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Abstract

Many new methods for theoretical modelling, numerical analysis and experimental testing
have been developed in non-linear dynamics in recent years. Although the computational
power has greatly improved our ability to predict non-linear behaviour, non-linear system
identification, a central topic of this thesis, still plays a key role in obtaining and
quantifying structural models from experimental data.

The first part of the thesis is motivated by the industrial needs for fast and reliable
detection and characterisation of structural non-linearities. For this purpose a method
based on the Hilbert transform in the frequency domain is proposed. The method detects
and characterises structural non-linearities from a single frequency response function and
does not require a priori knowledge of the system.

The second part of the thesis is driven by current research trends and advances in
non-linear modal analysis and adaptive time series processing using the Hilbert-Huang
transform. Firstly, the alternatives of the Hilbert transform, which is commonly used in
structural dynamics for the estimation of the instantaneous frequency and amplitude
despite suffering from a number of numerical issues, are compared to assess their potential
for non-linear system identification. Then, a possible relation between the Hilbert-Huang
transform and complex non-linear modes of mechanical systems is investigated. Based
on this relation, an approach to experimental non-linear modal analysis is proposed.
Since this approach integrates the Hilbert-Huang transform and non-linear modes, it
allows not only to detect and characterise structural non-linearities in a non-parametric
manner, but also to quantify the parameters of a selected model using extracted non-linear
modes. Lastly, a new method for the identification of systems with asymmetric non-linear
restoring forces is proposed. The application of all proposed methods is demonstrated on
simulated and experimental data.
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Introduction

It is widely acknowledged that non-linearity is an important and often inherent feature of
a large majority of engineering structures while linear behaviour is a rare exception. It is
of a paramount importance to distinguish between linear and non-linear systems because
non-linear systems usually possess a wide range of phenomena which are completely
unknown in linear theory. These phenomena can either lead to potentially catastrophic
consequences if unexpected resonances emerge or bring major improvements to dynamic
performance of structures if, for instance, an increase in damping or change in stiffness
reduces the response amplitude or shifts the resonance frequency. Therefore, should the
modern designs meet the ever-increasing demand for reliable performing structures, the
effect of structural non-linearities on vibration behaviour must be systematically and
thoroughly considered.

In recent decades, non-linear structural dynamics has been a fruitful research area in
which many new methods for theoretical modelling, numerical analysis and experimental
testing of non-linear systems have been developed. It is therefore rather surprising that
non-linear dynamics is not commonly used to design new technologies. Linear behaviour
is almost always taken for granted and the presence of non-linearity is often ignored.
This is arguably given by the complexity of non-linear problems, limited understanding
of physical nature of structural non-linearities and by the lack of a widespread universal
methodology to model, analyse and experimentally test non-linear systems.

Whilst recent advances in the theoretical modelling and numerical analysis greatly
improve our ability to predict non-linear vibration behaviour in a timely and inexpensive
fashion, the experimental testing and associated system identification still play a key
role in the process of creating and validating numerical models. The non-linear system
identification refers not only to the estimation of model coefficients, but also to a
development (or improvement) of a mathematical (structural) model with no a priori
knowledge of non-linearities. Due to the complicated nature of non-linear systems,
difficulties of their experimental testing and the fact that it is an inverse problem, the
non-linear system identification is most likely one of the most challenging tasks in non-
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linear dynamics. The non-linear system identification is usually structured in three parts
- detection of structural non-linearity, its characterisation and quantification. The aim of
detection is to find out whether any structural non-linearity exists in a system and ideally
to give an indication of its strength, i.e. whether it has weak or strong effects on the
dynamic behaviour of the structure. The aim of characterisation is to specify the type,
spatial location and functional (mathematical) form of the detected non-linearity. The
characterisation is probably the most challenging step in non-linear system identification
since non-linearities can originate from multiple different sources. Once this crucial step
has been performed, quantification, the last step in the identification process, estimates
the coefficients of the non-linearities while ideally considering the uncertainty of the
model and measured data. If non-linear system identification is successful, a structural
model with a good predictive accuracy is obtained.

Although a significant effort has been made to develop a reliable non-linear system
identification methodology, there is no method applicable to all possible non-linear
systems and excitation types. A central topic of this thesis is the development of new
methods for non-linear system identification, with a particular focus on detection and
characterisation of structural non-linearities, and advances in non-linear modal analysis.

Objectives
Two main objectives of the thesis are

1. Enable robust and fast detection and characterisation of non-linearity from a single
frequency response function in an industrial environment

A large amount of data is usually collected in industry during the experimental
testing of mechanical components. These data are often obtained in terms of
frequency response functions to allow their convenient analysis using well-established
methods of experimental modal analysis. It is often assumed that the system is
linear even if non-linear behaviour is suspected based on the engineering knowledge
of the problem, but no systematic detection of non-linearity is usually carried out.
Therefore, the first objective of the thesis is to develop a method for detection of
structural non-linearities that could be used as a pre-step of linear modal analysis
to verify the assumption of the linear behaviour. If a non-linearity has been
detected, the method should also provide an insight into the type of this non-
linearity. To comply with compatibility requirements, the method must operate
on a single frequency response function and it must be robust against measured
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noise. In addition, the method should be suitable for an industrial use, avoiding
expertise decision making and minimising the processing time. The versatility
of the developed method should be demonstrated on a number of numerical and
experimental cases.

2. Develop an approach to experimental non-linear modal analysis by investigating the
use of time-frequency methods based on instantaneous frequency and amplitude and
their possible relation to one of the concepts of non-linear modal analysis

A more general concept of time-frequency analysis offers a broader range of pos-
sibilities than the processing of frequency response functions, especially due to
the adaptive processing of measured time domain data that requires no a priori
knowledge of the system. The Hilbert-Huang transform is arguably the most popu-
lar and successful method for instantaneous frequency and amplitude estimation.
However, it still possesses several limitations, including a lack of rigorous mathe-
matical background and its practical inability to identify systems with asymmetric
restoring forces. The second objective of this thesis is to examine the possibilities
of the Hilbert-Huang transform for non-parametric non-linear system identification
and to remove some of its limitations. In particular, it should be attempted to
connect the Hilbert-Huang transform with one of the available concept of non-linear
modal analysis. If such connection is possible, an approach to non-linear modal
analysis which uses the Hilbert-Huang transform to estimate the non-linear modes
of the structure should be developed, numerically verified and experimentally
demonstrated.

The first objective of the thesis addresses the current industrial needs for a quick and
reliable detection and characterisation of structural non-linearities. The second objective,
on the other hand, is driven by the desire for a scientific progress and is motivated by
current research trends in the fields of non-linear system identification and non-linear
modal analysis.

Outline of the thesis
A state-of-the-art review is conducted in chapter 1. Firstly, the field of non-linear
structural dynamics is briefly introduced and current approaches in theoretical modelling,
numerical analysis and experimental testing are reviewed. Subsequently, the focus is on
non-linear system identification, where several groups of methods are distinguished and
the relevant ones are described in more detail to build a background for the rest of the
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thesis. A particular focus is on detection and characterisation of structural non-linearities
in the frequency domain, time-frequency analysis, and theoretical and experimental
non-linear modal analysis. The limitations of the current approaches that are addressed
in this thesis are identified at the end of chapter 1.

In chapter 2 a method for detection and characterisation of structural non-linearities
from a frequency response function (FRF) is proposed. The robustness of the method
against measured noise is investigated and the method is also applied to a simulated
multi-degree-of-freedom system. Then, the method is used to detect and characterise
non-linear behaviour from a number of experimentally obtained FRFs of a cantilever
beam with a clearance non-linearity, an under-platform damper test rig and the ECL
benchmark. Chapter 2 concludes by discussing advantages and disadvantages of the
proposed method.

Chapter 3 firstly discusses why the frequency domain and frequency response functions
do not necessary have to be the right approach to non-linear system identification. It
also introduces concepts of time-frequency analysis in detail. A particular focus is on
the group of methods concerned with the estimation of instantaneous frequency (IF)
and amplitude (IA), especially on the Hilbert-Huang transform (HHT). Both parts of
the HHT, i.e. the empirical mode decomposition (EMD) and methods for instantaneous
frequency and amplitude estimation, are described. The main problems of the EMD are
discussed in detail and several approaches to overcome these problems are introduced. It
is also shown how the frequency resolution of the EMD can be investigated before applying
the EMD. This also allows closely spaced vibration modes to be defined. Traditionally,
the estimation of instantaneous frequency and amplitude is carried out using the Hilbert
transform. However, the Hilbert transform suffers from a number of mathematical and
numerical issues, and can be sometimes replaced by different methods. These methods
are assessed in detail and it is shown that while all the methods provide equivalent results
after low-pass filtering or other smoothing, each method has unique features that can be
used to detect and characterise the non-linearity. Based on this assessment, a method for
characterisation of stiffness non-linearities based on the intra-wave frequency modulation
is proposed at the end of chapter 3.

The lack of mathematical background of the Hilbert-Huang transform is addressed in
chapter 4. It is discussed that the physics-based foundation was already established by
showing the correspondence between the intrinsic mode functions (IMFs) and slow-flow
dynamics. However, no connection to one of the concepts of non-linear modal analysis
has been proposed yet. This chapter attempts to provide the missing link by showing the
relation between complex non-linear modes (CNMs) and the HHT. The approximative
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relation is highlighted by investigating the correspondence between the IMFs and reduced
order model of slow-flow dynamics derived from the CNMs. As this link cannot be proven
analytically, it is evidenced using a number of numerical studies. It is found that the
relation between the HHT and CNMs is only approximative, i.e. the HHT is unable to
recover correct non-linear modes from transient data. This finding limits the accuracy of
non-linear modal analysis approach described in the following chapter.

Chapter 5 proposes an approach to non-linear modal analysis in which non-linear
modes are used to detect, characterise and quantify the non-linearity. The method firstly
detects and characterises the type of structural non-linearity using the Hilbert-Huang
transform. The quantification of non-linearity is then carried out through the optimisation
of a selected structural model. The final output of the method is a model of the structure
with fully identified linear and non-linear parameters. The validity and limitations of
the suggested approach are examined on several numerical cases. The method is then
demonstrated on the experimental data obtained from the ECL benchmark.

The inability of the Hilbert-Huang transform to deal with systems with asymmetric
non-linearities is addressed in chapter 6. A proposed method, named zero-crossing method
for systems with asymmetric restoring forces (ZCA), is an extension of zero-crossing
method of the instantaneous frequency and amplitude estimation. This method treats the
upper and lower part of the resonant decay response separately and allows identification
of amplitude-dependent natural frequency, damping and restoring forces. The ZCA is
demonstrated on a number of numerical validation cases for which it is shown that the
results are equivalent to those obtained by the Hilbert vibration decomposition (HVD).
The proposed method and the HVD are also applied to experimental measurement
obtained from a micro-electro-mechanical system.

The last chapter summarises the thesis, revisits the most important findings and
evaluates the research objectives. It also states the main original contributions of the
presented research work. Lastly, the avenues of the future research in non-linear system
identification that directly relate to this thesis are suggested.

The thesis is accompanied by three appendices. Appendix A aims to provide a
complete list of non-linear system identification methods with their functions (detection,
characterisation or quantification) and a few relevant references. Appendix B describes the
numerical implementation of the complex non-linear modes whose theoretical background
is presented in chapter 4. Appendix C describes the Whittaker smoother that is used
throughout the thesis for the smoothing of experimental data.





Chapter 1

Literature review

Abstract
This chapter provides a brief, non-mathematical introduction to non-linear dynamics and
non-linear system identification. Firstly, non-linear dynamics is introduced and the effects
and sources of structural non-linearities are discussed. Then, the basic skills and processes
that are required for a successful solution of structural vibration problems, i.e. theoretical
modelling, numerical analysis and experimental testing, are briefly reviewed. However,
the main objective of the chapter is to review the available methods and approaches to
non-linear system identification and to identify possible avenues of the development with
regards to the objectives of the thesis. Firstly, the non-linear system identification is
structured into detection, characterisation and quantification and the most important
methods and concepts are surveyed. Then, non-linear system identification methods are
categorised based on their features. The main focus is on the frequency domain methods,
time-frequency analysis and non-linear modal analysis, because these groups of methods
will be used in other chapters. At the end of this chapter, the limitations of the existing
approaches that are addressed in this thesis are summarised.
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1.1 Non-linear structural dynamics
Non-linear structural dynamics is a study of mechanical motion, forces and their relations
in a non-linear structure. The subject of non-linear dynamics is externally broad
with a vast mathematical theory [89, 158] and applications ranging from biology to
engineering [258]. Mathematically, the non-linear dynamics could be regarded as a study
of any set of non-linear differential equations that model a system [271, 281]. In structural
engineering the mathematical models, often called structural modes, have a certain, well
established form consisting of mass, damping and stiffness matrices, which represent
an underlying linear system, accompanied by non-linear restoring forces [63, 119, 158].
The non-linear restoring forces can depend on the displacement or velocity and can
be described by many parameters. It is widely acknowledged that non-linearity is an
important and often inherent feature of a large majority of systems. In contrast, linear
behaviour is a rare exception, which, however, is often assumed due to its mathematical
elegance. The non-linear effects are often neglected in practical applications, owing
partly to the complexity of non-linear dynamics. However, it is important to distinguish
between linear and non-linear systems because non-linear systems possess a number of
features unknown in linear theory, for instance

• The dynamics of non-linear systems may be much richer, featuring phenomena that
cannot be observed in linear systems. For instance, several stable equilibrium posi-
tions, sudden changes in overall dynamics with a small perturbation of parameters
(jumps, bifurcations) or internal resonances (transfer of energy between modes).

• The non-linear system can respond in a number of ways depending on the initial
conditions. For example, a simple experimental set-up from [273] (essentially a
Duffing oscillator) was shown to exhibit limit cycles, bifurcations, chaotic behaviour
and a strong dependence of steady state responses on the initial conditions.

• Fundamental properties of linear systems are lost, including the principle of superpo-
sition and the force invariance (or even a rigorous definition) of frequency response
functions. All of such properties are discussed in more detail in section 1.2.1 while
reviewing methods for detection of structural non-linearities based on the violation
of these fundamental principles.

• The modal properties (frequency, damping and mode shapes) that are widely used
for the analysis of linear systems are no longer invariant to vibration amplitude.
This is a very important feature of non-linear systems that prevents linear modal
analysis. The amplitude-dependence of modal properties is a direct consequence
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of the principle of frequency-energy dependence [119], which is also responsible
for non-existence of analytical solutions of damped non-linear vibration [186] or
non-linear mode localisation in arrays of oscillators [267].

• Chaotic behaviour can occur even in systems with simple configurations, such
as a double pendulum or Duffing oscillator. Deterministic chaos is seemingly
unpredictable, irregular and random-like motion extremely sensitive to initial
conditions. At the same time, however, the system is deterministic in a sense
that there are no stochastic variables or effects. Although the chaotic systems are
also studied in mechanical engineering [154, 258], no chaotic behaviour is further
considered in this thesis.

There are many sources of non-linearities in mechanical systems [119, 289], including

• Geometric non-linearity originates from the potential energy as a consequence of
large displacements, often observable in highly flexible structures, such as beams,
cables, plates or shells [179]. The geometric non-linearity can generally occur
anywhere in a system, i.e. it is not localised in a specific spatial coordinate(s), but
rather distributed in the structure. However, studying such a type of non-linearity
is extremely difficult and time-consuming, so it is often avoided by modelling the
effect of the distributed non-linearity using localised non-linear elements. Geometric
non-linearities are described by polynomial models that are often based on the
Taylor series approximation of a more complicated non-linearity. In particular, the
cubic hardening stiffness is often studied, because while it is described by a relatively
simple polynomial model, it gives a rise to many complex phenomena [273].

• Non-linear material properties are often inherent properties of materials. Unlike
the geometric non-linearity that becomes relevant under high loading, these non-
linearities can be activated under arbitrary loading conditions. Non-linear material
behaviour is commonly exhibited, for example, by rubbers and foams [246, 280].
The dynamic analysis of these non-linearities has not received so much attention
in the past because the behaviour can be commonly approximated by simpler
non-linear models that can introduce very comparable effects.

• Non-linear dissipative effects are responsible for the loss of energy so that the
vibration is eventually damped if no external force is acting in the system. In
linear systems, all dissipative effects, which can originate from air resistance or
material dissipation, are usually included in the damping matrix. However, the
dissipative mechanisms are not well understood even in the linear domain where
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several damping models exist [63]. The proportional viscous damping is the most
commonly used model, which assembles the damping matrix as a linear combination
of the mass and stiffness matrices. In non-linear dynamics, the linear damping is
still present, but in addition to it, there may be many non-linear dissipative effects.
Non-linear dissipation can be an inherent characteristic of the material, but is also
exhibited in frictional interfaces and joints. The energy dissipation in joints and
interfaces is arguably the most frequent cause of non-linearity in real-life structures.
Even without bolts, the structures must have some connections or assemblies that
experience some level of friction between them. Despite intensive research, many
challenges in reliable modelling of joints remain and some of them appear to be
almost unsolvable. This fact led to suggestions to change the philosophy of joint
modelling completely [64].

• Non-linearities from external sources include all non-linearities which are not
properties of the structure, but still influence its behaviour. For example, boundary
conditions can be non-linear due to presence of the fluid or other objects. In
addition, there may exist external fields, such as electromagnetic field, which can
cause non-linear behaviour of otherwise linear structure.

