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Abstract

In recent decades, the rise of various omics fields has flooded life sciences with un-

precedented amounts of high-throughput data, which have transformed the way

biomedical research is conducted. This trend will only intensify in the coming

decades, as the cost of data acquisition will continue to decrease. Therefore, there

is a pressing need to find novel ways to turn this ocean of raw data into waves of

information and finally distil those into drops of translational medical knowledge.

This is particularly challenging because of the incredible richness of these datasets,

the humbling complexity of biological systems and the growing abundance of clinical

metadata, which makes the integration of disparate data sources even more difficult.

Data integration has proven to be a promising avenue for knowledge discovery in

biomedical research. Multi-omics studies allow us to examine a biological problem

through different lenses using more than one analytical platform. These studies not

only present tremendous opportunities for the deep and systematic understanding of

health and disease, but they also pose new statistical and computational challenges.

The work presented in this thesis aims to alleviate this problem with a novel pipeline

for omics data integration.

Modern omics datasets are extremely feature rich and in multi-omics studies this

complexity is compounded by a second or even third dataset. However, many of

these features might be completely irrelevant to the studied biological problem or

redundant in the context of others. Therefore, in this thesis, clinical metadata

driven feature selection is proposed as a viable option for narrowing down the focus

of analyses in biomedical research.

Our visual cortex has been fine-tuned through millions of years to become an out-

standing pattern recognition machine. To leverage this incredible resource of the

human brain, we need to develop advanced visualisation software that enables re-

searchers to explore these vast biological datasets through illuminating charts and

interactivity. Accordingly, a substantial portion of this PhD was dedicated to im-

plementing truly novel visualisation methods for multi-omics studies.
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1 | Introduction

1.1 Data driven life science

We are drowning in information but starved for knowledge.

John Naisbitt

Life sciences and biological research are undergoing dramatic changes at the moment.

This transformation is mainly driven by the exponentially growing high-throughput

data coming from the different omics fields of biology such as genomics, proteomics,

metagenomics and metabonomics. The ever-increasing growth in data volumes can

be largely explained by the constant improvement in the efficiency of data acquisition

technologies. This continued innovation and refinement has reduced the cost of

applying these new analytical methods drastically, which in turn increased their

wide-spread utilisation in the research community.

An example: the sequencing and assembly of the first human genome cost hun-

dreds of millions of dollars, $3 billion by the US government funded project1 and

$300,000,000 by the private Celera initiative2, while it took 11 and 3 years respec-

tively. Yet less than 13 years later in 2014, we passed the $1000 price point in human

genome sequencing3, with the Illumina HiSeq X Ten, which is capable of sequencing

18,000 human genomes per year, to the gold standard of 30× coverage4.

Remarkably, the cost of sequencing is falling quicker than the cost of computation5

and the prices of other analytical platforms are decreasing sharply as well6. Today,

1
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the European Bioinformatics Institute (EBI) is storing and managing well over 100

Petabytes of biological data (this is an extrapolated figure, the true value was already

75 Petabytes in December 20157). These data have been growing exponentially for

the past decades, almost doubling in its size every year8, while it not only has to be

stored securely and managed properly, but also kept widely accessible, as researchers

from around the world query this fundamental open resource 12 million times each

month.

However, this amount of data is by no means unheard of these days; Facebook was

reported to store 300 Petabytes of data in 20149 and physicists at CERN passed the

100 Petabyte mark in the same year10. All of these statistics are dwarfed however in

comparison with Youtube’s data load: 400 hours of videos are uploaded to its servers

every single minute11. Biological data however, are much more heterogeneous than

those in physics or technology. Life sciences collect data from hundreds of species

across dozens of conditions and diseases, while the number of measurable variables

can be orders of magnitude higher in some omics fields (e.g. metagenomics) than in

physics.

Furthermore, biological data is often hopelessly complex, as it originates from or-

ganisms which were shaped by evolution’s relentless trial and error process over

millions of years, where new functions can never be developed through rational

planning and design but only by building on and patching the ancestors’ existing

solutions. Lastly, the source and consequently the nature of biological data is re-

ally varied as well, ranging from small molecule profiles of metabonomics, through

bacterial communities of metagenomics to sequences of genomics and structures of

proteomics12.

The trend of rapidly emerging omics fields is reflected in the exploding number of

publications associated with these fields on PubMed, see Figure 1.1. Interestingly,

“Data integration” and “Personalized medicine” seem to have grown in parallel with
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Figure 1.1: The advent of the omics era: number of publications mentioning the
various omics fields have been growing exponentially on PubMed since the late
1990s.

these fields, suggesting an early need for the integration of various data sources and

the extraction of translational medical knowledge.

Furthermore, with the dropping cost of omics technologies, the term “Multi-omics”

has shown a strong upward trend in recent years too. As we will discuss later, this

new study design represents a highly promising avenue for research, where multiple

omics technologies are used simultaneously to gather information from the same

patients or organisms. This approach has great potential for filling the gaps in our

biomedical knowledge, as each of the analytical platforms offers a new angle to the

studied problem, which can facilitate the discovery of novel connections between

different compartments of living systems.

For example, in a multi-omics study, we might be interested in how the urinary

metabolic profile and gut bacterial composition change in patients who have been

prescribed a serious regimen of antibiotics. In this case, the urinary metabolites

of the patients can be screened by one of the established metabonomics methods6,

while the gut microbiome would be profiled with 16S rRNA sequencing13. These

data sources would be highly valuable on their own, but when combined, they could
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help to discover completely novel interactions between the shifting microbial compo-

sition and the host’s metabolism, and therein lies the real power of the multi-omics

approach.

Despite these novel omics technologies and the truly unprecedented flood of biologi-

cal data however, frustratingly, the majority of preclinical studies are irreproducible

and by some estimates, 85% of all biomedical research might be wasted14,15. Nobel

laureate Sydney Brenner cynically referred to this kind of top-down, data (rather

than hypothesis) driven omics research as: “low input, high throughput, no out-

put science”16. In light of these inefficiencies in biomedical research, delivering on

the promises of systems biology might prove to be painfully difficult. Therefore,

taking full advantage of the omics revolution, by turning raw biological data into

translational medical knowledge hinges on several factors:

• Sufficient statistical power: this can be ensured by feature selection (based on

a pilot study) or securing funds to acquire the necessary number of samples.

• Data warehousing and standardisation efforts that aim to maximise the cross-

utilisation of data resources between projects.

• Transparency and reproducibility: utilisation of open-source tools, publication

of raw data and sharing of notebooks containing all source-code of the analysis.

• Novel computational and statistical tools that are designed to work with noisy

biological data.

• New visualisation methods that take advantage of the interactivity provided

by modern web technologies.

• Data integration tools that enable researchers to take full advantage of their

multi-omics studies by connecting the disparate data sources (including clinical

metadata) in a meaningful way.

As we will see later, the work presented in this thesis makes small but hopefully

valuable contributions to the last four points of this list.
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1.2 Omics fields with metabolism in focus

The majority of research and development presented in this thesis was accomplished

using a multi-omics dataset which combines metabonomics with 16S rRNA sequenc-

ing. This study recruited 97 patients who underwent various types of bariatric

surgery to induce weight loss in them and consequently improve their health. To

complement the omics datasets, extensive clinical metadata was also collected from

these patients. This study is introduced in greater detail in Chapter 2. There-

fore, here we will focus on the brief introduction of the two aforementioned omics

methodologies.

Metabolomics aims to measure the concentrations and locations of all metabolites in

a cell. Here, metabolites are defined as small molecules which are lighter than 1 kDa,

i.e. substrates and products of enzymes. Metabonomics is a subset of metabolomics

which is defined as the quantitative measurement of the metabolic responses of liv-

ing systems to environmental changes, genetic modification, patho-pscychological

stimuli or drugs17. Metabonomics is a well-established top–down systems biology

approach, which places strong emphasis on the multivariate characterisation of pop-

ulation level differences in metabolic profiles across different physiological states18.

It achieves this by collecting samples from biological fluids (urine, plasma, serum

or faecal water), which are then analysed with high-throughput analytical chem-

istry technologies such as Nucleic Magnetic Resonance Spectroscopy (NMR) spec-

troscopy and/or Mass Spectrometry (MS)19. The resulting omics dataset contains

the metabolites with their relative or absolute concentrations that were found in a

patient’s biofluid at the time of screening. Therefore, metabonomics captures a rich

and colourful metabolic snapshot of the sampled organism with great potential for

biomarker discovery20.
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With the cost of sequencing dropping, metataxonomics21 emerged in the early 2000s

as a culture independent way of doing microbiological taxonomy and ecology22.

Trying to culture the hundreds of bacterial strains found in a stool or soil sample has

proven to be impossible, because firstly most of these species are extremely sensitive

to their environment (temperature, pH, concentrations of chemical elements), and

secondly most strains have been coevolving for millions of years during which they

have formed intricate inter-species metabolic pathways whereby they rely on each

other’s intermediary metabolites. Therefore, culturing these fragile ecosystems in

the lab is extremely challenging.

Metataxonomics unties this Gordian knot by sequencing all 16S rRNA genes that

could be found in a sample. By aligning and clustering the reads, one can identify

Operational Taxonomic Units (OTUs), because the non-conserved variable regions

of the 16S rRNA gene provide enough evolutionary information to precisely identify

bacterial strains taxonomically. The omics dataset arising from this platform holds

the count of each OTU for every patient in tabular form, acting as a taxonomic

inventory of the sampled bacterial ecosystem. Since the bacterial composition shows

strong inter-individual variation, many cells of this table are usually zero as rare

species which only occur in one or two patients will be completely missing from

others.

Both metabonomics and 16S rRNA sequencing use sophisticated data preprocessing

pipelines and advanced mathematical modelling to transform the raw omics data

into biological information. For this, dimensional reduction techniques such as Prin-

cipal Coordinate Analysis (PCA) and multivariate statistical models like Orthogonal

Projections to Latent Structures (O-PLS)23 and PERMANOVA24 are routinely used

in these fields.

As shown in Figure 1.2, biological information is expressed in a remarkable hierar-

chical fashion. The inherent complexity of biology not only stems from the inter-
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Figure 1.2: Hierarchy of biological information and its interaction with the environ-
ment and the microbiome. Solid arrows represent proven flow of information and/or
interaction, while dashed arrows show hypothesised connections between the micro-
biome and certain compartments of the human body.

connectedness of these layers but also from the intricate and temporally changing

interplay between us and our environment (shown as solid arrows in Figure 1.2).

Additionally, one of the greatest discoveries of the past decade was that the human

microbiome, defined as the aggregate of micro-organisms (mainly bacteria) that live

on and within our bodies, is just as important as the environment in modulating

our biology. The gut microbiome became a particularly deeply researched subject,

and in the last ten years, through a tremendous amount of research, it was proven

to play a crucial role both in our health and diseases25.
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The time-scales at which the different biological information layers change shorten

dramatically as we move from genome through proteome to metabolome. This is

true both on the population and individual level. Although our genome is evolving

quicker than it was previously believed26, it still takes hundreds or thousands of

years for new variants to appear and spread in a population. Our transcriptome

and consequently proteome changes much more rapidly as we develop in the womb

and also through life, but this can still be measured in years.

These time-scales are vastly longer than the swift changes observed in our metabolome27

and microbiome28. They are influenced by our diet, lifestyle, a trip to another coun-

try and the drugs we take. Therefore, they capture a breathtaking amount of infor-

mation about our current physiological state and well being. This makes these omics

layers invaluable not just for biomedical research but also for clinical diagnostics and

patient stratification.

Furthermore, it has been shown, that with the right study design and analytical

techniques, a substantial amount of the variation found in metabonomics studies,

could be attributed to individuals as opposed to the environment29. As the fields

of 16S rRNA sequencing and metabonomics have evolved, the same conclusion was

reached, i.e. inter-individual variability is much larger than intra-individual vari-

ability over time30.

Finally, there is mounting evidence which shows that the gut microbiome is not

only influenced by the host’s metabolism but reciprocally it also modulates the

metabolic pathways of the host in profound ways31–33. This two way communication

was implicated in the progression of serious diseases such as coronary heart disease34

and colorectal cancer35. Therefore, the combination of metabonomics and 16S rRNA

sequencing represents a very promising mode of investigation for deepening our

understanding and discovering clinically relevant, medically actionable biomarkers.
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1.3 Overview of multi-omics data integration

The wealth of information generated by high-throughput omics technologies rep-

resent an unprecedented opportunity to assess molecular interactions at multiple

functional levels and gain a better understanding of the biological pathways involved

in different diseases. The continued decrease in the price of omics technologies has

not only resulted in exponentially growing data volumes, but also gave rise to a

multi-omics studies, see Figure 1.1.

Multi-omics studies represent a promising mode of investigation in life sciences as

they attempt to capture a comprehensive snapshot of living systems by the collection

of complimentary biological data from the same patients or organisms.

Therefore, each analytical platform provides a different viewpoint into the underpin-

nings of the studied disease or biological process. The aim of multi-omics projects is

to integrate these disparate data sources originating from different omics levels and

compartments of a biological organism, and uncover relevant interactions between

their features.

These multi-level connections are crucial for identifying multi-omics signatures which

can be predictive of a biological condition or provide novel mechanistic insights into

our health and diseases. Furthermore, by the definition of multi-omics studies, their

findings are often missed when we focus on a single omics type.

For example, one might investigate the gene expression of cancer patients while also

measuring the Copy Number Variation (CNV) of their genomes. In this scenario,

we would expect that the deletion or duplication of certain genomic regions result

in an altered gene expression profile that can help with patient stratification and

provide us with a better understanding of the disease such as breast cancer36.
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Alternatively, one might be interested in mapping out cross-species metabolic inter-

actions that arise from the complex interplay between humans and their microbes31.

16S rRNA sequencing can capture the gut-microbial composition of patients, by

quantitatively measuring the abundance of bacterial strains inhabiting their gas-

trointestinal tract. These data can be correlated with the metabolic urinary profiles

of the same individuals, which can be obtained using metabonomics methodologies,

such as NMR or GC-MS6.

However, the integration of multi-omics data is highly challenging due to the het-

erogeneity of the various analytical platforms. As each omics data type captures

a separate aspect of biology, they all have different dimensions, noise profiles and

often modality: sequences, counts, floats, images, spectral information.

A quick glance at the literature of multi-omics data integration makes it clear, that

there is a clear need to simultaneously explore the complex and correlated interplay

between different data-types, and numerous avenues have been successfully explored

to achieve this.

Bersanelli et al. recently reviewed 23 data integration tools37 and divided them into

four categories based on their mathematical formulation:

• network-free non-Bayesian (NF-NBY) - 8 methods,

• network-free Bayesian (NF-BY) - 5 methods,

• network-based non-Bayesian (NB-NBY) - 8 methods,

• network-based Bayesian (NB-BY) - 2 methods.

Here, the term “Bayesian” refers to methods that rely on prior distributions of

the data, often originating from previous findings in the literature. These priors

are updated using Bayes’ theorem based on the observed samples to obtain their

posterior probability distribution. Network based methods estimate the relationship

between omics features, which they map out and analyse as a graph.
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Furthermore, multi-omics integration tools can also be categorised by their purpose:

• Uncover novel molecular interactions between different omics data types to

expand our current knowledge about a certain disease or biological process.

• Discover clusters of patients or samples that are more similar to each other than

the rest of the cohort. This strategy can lead to improved patient stratification

and disease subtype detection.

• Build a predictive model that can for example classify new patients based on

their omics data into “healthy” and “sick” phenotypes.

Bersanelli et al. found that the overwhelming majority of multi-omics integration

methods aim to achieve one of the first two goals, while they most often specialise

in two omics data types; DNA sequence data, gene and protein expression being

the most prevalent ones. More than half of the reviewed tools are available as R

or Matlab projects, but only two of them can be accessed through a webserver,

which can limit their utilisation by clinicians and researchers without programming

knowledge.

It is beyond the scope of this thesis to provide a thorough review of the dozens of

published data integration methods. Therefore, the following pages simply provide

a brief overview of some interesting, recently published multi-omics integration tools

and their application. Section 5.5 will provide a more detailed comparison between

CorrMapper (a data integration method developed as part of this PhD) and its

closest “competitor”, the mixOmics R package38.

Charj et al. used Multiple Concerted Disruption (MCD) analysis of CNV, Loss Of

Heterozygosity (LOH) and DNA methylation status to interpret changes in gene

expression. They combined these three data types sequentially to explain the ob-

served gene expression changes between breast cancer and non-cancer cell lines.

Relying on our current model of genetics, they deemed a gene expression level as
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“explained”, if over-expression was coupled with gain in CNV, allelic imbalance and

hypomethylation. Conversely, under-expression was expected to co-occur with a loss

in CNV, LOH and hypermethylation. Their multi-omics approach has led to the

identification of a higher number of explained gene expression changes, compared

with standard single omics analysis39.

Meng et al. developed Multiple Co-Inertia Analysis (MCIA), an exploratory data

analysis tool which identifies relationships between high dimensional omics datasets.

Based on a covariance optimization criterion, MCIA simultaneously performs the

ordination of multiple omics data matrices within the same low-dimensional hyper-

space, where features or samples exhibiting similar trends are projected closely to

each other. This analysis can lead to the identification of biomarkers and clusters

of samples. The authors used this method to integrate gene and protein expres-

sion of the NCI-60 cell line, and their analysis revealed pathways not uncovered by

single-omics analyses40.

Both MCD and MCIA are network-free non-Bayesian methods, aimed at uncovering

novel molecular interactions between different omics datasets. However, unlike MCD

and the majority of omics integration tools, MCIA is not specific to a set of omics

data types, therefore it can be applied to any multi-omics dataset.

Several other NF-NBY methods have been proposed for omics data integration,

which rely on the Partial Least Squares Regression (PLS) or Canonical Correlation

Analysis (CCA) algorithms. Integromics41 and its later incarnation mixOmics38

both provide regularised CCA and sparse PLS, while sparse Multi-Block Partial

Least Squares (sMBPLS)42 extends sparse PLS to three input matrices.

Given two data matrices X ∈ Rn×p and Y ∈ Rn×q, with p variables xj and q variables

yk respectively, measured on the same n samples, CCA seeks H pairs of vectors ah
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and bh such that the following objective function is maximised:

arg max
a, b

cor(Xah, Y bh), s.t. ||ah||2 = 1, ||bh||2 = 1, Eq. 1.1

where h = 1, 2, ..., H. In other words, CCA uses linear combination of the columns of

X and Y to create the canonical variables U = Xa and V = Y b, whose correlation

is maximised. Once the first canonical variables U1, V1 are obtained, the second

pair is found by maximising the same objective, but with the additional constraint

that U2, V2 should be uncorrelated with the U1, V1. Although CCA loadings are

not directly interpretable, the correlations cor(X, a) and cor(Y, b) can be visualised

which has been shown to help with the explanation of CCA’s results43.

PLS is very similar to CCA but it maximises the covariance between U and V .

Due to this close connection, PLS and CCA have been shown to perform similarly

when used for discrimination between classes44. Both CCA and PLS simultaneously

decomposes X and Y into co-varying latent variables (Uh, Vh) and their associated

loading vectors (ah, bh). These methods assume that the majority of variation within

a system could be explained by a few of these n-dimensional latent variables.

Integromics and mixOmics both use regularised versions of the PLS and CCA al-

gorithm. These extensions add an L1 penalty to the above described objective

functions (see Section 3.2.3) to obtain sparse loading vectors. Regularisation not

only improves the numerical stability of CCA, but it also greatly increases the inter-

pretability of both algorithms45. Nonetheless, relating the latent variables learned

by these models to the effect of individual features on the outcome variable remains

challenging. For example, given H = 3, a single feature xj can have a positive

loading in a1, a negative loading in a2 and zero in a3.

Network based non-bayesian methods either rely on existing molecular interaction

data (e.g.: metabolic or gene regulatory pathways) or build networks by analysing
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the observed correlation between omics features. SteinerNet is a webserver which

integrates transcriptional, proteomic and interactome data by searching for the so-

lution to the prize-collecting Steiner tree problem46. It can search the interactome of

humans (and four other model organisms) to find connections between experimen-

tally detected proteins or genes, and to identify biologically meaningful pathways.

Endeavour is another online tool which prioritises genes for a given biological out-

come or disease47. It calculates and combines gene-wise statistics from 75 different

genome-wide data sources to rank candidate genes based on their biological rele-

vance.

Unlike most network based methods Similarity Network Fusion (SNF) clusters pa-

tients with multi-omics data by building a correlation based sample-sample network

from each omics matrix. Once these omics-specific similarity matrices are estimated,

they are joined using an iterative diffusion processes which converges on a global

similarity matrix. This weighted adjacency matrix defines clusters of patients across

multiple omics modalities48. The authors applied their method to gene expression

and DNA methylation data, which successfully discovered clusters of patients with

different cancer subtypes and survival rates.

Finally, parametric Bayesian methods assume that the observed biological system

could be modelled using a certain family of distribution parametrised by θ. The

inference of θ̂ consists of using Bayes’ theorem to update our prior belief about θ̂

with the observed data. A well-known limitation of such methods is their sensitivity

to the choice of prior. Therefore, generally Bayesian methods require a lot more

input and domain-specific knowledge from the user.

Provided that we have found an adequate distribution to model our system, if our

chosen prior gives a reasonable distribution for θ (based on some previously obtained

biological knowledge), then our model will capture the core information of a given

dataset. Conversely, if the initial guess for the prior is hard or even impossible to



1.3. Overview of multi-omics data integration 15

formalise or obtain (e.g. no experimental or theoretical results are available about

the parameter), then given the small sample sizes in current biomedical research,

Bayesian methods can lead to more biased estimates than traditional frequentist

inference techniques49.

Given the numerous multi-omics integration methods, the reader might legitimately

ask why is another such tool needed? The answer to this is manifold and will be

explicated in the following sections exhaustively, but the list below summarises some

of the key arguments for the creation of CorrMapper:

• Most integration tools specialise in particular omics data types. While this

enables these methods to leverage omics specific biological knowledge, it also

restricts the applicability of these data integration algorithms to a predefined

set of omics data types.

• Although several data fusion methods employ feature selection to make their

results easier to interpret, this is almost exclusively done by penalising linear

models with the L1 norm. While this a well studied and excellent form of

feature selection, it does not account for non-linear interactions and more

importantly correlated features50.

• Several of the referenced tools have some form of visualisation capabilities.

However, the complexity of multi-omics datasets require advanced visualisa-

tion tools that work in tandem with data integration algorithms and facilitate

the exploration process through interactivity.

• The overwhelming majority of multi-omics integration algorithms are either

available as an R or Matlab package, while Bersanelli et al. found that more

than 20% of the 23 examined tools have no implementation at all. While

programming languages are becoming more popular amongst life scientists,

there is still a large fraction of researchers who do not possess any coding

skills and therefore prefer graphical user interfaces.
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1.4 The need for meta-tools

The word thesis comes from Ancient Greek and it means “proposition, statement,

a thing laid down”. A PhD thesis is supposed to be many things at once: a review

of the field, a description of a problem or hypothesis, a detailed summary of a long-

term research project and also an attempt to amalgamate the findings of this new

piece of work into the collective body of knowledge of the field. Given the original

meaning of the word, one could argue that a PhD thesis should also take a position,

present it, and argue for its validity.

The main proposition of this thesis is that the robust and meaningful integration of

different omics data types is one of the most pressing issues of life sciences currently,

that can be best addressed by the development of composite software solutions,

which will be referred to hereafter as meta-tools. This section and various parts

of the thesis will argue that meta-tools have an incredible potential to tackle this

multi-faceted challenge, and therefore the biomedical research community should

invest more heavily in their development.

A meta-tool is an ensemble of simpler tools, which when combined together as a

well-designed system, are far more powerful than the sum of individual components.

Integrated Developer Environments (IDEs) are great examples of this concept in

software engineering. IDEs consist of fairly simple tools such as text editor, version

control (VC) system, syntax highlighter, file explorer, searchable help section of the

programming language, debugger and a package manager. However, when combined

together into a unified graphical interface they can increase the productivity of a

developer by several folds. Figure 1.3 showcases an example of a modern IDE.

In bioinformatics, EBI’s InterPro51 is another great example of meta-tools. It com-

prises of several workhorse algorithms of protein sequence analysis: Gene3D, PAN-
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Figure 1.3: IDEs are great examples of meta-tools. PyCharm is a popular IDE for
Python coders, offering all the must have features for productive development.

THER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY

and TIGRFAMs. Each of these tools focuses on a different aspects of protein do-

main and functional site prediction and all of them have their own interface and

website. However, when combined together as InterPro, they become a one-stop-

shop for protein sequence analysis and an indispensable resource for life scientists.

Instead of checking dozens of online interfaces, researchers can simply input their

sequence information into InterPro to utilize the above mentioned specialised tools

all at once. Not even domain experts with extremely focused interests can keep up

with all the results that are tangentially related to their field. Consequently, InterPro

not only saves them time but can also spark new ideas by presenting complementary

bits of biological information that might be new and relevant to researchers.

This thesis argues therefore, that gains in productivity and efficiency in biomedical

research can not only come from completely novel algorithms and experimental

techniques, but also from the ingenious combination and refinement of existing ones.
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1.5 Challenges addressed by CorrMapper

Progress in science depends on new techniques, new

discoveries, and new ideas, probably in that order.

Sydney Brenner52

The majority of this thesis is about CorrMapper, an online meta-tool for the inte-

gration and visualisation of complex multi-omics datasets. The problems that led

to the inception of CorrMapper are outlined in the following sections. By enumer-

ating these challenges it will become apparent how they tie into each other and why

addressing them together with a meta-tool is a legitimate research problem.

1.5.1 The rise of the multi-omics study design

Even if we only consider the most popular omics methods (gene sequencing, SNP se-

quencing, RNA sequencing, transcriptomics, epigenomics, proteomics, bacterial 16S

rRNA sequencing, metagenomics, targeted and untargeted metabonomics), there

are 45 possible combinations one can choose to design a multi-omics study with two

different data types. This number grows to 120 with three datasets.

There are numerous specialised multi-omics integration tools that concentrate on

a particular pair53,54 or a subset55 of the aforementioned omics platforms. Often

this sharp focus allows these methods to incorporate the various platform specific

preprocessing steps or to adapt their methodology to the targeted omics data types

specifically.

CorrMapper takes a different approach as it was designed to be a general purpose,

platform agnostic omics data integration tool for any two omics datasets. To achieve

this, it requires the user to perform all the omics field specific preprocessing a priori.
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1.5.2 Clinical and other types of metadata

Healthcare systems around the world are increasingly becoming technology driven

and digitised. Electronic Medical Records (EMRs) of hospital and doctor visits are

routinely collected around the world not just by insurance companies in the US56

but by government funded health agencies like the NHS as well57. These EMRs

include the exact medical procedures that were carried out along with the resulting

diagnosis, drug prescriptions and extensive phenotypic patient data as well. These

vast population wide data sources allow researchers to reconstruct the full history

of millions of patients with unprecedented precision, tracking key phenotypic traits

longitudinally over several years or even decades.

The previously mentioned $1000 genome and EMR data will both pave the way to

a new era of healthcare, that is often referred to as precision medicine58. If this

becomes a reality (and numerous signs indicate it will), each patient will receive

healthcare service that is tailored individually to their genetics, lifestyle and envi-

ronment. For example, in the not very distant future our genes will dictate the

kind of cancer treatment we receive59, while the mutations that lead to altered drug

efficiency will also be taken into account when designing the dosing regimen.

Furthermore, our health is now routinely being monitored outside of the hospital and

doctor’s office too. The wearable gadget industry is growing at an impressive rate

and is expected to sell 900 million smart watches, bracelets and other monitoring

devices by 202160. This new and increasingly cheap technology is able to record

essential health and activity metrics such as heart rate, body temperature and the

number of steps walked, but it can also estimate more complex measures such as

sleeping patterns, stress levels and calories burnt throughout the day.

Although the quality of this data is not yet comparable with the information col-

lected by medical professionals, its volume and granularity makes these data sources
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very promising. Millions of users track their health and vitality levels on a daily

basis already which has helped to create a plethora of fitness-gadget startups and

smartphone applications.

As with omics technologies however, these new data (whether it is coming from

hospitals or wearable gadgets) not only present unprecedented opportunities for

researchers but also very serious challenges. These phenotypic data can only com-

plement and augment the omics datasets if they are mapped onto each other in an

intelligent and sensible way, allowing for easy patient stratification and exploratory

analysis.

CorrMapper provides a novel visualisation module that was designed to do exactly

this. As we will see later, this interface helps researchers to maximise the potential

of their clinical metadata, working in tandem with their omics datasets, to identify

useful rules and strategies for patient stratification.

1.5.3 Large p small n datasets require feature selection

The human genome contains about 20,000 protein coding genes, while the collective

genome of our gut microbiome may have a hundred times more than that61. Un-

targeted metabonomics studies can easily generate thousands of candidate features

and the diverse bacterial communities inhabiting our gastrointestinal tract comprise

of many hundred strains or OTUs.

Modern omics datasets are extremely feature rich in general, see Table 1.1. This

presents tremendous opportunities for biomarker discovery but it is also a burden

for statistical analysis. If the number of features p is vastly larger than the number

of samples n, even the simplest models such as linear regression are too flexible and

will lead to over-fitting. This means that our model will perform poorly on unseen

samples, as it cannot generalise well from the training data62.



1.5.3. Large p small n datasets require feature selection 21

Typical feature number (p) Samples (n) Ratio p
n

SNP genotyping 5× 105 − 2× 106 probes 10− 500 ~392
Metagenomics 2× 105 − 2× 106 genes 10− 300 ~645
Transcriptomics 20, 000− 40, 000 probes 10− 200 ~285
Genomics 20, 000 human genes 10− 500 ~78

Metabonomics 1000− 4000 peaks 10− 300 ~16
Metataxonomics 1000− 2000 OTUs 10− 300 ~10

Table 1.1: High-throughput biological datasets are p > n and often p� n.

Interestingly, most high-throughput studies are still underpowered due the price of

omics technologies. Fortunately, as alluded to earlier, the price of omics technologies

is showing a rapidly decreasing trend, but it might take another decade till we

routinely see studies with tens of thousands of patients. Until then, depending

on the omics field, we have to cope with 10-600 times more features than samples

on average. This poses serious challenges and might also account for some of the

reproducibility crisis biomedical research is experiencing right now14.

Furthermore, since data analysis tends to be highly iterative in life sciences, working

with such feature rich datasets will repeatedly incur a greater computational cost

and therefore take noticeably longer. Finally, the interpretation of unregularised,

complex models arising from such high-dimensional datasets, is impossibly difficult

even for experts with relevant domain-specific knowledge.

Fortunately, however, many of the features collected by high-throughput omics plat-

forms might be completely irrelevant to the studied biological problem, or redundant

in the context of others (multicollinearity). For example, we would not expect to

find all 20,000 human genes to have a direct influence on the progression of breast

cancer. Neither would we anticipate to find every bacterial strain in our gut to be

involved in irritable bowel syndrome.

Therefore, feature selection or prioritisation should be an integral part of any bioin-

formatics pipeline that is designed to work with high-throughput omics data. This

~
~
~
~
~
~
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is especially true for multi-omics studies, where the large p small n problem is fur-

ther exacerbated by using multiple analytical platforms, therefore collecting more

features for the same number of patients.

Consequently, great attention was paid to the Feature Selection (FS) problem while

designing CorrMapper and several state of the art methods were benchmarked to

provide an optimal solution for the users.

1.5.4 The potential of advanced interactive visualisation

The reason why data visualisation is so important in data analysis is that a good

plot can surprise us. By displaying characteristics of our data that we did not

anticipate, graphs can provide us with immediate insight and spark new ideas. A

single histogram or scatter plot can turn the course of exploration into a completely

new direction or form the basis of a whole set of new experiments.

Although the cost of sequencing has been decreasing much quicker than the cost of

computing5, Moore’s law has been holding since the early 70s and we often forget

the incredible compounded advancement that has happened in computing. For

example, our smart phones today are several orders of magnitude faster than the

super computers of NASA that took the crew of Apollo 11 to the Moon63.

As a consequence, we can run several complex applications simultaneously on our

phones and tablets, play realistic looking games or watch a movie in high definition,

enjoying the benefits of sophisticated real time decoding algorithms. If we can do

all of this on a mid-priced smart phone, it is not surprising that modern laptops and

desktop computers can be used to do almost anything: from composing film score

with thousands of sampled musical instruments, through training complex machine

learning algorithms to simulating three dimensional worlds with breathtaking reality.

Among many other things, this cheap computational power has revolutionised data
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visualisation as well and has given rise to new software libraries with amazing ca-

pabilities. JavaScript packages such as d3.js64 and sigma.js65 can run in any web-

browser and render complex vector graphics and networks with thousands of nodes

fluidly while providing stunning interactivity and a smooth user experience. Some

interesting example visualisations built with d3.js can be found here66.

WebGL libraries such as three.js67 take advantage of the dedicated graphical proces-

sor units of modern computers and consequently represent the cutting edge of what

is achievable in terms of web-browser based advanced data visualisation. Some truly

stunning examples of this technology are available here68.

As we will see later, CorrMapper not only takes advantage of these modern soft-

ware libraries but fully embraces the interactivity and complex visualisations they

provide. Although certain sections of the scientific community dismiss data visu-

alisation as a gimmick that lacks true rigour and scientific depth, hopefully by the

end of this thesis, the reader will be convinced (if needed to be) that advanced

data visualisations can be highly illuminating and useful in generating insight and

therefore leading us to novel discoveries.

Finally, Section 6.5 enumerates several currently available visualisation tools that

are tailored for omics data, and compares them to CorrMapper’s solutions.

1.5.5 Predictive and exploratory data analysis

The adaptation of machine learning methods in bioinformatics has made it possible

to build highly accurate predictive models which take into account the non-linearities

and complex high-dimensional nature of omics datasets. However, this is rarely the

final goal in biomedical research projects. Instead, basic research in life sciences is

primarily interested in the mechanistic understanding of diseases and the accumu-

lation of knowledge that can form the basis of new therapies and diagnostic tools.
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Nonetheless, predicting patient outcome might be of interest in some scenarios. For

instance, when we have real world evidence data, we can use the prescription and

diagnostic history of millions of patients to build a predictive model that can detect

a certain disease earlier than current best practices. Such a model is immensely

valuable as it might improve patient outcome and also save money to the healthcare

system by reducing the risk of comorbidities. Such a model however has to be trained

on a very large sample to ensure statistical power and to minimise the chance of

false negative diagnoses, which could have devastating consequences in real world

application. Although the price of omics technologies has been decreasing steadily

for decades, we are still not able to fund omics studies with thousands of patients,

therefore currently this sort of predictive modelling is mainly done on EMR data in

private companies.

