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Abstract
This work presents a methodology for simulating ionic and electronic grain boundary
transport through thin films, scales or membranes with columnar grain structure. In
the model developed the grain structure is idealized as a lattice of identical hexagonal
cells – a honeycomb pattern. Reactions with the environment constitute the boundary
conditions and drive the transport between the surfaces. Time-dependent simulations
solving the Poisson equation self-consistently with the Nernst-Planck flux equations
for the mobile species are performed. In the resulting Poisson-Nernst-Planck system of
equations, the electrostatic potential is obtained from the Poisson equation in its integral
form by summation. An object oriented C++ code has been implemented to solve the
system of equations numerically.

First, the model is used to interpret alumina membrane oxygen permeation ex-
periments, in which different oxygen gas pressures are applied at opposite membrane
surfaces and the resulting flux of oxygen molecules through the membrane is measured.
Simulation results involving four mobile species, charged aluminum and oxygen vacan-
cies, electrons, and holes, provide a complete description of the measurements.

Second, the model is extended to simulate internal oxidation and stress genera-
tion within a thin film of alumina at conditions of high-temperature metal oxidation.
The steady-state stresses predicted are compatible with experimental measurements of
lateral growth stresses in alumina scale growth experiments. The hypothesized p � n

ionic transition within the alumina grain boundaries is observed.
In limiting cases the more general simulations are closely related to the Wagner

theory of metal oxidation. The Wagner theory assumes local ionic equilibrium while
the simulation results demonstrate the possibility of a significant deviation from local
Schottky equilibrium within an oxide scale at conditions of steady-state growth. The
deviation is related to stress generation, and limits the applicability of the Wagner the-
ory.

The three-dimensional model and computational approach developed in this work
are readily adaptable to problems such as transport in a solid state electrode, corrosion
scale growth, and oxide membrane permeation.
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Notation

cs concentration (number density) of species ‘s’ m�3

Js flux of species ‘s’, positive flux in positive coordinate direction m�2
· s�1

Is current density of species ‘s’ A · m�2

zs integer charge number of species ‘s’

⌘s electrochemical potential of species ‘s’ kg · m2
· s�2

`D reference Debye length m
�D Debye length m
µs chemical potential of species ‘s’ kg · m2

· s�2

� electrostatic potential kg · m2
· s�3

· A�1

⌫ dominant vacancy species, ⌫/⌫-notation
⌫ charge compensating dominant electronic species, ⌫/⌫-notation
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Chapter 1

Introduction

All things pass and nothing stays
— Heraclitus as quoted by Plato in Cratylus

Corrosion is an ubiquitous phenomenon. Sometimes used synonymously with ‘metal
rusting’ corrosion really denotes the generic process by which a refined metal is trans-
formed into a more chemically-stable compound, such as an oxide or sulfide. The
pervasiveness of the phenomenon is owed to the extensive use of metals and alloys in
engineering and technological products, and to the unfortunate fact that at atmospheric
conditions of temperature and pressure the laws of nature favour oxides and sulfides
over the chemically pure metals.

To prevent their rapid decay the surfaces of most metals and alloys are chemically
modified or coated before service. However, such a treatment is not always feasible or
sufficient and the sublime usefulness of many alloys, despite their inevitable decay in
most environments, is due to a peculiarity of the corrosion process: The formation of
dense ‘scales’ as the oxidation reaction product that adhere to the alloy surface and
subsequently act as a protective layer against further oxidation. While the presence of
a dense adherent scale does not prevent the oxidation reaction, the impediment is often
significant and changes the timescale of the decay. It is indeed the chemical stability of
the chromium oxide and aluminum oxide forming naturally on chromium and aluminum
containing alloys that adds significantly to the usefulness of these alloys in application.

Similar to the use and importance of silicon oxide as an engineerable protective
film in much of semiconductor technology, chromium oxide and aluminum oxide scales
are often formed deliberately on the alloy surface by high-temperature oxidation. In this
work micrometer thin oxide layers on a metal or alloy surface are referred to as ‘scales’
or ‘films’ interchangeably.

1



INTRODUCTION 2

A detailed understanding of the rate of formation and stability of such alumina
and chromia scales is indispensable for the engineering of the scale on the alloy surface
as a protective layer, particularly for alloys deployed at high temperatures and under
chemically severe conditions. Growth of micrometer-thin films can often be described
as a quasi-steady-state phenomenon, with constant ionic fluxes across the film that de-
termine the growth rate. Given such conditions apply, there is a close resemblance
between film growth and solid oxide membrane permeation. In a series of ↵-Al2O3

membrane oxygen permeation experiments Kitaoka et al. [83, 84] have demonstrated
the occurrence of a ‘p � n’ transition in the ionic transport depending on the oxygen
partial pressures applied on the membrane surfaces. This has since sparked a renewed
effort to gain a mechanistic understanding of alumina scale growth and the transport
processes involved [70, 71], and motivated part of the work presented in this thesis.

In chapter 2, some experimental work and theoretical models from the literature
on metal oxidation and corrosion scale growth are reviewed. Much progress has been
made in understanding the formation and physical properties of oxide scales, especially
↵-Al2O3 has been studied intensively due to its technological importance. The impor-
tance of the grain structure during the formation of oxide films is emphasized. It is ev-
ident from the experimental literature that the grain structure plays a pivotal role in the
formation of corrosion scales such as alumina and chromia. During the scale growth the
grain boundary transport determines the overall kinetic behaviour and internal oxidation
occurs at grain boundaries affecting the stability and adherence of the scale. The theo-
retical background for the simulation method described in chapter 3 is introduced, see
in particular section 2.6. The experimental results of the series of ↵-Al2O3 membrane
oxygen permeation experiments, mentioned above, are summarized in section 2.7.

In chapter 3, a novel continuum model is described that idealizes the grain struc-
ture of a growing film or scale as a slab consisting of a 2D periodic pattern of hexagonal
cells. Both, the grain boundary transport and the internal oxidation including stress gen-
eration are taken into account in this hexagonal cell continuum model. First, the simu-
lation methodology and computational approach are described. Second, the hexagonal
cell model is applied to the above mentioned alumina membrane oxygen permeation
experiments [83], see chapter 3 section 3.4. Third, the model is extended to include
internal oxidation and stress generation in a corrosion scale, see chapter 3 section 3.5.
Thereby, the stability of the scale depending on the oxidation conditions and physical
properties of the scale, under the assumption of steady-state growth, can be studied.

The developed model is applied to ↵-Al2O3 scales but considered transferable to



INTRODUCTION 3

other oxide and sulfide scales. The simulation methodology is closely related to ‘drift-
diffusion’ semiconductor device simulations, and the vast literature available on this
subject was relied upon in the mathematical formulation and numeric implementation
of the computational approach. Ab initio simulations are related to the developed con-
tinuum model in that the physical input parameters can be obtained from techniques
such as density functional theory, enabling – in principle – a straight forward ‘mul-
tiscale’ simulation approach, the connection is outlined in chapter 2. The simulation
results of chapter 3 depend on the physical input parameters such as reaction equilib-
rium constants, and diffusion coefficients and although alumina has been deliberately
chosen as a well studied and characterized material, only few of the desired parame-
ters can be determined decisively from the experimental data available. Therefore, the
choice of parameters constitutes a difficult step in the simulation methodology. The
simulation results are benchmarked against analytical models which are applicable in
certain limiting cases.

In chapter 4, some theoretical aspects of metal oxidation limited by ‘drift-diffusion’
transport through the scale are analyzed. The focus is on the ‘classical’ theory of metal
oxidation by Carl Wagner. Classical in that it was developed in the nineteen-thirties
but is still a standard tool today in the field of high-temperature metal oxidation due
to its elegant thermodynamic formulation. The Wagner theory and related literature is
introduced in chapter 2. Much of the work presented in chapter 3 is related to Wagner’s
theory and chapter 4 gives a discussion of it in light of the findings stemming from the
calculations with the hexagonal cell model developed in chapter 3.



Chapter 2

Scale growth

2.1 Introduction

Metals and alloys react with oxidizing environments to reach a lower energy state. Un-
less kinetically limited this ‘corrosion’ or ‘metal oxidation’ process would proceed un-
til either the metal or oxidant are exhausted. As the metal and environment composite
system approaches the lower energy state ‘corrosion scales’ form as reaction product
composed of metal and oxidant, where the latter is typically either oxygen of sulfur.

The dynamic behaviour can be described by entropic forces, driving the reaction
and transport processes involved. If dense adherent scales form on the metal (alloy) sur-
face, see figure 2.1, they separate it from the oxidizing environment, and ionic and elec-
tronic transport through the scale becomes an important aspect of the growth process.
Scale growth can continue to occur at the metal-scale interface, the scale-environment
interface, or at extended defects within the scale, examples of which are grain bound-
aries and voids. For growth at the metal-scale interface oxidant atoms or ions need to be
transported through the scale, and similarly, metal atoms or ions need to be transported
through the scale to sustain an oxidation reaction at the scale-environment interface.
Assuming, as is typically the case, the absence of metal in the oxidizing environment.
Either or both ionic transport processes have to occur during growth of dense adherent
scales.

scale
metal (alloy)

environment

FIGURE 2.1: Schematic of uniform scale growth on metal (alloy) substrate.

4



CHAPTER 2 5

It was first shown by Wagner [189] that ionic transport also requires electron
transport to avoid the build-up of large electric fields within the scale that would sup-
press ionic diffusion, this theory is further described in section 2.3 and examined in
detail in chapter 4. After the initial treatment, Wagner, a co-creator of the charged
vacancy concept in solids [156], went on to interpret the ionic transport during oxida-
tion in terms of cation and anion vacancies [190, 196]. His work remains influential
in the literature on scale growth models, some of which are further discussed here in
section 2.3.

Otherwise the chapter is organized as follows. Sections 2.1 to 2.4 give an overview
of scale growth models from the literature. The importance of the grain structure for
the oxidation behaviour of alumina and chromia scales is well known; however, growth
models generally do not take into account a realistic description of the grain structure
and grain boundary transport. The results from the literature on the electronic structure
properties of alumina are summarized in section 2.5, since they are relevant for the ap-
plication of the model developed in this work. In section 2.6, the theoretical background
is introduced for the transport equations used in the model developed here, which is fur-
ther described in chapter 3.

A process closely related to uniform steady-state metal oxidation is oxide mem-
brane permeation. In permeation experiments the two surfaces of an oxide membrane
can be subjected to atmospheres with different oxygen partial pressure, and resulting
ionic fluxes provide insight into the transport processes occurring during metal oxida-
tion. A series of such permeation experiments on ↵-Al2O3 membranes was conducted
recently by Kitaoka et al. [83, 84], and part of the work in this thesis is concerned with
simulating the membrane permeation computationally, see chapter 3. The experimental
results of Kitaoka et al. are therefore summarized in section 2.7.

2.2 The characteristic time dependence

The oxidation of metal consists of multiple steps, involving the dissociation of molecu-
lar oxygen (sulfur), transport through the growing oxide layer, and the reaction between
oxygen (sulfur) and metal atoms, it is therefore a heterogeneous non-equilibrium pro-
cess. For parallel processes the fastest process is rate determining and for processes in
series the slowest process is rate determining. The simultaneous diffusion of one species
through the grains and grain boundaries of the scales would be a parallel process. The
interface reactions and transport through the scale constitute an example of processes in
series.
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In this work and as is usual in most scale growth models only the idealized situ-
ation of growth with planar interfaces is considered, that is the metal–scale and metal–
environment interfaces are idealized as planes parallel to each other and growth occurs
normal to the interface planes. This is also referred to as ‘uniform’ scale growth. The
surface structure involving steps, kinks, etc. is not taken into account explicitly, the
interface reactions considered typically describe an averaged behaviour. Most impor-
tantly, therefore, in growth of dense adherent ‘uniform’ scales are the relative rates of
the oxidation reactions at the interfaces and the transport through the scales to sustain
the reactions; the slower process determines the overall rate dependence. The rate lim-
iting step determines the characteristic functional time dependence of the growth rate
for scales with planar interfaces

dL

dt
= F (L, t, ...) (2.1)

where L denotes the thickness of the film or scale at time t, and F (·) is a function to be
determined from experimental data or based on a physical model.

Despite the complexity of the oxidation and scale growth processes, and the va-
riety of materials and environments found in application and experimental studies, a
small number of characteristic time dependences encompass most experimentally ob-
served behaviours. Growth of thick films in high-temperature oxidation of metals (al-
loys) typically adheres to a ‘parabolic’ growth rate law

L(t) =
p

2kp t. (2.2)

Other rate dependences frequently observed in oxidation experiments are the ‘linear’
law,

L(t) = kl t (2.3)

the ‘logarithmic’ law,

L(t) = a1 + a2 ln (t) (2.4)

(2.5)

and ‘inverse logarithmic’ law

L(t) = 1/(b1 + b2 ln (t)). (2.6)
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While the experimental growth kinetic data can often be fitted satisfactorily to one of
these characteristic time dependences various growth models have been developed in
the literature to justify the functional forms and to explain the rate constants in these
laws in terms of physical system parameters. Growing scales are found to switch be-
tween different characteristic time dependences, depending on the transport and inter-
face reaction rates, and in particular their thicknesses; an effect which only few growth
models are able to predict.

Growth models in the literature for predicting or interpreting scale growth can
be classified as empirical, semi-empirical, and mechanistic [133]. Empirical and semi-
empirical models are fitted to experimental data, consist of arbitrary functions, and have
limited validity outside their calibration range. Mechanistic models aim to translate
information about the key physical processes into a suitable mathematical formalism.

This work focuses on systems in which ionic and electronic grain boundary dif-
fusion, and the resulting internal electrostatic field are significant for understanding the
overall growth process. What follows is a brief review focusing on influential theories in
the literature that have advanced the mechanistic understanding of the growth process.

2.3 Review of some scale growth models from the liter-
ature

The observation of the square root time dependence in the scale thickness, L(t),

L ⇠
p
t (2.7)

led to the first theories of scale growth with diffusion of the atomic species (neutral)
through the growing scale as the rate limiting step [47]. Assuming for example the
metal to be soluble in the scale, a metal concentration gradient, rcM, arises between
the metal–scale, I , and the scale–environment, II , interface. Suppose the metal diffuses
by an interstitial mechanism to the oxidant containing environment, and assuming a
quasi steady-state in which the metal at the interface II is consumed instantly by the
oxidation reaction to generate new scale, the Fickian diffusion flux reads as

JM = �DMrcM = �DM(c
II
M
� cI

M
) /L(t) (2.8)

where DM is the diffusion coefficient (constant), and cj
M

is the concentration at the j-th
interface. The flux is constant as a function of the position in the scale, but through
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the thickness, L, the flux depends on time and decays as ⇠ 1/L provided the interfacial
concentrations are fixed. This means the oxidation reaction at the interface II consumes
exactly that amount of metal in a given small period of time, between t and t+dt, which
arrives at the interface II by diffusion; JM per unit of surface area and time. Therefore,
the scale thickness changes as

dL

dt
= ⌦ |JM| (2.9)

where ⌦ is the amount of volume added to the scale per metal atom arriving at the
interface II . Integration yields the square root growth law including a rate constant that
depends on the material properties.

Building on this earlier work, Wagner, in his ‘Contribution to the theory of the
tarnishing process’ [189–191, 196], derived an expression for the parabolic rate constant
assuming drift-diffusion of ions and electrons as the rate limiting step

kp =
⌦u

e0|zXzM|

Z II

I

(�X + �M) �e

�X + �M + �e

dµX (2.10)

where ⌦u is the volume per formula unit of scale material; e0 is the positive elementary
charge; the subscripts ‘X’ and ‘M’ denote the oxidant and metal, respectively; zX and
zM are the integer charge numbers; �X and �M are the conductivities; �e is the elec-
tron conductivity; µX is the oxidant chemical potential; and the integration domain is
bounded by the alloy (metal) – scale interface ‘I’ and the scale – environment interface
‘II’. To arrive at this expression the drift-diffusion of ions and electrons during the
growth process are considered, and a parabolic growth rate, L =

p
2kpt of course only

follows if kp is indeed constant as the thickness increases.
The theory assumes thermodynamic equilibrium to hold at the metal–scale and

scale–gas interfaces and a steady-state growth with no divergences of the mobile species
fluxes. Transport through the scale with constant diffusion coefficients is the rate lim-
iting step, and the scales are considered to be free of voids, grain boundaries, and any
other extended defects.

The Wagner theory is a standard device to analyze high-temperature oxidation
experiments with films thicker than 1µm [2, 21]. It is also often used to solve the
inverse problem of calculating diffusion coefficients from the measured scale growth
rates, e.g. [164]. While in principle all parameters in this theory are experimentally ac-
cessible, the variation of the conductivities throughout the film or their dependence on
the oxidant chemical potential are typically not known and the formula 2.10 is approxi-
mated. The range of validity or error in these approximations is seldom discussed.
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The question of growth rate behaviour different from parabolic and predicted
from the same level of theory was also investigated by Wagner [192], in particular also
the question of simple rate laws between the limiting cases of thin and thick films [193].
An early discussion and confirmation of the Wagner theory was given by Bardeen [8]
investigating the oxidation of copper with copper vacancy mediated diffusion as the
limiting step in the growth rate.

Reviews of the Wagner theory are available in the literature, see for example
Atkinson’s review article [2] or reference [62], a thorough discussion of Wagner’s the-
ory is given here in chapter 4 section 4.2. The self-consistency of the Wagner theory and
the notion that this theory necessarily predicts a parabolic growth rate have both been
challenged in the literature [47]; these criticisms are analyzed in chapter 4 sections 4.2.2
and 4.3.3, respectively.

In a series of papers Mott [125–127] aimed to extend Wagner’s work to thin
oxide films, and to find an explanation for the drop in growth rate at a certain self-
limiting thickness on the order of nanometers for some oxides. These thin layers are
referred to as ‘passive films’, and the Mott-Cabrera theory [14] is most influential for
interpreting their growth behaviour. Mott noted that for nanometer thin films electrons
could tunnel from the metal–film to the film–environment interface, setting up a strong
electric field in which the metal ions are transported through the film to the oxidant
containing environment; thereby rendering the interface reaction of metal leaving the
alloy or metal substrate the rate limiting step. The model predicts an inverse logarithmic
growth rate for thin films in the ‘high-field limit’, and a parabolic rate for thick films
with a weak electric field.

The Fehlner-Mott model [39] for low, below 300K, temperatures predicts loga-
rithmic growth. Three stages are described: oxygen incorporation into the metal sub-
strate by diffusion (place exchange); continued slow logarithmic oxide growth with a
voltage built up – the Cabrera-Mott potential; and subsequent ‘reordering’ of the film
leading to a faster logarithmic rate due to grain boundary diffusion and resulting island
formation. A review of the oxidation kinetics for transition metals at low- and inter-
mediate temperatures can be found in [163]. Transport in transition metal oxides and
sulfides can be expected to introduce additional complexity, an early discussion was
given by Wagner [195].

The ‘point-defect-model’ [17] was developed as an extension of Wagner’s the-
ory to condensed phase environments and particularly aqueous environments where
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its predictions have been found in good agreement with experiment in many applica-
tions [103]. The model was later improved to account for new experimental findings in
particular steady-states in the film thicknesses. The growth rate in this model is given
by

dL/dt = a1 exp(�a2 L)� a3 (2.11)

with constants, ai, and details of the improved model can be found in [102]. It assumes
a bi-layer structure with an inner defective oxide or hydride barrier layer and an outer
layer formed by precipitation from an aqueous environment.

The current version of the point-defect-model focuses more on the outer layer in
recognition of experimental indications that these outer layers could have a significant
impact on the overall corrosion behaviour [104]. The development of the point-defect-
model is reviewed in [103]. Many other models for thin passive films in solutions are
known in the literature, following MacDonald they could be classified as high-field
models [14, 39], place exchange models [153], and interfacial equilibrium models [81,
185, 186]; a more comprehensive list of references is given in [103].

The Mott-Cabrera, Mott-Fehlner, point-defect (MacDonald), and additional mod-
els that have been suggested in the literature are reviewed for example in [159].

The focus of this work, however, is on dry oxidation where another influential
model for dry high-temperature oxidation is found in the Deal-Grove model [29]. It
is used to interpret and predict thermal oxidation of silicon which is especially im-
portant for semiconductor device fabrication. The model takes into account the fluxes
of the oxidant in the gaseous environment and through the growing silicon-oxide, and
the reaction between the oxidant and silicon substrate at the substrate–oxide interface.
This entails Henry’s law, Fickian diffusion, and a first-order reaction at the substrate–
oxide interface while electric field effects are neglected. In the presumed steady-state
conditions the transport processes and interfacial reactions are simply proportional to
the oxidant concentrations at the interfaces, and in the bulk gas. It predicts a linear or
parabolic growth rate depending on the parameters, and it is known to fail for nanometer
thin and for polycrystalline films.

Fromhold has pioneered the use of computer simulation and numeric analysis
to model metal oxidation [47, 50]. His work on analytic and numeric analysis of oxide
growth includes modelling ionic diffusion under the influence of electron tunneling [52],
thermionic emission [53], and extensive analysis of space charge effects, see for exam-
ple [51] and references therein. Similarly to Fromhold’s work on solving the equations
for ionic diffusion numerically [50] frameworks for modelling metal oxidation based on
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ionic transport equations and the Poisson equation for determining the self-consistent
electric field have been described in the literature [10, 134]. Typically these simula-
tion approaches assume homogeneous scales which means the effects of dislocations
and grain boundaries that are known to act as preferential pathways in some oxides are
neglected.

The scale grain structure is particularly important for the transport properties in
oxides such as alumina and chromia, and the next section gives an overview over related
experimental findings, as well as modelling approaches.

2.4 The scale grain structure

The structures found in scale growth experiments range from amorphous or nanocrys-
talline to microcrystalline, and also porous and multilayer structures have been ob-
served [2, 119]. Under some conditions the oxidation becomes a cyclic process of
scale growth, cracking, and delamination. The granular structure of the scales depends
on the oxidizing conditions, wet or dry, the temperature, and material properties such as
the surface free energies of the growing grains for example.

The importance of the grain structure for nanometer thin ‘passive’ films and the
influence of grain boundaries on their stability and growth is increasingly well recog-
nized and studied due to advances in the relevant experimental characterization tech-
niques available [65, 110, 111, 119].

In high-temperature oxidation and growth of micrometer thick films the impor-
tance of the grain structure has long been recognized, typical morphologies observed
are microcrystalline columnar or columnar-equiaxed duplex structures [2]. Aluminum
oxide (Al2O3) [129], nickel oxide (NiO) [2, 163], and iron sulfide (FeS) [120] can
be named as exemplary materials forming these structures. Two of the most impor-
tant and technologically relevant oxide scales are aluminum oxide, ↵-Al2O3 (alumina),
and chromium oxide, Cr2O3 (chromia), that are frequently formed deliberately on al-
loy surfaces to serve as high-temperature oxidation barriers as part of thermal barrier
coatings [26, 27, 35, 37, 142, 167], show transport behaviour dominated by the grain
boundaries of the polycrystalline films or scales. Due to their technological importance
the grain boundary transport in these materials has been studied heavily experimen-
tally [3, 4, 59, 170], and more recently also by computer simulations [69]. For alumina
it has been found that the oxygen and aluminum fluxes through the scales both con-
tribute significantly [135, 178] to the overall growth rate, but the microscopic diffusion
mechanisms in bulk and the grain boundaries are still under debate [68, 69, 71]. A



CHAPTER 2 12

recent series of membrane oxygen permeation experiments [83] have contributed new
insight into the diffusion properties of alumina they are further discussed in section 2.7.

Typically Harrison’s [60, 172] scheme is employed to classify processes with
significant grain boundary diffusion. In the intermediate ‘B’ regime the grain diffusion
length with the grain (bulk) diffusion coefficient, Dg, satisfies

� ⌧
p

Dgt ⌧ d (2.12)

where the grain boundary width, �, and the average grain size, d, appear. The ‘A’
regime applies for smaller grain diffusion lengths,

p
Dgt, and the ‘C’ regime for larger

ones. In the B regime the grain boundary diffusion contribution to the flux through the
material is significant, in the A regime it is dominant. A frequently applied modification
of the Wagner theory [73, 162] to account for grain boundary diffusion is based on an
effective diffusion coefficient introduced by Hart [61]

DH
= Dg (1� f) +Dgb f (2.13)

where Dgb is the grain boundary diffusion coefficient; and f = q�/d is the grain bound-
ary volume fraction with the grain boundary width, �, the average grain size, d, and a
numerical constant q characterizing the grain shape [64, 121].
The Fisher-Whipple-LeClaire model [43, 91, 199], which is discussed for example in
references [64, 121, 172], is a standard tool in analysing grain boundary diffusion exper-
iments. Tracer concentration profiles extracted from secondary ion mass spectroscopy
of the diffusion samples are analyzed with analytic solutions and functional forms ob-
tained from the Fisher-Whipple-LeClaire model. Originally developed for metals this
model is also applied to tracer diffusion experiments on oxides [40].

None out of the Harrison classification, the Hart effective diffusion coefficient,
and the Fisher-Whipple-LeClaire model include effects of an internal electric field which
is clearly present during diffusion of ions mediated by charged vacancies or interstitials.
This means any space charge or Debye double layer effects that could be particularly
relevant for preferential diffusion along dislocations and grain boundaries are not ex-
plicitly discussed in the relevant studies. No generally accepted generalizations of these
models to include electric field effects are currently available in the literature.

In the field of solid state ionics and its subfield nanoionics space charge effects
have been studied intensively [105, 106, 109] and are often actively sought for use in
electrochemical devices that exploit interfacial and size effects for ionic transport and
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charge storage [108]. Electrochemical devices exploit materials with mixed electronic
and ionic conduction to transform chemical energy into electrical energy or informa-
tion as in the case of oxygen sensors. Reviews of ‘fast ionic conduction’ and ionic
conduction in nanocrystalline materials in this context are available in [181] and [58],
respectively. The space charge near grain boundaries in equilibrium is a consequence
of charge carrier segregation due to the different structure of the interfacial core. As the
proportion of interface to bulk increases for a material with ionic and electronic disor-
der the bulk electroneutrality condition has to be replaced by the Poisson equation, the
related changes in the species concentrations can be large and affect the ionic transport
significantly [107]. Analytic models for taking into account space charge effects on
ionic transport have been developed [80, 180]. Detailed modelling of space charge ef-
fects due to accumulation and depletion of charge carriers at interfaces depending on the
material properties and parameters characterizing the environment generally requires
numeric solutions of the relevant system of equations. In these simulations the grain
structure is typically idealized as in the ‘brick layer’ model of cubic grains [44, 57], but
also conduction in two-dimensional Voronoi grain structures has been investigated [45].

These models do, however, typically not consider simultaneous transport of va-
cancies, electrons, and holes in a chemical potential gradient, which is required for
studying oxidation. Furthermore, during counter diffusion of anion and cation vacan-
cies formation and dissolution of scale at grain boundaries can occur and generates
stress. These aspects are addressed with the hexagonal cell model presented in chap-
ter 3. Growth stresses are observed in oxidation experiments and further discussed in
section 3.5.

2.5 Electronic structure: point defects and interfaces

In what follows a brief review of the defect and electronic structure properties of alu-
mina is given that have been elucidated by recent density functional theory (DFT) and
molecular dynamics calculations.

