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Abstract

We present new capacity upper bounds for the discrete-time Poisson channel with no dark current
and an average-power constraint. These bounds are a simple consequence of techniques developed by one
of the authors for the seemingly unrelated problem of upper bounding the capacity of binary deletion and
repetition channels. Previously, the best known capacity upper bound in the regime where the average-
power constraint does not approach zero was due to Martinez (JOSA B, 2007), which we re-derive as a
special case of our framework. Furthermore, we instantiate our framework to obtain a closed-form bound
that noticeably improves the result of Martinez everywhere.

1 Introduction

We study the capacity of the classical discrete-time Poisson (DTP) channel. Given an input x ∈ R≥0, the
channel outputs a sample from Poisson distribution with mean x + λ, where λ ≥ 0 is a channel parameter
called the dark current. The DTP channel is motivated by applications in optical communication, involving
a sender with a photon-emitting source and a receiver that observes the arrived photons (some of which may
not have originated in the sender’s source, hence the dark current parameter) [SS90].

The capacity of the DTP channel is infinite if there are no constraints on the input distributions. For
this reason, a power constraint should be imposed on the input distribution. The most typical choice, that
we consider in this work, is an average-power constraint µ ∈ R≥0, under which only input distributions
X satisfying E[X] ≤ µ are allowed. Several works also consider the case where a peak-power constraint
is imposed on X, i.e., X ≤ A for some fixed A ∈ R>0 with probability 1 (e.g., [LM09, LSVW11, WW14,
SSEL15,AAG+15]).

Currently, no expression for the capacity of the DTP channel under an average-power constraint is
known. Consequently, there has been considerable interest in obtaining sharp bounds and in determining
the asymptotic behavior of the DTP channel capacity in several settings, and in investigating properties of
capacity-achieving distributions. We focus on upper bounds for the capacity of the DTP channel with λ = 0
under an average-power constraint µ. Note that any such upper bound is also a capacity upper bound for
the DTP channel with λ > 0, as such a channel can be simulated from the DTP channel with λ = 0 by
having the receiver add an independent Poisson random variable with parameter λ to the output.

1.1 Previous work

The two main regimes for studying the asymptotic behavior of the DTP channel capacity are when µ → 0
and µ → ∞. Brady and Verdú [BV90] studied the asymptotic behavior of the capacity under an average-
power constraint µ when µ→∞ and µ/λ is kept fixed. Later, Lapidoth and Moser [LM09] studied the same
problem when λ is constant, with and without an additional peak-power constraint. When µ→ 0, Lapidoth
et al. [LSVW11] determined the first-order asymptotic behavior of the capacity when µ goes to zero, both
when µ/λ is kept constant and when λ is fixed, with and without a peak-power constraint. Later, Wang and
Wornell [WW14] improved their result when µ/λ is constant.

Obtaining capacity upper bounds for the DTP channel has been a major subject of interest. Explicit
asymptotic capacity upper bounds for the DTP channel under an average-power constraint can be found
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in [LM09,LSVW11,WW14]. The current best non-asymptotic upper bound, which is in fact the best capacity
upper bound outside the limiting case µ→ 0, was derived by Martinez [Mar07]. However, its proof contains
a small gap, as mentioned in [LM09], and is not considered completely rigorous. A more detailed discussion
of these upper bounds and of the asymptotic behavior of the capacity can be found in Section 3.

While we focus on capacity upper bounds, we mention that explicit (asymptotic and non-asymptotic)
capacity lower bounds for several settings have been derived in [Mar07, LM09, CHC10, LSVW11, WW14,
YZWD14]. Other aspects and settings of the DTP channel have also received attention recently. Cao,
Hranilovic, and Chen [CHC14a,CHC14b] studied the shape of capacity-achieving distributions for the DTP
channel, a topic which was first studied by Shamai [SS90]. A generalization of the DTP channel was studied
by Aminian et al. [AAG+15], where a capacity upper bound in the presence of both average- and peak-power
constraints is also given. Sutter et al. [SSEL15] studied numerical algorithms for approximating the capacity
of the DTP channel in the presence of both average- and peak-power constraints, and obtain sharp capacity
bounds in this setting.