Furthermore, a powerful enough predictive model will most likely not provide us

with new knowledge about the fundamentals of a disease and therefore will not

improve our capacity to target it in novel and more efficient ways. This is because

generally speaking there is an inverse correlation between a model’s performance

and its interpretability in machine learning (see chapter 2.1.3 in James et al.69).

Consequently, we know very little about the inner mechanics of models that perform

astonishingly well, such as deep neural networks, gradient boosted trees or ensembles

methods like random forests.

This frustrating phenomenon is one of the reasons machine learning practitioners

often refer to these highly powerful and complex algorithms as “black-box” models.

Several methods have been proposed70,71 to alleviate this problem, but it is still

very much an actively researched area of machine learning. Consequently, even if

predictive modelling is part of a biomedical research project, it almost always has

to be preceded with studies that gather and build knowledge regarding a particular

condition or biological phenomenon.
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Therefore, researchers often need to do exploratory analyses, dissecting their dataset

in different and many ways. A frequently used key step in this process is the assess-

ment of countless one-to-one associations between the various biological features.

These links could be defined in numerous ways (correlation, mutual information,

clustering) but ultimately one hopes to separate the noise from signal and find

meaningful relationships that could be understood in a wider biological context of

the studied disease or process. Due to the very high number of features however,

these association networks are often extremely difficult to interpret as they are very

hard to interact with or explore.

To remedy this unfortunate situation, CorrMapper was designed to be a data ex-

ploration and hypothesis generation tool that can spark new ideas and shine light

on undiscovered novel associations in complex omics datasets.

1.5.6 Democratising advanced research tools

Although a number of advanced machine learning and statistical algorithms are

available to solve the challenges outlined above, their highly technical nature pre-

vents them from wide utilization in life sciences. Similarly, due to the abundance

of free graphical plotting libraries, the creation of advanced interactive data visu-

alisations has become easier in recent years, but these powerful libraries all come

with steep learning curves that can deter many researchers without a background

in programming.

Bioinformaticians tirelessly work to bridge these gaps by applying modern machine

learning and advanced data visualisation to biological data but the output of such

efforts is often another software package on Bioconductor72. While these projects

offer fantastic tools to scientists that already posses some programming and scripting

skills, a large portion of biomedical researchers lack these currently.
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To address this issue, CorrMapper was developed as an online research tool that

can be used without any coding experience. Although, this required an extensive

amount of additional development, hopefully the online interface will encourage a

lot more users (including non-technical ones) to incorporate CorrMapper into their

research toolbox.

In recent years, the open-source and open-access agenda has really transformed the

research community. Today, most software libraries are built using free software and

are made available as open-source projects. There has never been a time when it was

easier to access the source code of a project and get involved with its development

through online version control systems such as GitHub.

Projects like Python’s Scikit-learn73 and JavaScript’s d3.js64 are extremely successful

examples of this trend. By open-sourcing these projects, they grew quicker, became

stronger and more feature rich than the authors would have ever imagined originally.

They have been used by hundreds of companies and thousands researchers around

the globe and consequently had a tremendous impact on the world we live in.

To align with this positive trend, the entire code-base of CorrMapper was open-

sourced in the hope that not only will the science and developer community benefit

from it, but they can also help to review and advance the project.

1.5.7 A meta-tool for data integration and visualisation

After carefully considering each of the above described challenges for several months,

it became clear that these are all pieces from the same puzzle, hence they could be

addressed together with a single meta-tool.

• Reflecting on the growing number of multi-omics studies, CorrMapper was

designed to be a general data integration tool that can use any pair of prepro-

cessed omics datasets. However, it works equally well with a single dataset.
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• CorrMapper allows any kind of clinical metadata to be mapped onto the omics

datasets. This is done in a novel and interactive way that can help with patient

stratification and exploratory data analysis. Since the interface was designed

to be used by a non-technical audience and run in a browser, it can easily help

the work of doctors and other medical professionals.

• Clinical metadata driven feature selection is at the core of CorrMapper’s

pipeline. This can reduce the number of features dramatically to retain only

the ones that are relevant to the studied biological problem. This not only

saves computational time in subsequent analysis steps, but also increases the

interpretability of the results.

• CorrMapper contains two advanced visualisation modules, which were devel-

oped to display and expose the complex correlation networks that are esti-

mated from the selected features. These interfaces provide unparalleled inter-

activity that not only help with data exploration but can also spark new ideas

and generate novel testable hypothesis for follow-up experiments.

• Given the large p small n nature of omics datasets and the black-box problem

of powerful modern machine learning algorithms, CorrMapper focuses on data

exploration, visualisation and ultimately knowledge discovery. Nonetheless,

the features selected by CorrMapper can certainly enhance subsequent model

building, by reducing the noise in the training data.

• Very importantly, CorrMapper is accessible online as a graphical interface

without any programming knowledge. Hopefully, this will facilitate the wider

utilisation of it among biomedical researchers.

• Finally, CorrMapper is also fully open-source. This will not only make the

project more robust (by the community’s helpful code checking process), but

it will also help CorrMapper to grow and mature through the contributions of

other researchers and developers.
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Most of the development and research presented in this thesis was carried out on

the aforementioned bariatric surgery study, which was collected and organised by

Dr. Jia Li in the CSM group at Imperial College London. Since this dataset has not

been published yet, a lot of time and effort was spent on cleaning and organising

the data for subsequent analysis. Furthermore, a novel NMR peak detection and

extraction pipeline was also developed, so that the highly multicollinear NMR data

can be used by conventional statistical and machine learning techniques.

The genomic visualisation module of CorrMapper (see section 6.4) was developed

using a breast cancer study36. As this is a published dataset, no data preparation

or preprocessing steps were taken with it. A brief overview of these multi-omics

datasets and the preprocessing of bariatric surgery dataset is provided in the follow-

ing sections.

2.1 Bariatric surgery dataset

Bariatric or weight loss surgery includes a variety of procedures(Roux-en-Y Gas-

tric Bypass (RYGB), sleeve, gastric band) and it is performed on patients who are

severely obese, with a Body Mass Index (BMI) over 35. Beyond the weight loss how-

ever, bariatric surgery was shown to have a number of beneficial health outcomes in

previous research, such as reduced 5-year mortality (-89%) and risk of cardiovascular

disease (-82%), but also resolved Type-2 Diabetes (T2D), sleep apnoea and asthma

in 83%, 85% and 82% of patients respectively. In the same study bariatric surgery

28
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Figure 2.1: Venn-diagrams of the 97 patients, showing the collected NMR samples
partitioned by time-points and sample source.

was also found to improve steatosis in 90% of patients with non-alcoholic fatty liver

disease and the quality of life of the vast majority (95%) who undergo the surgery74.

In the study used throughout this thesis, 97 severely obese patients underwent

bariatric surgery (mostly RYGB). Their metabolic profiles and gut microbiome were

measured by 1H NMR and 16S rRNA sequencing at three different time-points: be-

fore operation, two months and a year after operation, referred to as T1, T2 and T3

hereafter, see Table 2.1. Figure 2.1 summarizes the collected NMR measurements by

biofluids. Urine samples were profiled by NMR, while faecal samples were measured

by NMR and 16S rRNA sequencing.

Additionally, a wide range of tests were carried out on the patients to monitor the

physiological outcome of the surgery. This metadata contains 65 clinical and bio-

chemical parameters including BMI, blood pressure, complete blood count, thyroid
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Pre-operation (T1) 2 months post-op (T2) 1 year post-op (T3)

NMR - urine 97 56 35
NMR - faecal 58 50 36
16S rRNA 38 38 10

Table 2.1: Number of samples per analytical platform and time-point in the bariatric
surgery study.

function tests, lipid profile, iron profile, coagulation screen, urine and bone profile

and concentrations of trace metals. Unfortunately, this metadata is quite sparse, on

average 56% of the values are missing.

The clinical metadata for this study came in numerous Excel spreadsheets from

our NHS partner hospital. Unfortunately, the data were inconsistently formatted

and flooded with mistyped values. Furthermore, the linkage of samples across omics

platforms was done manually relying on further Excel spreadsheets with inconsistent

sample names.

To remedy this, the naming of the samples was unified, the metadata was cleaned

using Python75 scripts, and put into an SQLite database76 to hold all sample and

patient related information in three tables: Patients, NMR samples, and 16S rRNA

samples. This database made it very easy to query the metadata and select any

arbitrary sub-group of patients with their corresponding samples.

2.1.1 Data preprocessing of 1H NMR data

An NMR spectrum obtained from metabolomic profiling of biofluids is one of the

most feature rich omics data types currently in existence. Modern NMR machines

produce 64K resolution spectra, meaning that once the raw data is Fourier trans-

formed into the frequency domain, each sample is represented by 64,000 data-points.

The human urinary metabolome, on average, contains a few hundreds of metabo-

lites77. Therefore, the 64,000 dimensional representation of this information is highly
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redundant. NMR spectra of biofluids show extreme multicollinearity78, as the data-

points next to each other are almost perfectly correlated and a given metabolite

is represented with several peaks in the spectrum. Consequently, distant parts of

the spectrum can be strongly correlated, as they hold information about the same

metabolite. Traditionally, this problem was combated in metabonomics by using

specialised algorithms such as PLS79 and O-PLS23. However, in this work, the

NMR spectra of the bariatric surgery dataset had to be integrated with another

kind of omics dataset, therefore its dimensionality had to be reduced and its true

features (metabolite concentrations) extracted.

To achieve this, a novel NMR peak-fitting pipeline was written in MATLAB, which

finds well-aligned and relevant peaks in the data, then fits a Lorentzian curve to

each one of them to estimate the peak’s intensity80. Given n high resolution NMR

spectra X ∈ Rn×64000, the pipeline extracts around 1000 peaks across the n samples

and produces X̂ ∈ Rn× 1000 whose multicollinearity is substantially lower than the

original dataset’s X.

In NMR profiles obtained from biofluids, the peaks of certain molecules are com-

monly shifted compared to where we find them in other samples, due to fluctuations

in pH, temperature, instrument factors and ion content of the sample. To remedy

this and to the make NMR spectra of different samples comparable i.e. aligned,

certain peaks of each spectrum need to be moved or stretched. This is one of the

most challenging parts in NMR spectra preprocessing, therefore numerous alignment

algorithms have been devised to deal with it81.

In the devised peak-fitting pipeline the Recursive Segment-Wise Peak Alignment

(RSWPA) algorithm82 was used to align the position of peaks across the samples.

Although this is a powerful tool which corrects the misalignment of peaks demonstra-

bly well, by shifting segments of each spectrum, it introduces breaks and stretches

into the data that would make the peak-fitting a lot harder and inaccurate. To over-
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Figure 2.2: Flowchart of NMR fitting pipeline.

come this, the devised pipeline fits the peaks of unaligned spectra, but uses RSWPA

aligned data to find the well-aligned and relevant peaks that need to be fitted. The

following section provides a high-level overview of the peak-fitting algorithm. Figure

2.2 is intended to aid the reader while walking through the pipeline’s description.

1. The imported NMR data X ∈ Rn×64000 is cut to exclude the trimethylsilyl-

propanoic acid (TSP) reference and water regions of the spectrum, resulting

in Xc, which is then duplicated. One of the copies Xa is aligned using the

RSWPA algorithm, while the other Xu is not.

2. In every spectrum su of Xu, all local maxima are identified:

(a) Firstly, su is smoothed with a Savitzky-Golay (SG) filter83 using a window

size of thirteen and a degree four polynomial. The smoothed spectrum

could be thought of as a function ŝu(x), where x is the chemical shift ex-

pressed in parts per million (ppm) with reference to the standard chemical

compound in the sample (TSP in most urine NMR datasets).
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Figure 2.3: A section of an unaligned urinary NMR spectrum (black) and its SG
smoothed 2nd derivative ŝu

′′(x) (red). Purple crosses represent local maxima of
the NMR section, which are found at x = a, where ŝu

′(a) = 0 (not shown) and
ŝu
′′(a) < 0. Each peak’s position and intensity is saved along with its width, which

is estimated as the ppm difference between the two nearest local positive maxima
of ŝu

′′(x) (grey vertical lines).

(b) It is well established in calculus and in NMR signal processing84 that

one can find a local maximum of ŝu(x) at x = a, where ŝu
′(a) = 0 and

ŝu
′′(a) < 0, see Figure 2.3. All such points a of ŝu(x) are found and

collected in m, using MATLAB’s extrema function.

(c) m for which ŝu(m) < 8 ∗ σsu are discarded. Here σsu is defined as the

noise level of the spectrum su, which is found by segmenting su into 128

equally sized sections and then taking the smallest standard deviation of

these spectral pieces85. This step eliminates very small peaks that are

comparable to the noise level of the NMR spectrum.

(d) For each m that pass the noise-filtering step, we record the corresponding

ppm position mp, intensity mi and width mw. Given a peak p ⊆mp, its

intensity is defined as ŝu(p) where ŝu has been total area normalised so

that
∫∞
−∞ su ≈

∑x=10
x=0 ŝu(x) = 1, where x ∈ [0, 10] is the ppm scale of the
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NMR spectrum. This normalisation step is necessary because urine NMR

spectra can differ widely in peak intensities for a given ppm position, due

to the varying amount of water in the samples. Given a peak p ⊆mp, its

width is estimated as the ppm difference between the two nearest local

positive maxima of ŝu
′′(x), see Figure 2.3.

(e) For clarity, from herein, the position of a local maximum within Xu is

referred to as the peak’s true position, whereas the corresponding ppm

position in the aligned spectrum Xa is referred to as aligned position.

3. In order to find well-aligned and relevant peaks across the spectra in Xa, the

true position of each local maxima in Xu is matched with their aligned position

in Xa. Then the pipeline identifies ppm positions in Xa of well-aligned local

maxima (magenta spikes in Figure 2.4) using the following steps:

(a) Firstly, the frequency of local maxima fmax and local minima fmin are

calculated for every position along the ppm scale. This is defined as the

number of local extrema found at a given ppm position divided by n, i.e.

the number of spectra in Xa.

Figure 2.4: A section of the 188 aligned urinary NMR data (cyan) of the bariatric
surgery dataset. The dark blue line represents the non-smoothed fmax, while the
red one is the smoothed f̂max. The magenta spikes mark the ppm positions Π of the
well-aligned peaks that will be fitted in the consequent steps.



2.1.1. Data preprocessing of 1H NMR data 35

(b) As alluded to before, since alignment of NMR spectra is an incredibly

difficult task, it is not surprising that even with an advanced tool such

as the RSWPA algorithm, the maxima of peaks will never be perfectly

aligned across spectra. Consequently, both fmax and fmin are fairly noisy

(see Figure 2.4) which is alleviated by smoothing them using a rolling

average with a window size of seven, resulting in f̂max and f̂min.

(c) Then, f̂max is set to zero where f̂max < 3 ∗ f̂min, i.e. where it is much

more likely to find local minima than local maxima.

(d) Finally, f̂max is total area normalised such that
∫∞
∞ f̂max ≈

∑x=10
x=0 f̂max(x) =

1, where x ∈ [0, 10] is the ppm scale of the NMR spectrum. This results

in clearly identifiable spikes in f̂max (show with magenta in Figure 2.4),

which mark the ppm positions π ⊆ Π of the well-aligned and relevant

peaks in Xa, which will be fitted in the consequent steps.

4. The baseline bu of su is estimated using a parametric smoothing model86. For

an example of the fitted baseline by this algorithm see Figure S1.

5. Then, at every well-aligned peak position π ⊆ Π, the pipeline checks for each

sa of Xa if it has a local maximum. Note that in step 3. the local maxima

m of each peak were matched between Xu and Xa, therefore we have mp,

mi and mw for all local maxima of Xa. It is unlikely however, that any mp

of sa will match π ⊆ Π precisely, due to imperfect alignment. Therefore, the

pipeline checks the closest peaks before mp−1 and after mp+1 the ppm position

marked by π. If there is a peak found within 0.1 ppm of π, its intensity mi and

width mw are compared to 1
n

∑n
i=1Xa(π) and 1

n

∑n
i=1 mw(π), i.e. the average

intensity and width of the peaks found in Xa at π. If these parameters of

the neighbourhood peak mp+1/p−1 are within one standard deviation of the

average intensity and width of Xa(π), the pipeline accepts it.
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6. Either a peak was perfectly well-aligned (π = mp) or was in the close neigh-

bourhood and accepted (π = mp+1/p−1), it goes through the same fitting

procedure in su ⊆ Xu.

(a) Firstly a section q of the spectrum su is cut out, containing the peak of

interest su(π) and its neighbourhood, consisting of additional four peaks,

two on each side.

(b) Each of the five peaks within q is fitted simultaneously with a Lorentzian

curve which is parametrised by the peak’s position within the section mp,

intensity mi and width mw. For the optimisation, the starting values of

these parameters are obtained earlier as described in 2.d.

(c) The NMR section q is approximated with q̂, by minimising the following

quadratic objective function using MATLAB’s fminsearch:

arg min
mp,mi,mw

L(q, q̂) = (q − (bu +
5∑

k=1

L(mp(k),mi(k),mw(k)))
2,

where q̂ is made up of the baseline bu estimated in step 4., and five

Lorentzian curves L(mp(k),mi(k),mw(k)), which are parametrised by their

position, intensity and width parameter.

(d) The result of the fitting process on two example sections are shown in

Figure 2.5. As we can see, an excellent fit can be achieved with a fitting

window size of five, i.e. with only four neighbour peeks. However, during

the development of the peak-fitting pipeline, numerous experiments were

carried out to find the optimal fitting-window size, which provides a good

balance between fitting accuracy and computational time. For examples

of different fitting-window sizes (k = 5, k = 7, k = 11), see Figure S2.

(e) To speed up the convergence of fminsearch, mp,mi and mw are bounded,

which turns this task into a constrained optimisation problem. The po-

sition of each peak mp is bounded to allow for minimal shift up to five
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data points in both directions along the ppm scale. The intensity mi

have upper and lower bounds of three times and 5% of the initial values

respectively. The width parameter mw has an upper bound of three times

the initial value and a lower bound of one data point. The termination

tolerance of fminsearch is set to 10−3.

(f) When fminsearch has converged, the quality of the fit is estimated

by the coefficient of determination, calculated as R2 = cor(q, q̂)2, i.e.

the squared Pearson correlation coefficient of q and q̂. Furthermore,

for each well-aligned peak L(π) the pipeline saves its area as ma(π) =∫∞
−∞ L(mp(π),mi(π),mw(π)). The end result of the fitting process is X̂ ∈

Rn×Π, where each row is a vector of ma(π) values, representing the inten-

sity of the fitted peaks within that particular sample.

7. Since the above described process is embarrassingly parallel, MATLAB’s par-

allelised parfor loop is used to speed up the peak-fitting. Each peak’s fitting

time, R2 value, and parameters (ma(π),mp(π),mi(π),mw(π)) are saved. By the

end of this pipeline, the initial dataset X ∈ Rn×64000 is reduced to X̂ ∈ Rn×Π.

Figure 2.5: A pair of urinary NMR sections with their middle peaks fitted. The blue
line is the real, unaligned spectrum, the green one is the sum of fitted Lorentzians
plus the estimated baseline, the magenta ones are the fitted Lorentzians and the red
one is the Lorentzian of the peak of interest.
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Urine NMR dataset Faecal water NMR dataset

Number of samples 188 144
Number of features detected 1072 1236
Number of peaks fitted 81114 62569
Total CPU-time 11.9 hours 9.2 hours
Total wall time 4 hours 3 hours
Median of features per sample 441 435
Std of features per sample 66 68
Median R2 values 0.996 0.998

Table 2.2: Summary statistics of peak-fitting the two NMR datasets of the bariatric
surgery study.

Table 2.2 summarises the outcome of applying the NMR peak-fitting and feature

extraction pipeline to the two NMR datasets of the bariatric surgery study. On

average around 1100 well-aligned peaks were detected in the two datasets, and 440

of these were present in each sample.

The quality of peak-fitting was extremely high with a median R2 value above 0.99

in both datasets. The computation took 3.5 hours on average per dataset and was

carried out on a desktop machine with a four core Intel i5 CPU. Unfortunately, by

the time of finishing this peak-fitting algorithm, the Focus pipeline got published87,

whose functionality overlaps considerably with this work.

2.1.2 Data preprocessing of 16S rRNA data

Metataxonomics works by sequencing all 16S rRNA genes in a given sample. Once

the reads are clustered by similarity, these clusters can be mapped to a previously

determined phylogenetic tree with thousands of OTUs such as the GreenGenes

database88.

This mapping will not only identify the OTUs that are present in a given sample

but also quantify their relative abundance using the number of 16S rRNA reads as

a proxy for the number of bacterial cells per taxa.
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This relies on the key assumption however, that 16S rRNA genes are only present in

a single copy in each organism and therefore a single 16S rRNA read can be equated

to a single bacterial cell. Unfortunately this is known to be a false assumption and

it is widely accepted that the copy numbers of the 16S rRNA gene shows strong

variability across bacterial species89.

Figure 2.6 shows the copy numbers of the 16S rRNA gene in 1073 fully sequenced

bacterial species. The above described assumption does not hold in about 80% of

bacterial species, as they all have more than a single copy of this gene. Given the

surprisingly high number of species with more than one copy, recently it has been

gaining recognition within the metatoxonomics community90,91, that it is erroneous

to treat all OTU counts as the equivalent number of organisms.

Although doing so is still common practice, it will distort the true relative abundance

of the sampled bacterial community. Instead, the OTU counts should be normalised

by the copy numbers of the given OTU, to better approximate the real abundance

of a genus.

Figure 2.6: Distribution of the 16S rRNA gene copy numbers in 1073 fully sequenced
bacterial species. A: Plot of the 16S rRNA copy numbers in ascending order for
visual clarity. B Histogram of the same data. The shaded rectangles represent the
percentage of species with more than one, three and five 16S rRNA gene respectively.
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To overcome this problem, PI-CRUST92 was used to normalise the OTUs by their

species specific copy number. Following this, all singleton (OTUs (present in one

sample with a single read) were removed. This filtering retained 192 OTUs in total

and discarded extremely rare strains that would have made the OTU table very

sparse. Finally, as suggested by several authors93,94, Centered Log Ratio (CLR)95

was applied to the data, to account for its compositional nature.

2.2 Breast cancer dataset

For the development of the genomic network explorer (see Section 6.4), a multi-

omics breast cancer study was used36. This seminal paper represents one of the

earliest application of the multi-omics approach in biomedical research. The authors

successfully combined gene expression and CNV assays to show that stratification

of patients according to outcome can be improved by measuring both of these omics

data types.

CNV probes measure if a certain region of the genome is duplicated or deleted.

Therefore, the biological rationale behind this study was to examine how copy num-

ber abnormalities of the genome can lead to over or underexpression of certain genes

and consequently affect the disease progression and ultimately the clinical outcome.

The dataset contains an assay of 2149 CNV probes (mix of Scanning and OncoBAC

arrays) for 145 patients and a gene expression assay with 22215 probes (Affymetrix

High Throughput Array GeneChip system) for 118 patients. In total 108 patients

had both omics data types. For CorrMapper’s genomic network visualisation mod-

ule, the chromosomal location and other biological annotation was obtained for each

of these probes from the vendor’s website.
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The clinical metadata for this dataset included tumour staging, type of therapy, mor-

tality over the studied period, progesterone and oestrogen receptor status, presence

of family history, ethnicity, p53 status, ErbB2 status and age of patients.

The data was downloaded from the Gene Expression Omnibus96, hosted by the Na-

tional Center for Biotechnology Information (NCBI). As the data files were already

preprocessed by their platform specific pipelines, no further transformation steps

were applied to them. The two omics data files, their genomic annotation files and

metadata can be downloaded from CorrMapper’s website as an example dataset.
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3.1 Feature selection

Feature selection (FS) is an integral and essential part of CorrMapper, therefore, a

brief introduction to this subject is provided in the following section.

FS is a highly studied, central problem in machine learning, with a vast literature

and dozens of published . By reducing the dimensionality of a dataset, FS meth-

ods decrease the chance of over-fitting while also improving prediction accuracy.

Furthermore, they also make the interpretation of datasets easier, which is highly

desirable in high-throughput systems biology.

Generally, the omics data of any biomedical research experiment can be recorded as

a matrix X̂ ∈ Rn×p, which contains the measurements for n samples and p features,

where usually p� n. Typical examples for X include:

• expression of a genes measured as relative fluorescent intensity,

• abundance of bacterial strains quantified by 16S rRNA sequencing,

• concentration of small molecules in a biological fluid, measured with 1H NMR.

Each cell xi,j of X is a measurement for feature j in sample i. Throughout this

thesis xi refers to the row in X (i.e. sample), while xj represents a column (i.e.

feature) of the dataset. In biomedical research, FS consists of identifying a subset

of features, which are most discriminative with respect to a particular biological

response or outcome yn×1, e.g. cancer vs healthy or BMI of patients.

42
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More precisely, let us consider a classification problem with y ∈ {0, 1}, where 0

represents control cases while 1 denotes patients with cancer. A sample xi in our

cohort X could be characterised by a feature vector x1×p and an outcome y. A

classifier is a function Φ(x) that acts as a map from the feature space to the label

space: Φ : Rp → {0, 1}, meaning that y is to be predicted by Φ(X). As the classifier

is fitted to the data, it finds a decision boundary within Rp that partitions this space

into two subspaces: R0 = {x : Φ(x) = 0} and R1 = {x : Φ(x) = 1}. The classifier’s

error ε[Φ] measures the probability of misclassification:

ε[Φ] = P (Φ(X) 6= y) ≈ 1

n

n∑
i=1

|Φ(xi) 6= yi|.

The feature-label distribution Fx,y(x
1×p, y) quantifies the class conditional distribu-

tions of the feature vectors with respect to the outcome: Fx|1(x) and Fx|0(x). The

accuracy of a binary classifier depends on how well Fx|1(x) and Fx|0(x) are separated

by the partitions R0 = {x : Φ(x) = 0} and R1 = {x : Φ(x) = 1}. Given the space

of all possible binary functions B, the optimal classifier ΦB (often called the Bayes

classifier) is one which is minimising the Bayes error εB:

ε[ΦB] = min{ε(Φ) : Φ ∈ B}.

Unfortunately, Fx,y is unknown in real datasets, as it would require the whole popu-

lation to estimate it. Instead, the classifier needs to learn from a random sample Un

of feature-label pairs {(x1, y1), (x2, y2), ..., (xn, yn)} = X ∈ Rn×p, y ∈ Rn×1. Unless

the fitted classifier Φn is the Bayes classifier ΦB, its error εn will always be greater

than the Bayes error97. This results in a so called design cost ∆n = εn − εB, where

∆n and εn are sample dependent random variables. The expected error of Φn can

be decomposed as

E[εn] = εB + E[∆n],
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where E[∆n] is the expected design cost over all possible random samples. The

classification rule learned by the classifier is said to be consistent if E[∆n] → 0

as n → ∞ relative to Fx,y, and universally consistent if the same holds for any

feature-label distribution.

The reason why p� n presents a tremendous challenge in the statistical analysis of

omics datasets, is that E[∆n] is too high when the sample size is small. The reason

why this occurs is that small sample data does not represent the full distribution of

Fx,y accurately. Therefore, one can easily design a classifier that will have low error

on the training dataset ε[Φn(Un)], but will generalise very poorly and produce large

errors on unseen data pairs {(xi, yi)} coming from the full feature-label distribu-

tion Fx,y. In machine learning and statistical modelling this phenomenon is called

overfitting, which can be alleviated with either larger sample sizes that represent

the true Fx,y distribution more truthfully, or regularisation meaning various ways to

restrict model flexibility.

FS constrains the classifier Φ(X) to a smaller class of potential classifiers by selecting

a relevant and potentially non-redundant subset of features S ⊆ {x1, x2, ..., xp}. By

limiting the feature space to |S| � p, FS limits the complexity of decision boundaries

and feature space partitions a classifier can learn, hence FS reduces the chance of

overfitting. At the same time FS makes the resulting model easier to interpret while

also reducing training time significantly. Finally, FS helps to avoid the curse of

dimensionality, whereby even the closest neighbours of a data-point will appear to

be highly dissimilar, making statistical inference very difficult98.

Although it has clear advantages, FS also adds another level of complexity to data

modelling, as we not only have to find the optimal parameters θ̂ of our model Φ

fitted to our data Xn×p and outcome variable y, but we are also looking for an
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optimal subset of features S such that:

θ̂, S = arg max
θ̂∈Θ,S⊆p

L(Φθ̂, S|X
n×p, y),

where L is the likelihood function of θ̂ and S. A feature selection algorithm is

the combination of a search technique which proposes new feature subsets, and an

evaluation measure that is used to score these. Finding S might sound trivial at

first: all we have to do is create increasingly large sets of features: S = {1, 2, ..., p},

and for every set size k = |S| check all possible permutations
(
k
p

)
. As p grows

above 10 however, this becomes computationally infeasible very quickly. Therefore

all FS methods are estimating the optimal set as Ŝ ≈ S, using various heuristics

and greedy search algorithms.

Saeys et al. provide a good overview of the different kinds of FS methods99. Accord-

ing to them and others, FS algorithms can be classified into four main categories:

Filter methods are classifier independent and capture the discriminating power

of each feature by calculating their relevance statistic with respect to the outcome

variable. Mutual information and Pearson’s correlation are two commonly used rel-

evance statistics that can quantify the association between each feature xj and the

outcome variable y. Once these statistics are calculated for all features, they could

be ranked and filtered using a heuristic decision process, such as “keep the top k

features”. Filter methods are computationally cheap, as they do not require the

training of any classifiers, but they are univariate, i.e. they cannot take crucial in-

teractions between features into account, nor can they eliminate redundant features

from X, as these will all get high relevance scores.

Wrapper methods rely on an external classifier and cross-validation. They assess

the usefulness of a proposed features set Ŝ by fitting a model ΦB to the data Xn×Ŝ

and measuring the cross-validated prediction accuracy of the classifier. This model
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fitting has to be done for every proposed Ŝ and the best set is chosen as the one

that minimises the cross-validated misclassification error. Therefore, they can be

very expensive computationally, and their use could even become prohibitive with

large datasets. They are also prone to over-fitting and their choice of useful features

can be unstable, depending greatly on chosen classifier. Nonetheless, out of all FS

methods, wrapper techniques are the most likely to find the optimal set S ⊆ p, given

the chosen class of model Φ ∈ B is appropriate for the data.

Embedded methods are similar to wrapper techniques, but they improve on some

of their shortfalls, as they perform FS while training the classifier. This inseparable

coupling of learning and FS is as an inherent property of some classifiers such as

the L1 norm penalised Support Vector Machines (SVMs)100 and the LASSO regres-

sion101. They are generally computationally less intensive than wrapper methods.

Ensemble methods represent another classifier dependent way of FS. Instability

issues are commonly observed in several FS techniques, whereby small perturbations

in the training data could lead to quite different Ŝ. Ensemble methods address this

problem, by using subsampling strategies such as bootstrapping102 to select a more

robust set of features.

During the development of CorrMapper, several months have been spent on re-

viewing the literature of FS and finding an optimal set of methods that could be

offered to the user. The lesser known Boruta and Joint Mutual Information (JMI)

algorithm, described in then next sections, stood out from the list of well-known

FS methods, because of their advantageous properties. However, they were not

available in Python, and Boruta’s R103 implementation was fairly slow. Therefore,

a fast, parallelised and flexible Python version was developed of both algorithms,

which were benchmarked along with five other FS methods on hundreds of simulated

datasets. In the next sections each of the benchmarked FS methods are introduced

briefly, while the lesser known Boruta and JMI are described in greater detail.
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3.1.1 Boruta

Boruta is an all-relevant FS algorithm104, that aims to find every feature that has

some useful information for the prediction of the outcome variable y. Wrapper meth-

ods iteratively prune the original feature space until they find a minimal-optimal set,

which maximises the cross-validated prediction accuracy of a chosen classifier ε[Φ].

In basic biological research however, we generally want to know all the relevant

features that bear some information regarding the response variable of interest.

Furthermore, since Boruta is based on Random Forests (RFs)105, it is robust against

untransformed data and outliers, while it can also cope with correlated features and

non-linearities.

The detailed description of the Boruta algorithm, has to be preceded by a brief

introduction to decision trees, the bias variance trade-off and RFs, as they represent

the core idea behind Boruta.

Decision trees

A random forest is an ensemble of decision trees, built on the old idea that a group

of weak and uncorrelated learners can generally outperform a single strong learner.