• Non-linearities in the measurement chain may be associated with the experimental
testing of structures. They can arise from a shaker-structure interaction, bolt
looseness, unwanted pre-stresses effects or poor transducer mounting. In practice,
as much effort as possible should be invested into avoiding them or minimising their
consequences. In laboratory testing, this type of non-linearities should be avoided
completely by using state-of-the-art equipment and acquisition software [289].

The non-linearity can often generate negative and unwanted effects. For example, in a
vehicle brake squeal problem the steady sliding frictional interface can become unstable,
generating vibration and noise in the process [122]. On the other hand, the same effect,
called friction-induced vibration, generates sound in musical stringed instruments [149].
There are also some important applications where the non-linearity is essential for the
proper function and is purposefully introduced [27]. For example, under-platform dampers
in aircraft engines [198] are designed to dissipate energy through frictional interfaces and
to cause a frequency shift of the resonance frequency. It can be assumed that to meet
the increasing demand for better performing structures, the non-linearities will have to
be more and more utilised in the future.

The basic skills required for a successful solution of a structural problem have been
reviewed in [64] and are summarised in Fig. 1.1. Three basic skills are theoretical
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Figure 1.1 Three basic skills and procedures required for a successful solution of a structural
problem

modelling, numerical analysis and experimental modelling, but for the successful solution
of a dynamical problem, they cannot be exercised separately. The combination of
theoretical modelling and numerical analysis is often referred to as a simulation and
the simulated results should always be validated to ensure that the analysis provided
desired and reasonably accurate results. In contrast to verification, which ensures that
applied mathematical procedures generated mathematically correct results regardless
of their relevance to reality, the validation always requires experimental measurements.
The experimental testing is also related to the theoretical modelling through the non-
linear system identification. Non-linear system identification is sometimes considered as
the internal part of validation and verification [119]. However, this classification is not
accurate, because the main focus of non-linear system identification is on the development
(or providing the information necessary for the development) of structural models from
experimental measurements. Non-linear system identification in structural dynamics is a
central theme of this thesis and is reviewed in detail in section 1.2. However, to give a
wider background of non-linear dynamics three basic skills are firstly briefly reviewed.
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1.1.1 Theoretical modelling
Theoretical modelling of non-linear systems usually requires a deep understanding of the
physics of the problem and the ability to define a set of equations that describes the
structure. In structural dynamics, the basic form of the governing equations of motion
is well established, consisting of mass, damping and stiffness matrices that model the
underlying linear system, a matrix of non-linear restoring forces that accounts for the
effects of structural non-linearities and a vector of excitation forces. These matrices
describe discretised structures, but some simpler geometries, such as beam, plate or shells
can also be adequately modelled by continuous models [179].

Besides the classical lumped parameters models for simpler structures, the finite
element method (FEM) has emerged as a dominant means of high fidelity modelling.
This method allows discretisation of the geometry of a structure using the finite number
of elements which are used to assemble the mass and stiffness matrices. The FEM
is used in virtually every branch of engineering and many commercial packages exist,
allowing a wide range of numerical solutions and analyses. However, very few of them
allow dynamical analysis of non-linear systems, thereby contributing to a limited number
of applications of non-linear dynamics in practice. In order to deal with non-linear
dynamical problems, the FEM is usually used to assemble the model of the underlying
linear system (mass and stiffness matrices) and linear dissipative effects (damping) and
non-linearity are modelled separately. The complete set of equations is then solved by
numerical methods (section 1.1.2) which are usually implemented in in-house software.

The crucial problem arises when trying to describe the non-linearity via mathematical
models. Each source of non-linearity is represented by a different model and in some
cases, such as joints and interfaces, many competitive models have been developed. There
are several common models of localised non-linearities:

• Polynomial approximation [12, 119, 289] is the simplest functional form that can de-
scribe many non-linearities accurately. However, there are classes of non-linearities,
such as non-smooth ones, which can be approximated by the polynomial expressions
only if very high order polynomials are used which requires many coefficients to be
identified. The polynomial approximation does not necessary have to be always the
best choice because it might not represent the physical mechanism of non-linearity.

• Non-integer exponent-type models have been used in some cases as an alternative to
polynomial approximation to describe the restoring forces with higher accuracy [218].
Such models were used for the modelling of rubber isolators [219], visco-elastic
materials [231, 246, 280] or the ECL benchmark in [115, 139]. Besides these
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models, cubic splines [51, 56, 165] can also offer very high flexibility in cases where
polynomial approximation is not sufficient.

• Black-box models are used in situations where no information about the system
is available. These general models can describe practically any (linear or non-
linear) behaviour of a system based on its inputs and outputs. However, the key
limitation is a lack of any information about the physics that governs the dynamics
of the problem. The black-box models are often used in system identification via
machine learning [286], in particular the artificial neural networks (ANN) has been
successfully applied [21, 35, 287]. Unlike black-box models, the gray-box models
combine a partial theoretical knowledge of the system with measured data to
identify the most appropriate model. Thus, most of the models used in non-linear
system identification could be regarded as gray-box models, because almost always
some knowledge of the non-linearity is available from the physical understanding of
the problem and the existence of underlying linear system is assumed. To complete
the list, it should be mentioned that sometimes the term white models is used for
models that are purely theoretical so they do not build on, nor are supported by
any experimental data.

• Hysteresis models describe behaviour of structures with inelastic restoring forces.
These restoring forces cannot be defined through the instantaneous state variables of
the system, because there is a lag in the arrival of the output with respect to input or
the output depends on the history of the input [272]. A number of models describing
the hysteresis effects in mechanical systems has been developed [7, 105, 247] and
corresponding system identification methods have also emerged [282, 285].

• Models of joints and interfaces have received substantial attention of a research
community due to their presence virtually in any mechanical system. Since bolted
joints and interfaces are understood to have system-level dependencies, and because
there has not been an established methodology for joints modelling, there is great
diversity in joint models [24, 88, 93]. These include detailed finite element models
of joint components [120, 213], continuum element approaches using zero-thickness
elements [111, 259], and thin-layer elements [52, 240], lumped models [81, 87, 230],
whole-joint modelling using hysteresis elements [106, 236, 249], and node-to-node
coupling with friction contact elements [196, 202, 235]. It was also argued in [64]
that since no joint model has a required predictive capability that could be used
during a design process of new products, the way of how the joints are designed
and modelled might have to be radically re-thought in the future.
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• Specific models of non-linearity are developed when it is required by a specific ap-
plication and supported by a good understanding of the physics of the problem [27].
For example, models of time-dependent degradation [34] in a presence of seismic
loading are used to assess the safety of structures during earthquakes and models
of breathing cracks [79, 143] are used during structural health monitoring.

The creation of the underlying linear model using the FEM is nowadays well established
and verified process. It does not usually present any significant challenge and the
predictive capability of linear models is guaranteed. A good theoretical model of a
non-linear system should be predictive as well, it should also reflect the true nature of
the system and be described by the parameters that can be easily measured or estimated
from measured data. Unfortunately, these premises are very rarely achieved, because the
physical understanding of many non-linear phenomena is not yet sufficient. This is one
of the reasons why non-linear system identification, a central topic of this thesis, is still
very important at this time when the computational modelling is so widely spread.

1.1.2 Numerical analysis
The numerical analysis is concerned with the solution of the set of equations, which has
been obtained by theoretical modelling, in order to provide required insight into the
problem in a reasonable time. Many analytical, approximative and numerical procedures
have been developed to reflect very rich nature of non-linear systems. It would be
ideal to solve dynamical problems analytically, thereby obtaining close-form exact or
approximative solutions. Unfortunately, the approximative close-form solutions are
available only for a small subset of conservative non-linear systems under quite restrictive
conditions. The methods used for the analytical solution include harmonic balance
method, method of multiple scales and perturbation methods [61, 89, 158].

The numerical methods have become absolutely dominant in recent years. One of
the most intuitive, albeit very time consuming, numerical procedure is the direct time
domain integration of equations of motions. This is generally not very appealing method
due to the extremely long time required to obtain the time domain response which might
not be very informative. On the other hand, it is not restricted to periodic excitation
and any system with smooth or non-smooth non-linearities can be solved. In this thesis,
numerically simulated data via direct time domain integration are used to replace the
data from experimental measurements. Non-linear system identification methods can
then be tested on such data to evaluate whether they were able to estimate the original
model.
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Most of the numerical methods in mechanical engineering are concerted with the
computation of periodic solutions, including time domain shooting technique [257], simu-
lated stepped-sine experiment [63] or orthogonal collocation method [112]. One of the
most popular methods for the computation of steady state periodic forced responses is,
however, the harmonic balance method (HBM) [158], also known as the Fourier–Galerkin
method [54]. The method approximates the steady state solution using the Fourier
series in which a specific number of harmonics can be retained and coefficients of these
harmonics are then computed. Due to its long use, the numerical implementation has
been well optimised, including the condensation of equations of motion into non-linear
degrees of freedom [156, 202] (one of the reason why localised non-linearities are often
used), alternating frequency-time procedure [29, 227] which allows effective evaluation
of any non-linear forces in the frequency domain, and the analytical computation of
Jacobian matrices to reduce the number of numerical operations [201]. The HBM is also
coupled with a numerical continuation [178, 239] (also known as path-following methods)
which allows to track the evolution of the periodic solutions with respect to the frequency
or other parameter. The numerical continuation uses a predictor to approximate the next
solution, a corrector to accurate the predicted solution and a means of controlling the
distance between solution points. The HBM has been extensively used for gas turbine
structures [129, 202, 203, 228], joint and contact problems [107, 198, 274] or satellite
structure [53, 54]. The HBM is also used throughout this thesis to generate frequency
response functions (FRFs).

A modified version of the harmonic balance method is also adopted for the computation
of non-linear modes of non-conservative autonomous dynamical systems in [127, 134, 135]
and chapter 4. A considerable number of other numerical methods for a different concepts
of non-linear modal analysis (reviewed in section 1.3.3) was recently reviewed in [215].
Because the complex non-linear modal analysis is one of the central topics of this thesis
and because it has not yet been so widely used, its numerical implementation based on a
modified version of the harmonic balance method is described in appendix B.

1.1.3 Experimental measurements and testing
Whilst the theoretical modelling and numerical analysis greatly improve our ability to
predict behaviour of structures in timely fashion, the experimental measurements and
testing still play a key role in the process of creating and validating numerical models.
The experimental vibration testing is conducted on daily basis in both experimental
(laboratory) and operational environment. The goal of the laboratory testing is to provide
data to create and validate the structural model, whereas operational testing provides
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data mostly for structural health monitoring. A wide range of hardware and software is
available and many test procedures have been developed [26, 63, 273, 289].

Traditionally, the vibration data are acquired using contact accelerometers or strain
gauges [170]. These technologies are relatively cheap, accurate, easy to use and set up.
On the other hand, they have the disadvantage of being contact measurements, so they
might sometimes influence the structure which is being tested. Also, it does not have to
be always possible to connect them to the structure.

More recently, a range of other measurement methods has been utilised to acquire
time domain data of vibrating structures. For example, the use of laser Doppler vibrome-
try (LDV) is already quite common [33]. It offers precise velocity measurements that are
performed in a non-contact manner so there is no influence of the dynamics. The LDV
has been used for modal analysis [251, 252] or investigation of joint structures [55, 224],
including under-platform damper measurements [196–198] presented in section 2.5.

The digital image correlation (DIC) which processes a series of quick snapshots of the
movement has gained some popularity too. The lasers are replaced by cameras or high
speed cameras whose records are processed to obtain relevant information about vibration
behaviour. This type of measurements shows a great potential and have been used in a
number of applications, including modal analysis [90], structural model updating [276]
or non-linear dynamics [58, 199]. Both lasers and cameras are contact-less measurements
so they do not influence the structure. However, their application in an operational
environment is very limited due to their high price and the fact that the structure must
be clearly visible to them.

Regardless of measurement hardware the experiments must be designed in such a way
that all unwanted effects are reduced as much as possible [55]. Besides the best practices of
modal analysis, such as sensor placing or excitation attachment [63], particular care must
be taken in non-linear dynamics to set-up a test rig very accurately [273]. Even seemingly
small discrepancies can significantly influence non-linear behaviour. For example, the
ECL benchmark [261] has been used by many research groups and despite being very
simple, it was observed that the smallest changes in the design can alter the dynamic of
the structure. A slight pre-stress can change a typical hardening behaviour to softening
at low amplitudes [85, 168].

Leaving aside the design and manufacturing of the test rigs in which many uncertainties
can arise, the problems with the excitation and boundary conditions must be considered.
For the experimental testing of non-linear systems, the choice of excitation heavily
influences the quality of acquired data and system identification possibilities. For
example, for the testing of steady state responses, the sine wave excitation is preferable.
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While this can produce high quality steady state responses, it is not suitable for the
estimation of modal properties of the structure. The choice of boundary conditions is
also important and is often discussed in books about experimental testing [63]. As a
rule, the attention should be paid to minimise the influence of any external effects on the
structure so that the phenomenon of interest can be isolated and studied.

In general, it seems that the acquisition of vibration data does not present a challenging
task any more if appropriate hardware and software are available. A large amount of
data can be easily obtained even for complex structures, such as aircraft engines [238].
On the other hand, the processing, interpretation and system identification based on the
measured data still appear to be very difficult tasks. The data used in this thesis are
frequency response functions measured using a stepped-sine excitation and time domain
free decays, i.e. no random excitation has been used.

1.2 Non-linear system identification in structural
dynamics

Non-linear system identification refers to not only estimation of model parameters, but
also to establishment (or improvement) of the model with no a priori knowledge of the
system [119]. Some of the methods, therefore, require a model of the structure to be
defined beforehand. Such methods are sometimes referred to as parametric, whereas
methods that do not require a model are termed non-parametric. The non-parametric
methods attempt to create a model of a non-linear system based on the data without
any a priori knowledge of the non-linear mechanism. Once the model of the structure
has been found, it can be quantified in the same way as in parametric methods.

A wide range of methods for non-linear system identification have been developed to
address the different nature of structural non-linearities, loading conditions and meet
specific requirements. Non-linear system identification is usually divided into three
main stages that are executed in a sequence. These are detection, characterisation
and quantification as shown in Fig. 1.2. Detection aims to detect the presence of
structural non-linearities in a structure and optimally to indicate to what extent these
non-linearities influence the vibration behaviour of the structure. If no non-linearity is
detected or if the non-linearity is very weak (in a sense that it does not have a significant
influence on otherwise linear behaviour), the structure can be treated as linear and linear
system identification can be used. If the non-linearity has been detected, it is further
characterised. Firstly, the type of the non-linearity, which relates to the underlying
non-linear mechanism, is established, then the spatial location of the non-linearity is
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Detection (section 1.2.1)

Aim: detect whether a system exhibits non-linear behaviour

Characterisation (section 1.2.2)

Type Aim: determine the type of a non-linearity
Location Aim: determine the location of a non-linearity
Form Aim: determine the functional form of a non-linearity

Quantification (section 1.2.3)

Aim: determine the coefficients of a non-linearity

Figure 1.2 Identification process: detection, characterisation and quantification

found and a functional form which is used for a mathematical description is selected.
Having detected and characterised the non-linearity, the model of the structures can
be created and subsequently the parameters of the model can be quantified. It is also
beneficial to consider the uncertainty of the obtained model. In parametric methods,
detection and characterisation are not necessary since the model of the structure, including
non-linearities, is already known.

Several books and review papers about non-linear system identification have recently
been published, highlighting the active research interest in the field [2, 20, 30, 31, 119,
164, 289]. A brief review of the most relevant methods is conducted in the following. A
more complete list of methods with their range of applicability and relevant references
can be found in appendix A.

1.2.1 Detection
Detection of structural non-linearities is the first step in the identification process. It aims
to discover non-linear behaviour in a structure and, optimally, to indicate (or quantify)
to what extent this non-linearity influences the vibration behaviour of the structure. If
no or very week non-linearity has been found, the structure can be treated as linear and
well-established methods for linear system identification can be used instead. Numerous
methods for detection can be found in the review papers [2, 30, 31, 119, 164] and also in
in-depth survey papers focusing closely on detection [97, 269].
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The available detection methods can be grouped into the methods which look for
the violation of basic linear principles, methods based on the linear modal analysis, and
methods operating in the frequency domain. The first two groups of methods are briefly
reviewed in the following. The third group is described in more detail in section 1.3.1. All
methods from that group can be applied directly to a frequency response function and
do not require modal analysis to be performed. The last group of methods is described
separately in detail because it provides a background for chapter 2 that proposes a new
method for detection and characterisation from a single frequency response function in
order to achieve the first objective of the thesis.

The methods based on the violation of basic linear principles

Various concepts for the dynamic analysis of linear systems do not apply to non-linear
systems so the violation of these basic principles enables detection of non-linearities.
If a linear system is excited by a single frequency sine wave and is allowed to reach a
steady state, it responses with a sine wave of the same frequency, but with a different
amplitude. The distortion of the output sine wave indicates non-linear behaviour. The
method which seeks such a distortion is sometimes referred to as the harmonic distortion
test [289]. The distortion is caused by the presence of higher harmonics in the response
and the harmonic detection method [150] can be used to assess the harmonic content
of the output. If the output spectrum contains higher harmonics, in addition to the
excitation frequency, the system is non-linear.