1.2 Our contributions and techniques

In this work, we derive improved capacity upper bounds for the DTP channel with λ = 0 under an average-
power constraint. Our technique is based on a natural convex duality formulation developed by Cher-
aghchi [Che17] for the seemingly unrelated problem of upper bounding the capacity of binary deletion and
repetition channels.

We show that the result of Martinez [Mar07] can be effortlessly obtained as an immediate special (sub-
optimal) case of our results, thus giving a remarkably simple and rigorous proof for this bound. Furthermore,
we extract two improved bounds from our more general result (Theorem 5); one involving the minimization
of a smooth convex function over (0, 1), as well as a closed-form bound (Theorem 7). Both of these bounds
are strictly and significantly tighter than the bound by Martinez for all µ > 0. Thus, we obtain the current
best capacity upper bounds for the DTP channel with λ = 0 under an average-power constraint µ for all
values of µ outside the limiting case µ→ 0. An additional feature of our results is that they are remarkably
simple to derive.

The rest of the article is organized as follows: In Section 2 we introduce our notation. Further discussion
of the best previously known bounds, along with the asymptotic behavior of the capacity when λ = 0, appear
in Section 3. The duality-based framework and the derivation of our upper bounds (including the bound by
Martinez as a special case) are presented in Section 4. Finally, we compare the bounds from Section 4 with
those from Section 3 in Section 5.

2 Notation

We denote the capacity of the DTP channel with average-power constraint µ and λ = 0 by C(µ). We measure
capacity in nats per channel use and denote the natural logarithm by log. The Kullback-Leibler divergence
between X and Y is denoted by DKL(X‖Y ).

3 Previously known upper bounds and asymptotic results

In this section, we survey the best previously known capacity upper bounds and the known results on the
asymptotic behavior of C(µ). The asymptotic regimes considered in the literature are when µ → 0 and
µ→∞.

In the small µ regime, Lapidoth et al. [LSVW11] showed that

lim
µ→0

C(µ)

µ log(1/µ)
= 1.

Moreover, they gave the following upper bound matching the asymptotic behavior [LSVW11, expression
(86)],

C(µ) ≤ −µ log p− log(1− p) +
µ

β
+ µ ·max

(
0,

1

2
log β + log

(
Γ̄(1/2, 1/β)√

π
+

1

2β

))
, (1)
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where p ∈ (0, 1) and β > 0 are free constants, and Γ̄ is the upper incomplete gamma function. It is easy to
see that the optimal choice for p is p = µ

1+µ .

Later, Wang and Wornell [WW14] determined the higher-order asymptotic behavior of C(µ) in the small
µ regime, where it was shown that

C(µ) = µ log(1/µ)− µ log log(1/µ) +O(µ)

when µ→ 0. This was previously noted by Chung, Guha, and Zheng [CGZ11], although they only proved the
result for a more restricted set of input distributions (as mentioned in [WW14]). Wang and Wornell [WW14,
expression (180)] gave an upper bound (valid for small enough µ) matching this asymptotic behavior; namely,

C(µ) ≤ µ+ µ log log

(
1

µ

)
+ log

(
1

1− µ

)
+ µ log

(
1

1− 1
log(1/µ)

)
+ µ · sup

x≥0
φµ(x), (2)

where φµ(x) := 1−e−x

x log
(

x
µ log(1/µ)

)
.

In the large µ regime, Lapidoth and Moser [LM09] showed that

lim
µ→∞

C(µ)

logµ
=

1

2
.

The best upper bound in this regime (and, in fact, anywhere outside the asymptotic limit µ→ 0) was derived
by Martinez [Mar07, expression (10)] and is given by

C(µ) ≤
(
µ+

1

2

)
log

(
µ+

1

2

)
− µ logµ− 1

2
+ log

(
1 +

√
2e− 1√
1 + 2µ

)
. (3)

It holds that (3) attains the first-order asymptotic behavior of C(µ) both when µ→ 0 and when µ→∞, and
is strictly better than (1) for all µ > 0. However, as noted in [LM09], the proof in [Mar07] is not considered
to be completely rigorous as it contains a gap (a certain equality is only shown numerically).