Decision trees work by learning how to partition the feature space Rp of a dataset

X into k number of p-dimensional hypercubes, so that the outcome variable of

samples within each of those regions are as homogeneous as possible. This is achieved

through applying a series of binary splitting rules to the data. These rules form a

tree structure, i.e. each one is taking samples as their input from the output of

a previous splitting rule, see Figure 3.1. Decision trees could be applied to both

regression (y ∈ R) and classification problems (y ∈ {0, 1}) problems. Here we will

briefly review how classification trees are built.
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For this demonstration, a toy dataset X ∈ R10×2 with only two features x1 and x2,

and a binary (K = 2) outcome variable y = {0, 1, 1, 1, 1, 1, 0, 0, 0, 1} is used. Given

a root node of the tree with the 10 samples, we need to find a splitting rule that

will separate these 10 samples into two branches which are more homogeneous than

their parent node was. The class-label impurity at a given node could be measured

by the Gini criterion, as

Gini(T ) =
K∑
k=1

p̂mk(1− p̂mk),

where T represents a node in the decision tree, K is the number of classes in y

(two in this example), and p̂mk is the proportion of observations in the mth re-

gion that are from the kth class. In this example, at the root node, before any

splitting, Gini(T ) = 0.479. Let us consider splitting y based on first feature

x1, which produces two branches that separate the outcome variable as follows:

yT1 = {0, 1, 1, 1, 1} and yT2 = {1, 0, 0, 0, 1}. At the same time we find that splitting

on x2 gives us yT1 = {0, 1, 1, 1, 1, 1} and yT2 = {0, 0, 0, 1}. We can quantify the

impurity reductions of these splits as:

Ginisplit(T ) =
N1

N
Gini(T1) +

N2

N
Gini(T2),

where N1 and N2 are the number of samples that go into T1 and T2 branches respec-

tively. Continuing with our example, Ginisplit(Tx1) = 0.399 and Ginisplit(Tx2) =

0.316, thus splitting on x2 decreases the impurity of class labels more within y

(0.479 − 0.316 > 0.479 − 0.399). Therefore, the decision tree will split the samples

at the root node based on x2. The exact split-point min(x2) > s > max(x2) can be

found using exhaustive search along the range of all features. This could be done

highly efficiently in a parallelised manner, as does XGBoost106, which is currently

the most advanced tree based machine learning library.
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Figure 3.1: An example of a decision tree, fitted to a small (n=600, p=10) breast
cancer dataset. Control cases are green, patients with cancer are blue, colours in-
between represent a mix of the two classes. For each node the percentage of total
patients is shown, along with the frequency of the negative and positive classes.
With only two splits, 92% of all patients (46% in node 2 and 46% in node 7) are
placed in almost perfectly pure nodes.

Decision trees have a number of beneficial properties: they are easy to interpret,

they can handle untransformed categorical and numerical data, and take feature

interactions into account. However, they also have high variance, meaning their

predictions are highly sensitive to changes in the training data so they often do not

generalise well to unseen data107. In the next section we take a short detour to

introduce the bias-variance trade-off, which is essential for understanding RFs.

The bias-variance trade-off

In any regression learning problem the expected Mean Squared Error (MSE) of a

learner f̂ could be decomposed to irreducible and reducible parts69:

MSE = variance+ bias2 + error.

With some modification this holds for classification problems too.
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Continuing with regression, more formally the above can be written as:

E
[
y − f̂(X)

]2

= V ar(f̂(X)) +
[
Bias(f̂(X))

]2

︸ ︷︷ ︸
reducible

+ V ar(ε)︸ ︷︷ ︸
irreducible

,

where neither the variance nor the bias of the learner can be negative. Therefore,

the MSE (that we would obtain if we repeatedly estimated f using a large number of

training sets), can never be lower than the irreducible part of the error term V ar(ε).

The flexibility of a learner (often referred to as degrees of freedom in the statistical

literature) depends on the class of functions a model can represent. For instance,

linear regression is a fairly inflexible model, as it can only represent linear combi-

nations of its input variables, resulting in additive, linear functions, whereas neural

networks are called universal approximators, as they can approximate any continu-

ous function in their input space to arbitrary precision107 .

As alluded to earlier, variance refers to the amount by which f̂ would change if we

trained it on a different training dataset. A learner with low variance will extract

very similar decision rules even from moderately different training datasets, hence

the model’s generalisability does not depend on the sampling of the data. Flexible

models generally have higher variance. A well known drawback of decision trees is

that they can produce very different models even with small perturbations to the

training data.

Bias is the error introduced by modelling a very complex real life problem with

a much simpler model. A linear regression model will assume that the outcome

variable can be accurately modelled as a linear combinations of the input variables.

Even if this is a good approximation, it is highly unlikely that such a simple model

will capture all nuances within our data, and therefore such a model (as less flexible

models in general) will have relatively higher bias compared to flexible models.
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During any data analysis, a substantial part of the statistical modelling is spent

of exploring the model space and finding the right trade-off between the bias and

variance of various learners. Figure 3.2 illustrates this for a hypothetical learner

whose λ parameter controls the learner’s flexibility. More flexible models can repre-

sent richer functions and therefore can approximate a dataset better, but they are

prone to overfitting, i.e. instead of extracting a generalisable rule from the training

dataset that applies to unseen data, they memorise the training dataset’s samples

with all their non-general peculiarities.

Restricting a model’s flexibility by regularisation, i.e. by shrinking some of its free

parameters to zero is a common way to tackle this problem. As we will see in the

next section about RFs, another way of reducing the chance of overfitting for a high

variance learner is to average multiple of them as an ensemble.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Model flexibility - 

0.0

0.5

1.0

1.5

2.0

2.5
Variance
Bias2

MSE
Irreducible error
Minimum MSE

Figure 3.2: The overall mean squared error of the learner (red) can be decomposed
into the irreducible error (dash grey horizontal line), reducible squared bias (green)
and reducible variance (blue). The dotted vertical grey line represents λ at which
MSE is minimised. Reproduced from page 36, James et al.69
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Random Forests

Random forests use bagging and random subspace methods to combine decision

trees and reduce their variance. Bagging stands for bootstrap aggregation and it is a

general purpose procedure for reducing the variance of a statistical models. Given

n independent observations x1, xi, ..., xn each with variance σ2, the variance of the

mean of the observations x̂ is given by σ2/n. In other words, averaging a set of

observations reduces variance69.

Therefore, one can increase the accuracy of a prediction method by taking many

training datasets from a population, building a model with each of them, and finally

averaging their predictions. This is not something we can do of course in most

real life scenarios as the acquisition of each new training dataset costs substantial

amount of money. However, we can use bootstrapping to sample from our only

training dataset with replacement and get B bootstrapped datasets XB. Then we

can fit a model to each of these and our bagged estimator will take the form of:

f̂bag =
1

B

B∑
b=1

f̂ b(XB).

The predictions of a bagged model can be obtained in several ways: if we combined

regression trees, the average prediction for each sample across all f̂ b is a good ap-

proximation of the ensemble’s prediction. If we used classification trees, taking the

majority vote is a commonly used method. Applying bagging to decision trees in-

creases their performance substantially because even though the bias of the bagged

estimator is slightly higher, its variance is much lower108. This phenomenon is one

of the reasons why RFs are more accurate and generalise better than decision trees.

This phenomenon is demonstrated and explained in greater detail in Figure S3.

A very important benefit of bagged models is that they can estimate the generali-

sation error that we would obtain on a test or holdout dataset, without performing
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cross-validation or other validation steps. Since each learner is trained on a boot-

strapped sample, they all use approximately 2/3 of the data (this is a mathematical

consequence of random sampling with replacement). Therefore, for each of the

learners we have 1/3 of the dataset as Out Of Bag (OOB) observations which can

be used to test the model and estimate its generalisation error. By averaging these

OOB error estimates across the trees, RF produces a robust error estimate for the

ensemble during training time at almost no additional computational cost.

Unfortunately by combining decision trees into an ensemble they loose one of their

most appealing quality, their interpretability. To overcome this challenge, RFs pro-

duce Variable Importances (VIs), which are an internal estimate of the importance

of each feature xj. In a RF built with classification trees, they are calculated by

summing the Gini impurity reductions of the class labels over all tree nodes where

xj appears. Large VI scores mean that splitting the samples on xj purifies the class

labels well in the two subsequent branches. By averaging these impurity reductions

for each xj over all decision trees of the ensemble, we get a reasonable estimate of

how important each feature is.

Finally, RFs improve on bagged decision trees by restricting the features that a given

decision tree is able to use during training to a random subset. By using the random

subspace method, RFs decorrelate the bagged decision trees, which further increases

the ensemble’s performance. There are well established information theoretic reasons

for why a diverse ensemble with uncorrelated predictions perform well leading to a

substantial reduction in the model’s variance109.

Intuitively, without restricting the feature set in each tree, it might easily happen,

that the same handful of features would always be used to split the samples in each

tree, irrespective of training them on different bootstrapped samples. Therefore,

the predictions of these trees would be extremely similar and consequently almost

identical to a single decision tree.
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Boruta algorithm

The main idea behind Boruta is to iteratively fit RF models to approximate the

null distribution of VIs for truly irrelevant features. More concretely, Boruta trains

a RF model on [X|Xsha] and the outcome variable y, where Xn×p is our original

data matrix, while Xn×p
sha is a duplicate of X where each feature (column of the

matrix) is permuted randomly, rendering them useless for the model. Hence, these

permuted columns are referred to as shadow features. The two matrices are simply

concatenated and treated as single one [X|Xsha]. The permuted shadow features

are essentially noise and therefore their VIs provide a good approximation of the

importance scores that a truly irrelevant feature would receive from RF.

Once the RF is fitted to [X|Xsha], Boruta compares the VIs of the real features

to the maximum VI of shadow ones shamax. If one of the real features receives

higher VI than shamax consistently across multiple iteration of Boruta, it is deemed

relevant and kept within the dataset. Conversely, if a real feature has consistently

lower VI than a noise feature, it is discarded from the dataset and is not considered

in the subsequent iterations.

The high-level pseudo-code of the Boruta method is given in Algorithm 1, while the

full pseudo-code could be found in the supplementary materials, see Algorithm S1.

Python implementation of Boruta

The R implementation of the RF algorithm, on which the Boruta R package was

based until very recently, is one of the slowest available, as shown by Louppe108 on

slide 34. Furthermore, unlike this R version, the RF in the Scikit-Learn (SL) Python

package73 is parallelised, and it is one of the fastest available implementations, owing

to the remarkable optimisation work the core developers of the SL package have done.
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Algorithm 1 Boruta

1: function Boruta(Xn×p, yn×1, tmax)
2: Set iteration number t← 1
3: while t < imax or there are still undecided features do
4: active← Features that have not been discarded yet.
5: Xn×active

sha ← Xn×active

6: Permute all features in Xsha to remove their correlations with y.
7: Join the two matrices as [Xn×active|Xn×active

sha ].
8: Train a RF classifier on the joined matrix.
9: Get VI for all real and shadow features.
10: shamax ← Maximum VI of the shadow features.
11: For each feature xj ⊆ active test if V Ij ≥ shamax.
12: Remove features from active which have significantly lower VI than

shamax throughout the iterations.

13: Keep features which have significantly higher VI than shamax throughout
the iterations, save them as confirmed.

14: end while
15: return Ŝ ←List of confirmed features.
16: end function

Consequently, to speed up the Boruta algorithm, it was reimplemented in Python

and released as an open-source package under the name BorutaPy110. This imple-

mentation can be several orders of magnitude faster than the original R package,

depending on the number of available cores for the RF training, and is now featured

on the official website of the Boruta method111.

BorutaPy is a fully tested and documented Python package that was designed to

follow the general Scikit-Learn (SL) learner interface. SL is currently the most popu-

lar and comprehensive general-purpose machine learning library, used by thousands

of researchers, data scientists and companies world-wide. One of the key strengths

of SL is that it provides a unified interface to dozens of very high quality machine

learning algorithms. Therefore, building production ready data science products

or carrying out quick iterations during research becomes much simpler, as one can

easily switch an algorithm for another with minimal change to the code.

This compatibility with SL has made BorutaPy quite popular (at the time of writing

it has been starred by more than 180 people on GitHub) while it also granted a place
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for it in the scikit-learn-contrib package, which is the official repository for

collecting high quality machine learning packages that are 100% compatible with

SL. Therefore, BorutaPy might make it into one of the upcoming releases of SL.

This would be a great honour, given SL has been an invaluable tool in my work and

research for years.

During the implementation of BorutaPy, several months worth of work and experi-

mentation was spent on gaining a deep understanding of the Boruta method. This

has led to two modifications of the original algorithm:

1. The number of decision trees used in a RF greatly determines the run-time

of the training process. While it is claimed that increasing the number of

trees in the ensemble does not cause the RF to over-fit the training data105, it

certainly increases the computational burden of the algorithm. Furthermore,

the increase we get in prediction accuracy from greater number of trees, leads

to diminishing returns and plateaus quickly112.

Therefore, it is inefficient to use the same number of trees for the consecutive

iterations t in Boruta. For example in a gene expression dataset, the number

of features could be in the range tens of thousands, which will get filtered to

a few hundred after a couple dozens of iterations t of the Boruta algorithm.

To address this issue, BorutaPy automatically adjusts the number of decision

trees in the RF during the FS process, based on the number of active features.

This modification resulted in further speed improvements compared to the

original algorithm.

2. The correction for multiple testing (see Boruta paper or Algorithm S1) was

split into a two step process, instead of the original original version’s Bonferroni

correction113. In each iteration t we need to correct for the fact that we test

multiple features against the null hypothesis, i.e. does a feature perform better
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than the shadow features. The Bonferroni correction, which is used in the

original algorithm, is known to be too stringent113,114 in such scenarios.

For this reason, the first step of correction in BorutaPy is the widely used

Benjamini Hochberg FDR115. Following this however, we also need to account

for the fact that we have been testing the same features over and over again

in each iteration t with the same statistical test.

The Bonferroni correction is well suited for this task, thus it is applied as

a second correction step in each iteration, by dividing the α = 0.05 p-value

threshold with the current iteration number t. This allows for finer control of

the correction for multiple testing, which can lead to more relevant features

being discovered.

Both of these modifications could be bypassed however if the user wishes to do

so, which makes BorutaPy algorithmically indistinguishable from the original R

implementation.

3.1.2 Joint Mutual Information

Before describing the Joint Mutual Information (JMI) method in detail, the next

section provides a very brief introduction to information theory and some simple

filter type FS methods that are based on it.

Information theory based FS methods

In the past twenty years, a large variety of information theory based filter methods

were developed. In general, they all work by assessing the mutual information

between the p features of Xn×p and y. Information theory is concerned about

quantifying the uncertainty present in distributions, by measuring their entropy.
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The entropy of the distribution of variable X, denoted as H(X), is defined as:

H(X) = −
∑
x∈X

p(x) log p(x),

where x denotes a possible value of variable X, that it can take from a set of values

X , and p(x) is the distribution of X. This equation quantifies the uncertainty in X,

and for discrete variables it could be computed by estimating p(X) as the fraction

of observations taking on value x from the total N :

p̂(x) =
#x

N
.

If p(x) peaks around a certain value, than the entropy of it will be low, while if it

is uniform, meaning all events in X are equally likely, it will be high. Furthermore,

conditional entropy of two distributions X and Z could be defined as:

H(X|Z) = −
∑
z∈Z

p(z)
∑
x∈X

p(x|z) log p(x|z),

which represents the amount of uncertainty remaining in X after we have seen Z.

Finally, Mutual Information (MI)116 between X and Z is then defined as:

I(X;Z) = H(X)−H(X|Z)

=
∑
x∈X

∑
z∈Z

p(xz) log
p(xz)

p(x)p(z)
.

In this difference the first term represents the uncertainty before Z is known, while

the second term captures the uncertainty after Z is known. Thus, mutual informa-

tion could also be thought of as the amount of uncertainty in X that is removed by

knowing Z. Mutual information is symmetric I(X;Z) = I(Z;X) and is zero if and

only if X and Z are statistically independent.

As described earlier, filter methods attempt to rank the features based on a chosen
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relevance measure. Therefore, the simplest information theoretic filter techniques

simply calculate the MI between all features and the outcome variable y indepen-

dently, rank them, and select the k best ones to form the selected set Ŝ. This is

called Mutual Information Maximisation (MIM),which results in a selected set Ŝ

that has maximum relevance, and it has been used in many early algorithms117.

MIM is known to perform poorly however, when the features are interdependent,

as it will end up selecting highly correlated thus redundant features. Furthermore,

like all other univariate filter methods, these algorithms cannot take the interactions

between predictors into account and therefore their selected Ŝ is often suboptimal.

One of the most successful FS methods that tried to address this issue is the Min-

imum Redundancy Maximum Relevance (MRMR) algorithm118 which uses MI to

select highly relevant features with respect to the outcome variable, while also en-

suring that the selected features in Ŝ are mutually far away from each other, i.e.

have low pair-wise MI and hence form a non-redundant set.

JMI algorithm

Using the JMI, Moody119 and Meyer et al.120 proposed a method that focuses on

increasing the complementary information between the selected features:

JJMI(xj) =
∑
∈Ŝ

I(xj, xk;Y ),

where JJMI(xj) is the JMI score for feature j under consideration, and xk ⊆ Ŝ

represents all features that were selected in previous iterations of the algorithm. By

calculating the joint mutual information I(xj, xk; y) of the multivariate composite

variable xj, xk with the outcome variable y, this selection criterion ensures, that the

candidate feature xj must not only be relevant for y, but also complementary to all

previously selected features xk, in order to be added to Ŝ.
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x1 x2 x3 x2 ⊕ x3 y

0 0 0 0 0
1 0 0 0 1
0 1 0 1 1
1 1 0 1 1
0 0 1 1 1
1 0 1 1 1
0 1 1 0 0
1 1 1 0 1

Table 3.1: Example dataset demonstrating interacting binary features through XOR
function. Adapted from Vergara et al.121.

Therefore, the JMI method can discover sets of features that are only relevant for

the prediction of y when combined. A classic example of such an interaction is the

XOR function. Table 3.1 displays a toy dataset, where the binary outcome variable

is built through the function y = x1 + (x2⊕x3) from three binary features, where +

represents the OR logic function. In this example x2 and x3 are both equally useless

for predicting y, but when combined through a XOR function x2⊕ x3, they become

highly predictive.

Brown et al.122 in their extensive review, systematically benchmarked 17 informa-

tion theoretic filter methods including the widely used Mutual Information Feature

Selection123 and MRMR118 algorithms. They performed a large empirical study to

rank these methods by their accuracy, stability and flexibility, and the JMI criterion

based FS methods were picked as overall winners. The high level pseudo-code of the

JMI method is given in Algorithm 2.

Python implementation of JMI

The only available implementation of the JMI algorithm was in the FEAST Feature

Selection Toolbox122, which was written in C and was only suitable for discrete data.

To easily incorporate the JMI method into CorrMapper’s pipeline and to make it

available to a wider audience, as with Boruta, the algorithm was reimplemented
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Algorithm 2 JMI algorithm

1: function JMI(Xn×p, yn×1, k)
2: active← p
3: for xj ∈ p do
4: IMI ← MI(xj, y), calculate MI between the outcome variable and all

features.
5: end for
6: xImax

j ← arg max IMI , find xj with highest MI.

7: Ŝ ← xImax
j

8: Discard feature XImax from active.
9: while |Ŝ| < k do

10: for xj ∈ active do

11: for Xj ∈ Ŝ do
12: IJMI ← I(xj, Xj; y), calculate joint mutual information between

all previously selected features within Ŝ and all remaining features
with respect to the outcome variable y.

13: end for
14: JJMI(xj) =

∑
Xj∈Ŝ I(xj, Xj;Y ), for each candidate feature xj, calcu-

late the JMI score as the sum of IJMI across all Xj ⊆ Ŝ
15: end for
16: xJmax

j ← arg max JJMI , find xj with highest JMI score.

17: Ŝ ← xJmax
j

18: Discard feature xJmax
j from active.

19: end while
20: return Ŝ
21: end function

in Python and was made open-source as the Mutual Information based Feature

Selection (MIFS) package124.

Uniquely amongst FS packages, MIFS implements both the JMI and MRMR feature

selection algorithms in a parallelised fashion, which makes MIFS scale very well to

large datasets. This computational efficiency and the scikit-learn like interface

made the package fairly popular (at the time of writing almost 60 people starred the

project on GitHub) and attracted contributors who provided valuable improvements

to the code base.

As with BorutaPy, these information theory based algorithms were studied in great

detail during their implementation, which resulted in two significant improvements:
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1. Unlike the FEAST package, MIFS can calculate MI between continuous vari-

ables X ∈ Rn×p and a continuous outcome variable y ∈ Rn×1. Additionally, by

utilising a recently proposed idea in information theory research125, MIFS can

also approximate MI between continuous variables X ∈ Rn×p and a discrete

outcome variable with C classes y ∈ {0, .., C}.

This latter improvement is crucially important in biomedical research, where

the majority of datasets have a discrete, binary outcome variable and therefore

MI has to be estimated between continuous features and a discrete outcome.

2. MIFS can automatically select the optimal number of features k = |Ŝ| by

monitoring the decrease in mutual information of the newly selected features

Ŝ ← xJmax
j . Once the SG smoothed first derivative of this monotonically

decreasing function reaches zero, MIFS terminates.

Although this is a heuristic approach, it gives the user a rough idea about

the size of Ŝ given their dataset. Once MIFS has found the optimal kopt

automatically, the algorithm can be rerun with several nearby values k+1,−1,

and the resulting sets Ŝopt, Ŝ+1,−1 can be compared, by training a model on

them on a holdout dataset.

3.2 Further feature selection methods

Since FS is an integral part of CorrMapper, the FS literature was studied exten-

sively and numerous popular methods were tested on a wide variety of simulated

datasets. The following subsections list the FS methods which were included in the

benchmarking process besides BorutaPy and JMI. Within this section, all methods

written in typewriter font are from the SL package, unless otherwise stated.
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3.2.1 Univariate methods

Haury et al. have found after benchmarking numerous FS methods, that simple

filter techniques that are based on univariate statistical tests, work remarkably well

with high-dimensional biological data126. Inspired by this surprising finding, two

univariate FS techniques were included:

• SelectFDR function was used with the ANOVA F-statistic (f classif) to

select features that passed the FDR115 correction at α = 0.05 threshold.

• SelectPercentile function was also used with f classif, to find the top

10% of features based on their F-statistic.

These methods both rely on the F-test as their relevance statistic to rank the fea-

tures. Subsequently they select Ŝ based on a cut-off value for either the corrected

p-values (SelectFDR), or the percentile function (SelectPercentile).

3.2.2 Recursive Feature Elimination

Recursive Feature Elimination (RFE) works by selecting smaller and smaller sets of

features until a user-defined k number is reached, see Algorithm 3.

Adding cross-validation to this process makes it much more computationally inten-

sive, but removes the need of arbitrarily choosing k. Recursive Feature Elimina-

Algorithm 3 Recursive Feature Elimination

1: function RFE(Xn×p, y1×n, C, f, k)
2: active← p
3: while |active| > k do
4: active← Features that have not been discarded yet.
5: Train a classifier C with Xn×active and y to assigns VI to each feature.
6: Rank features by their VI, remove fraction f of the worst.
7: end while
8: return Ŝ ← k selected features.
9: end function
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Algorithm 4 Recursive Feature Elimination with Cross-Validation

1: function RFE-CV(Xn×p, y1×n,C, f, cv)
2: t← 1
3: active← p
4: selected← empty list
5: accuracies← empty list
6: while |active| > 0 do
7: Train classifier C on Xn×active and y to assigns VI to each feature.
8: Remove fraction f of the worst features, based on their VI.
9: active← Features that have not been discarded yet.

10: Train classifier C on Xn×active and y with cv-fold cross-validation.
11: accuracy ← Mean cross-validated prediction accuracy of the classifier.
12: selectedt ← active
13: accuraciest ← accuracy
14: t← t+ 1
15: end while
16: k ← arg maxi accuracies
17: return Ŝ ← selectedk
18: end function

tion with Cross-Validation (RFE-CV) finds the optimal k based on internal cross-

validation rounds127, see Algorithm 4.

Linear Support Vector Classifier (LSVC) (LinearSVC) was used as the learner within

RFE-CV, and its C parameter was tuned for each separate dataset using a cross-

validated grid-search (GridSearchCV) with values spanning the logarithmic scale

ranging from 10−6 to 103.

The C parameter acts as a penalty term for the LSVC, setting the amount of regular-

isation. Larger C values yield smaller margins around the hyperplane that separates

the classes, causing the classifier to eventually overfit the data and loose general-

isation power. Conversely, small C values will under-fit the data and misclassify

certain samples, by using larger margins around the decision-plane.

The weights that LSVC assigns to the features during training could be interpreted

as VI measures. Based on these, RFE-CV can prune the least relevant features in

each round. RFE-CV was set up to discard f = 1% of the features in each iteration.
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3.2.3 L1 norm based methods

A standard way of estimating the coefficients of a linear regression model is to solve:

β̂ = (XTX)−1XTY.

This is the ordinary least squares estimator, which requires the inversion of XTX.

However, when p ≈ n or even p > n, the columns of X cannot all be linearly

independent. Therefore, by the invertible matrix theorem, it can be shown that

XTX cannot be inverted. Consequently, β̂ and the linear regression model is not

defined when p > n107.

To alleviate this problem, Tibshirani proposed a novel regularisation method. Ap-

plying the L1 norm as a penalty to the linear regression model results in the LASSO

regression101, which unlike the L2 norm regularised ridge regression, is capable of

shrinking certain coefficients to exactly zero, hence it performs feature selection at

training time69. It achieves this by optimising the following objective function

β̂ = arg min
β∈Rp
‖y −Xβ‖2

2 + λ ‖β‖1 ,

where the first term on the right hand side is the quadratic loss function of linear

regression, while the second term is the regularisation or penalty term using the

L1 norm. This ensures that the β coefficients are not getting too large and in fact

some of them are shrunk to zero. Consequently, λ is a regularisation parameter that

controls the size of the selected set, which is defined as Ŝ = {k : β̂k 6= 0}. A large

λ will increase the cost function, thus exert more shrinkage on the β coefficients,

and hence reduce the size of Ŝ. The optimal λ is dataset dependent and is usually

found with cross-validation. In the FS benchmarking, scikit-learn’s LSVC algorithm

was used with L1 penalty and 3-fold cross-validation.
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3.2.4 Stability Selection

Stability Selection (SS) is a fairly new ensemble FS method102, which tries to address

two major problems of many FS techniques: high variance of Ŝ and random selection

in case of strong multicollinearity. The first problem means that small perturbations

in the training data could lead to different sets of selected features. The second

issue occurs when there are many highly correlated predictors in X, and several FS

algorithms (particularly the ones penalised with the L1 norm) will randomly select

one, while discarding the other correlated feature(s). This might be suboptimal

or even erroneous in a biomedical setting, where highly correlated features often

originate from the same biochemical pathway.

SS can work with any kind of FS method that has a regularisation parameter λ,

like the Lasso regression. It assesses a range of values λ ∈ Λ, by bootstrap sampling

Xn×p, N times for each λ. It calculates the fraction of times a given feature was

selected across the N bootstrap samples for all λ ∈ Λ. Finally, it constructs a stable

set Ŝstable, consisting of features that were selected more frequently than a predefined

threshold πthr, see Algorithm 5. Scikit-learn’s RandomizedLogisticRegression was

used with Λ = {10−3, 10−2, ..., 102, 103}, N = 1000, and πthr = 0.7.

Algorithm 5 Stability Selection

1: function SS(Xn×p, yn×1,Λ, N, πthr)
2: for each λ ∈ Λ do
3: for i← 1 to N do
4: Xsub ← Subsample X without replacement to get Xn/2×p.
5: Run a FS method on Xsub with regularisation parameter λ to obtain

a selected set Ŝλi .
6: end for
7: Calculate the empirical selection probability for each feature as∏̂λ

k = P{k ∈ Ŝλ} = 1
N

∑N
i=1 I{k ∈ Ŝλi }

8: end for

9: Ŝstable ← {k : maxλ∈Λ

∏̂λ

k ≥ πthr}
10: return Ŝstable
11: end function
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3.3 Feature selection benchmarking

3.3.1 Simulated datasets

The benchmarking was carried out on large variety of simulated datasets, using the

make classification function of SL. This data simulation algorithm was used to

generate the datasets for the famous NIPS FS challenge128.

make classification generates clusters of points, which are normally distributed

around the vertices of a C sided hypercube, where C represents the number of

different class labels in y. In this benchmarking experiment, datasets with two

classes were simulated, with two sub-clusters within each class, to make them more

heterogeneous and realistic. Furthermore, the following parameters were varied to

generate a wide variety of classification datasets:

• the number of samples: n ∈ {100, 300, 500, 1000, 2000}, to model datasets from

relatively small omics studies to large epidemiology cohorts,

• the number of features: p ∈ {100, 500, 1000, 5000, 10000, 20000} to model 16S

rRNA studies with a few hundred OTUs, metagenomics studies with around a

thousand bacterial genes, and human genomics studies with several thousands

of genes,

• the number of informative features: informative ∈ {0.1× p, 0.05× p}.

The number of redundant or highly correlated features was set to redundant =

0.25 × informative in all datasets. These redundant features are generated as a

linear combination of the informative ones.

Each dataset was generated ten times with a different random number seed. Out of

the 36 n × p combinations, 24 were used, which satisfied: (p ≤ 5000 or n ≤ 1000)

condition. This was done to avoid overly large datasets (e.g. n = 2000, p = 20000)



3.3.2. Evaluation process 68

which do not represent the typical omics dataset size of today and which would have

been computationally very expensive to work with. Given ten random seeds, and

two values for the number of informative features, this simulation process resulted

in 480 different datasets.

3.3.2 Evaluation process

After extensive literature review, the seven previously introduced FS algorithms

were included in the benchmarking. As alluded to in the previous section, the simu-

lated datasets contained redundant features, which were linear combinations of the

relevant ones. These redundant features were treated as relevant in these experi-

ments, due to the fact that in biology, strongly correlated features often originate

from the same biochemical pathway.

Figure 3.3: Evaluation metrics in FS
benchmarking. TP = true positive,
TN = true negative, FP = false posi-
tive, FN = false negative.

Therefore, even though from an informa-

tion theoretic viewpoint, two correlated

features might carry the same predictive

power with respect to the outcome (and

hence one of them is redundant), they

can be both highly important in under-

standing the studied biological process.

The effectiveness of the seven FS methods was assessed by applying them to each

of the simulated datasets, then calculating their precision and recall:

prec =
TP

TP + FP
rec =

TP

TP + FN
Eq. 3.1

Here TP = true positive, TN = true negative, FN = false negative. Figure 3.3 dis-

plays these quantities in a FS context. The results of the benchmarking experiment

are described in Section 5.2.
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3.4 Graphical models

As we have seen in Section 1.5.5, biomedical research is often more interested in the

mechanistic understanding of a certain biological condition or disease, than training

highly accurate predictive models. Nonetheless, given sufficient samples to learn

from (something we rarely have in omics research yet), predictive machine learning

models can help with the early diagnosis of ill patients.

However, they cannot shed light on the genetic and biochemical underpinnings of the

studied biological phenomenon and consequently they are less useful for knowledge

discovery. Conversely, CorrMapper was designed to be a multi-omics data explorer

that helps researchers to dissect their datasets and find biologically relevant asso-

ciations between their features. For this, it uses undirected graphical models to

uncover the conditional independence structure of omics datasets.

Correlation networks are a subtype of graphical models, which are routinely used

in bioinformatics129 for enumerating all possible pair-wise associations in biological

datasets. In p > n omics datasets however, the naive approach of estimating the

covariance between features leads to noisy results with spurious correlations. As

this is one of the central problems CorrMapper’s pipeline is addressing, in the next

sections, a brief introduction is provided to regularised covariance estimation and

graphical models in general.

3.4.1 Directed and undirected graphical models

Given a dataset X ∈ Rn×p, graphical models provide a principled way of inferring the

relationships between their p features. They were born out of the interplay between

probability theory and graph theory, and they provide a framework for building

parsimonious models for high-dimensional data. Learning a graphical model from
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data requires the simultaneous estimation of a graph structure and of the probability

distribution that factorizes according to this graph.

Within these models, the p features of X ∈ Rn×p are represented as the graph’s ver-

tices or nodes, while the edges between them represent relationships. More precisely

G = (V,E), where V = (V1, ..., Vp) are vertices and E are edges. The edges of G

can be described with a p× p adjacency matrix E(j,k), where a cell is 1 if there is an

edge between feature j and k and zero otherwise.

Graphical models have two main types: directed and undirected. Directed graph-

ical models are also called Bayesian networks, which are Directed Acyclic Graphs

(DAGs). These graphs not only describe a network of associations between features

but due to their directed nature, they also represent causal or temporal relationships

between the variables.

As a simple example let us consider the directed graphical model of Figure 3.4, which

describes how the slipperiness of grass in a garden is affected by both the weather

and the sprinkler being on. The joint probability distribution of this system can be

factored into the following conditional probability distributions:

P(X1, X2, X3, X4, X5) = P(X1)P(X2|X1)P(X3|X1)P(X4|X2, X3)P(X5|X4).

Since variables {X2, X3, X4, X5} are binary and X1 has four values, the exact de-

scription of this system’s joint probability distribution would require 24 ∗ 22 = 64

entries in a table. If we think of a real world problem with hundreds or thousands

of variables, it becomes apparent that this approach is untenable.

Fortunately, there is often some structure in most real life phenomena, and not all

variables depend on all others, i.e. some of them are independent, or conditionally

independent given others. Graphical models exploit this structure, thus making the

probabilistic specification of the problem much more compact.
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X1

Season

X2 SprinklerX3Rain

X4

Wet

X5

Slippery

Figure 3.4: Bayesian network example. The graph encodes our intuition about the
relationships of these variables: X5 ⊥⊥ {X1, X2, X3}|X4 and X2 ⊥⊥ X3|X1.

Independence and conditional independence are crucial concepts in graphical models.

Given three variables X, Y and Z, X is said to be independent of Y or X ⊥⊥ Y if:

P(X, Y ) = P(X)P(Y ), and X is conditionally independent of Y given Z or X ⊥⊥ Y |Z

if: P(X, Y |Z) = P(X|Z)P(Y |Z).

In the example shown in Figure 3.4, naturally, the season will determine the fre-

quency of rain and the times the sprinkler system is on. These two variables in

turn will define when the grass is wet. However, once we know that the grass is

wet, we know everything to determine if it is also slippery, and there is no need

for us to know the season or the state of the sprinkler. Therefore, the slipperiness

is conditionally independent of the season, rain and sprinkler given the wetness:

X5 ⊥⊥ {X1, X2, X3}|X4.

Bayesian networks are very attractive modelling tools as once they are estimated,

one can answer very nuanced questions regarding the interactions of the dataset’s
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features probabilistically. Unfortunately however, the estimation of these directed

networks for omics datasets is computationally very expensive as it consists of the

following steps129:

1. Given p features of a dataset, choose a candidate DAG out of all possible DAG

structures.

2. Calculate the posterior probability of the chosen DAG given the omics dataset.

3. Repeat step 1 and 2 to find the DAG with the highest posterior probability.

The difficulty of this Bayesian inference problem is further increased in omics datasets

where p is often in the order of several thousand, and therefore the number of po-

tential DAG structures to enumerate are truly enormous. Although many heuristics

have been proposed to speed up the search process, the algorithms that estimate

the posterior distribution are still based on Markov Chain Monte Carlo (MCMC),

which is computationally very taxing.