The effective charges of the point defects are defined with respect to the ions of
the pristine lattice, and the Kröger-Vink notation for point defects is used, although for
generality, integers are used to denote the charge states rather than the original super-
script • or 0 symbols, while the ⇥ notation for neutral species is retained.
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To understand and predict the oxidation properties of alumina scales the point de-
fect concentrations and hopping barriers in the bulk material and at the grain boundaries
are required. While the point defect formation energies can be used to determine the
defect populations and help elucidate solid state diffusion in oxides, localized states in
the band gap induced by the defects can give rise to charge trap states relevant for the
electron transport.

As a widely used ceramic the electronic structure of alumina is also of interest in
a range of technological applications, such as high-temperature structural ceramics and
gate dielectrics in metal-oxide-semiconductor devices. This means many theoretical
studies of its electronic structure are available.

DFT calculations have become a standard tool for first principles calculations of
defects in solids [46]. The Kohn-Sham density functional theory is a formally exact
method of calculating the ground state energy of a fixed number of interacting electrons
in a multiplicative external potential. This ground-state is determined by mapping the
interacting system onto a fictitious system of non-interacting electrons with the same
electron density as the real interacting system. The electrons move in a multiplicative
effective (Kohn-Sham potential) potential that consists of the ionic potential due to the
ion cores, electron-electron interaction (Hartree) potential, and the many-body effects
are lumped into the exchange-correlation (xc) potential. Different methods have been
developed to solve the resulting self-consistent one-electron Schrödinger equations. A
pivotal element is a suitable approximation of the xc functional that yields reliable re-
sults at reasonable computational cost. Most of the results from the literature mentioned
in this section have been determined from DFT calculations.

Statistical thermodynamics provides a convenient framework for the description
of point defects in solids. In the equilibrium state of a solid with an environment at fixed
temperature, T , and pressure, P , its Gibbs free energy has a minimum

�(U � TS + PV ) = 0. (2.14)

The thermodynamic system permits no exchange of matter with the environment, only
heat and volume can be exchanged. In any solid at equilibrium there exists an ensemble
average number of point defects such that the increased vibrational and configurational
entropy balances the energy cost of forming them by breaking the bonds and adding
the atom to the crystal surface or a chemical reservoir. A discussion of point defect
thermodynamics in crystals summarizing the most salient concepts has been given by
Finnis in reference [151].
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There is an analogy in the statistics of vacancies in lattices and electrons in dis-
crete quantum states. Randomly distributing a fixed number of vacancies over lattice
sites is mathematically equivalent to distributing a fixed number of electrons over dis-
crete quantum states, and for a fixed total energy the Fermi-Dirac distribution

hns
i i =

1

e(✏i�⌘s)/kBT + 1
(2.15)

maximizes the entropy. It expresses the probability of the i-th state with energy ✏i to be
occupied, while ‘⌘s’ denotes the electrochemical potential of species ‘s’. In the dilute
limit hns

i i ⌧ 1 the occupation function reduces to the Boltzmann form

hns
i i ' exp

✓
⌘s � ✏i
kBT

◆
. (2.16)

Given the conditions for the dilute limit apply, the electrochemical potential of species
‘s’ including electrons, holes, and point defects can be written as

⌘s(r) = kBT ln
�
cs(r)/c

0

s

�
+ zse0 �(r) (2.17)

where cs is the concentration (number density); zs is the integer charge state, and e0 the
elementary charge; and which separates a chemical term from the mean field electro-
static potential, �. The expression is expected to hold also for small deviations away
from equilibrium, hence the spatial dependence with the position vector r, and the num-
ber density c0s characterizes the chosen reference state. The theory underpinning the
extension to a spatial dependence of ⌘s is further described in the next section.

The electron electrochemical potential, ⌘e, in equilibrium is also referred to as
the Fermi level. The Fermi energy, ✏F, denotes the Fermi level in the limit of the tem-
perature T ! 0K. For non-degenerate semiconducting materials and large band gap
insulators, which are relevant for this work, the dilute limit applies. For temperatures
T > 0K the excitation of electrons raises the Fermi level discontinuously to some-
where in the band gap. For electron-hole equilibrium furthermore, hnh

i i = 1 � hne

ii

and ⌘h = �⌘e. Away from equilibrium, where the electron and hole electrochemical
potentials are not constant as a function of position, they are also referred to as quasi
Fermi levels in the literature [173].

Al2O3 has a number of different phases. The stable aluminium oxide phase
↵-Al2O3 at most conditions of interest adopts the R3̄c space group (corundum), with
fourfold coordinated O sites and sixfold coordinated Al, see figure 2.2. The tetrahedron
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of Al ions surrounding the O ion is distorted, with two (about 5%) shorter bonds out of
the four in total. Correspondingly, any Al ion is surrounded by a distorted octahedron
of O ions. The primitive rhombohedral unit cell has 1/3 the volume of the conventional
hexagonal cell. Simulations to obtain defect formation energies are typically performed
in supercells consisting of multiple primitive or conventional cells and the defect of
interest. This allows the calculations to be performed with the highly efficient compu-
tational methods developed for periodic solids. The supercell size is generally limited
by the computational cost and the remaining artificial effects have to be corrected for a

posteriori [46].

b

c

a

a

b

c

FIGURE 2.2: Corundum conventional unit cell. View along the a-axis (left) and c-axis
(right).

Alumina is classified as a material with mostly ionic character and typically the
point defects with the nominal ionic charges, V2+

O
and V

3-

Al
, are expected to be the most

energetically favourable in the bulk material.
Within the Zhang-Northrup formalism the dependence of the formation energy

on the Fermi level and the component reservoir chemical potentials can be investigated
in density functional theory (DFT) calculations [46, 200]. Calculations for bulk alu-
mina are available for example in [22, 74, 99, 118]. However, different choices for the
exchange correlation functional and band gap correction can lead to discrepancies in the
predicted properties. For example, the donor transition levels 5 eV above the valence
band maximum introduced by V

⇥
O

reported in [118], have been found at 3.5 eV above
the valence band maximum by Hine et al. [74]. The disagreement has been attributed
to the difference in the band gap correction procedure adopted [22], which typically
assume that only the conduction band states are affected by the band gap error. The
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band gap in semiconductors and insulators is defined as the difference between the first
ionization energy and the first electron affinity of the neutral solid. Reported values for
the experimental band gap of monocrystalline alumina are between 8.8 eV and 9.4 eV.

Also defect formation and migration energy studies for alumina twin grain bound-
aries are available [93, 138, 174, 176]. The band structure properties of alumina and
their influence on the transport during oxidation have been reviewed by Heuer et al. [69,
71]. The defect formation energies, charge state, and the hopping barriers are all cru-
cial for the non-equilibrium drift-diffusion process. The Fermi level is expected to be
pinned by gap states at the metal–oxide interface. Band bending and gap states are
discussed extensively in the semiconductor and device literature see for example the
monographs [122, 124] or the review [201].

During the oxide growth the Fermi level varies between the metal–oxide and
oxide–gas interface. The gradient of the electron electrochemical potential, r⌘e, cannot
vanish since it drives the electron current which has to balance the vacancy current at
any point in the oxide in the steady-state. Taking the valence band maximum at the
metal–oxide interface ‘I’ as the starting point the sign of the slope in the Fermi level
depends on

sgn{�ion � �el} (2.18)

the difference of the ionic and the electronic conductivity, see also figure 2.3 and figure
(4) in reference [71].
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FIGURE 2.3: (a) Schematic of the Fermi level variation in the oxide for �ion > �e.
The conduction band minimum (CBM) and valence band maximum (VBM) are indi-
cated. The dashed lines represent the localized states. An electric field is present in
the non-equilibrium steady-state and its direction also depends on sgn{�ion � �e}. (b)
Schematic of the density of states for polycrystalline ↵-alumina [71]. Grain boundary
states due to the aluminum and oxygen ions, and deep levels due to the vacancies are
indicated. The vacancies could act as donor and acceptor states by trapping electrons

or holes.
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While the experimental evidence seems unequivocal on grain boundaries as the
dominant pathways for ionic transport in alumina, e.g. [68, 147], the electron and hole
transport mechanisms and pathways are largely unknown. The microscopic transport
mechanism for the atoms or ions in alumina grain boundaries is also still under debate.
The Arrhenius form diffusion coefficients deduced from experiments show unusually
large prefactors and activation energies for the alumina grain boundaries [68, 71]. To
account for the large prefactors that could indicate a cooperative diffusion mechanism
Heuer et al. have proposed a ‘disconnection’ mechanism for atomic transport through
alumina grain boundaries [71, 72]. Disconnections are defects that exhibit combined
dislocation and step character. They can mediate mass transfer along interfaces by
virtue of their step character and produce deformations through their dislocation char-
acter [75, 77]. The disconnections are thought to glide through the grain boundary plane
driven by the Peach-Koehler force which is a thermodynamic force describing the ten-
dency of a dislocation to move in the presence of a stress field [172].

The electronic states in infinitely large perfect crystals are described by Bloch
waves and commonly aligned in bands of permitted states, structured in the valence and
conduction bands in semiconductors. The density of states (DOS) denoted by, g(E),
is a measure for the number of available quantum states between the energies E and
E + dE in a material and important for many of its properties. In general at a fixed
electron concentration the Fermi level, ⌘e, is implicitly defined by

Ne =

Z 1

Ec

g(✏) f e
(✏; ⌘e) d✏ (2.19)

where Ne is the number of conduction band electrons, and f e denotes the distribution
function hne

(✏)i. The square root behaviour of the density of states, g(✏) ⇠
p

|✏� Ei|,
near the conduction, Ei = Ec, and valence band edges Ei = Ev, is a good approxima-
tion for many semiconductors.

However, the density of states in imperfect materials containing defects is a more
complex quantity. Point defects such as vacancies and interstitials are a source of scat-
tering in electron transport and of localized energy states in the band gap of the material.
The localized states denote occupied orbitals that may exist in the vicinity of the defect
site. The lower conduction band of bulk ↵-Al2O3 consists of Al 3s states and the up-
per valence band of O 2p states. DFT calculations for bulk alumina have shown that
vacancies can introduce localized states and corresponding transition levels in the band
gap region [22, 74]. The projection of the density of states (DOS) on pristine grain
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boundary regions of DFT calculations for two ⌃7 tilt grain boundaries shows localized
states at the boundary [56]. It has been suggested that the electrons and holes in alumina
grain boundaries are localized on the states introduced in the gap by the vacancies [71].
This would imply doubly charged aluminum vacancies, V2�

Al
, and singly charged oxygen

vacancies, V+

O
, see figure 2.3 (b).

The localized states could act as trap states capturing electrons from the con-
duction band or holes from the valence band. Electron conduction in bulk ↵-Al2O3 is
considered consistent with Poole-Frenkel hopping involving a localized state ⇠ 1.8 eV
below the conduction band edge [99]. Trapping or release of electrons by the local-
ized states requires less energy than the excitation from the valence to the conduction
band. The trapped particles could then recombine as is described for example in the
Shockley-Read electron-hole recombination process [173]. The electron-hole recombi-
nation could lead to an enhanced vacancy diffusion as was suggested for some semicon-
ductor materials [197, 198]. Recombination enhanced migration could occur by a local
heating mechanism due to the recombination excess energy or due to a defect charge
state dependent diffusion coefficient.

Several elements, if present in low-concentrations in aluminum-containing or
chromium-containing elements, are known to segregate to the alloy–oxide interface and
the grain boundaries of the growing oxide during high-temperature oxidation. The seg-
regated elements are expected to modify the transport properties of the grain boundaries
and the interfacial bonding at the alloy-oxide interface. The elements Y and Hf are
known to dramatically reduce the growth rate of alumina scales. This ‘reactive element
effect’ is used to engineer the growth of thin, dense and adherent alumina or chromia
scales on alloy surfaces. Different explanations have been proposed, typically involving
the differences in the ionic size resulting in a steric ‘blocking’ effect, for a recent review
see [130]. However, the ionic size effect cannot account for all observations [71]. Based
on DFT calculations it has been hypothesized that the segregation of reactive elements,
e.g. Y, modifies the population of near band edge grain boundary states [70, 71], thereby
affecting the grain boundary transport.

2.6 Drift-diffusion equations

The drift-diffusion or Nernst-Planck flux [131, 145] occurs in the description of various
physical processes. Particular examples are transport in ionic channels of organic tis-
sue [33, 34], the electron-hole transport in semiconductor devices [112, 158], and elec-
trochemical systems in general [12]. The Nernst-Planck flux is frequently introduced
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as a phenomenological equation and can be thought of as a superposition of Fickian
diffusion in the chemical potential gradient and Ohmic conduction in the electrostatic
potential gradient. In this section the flux equation is introduced including some theo-
retical background and comments on the range of validity of this transport model. For a
time-dependent transport model including a self-consistent electric field, the flux equa-
tions have to supplemented by the continuity equation and the Poisson equation, as is
described below.

The drift-diffusion equations for electron-hole transport in semiconductors have
been analyzed theoretically and numerically for decades [173]. Thorough discussions
of their mathematical properties are available in the literature [112, 158], and the con-
nection to higher levels of theory including quantum effects on electron-hole transport
has been established [79, 155].

Transport of ions in oxides has been studied less intensively. Approaches for go-
ing beyond the mesoscopic Poisson-Nernst-Planck equations by coupling them to clas-
sical density function theory have been introduced in the literature on ion channels [54].
A methodology for coupling quantum density functional theory to the Poisson-Nernst-
Planck equations to model grain boundary oxidation is described in [171].

In this work the transport of electrons and ions is treated on the same level of the-
ory, the transport of all mobile species is described by the Nernst-Planck flux expression.
The thermodynamic basis of the transport equations is emphasized and it indicates the
generic applicability of the equations adopted here. This level of theory in the transport
equations is, furthermore, ideally suited for describing the reaction boundary conditions
to the transport equations by the law of mass action, which is further discussed in chap-
ter 3. In linear irreversible thermodynamics [28, 92] transport of ions and electrons is
formulated in terms of material specific kinetic coefficients and thermodynamic driv-
ing forces. In this theory the concepts and quantities of equilibrium thermodynamics
are applied to small subsystems or ‘cells’ of the non-equilibrium system under consid-
eration. In these cells ‘local’ thermodynamic equilibrium is assumed to hold, and the
thermodynamic state variables are thereby extended to functions of position and time.
Irreversible thermodynamics is commonly adopted to describe kinetic transformations
in materials involving atomic transport [5], a concise treatment of the theory is given in
the monograph by Lebon and Jou [92].

In section 2.6.1, the system of equations is defined, the unit system adopted is
described, and the physical assumptions necessary for the validity of the equations are
summarized.
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In section 2.6.2, the effect of Coulomb screening as predicted from the classical
Nernst-Planck theory is discussed briefly, this effect is essential for understanding the
charge dynamics and electric field effect during oxide scale growth.

2.6.1 Poisson-Nernst-Planck theory

Based on the local equilibrium hypothesis the electrochemical potential, ⌘s(r, t), of
species ‘s’ such as point defects, electrons or holes at position r and time t is written as

⌘s(r, t) = µs(r, t) + zse0 �(r, t) (2.20)

where, µs is the chemical potential, � is the electrical potential, zs is the integer charge
number, e0 is the positive elementary charge, and r = (x1, x2, x3) is the position vec-
tor. Within linear irreversible thermodynamics [92, 139, 140] the particle flux, JNs , of
species s, under isothermal conditions (rT = 0), is given by

JNs = LNsNsr

✓
�⌘s
T

◆
= �L0

NsNs
r⌘s (2.21)

with the kinetic coefficient, LNsNs , the temperature T , and L0
NsNs

= LNsNs/T . The
cross terms LNsNs0 between species s and s0 have been neglected and since the material
is modelled as an isotropic medium, the kinetic coefficients are scalars. In a system
with uniform concentrations (rµs = 0), but a non vanishing electric field, E = �r�,
the current density, Is, is given by

Is = zsJNs = �z2se
2

0
L0
NsNs

r� (2.22)

where equations 2.20 and 2.21 have been used. In mechanical equilibrium and within
the ideal dilute solution approximation [15], in which the gradient of the chemical po-
tential of species s, only depends on the concentration (number per unit volume), cs, of
species s, and with a uniform electrical potential (r� = 0), the particle flux reduces to

JNs = �L0
NsNs

kBT

cs
rcs (2.23)

where equations 2.17 and 2.21 have been used. Through Ohm’s law of conduction and
Fick’s law of diffusion

Is = ��sr� and JNs = �Dsrcs (2.24)
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where Ds is the diffusion coefficient of species s, the kinetic coefficient, L0
NsNs

, is linked
to the conductivity, �s, and the diffusion coefficient, Ds; the Nernst-Einstein relation,

�s =
Dscsz2se

2

0

kBT
(2.25)

is implied. Using the above definitions and approximations, the particle flux in the
presence of concentration and electrical potential gradients is written as

Js = �Dsrcs �
Dscszse0
kBT

r� (2.26)

where JNs has been replaced by Js for brevity. Equation 2.26 is referred to as the Nernst-
Planck flux [131, 132, 145] and is used as the constitutive equation for the description
of the point defect transport; magnetic field effects are not considered.
For the superposition of Fickian diffusion and drift of charged particles in the gradient
of the electrostatic potential the label ‘drift-diffusion’ equations is also common in the
literature.

The continuity equation with the Nernst-Planck flux solved self-consistently with
the Poisson equation

@tcs = �r · Js (2.27)

"r"0r
2� = �⇢ (2.28)

is referred to as the Poisson-Nernst-Planck (PNP) system of equations. For electron and
hole transport in semiconductor device simulations a system of equations, mathemat-
ically equivalent to equations 2.26, 2.28, and 2.27 was first introduced by van Roos-
broeck [182]. In the context of semiconductor device simulations these equations are
typically referred to as drift-diffusion equations, and can be derived from the Boltzmann
transport equation by either the Hilbert expansion or the moment method [112, 158].
The linear constitutive equations, like Fick’s first law, have a phenomenological basis;
however, they can also be thought of as laws of inference based on probability the-
ory [55].

The nondimensionalization and mathematical scaling of the PNP system is de-
scribed in what follows because it is essential for the numerical solution of the equa-
tions, which is further described in chapter 3. Table 2.1 contains the dimensional quan-
tities occurring in the PNP system expressed in base units [9].
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TABLE 2.1: Summary of the dimensional quantities occurring in the Poisson-Nernst-
Planck system of equations. The chosen base unit system consists of length, `, time, ⌧ ,

amount of substance, N , charge, Q, and mass, M .

base units `ref tref cref �ref Dref kBT e0 "r"0

` 1 -3 2 2 2 -3
⌧ 1 -2 -1 -2 2
N 1 1
Q -1 1 1
M 1 1 -1

Reading table 2.1 as a matrix its nullspace yields three dimensionless groups in
this problem

⇧1 =
`2
ref

Dreftref
, ⇧2 =

kBT

e0�ref

, ⇧3 =
"r"0�ref

e0`2ref
(2.29)

which are not unique since any linear combination of the vectors spanning the nullspace
yields a dimensionless group [9]. The reference length, time, and electrostatic potential
are chosen based on physical and mathematical arguments, a discussion in the literature
for the PNP system is given for example in reference [158] and references therein.

In this work Dref is chosen as the maximum out of the diffusion coefficients of
the mobile species

Dref = max
s

{Ds}, (2.30)

and cref as the maximum concentration of any species ‘s’ within the domain. Further-
more, by choosing the film thickness as the reference length `ref = L, the diffusion
length as the reference timescale tref = L2/Dref, and the thermal voltage [158] as the
reference electrostatic potential �ref = kBT/e0, the dimensionless parameter, , is ob-
tained

 =

p
⇧3 =

✓
"r"0kBT

e2
0
crefL2

◆1/2

(2.31)

that is not necessarily of magnitude 1; the groups ⇧1 = ⇧2 = 1, while ⇧3 ⌧ 1 for
thick films and or large defect concentrations. The parameter  plays an important role
in the behaviour of the PNP system. It is understood as the ratio between the reference
screening length and the film thickness `D/L. The film thickness L and the reference
screening length `D typically describe two vastly different length scales, both relevant
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for the problem. The reference screening length, `D, is on the same order of magnitude
as the Debye length which is discussed in the next section.

The drift velocity of particles with a charge e0 migrating in the electric field is
given by

vdrift = �
Drefe0
kBT

r�. (2.32)

During the time it takes the particles to diffuse a length L,

⌧d = L2/Dref, (2.33)

and in an electric field due to the thermal voltage, kBT/e0L, they drift the distance

⌧dvdrift = L, (2.34)

which means that in a field due to the thermal voltage the particles drift and diffuse over
equal lengths. Suggesting kBT/e0 as a suitable reference magnitude for the electrostatic
potential.

The validity of the Nernst-Planck flux expression is bound to the validity of the
Boltzmann equilibrium distribution. Electrons adhere to the Fermi-Dirac distribution
and in approximating it with the Boltzmann distribution one makes a transition from
indistinguishable particles to classical distinguishable particles. The symmetry of the
wavefunction taken into account by the Fermi-Dirac distribution introduces a statisti-
cal repulsion or exchange interaction in an ensemble of electrons. The spread of the
wavepackets describing the electrons is on the order of the thermal wavelength

�T =
h

(2⇡mekBT )1/2
(2.35)

The classical Boltzmann distribution neglecting the exchange interaction is therefore
only applicable for interparticle distances much larger than the thermal wavelength and
hence

�T c
1/3
ref ⌧ 1. (2.36)

The Nernst-Planck flux expression is a ‘mean field approximation’, which describes the
evolution of a large number of particles in terms of mean concentrations and a mean
electrostatic potential potential obtaining a statistically averaged behaviour. It is of the
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lowest order in the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of kinetic equa-
tions [146]. The mean field approximation requires the potential energy of Coulomb
interaction to be small compared to the kinetic energy of the particles. The Bjerrum
length is defined as the distance at which the thermal kinetic energy equals the bare
Coulomb interaction energy of two elementary charges

�B =
e2
0

4⇡"r"0kBT
(2.37)

Only if the average interparticle distance, c�1/3
ref , is much greater than the Bjerrum length

can the electron-electron correlation be neglected, and hence if

�Bc
1/3
ref ⌧ 1 (2.38)

is the mean field approximation applicable in this problem; the pair interactions between
discrete ions are replaced by a continuum mean field theory.

The Nernst-Planck flux relies on a linearization of the Maxwell-Boltzmann dis-
tribution that holds if

����
e0 ��

kBT

����⌧ 1 (2.39)

where �� is the potential difference between two defect hopping sites. The thermody-
namic driving force for the transport problems considered in this work, kBT ln

�
P II/P I

�
,

is determined by the ratio of the oxidant pressures at the metal–scale, P I , and scale–
environment, P II , interface. The developing electrostatic potential difference across
the film is typically on the order of the thermal voltage, �� ⇠ kBT/e0, and the above
criterion will certainly hold unless the thickness of the film approaches the hopping dis-
tance of the mobile ionic or electronic species. For local thermodynamic equilibrium
to be maintained in a thermodynamic subsystem or ‘cell’ subject to a thermodynamic
force, the relative magnitude of the thermodynamic force across the cell must be small
compared to the statistical fluctuations [146].

The above assumptions and limits are expected to be unproblematic in most ox-
ides but have to be examined carefully when calculating transport rates in strongly cor-
related oxides and sulfides. A phenomenological approach to transport in sulfides and
transition metal oxides was given by Wagner [193], where linear irreversible thermo-
dynamic fluxes including cross-terms are discussed; oxidation of transition metals is
reviewed in [163].
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2.6.2 Debye-Hückel screening

Considering the surface of a homogeneous material a gradient in the chemical poten-
tial of a species mobile within the material can be generated by varying the chemical
properties of the environment which impose the boundary conditions for the species
transport within the material. After a transient period a self-consistent electric field is
present opposing the chemical potential gradient, such that the distance particles diffuse
in the chemical potential gradient during a particular time equals the distance they drift
in the gradient of the electrical potential during the same time, requiring,

rµs = �zse0r�, (2.40)

which characterizes this dynamic equilibrium state, and consequently, the flux vanishes
locally

Js(r) = 0. (2.41)

For an ideal dilute solution where

rµs =
kBT

cs
rcs (2.42)

the equilibrium relation 2.40 can be integrated and yields the Boltzmann form distribu-
tion for the concentrations

cs(r) = c0s exp

✓
�
zse0 �(r)

kBT

◆
(2.43)

where c0s denotes the reference concentrations in the bulk material unperturbed by the
chemical environment that satisfy,

X

s

zsc
0

s = 0, (2.44)

and the electrostatic potential reference in bulk is set to zero for convenience. The self-
consistent electrostatic potential, �, can be calculated from the Poisson equation with
the charge density generated by the concentrations 2.43,

"r"0r
2� = �

X

s

zse0c
0

s exp

✓
�
zse0 �

kBT

◆
(2.45)
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which is referred to as the Poisson-Boltzmann equation in the literature. In the limit of

����
e0 ��

kBT

����⌧ 1 (2.46)

that has already been introduced as a necessary condition for the validity of the Nernst-
Planck flux, see section 2.6.1, the Poisson-Boltzmann equation is linearized and reduces
to the Helmholtz equation

�
r

2
� ��2

D

�
� = 0 (2.47)

where the Debye length

�D =

✓
"r"0 kBT

e2
0

P
s z

2
sc

0
s

◆1/2

(2.48)

is defined. It is the length scale for spatial variations of �(r) and ⇢(r) near the interfaces.
The Debye length was identified in the famous treatment of ionic liquids by Debye
and Hückel [30], and describes the characteristic length scale for classical Coulomb
screening. The free energy change due to screening is negative and the screened state
is the equilibrium state corresponding to the free energy minimum with respect to the
possible induced charge distributions.

The equation 2.47 has been applied to different physical phenomena distinguished
by the corresponding boundary conditions imposed on equation 2.47. A simple case is
given by a uniformly charged surface, the electrostatic potential decays as

�(x) ⇠ exp(�|x|/�D) (2.49)

near the surface, as a function of the distance |x| to the surface. The charge density
behaves similarly.

As noted by Onsager [141] the linearization of the Boltzmann form distribution in
the Debye-Hückel treatment of screening is indeed necessary to obtain a self-consistent
theory [95]. An extensive discussion of Coulomb screening effects in material science
applications can be found in [18].

2.7 Membrane permeation

Membrane permeation is a more general problem than metal oxidation in the sense that
two environments of the membrane can be chosen freely, but it is substantially less
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complicated because unlike in the scale growth problem the position of the interfaces
is typically fixed. However, in this work scale growth is typically considered under
conditions of steady-state growth and under such conditions membrane permeation and
scale growth are similar phenomena from a modelling point of view.

A recent series of oxygen permeation experiments on polycrystalline ↵-Al2O3

membranes [83, 84] has provided new insight into grain boundary diffusion in alumina,
a material whose diffusion properties have been investigated since decades [68, 70, 71].
The experimental results will be summarized briefly in the following section.

2.7.1 Alumina membrane oxygen permeation experiments

The permeation rates of oxygen through a polycrystalline membrane of alumina have
been reported in the literature [83, 84], and cover a range of oxygen partial pressures.
Scanning Electron Microscope (SEM) imaging of the films prepared under different
applied pressures strongly suggests that mass transfer occurs along grain boundaries.
The thermodynamic driving force in these experiments is the difference in the oxygen
chemical potential between the two membrane surfaces �µO2

= kBT ln
�
P II

O2
/P I

O2

�
.

Figure 4.4 shows a schematic of membrane permeation experiments.

FIGURE 2.4: Schematic of the membrane permeation experiments where mass transfer
occurs by grain boundary transport. Different oxygen gas partial pressures, P I

O2
and

P II
O2

, are applied on the surfaces. RI
s and RII

s denote the interfacial reactions.

