

run over spacetime indices and adopt the Einstein summation convention.



Chapter 1

Magnetic monopoles

1.1 Introduction

Is it absurd to suppose the existence of bodily conductors of mag-

netism, of magnetic currents, of free magnetism?

Pierre Curie

It has long been known that the two poles of a magnet cannot be separated.

In 1269 Peregrinus showed that all fragments of lodestone are dipoles, with both a

north and south pole [4]. However this has not stopped physicists thinking about the

possibility that free magnetic (mono)poles might exist. Pierre Curie suggested their

existence in 1894 [5], inspired by the otherwise perfect symmetry between electric

and magnetic phenomena.

Without matter, classical electromagnetism is symmetric under an interchange

of electric and magnetic �elds. This is clear at a glance from Maxwell's equations

without sources,

∂µF
µν = 0, (1.1)

∂µF̃
µν = 0, (1.2)

where F̃ µν := 1
2
εµνρσFρσ. The equations are symmetric under the interchange of

electric and magnetic �elds, so-called electromagnetic duality,

F µν → F̃ µν ,

F̃ µν → −F µν . (1.3)

The minus sign in the second equation is due to the Lorentzian signature of space-

17



18 Chapter 1. Magnetic monopoles

time.

However the symmetry appears to be broken in nature, as we have only discov-

ered a source for the electric �eld, jνE. In this case the right hand side of Eq. (1.1)

is modi�ed, but not that of Eq. (1.2). One can restore electromagnetic duality by

the further addition of magnetic sources, jνM .

∂µF
µν = jνE,

∂µF̃
µν = jνM . (1.4)

The duality transformation now also involves the interchange of electric and mag-

netic sources,

jνE → jνM ,

jνM → −jνE. (1.5)

So, if magnetic monopoles were to exist, nature would have an enhanced symmetry.

From this observation it would be pleasing if they were to exist, though I need not

attach much weight to this aesthetic argument.

In 1931 Dirac considered the possibility of including magnetic monopoles into a

quantum mechanical description of matter [6]. He found that to do so, a consistency

condition arises, following from the basic requirement that wave functions be single-

valued functions. In the presence of a magnetic monopole with charge g, a wave

function describing an electric particle with charge e will only be single-valued if e

and g satisfy the Dirac quantisation condition,

eg = 2πn, (1.6)

where n ∈ Z. The same condition can be derived by imposing the quantisation of

angular momentum. Note that the magnetic �ne structure constant is then αM =

1/(4αE), where αE is the electric �ne structure constant. At low energies, αE ≈
1/137 and hence αM ≈ 34, meaning magnetic monopoles are necessarily strongly

coupled.

The key importance of the Dirac quantisation condition is that it implies that

electric charges come in integer multiples of one fundamental charge. This is, of

course, what is observed and it is a remarkable empirical fact which is not explained

in the Standard Model. All known particles have electric charges which are an

integer multiple of one fundamental charge. For example, the experimental upper

limit on the di�erence between the charge of the proton and (minus) that of the
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electron is (0.8 ± 0.8)10−21e [7]. The converse, that electric charge quantisation

implies the existence of magnetic monopoles has been conjectured by Polchinski

[8]. However various extensions of the Standard Model which break the (B − L)

symmetry explicitly may also explain charge quantisation via the requirement of

anomaly cancellations [9, 10].

A complete, dynamical, quantummechanical description of magnetic monopoles

and their interactions with photons and electric charges was given somewhat later

[11, 12, 13, 14, 15]. Due to topological issues, the theory is signi�cantly more com-

plicated than quantum electrodynamics (QED) in the absence of magnetic charges.

Some formulations are non-local; others are not manifestly Lorentz invariant. How-

ever, the various apparently di�erent constructions were shown to be equivalent [16]

and the unifying theory is known as quantum electromagnetodynamics (QEMD).

The theory is both Lorentz and gauge invariant [13, 14, 15, 17, 18]

An alternative approach to a quantum �eld theory for magnetic monopoles

arises from considering the global structure of the QED gauge group [19, 20, 21].

There are two choices for the representation of the group U(1): it can be either

compact or non-compact. In the compact representation the gauge �eld strength

is an angular variable, whereas in the non-compact representation its elements take

values in R. The di�erences between these two choices are not visible in perturbation
theory but are manifest in a lattice regularisation. The compact choice leads to

electric charge quantisation, whereas in the non-compact case electric charges can

take any real number values. In accordance with the charge quantisation observed

in nature, the natural choice is the compact one. However, in this case magnetic

monopoles arise naturally. They do not need to be added by hand but are a set of

�eld con�gurations which contribute to the path integral. The magnetic particles

generically have masses of the order of the cut-o� scale and hence decouple in the

continuum limit. That is, unless one adds a mass counterterm to �ne-tune the

magnetic monopole mass to be small, just like for the Higgs boson.

In 1974 't Hooft [22] and Polyakov [23] showed that magnetic monopoles arise

as localised, �nite energy, classical solutions to the �eld equations of non-Abelian

gauge theories with spontaneously broken symmetries. On scales of the order of the

symmetry breaking scale, these magnetic monopoles appear as a coherent state of

scalar and vector bosons particles. However, on distance scales much larger than

this, they are virtually indistinguishable from the magnetic monopoles considered

by Dirac and others [24, 25]. 't Hooft-Polyakov magnetic monopoles are a generic

prediction of grand uni�ed theories, those in which a semi-simple gauge group is

spontaneously broken down to the low energy Standard Model gauge group [26].
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Following the work of 't Hooft and Polyakov, magnetic monopoles have been

investigated and developed by many authors, and have been found to act in a great

wealth of physical phenomena. They have been shown to play a role in con�nement

in certain theories [20, 21, 27, 28]; they can lead to baryon number non-conservation

[29, 30]; they may have electric as well as magnetic charges [31, 32]; their low

energy scattering exhibits a rich structure [33, 34, 35] and the above-mentioned

electromagnetic duality has been extended and developed [36, 28, 37]. However, for

the most part, these topics will not be discussed here and I direct the interested

reader to the many excellent reviews [38, 39, 40, 41, 42].

Magnetic monopoles also appear in gravitational theories. In Einstein gravity

coupled to electromagnetism, there exist spherically symmetric black hole solutions,

the Reissner-Nordström solutions, with magnetic as well as electric charge. There

also exist instanton solutions which describe the pair production of such magnetic

black holes [43, 44, 45]. Further, it has been argued that in a quantum theory

of gravity, the existence of these instantons means that the existence of magnetic

monopoles cannot be avoided [46]. In string theory or its parent theories, there are

necessarily more than the four observable dimensions. If the extra dimensions are

curled up into small compact spaces, there will exist what are called Kaluza-Klein

magnetic monopoles [47, 48]. As before, though I have mentioned these topics for

completeness, they will not be discussed further here.

In Secs. 1.2 and 1.3 I give theoretical overviews of Dirac and 't Hooft-Polyakov

monopoles respectively. In Sec. 1.4 I discuss experimental searches for magnetic

monopoles.

1.2 Dirac monopoles

In the presence of both electric and magnetic charges, neither the electric nor

the magnetic �elds are divergenceless. Though this does not lead to any real dif-

ferences in describing the �elds it does frustrate the usual description in terms of

potentials,

Fµν = ∂µAν − ∂νAµ. (1.7)

This description was possible because of the Bianchi identity, Eq. (1.2). As this

continues to hold outside magnetic sources, Eq. (1.7) can still be used there, locally.

However, the presence of magnetic sources prevents a global de�nition of Aµ, in

terms of a set of globally de�ned functions.

The simplest example is that of a single, static magnetic monopole with mag-
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netic charge g. This is the example Dirac originally considered [6] and it has become

canonical [39, 49]. Using the Lorentz frame of the monopole, the electromagnetic

�eld in this case is

F0i = 0,

Fij = εijk
gxk

4π|x|3
, (1.8)

where εijk is the Levi-Civita symbol, xµ is a position vector, with origin at the

magnetic monopole, and |x| is its spatial magnitude. One cannot globally de�ne a

non-singular potential, Aµ, which gives rise to this �eld [50, 51]. However, in the

upper spatial hemisphere, one can choose,

A+
µ dxµ =

g

4πr

(1− cos(θ))

sin(θ)
dφ, (1.9)

where (r, θ, φ) are the usual spherical polar coordinates. In the lower hemisphere,

one can instead use

A−µ dxµ =
g

4πr

(−1− cos(θ))

sin(θ)
dφ. (1.10)

Both of these equations are singular along a semi-in�nite line extending from the

monopole to in�nity: Eq. (1.9) is singular along a line in the lower hemisphere and

Eq. (1.10) is singular along a line in the upper hemisphere. In the region where

they are both �nite, they both lead to the same magnetic �eld, Eq. (1.8), and are

related by the gauge transformation,

A+
µ − A−µ = ∂µ

(
gφ

2π

)
. (1.11)

Under this gauge transformation, the wave function, ψ, of an electrically charged

particle, with charge e, is transformed as

ψ → exp

(
−iegφ

2π

)
ψ. (1.12)

Hence, for the wave function to be a single-valued function before and after the

transformation, the charges e and g must satisfy the Dirac quantisation condition,

Eq. (1.6). In this case the two gauge �elds, A+
µ and A−µ , are physically equivalent

and can be consistently patched to de�ne the gauge �eld of the magnetic monopole.

Comparing φ = 0 with φ = 2π in Eq. (1.12) is equivalent to parallel trans-

porting the charged particle around a circle centred on the monopole. The integer

which arises in the Dirac quantisation condition is thus a winding number, it is the
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Figure 1.1: Map determining the existence of Dirac monopoles, from a circle to the
gauge group.

number of times the phase of the wave function covers the complex unit circle as

the charged particle encircles the magnetic monopole once. This winding number

is independent of the distance, r, from the magnetic monopole and hence the mag-

netic charge must be contained in a single point. Further, being discrete the winding

number cannot change in any continuous process, such as time evolution, and hence

magnetic charge is conserved.

One can generalise this argument from the U(1) group of electromagnetism to

more general groups, G, assuming a Coulomb phase. The result is that one must

consider maps from the circle to G [52]. The generalisation of the winding number

is given by homotopy theory. Maps which can be continuously deformed into each

other are termed equivalent and the classi�cation of such maps into equivalence

classes is given by the �rst homotopy group, H1(G). If H1(G) consists of just a

single element then there are no Dirac monopoles in the theory. For electromag-

netism H1(U(1)) = Z and hence there are an in�nite number of di�erent magnetic

monopoles, labelled by a nonzero integer, zero labelling the absence of a magnetic

monopole. For G = SU(2) one can show that H1(SU(2)) = Z2. In this theory there

is thus only one type of Dirac magnetic monopole.

So far the discussion of Dirac's magnetic monopoles has been kinematic. To

add dynamical degrees of freedom for such a magnetic monopole requires adding

a source �eld for it. This �eld can have any spin. Formulated without a cut-o�,

there will be an in�nite self-energy and in�nite charge renormalisation e�ects, which

can be regularised and renormalised just as for an electric particle as long as there

is an appropriate source �eld. In a theory containing both electric and magnetic

particles, extra care is needed in taking care of the global properties of the gauge

�eld. In principle there is no problem in doing so. The formalism is reviewed in

Refs. [16, 53]. In practice however, very few calculations have been done in this

formalism.

The magnetic monopoles considered in this section can be added to any gauge
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theory containing electromagnetism. They can have any mass, any spin and any

charge consistent with the Dirac quantisation condition. Although the quantisation

of electric charge points to their existence, such magnetic monopoles are not strictly

necessary.

1.3 't Hooft-Polyakov monopoles

In 1974 't Hooft and Polyakov found that magnetic monopoles necessarily arise

in certain gauge theories [22, 23], without the addition of any explicit sources. The

theories in question are spontaneously broken, non-Abelian gauge theories, with

semi-simple gauge group, so called Grand Uni�ed Theories (GUTs). The magnetic

monopoles arise as solitons, as static, localised, �nite-energy solutions of the classical

equations of motion. As such they survive quantisation, giving poles in correlation

functions just as elementary particles do, despite the absence of corresponding ex-

plicit �elds in the Lagrangian [54, 55, 56].

For the spontaneous symmetry breaking of a GUT with gauge group G, there
must exist a scalar �eld charged under the gauge group, a so-called Higgs �eld

[57, 58, 59]. The Higgs �eld takes a vacuum expectation value (vev) which breaks

the gauge group G down to a subgroupH 1. The scalar vev thus takes values in G/H,
the vacuum manifold. For this GUT to describe nature, the gauge group must break

down to the Standard Model gauge group, SU(3)⊗SU(2)⊗U(1), before reaching the

electroweak scale. There can, of course, be multiple symmetry breakings occurring

at di�erent scales.

Fermionic �elds play no role in spontaneous symmetry breaking and so I will

ignore them here. I consider a Georgi-Glashow type theory [26], with gauge group

G and Lagrangian

L = − 1

4e2
Ga
µνG

aµν +
1

2
Dµφ

aDµφa − U (φa) . (1.13)

The label a is an adjoint index, running over 1, 2, . . . , dim(G). The �eld strength

is the usual one, Ga
µν := ∂µA

a
ν − ∂νA

a
µ − efabcA

b
µA

c
ν , where fabc are the structure

constants of the gauge group. The potential is invariant under G but its minima are

1Of course, the usual picture of the Higgs �eld attaining a vev is naive. One can perform a
gauge independent analysis [60], but I will use the more common language of the unitary gauge.
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Figure 1.2: Map determining the existence of 't Hooft-Polyakov monopoles, from
the sphere at spatial in�nity to the vacuum manifold.

not, only being invariant under the smaller group H. A typical example is given by

U (φa) =
λ

4

(
φaφa − v2

)2
. (1.14)

Thus v is the classical vev and λ is the scalar �eld self-coupling.

One seeks �nite energy, static �eld con�gurations. For such a �eld con�guration

to have �nite energy, it must be that it tends to the vacuum manifold as the spatial

distance |x| → ∞. For the example of Eq. (1.14) this is

Ga
jk → 0,

Djφ
a → 0,

φaφa → v2, (1.15)

where the rate of approach must be such as to make the terms separately integrable.

The condition on the magnitude of the scalar �eld de�nes a map from spatial in�nity,

S2, to the vacuum manifold, G/H. Just as for the maps from the circle to the gauge

group, which were relevant for Dirac magnetic monopoles, maps from S2 to G/H
may be classi�ed according to whether or not they are continuously deformable into

each other. Maps which can be continuously deformed into each other are termed

equivalent and the classi�cation of such maps into equivalence classes is given by

the second homotopy group of G/H, denoted Π2(G/H). If the second homotopy

group has only a single element then all maps from S2 to G/H can be continuously

deformed into each other. If there are more than one elements, then there exist �eld

con�gurations which cannot be continuously deformed to the vacuum.

Consider the canonical example, G = SU(2), with fabc = εabc. In this case, for

the Lagrangian of Eq. (1.13), the unbroken symmetry group is H = U(1). Then the

second homotopy group is Π2(SU(2)/U(1)) = Z, the additive group of the integers.

In each of these equivalence classes, i.e. for each integer, there should be a �eld
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con�guration which minimises the energy. This �eld con�guration cannot decay as

it is topologically protected: time evolution is a type of continuous deformation.

It only remains to explicitly construct such a �eld con�guration. Being a min-

imum of the energy it should satisfy the �eld equations of motion. Such a solution

was found independently by 't Hooft [22] and Polyakov [23] and takes the form

φa(x) =
xa

e|x|2
(ev|x|+H(ev|x|)) ,

Aaj (x) = −εajk
xk

e|x|2
(1−K(ev|x|)) ,

Aa0(x) = 0. (1.16)

The functions H and K must satisfy [61]

ξ2 d2K

dξ2
= K(H + ξ)2 +K(K2 − 1),

ξ2 d2H

dξ2
= 2K2(H + ξ) +

λ

e2
(H + ξ)

(
H2 + 2ξH

)
, (1.17)

where ξ := ev|x| = MW |x| and appropriate boundary conditions are speci�ed for

�niteness of the energy. It can be rigorously shown than a solution to these equations

exists [62] and it can be constructed numerically. It is everywhere smooth. In the

limit λ → 0 it is known analytically [63, 64]. The functions H and K above are

localised exponentially over a region of size O(1/M), where M := min(MH ,MW ),

the Compton wavelength of the lightest constituent particle. This is the monopole

core.

In all cases the classical mass of the solution, which dominates over the quantum

corrections when the theory is weakly coupled, is found to be of the order

m ∼ 4π

e2
M. (1.18)

This is the same order of magnitude as the energy of the Coulomb magnetic �eld

outside the monopole core [38],∫
1

2
B2
Coulombd

3x =

∫ ∞
O(1/M)

1

2e2|x|4
d3x,

=
2π

e2
O(M), (1.19)

which also provides a lower bound on the mass in this theory as the energy density

is everywhere positive. The core of the monopole adds to the energy of the con�g-
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Figure 1.3: Scalar �eld con�guration of the 't Hooft-Polyakov monopole, the so-
called hedgehog (�gure from [66]).

uration a contribution of the same magnitude. This can naturally be understood

as coming from the rest mass of O(4π/e2) := O(1/α) particles. Likewise the large

charge of the magnetic monopole, necessary for the Dirac quantisation condition to

hold, can be understood as arising from the coherently combined charges of a large

number of constituent charged particles, g = O(e/α) = O(4π/e) [65]. Due to the

large particle occupancy numbers, the quantum state of a magnetic monopole is well

described by the coherent state of the classical solution.

This solution was called a hedgehog by Polyakov as the scalar �eld points out-

wards in all directions from the origin (see Fig. 1.3). The vector �elds can be split

into the Abelian photon part and the non-Abelian heavy vector boson part. The

photon �eld is given by

Fµν :=
φa√
φbφb

Ga
µν −

1

e(φdφd)3/2
εabcφ

a(Dµφ
b)(Dνφ

c). (1.20)

Outside a region of size O(1/M), the monopole core, only the photon �eld is not

exponentially suppressed. This region is a factor 4π/e2 larger than the Compton

wavelength of the monopole (see Eq. (1.18)). As M |x| → ∞, the photon �eld

approaches the �eld of a magnetic monopole,

Fij = εijk
xk

e|x|3
+O(e−M |x|). (1.21)

The magnetic charge is thus 4π/e, twice that required to satisfy the Dirac quanti-

sation condition (this is because �elds in the fundamental representation of SU(2)
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Figure 1.4: Map showing the equivalence of Dirac and 't Hooft-Polyakov monopoles
at large distances, from a circle to the broken gauge group.

carry charge e/2). More complicated quantisation conditions are possible in more

complicated symmetry breaking schemes, when the magnetic monopole is charged

under more than one gauge group. The magnetic charge of 't Hooft-Polyakov

monopoles is topologically conserved, just as for Dirac magnetic monopoles.

Outside the monopole core the gauge group is broken and there appears a

winding number, Π1(U(1)) = Z, exactly as for Dirac monopoles but with G replaced

by H. On the other hand, the scalar �eld vanishes at the centre of the monopole,

thus inside the monopole core the gauge group is unbroken. Inside the monopole the

winding number is unwound: the �eld con�guration is non-singular. This is possible

because the �rst homotopy group of the full gauge group, Π1(SU(2)), is trivial [38].

All maps from a circle to the full gauge group can be continuously deformed to the

vacuum. The correspondence between Dirac and 't Hooft-Polyakov monopoles can

also be seen from the following theorem [39],

Π2(G/H) = Π1(H)/Π1(G). (1.22)

The theory admits 't Hooft-Polyakov monopoles when the left hand side of this

equation is nontrivial. The broken phase admits Dirac monopoles when Π1(H) is

nontrivial and these are non-singular when Π1(G) is trivial. The equivalence of these

too notions is demonstrated by the equality.

1.4 Experimental searches

So, there are compelling theoretical reasons to expect the existence of magnetic

monopoles [6, 22, 23, 8]. As a consequence, there have been extensive searches for

them [67, 68, 69], but so far with no positive results.

The experimental signatures of magnetic monopoles are clear and robust and
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Figure 1.5: Summary of magnetic monopole �ux bounds due to Arttu Rajantie
(see also Ref. [69]), with data taken from Refs. [70, 71, 72, 73, 74, 75, 76, 77].
The dotted line gives the predicted density of GUT magnetic monopoles from a
Big Bang cosmological history without in�ation. The black line labelled �Matter
density� corresponds to magnetic monopoles making up the entire observed matter
density of the universe today.

many such signatures are independent of the particular underlying model. Due to the

magnetic charge their interactions with electromagnetic �elds are known and unlike

those of any other particles. Magnetic charge is conserved and hence the lightest

magnetic monopoles with given charge cannot decay. They are strongly interacting,

due to the Dirac quantisation condition, and as a result are highly ionising. They

can form bound states with magnetic dipole moments, such as those of nuclei. These

experimental signatures are all generic, being independent of the internal structure

of the magnetic monopoles.

There are also experimental signatures of magnetic monopoles which depend

strongly on the internal structure of the magnetic monopole and hence on the par-

ticular underlying model. The core of 't Hooft-Polyakov monopoles reveals the

symmetry breaking pattern of the GUT from whence they come. This can be elu-

cidated by scattering magnetic monopoles and Standard Model particles and may

lead to such exotic behaviour as proton decay [29, 30].

For my purposes, magnetic monopole searches can be divided into two cate-

gories: those which search for existing magnetic monopoles [77] and those which

try to create new magnetic monopoles, in colliders [78]. In the absence of a pos-

itive observation2, quite di�erent information has been learnt from these two cat-

2There have been two apparent detections of a magnetic monopole [79, 80], though the absence
of monopoles in larger follow-up experiments makes the reliability of the detections unconvincing.
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egories of experiment [81]. Searches for existing magnetic monopoles can also be

sub-categorised according to where the searches take place and attempts to create

new magnetic monopoles can be sub-categorised according to which particles were

collided and at what energies.

Non-observation in searches for existing magnetic monopoles allows one to de-

rive bounds on the �ux density of magnetic monopoles in the Universe today, F , and
on the magnetic monopole density. The current such bounds are rather stringent,

implying that magnetic monopoles must be very rare. The strongest current bound

on F for lighter magnetic monopoles, the Extended Parker Bound, is derived from

a dynamical consideration of the generation of today's galactic magnetic �eld [72],3

F .

 3× 10−22cm−2s−1sr−1
(

B0

10−11G

)
,m . 3× 1011GeV

(
B0

10−11G

)
,

1.2× 10−16
(

m
1017GeV

)
cm−2s−1sr−1 ,m & 3× 1011GeV

(
B0

10−11G

)
.

Here B0 is the magnitude of the magnetic �eld which seeded the growth of today's

galactic magnetic �eld. As well as �ux bounds derived from astrophysical and cos-

mological considerations, there have been several passive ground-based experiments

searching for magnetic monopoles. These have directly constrained the �ux of mag-

netic monopoles at the surface of the Earth. A summary of di�erent �ux bounds is

given in Fig. 1.5.

From these bounds on the �ux, one would like to derive constraints on the

properties of possible magnetic monopoles. This requires comparison with theoreti-

cal predictions of the magnetic monopole �ux which, in turn, depend on cosmologi-

cal history. In�ation would have diluted away any pre-existing magnetic monopoles

[83, 84, 85] but, during reheating, su�ciently light magnetic monopoles would have

been produced thermally. One can derive a prediction for magnetic monopole �ux

today by calculating the time evolution of this initial density. Then by comparison

with the experimental bounds on the �ux, one can derive a bound on the ratio

of the mass of any magnetic monopoles to the reheating temperature, m/TRH & 45

[86, 87, 88]. Further, as the reheating temperature must be greater than the temper-

ature of Big Bang nucleosynthesis (BBN), TBBN ≈ 10MeV, the mass of any magnetic

monopoles must satisfy

m & 0.45GeV. (1.23)

This is considered a very weak bound, though to my knowledge it is the strongest

reliable bound in the literature.

3In fact in Ref. [82] the authors derive an even stronger bound, also by a consideration of
galactic magnetic �elds, though this bound is more speculative.



30 Chapter 1. Magnetic monopoles

10 100 1000

10

100

1000

1

Figure 1.6: Summary of magnetic monopole cross section bounds due to Arttu
Rajantie (see also Ref. [69]), with data taken from [78, 89, 90, 81]. The blue, dotted
line labelled �Drell-Yan� is the tree-level cross section for pair production of magnetic
monopoles. This is not a reliable estimate of the true cross section due to the large
charge of magnetic monopoles.

From attempts to create magnetic monopoles in collider experiments, non-

observation allows one to derive bounds on various cross sections for magnetic

monopole production. Such bounds take the form

σMM̄(s) . σUB(s), (1.24)

where σMM̄(s) is the cross section for pair production of magnetic monopoles in the

given collision at centre of mass energy
√
s and σUB(s) is the experimental upper

bound. Since the late 1970s, collider searches have focused on eē, pē, pp̄ and pp

collisions [81]. A summary of the resulting cross section bounds is given in Fig. 1.6.

There has also been a magnetic monopole search in heavy ion collisions [91].

As with the bounds on the �ux, from these bounds on cross sections, one would

like to derive constraints on the properties of possible monopoles. The tree-level

Drell-Yan cross section has often been used to obtain indicative mass bounds [89,

90, 81]. However, this approach is not reliable because, if magnetic monopoles exist,

they are strongly coupled and hence perturbation theory in the coupling constant

fails.

As I will discuss in Chapter 2, it can be argued that the cross section for
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magnetic monopole pair production in collider experiments (excluding in heavy ion

collisions) is enormously exponentially suppressed. This would imply that, even if

magnetic monopoles exist and are su�ciently light to be produced kinematically,

one would not expect to produce them in such collider experiments.



Chapter 2

Few particle collisions

2.1 Introduction

The title of this chapter needs some explaining. By few particle collisions,

I mean particle collisions for which the initial state contains a small number of

particles, i.e. a small number of excitations above the vacuum in a Fock space

representation or generalisation thereof. As such the initial state is far from the

classical limit. For example eē, pē, pp̄ and pp collisions are all to be considered

as few particle collisions. However, heavy ion collisions such as PbPb or AuAu

collisions are not.

Magnetic monopoles, if they exist, may in principle be created as monopole-

anti-monopole pairs, thus conserving magnetic charge. In this section I consider the

question of whether or not magnetic monopoles may be created in few particle colli-

sions. This question is closely related to several others which have been intensively

studied and debated in the past decades. In particular whether or not few particle

collisions can induce B+L violation [92, 93, 94, 95, 96, 97], or kink pair production

[98, 99, 100, 101, 102], or vacuum decay [103].

In Sec. 2.2 I present several arguments in favour of the position that no,

magnetic monopoles cannot be created in few particle collisions. However none of

the arguments are altogether reliable and hence the matter cannot be said to be

settled. In the following sections, Secs. 2.3, 2.4 and 2.5, I present three di�erent

approaches to answering the question here posed, discussing the hurdles still to be

overcome. The content of this chapter is mostly available in the literature, though

nowhere else is it collected together with a focus on magnetic monopoles.

32
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2.2 Exponential suppression

In weakly coupled quantum �eld theories, the Feynman diagram expansion is

most commonly the tool of choice. However, there are some phenomena which are

beyond its purlieu. Magnetic monopoles are just such a phenomenon as they do

not appear at any �nite order in a Feynman diagram expansion. Their charge,

g ∝ 1/e, and, for 't Hooft-Polyakov monopoles, their mass, m ∝ M/e2 (where M

is the mass of a gauge boson), are both proportional to inverse powers of the small

electric coupling, e. As such, their pair production cross sections should be smaller

than any power of α := e2/(4π) as α → 0. There are in�nitely many functional

forms which obey this property but it has been conjectured that the relevant form

for magnetic monopole production is [104]

σ ∼ e−
c
α , (2.1)

for some c > 0 and I use ∼ to denote that the logarithms of the two sides agree to

leading order in α, i.e. that both sides are of the same order-of-magnitude.

2.2.1 B+L violation

This expectation is indeed borne out for some other non-perturbative phenom-

ena, where explicit calculations have been performed. The canonical example, which

has been the focus of decades of work, is B+L violating transitions in the Standard

Model and in related gauge theories with a left-right asymmetry in the fermion sec-

tor. At low energies these are governed by a BPST-type instanton [105] and are

exponentially suppressed by [92, 93]

σ0 ∼ e−
4π
α ≈ 10−154, (2.2)

where σ0 represents the cross section for the process, α is now the Weak �ne structure

constant. The transition is a kind of quantum tunnelling and has an associated

energy barrier, the sphaleron [94, 95], with height Msph = O(M/α), where M is

the mass of a gauge boson. The height of this energy barrier is parametrically the

same as would be expected for magnetic monopole pair production, if this too were

expressible as a tunnelling transition.