Undirected graphical models or Markov networks merely estimate the association

between the p features of X without inferring any directionality. Although this

makes undirected graphical models less rich, they are still extremely helpful in iden-

tifying relevant associations and cliques of features that are linked through their

biological function. Furthermore, undirected graphical models are generally easier

to estimate than directed ones.

Undirected graphical models have three main types:

1. marginal correlation networks,

2. partial correlation networks,

3. conditional independence networks.
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The ordering of this list represents the increasing complexity of these model types

and also the chronological order of their invention. CorrMapper uses conditional in-

dependence networks to estimate the associations between features of omics datasets.

Since these type 3. models rely on the concepts of marginal and partial correlation

networks, in the next sections all three of these undirected graphical model are

introduced briefly.

3.4.2 Marginal correlation networks

Marginal correlation networks are constructed by placing an edge between Vj and

Vk if |ρ(j, k)| ≥ ε, where ρ(j, k) is some measure of association. Therefore, the

threshold ε determines the absolute strength of association that is deemed to be

relevant and represented in the network. Importantly, even though X ⊥⊥ Y implies

that ρ(X, Y ) = 0, in case of many association measure, the reverse is not true.

There are several methods one can use to measure ρ(j, k): different correlation

metrics (Pearson, Spearman, Dcorr) and mutual information are commonly used.

Pearson correlation is a popular choice as it is easy to and quick compute. Its

population and sample estimates are:

ρ(X, Y ) =
Cov(X, Y )

σXσY
, r(X, Y ) =

∑n
i=1(X − X̄)(Y − Ȳ )

SXSY
, Eq. 3.2

where X̄ is the sample mean, σX is the true population estimate and SX is the

sample estimate of the variance. Pearson correlation is sensitive to outliers, assumes

the data is normally distributed and it can only detect strictly linear associations.

Spearman’s rank correlation remedies these problems by applying Equation 3.2 to

the column-ranked X ∈ Rn×p. As shown in Figure 3.5, it can capture non-linear

monotonous associations, and is more robust to outliers.
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Figure 3.5: Comparison of Pearson and Spearman correlation. The Spearman corre-
lation can capture non-linear monotonous associations and is more robust to outliers.
Taken from Spearman’s rank correlation Wikipedia page.

Both of these correlation measures range between -1 and 1. If X and Y are per-

fectly correlated ρ(X, Y ) = 1, an increase in X always results in an increase in Y .

Conversely, if ρ(X, Y ) = −1, Y is always decreasing when X is increasing. Values

between these extremes represent varying strength of association, while ρ(X, Y ) = 0

means that X and Y are uncorrelated, but not necessarily independent (see later).

Furthermore, both of these correlations have well established methods for estimating

their null distributions and therefore calculating their statistical significance.

Unfortunately, neither Pearson nor Spearman satisfy the following property: X ⊥⊥ Y

if and only if ρ(X, Y ) = 0, therefore, variable pairs which are not independent can

be missed by these measures. The recently proposed distance correlation130 (Dcorr)

however, guarantees that if ρ(X, Y ) = 0 then X ⊥⊥ Y . Although this is a very

attractive property, Dcorr is a much more expensive to calculate computationally

than Pearson or Spearman correlation, and it ranges between 0 and 1, hence does

not show directionality. Furthermore, its statistical significance can only be ob-

tained using permutation testing, for which one needs to repeat its moderately slow

computation thousands of times for each
(
p
2

)
variable pairs.
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Figure 3.6: Marginal correlation network is sensitive to ε. In this example a small
simulated dataset X ∈ R50×20 is used to reconstruct an undirected graphical net-
work. Depending on the chosen ε, we arrive at different network topologies which
can naturally lead to discordant conclusions. Conversely, graphical lasso is able to
recover the true network almost perfectly.

Mutual information is an attractive measure of association as it can detect any non-

monotonous relationship between two variables and as we have seen in Section 3.1.2,

MI(X, Y ) = 0 ⇐⇒ X ⊥⊥ Y . However, MI does not necessarily outperform other

correlation metrics131, and its calculation is moderately expensive. Furthermore, and

more importantly, unlike the Pearson or Spearman correlation coefficient, MI is not

bound to a range of values and it does not indicate the directionality of association,

which makes its interpretation more difficult.

In general, one of the main drawbacks of marginal correlation networks is that

the cut-off threshold ε is a very sensitive parameter, which is often set arbitrarily.

Therefore, several heuristic approaches have been proposed: ε = 0.95, i.e. choosing

the top 5% of positive and negative correlations132, or trying a wide range of values

till we find a network that displays the scale free graph property133, something which
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seems to be a universal attribute of biological networks134. Nonetheless, as we can

see in Figure 3.6, the choice ε can severely affect the resulting network topology

and consequently the conclusions of a study. As we will see in the next section, the

graphical lasso often provides a better estimate of the real network.

3.4.3 Partial correlation networks

A common problem with marginal correlation networks is that they can become

overly dense and hard to interpret. One of the principle reasons for this is that

marginal correlation cannot distinguish partial correlation from real correlation. For

example, given the following directed graph: A ← B → C, the resulting marginal

correlation network would put an edge between each three of these variables. Since

A ⊥⊥ C|B, to help with the interpretation of this network, A and C should not be

linked.

This problem is made much more severe in p > n cases, such as omics datasets. As

shown in Figure 3.6, marginal correlation networks will falsely identify a number of

false positive links, which cannot be all eliminated regardless of how we set ε.

Given three variables X, Y and a controlling variable Z, partial correlation is defined

as the association between X and Y after removing the effect of Z. More precisely

ρ(X, Y |Z) is the correlation between RX and RY , where RX and RY are the residuals

we get after regressing X and Y onto Z respectively. Given the well-known problem

of linear regression, if ΠZX = βTX is the projection of X onto the linear space

spanned by Z, where β minimises E[Z − βTX]2, then the residual of X is given by

RX = X − ΠZX.

As shown in Figure 3.7, in case of three variables, RX and RY lie on a two dimen-

sional plane which is perpendicular to Z, and geometrically the correlation between

them can be expressed as ρ(RX , RY ) = cos(ϕ).
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Figure 3.7: Visual illustration of partial
correlation. Explanation in text. Taken
from Partial correlation Wikipedia page.

In a graphical model context, given a

dataset X ∈ Rn×p, ρ(j, k) denotes the

partial correlation between xj and xk

given all other features in X. In other

words, ρ(j, k) expresses the association

between two features after removing

the effects of all the others. This makes

the interpretation of a partial correla-

tion network much easier and mitigates

the problem outlined in Figure 3.6.

Let R(j, k) be a p×p matrix holding all partial correlations between the p features of

X. The entries of this matrix can be estimated as R(j, k) = −Θjk/
√

ΘjjΘkk, where

Θ is the precision matrix of X, defined as the inverse of covariance matrix Θ = Σ−1.

The partial correlation graph G has an edge between j and k if R(j, k) 6= 0, i.e. if

the partial correlation between two features is not zero.

In the low dimensional p < n setting, R can be easily estimated as Θ̂ = S−1, where

S = 1
n

∑n
i=1 xix

T
i is the empirical covariance matrix of the data. In high dimensional

setting however, this does not work, as Ŝ is rank-degenerate and consequently cannot

be inverted.

Ledoit and Wolf proposed a solution to this problem135, that is shrinking the diagonal

elements of the covariance matrix as: Θ̂ = [(1− ε)S + εD]−1, where D is a diagonal

matrix with Djj = Sjj. The authors derived a closed form solution for the optimal

ε, which makes the use of this method fast and convenient. However, as shown in

Figure 3.8, this diagonal shrinkage method is often outperformed by the graphical

lasso algorithm. In the example shown in this figure, a small simulated dataset X ∈

R60×20 is used to estimate an undirected graphical model by several methods. The

graphical lasso outperforms both empirical covariance and Ledoit-Wolf estimators.
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Empirical covariance Ledoit-Wolf covariance Graphical lasso covariance True covariance

Empirical precision Ledoit-Wolf precision Graphical lasso precision True precision

Figure 3.8: Network estimation in three different ways. Small simulated dataset
X ∈ R60×20 is used to estimate an undirected graphical model by several methods.
The true covariance and precision matrices of the simulated data are displayed on
the right hand side of the figure. Further strengthening the points made previously
(see Figure 3.6), we observe that the empirical covariance estimate shows a lot of
spurious connections which would not be easily filtered out by changing the cut-off
ε. This problem would become even more severe in p > n datasets. The Ledoit-Wolf
estimator shrinks the covariance matrix too much and therefore fails to recover the
true connections in the network. Finally, the graphical lasso does a good job at
recovering the true covariance structure and network topology of the data. This
example was adopted from the scikit-learn documentation.

Graphical lasso algorithm

The graphical lasso algorithm136 assumes that our p-dimensional data is normally

distributed X ∼ N (µ, σ) with µ ∈ Rp mean vector and Σ ∈ Rp×p covariance matrix.

In order to represent the multivariate normal as a graphical model, it is convenient

to re-parametrise its classical definition50:

Pµ,Σ(x) =
1

(2π)
p
2 |Σ| 12

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
,
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which then becomes:

Pγ,Θ(x) = exp

{
p∑
s=1

γsxs −
1

2

p∑
s,t=1

θstxsxt − A(θ)

}
,

where γ ∈ Rp and Θ ∈ Rp×p are the so-called canonical parameters, and A(Θ) =

−1
2

log det [Θ/(2π)] so that
∫
Pγ,Θ(x)dx = 1. Any multivariate normal distribution

with a strictly positive definite Σ can be represented in this form. The main benefit

of this parametrisation is that it allows us to infer the graph factorisation properties

of our data X directly from the sparsity patterns of Θ. More precisely, if X factorises

according to graph G, we can be sure that Θst = 0 for any pair (s, t) /∈ E, i.e. G

will only have edges where the precision matrix is non-zero.

Graphical lasso solves the graph selection problem and estimates Σ hence Θ = Σ−1

using a penalised log-likelihood method. The rescaled log-likelihood of a multivariate

normal distribution is defined as:

L(Θ, X) =
1

n

n∑
i=1

logPΘ(xi) = log det Θ− trace(ŜΘ),

where the log-determinant function is defined on the space of symmetric matrices

as:

log det(Θ) =


∑p

j=1 log(φj(Θ)), if Θ � 0

−∞, otherwise,

where φj(Θ) is the jth eigenvalue of Θ. The classical maximum-likelihood estimate

ΘML converges to the true precision matrix as n → ∞. However, as we have seen

before, in the p > n setting, the sample estimate of Σ (Ŝ) is rank-degenerate and

cannot be inverted, and hence this method will not lead to a solution.

Therefore, we need to introduce some form of regularisation to find Θ. Unfortu-

nately, adding the L0 penalty to the log-likelihood estimator results in a highly

non-convex optimisation problem50. The L0-norm is defined here as the number of
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non-zero entries in Θ. Therefore, the graphical lasso uses the L1 penalty instead,

and estimates the precision matrix as:

Θ̂ ∈ arg max
Θ�0

{
log det Θ− trace(ŜΘ)− λ

∑
j 6=k

|θjk|

}
, Eq. 3.3

where the penalty term
∑

j 6=k |θjk| is simply the L1-norm of the off-diagonal entries

of Θ. As the left side of this formula shows, we are looking for a strictly semi-definite

precision matrix. This can be formulated as a convex log-determinant optimisation

problem, which is well studied, and can be solved using the block coordinate descent

algorithm136.

As in lasso-regression, λ is a critical parameter of graphical lasso, which controls

the amount of L1 penalty in the objective function, thus determining how sparse

the precision matrix and resulting network will be. There is no closed form formula

for estimating the optimal value for λ, therefore, it is generally chosen using K-

fold cross-validation: we fit the graphical lasso model using a range of λ values on

K − 1 part of the data while evaluating the negative log-likelihood on a held-out

K partition. This procedure is repeated K times for each value of λ. Then we

choose the λ which minimises the average negative log-likelihood across the K folds.

Unfortunately this method was shown to overfit, and as we will see in the next

section, there exist more robust approaches for the selection of λ137.

It is a fortunate coincidence that the sparsity assumption of the graphical lasso

algorithm is not only a technical necessity which allows us to solve the graph finding

problem in the p > n scenario, but this sparsity condition is also adequate for

biological networks in general, since it reflects their scale-free property, where some

nodes have numerous edges but the majority of nodes only has a degree of less than

four134.
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3.4.4 Conditional independence networks

Conditional independence networks represent the strongest type of undirected graphs

as they place an edge between xj and xk if xj ⊥⊥ xk|X\{j,k}. In case of normally

distributed data X ∼ N (µ,Σ), this definition for graph construction gives us the

graphical lasso algorithm. However, in real datasets, normality is often an unrealistic

assumption.

Liu et al. weakened this assumption by replacing the multivariate Gaussian with

a semi-parametric Gaussian copula137. Copulas are essential tools in multivariate

statistics, as they allow us to reconstruct the joint distribution of a complex multi-

variate system from its marginal distributions, provided we know how those variables

interact. Sklar’s theorem138 provides the theoretical foundations for this remarkable

statistical fact. It states, that any multivariate Cumulative Distribution Function

(CDF):

F (x1, ...xp) = P(X1 ≤ x1, ..., Xp ≤ xp)

of a p-dimensional random variable X = (X1, ..., Xp) can be expressed in terms of

its marginal cumulative distribution functions Fi(x) = P(Xi ≤ x) and a copula C:

F (x1, ...xp) = C(F1(x1), ..., Fp(xp), θ). Eq. 3.4

Copulas combine the marginal probability distributions Fi(x) into a joint probability

distribution, using the dependence structure θ between the variables. The inputs

of copulas are uniform distributions: in Equation 3.4, each input variable to the

copula Fi(x) is uniformly distributed, as each random variable Xi is sent through

its own CDF. Therefore, copulas map from a p-dimensional unit cube to a single

joint probability

C : [0, 1]p → [0, 1].



3.4.4. Conditional independence networks 82

In the work of Liu et al., given a p-dimensional non-normal random variable X =

(X1, ..., Xp), it is marginally transformed by p functions to get

f(X) = (f1(X1), ..., fp(Xp)),

where f(X) is multivariate Gaussian f(X) ∼ N (µ,Σ). This is a non-parametric

extension of the multivariate normal, which the authors call the nonparanormal dis-

tribution, and write X ∼ NPN(µ,Σ, f). Although the transformation functions fi,

vector of means µ and covariance matrix Σ has to be estimated from the data, we get

to represent a rich family of non-normal distributions this way, whose independence

structure can still be estimated from their precision matrix as Θ = Σ−1.

If the fi-s are monotone and differentiable, the joint probability density of X ∼

NPN(µ,Σ, f) can be written as:

PX(x) =
1

(2π)
p
2 |Σ| 12

exp

{
−1

2
(f(x)− µ)TΣ−1(f(x)− µ)

} p∏
i=1

|fi(xi)|. Eq. 3.5

Liu et al. showed, that as a corollary of fi-s being monotone and differentiable, this

joint probability distribution of the nonparanormal could be expressed as a Gaussian

copula:

F (x1, ..., xp) = C(F1(x1), ..., Fp(xp))

F (x1, ..., xp) = Φµ,Σ(Φ−1(F1(x1)), ...,Φ−1(Fp(xp)))

⇓

C(u1, ..., up) = Φµ,Σ(Φ−1(u1), ...,Φ−1(up))

where F (x1, ..., xp) is the joint CDF of the multivariate normal, Fi is the marginal

CDF of the the ith random variable, Φµ,Σ is the multivariate Gaussian CDF, and

Φ−1 is the quantile function of the univariate Gaussian.
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Furthermore, the authors also proved that if X ∼ NPN(µ,Σ, f), and each fi is differ-

entiable, then xj ⊥⊥ xk|X\{j,k} if and only if Θjk = 0, where Θ = Σ−1. In other words,

once we transform the marginal distributions of our variables as hi = Φ−1(Fi(x)), any

multivariate distribution can be expressed as a nonparanormal through the Gaus-

sian copula above, and hence the graphical lasso can be applied to the empirical

covariance matrix of h(X).

The marginal transformation of each variable only needs to be done once before the

application of the graphical lasso. Given a p-dimensional non-normal dataset with

n samples X ∈ Rn×p, a natural choice for the estimator of Fi in hi(x) = Φ−1(Fi(x))

is the empirical marginal distribution function:

F̂i(t) =
1

n

n∑
j=1

{X(j)
i ≤ t}. Eq. 3.6

However, since the variance of F̂i(t) is too large in high dimensional datasets, Liu

et al. recommend the truncated or Winsorised version of it, which is defined as:

F̂i(x) =


δn if F̂i(x) < δn

F̂i(x) if δn ≤ F̂i(x) ≤ 1− δn

(1− δn) if F̂i(x) > 1− δn,

Eq. 3.7

where

δn =
1

4n1/4
√
π log n

.

According to the authors, this choice of δn provides the right bias-variance balance,

so that we can achieve the desired rate of convergence in our estimate of Θ.

In summary, each random variable Xi in X is transformed marginally by applying

Equation 3.6 and 3.7 to it, then obtaining hi(x) = Φ−1(F̂i(x)) using the quantile

function of the univariate Gaussian. Then h(X) = (h1(x1), ..., hp(xp)) is used to
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compute the sample covariance matrix Ŝ of the normalised variables. Finally, Ŝ

can be plugged into the graphical lasso algorithm to obtain Θ = Σ−1 and hence the

conditional independence network G.

Importantly, if the data is truly normal, this marginal transformation will have

negligible effects and will not harm the accuracy of the graph reconstruction. On

the other hand, by marginally transforming variables to obtain a nonparanormal

distribution, allows us to apply the graphical lasso algorithm to non-normal datasets,

and estimate conditional independence networks from them.

Robust estimate for the regularisation parameter λ

CorrMapper uses the huge R package to apply the nonparanormal extension of the

graphical lasso to omics datasets. The optimal value of the regularisation param-

eter λ (see Equation 3.3) is found using the Stability Approach to Regularization

(StARS) algorithm139. As alluded to earlier, λ is a critical parameter of the graph-

ical lasso algorithm, as it determines the overall sparsity of the resulting network

and therefore the conclusions one can draw from the graph.

Interestingly, in biomedical research it is often more tolerable to have false positives

than false negatives in a reconstructed network. This is because false positives can be

relatively easily filtered out in subsequent experiments or by using already available

biological knowledge. False negatives on the other hand are highly costly as the

omission of a biologically relevant interaction might derail the line of investigation for

years. Therefore, the StARS method aims to err on the side of under-regularisation

to ensure that the selected network surely contains the true network.

StARS estimates the stability of each edge in the graph by drawing N random

samples from X without replacement, each with b samples within. For each of these

N samples StARS estimates a graphical lasso with a range of Λ = 1/λ values. Taking
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the inverse of λ allows us to talk about regularisation more naturally, as larger Λ

values correspond to denser, while smaller ones to sparser networks. For a given

value of Λ, StARS estimates the probability θst(Λ) of having an edge between node

s and t, as the average amount of times there is an edge between the two features

across N random samples.

Their instability is defined as ξst(Λ) = 2θst(Λ)(1 − θst(Λ)), which quantifies how

often the N graphs disagree on the presence of an edge between s and t. Since

θst(Λ) is an empirical frequency between 0 and 1, we have 0 ≤ ξst(Λ) ≤ 1
2
. The total

instability D̂(Λ) corresponding to a given Λ, is defined by averaging ξ(.,.)(Λ) across

all
(
p
2

)
edges.

StARS seeks to find the minimum amount of regularisation that still results in a

sparse graph with an edge set that is reproducible under random subsampling. In

order to achieve this it defines the optimal regularisation as Λ̂ = sup{Λ : D̂(Λ) < β},

where β is an interpretable quantity with a default value of β = 0.05. Regularisa-

tion is therefore determined by the concept of stability rather than regularisation

strength.

The StARS method was demonstrated by its authors to show superior empirical per-

formance on synthetic and real-world test cases, when compared against more tra-

ditional methods for choosing regularisation such as K-fold cross-validation, Akaike

Information Criterion (AIC)140 and Bayesian Information Criterion (BIC)141,142.

Both AIC and BIC have deep statistical roots and are classical model selection

tools which can also be applied to graphical models. Given a list of regularisation

parameters G = {Λ1, ...ΛK}, these measures could be used to score the fitted models

corresponding to each Λ, and then compare them against each other to find the

most parsimonious one. Both AIC and BIC aim to identify an optimal trade-off

between goodness-of-fit (measured by the fitted model’s log-likelihood) and model

complexity (given by the degrees of freedom).
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They are defined as:

(AIC) Λ̂ = arg min
Λ∈G

{−2L(Θ̂(Λ)) + 2d(Θ)},

(BIC) Λ̂ = arg min
Λ∈G

{−2L(Θ̂(Λ)) + d(Θ) · log n},

where L(Θ̂(Λ)) is the log-likelihood of a graphical lasso model with the precision

matrix Θ̂ corresponding to a particular Λ. The degree of freedom d is defined as the

unique non-zero elements of Θ̂, which cannot be larger than p ∗ (p− 1)/2. However,

despite their deep statistical foundations, these methods do not work well in p ≈ n

and p > n scenarios. As shown in Figure 3.9, they result in overly dense networks

which are hard to interpret. Conversely, StARS is able to recover a good fraction of

the true network topology with relatively high precision.
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Figure 3.9: Comparison of four methods for choosing λ. The true network of a
simulated dataset X ∈ R50×50 is estimated using the graphical lasso algorithm.
The quality of recovered networks is assessed by both precision and recall when
compared to the true network. AIC and BIC result in overly dense graphs that
cannot be interpreted in any meaningful way. Out of the four methods StARS finds
a good balance between recall and precision both with default β = 0.05 and also
with β = 0.1. K-fold cross-validation ends up between the likelihood based methods
and StARS both in terms of sparsity and precision.
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3.4.5 Estimating statistical relevance

As we have seen in the previous section, CorrMapper uses non-parametric regularised

conditional independence networks to estimate the sparse correlation structure be-

tween the features of omics datasets. Although this will provide a network topology,

it will not inform users about the statistical significance of each edge in network.

To alleviate this problem, CorrMapper offers users the option to obtain p-values for

each edge, by permutation testing the Spearman rank correlation coefficients of the

network.

Permutation testing is a general, non-parametric resampling technique to perform

hypothesis testing and obtain p-values for almost any pair-wise statistics. It is most

useful when we either do not have a closed form formula for the null distribution of

our statistic, or when crucial assumptions of that formula for the null distribution

are violated (e.g.: data is not normally distributed).

Permutation testing relies on the very intuitive idea, that if the null hypothesis is

indeed true, and there is no association between the two variables, then the pairing

of samples should not matter. Therefore, if we shuffle one of the variables and

recalculate the statistic numerous times, we should obtain similar values to what we

obtained originally with the un-shuffled data.

After the topology of the network is estimated in CorrMapper, given two features xj

and xk with an edge between them Θ̂jk 6= 0, their Spearman rank correlation ρ(j, k)

is calculated as discussed in Section 3.4.2. Then, by randomly permuting one of the

two variables and recalculating the Spearman correlation K = 104 times, we obtain

the empirical distribution of the Spearman statistic ρperm ∈ R1×K . From this, an

empirical p-value can be calculated as:

pemp =
|ρ(j, k) < ρperm|

K
, Eq. 3.8
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where the numerator is the number of permuted Spearman correlations that are more

extreme than ρ(j, k). Note, that if ρ(j, k) < 0, we have |ρ(j, k) > ρperm|. Although

calculating p-values for the Spearman correlation this way is computationally more

expensive than applying the closed form Fischer transformation143, permutation

testing automatically takes ties into account i.e. data points that have the same

rank. Furthermore, this process is substantially sped up in CorrMapper using linear

algebra and parallelisation.

The main drawback of permutation testing is that it ties the minimal obtainable

p-value to the number of permutations K. Therefore, it requires a very large number

of permutations if sufficiently small p-values are to be accurately estimated. This

can be computationally expensive or even infeasible.

For example, given the 20000 protein coding genes of the human genome, obtaining

permuted p-values which fall in the range of 10−5−10−6, for all pair-wise correlations,

would require at least 20000×19999
2

× 105 permutations. Even if we computed 105

permutations per second, and we parallelised this procedure over 100 CPUs, it

would take 23 days to finish. Furthermore, as we would be performing ≈ 2 × 108

statistical tests, our type-I error rate would be substantially inflated and we would

find numerous spurious correlations with significant p-values144.

This problem is addressed in four separate ways within CorrMapper:

1. Feature selection ensures that our feature space is substantially reduced prior

to the network estimation, and we only deal with variables which are biologi-

cally relevant to our investigation.

2. In agreement with our current knowledge of biological networks, CorrMapper

assumes that the estimated conditional independence graph has to be sparse.

Consequently, the number of edges for which we need to estimate p-values is

substantially reduced.
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3. The problem of requiring large K for small p-values stems from the rarity of

extreme values. Since in permutation testing we are recalculating our statis-

tic between shuffled variable-pairs, the overwhelming majority of Spearman

correlations in ρperm will be around 0. Only very few correlations in ρperm

will be above 0.5 or below -0.5. Consequently, our empirical null distribution

will capture the true null distribution fairly accurately around 0, but it will

get progressively worse as we move to its tails. As we can see from Equation

3.8, this is precisely the region of the empirical null distribution we need for

accurate small p-values.

This problem can be alleviated by approximating the tail of the empirical

null distribution of ρ by fitting a Generalised Pareto Distribution (GPD) to

the most extreme values of ρperm
145. Once the GPD is fitted, we can use its

probability density function to obtain p-values for ρ(j, k). The authors of this

method demonstrated that the number of sufficient permutations could be

drastically reduced using this extreme value approximation technique, hence

K = 104 in CorrMapper’s pipeline.

4. After obtaining p-values for all edges in the recovered network, CorrMapper

corrects them for multiple testing using one of the following methods (as re-

quested by the user on the analysis page, see Section 5.3.4):

(a) Bonferroni correction146 is the oldest and simplest method to control the

Family-Wise Error Rate (FWER). Given the definitions in Table 3.2,

FWER = P(FP ≥ 1), i.e. the probability of making one or more type-I

errors when performing m hypothesis tests. For a given rejection thresh-

old α, the Bonferroni correction is defined as:

reject Hi if pi ≤
α

m
.

It is clear that as m grows to a few thousand, we require the p-values
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to be extremely small in order to be deemed significant. Therefore, the

Bonferroni correction is known to be underpowered and too stringent for

life sciences datasets114.

(b) Benjamini-Hochberg (BH) FDR115 controls the False Discovery Rate (FDR).

This is defined as (FDR) = E[FP/R], i.e. the expected number of

false positives among the rejected hypotheses. It is less stringent than

the Bonferroni, and it provides greater power for slightly elevated type-

I error rate. Given a set of hypothesis tests H0, ..., Hm and their p-

values P0, ..., Pm, we list them in ascending order and denote them as

P(1), ..., P(m). BH FDR is a step-wise procedure which iterates through

the ordered p-values to find the largest k such that

P (k) ≤ k

m
α.

Then it rejects hypotheses H(i) for i = 1, .., k. The BH FDR procedure

assumes that the tests are all independent.

(c) Benjamini-Yekutieli FDR147 is an improved version of BH FDR, which

controls FDR under dependence assumptions. The threshold introduced

above is modified to

P (k) ≤ k

m · c(m)
α,

where c(m) = 1 if the tests are positively correlated, and c(m) =
∑m

i=1
1
i

in case of negative correlation.

Null is true (H0) Alternative is true (H1) Total

Test declared significant FP TP R

Test declared non-significant TN FN m−R

Total m0 m−m0 m

Table 3.2: Overview of the multiple correction problem. TP : true positives, FP :
false positives, TN : true negatives, FN : false negatives, m: number of tests, R:
number of tests that are deemed significant.
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3.5 Software development

The majority of this PhD was dedicated to the research and development of Corr-

Mapper. In its current state, CorrMapper’s code-base has more than 25,000 lines

of code, combining 5 different languages: Python, R, JavaScript, HTML, CSS. It

is predominantly a Python project, which is reflected in that it relies on 83 differ-

ent Python libraries. CorrMapper’s visualisation modules combine well known plot

types in a novel and interactive way, while its modular data integration pipeline con-

sist of 18 sub-modules. CorrMapper’s open-source code-base is hosted on GitHub148.

The reusable part of CorrMapper’s front-end was further developed into Science-

Flask, an open-source template for scientific web applications. ScienceFlask is built

with Python Flask, HTML and Bootstrap CSS. It is well documented and modular,

therefore it can be used easily by other researchers to speed up the development of

online scientific tools. Its architecture is introduced in Chapter 4.

CorrMapper’s back-end is a robust data integration pipeline, that can work with

any pairing of omics datasets. It uses cutting-edge feature selection methods, fol-

lowed by regularised covariance estimation to uncover biologically relevant vari-

ables and their interaction networks. CorrMapper uses the standard data sci-

ence libraries of Python: numpy, scipy, scikit-learn, pandas, statsmodels,

seaborn. Chapter 5 describes the software architecture of CorrMapper’s back-end.

Finally, CorrMapper’s three advanced data visualisation modules can automatically

generate complex dashboards from clinical metadata, display the intricate correla-

tion networks of hundreds of features and visualise whole genomes in an intuitive

manner. All three modules were developed using modern visualisation libraries of

JavaScript: d3.js, d3plus.js, dc.js, crossfilter.js, datatables.js. Chap-

ter 6 introduces these visualisation modules and their technology in great detail.



4 | ScienceFlask

4.1 Overview

Creating a secure, scalable, and modular online scientific tool requires the mastery

(or at least working knowledge) of several programming languages and web devel-

opment paradigms. Consequently, turning CorrMapper into an online research tool,

brought up several unforeseen technical challenges that required the learning of a

wide range of software skills. To ensure that other projects can benefit from this

effort as well, CorrMapper’s front-end architecture was developed into a template,

to enable other researchers to turn their offline scientific tool or algorithm into an

online web application.

ScienceFlask (SF) is a template project for scientific web applications, written in

Python. It is built using modern, open-source web technologies such as Flask,

SQLAlchemy, HTML5, JavaScript and Bootstrap Cascading Style Sheets (CSS). SF

implements most of the basic components of an online scientific tool such as user

management, admin panel, file upload, job submission, form validation and logging.

Since most of these components are reusable across projects, SF can substantially

reduce the time needed to turn an offline prototype into a publication ready online

tool. The source code of SF and a highly detailed tutorial about deploying a SF

based project into the cloud is available at the project’s GitHub repository149. Ad-

ditionally, to showcase the various components of SF, an extensively documented

and fully functional example project is available at https://scienceflask.com.

92
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4.1.1 Why templates are useful?

Although most modern websites run on open-source software, the costs of devel-

oping an online scientific tool can be overwhelming. The reason for this becomes

evident once we factor in the hundreds of hours one has to spend on learning various

programming languages and web-technologies to build a cloud based research tool.

Due to this steep learning curve and because researchers are notoriously overworked,

a lot of scientific tools are never made available online. This can reduce the visibility

and utilisation of valuable projects, especially when the target audience is less willing

to compile from source and use a tool locally from the command line. There are

several benefits to providing an online interface for a scientific research tool: users

are generally more willing to use it as no set-up or installation is required and

computation is outsourced to the provider of the application, while the results could

be accessed later from any machine as they are hosted in the cloud.

Unfortunately, even if a researcher has the necessary skills, the development of

standard website functions and features which are not related to the scientific tool’s

algorithmic core, can take much longer than anticipated. These often overlooked

but crucial parts involve: secure user management, admin panel for maintaining the

application’s database, robust form validation, uploading and checking of data files,

asynchronous job submission and execution, logging, design of user interface and

deployment to production server. SF provides all of these components and therefore

can substantially reduce development time.

Although numerous bioinformatics pipelines are available as web applications, to my

knowledge, there is no flexible, extendible and open-source template available for the

rapid prototyping and development of such tools. Hopefully an active community

will build around SF, improving its code-base and adding new features to it. SF is

released under the GNU GPLv3 licence150 as an open-source project.
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4.2 Front-end architecture

Figure 4.1 demonstrates the simple idea behind SF. Everything in blue is non-specific

to any given scientific web application. Therefore, these components and processes

could be reused across projects. Since SF provides these, scientists do not need to

work on anything else but the core algorithmic part of their tool, shown in green.

SF consists of two main parts: front-end and back-end. The majority of SF’s code-

base focuses on the front-end which implements all functionalities that are related to

what users can see in their browser. The back-end components communicate with

and execute the core algorithmic part of the scientific tool. Although SF is written

mainly in Python, the core of a SF project can be written in any language.

This core can be plugged into SF with a few hours of work, reducing the development

time by several orders of magnitude. Furthermore, by reusing the same open-source

components across different projects, we can enhance the transparency of scientific

Figure 4.1: Architecture of ScienceFlask. All components and processes in blue
are general, reusable parts of any online scientific tool. The core algorithmic part
of most science tools (green) can be wrapped in SF’s components. This reduces
development time, and standardises code-bases across projects, which leads to better
reproducibility.
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tools, which in turn leads to easier code review process and better reproducibility.

The front-end of SF was mainly developed using Python’s Flask151 micro web-

framework, which is highly modular and flexible, yet its minimalistic clean design

makes it easy to learn. Like most modern web-frameworks, Flask greatly simplifies

building web-services and handling HTTP request in a programmable, clean way.

Applications built in Flask follow the popular Model View Controller (MVC) design

pattern. Within this paradigm, models describe the data tables and their relation-

ships which ultimately define how the application stores and accesses its data. Views

represent dynamically built web-pages that the web-service returns as a response to

the user’s request. Finally, the controller is our application’s brain, which receives

requests (e.g. a Uniform Resource Locator (URL) address) from the user’s browser.

Firstly, the controller parses the requested URL by matching it to its predefined

list of routes. Once the route is found, the controller will follow the route specific

build function to collect all necessary data from the models and build a view, i.e. a

web-page which is then returned to the user’s browser.