The principle of superposition is one of the fundamental principles of linear systems.
It states that the response at a given place and time caused by two or more excitation
forces is equal to the sum of the responses that would be caused by each excitation
force individually. Despite the fact that the principle of superposition defines linear
systems, its practical applicability to investigate whether the system is linear or not
is limited as explained in [289]. In order to conclusively establish the linearity of the
system, all possible combinations of excitation forces would need to be tried, which is
clearly impossible. On the other hand, to show that the system is non-linear, only one
combination that disproves the principle of superposition must be found, which might
be less demanding task. Although the principle of superposition is a definite means of
detecting the non-linearity, it is not usually applied. Instead, its modified version called
homogeneity method, described in section 1.3.1, which can be used with conventionally
measured frequency response functions is frequently applied.

The simplest test of linearity which is available in all commercial software packages for
the experimental modal analysis or a frequency response measurement is the Coherence.
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A detailed description of this method can be found in many signal processing books, for
instance [19, 26, 63, 242]. Essentially, the coherence captures the quality of the transfer
function estimated for a linear system. In an ideal case, the coherence is equal to one for
all measured frequencies so its drop is considered as a sign of non-linearity. Unfortunately,
a major issue is that the coherence is also strongly influenced by measured noise and there
is no way to distinguish whether its drop was caused by measured noise or non-linearity.

The methods based on the experimental modal analysis

A number of detection methods is based directly on the experimental modal analy-
sis (EMA) [268]. Such methods detect the presence of a non-linearity from the evolution
of the modal parameters for different levels, types of excitation or amplitude of vibration.
This underlying idea is utilised via so called Linearity plot [82] which is any visualisation
of the independence of modal properties on a relevant factor, either type or level of
excitation, amplitude of vibration or their combination. If the extracted modal properties
are not independent to aforementioned factors, a non-linearity is present in the structure.
The acquisition and processing of the data for this detection method can be unnecessary
time-consuming because the complete experimental modal analysis must be performed
in order to establish the presence of the non-linearity, which, however, renders the modal
analysis irrelevant.

If the modal damping is estimated using the circle fit method then the so called Carpet
plot can be constructed [63]. A carpet plot is a surface that depicts the dependency
of the estimated damping on two frequencies, one before and one after the resonance,
which were used for the damping estimation. If the damping is independent on these two
frequencies, the surface is flat and the structure is deemed to be linear in damping. On
the other hand, the variation of the surface indicate a damping non-linearity. The circle
fit method requires the vibration modes of the structure to be well separated and the
damping model to be selected.

The modal properties of closely spaced modes can be identified by well-established
subspace identification methods [216] that are applied for the experimental and operational
modal analysis. Often, the so called stabilisation diagram is used to find an appropriate
order of the linear system. If the system is non-linear, the stabilisation diagram can be
difficult to interpret and therefore can be used as an indication of non-linearity. The use
of stabilisation diagrams to non-linear system identification was introduced as a part
of the frequency domain non-linear subspace identification (FNSI) [162, 163] and time
domain non-linear subspace identification (TNSI) methods [146, 169]. As both of these
methods allow quantification of the non-linearity they are reviewed later in section 1.2.3.
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If the mode shapes have already been estimated (by any EMA method), they can be
used for detection using the reciprocal modal vector [41]. The reciprocal modal vectors are
defined as the product of the mode shape vector and the mass matrix and it was shown,
both numerically and experimentally, that estimated mode shapes and their corresponding
reciprocal modal vectors are orthogonal to each other. Based on this orthogonality, a
detection matrix, which is equal to an identity matrix for a linear, noise-free system, can
be defined. Any deviations from an identity matrix may be caused by the non-linearity,
but unfortunately, by any other analysis errors as well. As a consequence, this detection
method may not be reliable in practical applications.

Indication of the strength of the non-linearity

Sometimes, it may be important to know to what extent the non-linearity influence
the behaviour of the structure. If the influence is minor, the system is almost linear
and can be treated accordingly. On the other hand, when the non-linearity significantly
influences the system behaviour, the use of linear approaches is bound to fail. Terms such
as “weak non-linearity” and “strong non-linearity” are often used in publications without
any definition. Although some methods which provide an insight into the strength of
the non-linearity are available, the definition of the strength of non-linearity is generally
impossible since this quantification is application- and non-linearity type-dependent.

The most straightforward way to assess the strength of the non-linearity is to compare
the measured characteristic to its known linear counterpart. Subsequently, a non-linearity
index (NLI) which is usually zero for a linear system and non-zero (positive or negative)
for a non-linear system can be defined. The strength of the non-linearity can be assessed
from the absolute value of this index. The review of several non-linearity indexes based
on the distortion of the frequency domain and time domain linear characteristics can be
found in [97]. These include coherence, bicoherence and higher order spectra and their
performance is compared on the Duffing oscillator. It is concluded in [97] that although
the higher order spectra and associated statistics theoretically offer greater possibilities,
their application is limited in a presence of measured noise.

The non-linearity index, termed Non-linear modal grade [244], is applicable to a single
non-linear mode of vibration and it is defined as the ratio of the peak magnitude of
the non-linear modal force and linear modal force. The ranges of the non-linear modal
grade that determine weak, moderate and strong non-linear behaviour were proposed
in [244]. Unfortunately, despite being suggested in line with an engineering practice, the
thresholds are basically arbitrary without any support in theory. The non-linear modal
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grade was proposed as a co-product of a more complex topic so its range of applicability
has not been further investigated.

The correlation-based indication functions [289] can be used to compute the correlation
matrices from measured time domain signals. These matrices are equal to zero for linear
systems and the non-zero values are indicators of non-linear behaviour. Although the
principle of the method is simple, the excitation must be a sine wave with an uncorrelated
Gaussian noise which is a very restrictive requirement.

A non-linearity index which can be used in combination with the harmonic detection
method is called the Sig-function [150]. This index is the ratio of the energy of the
output harmonics and the total energy of the output for each frequency. It is claimed
that a high harmonic content at low frequencies (high Sig-function) indicates a strong
non-linearity, but no other information (such as the type of non-linearity) can be obtained.
The Sig-function is amplitude-dependent so it might be difficult to establish its statistical
significance.

The linearity J-factor [123] quantifies the strength of a non-linearity using a J-factor.
Unlike most of non-linearity indexes the J-factor lies in the range 0 to 1, where 1 stands
for the linear system. The J-factor is defined as a multiplication of three sub-factors
that relate to the difference between the linear and non-linear FRFs qualified using bias
errors. The excitation amplitude influences the size of this factor. With the exception
of [123], no use of this factor can be found in literature.

Several non-linearity indexes can be proposed to quantify the difference between FRFs
and their Hilbert transform. These indexes are reviewed in detail in section 1.3.1 and
further discussed in chapter 2 where a few new indexes are proposed as well.

1.2.2 Characterisation
The aim of characterisation is to specify the type, spatial location and functional form
of the non-linearities which have been previously detected in a structure (see Fig. 1.2).
This step is necessary for the development of a structural model with a good predictive
capability because it should provide a precise understanding of non-linear phenomena.
Characterisation is arguably the most challenging step in the identification process since
the non-linearity may be caused by many different mechanisms. A large number of
characterisation methods exits and some of the most important are described in the
following sections. A more complete list of methods can be found in the appendix A. This
step might not be necessary if a model is known beforehand or a model can simply be
created based on the physical understanding of the problem and its results compared to
the measurements. If the match is not satisfactory, then the model can be changed and
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validated again until the required accuracy is reached. Using this brute force procedure,
the correct model of a structure can be eventually found. However, such a process may
be very time-consuming and in general the procedure does not lead to a good predictive
model since it might ignore all underlying physical mechanics.

Type characterisation

The first part of the characterisation process tries to establish the type of the non-linearity,
i.e. to identify the underlying mechanics that causes the non-linear behaviour. Most of
the methods in this group are based on subjective judgement, so in most cases, previous
experience is required to characterise the non-linearity correctly.

Usually, the distortion of the measured data provides an insight into the type of
non-linearity. For example, the distortion of frequency response functions [234, 268],
Volterra series [36], higher order FRFs [28, 256] or higher-order spectra [44] can be used
for a judgement about the non-linearity type. From all these possibilities, the FRFs
are measured most often and when coupled with the Hilbert transform in the frequency
domain, they provide a reliable means of type characterisation. This is reviewed in
section 1.3.1 in detail since it creates a part of the method proposed in chapter 2.

Regardless of the measured function, the vast experience in the field is required to
distinguish among possible types of non-linearities. To remove the need for this experience,
a footprint library [83] (a collection of typical shapes) can be used. In addition, the
idea of a footprint library presented in [83] utilised shape matching algorithms for a
comparison of computed restoring force surfaces with the measured counter-pairs. This
procedure avoids the subjective judgement, but measured noise has to be handled very
carefully otherwise a very time-consuming matching algorithm might fail.

The methods that estimate non-linear modes can be often used for type characterisa-
tion too. These are reviewed separately in section 1.3.3 in mode detail because they are
used later in the thesis.

Localisation of non-linearity

Localisation tries to find the spatial position of a non-linearity in a structure. Although the
location of the non-linearity is clearly an important element for successful identification,
very few methods for this task have been proposed.

The type-analysis correlation [141] locates the non-linearity via the correlation of a
non-linear analytical model and measured vibration data. The model has to be known
i.e. mass and stiffness matrices must be estimated or theoretically assembled and the
measured data must be acquired in the coordinate of the non-linearity. If possible at



24 Literature review

all, the latter may require the measurement of many coordinates to ensure that required
non-linear data are obtained.

Some methods for non-linearity localisation are based on damage localisation [145]
because the damage, such as a crack, introduces non-linear behaviour as well. The
method locates the non-linearity between sensors if the sensor is not directly at the place
of the damage. However, operational mode shapes of the structure are needed and the
density of the measured points has to be sufficient. Moreover, the method works well
only for weak non-linearities.

The non-linearity can be also localised using a pattern recognition, also called classifi-
cation, such as using nearest neighbour pattern recognition procedure [264] or artificial
neural networks [125, 126]. However, the pattern recognition may require a full spatial
model of the structure with different locations and types of non-linearities. Therefore,
this type of classification, which is essentially a brute force approach, may be very
time-consuming task.

Generally, the location of the non-linearity is often clear from the geometry of
the structure. For example, it may be expected that shell-like structure will exhibit
geometrically distributed non-linearities, whereas the non-linearity of a bolted structure
will originate from bolts and joints. Some of the methods that have originally been
proposed for quantification (reviewed in section 1.2.3) allow localisation by a brute force
approach as well.

Functional form characterisation

The selection of the functional form of non-linearity, i.e. the mathematical expression
that is used for the modelling of the non-linearity, is closely related to the non-linearity
type. Any function form discussed in section 1.1.1 can be theoretically used. However,
if no a priori insight into the non-linear mechanism is available, the selection of the
functional form might be very complicated.

Often, the polynomial approximation [12, 119] is used since it can describe many
types of non-linearities and is mathematically simple. However, there are classes of non-
linearities, such as non-smooth ones, which cannot be accurately approximated by the
polynomial expressions of a reasonable order. The method used for an assessment of the
quality of the polynomial approximation is called the significance factor [12]. It defines
the percentage contribution of one element to the model variance. A single element of
the polynomial expression is used to fit the non-linearity and the difference between the
coefficient of this element and the coefficients of the complete polynomial is calculated.
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This process requires many iterations, but the terms with the small contribution can
eventually be discarded.

The non-linearities which cannot be accurately described by the polynomial ap-
proximation may be modelled by other series such as non-integer exponent-type [219] or
fractional derivatives [231]. In addition, cubic splines [51, 56] can offer very high flexibility
in cases where polynomials are not sufficient. Very sophisticated models can also be used
to describe the functional form when it is required by an application (see section 1.1.1).
Unfortunately, these models cannot be selected solely based on measured data so a priori
knowledge of the system and underlying physical phenomena are necessary. On the
other hand, if selected appropriately, these models should be predictive and capture the
dynamics of the problem for a wide range of loading conditions.

In contrast, when little is known about the system, non-linear black-box models
[110, 194, 248] can be used. The black-box models, for instance NARMAX models
[20, 262], neural networks [66], fuzzy sets [302] or genetic algorithms [260], are the most
versatile group of functional forms that can represent practically any type of non-linearity.
Most of these models are defined as the discrete time models which look for a relationship
between past and future observations. The biggest disadvantage of these models is that
they do not provide an insight into the physical properties of an investigated system so
their coefficients do not have a physical interpretation.

1.2.3 Quantification
Quantification is the last step in the identification process. At this stage, the non-linear
behaviour has been detected and the type of the non-linearity, its location and the
functional form have been characterised. Only the numerical quantification of the model
parameters is now required. A number of methods to quantify these parameters exists,
some of which are reviewed in this section. A more complete list of available methods is
given in appendix A.

The approach which was originally proposed for the quantification but can be used
for characterisation as well is called the restoring force surface method (RFS) [148] or
force-state mapping method [48]. If the excitation, displacement, velocity and acceleration
are measured and the mass is known (or estimated), the non-linear restoring force of
a SDOF system can be constructed and displayed as a function of displacement and
velocity. The resulting surface has a characteristic shape given by the type of non-linearity,
thereby allowing detection and type characterisation. Under an assumption that the
non-linearity is described by a polynomial expression, this expression can be used to fit
the surface to quantify the non-linearity numerically. Various combinations of elements
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in the polynomials can be tried in order to find the best combination which represents
the measured data. The RFS has been mainly used for the identification of a single
mode of vibration, but its extension to MDOF systems, using a transformation from
the physical to modal space, has also been proposed [8, 23]. If all data in all degrees of
freedom have been measured, the RFS can also be used for localisation. The restoring
force surface has been successfully used for many applications, ranging from spacecraft
structures [166] through experimental benchmarks [113, 116] to micro-electro-mechanical
systems [9, 173]. Probably the main limitation of the restoring force method is that it
requires a lot of data to be measured and some preliminary knowledge of the system
(mass matrix) is required.

Similarly, direct parameter estimation [153] (also called singular value decomposition
method [31]) requires all data to be measured in all degrees of freedom and a full model
of the system to be known. If all data are available, the parameters (both linear and
non-linear) of the selected model can be obtained by fitting this model to the data.
Generally, the number of measured time samples is much higher than the number of
fitted parameters so the model must be fitted in a least-square sense. Theoretically, this
method can obtain exact (to the level of numerical errors) parameters for any excitation,
but every kind of measured response (displacement, velocity, acceleration and excitation
forces) is needed, making the method impractical to use [31].

The reverse path method [217] is a spectral method that estimates the frequency
response of the linear and non-linear part of the system. It can be applied to any
system excited by any random excitation. The method requires the excitation at the
location of non-linearity. This significant limitation is removed in the conditioned reverse
path method (CRP) [144]. The CRP computes conditioned frequency responses of the
underlying linear system with no influence of non-linearities. The non-linearities are then
quantified in the second step and the coefficients of the non-linearities are frequency-
dependent. The CRP was successfully used in a number of applications, including the
ECL benchmark [115], the VTT benchmark [80] and a folding wing model [293]. The
method can be also used for the localisation of non-linearity [108, 301].

The non-linear identification through feedback of the output (NIFO) [3, 4] treats the
non-linearities as internal non-linear feedback forces acting on the underlying linear
system. This method attempts to simultaneously estimate the linear and non-linear
frequency response of the system that has been excited by random excitation. Similarly
to the reverse path method, the NIFO identifies frequency-dependent coefficients of
non-linearities which are averaged for the final estimate. The method can be used for
multi-degrees-of-freedom systems, but it may sometimes suffer from numerical issues [119].
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The extension of subspace identification methods used in the operational modal analy-
sis (OMA) [187, 270] to non-linear system identification is calledtime domain non-linear
subspace identification (TNSI) [132, 146, 169]. The non-linearities are treated in the
same way as in the NIFO, i.e. as additional forces applied to the underlying linear
structure. The TNSI is suitable for any random excitation and uses robust numerical
tools. It is said [168] that the method is superior in accuracy compared to the NIFO
and CRP methods. A frequency domain version of the TNSI was introduced in [163]
and named as the frequency domain non-linear subspace identification (FNSI). It applies
the same principal idea as the TNSI, i.e. non-linearities are treated as forces applied
to the underlying linear system. However, unlike the TNSI, the data are processed
in the frequency domain which allows the frequency range of interest to be selected.
Consequently, the processing time and computation requirements are reduced, while the
accuracy is retained. Both TNSI and FNSI methods have a potential to identify large
industrial structures with complex non-linearities [162, 167], which, if unknown, can be
approximated by flexible cubic splines [56, 165].

1.3 Review of relevant groups of methods
A number of non-linear system identification methods have been very briefly described
based on the identification process in Fig. 1.2. However, the methods do not have to be
sorted according to Fig. 1.2, but can be grouped into several categories based on similar
features instead [119, 164]. Three of these categories are described in more detail since
the methods discussed therein will be used in other chapters of the thesis. The rest of
the groups are briefly introduced:

• Linearisation attempts to treat the structure as if it were linear. Because the
linear modal analysis has been extremely popular for a long time, there have been
many attempts to apply it to non-linear systems without modifications [289]. This
can be achieved by approximating the non-linear systems by a best linear model
with equivalent mass, damping and stiffness. Unfortunately, this approach to
the identification (and the analysis alike) is bound to fail for strong non-linear
behaviour. Moreover, any linearisation is valid only for one excitation type and
level. The linearisation is often achieved by random excitation, because the random
excitation is the only type of forcing that generates frequency response functions
that appear like linear ones. Examples of the methods that can be used for
the linearisation using the random excitation include equivalent linearisation and
statistical linearisation that are both based on the probability theory [289]. For



28 Literature review

harmonic excitation, describing function [15, 177] can be used to approximate FRFs
of a non-linear system based on its model. Then, these approximative FRFs can
be fitted to the measured data. The linearisation via the describing function is
equivalent to the linearisation using the harmonic balance method (HBM) [54, 158]
in which only the fundamental harmonic is retained.