The exponential suppression in Eq. (2.2) is so incredibly small that B+L vio-

lating transitions will never be observed from low energy initial states. However, by
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analogy with quantum tunnelling in simple, one-dimensional systems, one would ex-

pect that this suppression would be reduced for initial states with higher energy. In

particular the question arises as to whether the exponential suppression would dis-

appear altogether for over-barrier transitions, where the initial state has an energy

greater than Msph.

The answer to this question is not a simple yes or no. This is because in

systems with many degrees of freedom there are, in general, many di�erent ways to

distribute a given amount of energy. At one extreme are, for example, high energy,

few particle states in quantum �eld theory, where all the energy is concentrated in

only a few degrees of freedom. At the other extreme are, for example, a thermal

state or a semiclassical coherent state where the total energy is spread across a

huge number of degrees of freedom. In general, such di�erent states may have very

di�erent transition probabilities.

If one considers thermal states, as the temperature is raised from zero the

exponential suppression is reduced due to the thermal �uctuations. At temperatures

of the order of the barrier height, B+L violating transitions are unsuppressed [106,

107]. Likewise if one considers states with zero temperature but su�ciently high

fermion density, one �nds the states are absolutely unstable and B+L violating

transitions are unsuppressed [108, 109]. A third example of an unsuppressed B+L

violating process is for initial states containing particles with masses greater than

Msph [110, 111]. B+L violating transitions proceed via the decay of these particles.

The issue is more subtle when the energy of the initial state is concentrated in

a small number of degrees of freedom, such as in few particle collisions. Perturbative

corrections to Eq. (2.2) due to the presence of few particle collisions with energies

much below the sphaleron mass have been shown to exponentially enhance the rate

[112, 113]. The enhancement takes the form

σE ∼ e
− 4π
α
FHG

(
E

Msph

)
, (2.3)

where σE is the cross section for the process with centre-of-mass energy E and FHG

is known as the Holy Grail Function. There is evidence that the function does

not depend on any details of the initial state, except for the centre-of-mass energy

[114, 115, 116, 117, 118]. For small argument, x := E/Msph � 1, it has been

calculated that

FHG (x) = 1− 9

8
x4/3 +

9

16
x6/3 +O

(
x8/3

)
, (2.4)

as reviewed in Ref. [96]. This goes to zero when the argument is O(1), leading to the

suggestion that there may be no suppression for over-barrier transitions from few
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particle collisions. However, at this point the perturbative calculation in E/Msph is

outside its region of validity.

Indeed a full non-perturbative calculation shows that FHG(1) ≈ 0.7 and the

exponential suppression is still signi�cant at energies of at least 30Msph [97]. This

nonperturbative calculation of the rate of B+L violations used a technique (based

on a conjecture) introduced by Rubakov, Son and Tinyakov (RST) [119, 115, 120]

(see Sec. 2.5) and extended by others [121, 122, 118]. The same technique has made

possible calculations of other nonperturbative processes induced by few particle

collisions. In particular the induced vacuum decay of scalar �eld theories [103, 99]

and kink pair production [98, 100, 102]. It has also been explored in studies of low

dimensional quantum mechanical systems [117]. In all these studies the rate has

been found to be exponentially suppressed at and immediately above the barrier

energy.

In fact, in some models it has been shown that the exponential suppression

persists up to arbitrarily high energies. This suppression is determined by a limit

of the RST method, for which the instanton lives on the real time axis [99, 101].

This real-time instanton describes the formation of the sphaleron from the few par-

ticle collision. One can intuitively understand the suppression by considering the

improbability of the time-reversed process: the annihilation of a pair of 't Hooft-

Polyakov monopoles, a coherent state of O(1/α) particles, into a very small number

of particles, each with very high energies, O(M/α).

2.2.2 Magnetic monopole pair creation

For magnetic monopole pair production from few particle collisions the cor-

responding nonperturbative calculations have not been done. However, attempts

have been made to establish the exponential suppression of the cross section (Eq.

(2.1)) from general considerations [123, 104, 65]. For the most part, the arguments

can intuitively be understood as stemming from the observation that the initial

few particle collision contains a small number of highly localised degrees of freedom

whereas a magnetic monopole is a complicated, delocalised object. In particular,

the arguments are based on:

• the apparent absence of magnetic monopoles in perturbation theory;

• perturbation theory to large orders;

• constraints from unitarity;

• phase space volume suppression;
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• form factor suppression;

• and small wave function overlap.

The �rst of these arguments was given at the opening of Sec. 2.2. In the following,

I outline the other arguments each in turn, most of which are only valid for 't

Hooft-Polyakov monopoles.

't Hooft-Polyakov monopoles are semiclassical �eld con�gurations made up of a

large number, O(1/α), of elementary bosons. At each order of perturbation theory,

only O(1) elementary bosons can be produced. As a result, to create a pair of

magnetic monopoles requires going to at least the O(1/α)th order of perturbation

theory. Such high order terms in the perturbative expansion contain correspondingly

high powers of the coupling constant, α, which can be expressed as an exponential

suppression as in Eq. (2.1). The problem with this argument is that it treats

the perturbative expansion too naively. It does not account for the fact that the

Dyson perturbative series is only an asymptotic expansion, not a convergent one,

and cannot so blithely be extrapolated to orders O(1/α) [124, 125, 126, 127, 128,

129, 130, 131]. The factorially growing number of diagrams out-competes the powers

of α at such high orders.

Rigorous calculations of large-order perturbation theory have been carried out

in various models in four dimensions, though as yet concrete results have relied

on various simplifying properties of the theory such as superrenormalisability, su-

persymmetry [132] or containing only scalars [127, 128]. The assumption is that,

although a given perturbative series may not converge, it may nevertheless give a

representation of a well-de�ned function of the coupling, g, which can be found using

summation techniques such as Borel summation. In particular, if the perturbative

series is Borel summable, then one can derive uniform bounds on the remainder

of the perturbative series at large orders (see for example Refs. [131]). In this

way, large order information about the perturbative series of forward elastic scat-

tering amplitudes can be used, via the Optical Theorem (a unitarity relation), to

bound the contribution of non-perturbative phenomena, such as monopole pair pro-

duction. However, in nonsupersymmetric theories containing magnetic monopoles,

explicit expressions for the large orders of perturbation theory are not known, so

this approach falls short for my purposes.

Another argument for exponential suppression can be given, which also exploits

the large numbers of particles making up 't Hooft-Polyakov monopoles, if I assume

that there is a �xed probability, p, for producing an elementary boson. Then the pair

production of 't Hooft-Polyakov monopoles would be expected to be exponentially

suppressed with coe�cient c = O(−4π log(p)) (see Eq. (2.1)). This probabilistic
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description however ignores quantum mechanical e�ects such as bosonic collective

enhancement.

A 't Hooft-Polyakov monopole can be described as a coherent state of elemen-

tary bosonic �elds. When compared to a random con�guration of O(1/α) elementary

bosons, a magnetic monopole is very special. Thus, even if there is no suppression

for the production of a large number of elementary bosons, one might still expect

there to be a suppression of magnetic monopole pair production, essentially due

to their comparatively low phase space volume. This is akin to the argument one

would give for why, for example, AuĀu production is rare, even when there is suf-

�cient energy. As pointed out in Ref. [133] the probability of producing any given

classical �eld con�guration is vanishingly small. But the transition need not exactly

produce the classical 't Hooft-Polyakov monopole �eld con�guration but only one

su�ciently close to it. Thus in order to carry through this argument rigorously, one

would need to introduce a suitable measure on the space of �eld con�gurations and

then integrate over this measure.

The remaining arguments for exponential suppression rely on crossing symme-

try, and will be discussed in Sec. 2.3. It is important to note that the physical

electric charge, at a given energy scale, is a �nite, nonzero number. Thus, even

if magnetic monopole pair production is exponentially suppressed, it may still be

experimentally observable if the suppression is not too large, i.e. if the coe�cient c

(see Eq. (2.1)) is not too large.

It has been argued in Ref. [65] not only that the exponential coe�cient of the

suppression, c, is greater than zero but that, for 't Hooft-Polyakov monopoles, it is

given by c = 4 for all collision energies. As 4/α ≈ 548 � 1, this would e�ectively

rule out the production of 't Hooft-Polyakov magnetic monopoles in few particle

collisions. Note that this suggestion goes against what has been learned from B+L

violation, where the few particle collision provides an exponential enhancement of

the cross section. One would thus expect the coe�cient c to be a function of the

centre-of-mass energy of the few particle collision, and hence there should exist a

Monopole Holy Grail Function,

σ ∼ e−
1
α
FMHG( E

2m). (2.5)

As was the case for B+L violation, to this order, the cross section would be expected

to be independent of the all details of the initial state except for its centre of mass

energy. The rest of this chapter focuses on the possible methods one could use to

calculate this function.
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Figure 2.1: Two processes related by crossing symmetry: (i) magnetic monopole pair
production from electron-positron annihilation and (ii) electron-magnetic monopole
elastic scattering.

2.3 Crossing symmetry

Cross symmetry relates the amplitudes for two di�erent processes. The sym-

metry holds order by order in perturbation theory and has been shown to hold for

soliton scattering in the Sine-Gordon theory [134, 135]. An example of two processes

related by crossing symmetry is: (a) muon-antimuon pair production from electron-

positron annihilation and (b) electron-muon scattering. For my purposes, a more

relevant example would be (i) magnetic monopole pair production from electron-

positron annihilation and (ii) electron-magnetic monopole scattering (see Fig. 2.1).

However, unlike processes (a) and (b), processes (i) and (ii) are not naively crossing

symmetric, as pointed out in Refs. [136, 137]. For example, for scalar electric and

magnetic particles with charges satisfying eg = 2π, the amplitude for process (ii)

contains an extra spin, the angular momentum of the electromagnetic �eld, which

is not present in process (ii). Hence, the two amplitudes will transform di�erently

under Lorentz transformations and the usual crossing relations must fail. Despite

this, in this section I will assume that some suitable generalisation of crossing sym-

metry is obeyed by the amplitudes for processes (i) and (ii), and that the subtleties

can be �factored out�.1 These processes can be written as,

(i) e(p1) + ē(p2)→ m̄(p3) +m(p4),

(ii) e(q1) +m(q2)→ e(q3) +m(q4),

where here e denotes electron, m denotes magnetic monopole and the ps and qs

are the momenta. Other processes involving quarks, say, instead of electrons could

1Alternatively one could replace the electrons and positrons with electrically neutral particles
for which this issue would not arise.
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equally well have been considered. Note that here I consider speci�c, exclusive

processes, whereas the Monopole Holy Grail Function (Eq. (2.5)) is de�ned in

terms of the inclusive cross section for magnetic monopole creation.

I adopt the standard nomenclature based on the Mandelstam variables [138,

139],

sp := (p1 + p2)2, tp := (p1 − p3)2, up := (p1 − p4)2,

sp + tp + up = 2m2 + 2M2, (2.6)

where herem is the monopole mass andM is the electron mass. I de�ne Mandelstam

variables, {sq, tq, uq}, for the process (ii) analogously.
Crossing symmetry relates the amplitudes for the two channels thuswise,

A(i)(p1, p2, p3, p4) = A(ii)(q1 = p1, q2 = −p3, q3 = −p2, q4 = p4), (2.7)

where I have de�ned the amplitude as the matrix element of the T̂ matrix, related

to the Ŝ matrix by Ŝ = 1 + iT̂ . To write this relation somewhat more simply, I

factor o� the momentum-conserving delta function,

A(i)(p1, p2, p3, p4) = (2π)4δ(4)(p1 + p2 − p3 − p4)F(sp, tp). (2.8)

The same function, F , determines the amplitude for the process (ii) but with

{sp, tp, up} switched with {tq, sq, uq},

A(ii)(q1, q2, q3, q4) = (2π)4δ(4)(q1 + q2 − q3 − q4)F(tq, sq). (2.9)

In order to exceed the kinematic threshold for magnetic monopole pair production, it

must be that sq = tp ≥ 4m2. There is also a condition on the Mandelstam variables

which is required for the scattering angles to be real [138, 140].

The usefulness of crossing symmetry is that, though it may not be possible

to directly calculate the amplitude for process (i), one might instead calculate the

amplitude for process (ii) then �nd that for process (i) by crossing. In the following

I discuss the prospects of carrying out this calculation.

For Dirac monopoles, the amplitude for the elastic scattering process, (ii), has

been calculated in two di�erent kinematic regimes: at zero monopole velocity [141,

142] and in the high energy, eikonal approximation [143, 144]. The amplitude at

zero monopole velocity cannot be crossed to the pair production process as the

approximation requires that the monopole mass, m, be much larger than all other

energy scales. The amplitude for charged particle-magnetic monopole scattering in
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the eikonal approximation is

F(tq, sq) ≈ 2eg
sq
tq

eiχ, (2.10)

where tq < 0 is required for the scattering angles be real [138, 140] and −tq,m,M �
sq is required for the approximation to be valid. The phase factor, χ, is gauge

dependent and cancels out in the cross section. The cross section is thus

dσ(ii)

dtq
≈ (eg)2

4πt2q
. (2.11)

Crossing Eq. (2.10) gives

F(sp, tp) ≈ 2eg
tp
sp

eiχ
′
, (2.12)

where again the phase factor, χ′, will cancel out in the cross section. Now we require

sp > 4m2 for the amplitude to be above threshold and sp,m,M � |tp| for the eikonal
approximation to be valid. However in this case the scattering angles are complex

and hence unphysical. A necessary and su�cient condition for the scattering angles

to be real in process (i) is [140]

sptpup > sp(m
2 −M2)2. (2.13)

Now if tp � sp then tp ≈ −up and the left hand side is negative and the inequality

cannot hold. Thus Eq. (2.10) can not be crossed to give any information about

monopole pair production.

For 't Hooft-Polyakov monopoles, the amplitude for the elastic scattering pro-

cess, (ii), has been calculated for small monopole velocities. The standard approach,

as with other solitons, is to perform a semiclassical expansion of the �elds about

the classical solution. This can be done in a canonical or path integral framework

[145, 146, 23, 147, 148, 54, 55, 56, 149, 150, 151]. In the canonical framework the

expansion takes the form,

ϕ̂a(x) = ϕacl(x) + φ̂a(x), (2.14)

where ϕ̂a(x) denotes all the �elds in the theory, as a runs over an appropriate

range. The c-number functions ϕacl(x) are the classical soliton �eld con�guration

and the operators φ̂a(x) are the �uctuations about it. An expansion in powers of

the �uctuations amounts to an expansion in the small, electric coupling constant.

To leading order, the results of this expansion are simply the classical results. This
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expansion has been used to calculate the magnetic monopole mass to next-to-leading

order [152, 153].

For small monopole velocities and to leading order in the semiclassical expan-

sion, the amplitude of process (ii) is determined by the form factor of some relevant

intermediate operator, such as the photon �eld operator,

〈q4|F̂ µν(x)|q2〉 ≈ 〈q4|F µν
cl (x)|q2〉,

≈
√

4q0
2q
′0
2

∫
d3X ei(q4−q2)·XF µν

cl (x−X), (2.15)

where |q〉 denotes a magnetic monopole state with spatial momentum q and I have

normalised the states following the convention of Peskin and Schröder [154]. The

�eld F̂ µν(x) is the photon �eld, given by, for example, the Abelian projection in Ref.

[22]. I have expanded the photon �eld as in Eq. (2.14) in the �rst line.

From Eq. (2.15), one can calculate the amplitude for process (ii) only when the

monopole velocities are small, or when tq � m2. Upon crossing tq → sp and hence

the approximation of small monopole velocities ensures that one cannot use the

result to deduce anything about magnetic monopole pair production above thresh-

old, sp > 4m2. It might be hoped that the non-relativistic result can be uniquely

extended to the full relativistic one. If for example, I were to simply make the re-

placement p · x → −p · x, then from the photon form factor one would �nd that

magnetic monopole pair production is not exponentially suppressed as in Eq. (2.1).

Had I chosen, instead of the photon �eld in Eq. (2.15), a massive vector or scalar

boson �eld, the same replacement p ·x→ −p ·x would result in an amplitude which

is exponentially suppressed as in Eq. (2.1) [155]. However, in either case, this sim-

ple replacement is not unique. One can construct an in�nite number of di�erent

functions of the Lorentz invariants which reduce to the same the non-relativistic

limit.

A more sophisticated semiclassical calculation of amplitudes of processes anal-

ogous to (ii) was carried out by Papageorgakis and Royston [156] for a wide class of

scalar theories with solitons. Importantly the approximation of small soliton veloci-

ties was relaxed. They did however make the simplifying assumption, following Ref.

[33], that the scattering process does not signi�cantly deform the solitons (in direc-

tions which are not zero-modes). Intuitively, this means that the process considered

is an exclusive one, for the scattering of solitons in their ground state, however the

correctness of the assumption has not been demonstrated (see, for comparison, Ref.
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[157]). After crossing symmetry they �nd

|F(sp, tp)| ≤ e
− 2RS
RC

√
tp

tp−4M2
cl , (2.16)

whereMcl is the classical mass of the soliton, RC = 1/Mcl is its Compton wavelength

and RS is the soliton size. The ratio RS
RC

is parametrically large for kinks at weak

coupling as well as for magnetic monopoles, for which it is O(1/α). However, as

it stands, this is not the end of the story as the inclusive cross section for soliton

pair production will be larger and may be unsuppressed. The calculation of the

inclusive process requires including soliton excited states and the production of extra

perturbative particles. Further, for application to solitonic magnetic monopoles one

must include radiation e�ects.

The question arises as to whether one can go beyond the semiclassical ap-

proximation to the calculation of the amplitude for process (ii). The Euclidean

amplitude can be calculated on the lattice by using twisted boundary conditions

[158, 159]. An analytic continuation is required to relate this to the amplitude for

process (i) in Minkowski space. Attempts have been made at this general problem,

with some success, though errors due to the analytic continuation are di�cult to

quantify [160, 161, 162].

The appearance of the ratio, RS
RC

, in the exponent of Eq. (2.16) might lead one

to think that no such exponential suppression would occur for a Dirac monopole,

which has a pointlike magnetic charge. However, Goebel has argued that photon-

magnetic monopole interactions are e�ectively delocalised on the scale of the classical

radius, or Thompson scattering length, of the monopole, rcl = g2/(4πm) [123]. The

scattering length, f(E), for a photon of energy E on a magnetic monopole can be

calculated exactly at zero energy [163, 164]. It is given by

f(0) = − g2

4πm
= −rcl. (2.17)

Combining this result with the Kramers-Krönig Relations [165, 166, 167] and the

Optical Theorem, one can derive a generalisation of the Thomas-Reich-Kuhn sum

rule [168, 123]. From this Goebel argues that the magnetic charge of an elementary

monopole should be delocalised over a region of the size of the classical radius. If

this is indeed the case, then RS
RC

= O(1/α) for both Dirac and 't Hooft-Polyakov

monopoles.
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2.4 Landau method

The calculation of the amplitude for monopole-electron scattering, process (ii),

for a large monopole velocity change would give the amplitude for monopole pair

production after crossing. As a warm up, I consider the overlap of the in and out

states. I assume that a magnetic monopole can be e�ectively described by a large

number, O(1/α), of weakly coupled particles. I may then express its wave function

in a Fock space representation of these weakly coupled particles and the interactions

between particles should be analysable in a mean �eld approximation. Due to the

di�erence in speeds of the in and out monopoles, the constituent particles will be in

di�erent states in the two monopoles. Hence the overlap of their states will be less

than 1. The overlap of the two monopole states is essentially equal to the product of

the overlaps of the O(1/α) states of the constituent particles. Hence its magnitude

is exponentially suppressed as in Eq. (2.1). The two states are thus called strongly

di�erent.

Now, rather than simply the overlap of the two states, I wish to calculate the

scattering amplitude for process (ii). This is determined by the matrix element,

〈q4|F̂ µν(x)|q1〉, (2.18)

for |q4 − q1| = O(m). If the particles making up the monopoles are su�ciently

weakly coupled then the operator inside the matrix element will not a�ect the above

argument and the matrix element will be exponentially suppressed as in Eq. (2.1).

However, given that α is not in�nitesimal but �nite, the interactions between the

many weakly coupled particles may invalidate this argument. Further, it is crucially

important to know the coe�cient, c, in the exponential suppression, as it may be

small.

An analogous problem arises in one-dimensional quantum mechanics, the calcu-

lation of the matrix element of some operator between two strongly di�erent states,

i.e. states with exponentially suppressed overlap. A general, semiclassical solution

to this problem has been proposed by Landau in Refs. [169, 170, 171, 172].

Consider initial and �nal states with signi�cantly di�erent energies, E1 and

E2 respectively. One expresses the wave functions of the states in terms of their

semiclassical approximations in the coordinate basis. Then, one separates the terms

in these wave functions according to their exponential behaviour on the argument, q.

One can then analytically continue the argument of the wave functions into various

regions of the complex plane such that each term is exponentially small. To �nd
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the transition amplitude, one uses the saddle point approximation. This amounts to

�nding a path obeying the equations of motion from the initial state to a complex,

or singular transition point, q∗, and then on to the �nal state. The transition state is

necessarily complex or singular because the in and out states have di�erent energies

and hence there is no real, non-singular path satisfying the equations of motion

which can join them. The Landau formula for the matrix element is

〈ψ2|f̂ |ψ1〉 ∼ exp

{
− Im

[∫ q∗

q1

p(q;E1)dq +

∫ q2

q∗

p(q;E2)dq

]}
, (2.19)

where p(q, E1) is the classical expression for the momentum as a function of the

total energy and coordinate, q; q1 is any classically allowed point of the system with

energy E1 and q2 is the same for energy E2. The transition point, q∗, is a (complex

and singular) stationary point of the exponent. If there is more than one stationary

point, q∗ is chosen such that the exponent in Eq. (2.19) is negative and the smallest

in magnitude. It is interesting to note that the result does not depend on the details

of the operator, to this order. Its presence simply provides the energy to transition

between the states.

This technique has been extended to �eld theoretic contexts in Refs. [173,

174, 175, 176, 177, 178, 179, 180, 181, 182]. However a rigorous and quantitative

calculation using the Landau method requires a careful analysis of WKB estimates of

the wave function in di�erent regions of the complex plane, in particular of the Stokes

and anti-Stokes lines of these solutions. This has been carried out for the quantum

mechanical quartic oscillator in Ref. [183]. For �eld theories the Landau technique

has primarily been used either when the theory admits an e�ective description in

terms of one degree of freedom or to extract qualitative behaviours of amplitudes.

In Ref. [177], Voloshin used the Landau formula, Eq. (2.19), to calculate the

rate of vacuum bubble nucleation induced by a virtual, high energy particle. In the

thin wall limit, the dynamics of the bubbles can be e�ectively described in terms of

a single degree of freedom, the radial size of the bubble. This enabled Voloshin to

directly apply the Landau formula to this �eld theoretic problem. One starts from

the relativistic Hamiltonian, H, for the bubble radius r,

(H + ηr3)2 −P2 = (µr2)2, (2.20)

where η is proportional to the energy di�erence between the two vacua, P is the

spatial momentum of the bubble walls and µ is proportional to the surface energy

of the bubble.
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The Landau formula can then be applied to the matrix element

|〈B(E)|φ(E)|0〉|

∼ exp

{
− Im

[∫ r∗

0

√
(µr2)2 − (ηr3)2 dr +

∫ r(E)

r∗

√
(µr2)2 − (ηr3 + E)2 dr

]}
,

(2.21)

where |B(E)〉 refers to the state with a bubble in it, with energy E; φ(E) is the

�eld operator which creates a virtual particle with energy E; r(E) is the classical

turning point for a state with energy E and r∗ is the transition point. This matrix

element gives the required induced bubble nucleation rate, which is found to be

exponentially suppressed with exponent O(µ4/η3) for all energies.

A key step in the above is �nding the transition point, r∗. Demanding equation

(2.21) is stationary with respect to r∗ gives√
(µr∗2)2 − (ηr∗3)2 −

√
(µr∗2)2 − (ηr ∗3 +E)2 = 0, (2.22)

which has solutions given by the cubic root, (−E/(2η))1/3. One must choose the

solution such that the exponent in Eq. (2.21) is negative and the smallest in mag-

nitude.

To apply this method to the calculation of the matrix element, Eq. (2.18),

or to that of the crossed process, I need �rst the relativistic Hamiltonian for the

system. But, due to the �niteness of the speed of light and to the long range

of electromagnetic forces, no such local Hamiltonian exists which depends solely

on the degrees of freedom of the charged particles (whether electric or magnetic).

It has long been known that for small particle velocities, v � 1, one can write

down an approximate Hamiltonian, accurate to O(v2) [184, 185]. Beyond this order,

radiation e�ects appear which are essentially non-local in character. Alternatively,

one can write down a local Hamiltonian in the test particle approximation, when the

�eld due to the charged particles is negligible. This is essentially a weak coupling

approximation and hence is not expected to be applicable to magnetic monopoles.

Nevertheless, for illustration I discuss such an approach in App. A.1 and show a

simple tunnelling calculation in the presence of an external �eld.

I do not pursue the Landau method further. Instead, I consider a powerful

�eld-theoretic method developed by Rubakov, Son, Tinyakov and others, many of

whom had actively worked on applying the Landau method to �eld theory.
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2.5 Rubakov-Son-Tinyakov method

The method of Rubakov, Son and Tinyakov (RST) [119, 115, 120] was designed

in order to calculate the cross section for (B + L) violation due to high energy, few

particle collisions, eventually achieved in Ref. [97]. As mentioned in Sec. 2.2.1, it

is a general method for the calculation of the cross section, or rate, of instanton

processes induced by few particle collisions. It was adapted to calculate the pair

production of solitons in Refs. [98, 100, 102, 101].

I denote the small semiclassical parameter by α and assume that the action,

S[φa;α], depending on �elds, φa, satis�es the property

S[φa;α] =
1

α
S[ασaφa; 1], (2.23)

for some set of numbers σa. In particular, many bosonic actions in four dimensions

satisfy this property, such as renormalisable scalar theories; renormalisable Abelian

and non-Abelian gauge theories and coupled combinations thereof. This includes

theories containing composite monopoles such as the Georgi-Glashow theory [26]

and the bosonic sector of the electroweak theory, which is relevant for (B + L)

violation.

For (B+L) violation at energies low compared with the sphaleron energy,Msph,

corrections to the zero energy cross section can be calculated perturbatively. The

leading order corrections exponentiate and the naively extrapolated cross section

appears to be unsuppressed at energies of the order of Msph [112, 113]. Higher order

corrections however are signi�cant at this point. They can be naturally divided into

three groups: soft-soft, hard-soft and hard-hard [116, 96]. The soft-soft corrections

are due to the �nal state. They are determined by tree-level diagrams about the

zero energy instanton, and their contribution can be calculated with semiclassical

methods [186, 187]. On the other hand, the hard-soft and hard-hard corrections

depend on the initial state and are determined by loop diagrams about the zero

energy instanton. Despite this, their contribution to the cross section has been

argued to exponentiate [188, 189, 190, 191]. Hence, as noted in Sec. 2.2.1, the cross

section takes the form

σE ∼ e
− 4π
α
FHG

(
E

Msph

)
.

This exponential form suggests a semiclassical procedure for the calculation of FHG,

however the presence of loop diagrams means that the usual semiclassical approach

fails. This is because the initial state is far from semiclassical: it contains a small
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number of particles (such as two), with a high energy.

The key step in the RST method is to replace the few particle initial state with

a su�ciently similar semiclassical state. One requires that the overlap between the

true initial state and the replacement state is not exponentially small in the semi-

classical parameter. Then, the rate can be calculated semiclassically to exponential

accuracy (i.e. the logarithm can be calculated to leading order) in the small semi-

classical parameter, the result being independent of all details of the initial state

other than its energy. For a true initial state with particle number O(1), it has

been argued that a valid such replacement state is one with the same energy and

with number of particles, N , satisfying 1 � N � 1/α [114, 115, 116, 117, 118].

Though this state is not itself semiclassical, it may be described as the limit of a set

of semiclassical states.