A schematic overview of the MVC pattern is shown in Figure 4.2. In this example,

a user requests her profile page. Once Flask receives and parses the URL, it will

match it against its routes. When it finds the build function of the profile page

Figure 4.2: Model View Controller web-service pattern. A user requests her profile
page. Based on whether she has registered and logged in the controller returns
a different HTML page, which is built with the Jinja2 templating engine, using
information from the database.
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it will communicate with the model and retrieve the user’s details from the User

database table. Since the profile page displays a mix of information (name, email

address, previously uploaded studies) the controller will also need to retrieve data

from the Studies database table for this particular user. The model knows that

users can have studies and therefore the User and Studies tables are linked, which

consequently simplifies complex queries like this.

The retrieved pieces of information are combined to build a HTML web-page, which

is returned to the user’s browser. This web-page is built by taking the HTML

template of the profile page, and injecting the user specific database fields into it.

For this, Flask uses the Jinja2 templating engine, that allows developers to define

scaffold pages with programmable placeholders, which could be filled in from the

database.

The HTML pages of SF use Twitter’s Bootstrap CSS library to make them respon-

sive and therefore accessible on any device, including mobile phones and tablets with

smaller resolution. Bootstrap also greatly simplifies the designing and layouting of

websites, by providing nice looking and well-thought-out visual components.

Although the example in Figure 4.2 looks trivial, the application also needs to know

if the request came from a user who is already registered and logged in. If not, the

controller will need to return either a registration or login page. Web-frameworks

allow developers to build logic like this in a systematic and programmable way, while

keeping the code modular and reusable.

The model layer of SF is built using the SQLAlchemy library, which allows developers

to use almost any relational database (MySQL, SQLite, PostgreSQL, Microsoft SQL,

Oracle) without changing a single line of code in the definition of the application’s

models. By default, SF uses SQLite, which is a lightweight, single-file relational

database. However, this could be changed very easily to any of the above mentioned

flavours of SQL, by simply changing a single parameter in SF’s configuration file.
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4.3 Implemented components

SF implements a hierarchical data model: users can upload multiple studies, and

each of those studies can have several analyses, each corresponding to a different set

of pipeline parameters. To achieve this, SF implements a list of components that are

essential for any online service, such as secure user management and a database layer,

but it also provides numerous features to developers that are specific to scientific

web applications.

User management: SF implements a registration process that is tailored to sci-

entific tools. Users need to register with a valid email address from one of the ten

thousand recognised academic institutions. This ensures that commercial use is

restricted unless the administrator willingly adds a non-academic user to the ap-

plication’s database. However, this restrictive registration process can be easily

disabled if needed, to allow everyone to sign up.

The user management is handled by the Flask-Security package, which allows the

tracking of logged in users across the website (remember, at each URL point the

application needs to know if a request is coming from someone who is already reg-

istered and logged in or not). Furthermore, Flask-Security allows users to reset or

change their passwords safely. Finally, it stores the passwords of users after crypto-

graphically hashing them, to ensure that not even the application’s administrators

can access them.

Upload page: Once registered, users can upload multiple data files to the server

through a highly customisable form. The upload form is validated both in the

client’s browser using JavaScript and on the server side, where complex, application

specific logic could be applied to the form’s fields. For instance, we can ensure that

a certain type of file can only be uploaded if another field were checked by the user.
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To minimise the chance of subsequent runtime bugs, the uploaded files are only

saved on the server if they pass a series of sanity checks. By default, these include

checking if all cells of every uploaded data matrix are numeric, void of non-numeric

characters and if the data files are within the application’s dimension and file-size

limits. The list of these checks could be easily extended to fit the project’s needs. If

a file does not pass any of these tests, the user is immediately notified and given a

clear and informative error message on the upload page. Additionally, the uploaded

files are deleted from the server to save disk space.

Profile page: Once saved, the files can be accessed by the user from their profile

page, along with their account information, see Figure 4.3. Here, users can submit

a job to the server using any of their uploaded datasets or reset their password.

Furthermore, all previously finished analyses are listed at the user’s profile page.

The results of these runs can be downloaded as a .zip file or explored online in SF.

Analysis page: If users click any of their studies at the profile page, they are

taken to the analysis page. By filling out a form, users can set parameters of the

back-end pipeline, before submitting their job to the server. As with the upload

page, server-side form validation ensures that all submitted values are sensible and

correct according to the application’s logic.

Following the submission of an analysis, the job is handed over to the back-end for

processing. Users can leave the page at this time and an email notification will be

sent to them once SF has finished running their job.

Bioinformatics pipelines are usually highly customisable. This flexibility is preserved

in SF by exposing the pipeline’s parameters to the user through the analysis page.

Since SF saves these variables to a database for each submitted job, valuable data

will accumulate over time, about the usage patters of the scientific tool. This data

can inform future development directions or answer questions related to a project’s

necessary hardware configuration.
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Asynchronous job handling: Once an analysis has been submitted by a user,

it is passed to the back-end of SF where the core algorithmic part of the scientific

tool is applied to the uploaded dataset with the specified parameters. At this point,

the standard request-controller-model-view flow of the MVC paradigm needs to be

broken, as users do not want to wait for minutes or hours till their analysis finishes,

for a response HTML page. To break out of the MVC flow, SF uses RabbitMQ152

as a message broker to communicate between the Flask application and Celery153,

which is an asynchronous job queue engine.

Celery runs a pool of workers which can pick up jobs from a queue, execute them and

return the results. The job queue grows as different users submit their analyses to

SF simultaneously. If all workers of the pool are already engaged, newly submitted

jobs are added to the queue in order of the submission time.

The computational resources of each worker can easily be limited to ensure that the

complete pool will never exceed a set amount memory and CPU usage. By default,

in SF, Celery runs in the background as a daemon process on the same server where

the application is hosted. Alternatively, one can host SF on one server, and delegate

all computational load to another server. Both RabbitMQ and Celery are highly

customisable, industry standard solutions that are routinely used by thousands of

companies in production systems, handling millions of tasks daily.

Admin interface: SF uses Flask-Admin to automatically build a fully functional

admin interface from the models of the application. Once the administrators are

specified with their email addresses in SF’s configuration file, their profile pages are

extended with a link to the admin interface. Here, they can perform Create, Read,

Update, Delete (CRUD) operations on any of the application’s database tables.

Since this is a web based interface, the administrators can access the database and

thus monitor their application’s usage at any time, irrespective of where they are in

the world. Furthermore, they can easily add new users who did not go through the
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academic registration process, or delete users who violated any of the application’s

usage policies.

Notifications: Once an analysis has finished running, the user is notified via email.

Conversely, if during the run of an analysis a bug is encountered, both the user and

administrators are notified. The user receives an apologetic email, ensuring her

that the developer team will debug the problem, while the administrators receive a

detailed error message (see logging).

Furthermore, if an analysis has failed to finish because of the uploaded dataset or

the chosen parameters did not yield any meaningful results, SF emails the user with

a detailed explanation, that clarifies which part of the pipeline has failed, what is the

most likely cause of this, and how the problem could be avoided when resubmitting

the analysis.

Logging: SF comes with several levels of logging. All warning and error messages

are kept and saved on disk, both from the Flask application and the Celery worker

pool. This way, if an analysis does not finish or a bug is discovered, it is relatively

easy to track down the source of failure. Furthermore, SF saves the data files of

failed analyses so administrators can reproduce bugs easily.

By default, SF sends an email to all administrators if it encountered an error. The

level of severity can be easily lowered however, to also notify administrators of

warning or even information level messages.

Configuration: SF’s configuration file allows developers to fine-tune much of the

inner workings of their application from a single location. Some of the more obvious

settings involve credentials to the email sending server or the configuration of Celery

and RabbitMQ. But SF developers can also specify the maximum allowed file size

and maximum dimensions of the uploaded datasets, or the maximum number of

studies and analyses any user can have.
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4.4 Example application

A demo application demonstrating each of the above described components and

functionalities of SF is available at https://scienceflask.com. This simple scientific

tool allows user to register with their academic email address and upload one or two

numeric data files. The application then selects a user defined number of features

with the highest variance from each dataset.

Next, it calculates the Spearman correlation matrix between these selected variables

with their corresponding p-values. The correlation and p-value matrices are visu-

alised as heatmaps, which can be either downloaded as a .zip file from the user’s

profile page or explored online in SF.

Figure 4.3: Profile page of ScienceFlask. Users can access their uploaded datasets
and start new analyses based on each of them, while the results of previously run
analyses are also accessible and downloadable from here. For the application’s admin
interface is also accessible for users with administrator rights.
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4.5 Deployment notes and project documentation

With the proliferation of cost-effective computing (Google Cloud, Amazon AWS,

Microsoft Azure), an increasing number of services and applications are deployed

to cloud servers of these vendors. Infrastructure as a Service (IaaS) providers like

Amazon can cut down hardware and production costs substantially: instead of the

painstaking purchase-provision-install-maintain process that used to be the norm in

server management, one can get a fully managed server or cluster with guaranteed

up time and cutting edge software solutions for a fraction of the price.

However even in this current age of computational abundance, one of the most

overlooked aspects of web application development is the deployment process. It

can take a surprising amount of work and learning to transform a fully functioning

application that is running in test mode on a laptop, into a live web-service.

To alleviate this problem, a deployment tutorial is available at the GitHub repos-

itory of SF, that explains in great detail, how to set up a secure web-server on

Amazon’s Elastic Compute (EC2) cloud. The notes provide help on every aspect of

the deployment process: from signing up at Amazon AWS and starting a new EC2

instance, through obtaining SSL certificates for a secure connection between users

and the application, to setting up and configuring an Apache web server.

Beyond these deployment notes, detailed documentation of the project’s structure

and overall architecture is also provided on SF’s GitHub repository. These notes and

the open-source nature of SF will hopefully encourage other scientists and developers

to contribute to the project and make it more robust, feature rich and appealing

to a wide researcher audience. At the time of writing, more than 70 people have

starred the project on GitHub, which is a promising start.
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4.6 Summary

Even though there exist numerous excellent free resources and tutorials online about

the development of web-applications, the learning curve of the various technologies

involved remain steep. Therefore, numerous scientific projects that would benefit

from an online presence remain in the form of a distributed software package, which

restricts their potential user base to researchers with programming skills.

The Galaxy project154 provides fantastic resources for developing and publishing

reproducible bioinformatics work-flows, which can be built from hundreds of pre-

defined tools found in the Galaxy Tool Shed. Alternatively, new algorithms can be

wrapped to be used in Galaxy and shared with the research community.

However, Galaxy is specialised for biological tools and as an enormous software

project, it requires a significant amount of learning from new developers who plan

to adapt and publish their algorithms within its ecosystem. Furthermore, there

are limits to what can be incorporated into Galaxy as a new tool. For instance,

advanced interactive visualisations are not supported currently.

ScienceFlask is an open-source, modular web-application template that was created

to facilitate the rapid prototyping and deployment of online scientific tools. Owing

to the detailed project description and deployment notes, researchers can turn their

offline algorithms into an online research application within a few days.

ScienceFlask uses Python’s Flask web framework along with numerous packages

from the Flask ecosystem which are all well documented and carefully explained

in countless online tutorials. Furthermore, ScienceFlask relies on SQLAlchemy to

ensure that the platform can be used with any SQL like relational database. The

simple, modular structure of the project guarantees that it is flexible, easy to extend

and unlike larger projects such as Galaxy, it can be learned quickly.



4.6. Summary 104

ScienceFlask implements numerous front-end components that are essential for any

scientific application: registration process, admin panel, user management, file up-

load, profile page, job submission page, logging, job queue and email notification

system. At the same time it provides complete freedom for developers to build the

core algorithmic part of their application in any language.

To my knowledge, there exists no open-source software solution or template that

provides the same set of functionalities as ScienceFlask, therefore this work has

been submitted for publication to Bioinformatics as an application note.



5 | CorrMapper - data integration

5.1 Overview

CorrMapper is an online research tool for the integration and visualisation of com-

plex biomedical and omics datasets. It is available at www.corrmapper.com and

www.medbio.imperial.ac.uk/corrmapper. As an open-source project, released un-

der the GNU GPL 3 licence, its code-base is freely accessible, hosted on GitHub148.

Since it is a multifaceted research tool, it will be described in two separate chapters.

This chapter is introducing CorrMapper’s data integration pipeline and the front-

end components that support it, while Chapter 6 describes CorrMapper’s advanced

visualisation modules.

This chapter is organised as follows:

• The first section summarises the results of the feature selection benchmarking

experiment, and how those influenced the design of CorrMapper’s pipeline.

• The second section describes the Upload, Profile and Analysis page of Corr-

Mapper. These are the main sites for user input, and even though their

blueprint is based on ScienceFlask, they hold several important modifications

that are essential for the understanding of CorrMapper’s back-end.

• The third section describes the data integration pipeline in great detail and

applies it to simulated data to assess its performance.

• The last section briefly compares CorrMapper to mixOmics, which is its closest

“competitor” in multi-omics integration.

105
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5.2 Feature selection benchmarking

As no previous work was found in the literature, which compared all seven of the

feature selection methods introduced in Sections 3.1 and 3.2, extensive benchmarking

experiments were carried out on 480 simulated datasets. As described in Section

3.3.1, a wide range of sample and feature numbers were simulated to assess how well

these algorithms perform with different omics datasets and study types.

As mentioned earlier, CorrMapper is an open-source project. Consequently, for the

sake of reproducibility, the supp/fsTest folder contains the code to reproduce every

single result file of the benchmarking experiment and to collate them into tables and

figures.

Figure 5.1 summarises the performance of the seven algorithms. The 480 different

datasets were summarised by sample to feature ratios R = n/p. The varying sample

and feature numbers resulted in 20 different ratios, of which eight are shown in

Figure 5.1, while all the others could be examined in the Supplementary materials,

see Figure S4, Figure S5 and Figure S6.

As described earlier in Section 3.3.2, precision and recall were used to measure the

performance of these FS algorithms. In a FS context, recall measures the ratio of

true positives found by the FS method out of all the relevant features, while precision

quantifies the ratio of true positives among the features selected by the algorithm,

see Figure 3.3. Therefore, an ideal FS method achieves 100% in both measures,

meaning it identifies all relevant features but no more.

The error bars (horizontal black lines) in Figure 5.1 represent one standard deviation

of the given metric across a number of datasets. The variability summarised by

these error bars have several sources. Firstly, each dataset was re-generated with

ten different random seeds. Secondly, distinct datasets can have the same R value.
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Figure 5.1: Benchmarking results of seven feature selection methods. The title of
each sub-plot shows the ratio of samples to features R = n/p. Horizontal black
lines represent standard deviations stemming from pooling the repeated runs with
varying random seeds and different datasets having the same R value.
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UniPerc UniFDR RFE CV L1 SVC StabSel Boruta JMI

Mean R 0.4061 0.4091 0.6570 0.7121 0.2368 0.3519 0.2568
Std R 0.2421 0.2688 0.2884 0.2276 0.2947 0.3885 0.3147

Mean P 0.3633 0.9314 0.2940 0.4665 0.5678 0.6488 0.6914
Std P 0.2407 0.1637 0.3053 0.3464 0.3759 0.3691 0.2105

R + P 0.7694 1.3405 0.9510 1.1786 0.8047 1.0007 0.9482

RS std R 0.0517 0.0738 0.2396 0.1414 0.0323 0.0339 0.0465
RS std P 0.0441 0.1196 0.1318 0.1333 0.0647 0.1233 0.0936

Table 5.1: Summary of feature selection benchmarking results. R: recall, P: preci-
sion, Std: standard deviation, RS: random seed. Further explained in text.

For example X1 ∈ R100×1000 and X1 ∈ R500×5000 both have R = 0.1. Finally, some

FS methods did not select any features from certain datasets. Table S1 in the

Supplementary materials summarises for each FS algorithm, how many datasets

were collated per ratio to calculate its performance.

Table 5.1 complements Figure 5.1, and presents several key statistics of the bench-

marking experiment. The top four rows summarise the mean recall and precision of

each FS methods across all 480 datasets, along with their standard deviation.

The fifth row is the sum of mean recall and mean precision, which is a combined

measure of these methods’ overall performance. The last two rows display the mean

of standard deviations across the ten random seeds, i.e. how resilient these methods

are to small perturbations of the input data.

There are several points to be made about these results:

• Not surprisingly, the higher R is, the better all algorithms performed, which

is demonstrated by higher precision and recall values, coupled with shrinking

error bars. However, there are notable differences between the performance of

these FS methods: some of them seem to prioritise high recall (RFE CV, L1

SVC), while some of them err on the side of caution and favour high precision

(Boruta, JMI, Univariate FDR).
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• Despite its highly simplistic nature, the univariate percentile method per-

formed surprisingly well on these datasets, but it still had the lowest combined

recall and precision out of the seven methods. Furthermore, its percentile

threshold was set to 10% in this experiment, which is coincidentally the same

as how the number of informative features was defined in half of the datasets

(in the other half it was set to 5%, see Section 3.3.1). This certainly helped

the algorithm, and probably gave it an unfair advantage, as in real life scenar-

ios, this fraction is an unknown hyperparameter, which can only be roughly

estimated from the literature.

• The univariate FDR method chooses the number of features to select based

on statistical testing, and thus it does not rely on such unmeasurable hyper-

parameter. Interestingly, and in concordance with previous findings126, this

univariate method performed similarly to more complex algorithms which are

much more expensive computationally (Boruta, JMI), and it reached the high-

est combined precision and recall value. However, in real biological datasets,

class membership might depend on the complex multivariate relationship be-

tween numerous features. Due to their design, univariate filter methods cannot

discover these multivariate relationships, and therefore might perform worse

than more complex FS algorithms. Finally, as Table S1 shows, univariate FDR

either failed to or did not select any features from most R < 0.1 datasets.

• The performance of stability selection was mixed. On small R datasets it

was very conservative and often did not select any features. As R grew, its

recall started to increase, while maintaining relatively high precision. However,

once R > 1, its precision decreased significantly and it turned into a high recall

method which explains why it received the second lowest combined precision

and recall score. As many other FS methods, stability selection seems to be

sensitive to its hyperparameters, thus it performs best when these are tuned

to one particular dataset.
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• Recursive feature elimination produced high recall, similarly to L1 SVC,

but its precision was the lowest among all methods. Furthermore, this method

was by far the most sensitive to small perturbations of the input data, see last

two rows of Table 5.1.

• Interestingly, the recall of L1 SVC method seems to increase as R grows,

but this is coupled with the deterioration of its precision. Therefore, similarly

stability selection, this method turned from high precision to high recall as R

grew. Nonetheless, it had the second highest combined precision and recall.

• It is interesting to note, that with R > 5 datasets, most of these algorithms

performed quite well and the univariate methods even outperformed the two

LSVC based techniques(RFE CV and L1 SVC). These SVM based FS tech-

niques are extremely sensitive to their regularisation parameter C. Although

in both algorithms C was chosen automatically using cross-validation, it seems

likely that these FS methods were over-regularised in the high R datasets, and

with hand-tuned C values they could have achieved better results.

• Overall, the performance of JMI ranked in the middle. It produced similar

precision and recall values to Boruta in R < 0.5 datasets. However, its perfor-

mance could not match the random forest based method in R > 1 datasets.

Nonetheless, the Python implementation’s parallelised nature and automatic

selection of optimal feature number makes it an attractive FS algorithm.

• All methods perform better when they are applied to higher R datasets, but

this is especially true to Boruta. Once R ≥ 3, its performance is unparal-

leled and reaches close to 90% recall and precision. Quite astonishingly, both

performance metrics approximate 100% with higher R values, see Figure S6.

However, in small R datasets its performance is on par with much simpler

and less computationally taxing methods, such as the univariate FDR. On the

whole, the only real advantage of Boruta method in R < 0.5 datasets is its

lack of tunable hyper-parameters, and robustness against untransformed data.
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5.2.1 Variance filtering

Since most biomedical studies today fall within the R < 0.5 range, it is alarming to

see how all of these FS methods struggled with identifying the majority of relevant

features in these p� n datasets. To alleviate this problem CorrMapper’s FS process

starts with a variance filtering step. It is a common assumption in data analysis,

that features with the highest variance are generally valuable, as it is along their

dimensions, where the samples could be separated most successfully69.

As we will see in Section 5.4, as a first step of crude dimensionality reduction,

CorrMapper keeps 2n of the p features of uploaded omics dataset. The 2n are

selected by choosing features with the largest variance. This effectively transforms

all R < 0.5 datasets into a R = 0.5 one. This ratio was chosen as it represents a

reasonable trade-off between the following two competing effects. The more features

are filtered out based on their variance, the higher R gets, and the better all FS

methods perform. But at the same time, the more we filter, the more we risk losing

relevant but low variance features.

To assess the performance of the seven FS methods in this scenario as well, a second

benchmarking experiment was run. If 2n < p was true for a simulated dataset (e.g.
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Figure 5.2: Benchmarking results after variance filtering, i.e. forcing R < 0.5
datasets to be R = 0.5. Blue: precision, green: recall. Number of informative
features in the datasets were set to 1% and 5% of all features.
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n = 100, p = 500), then it was first transformed to only retain 2n of its features with

the highest variance. Then, the FS experiment proceeded as before. Datasets for

which the 2n < p condition did not hold were excluded from the second benchmark

experiment. This resulted in 260 datasets in total.

Furthermore, the number of informative features was set to be 1% and 5%. The

reason for this is that scikit-learn’s make classification makes the variance of

relevant features (i.e. informative or redundant) larger than that of noise features.

Therefore, variance filtering always kept all relevant features in this experiment and

only got rid off irrelevant ones. Therefore, had the ratio of informative features been

kept at 10%, datasets like X ∈ R100×1000 would have ended up with only relevant

features after the filtering. This problem is mitigated by these lower percentages.

Figure 5.2 summarises the performance of the seven FS algorithms after variance

filtering. As we can see in the left sub-plot, with lower number of informative features

all methods achieve higher recall. More importantly however, all algorithms perform

similarly to how they did on real R = 0.5 datasets, proving that variance filtering

can increase the utility of FS methods even in p� n datasets.

After carefully considering the results of both benchmarking experiments, univariate

FDR, L1 SVC, JMI and Boruta were chosen to be part of CorrMapper’s feature

selection module. Univariate FDR is a fast and simple FS method that performed

admirably and might work well for certain datasets. The performance of L1 SVC

was above average around R = 0.5, while it is computationally cheaper than RFE

CV. However, L1 SVC assumes linearity, which might not hold in biological datasets.

JMI and Boruta are hyperparameter free and can detect complex, non-linear multi-

variate interactions between features. Although Boruta is computationally the most

expensive out of the seven benchmarked methods, it performed exceptionally for

n > p datasets. Finally, JMI’s mid-tier performance is compensated by its informa-

tion theoretic background and parallelised nature.
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5.3 CorrMapper’s front-end

Since ScienceFlask was developed from CorrMapper’s front-end, understandably

the two resemble each other. But ScienceFlask is more of a template or blueprint,

whereas CorrMapper is a functioning scientific research tool. Therefore, the front-

end of the latter is full with functionality that is missing from former.

These differences are outlined on the following pages in great detail. Nonetheless,

the flowchart in Figure 4.1 depicting the connections between the front-end’s com-

ponents still holds for CorrMapper, therefore it might be useful to revisit it briefly

before reading on. Additionally, Figure 5.6 in the next section displays the flowchart

of CorrMapper, highlighting the relationship between its front-end and back-end.

5.3.1 Index page and registration

The opening or index page of CorrMapper is highly useful for several reasons. Firstly,

it displays a 10 minute long demo video, which showcases CorrMapper’s pipeline and

visualisation modules with all their interactivity. The reader is strongly encouraged

to watch this video before reading further or using the application, as it provides a

great overview of the many functionalities CorrMapper has to offer.

Secondly, at the bottom of the page we find links to three visualisation demos, each

displaying one of CorrMapper’s modules, which are introduced in Chapter 6. These

demos can be explored by anyone, without registering or uploading their data.

Finally, even though the required formatting of annotation, metadata and data files

is explained in great detail on the Help page, the Chin et al. paper’s multi-omics

dataset can be downloaded from the index page for examination.

The registration process is identical to the one used by ScienceFlask. Therefore, by
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default, only users with a valid academic email address can sign up to use CorrMap-

per. Thanks to the admin panel described in Section 4.3 however, the administrator

of CorrMapper can easily add exceptions to this and let non-academic users access

the application.

To help the reader get familiar with CorrMapper’s visualisation modules, a guest

account was created. This has both the bariatric surgery and the breast cancer

datasets uploaded to it. Furthermore, several analyses were run on both of these

datasets, the results of which can be accessed from the Profile page. Please use the

credentials below to log in with the guest account:

username: guest@corrmapper, password: GraphicalLa$$o

Please note, that due to security reasons, guests are not allowed to upload or delete

studies, and they cannot perform new analyses or delete the results of existing ones.

Since the guest account can be used by anyone, these functionalities had to be

restricted. Nonetheless, guests can explore both the Upload and Analysis pages

along with their Profile page.

5.3.2 Upload page

CorrMapper was designed to be used with a wide range of omics and multi-omics

study types. As Table 5.2 shows, it can handle eight different kinds of studies, as

defined by three binary variables:

1. Multi-omics: does the study have one or two omics data files?

2. Genomic features: do the omics features have a genomic location that can be

used to map them onto the chromosomal map of the studied species?
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3. Metadata: does the study contain additional information about the samples

or patients that could be used for feature selection?

Even though feature selection is at the heart of CorrMapper’s pipeline, it is optional

and can be disabled by users while analysing their dataset. Consequently, studies

without metadata files are also permitted. Based on Table 5.2, the bariatric surgery

study introduced in Section 2.1 is a type 7. dataset, while the breast cancer study

from Section 2.2 is type 8. These datasets are radically different from a type 1. study

for instance, which comprises of a single omics data file. Consequently, CorrMapper’s

back-end pipeline and upload form needs to reflect and accommodate this variety.

As Figure 5.3 shows, the upload form can seem a bit intimidatingly complex at first,

but not all of its fields are mandatory for every study type, and helpful tooltips

are located next to each one, which could be displayed by hovering over any of the

questions marks.

To make the upload form flexible and adaptable to all eight types of studies, some

of its fields and panels only appear once the user clicked a check-box corresponding

to one of the above described three binary variables. To make the linkage between

binary variables and form panels more explicit, Table 5.2 and Figure 5.3 are cross-

referenced through the symbols: ◦, 2,4.

Study type Multi-omics (◦) Genomic features (2) Metadata (4)

1. - - -
2. x - -
3. - x -
4. - - x
5. x x -
6. - x x
7. - bariatric surgery x - x
8. - breast cancer x x x

Table 5.2: Study types CorrMapper can analyse. Symbols next to the three binary
variables correspond to boxes of the upload form in Figure 5.3.
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Figure 5.3: Upload form of CorrMapper, filled out for
the breast cancer study. Further explained in the text.

More precisely, if the

“More than one dataset”

box is ticked, the fields

marked with a ◦ will ap-

pear.

Similarly, if “My fea-

tures have genomic loca-

tion” box is ticked, the

“Species” panel will ap-

pear, along with the “An-

notation file1” and “An-

notation file2” fields, as

marked by the 2 next to

them.

Finally, when the “Up-

load metadata file” box

is ticked, the “ Meta-

data file” field appears, as

marked by 4.

CorrMapper’s genomic net-

work explorer (see Sec-

tion 6.4) provides an ex-

cellent data exploration

interface for datasets with

genomic features. In or-

der to utilise this visu-

alisation module, the ge-
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nomic features have to mapped onto the studied species’ chromosomes. As ex-

plained in Section 6.4.1, this process requires annotation files, which clearly define

the genomic location of each feature in the omics data files.

As alluded to earlier, the required format of annotation, metadata and data files

is explained on the Help page. Alternatively users can download the breast cancer

dataset to check its files.

Hovering over the “Upload” button will temporarily disable it while a quick form

validation is performed on the server side. This checks that all required files are

attached and every necessary field is filled in. Furthermore, the validation process

ensures that each file is attached only once, i.e. to one field, and that its size is

within the permitted 100MB.

Finally, if all fields have passed the validation process, the “Upload” button becomes

active again and once clicked, it initiates the file transfer. Once the files are uploaded,

their format is immediately checked before being saved on the server. Section 5.4.1

describes this format validation process in detail. If any of the files fail to pass the

validation, the user is informed with clear and explicit error messages which pop up

right next to the problematic file. Conversely, if all the files are correctly formatted,

the user is taken to her profile page.

5.3.3 Profile page

The profile page is similar to what we have seen in ScienceFlask, and it lists all the

studies and analyses a user has uploaded or run. At the top, users can browse their

uploaded studies and do one of the following:

• Hovering over the “Files” icon, a tooltip pops up, displaying the name of the

study’s uploaded files. This is especially useful, if the same study is uploaded
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several times using different preprocessing steps. In such a scenario the files

can be named accordingly to differentiate between the various versions.

• Hovering over the gear icon of the “Params” column will display the three

aforementioned binary variables of the study.

• If a study has metadata, clicking the “Explore” button will generate an inter-

active dashboard that maps the metadata variables onto the lower dimensional

representation of the omics data. Section 6.2 introduces and showcases this

interface.

• Clicking the “Analyse” icon will redirect the user to the Analysis page, where

parameters of CorrMapper’s data integration pipeline can be specified (see

Section 5.3.4), before submitting a new job to the cluster.

• The “Delete” button is disabled in the guest account for security reasons. As

its name suggest however, clicking this button will delete a study with all of

its corresponding analyses. This action cannot be undone.

Figure 5.4: Profile page of the guest account. For security reasons guest cannot
delete studies and analyses or change the account’s password. Apart from these
features however, the guest profile page is identical to a regular user profile page.
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Below the “Studies” panel we find the finished analyses of the user. This panel offers

the following functionalities:

• The “Status” column displays whether an analysis has finished running or not,

in which case the tick is replaced with an hourglass icon.

• Hovering over the gear icon of the “Params” column displays the exact pa-

rameters that were used within CorrMapper’s pipeline to produce the results.

• Clicking the “Explore” button will redirect the user to the general network

explorer. This interactive visualisation module is introduced in in Section 6.3.

• Clicking “Results” icon will offer all the resulting files and images of the anal-

ysis for download as a .zip archive.

• The “Delete” button is disabled in the guest account for security reasons, but

in regular accounts it deletes a finished or running analysis. This latter option

can be useful, as CorrMapper does not allow users to run multiple analyses

simultaneously. Therefore, if a job is taking too long to finish, users can easily

terminate it and start another analysis with more restrictive parameters.

The guest account has three uploaded studies, as the bariatric surgery dataset was

uploaded twice: once with all samples, and once restricted to only contain patients

who underwent RYGB type surgery. Furthermore, the account has five precomputed

analyses, whose results will be discussed in Chapter 6.

The right hand side of the interface summarises the account’s information. At the

bottom of this panel users can log out or change their passwords. This latter feature

is disabled for the guest account for security reasons. Clicking the question mark

at the top right corner of the “Account” panel, will start an interactive tour of the

profile page interface.

To be mindful about the resource usage (disk space, memory, processing power)

of CorrMapper on its host server, users are currently limited to have a maximum
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of four uploaded studies at any given time and five altogether. Furthermore, they

are allowed to store the results of six analyses at any given time, and perform

ten jobs altogether. However, these limits can be easily changed both globally in

CorrMapper’s configuration file, and individually by altering the database through

the admin panel. Finally, users can easily check their quota at the top right corner

of the “Studies” and “Analyses” panels.

5.3.4 Analysis page

The analysis page allows users to set the parameters of CorrMapper’s data integra-

tion pipeline before submitting their job to the server. Due to the different study

types enlisted in Table 5.2, the analysis form has to be flexible, just like the upload

form is. To stay consistent, the symbols used in Section 5.3.2 (◦, 2,4) are also

used here in Figure 5.5. Furthermore, similarly to the upload form, hovering over

the question marks will display tooltips with lots of useful and technical information

about each parameter.

If the study has a metadata file, the “Feature selection” panel (4) will appear.

The top drop-down menu allows users to select one of CorrMapper’s four feature

selection algorithms, while the bottom one sets one of the metadata columns as

target variable. As we will see in Section 5.4.1, each metadata variable has to pass

a set of sanity checks in order to appear in this list. For example, in case of a

categorical variable, CorrMapper requires at least 15 samples per each of its levels.

Although it is not recommended, feature selection can be skipped in CorrMapper’s

pipeline. This will result in much larger and denser networks, which are a lot

more difficult to interpret. Moreover, CorrMapper uses JavaScript libraries for data

visualisation which rely on CPUs and cannot utilise the power of graphics cards.

Consequently, the fluid and seamless visualisation of such networks with thousands
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of nodes requires top of the range multi-CPU machines. Finally, in an unfiltered

network, potentially hundreds of features might need to be assessed, which are not

necessarily relevant to the clinical outcome variable we are interested in.

Figure 5.5: Analysis form of CorrMapper.

The “Network selection”

panel allows users to al-

ter Λ̂, i.e. the thresh-

old in StARS. The de-

fault value (Λ̂=0.1) repre-

sents the authors’ recom-

mendation.

The next panel sets the

method for correction of

multiple testing, as ex-

plained in Section 3.4.5.

Very importantly, this

step of the data inte-

gration pipeline, repre-

sents an additional filter-

ing process of the net-

work’s edges that some

researchers might find un-

necessary. Therefore, it

can be disabled, by set-

ting α = 1.

If the study has genomic features the panel and fields marked with a 2 appear.

These options represent different ways to filter out certain edges of the network, and

therefore make them easier to explore and interpret.
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If “Discard overlapping correlations” is ticked, CorrMapper will ignore correlations,

whose two features overlap on a chromosome. For example, in case of the breast

cancer study, it might be a sensible assumption, that if a certain genomic region

is amplified (i.e. there are multiple copies of a gene), then its expression levels

will be higher. This would result in a possibly significant and very strong positive

correlation, which is biologically not too surprising or interesting.

Ticking the “Constrain distance of correlations” allows users to discard edges that

are between overly distant genomic features. The number we put in the “Maxi-

mum distance of correlations” field are meant in megabases. Setting it to zero will

constrain the maximum distance between correlated features to the length of chro-

mosome they are located on. With this option we can focus on a short to mid-range

genomic associations which might be important in some studies.