• Time domain methods operate solely on time domain data in order to recover
physical phenomena presented in the structure. The computation of the time
domain data using the direct numerical approaches is very time consuming and
brings relatively low amount of information. On the other hand, the measurement
of time domain data is much faster than the acquisition of complete frequency
response functions. More importantly, the time domain data carry full information
about the system that is not distorted by any signal processing. Therefore, the
time domain data offer better possibilities for non-linear system identification. The
difference between the time domain and frequency domain data is revisited in detail
in chapter 3. The methods that operate on the time domain data include the restor-
ing force surface (section 1.2.3), time-frequency analysis methods (section 1.3.2),
NARMAX models [20] or black-box models.

• Machine learning does not assume any specific form of non-linearity, but uses the
black-box models instead. Instead, these methods attempt to obtain very general
models that can describe practically any (linear or non-linear) behaviour of a system
based on its inputs and outputs. The machine learning methods are native to
computational science and its applications [57, 91, 94], but have also been extensively
used in mechanical systems as surveyed in [286]. There is a range of methods, but
the artificial neural networks (ANNs) have received the greatest attention because
it has been shown that they can approximate virtually any mapping between inputs
and outputs. The use of ANNs in mechanical research is extensive [286] and also
includes the identification of vibration structural systems [21, 35, 287]. The black-
box models are very versatile so they can be applied to a wide range of systems
with continuous and discontinuous non-linearities. However, the key limitation
is a lack of any information about the physics that underlines the dynamics of
the problem. This is quite significant issue because it limits the use of black-box
models to one specific system configuration and operational conditions. Often, the
predictive capabilities (which is called generalisation in the machine learning) of
the model cannot be guaranteed and the parameters of the network cannot be
associated with any physical values.
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• Structural model updating is a process that is used for the correction (improvement)
of a structural model to match an experimental response. In theory, non-linear
system identification should be able to provide a model that does not have to be
corrected and that can predict non-linear behaviour correctly. Unfortunately, it
can be often found that due to a number of errors in modelling and testing [119],
some subsequent correction and validation are necessary. As the models are usually
created using the finite element method, the updating is often called finite element
model updating [78]. The updating is achieved either by manual adjustments of
relevant parameters or by minimisation of an objective function based on the
difference between measured and computed vibrational characteristics. Any kind
of optimisation (single or multi-objective optimisation, global or local, iterative
or heuristics methods) can be used and the objective function may be defined by
means of time domain data [95, 232], frequency response functions [83, 151, 244],
instantaneous frequencies and amplitude [278], non-linear principal component
analysis [113, 114] or any other feature of interest (even multi-physical one [160]).
The updating is generally non-linear optimisation problem, often with constrains and
limited ranges of coefficients. A successful and time-feasible solution of optimisation
problem requires not only reliable model with the characterised non-linearities, but
also a good starting guess and an appropriately constrained domain of coefficients.
The reliable models as well as initial coefficients should be ideally obtained by
non-linear system identification. However, if non-linear system identification cannot
provide any information about the character of the non-linearity, a concept of
model upgrading can be used [32, 65]. The model upgrading starts with a linear
model and attempts to modify it as little as possible, but in such a way that it
captures non-linear behaviour. This process has not yet been extensively used.
However, it seems that it is suitable only for weak non-linearities. Structural
model updating and upgrading can also be used as brute force approaches where
no or very little system identification is conducted so the correct response of the
system is re-constructed based on the trial-error process. Obviously, this can be
computationally very expensive and may lead to the model that does not capture
required physics of the systems.

The other three groups of methods - frequency domain methods, time-frequency analysis
methods and non-linear modal analysis are introduced in detail in the following sections.
The background of these methods is required to understand the concepts proposed in the
thesis. The following literature review also highlights limitations of the current methods
that are addressed in this thesis.
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1.3.1 Frequency domain detection and characterisation
A number of methods for detection and characterisation of structural non-linearities from
frequency response functions can be found in literature [31, 97, 119, 164, 269, 289]. These
methods may be employed as a pre-step of linear modal analysis to verify the linear
behaviour of the structure. As the modal analysis is dominantly used with frequency
response functions, the methods described in this section operate solely on the FRFs and
require no model of a tested structure. This group of methods is reviewed in detail to
identify a prospective method or methods that could serve as a starting point for the
method that needs to be developed to achieve the first objective of the thesis, i.e. enable
fast and reliable detection and characterisation of structural non-linearities from a single
frequency response function.

One of the important properties of the FRF matrix of a linear system is that it is
symmetric [63]. This property is called reciprocity and, if violated, it is an indication of
a non-linearity. In a reciprocity test, an FRF is measured and then the locations of the
excitation and response sensors are switched while other parameters of the testing set-up
remain unchanged. If the two FRFs are significantly different, the system is conclusively
non-linear, whereas if they are the same, the system is probably linear. Unfortunately,
some symmetrical non-linear systems may also hold the reciprocity even if they do not
satisfy the principle of superposition [289]. The reciprocity test can be time-consuming
and difficult to perform because it requires to switch the location of the excitation and
response. This can be a tedious process that does not have to be possible due to the
design of the tested structure.

Unlike the reciprocity test, the homogeneity test [130] does not require to change the
experimental set-up. The homogeneity test relies on the fact that FRFs of the linear
system are independent of the excitation amplitude, which is a direct consequence of the
superposition principle. Therefore, several FRFs measured for different levels of excitation
should overlay if the system is linear. On the contrary, if the FRFs are significantly
different, the system is non-linear. Although the homogeneity test does not require the
change of the experimental setting, it can still be time-consuming since several FRFs
must be acquired.

If only one FRF is measured, detection and characterisation are possible based on the
FRF distortion. All linear FRFs have a typical shape, so if a significantly distorted FRF
is observed, it indicates a presence of non-linearity. Moreover, the shape of this distortion
is known to be a characteristic of non-linearity. The distortion of FRFs may be assessed
by eye. However, this simple visual inspection can be subjective, can require a vast
experience to characterise the non-linearity correctly, and it is not very precise. There are
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several tools that can help to decide about the presence and character of non-linearity.
Because FRFs are complex functions, they can be visualised differently and the visual
inspection performed from different plots which can simplify the final judgement. For
instance, it is widely known that the FRF of the linear system produces a circle in the
Nyquist plot so the distortion of the circle is a clear sign of a non-linearity. Likewise, the
absolute value of an inverse receptance of a linear system plotted as a function of time is
a straight line and any significant deviation from this line indicates a non-linearity. In
addition, a collection of FRFs in a footprint library [83] can be helpful to decide about
the type of non-linearity.

The visual inspection of a single measured FRF does not have to be sufficient to
provide enough information to reliably detect and characterise the non-linearity. The
Hilbert transform in the frequency domain [245] greatly simplifies the identification
process by providing more information from a single FRF. This method explores the
fact that the linear FRFs are invariant to the Hilbert transform. On the contrary,
the Hilbert transform of non-linear FRFs produces distorted FRFs whose shapes are
unique for different types of non-linearities. The Hilbert transform in the frequency
domain is an effective and often used method to obtain more information to detect and
characterise non-linearity. However, it still has several limitations. There are several
numerical issues when evaluating the Hilbert transform of general non-linear FRFs and
the visual inspection is still necessary. The footprint libraries can again assist in this
visual inspection [289].

It should be noted that, strictly speaking, the Hilbert transform does not detect
non-linearity, but non-causality. The non-causality does not refer to the fact that the
system is non-causal in the sense that an effect precedes its cause. It refers to the fact that
the inverse Fourier transform of an FRF cannot be interpreted as the impulse response
because it has non-zero values for negative time. The non-zero values are not caused by
numerical errors but are usually a consequence of non-linearity [289]. It has not been
proven that all non-linear FRFs are always non-causal [119]. Therefore, there might
theoretically exist a class of non-linear systems whose non-linearity cannot be detected
by the Hilbert transform. However, no such behaviour of the Hilbert transform has ever
been reported in literature. The non-zero amplitudes for negative time in the inverse
Fourier transform of an FRF can directly be used for detection of non-linearity using the
non-causal power ratio (NPR) method [121]. The NPR is the ratio of the power of the
non-causal part to the power of the whole signal. It was shown that the NPR depends
on an excitation level and differs with the type of non-linearity. However, due to its
sensitivity to measured noise it is not commonly used.
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Several scalar coefficients have been proposed to describe the difference between the
FRFs and its Hilbert transform. These coefficients could be called non-linearity indexes.
They are usually equal to zero for a linear system and non-zero (positive or negative) for
non-linear systems [97]. The correlation coefficient was proposed in [130] and so called
Hilbert transform describes in [263]. The former describes the similarities between the
FRFs and its Hilbert transform using a cross-correlation coefficient, whereas the latter
uses spectral (statistical) moments up to third order. Both non-linearity indexes could
be theoretically used to assess the strength of non-linear behaviour. However, because
the strength of non-linearity is case-dependent and generally undefined term, it is not
usually attempted. Despite the fact that non-linearity indexes can simplify the decision
about the presence of non-linearity, a subjective judgement is still needed to decide about
the type.

From the literature review above, it appears that the Hilbert transform in the
frequency domain is one of the most powerful methods. While it does not require multiple
measurements, it provides a great amount of information to detect and characterise
non-linearity. It appears to be suitable as a pre-step of modal analysis in an industrial
framework where the time of measurement and processing must be minimised as much
as possible. However, the main limitation associated with this method is the lack of an
established methodology to determine if the distortion observed in an FRF is significant.
If the FRF is influenced by measured noise, detection and characterisation using visual
inspection can be very problematic. These limitations are overcome by the method
proposed in chapter 2.

1.3.2 Time-frequency analysis
It is widely recognised that the frequency domain representation of measured signals
possesses certain limitations with regards to non-linear system identification. The methods
that are applied directly to measured time series generally offer better possibilities to
estimate a greater amount of information about the system, which may eventually lead to
a better structural model. Many methods for time-frequency analysis have been developed
and used in countless fields [76, 101, 161]. All these methods attempt to reconstruct a
time-frequency-amplitude map of a measured signal. However, each method leads to a
map with a different time and frequency resolution, and even with a different definition
of frequency. Several groups of methods can be distinguished - time-frequency methods,
time-scale methods and methods based on instantaneous amplitude and frequency. This
part of the literature review is conducted with regards to the second objective of the
thesis, i.e. investigation of the time-frequency methods, and it aims to select the most
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promising group of time-frequency analysis methods that will be further developed in
this thesis.

Time-frequency methods are methods that seek a time-frequency-amplitude map of
a signal using a fixed kernel function that does not change with time. The well-known
short-time Fourier transform (STFT), also called spectrogram after its output, belongs
to this group. The STFT is entirely based on the discrete fast Fourier transform (FFT)
that estimates a frequency spectrum of the analysed signal. For the computation of a
spectrogram the FFT is applied to short, windowed blocks of the original signal and
the resulting spectra are plotted as a function of time. The STFT is a well developed
tool that has been used in many areas of science and engineering, for instance for
the modal analysis [140, 157], non-linear system identification [131, 161] or structural
health monitoring [223]. One of the fundamental problems of the STFT is its fixed
time and frequency resolution, i.e. no matter how the analysed signal changes, the
resolution of results remain unchanged. Moreover, there is a fundamental trade-off
between the resolution in time (the time at which frequency changes) and frequency
resolution (frequencies that can be distinguished). If a wide window is used, the time
resolution is poor, but better frequency resolution is achieved and vice versa. This
trade-off indirectly relates to Heisenberg uncertainty principle and can be mathematically
derived [43, 176, 242]. The limit of this trade-off when the best resolutions in time and
frequency are reached simultaneously is called the Gabor transform [77, 250]. Probably
the most intuitive way how to improve the resolution issue of the STFT is to vary the
size of the sliding time window, i.e. the size of signal blocks that are analysed [131].
However, this would no longer be time-frequency method, but rather a time-scale method
because the kernel would change in time.

Time-scale methods, also termed wavelet transform (WT) [76], improve the resolution
in both frequency and time domain. The wavelet transform is essentially an adjustable
sliding window Fourier analysis, in which, however, the frequency and amplitude are not
defined, but a frequency scale is used instead. The time-scale methods yield a scalogram
which represents the energy of a signal on a given frequency scale and at given time. A
very appealing feature of the wavelet analysis is that it can provide a uniform resolution
for all the scales so it is very useful in analysing data with gradual frequency changes [103].
However, the wavelet transform is not adaptive, i.e. it does not adjust the form of the
wavelet based on the data, so the whole data set must be analysed by a single selected
wavelet. Many wavelet forms with a wide range of properties exist [76], but a Fourier
based Morlet wavelet is used the most. The WT has been used in many applications as
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a better alternative of the STFT, in particular for modal analysis in [136, 225], damping
estimation [22] and non-linear system identification [253, 254]

Both time-frequency and time-scale methods are based on the representation of the
measured time series using the Fourier series. However, this representation can be often
misleading as argued in [101–103], especially when it is used for the system identification.
A minor concern is that the Fourier transform requires stationarity in the data. This
requirement is, however, removed by the application of the FFT and WT to short blocks
of the data. By doing so, even non-stationary data can be well analysed, assuming that
the stationary exists in a block. A more serious concern is that the Fourier transform
has a specific physical interpretation for non-linear time series which does not have to be
suitable for non-linear system identification. The Fourier series is an excellent and elegant
mathematical tool that can approximate any series, but in order to describe non-linear
processes, several harmonic components (commonly called harmonics) are needed. For
example, when analysing a distorted sine-wave, which is a well-known consequence of a
cubic hardening non-linearity [289], the Fourier transform reveals the presence of several
harmonics. However, while observing the particle moving on the distorted sine wave, the
harmonics cannot be seen in the movement, but only in the Fourier spectrum. On the
other hand, the movement of the participle can be easily interpreted as a vibration motion
with an almost constant frequency which fluctuates slightly. The interpretation of signals
using an almost constant (correctly called narrow-band) frequency that fluctuates in
time is a basic concept of the methods based on instantaneous frequency and amplitude.
The instantaneous frequency and amplitude are both functions of time and are not,
therefore, the same frequency and amplitude that can be obtained by the Fourier or
wavelet transform. The concept of instantaneous frequency and amplitude has been
known for some time [43, 176]. However, it has not been so dominant due to a lack of
established mathematical background and the collision with the established predictive
methods that are mostly based on the Fourier transform, such as harmonic balance
method (HBM). This concept offers many different possibilities and it allows to interpret
vibration signal in more natural framework [103]. The difference between the time-
frequency/time-scale methods and instantaneous frequency and amplitude concept will
be revisited in chapter 3.

The instantaneous frequency (IF) and amplitude (IA) have been used for non-linear
systems identification for over two decades. Probably the most well-known method for
resonant decay processing is the Freevib algorithm [67]. It applies the Hilbert transform
to estimate the IF and IA and subsequently computes modal properties. If the system
is forced, a modified version of the Freevib called the Forcevib can be applied. Both
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methods use the Hilbert transform to estimate the IF and IA. Unfortunately, the Hilbert
transform suffers from a number of mathematical and numerical issues. To remove
some of these limitations and offer enhanced features, alternative methods have been
developed in different fields, for instance, zero-crossing methods [142, 173, 207], direct
quadrature [103], energy operators [226] or conjugate-pair decomposition [181]. These
methods will be compared in chapter 3 on simulated data to evaluate their potential for
non-linear system identification.

The Freevib has been successfully used in many applications. The method is non-
parametric, so it does not require any model of the system beforehand. However, the basic
assumption is that the identified system possesses symmetric restoring forces. However,
asymmetric elastic and dissipative restoring forces appear in practical applications as
well. The systems with the asymmetric restoring forces cannot be identified using the
Freevib, but the recently proposed Hilbert vibration decomposition (HVD) [71, 73] can be
used instead. The HVD can identify amplitude-dependent backbones, damping curves,
dissipative and elastic restoring forces. The HVD is relatively complex method that is
influenced by a number of signal processing issues. A method which can obtain equivalent
results, but with higher accuracy and does not suffer from the signal processing issues is
proposed in chapter 6.

The Freevib must be applied to a mono-component function, i.e. the signal that can
be described by one narrow-band frequency. The multi-component signals can also be
analysed, but a direct decomposition method must be firstly applied. The most popular
method of the direct decomposition of time signals is the Hilbert-Huang transform. The
Hilbert-Huang transform (HHT) [101–103, 195] is potentially better than any time-
frequency analysis method as it does use a priori chosen basis for the decomposition. It is
therefore fully adaptive, thereby requiring no a priori knowledge of the system or observed
non-linearity. The HHT maps a time series into a time-frequency-amplitude distribution
by a two-step procedure. In the first step a complicated multi-component, non-linear
and non-stationary time signal is decomposed into oscillatory functions, termed intrinsic
mode functions (IMFs), by the empirical mode decomposition (EMD). Consequently,
the instantaneous frequency and amplitude are estimated from IMFs by the Hilbert
transform (HT) [71] or an equivalent method. The HHT is a versatile tool which has
attracted a widespread interest in many fields, including structural dynamics where it
has been used for experimental and operational modal analysis [210, 295, 296], structural
health monitoring [38], and parametric and non-parametric identification of non-linear
systems [25, 72, 182–184, 265]. Despite not having a rigorous mathematical background,
the method has a solid logical justification as evidenced by a number of successful
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studies. In addition, physics-based foundations of the EMD were derived in [118, 138].
Specifically, it was shown that IMFs relate to the slow-flow dynamics derived by the
complexification-averaging (CxA). No connection between the HHT and non-linear modal
analysis has so far been demonstrated in literature. In this thesis an attempt to connect
the HHT and non-linear modal analysis is made in chapter 4.