For a state to be semiclassical, it must have a parametrically large energy,

E = ε/α, and particle number, N = ν/α, where ε and ν are independent of α. To

leading order, the semiclassical approximation is given by the double-scaling limit:

α→ 0,

E,N →∞,

ε, ν = const. (2.24)

In the approach to this limit, the cross section for instanton transitions from a

semiclassical state with energy E and particle number N takes the form

σ(E,N) ∼ e−
4π
α
F (ε,ν). (2.25)

The RST method starts with the semiclassical calculation of this function, F (ε, ν).

The Holy Grail function is then argued to be given by the limit,

lim
ν→0

F (ε, ν) = FHG

(
E

Msph

)
. (2.26)

Singular behaviour of the ν → 0 limit could mar this.

In practice, rather than considering a particular initial state, for which extra-

neous details would complicate the calculation, it is preferable to sum over all states

with a given energy and particle number. One de�nes the following cross section,

σ(E,N) :=
∑
i,f

|〈f |ŜP̂nP̂E|i〉|2, (2.27)
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where |i〉 and |f〉 are the initial and �nal states respectively and P̂n and P̂E are

projection operators onto the space of states with particle number N and energy

E respectively. For (B + L) violation, one sums over all initial states in the trivial

vacuum sector and all �nal states in the one-instanton sector. Note that the cross

section calculated in this way should be larger than the desired cross section, σE,

F (ε, ν) < FHG

(
E

Msph

)
. (2.28)

This is because the semiclassical approximation to σ(E,N) is dominated by the

�eld con�guration giving the most probable instanton transition for given energy,

E, and particle number, N . Further, the sum over �eld con�gurations includes those

consisting of a few particle collision and a large number of spectator particles, and

hence includes the �eld con�guration dominating σE as a special case.

For de�niteness, and for simplicity, I consider a real scalar �eld theory with

action

S[φ;α] =
1

α
S[
√
αφ; 1]. (2.29)

Within the path integral, one can then change variables to integrating over ϕ :=
√
αφ

and relabel ϕ→ φ.

To express Eq. (2.27) less formally it is convenient to adopt the coherent state

representation outlined in App. A.2. The coherent state path integral is well suited

to describe initial and �nal boundary conditions. The projection operators also take

a simple form. The discussion here follows Refs. [115, 119, 120] closely. In the

coherent state representation, Eq. (2.27) becomes

σ(E,N) =

∫
dηdξe−iNη−iEξ+W (η,ξ), (2.30)

where W has the path integral representation

eW :=

∫
Da∗pDapDb∗pDbpDφDφ′eQ, (2.31)

in terms of Q, which has the form

Q := −
∫

�papa
∗
pe−iη−iωpξ −

∫
�pbpb

∗
p

+Bi(a, φi) +Bf (b
∗, φf ) +B∗i (a

∗, φi) +B∗f (b, φf ) + iS[φ;α]− iS[φ′;α], (2.32)

where the Bi/f are boundary terms de�ned in App. A.2. In Eqs. (2.30), (2.31) and

(2.32), the integrations over ap, a
∗
p, bp and b∗p are Gaussian and hence can be carried
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out exactly, resulting in

eW =

∫
DφDφ′

(∏
p

δ(φ̃f (p)− φ̃′f (p))

)

exp

{
− 1

2

∫
�p

ωp

1− γ2
p

[
(1 + γ2

p)[φ̃i(p)φ̃i(−p) + φ̃′i(p)φ̃′i(−p)]

− 4γpφ̃i(p)φ̃′i(−p)

]
+ iS[φ;α]− iS[φ′;α]

}
, (2.33)

where I have de�ned

γp := eiη+iωpξ. (2.34)

Now using the scalings of Eq. (2.24) and (2.29) results in the whole exponent of

the integrand of Eq. (2.30) being proportional to 1/α. This is key and, for α � 1,

the exponent is consequently large, allowing one to evaluate the path integral in the

stationary phase, or semiclassical, approximation. Evaluating the path integral in

this approximation requires �nding the relevant stationary point of the exponent,

which amounts to solving the classical equations of motion,

δS[φ, 1]

δφ(x)
= 0,

δS[φ′, 1]

δφ′(x)
= 0, (2.35)

with boundary conditions,

i ˙̃φi(p) + ωpφ̃i(p) = γp

[
i ˙̃φ′i(p) + ωpφ̃

′
i(p)

]
,

−i ˙̃φi(p) + ωpφ̃i(p) =
1

γp

[
−i ˙̃φ′i(p) + ωpφ̃

′
i(p)

]
,

φ(Tf ,x) = φ(Tf ,x),

φ̇(Tf ,x) = φ̇(Tf ,x). (2.36)

There are also the saddle point equations for the integrations over η and ξ in Eq.

(2.30). They amount to

ε =

∫
�p

2ω2
pγp

(1− γ2
p)2

[φi(p)− γpφ′i(p)] [φ′i(−p)− γpφi(−p)] ,

ν =

∫
�p

2ωpγp
(1− γ2

p)2
[φi(p)− γpφ′i(p)] [φ′i(−p)− γpφi(−p)] . (2.37)

The equations can be simpli�ed somewhat. First, I note that the boundary condi-
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Figure 2.2: Complex time path of RST method, shown as dotted line. The initial
and �nal times, A and D respectively, are to be understood as having asymptotically
large real parts.

tions at t = Tf imply that φ(x) = φ′(x) everywhere, hence there is only one �eld to

solve for. Next, any real part of the parameter ξ can be set to zero by using time

translation invariance. Hence I may take T := ξ/i, with T purely real. Likewise, I

de�ne θ := η/i. Based on perturbation theory at ε � 1, it is expected that θ can

also be taken purely real [115, 120].

Explicit dependence on T can be removed by deforming the time path into the

complex plane as in Fig. 2.2. This may seem baroque but is important for the

numerical solution of the equations of motion as it bypasses exponentially small and

large quantities.

The �nal simpli�cation of Eqs. (2.36) and (2.37) can be achieved by expressing

the �eld in terms of its positive and negative frequency modes,

φ(x) =

∫
�p√
2Ep

(
fpe−ip·x + g†peip·x

)
. (2.38)

As a result, the simpli�ed boundary value problem is

δS[φ, 1]

δφ(x)
= 0,

Imφ(Tf ,x) = Imφ̇(Tf ,x) = 0,

fp = γgp, (2.39)

where fp and gp are the frequency components at the initial time A in Fig. 2.2. I

have also de�ned γ := e−θ. The boundary conditions are to be applied asymptoti-

cally, as Ti − iT/2 → −∞ and Tf → +∞. The energy and particle number of the
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solution are now,

ε =

∫
�pωpfpg

∗
p,

ν =

∫
�pfpg

∗
p. (2.40)

After solution of the boundary value problem, evaluation of the exponent of

Eq. (2.30) on-shell gives the exponential suppression,

σ(E,N) ∼ exp

{
− 1

α
F (ε, ν)

}
,

F (ε, ν) = −νθ − εT − 2Re(iS[φ, 1])

+
1− γ
1 + γ

∫
�pωpReφi(p)Reφi(−p)

− 1 + γ

1− γ

∫
�pωpImφi(p)Imφi(−p). (2.41)

The boundary value problem consists of an initial Minkowskian (AB) evolution,

followed by a Euclidean (BC) evolution and then another Minkowskian evolution

(CD). This can be interpreted as a classical �eld con�guration evolving up until a

time, B, when it tunnels, reaching C and then undergoing real time evolution again.

For θ 6= 0 the �eld is generically complex on the entire time contour (except at Tf ).

As the classical �eld is real, the existence of an imaginary part shows the quantum

mechanical nature of the process.

The solution to the boundary value problem is a saddle point of the exponent.

If there exist more than one solution, that with smallest exponential suppression

dominates the path integral. As this solution describes tunnelling, the spectrum

of �uctuations about the solution is expected, on general grounds, to have a single

negative mode, a �nite number of zero modes and an in�nite tower of positive modes

[192].

Eq. (2.39) is a non-linear partial di�erential equation and boundary value

problem, with non-local initial conditions. It is partially hyperbolic and partially

elliptic2. For these reasons its solution is extremely non-trivial. For some theories,

progress has been made in analytically solving the boundary value problem for small

ε (see, e.g. [115, 120, 193]). However, for general ε, the most promising approaches

have been numerical (see, e.g. [194, 103, 97]), for which the problem is well suited.

The continuum problem is approximated by a discrete analogue on a �nite lattice,

2For such an equation, the existence of solutions is a subtle matter (Toby Wiseman, private
correspondence).
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replacing derivatives with �nite di�erences. The resulting discrete problem is a set

of non-linear, coupled algebraic equations which can be solved using the Newton-

Raphson method. That is, one linearises the problem about an initial guess, solves

the linear problem and then uses that solution as input for a second iteration. If the

initial guess is good enough, the iterations will converge on the true solution. Apart

from on the initial time slice, the second derivative matrix has a sparse structure,

for which there are well developed numerical methods [195, 196].

The initial guess is crucial in solving the problem using the Newton-Raphson

method. If the solution is known for a particular value of ε and ν (or T and θ), one

can use this known solution as an input guess at nearby points in the (ε, ν) plane (or

the (T, θ) plane). Iterating this procedure, one can step out from the initial known

solution to �nd all solutions which are continuously connected to it. A bifurcation

of solutions can thwart this method.

With the solution to the semiclassical problem given by Eq. (2.41), one must

investigate the ν → 0 limit. If F (ε, ν) has a smooth limit, then the limit is equal to

the Holy Grail Function, the exponential suppression of the tunnelling rate from a

few particle collision.

2.5.1 Soliton pair creation

The RST method, as originally formulated, describes a method to calculate

the cross section for semiclassical tunnelling processes induced by a high energy

few particle collision. Unfortunately, this does not include magnetic monopole pair

production, or any other soliton pair production. This is because there is no potential

barrier separating the initial and �nal states, which one can understand by noting

that there is no barrier to monopole-antimonopole annihilation, the reverse process

(studied numerically in Ref. [197]).

In this context, a method to convert the process of monopole pair production

into a tunnelling problem was introduced in Refs. [100, 102, 101]. One turns on an

external magnetic �eld, B, in which case the process of monopole pair production can

be viewed as the decay of a false vacuum (without magnetic monopoles) into a lower

energy state containing a separated monopole pair. This is a tunnelling process, the

magnetic analogue of Schwinger pair production [198, 199, 200, 201, 25]. For kinks

and other solitons, one can likewise turn on an external �eld which couples to the

topological current of the solitons [202].

The presence of non-zero particle number and energy in the initial state en-

hances the rate of the Schwinger process, increasingly so at higher multiplicities and
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energies. In fact, when the initial energy is above the kinematic threshold, E > 2m,

a �nite rate of pair production may survive even as the external magnetic �eld goes

to zero, B → 0. This is therefore the rate of pair production in the absence of the

external �eld. Though the process at B = 0 is not a tunnelling process, that for B

arbitrarily small and non-zero is a tunnelling process and hence the desired result

can be obtained by considering the limit B → 0.

This approach was adopted in Refs. [100, 102, 101] to calculate the rate of

kink pair production in a particular 1+1 dimensional scalar theory. Their results

showed that F (ε, ν) decreases with energy, reaches a (positive) minimum at �nite

energy and stays constant for higher energies. These properties are inherited by

the extrapolated Kink Holy Grail function, FKHG(E/(2mk)) (where mk is the kink

mass), and hence kink pair production from few particle collisions is exponentially

suppressed at all energies. Quantitatively they �nd,

lim
E

2mk
→∞

FKHG

(
E

2mk

)
FKHG(1)

≈ 0.8. (2.42)

However, in these papers, a speci�c non-polynomial scalar potential was chosen

in order to avoid a key problem: the presence of long-lived, quasi-periodic nonlinear

excitations. Such excitations, dubbed oscillons, were discovered in this context in

Refs. [149, 203], for the 1+1 dimensional theory with Lagrangian,

L =
1

α

[
1

2
(∂µφ)2 − 1

4
(φ2 − 1)2

]
. (2.43)

This theory has a Z2 symmetry breaking. The perturbative particles about either

of the minima have mass M =
√

2.

The stability of oscillons has been argued to be due to the approximate conser-

vation of an adiabatic charge [204], in turn related to an approximate U(1) symmetry,

which becomes exact in the nonrelativistic regime [205]. In the theory de�ned by

Eq. (2.43), using a multiple-scale analysis [206], the oscillon solution can be found

as a series expansion in γ =
√

(M/ω)2 − 1, where ω is their frequency of oscillation.

In Ref. [207, 208] it was shown numerically that the lifetime of oscillons in this

theory is over 108 oscillations. Oscillons have also been found in scalar �eld theories

in other dimensions [209, 210, 211]; in the Abelian Higgs model [212, 213, 214]; in

an SU(2) gauge theory [215] and in the electroweak theory [216]. They appear to

be an almost generic phenomenon in nonlinear �eld theories and, crucially, similar

long-lived, nonlinear excitations have been discovered in numerical investigations of

't Hooft-Polyakov monopoles [217, 218, 219, 159].
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Oscillons pose a serious problem for the RST method. This is because the initial

and �nal boundary conditions are to be applied at asymptotically large times, after

all nonlinear excitations have died o�. If the boundary conditions are imposed at a

time, Ti, when the nonlinear excitations are still signi�cant, the results will depend

sensitively on Ti. Hence, the time extent of the lattice must be larger than the

lifetime of the oscillon, which may require unfeasibly large lattices.

As an exploratory study, before attempting to calculate the Monopole Holy

Grail function (Eq. (2.5))3, I attempted the simpler calculation of the Kink Holy

Grail function for the theory given by Eq. (2.43). The calculation is very similar to

that of Refs. [100, 102, 101], which I followed closely. I was chie�y interested in the

e�ect of the oscillons on the calculation.

To measure the presence of nonlinear excitations on a given time slice I com-

pared the total energy, εtotal with the linearised energy, ε. For the theory given by

Eq. (2.43), with ϕ = 1 + φ, these are

ε =

∫
dx

(
1

2
ϕ̇2 +

1

2
ϕ′2 +

M2

2
ϕ2

)
,

εtotal = ε+

∫
dx

(
ϕ3 +

1

4
ϕ4

)
, (2.44)

to zeroth order in the external �eld. When all nonlinear excitations have died o�,

these two expressions should agree, so that δ := |ε/εtotal − 1| � 1.

Using the Newton-Raphson method, the key computationally challenging step

of the calculation is the solution of the linear matrix equation. The matrix has

dimension equal to the number of lattice points (excepting zero modes). Using serial

processing, I was limited to lattices of size O(102) × O(102). Long lived nonlinear

excitations were indeed present in my calculations on the AB part of the time contour

(see Fig. 2.2). This lead to an O(1) dependence of ε and ν on the initial time, Ti,

when the boundary conditions were applied. Using the maximum feasible lattice

size I was able to observe about 30 periods of the nonlinear oscillation, though my

measure of nonlinearity, δ, was still of O(1) at Ti.

A similar problem has been observed in the literature for above threshold cal-

culations using the RST method [121, 122, 118]. In this case the solution to the

boundary value problem stays very near the nonlinear sphaleron con�guration for

long times on the CD part of the time contour (see Fig. 2.2). In this case the

3Note that, a numerical study of classical monopole pair creation was carried out in Ref. [220].
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Figure 2.3: Example solution to the lattice RST boundary value problem with
Lagrangian given by Eq. (2.43). From left to right: the initial blue region is the
evolution of the initial wave packet; the red region corresponds to the tunnelling
and the �nal blue region to the two kinks accelerating apart. However, nonlinear
excitations were still present in the initial time slice implying �nite size errors of
O(1).

problem was solved by adding a regulating term to the action,

L → L+ iλf(φ, x), (2.45)

where f(φ, x) is chosen such that it is only nonzero near the sphaleron con�guration,

hence causing the long lived sphaleron con�guration to decay more quickly, while

a�ecting the dynamics as little as possible. With the addition of the regulating

term, one can �nd a solution to the boundary value problem which is independent

of the precise �nal time. This gives a corresponding suppression exponent, F (ε, ν, λ).

One then varies the parameter λ and extrapolates to limλ→0F (ε, ν, λ) = F (ε, ν). A

similar approach may be feasible to destabilise the oscillon.
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Thermal Schwinger pair creation

In the presence of an electric �eld, empty space is unstable to the production of

electron-positron pairs, called Schwinger pair production [198, 199, 200, 201]. The

usual perturbative vacuum is not the true vacuum, the lowest energy state, and

hence it decays. At �nite temperature, the energy available from the thermal bath

enhances the rate of decay.

If there exist magnetic monopoles, by electromagnetic duality, in the presence

of a magnetic �eld empty space would be unstable to the production of magnetic

monopole-antimonopole pairs. This is the magnetic dual of Schwinger pair pro-

duction, as �rst considered at zero temperature by A�eck, Manton and Alvarez

[25, 221]. The key di�erence to the usual electric Schwinger pair production is the

strong coupling of magnetic monopoles.

One can study magnetic monopole Schwinger pair production via its electro-

magnetic dual if one does not consider electric and magnetic charges simultaneously.

In this case the duality amounts simply to a relabelling of electric degrees of freedom

and charges as magnetic. I will, in the bulk of the chapter, refer to pair produc-

tion of particles with charge g in an external �eld E, whether electric or magnetic.

The mass of the charged particles is denoted by m. As my calculation reduces to a

semiclassical one, it only relies on the classical electromagnetic duality.

In this chapter I calculate the rate of Schwinger pair production from a thermal

bath, making no assumptions about the strength of the coupling. I do though restrict

myself to weak external �elds. The results are argued to be valid for the full range

from zero to in�nite coupling [221, 222] (see, however, [223, 224, 225]). They are also

independent of many properties of the charged particles, in particular their spin (see

Appendix A.3) and whether they are electric or magnetic. For magnetic monopoles,

the results are valid for both Dirac and 't Hooft-Polyakov monopoles (see Appendix

A.4). This is because, in the physical regime I consider, any structure of the particles

56
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is invisible, as in Refs. [226, 24, 227].

The calculation is also of relevance to Schwinger pair production of atomic

nuclei, especially those with charges Ze & 1 (Z & 3) where the usual weak coupling

approaches break down, and to pair production of quarks in QCD, in the Abelian

dominance approximation [228, 229, 230, 231, 232]. Further it gives an all-orders

correction to the known weak coupling results. This will be of interest to current and

future experimental studies of Schwinger pair production (see for example [233] for a

discussion), as well as to multiloop and asymptotic analyses of the QED perturbation

series [223, 224, 225].

In Sec. 3.1 I set up the calculation using the worldline formalism, deriving

an expression for the thermal Schwinger rate at arbitrary coupling. In Sec. 3.2 I

explain a key approximation that I make, the dilute instanton gas approximation.

In Sec. 3.3 I derive analytic results in various limits and in Sec. 3.4 I extend beyond

these limits via numerical calculations. I also discuss the general form of the rate in

terms of a phase diagram. In Sec. 3.5 I conclude and suggest further work.

3.1 Worldline expression

3.1.1 Zero temperature rate

Physically, I consider at an initial time a state, such as a thermal state. I choose

the state such that, in the absence of an external �eld, there are no net production

or annihilation rates. If I then adiabatically turn on an external �eld, the initial

state becomes unstable to a net production of charged particles. I wish to calculate

this rate.

I denote by |Ω〉 the zero temperature state in the absence of the external �eld,

the so-called false vacuum. The probability of the decay of this state is given by

P = 1− |〈Ω|Ŝ|Ω〉|2 = 1− e−VΓ, (3.1)

where Ŝ is the S-matrix including the external �eld and V is the volume of spacetime.

As both the false vacuum state and the external �eld are homogeneous, the quantity

of interest is the probability per unit spacetime volume, or the rate per unit volume,

Γ. The rate of pair production is given by twice the imaginary part of the energy
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density of the initial state.

Γ =
2

V
Im(−i log〈Ω|Ŝ|Ω〉)

= 2Im(E), (3.2)

where E is the energy density of the false vacuum. Note that for this to make sense

I should do the calculation in a �nite volume and take the volume to in�nity at the

end.

I can analytically continue Eq. (3.2) to Euclidean time, as the energy density

can equally well be calculated in Euclidean time. It then becomes [202]

Γ =
2

V
Im(− log〈Ω|ŜE|Ω〉), (3.3)

where ŜE refers to the �S-matrix� corresponding to Euclidean time evolution. The

generalisation of this result to nonzero temperatures can then easily be made. Using

the Matsubara formalism, �nite temperatures simply correspond to �nite Euclidean

time extents and periodic boundary conditions [234].

I consider quantum electrodynamics (QED) and scalar quantum electrodynam-

ics (SQED) in 4D �at spacetime. In the worldline formalism these two theories are

related, the only di�erence being the presence of a spin factor in the QED worldline

path integral. In Appendix A.3 I show that the spin factor does not turn up in

the leading approximation for weak external �elds. As I will make this approxima-

tion below, I restrict my attention to SQED, the �nal results also being valid for

QED. SQED is the model of a photon, Aµ, interacting with a massive charged scalar

particle, φ, with charge g. The introduction of the external �eld, Aext
µ , is achieved

by shifting the gauge �eld, Aµ → Aµ + Aext
µ , in the covariant derivative of φ. The

Euclidean Lagrangian is then

LSQED :=
1

4
F µνFµν +Dµφ(Dµφ)∗ +m2φφ∗, (3.4)

where Fµν = ∂µAν − ∂νAµ is the �eld strength; Dµ = ∂µ + igAext
µ + igAµ is the

covariant derivative and m is the mass of the charged particle. I assume the scalar

self-coupling, i.e. λ(φφ∗)2/4, is su�ciently small that I may ignore it, at least in the

range of energies considered1. Note that for QED no such term would arise.

I write the false vacuum transition amplitude as a path integral and note that

1Of course photon loops will generate this term. However, the term is a pointlike interaction
between scalar loops (given no external legs) and, in the dilute instanton approximation that I will
make, such loops are subdominant and are neglected.
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I may integrate out the charged particle, as it enters quadratically.

〈Ω|ŜE|Ω〉 =

∫
DAµDφ e−

∫
x LSQED

=

∫
DAµ det(−D2 +m2)−1 e−

∫
x

1
4
FµνFµν

=

∫
DAµ e−Tr log(−D2+m2)−

∫
x

1
4
FµνFµν , (3.5)

where
∫
x

:=
∫

d4x and the functional integrations are normalised such that the

amplitude is 1 for zero external �eld. The normalisation drops out once I take the

imaginary part of the logarithm to �nd the rate, as in Eq. (3.3).

I can now use Schwinger's trick (i.e. Frullani's integral) to express the logarithm

as a proper time integral [201]

log(A) = −
∫ ∞

0

ds

s
(e−As − e−s), (3.6)

and drop the second term as it is �eld independent and will not contribute an

imaginary part. The UV divergences of the theory will then turn up as divergences

at small s which can be renormalised using the heat kernel expansion. Introducing

the proper time integral leads to the expression Tr(e−(−D2+m2)s), which I express as

a path integral over closed worldlines, [235, 236, 237, 238, 239]

Tr(e−(−D2+m2)s) =

∫
Dxµe−S0[xµ,Aext

µ +Aµ;s], (3.7)

where the action is given by

S0[xµ, aµ; s] := m2s+
1

4

∫ s

0

dτ ẋµẋµ − ig
∮
aµdxµ, (3.8)

and ẋµ := dxµ/dτ . This is the worldline path integral for a charged scalar particle

with the reparameterisation invariance �xed such that the einbein (also-called the

vierbein or tetrad by analogy to 4 dimensions) is equal to 2 (see for example Chapter

1 of Ref. [240]). The false vacuum transition amplitude is now

Γ = − 2

V
Im log

∫
DAµe−

∫
x

1
4
FµνFµν

{
1+

∞∑
n=1

1

n!

( n∏
j=1

∫ ∞
0

dsj
sj

∫
Dxµj e−S0[xµj ,A

ext
µ +Aµ;sj ]

)}
. (3.9)

At each order in n the integration over the photon is now Gaussian and can be
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done exactly, resulting in an e�ective nonlocal worldline action. If I denote the free

photon propagator by Gµν(xj, xk), I can write this as

Γ = − 2

V
Im log

{
1+

∞∑
n=1

1

n!

( n∏
j=1

∫ ∞
0

dsj
sj

∫
Dxµj

)
e−
∑n
k=1(S0[xµk ,A

ext
µ ;sk]− g

2

2

∑n
l=1

∮ ∮
dxµkdxνl Gµν(xk,xl))

}
.

(3.10)

Integrating out the photon has left me with a nonlocal, long-range interaction. At

this point I have made no approximations regarding the strength of the external

�eld, or of the coupling. The relatively simple exponential form of Eq. (3.10) only

obtains for Abelian gauge �elds (see for example [241]).

At weak coupling, g2 � 1, the nonlocal interaction term in Eq. (3.10) can be

dropped at leading order. In this case the sum exponentiates, leaving only one path

integration which can be carried out exactly, leading to Schwinger's result [201]

ΓSchwinger =
g2E2

8π3

∞∑
n=0

(−1)n+1

n2
e−

πm2

gE
n. (3.11)

In this chapter I consider arbitrary coupling, g, for which the nonlocal interaction

cannot be dropped.

3.1.2 Finite temperature rate

The derivation thus far has been at zero temperature. At �nite temperature,

T = 1/β, I make the following replacements

〈Ω|ŜE|Ω〉 → N−1Tr e−Ĥβ,

V → VT ,

where Ĥ is the Hamiltonian of the system in the presence of the external �eld and the

normalisation, N−1, ensures the amplitude is 1 in the absence of the external �eld

(see [242] for a physical discussion of thermal Schwinger pair creation). In the second

line VT is equal to the spatial volume, V , multiplied by the inverse temperature β2.

2Eq. (3.12) for the thermal rate has been advocated by Linde [243, 244]. An analysis by Langer
shows that a di�erent expression for VT should be used, with the inverse temperature replaced by
the decay time of an intermediate state [245, 246, 107]. Though, as I only work to exponential
accuracy (i.e. the leading order of the logarithm) in this chapter, the di�erence does not a�ect my
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The rate is then given by

ΓT =
2

VT
Im

{
− log

(
Tr e−Ĥβ

)}
. (3.12)

This transition to �nite temperature can be made straightforwardly using the Mat-

subara formalism, i.e. by enforcing periodicity in the Euclidean time coordinate,

x4(τ) = x4(τ) + β, and including interactions between the periodic copies.

Including interactions between periodic copies is equivalent to replacing the

photon propagator, Gµν(xj, xk), by its thermal cousin, Gµν(xj, xk;T ). In a general

Rξ gauge the ξ dependent term drops out when integrated around a closed loop

leaving just a term proportional to δµν . This gauge independent part is

Gµν(xj, xk;T ) :=
∞∑

n=−∞

G(xj, xk +
n

T
e4)δµν

=
∞∑

n=−∞

−δµν
4π2(xj − xk − n

T
e4)2

=
T sinh(2πTrjk) δµν

4πrjk (cos (2πTtjk)− cosh(2πTrjk))
, (3.13)

where e4 is the unit vector in the Euclidean time direction and I have de�ned tjk :=

x4
j − x4

k and rjk :=
√

(x1
j − x1

k)
2 + (x2

j − x2
k)

2 + (x3
j − x3

k)
2. This is the Matsubara

thermal Green's function in position space.

To generalise Eq. (3.10), and get an expression for the rate at �nite tempera-

ture, one need only replace the zero temperature Green's function with that of Eq.

(3.13), and impose periodic boundary conditions in the Euclidean time direction,

with period 1/T . The aim of this chapter is to calculate this thermal rate.

3.1.3 Inclusive rate at �xed energy

I will also consider inclusive tunnelling rates at a �xed energy E , i.e. rates from
a microcanonical ensemble. The microcanonical density operator projects onto the

subspace of states with energy, E . In this case one makes the replacements

〈Ω|ŜE|Ω〉 → N−1Tr
(
δ(E − Ĥ)

)
,

V → VE ,

results.
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where the normalisation again ensures the amplitude is 1 in the absence of the

external �eld. In the second line VE is equal to the spatial volume, V , multiplied

by some time scale, which is expected to be O(1/E) on dimensional grounds. The

exact form of VE will not concern me in this chapter as my �nal results are only

to exponential accuracy. The delta function of the Hamiltonian is de�ned by the

following integral,

δ(E − Ĥ) = lim
B→∞

∫ iB

−iB

dβ

2πi
e(E−Ĥ)β, (3.14)

an inverse Laplace transform of the Boltzmann factor. The rate, ΓE , is then given

by

ΓE =
2

VE
Im

{
− log

(
Tr δ(E − Ĥ)

)}
, (3.15)

The thermal density matrix is related to the microcanonical one by a sum over

Boltzmann weights, or a Laplace transform,

e−Ĥβ =

∫ ∞
0

dEe−Eβδ(E − Ĥ). (3.16)

These rates and their relationship to thermal tunnelling rates have been discussed

by various authors [246, 247, 248, 119, 115]. For su�ciently slow rates one can

expand the logarithms in Eqs. (3.12) and (3.15) to derive the following approximate

relation,

ΓT ∼
∫ ∞

0

dEe−EβΓE , (3.17)

where I have ignored the ratio VE/VT as I will only use the relation to exponential

accuracy.