Similarly to the upload page, Hovering over the “Analyse” button will temporarily

disable it and run the server side form validation process. If all fields pass, the

button can be clicked, and then the analysis is added to the RabbitMQ message

broker’s queue (see Section 4.3). As explained in the Chapter 4 about ScienceFlask,

Celery will pick this job up from the task queue in order of submission time, and

execute CorrMapper’s data integration pipeline with the user specified parameters.

The total time an analysis takes depends on multiple factors such as the number

of jobs waiting in CorrMapper’s queue, the dataset’s size and the chosen feature

selection method. For example, a typical multi-omics dataset with 10,000 features

and 300 samples runs in under 15 minutes using Boruta and even quicker with L1

based feature selection. However, larger datasets or jobs of other users occupying

the queue can expand this time frame to even an hour. To be economical with the

host server’s resources, users cannot submit a new analysis while their previous job

is still running. Once a job has finished running, CorrMapper notifies the user in

email, and the results of the analysis become accessible from the profile page.
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5.4 CorrMapper’s back-end

Figure 5.6 summarises how CorrMapper’s front-end and back-end interact. While

the previous section introduced the user-facing components of the top box of the

flowchart, this section focuses on the middle part, and describes what happens to

the uploaded data. By the end of CorrMapper’s data integration pipeline, all results

become available for the user through the front-end’s visualisation modules, which

are introduced in Chapter 6.

5.4.1 Checking uploaded files

As alluded to in Section 5.3.2, once all files are transferred to the server from the

user’s computer, they are run through a series of checks to ensure CorrMapper’s

pipeline can use them. Generally, it is better to fail early in computational pipelines

and let the user know as soon as possible about misformatted files. The Help page

is a useful resource that describes the expected file formats. This section briefly

summarises the checks CorrMapper uses to enforce these formatting rules.

Data files

Omics data files are expected to be preprocessed and cleaned, containing only nu-

meric values. Each file must pass the following checks:

• All columns must be numeric. Those that contain non-numeric values are

discarded. Each data file must have at least ten numeric features.

• The maximum sample size and feature number supported by CorrMapper cur-

rently are 500 and 25000 respectively. If a data file exceeds these dimensions,

the script aborts.

• If two omics files were uploaded, they must have at least 15 samples in common.
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Figure 5.6: Flowchart of CorrMapper’s front-end and back-end.
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Annotation files

Annotation files hold chromosomal location of genomic features. This information

is used by CorrMapper to build a special visualisation from genomic data. Each row

of these files describes a single feature. Annotation files are checked line by line and

a row can be discarded for several reasons:

• If it does not have the mandatory ProbeID, Chromosome, Start and End fields.

• If its probe is not present in the corresponding omics data file.

• If its chromosome number or name is not recognised by the species specific

chromosomal map. For example, humans do not have a Z chromosome, there-

fore all annotation lines containing information about probes located on a Z

chromosome would automatically get discarded.

• If its start or end position is smaller than zero or larger than the length of

chromosome the probe is located on.

Metadata file

The metadata file is used both for feature selection and building the interactive

metadata explorer described in Section 6.2. Therefore, its columns has to be checked

thoroughly.

• The second row of the metadata file must contain the type of each variable.

The accepted values include: categorical, continuous, date, sample and nu-

merous abbreviations and synonyms of these.

• CorrMapper currently only supports 15 metadata columns. The reason for

this is that these columns are later used to build the metadata explorer, which

would get very dense visually with more variables.
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• Categorical columns can contain any alpha-numeric characters to denote the

levels of the variable. Very importantly for feature selection, each level has

to have at least 15 samples in common with each omics dataset. For example

the “Asian” level of the Ethnicity categorical variable would be discarded if

the study’s cohort would only have five patients with Asian ethnicity. If a

categorical variable is left with only one level after this filtering step, it cannot

be used for feature selection, and it will not show up in the analysis form.

• Continuous variables must contain numeric values only.

• The format of date variables should ideally comply with ISO8061, but most

other commonly used formats are also automatically recognised and under-

stood due to the highly advanced time module of pandas Python package. If

the date variable cannot be parsed, it will be discarded.

• The sample variable type is a unique identifier that can be used to group

patients within a study that collected repeated measurements from the same

subjects: for example preoperative and postoperative samples.

If all checks are passed, the files are saved on the server and the study becomes

accessible from the Profile page.

5.4.2 Feature selection and graph estimation

Figure 5.7 displays how the uploaded omics data files and metadata flow through

CorrMapper’s data integration pipeline, which was designed to be data type agnostic

and make the most of p > n datasets. It consists of the following steps:

1. The omics datasets are variance filtered: given a dataset X ∈ Rn×p, where

p > 2n, it is filtered down to X ∈ Rn×2n, where the remaining 2n features

have the highest variance. As explained in Section 5.2, this ensures that FS

methods perform closer to their optimal n/p ratio.
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2. The user chosen feature selection method is applied to both omics datasets.

Importantly the FS is carried out separately on both omics datasets. Although

this means that the relevant features are not selected from the joint probability

distribution of the two datasets, this way the optimal n/p ratio is ensured.

Furthermore, if the two datasets were to be concatenated before the FS process,

CorrMapper would need to take the intersection of their samples with the

metadata file: {n ∩m ∩ i}, see Figure 5.7. In most multi-omics datasets this

is highly restrictive as we rarely have total coverage for a sample, i.e. omics

data from both modalities and also metadata.

3. The two filtered datasets X1 ∈ Rn×s1 and X2 ∈ Rm×s2 are concatenated to

form Xc ∈ Rn∩m×s1∪s2. The features in Xc are standardised to have zero mean

and a standard deviation of one. This is done to ensure that data coming from

different platforms have the same range and variance.

4. As explained in Section 3.4.4, a nonparanormal extension of the graphical lasso

algorithm is employed to infer the conditional independence network of the

features within Xc. The huge R package is used both for network estimation

and network regularisation with the StARS algorithm. Both algorithms are

run with their default parameters, however the StARS algorithm’s Λ̂ threshold

can be modified by the user through the analysis form.

5. As Figure 5.7 highlights, running the pipeline on two omics datasets will result

in a matrix N ∈ Rs1∪s2×s1∪s2 that holds three separate networks:

• N1: network of X1, edges are formed between selected features of X1.

• N2: network of X2, edges are formed between selected features of X2.

• N12 : bipartite network of X1 and X2, where each edge is formed between

selected features of X1 and X2.

6. Spearman correlations are calculated for each edge of the networks. Then, as

explained in Section 3.4.5, 104 permutations and GPD approximation is used
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estimate p-values for each. If the user set α < 1, a correction for multiple

testing is applied to the p-values, and those that did not pass are discarded.

7. Finally, networks are built from matrix cells ofN which have non-zero precision

(Ωij 6= 0) and a p-value < α after correction for multiple testing.

Figure 5.7: Flowchart of CorrMapper’s data integration pipeline. The dimension of
each matrix is displayed at its top left corner. Grey, purple and blue boxes represent
data, while green ones are steps in the pipeline.
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5.4.3 Module finding

Once the three conditional independence networks (N1, N2, N12) are estimated, Corr-

Mapper employs two different module finding algorithms to identify tightly con-

nected groups of edges within each graph. Modularity is a mathematically well-

defined measure of a graph’s structuredness. It quantifies how strongly the network

is divided into tightly connected sub-graphs, i.e. modules, or communities.

Modularity ranges between [−1/2, 1), and it can be defined as the fraction of edges

that fall within a given module minus the expected fraction if edges were distributed

at random (i.e. in a random graph). A negative modularity score implies that fewer

interactions occur within modules than expected in a random network. Conversely,

networks with high modularity have densely linked communities which are more

interconnected than it would be expected in a random graph.

Many real life problems can be modelled as a graph: food chains, metabolic path-

ways, neural networks, social networks, trade between companies. Detecting com-

munities within these graphs can lead to a deeper understanding of them, as nodes

within the same module are more strongly related, interact, transact and exchange

information more often than with nodes outside of their community.

In biology, this closely knit nature of nodes from the same module, frequently arises

from their similar biochemical function. Therefore, if we are unsure about the func-

tion of a node within a module, we can exploit the principle of guilt by association

and learn something about it by examining its neighbours.

Modularity detection is an important problem in several scientific fields, which has

led to the development of numerous algorithms155. Yang et al. performed exten-

sive benchmarking experiments, comparing eight popular community detection algo-

rithms, considering different aspects of these methods including their accuracy and
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required computing time. Based on their results, CorrMapper uses a Python im-

plementation of the widely cited Louvain method156 from the networkX package157,

to identify modules within the correlation matrix of unipartite graphs N1 and N2.

For bipartite graphs, the definition and discovery of modules is more difficult, as

there are two kinds of nodes present in these networks. CorrMapper uses a recently

published method158 which was shown to outperform earlier bipartite modularity

finding algorithms.

In both unipartite and bipartite networks the negative correlations are turned pos-

itive to make a weighted adjacency matrix as an input for the module finding algo-

rithms. The modules found by these two algorithms in N1, N2, N12 are then exposed

to the user through the general network explorer, which is introduced in Section 6.3.

5.4.4 Preparing files for visualisation and download

Once CorrMapper has finished running its data integration pipeline, it begins to

produce all the necessary data files and figures for the visualisation modules. The

networks N1, N2, N12, their identified modules, the annotation files (in case of a

genomic dataset), the Spearman ρ values and their p-vales are converted into JSON

files for JavaScript. The networks are also saved in XML format to let users import

them into Cytoscape159, which is a popular offline biological network explorer.

Furthermore, as we will see in Section 6.3, CorrMapper has to produce scatter-plots

for every single edge of the resulting networks, which are used in the general and

genomic network explorer interfaces. These are also generated at this stage.

Finally, all of these result files are made accessible to the user through the profile

page as a downloadable archive. This .zip file contains all the above listed items,

along with the selected features per each dataset.
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5.4.5 CorrMapper with simulated data

Similarly to the feature selection benchmarking experiments, the results shown in

this section could be reproduced using the code in the supp/cmTest folder. Fur-

thermore, as in case of the simulated datasets of the FS benchmarking, scikit-learn’s

make classification function was used to generate artificial datasets with varying

number of samples and features.

However, in order to test CorrMapper’s ability of recovering the true conditional

independence structure of these datasets, the make classification function had

to be modified to allow for the simulation of data with known correlation structure.

This was done based on the following well established procedure for simulating

multivariate normal data with known correlation structure :

• Given a set of p independent normal random variables X = (X1, ..., Xp) ∼

N (µ,Σ), with a zero mean vector µ = 0 and no pair-wise associations Σ = I,

• their correlation structure can be defined by first creating a positive semi-

definite matrix C ∈ Rp×p, then decomposing it into a lower triangular form

using the Cholensky factorisation, so that C = LLT .

• Then, X ′ = LX will give us back our normally distributed random variables

with their correlation matrix set as C, cor(X ′) = C.

Scikit-learn’s make sparse spd matrix function was used to simulate a sparse sym-

metric definite positive matrix, which acted as the precision matrix Ω of the simu-

lated data, with 98% of its cells set to zero. This was then inverted to obtain the

correlation matrix Σ = Ω−1, which was used in the modified make classification

function to simulate a two class dataset with pre-defined correlation structure and

known feature importances. Once a dataset was simulated this way, its feature space

was randomly divided into two sets, to create two equally sized simulated omics data

tables as an input to CorrMapper’s data integration pipeline.
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Numerous datasets were simulated with varying sample sizes n ∈ {100, 300, 500},

and feature numbers p ∈ {1000, 2000, 5000}, each with three different random seeds.

Two values were used for the number of informative: 5% and 10% of p. Each dataset

was run through CorrMapper with all four FS methods, and two different StARS

thresholds: 0.05 and 0.1. To save computational time, the threshold of the multiple

correction step was set to α = 1, therefore this edge filtration part of the pipeline

was switched off in these experiments.

Similarly to Figure 3.6, the performance of the pipeline was measured by precision

and recall, as the number of correctly discovered true edges of the simulated dataset’s

conditional independence graphs (all three of them N1, N2, N12). Table S2 shows

the overall performance of CorrMapper’s pipeline across all simulated datasets, while

Table 5.3 displays the results obtained on R ≥ 0.2 datasets.

Since a lower StARS threshold requires higher robustness under resampling for an

edge to be kept, Λ̂ = 0.05 resulted in higher precision with all FS methods. Al-

though the overall recall of all four methods seem disappointingly low, we need to

keep in mind how hard the problem at hand is: we are aiming to not only correctly

identify 5% of the features, but then also reconstruct the extremely sparse condi-

tional independence network between these from noisy, p� n data. As we will see

later, this is very challenging for other network estimation methods as well.

StARS UnivarFDR L1 SVC Boruta JMI

Rec 0.1182 ± 0.02 0.2808 ± 0.13 0.1146 ± 0.02 0.0429 ± 0.03
Prec 0.05 0.6113 ± 0.13 0.5348 ± 0.11 0.6146 ± 0.14 0.4905 ± 0.19
R + P 0.7295 ± 0.15 0.8156 ± 0.24 0.7293 ± 0.16 0.5334 ± 0.21

Rec 0.1356 ± 0.05 0.1032 ± 0.17 0.1298 ± 0.05 0.0462 ± 0.04
Prec 0.1 0.4984 ± 0.16 0.4127 ± 0.09 0.5353 ± 0.17 0.4496 ± 0.23
R + P 0.6341 ± 0.21 0.5158 ± 0.26 0.6652 ± 0.22 0.4958 ± 0.27

Table 5.3: Performance of CorrMapper on R ≥ 0.2 simulated datasets. Rec: recall,
Prec: precision, R + P: recall + precision. These performance metrics measure how
many of the true network edges CorrMapper could reconstruct. Values to the left
of the ± are means, while values on the right represent one standard deviation.
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All methods performed worse in R < 0.2 datasets (see Table S2). This highlights the

true difficulty in identifying meaningful relationships in R < 0.2 datasets. Nonethe-

less in R ≥ 0.2 datasets with Λ̂ = 0.05, L1 SVC performed the best, whereas Boruta

and univariate FDR were tied for the second place. This changed however with

Λ̂ = 0.1, as in this scenario Boruta performed best, followed by univariate FDR and

L1 SVC. Interestingly, all methods prioritised high precision over high recall.

To compare CorrMapper with other network estimation methods, a follow-up ex-

periment was carried out on datasets with sample sizes n ∈ {300, 500} and feature

numbers p ∈ {1000, 2000}, each simulated with three different random seeds. The

number of informative features was defined as 5% of p, while the threshold of StARS

was set to Λ̂ = 0.05. Marginal correlation network estimation (see Section 3.4.2),

graphical lasso (see Section 3.4.3), and sparse PLS from the mixOmics package

(see Section 1.3 and 5.5) were used to benchmark CorrMapper’s data integration

pipeline.

Furthermore, to construct networks with varying density, marginal correlation net-

works and the network estimator of mixOmics (see Section 6.5) were used with a

range of cut off values ε ∈ {0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8}. Finally, graphical lasso

was used with the same Λ̂ = 0.05 StARS threshold.

Method Recall Precision Rec + Prec

UnivarFDR 0.1455 ± 0.11 0.5845 ± 0.14 0.7300 ± 0.25
L1 SVC 0.3740 ± 0.20 0.5808 ± 0.14 0.9548 ± 0.34
Boruta 0.1525 ± 0.11 0.6113 ± 0.19 0.7638 ± 0.31
JMI 0.0852 ± 0.08 0.6462 ± 0.32 0.7315 ± 0.39

Marginal 0.05 0.3327 ± 0.10 0.0313 ± 0.01 0.3641 ± 0.11
Marginal 0.1 0.0672 ± 0.04 0.0494 ± 0.03 0.1166 ± 0.07

mixOmics 0.05 0.4432 ± 0.11 0.1086 ± 0.03 0.5518 ± 0.14
mixOmics 0.1 0.2558 ± 0.11 0.2153 ± 0.07 0.4711 ± 0.19
mixOmics 0.2 0.1339 ± 0.08 0.3840 ± 0.15 0.5180 ± 0.24
mixOmics 0.3 0.1065 ± 0.06 0.5371 ± 0.21 0.6437 ± 0.28
mixOmics 0.5 0.0632 ± 0.05 0.9061 ± 0.17 0.9693 ± 0.22

Table 5.4: Comparing CorrMapper against other network estimators. Values to the
left of the ± are means, while values on the right represent one standard deviation.
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Very importantly, since mixOmics only estimates theN12 network between two omics

datasets (ignoring N1 and N2), all performance metrics were calculated on the edges

of this particular network, for all methods.

Table 5.4 summarises the results of successful runs. Several rows were omitted from

this table, as some cut off values resulted in selecting zero edges in the marginal and

PLS networks. All results (including the ones omitted here) are listed in Table S3.

Unfortunately, the graphical lasso algorithm did not yield any meaningful results

on these 12 simulated datasets. Although Λ̂ = 0.05 is suggested by the authors of

StARS as a default value for the resampling thresholds, it might not have been a

suitable choice for graphical lasso on these datasets with R ∈ {0.15, 0.2, 0.25, 0.3}.

As expected from Section 3.4.2, regardless of the chosen ε, marginal correlation net-

works performed worse than other methods. Sparse PLS was used with three latent

components in these experiments. Interestingly, despite its sophisticated nature,

this algorithm also performed worse than CorrMapper with most choices of ε.

Although mixOmics achieved comparable results to CorrMapper with ε = 0.5, it is

very important to emphasise that ε is a hidden hyperparameter, that users cannot

reliably estimate or know in a real dataset. Therefore, even though some optimal

value of ε might result in comparable results, the probability of a user picking this

out of all other values is negligible. Furthermore, mixOmics had a clear advantage

over other methods, as in all experiments, the number of features to select (by the

L1 regularisation), was set exactly to the correct one (i.e. half of the informative

features in both datasets).

In summary, based on the last column of Table 5.4, and the fact that it requires

minimal user input, and no prior knowledge about the number of features to select,

CorrMapper performed notably well. These experiments demonstrate the overall

utility of CorrMapper’s data integration approach, including metadata driven fea-

ture selection and regularised conditional independence network estimation.
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5.5 Summary

As we have seen in Section 1.3, there are numerous approaches to multi-omics data

integration. CorrMapper is a network based, non-Bayesian data integration tool,

which focuses on the discovery of novel biochemical interactions between different

omics layers. As we will see in Section 6.2 it also performs a simple type of cluster-

ing through dimensionality reduction and metadata mapping. Furthermore, unlike

other regularised data integration pipelines, it provides non-linear feature selection

algorithms which can capture correlated groups of covarying features.

However, as it will be explicated exhaustively in Chapter 6, CorrMapper goes further

and it offers advanced data visualisation modules which allow for the interactive

exploration of complex correlation networks and clinical metadata. Because of this

multifaceted nature, CorrMapper is probably closest to the mixOmics R package,

which is a powerful and feature rich data integration and visualisation pipeline,

developed as the joint effort of numerous researchers over the past 10 years38,41,160–162.

Therefore, the following paragraphs briefly outline some of the main differences

between the data integration pipelines of CorrMapper and mixOmics, while Section

6.5 will reflect on their visualisation capabilities.

Both CorrMapper and mixOmics rely on regularised multivariate statistical methods

to discover meaningful relationships between different layers of multi-omics studies,

but they use very different approaches. As alluded to in Section 1.3, mixOmics uses

sparse versions of CCA and PLS, which are both unsupervised, linear projection

based, latent variables models, that aim to maximise the correlation and covariance

between two data matrices respectively. Additionally, mixOmics offers a sparse

version163 of PLS-Discriminant Analysis (PLS-DA)164. Similarly to PCA, PLS-DA

projects a dataset into a low-dimensional space, but does this in a supervised fashion

by maximising the separation between levels of a categorical outcome variable.
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These latent variable models have several attractive properties. Firstly, they model

two data matrices mathematically as a joint system with a single optimisation cri-

terion. As we saw in Equation 1.1, the latent components (H � p) are formed

by taking linear combinations of the original predictors, where the contribution

of each feature is defined by the corresponding coefficient in the loading vectors.

Therefore, these algorithms perform dimensionality reduction while capturing the

largest sources of variation in multiple datasets simultaneously. Secondly, PLS is

especially well suited to p � n datasets, as evidenced by its widespread use in the

chemometrics field165.

However, there are some disadvantages of these techniques:

• The number of latent components H is an important hyper-parameter, which

defines the dimensionality of the hyperspace into which all samples are pro-

jected. The optimal H can be found using cross-validation, however this means

that the model selection is performed on less data, which can be detrimental

in p � n datasets. Instead of the traditional k-fold cross-validation, we can

use Leave-One-Out (LLO) cross-validation to alleviate this problem, however

that can increase training time substantially. Alternatively, in case of PLS-DA

models, some authors offer a heuristic method where they define H = G− 1,

where G is the number of levels in the categorical outcome variable160.

• Latent variable models can be cumbersome to interpret. The samples are pro-

jected into a lower dimensional space, which is defined by orthogonal score vec-

tors as linear combinations of thousands of variables (in case of omics datasets).

Although the orientation of these dimensions are chosen such that they max-

imise the covariance or correlation between the two data matrices, similarly

to PCA, two samples projected close to each other in a given pair of score

vectors might be far away from each other in another pair of latent variables.

Therefore, each pair of score vectors represent a new view of the dataset, that

needs to be interpreted in conjunction with their loading vectors.
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• The contribution or loadings coefficient of an individual omics feature can

be positive in one score vector dimension and negative or zero in another.

Therefore, it can be hard to determine how exactly one feature behaves overall

and what is its relationship to others. In latent variable models, this can only

be discussed in the context of score vectors, which represent orthogonal views

of the data. Conversely, CorrMapper provides a single network view of the

selected features, which might be easier to interpret in some scenarios.

• The regularised version of CCA and PLS use the L1 penalty to obtain sparse

loading vectors and consequently perform feature selection while fitting the

model. Although this can make the interpretation of loading vectors easier,

the feature selection in this case is driven by the objective function’s aim to

maximise the covariance between the score vectors. Therefore, unlike in Corr-

Mapper, the selected features do not possess a clear relationship with any clin-

ical outcome variable. Furthermore, if two or more features are correlated, the

L1 penalty will choose one of them randomly, while shrinking the coefficients

of others to zero50. Therefore, a feature might deemed important in one load-

ings vector and unimportant in another. This can be problematic in biological

datasets, where often, correlation between features encode a shared biological

function or pathway, which can be lost using L1 regularisation. CorrMapper

offers three FS methods (univariate FDR, Boruta, JMI) that can handle this

situation and capture correlated and relevant feature sets.

• Interestingly, mixOmics request the user to specify the number of features to

be selected for each latent variable. This can be very difficult to estimate

a priori, especially if we are analysing a new high-throughput multi-omics

study, that we have not interrogated before. Alternatively, users can supply a

grid of values, and mixOmics will choose one of the grid’s values using cross-

validation. Conversely, CorrMapper aims to minimise the input required from

users, and let the data determine the number of features to be selected.
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Both CorrMapper and mixOmics are platform agnostic and can work with any type

of numerical data. Furthermore, they both assume that the omics datasets have

been preprocessed by their platform-specific pipelines.

Interestingly, until the very recent addition of sparse Generalized Canonical Cor-

relation Analysis (sGCCA)160 to mixOmics, it did not support the simultaneous

integration of two omics datasets with an outcome variable. PLS-DA works with a

single data matrix and a categorical outcome, while CCA and PLS either work with

a matrix of outcome variable and an omics dataset, or with two omics datasets.

However, sGCCA solves this problem by extending sparse CCA algorithm to K

number of normalised, centred and scaled datasets X1 ∈ Rn×p, ..., XK ∈ Rn×pK .

These datasets record the levels of p1, p2, ...pK omics features in the K dataset for

the same n samples. sGCCA is fitted by optimising the following objective function:

arg max
a1,...,aK

K∑
k,j=1,k 6=j

cjk cov(Xka
k, Xja

j), s.t.||ak||2 = 1, ||ak||1 < λk,

where cjk = 1 will maximize the covariance between the datasets Xj and Xk, while

cjk = 0 denotes that we do not presume any relationship between Xj and Xk. a
k

denotes the loadings vector of dataset Xk. Similarly to other L1 regularised methods,

λk is a non-negative parameter that controls the amount of shrinkage and thus the

number of non-zero coefficients in ak.

If one of the K datasets is chosen to contain a dummy-encoded categorical outcome

variable with G levels as Xk ∈ Rn×G, then sGCCA will effectively perform sparse

PLS-DA on K − 1 datasets, simultaneously maximising the covariance between

X1, ...XK−1, while also maximising the discrimination between the omics datasets

and the categorical outcome. Furthermore, sGCCA is a predictive model, which is

capable of determining the class membership of new samples. These properties make

sGCCA a very capable and promising data integration technique. In comparison,
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CorrMapper cannot integrate more than two omics datasets with an outcome, but

the chosen outcome variable can be continuous, which is not supported by sGCCA

currently.

Additionally, the MINT pipeline within mixOmics161 allows for the integration of

several independent studies measured on the same p predictors. This is an orthog-

onal direction in data integration that is not supported in CorrMapper currently.

Similarly to CorrMapper, mixOmics is open-source and available as an R package un-

der the GNU licence. Unfortunately its web interface at http://mixomics.qfab.org/

was not available during the writing of this thesis, therefore no comparison could be

made between its online version and CorrMapper’s capabilities. It is worth reiterat-

ing, that not all life-scientists posses programming skills and therefore the powerful

capabilities of mixOmics might remain under-utilised in certain parts of the research

community.

In summary, mixOmics leverages regularised latent variable models to project two

or more omics datasets into a low-dimensional space, where most of the covariance

of these matrices is captured. It builds feature selection into the optimisation cri-

terion through the L1 penalty, and with the recent addition of sGCCA, mixOmics

can integrate and build predictive models from more than two omics datasets in

conjunction with a single categorical outcome.

Conversely, CorrMapper places metadata driven feature selection before the cor-

relation analysis and builds robust conditionally independence networks from the

biologically relevant features. However, CorrMapper’s FS methods might be better

suited to the correlated features of biomedical datasets. Furthermore, CorrMapper

finds modules of tightly linked and therefore potentially biologically related features,

using the topological properties of the estimated correlation network, but it cannot

perform prediction on new samples.
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To my knowledge, CorrMapper is the first multi-omics data integration pipeline

that combines metadata driven feature selection with regularised conditional in-

dependence network estimation to discover multi-level interactions between omics

datasets.

As we have seen in the benchmarking experiment of Section 5.4.5, CorrMapper

offers a very capable alternative to existing methods, while requiring minimal input

from users. Consequently, the data integration pipeline of CorrMapper and its

visualisation modules (see Chapter 6) are currently in preparation for publication.

CorrMapper and mixOmics use entirely different and complimentary data integra-

tion strategies. Therefore, one should use both on multi-omics datasets and aim to

combine their findings in a parsimonious way.

mixOmics’s sGCCA presents an attractive one-stop shop solution for sparse inte-

grative multi-omics modelling, with added predictive potential, while CorrMapper’s

robust conditional independence networks and powerful, interactive visualisation

modules can provide illuminating insights into the complex inter-omics relationships

of multi-modal biomedical studies.

Finally, both methods have extensive visualisation capabilities to facilitate the in-

terpretation of their results. These software components will be compared at the

end of the next chapter in Section 6.5.



6 | CorrMapper - interactive

data visualisation

6.1 Overview

As alluded to earlier in Section 1.5.4, data visualisations have tremendous potential

in data analysis, because a single well constructed chart has the power to take us by

surprise, calling our attention to previously unknown relationships within our data.

When combined with interactivity, data visualisations reach their full potential and

turn from passive data presentation techniques into dynamic research tools.

This is especially valuable in biomedical research, given the complexity of omics

datasets, which is compounded by the rich metadata that is collected with them.

Interactivity allows us to dissect and subset these datasets in numerous ways itera-

tively, till we can answer our specific questions.

To capitalize on the value of interactive visualisation tools, CorrMapper implements

three separate modules of them:

1. Metadata explorer: maps any form of metadata onto high-dimensional

omics datasets. Its interactive dashboard interface allows users to stratify

their cohort by any combination of metadata filters. For example: “show me

the patients who are older than 50 years, received chemotherapy and have

familial history of the cancer”.

141
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2. General network explorer: provides three different and complimentary

views of the estimated conditional independence networks (N1, N2, N12).

Within this interface, two different network representations are cross-linked

with an interactive heatmap. These three components together, enable users

to explore and interrogate even the densest and most complex networks.

3. Genomic network explorer: is specifically designed for omics features

which can be mapped onto the genome of a species, e.g. genes expression,

epigenetic methylation or copy number variation probes. This module com-

bines a circular genomic map with searchable and sortable tables. The former

acts as a high level overview of the genome-wide correlations, while the latter

provides very detailed information about each probe and their associations.

Due to the highly interactive nature of these modules, the static figures found in

this chapter cannot fully demonstrate these tools. Therefore it is highly recom-

mended to the reader to log in to CorrMapper with the guest account (username:

guest@corrmapper, password: GraphicalLa$$o) and explore these modules interac-

tively. As all three visualisation modules are fairly dense visually, a minimum screen

resolution of 1920 × 1080 is required, although if possible, a higher one is recom-

mended. Finally, in Section 6.5 a brief overview is given about the various currently

existing omics visualisation tools and how they compare to CorrMapper’s solutions.

6.1.1 Limitations of CorrMapper’s visualisation modules

When two things commonly occur together, the

appearance of one will bring the other to mind.

Aristotle c. 350 B.C.

The concept, that the co-occurrence of two things is a fundamental component in

the creation of knowledge, was first recognised by Aristotle. Possibly owing to our
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evolutionary past as hunters and gatherers, our minds are wired in such a way, that

if we see pairs of things together, or following each other in quick succession, we

quickly formulate causal links between them.

This curiosity and causality seeking behaviour is one of the foundations of modern

science and human culture in general, but also the root cause of the damaging

cognitive biases we all (even scientifically trained researchers) suffer from166. As

Nobel laureate, Daniel Kahneman has put it, in his best selling book Thinking, Fast

and Slow:

“We are pattern seekers, believers in a coherent world, in which regular-

ities appear not by accident but as a result of mechanical causality or of

someone’s intention.”

As CorrMapper’s network visualisation modules both build on the concept of co-

occurrence, it is really important to admit the limitations of these tools, and to use

them with caution. Due to their highly interactive nature, researchers can easily get

lost in the exploration of their datasets, and cherry-pick correlations that support

their prior beliefs or hypotheses. Therefore, a cautious attitude should be adopted

when using these modules.

Furthermore, as we will see later, the metadata explorer allows us to stratify our

cohort in any imaginable way, splitting it across multiple variables, therefore se-

lecting an arbitrary subgroup of samples. This process, especially when carried out

iteratively several times, can lead us to finding needles in a haystack which are not

real but simply an artefact of the small sample size of the selection and repeated

partitioning of the data.

Consequently one should spend ample time with these visualisations to develop

a more holistic view of a dataset, simultaneously examining and interpreting all

associations uncovered by CorrMapper.
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6.2 Metadata explorer

CorrMapper’s metadata explorer enables users to browse their multi-omics studies

together with the collected metadata variables and stratify their samples in an in-

teractive way. As discussed earlier in Section 5.3.3, all uploaded studies are listed

under the profile page. To launch the metadata explorer, we need to click on the

green “Explore” icon next to any of our uploaded studies. CorrMapper will then

perform the following sequence of actions:

1. Omics datasets are first mean centred, and PCA is applied to them to reduce

their dimensionality. The first five principal components are kept for each

dataset. This allows CorrMapper to map the metadata variables onto the

low dimensional representation of the omics data. Ultimately this mapping

enables users to find clinically or biologically relevant connections between

these disparate data sources, and make a decision on the metadata column

they will use as target variable in CorrMapper’s feature selection process.

2. The date column (if it is present in the uploaded metadata file), is parsed

and split into three separate categorical variables: year, month and day of

the week. This latter variable enables users to spot weekly temporal patterns.

These three new date variables are appended to the metadata table.

3. Finally, CorrMapper builds a new dashboard from the metadata file’s columns.

This process is fully automated and uses algorithmic code generation, i.e. a

different chart is generated for each metadata variable, which are then linked

together to form an interactive dashboard. By the end of this process, a

highly complex, study specific JavaScript file is produced, which is unique to

the uploaded metadata and is often more than 700 lines of code. This process

only takes a few seconds, and has to be done just once for each uploaded study.
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6.2.1 Components of the dashboard

As we have seen in Section 5.4.1, the first cell of each metadata column, has to be

the variable’s type to ensure CorrMapper treats it properly. This becomes crucially

important here, as CorrMapper uses these values to infer what type of chart to use

for displaying a given metadata variable.

As shown in Figure 6.1, the metadata explorer is divided into two major parts:

on the left we have the columns of the metadata file, represented as pie and bar

charts, whereas on the right we have one or two scatter plots, displaying the lower

dimensional representation of the uploaded omics dataset(s). First, we will look at

the components that make up the left hand side.

As we will be referencing the metadata explorer of the bariatric surgery dataset

throughout this section, it is recommended that the reader opens this dashboard

from the guest account before proceeding. Furthermore, the demo video on Cor-

rMapper’s website can be helpful for new users, as it provides a brief introduction

to the handling of all three visualisation modules. In the following section each

dashboard variable type is briefly introduced along with its corresponding chart.

Categorical variables

Categorical variables are represented with pie-charts. The levels of each variable are

clearly marked on the slices of these charts. If there is not enough space visually

to display a certain label (as is the case with the Month chart), we can hover over

a slice to find out the name of the level. Doing so will also display the number of

samples that belong to this section of the dataset. If a label of a level is too long to

be displayed on a pie-chart, CorrMapper will display the categorical variable as a

horizontal bar-chart, see the Ethnicity chart for example of the breast cancer study.
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Continuous variables

Continuous variables are represented using bar-charts. The y-axes of these plots

clearly mark the number of samples belonging to each bar, while the x-axes display

the range of each variable.

Patient/sample variable

The patient/sample metadata variable is optional, and it defines a grouping of sam-

ples. In the bariatric surgery study, samples which were obtained at different time-

points for the same patient are grouped using this variable type, which is displayed

as a rainbow coloured pie-chart.

Date variable

If there is a date variable present in the metadata file, as in the bariatric surgery

dataset, the three derived categorical variables (Year, Month, Day), will always be

displayed next to each other as pie-charts, followed by the bar-chart of Dates, which

represents these three variables combined together.