4 The proposed upper bounds

In this section, we derive new upper bounds on C(µ). While previous upper bounds are mostly based on
duality results from [LM03], our derivation (although still duality based) follows from the application of a
framework recently developed in [Che17] in the context of binary deletion-type channels.

4.1 The convex duality formulation

In this section, we give a high-level overview of our approach towards obtaining improved capacity upper
bounds.

Given a channel Ch with input and output alphabets contained in R and channel law PY |X , we denote
by Chµ the channel having the same input and output alphabets and channel law PY |X with the additional
constraint that only input distributions whose corresponding output distributions Y satisfy E[Y ] = µ are
admissible. We call such channels mean-limited, and denote the mean-limited version of the DTP channel
by DTPµ. A main component of our proof is the following natural duality result proved in [Che17]:

Theorem 1 ( [Che17, Theorem 1], adapted). Let Ch be a channel with input alphabet R≥0, output alphabet
Z≥0, and channel law PY |X . Suppose that there exist a random variable Y , supported on the output alphabet,
and parameters ν1, ν2 ∈ R such that

DKL(Yx‖Y ) ≤ ν1E[Yx] + ν2

for every x ∈ R≥0, where Yx denotes the output of Ch when x is given as input. Then, we have

C(Chµ) ≤ ν1µ+ ν2

3



for every µ ≥ 0. Moreover, if Y is the channel output distribution associated to some input distribution X
and

DKL(Yx‖Y ) = ν1E[Yx] + ν2

for all x ∈ supp(X), then
C(Chµ) = ν1µ+ ν2.

For the DTP channel with λ = 0, we wish to find a distribution Y and parameters ν1, ν2 > 0 such that

D(Yx||Y ) ≤ ν1E[Yx] + ν2 = ν1x+ ν2

for all x ∈ R≥0, and the inequality gap as small as possible. Using Theorem 1, we readily obtain an upper
bound for C(DTPµ), and subsequently, for C(µ).

4.2 The digamma distribution

The result of Martinez [Mar07] follows the common approach of a convex duality formulation that leads to
capacity upper bounds given an appropriate distribution on the channel output alphabet. Indeed, this is
also the approach that we take. The dual distribution chosen by [Mar07] is a negative binomial distribution,
which is a natural choice corresponding to a gamma distribution for the channel input. However, lengthy
manipulations and certain adjustments are needed to obtain a closed-form capacity upper bound for this
choice. We use a slightly different duality formulation, as discussed in 4.1. Furthermore, for the dual
output distribution, we use a distribution that we call the “digamma distribution” and is designed by
Cheraghchi [Che17] precisely for the purpose of use in the duality framework of [Che17]. This distribution
asymptotically behaves like the negative binomial distribution. However, it is constructed to automatically
yield provable capacity upper bounds without need for any further manipulations or adjustments. This is
the key to our refined bounds and dramatically simplified analysis1.

For a parameter q ∈ (0, 1), the digamma distribution Y (q) is defined over non-negative integers with
probability mass function

PY (q)(y) := y0
exp(yψ(y))(q/e)y

y!
, y = 0, 1, . . . , (4)

where y0 is a normalizing factor depending on q (we omit this dependence in the notation for brevity),
ψ(y) = d

dy log Γ(y) is the digamma function (Γ denotes the gamma function), and yψ(y) is understood to

be zero for y = 0. For positive integers y, we have ψ(y) = −γ +
∑y−1
k=1 1/k, where γ ≈ 0.5772 is the

Euler-Mascheroni constant.
We will need to control the normalizing factor y0, which is accomplished by the following result.

Lemma 2 ( [Che17, Corollary 16]). We have

log

(
1 +

2

e1+γ

(
1√

1− q
− 1

))
≤ − log y0 ≤ log

(
1 +

1√
2e

(
1√

1− q
− 1

))
for all q ∈ (0, 1).

We will also be using the fact that the digamma distribution is closely related to the negative binomial
distribution. We denote the negative binomial distribution with number of failures r (note that r is not
necessarily an integer) and success probability p by NBr,p.

Lemma 3 ( [Che17, Corollary 16]). For all y ≥ 1 and q ∈ (0, 1),

2

e1+γ
NB1/2,q(y) ≤

√
1− qPY (q)(y)

y0
≤ 1√

2e
NB1/2,q(y).