3.2 The dilute instanton gas

I wish to consider Schwinger pair production in QED and SQED for arbitrary

coupling, g. This requires going beyond perturbation theory in g. For a su�ciently

weak external �eld, as I will show, an alternative set of approximations are valid

and allow me to proceed. These are the semiclassical and dilute instanton gas

approximations.

Although Feynman diagrams will not be utilised in this calculation, they can

illuminate the structure of the approximations I will make. The rate, Eq. (3.10),

contains only connected Feynman diagrams, due to the logarithm. The constituents

of the contributing diagrams are internal charged particles lines; external photon
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...

...

Figure 3.1: External photon legs denote couplings to the �xed external �eld whilst
internal photon lines denote dynamical virtual photons. The Schwinger formula, Eq.
(3.11), valid at weak coupling, accounts for the in�nite set of diagrams represented
in the �rst row. The quenched approximation also includes all diagrams which
include any number of internal photon lines, with any topology. Some examples are
shown in the second line. Note that in SQED there are also four-point interactions
involving two photons and two charged particles (not shown here though included
in quenched approximation). In all the diagrams there is only one charged particle
loop. Figure taken from Ref. [1].

lines, for Aext
µ ; internal, dynamical photon lines, for Aµ, and vertices joining two

charged particle lines and one or two photon lines.

At weak coupling, g � 1, to leading order all dependence on the dynamical

photon can be dropped. The path integrations in Eq. (3.10) are then uncoupled

and the sum exponentiates. The Feynman diagrams which contribute to this all

contain one charged particle loop and an arbitrary number of external photon lines.

These are the diagrams in the �rst row of Fig. 3.1. The sum of these diagrams at

zero temperature is Schwinger's original result, Eq. (3.11). At �nite temperature

the rate has been calculated in Refs. [249, 250, 251, 252]. The inclusion of a

single dynamical photon line (i.e. two loops) was calculated �rst by Ritus at zero

temperature [253, 254, 222, 255] and by Gies at �nite but low temperature [256]. In

these calculations the approximation of weak external �elds has not been made.

At stronger coupling one must include the extra in�nitely many diagrams con-

taining arbitrary numbers of internal, dynamical photon lines as well as arbitrary

numbers of charged particle loops. However, as I will argue, for a su�ciently weak

external �eld, diagrams with a large number of charged particle loops will be sup-

pressed and hence a loop expansion in charged particle loops is possible. At each

order one must sum the in�nite set of diagrams containing a �xed, �nite number of

charged particle loops and an arbitrary number of both external and dynamical pho-
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ton lines. To �rst order this is the quenched approximation, which in this context

was argued to be valid (at zero temperature) in the Refs. [25] and [221] (see also

[257]). Fig. 3.1 shows some examples of diagrams which contribute in the quenched

approximation.

Following Refs. [25] and [221], I consider the situation where the external

�eld is weak and su�ciently slowly varying to be considered constant. I choose the

external �eld to point in the 3 direction, Fµν = −i(δµ3δν4 − δν3δµ4)E (the factor

of −i is present due to the Wick rotation and the fact that E is the value of the

Minkowskian �eld). As long as the worldline xµ(τ) forms the boundary of some

surface within the space, I can use Stokes's theorem to reexpress the interaction

with the external �eld,

−ig
∮
Aextµ dxµ = −ig

2

∫ ∫
Fµνdx

µ ∧ dxν

= −gE
∮
x3dx4, (3.18)

which is simply the area enclosed by the worldline, projected onto the 3-4 plane and

multiplied by −gE. Now, I am in a position to set up the weak �eld approximation

to Eq. (3.10), which will amount to a semiclassical approximation. To see this it

will be useful for me to rescale the τ in the integrand of S0, the parameters sj and

the �elds xµj (τ). I rescale them according to

τ → τ/sj,

sj → sj/gE,

xµj → xµjm/gE, (3.19)

making all three dimensionless. The inverse temperature must be scaled in the same

way as xµj (τ). I de�ne the scaled temperature T̃ := mT/gE and β̃ := 1/T̃ .

The full rate at �nite temperature becomes, upon rescaling,

ΓT = − 2

VT
Im log

[
1+

∞∑
n=1

1

n!

n∏
j=1

(∫ ∞
0

dsj
sj

∫
Dxµj e−

1
ε
S̃[xj ;sj ;κ,T̃ ] e

κ
ε

∑
k<j

∮ ∮
dxµj dxνkGµν(xj ,xk;T̃ )

)]
, (3.20)

where ε := gE/m2 and κ := g3E/m2. The parameter ε is the potential energy

that would be gained by a charged particle in moving a Compton wavelength in the

direction of the external �eld, expressed as a fraction of the rest mass of the particle.
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I also have de�ned, S̃, the scaled action as

S̃[x; s;κ, T̃ ] := s+
1

4s

∫ 1

0

dτ ẋµẋµ −
∫ 1

0

dτx3ẋ
4

− κ

2

∫ 1

0

dτ

∫ 1

0

dτ ′ẋµ(τ)ẋν(τ ′)Gµν(x(τ), x(τ ′); T̃ ). (3.21)

Everything inside the logarithm is now separately dimensionless. Note that Eq.

(3.20) is exact. I have as yet made no approximations regarding the strength of the

external �eld or the coupling.

The parameters m, g, E and T only arise in equations (3.20) and (3.21) in

three combinations: in the overall prefactor of the exponent, 1/ε, as κ and as T̃ .

For a su�ciently weak external �eld, ε � 1, the path integral is calculable in the

saddle-point, or semiclassical, approximation. This is the condition that the charged

particle gains a small amount of energy compared with its rest mass, in moving a

Compton wavelength along the external �eld. This condition is independent of the

value of the coupling, g. The worldline con�gurations which dominate the path

integral are then those which satisfy the classical equations of motion. Of these,

those which give a nonzero imaginary part are those which are saddle points of the

action with an odd number of negative modes in the spectrum of �uctuations about

the solution. The solutions relevant to tunnelling have just one negative eigenvalue

and are called bounces or instantons.

Note that the requirement that ε � 1, which leads to semiclassicality, entails

that

κ� g2,

T̃ � T

m
. (3.22)

Semiclassicality also requires that κ ≤ O(1), which translates to the requirement

that g is not parametrically larger that 1/ε, a very weak constraint on g. I will

also require T � m for semiclassicality, which implies that T̃ � 1/ε, a very weak

constraint. As a result, I will only calculate to leading order in ε but to all orders

in κ and T̃ .

To proceed in calculating the rate, Eq. (3.20), I perform a cluster expansion,

as introduced by Ursell [258] and Mayer [259]. I de�ne the two-particle function fkl,

for k 6= l, by

fkl = exp

{
κ

ε

∮ ∮
dxµkdxνlGµν(xk, xl; T̃ )

}
− 1. (3.23)

The cluster expansion to Eq. (3.20) is then found by expanding in powers of fkl and
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= + + + +. . .

Figure 3.2: The �rst three orders of the cluster expansion of the rate. Each circle
symbolises a closed worldline. The lines joining them are interactions given by the
two-particle function of Eq. (3.23). These diagrams are expressed algebraically in
equations (3.24) and (3.25). Figure taken from Ref. [1].

grouping connected terms into so-called clusters. Only connected terms contribute

to ΓT . The expansion can be written as

ΓT =
∞∑
n=1

Γ
(n)
T , (3.24)

where Γ
(n)
T is the contribution to ΓT from clusters of n worldlines. The terms in

the expansion can be mapped to connected graphs of increasing complexity, such as

in Fig. 3.2 (these are textbook results, see for example Ref. [260]). The Γ
(n)
T are

proportional to the imaginary parts of what might conventionally be called cluster

integrals (commonly denoted bn) for the ensemble of charged particle worldlines,

and so for brevity I will refer to them as cluster integrals.

The �rst three are given by

Γ
(1)
T = − 2

1!VT
Im

∫ ∞
0

ds1

s1

∫
Dxµ1e−

1
ε
S̃[x1;s1;κ,T̃ ],

Γ
(2)
T = − 2

2!VT
Im

2∏
j=1

(∫ ∞
0

dsj
sj

∫
Dxµj e−

1
ε
S̃[xj ;sj ;κ,T̃ ]

)
f12,

Γ
(3)
T = − 2

3!VT
Im

3∏
j=1

(∫ ∞
0

dsj
sj

∫
Dxµj e−

1
ε
S̃[xj ;sj ;κ,T̃ ]

)
{

3f12f13 + f12f13f23

}
. (3.25)

Eq. (3.24) is still formally exact but, importantly, is now expressed in a form that

I can directly approximate. I follow Refs. [20, 261, 262, 263, 264, 265, 266] in

performing a dilute instanton gas approximation. Essentially I will assume that the

leading order behaviour of ΓT is captured by the lowest nonzero term in the cluster

expansion. This is a self-consistent approximation: within the approximation the

higher order cluster integrals are exponentially suppressed with respect to the leading

term.

First, suppose that there exists an instanton for Γ
(1)
T , so that Γ

(1)
T 6= 0. The
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path integral is invariant under translations xµ(τ)→ xµ(τ)+aµ. The instanton solu-

tion for Γ
(1)
T will necessarily break the translation symmetry and hence �uctuations

around the instanton will contain (at least) four zero modes. Integration over these

can be done using the collective coordinate method (see for example [21]), resulting

in an integral over the position of the instanton.

The higher order cluster integrals give the contributions due to interactions

between instantons. The interactions die o� as the inverse of the fourth of the

distance between the instantons. Hence, approximate multi-instanton solutions can

be constructed by combinations of single instantons a large distance apart. The

contribution of these approximate saddle points can be found using the method of

constrained instantons [263, 267]. The integrations over the collective coordinates

and constraints of these approximate instantons will take the form of cluster integrals

for a gas of classical point particles (rather than worldlines), with dipole interactions

(as the worldlines are closed and hence have zero net charge). In this way, the

in�nite number of degrees of freedom of each particle worldline are reduced to the

four degrees of freedom of a point in spacetime.

From this perspective, the rate, ΓT , can be interpreted as the pressure of the

instanton gas. Standard statistical mechanical relations then give the density of

instantons, ninst, as

ninst =
∞∑
n=1

nΓ
(n)
T . (3.26)

Combining equations (3.24) and (3.26), the rate, ΓT , can be written as an expansion

in powers of the density

ΓT = ninst +B2n
2
inst +B3n

3
inst +O(n4

inst). (3.27)

This is the virial expansion and the coe�cients, Bn, are the virial coe�cients. For

n ≥ 3 they are given by the irreducible graphs in the cluster expansion, those which

cannot be cut into two pieces by cutting one line, and B2n
2
inst = −Γ

(2)
T . At weak

coupling, this virial expansion has been introduced previously in Refs. [222, 255].

To leading order in the cluster expansion the instanton density will be given

simply by Γ
(1)
T . The average separation between instantons is then (Γ

(1)
T )−1/4. The

density of instantons can be considered small if this distance is much larger than

the maximum size of the instantons, R.

There is however a subtlety due to the long-range interactions of the instan-

tons which was also found in the dilute instanton gas expansion of QCD [261, 262].

The contribution to the action due to the interaction between a pair of dipoles in

four dimensions a distance |x| apart, decreases as 1/|x|4. This is such that, at zero
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temperature, its integral over the volume of spacetime diverges proportionally to

log(VT ). As a result there is such a divergence in the second virial coe�cient, B2,

and in all reducible diagrams, de�ned to be those diagrams that can be split into

two disconnected parts by cutting a single line. On the other hand, at nonzero tem-

perature, there is no logarithmic divergence due to the �nite extent of the Euclidean

time direction. As the thermodynamic limit, in which the spatial volume is taken

to in�nity, should be taken before the limit of zero temperature, this divergence in

fact never arises.

Hence, at �nite temperature, for su�ciently small, nonzero Γ
(1)
T , I expect

ΓT = Γ
(1)
T

(
1 +O(Γ

(1)
T L4)

)
, (3.28)

where L = Max(R, β). This leading order approximation is equivalent to the

quenched approximation. The semiclassical approximation of Γ
(1)
T gives Γ

(1)
T L4 ∼

e−S̃(κ,T̃ )/ε, where I have written S̃(κ, T̃ ) for the value of the scaled action, S̃[x; s;κ, T̃ ],

evaluated at the saddle point.

On the other hand, if there does not exist an instanton solution consisting of

a single worldline, then Γ
(1)
T = 0. In this case I must repeat the above arguments

for the �rst nonzero cluster integral, Γ
(n0)
T , say. In that case the particles of the

instanton gas would consist of groups of n0 worldlines and Eq. (3.28) would be

replaced by

ΓT = Γ
(n0)
T

(
1 +O(Γ

(n0)
T L4)

)
. (3.29)

In this chapter, I consider only the leading order term in the dilute instanton

gas approximation, Γ
(n0)
T . Further, I only calculate the exponential suppression of

the leading term. This is equivalent to saying that I calculate the logarithm of the

rate to leading order in the small parameter ε. When n0 = 1, this is

log(ΓT ) = − S̃(κ, T̃ )

ε
+O(log(ε)). (3.30)

In semiclassically evaluating the terms Γ
(n)
T , the saddle point of the sj integrations

can be easily found. For Γ
(1)
T , I �nd

Γ
(1)
T = −2m4ε4

VT̃

√
2πε

Im

∫
Dxµ

(∫ 1

0

dτ ẋµẋµ

)− 1
4

e−
1
ε
S̃[x;κ,T̃ ] (3.31)

where ṼT̃ := VTm4ε4 is the (dimensionless) scaled volume and I have de�ned S̃[x;κ, T̃ ]
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to be the scaled action evaluated at the saddle point of the s integration,

S̃[x;κ, T̃ ] := L[x]− A[x] + κV [x; T̃ ], (3.32)

written in this way to emphasise its geometric nature. The constituent terms are

the kinetic term, which is equal to the length of the worldline on-shell, and which I

will loosely refer to as the (parameterisation �xed) length of the worldline

L[x] :=

√∫ 1

0

dτ ẋµẋµ, (3.33)

the area projected onto the 3-4 plane

A[x] :=

∫
dτx3ẋ

4, (3.34)

and the self-interaction term

V [x; T̃ ] :=

1

2

∫ 1

0

∫ 1

0

dτdτ ′ẋµ(τ)ẋν(τ ′)Gµν(x(τ), x(τ ′); T̃ ). (3.35)

The �rst term, L[x], is the only nongeometric term, in the sense that it depends on

the coordinates along the worldline. It is however equal to the length of the worldline

when evaluated on shell. Note that the action is invariant under τ → τ + c, where

c is a constant. The corresponding conserved charge is ẋ2(τ).

In some cases there may be no instanton solution consisting of a single worldline

(explicit examples arise at high temperatures, Sec. 3.3). As I have argued, in these

cases one should next look for instanton solutions consisting of two and then more

worldlines. The (scaled) action for n0 worldlines could be thought of as that for

a single discontinuous worldline (where one does not take derivatives across the

discontinuities), except that the kinetic term, Eq. (3.33), does not appear to be

additive. However, the kinetic term is, in fact, additive if each of the disconnected

worldlines have the same (parameterisation �xed) length,

n0

√∫ 1

0

dτ ẋµ1 ẋ1µ =√∫ 1/n0

0

dτ ẋ1
µẋ1µ + · · ·+

∫ 1

(n0−1)/n0

dτ ẋµn0ẋn0µ. (3.36)
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For the instanton solutions relevant in this chapter, this allows me to always talk

about a single (possibly discontinuous) worldline and to always use the action in

Eq. (3.32).

3.3 Instantons

3.3.1 Finite temperature rate

The problem of �nding the rate of pair production due to a weak external �eld

at given g, E, m and T is now reduced to a problem which depends only on two

parameters, κ and T̃ . The general solution amounts to �nding the saddle point of

S̃[x;κ, T̃ ] with one negative mode, and the �uctuations about it.

Integrations over �uctuations in the negative mode, via an analytic continua-

tion, give the all important factor of i [268, 245, 269, 270]. There are also zero modes

due to translation invariance. Integration over these degrees of freedom requires �rst

introducing a constraint which �xes the translation invariance and then integrating

over that constraint. I choose to �x the centre of mass of the worldline to be at the

origin, x̄µ = 0. Integration over the constraint then gives a factor ṼT = m4ε4VT̃ ,
cancelling the 1/ṼT̃ in Eq. (3.31). The remaining integrations over positive mode

�uctuations give a subleading prefactor.

To calculate the logarithm of the rate to leading order in ε, I need only �nd the

instanton solution and calculate its action, S̃(κ, T̃ ). Even this is a di�cult enough

problem, made so by the nonlocal photon interaction in (3.32). In the following I

consider the equations of motion analytically in certain limits: κ � 1, T̃ � 1 and

large T̃ . Then for arbitrary κ and T̃ I use numerical methods.

3.3.2 Inclusive rate at �xed energy

From S̃(κ, T̃ ), I can calculate the inclusive rate at �xed energy. In the semiclas-

sical approximation, Eq. (3.17) shows that the two rates are related by a Laplace

transform and hence the exponents of the rates are related via a Legendre trans-

form. In the thermodynamic language S̃(κ, T̃ ) is the free energy divided by the

temperature. The (scaled) energy of the solution Ẽ is

Ẽ =
∂S̃

∂β̃
, (3.37)
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corresponding to a physical energy E = mẼ . By further scaling the worldlines by

x → x/β̃, taking the derivative with respect to β̃, and then reversing the scaling, I

�nd the following useful result

β̃Ẽ = L[x]− 2A[x], (3.38)

which holds on shell. Note that everything in this equation is separately dimen-

sionless. The exponential suppression of the rate of pair production at �xed energy

is

Σ =
1

ε
(S̃ − Ẽ β̃)

=
1

ε
Σ̃(κ, Ẽ). (3.39)

3.3.3 Regularisation

As I have mentioned the interaction term, V , diverges at zero distance. For

smooth worldlines, this is the long known self-energy divergence of electromagnetism.

Its appearance in the worldline formulation of QED has been studied by many

authors (see for example [237, 241, 271, 272]). The divergence, being due to the

strong interactions between nearby sections of a worldline, is proportional to its

length.

I �rst consider a well-known regularisation scheme due to Polyakov [237]. At

zero temperature this amounts to replacing the interaction term, V [x; 0], with

VPolyakov[x; 0] :=
1

8π2

∫ 1

0

∫ 1

0

dτdτ ′
ẋµ(τ)ẋµ(τ ′)

(x(τ)− x(τ ′))2 + a2

− 1

8π2

π

a

∫ 1

0

√
ẋ2(τ)dτ. (3.40)

The second term in (3.40), proportional to the length of the worldline, is a coun-

terterm which absorbs the short distance divergence of the �rst term. It is almost

of the same form as the term L[x] in the action (Eq. (3.33)), except without the

reparameterisation �xing. On shell the two terms are equal, hence I can see it as a

mass counterterm.

This self-energy divergence has been shown to be the only divergence for smooth

loops with no intersections [241]. Worldlines with discontinuous �rst derivatives

(cusps) and intersections may arise when there are delta function interactions in

the action or when a ratio of scales is taken to zero. Such worldlines also generate
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logarithmic divergences3.

Unfortunately the regularisation scheme of Eq. (3.40) leads to problems when

trying to formulate the equations of motion which prevent me taking the limit a→ 0

in my numerical calculations. This is because, for su�ciently small a, the countert-

erm gives a negative bare mass. To bypass this problem I adopt an alternative

regularisation in my numerical calculations for which the bare mass and the renor-

malised masses are equal,

VR[x; 0] :=
1

8π2

∫ 1

0

∫ 1

0

dτdτ ′
ẋµ(τ)ẋµ(τ ′)

(x(τ)− x(τ ′))2 + a2

− 1

8π2

√
π

a2

∫ 1

0

∫ 1

0

dτdτ ′ẋµ(τ)ẋµ(τ ′)e−(x(τ)−x(τ ′))2/a2 . (3.41)

Equations (3.40) and (3.41) agree as a → 0 as can be seen by recognising the

Gaussian representation of the delta function. At �nite temperature I must include

the in�nite sum of interactions with the periodic copies. If the periodic copies are

disconnected and a �nite distance apart, there is no ultraviolet divergence from their

interaction and the unregularised interaction may be used. However, if the periodic

copies are connected, the interaction between them must be regularised.

As well as the mass, there is, of course, charge renormalisation. Physically

this is due to charged particle-antiparticle pairs popping into and out of existence

and screening the bare charge. Thus the dilute instanton gas approximation, which

only takes into account a small number of charged particle loops, does not take

into account these e�ects. In the worldline formalism such short-lived virtual pairs

are represented by small, closed worldlines. Though there are many such possible

�uctuations, any given one will have an action of order ε0 and hence will not arise

in the stationary phase approximation I have made. Including these �uctuations

should result in the �nal rates depending on the renormalised charge as argued for

in Ref. [221].

For the small worldlines of the short-lived virtual pairs to simply renormalise the

charge, there must be a separation of scales between them and the larger worldlines

which constitute the saddle point. I can make a simple estimate for the scale of the

virtual pairs by equating the rest mass to the Coulomb attraction. This equality

reads 2m = g2/(4πr) and gives the distance between charges as r = g2/(8πm). In

my dimensionless units, this translates to a distance κ/(8π), which must be smaller

than any scale present in the instanton for the charge renormalisation e�ects to be

3These logarithmic divergences can be interpreted as due to bremsstrahlung radiation. They
give the anomalous dimension for Wilson loops, and hence for the propagator of the charged
particles.
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Figure 3.3: Sphere of in�uence of the point x, of sizeO(κ), compared to the curvature
of the worldline on a scale O(1). Figure taken from Ref. [1].

independent. This essentially amounts to

κ

8π
� Min

(
1,

1

T̃

)
. (3.42)

In this and the following chapter I optimistically consider κ to take values up to and

including O(1). In Chapter 5, in considering the corrections to the leading order

result, I critically examine the necessary condition on κ. The modi�cation of the

photon-charged particle interaction at distances below g2/(8πm) has been discussed

in Refs. [123, 273], with regard to magnetic monopoles.

3.3.4 Small κ expansion

A singular perturbation problem

Throughout this chapter, I make the approximation that the external �eld is

weak, i.e. that 0 < ε � 1. The parameter κ := g2ε is proportional to ε. Hence,

for not too large couplings, it will also be that 0 < κ � 1. This is the case I will

consider in this section. Parametrically large couplings, such that κ = O(1), will be

considered in Secs. 3.3.5, 3.3.6 and 3.4.

For su�ciently small κ, one would naively expect that I could simply set κ = 0

in the scaled action S̃[xµ;κ, T̃ ], so dropping the interaction term. The problem is

that the interaction term diverges at short distance and hence cannot be ignored

for arbitrarily small but positive κ. This signals that for small κ I am dealing with

a singular perturbation problem related to the existence of widely separated scales

(see for example [206]).



74 Chapter 3. Thermal Schwinger pair creation

I seek distinguished limits of the action S̃[x;κ, T̃ ], and its corresponding equa-

tions of motion, by considering the scalings x = καy and T̃ = κ−αΘ. The aim is to

�nd scalings such that there is a balance between two terms in the action and that

the leading order equations of motion give nontrivial solutions. After the scaling the

action is

S̃[x;κ, T̃ ] = καL[y]− κ2αA[y] + κV [y, y′; Θ]. (3.43)

There are three distinguished limits: α = 0, 1/2, 1. The �rst, the α = 0 scaling,

corresponds to scales x = O(1), which I will refer to as the infrared (IR) problem.

The last, the α = 1 scaling, corresponds to shorter scales x = O(κ), which I will refer

to as the ultraviolet (UV) problem. The intermediate scaling, α = 1/2, corresponds

to scales x = O(κ1/2), which I will refer to as the matching problem.

For small κ, an approximate solution to the equations of motion valid on all

scales can be found by solving the leading order equations of motion in these three

distinguished limits and matching them smoothly together. The simplest of the

three problems is the matching problem, α = 1/2. The leading approximation

amounts to simply keeping the length term

S̃(κ� 1, T̃ ) ≈ κ1/2L[y]. (3.44)

The area and interaction terms are equally subdominant on these scales, both being

of order κ. Solutions to the minimisation of the length term are simply straight lines.

Hence the IR and UV solutions must be matched with straight lines. The matching

is done at some scale λ = O(κ1/2) which acts as a UV cuto� for the IR problem and

as an IR cuto� for the UV problem. The �nal solution should be independent of

the speci�c choice of λ.

The IR problem, the α = 0 scaling, in the leading approximation amounts to

simply dropping the interaction term, i.e. to

S̃(κ� 1, T̃ ) ≈ L[y]− A[y]. (3.45)

In terms of a Feynman diagram language, this approximation takes into account

all external �eld photon exchanges but no virtual photon exchanges. This is the

top row of Fig. 3.1, a one-loop approximation. Making this action stationary is

the old problem of maximising the area of a �eld given a �xed length of fencing.

The solution at zero temperature is a circle of radius 1 in the 3-4 plane. At �nite

temperature the solution can be found using the method of images.

The UV problem, the α = 1 scaling, in the leading approximation amounts to
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Figure 3.4: On scales x = O(1) there may appear an intersection, as in a). This
must be resolved on shorter scales, x = O(κ), as b) or c). Due to the fact that
the problem can be speci�ed completely in the plane, I expect that these are the
only possibilities. The long and short distance pictures are matched at some scale
λ = O(κ1/2). Figure taken from Ref. [1].

dropping the area term, i.e. to

S̃(κ� 1, T̃ ) ≈ κ(L[y] + V [y, y′; Θ]). (3.46)

This equation determines the dynamics at scales y = κ−1x = O(1). In terms of

Feynman diagrams this approximation takes into account all virtual photon loops

but no external photon lines.

Eq. (3.46) is the action of a massive charged particle, in the absence of an

external �eld. Hence I can immediately �nd one solution, that of a straight line, the

particle sitting still (or 4D rotations thereof). To �nd a solution to the full equations

of motion, valid at all scales I can stitch this straight line solution together with a

solution of Eq. (3.45). This is possible if for every point x on the worldline, I can

draw a ball of size λ within which the worldline appears straight as κ → 0. As

solutions to (3.45) are independent of κ, this will always be possible as long as the

worldline has everywhere �nite curvature and does not self-intersect. Otherwise,

in the region of a cusp or self-intersection, the straight line solution to Eq. (3.46)

cannot be used.

Such cusps or self-intersections are not permissible when all the parameters of
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the theory are �nite as they give new divergences which depend on the angle at the

nonanalytic point, γ in Fig. 3.4. Due to this the divergences cannot be absorbed as

counterterms in the �eld theory. However, if a ratio of scales in the problem goes

to zero, as when κ → 0, such apparent cusps or self-intersections can appear at

larger scales, O(1) and O(κ1/2) in my case. On the smallest scale, O(κ) in my case,

these apparent nonanalytic points can be resolved as in Fig. 3.3. The separation of

scales in processes which involve a large momentum transfer, such as deep inelastic

scattering, gives divergences for the same reason [274, 275].

For apparent nonanalytic points to be resolved on scales O(κ), there must exist

solutions of (3.46) which have the topology (in the plane) of b) and c) in Fig. 3.3.

Note that these two possibilities are related by a rotation by π/2. Hence all points

of self-intersection can be resolved if solutions with the topology of b) can be found

for all angles π/2 < γ ≤ π. These solutions must be stitched together with the IR

solutions at some scale λ. Thus I must impose boundary conditions at λ such that

the solutions can be smoothly matched.

The existence of such solutions can be made plausible by noting that for π/2 <

γ ≤ π the scalar product between the tangent vectors on the left and right hand sides

of b) is negative and hence the interaction term is repulsive. The magnitude of the

repulsion increases without bound as the worldlines approach each other, suggesting

that the worldlines should approach to some minimum distance, |y − y′| = O(1).