The experiments included nominally pure ↵-alumina polycrystals [84, 188], doped
↵-alumina polycrystals [85, 115–117], and nominally pure ↵-alumina bicrystals [114],
with temperatures of ⇠ 1700 � 2000K. A simple analysis of the permeation rate data
in reference [84], assumed a model of one-dimensional, steady-state diffusion, in which
either Al or O is transported by vacancy migration, depending on the absolute magni-
tude of the applied oxygen pressure.
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In the non-doped polycrystalline alumina experiments [84], when applying high
oxygen pressures at surface (II), P hi

O2
= 10

3
�10

5 Pa, while keeping surface (I) at P I
O2

=

1 Pa, grain boundary ridges formed on the P hi
O2

surface and grain boundary trenches were
observed on surface (I). Applying a low oxygen pressure at surface (II), P lo

O2
= 10

�5
�

10
�8 Pa, while keeping surface (I) at P I

O2
= 1 Pa, no grain boundary ridges are formed

and only grain boundary trenches are observed. Since the oxygen permeation rates of a
single-crystal alumina wafer were below the measurable limit and as the visible surface
growth and ‘dissolution’ proceeds at grain boundaries it is reasonable to assume that
grain boundaries dominate the transport [84]. The oxygen permeation rates, P , for fixed
P I

O2
= 1 Pa were found to follow distinct power laws [84]; in the limit of PO2

= P hi
O2

at
(II),

P ⇠ P 3/16
O2

, (2.50)

and in the limit of PO2
= P lo

O2
at (II),

P ⇠ P�1/6
O2

. (2.51)

The power laws and the pressure dependent formation of the grain boundary ridges
have led to the interpretation of the experiments in terms of, aluminum vacancy trans-
port being dominant in oxygen chemical potential gradients with high oxygen pressure
magnitude, P II

O2
= P hi

O2
, and oxygen vacancy transport being dominant in the case of

P II
O2

= P lo
O2

.
Indeed, the rational power laws appear in the theory as a direct consequence of the

+3 and -2 ionic charges of the ions, assuming that the negative of these charges is carried
by each vacancy, with a counter-current of electrons or holes, and no time-dependence
of the fluxes (the steady-state assumption) or net local charge densities within the grain
boundaries. These assumptions are discussed further in section 3.4.1. Furthermore,
only aluminum vacancy transport can lead to ridge formation, which is observed by
SEM imaging in the case of P II

O2
= P hi

O2
, supporting the above interpretation. The

switch-over in dominant point defect species in the grain boundary has been termed
‘p� n transition’ in the literature [70, 71].

The diffusion coefficients determined from alumina bicrystal experiments with
P II

O2
/P I

O2
= 10

5 Pa/1 Pa for several distinct grain boundary types have been found com-
patible with those measured in polycrystalline samples [114]. The bicrystal diffusion
coefficients were calculated from the grain boundary ridge volume and a caveat regard-
ing this approach is that the formation of the ridges on the P hi

O2
side does not necessarily
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imply an exactly equivalent mass transport from the opposite side of the membrane,
since oxide can be displaced by formation of internal pores in the subsurface region
of the crystals, as has indeed been observed in some polycrystal permeation experi-
ments [116].

The above level of analysis leaves several open questions, e.g. does the grain
boundary diffusion mechanism, with the associated inhomogeneity of fluxes and electric
fields, map accurately onto a 1D diffusion problem? And what are the magnitude and
roles of the surface and interface charges, the electric fields, currents, space charges,
and transients that are all believed to be present in a three-dimensional film, traversed
by grain boundaries?

These questions are addressed in chapter 3, where the transport of oxygen through
a planar film with an idealized grain structure is studied. In the novel model presented
the grains are supposed to be columnar, with identical and perfectly hexagonal cross
sections, see figure 3.1. A set of coupled reaction-diffusion equations is used to model
the oxygen permeability across the membrane, the model is described in section 3.2,
and the results obtained for the model alumina membrane are found in section 3.4.
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The hexagonal cell model

3.1 Introduction

Thin films of insulating material at metal – gas and metal – liquid interfaces accomplish
a range of service functions in materials technology. Common examples are functional
ceramics in electronics, energy related applications and sensors. Thin films formed by
surface oxidation of a metal can have either beneficial or corrosive effects. Alumina
and chromia formed by thermal oxidation are examples of protective oxide films, which
find application in thermal barrier coatings, and can be engineered for durability by
additions of rare earth elements [37, 130, 142, 168]. They can also grow in an un-
controlled manner, adhering weakly to the metal and allowing corrosion to proceed.
While the slowest process is rate-determining for consecutive processes, like dissoci-
ation of oxygen molecules and their transport through the oxide, the fastest process is
rate-determining for parallel processes, like bulk and grain boundary diffusion through
the oxide.

The measured oxygen and aluminum diffusion coefficients in ↵-alumina are found
to be several orders of magnitude greater at the grain boundaries than in the bulk mate-
rial [68, 69, 71]. The fact that grain boundaries provide the dominant transport mecha-
nism underlines the importance of including their geometric and transport properties in
a realistic model of the process. Oxides grow in various polycrystalline or even amor-
phous structures during metal oxidation. In dry high-temperature oxidation columnar
grain structures are frequently found. In the model presented here the granular structure
of a film, scale or membrane is idealized as a 2D periodic pattern of hexagonal cells.
Since vacancies in strongly ionic oxides such as alumina or chromia are charged species
relative to the perfect crystal, the fluxes of these species carry an electric current, which
in the usual scenario of steady-state growth is not sustainable, unless compensated by

31
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an equal and opposite current of electrons or holes, as described by the classic model
of Wagner [2, 189]. The prediction of the growth behaviour of thin films, and its in-
fluence on the material or device performance, requires us to describe the mixed ionic,
electronic transport through the films, while taking their grain boundary structure into
account.

Because of the widespread importance of alumina films [31], and since it is a rel-
atively well characterized material, the focus here is on alumina films for the validation
of our modelling approach. Moreover, a recent series of permeation experiments for
↵-alumina polycrystalline membranes, e.g. [84], conducted for different combinations
of applied oxygen gas pressures at high temperatures, provides an ideal test case for our
transport model. The chapter is organized as follows.

In section 3.2, the model is defined; its geometry, and the mathematical formula-
tion of the transport and the reaction boundary conditions are described. In section 3.3,
the numerical solution technique and the computational implementation are summa-
rized.

In section 3.4, the hexagonal cell model is applied to membrane oxygen perme-
ation experiments and the simulation results are compared to the experimental results
that have been summarized in chapter 2 section 2.7.1.

In section 3.5, the model is extended to include internal oxidation and the con-
sequential generation of stress at the grain boundaries. Related experimental findings,
modelling approaches, and the essential theoretical background for a thermodynamic
description of stressed solids are provided in sections 3.5.2, 3.5.4, and 3.5.3, respec-
tively.

The model and the results presented in section 3.4 have been the subject of a
publication by the present author [175].

3.2 The model

The model is expected to be applicable to different granular materials and is particularly
suitable to investigate transport in films with columnar grain structure. The model is
applied here to investigate membrane permeation and metal oxidation but should also
be readily adaptable to problems such as transport in solid state electrodes. Within the
hexagonal cell geometry, which is discussed below, grain boundary transport through
the film of charged point defects, electrons, and holes is simulated, while reactions with
the environment constitute the boundary conditions.
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3.2.1 2D-periodic hexagonal prism grain structure

The columnar grains are idealized as hexagonal prisms, with the rectangular faces de-
noting the grain boundaries, see figure 3.1. The hexagonal prisms are periodically re-
peated to construct a slab of infinite extent in two dimensions.

FIGURE 3.1: Section of the slab with thickness, L, composed of hexagonal cells of
side length, ahex.

Transport through the slab is presumed to be dominated by that through the rect-
angular grain boundaries, located at the interfaces between the cells. The grain bound-
aries are assumed to be composed of a very thin homogeneous and isotropic medium of
finite width �. The width of the boundary is not a physical width, but rather a theoretical
construct, which allows concentrations to be expressed per unit of volume or per atomic
site rather than per unit of area.

From the symmetry of the system only the ‘irreducible zone’ of the hexagonal
cell, shown in figure 3.2, needs to be considered as a domain for calculation. It includes
a triangular piece of the surface hexagon and half of a grain boundary rectangle. The
2D-periodic tiling enables an explicit calculation of the long-range Coulomb interaction
between the charged point defects.

3.2.2 Grain-boundary transport

The point defect concentrations within the boundary are assumed to be continuous func-
tions of space and time. Based on the local equilibrium hypothesis the electrochemical
potential, ⌘s, of point defects, and electrons or holes of species ‘s’, is given by

⌘s(r, t) = µs(r, t) + zse0 �(r, t) (3.1)
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where, µs is the chemical potential of species s, � is the electrostatic potential, zs is the
charge (integer number), e0 is the positive elementary charge, and r is the position vec-
tor. As discussed in section 2.6, the particle flux due to a gradient in the electrochemical
potential may be written as,

Js = �
Dscs
kBT

r⌘s (3.2)

which in the ideal solution approximation [15] is equivalent to

Js = �Dsrcs �
Dscszse0
kBT

r� (3.3)

where Ds is the diffusion coefficient, and cs(r, t) is the concentration (number per unit
volume) of species s. Equation 3.3 is referred to as the Nernst-Planck flux, and com-
bines Ohm’s law of conduction and Fick’s law of diffusion. It is used here as the con-
stitutive equation for the description of the point defect transport; magnetic field effects
are not considered.

The local charge density is given by

⇢(r, t) =
X

s

zse0 cs(r, t) (3.4)

where the sum is performed over all charged species present. The instantaneous electro-
static potential can be calculated from the charge density by solving Poisson’s equation,
which is given here in integral form for a linear dielectric material,

�(r, t) =
1

4⇡"0"r

Z

V

⇢(r0, t)

|r � r0|
d3r0 (3.5)

where "0 and "r are the vacuum and relative permittivity respectively, and the domain
of integration V of the ‘Coulomb integral’ includes the entire system, in which charge
densities are non-zero within a slab of infinite extent in two dimensions, composed
of identical hexagonal cells and their surfaces. Overall charge neutrality holds for the
domain V, at any instant of time

Z

V
⇢(r, t)d3r = 0. (3.6)

The continuity equations for the individual species are given by

@

@t
cs = �r · Js +Rs (3.7)
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where a reaction term, Rs, has been added to enable processes such as electron and hole
recombination within the grain boundary to be described. The continuity equations for
the different mobile species are used in the simulations to evolve the defect concentra-
tions in time; they are solved self-consistently with the equation for the electrostatic
potential 3.5, which depends on the charge density ⇢(r, t).

To model coupling effects in the species transport the dynamics could be formu-
lated in terms of linear irreversible thermodynamics [139, 146], but this theory does not
provide explicit expressions for the constitutive equations including the transport coeffi-
cients. The linear constitutive equations, like Fick’s first law, have a phenomenological
basis; however, they can also be thought of as laws of inference based on probability
theory [55].

The equations describing time-dependent diffusion of ions, electrons and holes
through a polycrystalline film, driven by electric fields and defect concentration gradi-
ents, cannot be solved analytically in general, and numerical methods must be applied.
Models including numerical computations to describe transport through films have been
developed for homogeneous films [10, 13, 50], for which a one dimensional model may
be a suitable approximation. The symmetry of the present model of idealized columnar
hexagonal grains is used to reduce the problem to 2D boundary diffusion along the rect-
angular boundaries of the hexagonal grains, while explicitly taking account of the long-
ranged electrostatic interactions between the charged species within the 3D structure.
In order to be able to describe transient behaviour and time-dependent environments,
time-dependent boundary conditions are taken into account, but the movement of the
boundaries is neglected. This means surface charges can build up or be depleted as a
function of time, due to the reactions with oxygen in the environment, in our case a
prescribed oxygen partial pressure, and the delivery of charged species to the surfaces
from the grain boundaries.

The system of equations used in our model to describe the fluxes of point defects,
electrons and holes and their Coulomb interaction, see also section 2.6, is mathemati-
cally equivalent to the drift-diffusion (DD) equations applied in semiconductor device
simulations for electron and hole transport [112, 158], and to the Poisson-Nernst-Planck
(PNP) system, which is used for ion channel simulations [33, 34] and other electrochem-
ical applications [12]. Unlike most computational methods of solution for the DD and
PNP equations, which solve the Poisson equation in differential form and often only
consider the steady-state solution, the solution method developed here allows for time-
dependent calculations and the Poisson equation is solved in its integral form, taking
into account the long-range Coulomb interaction within the 3D structure.
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3.2.3 Time dependent boundary conditions

The boundary conditions are formulated to describe oxide creation and dissolution at
the slab surfaces by reaction with the environment. We refer to our system, which
includes its upper and lower surfaces, as ‘the slab’. The thin surface layers of the slab
are treated as a homogeneous and isotropic medium of thickness �. The flux of defects
between the surfaces and the grain boundary, and the reactions between the slab and
the environment, change the concentrations of species s in the surface layers, Cs, as
expressed by

Z

VTRI

@Cs
@t

d3r =

Z

AGB

Js · n̂ d2r +

Z

VTRI

Rs d
3r. (3.8)

Reactions between the slab surface and the environment produce species s in the surface
layer at a rate Rs. The unit normal, n̂, and the integration domains are defined in
figure 3.3. Equation 3.8 holds for all species ‘s’ and separately for the surfaces (I) at
x3 = 0 and (II) at x3 = L.

Assuming transport to be much faster across the surface than between surface and
grain boundary, uniform defect concentrations are used on the surfaces. This leads to
the following simplification of equation 3.8

@

@t
Cs =

1

VTRI

Z

AGB

Js · n̂ d2r +Rs (3.9)

which is used as the boundary condition in the simulations reported below. If the sur-
face transport mechanism and parameters are known it is straightforward to relax the
above assumption.

No separate boundary condition is needed for the electrostatic potential since it
is calculated by a summation technique, only requiring the instantaneous charge distri-
bution as a function of position. The reaction rates in the grain boundary, Rs, and on
the surface, Rs, depend on the application of the model. For the present purpose of
describing the alumina permeation experiments the rate equations are derived with the
law of mass action, and discussed in more detail in section 3.4.2.1. The application to
oxide scale growth will require a separate boundary condition at the interface between
oxide and metal.

The initial conditions also depend on the application. For the oxygen permeation
experiments they are discussed in section 3.4.3.1.
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FIGURE 3.2: Irreducible zone of the
hexagonal cell. The grain boundary
rectangle, enclosed by ABCD, is in-
dicated. The coordinate system is de-

fined.

FIGURE 3.3: Exploded-
view of the irreducible
zone of the hexagonal
lattice defining the sur-
face and grain bound-
ary domains. The grain
boundary thickness, �,
which is equal to the
surface layer thickness,
�, the grain boundary
cross-section, AGB, the
outward pointing unit
normal, n̂, and the vol-
ume of the surface tri-
angle, VTRI, are indi-
cated. Drawn out of
proportion, since in gen-

eral � ⌧ ahex.

3.3 Method of solution

An object oriented C++ code has been developed to solve the system of coupled par-
tial differential equations 3.3, 3.7, and 3.9, self-consistently with the Coulomb integral,
equations 3.4, and 3.5, which is approximated by the summation technique described in
section 3.4.4. Since the system of equations is nonlinear, involves vastly different rates
in the diffusion processes and the reactions, and involves different length scales char-
acterized by the Debye length, defined below, and the system size, this is a challenging
computational problem.
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3.3.1 Dimensionless equations

To obtain dimensionless equations for the numerical calculations the variables, param-
eters, and fields are scaled as follows [158]:

r =
1

L
er, Ds =

1

Dref

eDs, cs(r, t) =
1

cref
ecs,

t =
Dref

L2
et, �(r, t) =

e0
kBT

e�,
(3.10)

where L is the thickness of the scale; Dref = max{Ds} is the largest diffusion coefficient
for all species; cref is a suitable reference concentration; and e0 is the elementary positive
charge. To avoid unnecessarily heavy notation, the original quantities were denoted with
the ‘tilde’ mark over the symbol in the definition of the scaling, and the dimensionless
quantities without the tilde are used in the following.

With the scaling defined by equations 3.10, the system of transport equations and
the Coulomb integral can be brought into dimensionless form

@

@t
cs = �r · (�Dsrcs �Dszscsr�) (3.11a)
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P
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d3r0 (3.11b)

where the dimensionless parameter, ,

 =
`D

L
, `D =
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◆1/2

(3.12)

and the reference screening length, `D, are introduced. L denotes the thickness of the
slab, see figure 3.1. The Debye screening length is defined by

�D =
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"0"rkBT
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s z
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sc

0
s

◆1/2

(3.13)

where c0s are the spatially uniform concentrations obtained in the limit of T ! 1, while
holding the total number of each species, Ns, constant. In the application considered
in this work the oxygen gas chemical potentials are fixed at the surfaces, the concentra-
tions, cs(r, t), are independent variables, and the total number of each species depends
on time, Ns(t); however, cref is chosen such that `D has similar magnitude to �D, and `D

is therefore referred to as the reference screening length.
Overall charge conservation and zero total charge within the system are main-

tained during the evolution of the concentrations, while charge is redistributed within
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the grain boundary and moved in or out of the surfaces by the fluxes.

3.3.2 Discretization of the transport equation

The finite difference method is used to discretize the continuum equations in space
and time [94, 158]. For the spatial discretization a rectangular mesh is used, and it
covers the irreducible zone of the hexagonal cell, indicated in figure 3.2. The concen-
trations and electrostatic potential at mesh node (i, j) at position r(xi

1
, xj

3
) in the grain

boundary (x2 = 0) and discrete time tn are denoted by, cs(xi
1
, xj

3
, tn) = ci,j,ns , and

�(xi
1
, xj

3
, tn) = �i,j,n, respectively, where i = 1, 2, ..., N1 and j = 1, 2, ..., N3.

The mesh spacings near the surfaces need to be significantly smaller than the ref-
erence screening length to resolve the behaviour near the surfaces correctly. However,
the whole grain boundary cannot be meshed with such a fine spacing in the ê3 direction,
because the summation technique used for calculating the Coulomb interaction would
become too computationally expensive. Therefore, a layer-adapted mesh is used in the
ê3 direction.

The Nernst-Planck flux in equation 3.3 is approximated with the Scharfetter-
Gummel discretization scheme [154]; in one dimension for fixed j it is given by

J i+1/2,j,n
s =

�Ds
ci+1,j,n
s B (�zs��i,j,n

)� ci,j,ns B (zs��i,j,n
)

�xi
1

(3.14)

where J i+1/2,j,n
s is the flux of species s between node i and i + 1 at time tn, �xi

1
=

xi+1

1
� xi

1
is the length of the interval, ��i,j,n

= �i+1,j,n
� �i,j,n is the potential differ-

ence between the mesh nodes at time tn, and B(x) = x/(exp(x) � 1) is the Bernoulli
function [158]. For the time stepping the continuity equation 3.7 is discretized in im-
plicit form,

ci,j,ns � ci,j,n�1

s +
�tn
�xi

1

�
J i+1/2,j,n
s � J i�1/2,j,n

s

�
+ (3.15)

�tn

�xj
3

�
J i,j+1/2,n
s � J i,j�1/2,n

s

�
��tnR

i,j,n
s = 0

where �xi
1
= (�xi

1
+ �xi�1

1
)/2, �xj

3
= (�xj

3
+ �xj�1

3
)/2, and �tn = tn � tn�1.

The initial time step, �t1, is chosen such that the discretizations in space and time have
a similar order of accuracy, hence �t1 ⇡ (�xmin)

2 where �xmin denotes the smallest
mesh element. �xmin is chosen to have the same size as the surface layer thickness,
� = 1 nm, and for a film thickness of L = 1µm the smallest mesh element is given
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by �xmin = 10
�3 in units of the film thickness, L. Therefore, typically �t1 = 10

�6

and the time step is subsequently increased adaptively, to improve efficiency of the
procedure while ensuring convergence at each time step. The maximum time step is
typically �tmax ⇠ 0.1 which allows calculations to be performed long enough to reach
steady-state conditions without the need for exceptional computational resources.

3.3.3 Calculation of the long-range Coulomb interaction

Since the functions cs(r, t) are discretized in space and time the Coulomb integral in
equation 3.11b can be approximated with a summation technique. In this section the
concentration at the mesh nodes is abbreviated as cs(rj, tn) = cs(x

j1
1
, xj2

2
, xj3

3
, tn) = cj,ns ,

with the composite index j = (j1, j2, j3), and in the same way cs(ri, tn) = ci,ns . The
volume element corresponding to mesh node j is denoted by, ⌫j . The charge density in
the volume, ⌫j , around mesh node j is turned into a point charge, qj,n =

P
s zs c

j,n
s ⌫j ,

placed at position rj . With this definition the Coulomb integral is converted into the
Coulomb sum

�(r, tn) = �2

VX0

j

P
s zs c

j,n
s ⌫j

|r � rj|
(3.16)

where �(r, tn) is still a continuous function of space, and it can only be evaluated at the
discrete times, tn, since the cj,ns are only known at discrete times tn. The prime indicates
that the possible term r = rj is excluded from the summation. The summation index
j runs over all volume elements of the infinite slab, and since the potential decays
with r�1, the sum is only slowly and conditionally convergent; it cannot be trivially
truncated. Therefore, the Parry summation technique [143, 144], which is an Ewald
summation technique for 2D periodic systems, is used. In this technique the sum is
split into a real and a Fourier (reciprocal) space part, the short-range interactions are
evaluated in real space and the long-range interactions are evaluated in Fourier space.
The advantage is rapid convergence compared to the direct summation.

The rhombus shown in figure 3.4 is defined as the repeat unit of the 2D periodic
tiling, and the rhombohedral prism shown in figure 3.5 is a repeat unit of the infinite
slab, used to carry out the Parry summation. The symmetry of the hexagonal prism,
with distinct hexagonal surfaces on the top and bottom surface, is used to increase the
computational efficiency of the evaluation of the Coulomb sum.
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FIGURE 3.4: A 2D re-
peat unit of the hexag-
onal tiling used in the
simulations. The shaded
area is the irreducible
zone of the surface, re-
ferred to as the surface

triangle.

FIGURE 3.5: A 3D
repeat unit of the infi-
nite slab, seen in plan
view in figure 3.4. The
shaded planes indicate
the grain boundaries
within the repeat unit.

During a calculation the charge density changes with time and the potential needs
to be updated with the changing charge density; however, the geometry of the hexagonal
structure and the mesh do not change. Therefore, the Parry summation is performed
only once, at the beginning of the calculations, to determine the Green’s function for
the given mesh and periodic cell structure. The Green’s function is calculated for unit
charges on the individual mesh nodes, and is stored as a matrix, gij , for the nodes of
the irreducible zone, where gij denotes the potential at node i due to a unit charge and
all its images, generated by symmetry and periodicity, at node j. During the time-
dependent calculations, the potential is calculated by summing the discretized charge
density, multiplied by the Green’s function, over the nodes of the irreducible zone,

�(ri, tn) =
X

j

qj,ngij . (3.17)

This strategy greatly reduces the computational cost of evaluating the Coulomb integral.
A stretched mesh with variable mesh spacings, which are different in the ê1 and ê3

direction, is found to lead to divergence problems when performing the summation over
the point charges, qj,n. Therefore, ‘Gaussian smearing’ is used for the charge densities
at the individual mesh nodes. The local charge density at mesh node j and discrete time
tn, ⇢(rj, tn), is replaced by a normalized Gaussian distribution

⇢g(r, rj, tn) = ⇢(rj, tn)

✓
�

⇡

◆ 3

2

exp(��|r � rj|
2
) (3.18)

where � = (2�2
)
�1 and � is the width of the Gaussian centered around rj . With the
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Gaussian distribution the electrostatic potential contributed by the charge density corre-
sponding to mesh node j takes the form

�g(r, rj, tn) = �2
qj,n

|r � rj|
erf(
p

�|r � rj|). (3.19)

In the limit of |r � rj| ! 0 the electrostatic potential contributed by the charge density
centred on mesh node j itself becomes

�g(|r � rj| ! 0, tn) = 2�2

✓
�

⇡

◆ 1

2

qj,n, (3.20)

which has to be added to the potential at this node generated by all the other charges
in the system. The width � of the Gaussians is chosen to be that of the smallest mesh
spacing in the slab.

3.3.4 Iterative solver for the self-consistent calculations

A multidimensional Newton method is used to solve the nonlinear system of discretized
equations, including the continuity equations for all species on all mesh points, their
boundary conditions, and the Coulomb summation to obtain the self-consistent electro-
static potential value at each mesh point. Depending on the number of mesh points and
the number of species the system, which needs to be solved in every time step, can con-
tain several thousand variables. Therefore, the Jacobian-Free-Newton-Krylov (JFNK)
method from the NOX package of the Trilinos Project [66] is used. JFNK methods are
nested iteration methods and can achieve Newton-like convergence without the cost of
forming and storing the true Jacobian required for ordinary Newton methods [86].

3.4 Diffusion of oxygen through an alumina membrane

Oxygen membrane permeation or diffusion through an oxide film is a non-equilibrium
process, involving oxygen exchange and electron transfer reactions at the oxide surfaces
and the transport of defects between the surfaces.

3.4.1 1D analytic model for the permeation rate

The 1D analytic model and its derivation is discussed in more detail in chapter 4 sec-
tion 4.3.2. The given derivation the oxygen permeation rate emphasizes the role of the
electric field for the establishment of approximately stoichiometric proportions for the
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dominant vacancy and electronic species of the surface concentrations, Cs, which de-
termine the permeation rate, and the appearance of an effective (ambipolar) diffusion
coefficient, see also section 4.3.2.2, in the presence of the self-consistent electric field.

The concentrations of the defect species on the surfaces exposed to the oxygen gas
environment, characterized by the oxygen partial pressure and the temperature, evolve
over time and depend on the reactions taking place and the transport to and from the
surfaces. At the oxide – gas interface the absorption (desorption) of oxygen and creation
(annihilation) of aluminum vacancies can be described by

1

2
O2(g) + 2e

kAl,f⌦
kAl,b

O
⇥
O
+
2

3
V

3-

Al
. (3.21)

For the purpose of a simple analytical treatment it is assumed that a steady-state is
reached at the surfaces, in which Schottky and electron-hole equilibrium, see reac-
tions 3.35 and 3.36, characterized by the equilibrium constants KS and Keh, respec-
tively, are attained. The reaction 3.21 could be formulated with holes instead of elec-
trons, however, assuming instantaneous equilibration between electrons and holes both
formulations yield identical results. At high applied oxygen gas partial pressures, alu-
minum vacancies are formed predominantly at the surface and oxygen vacancies are
annihilated, with the reverse scenario applying for low oxygen partial pressures. Since
instantaneous Schottky equilibration is assumed at the surfaces no additional reaction
is required involving oxygen incorporation by oxygen vacancy annihilation. In reac-
tion 3.21 for P hi

O2
applied electrons are consumed by the oxygen atoms creating oxygen

sublattice sites and aluminum vacancies, and due to the electron hole equilibration the
concentration of holes increases simultaneously; therefore, in the limit of P hi

O2
applied,

aluminum vacancies and holes are the dominant species on the P hi
O2

surface. Similarly,
oxygen vacancies and electrons are expected to dominate on a P lo

O2
surface. The electric

field due to the charged defect species modifies the transport to and from a particu-
lar surface in such way that local charge neutrality holds approximately between the
dominant vacancy species, ⌫, and the charge compensating electronic species, ⌫, on the
surface

|z⌫ |C⌫ ' C⌫ (3.22)

where the {⌫, ⌫} pair denotes {V3-

Al
, h} at high oxygen partial pressure, and {V

2+

O
, e} at

low oxygen partial pressure. This approximation does not hold in general for intermedi-
ate pressures, or if the vacancies are much more numerous than the electronic defects in
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equilibrium. Applying the law of mass action to the reaction given in 3.21 with equilib-
rium constant KAl, together with Schottky and electron hole equilibrium at the surfaces,
the concentration of the dominant vacancy species, ⌫, is found to adhere to the simple
power law given by

C⌫ = f⌫ P
n⌫

O2
(3.23)

n⌫ =
�z⌫

2|zO| (|z⌫ |+ 1)
(3.24)

f⌫ =

⇣
|z⌫ |

�|z⌫ | K3�|z⌫ |
S K |z⌫ |(|z⌫ |�2)

eh K�z⌫/2
Al

⌘ 1

|z⌫ |+1 (3.25)

where zO is the integer charge number of the oxygen ion, z⌫ is the charge of the dom-
inant vacancy species, and the power law exponent, n⌫ , which in our case takes the
values, n

V
2+

O

= �1/6 and nV3-

Al

= 3/16, and the prefactor, f⌫ , are introduced. It is
noteworthy that the realisation of these power laws in the experiments supports the
model of vacancies carrying nominal ionic charges, not the fractional charges that are
usually estimated in electronic structure calculations, which typically vary from 1.0 to
1.6 in DFT calculations for oxides [11, 32]. It is also far from obvious that simple
point defect diffusion, well understood in bulk crystals, is the mechanism of diffusion
in grain boundaries, in which the prefactors of diffusion coefficients are anomalously
large [59, 68].