1We note that the duality framework of [Che17] uses standard techniques and the dual-feasibility of the digamma distribution
also has a simple proof.
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4.3 A first capacity upper bound

In this section, we use the digamma distribution and the approach outlined in Section 4.1 in order to derive
an upper bound for C(µ).

The Kullback-Leibler divergence between Yx and Y (q) has a simple form for every x. Let g(y) := yψ(y).
We have

DKL

(
Yx
∣∣∣∣Y (q)

)
=

∞∑
y=0

PYx
(y) log

(
PYx(y)

PY (q)(y)

)

=

∞∑
y=0

PYx
(y)(− log y0 + y(1− log q)− g(y)− x+ y log x)

= − log y0 − x log q + x log x− EYx
[g(Yx)]. (5)

The following result lets us control EYx [g(Yx)].

Lemma 4 ( [Che17, Corollary 9]). We have

EYx
[g(Yx)] = x(E1(x) + log x),

where E1(x) =
∫∞
1
e−xtdt/t is the exponential integral function.

Using the fact that E1(x) > 0 for all x > 0, Lemma 4 and (5) allow us to conclude that

DKL

(
Yx
∣∣∣∣Y (q)

)
≤ −x log q − log y0 (6)

for all x ≥ 0. Applying Theorem 1, we conclude that

C(DTPµ) ≤ −µ log q − log y0. (7)

Recall that we wish to convert an upper bound on C(DTPµ) into an upper bound for C(µ). In order to
do this, first note that if X and Y are the input and output distributions of the DTP channel with λ = 0,
then E[Y ] = E[X]. Therefore, (7) also gives an upper bound on the capacity of the DTP channel with the
constraint that E[X] = µ. Moreover, since the RHS of (7) increases with µ for every fixed q ∈ (0, 1), we
conclude that the upper bound still holds if we only require that E[X] ≤ µ. Therefore, we have

C(µ) ≤ −µ log q − log y0. (8)

Finally, noting that (8) holds for every q ∈ (0, 1), we obtain the following result. Recall that y0 is not a
constant, but rather a normalizing factor that depends on q.

Theorem 5. For all µ ≥ 0, we have

C(µ) ≤ inf
q∈(0,1)

(−µ log q − log y0). (9)

4.4 Improved bounds in a systematic way

While Theorem 5 gives an upper bound on C(µ), it involves minimizing a rather complicated function (for
which we do not know an exact closed-form expression) over a bounded interval. Since it is of interest to
have easy-to-compute but high quality upper bounds, we consider instantiating the parameter q inside the
infimum in (9) with a simple function of µ. In this section, we present a systematic way of deriving such
a good choice q(µ). Finally, we upper bound − log(y0) using Lemma 2, obtaining an improved closed-form
bound for C(µ).

We determine a good choice q(µ) for the parameter q in (9) indirectly by instead choosing q(µ) so that
the associated distribution Y (q(µ)) (given by (4)) has expected value close to µ. The reasons for this are
the following: First, a capacity-achieving distribution X yields a channel output distribution Y satisfying
E[Y ] = E[X] ≤ µ, and, under the natural assumption that C(µ) is strictly increasing with µ, we must

5



actually have E[X] = E[Y ] = µ. While a capacity-achieving X does not necessarily induce a digamma
distribution over the output, the digamma distribution seems to be close to optimal, since the gap between
the two expressions in (6) is xE1(x), which decays exponentially with x. Second, numerical computation
suggests that the distribution Y induced by the choice of q that minimizes the bound from Theorem 5 has
expected value very close (or equal) to µ. While determining a choice q(µ) such that E

[
Y (q(µ))

]
is very close

to µ for all µ > 0 may be complicated, we settle for a choice q(µ) that behaves well when µ→ 0 and µ→∞.
We begin by studying how q(µ) should behave when µ → ∞. In this case, we should have q(µ) → 1.

Lemma 2 implies that

2

e1+γ
+

(
1− 2

e1+γ

)√
1− q ≤

√
1− q
y0

≤ 1√
2e

+

(
1− 1√

2e

)√
1− q,

from which we can conclude that
2

e1+γ
≤
√

1− q
y0

≤ 1√
2e

+ o(1) (10)

when q → 1. Combining (10) with Lemma 3, we obtain

2
√

2e

e1+γ
− o(1) ≤ PY (q)(y)

NB1/2,q(y)
≤ e1+γ

2
√

2e
≈ 1.038

for y = 0, 1, . . . , when q → 1, and so we conclude that the digamma distribution is well-approximated by
NB1/2,q when q is close to 1.