The minimum distance is a function of the incoming angle γ and is independent

of κ, as long as γ and π − γ are both O(1). Naively one might expect that the

scaled action L[y] + V [y, y′] would then be O(1) and hence the contribution to the

S̃ = κ(L[y] + V [y, y′; Θ]) = O(κ). However the following argument shows that this

is not the case.

The matching of the IR and UV solutions is carried out at the scale λ. Due

to the long-range of the interaction, the UV scaled action, L[y] + V [y, y′; Θ], will

get large as log(λ/κ). This is the infrared divergence of the interaction of two long

straight worldlines which are not parallel. Upon matching the IR and UV solutions

all dependence on λ must drop out. However I will be left with a contribution to the

action of the order κ log(κ). Note that this matching argument would still hold if

the short distance physics was modi�ed at distances O(κ) by virtual charged particle

loops.

Overall I �nd that for solutions with apparent cusps or intersections

S̃(κ, T̃ ) = c(T̃ ) + d(T̃ )κ log(κ) +O(κ), (3.47)

for some c(T̃ ) and d(T̃ ). For solutions without cusps or intersections the κ log(κ)
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term is absent, i.e. d(T̃ ) = 0.

Small κ results

At zero temperature the solution to the IR problem is a circle of radius 1 in

the 3− 4 plane. At every point, x, on the circle, a small ball of radius λ = O(κ1/2)

can be drawn within which the worldline looks approximately straight. Hence, the

circle of radius 1 solves the equations of motion at all scales. The resulting action

is

S̃(κ, 0) = π − κ

4
. (3.48)

This result was �rst derived in [25, 221]. Due to the symmetry of the problem

this result is in fact exact for arbitrary κ and hence applies even for parametrically

strong coupling. The prefactor is given by the determinant of �uctuations about

this solution. This has be computed at leading order in κ. There is one negative

mode, corresponding to changing the radius of the circle, there are �ve zero modes

and all the rest are positive. Including the prefactor, the rate is given by

Γ ≈ (2s+ 1)
m4ε2

8π3
e−

1
ε
(π−κ

4
), (3.49)

where s is the spin of the charged particle. At κ = 0 this reduces to Schwinger's

result for weak external �elds (Eq. (3.11)).

At �nite temperatures, T̃ , and small κ, the leading order solution to the IR

problem is given by an in�nite sequence of circles of radius 1 separated by a distance

β̃ along the Euclidean time axis (see Fig. 3.5 (b)). For temperatures such that

T̃ < 1/2, these circles do not overlap and, for su�ciently small κ, I am able to draw

a small ball of radius O(κ1/2) within which there is a single worldline which looks

approximately straight. Hence for such temperatures, the sequence of circles solves

the equations of motion at all scales and, to lowest order in κ, the rate is the same

as at zero temperature. This means that, at one-loop order, I �nd no corrections to

the zero temperature rate for T̃ < 1/2.

Corrections to this can be calculated using perturbation theory, for small κ. I

write the full action and its solution as expansions in κ,

S̃[x] = S̃0[x] + κ∆S̃[x],

xµ(τ) = xµ0(τ) + κxµ1(τ) + κ2xµ2(τ) + . . . (3.50)

where S̃0[x] = L[x] − A[x] and ∆S̃[x] = V [x]. First order perturbation theory

requires me to simply evaluate ∆S̃[x0]. I split this up into interactions between
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pairs of loops,

κ∆S̃[x0] = κ
∞∑

n=−∞

∆S̃n[x0], (3.51)

where I have de�ned ∆S̃n[x0] to be the interaction between the loop at the origin

and that centred at Euclidean time n/T̃ ,

κ∆S̃n[x0] =
κ

8π2

∮ ∮
dxdx′

(x− x′ − n
T̃
e4)2

. (3.52)

The x denotes the positions on the circle at the origin with respect to the origin. The

x′ denotes the positions on the circle centred at Euclidean time n/T̃ with respect to

its centre. The e4 is a unit vector in the Euclidean time direction. The result of the

integration, for n 6= 0, is

κ∆S̃n[x0] = −κ
4

(√
1
4
−
(
T̃
n

)2

− 1
2

)2

√
1
4
−
(
T̃
n

)2
. (3.53)

This was �rst derived in Ref. [276]. For n = 0, the integral is −κ/4 after regular-

isation and is the zero temperature correction in Eq. (3.48). The full �rst order

correction is given by the sum, (3.51). It is negative for T̃ ≥ 0; hence it increases

the rate of pair production. It also diverges to −∞ as T̃ → 1/2, i.e. where the

zero temperature instantons touch. However, following the discussion of Sec. 3.3.4,

the separation of scales breaks down when neighbouring circles are only a distance

O(κ1/2) apart, when 1/2− T̃ = O(κ1/2).

Unlike the zero temperature result, there are corrections at second order in κ

due to the warping of the shape of the circles. To calculate these, I must solve

∫ 1

0

(
δ2S̃0

δxµ(τ)δxν(τ ′)

∣∣∣∣
x0

xν1(τ ′)

)
dτ ′ +

δ∆S̃

δxµ(τ)

∣∣∣∣
x0

= 0. (3.54)

The solution should lie in the 3− 4 plane, due to the symmetry of the problem, and

must be closed. Hence, I may express it as

xµ1(τ) = ε(τ)(0, 0, cos(2πτ), sin(2πτ)). (3.55)
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In terms of ε(τ), the terms in the action at second order in κ are

κ2

2

(∫ 1

0

ε̇2

2π
dτ − 2πε̄2

)
− κ2T̃ 4

2π

∫ 1

0

(
4ζ(4) + 24T̃ 2ζ(6)(1− cos(4πτ))

)
ε(τ)dτ, (3.56)

where ε̄2 denotes the square of the average of ε(τ) (not the average of the square)

and ζ denotes the Riemann zeta function4. From Eq. (3.56) I �nd the equations of

motion for ε(τ), the solution of which can be found straightforwardly via a Fourier

series expansion. The two arbitrary parameters in the general solution are �xed by

satisfying the constraint, x̄µ = 0, which I am using to �x translation invariance. The

solution is given by

κε(τ) = −κT̃
4

2π

{
4ζ(4) + 24ζ(6)T̃ 2 + 6ζ(6)T̃ 2 cos(4πτ)

}
. (3.57)

The constant terms reduce the radius of the circle and the term proportional to

cos(4πτ) makes the circle prolate (stretched in the x4 direction). Substituting this

solution into Eq. (3.56) and putting it together with the zeroth and �rst order terms

I arrive at

S̃(κ, T̃ ) = π − κ

4

{
1 + 2

∞∑
n=1

(√
1
4
−
(
T̃
n

)2

− 1
2

)2

√
1
4
−
(
T̃
n

)2

}

+
κ2

π
(4ζ(4)2T̃ 8 + 48ζ(4)ζ(6)T̃ 10 + 126ζ(6)2T̃ 12) +O(κ3). (3.58)

For the corresponding inclusive rate at �xed energy I consider the Legendre trans-

form of this sum. The energy is, from Eq. (3.37),

Ẽ = −T̃ 2∂S̃(κ, T̃ )

∂T̃
. (3.59)

The leading term on the right hand side takes the form of κ multiplying a function of

T̃ . A consideration of this function implies that if I wish to consider energies much

larger than κ, the corresponding temperature must be very close to 1/2. This is the

region of parameter space where the circular worldlines almost touch, the minimum

distance d � 1. The UV problem in this case is nonrelativistic, with y3 being the

4Note that had the kinetic term been the actual length, rather than its reparameterisation

�xed form, the only di�erence would be the replacement of ε̄2 with
∫ 1

0
ε(τ)2dτ .
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Figure 3.5: Instanton solutions at small κ: a) at zero temperature; b) at 0 < T̃ <
1/2; c) at T̃ > 1/2, the naive instanton of overlapping circles and d) at T̃ > 1/2,
the lemon instanton. Figure taken from Ref. [1].

�time� direction. Solutions to this nonrelativistic problem exist for d & κ1/2. This

implies that the Legendre transform of Eq. (3.58) is only valid for Ẽ . κ1/4. For

Ẽ . κ taking the Legendre transform analytically is made di�cult by the in�nite

sum. In the limited regime κ � Ẽ � κ1/4 however I can fairly simply �nd the

leading few terms.

Σ̃(κ, Ẽ) = π − 2Ẽ − 3

4
κ2/3Ẽ1/3 +

κ

4

{
1−

∞∑
n=2

(√
1− 1

n2
− 1

)2(
1− 1

n2

)−1/2}
− 11

64
κ4/3Ẽ−1/3 +

∞∑
n=2

κ5/3Ẽ−2/3

32n (n2 − 1)3/2
+

35

1536
κ2Ẽ−1 +O(κ7/3Ẽ−4/3). (3.60)

The leading enhancement, −2Ẽ , has been long known in the context of induced

vacuum decay [277, 278].

For T̃ ≥ 1/2 the circles intersect and the above calculation breaks down (see

Fig. 3.5 c) ). The intersection must be resolved in a region of size κ as in Fig.

3.3. However, once I include intersections, a more general class of solutions to the

full problem is possible: I can combine sections of circles with intersections. This is

possible as solutions to Eq. (3.45) must only locally be arcs of a circle with curvature

1. Of all possible solutions describing pair production processes, that with minimum

action will dominate the path integral and hence give the rate of pair production.

The minimum action solution of this kind has been found by several authors
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[279, 247, 280, 281], though there is some dispute about this [282]. It is given by a

lemon shape, Fig. 3.5 d), and not by the overlapping circles, 3.5 c). The angle of

intersection (see Fig. 3.4) is given by

γT̃ = 2 arcsin

(
1

2T̃

)
. (3.61)

However, note that this worldline on IR scales is only a solution to the full problem

if, for given γT̃ , the corresponding UV solution exists. At small but �nite κ my

numerical calculations in Sec. 3.4 �nd instanton solutions which appear to approach

the lemon instanton as κ→ 0.

The action of the thermal lemon-shaped instanton, to zeroth order in κ, is

S̃(0, T̃ ) = γT̃ + sin(γT̃ ) (3.62)

where T̃ > 1/2. Below T̃ = 1/2 the action is equal to π, at zeroth order in κ.

The action and its �rst derivative are continuous at T̃ = 1/2, though the second

derivative diverges as −8/
√
T − 1/2 as T̃ → 1/2 from above. Hence I say that there

is a second order phase transition at T̃ = 1/2, for κ = 0. Below the phase transition

the solution has circular symmetry. This is broken above it.

To get the leading order correction in κ it would seem I must solve the equation

of motion derived from Eq. (3.46) in the region of the intersection (assuming such a

solution exists). However, I can in fact bypass this hard problem using perturbative

renormalisation. First, I evaluate the interaction term on the leading order IR

instanton, the lemon. This gives an unphysical logarithmic UV divergence from the

intersections

VLemon =
κ

π2

{(
π

2
− γT̃

)
cot(γT̃ ) + 1

}
log(λ) + finite terms, (3.63)

where I have used λ for the short distance regulator, rather than a, as this should

be of the order of the matching scale, as in Sec. 3.3.4. Though I cannot solve the

UV problem, I know that it must provide a compensating counterterm i.e.

κ

π2

{(
π

2
− γT̃

)
cot(γT̃ ) + 1

}
log

(
κ

λ

)
. (3.64)

From the perspective of the short distance physics this is an IR divergence, arising

due to the matching scale λ being much larger than κ. The presence of κ in the

logarithm is due to the scaling in the short distance problem. This meets my ex-

pectations, as explained at the end of Sec. 3.3.4, leading to a contribution of order



82 Chapter 3. Thermal Schwinger pair creation

κ log(κ),

S̃(κ, T̃ ) = γT̃ + sin(γT̃ )

+
1

π2

{(
π

2
− γT̃

)
cot(γT̃ ) + 1

}
κ log(κ) +O(κ). (3.65)

where T̃ > 1/2. Note that the O(κ log(κ)) term starts to dominate over the leading

term when γT̃ = O(κ) and π − γT̃ = O(κ), or T̃ = O(κ−1) and T̃ − 1/2 = O(κ).

This signals a breakdown of the separation of scales assumed in deriving Eq. (3.65)

and a breakdown of the approximate solution.

I have perturbatively renormalised the problem, in the sense of directly match-

ing divergences with counterterms at a given order in the small parameter, κ. The

subleading corrections at O(κ) depend on the solution to the short distance (α = 1)

problem. My result could be nonperturbatively improved using the methods of the

renormalisation group.

From Eq. (3.65) I can �nd the inclusive pair production rate at a �xed energy

by Legendre transform,

Σ̃(κ, Ẽ) = π − γẼ − sin(γẼ)

+
1

π2

{(
π

2
− γẼ

)
cot(γẼ) + 1

}
κ log(κ) +O(κ), (3.66)

where I have de�ned γẼ := 2 arcsin(Ẽ/2). Note that the energy and temperature are

monotonically increasing functions of each other in the allowed region of parameter

space, the relationship is Ẽ =
√

4− 1/T̃ 2 +O(κ).

The leading order result in Eq. (3.66) is the same as for pair production stimu-

lated by the presence of a particle of mass Ẽ [279] (or an o�-shell photon [283]) or by

a collision of particles with the same centre of mass energy [284, 285]. These calcu-

lations involve the same shaped instanton, though without the periodic copies. The

(scaled) exponential suppression in that case, including the O(κ log(κ)) correction,

is

π−γẼ − sin(γẼ)

+
1

2π2

{
− γẼ cot(γẼ) + 1

}
κ log(κ) +O(κ). (3.67)

Note that as 0 < κ < 1 and |γẼ | < π, the corresponding rate is strictly lower than

that given by the exponentiation of Σ̃(κ, Ẽ). This is as expected: the inclusive rate

at energy Ẽ is greater that the rate of the speci�c process at the same energy.
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3.3.5 Low temperature expansion

I now consider the case of low temperatures, T̃ � 1, but arbitrary coupling, κ.

The e�ect of nonzero temperature is felt through the interaction potential, coupling

periodic copies of the circular worldline. Perturbation theory in T̃ takes the form

S̃[x] = S̃0[x] + T̃ 4S̃4[x] + T̃ 6S̃6[x] + T̃ 8S̃8[x] + . . . ,

xµ(τ) = xµ0(τ) + T̃ 4xµ4(τ) + T̃ 6xµ6(τ) + T̃ 8xµ8(τ) + . . . (3.68)

The terms S̃n[x] are simply de�ned to be the coe�cients of T̃ n in the full action.

Note that: (i) the coe�cient of the quadratic term is zero due to the closure of the

worldline loops and (ii) the coe�cients of all odd powers of T̃ in S̃[x] vanish due to

cancellation between loops in the positive and negative Euclidean time directions.

These properties of the S̃[x] expansion carry over to that of xµ(τ) by standard

perturbation theory.

First order perturbation theory gives

S̃(κ, T̃ ) = π − κ

4
− ζ(4)κT̃ 4 − 4ζ(6)κT̃ 6 +O(T̃ 8). (3.69)

The higher order terms contain at least one power of kappa. These �rst two terms

are the same as those coming from the expansion of Eq. (3.58). To calculate

the coe�cient of the O(T̃ 8) term requires second order perturbation theory, which

amounts to solving a somewhat complicated integrodi�erential equation.

As pointed out in Refs. [222, 276], expanding the exponential of Eq. (3.69)

captures the two-loop corrections for weak �elds and low temperatures (Eq. (76) in

Ref. [253] and Eq. (65) in Ref. [256]),

e−
1
ε
(π−κ

4
−ζ(4)κT̃ 4) ≈

(
1 + πα +

2π5αT 4

45m4ε4

)
e−π/ε, (3.70)

where α = g2/(4π). At higher loop orders one would need to calculate also the

semiclassical prefactor for comparison.

The Legendre transform of (3.69) gives the inclusive pair production rate at
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�xed, perturbatively low energies. It is

Σ̃(κ, Ẽ) = π − κ

4
− 5ζ(4)1/5κ

28/5

(
Ẽ
κ

)4/5

− ζ(6)κ

22/5ζ(4)6/5

(
Ẽ
κ

)6/5

+O

(
Ẽ
κ

)8/5

(3.71)

where the requirement of low temperatures translates into the requirement that

(Ẽ/κ)� 1.5

3.3.6 High temperature

At su�ciently high temperatures the process of pair production becomes classi-

cal. The instanton is then independent of the Euclidean time direction and is called

a sphaleron [243, 244, 94, 95]. The problem reduces from four to three dimensions.

Further, due to the irrelevance of the one and two directions (µ = 1, 2) the problem

becomes one dimensional. The action gives the Boltzmann factor.

In my case the instanton consists of two worldlines: a stationary charged par-

ticle, xµ(τ), and its antiparticle, yµ(τ ′), at a �xed distance, |x3(τ)− y3(τ ′)| = r. On

such a path the action reduces to

S̃Straight[r;κ, T̃ ] =

(
2− r − κ

4πr

)
1

T̃
. (3.72)

There is an unstable stationary point of the action at r0 =
√
κ/4π which gives the

thermal instanton. The action is then

S̃Straight(κ, T̃ ) = 2

(
1−

√
κ

4π

)
1

T̃
, (3.73)

which can also be written as S̃ = Ẽ/T̃ , where Ẽ is the energy of the solution. Note

that as T̃ = εT/m, the factors of ε cancel in the exponent of the rate leaving just

the usual Boltzmann suppression in physical units.

The instanton may give the rate of thermal pair production when it is the lowest

action solution for given parameters (κ, T̃ ). In a broad class of theories, though

not including SQED or QED, it has been shown that a solution must satisfy a

further constraint for it to describe tunnelling: the spectrum of linear perturbations

5The structure of this expansion is reminiscent of diagrammatic low energy expansions about
instantons, such as arose in the discussion of electroweak baryon number conservation (see for
example [186, 278]).
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about the solution must have one negative mode [192]. Loosely speaking, this is

because only when there is a single negative mode does the solution correspond to

the minimum barrier penetration path. Variation of r is one negative mode, present

for all κ and T̃ .

Due to the periodic boundary conditions, the components of both worldlines

are each expressible as a Fourier series. I de�ne ζµ(τ) := xµ(τ)−yµ(τ) and ξµ(τ) :=

xµ(τ) + yµ(τ). The linearised eigenvalue equations about the straight line solution

inherit the nonlocality of the full action. They are thus linear integrodi�erential

equations, the expressions being very long, so I omit them here.

For κ � 1, the integrands of the nonlocal interactions become highly peaked,

approaching delta functions which make the eigenvalue equations local. In this

regime the dynamics is nonrelativistic and the eigenvalue equations can be straight-

forwardly solved. In the spectrum of eigenfunctions there are two sets of potentially

unstable linear �uctuations, one given by ζ3(τ) = r0 + δ cos(2πnτ) and the other by

ξ3(τ) = δ sin(2πnτ), where δ � 1, n ∈ N, and in each case all other components are

zero. The eigenvalues are

λn(κ, T̃ ) ≈ 1

2
(2πn)2T̃ − 4π

√
πκT̃

. (3.74)

The lowest frequency mode is thus least stable, and is unstable when T̃ < T̃λ1=0(κ) ≈√
2π−3/4κ−1/4. This signals the existence of another solution of lower action which

is continuously connected to the straight line solution but which breaks time trans-

lation invariance. Hence there is a second order phase transition in the rate at this

temperature. The instability is exactly analogous to the Plateau-Rayleigh instabil-

ity in �uid dynamics [286, 287]; the Gregory-La�amme instability in black strings

[288]; nuclear scission [289] and an instability in vacuum bubbles at �nite tempera-

ture [243, 244].

These linear �uctuations remain eigenvectors of the full integrodi�erential equa-

tions at larger values of κ. The eigenvalue of the lowest frequency mode is then

somewhat more complicated,

λ1(κ, T̃ ) =
1

2
(2π)2T̃ − 2

3
π2κT̃ 2 − 2π

√
πκT̃

− 2π

(
1 +

1
√
πκT̃

)
e−
√
πκT̃ . (3.75)

For the higher frequency modes, the eigenvalue is given by λn(κ, T̃ ) = nλ1(κ, nT̃ ).

The term, −2
3
π2κT̃ 2, is due to the interactions of each worldline with itself. It is
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the much-discussed, electromagnetic self-force [290, 291, 292] and its contribution

destabilises the straight worldlines, increasingly so at higher temperatures. This

issue has been discussed in a similar context in Ref. [123], where it was argued that

the photon-charged particle interaction is modi�ed on su�ciently short scales, so

diminishing the self-force.

Setting Eq. (3.75) to zero de�nes the boundary between stability and instability

to the lowest frequency perturbation. The boundary is described by a function,

T̃λ1=0(κ), consisting of two branches which meet at κ ≈ 3.06534. This is shown

in Fig. 3.6. For su�ciently small κ, the lower branch coincides with the long

wavelength instability found in the nonrelativistic analysis and the upper branch is

approximately given by T̃λ1=0(κ) ≈ 3/κ. The instability above the upper branch is

due to the self-force.

Higher frequency modes are more stable to the long wavelength instability but

less stable to the self-force instability. As n increases the self-force term grows fastest

so all su�ciently high harmonics are unstable. This instability is present for all κ

and T̃ . In fact, as this instability only depends on the shape of the worldlines at

short distances, O(1/(nT̃ )), it is present for all smooth worldlines (and likely for

more general worldlines too). Due to the translational symmetry in the Euclidean

time direction, the unstable harmonics of the sphaleron come in pairs, one a sine

and the other a cosine.

The self-force instability may be a sign of the breaking down of the cluster

expansion at larger values of κ. In support of this view, the self-force does not arise

for κ � 1 at leading order in κ. In the cluster expansion, only a small number

of charged particle worldlines are included. Charged particle loops of size κ/(8π)

have a small action, due to cancellation between the kinetic and interaction terms.

These loops make up the bubbling sea of virtual charged particle pairs, part of

the quantum vacuum. Their presence modi�es the photon-charge interaction on

scales of order κ/(8π), an e�ect which is not included in the cluster expansion.

A quantitative inclusion of these e�ects is beyond the scope of this chapter but,

as argued in Ref. [123], photon-charge interactions should be weaker on scales of

order κ/(4π) (g2/(4πm) in dimensionful units) and below. This is interpreted as an

e�ective spreading-out of the charge, which prevents the self-force instability.

For small deviations below the lower branch of T̃λ1=0(κ), and for su�ciently

small κ, the dynamics is nonrelativistic. In this case the equations of motion can be

solved, even beyond the linearised approximation, by straightforward integration.
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Figure 3.6: Regions within which the straight line instanton is stable and unstable to
the lowest frequency perturbations. The boundary is de�ned by setting Eq. (3.75)
to zero and de�nes a function, T̃λ1=0(κ), with two branches. Figure taken from Ref.
[1].

The �rst integral of the motion is the energy, Ẽ ,

−1

4
ṙ2 + U(r) = Ẽ , (3.76)

where overdot signi�es di�erentiation with respect to the Euclidean time coordinate,

t, and U(r) = 2 − r − κ/(4πr). Integrating this equation gives t(r), which can be

inverted to give r(t). The solutions are periodic, with period β̃(κ, Ẽ).

In the nonrelativistic regime the action is given by

S̃Nonrel(κ, T̃ ) =

∫ rR

rL

2U(r)− Ẽ√
U(r)− Ẽ

dr, (3.77)

where Ẽ is treated as a function of β̃ and κ and where rL and rR are the classical

turning points on the left and right. The nonrelativistic approximation is valid for

∆T̃ := T̃λ1=0 − T̃ � 1, hence I expand the integral thuswise

S̃Nonrel(κ, T̃ ) = S̃Straight(κ, T̃ )− 1

3

√
2π7/4κ5/4∆T̃ 2

− 41

54
π5/2κ3/2∆T̃ 3 +O

(
∆T̃ 4

)
, (3.78)

Note that the nonrelativistic solution has a lower action than the straight lines, so
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it dominates the rate where it exists,

S̃(κ, T̃ ) =

S̃Straight(κ, T̃ ) ,∆T̃ ≤ 0,

S̃Nonrel(κ, T̃ ) , 0 < ∆T̃ � 1.

Also note that the di�erence between the two rates arises at second order in ∆T̃ ,

showing that the transition between the two solutions is a second order phase tran-

sition.

The Legendre transform of these results gives

Σ̃(κ, Ẽ) =

Σ̃Straight(κ, Ẽ) ,∆Ẽ ≤ 0,

Σ̃Nonrel(κ, Ẽ) , 0 < ∆Ẽ � 1.

where ∆Ẽ := Ẽc − Ẽ and Ẽc := 2(1 −
√
κ/4π), the threshold energy. The two

functions are

Σ̃Straight(κ, Ẽ) = 0, (3.79)

and

Σ̃Nonrel(κ, Ẽ) =
π3/4κ1/4

√
2

∆Ẽ +
3π5/4

16
√

2κ1/4
∆Ẽ2

− 5π7/4

256
√

2κ3/4
∆Ẽ3 +O

(
∆Ẽ4

)
. (3.80)

The inclusive rate of pair production at a �xed energy is unsuppressed at the thresh-

old energy. Just below the threshold, ∆Ẽ � 1, the suppression is given by the

nonrelativistic result here. Note that the leading term in ∆Ẽ can be written as

∆Ẽ/T̃λ1=0.

3.4 Arbitrary temperature and κ

For arbitrary temperature and κ there is no symmetry and no small parameter

which can help me proceed analytically6. As noted in Sec. 3.3.3, the cluster expan-

sion we have made is expected to break down for κ/(8π) ≥ O(1). In this section I

perform calculations in the range κ ∈ [0, 1].

I adopt a numerical approach, in particular I discretise the loop, representing it

6Note that solutions of the equations of motion are only instantons if their actions are positive.
At zero temperature this restricts me to κ < 4π. The same condition holds at high temperatures
for the straight line instanton.
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by a large number, N , of points, xi, i = 0, . . . , N − 1, and then write an approxima-

tion to the action where derivatives are replaced by �nite di�erences (see Appendix

A.5 for details). Note that though the worldline is replaced by a one dimensional

lattice of points, there is no spacetime lattice regularisation as the points are not

constrained to lie on a spacetime lattice but may lie anywhere in R4, up to numerical

accuracy. However, I the worldline is itself regularised by a lattice.

The number N must be chosen such that the distance between neighbouring

points, |dxi| := |xi+1 − xi|, is much smaller than the smallest scale in the problem,

the cuto�, a. Note that for a continuous worldline, the global reparameterisation

symmetry τ → τ + c means that ẋ2 is constant. Thus, to leading order in 1/N , |dxi|
is independent of i and hence equal to L[x]/N , where L[x] is the length of the loop.

Further, the cuto� a must be chosen to be much smaller than any other scale in the

problem. In summary I require

L[x]

N
� a� Min(κ,A−1[x; i]), (3.81)

where A[x; i] is the proper acceleration of the worldline at the point i. Note that

the interactions between two disconnected worldlines do not need regularisation, so

I may treat them exactly (up to discretisation errors). Computational constraints

impose a maximum possible N (∼ 212 = 4096 in my case). This in turn imposes a

minimum a and hence a minimum κ and a maximum proper acceleration.

The equations of motion are then 4N (ignoring for the moment the symmetries

and the zero modes) coupled, nonlinear algebraic equations which I solve numeri-

cally. The discretisation is presented in detail in Appendix A.5. A relatively smooth,

one dimensional object embedded in a higher dimensional space is aptly described

by its Fourier decomposition. However, due to the di�culty of evaluating the non-

local interaction term in Fourier space, I adopted a real-space discretisation of the

worldline. Starting with an initial guess at the solution I iteratively solve the lin-

earised equations until converging on a solution of the nonlinear equations, i.e. the

Newton-Raphson method. The ratio of the norm of the equations of motion (a 4N

dimensional vector) to the norm of the solution was used as a measure of conver-

gence. Using this measure, an accuracy of better than 10−7 was usually reached

in about three iterations. Simpler gradient methods cannot be used here as the

solution is a saddle point, having one negative mode.
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Figure 3.7: Examples of the three types of numerical solutions, all with κ = 0.5 and
a = 0.02. From left to right: (a) a C instanton with T̃ = 0.5; (b) a W instanton with
T̃ = 0.66; and (c) an S instanton with T̃ = 0.71 ≈ T̃λ1=0 (lower branch). Figure
taken from Ref. [1].

3.4.1 Finite temperature results

At low temperatures I can use the zero temperature instanton as an initial

guess. Once the iterations have converged, I can then increase the temperature

slightly and repeat the procedure using the solution from the last run as the initial

guess for the next. In this way I can �nd all solutions in the (κ, T̃ ) plane which

are continuously connected to the low temperature solutions. These all have the

topology of a circle and I refer to them as C instantons.