1.3.3 Non-linear modal analysis
The linear modal analysis is a well-established method for the analysis of linear dynamic
structures. Many sophisticated, highly accurate and precise methods for experimental
(EMA) and operational modal analysis (OMA) have been developed in both frequency
and time domain [26, 63], for instance, least-squares complex estimators [187, 270] (also
called polyMAX [188]), subspace identification methods [216] or eigenvalue realization
algorithm [109]. However, the extension of modal analysis concepts to non-linear structures
has proven to be much more problematic for several reasons. The decoupling of equations
of motion using a modal transformation, which is an essence of modal analysis and leads
to an important model reduction, is no longer possible for non-linear systems. Moreover,
frequency response functions and the modal properties (natural frequencies, damping
ratios and mode shapes) become amplitude-dependent and the superposition is lost. It is
argued in [283, 288] that there are three possibilities of how of to extend linear modal
analysis to non-linear systems: (1) learn how to apply unchanged basic linear theory
and philosophy to non-linear systems in a particular way so that the resulting modal
properties are amplitude-dependent, (2) retain the philosophy of modal analysis but
develop an appropriate theory that includes amplitude invariant properties of non-linear
systems, or (3) change the paradigm, do not attempt to apply modal analysis and develop
new theories for non-linear systems. The concepts of non-linear modal analysis, and
associated experimental methods, are often a combination of these three options. The
purpose of this part of the literature review is to briefly introduce the available concepts
of non-linear modal analysis in order to provide motivation and background for chapter 4
and chapter 5.

A number of viewpoints on non-linear modal analysis exists, each of which tries to
preserve a subset of properties of the original linear modal analysis. The non-linear modes
have been actively studied for several decades so a range of methods for their numerical
computation [215] as well as experimental investigation [164] has been developed, and a
number of reviews written [14, 117, 152, 204, 266, 267].

Non-linear normal modes (NNMs) were originally defined as motions in unison of a
conservative system [222]. Such definition requires all points of the system to reach their
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extreme values and pass through zero simultaneously. However, this definition could
not capture modal interactions during which the periodic motion consists of at least
two interacting modes of different frequencies so the system does not vibrate in unison
and the original definition cannot be applied. To account for modal interactions, the
original definition must have been later extended, defining an NNM as a non-necessarily
synchronous periodic motion of a conservative mechanical system. This definition has
been adopted in a number of studies [59, 117, 190–192], partly because it enables an
effective numerical computation of the NNMs [215]. The NNMs can generally undergo
bifurcations, stability changes and experience internal resonances. However, they are not
defined in the presence of damping (although the dynamics of lightly damped non-linear
systems may be sometimes still interpreted using the NNMs of underlying conservative
systems [117]). At the same time, however, complex damping mechanisms can occur
in engineering assemblies, for instance in form of joints and interfaces, and even linear
viscous damping of components may sometimes significantly change the dynamics of a
structure.

An alternative definition of NNMs for damped systems, often called as Shaw-Pierre
definition of NNMs, was proposed in [241]. Any form of dissipative effects (linear, non-
linear, proportional or non-proportional) can be encompassed. An NNM is defined as a
two-dimensional surface, termed invariant manifold, in the phase space. This manifold is
obtained using a set of partial differential equations and is parametrised using a single
pair of state-space variables (displacement and velocity). The trajectories of motions
that started on this manifold remain on it for all time so the system effectively behaves
as a non-linear SDOF system on this manifold. It was also shown that the modes hold
approximate superposition so they can be approximately combined to obtain a physical
motion [200, 283]. The evaluation of the invariant manifold is computationally expensive
compared to the direct computation of a trajectory (a motion) on this manifold that can
be found using complex non-linear modes.

Complex non-linear modes (CNMs) have recently been proposed in [135] and their use
has been extended for non-linear modal synthesis, harmonically forced and self-excited
systems in [127]. A complex non-linear mode of motion is defined as an oscillation of the
autonomous system with (potentially) a phase different between its degrees of freedom.
The CNMs allow direct computation of amplitude-dependent frequency, damping and
mode shape at the resonance in a timely fashion. Moreover, the numerical implementation
of the CNMs does not require significant modifications to conventional harmonic balance
solvers. The ability of CNMs to deal with large non-conservative systems and general
types of non-linearities led to their application to bladed disks coupled by mechanical
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joints with friction interfaces [129, 134, 135]. In [128] the CNMs were used for the
derivation of a reduced order model (ROM) of slow-flow dynamics of the system. The
concept of the CNMs with the associated ROM is used in chapter 4 to investigate a
possible connection between the Hilbert-Huang transform and non-linear modes and in
chapter 5 for a development of non-linear system identification method.

Experimentally, non-linear modes are often investigated using phase resonance testing
(also known as force appropriation) [59, 190, 191, 291]. This testing procedure has
essentially two steps. In the first step the structure is excited using a multipoint, multi-
harmonic excitation in such a way that it vibrates on a single non-linear mode of interest
and specific amplitude (energy level). The isolation of one non-linear mode can generally
be achieved using a force appropriation where the phase lag between the response and
the applied force is used as a measure of a quality of the excited mode. In the second
step, the excitation is turned off or removed and the system is allowed to decay on a
single mode of vibration. The acquired signal is termed a resonant decay response and it
is equivalent to the free decay response of a SDOF non-linear system. Such a resonant
decay response may then be investigated by a number of appropriate non-linear system
identification methods. However, in order to recover modal frequency, damping and
mode shapes, the time-frequency analysis methods (section 1.3.2) are most suitable. The
phase resonance testing has successfully been used for the experimental identification
of symmetric non-linearities in the ECL benchmark [190, 191], clamped–clamped flat
beam [59] or a sliding mass [142], and it is also used to obtain data from a MEMS device
with an asymmetric restoring force in [173, 174] and chapter 6. Although the phase
resonance testing is based on a solid framework of NNMs, it is an challenging procedure.
For example, the set-up of a suitable multi-point excitation pattern that would isolate a
single mode of vibration at specific amplitude level can be extremely difficult. In addition,
the problem of turning off the shaker suddenly without influencing the structure has not
yet been resolved.

The control-based continuation [17, 243] is a method that may be an interesting
alternative to phase resonance testing. It allows to track the solutions and bifurcations
of non-linear systems in a controlled manner by applying the theory of numerical
continuation directly to a physical system. In particular, the method has been used to
trace a backbone using the phase lag (a quadrature) between the force and response
as a control indicator. Although the control-based continuation might potentially have
widespread applications, it appears to be experimentally extremely complicated and it is
so far limited to SDOF noise-free systems [16, 214].
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Multi-modal non-linear identification through the direct decomposition of experimental
measurements by the Hilbert-Huang transform into a set of oscillatory functions has
also been presented in a number of papers [71, 118, 137, 181]. The strength of these
approaches is that they require no a priori characterisation of the observed non-linearities
and are generally applicable to non-stationary signals. Moreover, a free decay (a decay
signal that consists of two or more modes of vibration) can be acquired using a basic
impulse excitation and subsequently analysed. The experimental complexity of the phase
resonance technique and control-based continuation is therefore replaced by a more
sophisticated data processing. Although generally assumed, the connection between the
non-linear modes and the Hilbert-Huang transform has never been shown. Chapter 4
presents an attempt to connect the HHT and complex non-linear modes through the
reduced order model of slow-flow dynamics.

1.4 Limitations of the current methods
With the objectives of the thesis in mind, several limitations of the current methods have
been identified in this literature review. The limitations of the current methods that are
addressed in this thesis are repeated in this section.

• In section 1.3.1 it was concluded that the Hilbert transform in the frequency
domain in conjunction with the non-linearity indexes appears to be the most
suitable method for detection and characterisation of non-linearities from a single
frequency response function. It seems to be suitable as a pre-step of modal analysis
in an industrial framework where the time of measurement and processing must be
usually minimised as much as possible. However, the main limitation associated
with this method is the lack of an established methodology to determine if the
distortion observed in an FRF is significant and what its character is. If the FRF is
influenced by measured noise, detection and characterisation using visual inspection
can be even more problematic. These limitations are overcome by the method
proposed in chapter 2.

• In section 1.3.2 the Hilbert-Huang transform (HHT) has been identified as one
of the most interesting methods for time-frequency analysis. It does not use a
traditional concept of the frequency based on the Fourier transform, but rather
utilises the instantaneous frequency (IF) and amplitude (IA). The IF and IA are
traditionally estimated by the Hilbert transform. However, it is known that the
Hilbert transform can suffer from a number of mathematical and numerical issues.
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To avoid the use of the Hilbert transform several alternative methods, such as
zero-crossing methods or direct quadrature, have been developed in other fields.
However, they have been rarely used for the non-linear system identification in
structural dynamics. Therefore, the comparison and assessment of the alternative
methods are conducted in section 3.3 to evaluate their applicability for non-linear
system identification.

• Although it is usually assumed that the Hilbert-Huang transform extracts vibration
modes of the structure, the connection of the HHT and one of the concepts of
non-linear modal analysis (section 1.3.3) has never been shown. This connection
between the HHT and complex non-linear modes is investigated in chapter 4. Based
on this investigation an approach to experimental non-linear modal analysis is
proposed in chapter 5.

• It was found in section 1.3.2 that the Freevib algorithm cannot be applied to systems
with asymmetric restoring forces. While the Hilbert vibration decomposition (HVD)
is able to identify even such systems, its results are influenced by a number of
signal processing issues. An alternative method for non-parametric identification
of systems with asymmetric restoring forces is proposed in chapter 6.



Chapter 2

Characterisation of non-linearities
in the frequency domain

Abstract
This chapter proposes a fast and noise robust means of detecting and characterising
structural non-linearities from a single frequency response function using the Hilbert
transform and artificial neural networks. In this method the difference between a frequency
response function and its Hilbert transform is described using a set of scalar parameters,
termed non-linearity indexes, which create training data of the artificial neural network.
This network subsequently detects the presence of non-linearity and classifies its type. The
usage of the method is demonstrated on a number of numerical test cases created by single-
degree-of-freedom non-linear systems and a lumped parameter multi-degree-of-freedom
system with a geometric non-linearity. The method is also applied to experimentally
measured frequency response functions obtained from a cantilever beam with a clearance
non-linearity, an under-platform damper experimental rig with a complex friction contact
interface and the ECL benchmark.
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2.1 Introduction
A number of methods for detection and characterisation from frequency response func-
tions (FRFs) has been reviewed in section 1.3.1. It was found that the Hilbert transform
in the frequency domain has the highest potential with regards to the first objective of
the thesis, i.e. to enable robust and fast detection and characterisation of non-linearity
of a single FRF. The main limitation associated with the Hilbert transform in the fre-
quency domain (and all detection and characterisation methods that assess a distortion
in measured FRFs) is the lack of an established methodology to determine whether the
deviations observed in an FRF are significant. This limitation can be overcome by using
artificial neural networks (ANNs) as suggested in [125, 126, 279].

The approach described in [125, 126] allows localisation and characterisation of the
type of non-linearity, but it requires a full spatial model of the structure with all possible
combinations of non-linearities. This makes the approach nearly impossible to use in
practical applications due to enormous training data requirements. In contrast, the
method proposed in [279] does not require the spatial model of the structure. It uses the
gain (amplitude) of FRFs obtained in many spectral lines (frequencies) as training data
for ANNs. Unfortunately, this leads to a large number of training cases as well. At the
same time, however, the complex nature of FRFs is not fully taken into account due to
missing phase information.

The method proposed in this chapter avoids the need for a vast set of training
data by describing the difference between an FRF and its Hilbert transform using
non-linearity indexes. These indexes transform the FRF measured in many frequency
points into a set of several scalar parameters, thereby greatly reducing the training data
requirements. In addition, principal component analysis (PCA) is applied to further
reduce the dimensionality of the feature space created by the non-linearity indexes so
that the structure of the network may eventually be very compact, whilst capturing the
non-linear distortion of the FRF fully. In contrast to [125, 126], the method does not
localise the non-linearity within the structure, it does not require any spatial model of
the structure or any a priori knowledge of the type of non-linearity.

The chapter is organised as follows: section 2.2 gives an overview of the methods
involved (the Hilbert transform in the frequency domain, principal component analysis
and artificial neural networks) and, most importantly, proposes the non-linearity indexes.
In section 2.3 the implementation of the method is described in detail. Then the noise
robustness of the proposed method is numerically investigated in section 2.4. Following
this investigation, the method is applied to a cantilever plate with a localised geometric
non-linearity to demonstrate its application to a multi-degree-of-freedom (MDOF) system.
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Section 2.5 shows the application of the proposed method to experimental FRFs obtained
from three experimental test rigs - a cantilever beam with a clearance, an under-platform
damper experimental rig and the ECL benchmark. Based on the observations from these
test cases the advantages and disadvantages of the proposed method are discussed in
section 2.6.

2.2 A method for detection and characterisation of
structural non-linearities

The proposed method for detection and characterisation of structural non-linearities
consists of several steps. Firstly, the Hilbert transform of a normalised frequency response
function is computed. Then the difference between the FRF and its Hilbert transform is
quantified using a set of non-linearity indexes. The feature space created by these indexes
is reduced using principal component analysis and subsequently used as the input of an
artificial neural network pattern recognition algorithm by which a decision about the
type of non-linearity is made. A description of the steps that are required for successful
detection and characterisation follows.

2.2.1 Normalisation of frequency response functions
Theoretically, the proposed method can be used with any type of frequency response
functions - receptance H(ω), mobility Y (ω) or accelerance A(ω). However, the use
of receptance is beneficial with regards to the numerical computation of the Hilbert
transform [263, 289]. Any type of FRF can be converted to the receptance using [63]

A(ω) = iωY (ω) = −ω2H(ω). (2.1)

Before computing the Hilbert transform it is proposed to normalise the receptance
H(ω) to allow an effective comparison of different types of non-linearities and improve
the overall performance of the proposed method. A frequency response function is
transformed as

f −→ (0, 1) , (2.2)

and
∥H(ω)∥ = 1, (2.3)
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where f is a measured frequency range, which is mapped to interval (0, 1), and H(ω) is
the receptance which is normalised so that its Euclidean norm ∥•∥ is equal to one. In the
remainder of this chapter, all FRFs are assumed to be normalised. This normalisation
does not remove any important information because the absolute values of amplitudes
and frequencies are not important for detection and characterisation despite being crucial
for quantification. The important factor is the shape of the FRF distortion, which
remains unchanged by the normalisation.

To illustrate the effect of the normalisation an example of two non-linear frequency
response functions is shown in Fig. 2.1. These FRFs were obtained numerically using
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Figure 2.1 Normalisation of two frequency response functions obtained from SDOF systems
with a clearance non-linearity: (a) amplitude of original FRFs, (b) amplitude of normalised
FRFs, (c) Nyquist plot of original FRFs, and (d) Nyquist plot of normalised FRFs.

the time domain integration and frequency response analyser as detailed in section 2.3.1.
It can be seen that the FRFs which were significantly different in the amplitudes and
frequencies (Fig. 2.1(a)) are now much more comparable while retaining the original
shape (Fig. 2.1(b)).

2.2.2 The Hilbert transform in the frequency domain
The Hilbert transform in the frequency domain can be used for detection and charac-
terisation of non-linearities from frequency response functions [72, 289]. For a general
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complex function in the frequency domain it is defined as

H {H(ω)} = H̃(ω) = −1
iπ pv

∞∫

−∞

H(Ω)
Ω − ω

dΩ, (2.4)

where H {•} denotes the Hilbert transform operator, H̃(ω) stands for the Hilbert
transformed receptance H(ω), and “pv” denotes the Cauchy principal value of the
integral. In contrast to the Fourier transform, which transforms time domain data into
the frequency domain and vice versa, the Hilbert transform maps functions from a domain
into the same domain by shifting their phases by −π/2 [71, 72, 289]. Unfortunately,
analytical methods for solving Eq. (2.4) are not generally applicable because H(ω)
cannot be found as a closed-form expression. Hence, the Hilbert transform is computed
numerically either by a direct method using the Kronig-Kramers [72, 263, 289] relations or
by a means of the fast Fourier transform (FFT) using an analytic signal theory [147, 289].
It was found that the former over-performs the latter in the frequency domain in terms
of the numerical accuracy and reduction of truncation errors. On the other hand, the
computation using the FFT was found to be more suitable for the application in the
time-domain. Therefore, the direct method is used in this chapter whereas the FFT
approach is utilised for the computation of the Hilbert transform in other chapters where
the time domain data are considered.