In general, the flux of aluminum ions, JAl implies the take up or release of |3JAl/4|

molecules of O2 per unit time and unit area of surface, and the opposite flux of oxygen
ions leads to |JO/2| molecules O2 taken up or released. The ionic charges have the
opposite sign and the fluxes have the opposite sign due to their different gradients,
therefore the permeation rate in molecules of oxygen per unit area per second is given
by

P =

����
3

4
JAl

����+
����
1

2
JO

���� =
1

4e0
|Iion|,

and hence by using Iion = Ivac

P =
1

4e0
|Ivac| (3.26)

where the current density carried by the ions, Iion, and vacancies, Ivac, represent the same
physical current density, which has to be balanced by the electron and hole currents.

To interpret and compare with the results of our fully time-dependent approach,
a simple one-dimensional steady-state model is introduced, the derivation of which is
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given in chapter 4 section 4.3.2. By considering only the flux of the dominant vacancy
species, denoted by suffix ⌫, and its charge-compensating electronic species, ⌫:

Ivac ' I⌫ , (3.27)

the permeation rate is approximated by

P =
|z⌫ |

4
Deff

⌫

|C
II
⌫ � C

I
⌫ |

L
, (3.28a)

Deff
⌫ =

D⌫D⌫

D⌫ |z⌫ |+D⌫
(|z⌫ |+ 1). (3.28b)

Using equation 3.23 the permeation rate can be written as

P =
|z⌫ |

4
Deff

⌫ f⌫
|
�
P II

O2

�n⌫
�
�
P I

O2

�n⌫
|

L
(3.29)

where again n
V

2+

O

= 3/16, and nV3-

Al

= �1/6. Equation 3.29 shows that the permeation
rate becomes a power law only for

�
P II

O2

�n⌫
�
�
P I

O2

�n⌫ . It is also worth noting that
the permeation rate is not proportional to the oxygen pressure difference across the
membrane, but rather to the difference in the vacancy concentration between the two
surfaces.

The oxidation rate ‘J’ of aluminum in atoms per second per unit area in terms of
the permeation rate of oxygen in molecules per second per unit area is given by

J =
2

3
P . (3.30)

We can compare the above results with the Wagner theory [2, 62, 189], in which
the oxidation rate is given by

J =
1

|zAl|z2Oe
2

0

Z II

I

(�
V

2+

O

+ �V3-

Al

)(�h + �e)

�
V

2+

O

+ �V3-

Al

+ �h + �e
dµO (3.31)

where zAl is the aluminum ion charge and µO is the internal oxygen chemical po-
tential. By assuming that the conductivity of the dominant vacancy species, �⌫ =

D⌫c⌫z2⌫e
2

0
/kBT , is much larger than that of the other vacancy species, and similarly

for the dominant electronic species, ⌫, the oxidation rate simplifies to

J =
1

|zAl|z2Oe
2

0

Z II

I

�⌫�⌫

�⌫ + �⌫
dµO . (3.32)



CHAPTER 3 46

Applying the charge neutrality approximation to this equation and considering rela-
tion 3.30 the permeation rate given in equations 3.28 follows, which makes our 1D
model consistent with the Wagner theory. The derivation of this form of the Wagner
theory, however, requires Schottky and electron-hole equilibrium at any position in the
film or scale,

3µ
V

2+

O

+ 2µV3-

Al

= 0 and µe + µh = 0 (3.33)

neither of which is enforced in our treatment. Strictly speaking, the above conditions
only need to be met by the spatial variations of the chemical potentials, but if equa-
tions 3.33 hold at the surfaces both formulations are equivalent and there is no arbitrary
additive constant.

Equations 3.28 are equivalent to the formulas given by [84] for the permeation
rate in the limit of D⌫ ⌧ D⌫ . However, the details of the derivation are different such
as the assumption of purely conductive transport of electrons and holes, Is = ��sr�,
which is made in [84].

3.4.2 Time-dependent 3D calculations

In the calculations within the hexagonal slab model transport of vacancies is simulated
for the 3D grain structure and grain boundaries with finite width �. The time-dependent
calculations prove to have a similar steady-state limit to the 1D model described above,
in which the fluxes and current densities are constant as a function of the position in
the grain boundary. The vacancy flux is calculated directly from the concentration and
electrostatic potential gradients, and the permeation rate follows from equation 3.26.
Before the steady-state is achieved, an average permeation rate can be calculated by
numerical integration of the vacancy flux through the grain boundary, which converges
faster to the steady-state permeation rate than the permeation rate calculated from the
vacancy fluxes on individual mesh nodes.

3.4.2.1 Reaction equations

Exchange of oxygen between the gas phase and the oxide surface includes multiple
steps, namely adsorption, dissociation, surface diffusion, charge transfer, and incorpo-
ration into the oxide surface, each of which might be the rate limiting step. In the simu-
lations the assumptions of instantaneous equilibration between the vacancy species in-
ducing the Schottky equilibrium, and the instantaneous equilibration between electrons
and holes are relaxed, and the respective processes are formulated with rate dependent
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reaction equations. In addition to the oxygen incorporation mechanism given in 3.21,
oxygen absorption (desorption) by annihilation (creation) of an oxygen vacancy is con-
sidered

1

2
O2(g) + V

2+

O

kO,f⌦
kO,b

O
⇥
O
+2h. (3.34)

The Schottky reaction is included at the alumina – oxygen gas surfaces

Nil
kS,f⌦
kS,b

2

3
V

3-

Al
+V

2+

O
. (3.35)

Electron and hole recombination and generation,

Nil
keh,f⌦
keh,b

e + h, (3.36)

is considered at the grain boundary and on the surfaces.
In this application the surface reactions, Rs, depend on the time-dependent sur-

face concentrations, CI/II
s (t), and the oxygen partial pressures, P I

O2
or P II

O2
, on the re-

spective surfaces, (I) or (II), and the reaction rate constants, ki,f and ki,b

R
j
s

⇣
{C

j
s(t)};P

j
O2
, {ki,f}, {ki,b}

⌘
(3.37)

s 2 {V
2+

O
,V3-

Al
, e, h} species

i 2 {O,Al, S, eh} see reactions 3.34, 3.21, 3.35, and 3.36

j 2 {I, II} surface index

The law of mass action is used to derive expressions for the reactions Rs, and Rs. The
coupled system of reactions, Rs, at the alumina - oxygen gas surfaces, is used for the
boundary conditions of the transport equations. The equations are provided in what
follows and they describe reactions that may proceed in either direction, depending on
the species concentrations and the oxygen gas pressure applied.

Applying the law of mass action to the reactions, 3.34, 3.21, 3.35, and 3.36 yields

RO = kO,b

⇣
KO P 1/2

O2
C
V

2+

O

� C
2

h

⌘
(3.38)

RAl = kAl,b

⇣
KAl P

1/2
O2

C
2

e
� C

2/3
V3-

Al

⌘
(3.39)

RS = �kS,b

⇣
C
2/3
V3-

Al

C
V

2+

O

�KS

⌘
(3.40)

Reh = �keh,b(Ce Ch �Keh) (3.41)
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and the coupled system of reactions at the alumina – oxygen gas surfaces can be written
as

R
V

2+

O

= �RO +RS RV3-

Al

= RAl +
2

3
RS (3.42a)

Rh = 2RO +Reh Re = �3RAl +Reh (3.42b)

3.4.3 Simulation results

Results are presented here to address some of the questions posed in section 2.7.1 of the
introduction, regarding the membrane experiments [84] and their interpretation with
1D diffusion models based on the Wagner theory. Time dependent calculations are
performed and characteristic aspects of the dynamics are highlighted and explained. A
permeation calculation reproduces the power laws found in [84].

3.4.3.1 Initial conditions and choice of parameters

The system at t = t0 is assumed to be of strictly stoichiometric composition, 2c
V

2+

O

(t0) =

3cV3-

Al

(t0), and the set of initial values of the concentrations, {cs(t0)}, and {Cs(t0)}, is
assumed to be in equilibrium with oxygen partial pressure P eq

O2
, which is defined as the

reference pressure so that only ratios PO2
/P eq

O2
enter the equations. The initial concen-

trations in the surface layer and in the grain boundary are chosen to be equal, cs = Cs,
and independent of the position in the grain boundary and on the surface. This choice
also constrains the electron and hole concentrations, ce(t0) = ch(t0), in order for overall
charge neutrality to be maintained. The initial values for the concentrations, cs(t0), are
used to specify the equilibrium constants, Ki, of the reactions, which are also related to
the reactions rates

Ki = exp

✓P
s wi,sµ0

s

kBT

◆
=

Y

s

cwi,s
s (t0) =

ki,f
ki,b

(3.43)

where µ0

s = �kBT ln(cs(t0)) is the reference chemical potential with cs(t0) in units of
cref, and wi,s is the stoichiometric coefficient of species s in the i-th reaction.

This choice of initial parameters only leaves undetermined the ratio of point de-
fect to electronic defect initial concentrations, which is a function of the difference
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between the vacancy formation (segregation) energy and the Fermi level. For bulk ↵-
alumina the ionic and electronic disorder has been analyzed from experimental thermo-
dynamic data [123] and more recently from first principles calculations [138]. At tem-
perature 1900K electronic disorder is found dominant for the bulk material. However,
in the absence of data for the surface and interface equilibrium defect concentrations
the aim is to justify the choice by comparison to the experimental permeation data, see
section 3.4.3.6. We expect the point defects which are favourably formed at the surfaces
and interfaces to introduce states in the band gap, and therefore assume much higher va-
cancy, electron, and hole concentrations at the surfaces, and interfaces than in the bulk
material. The reference concentration for the simulations is chosen as cref = 10

18 cm�3,
which would correspond to about 4 ⇥ 10

�5 defects per formula unit of bulk Al2O3,
and will only be reached in the high or low pressure limits. The concentrations are
initialized at t = t0 with ch = 0.1 cref, and c

V
2+

O

= 5⇥ 10
�3 cref.

For T = 1900K and with "Al2O3

r = 9.8, the reference screening length, see equa-
tion 3.12, becomes, `D = 9.4 nm. The thickness of the slab is set to, L = 1µm, the side
length of the hexagon to ahex = 1µm, the grain boundary and surface layer thickness to
� = 1 nm. The diffusion coefficients of the species are chosen as: Dh = De = 1Dref,
and D

V
2+

O

= DV3-

Al

= 0.01Dref where Dref is unknown and used to define the time scale
of the simulations. One reaction rate constant in each reaction has to be estimated and
they are set to: kO,b = 10

3, kAl,b = 10
2, and keh,b = kS,b = 10

3.

In sections 3.4.3.2, 3.4.3.3 and 3.4.3.5 calculations are discussed for which the
oxygen partial pressure is raised at surface (II), the pressure at surface (I) is kept con-
stant at P I

O2
= P eq

O2
, and the pressure ratio is given by P II

O2
/P I

O2
= 10

5. Snapshots of
the evolution at two times, tn, and tN , with tn ⌧ tN , are shown. The time tn is chosen
to capture characteristic behaviour in the initial transient, and tN is the time at which
steady-state conditions are achieved.

3.4.3.2 Evolution of the concentrations

Figure 3.6 shows snapshots of the concentrations; the coordinate system is defined in
figure 3.2. The pressure P II

O2
= P hi

O2
and the V

3-

Al
and the h concentrations are the dom-

inant species. Local charge neutrality holds approximately for the dominant species,
3cV3-

Al

⇡ ch, throughout most of the grain boundary and at surface (II) in the steady-
state tN limit but is clearly violated at surface (I).
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FIGURE 3.6: Snapshots of the concentrations of vacancies, electrons, and holes as a
function of x3 in the grain boundary plane, with fixed x1 = ahex/4, for two different

times and with P II
O2
/P I

O2
= 105. Scaled units with cref = 1018 cm�3 and L = 1µm.

3.4.3.3 Evolution of the charge density and the electrostatic potential

Figure 3.7 shows the charge density, ⇢, and the electrostatic potential, �, corresponding
to the concentrations shown in figure 3.6. Charge is accumulated near the high pres-
sure surface (II) initially until time tn, see figures 3.7 (a) and 3.8; this change in the
local charge density is due to the different magnitudes of the diffusion coefficients of
the mobile species and the requirement of charge conservation within the irreducible
zone of the structure. If all species had the same diffusion coefficient the charge den-
sity would be identically zero, ⇢(t) ⌘ 0, for all times in calculations with the present
model. The negatively charged surface (II) generates a monotonically decreasing po-
tential with increasing x3; however, at tn it is screened to an almost constant value by
the charge density that has accumulated near surface (II). At time tN , see figure 3.7
(b), some of the charge in the grain boundary has propagated to the surface (I) and the
grain boundary has become weakly negatively charged, see also figure 3.8. However,
the electrostatic potential has become almost linear as a function of x3, and is domi-
nated by the surface charges; the remaining departure from linearity is due to the charge
density within the grain boundary.
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FIGURE 3.7: Snapshots of the charge density and the electrostatic potential as a func-
tion of x3 at fixed x1 = ahex/4 for two different times. Two screening lengths , and
2D are indicated and described in the text. Scaled units with e0 cref = 0.16C cm�3,
kBT/e0 = 0.16V, and L = 1µm. The stages (a), and (b) of the overall dynamics are

discussed in the text.

3.4.3.4 Screening effects

The quantity  denotes the scaled reference screening length `D/L, defined in equa-
tion 3.12, and characterizes the decay in the local charge density from the surface into
the grain boundary. 2D is the equivalent of the scaled reference screening length for
two dimensional systems and is defined here as

2D
= `2DD /L, where `2DD =

"0"rkBT

e2
0
cref�

. (3.44)

The simulations, see figure 3.7, show that `2DD is a better estimate for the spatial extent
of the variations in the charge density within the grain boundary than `D. It should
be pointed out here that simulations in which the grain boundaries and surfaces are
idealized as planes without finite thickness � would yield the same results, and cref�

in equation 3.44 would be replaced by a reference concentration per unit area. The
only requirement for this to hold is that the total numbers of each species present in the
irreducible zone initially, are chosen equal for the simulations with and without finite
thickness �.

3.4.3.5 Surface and grain boundary charges

The simulations are initialized with zero total charge and charge conservation requires
the total charge in the irreducible zone of the structure, qtot, to remain equal to zero.
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This is satisfied for the calculations performed, see figure 3.8, which provides a useful
check on the numerical accuracy and stability of the solution.
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FIGURE 3.8: The charge (integrated charge density) in the irreducible zone as a func-
tion of time. qI and qII are the charges in the surface triangles of surfaces (I) and
(II), respectively, qGB is the charge in the grain boundary, qtot = qI + qII + qGB is
the total charge in the irreducible zone. The characteristic time scales ⌧c, ⌧d, and ⌧s are
indicated, and further discussed in the text. Scaled units are used with the thickness of

the slab, L = 1µm, and e0 the positive elementary charge.

The charge integrated over the grain boundary volume changes with time, qGB(t),
and the boundary carries an excess of electrons in the steady-state limit. This demon-
strates that local charge neutrality, which is an assumption of the simple 1D models, is
not consistent with this 3D model. Two characteristic time scales for the charging and
discharging of the grain boundary are found. The time constants can be estimated by
analogy to ‘RC’-circuits, with time constant ⌧ = RC, where R is the resistance, and C

is the capacitance. The initial charge build-up within the grain boundary is due to the
diffusion of the faster of the dominant species, for P II

O2
= P hi

O2
the positively charged

holes, ⌫ = h, and the time constant is estimated as follows from appropriate values of
R and C:

R⌫ =
1

h�⌫i

4L

ahex�
, (3.45)

Chex = "0"r
a2hex

p
3

8L
, (3.46)

⌧c ⇠
"0"r
h�⌫i

ahex
p
3

2�
. (3.47)
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The time constant characterizing the discharging of the grain boundary is estimated
from the diffusion of the slower of the dominant species, for P II

O2
= P hi

O2
the aluminum

vacancies, ⌫ = V
3-

Al
:

R⌫ =
1

h�⌫i

4L

ahex�
, (3.48)

⌧d ⇠
"0"r
h�⌫i

ahex
p
3

2�
. (3.49)

Where the angle brackets denote the spatial average and the physically meaningful con-
ductivity is the product ��. A third time scale characterizes the time elapsed until reach-
ing the steady-state, and is estimated here from the diffusion length using the effective
diffusion coefficient defined in equation 3.28b.

For the parameters used here, D⌫ = D⌫/100 and in the limit of D⌫ ⌧ D⌫ ,

⌧s ⇠
L2

Deff
⌫

'
L2

(|z⌫ |+ 1)D⌫
. (3.50)

The three time scales are indicated in figure 3.8.

3.4.3.6 Membrane permeation calculations

The permeation rate normalized by the thickness of the slab, PL, can be calculated from
the current densities of the mobile defect species. Figure 3.9 shows the permeation rate
in the steady-state limit as a function of the oxygen pressure ratio P II

O2
/P I

O2
for a range

of P II
O2

values, while P I
O2

is held fixed. The individual contributions of the V
3-

Al
and V

2+

O

are indicated by PLV3-

Al

and PL
V

2+

O

, respectively. The parameters are the same as those
in the previous section.

The permeation rate is also normalized by the grain boundary density, SGB, to
compare with the experimental permeation rate e.g. [83]. For the periodic hexagonal
cell structure SGB is calculated from the ratio between half the grain boundary side
length of the irreducible zone, ahex/4, and the area of the irreducible zone surface trian-
gle, a2hex

p
3/8, hence SGB = 2/

p
3ahex.

Comparing the simulated permeation rate with the experimental values [84, 188]
for T = 1900K and P II

O2
/P I

O2
= 10

5 Pa/1 Pa the reference diffusion coefficient is cal-
culated, �Dref = 3.4⇥ 10

�13 m3 s�1.
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FIGURE 3.9: Oxygen permeation rate in the steady-state limit as a function of the
ratio of applied oxygen gas pressures. The simulated permeation rate tends to the
same power law exponents as those determined in the 1D analytic model (blue line),
n
V3-

Al

= 3/16 and n
V

2+

O

= �1/6, see section 3.4.1, and the experimentally found
ones [84]. � is the grain boundary width, Dref [m2 s�1], cref = 1.66mol m�3, and SGB

is the grain boundary density of the hexagonal cell structure.

At P II
O2
/P I

O2
= 10

5 the average aluminum vacancy concentration in the grain bound-
ary is found to be hcV3-

Al

i = 10
17 cm�3, and with the concentration of alumina formula

units, cAl2O3
= 2.26 ⇥ 10

22 cm�3, the aluminum diffusion coefficient is estimated to
be �DAl = �DV3-

Al

hcV3-

Al

i/2cAl2O3
= 7.6⇥ 10

�21 m3 s�1, which is close to the value re-
ported in [84], �DAl = 4.5⇥ 10

�21 m3 s�1.
The agreement indicates that the reference concentration is a reasonable choice

provided the assumptions of c⌫(P
eq
O2
) ⌧ c⌫(P

eq
O2
) and D⌫ ⌧ D⌫ are applicable. In-

deed, if electrons and holes would diffuse slower than the vacancies, D⌫ � D⌫ , the
permeation rate would be limited by the electronic defects and the diffusion coefficients
determined from the permeation experiments [84] would reflect the electronic diffusion
coefficient rather than the ionic one.

The simulated permeation rate, shown in figure 3.9 as a function of the oxygen
partial pressure ratio P II

O2
/P I

O2
, demonstrates a transition between p-type and n-type

ionic conductivity as the dominant transport mechanism. In growing alumina scales
a p � n transition has been hypothesized to occur within the grain boundaries of the
scales [70], this transition is discussed further in section 3.5.6.4, where simulations
with an extended model that includes an internal Schottky reaction and coupled stress
generation mechanism are discussed.
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The variation of the logarithm of the permeation rate P , see equation 3.29, with
the oxygen chemical potential at surface (II) in the limits of high and low applied oxy-
gen partial pressure, P II

O2
, yield the power law exponent corresponding to the dominant

defect species, ⌫,

@ lnP
@ lnP II

O2

= n⌫ (3.51)

in the limit of high and low P II
O2

.
An asymptotic electronic current density, Iel, and vacancy current density, Ivac

can be calculated similarly to the permeation rate. The current density of vacancies,
Ivac = I

V
2+

O

+ IV3-

Al

, is equal and opposite to the electronic current, Iel = Ie + Ih, at
all pressure ratios in the long time limit, see figure 3.10, this means the net current,
Inet = Ivac + Iel is zero.

10 -7 10 -5 10 -3 10 -1 10 1 10 3 10 5 10 7
oxygen pressure ratio PII

O2
=P I

O2

-0.01

-0.005

0

0.005

0.01

cu
rr

en
t
d
en

si
ty

I
/

e 0
c r

ef
D

re
f
L
!

1

Ivac

Iel

Inet

FIGURE 3.10: Current densities per grain boundary ‘cross-section area’ AGB, see fig-
ure 3.3, in the steady-state limit as a function of the ratio of applied oxygen gas pres-

sures. Scaled units with e0 cref = 0.16C cm�3, and L = 1µm.

The plot for the average conductivities, see figure 3.11, is equivalent to a Kröger-
Vink (Brouwer) diagram [165] for the mobile species present, except that the average
concentrations are scaled by the corresponding diffusion coefficients. The averaged
conductivities of the dominant point defect species, ⌫, adhere to

@ lnh�⌫i

@ lnP II
O2

= n⌫ . (3.52)
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The crossover in the dominant point defect species in the permeation rate and the aver-
age conductivity is observed at the same value of P II

O2
.
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FIGURE 3.11: Conductivities averaged over the grain boundary layer, h�si. The refer-
ence lines are given by const. ⇥ Pn⌫

O2
. Scaled units with e2

0
cref/kBT ⇡ 1C2 cm�3 J�1.

3.4.3.7 The open circuit voltage

From the electrical potential difference across the film, ��, and the chemical poten-
tial differences the voltage across the film, Ve, as measureable by a voltmeter, can be
predicted. Analytically, the electrical potential difference within the zero net current
approximation in steady-state can be calculated from

e0�� = �

Z L

0

X

s

ts
rµs

zs
dx (3.53)

which follows from the zero net current approximation. In the limit of small `D/L the
local charge neutrality approximation is applicable, as discussed further in chapter 4,
and for the two species (⌫, ⌫),

|z⌫ |c⌫ + c⌫ = 0 (3.54)

dµ⌫ = dµ⌫ (3.55)
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the variations in the chemical potentials are connected due to local charge neutrality. In
the ⇢ = 0 limit the sum of the weighted transport numbers can be simplified

t⌫
z⌫

+
t⌫
z⌫

= z⌫
D⌫ �D⌫

D⌫ |z⌫ |+D⌫
⌘ D0 (3.56)

where the dimensionless constant D0 is introduced. The electrostatic potential differ-
ence for this special case hence reads as

e0�� = �D0
�µ⌫ = �D0

�µ⌫ . (3.57)

If electrons and holes are in equilibrium at the film surfaces, and by using �µ⌫ =

�z⌫�µe, the potential difference can be further written as

e0�� = z⌫D
0
�µe =

D⌫ �D⌫

D⌫ |z⌫ |+D⌫
�µe. (3.58)

Given the above formula for the electrostatic potential difference the electron electro-
chemical potential difference can be expressed as

�⌘e = �µe � e0�� = (1� z⌫D
0
)�µe (3.59)

=
D⌫

D⌫ |z⌫ |+D⌫
(|z⌫ |+ 1)�µe. (3.60)

The open circuit voltage accross the membrane is given by

Ve = �
�⌘e
e0

where �⌘e = ⌘II
e

� ⌘I
e
. (3.61)

If measured experimentally it could provide valuable additional information about the
transport properties of the membrane. In the simulations the voltage is readily calculated
in the ideal solution approximation by using the electron surface concentrations and the
electrostatic potential difference, hence

Ve = �
kBT

e0
ln

✓
cII
e

cI
e

◆
+ �II

� �I . (3.62)

In figure 3.12 the electrostatic potential difference between the surfaces and the open
circuit voltage, both calculated for the simulations with different applied �µO and in the
steady-state limit are compared to a 1D analytic model. The model for the electrostatic
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potential difference is given by

�� = �II
� �I

= �z⌫
D⌫ �D⌫

D⌫ |z⌫ |+D⌫

kBT

e0
ln

✓
cII⌫
cI⌫

◆
(3.63)

and the model for the volatage is therefore given by

Ve =
D⌫

D⌫ |z⌫ |+D⌫
(|z⌫ |+ 1) ln

✓
cII⌫
cI⌫

◆
. (3.64)

The equations are derived in detail in chapter 4 sections 4.3.2.2 and 3.4.3.7.
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circuit voltage Ve = ��⌘e/e0 as a function of the applied oxygen partial pressure
ratio at the membrane surfaces. The potential and voltage are in good agreement with

an analytical model further described in the text.

For the graph of the models in figure 3.12 the concentrations of the dominant elec-
tronic defect, c⌫ , as determined from the simulations have been used in equations 3.63
and 3.64. This way the validity of the factor containing the diffusion coefficients is as-
sessed, which seems to be justified since the model matches the simulation results.
In the permeation experiments the concentration of electrons on the surfaces follows the
simple power law behaviour

ce ⇠ P�|n⌫ |
O2

and n⌫ = �
z⌫

4(|z⌫ |+ 1)
(3.65)

in the limit of very large, P hi
O2

, or low, P lo
O2

, partial pressure applied. In the limit the elec-
tron electrochemical potential difference, or difference in the Fermi level can therefore
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be written as

�⌘e = �
D⌫ |z⌫ |

D⌫ |z⌫ |+D⌫

kBT

4
ln

✓
P II

O2

P I
O2

◆
. (3.66)

the voltage is given by

Ve =
D⌫ |z⌫ |

D⌫ |z⌫ |+D⌫

kBT

4e0
ln

✓
P II

O2

P I
O2

◆
(3.67)

and is always positive for P II
O2

> P I
O2

.
The scaled variation of the voltage with the applied pressure, V 0

e
, could be used

to determine the ratio of the vacancy and electron or hole diffusion coefficients

V 0
e
=

4e0
kBT

@ Ve

@ logP II
O2

= te '
D⌫ |z⌫ |

D⌫ |z⌫ |+D⌫
(3.68)

where the constant kBT/4e0 that gauges the required sensitivity in the measurement is
kBT/4e0 = 40mV at 1900K.
Importantly, if the variation determined from the permeation experiments with a volt-
age measurement V 0

e
⌧ 1 the electronic species diffuse much faster, and for V 0

e
⇡ 1 the

vacancy species diffuse much faster. This measurement would therefore be of great use
for determining the effect of the electric field on the vacancy diffusion, which depends
on the difference of the vacancy and compensating electronic species diffusion coeffi-
cients.
For growing alumina scales voltages greater than 1V have been measured [71, 160],
indicating a significant ionic transport number.