There are also instantons with the topology of railway tracks: two in�nitely

long disconnected pieces. In this case, the charged particles do not tunnel from zero

distance as the initial (thermal) state has nonzero energy. Over the whole (κ, T̃ )

plane there exist such solutions consisting of two straight lines (see Sec. 3.3.6) which

I refer to as S instantons. Below the lower branch of T̃λ1=0 (see Fig. 3.6), there exists

another class of solutions with this topology and with lower action. These consist of

two wavy lines and I refer to them as W instantons. For small κ and for temperatures

just below the lower branch of T̃λ1=0, I can use the nonrelativistic approximation

of Sec. 3.3.6 as an initial guess. From there I can step in κ and T̃ to �nd all the

continuously connected solutions. As I approach the lower branch of T̃λ1=0 from

below, the W instantons become straighter and merge with the S instantons.

As discussed in Sec. 3.3.3, I must regularise the interaction potential. This

introduces a third parameter, a, the short distance cut o�. For each point in the

(κ, T̃ ) plane, I �nd the corresponding solution for a range of a and evaluate the

action, S̃(κ, T̃ ; a), and its Legendre transform, Σ̃(κ, T̃ ; a). For small enough a I
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should be able to �t these to a linear function

S̃(κ, T̃ ; a) ≈ S̃(κ, T̃ ) + c(κ, T̃ )a, (3.82)

for some c(κ, T̃ ). To �nd S̃(κ, T̃ ) I then extrapolate to a → 0, ensuring that the a

dependence is linear (see Fig. 3.11).

The Newton-Raphson method does not converge in the presence of zero modes,

essentially because the solution is not unique. As described in Sec. 3.3, I �x the

translation zero modes by demanding that the centre of mass of the worldline be

at the origin, x̄µ = 0. There is also a �fth zero mode corresponding to the remain-

ing global symmetry of reparameterisation invariance. For worldlines with circular

topology I �x this by demanding that x3
0 − x3

N/2−1 = 0. Given a suitable initial

guess this essentially �xes the point x0 to be at the bottom of the loop and xN/2−1

to be at the top. In the high temperature case, where the instanton splits up into

two separate worldlines, the global part of the reparameterisation invariance must

be �xed on each side separately. I do so by demanding that there be a turning

point at x0 on the right hand side and at xN−1 on the left hand side; i.e. I �x the

spatial derivative to be zero there. In all cases I use Lagrange multipliers to impose

constraints.

In the high temperature case I found that there is also a quasizero mode

associated with translating one of the halves forward in Euclidean time and the

other downwards. The presence of this quasizero mode slows the convergence of

the Newton-Raphson method. To prevent this slowing down I �xed x̄4
L = 0 and

x̄4
R = 0, rather than simply (x̄4

L+ x̄4
R) = 0 (subscripts L and R refer to left and right

hand sides). This overconstrains the problem but the solutions thereby found are

also solutions of the original problem. Further, from the parity symmetry I expect

solutions to satisfy this extra constraint.

In this way I can start to �ll in the (κ, T̃ ) plane with instanton solutions,

building up a contour plot of the action and a phase diagram. Each of the three

di�erent classes of solutions (C, W and S instantons) has a region of existence

and a region within which it has the lowest Euclidean action (the actions denoted

respectively by S̃C , S̃W and S̃S). If two solutions exist at a given point in the plane,

that with lower Euclidean action determines the rate, and hence de�nes the phase.

The semiclassical tunnelling approximation is only valid when the action is positive.

Fig. 3.8 is a contour plot of the Euclidean action as calculated numerically.

The phase diagram that emerges is quite interesting. The S instantons exist

over the whole (κ, T̃ ) plane. The C and W instantons do not. Where I have found

the W instantons to exist, they have lower action than the S instantons. It also
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Figure 3.8: Contour plot of the action, S̃(κ, T̃ ), as calculated numerically. The solid
red and blue lines are my numerical results and the solid green lines are given by
Eq. (3.73). The region in the top right, bounded by the green dotted line, is the
region within which the S instanton is the only known solution. The blank region
between the solid red and blue lines and for small κ is where I could not maintain
the hierarchies of Eq. (3.81) with N = 212 points. The dashed blue lines are linear
extrapolations from the contours found numerically to the same value of the action
at κ = 0 (Eq. (3.62)). Figure taken from Ref. [1].

seems to be the case for the C instantons. It is the case at κ = 0 and I can give an

argument for it at κ = 4π. The action of the C instantons goes to zero at (4π, 0)

whereas that of the S instantons goes to zero at (4π, 1/π). Further, if I can assume

that S̃C and S̃S decrease with increasing temperature (i.e. the solutions have positive

energy), then, where the C instantons exist for κ = 4π and T̃ > 0, they must have

lower action. I have not found numerically a region within which both the C and

W instantons exist, though I do expect them to meet as they appear to abut each

other on the phase diagram. It may be that they exist in disjoint regions, sharing

a boundary of existence, or it may be that they coexist near their phase boundary

where my numerical calculations fail.

From Fig. 3.8 I can see the existence of two lines of phase transitions: T̃CW (κ)

separating the C instantons from the W instantons and T̃WS(κ) separating the W

instantons from the S instantons. From my numerical results, within the range

of parameters explored, the line de�ned by T̃ = T̃WS(κ) appears to coincide with

the lower branch of T̃λ1=0(κ). This line is a line of second order phase transitions,

as discussed in Sec. 3.3.6. The order of the phase transitions at T̃ = T̃CW (κ) is

not clear, except at κ = 0. From Fig. 3.8, and assuming that the W instantons

change continuously as κ → 0, it appears that the W instantons match up with
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Figure 3.9: A slice through the (κ, T̃ ) plane at �xed κ = 0.2. The action of the W
instantons (blue) is lower than that of the S instantons (green) where they exist. The
lemon-shaped instantons are only exact solutions for κ = 0. The expression for their
action is π for T̃ < 1/2 and Eq. (3.62) for T̃ > 1/2. The transition temperature,
T̃CW , lies somewhere in the grey shaded region. The di�culty in maintaining the
hierarchies of Eq. (3.81) has prevented me from calculating it more accurately.
Figure taken from Ref. [1].

the lemon instantons in this limit. Thus, at κ = 0 the transition between C and

W instantons is of second order, as discussed in Sec. 3.3.4. At κ = 0, I also have

that T̃CW (0) = 1/2. Above this I can say nothing precise as, in the region around

T̃ = T̃CW , I have not been able to maintain the hierarchies of Eq. (3.81). However

it appears that T̃CW (κ) ≈ 1/2, at least for κ ≤ 1.

For (κ, T̃ ) outside the region spanned by my numerical calculations (see Fig.

3.8), there is little I can say about the form of the phase diagram. The two lines

of phase transitions may cross at some point T̃CW (κ∗) = T̃WS(κ∗), which I denote

by (κ∗, T̃∗), or even at multiple points. Alternatively the line of phase transitions

between C and W instantons may remain forever below that of W and S instantons,

i.e. T̃CW (κ) < T̃WS(κ) for all κ. More work is needed to better understand the

phase diagram for larger κ and T̃ .

For comparison with the analytic results enumerated in Secs. 3.3.4, 3.3.5 and

3.3.6, in Fig. 3.9 I also give a plot comparing the action as a function of T̃ , for �xed

κ = 0.2.

3.4.2 Fixed energy results

I also calculate the Legendre transform of these results, which gives the inclusive

rate of pair production at a given energy. To calculate the energy of a solution I
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found numerically to the same value of Σ̃ at κ = 0 (Eq. (3.66)). Figure taken from
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use Eq. (3.38). Fig. 3.10 is a contour plot in the (κ, Ẽ) plane of the exponential

suppression, Σ̃.

At κ = 0 the relevant instanton is the lemon-shaped one discussed in Sec.

3.3.4. The corresponding suppression is given by Eq. (3.66) and there is no phase

transition for any 0 < Ẽ < Ẽc. On the other hand for κ > 0 there is a phase

transition between the C and W instantons.

In Fig. 3.10 I have also plotted extrapolations from my numerical results to

the same value of Σ̃ at κ = 0 (Eq. (3.66)). The extrapolations for both C and W

instantons look good. How these instantons match onto the lemon instantons at

κ = 0, and where the phase transition between them lies, is not clear. Note that for

small, nonzero κ and small Ẽ the leading terms for both C and W instantons agree

(Eqs. (3.60) and (3.66)).

3.4.3 Numerical errors

For a selection of my numerical solutions I performed various checks. For

the C and W instantons I computed the lowest few eigenvalues of perturbations

about the solutions and always found that there was one negative mode (in the
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plane), as required for the solution to be interpreted as a tunnelling solution. I

also computed the spectrum of eigenvalues about some S instantons, �nding one

negative eigenvalue for temperatures above the lower branch of T̃λ1=0 and more

than one below this temperature. The apparent absence of the self-force instability

due to higher harmonic �uctuations may be due to the cuto�, a, and due to the

discretisation of the worldlines. The conservation of ẋ2 was accurate to about 1 part

in 104 or better. The solutions were found to be symmetric under a rotation by π

in the 3-4 plane, to numerical accuracy.

The dominant errors in my numerical calculation are due to the di�culty of

maintaining the hierarchies of Eq. (3.81). I have rejected solutions for which

L[x]/(Na) > 0.15 or for which a/Min(κ,A−1[x; i]) > 0.2. The errors due to the

�niteness of these quantities manifest in the extrapolation a→ 0 (see Eq. (3.82)).

See Fig. 3.11. For very small a, the dependence of the action on a is strongly

nonlinear. This is due to a becoming comparable with the distance between points,

L[x]/N , and hence the discreteness of the representation of the worldline becomes

signi�cant. I implemented an algorithm to �t to only the linear part of the plot. For

each point in the (κ, T̃ ) plane I assemble the data {a, S̃(κ, T̃ ; a)} in an array, ordered
by the value of a. I then �t straight lines to all subsets of at least four consecutive

data points, ensuring that this covers a range of a such that the maximum value

is at least twice the minimum value. For each �t I calculate the standard error in
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the result. For my �nal result, S̃(κ, T̃ ), I take that with least standard error. I also

throw away results for which the standard error due to the �t is greater than 0.01,

though in most cases it is much smaller.

For T̃ = 0, I have both approximate, numerical results and an exact, analytic

expression, Eq. (3.48). The di�erence between the two is found to increase with κ

up to about 0.01 at κ = 1, using N = 212 points. This error scales with the number

of points as 1/N2. I also have an exact, analytic expression for large temperatures,

Eq. (3.73). Unfortunately though, for the corresponding instanton, the S instanton,

due to the enhanced symmetry the zero modes corresponding to time translation

and to reparameterisation invariance cannot be �xed as for the other instantons,

preventing convergence of the Newton-Raphson method.

As I approach the phase transition between C and W instantons, T̃CW (κ), it

becomes more di�cult to maintain the hierarchies of Eq. (3.81). Hence I expect

errors there to be greater.

3.5 Summary

In this chapter, I have extended previous results on Schwinger pair produc-

tion to arbitrary couplings and arbitrary temperatures. To achieve this I restricted

myself to weak, constant external �elds. This restriction was shown to result in

a semiclassical approximation and within this approximation I have calculated the

leading behaviour of the logarithm of the rate. As a by-product, I was also able to

obtain inclusive pair production rates at �xed energy.

I adopted the worldline description. In this framework the problem reduced to

one of solving the instanton equations of motion for a self-interacting worldline, an

interesting geometric problem.

For weak couplings, like in QED, my results complement the extensive literature

on the subject, providing an alternative approach which holds at all temperatures

and in which some issues are clearer. In this case κ < ε and my approach, which

includes all orders in κ but just the leading order in ε, does not seem necessary.

However, as I have discussed, the singular nature of the small κ perturbation means

that one aught not to simply set κ = 0 from the outset. Doing this may lead to the

incorrect instanton and hence to incorrect results at leading order in ε.

In this weak coupling regime, and at temperatures T̃ < 1/2, my results give

small corrections to the leading order results. When expanded they capture the two-

loop, thermal correction for weak �elds. I also �nd no thermal correction at one-loop
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in this temperature range. Though I have calculated analytically the correction to

the exponent to leading and next to leading order in κ, a full calculation of higher

order loop corrections would require also the thermal corrections to the prefactor.

At higher temperatures, T̃ > 1/2, the singular nature of the weak coupling ex-

pansion gives nontrivial corrections to the naive κ→ 0 limit. My numerical solutions

at �nite κ appear to approach the well-known lemon-shaped instanton as κ→ 0. At

leading order, this solution gives a nonzero thermal enhancement to the rate. Note

however that this enhancement is not present in the one-loop approximation, which

breaks down due to the singular nature of the weak coupling expansion. The lemon-

shaped instanton also shows an enhanced correction to the exponential suppression

of order κ log(κ)/ε. This dominates over the order ε0 correction for su�ciently small

ε.

At intermediate and strong couplings the results open new avenues. Using them

one can make reliable estimates for the pair production rate of strongly charged

particles via the thermal Schwinger process. In particular one could apply these

results to the pair production of magnetic monopoles. Su�ciently light magnetic

monopoles would be produced amply in the strong magnetic �elds and high tem-

peratures present in heavy ion collisions, in neutron stars and in the early Universe.

In this chapter I have only calculated the exponential suppression of the rate.

For direct phenomenological application, one should also calculate the prefactor.

Refs. [280, 293, 294] would be an apt place to start. They all �nd similar instantons

to those in this chapter, though in theories without dynamical long-range forces.

For the S instanton, I calculate the prefactor in the following chapter.

The appearance of the self-force instability in the semiclassical evaluation of

the path integral raises some intriguing questions that require further work. This I

pursue further in the following chapter.

The worldline description that I have developed here could be used to calculate

pair production rates for other induced Schwinger processes at arbitrary coupling.

For example one could consider a nonconstant external �eld. The numerical ap-

proach I have adopted would then directly apply.
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Magnetic monopole mass bounds

As discussed in Sec. 1.4 there have been many searches for magnetic monopoles

[68, 69], but so far none have been found. Astrophysical [70, 71, 72] and cosmic ray

[73, 74, 75, 76, 77] searches have provided constraints on the monopole �ux in the

Universe, and collider searches [78, 89, 81, 90, 295] have constrained the production

cross section over a given mass range. However, in the absence of reliable theoretical

predictions for the �ux or the cross section, these cannot be converted into direct

bounds on the monopole mass.

Further, as discussed in Chapter 2, it is expected that cross sections for pro-

duction of composite magnetic monopoles from few particle collisions are strongly

exponentially suppressed (see Eq. (2.1)). If this suppression is indeed present, it

would e�ectively rule out the production of composite magnetic monopoles in, for

example, proton-proton collisions at the Large Hadron Collider (LHC). For elemen-

tary (Dirac) monopoles the arguments of Refs. [104, 65] do not apply and cross

sections for pair production are completely unknown.

The thermal Schwinger process, discussed in Chapter 3, provides an alternate

mechanism to create magnetic monopoles. Although the rate is indeed exponen-

tially suppressed for weak magnetic �elds and low temperatures, the exponential

suppression diminishes with increasing magnetic �eld strengths and temperatures.

For su�ciently strong magnetic �elds or su�ciently high temperatures, it is expected

that magnetic monopoles will be produced amply. I suggest that this is because the

energy is spread across many degrees of freedom in the initial state. This is what

was found in the case of (B+L) violation [92, 93, 95, 106, 107, 296] (see Sec. 2.2.1),

in the language of which the higher temperature process I consider is a sphaleron

induced decay.

Strong magnetic �elds and high temperatures arise, for example, in heavy ion

collisions and around neutron stars. In this chapter I explore the consequences of
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this. I construct the cross section for pair production of magnetic monopoles in heavy

ion collisions. By comparison to an experimental upper bound on the cross section

[91], I derive lower bounds on the mass of possible magnetic monopoles. Further, in

the strong, long-lived magnetic �elds present around neutron stars, su�ciently light

magnetic monopoles would be produced and would dissipate the magnetic �eld. By

comparison with the observed magnetic �eld strengths I derive another set of lower

mass bounds. These bounds are model-independent in the sense that they apply

to both elementary and composite (e.g. 't Hooft-Polyakov) monopoles and do not

rely on (inapplicable) perturbation theory. However, as I will show in Chapter 5

an instability present in higher order corrections to the rate casts doubt on these

conclusions. In this chapter though, I will take the rates as derived in Chapter 3 at

face value, leaving discussion of the validity of this approach until Chapter 5.

For comparison to the bounds derived here, the current best, model-independent,

lower bound on the mass of magnetic monopoles derives from thermal production

of magnetic monopoles during reheating. As discussed in Sec. 1.4, due to the

huge uncertainty in the reheating temperature, the bound is surprisingly weak,

m & 0.45GeV.

I brie�y summarise the results of Chapter 3 for use in this chapter, referring

explicitly to an external magnetic �eld. I show the dependence on: the magnetic

coupling, g; the external magnetic �eld, B; the mass of the magnetic monopoles,

m; and the temperature, T . The results of Chapter 3 are valid for su�ciently

heavy magnetic monopoles in slowly varying external magnetic �elds, in which case

the semiclassical approximation applies. The small semiclassical parameter in the

calculation, akin to ~, is gB/m2. In the leading semiclassical approximation, the

rate of pair production per unit volume, ΓT , is of the form

log(ΓT ) = −m
2

gB

{
S̃ (g,m,B, T ) +O

(
gB

m2
log

(
gB

m2

))}
. (4.1)

where m2 � gB and the action, S̃, is a function only of the dimensionless ratios

g3B/m2 andmT/gB. It is not smooth, having discontinuities which can be described

as phase transitions. In Chapter 3 it was calculated analytically in various limits as

well as numerically.

Within these approximations, when m2 � gB and the external �eld is slowly

varying, any spin of the magnetic monopoles is invisible (see Appendix A.3). For

composite monopoles I must also assume that the monopoles are small compared

with other scales in the problem (see Appendix A.4). For the usual grand uni�ed

theory monopoles, this approximation fails when m2 . g3B/(4π). For elementary
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monopoles, virtual monopole pairs will modify the photon-monopole interaction on

su�ciently short scales. One can make a simple estimate of the scales at which

this e�ect becomes signi�cant by setting the rest mass of a monopole pair equal to

the Coulomb attraction. This de�nes the scale r ∼ g2/(8πm). The semiclassical

calculation of Chapter 3, which does not fully include this e�ect, thus breaks down

when the scale of the instanton probes these short length scales, i.e. when m2 .

g3B/(8π).

In this chapter, I will be interested in two particular cases. For heavy ion

collisions, the relevant temperatures are high (see Sec. 3.3.6). When m2 & g3B,

high temperatures are such that T &
√

2π−3/4(gB3/m2)1/4. In this regime the action

is given by Eq. (3.73), or expressed in terms of dimensionful parameters,

S̃ (g,m,B, T ) = 2

(
1−

√
g3B

4πm2

)
gB

mT
. (4.2)

When g3B/m2 is larger, it may be that the action is smaller than that given by Eq.

(4.2). This depends on the nature of the phase diagram as discussed in Chapter 3.

However, the action cannot be larger than that given by Eq. (4.2) and hence the

rate of pair production cannot be lower, within the semiclassical approximation.

For neutron stars the relevant temperatures are low, T � gB/m (see Sec.

3.3.5). In this case the action is given by Eq. (3.69), or expressed in terms of

dimensionful parameters,

S̃ (g,m,B, T ) = π − g3B

4m2
− ζ(4)

g3B

m2

(
mT

gB

)4

− 4ζ(6)
g3B

m2

(
mT

gB

)6

+O

(
mT

gB

)8

. (4.3)

At zero temperature, and at leading order in g3B/m2, the leading and next to leading

corrections to the logarithm of the rate have been calculated [25, 221]. Together they

give the rate, Eq. (3.49), or expressed in terms of dimensionful parameters,

Γ0 = (2s+ 1)
g2B2

8π3
e−

πm2

gB
+ g2

4

(
1 +O

(
g3B

m2

))
, (4.4)

where s is the spin of the charged particle.
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4.1 Heavy ion collisions

In a high energy heavy ion collision a �reball is created which thermalises

quickly and within which there are strong magnetic �elds because of the fast-moving

electrically charged nuclei [297, 298, 299, 300, 301, 302]. The presence of both the

thermal bath and the magnetic �elds means that thermal Schwinger pair produc-

tion of magnetic monopoles is possible. However, only su�ciently light magnetic

monopoles will be produced in measurable quantities.

For a given event, with impact parameter b, the �reball will be contained in

some spacetime region, R(b). If the temperature, T (x; b), and magnetic �eld, B(x; b)

are su�ciently slowly varying, then to �nd the total probability, p(b), that a pair of

magnetic monopoles is produced in a given collision, I can simply integrate the rate

over the spacetime volume of the �reball,

p(b) =

∫
R(b)

d4x ΓT (m, g,B(x; b), T (x; b)). (4.5)

From this I can write down the cross section for pair production,

σMM̄ =

∫
db

dσinel
HI

db
p(b), (4.6)

where dσinel
HI /db is the total, di�erential, inelastic cross section for the relevant heavy

ion collision. Due to the exponential dependence of ΓT on the magnetic �eld and

temperature, all of these integrals can be carried out in the stationary phase ap-

proximation. However, as I have thus far only calculated the logarithm of the rate

to leading order in gB/m2, I will instead make the following simple estimate

σMM̄ ≈ σinel
HI V ΓT (m, g,B, T ), (4.7)

where V is the spacetime volume of a typical collision and B and T are taken

to be the maximum values of the functions B(x; b) and T (x; b) respectively. This

expression should capture the approximate order of magnitude of the result.

In heavy ion collisions there have been both direct searches for magnetic monopoles

[91] and (preliminary) searches for trapped monopoles in obsolete parts of the beam

pipe [303, 304]. Ref. [91] reported the results of a search at the Super Proton Syn-

chrotron (SPS) for magnetic monopoles in �xed-target lead ion collisions with beam

energy 160AGeV. In this, they derived an upper bound on the magnetic monopole

pair production cross section, σMM̄ < σUB
MM̄

= 1.9nb. By comparing this with Eq.
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(4.7), I can derive a lower bound on the mass of any possible magnetic monopoles.

Assuming that the prefactor of ΓT (as in A in Ref. [270]) multiplied by V is

not exponentially large in m2/gB, I arrive at

log

(
σinel
HI

σUB
MM̄

)
.
m2

gB
S̃ (g,m,B, T ) . (4.8)

The magnetic �eld strength in lead ion collisions at these energies was estimated to

be B160GeV ≈ 0.0097GeV2 [298]. From an analysis of the spectrum of neutral pions,

the temperature was estimated to be T160GeV ≈ 0.185GeV [305]. I take σinel
HI ≈ 6.3b,

the minimum-bias cross section for the experiment [306].

Substituting Eq. (4.2) and the parameters into Eq. (4.8) leads to the following

bound on the mass of any magnetic monopoles

m &

(
2.0 + 2.6

(
g

gD

)3/2
)

GeV. (4.9)

Note that the experiment was only sensitive to magnetic charges g ≥ 2gD. For

g = 2gD the bound reads m & 9.5GeV.

The semiclassical approximation, made in deriving Eq. (4.9), requires that the

exponential suppression be large. At the lower bound this amounts to 22 � 1.

The approximation of constant magnetic �eld requires that the magnetic �eld varies

signi�cantly on time and length scales much larger than those of the instanton.

The instanton has a spatial extent of
√
g/4πB ≈ 18GeV−1 for g = 2gD in the

direction of the magnetic �eld (transverse to the beam) and a temporal extent

of 1/T ≈ 5.4GeV−1. At SPS energies the magnetic �eld varies signi�cantly over

the length and timescales of the �reball. The transverse size of the �reball is of

the order of the size of a lead nucleus, 2RPb ≈ 100GeV−1, which is somewhat

larger than the spatial size of the instanton. The lifetime of the magnetic �eld,

tB ≈ 2RPb/γ ≈ 11GeV−1, is reduced by, γ, the Lorentz factor in the centre of mass

frame [299, 301, 302] (though it has been suggested that the lifetime may be longer

[307, 308, 309]). This lifetime, tB, is somewhat larger than the temporal extent of

the instanton.

At higher energies one would expect to produce higher mass magnetic monopoles,

if such particles exist. The magnetic �eld strength increases linearly with the centre

of mass energy,
√
s, [300, 299, 301] and the temperature increases approximately as

a small power [310] both e�ects increasing the range of accessible masses. However

at higher energies the magnetic �eld becomes more transient, its lifetime being pro-

portional to 1/
√
s. This leads to a breakdown of the constant �eld approximation.
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To account for this, the calculation of Chapter 3 would need to be modi�ed. One

would expect the temporal variation of the magnetic �eld to increase the rate of

pair production, and spatial variation to decrease it [311, 312, 313, 314, 283].

There is promise for magnetic monopole searches in the next scheduled Pb-Pb

collisions at the LHC in 2018, at which ALICE, ATLAS, CMS, LHCb and MoEDAL

may be able to detect monopoles. The trapping detectors of MoEDAL are ideally

suited for this because they have no background noise [90]. I make the simple,

though perhaps naive, assumption that the rate derived for a constant magnetic �eld

provides a lower bound on the true rate. Using the magnetic �eld, B ≈ 1.1GeV 2,

and integrated luminosity, Lint ≈ 4µb−1, from the 2015 lead ion collisions at
√
sNN =

5.02TeV [315] and the temperature, T ≈ 0.30GeV , and cross section, σinel
HI ≈ 7.7b,

from the lower energy collisions in 2010-2011 [316, 317], and assuming an acceptance

better than or equal to O(10−4), I would predict that magnetic monopoles with

masses up to approximately (1+28(g/gD)3/2)GeV could be experimentally observed.

Note that the rate of magnetic monopole pair production in heavy ion collisions

has been discussed before in [318, 319]. They also consider thermal production,

though they do not include the e�ect of the magnetic �eld.

4.2 Neutron stars

There are also strong magnetic �elds and high temperatures in neutron stars.

Magnetic �elds have been estimated to be up to BMagnetar ≈ 10−4GeV2 [320] for

the so called magnetars. The temperatures of such neutron stars lie in the range

10−8GeV to 10−6GeV for most of the stars' lifetime, though in the early stages they

can be as high as 10−2GeV [321, 322].

Magnetic monopoles present in such circumstances would be accelerated by

the magnetic �eld thuswise dissipating its energy. A calculation of this e�ect can

be used to put upper bounds on the number density of magnetic monopoles [70, 71,

72, 323]. I can go a step further and equate the number density to that produced by

thermal Schwinger pair production, and thuswise bound the mass of any magnetic

monopoles.

The magnetic �eld of a neutron star can be approximated as dipolar [324].

I focus on the magnetic �elds above the surface of the star, which are fairly well

established. I assume that on the microscopic scale m/gB the magnetic �eld can

be treated as constant. Note that, due to the superconducting core, the internal

magnetic �elds would be contained into �ux tubes increasing the �eld strength
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locally and enhancing the production rate. Hence a consideration of the interior

of the neutron star may lead to stronger bounds [323], though one would need to

consider interactions between magnetic monopoles and matter particles [325, 326,

327, 328, 329].

I consider typical neutron star mass and radius parameters, MNS = 1.4M� and

R ≈ 1.0×1020GeV−1 respectively. At the surface of the star, where the gravitational

�eld is strongest, the ratio of gravitational to magnetic forces on such a magnetic

monopole is

FG
FB
≈ GNMNSm

gBR2
≈ 7.14× 10−19

(
gD
g

)( m

GeV

)
, (4.10)

where GN is Newton's constant. So, for magnetic monopoles with masses much

less than 1019GeV, the magnetic force dominates over the gravitational one. In

this regime magnetic monopoles will be accelerated by the magnetic �eld over a

timescaleO(m/gB) to nearly the speed of light and will escape both the gravitational

attraction of the star and the dipolar magnetic �eld, leaving with a kinetic energy

O(gBR). Due to their inertia, the magnetic monopoles do not follow the dipolar

magnetic �eld lines back round into the neutron star but follow straighter, unbound

trajectories, as can be checked by integrating the dual Lorentz force law with suitable

parameters.