The direct method requires the evaluation of the Kronig-Kramers relations

ℜ{H̃(ω)} = − 2
π

pv
∞∫

0

ℑ{H(Ω)}Ω
Ω2 − ω2 dΩ, ℑ{H̃(ω)} = 2ω

π
pv

∞∫

0

ℜ{H(Ω)}Ω
Ω2 − ω2 dΩ. (2.5)

The integrals must be evaluated numerically (the trapezoidal integration rule was used)
and the singularity at ω = Ω avoided. The Hilbert transform computed by the direct
method can suffer from truncation errors as explained in [263]. The truncation errors
arise from the replacement of the lower and upper integration limits by non-zero and finite
values, respectively. There are several correction schemes available in [289]. However,
due to the introduced normalisation the truncation errors are minimised. The minimum
frequency (i.e. the lower integration limit) is always equal to zero and it was found
that the distortion caused by the upper integration limit is not significant. Moreover,
the truncation errors are minimised by using the receptance rather than mobility or
accelerance [289]. In addition, the non-linearity indexes that are proposed in section 2.2.3
to capture the distortion of an FRF and its Hilbert transform operate on a narrow
frequency band close to the resonance. Therefore, as long as the FRF is not measured in
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an extremely close proximity of the resonance frequency, the truncation errors are not a
major problem since their effect is much more significant at the beginning and the end of
the measured frequency band and the non-linearity indexes avoid these regions.

It was shown in [245] that the Hilbert transform of an FRF can be used to detect
non-linearity using the following criterion

H {H(ω)} = H(ω) −→ linear system,

H {H(ω)} ≠ H(ω) −→ non-linear system.

This means that the FRF of a linear system is not affected by the Hilbert transform
whereas the Hilbert transform of the non-linear FRF yields a distorted version of the
original FRF. Strictly speaking, the Hilbert transform does not detect non-linearity, but
non-causality. Non-causality does not refer to the fact that the system is non-causal in
the sense that an effect precedes the cause. Instead, it refers to mathematical (artificial)
non-causality, i.e. the fact that the inverse Fourier transform of an FRF should not
be interpreted as the impulse response because it is non-zero for negative time. The
non-zero values are not caused by numerical errors but are usually a consequence of
non-linearities. A few examples of this mathematical non-causality can be found in [289].
It has not been proven that all non-linear FRFs are also non-causal [119]. Therefore,
there might theoretically exist a class of non-linear systems whose non-linearity cannot
be detected by the Hilbert transform. However, no such systems or failure of the Hilbert
transform to detect a structural non-linearity have ever been reported in literature.

It was observed [263, 289] that the form of the FRF distortion can provide insight into
the type of non-linearity, allowing its characterisation. Compared to the homogeneity
method [119, 130, 289] the Hilbert transform can be applied to a single frequency response
function which has been measured using a single excitation level [119]. Moreover, the
Hilbert transform does not require a linear FRF or a spatial model of the structure.
However, a subjective decision must be taken to detect and characterise non-linear
behaviour. In order to simplify this decision, a set of scaler parameters, termed non-
linearity indexes, which describe the difference between an FRF and its Hilbert transform
is proposed in the next section.

2.2.3 Non-linearity indexes
Several definitions of a non-linearity index exist in literature as reviewed in section 1.2.1.
In the scope of this thesis a non-linearity index (NLI) has been defined as a real scalar
parameter that describes the difference between an FRF and its Hilbert transform.
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Such an index is equal to zero if the system is linear and non-zero (either positive or
negative) for a non-linear system. In total, fourteen non-linearity indexes are presented
and discussed in this section. These indexes should ensure the comprehensive capture of
a wide range of non-linearities.

Cross-correlation coefficient

Cross-correlation is commonly used as a measure of similarities between two data series
as the function of a lag between these series. The application of cross-correlation in
the frequency domain for detection of non-linearities was proposed in [130]. The cross-
correlation computed in a close proximity of a single vibration mode RHH̃(∆ω) between
a receptance H(ω) and its Hilbert transform H̃(ω) is defined as

RHH̃(∆ω) =
ωmax∫

ωmin

H(ω)H̃(ω + ∆ω)dω, (2.6)

where ∆ω is a frequency shift (lag), and ωmin and ωmax are the lower and upper integral
limits, respectively. These limits have to be chosen appropriately to capture the distortion
of an FRF which is localised around the resonance frequency. As a convention [289], the
half-power points that solve the equation

|H(ω)| − max|H(ω)|√
2

= 0 (2.7)

are suitable. Alternatively, in a scheme of detection and characterisation, other limits
could be chosen as long as they describe the distortion of an FRF. Equation (2.6) and all
the following non-linearity indexes have to be evaluated numerically since the analytical
expressions for H(ω) and H̃(ω) are not known.

The first non-linearity index (NLI1) is defined based on the squared cross-correlation
coefficient at the frequency shift ∆ω = 0 using the following expression

NLI1 = 1 − ∥RHH̃(0)∥2. (2.8)

Due to its definition this index is more sensitive to non-linearities that shift the resonance
frequency, such as geometric non-linearities, and less sensitive to non-linearities that
scale the amplitudes of FRFs, for instance non-linear damping or Coulomb friction.
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Hilbert transform describers

It was proven in [263] that all spectral moments exist for an FRF and its Hilbert transform.
These moments are defined as

M
(n)
H =

ωmax∫

ωmin

ωnH(ω)dω, (2.9)

where M (n)
H stands for the nth-order spectral moment of H(ω). In spite of the fact that

these moments are complex, they can be considered as an analogy with statistical theory.
The first- and second-order moments measure the mean and the standard deviation
of a probability distribution. The third- and fourth-order moments then describe the
skewness and kurtosis [289] and the zeroth-order moment can be considered as the area
under the complex function. For the purpose of the non-linearity description, the relative
differences between the spectral moments of a receptance M (n)

H and moments of its Hilbert
transform M

(n)
H̃

, termed Hilbert transform describers (HTD(n)) [289], were defined as

HTD(n) =
M

(n)
H̃

−M
(n)
H

M
(n)
H

. (2.10)

Although an arbitrary number of spectral moments can be computed, the first three
(zeroth-, first- and second-order) are considered since the higher-orders do not seem to
provide any additional information. The non-linearity indexes were defined as the real
and imaginary parts of the Hilbert transform describers, i.e.

NLI2 = ℜ
{
HTD(0)

}
, NLI3 = ℑ

{
HTD(0)

}
. (2.11)

In a similar manner NLI4,5 and NLI6,7 were defined, but HTD(1) and HTD(2) were used
instead. The imaginary parts of the HTDs, which define NLI3, NLI5 and NLI7, separate
the stiffness hardening and softening very well. On the other hand, the real parts of the
HTDs (NLI2, NLI4 and NLI6) effectively distinguish between the quadratic damping and
Coulomb friction.

Function describers

To describe relative changes between an FRF and its Hilbert transform, it is proposed
to compute some parameters in an analogy with classic mechanics. First of which, the
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centre of gravity of an FRF γ1, can be calculated as

γ1 =

ωmax∫
ωmin

ρ(ω)H(ω)dω
ωmax∫
ωmin

ρ(ω)dω
, (2.12)

where ρ(ω) would correspond to the length density in mechanics. Here it can be set to one
or the coherence function can be used if available. If the coherence is employed, non-linear
effects of the resonance frequencies would be theoretically emphasised. The non-linearity
indexes NLI8 and NLI9 are assembled based on the relative difference between the centre
of gravity of an FRF γ1 and its Hilbert transform γ̃1 by splitting its real and imaginary
parts as

NLI8 = ℜ
{
γ̃1 − γ1

γ1

}
, NLI9 = ℑ

{
γ̃1 − γ1

γ1

}
. (2.13)

These non-linearity indexes can distinguish particularly well between stiffness and damping
non-linearities since the Hilbert transform of the FRFs with damping non-linearities
usually scales the FRFs and therefore does not change the position of the centre of gravity
significantly.

Two other parameters are proposed to describe complex function properties based on
mechanical analogies, namely the moment of inertia about ω-axis γ2 and with respect to
origin γ3 defined as

γ2 =
ωmax∫

ωmin

ρ(ω)
(
ℜ{H(ω)}2 + ℑ{H(ω)}2

)
dω, (2.14)

and

γ3 =
ωmax∫

ωmin

ρ(ω)
(
(ω − ω̄)2 + ℜ{H(ω) − γ1}2 + ℑ{H(ω) − γ1}2

)
dω, (2.15)

where ω̄ marks the mean of angular frequency. These moments can be interpreted as
the torque needed for an unity angular acceleration about the ω-axis and the origin,
respectively. These parameters are real so the next two non-linearity indexes can be
defined as

NLI10 = γ̃2 − γ2

γ2
, NLI11 = γ̃3 − γ3

γ3
, (2.16)

where •̃ marks the quantities which have been computed from the Hilbert transform of
an FRF. These non-linearity indexes are significantly higher for stiffness non-linearities
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since the Hilbert transform shifts the frequencies of such non-linearities away from the
resonance frequency and therefore changes the moments of inertia significantly.

Statistical description

The last group of non-linearity indexes can be assembled directly from the complex
difference between an FRF and its Hilbert transform

G(ω) = H̃(ω) −H(ω). (2.17)

The difference G(ω) can then be described using describing statistics. The mean of the
difference is defined as

Ḡ = 1
Nsl

Nsl∑

k=1
G(ωk), (2.18)

where Nsl is a number of spectral lines (frequency points) between ωmin and ωmax. Two
non-linearity indexes NLI12,13 are then obtained by splitting Ḡ into the real and imaginary
parts.

The last proposed non-linearity index is formed using the standard deviation of the
difference G(ω)

NLI14 =

√√√√ 1
Nsl − 1

Nsl∑

k=1
(G(ωk) − Ḡ)2. (2.19)

It describes an amount of variation or dispersion of G(ω) about the mean Ḡ.

Summary of non-linearity indexes

Most of the non-linearity indexes have an integral form so they are robust to measured
noise and other errors which can occur in an FRF. All of them depend on the integration
limits ωmin and ωmax. Although the choice of these limits affects the absolute value of
the non-linearity indexes, it is not a major issue as long as these limits are consistent for
all computed non-linearity indexes. Generally, the half-power points given by Eq. (2.7)
should be chosen. If they cannot be defined due to, for example, a jump in an FRF, the
part of the FRF which covers the non-linear distortion should be taken. It should be also
noted that for the indexes to be meaningful, and the method to work as intended, the
modes should be well separated and no non-linear coupling should exist between them.

All non-linearity indexes can be used to detect non-linear behaviour. They are zero
when the system is linear and non-zero (either positive or negative) for non-linear systems.
In practical applications the NLIs are not exactly zero due to experimental and numerical
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imperfections, but they are very close to zero compared to the NLIs of non-linear systems.
Theoretically it is possible to assess the strength of non-linear behaviour using the NLIs
as well. This would allow categorisation of weak, moderate and strong non-linear effects.
However, although similar terms are often used in literature, there is no reliable means
how to define them. All possible definitions must be bound to a specific application.
Therefore, no attempt to quantify the strength of non-linear behaviour based on the
NLIs has been made in this thesis.

It was observed [71, 72, 263, 289] that the distortion of an FRF and its Hilbert
transform is unique for a given non-linearity type. Since the distortion is captured by
the NLIs, the pattern created by them is also unique and suitable for classification.
Classification (pattern recognition) is a subclass of machine learning methods which
assigns the input data to given classes [57]. In this study the classes are created by the
types of non-linearities and input data are given by the non-linearity indexes. Artificial
neural networks (ANNs) [279, 300] are used as the classification algorithm.

2.2.4 Dimensionality reduction using principal
component analysis

With regards to the feature of ANNs to grow exponentially with a number of the input
parameters [91], a number of the non-linearity indexes is further reduced to not only
decrease the complexity of the network, but also to eliminate a potential redundancy of
these indexes.

Several methods for dimensionality reduction exist, for instance independent compo-
nent analysis [57] and self-organizing maps [124]. However, one of the most established
methods is the principal component analysis (PCA). The PCA, also known as Karhunem-
Loève transform or proper orthogonal decomposition [98, 113], seeks a linear projection
of high-dimensional data into lower dimensional space in a least-squares sense [57]. The
principal component analysis projects the initial n-dimensional data vector of samples
(observations) xs = (x1, . . . , xn)T into a new n-dimensional vector z = (z1, . . . , zn)T called
the principal component scores (PCS). The new coordinates have the following properties:
z1 is the linear combination of the original xi with maximum possible variance, z2 is the
linear combination which explains most of the remaining variance and is orthogonal to
z1 and so on [286]. Dimensionality reduction is then achieved by selecting only those
principal components which contribute significantly to the overall variance and therefore
retain the important information of the data.
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The principal component algorithm can be summarised as follows. For a set of
observations {x1, . . . ,xN} the scatter matrix S is assembled using

S =
N∑

k=1
(xi − x̄)(xi − x̄)T , (2.20)

where x̄ is a vector of sample means. Then the scatter matrix S is decomposed (usually
using singular value decomposition) as

S = UΣVT , (2.21)

where Σ is a diagonal matrix interpreted as the relative contributions of the principal
scores to the total variance and U is an orthonormal matrix which contains the principal
directions. The principal component scores are subsequently obtained from

zi = UT (xi − x̄). (2.22)

While the PCA is a linear transformation (PCS are straight and orthogonal), it cannot
remove non-linear correlations within data sets. The linear PCA can also be extended to
non-linear PCA using artificial neural networks [233]. However, it will be shown that
the linear PCA is sufficient for the dimensionality reduction required in the proposed
method. The linear PCA also allows a simple visualisation that can be directly used for
detection and characterisation of non-linearity as shown in section 2.5.

The principal component scores do not have a physical unit and cannot be associated
with the underlying dynamics of the system. However, they still capture most of the
information while removing redundancy of the input data. The dimension of the problem
can be significantly reduced using the PCA as shown section 2.3. In the next section
they are used as the inputs of the neural network.

2.2.5 Artificial neural networks
Artificial neural networks (ANNs), which belong to a group of machine learning methods
(also called soft or natural computation methods, or artificial intelligence), have been
applied to many problems in recent years. In mechanical engineering they are usually used
for classification, detection of abnormalities and input-output mapping [286]. Although
many types of artificial neural networks can be found in literature, a multi-layer perception
neural network is usually applied for classification tasks. Moreover, only a single hidden
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layer is often used since it is known that such a network can solve almost any classification
problem [57, 91].

The multi-layer perception network has nodes (neurons) arranged in layers that are
passed by a signal from the input layer, through hidden layer(s), into the output layer.
Each node i in layer k is connected to each node j in preceding layer k − 1 through a
weight w(k)

ij (see Fig. 2.2).

1. input

2. input

3. input

1. output

2. output

Input
layer

Hidden
layer

Output
layer

Figure 2.2 Illustrative architecture of a single hidden layer artificial neural network

A weighted sum z
(k)
i of all signals x(k−1)

j at each node i in layer k is passed through
an activation (also called transfer) function f(z(k)

i ) to obtain the signal x(k)
i

x
(k)
i = f(z(k)

i ) = f


∑

j

w
(k)
ij x

(k−1)
j


 . (2.23)

The choice of the activation function f(zi) depends on the application [91]. For classifi-
cation the hyperbolic tangent function

f(zi) = tanh(zi) = ezi − e−zi

ezi + e−zi
(2.24)

is usually used in the hidden layer and a non-linear activation function is used in the
output layer. The so-called softmax activation,

f(zi) = ezi

NH∑
i=1

ezi

, (2.25)

where NH is a number of neurons in the hidden layer, is very often used as the non-linear
activation function because it forces the output of the network to sum to unity, thereby
allowing the outputs to be interpreted as the probabilities of classes.
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The first stage when applying the artificial neural network is to establish the appropri-
ate values of the weights wij . This stage is referred to as the training phase in which the
network is presented by a set of the input parameters and the corresponding outputs. At
each training step the inputs are passed through the network yielding trial outputs that
are compared to the desired outputs. If a significant error is found, the error is passed
backwards through the network and the weights are adjusted. This training process is
referred to as the backpropagation algorithm [91, 286].

The overall performance of a classification algorithm, such as the used ANNs, can
be easily evaluated using so-called confusion matrix. A confusion matrix compares the
output (identified) classes with the correct (target) classes. In an ideal case, 100 % of
the systems are identified correctly. However, this case is purely theoretical and highly
unlikely in reality due to a statistical nature of ANNs, uncertainty in measured FRFs
and overlap of the input data.

One of the main problems of ANNs, and many soft computing methods, is gene-
ralisation of the network. The problem with generalisation occurs when the network
is trained to fit one particular set of data, but does not represent any other case. The
simplest solution to the problem is to adjust the number of neurons in the hidden layer
NH appropriately. If NH is too high, the network is over-fitted so that it is fine tuned
to a particular data set only. On the other hand, if there are too few neurons in the
hidden layer, the network does not have enough parameters to fit the training data
properly. Unfortunately, there is no versatile technique how to choose NH (and therefore
the number of weights wij) before training, but some guidelines have been established
based on the practical experience in [57, 91, 286]. The number of hidden neurons should
be chosen between the number of inputs and outputs, or it can be found in a systematic
way using the so-called 1 to M training strategy. Using this strategy, an optimal NH can
be selected by a systematic evaluation of neural network errors for a varying number of
hidden layer neurons [279, 286]. This training strategy has been used in this study.

Summary of the proposed method
The method is summarised in the flow chart in Fig. 2.3 in which two branches are
distinguished. Although they look very similar, there is a major difference between them.
The neural network must be trained only once and can be subsequently used multiple
times to detect and characterise a structural non-linearity in different sets of experimental
data. The preparation of the network is a time-consuming process, mainly because
of the need for relevant training data. The training data can be either computed or
experimentally measured which, however, would be extremely time-consuming. Once the
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preparation of neural network preparation of measured FRF

Generation of FRFs FRF measurement

FRFs normalisation FRF normalisation

Hilbert transform Hilbert transform

Non-linear indexes Non-linear indexes

Principal component analysis Principal component analysis

Artificial neural network training

Pattern recognition

Decision about the presence and the type of non-linearity

PCS

Figure 2.3 Summary of the proposed method for detection and characterisation of structural
non-linearities

neural network has been trained, non-linear behaviour can be detected and characterised
from a single frequency response function in a timely fashion.