3.4.3.8 The Schottky equilibrium

As discussed in section 3.4.1, Schottky equilibrium and electron-hole equilibrium are
required conditions for the validity of the Wagner model and equation 3.31. In this
section it is examined to what extent these equilibria are attained in our grain boundary
calculations as the steady-state limit is approached.

Figure 3.13 shows an example of the voltages, ⌘s/zse0, in the long time limit, the
internal chemical potentials are shown in figure 3.14. The calculations are performed
for P I

O2
= P lo

O2
, and P II

O2
= P hi

O2
. In these calculations Schottky equilibrium does not

hold, see figures 3.13, and 3.14, except at the surfaces where the Schottky reaction is
included in the equations. The reaction rates at the surfaces are higher than the trans-
port between the surfaces and the grain boundaries, therefore Schottky equilibrium is
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attained at the surfaces. The defect chemical potentials are calculated from the ideal
dilute solution approximation, µs = kBT ln(cs/cs(t0)), where cs(t0) are the equilibrium
concentrations. The spatial variation of the electrochemical, and chemical potentials
would be significantly different if internal Schottky equilibrium was imposed.
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FIGURE 3.13: The voltages, ⌘s/zse0, calculated from the ideal solution electrochemi-
cal potentials, of the mobile species for fixed x1 = ahex/4 in the grain boundary plane.
Schottky equilibrium is not satisfied in the grain boundary since �⌘

V3-

Al

/3 6= ⌘
V

2+

O

/2,
but electrons and holes are in equilibrium, �⌘e = ⌘h. Calculation for P II

O2
/P I

O2
=

106/10�9, D
V

2+

O

= 10�3Dref, DV3-

Al

= 0.01Dref, and De = Dh = 1Dref, for other
parameters see section 3.4.3.1. The thermal voltage is given by kBT/e0 = 0.16V, and

Ve = �(⌘IIe � ⌘Ie )/e0 = 50mV.
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The internal chemical potential distributions µAl(x3), and µO(x3) shown in fig-
ure 3.14 are different from those shown in figure 8 of reference [188] for polycrys-
talline alumina membrane permeation experiments. Schottky equilibrium together with
electron-hole equilibrium implies 3µO+2µAl = 0, which is not satisfied within the grain
boundary, see figure 3.14, because 3µ

V
2+

O

+ 2µV3-

Al

6= 0. The qualitative discrepancy in
the chemical potential distributions between reference [188] and this treatment is likely
due to the assumption of Schottky equilibrium in [188].

A Schottky reaction term could be added to the transport equations 3.7, which
would lead to Schottky equilibrium in the grain boundaries depending on the reaction
and transport rates. However, the internal Schottky reaction with formation and disso-
lution of oxide at the grain boundaries would induce stress and cause a non-trivial mod-
ification in the permeation rate. The simulations discussed in this section are thought to
correspond to the limit in which stress at the grain boundaries prohibits the formation
and dissolution of oxide internally, similarly to its effect in the bulk material.

3.4.4 Discussion

The power laws for the oxygen permeation rate found experimentally in the limits of
high and low applied oxygen pressures, are confirmed in the calculations with the slab
model in the steady-state limit. The experiments are performed on 0.25mm thick poly-
crystalline alumina membranes while the geometry of the slab in the calculations with
L = ahex = 1µm is chosen to resemble more closely the situation of planar films
growing with a columnar grain structure. The variation of the permeation rate, and the
average conductivity with the oxygen chemical potential are related to the power law
exponent n⌫ , see figures 3.9 and 3.11, and equations 3.51 and 3.52. The power law
exponent in turn depends on the stoichiometry of the quasi-chemical reactions at the
surfaces, see equation 3.24. The applied pressure at which the transition between p-
type and n-type ionic conductivity of the grain boundaries takes place depends on the
ratio of the vacancy diffusion coefficients in the grain boundary, D

V
2+

O

/DV3-

Al

, given that
V

2+

O
, and V

3-

Al
are the mobile vacancy species.

The time-dependent calculations not only elucidate the initial transient behaviour
but also help to clarify the steady-state. Varying the applied oxygen partial pressure
from P eq

O2
to P hi

O2
or P lo

O2
on one of the surfaces changes the rate of creation and anni-

hilation of vacancies, electrons and holes in stoichiometric proportions on the surface,
the resulting chemical potential gradients between the surfaces along the grain bound-
aries drive the transport of species through the slab. The resulting fluxes of the mobile
species depend on their diffusion coefficients and will therefore not necessarily preserve
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the stoichiometric proportions of the surface populations of the species, except when all
species have the same diffusion coefficient. The local charge density thereby becomes
non-zero, and generates an electric field that retards the diffusion of the fastest domi-
nant species, but enhances the diffusion of the slower dominant species which has an
effective charge of opposite sign.

Three time scales involved in the dynamics of species concentration evolution
are identified, ⌧c (see equation 3.47) characterizes the rate of charge build-up on the
surface and in the grain boundary, ⌧d (see equation 3.49) characterizes the discharging
of the grain boundary, and ⌧s (see equation 3.50) characterizes the time to reach the
steady-state at which r · Js ' 0.

During the initial transient, t . ⌧c, the different diffusion coefficients lead to
the accumulation of charge in the grain boundary and on surface (II). If, for exam-
ple in the P hi

O2
case, holes and aluminum vacancies are generated on surface (II), the

holes, which are assumed to be the faster species, DV3-

Al

⌧ Dh, diffuse away from the
surface, generating positive charge density in the grain boundary, and surface (II) be-
comes negatively charged due to the aluminum vacancies. Once the holes reach surface
(I) it becomes positively charged, and as the slower aluminum vacancies diffuse into
the grain boundary it is discharged over a time t ⇠ ⌧d. In this example the electric
field effectively enhances the aluminum vacancy diffusion, and retards the diffusion of
the oxygen vacancies and holes. In the steady-state limit the electrostatic potential dif-
ference between the surfaces, �� = �II

� �I , is on the order of the thermal voltage,
kBT/e0, in the high and low pressure limits considered. For the calculation shown in
figure 3.13 with P II

O2
= P hi

O2
and P I

O2
= P lo

O2
the voltage between the surfaces observed

in the simulations is Ve = �(⌘II
e
�⌘I

e
)/e0 = 50mV. Ve depends strongly on the species

diffusion coefficients.
Physically, the mobile species distributions reconfigure to screen the electric field

arising due to non-zero local charge density, and the Debye screening length (see equa-
tion 3.13) characterizes the spatial extent of the variations in the local charge density.
Due to screening effects the local charge density and electrostatic potential are challeng-
ing to resolve numerically near the surfaces. For spatial variations in the charge density
within the grain boundary the two-dimensional equivalent of the reference screening
length, see equation 3.44, is found to be appropriate. Apart from the initial transient the
electrostatic potential in the simulations is dominated by the contributions from the sur-
face charges. In the parameter regimes investigated the non-zero charge density in the
grain boundary does not affect the defect fluxes significantly, the 3D calculations can
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therefore be mapped onto a 1D model. In the intermediate pressure regime the domi-
nance of one vacancy species is less pronounced and in particular for c⌫(r, t) ⇠ c⌫(t0)

in the steady-state the local charge neutrality approximation becomes invalid. For small
species concentrations the Debye length gets larger, and the electric field gets weaker.
Both of the later facts are considered responsible for the failure of the analytic model in
the intermediate pressure regime, see figure 3.9.

The open circuit voltage has been determined and compared to a simplified 1D
model, see figure 3.12. The measurement of the open circuit voltage in the permeation
experiments could help to determine the relative magnitudes of the dominant species
diffusion coefficients.

The simulations with the fixed oxygen chemical potential difference between the
surfaces reach a stationary non-equilibrium state with a constant rate of entropy pro-
duction. This means the populations of vacancies, electrons, and holes reach a dy-
namic equilibrium state, in which they are created and annihilated at the same rate and
@cs/@t ' 0, while the oxygen chemical potential difference sustains non vanishing
fluxes between the surfaces.

3.5 Lateral growth stress

The stress state in growing scales is due to a superposition of multiple opposing gen-
eration and relaxation mechanisms acting simultaneously. Common examples of stress
generation mechanisms are the lattice constant (Pilling-Bedworth ratio) and thermal ex-
pansion misfit between the alloy and scale [38, 169], and volume contractions due to
phase transformations [183]. The focus here is on lateral growth stresses that occur due
to the formation or dissolution of material within the scale during the growth process
given that the scale is constrained by adhesion to the alloy substrate [24].

The growth stresses can be alleviated by plastic deformation in the alloy substrate,
change in scale shape, plastic deformation in the scale, or diffusional creep in the scale.
All these mechanisms have been observed in thermally grown alumina scales, wrinkling
or rumpling shape changes of the scale are commonly observed phenomena. The resis-
tance of alumina scales against cracking and spallation is critical to their application as
oxidation barriers in coatings, where they are formed deliberately to protect the alloy
substrate against oxidation [35, 37]. A detailed understanding of the evolution of lateral
growth stresses is therefore indispensable for assessing the reliability of alumina scales.
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Apart from the Frenkel interstitial and vacancy defect pair, vacancies in crys-
talline solids can only form at extended defects such as surfaces, interfaces, and dislo-
cations. The vacancy formation is tied to steps, kinks and other microscopic properties
of these extended defects. Given the availability of extended defects that can act as a
sources and sinks for vacancies within the material, the attainment of equilibrium be-
tween anions and cations locally depends on the fluxes of the mobile species, and the
reaction rates between the metal and oxidant vacancies.

In this section the hexagonal cell model described above is extended to describe
metal oxidation with internal formation and dissolution of oxide inducing stress within
the scale. The widely used industrial ceramic aluminum oxide, important as a protec-
tive layer in chemically severe conditions and at high-temperatures, again serves as an
exemplary material for the application of the model. The model idealizes the columnar
grain structure of growing oxide films as a lattice of hexagonal cells with identical cross-
section. The transport of cations, anions, and electrons through the grain boundaries is
modelled with the generic Nernst-Planck flux expression and the reactions between the
point defect species are modelled with simple mass-action kinetics. Time-dependent
simulations are performed taking into account the self-consistent electrostatic potential
and space charge effects due to the charged mobile defects.

σ

FIGURE 3.15: Hexagonal cell model including in plane stress �.

The evolution of lateral growth stresses, induced by vacancy creation and anni-
hilation at the grain boundaries, is simulated in this idealized three-dimensional grain
structure, see figure 3.15. Some theoretical background in provided in section 3.5.3,
related computational work is reviewed in section 3.5.4, and the novel approach devel-
oped here is described in section 3.5.5.
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Compressive and tensile growth stresses have been observed in alumina scales
growing during high-temperature oxidation of alloys. A brief summary of some ex-
perimental observations regarding lateral growth stresses is given in section 3.5.2. The
Rhines-Wolf model [149] is frequently adopted to conceptualize growth stresses in alu-
mina scales, it is further described in section 3.5.3. Based on 1D analytical considera-
tions and some earlier work Atkinson [1, 166] has argued that anion and cation vacancy
counter fluxes involving annihilation and creation of vacancies within growing scales
can only induce tensile stresses.

These considerations are important for the interpretation of experimental work
and with the computational approach detailed here it is possible to go beyond the sim-
plifying assumptions made by Atkinson [1]. It can be investigated if vacancy mediated
grain boundary diffusion including vacancy creation and annihilation can induce com-
pressive stresses under specific conditions, and thereby determine if interstitial diffusion
is indeed necessary to observe compressive stresses in the steady-state as was argued
by Veal et al. [183]. The model proposed here should allow to determine if Atkinson’s
analytic analysis [1] holds in general and vacancy reaction-diffusion does indeed always
induce tensile growth stress.

3.5.1 The alloy–oxide interface

Modelling an oxide adherent to a metal or alloy substrate requires to extend the mem-
brane calculations, detailed in section 3.4, by including the metal–oxide or alloy–oxide
interface. Such interfaces are of interest in a range of material systems including ceram-
ics and semiconductor devices. A review with emphasis on thermodynamic aspects and
empirical models pertaining to metal–ceramic interfaces has been given by Howe [76].
Minimization of the interfacial free energy typically results in ordered atomic structures
at the interfaces [172]. Crucial thermodynamic variables for the interfacial properties
relevant for oxidation are the oxidant partial pressure, temperature, time, and alloying
additions to the metal. A review of essential theoretical concepts for modelling metal–
ceramic interfaces was given by Finnis [42].

Three seminal theoretical concepts for understanding interfaces between metals
and wide-band-gap oxides are band bending, metal-induced gap states, and the image
interaction. Bending of the valence and conduction band is an ubiquitous phenomenon
occurring at most interfaces except metal-metal junctions, it is of fundamental impor-
tance for many semiconductor devices and a comprehensive discussion can be found
e.g. in the monograph by Sze [173] or in the more recent review [201]. At an inter-
face with only electrons and holes as mobile charge carriers the Fermi-level (electron
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electrochemical potential) is constant in their equilibrium configuration

⌘e(r) = µe(r)� e0�(r) = const. (3.69)

and the band bending is a consequence of the non-vanishing electrostatic potential, �,
variation near the interface. In cases where mobile point defects and gap states are
present the distribution of valence and conduction band states near the interface is more
complex.
Closely related to the band bending at the interface are the Fermi-level pinning and gap-
states induced by joining a wide-band-gap oxide or semiconductor to a metal. Semicon-
ductor surface states have been first discussed in detail by Heine [63] and comprehen-
sive accounts can be found again in the semiconductor device literature e.g. [124]. The
metal-induced gap states are not strictly localized, they are obtained from the require-
ment of continuity of the electron wave function at the metal–oxide interface which
leads to states in the energy range of the oxide band gap decaying into the oxide from
the position of the interface.
The classical image interaction has been shown by Finnis and co-workers to be the dom-
inant term in the adhesion of ionic crystals to metals [41]. The image interaction refers
to the force acting on a point charge that attracts it to a metal surface and that is thought
to be mediated by the point charge’s imaginary image.

For alumina scale growth the alloy substrate serves as an aluminum source and its
properties have to be included in the boundary conditions for the model of the transport
through the oxide. Here, effects due to an image interaction are not taken into account
for the transport through the oxide film because the mobile charges in the hexagonal slab
are not considered to generate a net electric field. Gap states and Fermi-level pinning
at the interface are not considered explicitly, only the ficticious equilibrium interfacial
oxygen partial pressure, P int

O2
, is considered as a thermodynamic variable for the model.

The partial pressure P int
O2

is expected to depend on the composition of the alloy substrate
and temperature, and its value, ideally obtained from experimental thermodynamic data,
is taken as an input for the calculations which are performed under isothermal condi-
tions. Further details for modelling the alloy-oxide-gas system with the hexagonal cell
model are found in section 3.5.5, where the calculation methodology for modelling lat-
eral growth stresses due to internal oxidation is described.
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3.5.2 Experimental evidence for lateral growth stress in ↵-Al2O3

Lateral growth stress generation due to internal formation or dissolution of scale re-
quires a counter flux of metal and oxidant through the scale. Grain boundaries are the
preferential transport pathways in alumina scales [68, 147] and the occurrence of an
ionic counter flux has been convincingly demonstrated [3, 83, 136, 178].

The stress state in the oxide has been examined in numerous X-ray diffraction
and piezo-spectroscopy studies at room temperature after cooling from the oxidation
temperatures which are typically ⇠ 1100� 1200

� C [24]. Clarke et al. have determined
growth stresses by piezo-spectroscopy of Cr3+ doped alumina measuring the frequency
shift of the optical fluorescence transition lines due to stress [23, 98, 100, 101, 177]. The
residual stress distributions are obtained after cooling the sample from oxidation tem-
peratures ⇠ 1100�1200

� C to room temperature which introduces compressive thermal
expansion misfit stresses that are several times larger than the growth stresses [177],
and vary with the alloy ⇠ �3GPa [98]. Compressive growth stresses of �200MPa to
�300MPa have been deduced from these studies [101, 177]. From spectral line broad-
ening stress gradients are deduced of 2.6GPa/µm for ⇠ 1.2µm thick films. Creep is
considered to be the major relaxation process in thin films, while substrate deformation
becomes significant at later stages of oxidation at high temperatures [177].

Uncertainties in the thermal expansion coefficients and stress relaxation during
cooling limit the reliability and accuracy of growth stresses determined from these ex-
periments [24, 25].

X-ray scattering has been applied to study stresses in alumina [152, 157]; how-
ever, the X-ray scattering cross-section of alumina is narrow producing weak diffrac-
tion patterns. Compressive growth stresses on the order of �1GPa which partly relax
to ⇠ �0.5GPa, have been measured on FeCrAl(Y) alloys, while the growth stresses on
NiAl were zero within the experimental uncertainty of ±170MPa [152]. Yttrium ad-
ditions were found to decrease lateral scale growth but not to decrease growth stresses
which were relaxed by plastic scale and alloy deformation. Veal et al. [183, 184] have
performed in situ X-ray synchrotron experiments for oxidation of different alloys at
high temperature 1100� C. They observed tensile stresses in steady-state for alloys con-
taining reactive elements and compressive stresses for alloys without reactive elements,
the stresses being on the order of ±200MPa in steady-state. Creep relaxation is con-
sidered to balance the stress generation by relaxation in steady-state. They argue that
the ✓ to ↵-Al2O3 phase transformation during early oxidation stages introduces tensile
stresses due to volume contraction. Using the same technique tensile growth stresses of
130MPa and 200MPa at 1000� C and 1100

� C respectively, have been observed during



CHAPTER 3 68

oxidation of a Y containing bond-coat alloy [35, 148]. Residual compressive stresses
of �2.1GPa and �4.8GPa are found upon cooling to room temperature from oxidation
temperatures of 1000� C and 1100

� C respectively, and attributed to thermal expansion
misfit.

3.5.3 Theoretical background

In the field theory of mechanical stresses in solids the interatomic forces are abstracted
and taken into account through a coarse grained description. The macroscopic defor-
mations are described in terms of displacements of volume elements whose size is large
compared to the interatomic distances, and small compared to the macroscopic dimen-
sions of the crystallites. The solid ‘body’ is mathematically described by a continuum of
points and the force-over-area limit at each point yields the stress state locally. Subject-
ing a solid to a planar cut the magnitude and direction of the mechanical force required
to restore the remaining material to the state before the cut may vary from point to point
in the cut plane.

The theory of crystal shape change by self-diffusion in a polycrystalline material
under applied stress was elaborated by Herring [67]. Resembling the macroscopic be-
haviour of a viscous fluid the grains are imagined to deform by diffusional flow of matter
from grain boundary areas under compressive stress to those under tensile stress. Such
diffusional flow is frequently found as the mechanism of creep at high-temperatures
and low stresses [5]. The viscoelastic behaviour of solids is distinct from that of vis-
cous fluids in that the solid can reach a mechanical equilibrium with an applied stress
that includes a shear component. A discussion of the elasto-chemical equilibrium prob-
lem including precise definitions of the relevant phenomenological quantities has been
given by Larché and Cahn [90].

As the crystal is strained due to the addition or removal of atoms internally work
is performed. The chemical potential of a vacancy species at the grain boundary is mod-
ified with respect to the chemical potential in the unstrained solid, µs, by an additional
term

µ0
s(T, cs, �ij) = µs(T, cs) + �ij✏ijV0 (3.70)

that takes into account the work required to deform the crystal with unstrained volume,
V0, if material is added or removed locally. The tensors �ij and ✏ij characterize the stress
and strain state, respectively [5, 137]. Vacancy accumulation and void formation at
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extended defects thus generates tensile stress making further accumulation energetically
less favourable as is discussed for example in [78].

Comprehensive reviews of stress and related effects in high-temperature oxida-
tion have been given by Stringer [169] and Evans [36, 38]. The Rhines-Wolf model [149]
was developed to conceptualize compressive growth stress in NiO scales during high-
temperature oxidation, and has been adopted for other materials since. The anion and
cation transport in the nickel oxide layer of columnar grains is found to be confined
to the grain boundaries [149]. In the Rhines-Wolf model the build-up of compressive
stresses within growing scales is attributed to vacancy annihilation and oxide formation
at grain boundaries traversing the scale normal to the substrate, see figure 3.16

tensile
stress

compressive
stress

(a) (b)

FIGURE 3.16: Compressive compared to tensile stress due to material being removed
(a) or added (b) at the grain boundary separating two grains. Assuming the grains
themselves are subject to an external force preventing stress relaxation by rigid dis-

placement of the individual grains.

Atkinson developed an analytic model and argued that an anion and cation va-
cancy counter flux generally leads to tensile stresses within the growing scale [1].
Atkinson’s treatment adopts a one-dimensional model derived from the Wagner theory
of metal oxidation [189]. Grain boundaries and the interfaces are not treated explicitly
and only steady-state concentration distributions are analyzed. The reaction equilibrium
constants that are essential for the analysis therefore assume the meaning of effective
parameters satisfying the one-dimensional equations; their value in the grains, at the
grain boundary, the surface, and the alloy–oxide interface is not distinguished.
Veal et al. [183] follow Atkinson’s [1] analysis and argue that vacancies and intersti-
tials diffuse simultaneously through the alumina grain boundaries. The interstitials are
thought to be ‘blocked’ by the reactive elements which segregate to the grain bound-
aries and thereby lead to predominant vacancy annihilation introducing tensile stress,
in scales on reactive element containing alloys. In the absence of reactive elements it is
argued that interstitial diffusion through the grain boundaries is predominant and their
annihilation introduces compressive stress [183].
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More complex ionic transport mechanisms than simple point defect hopping have
been proposed in the literature on grain boundary diffusion in alumina, and the sug-
gested mechanisms are often closely related to the stress state at the grain boundaries.
Clarke has proposed that the cations and anions could be trapped at dislocation cores
with subsequent climb of the dislocations through the thickness of the oxide [25]. As
described in section 2.5, Heuer et al. have proposed a ‘disconnection’ mechanism for
atomic transport through alumina grain boundaries [71, 72, 75].

3.5.4 Previous modelling approaches

Krishnamurthy and Srolovitz have developed a two-dimensional continuum model with
a model structure of rectangular grains. Oxide creation and stress generation is con-
sidered at the grain boundaries separating the rectangular grains together with diffusive
mass transfer [88, 89]. Fickian-diffusion and stress-driven transport are considered in
time-dependent simulations [89]. However, electric field effects and electron-hole trans-
port are not taken into account, only transport of neutral atomic species.

Limarga et al. [96] have presented an analytic steady-state model that only con-
siders oxygen vacancy diffusion and does not consider the dynamical competition be-
tween stress generation and relaxation mechanisms. Electric field effects and electron-
hole transport are also not taken into account.

A mathematically similar problem to the lateral growth stress evolution in oxides
is found in the stress and electromigration analysis of failures in the Al-lines (intercon-
nects) of integrated circuits [16]. Kirchheim has provided a detailed study including
electric field effects, stress-driven and diffusive transport together with a vacancy an-
nihilation mechanism at the model grain boundaries [82]. A two-dimensional square
tiling is adopted as the model grain structure [82].

3.5.5 Modelling the effect of stress in the hexagonal cell model

The hexagonal cell model allows for three-dimensional simulations taking into ac-
count the defect transport through the grain boundaries self-consistently with the stress-
evolution and distribution. The equations for the drift-diffusion transport have been
described in sections 2.6 and 3.2.2. Stress effects due to creation and annihilation
of vacancies at the rectangular grain boundaries within the idealized hexagonal grain
structure, see figure 3.15, are examined in what follows.

The elastic properties of the hexagonal cell polycrystal depend on the single-
crystal elastic constants of the prismatic crystallites. Figure 3.17 shows a terrace-kink
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model schematic for the interface structure of the irreducible zone of an individual
hexagonal grain. By joining two low index crystal surfaces a small-angle symmetrical
tilt grain boundary between two adjacent cells is constructed, the surface steps become
edge dislocations [172].

oxide added
or dissolved

irreducible
zone

vacancies 

FIGURE 3.17: Terrace-kink schematic of the irreducible zone of a hexagonal cell. The
rectangular grain interface plane is thought to be joined by an identical grain thereby

constructing the grain boundary between two adjacent hexagonal grains.

Although the microscopic process of oxygen incorporation by the lattice, or the
reverse process, has not yet been elucidated, I adopt a plausible description of the
process, which leaves the boundary essentially unaltered in its structure. The oxide
molecules are thought to be inserted at the grain boundaries creating a new layer of
oxide in a self-similar manner, see figures 3.18 and 3.17, in the direction perpendicu-
lar to the alloy substrate and oxide surface. In other words crystal planes are added or
removed by dislocation climb, the grains contract or expand and – due to the lateral
dimensional restriction – in-plane compatibility stresses arise. No modification of the
point defect diffusion coefficient due to stress is considered, the average properties of
the grain boundary structure are thought to be preserved. The stress state is thought only
to modify the Gibbs free energy of formation of the Schottky defect at the boundary.
Furthermore, no spatial variation in the stress state is considered in the grain boundary
plane and consequently no material transport due to a stress gradient.
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oxide added
or dissolved

FIGURE 3.18: Schematic of a symmetrical low-angle tilt grain boundary. Oxide
molecules are thought to be added at the grain boundary in such way as to preserve

the grain boundary character, a self-similar process.

For the purpose of the simulation study to be discussed in section 3.5.6 the reac-
tion rate constants, diffusion coefficients, and equilibrium constants enter as parameters.
The microscopic details shown in the figures 3.18 and 3.17 do not enter explicitly in the
continuum model. These details are discussed here for clarity of concept, and to estab-
lish a connection to related ab initio simulation work, such as the DFT calculations by
Guhl et al. [56], and other related simulation methodologies.

Oxide is exchanged between the grain boundaries of the oxide polycrystal, the
surface, and the alloy–oxide interface for the combined thermodynamic system alloy–
oxide–atmosphere to attain a lower free energy state. The creation and annihilation pro-
cess of lattice at the grain boundary is distinct from those at the surface and alloy–oxide
interface since the later processes do not generate stress. The stress due to insertion of
oxide molecules at the alloy–oxide interface is thought the be relaxed by rigid displace-
ment of the oxide with respect to the substrate, the stress due to the lattice mismatch at
the alloy–oxide interface is not considered here. Adding or removing oxide molecules
at the rectangular interfaces of a hexagonal cell the relative change in cell volume is
given by

�V

V
=

V 0
� V

V
=

2�ahex

ahex
+

�L

L
. (3.71)

However, the cross-section area of the hexagonal cells, see figure 3.19, in the material
is constrained by the adjacent grains and the adhesion of the film to the alloy substrate,
this means stress is induced.
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δA

σij

Δahex
atoms 
added

FIGURE 3.19: Top down view of the idealized hexagonal grain structure under in-
plane compressive stress.