Locally the energy density of the magnetic �eld and thermal bath act as a

source of magnetic monopoles. If the density of magnetic monopoles is low enough,

which indeed it will turn out to be, I can ignore their annihilation and hence

∇µn
µ = ΓT , (4.11)

where nµ := ncu
µ, nc is the (comoving) number density of magnetic monopoles and

uµ is their �uid velocity. Now consider a spatial region just above the surface of the

neutron star, small enough so that across it the magnetic �eld and temperature can

be treated as approximately constant but large enough so that its spatial dimensions

are all large compared with the low temperature instanton size, m/gB. I denote

the area of the surface by A and the volume by V . Integrating Eq. (4.11) over this

spatial region gives
dN

dt
≈ V ΓT − αAnu, (4.12)

where N = nV is the number of magnetic monopoles in the spatial region, n := n0

is the number density measured in the frame of the neutron star, u is the spatial

velocity in the same frame and α is a numerical coe�cient of order 1, the fraction
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of the surface area through which magnetic monopoles may escape. The magnetic

current will be aligned with the magnetic �eld and u ≈ 1.

At equilibrium, the rate of change ofN with time will be zero, hence the number

density of magnetic monopoles is equal to

n ≈ V ΓT
αA

. (4.13)

I de�ne by r := V/αA, the coe�cient in front of ΓT , which is of the order of the radius

of the spatial region. The presence of the magnetic monopoles, being accelerated by

the magnetic �eld, will dissipate the energy of the magnetic �eld at a rate

d

dt

(
1

2
B2

)
= −JM ·B (4.14)

where JM = gnu. Using that JM ·B ≈ gnB and Eq. (4.13) this simpli�es to

dB

dt
≈ −grΓT . (4.15)

This dissipation will provide a ceiling for the growth of the magnetic �eld. Consider

a simpli�ed model of the fast dynamo process, argued in [330] to be responsible for

the strong magnetic �elds in magnetars. In the presence of this process the rate of

change of the magnetic �eld is modi�ed to

dB

dt
≈ −grΓT +

B

2τD
, (4.16)

where τD is the characteristic enhancement time of the dynamo. For su�ciently

small magnetic �elds the rate, ΓT , is strongly exponentially suppressed and the

dynamo action dominates. Conversely, the exponential dependence of ΓT on B

means that ΓT will always dominate at su�ciently large values of B. In between is

the point of maximum B, at which the two e�ects are equal and the right hand side

of Eq. (4.16) is zero. This argument is sound if the semiclassical approximation still

holds at this point.

The rate ΓT is bounded below by the rate at zero temperature, Eq. (3.49).

Thus I may use this to bound the e�ect of the dissipation of B due to the creation

of magnetic monopoles. Equating the right hand side of (4.16) to zero, and using

this zero temperature rate, I derive the following bound,

B .
πm2

gW

(
e
g2

4 (2s+1)g2m2rτD
4π2

) , (4.17)
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Figure 4.1: Summary of the lower bounds for the mass of magnetic monopoles. The
dotted line is a projection.

where W is the principal part of the Lambert-W function. Inverting the argument

which led to the maximum magnetic �eld, I may use the observation of a strong

magnetic �eld to give a lower bound on the mass of possible magnetic monopoles,

m &

√
gB

π

[
g2

4
+ log

(
(2s+ 1)g3BrτD

4π3

)]
. (4.18)

So, the largest bounds will be found from the observation of strong magnetic �elds,

B, existing over large spatial extents, r, and created by processes with long char-

acteristic times, τD. Note though that the dependence on s, r and τD is only

logarithmic and hence the dependence on B dominates.

If I take r ≈ R/10, a tenth the radius of the neutron star, and τD ≈ 1.5 ×
1021GeV−1 (one millisecond, a short characteristic dynamo time) and B ≈ BMagnetar,

I derive the following lower bounds: m & 0.30GeV for g = gD and m & 0.69GeV

for g = 2gD. More generally we �nd that the following equation provides a good

approximation:

m &

(
0.05 + 0.22

(
g

gD

)3/2
)

GeV. (4.19)

If there were to exist magnetic monopoles lighter than these lower bounds, their pro-

duction and acceleration would strongly dissipate the magnetic �eld before it could



4.3. Summary 107

ever reach BMagnetar. Note that for the bounding values the exponential suppression

is numerically about 87� 1, and hence the semiclassical approximation is valid.

A similar approach to that I have presented here was given recently in Ref.

[331], though they considered somewhat di�erent types of particles.

4.3 Summary

From the arguments of this chapter, magnetic monopoles with masses below

those indicated in Fig. 4.1 cannot exist in nature. My key approximations, that the

relevant magnetic �elds are su�ciently weak and slowly varying, appear more or less

justi�ed. However, as mentioned in the introduction to this chapter, in calculating

higher order corrections to the rate used here, one encounters an instability which

casts doubt on the validity of the approximations. This will be discussed more fully

in the following chapter.

Future higher energy heavy ion collisions can improve these bounds signi�cantly

though, at higher energies, accounting for the spacetime dependence of the magnetic

�eld requires further theoretical work. Further, an understanding of the kinematic

distribution of the created monopoles is important for comparison with experiments.

In neutron stars, a consideration of the superconducting regions below the surface

may lead to signi�cant improvements in the lower mass bounds, though in this case

monopole-matter interactions would have to be accounted for.
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Thermal Schwinger sphaleron

As discussed in Chapter 3, at zero temperature Schwinger pair production is deter-

mined by a circular worldline instanton. At nonzero temperatures the rate of this

process is enhanced by the energy of the thermal bath, and the worldline instanton is

deformed away from circular. At su�ciently high temperatures the process becomes

essentially thermal and is determined by a worldline sphaleron1 (which, in Chapter

3, I referred to as the S instanton). In this chapter I brie�y review the deriva-

tion of the worldline sphaleron and then calculate the sphaleron rate, including the

�uctuation prefactor.

Following the work in Chapter 3, my calculations will be carried out in both

quantum electrodynamics (QED) and scalar quantum electrodynamics (SQED), for

strong charge coupling, g2 � 1. In SQED I will assume that the scalar self-coupling

is weak, λ � 1. I consider circumstances when the calculation is semiclassical and

hence the rate is slow. In this regime the results are independent of many properties

of the charged particles. The results are applicable to the dual Schwinger process,

the creation of magnetic monopoles in magnetic �elds. The electric and magnetic

production rates are related by simply swapping electric and magnetic quantities

in the �nal result. The results are applicable to both elementary and composite

monopoles (see Appendix A.4).

Unlike the zero temperature worldline instanton of the Schwinger process, the

worldline sphaleron is not visible at any �nite loop order. If I denote symbolically

the interaction between the dynamical (as opposed to external) photon �eld and the

charged particles as J · A, then the loop expansion of the Schwinger rate, Γ, takes

1Note that the worldline sphaleron referred to in this chapter is not the original sphaleron of
Refs. [94, 95], though it is closely analogous.
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Figure 5.1: The simple worldline sphaleron, for the dual thermal Schwinger process.
The attraction between monopole and antimonopole is balanced by the external
magnetic �eld, B, which pushes them apart.

the form,

Γ ∼
∞∑
n=0

〈cn(J · A)n〉. (5.1)

The leading term, c0, gives the one loop result, that of Schwinger [201] or, at �nite

temperature, Refs. [249, 247, 250, 251, 332, 242, 333, 334, 281, 282]. The next order

term has also been calculated, both at zero [253, 254, 222, 255] and at �nite but low

temperature [256]. Now, the presence of the sphaleron requires the interaction J ·A
in the exponent of the semiclassical expansion. Hence, it requires all orders in the

loop expansion.

Despite this, the worldline sphaleron itself is rather simple. The electric version

consists of an electron and a positron a �nite distance apart, such that the force

of interaction between them is balanced by the force of the external electric �eld

pushing them apart. The magnetic version is the electromagnetic dual of this. It is

shown in Fig. 5.1.

My interest in calculating the sphaleron rate of the thermal Schwinger process

is for its relevance to the production of magnetic monopoles in heavy ion collisions,

as discussed in Chapter 4. As such I will refer only to magnetic charges in the

rest of this chapter, though the results are equally applicable to electric particles.

The minimum magnetic charge squared is g2
D = (2π/e)2 ≈ 430, so g2 � 1 is well

satis�ed. In the �reball of a heavy ion collision there are strong magnetic �elds

and high temperatures. Hence, magnetic monopoles may be produced by the dual

thermal Schwinger process. There is much promise for magnetic monopole searches

in current and future heavy ion collisions, in particular the MoEDAL experiment

[90] at the LHC, so spurring this work. Here I extend the results of Chapter 3 by

calculating the prefactor of the rate, an important quantity for making comparison

to experiment. In doing so, I encounter the well-know self-force instability which

marks a breaking down of the approximations made, so calling into question the

validity of the mass bounds of Chapter 4.

I should add a quick note on what I mean by my initial thermal state. I
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consider temperatures, T , much less than the mass of any magnetic monopoles, m

(or for the electric case, much less than the mass of the electron). In this case

their are no magnetic monopoles in the initial state. Upon turning on the magnetic

�eld, magnetic monopoles are produced by the thermal Schwinger process. The

initial rate of production is what I calculate. This process is relevant only for the

lightest magnetic monopole (or the lightest electrically charged particle), because the

lightest particles will be produced exponentially more quickly than heavier particles

and, once produced, their presence will cause Debye screening.

In Sec. 5.1 I de�ne the sphaleron rate and set up the calculation of it. Following

this, in Sec. 5.2 I calculate the sphaleron and the spectrum of �uctuations about

it. In Sec. 5.3 I note that the spectrum of �uctuations manifests the well known

self-force instability. In sec. 5.4 I specialise to a particular region of parameter

space where the self-force instability does not rear its head. I then calculate the

sphaleron rate, including the prefactor, the main result of this chapter. In Sec. 5.6,

I summarise my results.

5.1 General approach

The thermal rate of decay of a metastable state has been studied by many

authors [245, 246, 243, 244]. In regards to the thermal Schwinger process, in Chapter

3 I calculated the logarithm of the rate, the factor S in

ΓT ∼ e−S. (5.2)

To go beyond this, I need an explicit expression for the rate, including the prefac-

tor. As argued for in Refs. [245, 246], for high temperatures, where the process is

dominated by a static con�guration, a sphaleron, the rate is given by 2

ΓT ≈
−|ω−|
πV

Im log(ZT ), (5.3)

where V is the spatial volume, ZT is the canonical partition function excluding the

states containing the decay products and |ω−| is the rate of growth with time of the

unstable mode, responsible for the imaginary part of log(ZT ). It is assumed that

the rate of decay is slow, so that the process is out of equilibrium.

I �rst consider the dual thermal Schwinger process in SQED, with the mag-

2At lower temperatures the rate is given instead by Eq. (3.12), related by replacing |ω−| → 2πT .
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netic �eld pointing along the x3 direction. In Chapter 3 I gave the following exact

worldline path integral (Eq. 3.20),

1

V
Im log(ZT ) =

1

V
Im log

[
1+

∞∑
n=1

1

n!

n∏
j=1

(∫ ∞
0

dsj
sj

∫
Dxµj e−

1
ε
S̃[xj ;sj ;κ,T̃ ] e

κ
ε

∑
k<j

∮ ∮
dxµj dxνkGµν(xj ,xk;T̃ )

)]
, (5.4)

where ε := gB/m2, κ := g3B/m2 and T̃ := mT/gB. I will refer to sj as Schwinger

parameters. The problem is formulated in Euclidean space with periodic x4 direc-

tion, with period 1/T̃ . The free thermal photon propagator is Gµν , where µ, ν run

over Euclidean indices 1, 2, 3, 4. The scaled action, S̃, for a single worldline, is (Eq.

3.21)

S̃[x; s;κ, T̃ ] := s+
1

4s

∫ 1

0

dτ ẋµẋµ −
∫ 1

0

dτx3ẋ
4

− κ

2

∫ 1

0

dτ

∫ 1

0

dτ ′ẋµ(τ)ẋν(τ ′)Gµν(x(τ), x(τ ′); T̃ ). (5.5)

The worldlines are coupled by the terms involving the photon propagator. This

interaction has a short distance divergence, corresponding to the electromagnetic

contribution to the self-energy of the magnetic monopoles. In this chapter I reg-

ularise this divergence following Ref. [237] (using the length counterterm of Eq.

(3.40)).

As in Chapter 3, I perform a cluster expansion of Eq. (5.4) (Eq. (3.24)),

ΓT =
∞∑
n=1

Γ
(n)
T , (5.6)

where Γ
(n)
T is the contribution to ΓT from clusters of n worldlines. For ε � 1, the

path integral of each cluster can be evaluated in the saddle point approximation.

In this case the cluster expansion can be viewed as a dilute instanton expansion.

The leading contribution to the thermal Schwinger rate is given by the instanton

with smallest action. This leading order term is approximately equal to the density

of these instantons, and is exponentially small. Higher order terms in the cluster

expansion are expected to be suppressed by powers of this density, or by subleading

instanton densities.

At low temperatures, T̃ � 1, the dominant instanton is the circular worldline

instanton [221, 25], a saddle point of Γ
(1)
T . At higher temperatures, thermal cor-
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Figure 5.2: Worldline instantons relevant for the thermal Schwinger process. Each
column represents a di�erent instanton, each relevant for a given temperature. The
rightmost instanton is the worldline sphaleron, which dominates the rate at the
highest temperatures. The magnetic �eld points along the 3-direction and the 4-
direction is the Euclidean time direction.

rections deform this instanton, so increasing the rate. Above some temperature,

T̃CW , a second instanton, with di�erent topology, dominates, called a W instanton

in Chapter 3. It consists of a monopole and antimonopole oscillating back and forth,

parallel to the magnetic �eld, and is a saddle point of Γ
(2)
T . At higher temperatures

still, above T̃WS, this W instanton ceases to exist and the dominant instanton is the

static worldline sphaleron solution, also a saddle point of Γ
(2)
T . The instanton phase

diagram outlined here has been established for 0 ≤ κ ≤ 1 and may be subject to

change at larger values of κ.

5.2 The sphaleron and �uctuations about it

Eq. (5.5) gives the action for one worldline, xµ(τ), with proper length s, and

it gives the exponent of the integrand of Γ
(1)
T , when divided by ε. In terms of the

action for one worldline, the action for two worldlines, the scaled exponent of the

integrand of Γ
(2)
T , is

S̃[x, y; sx, sy;κ, T̃ ] := S̃[x; sx;κ, T̃ ] + S̃[y; sy;κ, T̃ ]

− κ
∫ 1

0

dτ

∫ 1

0

dτ ′ẋµ(τ)ẏν(τ ′)Gµν(x(τ), y(τ ′); T̃ ). (5.7)

Due to the double integral terms in the action, the corresponding equations of motion

are integrodi�erential equations.
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The sphaleron is a static solution to these equations of motion. It consists of

particle and antiparticle sitting a �xed distance apart along the x3 axis. It is given

by

x(τ) = x0(τ) :=

{
0, 0,

1

2

√
κ

4π
,

1

2T̃
(2τ − 1)

}
,

y(τ) = y0(τ) :=

{
0, 0,−1

2

√
κ

4π
,− 1

2T̃
(2τ − 1)

}
,

sx = sx0 :=
1

2T̃
,

sy = sy0 :=
1

2T̃
. (5.8)

The action of the sphaleron is

S̃(κ, T̃ ) =
2

T̃

(
1−

√
κ

4π

)
. (5.9)

The saddle point approximation requires also the determinant of �uctuations about

this solution. Expanding the action to second order about this solution gives a

surprisingly large number of terms, O(100), most of which are due to the nonlocal

interactions. To proceed I de�ne ζµ(τ) := xµ(τ)− yµ(τ) and ξµ(τ) := xµ(τ) + yµ(τ).

The solution given in Eq. (5.8) can then be written as

ζ(τ) = ζ0(τ) :=

{
0, 0,

√
κ

4π
,

1

T̃
(2τ − 1)

}
,

ξ(τ) = ξ0(τ) :=

{
0, 0, 0, 0

}
. (5.10)

Due to the periodicity, I may expand the �uctuations about the solution in a Fourier

series,

ζµ(τ)− ζµ0 (τ) = aµ0 +
∞∑
n=1

(
aµn
√

2 cos(2πnτ) + bµn
√

2 sin(2πnτ)
)
,

ξµ(τ)− ξµ0 (τ) = cµ0 +
∞∑
n=1

(
cµn
√

2 cos(2πnτ) + dµn
√

2 sin(2πnτ)
)
. (5.11)

The second order action is diagonal in these Fourier coe�cients. It can thus be
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expressed as

S̃(2) =
1

2
4T̃ (sx − sx0)2+

1

2
4T̃ (sy − sy0)2 +

1

2

∞∑
n=0

4∑
µ=1

(αµna
µ
na

µ
n + γµnc

µ
nc
µ
n)

+
1

2

∞∑
n=1

4∑
µ=1

(βµnb
µ
nb
µ
n + δµnd

µ
nd

µ
n) . (5.12)

The eigenvalues for n = 0 are

α0 = { 2π
√
πκT̃

,
2π
√
πκT̃

,− 4π
√
πκT̃

, 0},

γ0 = {0, 0, 0, 0}. (5.13)

The four zero modes of γ0 correspond to translations of the instanton. The �fth, α4
0,

corresponds to translation in the parameter τ . The negative eigenvalue corresponds

to increasing, or decreasing, the separation between the particles. It is negative for

all κ and T̃ . The eigenvalues for n = 1 are

α1 =

{
1

2
(2π)2T̃ − 2

3
π2κT̃ 2 + π

(√
πκT̃ + 1 +

1
√
πκT̃

)
e−
√
πκT̃ +

√
π

√
κT̃

,

1

2
(2π)2T̃ − 2

3
π2κT̃ 2 + π

(√
πκT̃ + 1 +

1
√
πκT̃

)
e−
√
πκT̃ +

√
π

√
κT̃

,

1

2
(2π)2T̃ − 2

3
π2κT̃ 2 − 2π

(
1 +

1
√
πκT̃

)
e−
√
πκT̃ − 2

√
π

√
κT̃

,

1

2
(2π)2T̃

}
, (5.14)

β1 =

{
1

2
(2π)2T̃ − 2

3
π2κT̃ 2 − π

(√
πκT̃ + 1 +

1
√
πκT̃

)
e−
√
πκT̃ +

√
π

√
κT̃

,

1

2
(2π)2T̃ − 2

3
π2κT̃ 2 − π

(√
πκT̃ + 1 +

1
√
πκT̃

)
e−
√
πκT̃ +

√
π

√
κT̃

,

1

2
(2π)2T̃ − 2

3
π2κT̃ 2 + 2π

(
1 +

1
√
πκT̃

)
e−
√
πκT̃ − 2

√
π

√
κT̃

,

1

2
(2π)2T̃

}
, (5.15)

and γ1 = β1, and δ1 = α1. The eigenvalues for n > 1 are given in terms of the n = 1
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eigenvalues by

αn(κ, T̃ ) = nα1(κ, nT̃ ), (5.16)

and likewise for the others. This can be seen by noting that an nth harmonic at a

given temperature, T̃ , can be seen as an n = 1 harmonic at the higher temperature

nT̃ .

5.3 Self-force instability

These higher harmonics lead to a problem. For su�ciently large n, the self-

force term, −2
3
π2κT̃ 2n3, dominates. Hence, there are an in�nite number of negative

eigenvalues (see Fig. 5.3). This is a serious problem. It puts into doubt the relevance

of this solution as an instanton (or sphaleron), which would be expected on general

grounds to only have a single negative eigenvalue [192].

The self-force instability is well known in both classical [290, 291, 292] and

quantum [335, 123, 336, 337, 338, 339, 340] electrodynamics. Its existence in quan-

tum mechanical systems has been linked to the unboundedness of the spectrum of

the Hamiltonian [341, 342, 343].

In Refs. [336, 337] it was found that a nonrelativistic electron interacting with

a quantised photon �eld does not show the self-force instability, at least for α . 1.

Starting from an extended charge distribution, with �nite mass, they found that one

could take the size of the charge distribution to zero and the result was free of the

self-force instability. However, if they �rst took the Compton wavelength to zero

(or the mass to in�nity), the self-force instability reared its ugly head. Taking the

mass to in�nity amounts to dropping charged particle loop corrections.

In the dilute instanton gas approximation, extra monopole loops with S̃ ≥ O(1)

are suppressed by the instanton density, as argued in Sec. 5.1, and Chapter 3, and

hence can justi�ably be dropped. On the other hand, extra monopole loops with

S̃ = o(1), as ε → 0, are not present in the semiclassical approximation and are

not necessarily suppressed. As ε → 0 there are nontrivial such loops when there

is a cancellation between the rest mass and Coulomb interaction terms. These are

virtual particles, and they have a size ∼ κ/(8π), or g2/(8πm) in physical units.

When there is a separation of scales between the virtual particle loop size, O(κ),

and the instanton size, O(1/T̃ ), i.e. when κT̃ = g2T/m � 1, the virtual particle

loops should simply renormalise the parameters of the theory [221], in particular

the charge. This is assumed in my analysis. However, when κT̃ = O(1), the saddle-

point approximation plus renormalisation is not expected to adequately take virtual
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Figure 5.3: The �rst few eigenvalues, ordered by n, showing the self-force instability:
(a) at (κ, T̃ ) = (0.1, 1.2), the �rst 490 eigenvalues, showing the instability at n = 30;
(b) at (κ, T̃ ) = (1, 1.2), the �rst 74 eigenvalues showing the instability at n = 3.

monopole loops into account. The self-force instability, which arises at O(κT̃ ), may

be symptomatic of this.

I de�ne nSF such that the self-force turns those harmonics negative with n ≥
nSF . For T̃ = O(1) and κ = O(1), I �nd that nSF = O(1) as can be seen in Fig. 5.3

(b), where for (κ, T̃ ) = (1, 1.2) I can see that nSF = 3. Above κ ≈ 3.0653 and for

all T̃ , the instability is at nSF = 1. For κT̃ � 1, instead I �nd that

nSF ≈
3

κT̃

(
1− κ3/2

9π3/2
+O

(
κ3
))

, (5.17)

as can be see in Fig. 5.3 (a), where for (κ, T̃ ) = (0.1, 1.2) I can see that nSF = 31. For

κT̃ � 1 the self-force problem is moved to parametrically high harmonics, or short

distances, where the e�ects of virtual monopole pairs are signi�cant and hence the

naive semiclassical approximation is expected to break down. One should therefore

cut o� the higher harmonics below O(1/(κT̃ )) and apply standard renormalisation

theory to the result. The self-force instability is thereby avoided within the semi-

classical approximation, and the issue moved into the ultraviolet, where it can be

considered separately.

Magnetic and electric charges are related inversely, via the Dirac quantisation

condition, ge = 2πj, where j ∈ Z. This relationship is expected to hold for the

running couplings [344, 38, 345]. Hence, as one probes shorter distances the e�ective

magnetic charge decreases; magnetic charge is anti-shielded. This has been argued to

be an e�ective spreading-out of magnetic charge over scales O(κ) [123]. Classically, a

charge distribution spread out on these scales is stable [336, 337], hence, for magnetic

monopoles, one might expect that the ultraviolet physics does not su�er from the

self-force instability.

For physical electric charges, on the other hand, the coupling is weak, g2 � 1.
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In this case κ� ε� 1, and, given T̃ = o(1/ε), the self-force problem is not present

at leading order in ε, which is the approximation I make.

5.4 The scalar prefactor for small κT̃

In this section I consider the regime κT̃ � 1, for which, as I have argued in

the previous section, the self-force instability is not present. I adopt zeta function

regularisation for the high harmonics and assume the running coupling is known at

the relevant energy scale.

The temperature, T̃WS, above which the worldline sphaleron dominates the

thermal Schwinger process satis�es T̃WS & 0.5, at least for κ ≤ 1. For small κ, it

grows and is given approximately by

T̃WS ≈
√

2

π3/4κ1/4
. (5.18)

Given that T̃ > T̃WS, we must have that κ� 1 and T̃ must lie in the window

√
2

π3/4κ1/4
< T̃ � 1

κ
. (5.19)

Note too that, due to the strong coupling, κ must lie in the window

ε� κ� 1. (5.20)

Above T̃WS, the rate is dominated by the sphaleron and hence by the second

term in the cluster expansion,

1

V
Im log(ZT ) ≈

1

V
Im

1

2!

2∏
j=1

(∫ ∞
0

dsj
sj

∫
Dxµj e−

1
ε
S̃[xj ;sj ;κ,T̃ ] e

κ
ε

∑
k<j

∮ ∮
dxµj dxνkGµν(xj ,xk;T̃ )

)
. (5.21)

I wish to evaluate this in the saddle point approximation about the sphaleron.

The action of the sphaleron is

S̃(κ, T̃ ) =
2

T̃

(
1−

√
κ

4π

)
≈ 2

T̃
, (5.22)
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and the Schwinger parameters at the saddle point are

1

s1

1

s2

= (2T̃ )2. (5.23)

Using the results of Sec. 5.2 I can perform the Gaussian integrations over the �uc-

tuations about the saddle point, dropping all terms o(1) as κ→ 0. The integrations

over the �uctuations in the Schwinger parameters give

(2π)

(
4T̃

ε

)−1

=
πε

2T̃
. (5.24)

In the integrations over all the other parameters I must keep in mind that the change

of variables, (xµ(τ), yµ(τ)) → (ζµ(τ) = xµ(τ) − yµ(τ), ξµ(τ) = xµ(τ) + yµ(τ)), was

carried out. The Jacobian of the transformation is 1/2 for each pair of degrees of

freedom or 1/
√

2 for each degree of freedom. This can be seen easily in the two

dimensional transformation (x, y)→ (u = x− y, v = x+ y),

|J | =

∣∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =

∣∣∣∣∣ 1
2

1
2

−1
2

1
2

∣∣∣∣∣ =
1

2
. (5.25)

For the nonzero modes, multiplication by this Jacobian factor is equivalent to mul-

tiplying the eigenvalues by 2.

Integration over the four zero modes associated with spacetime translation gives

the spacetime volume (in units of 1/(mε)4 due to the scaling of x and y) multiplied

by the Jacobian factor, 1/
√

2, for each of the four degrees of freedom,

1

4
m4ε4V , (5.26)

where V is the (dimensionful) Euclidean spacetime volume, i.e. V/T where V is the

spatial volume and T is the temperature.

The integration over the zero mode associated with proper time translation

becomes, after using the Faddeev-Popov method [346, 347],

1√
2

√√√√∫ 1

0
dτ
(
ζ̇4

0

)2

2π
=

1
√
πT̃

. (5.27)
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Integration over the single negative mode gives

1

2
(2π)1/2

(
− 8
√
π

ε
√
κT̃

)−1/2

= ±i1
4

(πκ)1/4
√
T̃ ε (5.28)

where the ±i comes from taking the square root of the negative eigenvalue. For

the decay rate I must choose the negative sign. The explicit factor of 1/2 is due to

the requirement to integrate only over half the real line for the negative mode, as

famously pointed out in Ref. [268]. Gaussian integration over the other two constant

�uctuations gives

(2π)2/2

(
4
√
π

ε
√
κT̃

)−2/2

=
1

2

√
π
√
κT̃ ε. (5.29)

Formally carrying out the Gaussian integrals (to leading order in κ and κT̃ )

over the in�nite number of harmonic �uctuations gives

∞∏
n=1

(2π)16/2

(
(2πn)2T̃

ε

)−10/2(
(2πn)2T̃

ε
+

4
√
π

√
κT̃ ε

)−4/2(
(2πn)2T̃

ε
− 8
√
π

√
κT̃ ε

)−2/2

=

∞∏
n=1

(
ε

2πT̃

)8(
1 +

1

π3/2
√
κT̃ 2n2

)−2(
1− 2

π3/2
√
κT̃ 2n2

)−1

n−16. (5.30)

To de�ne the (regularised) in�nite products I use zeta function regularisation fol-

lowing Ref. [294]. The key (formal) equations for the zeta function regularisation I

use are

∞∏
n=1

a = a
∑∞
n=1 1 = aζ(0) = a−1/2,

∞∏
n=1

n = lim
s→0

e
∑∞
n=1 log(n)/ns = e−ζ

′(0) = (2π)1/2. (5.31)

I also use the following identity

∞∏
n=1

(
1− c2

n2

)−1

=
πc

sin (πc)
. (5.32)

Applying Eqs. (5.31) and (5.32) to Eq. (5.30) gives

(
2πT̃

ε

)4

 π√
π3/2
√
κT̃ 2 sinh

(
π√

π3/2
√
κT̃ 2

)


2 π√
π3/2
√
κT̃ 2 sin

(
π
√

2√
π3/2
√
κT̃ 2

)
 (2π)−8

(5.33)
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Putting it all together, and noting that I get an overall factor of 2! from inter-

changing the particles, cancelling the 1/2!, I �nd

1

V
Im log(ZT ) ≈ − m4(T̃ ε)3/2

128
√

2π2 sin
(
πT̃WS

T̃

)
sinh2

(
πT̃WS√

2T̃

) exp

{
− 2

T̃ ε

}
, (5.34)

where we have reintroduced T̃WS =
√

2/(π3/4κ1/4) to simplify the expression. Note

that this expression is divergent at T̃ = T̃WS, where the sphaleron develops another

zero mode. Below this temperature the sphaleron is unstable due to the existence

of another saddle point with lower action, the W instanton of Chapter 3. This may

signal a parametric enhancement of the dependence on the semiclassical parameter, ε

[122]. Whether or not there are phenomenological consequences of this enhancement

depend on precise values in a given situation, though the exponential dependence

may well dominate over such power law enhancements in the prefactor. The higher

harmonic divergences, at T̃ = T̃WS/n, are at lower temperatures where the sphaleron

(or S instanton) does not dominate the rate.