Recall that we want a choice of q(µ) such that Y (q(µ)) has expected value as close as possible to µ in the
large µ regime. The choice of q which ensures that E

[
NB1/2,q

]
= µ is q = 2µ

1+2µ , and so we want q(µ) to

satisfy q(µ) = 2µ
1+2µ + o

(
1
µ

)
when µ→∞.

One could set q(µ) = 2µ
1+2µ to obtain the desired behavior above, but we will show that we can correct

this choice in order to achieve E
[
Y (q(µ))

]
= µ+ o(µ) when µ → 0. To make the derivation simpler, we will

instead work with the quantity 1
1−q(µ) .

Consider a choice q(µ) satisfying

1

1− q(µ)
= 1 + αµ+

βµ2

1 + µ

for some constants α and β. It is easy to see that 1
1−q(µ) behaves as 1 + αµ + o(µ) when µ → 0 and as

1 + (α + β)µ + o(µ) when µ → ∞, which means we can set its asymptotic behavior in both the small and
large µ regimes independently of each other. Moreover, setting α + β = 2 leads to the desired behavior

q(µ) = 2µ
1+2µ + o

(
1
µ

)
when µ→∞.

We now proceed to choose α. As mentioned before, we determine the choice of α which ensures that
E
[
Y (q(µ))

]
= µ + o(µ) when µ → 0. It is straightforward to see that, by construction, q(µ) = αµ + o(µ)

when µ→ 0. We will need the following result.

Lemma 6. We have E
[
Y (q)

]
= e−(1+γ)q + o(q) as q → 0.

Proof. Recall that g(y) = yψ(y), and note that

E
[
Y (q)

]
q

= y0e
−(1+γ) + y0

∞∑
y=2

y · e
g(y)−yqy−1

y!
. (11)

It is easy to see that y0 approaches 1 (using Lemma 2, for example) and the second term in the RHS of (11)
vanishes when q → 0, and so the result follows.

The remarks above, combined with Lemma 6, imply that E
[
Y (q(µ))

]
= e−(1+γ)αµ + o(µ) when µ → 0.

Therefore, it suffices to set α = e1+γ to have E
[
Y (q(µ))

]
= µ+ o(µ) when µ→ 0. Based on this, we set q(µ)

to be such that
1

1− q(µ)
= 1 + e1+γµ+

(2− e1+γ)µ2

1 + µ
. (12)

Combining the previous discussion, Theorem 5, and Lemma 2, we immediately obtain the following result.
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Theorem 7. We have
C(µ) ≤ inf

q∈(0,1)
f(µ, q), (13)

where f(µ, q) := −µ log q + log
(

1 + 1√
2e

(
1√
1−q − 1

))
.

In particular, by instantiating q with q(µ) defined in (12),

C(µ) ≤ µ log

(
1 +

(
1 + e1+γ

)
µ+ 2µ2

e1+γµ+ 2µ2

)
+ log

(
1 +

1√
2e

(√
1 + (1 + e1+γ)µ+ 2µ2

1 + µ
− 1

))
. (14)

Note that f(µ, ·) is an elementary, smooth, and convex function for every fixed µ ≥ 0. Therefore, (13)
can be easily approximated to any desired degree of accuracy.

Remark 8. The reasons why we base our choice of q(µ) on (9) instead of (13) are the following: First,
q(µ) is still close to optimal when used in (13) (see Figure 1). Second, the choice is independent of the upper
bound on − log y0, and so can be reutilized if a better bound is used.

4.5 The result of Martinez as a special case

In this section, we show that the bound by Martinez (3) can be quite easily recovered through our techniques.
More precisely, we show that this bound is a special case of (13) with a sub-optimal choice of q = 2µ/(1+2µ).
In particular, this implies that (13) is strictly tighter than (3). In this section, we define m(µ) to be the

RHS of (3). Recall that f(µ, q) = −µ log q + log
(

1 + 1√
2e

(
1√
1−q − 1

))
.