The relative change in volume is related to the normal strains by

�V

V
= Tr (✏ij) = ✏11 + ✏22 + ✏33 (3.72)

which is invariant under rotations of the coordinate system. In the absence of shear
displacements, and in the coordinate system connecting the centers of the grains, see
figure 3.20, the only non-vanishing stress components for in-plane strain with �33 =

0, are the the normal stresses and due to the hexagonal symmetry �11 = �22 = �.
Similarly, the in-plane normal strains are related ✏11 = ✏22 = ✏

�V

V
= 2✏+ ✏33 (3.73)

FIGURE 3.20: Irreducible zone of the hexagonal cell. The coordinate system is de-
fined. The normal stress sign conventions is defined by tensile �22 > 0, and compres-

sive �22 < 0 stress.
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The stress and strain fields are connected by material laws also referred to as con-
stitutive equations such as Hooke’s law in linear elasticity theory which in generalized
form is written in index notation as

�ij = Cijkl ✏kl (3.74)

where Cijkl is the fourth-order stiffness tensor, the components of which are related
to the engineering elastic moduli [137]. In general anisotropic elasticity the stiffness
tensor has 21 independent components which reduces to 5 for crystalline materials with
hexagonal symmetry such as ↵-Al2O3. Imagining the individual alumina grain – for
simplicity – to be constructed by repetition of a corundum conventional cell with the
c-axis aligned to the ê3 axis of the hexagonal cell structure, the calculation the elastic
constant is readily performed. Due to the hexagonal symmetry Hooke’s law reduces to
two coupled scalar equations

� = (C11 + C12)✏+ C13✏33 (3.75)

0 = 2C13✏+ C33✏33 (3.76)

and the stress-strain relation is written as

� = C✏ with C = C11 + C12 � 2
C2

13

C33

(3.77)

where the 2-indices Voigt notation [137] is used, and an effective elastic constant C is
introduced.

Treating the crystal orientation of the individual grains as unknown the elastic
properties of the hexagonal cell slab could be calculated from the effective elastic con-
stants of an alumina polycrystal. This means Hooke’s law for isotropic materials is
applied with effective elastic constants of the polycrystal, hence

✏ij =
1

Y
(�ij (1 + ⌫)� ⌫�ij�kk) (3.78)

where Y is the effective Young’s modulus and ⌫ is the effective Poisson ratio. The
in-plane stress in the absence of shear, and for ✏11 = ✏22 = ✏ is therefore given by

� = �11 = �22 =
Y

1� ⌫
✏ (3.79)

while �33 = 0. Compared to the anisotropic treatment under the simplifying assump-
tion of the special alignment of the crystallite c-axis a different elastic constant in the
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stress-strain relation is obtained. For the single crystal stiffness matrix elements at room
temperature according to reference [187], the constants in GPa read as

C11 = 496.8, C12 = 163.6, C13 = 110.9, and C33 = 498.1, (3.80)

C = C11 + C12 � 2
C2

13

C33

= 611GPa. (3.81)

The polycrystal effective elastic (Young’s) modulus and Poisson ratio determined from
experiments on a dense ↵-Al2O3 polycrystals at room temperature [128] are given by

Y = 416GPa, and ⌫ = 0.231, (3.82)

Y 0
=

Y

1� ⌫
= 541GPa. (3.83)

The different approaches, hence, yield elastic constants C and Y 0 that differ in magni-
tude by about 10%. The polycrystal elastic modulus, Y , is found to decrease by about
20% in the temperature range from 20 to 1500

� C [128]. Both, the temperature depen-
dence and crystallite orientation should be taken into account in principal, since the
polycrystal elastic constants are available in the desired temperature range the experi-
mental polycrystal data from reference [128] is used in the following discussion.

For inserting an extra plane of atoms between any two adjacent grains of the
slab, �ahex is identified with 1/2 times the modulus of the Burgers vector, b, of the
dislocations that the grain boundary is composed of, hence

✏ =
b

2ahex
. (3.84)

For �N oxide molecules added to the irreducible zone of the grain boundary rectangle
the strain is written as

✏(�N) =
b

2ahex

�N

N
= 2

⌦u�N

a2hexL
(3.85)

where N = bahexL/4⌦u is the number of oxide molecules added for inserting a whole
extra plane of material, and where �N > 0 describes a net addition of material at the
grain boundary. The expression is similar to the notion of �V/V introduced above.

The Schottky reaction mechanism at the grain boundary is understood in such
way that a Schottky vacancy complex annihilates as oxide is removed at the grain
boundary. Denoting the net amount of oxide that has been added or removed at the
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grain boundary plane up to time t by �N(t), the stress state is written as

�(t)⌦u = �2
Y

1� ⌫

⌦
2

u

a2hexL
�N(t) (3.86)

where again �N > 0 describes a net addition (compressive stress), and �N < 0 a net
removal of material (tensile stress).
The energy contribution to the Schottky defect formation energy, Ef

S , due to to the
amount of oxide that has been added or removed up to time t is therefore written as

Gf
S = Ef

S + �(t)⌦u. (3.87)

The Schottky equilibrium constant taking into account the stress-strain state is written
as

K 0
S
= KS exp

✓
�⌦u

kBT

◆
. (3.88)

The change of the oxygen and aluminum vacancy concentrations due to the Schottky
reaction are related by the stoichiometry

1

3
@tcV2+

O

=
1

2
@tcV3-

Al

= @t⇠S (3.89)

where the reaction-coordinate ⇠S is introduced for notational convenience. The reaction
free energy of the Schottky reaction is written as

gS(r, t) = �3µ
V

2+

O

(r, t)� 2µV3-

Al

(r, t)� �(t)⌦u (3.90)

where the vacancy chemical potentials are equated to the negative of the respective ionic
species chemical potential, µ

V
2+

O

= �µz
O and µV3-

Al

= �µz
Al. In this notation the variation

in the Gibbs free energy density is given by

dg =

X

i

(µi + zie0�) dci � �⌦u = �gS d⇠S + � d⇢+ µe dce + µh dch (3.91)

where the free energy of reaction is defined in equation 3.90, � is the electrostatic po-
tential, and ⇢ is the local charge density. The free energy of reaction, gS, introduced
above is considered distinct from the chemical affinity

AS(r, t) = 3µ
V

2+

O

(r, t) + 2µV3-

Al

(r, t) (3.92)
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in that gS includes the free energy contribution due to compositional changes as a func-
tion of position, r, and a mechanical work term that only depends on time in the present
model

�W = ��(t)⌦u. (3.93)

The deviation from chemical equilibrium locally can be due to kinetic limitations or
caused by the stress induced, and gS(r, t) is therefore the quantity of choice to describe
the vacancy equilibration process locally.

Using simple mass-action kinetics a stress-dependent reaction rate within the
grain boundary is readily obtained. The reaction rate for vacancy annihilation and cre-
ation at the grain boundary plane at position r and at time t written as

@t⇠S(r, t) = kS

✓
�

⇣
c
V

2+

O

⌘3 ⇣
cV3-

Al

⌘2
+KS exp

�
�⌦u / kBT

�◆
(3.94)

where kS is the reaction rate constant. The net number of oxide molecules added, �N >

0 or removed, �N < 0, at the grain boundary over time is given by

�N(t) =

Z t

0

Z

GB rect.
⇠S(r

0, t0) d3r0dt0 (3.95)

where the grain boundary rectangle integration zone is defined in figure 3.2 by ABCD.
For the numeric calculations the differential and integral equations are discretized which
leads to

⇠i,n
S

= ⇠i,n�1

S
��tnkS

✓⇣
ci,n
V

2+

O

⌘3 ⇣
ci,n
V3-

Al

⌘2
�KS exp

�
�i,n�1

⌦u/kBT
�◆

(3.96)

�N i,n
= ⇠i,n

S
vi (3.97)

�Nn
=

X

i

�N i,n (3.98)

where the superscript ‘i, n’ is a shorthand for the dependence on the the position ri =

(xi
1
, xi

2
, xi

3
) on the grid and the n-th point in time, tn, and vi is the i-th volume element.

The coefficient of �N in the simulations is modified to obtain faster convergence
to the steady-state

RS = kS

✓
�

⇣
c
V

2+

O

⌘3 ⇣
cV3-

Al

⌘2
+KS exp

�
��N · f

�◆
(3.99)
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where the constant f is chosen much larger than calculated from the above consider-
ation. The modification could be thought of artificially increasing the stiffness of the
material, this means the amount of material added or removed overall is changed, but
the value of the steady-state stress is not affected, only the time-dependence of the stress
evolution.

The electron hole annihilation reaction is considered at the grain boundary, inter-
face, and surface

Reh = �keh (cech �Keh) . (3.100)

The oxygen vacancy creation is considered at the alloy-scale interface expressed by

R
V

2+

O

= �kO

⇣
c
V

2+

O

(ce)
2
+K

V
2+

O

�
P I

O2
/P eq

O2

��1/2
⌘

(3.101)

and the aluminum vacancy creation is taken into account at the oxide–gas surface as

RV3-

Al

= �kAl

⇣
cV3-

Al

(ch)
3
+KV3-

Al

�
P II

O2
/P eq

O2

�3/4⌘
. (3.102)

The constants Ki are chosen such that in equilibrium Ri = 0.

3.5.6 Simulation results

The simulations correspond to oxidation experiments in which ⇠ 1µm thick ↵-Al2O3

films are grown on aluminum containing alloy substrates. The cross-section of the
hexagonal cells is considered fixed and the addition or removal of oxide at the rectan-
gular grain boundary planes strains the polycrystalline film. The simulations discussed
here are performed for a constant film thickness of 1µm, the quantity of primary in-
terest is the steady-state (stationary) stress, �st. The stress feedback to the Schottky
reaction is taken into account together with the defect concentrations and fluxes locally
in a self-consistent manner.

3.5.6.1 The equilibrium constants

The electron-hole equilibrium constant, Keh, the Schottky equilibrium constant, KS,
and the diffusion coefficients, Ds, are key parameters in this model. The values of the
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equilibrium constants are expected to depend on the phase or interface of the alloy-
scale-gas system considered. The dimensionless ratio, �,

� =
K1/5

S

K1/2
eh

where Keh = cech and KS = c3
V

2+

O

c2
V3-

Al

(3.103)

denotes the ratio of the geometric means of the vacancy concentration, K1/5
S

, and the
electron-hole concentrations, K1/2

eh
. Small changes in the defect formation energies, e.g.

Gf
S, or the band gap lead to large changes the equilibrium constants, the parameter �

changes less rapidly and is more convenient for the discussion. Its value at the alloy-
scale interface, �I , at the grain boundary, �GB, at the scale–gas interface, �II , and in
the bulk material, �bulk, are distinguished. Values for � in bulk ↵-Al2O3 are given in the
experimental study of reference [123] for temperatures between 1000 � 2000K where
approximately 10 > �bulk > 0.001, see figure 2 in reference [123]. In the analytic
investigation of Atkinson [1] it was assumed that the same equilibrium constants are
applicable throughout, and the generation of tensile or compressive stress is predicted
based on the point defect diffusion mechanism, see table 1 in reference [1]. Here, in
addition to the special case

�I = �GB = �II (3.104)

results for the case of

KI
S
⌧ KGB

S
= KII

S
and hence �I ⌧ �GB = �II (3.105)

are discussed, where the Schottky equilibrium constant at the alloy–scale interface is
varied to study its effect on the steady-state stress, �st.

Lateral stress generation is of particular interest for scale growth on Al contain-
ing superalloys such as FeCrAl. The incipient melting temperature for superalloys is
⇠ 1600K, which is significantly lower than the 1900K at which most of the permeation
experiments by Kitaoka et al. [83] have been performed. The equilibrium oxygen partial
pressure at the alloy–oxide can be obtained from experiment and it is highly temperature
dependent. For the FeCrAl(Zr) superalloy the oxygen partial pressure at the alloy–oxide
interface is calculated from thermodynamic data1 to be P int

O2
= 5.6⇥10

�18 Pa at 1600K.
The equilibrium constants are chosen in a similar way as in the calculations performed

1J. Smialek private communication.
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for the study of the membrane experiments, see section 3.4.3.1. The equilibrium con-
stants are defined with respect to an equilibrium oxygen partial pressure, P eq

O2
, and con-

sidered to correspond to a temperature of 1600K. The oxygen partial pressure at which
the vacancy concentrations are stoichiometric is found at P eq

O2
⇡ 10

�3 Pa at 1900K in
reference [138] based on DFT data for bulk ↵-Al2O3. From the experimental thermo-
dynamic data and analysis of reference [123] on bulk alumina it is known that the ratio
�bulk decreases with decreasing temperature ([123] figure 2).

Here, the reference vacancy concentrations are chosen as c0
V

2+

O

= 2/3c0
V3-

Al

=

5 ⇥ 10
14 cm�3, and the reference electron and hole concentrations are chosen as c0

e
=

c0
h
= 10

15 cm�3, which corresponds to a reduction of �/10 compared to the membrane
simulations 3.4.3. Implicitly defining an equilibrium oxygen partial pressure, P eq

O2
, the

reaction equilibrium constants are calculated as described in section 3.4.3.1. The ref-
erence oxygen partial pressure in the simulations, P eq

O2
, is considered to correspond to

P eq
O2

⇠ 10
�3 Pa. The simulations described below are performed for an oxygen chemical

potential difference across the film defined by P I
O2
/P eq

O2
= 10

�14 and P II
O2
/P eq

O2
= 10

8,
unless indicated otherwise. The temperature is set to 1600K, and the diffusion coef-
ficients are defined with respect to a reference diffusion coefficient, Dref, that together
with the thickness L = 1µm defines the time scale in the simulations, tref = L2D�1

ref .
The values Ds are indicated together with the simulation results. The hexagon side
length is set to ahex = 0.8µm. The reaction rate constants for the reactions defined in
equations 3.99, 3.100, 3.101, and 3.102, are set to kS = keh = 10

4, and kO = kAl = 10
2.

3.5.6.2 The steady-state stress

Figure 3.21 shows the temporal evolution of the stress state converging to a steady-
state tensile stress of. Typically a constant steady-state stress value �st > 0 is reached
in the simulation method developed, and its value depends on the diffusion coeffi-
cients, equilibrium constants, and also the reaction rate constants. In the simulation
result shown in figure 3.21. The diffusion coefficients of the vacancies are taken as
equal D

V
2+

O

= DV3-

Al

= Dvac, as well as the electron and hole diffusion coefficients
De = Dh = Deh. Simulation results for different ratios of Dvac/Deh are shown in fig-
ure 3.21, and the magnitude of steady-state stress, �st, increases with a decreasing ratio
Dvac/Deh.
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FIGURE 3.21: Evolution of the stress state at the grain boundary. The magnitude
of stress converges to a steady-state value, constant as a function of time, and in this
model also constant as the position in the grain boundary plane. The ratio of the oxygen
partial pressures at the alloy–oxide interface, P I

O2
, and oxide–gas surface, P II

O2
, is given

by P II
O2
/P I

O2
= 1022 and corresponds to a oxygen chemical potential difference of

�µO2
= NAkBT log

�
P II

O2
/P I

O2

�
= 674 kJ mol�1. The amount of steady-state stress

increases with a decreasing value of the ratio Dvac/Deh.

The possibility of faster vacancy diffusion than electron and hole diffusion is typ-
ically neglected in the literature on transport in alumina, except for Heuer [71]. But,
there is experimental evidence suggesting that the electronic and vacancy (ionic) trans-
port numbers are of similar magnitude [6, 7]. For Dvac/Deh > 1 the self-consistent
electric field slows down the vacancy diffusion.

Imagining a perturbation, ✏, in the V2+

O
defect formation energy at the alloy–oxide

interface the reaction equilibrium constants at the interface are varied with respect to
their value at the grain boundary, and oxide–gas surface. For a change of ✏ = 1 eV the
Schottky equilibrium constant is modified by

eGf

V
2+

O

= Gf

V
2+

O

+ ✏ (3.106)

KI
S
= exp (�(3 eGf

V
2+

O

+ 2Gf
V3-

Al

)/kBT ) = KS exp(�3✏/kBT ) ⌧ KS (3.107)

and hence

�I ⇡ 10
�2�GB. (3.108)
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Figure 3.22 shows the stresses for Dvac/Deh = 10; in one simulation the equilibrium
constant KI

S
is modified as described above, and in another simulation the electron-

hole equilibrium constant throughout the interfaces and grain boundary is lowered,
Keh ⇥ 10

�2, with respect to the parameters described previously. The modified equi-
librium constants lead to significantly lower stresses. Simulations for a modified Schot-
tky equilibrium constant at all interfaces have also been carried out, the results in-
dicate that the steady-state stress, �st, increases with a decreasing value of KS for
KS = KGB

S
= KI

S
= KII

S
.
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FIGURE 3.22: Evolution of the stress state at the grain boundary for modified equi-
librium constants. The magnitude of stress converges to a steady-state value, constant
as a function of time and position. The reduced electron-hole equilibrium constant
Keh ⌧ leads to a reduction in the amount of steady-state stress, similarly to the modi-

fied Schottky equilibrium constant, KI
S

, at the alloy–oxide interface.

Figure 3.23 shows the stresses for Dvac/Deh = 0.5 under different scenarios.
Again the lowered electron-hole equilibrium constant K 0

eh
= Keh ⇥ 10

�2 leads to a
reduction in the amount of tensile stress. For a lower oxygen partial pressure applied at
the surface (II) significantly less stress is induced, see figure 3.23.
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FIGURE 3.23: Evolution of the stress state at the grain boundary for a modified equilib-
rium constant, and a smaller oxygen partial pressure applied at the surface. The dashed
blue line shows a simulation for P II

O2
/P eq

O2
= 104 while for the other two simulations

plotted P II
O2
/P eq

O2
= 108. A smaller amount of partial pressure applied at the oxide–

gas surface leads to significantly smaller tensile stresses. The reduced electron-hole
equilibrium constant Keh ⌧ also leads to a reduction in the amount of steady-state

stress.

3.5.6.3 The concentrations and chemical potential distributions

In the simulations the concentration distributions of the mobile species are obtained as
a function of the position in the grain boundary and time, see figure 3.24 (a) for an
example of a concentration distribution in stress-dependent calculations. Figure 3.24
shows the concentrations and dilute solution electrochemical potentials in the steady-
state for a stress-dependent simulations. A significant deviation from local Schottky
equilibrium is observed in figure 3.24 (b).

The dilute solution electrochemical potentials of the mobile species are defined
by

⌘s(r, t) = kBT ln
�
cs(r, t)/c

0

s

�
+ zse0�(r, t) (3.109)

which was discussed in further detail in section 2.5. Schottky equilibrium is considered
to hold locally if

⌘
V

2+

O

(r)/2 = �⌘V3-

Al

(r)/3 (3.110)
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and local electron-hole equilibrium holds if

�⌘e(r) = ⌘h(r). (3.111)

for all values of r within the grain boundary plane. For convenience the electrochemical
potentials scaled by the charge of the particular species are shown in figure 3.24 (b).
In this way the deviation from local ionic or electronic equilibrium becomes apparent
readily, the quantities have the dimension of a voltage. The deviation from equilibrium
is equivalent to plots of the scaled chemical potentials since the electrostatic potential,
�, difference cancels.
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FIGURE 3.24: (a) Steady-state concentrations of vacancies, electrons, and holes as a
function of x3 in the grain boundary plane, with fixed x1 = ahex/4. Scaled units with
cref = 1016 cm�3 and L = 1µm. The diffusion coefficients are related by Dvac/Deh =
0.5, and with P II

O2
/P I

O2
= 1022. (b) The scaled electrochemical potentials, ⌘s/zse0,

calculated from the ideal solution chemical potentials, of the mobile species for fixed
x1 = ahex/4 in the grain boundary plane.

None of the electrochemical potential distributions is constant as a function of
position in the steady-state. The magnitude of the deviation from Schottky equilibrium
locally depends on the equilibrium constants, and the diffusion coefficients.

Figure 3.25 shows the distributions of the oxygen and aluminum chemical po-
tentials calculated from the vacancy, electron, and hole concentrations. The internal
oxygen chemical potential is calculated from the oxygen vacancy, c

V
2+

O

(r) and electron,
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ce(r), concentrations by the dilute solution approximation

µO(r) = �

⇣
µ
V

2+

O

(r) + 2µe(r)
⌘

where µs(r) = kBT ln
�
cs(r)/c

0

s

�
. (3.112)

Analogously, the internal aluminum chemical potential is calculated from the aluminum
vacancy and hole concentrations

µAl(r) = �

⇣
µV3-

Al

(r) + 3µh(r)
⌘
. (3.113)
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FIGURE 3.25: The internal aluminum and oxygen chemical potential, µAl, and µO, for
fixed x1 = ahex/4 in the grain boundary plane.

3.5.6.4 The p� n transition

The oxygen membrane permeation experiments by Kitaoka et al. [83] have shown the
transition in the dominant ionic defect in the transport behaviour of ↵-Al2O3 as a func-
tion of the applied oxygen chemical potential difference, �µO2

. This has led to the
hypothesis of a p� n ionic transition within the alumina scale during high-temperature
oxidation of aluminum containing alloys [70, 71].
In the developed model a transition between V

2+

O
and V

3-

Al
as the dominant defect in the

defect fluxes in the grain boundary plane is observed. The character of the transition and
its dependence on the reaction equilibrium constants and diffusion rates can be studied.
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The essential variables for characterizing the p�n transition are the species fluxes
or current densities, and the transport numbers, the later are defined by

ts =
�s

�T

, and �s =
Dscsz2se

2

0

kBT
(3.114)

where in the present simulations the total conductivity,

�T = �
V

2+

O

+ �V3-

Al

+ �h + �e. (3.115)

The transport numbers are dimensionless, adhere to 0 < ts < 1, and vary in the grain
boundary plane since the mobile species concentrations change as a function of posi-
tion, the diffusion coefficients are constants. Figure 3.26 shows the transport numbers
in the steady-state as a function of the internal oxygen chemical potential; the vacancy
diffusion coefficients, Dvac, are assumed to be larger than the electron-hole diffusion co-
efficient, Deh. The parameters for the simulations shown in figures 3.26, 3.27, and 3.28
are those corresponding to the simulation with �st

= 5.3GPa, shown in figure 3.23
(black dashed line).
The vacancy transport number is defined by

tvac = t
V

2+

O

+ tV3-

Al

(3.116)

and the electron-hole transport number by

teh = te + th. (3.117)

The vacancy transport number is equal to the ionic transport number, tvac = tion, since
the vacancy and ionic conductivity are equal.

For any value of ts(r) as a function of position, r, can be assigned a value of µO(r)

determined from the concentrations, the resulting mapping is plotted in figure 3.26. A
p�n transition in the dominant vacancy species is predicted for the assumed parameters.



CHAPTER 3 87

-200 -150 -100 -50 0 50
chemical potential 7O / kJ mol!1

0

0.2

0.4

0.6

0.8

1

tr
an

sp
or

t
n
u
m

b
er

t s

teh
tvac
tV 2+

O

tV 3!
Al

th+

te!

FIGURE 3.26: The steady-state (dimensionless and 0 < ts < 1) transport numbers
as a function of the internal oxygen chemical potential µO. The diffusion coefficients
in this simulation are related by Dvac/Deh = 0.5. There is a p � n transition in
the dominant vacancy species in the vacancy transport number, tvac, and a transition
between electrons and holes as the dominant species in the electronic transport number,

teh.
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FIGURE 3.27: The steady-state (dimensionless and 0 < ts < 1) transport numbers
as a function of the position in the grain boundary plane and averaged over the x1
coordinate. The diffusion coefficients in this simulation are related by Dvac/Deh =
0.5. There is a p�n transition in the dominant vacancy species in the vacancy transport
number, tvac, and a transition between electrons and holes as the dominant species in

the electronic transport number, teh.

Figure 3.28 shows a p�n transition of the current densities in the grain boundary
plane. In the steady-state the divergence of the vacancy current density which is given
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by,

Ivac = 2e0JV2+

O

� 3e0JV3-

Al

, (3.118)

vanishes r · Ivac = 0, and similarly the electron-hole current density,

Ieh = e0Jh � e0Je, (3.119)

adheres to r · Ieh = 0. The amount of charge transported by the vacancies is equal to
the ionic current density, Ivac = Iion.
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FIGURE 3.28: The steady-state current densities as a function of the position in the
grain boundary plane and averaged over the x1 coordinate. The diffusion coefficients
in this simulation are related by Dvac/Deh = 0.5. There is a p � n transition in the
dominant vacancy species in the vacancy current density, Ivac, and a transition between

electrons and holes as the dominant species in the electronic current density, Ieh.

The transport numbers and hence the transition depends strongly on the values
of the diffusion coefficients, and indeed for Dvac/Deh = 10 no ionic p � n transition
is predicted, see figure 3.29. The vacancy diffusion coefficients are chosen larger than
the electron and hole diffusion coefficients and for D

V
2+

O

= DV3-

Al

= Dvac the oxygen
vacancy dominates the transport regardless of the position in the grain boundary plane.
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FIGURE 3.29: The steady-state (dimensionless and 0 < ts < 1) transport numbers
as a function of the position in the grain boundary plane and averaged over the x1
coordinate. The diffusion coefficients in this simulation are related by Dvac/Deh = 10.

There is no ionic p� n transition.

3.5.7 Discussion

The experimental data of Balmain and Huntz [6, 7] regarding the electrical properties of
polycrystalline ↵-Al2O3 scales has been described as the most reliable by Heuer [71].
For scales grown on �-NiAl at T = 1100

�C with a thickness ⇠ 2µm the ionic trans-
ference number, tion = �ion/(�ion + �e), is analyzed and varies from about 0.6 at the
alloy–oxide interface to about 0.1 at the oxide–gas interface, which is kept at an oxy-
gen partial pressure of PO2

= 10
5 Pa [6]. An intermediate minimum of tion occurs at

about PO2
= 10

�5 Pa which has been interpreted as evidence for a p�n ionic transition
by Heuer [71]. The addition of Yttrium to the alloy, NiAl(Y), is found to have little
effect on the ionic transference number [6]. The analysis is based on the ‘generalized
Nernst-Einstein’ relation that is closely related to the Wagner theory.

In order for the transport number tvac ⇡ teh the dominant vacancy and electronic
species diffusion coefficients have to be of similar magnitude, D⌫ ⇠ D⌫ , since the
concentrations are related by approximate local charge neutrality. Therefore, in most
simulations considered the chosen ratio Dvac/Deh does not depart significantly from 1.
The electrons are found to be the dominant electronic species except near the oxide–gas
surface. The p � n transition is observed for e.g. Dvac/Deh = 0.5, see figures 3.27
and 3.28, but not for e.g. Dvac/Deh = 10, see figure 3.29. This is indicative of how
sensitively the location of the p � n transition depends on the diffusion coefficients,
reaction rates, and oxygen partial pressure applied. However, it should be pointed out
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that the stress generation does not require an internal p�n ionic transition, simulations
that do not show a pronounced transition do show steady-state stresses.

For the parameter configurations examined tensile stresses at the grain boundary
are generated, confirming Atkinson’s model and analytic considerations [2]. Also for
varying the equilibrium constants at the alloy-oxide interface tensile stresses are ob-
served. The stress state tends to a constant steady-state value in the model developed
here, a spatial variation is not considered. The amount of stress in the steady-state is
�st

⇠ +5GPa in most simulations considered. The stress �st predicted is, thus, higher
than the lateral growth stresses determined from most experiments. It depends strongly
on the diffusion coefficients of the mobile species, the reaction rate constants, and on the
oxygen partial pressure applied. The attainment of local Schottky equilibrium depends
apart from the stress induced also on the relative rates of the reaction and the vacancy
diffusion coefficients.