The last ingredient required to construct the sphaleron rate is |ω−|, the rate of
growth with time of the unstable mode. This is

|ω−| = 2πTWS ≈ 2π

(
4gB3

π3m2

)1/4

. (5.35)

The rate of pair production is thus given by

ΓT,s=0 ≈ 2πTWS

(
mTWS

2π

)3/2

F

(
T

TWS

)
e−

2m
T

[
1 +O

(
g3B

m2
,
g2T

m

)]
, (5.36)

where I have restored the dimensionful variables, s refers to the spin of the charged

particles and the function F is given by

F (τ) :=

(
τ
π

)3/2

64 sin
(
π
τ

)
sinh2

(
π√
2τ

) . (5.37)

The logarithm of the function is plotted in Fig. 5.4. Note that the result is valid

for g2 � 1 and hence only for very low temperatures and very weak magnetic �elds.

Unfortunately, in this regime any enhancement of the rate due to the magnetic �eld

is only in the prefactor3. For the dual electric result simply make the exchange:

3Assuming there exists some other background rate of production, proportional to
exp(−2m/T ).
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Figure 5.4: The logarithm of the function F , Eq. (5.37). The sharp rise at T = TWS

is a divergence of the form F ∼ c/(T − TWS), where c is a constant. It is due to the
presence of an extra zero mode.

g → e and B → E, in Eqs. (5.36) and (5.37)4.

This result can be compared with the rate of pair production of weakly coupled

electron-positron pairs from a thermal bath of photons [348, 334],

Γ2γ→e−e+ ≈ 2m4

(
e2

8π2

)2(
T

m

)3

e−
2m
T

[
1 +O

(
e2,

T

m

)]
. (5.38)

This process is due to the collision of pairs of photons in the thermal bath.

5.5 The spinor prefactor for small κT̃

For (Dirac) spinor charged particles, the worldline path integral contains an

additional spin-dependent factor. As shown in Appendix A.3, for ε� 1 this factor

is subdominant and does not a�ect the sphaleron action. It does however modify

the prefactor which, for each worldline, x, is multiplied by

−1

2
TrγxPx exp

{
sxΣ

34
x +κsx

∫ 1

0

dτ

∫ 1

0

dτ ′Σµρ
x

(
∂xρGµν(x, y

′)ẏ
′ν + ∂xρGµν(x, x

′)ẋ
′ν
)}

= −1

2
TrγxPx exp

{
Σ34
x

(
1

2T̃
− 1

2T̃

)}
,

= −2, (5.39)

4Note that this result is only valid for e2 � 1.
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where Trγx denotes a trace over spinor indices of the x worldline, Px is the path or-

dering operator along the x worldline, Σµν := [γµ, γν ]/2, where γµ are the Euclidean

Dirac (gamma) matrices satisfying {γµ, γν} = 2δµν and ′ denotes dependence on τ ′

as opposed to τ . There is second factor, for the other worldline, y, which di�ers by

interchange of x and y. The two factors are equal to each other. Hence the rate of

pair production of spinor charged particles is

ΓT,s=1/2 ≈ 4ΓT,s=0. (5.40)

The 4 comes from a product of traces over gamma matrices and hence can be seen

as a factor of (2s+1)2, to be compared with the single power of (2s+1) which arises

in Schwinger pair production at zero temperature. This is due to the sphaleron

consisting of two worldlines, whereas the zero temperature instanton consists of

only one.

5.6 Summary

Eqs. (5.36), (5.37) and (5.40) are the chief results of this chapter. They give

the sphaleron rate for the thermal Schwinger process at strong coupling, including

the prefactor. The result is valid for su�ciently weak �elds, such that

B � m2

g3
, (5.41)

and for temperatures such that(
4gB3

π3m2

)1/4

< T � m

g2
. (5.42)

In this regime the rate is strongly exponentially suppressed, by the Boltzmann factor,

2m/T � g2. For magnetic monopoles, g2 ≥ g2
D ≈ 430, and hence the results derived

here are unfortunately too suppressed to be of relevance to monopole searches in

heavy ion collisions.

For larger, O(1), values of g3B/m2 and g2T/m, the exponential suppression

of the rate is greatly reduced, leading to predictions of a measurable rate of pair

production. It was such a regime that led to the mass bounds in Chapter 4. However,

the validity of the dilute instanton approximation is suspect in this case, due to the

presence of the self-force instability. This casts doubt on the mass bounds I derived.
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One hope might be that the calculated exponential suppression may still give a

good approximation to the rate at O(1) values of g3B/m2 and g2T/m, though the

corrections to this cannot be calculated systematically.

Regardless, the self-force instability is merely a pathology of the approximation

scheme and may be overcome. For both elementary and 't Hooft-Polyakov magnetic

monopoles, the anti-screening of magnetic charge, or the e�ective size of magnetic

monopoles, is expected to ameliorate the problem. For 't Hooft-Polyakov monopoles

an explicit classical �eld theory calculation is possible, within which there is no

self-force instability. This may allow one to extend the calculation of the thermal

Schwinger rate to a parameter regime where it is large enough to be measurable.

Alternatively, within the worldline approach, the W instantons of Chapter 3

o�er some promise. These instantons have a well de�ned κ → 0 limit, the lemon

instanton, for which one may consistently calculate the rate, including the prefactor,

at higher temperatures [279, 247, 280, 281, 282] (though for even weaker magnetic

�elds). Whether or not this will lead to a measurable production rate in, for example,

heavy ion collisions remains to be seen.



Chapter 6

Conclusion

So, where do we stand on my central question: assuming that magnetic monopoles

exist, can we create them, and if so, how? The tentative answer of this thesis is:

yes, if they are su�ciently light, we may be able to create magnetic monopoles in

strong magnetic �elds and high temperatures by colliding heavy ions at high speeds.

In Chapter 2, I reviewed the arguments suggesting that the cross section for

pair production of composite magnetic monopoles in few particle collisions is ex-

ponentially suppressed at all energies. There is even a suggestion that the same

suppression may be present for elementary magnetic monopoles, due to their large

e�ective size. These arguments cannot be taken as conclusive and I outlined several

possible approaches to rigorously establish or refute them. Perhaps the most promis-

ing method I discussed is the RST method, which I investigated in the context of

kink pair production.

The results of the calculation of Chapter 3 suggest that, in strong magnetic

�elds and high temperatures, any su�ciently light magnetic monopoles may be

produced amply. The zero temperature [25] and zero magnetic �eld [83] limits of

my calculation were previously known, and hence the main qualitative features of

my generalisation were intuitively clear. Mine was nevertheless an important step,

both because it expanded the range of relevant physical situations and because

the approach lends itself to further extensions. The result is also of interest as an

example of an all orders calculation in QED, of which very few are known.

The work of Chapter 4 gave new model-independent lower bounds on the mass

of any possible magnetic monopoles. Despite being only O(GeV), they are the

strongest such bounds known in the literature. The bounds from heavy ion collisions

derive from the fairly low energy collisions at the SPS. Current and future heavy ion

collisions at the LHC have centre-of-mass energies almost three orders of magnitude

higher [90]. As such, it is expected that much higher energy magnetic monopoles
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could be produced. However, at higher energies the magnetic �eld has a shorter

lifetime and is more inhomogeneous, the e�ects of which need to be understood. For

direct experimental comparison, it is also important to understand the kinematic

distribution of magnetic monopoles produced.

Chapter 5 developed the work of Chapter 3. In Chapter 5 I derived the rate

(rather than just the logarithm of the rate) to leading order in ε. In the calculation,

the well known self-force instability of electrodynamics arose at κ = O(1). This led

to the suggestion that the saddle-point approximation breaks down at this point,

throwing some doubt on my conclusions in Chapter 4. This may be remedied by an

explicit calculation of the Schwinger sphaleron rate for 't Hooft-Polyakov monopoles,

where the κ = O(1) behaviour is modi�ed classically by the composite structure. In

this case a saddle-point approximation should still be valid.

It is 86 years since Dirac's groundbreaking paper introduced the modern study

of magnetic monopoles [6]. In this thesis, I have proposed a new approach to di-

rectly constrain the masses of any possible magnetic monopoles, an approach which

may �nally allow us to unambiguously test Dirac's guess that magnetic monopoles

may have a mass of about 0.5GeV [11] (see Fig. 4.1). Unfortunately the very

heavy monopoles predicted by Grand Uni�ed Theories, as well as the even heavier

Kaluza-Klein magnetic monopoles predicted by Planck scale compacti�cations in

String Theory, are far beyond the reach of terrestrial collider experiments for the

foreseeable future. However my work suggests that intermediate mass monopoles,

with masses perhaps up to O(TeV), could be produced in LHC heavy ion collisions.

More theoretical work still needs to be done, but, as Pierre Curie suggested, it is

not absurd to think we might �nd one.



Appendix A

A.1 Induced Schwinger pair production at weak cou-

pling

There does not exist a local relativistic Hamiltonian for a charged relativistic

particle, whether electric or magnetic (once the photon has been integrated out).

However, one can write down various approximate Hamiltonians, each valid is a

certain regime. One such approximation, the test particle approximation, applies

when the �eld due to the charged particles can be ignored. As such it is a weak

coupling approximation. In this case, the forces on the charged particles are due

solely to a �xed external �eld, described by a gauge potential Aµ = (φ,A). The

Hamiltonian, H, for the motion of a charged particle with mass m is then given by

(H− gφ(t,x))2 − (p− gA(t,x))2 = m2, (A.1)

where t is the time coordinate, x is the spatial position of the charged particle with

charge g and p is the conjugate momentum.

I consider the production of pairs of charged particles by a constant external

�eld, E, and from an initial state with energy H. In the test particle approximation

the particles do not interact so they can be treated separately, each starting from

a state with energy H/2. The problem is then e�ectively one-dimensional and I

denote the position and momentum by x and p respectively. I choose the gauge

potential to be Aµ = (Ex, 0). The tunnelling begins from a state with no charged

particles (or where the charged particle and its anti-particle are at the same location,

x = 0). The positively charged particle tunnels to the classically allowed position,

x = (m−H/2)/(gE), and the negatively charged particle to x = −(m−H/2)/(gE).

The positive and negative particles give equal tunnelling rates. The semiclassical
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expression for the exponential suppression of the combined tunnelling rate is [172]

4

∫ (m+H/2)/(gE)

0

p(x)dx = 4

∫ (m+H/2)/(gE)

0

√
m2 −

(
H
2
− gEx

)2

dx,

= 4
m2

gE

∫ 1−ω/2

0

√
1−

(ω
2
− y
)2

dy,

=
m2

gE

[
π − ω

√
1−

(ω
2

)2

− 2 arcsin
(ω

2

)]
(A.2)

where ω = H/m. At ω = 0 this reproduces the usual suppression of Schwinger's

result [201]. For ω > 0 the suppression is reduced, giving the known rate of pair

production from an o�-shell photon [283]. At the pair production threshold, ω = 2,

the exponential suppression is zero. Note that nature of the energy of the initial

state nowhere entered the calculation. Neither did any particular characteristics of

electrodynamics, hence the same result holds for the vacuum decay rate in other

theories [279, 284, 285].

A.2 Coherent states

I brie�y review the elements of the coherent state representation required for

Sec. 2.5, following Refs. [349, 187]. Consider a one dimensional harmonic oscillator,

Ĥ =
1

2
p̂2 +

ω2

2
x̂2,

= ω

(
â†â+

1

2

)
, (A.3)

where I have introduced the usual ladder operators, related to x and p by

x̂ =
1√
2ω

(
â+ â†

)
, p̂ = −i

√
ω

2

(
â− â†

)
. (A.4)

The coherent states for this system, |a〉, are de�ned as the eigenstates of the lowering
(or annihilation) operator â

â|a〉 = a|a〉, (A.5)

where a is the eigenvalue. In the coherent state basis, |a〉, any state of the system

can be written as a holomorphic function of the complex variable a∗. For example
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the normalised nth excited state has the form

Ψn(a∗) ≡ 〈a|n〉 =
(a∗)n√
n!
. (A.6)

The scalar product between two states is de�ned with respect to a complex Gaussian

weight

〈Ψ|Φ〉 =

∫
da∗da

2πi
e−a

∗aΨ[a∗]∗Φ[a∗]. (A.7)

As is the action of an operator Â on the state Ψ

(ÂΨ)(a∗) =

∫
db∗db

2πi
e−b

∗bA(a∗, b)Ψ(b∗), (A.8)

where A(a∗, b) = 〈a|Â|b〉 is the kernel of the operator. Any operator is completely

determined by its kernel. The generalisation of this formalism to the case of a real

scalar �eld theory is straightforward. The creation and annihilation operators are

related to the �eld operator by

φ̂(x) =

∫
�p√
2ωp

(
âpe−ip·x + â†peip·x

)
, (A.9)

where ωp :=
√
m2 + p2 and I have used the shorthand,∫

�p :=

∫
dD−1p

(2π)D−1
, (A.10)

and D is the dimension of spacetime. Then the coherent states will be de�ned as

the common eigenstates of the annihilation operators âp for all spatial momenta p,

and the complex Gaussian weight will be

exp

(
−
∫

�p a∗pap

)
. (A.11)

To calculate the inclusive cross section of the RST method, Eq. (2.27) in Sec. 2.5, I

will need the kernel of the S-matrix, S(b∗, a). This has a path integral representation

S(b∗, a) =

∫
dφfdφie

Bi(φi,a)+Bf (φf ,b
∗)

∫
DφeiS[φ], (A.12)

where Bi(φi, a) and Bf (φf , b
∗) are boundary terms. The integration Dφ is over �eld

con�gurations such that as t→ ±∞, φ→ φi/f and S[φ] is the action of the φ �elds.



A.3. QED and SQED in weak external �elds 129

The boundary terms are given by

Bi(φi, a) =
1

2

∫
�p
[
− ωpφ̃i(p)φ̃i(−p)− apa−pe−2iωpTi

+ 2
√

2ωpe−iωpTiapφ̃i(p)
]
,

Bf (φ̃f , b
∗) =

1

2

∫
�p
[
− ωpφ̃f (p)φ̃f (−p)− b∗pb∗−pe2iωpTf

+ 2
√

2ωpeiωpTf b∗pφ̃i(p)
]
, (A.13)

where φ̃ refers to the spatial Fourier transform of φ.

As mentioned in Sec. 2.5, the projection operators in equation (2.27) take a

particularly simple form in the coherent state representation. For any operator Ô
of the form

Ô =

∫
�pf(p)â†pâp, (A.14)

which has eigenvalues {O}, the kernel of the projection operator which projects onto
the subspace of states with given eigenvalue O is

PO(b∗, a) =

∫
dθ

2π
e−iθO+

∫
�peif(p)θb∗pap . (A.15)

A.3 QED and SQED in weak external �elds

For su�ciently small, scalar self-coupling, λ, the only di�erence between QED

and SQED is the spin of the charged particles. Following the manipulations of SQED

in Eq. (3.5) I see that the di�erence for a spin 1/2 charged particle manifests simply

in replacing the determinant over the Klein-Gordon operator with a determinant

over the Dirac operator, to the power of −1. Using the following identities

det( /D +m) = det(− /D +m),

= det((− /D2
+m2))1/2,

= det((−D2 +m2 − i

2
gΣµν(F ext

µν (x) + Fµν(x)))1/2, (A.16)

where the Σµν are proportional to the generators of Lorentz transformations in the

spin 1/2 representation, i.e. Σµν = [γµ, γν ]/2, where γµ are the Euclidean gamma

matrices (see Ref. [350] for a de�nition). Using the �nal line of Eq. (A.16), one can

see that the spin-1/2 functional trace can be written in terms of the spin-0 trace
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and an additional spin factor [235, 238, 351]

Tr(e−( /D+m)s) = Tr(e−(− /D2
+m2)s)

=

∫
Dxµe−S0[xµ,Aextµ +Aµ;s]Spin[xµ, Aextµ + Aµ; s], (A.17)

where S0[xµ, Aextµ + Aµ; s] is given in Eq. (3.8) and the spin factor is given by

Spin[xµ, Aextµ + Aµ; s] := TrγP ei
g
2

∫ s
0 dτΣµν(F extµν (x)+Fµν(x)) (A.18)

where Trγ signi�es the trace over spinorial indices and P is the path ordering op-

erator. The next step is to integrate over the gauge �eld Aµ. Note that even with

the inclusion of the spin factor the integration over Aµ is Gaussian and hence can

be done exactly. In the spin 0 case, the integration takes the following form∫
DAµ e

1
2

∫
x

∫
y A

µ(x)G−1
µν (x,y)Aν(y)+i

∫
x Aµ(x)jµ0 (x), (A.19)

where
∫
x

:=
∫

d4x, and jµ0 (x) is given by

jµ0 (x) = g

∫ s

0

dτ ẋµ(τ)δ(4)(x− x(τ)). (A.20)

Performing the integration leads to the following exponential,

exp

{
1

2

∫
x

∫
y

jµ0 (x)Gµν(x, y)jν0 (y)

}
. (A.21)

The di�erence in the spin 1/2 case amounts to the replacement

jµ0 (x)→ jµ0 (x)− g
∫ s

0

dτΣµν∂νδ
(4)(x− x(τ)),

:= jµ0 (x) + ξµ(x). (A.22)

Now, I scale all the dimensionful quantities as in Sec. 3.1, i.e. τ → τ/s, s→ s/gE

and xµ → xµm/gE. This reduces all dependence on the parameters to dependence

on ε := gE/m2 � 1 and κ := g3E/m2. I can now write the interaction terms in the
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spin 1/2 case as

exp

{
κ

2ε

∫
x

∫
y

jµ0 (x)Gµν(x, y)jν0 (y)

+ κ

∫
x

∫
y

ξµ(x)Gµν(x, y)jν0 (y)

+
κε

2

∫
x

∫
y

ξµ(x)Gµν(x, y)ξν(y)

}
, (A.23)

where jµ, ξµ and Gµν are now independent of g, E and m. In this paper, I have

allowed κ to freely vary up to O(1) (that is because I only require κ � g2 and I

consider strong coupling); however for the semiclassical approximation to be valid

I require ε � 1. Hence the spin dependent factors are subleading (as long as the

dimensionless parts are at most O(1)) and I can drop all ξµ dependence.

The net result of all this is that, to leading order in ε, the instanton describing

pair production is the same for both theories, and hence so is the exponential sup-

pression. However, the term proportional to ε0 in the exponent of Eq. (A.23) and

the external �eld contribution in (A.18) will contribute to the �uctuation prefactor

about the instanton. Charge renormalisation, which is not included to leading order

in ε, is di�erent in QED and SQED. In both cases I expect the �nal results to depend

on the renormalised charge, as discussed in Sec. 3.3.3.

A.4 Worldline description of extended particles

For elementary particles the geometric worldline description arises naturally

and can be derived by standard methods from the �eld theoretic description, as

shown in Sec. 3.1. For extended �eld con�gurations, such as solitons, no exact

worldline description can exist. However, for circumstances where the extended �eld

con�guration is much smaller than all other scales, an e�ective worldline description

can su�ce [24, 227, 25, 279, 278]. This is analogous to the description of the motion

of planets in the solar system in terms of the motion of points.

In Ref. [25] just such an e�ective description was explicitly derived for the 't

Hooft-Polyakov monopole [23, 22]. The worldline instanton that they found was a

circle and the e�ective worldline description was found to be valid when the radius

of the circle was much larger than the size of the 't Hooft-Polyakov monopole. I

wish to generalise this result for more general worldline curves.

The 't Hooft-Polyakov monopole is a static solution to the �eld equations for
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the Georgi-Glashow model, and other similar theories. It is an extended solution

and hence it cannot be said to be at a position, however it does have a well-de�ned

centre and core region, beyond which all but the Abelian gauge �eld is exponentially

damped. I can thus assign to the centre of the monopole solution a worldline, i.e. a

map from the real line to the path in Minkowski space traced out by the centre of the

monopole solution. The static solution and Lorentz transformations of it (which are

also solutions) have straight, timelike worldlines. Static solutions of the Euclidean

(Wick rotated) theory need not be timelike.

Combinations of straight worldlines are no longer exact solutions due to the

interactions between them. However, in the limit that the monopoles are in�nitely

separated these should become exact solutions [266]1. At �nite separation, due

to the long-ranged interaction between monopoles, the solution is no longer exact.

However, I can �nd an approximate solution following Ref. [25].

I consider for example the Georgi-Glashow theory. To �nd an approximate

solution to the full (Euclidean) �eld equations I �rst solve the equations of motion

for a pointlike monopole in a given external magnetic �eld, at a certain temperature,

including the self-interaction. These are the classical worldline calculations I have

carried out in this paper. For simplicity, I restrict the worldline to the 3−4 plane. I

construct coordinates centred on the worldline and Fermi-Walker transported along

it (see for example Ref. [353]). I denote the coordinate along the worldline as

u and the normal coordinate in the plane as v, with (x1, x2, v) = (0, 0, 0) on the

worldline. Other than photon excitations, which are taken into account, internal

excitations of the 't Hooft-Polyakov monopole are assumed to be gapped and hence,

for su�ciently low energies, these are not excited. That is, I can assume translation

invariance along the monopole worldline. In this case, the �eld equations near the

monopole worldline read

DiF
ij + a(u)F vj +O(a(u)2v2) = [Diφ, φ],

DiD
iφ+ a(u)Dvφ+O(a(u)2v2) =

λ

g2
(|φ|2 −M2

W )φ, (A.24)

where Da = ∂a + igAa; i, j run over (x1, x2, v); λ is the four point self-coupling of

the Higgs particle; MW is the mass of a W boson and a(u) is the magnitude of the

acceleration of the worldline. At zeroth order in the acceleration these equations

1In the Bogomolny-Prasad-Sommerfeld limit [64], i.e. when the scalar self-coupling is in�nites-
imally small and positive, such superpositions of static, like-charged monopoles are in fact exact
solutions. That is because in this limit the attraction due to the Higgs �eld is exactly cancelled
by the repulsion due to the gauge �eld [352]. At low energies the dynamics of such multimonopole
solutions is given by geodesic motion of the collective coordinates on the con�guration space of
solutions [33, 34, 35].
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are solved by the 't Hooft-Polyakov magnetic monopole, static along the worldline.

Hence, at lowest order in the acceleration the full �eld theoretic calculation reduces

to the geometric, worldline one which I have pursued in this paper. This also

requires the radius of curvature of the worldline to be large compared with the

classical radius of the monopole solution. In my dimensionless units the radius is

O(κ) (for the Georgi-Glashow theory) and hence I get the constraint κ� a(u)−1.

A.5 Worldline �nite di�erence formulation

In this appendix I give my discrete approximation to the action in Eq. (3.32)

and the corresponding equations of motion. I use a simple �nite di�erence approxi-

mation

S̃[x] =

√
N
∑
i

(xµi+1 − x
µ
i )2 −

∑
i

x3
i (x

4
i+1 − x4

i )

− κ

2

∑
i,j

(xµi+1 − x
µ
i )(xµj+1 − x

µ
j )GR(xi, xj; T̃ , a) (A.25)

where i and j run over 0, 1, ..., N−1 and contractions of Lorentz indices are implied.

As discussed in Sec. 3.3.3 I choose an exponential counterterm, rather than the

simpler length counterterm of Polyakov, so that the bare mass is positive. Summing

the in�nite periodic copies of the regularised propagator gives

∞∑
n=−∞

−1

4π2((t+ n/T̃ )2 + r2 + a2))
=

T̃ sinh
(

2πT̃
√
a2 + r2

)
4π
√
a2 + r2

(
cos
(

2πT̃ t
)
− cosh

(
2πT̃
√
a2 + r2

)) , (A.26)

and likewise for the exponential counterterm

∞∑
n=−∞

√
π

4π2a2
e−(r2+(t+n/T̃ )2)/a2 =

T̃ e−r
2/a2ϑ3

(
πT̃ t, e−π

2a2T̃ 2
)

4πa
(A.27)

where t and r are the temporal and spatial di�erences as in Sec. 3.1.2 and ϑ3

is the Jacobi theta function of the third kind. Due to the lack of well optimised
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numerical libraries for the Jacobi theta function, I in fact make a di�erent choice of

counterterm, which also reduces to the exponential regularisation for small T̃ ,

GR(xi, xj; T̃ , a) =

T̃ sinh
(

2πT̃
√
a2 + r2

)
4π
√
a2 + r2

(
cos
(

2πT̃ t
)
− cosh

(
2πT̃
√
a2 + r2

))
+

√
πe−r

2/a2e(cos(2πT̃ t)−1)/(2π2a2T̃ 2)

4π2a2
(A.28)

This regularisation is smooth and periodic in 1/T̃ , as well as being relatively fast to

numerically evaluate.

One further point, also mentioned in Sec. 3.3.3, is that there is no need to

regularise the interactions between disconnected parts of worldlines, so one may use

the unregularised propagator. This is useful as it removes some sources of error due

to the �nite cuto�, a. In my calculations, I have used the unregularised propagator

for the interaction between the left and right hand sides of the W instantons. It

could also be used, though I did not, for the interaction between thermal copies for

the C instantons.

As discussed in Sec. 3.4, I �x the N0 zero and quasizero modes using Lagrange

multipliers. Writing the constraint equations as Ca[x] = 0, where a runs over 1, .., N0,

I de�ne a new action including the Lagrange multiplier terms

S̃[x, λ] := S̃[x] +

N0∑
a=1

λaCa[x]. (A.29)

The λa are the Lagrange multipliers.

The equations of motion, which are simply 4N + N0 coupled, nonlinear, alge-

braic equations are found by taking partial derivatives of (A.29), with respect to xρk
and λb,

∂S̃[x]

∂xρk
= 0,

Cb[x] = 0. (A.30)

The Newton-Raphson equations derived from these, and an initial guess, are a sys-

tem of linear equations, which I solve by LU decomposition, using the numerical

library Eigen 3 [195]. The 1 and 2 directions are trivial and decouple, leaving

2N + Ñ0 equations, where Ñ0(< N0) is the number of zero modes in the reduced
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space.

A.6 Thermal Schwinger rate numerical data

Along with this thesis, I have made available the numerical results presented in

summary form in Sec. 3.4. They are in the �le gould2017thermal_results.csv. The

�rst line gives the column headings and all following lines give the corresponding

numerical data as comma-separated values. The meanings of the headings are as

follows.

pot: The nature of the interaction potential, see below.

log2N: log2(N), where N is the number of points in the worldline.

kappa: The coupling, κ := g3E/m2.

T: The temperature, T̃ := mT/gE.

a: The cuto�, a.

S: The action, S̃ := S/ε.

E: The energy, Ẽ := E/m.

len: The length of the worldline.

kinetic: The gauge-�xed length of the worldline, L̃, Eq. (3.33).

i0: Minus the area of the worldine, −Ã, Eq. (3.34).
vr: The interaction, ṼR, Eq. (3.41) and the �nite temperature generalisations.

zmax: The maximum distance between points in the x3 direction.

zmin: The minimum distance between points in the x3 direction.

tmax: The maximum distance between points in the x4 direction.

sol: The ratio of the norms of ∂S̃[x]/∂xρk and x
ρ
k.

acc_max: The maximum acceleration along the worldline, see below.

The �rst column, pot, takes three di�erent values depending on the nature of

the interaction potential. It takes the value 1 for zero temperature; 13 for the low

temperature, C instanton topology; and 15 for the high temperature, W instanton

topology.

The acceleration referred to in the last column is a �nite di�erence approxima-

tion to |ẍ|, de�ned by

N2|2xk − xk+1 − xk−1|, (A.31)

where N is the number of points in the worldline.
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