Theorem 9. We have f
(
µ, 2µ

1+2µ

)
= m(µ) for all µ ≥ 0. Moreover, for every µ > 0 there is q∗µ ∈ (0, 1)

such that f(µ, q∗µ) < m(µ).

Proof. To prove the first statement of the theorem, we compute

m(µ)− f
(
µ,

2µ

1 + 2µ

)
=

(
µ+

1

2

)
log

(
µ+

1

2

)
− µ logµ− 1

2
+ log

(
1 +

√
2e− 1√
1 + 2µ

)

− µ log

(
1 + 2µ

2µ

)
− log

(
1 +

1√
2e

(√
1 + 2µ− 1

))
=

1

2
log

(
µ+

1

2

)
+ µ

(
log

(
µ+

1

2

)
− logµ

)
− 1

2
+ log

(√
1 + 2µ+

√
2e− 1√

1 + 2µ

)

− µ log

(
1 + 2µ

2µ

)
− log

(√
1 + 2µ+

√
2e− 1√

2e

)

=
1

2
log

(
µ+

1

2

)
− 1

2
+ log

(√
2e

1 + 2µ

)
= 0.

To see that the second statement holds, it suffices to show that ∂f
∂q

(
µ, 2µ

1+2µ

)
6= 0 for all µ > 0. We have

∂f

∂q
(µ, q) = −µ

q
+

1

2
(√

2e+ 1√
1−q − 1

)
(1− q)3/2

. (15)

Instantiating with q = 2µ
1+2µ yields

∂f

∂q

(
µ,

2µ

1 + 2µ

)
= −1 + 2µ

2
+

(1 + 2µ)3/2

2
(√

2e+
√

1 + 2µ− 1
) ,

7



and now it is enough to note that

− (1 + 2µ)
(√

2e+
√

1 + 2µ− 1
)

+ (1 + 2µ)3/2

= (1 + 2µ)(1−
√

2e) < 0

for all µ ≥ 0.

Finally, we show that the explicit choice q(µ) from Section 4.4 yields a strictly better upper bound than
the Martinez bound (3).

Theorem 10. We have f(µ, q(µ)) < f
(
µ, 2µ

1+2µ

)
= m(µ) for all µ > 0.

Proof. We first show that the statement holds whenever µ ≥ 1.61 and when µ is sufficiently small. Let
d(µ) := m(µ)− f(µ, q(µ)).

We begin by noting that q(µ) > 2µ
1+2µ for all µ > 0. Then, due to the convexity of f(µ, ·), the statement

holds for a given µ if ∂f
∂q (µ, q(µ)) < 0 (recall (15)). This can be seen to hold for µ ≥ 1.61 by standard

algebraic manipulations.
It can be easily verified that d(µ) behaves as(

1 + γ +
1√
2e
− log 2− e

1
2+γ

2
√

2

)
µ+ o(µ) ≈ 0.27µ+ o(µ)

when µ→ 0, which implies that m(µ) > f(µ, q(µ)) for µ small enough.
For the remaining cases, one can use a computer algebra system to formally show that d(µ) > 0. However,

d(µ) is a complicated transcendental expression, and so cannot be fed directly to such a system. We avoid
this issue in the following way: For µ ∈ [0.3, 1.61], we lower bound d(µ) by positive rational functions. This
is done by replacing the logarithmic and square root terms of the expression by appropriate bounds which
are themselves rational functions. Then, the question of whether d(µ) > 0 is reduced to showing that a
certain polynomial is positive in the given interval, which can be formally checked by a computer algebra
system with little effort. For µ < 0.3, our lower bounds for d(µ) are not good enough, and so we use the
same reasoning to show that its second derivative d′′(µ) is negative for µ < 0.3. This implies that d(µ) is
concave in [0, 0.3], which, combined with the previous results, concludes the proof.

We do not explicitly write down the relevant lower bounds for d(µ) and upper bounds for the second
derivative, as they feature high-degree polynomials. Instead, we describe the relevant bounds on the loga-
rithmic and square root terms. Then, determining the corresponding rational function and formally checking
whether it is positive/negative in a given interval is a straightforward (albeit tedious) process.