The method operates on a single mode of vibration. Therefore, when applied to a
MDOF system the modes must be treated separately as having been obtained from a
SDOF system. It implies that for the method to work correctly the modes must be
well-separated, with no significant linear or non-linear coupling. Unfortunately, there is
no established methodology how to recognise well-separated modes. The well-separated
modes must be recognised in individual cases based on experience.

In certain situations there might co-exist several non-linear elastic and dissipative
mechanisms in the structure, for instance the Coulomb friction caused by joints and
geometric non-linearities caused by large amplitudes. The proposed method does not
provide any reliable information about how many or what combinations of non-linearities
are present in the system. The combination of non-linearities is simply another non-
linearity, and the separation of this non-linearity into two, or more, is not uniquely
possible without a priori knowledge of the system. Still, if the neural network has been
trained for certain types of non-linearities, some limited insight into the combination
of the types involved can be provided due to the ability of ANNs to recognise unseen
patterns. An example of such an ability is shown in section 2.5.2.
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2.3 Implementation of the proposed method
Although the proposed method can be used for an arbitrary number of non-linearities,
it is demonstrated using five common types. Each type is a class (marked by a capital
letter) that is being classified by the ANN. Six classes were used in total: A - linear
system, B - cubic hardening stiffness, C - cubic softening stiffness, D - clearance, E -
Coulomb friction and F - quadratic damping. The proposed method was implemented
according to Fig. 2.3 using the methods described in section 2.2.

2.3.1 Training data generation
The training data for ANNs were obtained numerically for a SDOF system with all listed
types of non-linearities. This system is described using

mẍ+ cẋ+ kx+ fnl(x, ẋ) = F (t), (2.26)

where m is a mass, c is a linear damping coefficient, k is a linear stiffness coefficient, F (t)
is an excitation force, and x, ẋ, ẍ are displacement, velocity and acceleration, respectively.
The term fnl(x, ẋ) describes a non-linear restoring force. It is, therefore, zero for a linear
system and varies with the type of the non-linearity involved (see Tab. 2.1).

Class - Non-linearity fnl(x, ẋ) Parameter range

A - linear system 0 m = 1 kg
k ∈ (7 × 103, 5 × 105) N m−1

c = αm + βk N s m−1;
α ∈ (2, 5); β ∈ (10−8, 10−6)

B - cubic hardening stiffness knlx
3 knl ∈ (5 × 103k, 5 × 104k

)
N m−3

C - cubic softening stiffness knlx
3 knl ∈ (−5 × 103k, −5 × 104k

)
N m−3

D - clearance knlx − knlb, x > b knl ∈ (1k, 10k) N m−1

0, |x| < b b ∈ (0.1, 0.5) mm
knlx + knlb, x < −b

E - Coulomb friction µNfsgn(ẋ) µNf ∈ (0.05, 0.2) N
F - quadratic damping cnlẋ|ẋ| cnl ∈ (10c, 50c) N m−2 s−1

Table 2.1 Non-linear restoring forces and parameter ranges of SDOF non-linear systems used
for the generation of the training data

In order to obtain the frequency response functions of the non-linear systems, an
experimental approach called the stepped sine excitation measurement was implemented
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in a numerical simulation. The system was excited by a single-frequency sine wave, the
time domain output was computed using the direct integration of Eq. (2.26) and a single
point of an FRF was extracted using a frequency response analyser [63]. The process
was repeated for all frequencies of interest.

There are other experimental and computation approaches to obtain FRFs. The
example of the former would be the impact hammer or random excitation testing.
However, none of these can obtain a non-linear FRF of a good quality [289]. The example
of the latter is a harmonic balance method (HBM). It is not computationally so expensive
as a simulated stepped sine experiment. However, the FRFs computed by the HBM
usually includes unstable solutions that cannot be measured in reality. So there is no
reason to include these unstable solutions into training data. Therefore, the simulated
experiment is more suitable to generate the FRFs because it provides the data in an
equivalent form to expected experimental measurements.

For each type of non-linearity the FRFs were generated with the coefficients of the
system randomly chosen from the ranges shown in Tab. 2.1. The FRFs were calculated
in 256 frequency lines distributed symmetrically around the undamped natural resonance
f0 =

√
k/m/2π with the frequency resolution of 0.1 Hz. For all systems the stepped sine

excitation with the increasing excitation frequency and constant excitation amplitude
was used, with the exception of the system with the cubic softening stiffness where a
decreasing rate was employed instead. The excitation amplitude was randomly selected
from the interval F = [0.1, 2] N. Eventually, 500 FRFs of each system were calculated
(this number is justified in section 2.3.2).

The parameters of the system and excitation amplitude were chosen in such a manner
that the distortion of the calculated FRFs was similar to the typical distortion observed
during experimental measurements. The normalised FRFs and their Hilbert transform
for weak, moderate and strong non-linear behaviour are displayed in Fig. 2.4 to illustrate
the non-linear distortion.

Although the FRFs have been computed for different systems with different coefficients
and excitation forces, they all can be well compared to each other after the normalisation.
It can be seen for the linear system in Fig. 2.4(a) that the Hilbert transform yielded
some small distortion of the original FRFs caused by truncation errors. However, this
distortion is not significant because it is much lower than for non-linear cases.

It can be also noticed in Fig. 2.4 that the frequency resolution (0.1 Hz) is quite coarse
in some cases. In a typical computational analysis a higher frequency resolution is usually
required. On the other hand, while performing experimental studies, a trade-off between



58 Characterisation of non-linearities in the frequency domain

0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

f

|H|
−0.1 0.1

−0.3

−0.2

−0.1

<{H}={H}

0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

0.4

f

|H|
−0.2 0.2

−0.4

−0.2

<{H}={H}

0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

0.4

f

|H|
−0.2 0.2

−0.4

−0.2

<{H}={H}

0.4 0.6 0.8
0

0.2

0.4

f

|H|
−0.1 0.1 0.2

−0.4

−0.2

<{H}={H}

0.46 0.5 0.54

0.1

0.2

f

|H|
−0.1 0.1

−0.2

−0.1

<{H}={H}

0.46 0.5 0.54

0.1

0.2

0.3

f

|H|
−0.1 0.1

−0.3

−0.2

−0.1

<{H}={H}

(a) (b)

(c) (d)

(e) (f)

Figure 2.4 Frequency response functions (solid line) and their Hilbert transform (dashed line)
with weak (blue), moderate (red) and strong (black) non-linear distortion: (a) linear system,
(b) cubic hardening stiffness, (c) cubic softening stiffness, (d) clearance, (e) quadratic damping,
and (f) Coulomb friction

the number of measured points and time of the measurements must be sought. Therefore,
the frequency resolution was chosen to mimic a typical experimental measurement.

The difference between the FRFs of linear systems, which is barely influenced by the
Hilbert transform, and the rest of the classes is evident. In particular, non-linearity in
stiffness (hardening, softening and clearance) produces strong distortion of FRFs and
their Hilbert transform. There are some similarities between the cubic hardening stiffness
in Fig. 2.1(b) and clearance in Fig. 2.1(d). These systems produce similar FRFs, some of
which contain a jump phenomenon. Their Hilbert transform is also similar, leading to a
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narrower, longer versions of the original FRFs in the Nyquist plot. These similarities
are not accidental since both non-linearities share a similar non-linear mechanics. Both
of them are characterised by non-linear hardening when the stiffness is increasing with
increasing amplitude. For the cubic hardening this increase is gradual whereas for the
clearance, it is very rapid. Due to these similarities, the clearance and stiffness hardening
FRFs can be sometimes confused and this confusion will be observed in the neural
network too.

2.3.2 Non-linearity indexes calculation
For the non-linearity indexes calculation the half-power points were used and ρ(ω)
in Eq. (2.12), Eq. (2.13) and Eq. (2.14) set to one. The non-linearity indexes were
subsequently assessed using box plots. The purpose of this process was to observe if there
is no strong overlap between the NLIs, or in other words, if linear and non-linear systems
do not produce the same values. If this were the case, one of the NLIs would be discarded
because it would not bring new information into the process and it could possibly
decrease the quality of the pattern. This step is not essential since the redundancy will
be eliminated by the PCA. However, it is included here to highlight the ability of the
NLIs to distinguish between various non-linearity types.

An example of the box plots for 3 NLIs can be seen in Fig. 2.5. The non-linearity
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Figure 2.5 Assessment of the non-linearity indexes using box plots: (a) NLI1 - correlation
coefficient, (b) NLI4 - real part of 1st-order HTD, (c) NLI5 - imaginary part of 1st-order HTD;
A - linear system, B - cubic hardening stiffness, C - cubic softening stiffness, D - clearance, E -
quadratic damping, and F - Coulomb friction

index NLI1 computed using Eq. (2.8) is shown in Fig. 2.5(a). It can be seen that
NLI1, which is based on the cross-correlation coefficient, distinguishes between stiffness
and damping non-linearities very well. While cubic hardening, softening and clearance
produce significantly higher values of this index, quadratic damping, Coulomb friction
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and linear systems are very close to zero. This is in line with the definition of NLI1 in
Eq. (2.8) which is much more sensitive to non-linearities that shift the peak of the FRFs
and almost insensitive to non-linearities that scale the amplitudes.

The non-linearity indexes NLI4 and NLI5 that have been calculated based on the 1st-
order Hilbert transform describers are shown in Fig. 2.5(b) and Fig. 2.5(c), respectively.
Unlike the NLI1 these two indexes can be both positive or negative, but the values also
differ for each type of non-linearity even if some overlap can be observed. The NLI4

effectively distinguishes between Coulomb friction and quadratic damping and the NLI5

between hardening and softening stiffness.
It is clear that the non-linear indexes significantly reduce the dimension of the pattern

recognition problem. Starting from the complex frequency response functions, which
have been evaluated in 265 frequency values, the problem has been reduced into 14 scalar
parameters that represent the different types of non-linearities.

Reduction using principal component analysis
The principal component analysis was applied to further reduce the dimension of the
feature space, i.e. to decrease the number of the input parameters for the ANN as much
as possible and also to remove the redundancy of the NLIs. The contribution of the
first five principal components (PCs) is captured in Fig. 2.6(a). It can be seen that

1st
PC

2n
d PC

3rd
PC

4th
PC

5th
PC

0

20

40

60

80

100

va
ria

nc
e

[%
]

PC variance total variance

1st PC

2nd PC

3rd PC Linear system
Cubic hardening stiffness
Cubic softening stiffness
Clearance
Coulomb friction
Quadratic damping

(a) (b)

Figure 2.6 Principal component analysis: (a) variance captured by principal components
and (b) principal component scores. With the exception of the cubic hardening stiffness and
clearance which are mixed due to a similar physical mechanism of these non-linearities at high
excitation amplitudes, the principal components score clearly separate the linear and non-linear
systems from each other.

only 3 principal components are needed to retain just over 95 % of the total variance.
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Therefore, only a set of the first three principal component scores is needed to classify
the pattern almost completely. Moreover, these three components can be visualised using
three dimensional space as shown in Fig. 2.6(b). It can be seen that the three principal
components well separate the groups of the considered non-linear systems. In addition,
such a plot allows direct classification of a new pattern by evaluating the position of the
new principal component score in the graph. This technique will be demonstrated on
experimentally obtained FRFs in section 2.5.

Artificial neural network training
The principal component scores were used as the input data of the artificial neural network
and the output classes were defined by the types of non-linearities. The neural network
therefore consists of 3 inputs nodes, 6 output nodes and a single hidden layer. A number
of the nodes in the hidden layer was found using the 1 to M training strategy [286], leading
to 4 nodes in this layer. The data were divided randomly into the data for training,
validation and testing in ratio 0.70:0.15:0.15. The final network has the structure 3:4:6
hence possesses 46 weights. Therefore, 500 training FRFs for each non-linearity were
required. This number is given with one of the rule of thumb which states that at least
10 times more data are required for good generalisation of unseen patterns [286].

Once the network was properly trained, it was presented again with the same set
of 500 systems for each non-linearity to evaluate an overall performance of the trained
network. The confusion matrix of the trained network can be seen in Tab. 2.2. Nearly

Identified
class

Correct class

A B C D E F

A 500 (100) 0 0 0 0 1 (0.2)
B 0 499 (99.8) 0 17 (3.4) 0 0
C 0 0 499 (99.8) 0 0 0
D 0 1 (0.2) 0 482 (96.4) 0 0
E 0 0 1 (0.2) 1 (0.2) 500 (100) 0
F 0 0 0 0 0 499 (99.8)

Table 2.2 Testing confusion matrix: A - linear system, B - cubic hardening stiffness, C -
cubic softening stiffness, D - clearance, E - quadratic damping, and F - Coulomb friction (the
parentheses contain the percentage out of 500)

all cases were identified correctly and only a low percentage (less than 5 %) of confusion
can be seen for the systems with the clearance non-linearity. Some of these systems were
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misclassified as the hardening stiffness. This, however, is understandable as the physical
mechanism of these two non-linearities is similar and some overlap in the input data
exists (see Fig. 2.6(b)).

2.4 Application to simulated data
In this section the proposed method is applied to several numerical cases. Firstly, the
noise robustness is studied using SDOF systems with a clearance non-linearity. Then the
application to a MDOF system is shown.

2.4.1 Noise robustness investigation
The robustness of automated characterisation methods against measured noise should
be as high as possible to reduce the probability of errors. In order to investigate the
robustness of the proposed method against measured noise, the method was applied to
frequency response functions polluted by a varying amount of white noise.

Different levels of noise were introduced to all 500 FRFs for each non-linearity with
the signal-to-noise ratio (SNR) of 25, 20 and 15 dB. Figure 2.7 depicts three examples of
the noisy FRFs of a system with the clearance. It should be noted that such amount
of noise is very unlikely in reality because the noise in the FRFs is highly reduced by
processing of the measured time domain signals and their conversion to the frequency
domain. During the testing of the robustness against measured noise, the class with
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Figure 2.7 Frequency response functions of a system with a clearance non-linearity without
noise (black) and polluted by noise (grey) with signal-to-noise ratio of: (a) 25 dB, (b) 20 dB,
and (c) 15 dB

the highest network output (the highest probability) was taken as the identified class.
No trade-off between probabilities of different classes was considered. The results of
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the classification are summarised using confusions matrices in Tabs. 2.3, 2.4 and 2.5.

Identified
class

Correct class

A B C D E F

A 496 (99.2) 0 0 0 4 (0.8) 3 (0.6)
B 0 497 (99.4) 0 19 (3.8) 0 0
C 0 0 499 (99.8) 1 (0.2) 0 0
D 0 3 (0.6) 0 479 (95.8) 0 0
E 3 (0.6) 0 1 (0.2) 1 (0.2) 496 (99.2) 0
F 1 (0.2) 0 0 0 0 497 (99.4)

Table 2.3 Classification results for signal-to-noise ratio 25 dB: A - linear system, B - cubic
hardening stiffness, C - cubic softening stiffness, D - clearance, E - quadratic damping, and F -
Coulomb friction (the parentheses contain the percentage out of 500)

Identified
class

Correct class

A B C D E F

A 436 (87.2) 1 (0.2) 0 0 4 (0.8) 9 (1.8)
B 0 487 (97.4) 0 101 (20.2) 0 0
C 0 0 496 (99.2) 10 (2) 0 0
D 0 12 (2.4) 0 376 (75.2) 0 0
E 39 (7.8) 0 3 (0.6) 10 (2) 496 (99.2) 0
F 25 (5) 0 1 (0.2) 3 (0.6) 0 491 (98.2)

Table 2.4 Classification results for signal-to-noise ratio 20 dB: A - linear system, B - cubic
hardening stiffness, C - cubic softening stiffness, D - clearance, E - quadratic damping, and F -
Coulomb friction (the parentheses contain the percentage out of 500)

Comparing the results to Tab. 2.2 it is clear that the artificially introduced white noise
influences the results of the classification. The influence is low for the highest SNR and
becomes slightly more significant for the higher amount of noise. However, despite some
misleading detection and characterisation, a majority of cases is classified correctly. The
most significant problems were encountered for the clearance non-linearity under the
strong influence of added noise (SNR 15 dB). Under this condition just under a half of
the systems was characterised correctly while a significant portion of the systems was
again misclassified as the cubic hardening stiffness. This is once more caused by a similar
physical mechanics of these two non-linearities. Nevertheless, given the very high level of
measured noise, the results can still be considered as satisfying.
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Identified
class

Correct class

A B C D E F

A 342 (68.4) 1 (0.2) 0 0 16 (3.2) 18 (3.6)
B 12 (2.4) 472 (94.4) 0 215 (43) 2 (0.4) 1 (0.2)
C 2 (0.4) 0 491 (94.2) 32 (6.4) 2 (0.4) 2 (0.4)
D 0 27 (5.4) 0 213 (42.6) 0 0
E 75 (15) 0 7 (1.4) 37 (7.4) 479 (95.8) 2 (0.4)
F 69 (13.8) 0 2 (0.4) 3 (0.6) 1 (0.2) 477 (95.4)

Table 2.5 Classification results for signal-to-noise ratio 15 dB: A - linear system, B - cubic
hardening stiffness, C - cubic softening stiffness, D - clearance, E - quadratic damping, and F -
Coulomb friction (the parentheses contain the percentage out of 500)

A significant confusion can also be observed between linear systems and systems with
quadratic damping and Coulomb friction for signal-to-noise ratios lower than 20 dB. Up
to 30 % of systems have been classified as non-linear despite being linear, but due to the
very large amount of noise (see Fig. 2.7(c)) this can still be considered as an acceptable
result. As already noted, the considered amount of noise is very unlikely to be observed
in measured FRFs due to the advanced signal processing required for their extraction.
Nevertheless, the FRFs can be distorted due to other issues so the ability of the proposed
method to characterise the non-linearity with high level of confidence from noisy FRFs is
a valuable property.