Apart from the sensitivity to the parameters used, another reason for stresses
larger than in the experiments could be the neglect of a stress relaxation mechanism
such as creep. Transport in a stress gradient, however, requires the relaxation of the
assumption of a constant stress as a function of position.

A critical point in this model is the assumption that the Schottky reaction mech-
anism at the grain boundary proceeds in such way that as a Schottky vacancy complex
annihilates oxide is removed at the grain boundary. This point is not entirely clear from
the literature. While reference [183] assumes that oxide is removed as vacancies merge
at the grain boundary, e.g. reference [70] seems to hold the opposite. If the later inter-
pretation was right, the stresses predicted in this work would have the same magnitude,
but their sign would be reversed. That is, a minus sign would appear in equation 3.95,
and compressive stresses would be predicted.

Regarding the grain shape in the model, the amount of steady-state stress appears
to be virtually independent of the aspect ratio ahex/L.

Estimating the physical constants that enter into the stress expression derived
previously

� = �2
Y

1� ⌫

⌦u

a2hexL
�N (3.120)

the amount of oxide added or removed from the grain boundaries can estimated from
the steady-state stress value determined in the simulations. The volume per formula unit
of bulk oxide is given by ⌦u = 4.128⇥ 10

�29 m�3 at 1000� C, the hexagon side length
ahex = 1µm, Y/(1� ⌫) = 457GPa (1400� C [128]), and the amount of oxide added or
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removed is estimated from

�N = �Nsimf

✓
2

Y

1� ⌫

⌦
2

u

a2hexL

◆�1

(3.121)

where �Nsim is the amount of oxide added in the simulations, and f is a numeric con-
stant in the simulations described in the previous section. The corresponding amount
of oxide removed is about �N ⇡ �10

8 oxide molecules per grain boundary plane for
tensile stresses of about 5GPa. This would mean on the order of ⇠ 10

2 layers of oxide
are deleted at the grain boundaries until a steady-state is reached in which the creation
and annihilation of vacancies at the grain boundary are balanced such that no further
oxide is added or removed.

In conclusion, a model has been introduced capable of predicting the amount of
stress induced in an idealized grain structure at conditions of high-temperature steady-
state oxide scale growth. The model gives insight into the microscopic processes un-
derpinning the transport during oxidation.

By comparison to experimental data it is reasoned that the diffusion coefficients of
the dominant species could be of similar magnitude. The details of the defect transport
mechanisms are still under debate [69, 71]. Thus, further work would be of value to
determine the electron and ion transport mechanism in alumina grain boundaries, and
particularly ab initio simulations along the lines of the work by Guhl et al. [56] are
expected to benefit the understanding of the transport mechanism. That is, a detailed
characterization of the localized and near band edge states at the grain boundary, as
mentioned in chapter 2 section 2.5, and inclusion of their properties in a realistic model
of the electron and ion grain boundary transport, see also the discussions by Heuer [69,
71].

The predicted amount of stress depends sensitively on a number of parameters
and this might help to explain the discrepancies between the lateral growth stress val-
ues determined from the experimental measurements. Many experiments do indicate
compressive lateral growth stresses, which could indicate the presence of an intersti-
tial transport mechanism. Further work is required to determine if compressive stress
does necessarily imply interstitial transport or if indeed vacancy diffusion can also lead
to compressive stresses at the grain boundaries. Furthermore, a position dependence
in the stress distribution within growing scales has been observed experimentally. The
model could be extended by including a stress relaxation mechanism, such as transport
in a stress gradient, and thereby take into account spatially varying stress distributions.



Chapter 4

Drift-diffusion limited scale growth or
membrane permeation

4.1 Introduction

Metal oxidation and scale growth are complex phenomena and perhaps surprisingly, it
is possible to explain the experimentally observed behaviour in many cases by simple
analytical rate laws derived from elementary physical models. For micrometer thin
scales growing at high-temperatures in a gaseous environment Wagner’s theory [2, 189]
is usually adopted to interpret experimental data. Due to its elegant thermodynamic
formulation this theory is still influential today, and used in essentially unchanged form.
Wagner [189] showed that the drift-diffusion transport of anions, cations, and electrons
which limits the overall oxidation rate does yield a square root law time dependence for
the film thickness

L ⇠
p
t. (4.1)

This is a remarkable result given that a square root time dependence is typically the
hallmark of purely diffusive behaviour. This is reflected in the relation between the
mean-square fluctuation in particle position as a function of time during Brownian mo-
tion

h(�r)2i ⇠ t (4.2)

and the well known similarity solution of the Fickian diffusion equation by means of the
auxiliary variable ⇠ ⇠ x/

p
t. It is shown here that Wagner’s rate equation only yields

a square root time dependence for the film thickness (parabolic law) in the limit of a

92
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vanishing local charge density. In particular, for thin films and low defect concentrations
the local charge neutrality approximation breaks down and a linear rate law, L ⇠ t, is
predicted for these conditions.

Since it was originally derived for homogeneous scales, i.e. no grain boundaries
or dislocations, the application of Wagner’s theory to oxides such as alumina and chro-
mia requires a modification. Grain boundary transport dominates in these oxides and
the mobile species diffusion coefficients are replaced by Hart’s expression for an effec-
tive diffusivity, see chapter 2 section 2.4. Grain boundaries in growing oxide films are
known as sources and sinks of point defects, and the creation or annihilation of oxide
within the film generates stress, as has been discussed in chapter 3 section 3.5. The in-
duced stress causes a deviation from local ionic equilibrium and this deviation requires
a further modification of Wagner’s theory of metal oxidation which is discussed in this
chapter.

The chapter is organized as follows. In section 4.2, the assumptions of local
charge neutrality, and the application of the Gibbs-Duhem relation in the context of the
Wagner theory are discussed. To obtain a closed form solution and growth rate for-
mula Wagner’s rate equation is typically solved by adopting the local charge neutrality
assumption, which does limit the applicability of the theory significantly. It has been
claimed in the literature on metal oxidation [47] that Wagner’s theory is inconsistent
with the non-equilibrium equivalent of the Gibbs-Duhem relation. It is argued here that
the apparent contradiction is due to a misapplication of the Gibbs-Duhem relation.
In section 4.2.1, the oxidation rate formula is derived from an electric equivalence cir-
cuit model. It brings to light the essentials of the Wagner theory in a physically intuitive
manner, and could serve as an educational device on this theory.
In section 4.3, the failure and consequences of the assumption of local ionic equilib-
rium are discussed. It is argued that the assumption of local ionic equilibrium is only
justifiable in the presence of extended defects in the scale, and even if those are present
the assumption is still prone to fail.

In section 4.3, an attempt is made for a systematic treatment of the charge neu-
trality approximation applied to Wagner’s theory. Following the identification in sec-
tions 4.2.3 and 4.2.4 of the dimensionless ratio of the reference Debye length over the
film thickness denoted by  = `D/L as the chief parameter governing the behaviour of
the equations under consideration, a singular perturbation theory approach is adopted
with perturbation parameter . Significantly, the novel treatment yields a prediction of
a transition between a linear to square root time dependence of the scale growth rate
for thin scales, see section 4.3.3. It is argued that a linear growth regime for thin films
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precedes the square root (parabolic) law that is obtained from the Wagner theory by
adopting the charge neutrality approximation.

4.2 A critical discussion of the Wagner theory

The scale growth rate of a M|zX|X|zM| compound limited by the transport through the
scale is proportional to the amount of oxidant reaching the metal–scale interface plus the
amount of metal reaching the metal–oxidant interface per unit time. For constant fluxes
a convenient formulation of the growth rate expression in the Wagner theory [2, 189] of
metal oxidation is given by

dL

dt
=

⌦u

e0|zXzM|
Iion (4.3)

where L is the thickness of the scale, ⌦u is the volume per formula unit of scale; e0 is
the positive elementary charge; Iion = e0zXJX + e0zMJM is the ionic flux with JX and
JM the oxidant and metal fluxes, respectively; and with the convention of positive fluxes
in the positive x3 direction towards the scale–environment interface, and for x3 = 0 at
the metal–scale interface.

In this formulation it is immediately apparent that the growth rate vanishes unless
the ionic current density is balanced by an electronic current density, since from Iel = 0

would follow that Iion = 0 has to hold to satisfy the constraint of zero net current in the
steady-state,

Iel + Iion = 0. (4.4)

The rate equation, generalized with respect to equation 2.10 introduced in chapter 2 to
include hole transport, is written as

dL

dt
=

⌦u

e0|zXzM|L

Z II

I

(�X + �M) (�e + �h)

�X + �M + �e + �h

dµX. (4.5)

A steady-state is assumed to be reached during growth described by Wagner’s
theory of metal oxidation requiring that the concentrations of the mobile species and
fluxes throughout the scale reach a stationary value during growth. In this steady-state
the current carried by ions and electrons is balanced such that there is no build-up or
depletion of charge locally; a self-consistent electric field influences the species fluxes
such that the net current vanishes at any point. It has been argued in the literature that the



CHAPTER 4 95

self-consistent electric field in the Wagner theory is inconsistent with the Gibbs-Duhem
equation [19, 20, 47], a problem which we address in section 4.2.2.

In the Wagner theory it is further assumed that the diffusing cations and anions
are in equilibrium at the metal-oxide and oxide-gas interfaces, and indeed throughout
the growing scale. In a vacancy mediated transport mechanism this assumption trans-
lates to Schottky equilibrium prevailing throughout the scale including its surface and
interfaces. This ionic equilibrium requires the mobile ions to react internally and hence
the formation and dissolution of oxide within the scale, which of course can only occur
at dislocations and grain boundaries. The derivation of the Wagner theory, however, re-
quires constant fluxes, r ·Js = 0, which cannot be satisfied if the ions are also reacting.
The ‘internal oxidation’ would further induce stresses which would in turn modify the
fluxes. In materials with cation and anion counter diffusion the assumption of internal
ionic equilibrium therefore has to be examined, and it is discussed here in section 4.3.

4.2.1 An electric circuit equivalence system

The rate equation obtained by Wagner [189] can be derived in different ways. Here I
propose a derivation by recourse to an electric circuit equivalence system. The reasons
to promote this derivation are twofold: First, the simple circuit model provides a phys-
ically intuitive derivation. Second, the special combination of the transport coefficients
in the integrand of the rate equation integral, see equation 4.5, is exposed as precisely
the combination expected from the basic circuit rules of conductors (resistors) in series
or parallel.

As a first step, the homogeneous film is mapped onto a conductor network, see
figure 4.1, and the aim is to calculate the ionic currents through this partitioned film.
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FIGURE 4.1: The film is imagined to be composed of layers with thickness `. A
conductance Gj is assigned to every layer and the film is mapped onto a conductor
network (resistance and conductance are related by Gj = 1/Rj). The oxidant chemical
potential difference between the surfaces induces a voltage in the conductor network.

4.2.1.1 An equivalence network of conductors

The equivalence network consists of conductors in parallel (resistors in series), the con-
ductance of each element is due to the conductivity of the mobile species present and
is a measure for how easily charge flows through each layer. The driving force is de-
termined by the oxidant chemical potential difference between the interfaces (I) and
(II),

�µO2
= µII

O2
� µI

O2
. (4.6)

At the interfaces equilibrium between the oxidant ions and atoms, and the electrons is
assumed to hold

1

2
O2 + 2e ⌦ O2� (4.7)

1

2
µO2

+ 2µe = µO2� . (4.8)

In the steady-state the voltages across the conductances are distributed in such way as
to minimize the energy dissipation. The Kirchhoff current law ascertains that the net
current through the j-th equivalence conductor is zero for all j

A
X

s

Ijs =

X

s

Gj
sVs,j = 0, (4.9)
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where Vs,j denotes the electrochemical potential difference of species s across the j-th
conductor divided by the corresponding charge number, �⌘s/zse0, it has the dimensions
of a voltage; the current density Ijs has the dimensions of unit charge per unit area, A,
and time. There is no change in the local charge density in the steady-state, the currents
of the different species s compensate each other. Vs,j can also be written as

Vs,j =
�⌘js
zse0

=
�µj

s

zse0
+��j. (4.10)

If the oxidant ions and electrons are the mobile species, due to the Kirchhoff current
law, the electrostatic potential difference across the j-th equivalence conductor is given
by

��j
= �

1

Gj
O2� +Gj

e

 
Gj

O2�
�µj

O2�

zOe0
+Gj

e

�µe

zee0

!
(4.11)

By using the above expression for ��j the current of oxidant ions through the j-th
equivalence conductor can be rewritten as

Ij
O2� =

Gj
O2�Gj

e

Gj
O2� +Gj

e

 
�µj

O2�

zOe0
�

�µj
e

zee0

!
1

A
. (4.12)

The chemical or electrochemical potential difference divided by the charge,

�µj
O2�

zOe0
�

�µj
e

zee0
=

�⌘j
O2� � |zO|�⌘j

e

zOe0
⌘ �V j,j�1

O
(4.13)

is denoted here by, �V j,j�1

O
. It has the physical dimensions of a voltage and the meaning

equivalent to a voltage across the j-th conductor, see figure 4.2. �V j,j�1

O
is not due to an

electrostatic potential difference or difference in the Fermi level, but is a thermodynamic
driving force due to chemical potential gradients.

} O

FIGURE 4.2: The equivalence voltage due to the chemical potential differences
�V j,j�1

O
.
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In the steady-state the current through all conductances is equal and the following
identity holds

IO2� =
1

L

NX

j=1

`

A

Gj
O2�Gj

e

Gj
O2� +Gj

e

�V j,j�1

O
(4.14)

where N` = L, and ` is the length of the conductors. The conductance, Gj
s, and con-

ductivity, �s, of species s in the j-th conductor is given by

Gj
s =

A

`
�s

����
VO(x)2[VO(j`),VO((j�1)`)]

(4.15)

In the continuum limit, where ` ! 0 while N` = L is fixed, the oxidant ion current is
given by

IO2� =
1

L
lim
`!0

NX

j=1

✓
�O2��e

�O2� + �e

◆

VO(x)2[VO(j`),VO((j�1)`)]

✓
VO(j `)� VO((j � 1)`)

◆

(4.16)

which is a Riemann-Stieltjes integral,

IO2� =
1

L

Z L

0

✓
�O2��e

�O2� + �e

◆

x

dVO(x). (4.17)

Applying the above expression in the formulation of the growth rate given in equa-
tion 4.3, the growth rate as predicted by the Wagner theory in the case of two mobile
species O2� and e follows. For the general case of mobile cations, M2+, and holes, h,
in addition to anions and electrons the equivalence conductance is modified as shown
in the next section.

4.2.1.2 The equivalence conductance

For anions, O2�, and electrons, e, as the mobile species the equivalent conductance
corresponds to two conductances in parallel (resistors in series)

Gequiv =

✓
1

GO2�
+

1

Ge

◆�1

=
GO2�Ge

GO2� +Ge

(4.18)
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FIGURE 4.3: Effective conductance with two mobile species.

If the metal ion, M2+, is mobile as well and if local ionic equilibrium holds, the
two ‘ionic conductances’ are in series (resistors in parallel)

Gion = GO2� +GM2+ , (4.19)

and similarly for electron-hole equilibrium

Gel = Ge +Gh. (4.20)

FIGURE 4.4: Effective conductance with four mobile species and ionic, and electron-
hole equilibrium.

The corresponding equivalent conductance is given by the ionic and electronic
conductance in parallel (resistance in series)

Gequiv =

✓
1

Gion
+

1

Gel

◆�1

=
(GO2� +GM2+)(Ge +Gh)

GO2� +GM2+ +Ge +Gh

(4.21)
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and the ionic current is given by

Iion =
1

L

Z L

0

✓
(�O2� + �M2+) (�e + �h)

�O2� + �M2+ + �e + �h

◆

x

dVO(x). (4.22)

The ionic current determines the oxidation rate as expressed by equation 4.3. The circuit
equivalence model, thus, yields the same ionic current and oxidation rate as the one
derived within the Wagner theory of metal oxidation, see equation 4.5.

4.2.2 The application of the Gibbs-Duhem equation

A thermodynamic system describing a physical system under consideration is defined
by a complete set of macroscopic variables, which are either extensive (scale with the
system size) or intensive (independent of the system size) [55]. The fundamental ther-
modynamic relation in the energy representation [15] is given by

dU(Xi) =

X

i

@U

@Xi
dXi (4.23)

where the Xi are extensive variables and the Yi = @U/@Xi are intensive. Adding
identical small systems next to each other the extensive quantities scale with the total
system size while the intensive quantities remain constant, thereby an integration of the
fundamental relation is performed. Formally this is expressed by introducing the scaling
parameter ⇤. The energy is additive for combinations of two or more independent
subsystems and, therefore, an extensive quantity, meaning it satisfies the scaling law

U(⇤Xi) = ⇤ U(Xi) (4.24)

with the scaling parameter ⇤. By a theorem of Euler for homogeneous functions of
degree 1,

U(Xi) =

X

i

YiXi (4.25)

and by examining the total differential, dU , and comparing to relation 4.23 the Gibbs-
Duhem relation follows

X

i

XidYi = 0. (4.26)

This means the intensive variables are not all mutually independent.
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In the local equilibrium hypothesis the thermodynamic state functions and their
functional forms are assumed to hold for any ‘local equilibrium cell’ of the system,
thereby extending the state functions to be continuous functions of space and time. It is
common practice in the literature on irreversible thermodynamics to assume a pointwise
form of the Gibbs-Duhem equation in space and thereby to relate the gradients of the
chemical potentials [28, 92, 146]. Fromhold [47] applies a local form of the Gibbs-
Duhem equation under isothermal conditions including the electric field, �r�, for a
1D system

X

s

cs(x) r⌘s(x) =
X

s

cs(x) rµs(x) + ⇢(x) r�(x) = 0, (4.27)

and argues that the resulting constraint on the electric field is inconsistent with the
Wagner theory of metal oxidation [47]. This claim has also been the subject of more
recent publications [19, 20]. Fromhold argues that the field calculated from the zero net
current assumption,

�r� =
kBT

P
s DszsrcsP

s Dscsz2s
, (4.28)

and the electric field calculated from the Gibbs-Duhem equation,

�r� =
kBT

P
s rcsP

s zscs
, (4.29)

are inconsistent [47]. However, the Gibbs-Duhem equation is a consequence of the ex-
tensivity of thermodynamic systems and for systems with non vanishing local charge
density, ⇢(r), it is not applicable since such systems are not extensive. The electric
field has to be calculated from the Maxwell equations. The only way for the electro-
static potential, to change is a variation in the local charge density and it can therefore
not be varied independently without violating self-consistency. The electric field arises
because the transport between the local equilibrium cells is not in stoichiometric pro-
portions during a transient period that precedes the steady-state limit.

The Gibbs-Duhem relations holds if the Gibbs energy is a homogeneous func-
tion of first order in its extensive variables. In most physical systems additivity is a
necessary condition for extensivity [179]. Within the local equilibrium hypothesis the
non-equilibrium system is partitioned into local equilibrium cells. For such a thermody-
namic system with non-vanishing local charge density and long-range Coulomb inter-
actions it can be expected that neither additivity nor extensivity hold for the local Gibbs
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energy. The local version of the Gibbs-Duhem equation is therefore not applicable.
Wagner applies the Gibbs-Duhem equation to relate the metal and oxidant ion

chemical potentials in the limit of approximate local charge neutrality, i.e. without an
electrostatic potential term; the treatment is further discussed in section 4.3.1.

4.2.3 The steady-state assumption

The steady-state assumption

@tcs = 0 and r · Js = 0 (4.30)

ascertains that the concentrations do not change with time and that the fluxes are con-
stant as a function of the position in the film. From this definition of the steady-state it
is not immediately obvious why the assumptions of zero net current locally

X

s

Is = 0 (4.31)

should only hold in the steady-state limit. However, the assumption of zero net current
follows directly from the Maxwell-Ampere equation

1

µ0

r⇥ B =

X

s

Is + "r"0@tE (4.32)

which in the Coulomb gauge, r · A = 0, and with the electric field,

E = �r�+ @tA , (4.33)

is rewritten as

⇤A =

X

s

Is � "r"0@tr� (4.34)

where A is the magnetic vector potential, and ⇤ is the d’Alembertian. ⇤A corresponds
to radiation effects and is not discussed here. For ⇤A ⌘ 0 and with the Nernst-Planck
flux the equation is rewritten as

"r"0@tr� =

X

s

Is (4.35)
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or

"r"0
�T

@tr�+r� = �

X

s

ts
rµs

zs
(4.36)

where �T is the total conductivity, and ⌧r = "r"0/�T is identified as the dielectric
relaxation time, characterizing the time scale of changes in the local charge density.

The equation in dimensionless form reads as

X

s

Is � 2@tr� = 0 (4.37)

where

 =
`D

L
. (4.38)

For rapid changes in � the term 2@tr�, which is small since  is typically small does
not vanish; there is build-up and depletion of local charge density. The characteristic
time scale for diffusion is given by

⌧d = L2/Dref (4.39)

and since

⌧r
⌧d

⇠

✓
`D

L

◆2

(4.40)

the time scale ⌧r for variations in � compared to to the time scale ⌧d of attainment of the
steady-state effectively varies as

2
⇠

1

L2
P

s z
2
sc

surf
s

(4.41)

where csurf
s is the concentration of species s on the surface. For large thicknesses L � `D

and or large defect concentrations it can therefore be expected that in the steady-state
the zero net current assumption applies at any position

X

s

Is = 0. (4.42)

It is generally a very reliable assumption in the context of the Wagner theory.
Capturing the time dependent behaviour in this way is of course equivalent to



CHAPTER 4 104

solving the Poisson equation self-consistently with the continuity equation, the diver-
gence of the Maxwell-Ampere equation leads to the continuity equation under applica-
tion of the Poisson equation. The coupled system of equations is a singular perturbation
problem, with singular perturbation parameter 2, a perspective further discussed in
section 4.3.2.

4.2.4 The local charge neutrality approximation

Overall charge neutrality of the system is maintained during the evolution of the concen-
trations. However, charge can be displaced within the system, allowing for the genera-
tion of a non vanishing local charge density, while adhering to the fundamental principle
of charge conservation at any moment.

The local charge neutrality assumption

⇢(r) = 0 (4.43)

is frequently applied in the Wagner theory to relate the mobile species concentrations
and to derive closed form solutions for the fluxes and electric field. The validity of this
assumption depends strongly on the screening parameter

 = �D/L, (4.44)

the magnitude of the local charge density decreases as  becomes smaller, which in
particular varies as

 ⇠
1pP
s z

2
sc

surf
s

(4.45)

where csurf
s is the concentration of species s on the surface.

There seems to be a paradox contained in the analytical closed form equations
frequently derived from the Wagner theory or similar approaches: The equations for the
fluxes, permeation rate, electrostatic potential difference across the film etc. are derived
by applying the zero local charge density approximation, ⇢(r) = 0. While these solu-
tions seem consistent with the more general simulation results, it seems paradoxical to
derive equations containing electric field effects while assuming ⇢ = 0 throughout the
domain.
An immediate remedy might be to consider the charge to be confined to the surface or
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interface with equal and opposite surface charges similarly to a parallel plate capaci-
tor. However, this hypothesis immediately leads to difficulties since the electrostatic
potential difference is generally expected to converge to a constant in the limit of large
thicknesses L(t) and the capacitor potential difference,

�� =
�

"r"0
L(t) ! const. (4.46)

then seems to indicate that the surface charge, �, varies as � ⇠ L(t)�1. This means that
the surface concentrations cannot be stationary during growth, seemingly contradicting
the steady-state and the zero net current assumptions.

The approach described in section 4.3.2 is an attempt to resolve this apparent
paradox in the derivations.

4.3 Beyond the Wagner theory

It has been argued and shown in chapter 3 section 3.5 that the assumption of internal
ionic equilibrium within a growing scale does not hold in general. Here I propose a
simple modification to the rate equation for monocrystalline scales or membranes. For
the general case of transport through scales or membranes with extended defects, and
internal oxidation inducing stress generation no analytic model is available at present.
Section 4.3.1 gives a discussion of the Wagner theory taking into account the findings
from the simulations with the hexagonal cell model in chapter 3 section 3.5.6.

Typically the local charge neutrality approximation is adopted to derive a closed
form solution from the oxidation rate equation 4.5. The departure from local charge neu-
trality or ‘Debye-Hückel disorder’ has been identified as early as 1946 by Bardeen [8]
as an aspect of the theory that could require modifications of the rate equations. The
local charge neutrality approximation and the related ‘space charge’ phenomenon have
been investigated extensively by Fromhold [49] in the context of scale growth. In sec-
tion 4.3.2 I propose a method of systematic improvement upon the local charge neu-
trality approximation. The treatment was developed independently from Fromhold’s
derivations, by adapting a technique from the mathematical literature on semiconduc-
tors [112]. It has been noted in the literature, e.g. [47], that Wagner’s rate formula does
not necessarily yield a square root (parabolic) growth rate, the latter only follows if the
integral in equation 4.5 is constant. In section 4.3.3 a linear regime, preceding the square
root law regime, is predicted within the framework of Wagner’s oxidation rate theory.
The linear regime is derived by relaxing the local charge neutrality approximation.
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4.3.1 Internal ionic equilibrium

Wagner [189] assumed the chemical potentials of the ions and atoms are in equilibrium
at any point in the scale

µz
X
= µX + |zX|µe (4.47)

µz
M
+ |zM|µe = µM, (4.48)

and that the chemical potentials of the neutral atoms are related by1

NXdµX +NMdµM = 0. (4.49)

Further, for small deviations from stoichiometry, NX/NM ' |zM/zX|,

rµX ' �

����
zX
zM

����rµM. (4.50)

The immediate consequence of this relation is the characteristic form of the transport
coefficient in Wagner’s oxidation rate formula

�Xtel
rµX

zX
+ �Mtel

rµM

zM
' (�X + �M)tel

rµX

zX
(4.51)

containing the sum of the ionic conductivities. The normalized deviation from stoi-
chiometry in a local equilibrium cell can be written as

NX/NM � |zM/zX| = �X/NM (4.52)

where �X is the excess of component X. For a system with ⇠ 1 point defects per ⇠ 10
4

atoms the deviation from stoichiometry seems indeed negligible.
But, the analysis neglects the effect of a non-vanishing local charge density on

the variation of the chemical potentials. Furthermore, in polycrystalline materials the
possibility of internal oxidation at extended defects adds a further complication. The
internal creation or dissolution of material at grain boundaries for example would induce
stress and the free energy of the oxide creation reaction, gX, must vanish for local ionic
equilibrium equilibrium to hold

gX(r) = |zX|µ
z
M
(r) + |zM|µ

z
X
(r)� �(r)⌦u = 0 (4.53)

1Referred to as the Duhem-Margules equation by Wagner [189].
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where � is the stress and ⌦u is the volume per formula unit of material. If this equilib-
rium holds the gradient of the free energy of reaction vanishes

rgX = 0. (4.54)

This problem is further discussed in section 4.3.1.2. Deviations from ionic equilibrium
locally have been first discussed by Wagner [194] and Fromhold [47, 48], but their
treatment does not involve the stress state. A discussion involving stress generation
was given for example by Atkinson [1], whose treatment has been discussed already in
chapter 3 section 3.5.