PCA of omics datasets

On right hand side, CorrMapper displays the scatter-plots of two PCA compo-

nents of each omics dataset. Every dot marks a sample, when projected into a

two-dimensional space. Points that are closer together represent samples that are

biologically more similar.

Although by default, the first two principal components are shown, users can easily

chose any other from the precomputed five components, using the “X-axis” and “Y-

axis” dropdown menus, located above each scatter-plot. This can be set separately
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for each PCA scatter plot, or simultaneously by clicking the “Lock PCs” radio

button, which links the axes of both charts together.

Furthermore, the colour of each dot is defined by one of he chosen metadata variables

on the left. This can be changed by the “Colour by” dropdown menus. The colour

could be set to both categorical and continuous variables.

When set to a categorical, the colour of each dot matches the hue of the level a

sample belongs to, i.e. slice of the pie-chart. When set to a continuous, a blue

(minimum) to white (median) to red (maximum) gradient is used to colour each

sample according their metadata value. Similarly to the axes of the PCA scatter

plots, the colouring of these charts can be linked together by clicking the “Lock

colour” radio button.

Data table

CorrMapper also generates a table (located below the charts), which displays the

metadata of each sample precisely, in tabular format. Although, given the pie and

bar-charts, the information contained in this table is to some extent redundant, the

tabular format enables users to quickly glance through the metadata values of a

selected group of patients.
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6.2.2 Cross-filtering

As noted earlier, the metadata explorer is an algorithmically generated JavaScript

program, which is produced for each study individually, using the uploaded meta-

data and omics files. To build the above described components of a dashboard,

CorrMapper uses the dc.js JavaScript library. However, the real utility of these

interactive charts stems from their interlinked nature, which is achieved with the

crossfilter.js JavaScript library.

All components of CorrMapper’s dashboard are interactive and filterable. Pie-

charts, used to display categorical variables, can be filtered by clicking on one or

more of their slices. This will select the samples which have the value represented by

the clicked slice. In the top-left corner of the metadata explorer, a counter displays

the size of our current selection and also the number of all samples. For example,

we can check how many samples did not come from RYGB surgery, by clicking on

the “Sleeve” and “GB” slices of the Operation pie-chart. After we have made this

selection the count in the top-left corner shows 40 samples of the 173.

Very importantly however, when we clicked these two slices, all other pie and bar-

charts have updated too along with the scatter-plots on the right. By selecting

a subset of our full cohort, the distribution of some metadata variables changed

too. For instance, if we now switch the “RYGB” slice on and off (by clicking on it

repeatedly), we can see the histogram of BMI and Age change. Although, within

this dataset, none of these changes seem striking, one can easily imagine scenarios

where this interactive subsetting quickly and easily uncovers interesting associations

between metadata variables.

Furthermore, filters can be applied to the bar-charts of continuous variables too.

By clicking on any of the bar-charts and dragging our mouse (while keeping the left

mouse button pressed down), we can select any range of values along the x-axis.
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This range can be then fine-tuned by dragging the “ears” of the highlighted range

on either side. The whole range can also be shifted, by clicking on it and dragging

it along the x-axis, left or right.

The same logic applies to the PCA scatter-plots. Here we can draw a rectangle

around a group of samples by pressing down on the scatter plot and dragging our

mouse in the desired direction (while keeping the left mouse button pressed down).

This is called a sweep selection, and the edge of a selected rectangle can be individ-

ually modified just as we did with the histograms of continuous variables. Alterna-

tively, the whole selection can be dragged around as well. Doing so will immediately

update the pie and bar-charts on the left. Finally, to my knowledge, CorrMapper

is unique in offering cross-filtering through sweeping on two scatter-plots simultane-

ously, i.e. by drawing a selection rectangle on both PCA plots.

The true power of CorrMapper’s metadata explorer shows however, when we start

to combine selections on different variables. In the example, shown in Figure 6.2,

four filters were applied to the bariatric surgery data, which ultimately filtered the

173 samples down to 36:

1. Firstly, the male participants of the study were excluded.

2. Only females who are older than 45 years,

3. and had RYGB type of bariatric surgery were retained.

4. Finally, two more samples were excluded (shown within the red ellipse in

Figure 6.2), using the PCA scatter-plot of the urinary NMR omics dataset.

Any of these filtering criteria could be individually reset by pressing the blue “reset”

button next to a chart’s title, or by clicking next to the sweep selection area on the

scatter-plot. Alternatively, all of them can be reset together, by pressing the “Reset

all” button at the top-left corner of the interface.
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6.2.3 Responsive layout

One of the most attractive properties of interactive dashboards is their ability to

represent a tremendous amount of information in a single, coherent, visual interface.

In order to achieve this, dashboard designers have to strike a balance between visual

density and clarity.

Too many components will result in a cluttered interface, with illegible legends and

labels. Conversely, displaying too few components will waste valuable space on the

user’s screen, which will lead to an increased amount of scrolling, and a frustrating

user experience.

Therefore it is imperative to consider the screen resolution of users’ interfaces when

we are layouting and rendering dashboards. CorrMapper achieves this, using the

Bootstrap CSS library’s grid system, which is able to render different column layouts

of the dashboard, depending on the resolution of the receiving device.

Furthermore, CorrMapper combines Bootstrap with JavaScript, which allows it to

redraw an already rendered dashboard without refreshing the page, if the resolution

of the viewing port changes, e.g. when users rotates their tablets.

This can be easily tested by resizing the browser window, while browsing the meta-

data explorer. CorrMapper will automatically detect a new resolution and adjust

the layout, size and position of each element in the dashboard.

All three of CorrMapper’s visualisations modules were developed with this dynamic

responsiveness in mind. Consequently, they can be rendered on smart phone screens

or tablets, meaning users can explore CorrMapper’s results even from their mobile

devices while they are on the go. Nonetheless, feature rich omics datasets will

naturally lead to visualisations with very high information content. Therefore, a full

HD or larger resolution is generally recommended for an enjoyable user experience.
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6.2.4 Metadata explorer in use

As shown in Figure 5.6, the metadata explorer plays a crucial part in the overall

pipeline of CorrMapper. It enables users to explore their metadata file in conjunction

with their omics datasets, through a unified dashboard interface. It helps to establish

a meaningful mapping between (clinical) metadata and omics datasets, therefore

it can inform users about which metadata column to use for feature selection in

CorrMapper’s data integration pipeline.

The interactive nature of the metadata explorer lends itself to iterative data explo-

ration, which is ideal for getting to know a new dataset or finding novel associations

in one that is already somewhat understood. However, as alluded to earlier in Sec-

tion 6.1.1, the continued interrogation of a dataset through the interactive slicing

and subsetting of the full cohort, can lead to spurious findings that are statistically

under-powered and non-significant.

Although recently, a novel (and therefore barely cited) method was proposed to

alleviate this problem via an adaptive multiple correction method167, CorrMapper

deals with it by purposefully not showing any statistics or corresponding signifi-

cance level to the user. This simple strategy was also recommended via personal

communications by Professor Emma Hall.

Despite these limitations, the metadata explorer is a valuable data exploration tool

that could be used for the following:

• Check the number of samples belonging to a level of a categorical variable. By

hovering our mouse over a slice of any pie-chart, the metadata explorer will

display the number of samples belonging to that particular group.

• Check how extreme values of a continuous variable interact with other vari-

ables. In the bariatric surgery dashboard, we have multiple samples from the

same patient, from different time-points (pre-surgery, two months and one
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year post-surgery). A logical assumption of this study is that people will lose

weight after the intervention. We can quickly check this, by selecting an ex-

treme range of values on the BMI bar-chart (60-80), then slowly dragging this

selection towards the minimum values (20-40). While doing so, we see that

the Time pie-chart shows pre-surgery samples for high BMI values exclusively,

but once the range of selected BMI values is dragged to the left, pre-surgery

samples become the least frequent ones. With a few simple clicks, we managed

to confirm that the overall majority of people in this cohort, do in fact lose

weight after bariatric surgery.

• Discover associations between categorical variables. In the metadata explorer

of the breast cancer dataset, African American females show a higher pro-

portion of positive progesterone receptor status, when compared to Caucasian

females. However, this can be due to the imbalanced sample sizes: 94 and 21

respectively.

• Check the distribution of continuous variables between different levels of a

categorical variable. In the bariatric surgery study for instance, men have

higher levels of haematocrit than females, which is in concordance with what

we would expect168.

• Discover interesting clusterings on the PCA scatter-plots by colouring the

plots by different metadata variables. This can be made easier by locking the

colour of the two PCA plots together. In the metadata explorer of the breast

cancer dataset, the axis labels tell us that the first two principal components

of the gene expression data explain 13.46% and 12.56% of the total variance

respectively. As shown in Figure 6.3, when the colouring of this PCA plot is

set to oestrogen receptor status, we see a clear separation between the positives

and negatives, which means that samples with similar gene expression profiles

tend to have the same oestrogen receptor status. This simple visual clue

highlights the fact that these tumour types exhibit substantially different gene
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expression patterns. Although this is something that has been well known for

more than a decade169, it is reassuring to see CorrMapper detecting it.

• The mapping of oestrogen receptor status onto gene expression data is the sim-

plest connection CorrMapper can help to visualise. We could further stratify

our cohort by selecting only the patients with a positive receptor status, then

colour the remaining samples by any other metadata variable, therefore exam-

ining a joint relationship between two clinical features and an omics dataset.

Ultimately, the metadata explorer’s utility is greatly determined by the depth of a

researcher’s domain specific knowledge and ability to place the interface’s findings

into a biological context meaningfully.

Figure 6.3: Mapping oestrogen receptor
status onto gene expression. Orange: pos-
itive, blue: negative.

Users are encouraged to familiarise

themselves with the interface’s features

before first using it, by clicking the ques-

tion mark in the top-right corner, and

going through the interactive help sec-

tion. As pointed out earlier, this inter-

face has its caveats and is not perfect.

Hopefully the open-source community

will extend it to provide more sophisti-

cated statistical measures and hypothe-

sis testing procedures. Nonetheless, as

demonstrated above it can already help

to identify biologically relevant associa-

tions between metadata and omics data. To my knowledge, CorrMapper is the first

bioinformatics tool which does this through an algorithmically generated, interac-

tive dashboard. This allows the metadata explorer to cater for the data exploration

needs of a wide user base, including researchers without programming skills.
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6.3 General network explorer

In the previous chapters we enumerated the statistical and computational tools that

make up CorrMapper’s back-end pipeline. To reiterate, CorrMapper estimates the

conditional independence network of the features which were selected by the user’s

choice of FS method.

As explained in Section 5.4 and highlighted by Figure 5.7, while one uploaded omics

dataset will result in a single network, two omics datasets yield three separate net-

works: a bipartite one (N12) and two unipartite networks (N1, N2).

These networks are visualised by CorrMapper in a novel and engaging way. Since

this visualisation module works with any kind of omics data, irrespective of whether

the features have a genomic location or not, it is referred to as the general network

explorer. It can be launched by clicking on the “Explore” button of a finished

analysis on the profile page.

As we have seen, multiple steps of CorrMapper’s pipeline were designed to alleviate

the common problems arising from p > n omics datasets: from filtering out low

variance features, through using metadata driven feature selection to regularising

the covariance estimation. Nonetheless, even with these preventive measures in

place, we can arrive at very dense networks which are extremely hard to interpret.

The general network explorer was designed with these complex networks in mind, as

it enables users to focus their investigation on subsections of large networks. These

sub-modules can be either identified by the user or left to CorrMapper’s clique

finding algorithms to find them. Furthermore, to provide different viewpoints, the

same network module can be examined through three different but complementary

visualisation modes. These functionalities make the general network explorer an

integral tool in CorrMapper’s data exploration and integration pipeline.
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6.3.1 Components of the general network explorer

As in case of the metadata explorer, due to the highly interactive and dynamic na-

ture of the general network explorer, watching CorrMapper’s demo video is strongly

recommended before reading on. Furthermore, the guest account has several com-

pleted analyses, which will be referred to throughout the description of general and

genomic network explorer modules.

Control panel

The general network explorer’s control panel is located at the top left of the interface.

If the analysed study has more than one omics dataset, CorrMapper will open its

bipartite network (see N12 in Figure 5.7) by default, when we click the “Explore”

button of an analysis on the profile page.

However, the “Load” drop-down menu of the control panel enables users to load

the other two univariate networks (N1 and N2). These will open in a new browser

windows that can be resized and positioned as needed, allowing for the simultaneous

exploration of multiple networks. The other functionalities of the control panel will

be introduced in the following sections, while describing the visualisation module.

Heatmap

Below the control panel, lies an interactive heatmap, which provides a quick overview

of the network topology. Column and row labels display the names of the selected

omics features. In case of a bipartite network, the row and column labels are dif-

ferent. Conversely, univariate networks are symmetrical, meaning they are mirrored

over the heatmap’s diagonal, therefore the column and row labels are matched.
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Red cells represent positive correlations, while blue cells show negative ones. Left

from the heatmap, a colour bar displays the full range of Spearman correlation

values that could be found in the network. As we roll over any of the heatmap’s

cells, a triangle shaped tick indicates where exactly the given cell’s correlation value

lies within the range of all values. This might be easier and more accurate to read

than shades of colours.

Importantly, once we hover over a heatmap cell, an information rich scatter-plot

pops up displaying the following:

• Names of the two features that produced the correlation. Note, how simulta-

neously the corresponding column and row labels are also highlighted.

• Exact Spearman ρ and p-value found between these two features.

• A scatter plot of the actual data that went into producing the correlation.

This scatter plot is coloured by the metadata variable that was used to select

the features.

• If the metadata variable used for FS during the analysis is a categorical one,

then the data points are divided into as many groups as many levels the

variable has. Then a linear regression is fitted to each of the groups. For each

group, the scatter plot display the fitted line, along with the bootstrapped

68% confidence interval, i.e. one standard error of the slope coefficient.

As we will see later, these scatter plots let us assess the quality of data behind

each heatmap cell. They also help with the understanding and interpretation of

individual associations within a network. These plots can be hidden with the “Hide

scatters” button of the control panel.

The rows and columns of the heatmap can be reordered using the “Reorder” drop-

down menu of the control panel. By default, the rows and columns of the heatmap

are ordered so that the network modules identified by CorrMapper could be visu-

alised easily (see more about this in Section 6.3.2). Nonetheless, other orderings of
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the heatmap might be useful for identifying modules of tightly linked features. To

facilitate this, CorrMapper offers three more options for reordering the columns and

rows of the heatmap:

• Clusters of omics data type: sort rows/columns using hierarchical clustering,

so that features with similar omics data values (e.g. gene expression) are

rendered close to each other.

• Clusters of correlations: sort rows/columns using hierarchical clustering, so

that features with similar correlation values rendered close to each other.

• Feature names: sort the rows/columns labels alphabetically or numerically.

This option can be very useful for NMR datasets, where the feature names

represent the position of each peak along the parts per million (ppm) scale. By

ordering these NMR features names numerically we reconstruct the order of the

peaks in which they appeared in the spectra, which makes the interpretation

of the heatmap for a trained professional much easier.

Furthermore, if we hover over any of the row or column labels of the heatmap and

keep our mouse there for half a second, both network visualisations will automati-

cally redraw themselves to focus on the feature of interest. Doing so, immediately

highlights a feature’s location and neighbourhood in the network, which allows us

to quickly gauge its relationships with other nodes and therefore possibly, infer its

biological function or role.

Finally, by clicking on any of the row or column labels, we can sort the heatmap by

the clicked feature’s correlation values. Since hubs (i.e. a feature with a high num-

ber of connections) play a central role in scale-free biological networks134, features

that are negatively correlated with such a central feature should behave distinctively

differently from features that are positively correlated. Therefore, this sorting fea-

ture might be very helpful, if we have a hub node, and we want to cluster the other

features based on their positive or negative correlations with this central node.
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Regular network

On the right hand side of the interface we find an interactive network, which -

depending on the graph being visualised - is either bipartite or unipartite. In case of

a bipartite network, the control panel’s “Legend” drop-down menu clearly displays

which node colour represents which omics data type.

Edges of the network match the heatmap’s colouring scheme, and correspond to the

strength and direction of correlations between features. Furthermore, this informa-

tion is also emphasised by the width of each edge.

Although this network representation displays the same information as the heatmap,

it does so through a different visual modality, which helps to identify larger con-

nectivity patterns of the graph, including long, contiguous paths. Finding these by

examining the matrix of a heatmap would be much harder.

By hovering over any of the nodes, a tooltip pops up with information about:

• The exact Spearman ρ values between this particular feature and its neigh-

bours in the graph.

• If the metadata variable used for FS was a categorical one with two levels (e.g.

Gender: female and male), this tooltip will also display the median fold-change

between the two levels. The level which is alphabetically or numerically ranked

first is used as the numerator, while the other level of the binary variable is

the denominator. In our example: medianFC = median(female)
median(male)

.

If we click on any of the nodes, the network zooms in to display only the clicked

node along with its closest neighbours. Importantly, the non-neighbouring nodes

that fall into this zoomed in display window are faded but still can be clicked.

Now, we can click any node within the display window (even non-neighbours) to

pan the zoomed in region to that particular feature and its closest neighbours.
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Alternatively, we can click the node we just clicked once again to reset the zoom.

As we will see later, the zooming can be reset in two other ways as well.

Finally, by keeping our mouse over the network and scrolling with the mouse-wheel,

we can zoom in on any part of the graph. Once zoomed in, we can pan to other

sections of the network by clicking on its edges and dragging our mouse around.

This feature of the interface makes node labels legible in even extremely dense

networks, while also helping with the exploration. The zoom can be reset to its

default level, by clicking on the “Reset” button of the control panel, or pressing the

Escape key on our keyboard.

Figure 6.5: Ring graph of the general network explorer. At the centre of the graph
we see the peak of Trimethylamine N-oxide (TMAO) from the “L1 time” analysis
of the bariatric surgery dataset. This compound is positively correlated with four
strains of bacteria, as listed by the legend in the top-right corner. These four OTUs
are linked with further NMR peaks, displayed as the outer circle the graph. Each
node can be clicked, which helps to quickly traverse the bipartite network.
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Ring network

Below the heatmap we find a strange looking network, which comes to life once

we click on any of its nodes. While the regular network displays only the closest

neighbours of a clicked node, this ring network displays the closest and second closest

neighbours of a clicked node. This is very valuable, especially in bipartite graphs,

where the second closest neighbours of any node are by definition the same variable

type as the clicked one.

Just as with the regular graph visualisation, the ring network displays a tooltip if

we hover over any of its nodes. Importantly though, once a node is clicked, this

tooltip gets fixed to the top right corner of this module, allowing users to hover over

other nodes, while still seeing the exact Spearman ρ and fold change values of the

previously clicked feature.

Finally, similarly to the regular network, this module also supports zooming and

allows users to click any of the closest and second closest nodes once the network is

zoomed in. This latter feature of the interface enables researchers to quickly traverse

long paths of a graph with a few clicks.

6.3.2 Module selection with interlinked components

The real power of the general network explorer comes from the interlinked nature

of the above described three components and from the interface’s ability of focusing

on any subsection of a graph. For instance, as mentioned earlier, if we click on any

of the heatmap’s row or column labels, both networks will focus themselves onto

that particular feature. Furthermore, the clicked row or column will get reordered

to display the Spearman ρ values of the selected feature in ascending or descending

order (clicking on the same feature twice will toggle between the orderings).
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In the following sections, we will see how the fluid integration of these three visu-

alisation modules applies to sub-network selection, which is one of the key features

of the general network explorer. Unfortunately, this cannot be captured by static

figures, therefore the reader is strongly encouraged to use one of the guest account’s

analyses, to try out the user actions described in the following paragraphs.

Selecting modules found by CorrMapper

As alluded to before in Section 5.4.3, at the end of its pipeline, CorrMapper tries

to identify interesting cliques or modules within the estimated conditional indepen-

dence graphs. These modules represent closely linked features, which seem to belong

together given the estimated network’s connectivity patterns.

Note however, that these modules are derived using general graph theoretical con-

siderations and no biological information or knowledge goes into their identification.

Therefore, it is up to the user to verify the biological validity or value of these.

Modules identified by CorrMapper can be displayed by ordering the heatmap’s

columns and rows by modules (which is done by default when opening the general

network explorer), and selecting any of the identified cliques from the “Modules”

drop-down menu of the control panel.

Once a module is selected, its corresponding cells are highlighted within the heatmap

by a black border. Furthermore, the labels of these features are also highlighted.

At the same time, both networks are filtered to only show these connections and

nothing else. If we now click on any of the regular or ring network’s nodes we will

be only exploring the edges that are within this module.

Given a complex and dense graph, this filterable aspect of the general network

explorer becomes invaluable, as it allows researchers to quickly iterate over simpler

and smaller modules of the network as opposed to assessing the whole graph at once.
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Selecting user defined modules

The general network explorer also allows users to define any custom module and

focus their investigation on this selected sub-graph. By clicking on any of the

heatmap’s cells and dragging our mouse to the right and down, we draw a rect-

angle which gets fixed once we release the left mouse button, see Figure 6.6.

Very importantly, we can add to this selection new rectangles by repeating the

above described process while holding down the Shift key on our keyboard. This

way, any combination of edges can be grouped together into a module or selection,

to be explored separately from the rest of the network. Furthermore, by using the

“Reorder” drop-down menu of the control panel, the heatmap can be rearranged in

several ways to help with drawing these rectangular selections.

As in case of the modules found by CorrMapper, both networks are automatically

filtered to only show the selected edges and features of the chosen sub-module.

Any selection (including modules found by CorrMapper) can be cancelled either

Figure 6.6: Selecting user defined modules in the general network explorer. A
cluster of negative correlations are selected from the gene expression data of the
“estrogen receptor” analysis: see heatmap cells with black border. Consequently,
the dense network is filtered and now this sub-module can be explored in isolation.
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by clicking the control panel’s “Reset” button, or pressing the Escape key on our

keyboard.

Irrespective of whether we have selected a module identified by CorrMapper or a

user defined one, by clicking the “Copy to clipboard” button, every feature in the

clique will be pasted to our clipboard. This can be helpful in literature search,

if we want to check whether these particular features have already been described

together. Finally, the control panel’s search bar allows users to quickly find any

feature by their name. As we type in a few letters or numerals, all row and column

labels which contain this search string will get highlighted instantaneously.

6.3.3 General network explorer in use

The aim of the bariatric surgery study was to increase our understanding of the bio-

chemical changes that occur after weight-loss surgery, by capturing a comprehensive

omics snapshot of obese individuals before and after their operation. As discussed

in Section 2.1, bariatric surgery can provide numerous health benefits to patients,

including resolving type 2 diabetic status and improving life-expectancy.

However, these procedures are fairly costly and can lead to postoperative compli-

cations. Therefore, a deeper understanding of the involved biochemical pathways

is vital, as these can potentially lead to drugs and therapies which can induce the

same metabolic changes and positive outcomes without surgery.

Obesity and bariatric surgery are both known to substantially alter the gut micro-

biota74,170. Consequently, this multi-omics study intended to characterise how the

metabolism of patients change after weight-loss surgery, and identify cross-species

metabolic interactions that might broaden our understanding of the complex inter-

play between the host and the gut microbiome.
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Figure 6.7: Mapping time-point of sam-
ples onto 16S rRNA data presents well
formed clusters. This highlights the fun-
damental changes in microbial composi-
tion that occur after weight loss surgery.
This plot only shows patients who under-
went RYGB operation. Green: pre-op,
orange: 2 months post-op, blue: 1 year
post-op.

The study included patients who un-

derwent three radically different surgery

types: RYGB, sleeve and gastric band.

To reduce the cohort’s heterogeneity for

the analysis, only the RYGB patients

were included, see “bariatric rygb”

dataset on the guest account’s profile

page. As we can see on Figure 6.7,

when the samples are coloured by time-

point, the 16S rRNA data already shows

promising separation within the meta-

data explorer. Therefore, to assess the

molecular and microbial changes that

occur after the surgery, two analyses

were run on the “Time” metadata vari-

able using L1 SVC and Boruta for fea-

ture selection.

Please note that the bariatric dataset did not have enough (15 or more) postop-

erative samples from one year after the surgery. Therefore, CorrMapper’s pipeline

automatically excluded this level of the categorical outcome variable from the anal-

ysis. Consequently, all subsequent modelling was done on the preoperative and 2

months postoperative samples.

As expected from the benchmarking experiments (discussed in Section 5.2), L1 SVC

selected a lot more features than Boruta. Therefore, opening the “L1 time” analysis

from the guest account’s profile page, leads us to a much larger and denser network

than what we find by clicking the “boruta time” analysis. Due to its network size,

the former analysis can be used to test CorrMapper’s module selection and network
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filtering capabilities very effectively. However, the following paragraphs will focus on

the results of the latter, as it is easier to interpret and navigate. Figure 6.4 displays

the bipartite inter-omics network of the “bariatric rygb” dataset with Boruta feature

selection. The selected network is small and easy to navigate, yet as we will see it

holds a surprising amount of biologically relevant information.

The features identified by Boruta as relevant are in agreement with platform spe-

cific modelling techniques. The DESeq2 algorithm171 was used through the QIIME

pipeline172 to assess which OTUs are differentially abundant between the preopera-

tive and postoperative samples. Seven out of eight OTUs identified by Boruta are in

top twenty selection of DESeq2, see Table S4. This is remarkable, since DESeq2 is a

highly sophisticated tool which is specifically designed for 16S rRNA data. It models

the count data of OTU tables as negative binomial distribution and uses empirical

Bayes shrinkage to estimate the fold-change between two group of samples. Boruta

on the other hand is a general purpose feature selection method, yet it discovered

several important OTUs that are in agreement with the results of DESeq2.

Furthermore, the NMR peaks selected by Boruta are in agreement with what was

found by O-PLS modelling, see panel A of Figure S7. This O-PLS model found that

the postoperative urine samples showed increased Phenylacetylglycine (PAG) and

TMAO levels, while the concentration of creatinine and 3-Hydroxybutyric acid (3-

HBA) was lower after surgery. This is in concordance with what has been reported

in RYGB operated rats173.

As shown in Figure 6.8, relevant peaks of PAG, TMAO and 3-HBA were correctly

identified by Boruta. The peak at 2.1228 belonging to an unidentified compound

was also indicated by O-PLS to be differentially abundant between preoperative and

postoperative samples. This agreement of Boruta with O-PLS also highlights that

the peak fitting pipeline (described in Section 2.1.1) has correctly identified and

captured key spectral signatures of numerous relevant metabolites.
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Figure 6.8: Boruta identifies relevant metabolites and OTUs. When assessing dif-
ferentially abundant features between pre-op and postoperative samples, Boruta
correctly identified (in agreement with platform specific modelling tools) six out of
seven NMR peaks and seven out of eight OTUs.

Both PAG and TMAO have been indicated to be involved in the intricate metabolic

interplay between human hosts and their microbiome. PAG has been previously

described as a gut microbial cometabolite in mice174, while TMAO is an oxida-

tion product of Trimethylamine (TMA), which is produced exclusively by the gut

microbiota in humans. TMA is derived from choline within these microbes.

TMAO is an osmolyte that the body uses to counteract the effects of increased

concentrations of urea due to kidney failure, thus high levels of it can be indicative

of kidney problems175. Therefore, the elevated levels of TMAO is surprising as

weight loss surgery has been indicated to improve renal function in those with hyper

filtration176. Furthermore, TMAO alters cholesterol metabolism as it increases its

deposition within, and decreases its removal from peripheral cells such as those in

the artery wall. This in turn explains its involvement in cardiovascular disease177.

The high positive correlation between the OTU 4353951 and TMAO motivated a

follow-up experiment, that was carried out by Dr. Jia Li, who is the lead investigator
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on the bariatric surgery study. Dr. Li was able to culture Klebsiella oxytoca using

a choline subtract, and repeated NMR profiling of the cell media demonstrated

conclusively that this strain of bacteria can produce TMA, as the choline was used

up and the concentration of TMA increased.

Consequently, we could hypothesise that the level of Klebsiella increases after bariatric

surgery, which leads to higher TMA and ultimately TMAO production in patients.

Given the above listed known biological effects of TMAO, one could aim to manip-

ulate the gut microbiota of bariatric surgery patients to reduce TMAO production

and ultimately lower their risk of postoperative cardiovascular diseases.

CorrMapper was designed to inspire novel testable hypotheses and follow-up exper-

iments like the one described above. The fact that CorrMapper managed to identify

biologically relevant features which are concordant with the findings of platform

specific tools suggests that it might be a viable platform-agnostic data integration

tool. Furthermore, CorrMapper managed to reduced the overwhelming complexity

of this multi-omics study to a small network of cross-species metabolic interactions,

of which several are biologically plausible and one has been experimentally verified.

Nonetheless, as panel B of Figure 6.9 shows, the positive correlation between OTU

4353951 and TMAO in Figure 6.8 stems from noisy biological data that does not fully

conform with the above outlined hypothesis. The scatter plot is directly taken from

the downloaded results of the “boruta time” analysis, which is also automatically

displayed if we hover over the relevant cell of the heatmap.

Even though the abundance of Klebsiella is clearly higher in postoperative samples,

this is not necessarily true for the concentration of TMAO. In fact most postoper-

ative samples seem to have similar levels of TMAO as the preoperative ones. This

mismatch between our perception of the data (as informed by a single correlation

statistic) and its real nature, highlights the importance of these scatter-plots and

why colouring them by the target variable of feature selection can be illuminating.
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Figure 6.9: Interactions between urinary metabolome and gut microbiome in
bariatric surgery patients. These scatter plots were taken from the downloaded re-
sults of the “boruta time” analysis. A: Higher levels of this strain of Streptococcus
is more prevalent in postoperative samples, which is coupled with higher concen-
trations of PAG. B: Although Klebsiella is more abundant in most postoperative
samples, the concentration of TMAO does not follow this trend so clearly.

Panel A of Figure 6.9 shows another strongly positively correlated feature pair.

However, in this instance, the association seems clearer as postoperative samples

tend to have higher abundance of this particular Straptococcus strain and also higher

concentration of PAG. The interpretation of these results is still ongoing and will

be part of a publication describing the bariatric surgery study and its analysis.

In summary, the interactive graph interfaces of the general network explorer provide

additional viewpoints that can lead to valuable insights. While the heatmap can be

highly useful on its own, the bipartite network on the right hand side (see Figure 6.4)

can expose interesting connections between features and modules that are seemingly

distant when observed in a tiled, tabular view in a heatmap. This is especially true

in larger networks such as the one produced by the “L1 time” analysis.

Although none of the components of the general network explorer are truly new

or revolutionary, it could be argued that when combined together, they provide a

powerful and novel way to interactively explore the complex correlation networks of

omics datasets with great ease.
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6.4 Genomic network explorer

Although the general network explorer is a powerful data exploration interface,

when omics features have genomic locations, they can be visualised in a much more

engaging way by exploiting this information. By mapping the selected genomic

features onto the studied species’ circular chromosomal map, we not only obtain

a visually pleasing chart that is laid out in a biologically meaningful way, but this

arrangement also helps researchers (who have been often studying the given organism

for years or decades) to quickly navigate and find certain features such as genes,

methylation or single nucleotide polymorphism sites.

CorrMapper’s genomic network explorer can be launched from the general network

explorer’s control panel by clicking the “Load” drop-down menu and selecting the

“Genomic explorer”. The following sections introduce the components of this in-

terface and explain the close interplay between them. As with both previous visu-

alisation modules, the reader is encouraged to watch the corresponding segment of

CorrMapper’s demo video and use the guest account to open the genomic network

explorer for one of the analyses of the breast cancer study.

6.4.1 Components of the genomic network explorer

The genomic network explorer is composed of two main components which are fully

interlinked. A circular graph is positioned on the left hand side, which displays the

genome of the studied species. On the right, interactive, searchable and sortable

tables complement this circular visualisation with annotation information.

The control panel in the top left corner of the interface is a simplified version of the

general network explorer’s menu, therefore to avoid redundancy, its functionalities

are not reiterated here.
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Circular network

The circular graph of the genomic network explorer displays a whole genome in

clockwise fashion. As we have seen in Section 5.3.2, CorrMapper supports a number

of commonly used model organisms, but for the remainder of this chapter we will

assume that the reader is looking at data from a human study.

Since the human genome has more than 20,000 genes, we can end up with several

hundred features to visualise even after employing feature selection. Furthermore,

in a multi-omics study the number of selected genomic features can add up to much

more than we can display in a circular plot without making it overly dense and

therefore severely compromising the interface’s visual clarity.

Therefore, CorrMapper bins the genomic features into 300 equally sized buckets.

For instance, in case of the human genome, each bucket is 10 Megabase Pair (MbP)

long. This binning process is done using a species specific chromosomal map that is

pre-calculated based on the statistics found for the species’ latest assembled genome

in the UCSC Genome Browser178.

Given the precise chromosomal location of a given genomic probe, CorrMapper

decides which feature belongs to which bin based on these chromosomal maps. This

is the reason why on the upload page, CorrMapper asks the users to specify the

species of their study.

In the breast cancer study, we will find the buckets of the first chromosome starting

at 12 o’clock. As we move clockwise around the circular plot, we see the buckets

of human autosomes laid out in order, and at half 11 we arrive at the X chromo-

some’s buckets. Although breast cancer affects men too, this particular study only

recruited female participants, therefore we do not see any features mapping to the

Y chromosome. Furthermore, to aid visual clarity, buckets of the same chromosome

are grouped closer to each other.
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The label of each bucket displays not just the chromosome’s name or number (de-

pending on species specific convention), but also the start and end position of the

bucket in MbP. The size of each node represent the number of features that mapped

to this particular genomic bucket. Note, that in case of a bipartite graph, features

could map to the same region from both omics data type.

Due to the above described binning process, the network’s edges most often do not

represent a single correlation between two features, but instead numerous corre-

lations between several features, mapped to two genomic regions. Therefore, the

colour of each edge cannot be easily equated to a single correlation value.

In fact the edge colour is calculated by mapping the mean of correlation values within

an edge onto the blue-red gradient that is used in the general network explorer.

Consequently, red edges connect genomic regions (10 MbP long in case of humans)

which are mostly positively correlated, while blue edges link negatively correlated

regions. Purple edges on the other hand hold a mix of these. Therefore, the circular

network provides a high level overview of the connectivity patterns between different

regions of the genome.