The expression d(µ) features logarithmic terms, along with square root terms of the form
√

1 + 2µ and√
(1 + (1 + e1+γ)µ+ 2µ2)/(1 + µ) (recall (3) and (14)). For every x ≥ 1, we have the bounds

(x− 1)(6 + 5(x− 1))

2(3 + 2(x− 1))
≤ log x ≤ (x− 1)(x+ 5)

2x(2 + x)
,

which can be found in [Top06]. Furthermore, we can upper bound
√

1 + 2µ and
√

(1 + (1 + e1+γ)µ+ 2µ2)/(1 + µ)
by their Taylor series of degree 5 and 3, respectively, around µ = 1. Replacing the relevant terms in d(µ) by
their respective bounds described above yields a rational function lower bound which can be easily shown to
be positive for µ ∈ [0.3, 1.61] by a standard computer algebra system.

For µ < 0.3, the bounds above are not tight enough to show that d(µ) is positive, and so we focus on its
second derivative d′′(µ). However, d′′(µ) cannot be fed directly to a computer algebra system either, and so
we follow the same reasoning as before. The only terms of d′′(µ) that need to be bounded are of the form√

1 + 2µ and
√

(1 + (1 + e1+γ)µ+ 2µ2)/(1 + µ). It suffices to upper bound (resp. lower bound)
√

1 + 2µ by
its Taylor series of degree 1 (resp. 2) around µ = 0. However, we need to be more careful when dealing
with

√
(1 + (1 + e1+γ)µ+ 2µ2)/(1 + µ). We split the interval [0, 0.3] into two intervals: First, in (0, 0.25] we

lower bound it by its Taylor series of degree 2 around µ = 0. Second, in (0.25, 0.3] we lower bound it by its
Taylor series of degree 2 around µ = 0.25.
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Figure 1: Comparison of known upper bounds for µ ∈ [0, 0.2].

Replacing the relevant terms of d′′(µ) by their respective bounds, we obtain a negative rational function
upper bounding d′′(µ) in each of (0, 0.25] and (0.25, 0.3], which can be formally checked with a computer
algebra system. This implies that d(µ) is concave in (0, 0.3], and so, combined with the facts that d(µ) > 0
for µ small enough and d(µ) > 0 for µ ≥ 0.3, we conclude that d(µ) > 0 for all µ > 0.

5 Comparison with previously known upper bounds

In this section, we compare the bounds from Theorem 7 with the previously known bounds described in
Section 1. Moreover, we investigate the loss incurred by using (14) instead of (9).

Figure 1 showcases a plot comparing the bounds from Theorem 7 to the previously known upper bounds.

The curve corresponding to the bound of Lapidoth et al. (1) is actually the plot of µ log
(

1+µ
µ

)
+ log(1 + µ),

which lower bounds the RHS of (1). There is a noticeable improvement over the Martinez bound (3) when
µ is not very small, and one can see that (14) is very close to (13) (with significant overlap), which confirms
that the choice q(µ) from Section 4.4 is close to optimal.

Due to the fact that our bounds are tighter than Martinez’s bound, both of them satisfy the first-order
asymptotic behavior of C(µ) when µ→ 0 and when µ→∞. However, they do not exhibit the correct second
order asymptotic term when µ → 0. In fact, the second-order asymptotic term of our bounds when µ → 0
is −O(µ), while the correct term is −µ log log(1/µ). For this reason, our bounds do not improve on the
Wang-Wornell bound (2) when µ is sufficiently small (numerically, when µ < 10−6), while they noticeably
improve on every previous bound when µ is not too small.

Figure 2 showcases the distance of the Martinez bound (3) to (9) and (14). The plotted curves have
similar shapes and are close to each other, which shows that we do not lose much by replacing − log y0 by
the upper bound of Lemma 2 and instantiating q with the sub-optimal explicit choice q(µ) from Section 4.4.

Figure 3 showcases the relative distance of the Martinez bound (3) to (9) and (14). Observe that, using
(14), we obtain an improvement of up to 8.2% over (3), while we can get improvements close to 9.5% using
(9). Once again, note that the two curves are close to each other and similar shape, reinforcing the fact that
the loss incurred by using (14) instead of (9) is small.
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