4.3.1.1 Monocrystalline scales

In monocrystalline scales topology forbids the internal creation of vacancies, the lattice
inside monocrystals has to be preserved. This is why internal Schottky equilibrium is
not satisfied in general within a monocrystal, the deviation from equilibrium depends
on the chemical potential gradients imposed upon the crystal and the mobile species
transport rates. Frenkel defect pairs of vacancies and interstitials can of course occur in
monocrystals but are not the main concern of this work. Given internal ionic equilibrium
does not hold

|zX|µ
z
M
(r) + |zM|µ

z
X
(r) 6= 0 (4.55)

the ionic current density is written as

Iion = ��X

✓
rµz

X

zX
+r�

◆
� �M

✓
rµz

M

zM
+r�

◆
(4.56)

= ��Xtel
rµX

zX
� �Mtel

rµM

zM
� (�XtM � �MtX)| {z }

=0

✓
rµz

X

zX
�

rµz
M

zM

◆
(4.57)

= �Xtel
rµX

|zX|
� �Mtel

rµM

|zM|
(4.58)

which is split into contributions of the anions and cations. By using the fact that the
individual currents are constant as a function of position in the scale the ionic current
density is further written as

Iion =
1

L

Z II

I

�Xtel
dµX

|zX|
�

1

L

Z II

I

�Mtel
dµM

|zM|
. (4.59)
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In Wagner’s theory on the other hand it would now be further assumed that inter-
nal ionic equilibrium holds requiring

dµX

|zX|
=

dµM

|zM|
, (4.60)

and only by this assumption the two integrals in equation 4.59 could be formulated
as one with the characteristic form of the integrand, (�X + �M)tel. The form of the
integrand was discussed further in section 4.2.1.

Equation 4.59 is therefore the straightforward generalization upon the Wagner
rate formula, see equation 4.5, in the absence of internal ionic (Schottky) equilibrium.
The oxidation rate follows by applying the ionic current defined in equation 4.59 in the
rate equation 4.3 given at the beginning of section 4.2.

4.3.1.2 Polycrystalline scales

The spatial variation of the species concentrations and chemical potentials in a poly-
crystalline scale is determined by the distribution of the fluxes, Js, and reactions, Rs,
within the grains, and on its surface and interfaces. The evolution of the concentrations,
the fluxes, and the reactions are connected by the continuity equation

@tcs = �r · Js +Rs. (4.61)

In the steady-state the concentrations are stationary and hence

r · Js = Rs (4.62)

holds at any point within the material, see figure 4.5 for a pictorial interpretation.

�Js � Rs

Js

Rs

�

FIGURE 4.5: The fluxes between the volume elements of the material are related to the
chemical reactions within the volume elements.
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If oxide is formed or dissolved internally at extended defects, such as dislocations
or grain boundaries, the chemical potentials of the cations and anions are related through
the internal oxidation reaction; the free energy of reaction, as defined in section 4.3.1,

gX(r) = |zX|µ
z
M
(r) + |zM|µ

z
X
(r)� �(r)⌦u (4.63)

quantifies the deviation from internal equilibrium for which gX = 0. As mentioned in
chapter 3 section 3.5.5, the free energy of reaction is distinguished from the chemical
affinity

A(r) = |zM|µ
z
X
(r) + |zX|µ

z
M
(r). (4.64)

that quantifies the deviation from local ionic equilibrium. The notion is also distin-
guished from the ‘local equilibrium’ hypothesis in irreversible thermodynamics. In
the theory of irreversible thermodynamics the material is imagined to be partitioned
into ‘local equilibrium cells’ of such size that changes due to the thermodynamic fluc-
tuations exceed the thermodynamic driving forces across any particular cell, thereby
establishing ‘local equilibrium’ [87, 146].

The reactions between oxidant and metal are related by stoichiometry

1

|zM|
RX =

1

|zX|
RM (4.65)

and in the steady-state the divergences of the fluxes are therefore related by

1

|zM|
r · JX =

1

|zX|
r · JM. (4.66)

This means the divergence of the ionic current density,

Iion = zXe0JX + zMe0JM, (4.67)

vanishes at any point in the material

r · Iion = 0 (4.68)

independent of the attainment of ionic equilibrium between cations and anions within
the scale.

However, despite a constant ionic current density, the growth rate cannot be for-
mulated in a simple manner as in the integral equation 4.5. The individual fluxes are not



CHAPTER 4 110

constant and the growth rate depends on the respective species fluxes at the metal–scale,
x = 0, and scale–environment interface, x = L,

dL

dt
⇠ zXJX(0) + zMJM(L). (4.69)

The fluxes are connected to the reactions and even by neglecting the effect of stress
and in the limit of internal ionic equilibrium, A = 0, the fluxes cannot in general be
expected to be constant,

r · Js(r) 6= 0. (4.70)

The attainment of local ionic equilibrium depends on the relative magnitudes of the
reaction and diffusion rates.

This casts doubt on the application of the Wagner theory to grain boundary trans-
port dominated scales such as alumina in which internal oxidation and lateral growth
stresses are observed, see chapter 3 section 3.5.2. Assuming the grain boundaries act as
sources and sinks of defects, Schottky equilibrium is typically assumed to hold locally.
But, the necessary condition of constant fluxes for Wagner’s rate formula 4.5 cannot be
strictly true if there is formation or dissolution of oxide at the grain boundaries during
growth. This is because the induced stresses, which are observed experimentally, cause
a modification in the fluxes as a function of the position in the grain boundary. The later
effect has been demonstrated in the simulations with the hexagonal cell model detailed
in chapter 3 section 3.5.

At this point no analytic alternative to Wagner’s rate equation 4.5 is available, that
takes into account the effect of stress and the deviation from internal ionic equilibrium.
The computational model presented in chapter 3 section 3.5 does, however, allow for
numeric calculations taking into account these effects.

4.3.2 Limiting solutions – singular perturbation approach

The Poisson-Nernst-Planck (PNP) system of equations cannot be solved analytically in
general, a numerical solution method has been developed and is described in chapter 3
of this work. Analytical closed form solutions are useful for gauging the numerical so-
lution method and for making the essential features of the PNP system readily apparent.

The calculations described here make evident the connection between ‘diffusion-
reaction’ and the electric field dependent ‘drift-diffusion-reaction’ equations. The deriva-
tions show that the solution of ‘drift-diffusion-reaction’ equations is closely related
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to ‘diffusion-reaction’ solutions in, perhaps surprisingly, the limit of a strong self-
consistent electric field in the ‘drift-diffusion-reaction’ model. It is argued that in
the limit of a strong self-consistent electric field the transport maps onto a model of
diffusion-reaction only, but with an effective diffusion coefficient. Furthermore, the
method makes apparent how the local charge neutrality approximation becomes an in-
creasingly more accurate approximation in the limit of a small screening parameter,
 = `D/L, and how the self-consistent electric field increases in magnitude as  gets
smaller.

Solutions for the simplified special case of two mobile species are obtained here.
The two species could be thought of as the dominant vacancy and charge compensating
electronic species as in the alumina membrane permeation simulations presented in
chapter 3, but the developed formulae are more generally applicable.

I have argued in sections 4.2.4 and 4.2.3 that the dimensionless ratio of the refer-
ence Debye length over the film thickness denoted by  = `D/L is the chief parameter
governing the behaviour of the PNP system of equations, with regards to the assump-
tions of local charge neutrality and the steady-state. In what follows, I use  as a pertur-
bation parameter, and due to the special nature of the PNP equations pertaining to the
fulfillment of the boundary conditions, it is an application of what is known as ‘singu-
lar perturbation theory’ in the literature, e.g. [97]. Singular perturbation theory and a
length-scale separation ansatz have been applied in mathematical investigations in the
semiconductor and device literature [113, 150, 158], and in ion channel transport [161].

For approximations it is convenient to rescale the equations to estimate relative
magnitudes of terms, the scaling is discussed in more detail in chapter 2 section 2.6.1.
The film thickness, L, denotes the reference length for the problem and the scaled PNP
system of equations reads as

@tcs = �r · Js (4.71)

2
r

2� = �⇢. (4.72)

The parameter  also appears in the Maxwell-Ampere law

2@tr��

X

s

zsJs = 0 (4.73)
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which is related to the Poisson equation through the continuity equation. The Debye-
Hückel screening parameter, �D, is defined by

�D(cs, T, "r, zs) =

✓
"r"0kBT

e2
0

P
s z

2
scs

◆1/2

(4.74)

and for the film growth or membrane permeation problem its value varies with position
since the concentrations, cs(r), depend on the position. The reference screening length,
`D, is introduced as a parameter representative of the true screening length �D.

The position dependent concentrations are replaced by the constant c0 which is
chosen as the maximum of the concentrations in the domain

c0 = max
s,r

{cs(r)} and `D =

✓
"r"0kBT

e2
0
c0

◆1/2

. (4.75)

The concentration c0 is expected to be the surface concentration of the dominant species
and therefore depends on the boundary conditions through e.g. the oxygen partial pres-
sure and the equilibrium constants, c⌫(PO2

, Ki).
The derivations are given for two mobile species which are denoted by ⌫ and ⌫, where
it is assumed that

(⌫, ⌫)-notation : |z⌫ | = 1 and sgn{z⌫} = �sgn{z⌫}. (4.76)

In what follows it is shown that while the steady-state concentrations cs(x;)

converge uniformly to cs(x; 0) in the limit of  ! 0, the electric field �r�(r;) does
not converge uniformly to �r�(r; 0). The singular perturbation parameter  denotes
the ratio of the range of charge screening effects characterized by the reference Debye
screening length `D, to the range of the macroscopic electrostatic field characterized by
the film thickness L.

4.3.2.1 The non-interacting system

Here, the PNP system is investigated by considering a special case in the parameters to
obtain an analytically soluble ‘non-interacting’ problem. Then the screening parameter
 is used in a perturbation approach beyond the non-interacting special case.

The analytically soluble special case consists of two mobile species (⌫, ⌫) with
equal diffusion coefficients D⌫ = D⌫ = D. The value of D does not affect the steady-
state solutions of the concentration profiles. Since the species diffuse at the same rate
and are created or annihilated by law of mass action type reactions in stoichiometric
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proportions the system is locally charge neutral at any position and time ⇢(x, t) = 0;
the species do not interact the electric field vanishes �r�(x, t) = 0. The solution of the
non-interacting system is considered identical to the  = 0 solution in the perturbation
treatment. The fluxes are in stoichiometric proportions,

|z⌫ |J⌫ = J⌫ (4.77)

|z⌫ |
�
cII⌫ � cI⌫

�
=
�
cII⌫ � cI⌫

�
(4.78)

where |z⌫ | = 1 has been used, and since ⇢ = 0 the concentrations on the surface or
interface can be calculated from the law of mass action

|z⌫ |c
j
⌫ = cj⌫ (4.79)

cj⌫ = f⌫P
n⌫
O2
(j) (4.80)

where j 2 {I, II}, and the cj⌫ are determined from the boundary conditions and the
equilibrium constants, cj⌫(P

j
O2
, Ki). The concentrations vary linearly

c(0)s (x) = ksx+ cIs (4.81)

where in particular ks = cIIs � cIs, the superscript (0) denotes the non-interacting solu-
tion, and s 2 {⌫, ⌫}.

4.3.2.2 The length-scale separation ansatz

The concentration profiles are approximated uniformly up to order  by smooth, slowly
varying functions which are independent of  and derived from the non-interacting sys-
tem obtained by setting Ds = D and considered equivalent to a  = 0 solution. The
solution in the limit

 ! 0 (4.82)

is investigated with an ansatz that contains the x/L varying reduced solution, c(0)⌫ , and
a x/`D varying screening term which is expected to describe ⇠ exp(±x/`D) varying
boundary layers.

The ‘scale separation’ ansatz to take into account the boundary layers is written
as

c⌫(x;) = c(0)⌫ (x) +  c(1)⌫ (x/) (4.83)
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where again

|z⌫ |c
(0)

⌫ (x) + c(0)⌫ (x) = 0 8x (4.84)

and c(1)⌫ contains the screening effects and vanishes for x 2 [0, 1] in the limit  ! 0

lim
!0

c⌫(x;) ! c(0)⌫ (x) 8x (4.85)

In the limit the gradient of the concentration is given by

rc⌫ = k⌫ + c(1)0⌫ (4.86)

lim
!0

rc⌫(x;) =

8
<

:
0, if x 2 {0, 1}

k⌫ , otherwise
(4.87)

The electric field E = �r�, flux and charge density in the limit and x 2 (0, 1)

are given by,

lim
!0

J⌫(x;) = J (0)

⌫ (x) = �Deffk⌫ (4.88)

lim
!0

E(x;) = E(0)
(x) = D0 k⌫

c(0)⌫ (x)
(4.89)

where with |z⌫ | = 1,

Deff
=

D⌫D⌫

D⌫ |z⌫ |+D⌫
(|z⌫ |+ 1) (4.90)

D0
= z⌫

D⌫ �D⌫

D⌫ |z⌫ |+D⌫
(4.91)

and where equations 4.73 and 4.84, relation 4.87, and the sum and product rules of
limits have been used.

From equation 4.89 the electrostatic potential in the limit is given by

lim
!0

�(x) = �D0
ln

✓
k⌫x+ cI⌫

cI⌫

◆
(4.92)

and the electrostatic potential difference during growth tends to a constant

lim
!0

�� = �D0
ln

✓
cII⌫
cI⌫

◆
= �D0

�µ⌫ = const. (4.93)
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which by using �µ⌫ = n⌫�µO2
can also be written as

lim
!0

�� = �D0n⌫�µO2
. (4.94)

Since D0 < 1 an upper bound for the electrostatic potential difference reads as

|��| < |n⌫�µO2
|. (4.95)

4.3.2.3 The local charge density and screening

The local charge density vanishes in the limit of  ! 0,

lim
!0

⇢(x) = lim
!0

2
r · E ! 0, (4.96)

and approaches the  = 0 solution; however, the electric field differs from the  = 0

solution in the limit. The solution E(0), see equation 4.89, is consistent with the surface
charges, �j ,

�j = 2D0k⌫

cj⌫
, (4.97)

�I + �II +

Z
1

0

2
r · E(0)dx = 0. (4.98)

The screening behaviour is lost in the limiting solutions. Screening effects can
be recovered if the first order terms are considered in the concentrations, which leads to
the electric field expression,

E ⇡ D0 k⌫

c(0)⌫ (x)
+

z⌫
D⌫ |z⌫ |+D⌫

D⌫c
(1)0
⌫ /|z⌫ |�D⌫c

(1)0
⌫

c(0)⌫ (x)
, (4.99)

where first order terms, c(1)s , in the denominator have been neglected. Assuming that
E(0) = E(1) = 0, and that the E(0) solution should be approached away from the
surfaces suggests the approximation,

D⌫c
(1)0
⌫ /|z⌫ |�D⌫c

(1)0
⌫ ⇡ �(D⌫ �D⌫)k⌫ (exp(�x/) + exp(�(1� x)/)) . (4.100)
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To capture screening effects for small , the electric field therefore takes the form

E(x) = E(0)
(x) + E(1)

(x/)

= D0 k⌫

c(0)⌫ (x)

✓
1� exp(�x/)� exp(�(1� x)/)

◆
(4.101)

where the exponential terms, exp(·) 2 (0, 1], and E(0) = E(1) = 0. The zeroth order
solution E(0)

(x) for the electric field is not approached uniformly in the  ! 0 limit by
the  dependent solution, E(x;), due to the different behaviour near the surfaces, see
figure 4.6. Hence, the problem is identified as a singular perturbation problem.

The charge density takes the form

⇢ = 2
r · E = �D0

✓
k⌫

c(0)⌫ (x)

◆2✓
1� exp(�x/)� exp(�(1� x)/)

◆
2
+

D0 k⌫

c(0)⌫ (x)

✓
exp(�x/)� exp(�(1� x)/)

◆
 (4.102)

where the charge density in the interior vanishes O(2
) more rapidly than near the

surfaces O(). The electric field and the charge density are shown in figure 4.6.

FIGURE 4.6: Analytical investigation of the electric field and space charge that would
correspond to a oxygen membrane permeation scenario of P II

O2
= P hi

O2
at x = 1 and

P I
O2

= P eq
O2

at x = 0, see chapter 3. Scaled units are used. The screening behaviour is
captured by the first order approximation with characteristic length scale . The first
order approximation of the local charge density departs significantly from the zeroth
order counterpart in the vicinity of the surfaces. The first order approximations con-
verge to the zeroth order approximations in the bulk zone a few Debye lengths away

from the surfaces.
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4.3.2.4 The electric field effect: Retardation vs. enhancement

In the limit of local charge neutrality, the surface concentrations of the dominant va-
cancy species ‘⌫’ and electronic species ‘⌫’ are given by

c⌫ = c⌫/|z⌫ | = f⌫ P n⌫
O2

(4.103)

where the prefactor, f⌫ , depends on the equilibrium constants, and the power law expo-
nent, n⌫ , depends on the species charge state.

A purely diffusive flux in steady-state of species ‘s’ with boundary conditions of
cIIs and cIs would read as

Js = �Ds
cIIs � cIs

L
. (4.104)

In the presence of the self-consistent electric field the flux of the dominant vacancy
species ‘⌫’ reads as

J⌫ = �Deff c
II
⌫ � cI⌫
L

(4.105)

Deff
=

D⌫D⌫

D⌫ |z⌫ |+D⌫
(|z⌫ |+ 1) (4.106)

where ⌫ again denotes the charge compensating species with |z⌫ | = 1, the derivation is
discussed in section 4.3.2.2. If D⌫ � D⌫ the vacancy flux could be thought of as being
retarded with respect to pure diffusion since

Deff
' (|z⌫ |+ 1)D⌫ < D⌫ (4.107)

and for D⌫ ⌧ D⌫ the electric field effect could be thought of as enhancing the vacancy
diffusion since in this case

Deff
' (|z⌫ |+ 1)D⌫ > D⌫ . (4.108)

However, the comparison to pure diffusion is misleading since the surface concentra-
tions would change if they were not restricted by the electric field.
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4.3.3 Linear to square root law transition in the growth rate

In section 4.3.2.3 a -dependent expression for the electric field beyond the local charge
neutrality approximation has been given in equation 4.101. A -dependent flux is cal-
culated by averaging over the film thickness while using the -dependent electric field
of equation 4.101,

J⌫ =

Z
1

0

�D⌫(rc⌫ + z⌫c⌫r�) dx (4.109)

and the flux containing a screening correction term is evaluated as

J⌫ = �Deffk⌫ +  k(1). (4.110)

In what follows it is shown that this -dependent correction term in the flux, J⌫ , leads
to a modification in the growth rate behaviour. For D⌫ � D⌫ where the constant
k(1)

= �2|z⌫ |D⌫k⌫ , the flux reads as,

J⌫ ' �D⌫k⌫

✓
1 + |z⌫ | (1� 2)

◆
(4.111)

which applies for 2 < 1. The growth rate is calculated from the defect flux,

dL

dt
= ⌦⌫ |J⌫ | (4.112)

where ⌦⌫ is the volume added per particle of species ⌫ reaching the surface. The growth
rate law including the first order correction term can hence be written as,

dL

dt
=

kp
L

✓
1� kC

`D

L

◆
(4.113)

where kC is a constant on the order of magnitude one, kp is a constant with the dimen-
sions of the diffusion coefficient, D⌫ , and where the definition  = `D/L has been used.
The differential equation can be solved readily, and by neglecting the second order term
O(`2D) as well as demanding L(0) = 0, the thickness as a function of time is given by

L(t) = kC`D

 s

1 +
2kp

(kC`D)
2
t� 1

!
. (4.114)

There are two growth regimes contained in equation 4.114, a transition from a
linear to square root (parabolic law) time dependence is predicted for the film thickness,
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L(t). First, for time t adhering to

2kp
(kC`D)

2
t ⌧ 1 (4.115)

a linear regime is obtained from equation 4.114, by a first order series expansion of the
square root expression, which yields

L(t) '
kp

kC`D
t. (4.116)

Second, for time t adhering to

2kp
(kC`D)

2
t � 1 (4.117)

the thickness as a function of time asymptotically approaches the square root time de-
pendence,

L(t) '
p

2kpt (4.118)

where kp appears as the ‘parabolic’ rate constant.
Taking into account a simple screening model near the interfaces, therefore, leads

to the prediction of a linear regime preceding the square root time dependence that is
characteristic of diffusive behaviour.

The constant kp has the dimensions of a diffusion coefficient and the time scale
associated with the linear regime could be related to the ‘charging time’ constant ⌧c =
�DL/D discussed in reference [12], which depends on the Debye length, �D, and
the diffusion coefficient, D. The time scale ⌧c is thought of as a capacitor charging
time, characteristic of the build-up or depletion of a screening layer near a charged
surface [12].

4.4 Summary

A formulation of the Wagner theory of metal oxidation in terms of the ionic current
density has been described, and an intuitive circuit equivalence model for Wagner’s rate
equation has been introduced.

The internal ionic equilibrium is typically discussed by recourse to the Gibbs-
Duhem equation and local charge neutrality assumption as outlined section 4.3.1. In
contrast, it has been argued here that the attainment of internal ionic equilibrium – an
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essential assumption of the Wagner theory – has to be discussed in terms of the defect
transport and reaction rates which requires a computational simulation model as pre-
sented in chapter 3. In polycrystalline scales the attainment of local ionic equilibrium
at the grain boundaries or dislocations of the scales is complicated by the generation
of tensile or compressive stresses and the assumptions necessary for the validity of the
Wagner theory are not fulfilled. An analytic model extending the Wagner theory to ac-
count for growth stresses is not available at present. Thus, further work is required to
achieve a consistent analytic model that can be used to interpret scale growth experi-
ments.

The theory of singular perturbations has been applied here to the problem of drift-
diffusion limited growth to obtain analytical closed expressions for the key quantities
involved. The potential of this approach is demonstrated by the prediction of a linear to
square root (parabolic) law in the film growth rate in section 4.3.3.

Linear growth regimes have been observed in oxidation experiments but are typ-
ically attributed to reactions as the rate limiting step instead of the ionic or electronic
transport. Further work is required to determine by computer simulation or experiment,
if the linear growth law described here is indeed observable during metal oxidation.



Chapter 5

Conclusions

This thesis presents a model for time-dependent grain boundary diffusion of ions and
electrons through a film of polycrystalline oxide. The granular structure of the film is
idealized as a slab comprised of hexagonal columnar grains.

The model has been applied to the archetypical oxide ‘alumina’ in two different
scenarios, membrane oxygen permeation, and steady-state alumina film growth on an
alloy surface. In alumina the ionic transport is dominated by grain boundaries, which
act as preferential pathways for the ion transfer through the film. Despite decades of in-
tense study on polycrystalline alumina the grain boundary transport mechanisms are still
elusive, unintentional doping effects and the occurrence of electric fields and stresses
during oxidation complicate the analysis of the experimental data. The hexagonal cell
model developed in this work takes into account the internal electric field, and a simple
model for stress generation within thin films self-consistently with a generic descrip-
tion of the transport processes during oxidation or membrane permeation. The model is
therefore well suited to complement experimental studies and to analyze the validity of
simplified analytic models, such as the Wagner theory of metal oxidation.

In the first application of the model, described in chapter 3 of this work, alumina
membrane oxygen permeation has been simulated. Four mobile defects, charged alu-
minum and oxygen vacancies, electrons and holes, have been considered, and the simu-
lation results are compatible with the experimental results of Kitaoka et al. [83]. These
membrane permeation experiments on high purity alumina enable to elucidate the ionic
transport through alumina films; the experimental methodology has been reproduced in
the computer simulations for a comparative analysis.

In the limits of high and low oxygen partial pressure applied on the membrane
surfaces distinct power laws describe the oxygen permeation rate, this experimental
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finding has been reproduced in the simulations and is evidence for the notion of va-
cancies carrying nominal ionic charges. The calculated power laws for the permeation
rate depend on the stoichiometry of the quasi-chemical reactions at the membrane sur-
faces, and on the efficacy of local charge neutrality. That is, in the limit of a small
Debye screening length compared to the grain size the magnitude of the local charge
density is small and the fractional power law exponents emerge in the simulations. The
simulation method takes into account the long-range Coulomb interactions between the
grain boundary planes and the membrane surfaces. The Coulomb interactions between
the grain boundary planes affects the mass transfer dynamics through the slab signif-
icantly only during the initial transient. The electric field generated by the evolution
of the charge density influences the transport significantly; in the long time limit it is
dominated by the surface charges.

A simplified, one-dimensional analytic model has been introduced that employs
the approximation of a single dominant defect, which appears from the 3D calculation
to be justified. The analytic model has been shown to agree well with the simulation
results under certain limiting conditions, but fails in the intermediate oxygen partial
pressure regime.

Experimental data on alumina indicates that the ionic and electronic transport
numbers are of similar magnitude, therefore, the possibility of vacancies diffusing faster
than the electronic species cannot be excluded. The open circuit voltage has been exam-
ined in the membrane permeation simulations and it is suggested that the experimental
measurement of the voltage compared to the simulation results could clarify the relative
magnitudes of the dominant vacancy and electronic species diffusion coefficients.

In the second application, the hexagonal cell model has been extended to include
a Schottky reaction at the grain boundaries coupled to a simple model for the resulting
generation of internal stresses. Lateral growth stresses are predicted in the simulations
for conditions that are considered close to steady-state alumina scale growth on an alloy
surface at high temperatures. The calculated stresses have similar magnitude as those
measured experimentally in high-temperature oxidation experiments. The simulations
enable a detailed understanding of the stress generation and evolution, which is essential
for predicting the stability of alumina scales as high-temperature oxidation barriers in
thermal barrier coatings.

For simulations with coupled internal reactions, stresses, and fluxes a deviation
from local Schottky equilibrium at the grain boundary has been observed. Conse-
quently, it has been argued that the assumptions for an application of the Wagner theory
are not satisfied for the physical conditions investigated.
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The simulations demonstrate a p � n ionic transition within an alumina film,
that depends sensitively on the diffusion rates. This partially confirms the hypothesis
by Heuer et al. [70], and makes the properties of the transition accessible for further
study. The location of the p � n transition can be predicted from the simulations, and
depends strongly on the diffusion coefficients of the mobile species. Comparison of
the simulation results to experimental data seems to show that the diffusion coefficients
of vacancies, electrons, and holes could be of surprisingly similar magnitude. If true,
this could indicate the presence of a cooperative transport mechanism. However, some
experiments seem to indicate that interstitial diffusion through the grain boundaries can-
not be neglected, as has been done in this work. Furthermore, the transport mechanisms
of the vacancies in alumina grain boundaries are not agreed upon in the literature, and
the microscopic electron and hole transport mechanisms are unknown. The focus in
the literature has been mostly on vacancy grain boundary diffusion, therefore, further
work would be of value to illuminate the electron and hole transport mechanism and
recombination, which could be achieved by ab initio simulations.

The numerical solution method for the time-dependent Poisson-Nernst-Planck
system of equations with reaction boundary conditions has been implemented in an
object oriented C++ code, and has been used throughout to generate the simulation re-
sults. The simulation methodology is similar to semiconductor device simulations and
the wealth of literature on this subject was drawn upon in the numerical formulation
and computational implementation. The implementation has been successfully bench-
marked against one-dimensional analytical models applicable in limiting cases.

The question of validity of mapping the transport through grain boundaries and
grains of a polycrystalline film onto a one-dimensional model remains largely open. In
this work only the transport through the grain boundaries of an idealized film has been
investigated. Further work would be of value to extend the model by including transport
in the grains, which is required for capturing the effect of space charge layers ranging
from the interfaces into the grains. It is expected that inclusion of these space charge
layers would lead to a more pronounced dependence of the simulation results on the
grain shape than has been observed in the simulations described in this work. Such
further development would be significant for more advanced oxidation rate models of
polycrystalline films, and for assessing the applicability of established one-dimensional
models.
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