Similarly to the general network explorer, this interface was designed with dense

graphs in mind. Consequently, the visual clarity of an overly dense or complex

genomic network can be increased in several ways:

• Hovering over any of the nodes will highlight its links, while all other edges

become faded. This helps to visualise where exactly the connections of a

certain genomic region lead.

• By using the “Corr filter” slider above the network, the edges can be filtered

to only retain a certain range of mean correlation values. This simple tool

enables users to assess which regions of the genome are positively or negatively

correlated, by adjusting the left and right tick of the slider respectively.
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• A circular plot with straight edges is very uneasy on the eye that gives a vi-

sually cluttered feeling. To alleviate this, CorrMapper uses the hierarchical

edge bundling capabilities of d3.js, which bends the network’s edges so that

links heading in similar direction are drawn closer to each other. The “Edge

bundling” slider can be used to adjust this: 0% corresponds to the straight

edges, and 100% results in heavily bundled edges. We recommend users ex-

periment with this until they find a visually pleasing representation of the

graph.

• Finally, edges can be filtered based on the number of correlations contained

in them. For instance, by filtering out the links with a single correlation,

this functionality helps to focus our attention on strong edges which connect

heavily connected and correlated genomic regions.

Interactive tables

While the circular graph on the left provides an excellent high level overview of the

connectivity patterns between large stretches of genomic regions, the right hand side

is occupied by two interactive, searchable and sortable tables that enable researchers

to dig deeper and assess the individual correlations. These tables are automatically

filled with the annotation uploaded by the user, therefore they can hold any type of

valuable information about the features.

For the binning of genomic features CorrMapper requires users to provide a name,

chromosome number, start and end position for each probe. These are mandatory

fields, without which CorrMapper cannot bin, and consequently cannot map features

onto the circular genomic network. Therefore, while checking the uploaded files,

CorrMapper will discard any genomic feature from the omics data files which do not

have a precise location within the provided annotation files.
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However, as mentioned above, users can provide any sort of extra information for

their features as additional columns of the annotation file. Table 6.1 describes the

breast cancer dataset’s annotation files.

Omics
dataset

Annotation
column

Description

GE

Name Mandatory annotation field. Name of the gene ex-
pression probe.

Chromosome Mandatory annotation field. Chromosome on
which the probe is located.

Start Mandatory annotation field. Start position (in
basepairs) of the region to which the probe hy-
bridises.

End Mandatory annotation field. End position (in base-
pairs) of the region to which the probe hybridises.

GeneSymbol The colloquially used nickname of the gene. Often
the same as the gene’s formal name.

GeneTitle The gene title comes from the DEFINITION line of
the record within the GenBank database179.

PublicID The accession number assigned to the gene by
NCBI.

EntrezID The gene’s unique identifier in the Entrez database.

Cytoband Name of the chromosome’s cytoband to which the
gene belongs to.

EC Enzyme Commission number for the numerical
classification of enzymes.180

CNV

Name Mandatory annotation field. Name of the copy
number variation probe.

Chromosome

See gene expression part of table.
Start

End

Cytoband

LinkedFeature Genes that are linked to the CNV probe’s genomic
region.

Table 6.1: Description of the breast cancer study’s annotation fields. Within this
dataset we have two omics data types: Gene Expression (GE) and Copy Number
Variation (CNV). The information for these fields were obtained from the vendor’s
website and the GenBank database. The annotation data was cleaned then collated
together into two files using Python scripts. Mandatory annotation fields (Name,
Chromosome, Start, End) are required by CorrMapper’s feature binning process.
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In case of a bipartite network, the two tables hold different omics data types. How-

ever, the reason for having two separate tables even for unipartite networks, will

become clear in the next section. We can switch between these tables by either

clicking on their tabs at the top (labelled as “gene expression” and “copy number

variation” in the breast cancer study) or by simply using the left and right arrows

of our keyboard.

By default, both tables are ordered according to their features’ genomic locations

using the Chromosome, Start and End columns. The ordering of tables can be easily

changed however, by clicking the icon (depicting two arrows pointing in the opposite

directions) next to any column header. Pressing the sort icon multiple times will

switch between ascending and descending orderings. Furthermore, by holding down

the Shift key, the tables can be sorted simultaneously by multiple columns.

The search bar, located at the top right corner of the interface, allows researchers to

quickly find any genomic feature by their name or any other additional information

field uploaded with the annotation files. As the two tables have separate search

bars, they can be filtered completely independently using different queries.

Finally, if the user provided a lot of additional information columns in the uploaded

annotation files, these tables can become quite dense and hard to navigate. This

problem can be alleviated by toggling the visibility of certain columns, using the

“Toggle column” menu bar above the tables. Columns which were set to be invisible

are still searchable however.

6.4.2 Interlinked components

Similarly to CorrMapper’s previously introduced other two visualisation modules,

the genomic network explorer gains most of its power from the closely interlinked

nature of its components. While the network provides a zoomed out overview of the
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genome, displaying major connectivity patterns of different chromosomal regions,

the tables complement this and act as magnifying glasses that allow researchers to

zoom in on any region of the graph of genomic correlations.

Hovering over a row of the tables displays this selected feature’s location in the

genome by highlighting its node and connections. Since the tables are order accord-

Figure 6.11: Navigating the tables of genomic network explorer. Top: Clicking on
the ZIC1 gene (denoted with the first red circle) will open its sub-table and show all
CNVs that are correlated with it. Middle: At the same time, the right tab at the
top of the tables changed from “copy number variation” to “20673 at”. Bottom:
Clicking on this tab (denoted with the second red circle) will open the other table
which now lists all three of the correlated CNVs.
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ing to genomic location by default, hovering over the first row will highlight the first

chromosomal bucket, i.e. a node which is at almost 12 o’clock. Then, as we hover

over rows further down, nodes and their edges light up in clockwise fashion.

Clicking on any of the genomic features Xs in a table T1 causes the following:

• The features which are correlated with the selected one Xc, are displayed in a

sub-table below the clicked row. This sub-table holds the names of Xc, along

with the Spearman ρ and p-values of their correlation with Xs, see Figure 6.11.

• Hovering over any of the sub-table’s rows displays the same information rich

scatter-plot that was introduced in Section 6.3.1 while discussing the heatmap

component of the general network explorer. This allows users to assess the

data of each feature-pair and examine how the selected metadata variable

maps onto them. The control panel’s “Hide scatters” button could be used to

hide these figures.

• The sub-table’s rows cannot be clicked. Instead, clicking on Xs re-renders the

other interactive table T2, which gets populated with the annotation of Xc.

This is also signified by the changed label of the other table’s tab at the top,

which now says Xs. We can easily access T2 by either clicking on its tab at

the top or by using the left or right arrow keys on our keyboard.

Once we are at T2 we can examine the annotation of each feature within

Xc, or check their location in the genome by hovering over the rows if T2.

Furthermore, we can also click any features within T2, which now will become

Xs2, and consequently a sub-table will be draw below it with its correlated

neighbours Xc2. The label of T1 will change Xs2 and the features of Xc2 will

be used to populate T1.

This process of jumping back and forth between the two tables by clicking on

correlated features of Xs, can continue infinitely and it provides an easy way

to traverse the circular graph one neighbouring variable-pair at the time.
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Importantly, clicking on Xs permanently highlights its position and connections

within the circular network. This means that if we now hover over other rows of

T1, even though their location is still highlighted within the network, but once we

roll our mouse out of the table’s area, Xs gets highlighted again automatically. The

network can be brought back to its default state by either clicking the “Reset”

button of the control panel, or by pressing the Escape key on our keyboard.

6.4.3 Genomic network explorer in use

Three analyses have been performed on the breast cancer study to demonstrate the

genomic network explorer, using the following metadata variables as target for fea-

ture selection: “DeadOfDisease”, “TumorStaging” and “EstrogenReceptor”. These

analyses could all be accessed from the guest account’s profile page. The interpre-

tation of these results is still in progress by our collaborators, and will be part of

CorrMapper’s paper. Therefore, in this section we only take a very brief look at one

particular preliminary result, which also requires further investigation.

The “dead of disease” analysis revealed the Mucin 1 (MUC1) gene as a relevant con-

tributor to patient outcome. This gene is a heterodimeric protein, formed by two

subunits, which has been shown to be aberrantly overexpressed in human breast

and other cancers. Its transmembrane MUC1 C-terminal subunit (MUC1-C) func-

tions as a druggable oncoprotein, which contributes to the activation of several key

cell signalling pathways (PI3K, AKT, MEK, ERK)181. As the genomic network ex-

plorer reveals, this gene is positively correlated with three amplified CNV probes

on the first chromosome, while negatively correlated with two probes, located on

the eleventh and sixteenth chromosomes. Figure 6.12 highlights the relationship

between the MUC1 gene (probe 207847 s at) and one of the amplified CNV probes

(RP11-131M16). As we can see, patients who died during the study period, exhib-

ited an even stronger positive correlation than the rest of the cohort.
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6.5 Summary

CorrMapper was designed to be a multi-faceted research tool that focuses equally on

multi-omics integration and advanced data visualisation. Although, in recent years,

numerous novel visualisation tools have been proposed for biomedical research, few of

them can match the level of interactivity and overall versatility of CorrMapper. The

following paragraphs briefly introduce several interesting tools whose functionality

partially overlaps with CorrMapper’s visualisation modules.

Cytoscape is an offline network exploration and interactive visualisation tool, that

has proven to be very popular in life science research159. Due to its numerous

features and functionalities, Cytoscape is a fairly complex application, which requires

substantial amount of learning from the user. Furthermore, Circos182 is a very

capable visualisation package that can be used to produce circular network plots,

which are very information dense and resemble the chromosomal map of the genomic

network explorer. However, Circos can only generate static, non-interactive figures,

and requires programming knowledge from the user.

iCanPlot uses the Canvas element of the HTML5 standard to visualise gene ex-

pression data as an interactive scatter-plot in the web-browser. Given a dataset of

thousands of genes, researchers can interactively select a subset of them and the tool

will calculate gene set overlap statistics using these genes. The software is available

online at www.icanplot.org183. Although the online availability and interactivity of

iCanPlot is appealing, it is highly specialised for gene expression data and cannot

be used for multi-omics studies.

jHeatmap is an open-source JavaScript library that allows for the interactive explo-

ration, sorting and filtering of tabular biological data184. The package implements

these functionalities as a set of JavaScript classes, which could be used to build
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powerful and highly interactive heatmap visualisations. However, doing so requires

deep expertise in programming and JavaScript.

ReconMap uses the Application Programming Interface (API) of Google Maps to

display the genome-scale reconstruction of human metabolism in a web interface185.

This manually curated and crafted metabolic network is available at http://vmh.uni.lu,

and it represents an invaluable resource of information for biomedical researchers,

that can be browsed interactively. Additionally, users can manually overlay their

simulated or real omics data onto the graph, by specifying a different colour and

thickness to each node and reaction. Therefore, ReconMap can be a very useful

for human studies, once the exact multi-omics interactions we want to visualise are

already identified, however, it cannot help with the discovery of these connections.

The recently published NaviCom186 is a very capable multi-omics data visualisation

platform, available at https://navicom.curie.fr. It relies on cBioPortal187, which col-

lects and catalogues large-scale cancer studies with expression data for mRNA, mi-

croRNA, proteins, mutation, gene copy number and methylation profiles. NaviCom

does not require any programming knowledge, and allows users to select subgroups

of patients based on their metadata. Once a multi-omics study is selected from

cBioPortal, NaviCom will automatically map the disparate omics data types onto

a manually created molecular network from the Atlas of Cancer Signalling Network

(ACSN)188 or the NaviCell database189. The mapping of omics data onto the chosen

biochemical network is done using bar-charts, heatmaps and glyphs depending on

the type of the visualised omics dataset.

Users can interactively traverse, search and explore this highly information-rich map,

which contains omics data from multiple analytical platforms. Although NaviCom

is a truly exceptional research tool and a fine example of advanced multi-omics

visualisation, users are currently restricted to studies about human cancer, which

have already been published and deposited in either ACSN or NaviCell.
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Despite their numerous merits, all the above described methods are highly spe-

cialised for either certain data types, species, diseases or a distinct type of graphical

outputs. Although limiting the scope of these projects allowed their creators to tai-

lor their solution to a particular visualisation problem, naturally, this also restricted

the overall utility and applicability of these tools in a wider context. For example,

both ReconMap and NaviCom focus on human metabolism only, and consequently

cannot incorporate metagenomics data or contribute to the actively researched field

of host-microbial metabolic interactions190.

Conversely, CorrMapper was designed to be data type agnostic, and this principle

was also guiding the development of its visualisation modules. Therefore, CorrMap-

per is similar to mixOmics, whose authors worked hard in recent years to improve

the interpretability of latent variable models such as CCA and PLS, through novel

visualisation modes162.

For instance, given the first two latent variable dimensions of a fitted PLS model

U1 and U2, mixOmics uses correlation circle plots to visualise the similarity between

features. This is done by projecting each feature Xj onto U1 and U2, and plotting

it as a vector with cor(Xj, U1) and cor(Xj, U2) as x and y coordinates respectively.

The angle between these vectors can be interpreted as the correlation of two features

within the U1, U2 space. The angle is sharp if two features are positively correlated,

obtuse if the correlation is negative, while the angle is right if the correlation is zero.

Although this allows researchers to quickly identify positively and negatively cor-

related features from a single plot, the associations discovered in these graphs only

pertain to the chosen latent dimensions. This might not be a problem if for example

the first two score vectors capture the majority of variation in the datasets. However,

if this is not the case, then the interpretation of the overall relationship between two

biological features remains a challenging problem in latent variable models.
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Similarly to CorrMapper, mixOmics can generate networks and hierarchically clus-

tered heatmaps from the above described latent variable correlations. It relies on

Cytoscape to visualise networks, and it can only build bipartite ones, potentially

missing interesting associations between the features of a single omics dataset within

the N1 and N2 networks. More importantly, mixOmics builds marginal correlation

networks using a user specified threshold. As discussed earlier in Section 3.4.2, in

p > n datasets, this graph construction method leads to dense networks with a lot

of spurious correlations, and as the benchmark experiment of Section 5.4.5 demon-

strated, the performance of mixOmics was often inferior compared to CorrMapper.

Furthermore, due the above described mathematical definition of these correlations,

users need to examine a separate network or heatmap for each pair of latent vari-

ables, which can make the interpretation of these models cumbersome. Finally,

all graphical output of mixOmics is static, therefore dense networks and heatmaps

cannot be explored, filtered, searched or understood in detail.

With the exception of mixOmics and NaviCom, all of the above mentioned solutions

are primarily visualisation tools which leave the majority of data analysis and coding

to the researcher. Furthermore, several of them are specific to certain omics data

types and can only work with human studies. Conversely, CorrMapper’s strength

stems from its meta-tool nature and how it seamlessly combines its data integration

pipeline and visualisation capabilities.

Although this is true for mixOmics as well, CorrMapper excels at providing engaging

and interactive visualisations without any programming knowledge, while in some

areas (automatically generated metadata explorer) its visualisation capabilities are

currently completely unparalleled. Finally, as noted earlier, CorrMapper is currently

in preparation for publication. In the meanwhile, the valuable feedback of numerous

beta testers have been used to improve various parts of the user interface, and debug

edge cases within the visualisation modules.
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Multi-omics studies present unprecedented opportunities to capture multi-modal

molecular signatures arising from different compartments of biological organisms.

Furthermore, they can provide a more holistic view of biochemical pathways and

greatly enhance our mechanistic understanding of health and disease. Therefore,

the research and development in this PhD was carried out recognising the need for

novel tools that facilitate the exploration of such multifaceted and complex studies.

CorrMapper is a robust multi-omics data integration pipeline coupled with highly

advanced, interactive visualisation modules, which enable researchers to interrogate

intricate correlation networks with great precision. The project is fully open-source,

and freely available as an online research tool for academic use.

CorrMapper was designed to solve or alleviate several problems commonly encoun-

tered during the integration and visualisation of complex biological datasets:

• In almost all cases, omics datasets have several times more features than sam-

ples (p� n). Extensive benchmarking experiments were run to choose an op-

timal set of feature selection algorithms, that can filter down the p candidate

features to the biologically relevant ones, which are the most discriminative

with respect to a clinical metadata variable.

• Unfortunately, even after feature selection, we are often left with p > n or

p ≈ ndatasets. This is especially true if we have to concatenate more than one

omics datasets. Estimating the correlation network from such wide data leads

to spurious correlations, imprecise networks and ultimately false discoveries.

187
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Furthermore, traditional estimation techniques, such as marginal correlation

networks cannot recover the true dependence structure of features, and often

label conditionally independent feature pairs as correlated. This leads to overly

dense networks with many false positive edges.

To alleviate this problem, CorrMapper uses the non-paranormal extension of

the graphical lasso algorithm, to estimate the conditional independence net-

work of the selected features. Additionally, the StARS algorithm is used to

chose the optimal regularisation parameter for the graphical lasso. Finally,

CorrMapper estimates the statistical significance of the network edges in a

robust, non-parametric way by calculating Spearman correlations with per-

mutation testing.

• Despite the feature selection, and regularised network estimation process, the

graphs arising from biological datasets can still be extremely complex and

hard to interpret. Therefore, CorrMapper employs interactive visualisation

modules that allow users to subset these large networks to smaller sub-graphs

or modules and interrogate them in isolation.

Datasets with genomic probes can benefit from CorrMapper’s genomic network

explorer which exploits the location of these features and maps them onto a

circular chromosomal layout.

• The prevalence of clinical metadata in biomedical research necessitates the

development of novel tools that enable the exploration of these additional in-

formation sources in conjunction with omics datasets. CorrMapper’s metadata

explorer provides a novel dashboard interface that allows for metadata driven

stratification of two omics datasets simultaneously.

• The overwhelming majority of bioinformatics tools are command line based

and expect some form of programming knowledge from the user. Although this

cuts down development time and can often lead to more modular software, it

restricts the tool’s audience. CorrMapper was designed to be accessible to a
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wide range of users, from clinicians to bioinformatics researchers. Its code-

base is open-source and modular enough to be easily modified and extended

by power users, but at the same time, its graphical user interface enables the

technically less capable users to benefit from its data integration pipeline and

visualisation modules.

• Finally, turning a piece of scientific software into an online research tool can

add months of overhead to a project, due to the steep learning curve of the

technologies involved, and numerous technical hurdles one has to overcome.

Therefore, to capitalise on the hundreds of hours of work that went into mak-

ing CorrMapper’s front-end, ScienceFlask was created, which is an open-source

template for scientific web application development. This project allows re-

searchers from all fields to turn their offline scientific tool into a feature rich

online application within hours, and run it in the cloud.

Although CorrMapper attempts to alleviate the above listed problems, it is far

from providing a perfect solution to all of them. However, as data acquisition costs

decrease further, it is highly likely that we will see p� n studies turning into p > n

or even p ≈ n datasets within the next ten years. This will naturally increase the

performance of many data integration tools, including CorrMapper’s.

Until then, it is highly recommended to not rely on a single method for multi-

omics integration and visualisation, but use different and possibly complimentary

ones (CorrMapper and mixOmics for instance), and attempt to derive parsimonious

results from them.
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7.1 Future work

While CorrMapper is already fully functional and hopefully useful for researchers,

it is only in its first iteration, waiting to be developed further and made better.

Although this PhD has come to its end, the project is open-source, thus it can be

forked, altered, extended and improved by bioinformaticians all around the globe.

The following list outlines possible directions for future work:

• The general network explorer allows users to copy the features of a selected

network module onto their clipboard, while, the genomic network explorer

can display detailed information about each feature, based on the uploaded

annotation files.

However, the interpretation of the conditional independence networks would be

much easier if CorrMapper would plug into the search APIs of EBI and NCBI

to automatically gather and display information about features of interest.

This extension would require the modification of the general and genomic

network explorers’ JavaScript files, and adding a new “Search EBI” tab to the

HTML pages of both interfaces.

• The metadata explorer is currently using PCA to obtain a lower dimensional

representation of the omics samples. Metadata features are then mapped

onto the first five principal components of this lower dimensional projection

to discover target variables for feature selection.

Although this is effective, it is a suboptimal solution, as PCA was not designed

to discriminate between classes. PLS-DA would be a more adequate choice,

as it would not only project the omics data into a lower dimensional space,

but also maximise the separation between the levels of a categorical metadata

variable.
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• Feature selection is currently carried out on each omics dataset individually,

as this strategy was deemed the most economical and reasonable, given the

limited number of intersecting samples in today’s multi-omics studies. How-

ever, users could be given the freedom to concatenate the two datasets prior

to feature selection and use their joint probability distribution for FS.

• With extensive development, a prediction layer could be added to CorrMap-

per, that enables users to train powerful machine learning algorithms on the

selected features. However, to avoid over-fitting, this would require a compli-

cated doubly nested cross-validation scheme. Therefore, probably only larger

studies with n > 500 would benefit from this new predictive component.

• As noted in Section 5.3.4, visualising very large networks in CorrMapper cur-

rently can prove to be computationally demanding, as no graphics card accel-

eration is used to generate and dynamically render these complex graphical

objects on the user’s screen.

However, this is an intensely researched topic and JavaScript libraries such

as the recently published Stardust191 can utilise GPU acceleration to dynami-

cally render and interactively visualise large networks with reduced lag and a

satisfying user experience.

Owing to the feature selection procedures of CorrMapper, most of its visualised

networks are small enough to be handled by JavaScript libraries relying on

CPU only. However, in the absence of any feature selection, the visualisation

of the resulting large and dense networks could be supported by the extension

of CorrMapper’s front-end with Stardust.
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Figure S1: An example of fitted baseline (green), in one of the critical regions of a
urine NMR spectrum.

192
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Figure S2: A collection of fitted urinary NMR sections. In each plot, the blue line is
the real, unaligned spectra, the green one is the sum of fitted Lorentzians plus the
estimated baseline, the magenta ones are the fitted Lorentzians and the red one is
the Lorentzian of the peak of interest. A fitting-window size of seven (A) and eleven
(B) are displayed. Several plots highlight the maxima detection method’s excellence
at detecting convolved multiplets and shoulder peaks.
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Bias-variance decomposition
In this demonstration (see Figure S3) a single one dimensional regression problem
is simulated. The ground truth is shown in blue f(x). Sampling from this function
gives us a noisy training set, shown as blue dots LS ≈ y = f(x) + noise. Fitting
a decision tree or an ensemble of bagged decision trees to this sampled dataset
provides us with a learned representation, i.e. prediction of the truth, shown in red
ŷ(x). Finally, the average prediction of the learner across many instances of samples
LS gives us ELS ŷ(x), shown in cyan. The bottom figures demonstrate the point-wise
decomposition of the learner’s overall error into its three constituents as described
in Section 3.1.1.

The upper left figure illustrates the predictions (dark red) of a single decision tree
trained over a random dataset LS. It also shows the predictions of other single
decision trees trained over other (and different) randomly drawn instances LS of the
problem (light red). The variance of the learner can be though of as the width of
the beam of predictions (in light red) of the individual estimators. The bias term
corresponds to the difference between the average prediction of the estimator (cyan)
and the ground truth (dark blue). This example demonstrates nicely that decision
trees in general have low bias and high variance.

In the upper right figure we see the same problem approached with a bagged decision
tree learner. The bias term is slightly larger than in the previous case, as the
prediction of the learner is an average of B = 10 bagged decision trees, and therefore
it cannot approximate the ground truth as closely as a single decision tree. In terms
of variance however, the beam of predictions is narrower, which suggests that the
variance is lower, which is also confirmed by the lower right figure. Therefore, the
bias-variance decomposition is no longer the same, and the trade-off is better for
bagging. More precisely, averaging several decision trees which are each fitted on
bootstrap samples of the dataset, slightly increases the bias term, but allows for a
larger reduction of the variance, which ultimately results in a lower overall mean
squared error.
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Figure S3: Figure generated from the official scikit-learn documentation192 with
slight modifications.
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Algorithm S1 describes the full pseudo-code of the Boruta FS method104.

Algorithm S1 Boruta, part 1.

1: function Boruta(Xn×p,yn×1, tmax)
2: t← 1
3: D ∈ Rp×1 ← 0 . create list for storing decisions on features
4: H ∈ Rp×1 ← 0 . create list for storing hits for each feature
5: while t < tmax or

∑p
i=1[D > 0] do . main loop of Boruta

6: active← indices where D ≥ 0 . still active features
7: act p← |active| . number of active features
8: Zn×2act p ← addShadows(Xn×active,D) . duplicate X
9: Ir, Is← getImp(Z,y) . VI of real and shadow features

10: H← assignHits(H, Ir, Is)
11: D← updateDecision(D,H, t)
12: t← t+ 1
13: end while
14: C← indices where D = 1
15: return C
16: end function

17: function addShadows(Xn×active,D)
18: X2n×active ← Xn×active . copy matrix of active features
19: shuffle all columns of X2n×active . shuffle each shadow feature
20: Z = [Xn×active|X2n×active] . concatenate the two matrices
21: return Z
22: end function

23: function getImp(Z,y)
24: imp← RF (Z,y) . train Random Forest classifier
25: Ir← VI of the real features . from imp
26: Is← VI of the shuffled shadow features . from imp
27: return Ir, Is
28: end function

29: function assignHits(H, Ir, Is)
30: shamax = max(impshadow) . find the shadow feature with highest VI
31: h = indices where H > shamax . find real features better than shamax
32: Hh ← Hh + 1 . increment the list of hits for these
33: return H
34: end function

Continued on next page.
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Algorithm S2 Boruta, part 2.

1: function updateDecision(D,H, t)
2: for h← 0 to |H| do
3: P ∈ Ract p×1 ← 0
4: p← binom(Hh, i, 0.5) . probability of randomly selecting the hth fea-

ture Hh times out of t experiments
5: Ph ← p
6: end for
7: Bonferroni(P) . Correct p-values for multiple testing
8: r = indices of rejected features
9: c = indices of selected features

10: Dr ← −1 . these features will get removed in the next round
11: Dc ← 1
12: return D
13: end function

The following table summarises how many datasets did run successfully for each of
the FS methods. Univariate FDR and L1 SVC did not find any features relevant in
33% and 11% of the cases respectively.

Ratio UnivarPerc UnivarFDR RFE CV L1 SVC StabSel Boruta JMI

0.005 20 1 20 11 20 20 20
0.01 20 0 20 15 20 20 20
0.015 20 0 20 14 20 20 20
0.02 20 1 20 17 20 20 20
0.025 20 3 20 16 20 20 20
0.03 20 1 20 18 20 20 20
0.05 20 3 20 15 20 20 20
0.06 20 3 20 17 20 20 20
0.1 40 21 40 38 40 40 40
0.2 20 16 20 19 20 20 20
0.3 20 20 20 20 20 20 20
0.5 20 20 20 20 20 20 20
0.6 20 20 20 20 20 20 20
1.0 60 59 60 60 60 60 60
2.0 40 40 40 40 40 40 40
3.0 20 20 20 20 20 20 20
4.0 20 20 20 20 20 20 20
5.0 20 20 20 20 20 20 20
10.0 20 20 20 20 20 20 20
20.0 20 20 20 20 20 20 20

Sum 480 308 480 440 480 480 480

Table S1: Number of benchmarking experiments per ratio and algorithm. We only
count a dataset for a given algorithm, if the method selected at least one feature
from it.



Supplementary materials 198

Boruta

JMI

L1 SVC

RFE CV

StabSel

UnivarFDR

UnivarPerc

Ratio: 0.005
Precision
Recall

Ratio: 0.01

Boruta

JMI

L1 SVC

RFE CV

StabSel

UnivarFDR

UnivarPerc

Ratio: 0.015 Ratio: 0.02

0.0 0.2 0.4 0.6 0.8 1.0

Boruta

JMI

L1 SVC

RFE CV

StabSel

UnivarFDR

UnivarPerc

Ratio: 0.025

0.0 0.2 0.4 0.6 0.8 1.0

Ratio: 0.03

Figure S4: Benchmarking results of seven FS methods, part 1. The title of each
sub-plot shows the ratio of samples to features: R = n/p. Horizontal black lines
represent standard deviations stemming from pooling the repeated runs with varying
random seeds and different datasets having the same R value.
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Figure S5: Benchmarking results of seven FS methods, part 2. The title of each
sub-plot shows the ratio of samples to features: R = n/p. Horizontal black lines
represent standard deviations stemming from pooling the repeated runs with varying
random seeds and different datasets having the same R value.
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Figure S6: Benchmarking results of seven FS methods, part 3. The title of each
sub-plot shows the ratio of samples to features: R = n/p. Horizontal black lines
represent standard deviations stemming from pooling the repeated runs with varying
random seeds and different datasets having the same R value.
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StARS UnivarFDR L1 SVC Boruta JMI

Rec 0.0571 ± 0.05 0.1458 ± 0.15 0.0480 ± 0.05 0.0177 ± 0.02
Prec 0.05 0.4409 ± 0.24 0.3992 ± 0.21 0.4221 ± 0.26 0.3976 ± 0.25
R + P 0.4979 ± 0.29 0.5449 ± 0.35 0.4701 ± 0.31 0.4153 ± 0.27

Rec 0.0622 ± 0.07 0.0467 ± 0.11 0.0562 ± 0.06 0.0212 ± 0.03
Prec 0.1 0.3837 ± 0.21 0.2901 ± 0.19 0.3656 ± 0.25 0.2772 ± 0.22
R + P 0.4458 ± 0.28 0.3368 ± 0.29 0.4218 ± 0.31 0.2984 ± 0.25

Table S2: Performance of CorrMapper on simulated datasets. Rec: recall, Prec:
precision, R + P: recall + precision. These performance metrics measure how many
of the true network edges CorrMapper could reconstruct. Values to the left of the
± are means, while values on the right represent one standard deviation.

Method # success Recall Precision Recall + Precision

UnivarFDR 12 0.1455 ± 0.11 0.5845 ± 0.14 0.7300 ± 0.25
L1 SVC 12 0.3740 ± 0.20 0.5808 ± 0.14 0.9548 ± 0.34
Boruta 12 0.1525 ± 0.11 0.6113 ± 0.19 0.7638 ± 0.31
JMI 12 0.0852 ± 0.08 0.6462 ± 0.32 0.7315 ± 0.39

GraphLasso 0 0.0000 ± nan nan ± nan nan ± nan

Marginal 0.05 12 0.3327 ± 0.10 0.0313 ± 0.01 0.3641 ± 0.11
Marginal 0.1 12 0.0672 ± 0.04 0.0494 ± 0.03 0.1166 ± 0.07
Marginal 0.2 3 0.0000 ± 0.00 0.0000 ± 0.00 0.0000 ± 0.00
Marginal 0.3 0 0.0000 ± 0.00 nan ± nan nan ± nan
Marginal 0.5 0 0.0000 ± 0.00 nan ± nan nan ± nan
Marginal 0.7 0 0.0000 ± 0.00 nan ± nan nan ± nan
Marginal 0.8 0 0.0000 ± 0.00 nan ± nan nan ± nan

mixOmics 0.05 12 0.4432 ± 0.11 0.1086 ± 0.03 0.5518 ± 0.14
mixOmics 0.1 12 0.2558 ± 0.11 0.2153 ± 0.07 0.4711 ± 0.19
mixOmics 0.2 12 0.1339 ± 0.08 0.3840 ± 0.15 0.5180 ± 0.24
mixOmics 0.3 12 0.1065 ± 0.06 0.5371 ± 0.21 0.6437 ± 0.28
mixOmics 0.5 11 0.0632 ± 0.05 0.9061 ± 0.17 0.9693 ± 0.22
mixOmics 0.7 0 0.0000 ± 0.00 nan ± nan nan ± nan
mixOmics 0.8 0 0.0000 ± 0.00 nan ± nan nan ± nan

Table S3: Comparing CorrMapper against other network estimators. Unlike Table
5.4, this table includes all cut off values for marginal correlation and mixOmics.
Numerous thresholds resulted in zero edges identified (see # success column), and
therefore a zero recall value and a non-interpretable precision, due to division by
zero. Values to the left of the ± are means, while values on the right represent one
standard deviation.
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OTU Base µ Log2 FC Adj. p-val Family Genus

4321386 56.5732 -3.0799 0.0000 Streptococcaceae Streptococcus
4366572 11.1821 -2.8802 0.0000 Streptococcaceae Streptococcus
184376 34.8257 -3.2843 0.0000 Streptococcaceae Streptococcus
899176 7.3268 -2.9705 0.0000 Streptococcaceae Streptococcus
4353951 12.1208 -2.8175 0.0000 Enterobacteriaceae Klebsiella
4430570 27.0982 -2.6345 0.0000 Enterobacteriaceae
4308962 3.6592 -2.2360 0.0000 Streptococcaceae Streptococcus
290612 17.4495 -2.8185 0.0000 Enterobacteriaceae
4321 5.8048 -2.3544 0.0000 Enterobacteriaceae
4449690 20.0906 -2.3589 0.0000 Enterobacteriaceae
4301368 11.0270 -2.1611 0.0002 Enterobacteriaceae Klebsiella
3474874 4.1883 -2.0261 0.0002 Enterobacteriaceae
2999290 3.8586 -2.0419 0.0002 Enterobacteriaceae
365704 6.1607 1.8978 0.0004 Erysipelotrichaceae
4326711 2.7533 -1.8295 0.0004 Veillonellaceae Veillonella
1056735 26.4205 -1.9074 0.0004 Streptococcaceae Streptococcus
291164 6.9656 -2.0537 0.0006 Enterobacteriaceae
174874 3.7439 1.6544 0.0012 Erysipelotrichaceae
367867 5.4790 1.6945 0.0013
321132 4.1840 1.7533 0.0013 Lachnospiraceae

Table S4: Top twenty differentially expressed OTUs in RYGB patients after opera-
tion. Results were produced using DESeq2171 through the QIIME pipeline172. Base
µ: mean count OTU before surgery.

Figure S7: O-PLS coefficient plots of urinary (A) and faecal water (B) NMR spec-
tral data. Datasets were regressed against time-points (1, 2 and 3), thus upward
pointing peaks indicate metabolites whose concentrations increased after surgery,
while downward pointing peaks mean the opposite.
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