2.4.2 Application to a multi-degree-of-freedom system
A simple model of a cantilever plate with a cubic hardening stiffness is used to demonstrate
the performance of the proposed method on MDOF systems. The model shown in
Fig. 2.8 consists of 15 discrete masses (m = 1 kg) which are connected by linear springs
(k = 1 × 106 N m−1). The viscous damping is introduced using Rayleigh’s proportional

z
y

m

k

knl

F (t)

x

Figure 2.8 The model of the plate with a cubic hardening stiffness spring
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damping model with α = 2 and β = 1 × 10−8. The plate is clamped at two edges and free
at the other two. The system is excited by a sinusoidal force F (t) that is placed in the
corner of the plate and pointed in vertical direction since the plate is allowed to vibrate
only in this direction. Two amplitudes of the excitation force are chosen (F = 10 N
and F = 20 N) to emphasise the effect of the non-linearity. The non-linear spring with
cubic hardening behaviour (knl = 1 × 1010 N m−3) is placed in the same position as the
excitation force. The equations of motion, which were assembled based on the Lagrange
equations of the second kind, are written in a matrix form as

Mẍ + [αM + βK] ẋ + Kx + fnl(x, ẋ) = F(t), (2.27)

where M, K are mass and stiffness matrices, x, ẋ, ẍ marks displacement, velocity and
acceleration vectors, respectively, and F(t) is the excitation force vector. The term
fnl(x, ẋ) describes the non-linear restoring forces, consisting of one non-zero element
knlx

3. The harmonic balance method (HBM) has been used to compute the FRFs and
unstable parts have been removed to mimic the jump phenomenon of measured FRFs.
The calculated receptance at the position of the non-linear spring can be seen in Fig. 2.9
where the frequency range covering the first 5 modes is shown. Generally, the FRF does
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Figure 2.9 Frequency response functions of the plate with a cubic hardening stiffness spring

not have to be measured at the same position as the excitation and/or non-linearity and
the method will still function as intended.

For detection and characterisation of non-linear behaviour the network was exactly the
same as for the previous cases, i.e. no additional training data have been added and no
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modification has been made to account for multi-mode FRFs. As discussed in section 2.2
the method has to be applied on a single mode of vibration. Therefore, the multi-mode
FRF was divided at the anti-resonances and the modes were treated separately as if they
were obtained from a SDOF system. The results of the classification are summarised in
Tab. 2.6 in which the percentage in the brackets indicates the probability of the classified
class.

mode linear (knl = 0) low excitation (10 N) high excitation (20 N)

1 linear (98.1) hardening (98.8) hardening (99.9)
2 linear (96.0) hardening (99.6) hardening (93.2)/clearance (6)
3 linear (97.9) linear (83.3)/hardening (16.3) hardening (98.3)
4 linear (95.7) linear (92.6) linear (78.9)/hardening (20.7)
5 linear (95.4) linear (93.5) linear (93.8)

Table 2.6 Classification results for the plate (the values in the parentheses stand for the
probability of the output class)

All considered modes of the linear FRF have been classified correctly, but some
confusion can be observed for non-linear FRFs. Some of the higher modes, especially
mode 5, of the non-linear plate have been characterised as linear. This could be considered
as an error of the proposed method. On the other hand, it can be seen from the insets of
modes in Fig. 2.9 that the non-linear distortion is very weak in higher modes. This means
that not only has the method been able to identify strong cubic hardening behaviour
in several first modes, but it also provided an indication of the appearance of weaker
non-linear effects by giving both linear and non-linear output classes. This behaviour can
be seen in the 3rd mode under low excitation and in the 4th mode under high excitation.
For these modes the network indicated about 20 % probability that the mode behaves
non-linearly, which cannot be directly observed in Fig. 2.9. It can also be noticed in
Tab. 2.6 that the probability of the hardening behaviour for the second mode is slightly
lower for the higher excitation. This result is caused by the misclassification of the
hardening behaviour as the clearance non-linearity. This misclassification may be again
explained by similar physical mechanism of these two non-linearities. In a practical
application of the proposed method this misclassification would not be probably even
noticed since the class with 93 % would be most likely deemed as the only relevant output.



2.5 Application to experimental data 67

2.5 Application to experimental data
To evaluate the practical feasibility of the proposed method, it was applied to several
experimentally measured frequency response functions. Three test rigs, namely a simple
cantilever beam with a clearance non-linearity, an under-platform damper test rig and
the ECL benchmark, are presented.

2.5.1 Cantilever beam with a clearance non-linearity
The experimental set-up can be seen in Fig. 2.10. A thin steel beam (300×36×3 mm) is

shaker

clamp

beam
end stops amplifier

acquisition unit

webcam

end stops

beam clearance

Figure 2.10 Cantilever beam: experimental configuration

held by a very stiff (considered rigid) clamp at one end and is unsupported at the other
end. The system is excited by an attached shaker which is placed as close to the clamp
as possible. Two end stops are placed close to the free end of the beam representing
a backlash, which can be found in many engineering applications. The end stops are
created by a smaller clamp, which is rigidly attached to the supporting bar. To ensure
that the end stops are placed symmetrically to the beam, the webcam was used to capture
a detailed image of the set-up and the gap between the end stops was digitally measured.

Since the strength of the non-linearity can be controlled through the size of the
gap, the measurements were repeated for two different sizes (0.1 mm and 0.2 mm). The
linear (without the end stops) and non-linear frequency response functions for the small
and large clearance sizes measured around the first natural frequency can be seen in
Fig. 2.11. It can be noticed that the FRFs were not measured with very high frequency
resolution. The coarse frequency resolution of 0.1 Hz was intentionally chosen to observe
the performance of the proposed method on non-ideal experimental FRFs. It can be seen
that the FRFs for the beam with no end stops practically overlay each other whereas the
end stops introduced significant non-linear behaviour, including the jump phenomena. It
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Figure 2.11 Cantilever beam: measured frequency response functions

is also clear that the smaller gap led to stronger non-linear behaviour (greater amplitude
reduction and frequency shift) than the larger gap under the same excitation.

It is assumed that other modes do not significantly influence the response in a close
proximity of the first bending mode. Therefore, the first mode may be treated as a
response of a SDOF system and the proposed method may be applied. The measured
FRFs were processed according to the flow chart in Fig. 2.3. The direct use of principal
component scores obtained from the FRFs is illustrated in Fig. 2.12. It can be seen that
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3rd PC Linear system 1 no gap/low exc.
Cubic hardening stiffness 2 no gap/high exc.
Cubic softening stiffness 3 large gap/low exc.
Clearance 4 large gap/high exc.
Coulomb friction 5 small gap/low exc.
Quadratic damping 6 small gap/high exc.
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Figure 2.12 Principal component analysis of the cantilever beam: (top) perspective view
and (bottom) side views. The coloured points represent the principal component scores of the
training data while the labelled black points were obtained from the experimental frequency
response functions.
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the FRFs measured without the non-linearity are very close to the linear area of the
graph despite some small overlap with the Coulomb friction. On the other hand, the
PCS of the FRFs that are affected by the end stops lie clearly in the green area of the
clearance non-linearity.

Although it is possible to observe the type of non-linearity directly from Fig. 2.12,
a more accurate and fully automatic decision can be made using the ANN. The same
network, which was trained using SDOF non-linear oscillators in section 2.3.2, was applied
to these FRFs and the results of classification are summarised in Tab. 2.7. It is seen that

excitation no gap small gap large gap

low linear (70.4 %)/friction (29.1 %) clearance (99.9 %) clearance (99.9 %)
high linear (73.9 %)/friction (25.2 %) clearance (99.9 %) clearance (99.9 %)

Table 2.7 Classification results for the beam with a clearance non-linearity

non-linear behaviour has been classified correctly with a high level of confidence. It is
interesting to notice that the analysis of the FRFs measured without the end stops have
revealed almost 30 % probability of friction in the structure. This seems to be reasonable
since it can be explained by the presence of the clamp. This particular clamp had been
extensively used for a variety of testing in the past, so its functional internal surfaces are
not perfectly smooth. Therefore, despite the effort to ensure the linear behaviour, some
micro-slip in the clamp can cause the observed friction. These results correspond to the
observations made directly using principal component scores.

2.5.2 Under-platform damper
An under-platform damper is a metal device placed on the underside of the platform
between adjacent blades. The under-platform dampers are commonly used in aircraft
engines to dissipate energy on their friction interfaces, which leads to a frequency shift and
significant decrease of vibration amplitude. The influence of the under-platform damper
on dynamics of the blades has been extensively studied in [196–198] both experimentally
and numerically. The experimental set-up seen in Fig. 2.13 was used to experimentally
investigate the effects of an under-platform damper on the vibration behaviour of turbine
blades. The FRFs measured in [196–198] were kindly provided for the demonstration of
the proposed method.

Some of the FRFs measured around the first mode of vibration in which the blades
simultaneously vibrate on the first bending mode can be seen in Fig. 2.14. A stepped
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Figure 2.13 Under-platform damper: experimental configuration
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Figure 2.14 Under-platform damper: measured frequency response functions

sine excitation applied to the blade A with a decreasing frequency rate was used and the
FRFs were measured using two non-contact laser Doppler vibrometers focused near the
tip of each blade (see Fig. 2.13). It is assumed that the first mode is not significantly
influenced by the higher modes and the proposed method can therefore be applied.

The measured mobility was converted to the receptance using Eq. (2.1) and processed
according to the flow chart from Fig. 2.3. The principal component scores are shown in
Fig. 2.15. It can be seen that no linear behaviour has been detected in the experimental
test rig. Most of the measured PCS lie in the softening area although the PCS approach
the linear and Coulomb friction area under the low level of excitation.

To obtain the quantitative values the same network was applied and the results are
summarised in Tab. 2.8. In this case, no linear behaviour has been observed, not even
at the lowest level of the excitation. The linear behaviour, however, was not expected
since the damper is attached and introduces the non-linear effects, albeit weak, into
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Figure 2.15 Principal component analysis of the under-platform damper: (top) perspective
view and (bottom) side views. The coloured points represent the principal component scores of
the training data while the labelled black points were obtained from the experimental frequency
response functions.

excitation blade A blade B

low softening (43.0 %)/friction (56.6 %) softening (44.1 %)/friction (55.5 %)
medium softening (69.9 %)/friction (30.0 %) softening (70.8 %)/friction (29.2 %)
high softening (99.6 %) softening (99.7 %)

Table 2.8 Classification results for the under-platform damper (the values in the parentheses
mark the probability of the output class)

the structure. Under the low level of excitation the classification yielded almost equal
probabilities of softening stiffness and friction while only softening was observed at
high amplitudes. The under-platform damper is usually modelled using sophisticated
macro- and micro-slip models [196–198]. Although the results do not directly relate to
these models, they reflect the effects observed in the FRFs. Under low excitation the
amplitude is reduced with only a minor frequency shift, whereas at high excitation levels
the resonance frequency is significantly shifted to the left and the jump in the response
can be seen. The classification is consistent for the both blades although the FRFs that
have been measured from blade A and B are slightly different.
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2.5.3 The ECL benchmark
In this section the proposed method is applied to the ECL benchmark. The ECL
benchmark was designed to compare non-linear system identification methods [261] and
has been extensively used in the past 15 years for both numerical and experimental studies.
Many non-linear system identification methods have been applied to this benchmark,
including conditioned reverse path method [115], proper orthogonal decomposition [139],
wavelet transform [10], normal non-linear modes [189, 191] and model updating [151].

The ECL benchmark consists of a main long cantilever beam with a thin short beam
attached to its end. The thin beam is also clamped and introduces a strong geometric
non-linearity. The nominal dimensions of the beams are the same as in [189, 191]. The
main beam is 0.7 m long, 0.014 m wide and 0.014 m thick while the thin beam is only
0.04 m long, 0.014 m wide and 0.0005 m thick. Both beams are made of steel with nominal
Young’s modulus E = 2.1 × 1011 Pa and density ρ = 7800 kg m−3.

The experimental set-up is shown in Fig. 2.16. The connection of the thin and main

thin beam

main beam

shaker

node 10

node 7

node 4

node 3

Figure 2.16 Experimental set-up of the ECL benchmark

beam is realised through a simple bolted joint. The care was taken to manufacture
this connection as accurately as possible in order to minimise any friction effects. The
dynamic response is measured by three accelerometers placed at node 4, 7 and 10. A
sharer placed in node 3 is used for the measurements of frequency response functions
used in this section.

The measured FRFs from nodes 4,7 and 10 in a close proximity of the first mode can
be seen in Fig. 2.17. The influence of the higher modes on the FRFs measured around
the first mode are assumed to be minimal so the proposed method can be applied. This
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Figure 2.17 Measured frequency response functions of the ECL benchmark: (a) node 10, (b)
node 7 and (c) node 4

assumption is justified because the second natural frequency is close to 150 Hz which over
100 Hz more than the first resonance frequency. It can be seen that the FRFs exhibit
strong non-linear behaviour of a hardening type and are consistent for all measured nodes.
It should be noted that it was attempted to measure an FRF with linear behaviour.
However, this proved to be impossible due to the limitations of the acquisition hardware
which was not able to provide such a low excitation level. The non-linearity can therefore
be considered as inherent to the system.

The same neural network as in the previous cases was applied and the results are
tabulated in Tab. 2.9. It can be seen that only non-linear behaviour has been detected.

excitation node 10 node 7 node 4

low hardening (98.1 %) hardening (96.1 %) hardening (94.1 %)
medium hardening (97.8 %) hardening (96.9 %) hardening (99.3 %)
high clearance (95.6 %) clearance (99.7 %) clearance (99.7 %)

Table 2.9 Classification results for the ECL benchmark (the values in the parentheses mark
the probability of the output class)

This was expected because all FRFs exhibit a jump phenomenon which significantly
influences the shape of the frequency response functions. All FRFs measured under low
and medium excitation have been characterised correctly as cubic hardening stiffness.
On the contrary, the FRFs measured under high excitation have been misclassified as
clearance non-linearity. This type of misclassification has already occurred in this chapter.
A large number of systems with cubic hardening stiffness were incorrectly classified as
systems with clearance. This error is caused by similarities in the physical mechanisms
of these two non-linearities.
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In this section the proposed method was applied to the FRFs of the ECL benchmark
and the hardening behaviour has been characterised. The ECL benchmark will be also
used in section 5.4 to demonstrate the proposed approach to non-linear modal analysis.

2.6 Discussion
A method for detection and characterisation of non-linear behaviour from a single
frequency response function (FRF) has been proposed in this chapter. The method
uses a normalised single mode FRF together with their Hilbert transform to derive
a set of non-linearity indexes for an accurate and effective description of non-linear
behaviour. Dimensionality reduction of these indexes via principal component analysis
allows the creation of a compact artificial neural network, which subsequently classifies
the non-linearities. The performance of the method has been evaluated using a number
of test cases - some of which were numerical while others were experimental.

It was found that the method is capable of detecting and characterising non-linearities
accurately while being robust against measured noise. Moreover, provided that a suitable
neural network has been trained, the method works in a timely-fashion and avoids a
subjective decision which may require vast experience in the field. The proposed method
can be therefore used as a pre-step of linear modal analysis to quickly verify the assumption
of linear behaviour in routine industrial testing. The successful characterisation of three
experimental cases, each with a different type of non-linearity, highlighted the applicability
of the method to the experimentally measured FRFs.

In contrast to the similar method presented in [125, 126], the proposed method cannot
localise the non-linearity within the structure. However, this is well balanced by the fact
that it does not require any high or low fidelity model of the structure. The proposed
method also dramatically minimises the number of data sets that are needed for the
optimal training of the network.

The proposed method is very versatile - once the proper ANN has been trained for
desired types of non-linearities, it can be applied to any kind of system as long as the
modes are well separated. The need to train the ANN for certain types of non-linearities
can be, however, also considered as a drawback. In order to detect and characterise
a particular type of non-linearity, this non-linearity must be included in the training
data. It is theoretically possible to obtain insight into the non-linear behaviour even
if the non-linearity has not been included in the training data by carefully examining
the output of the network. For instance, it was shown in section 2.5.2 that the network
indicated almost equal presence of the cubic softening stiffness and Coulomb friction.
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This was interpreted as an indication of a complex contact interface. This ability of
the proposed method is sometimes referred to as identification of unseen patterns [91].
Although this ability can be sometimes useful the interpretation of such results require a
good knowledge of the structure so it is likely that the detection and characterisation are
not required.

As discussed in section 1.2.1 it may be sometimes useful to quantify whether the non-
linearity is weak, moderate or strong, i.e. to estimate to what extent the non-linearity
influences the linear behaviour of the structure. The quantification of non-linearity
strength has not been attempted in this thesis because, as discussed in section 1.2.1, there
is no universal way to define what weak, moderate or strong non-linearity mean. Such
a classification must be bound to a specific application in which strong non-linearities
would, for instance, cause structural damage, whereas weak non-linearities would only
increase the amount of vibration-induced noise. For the specific application, the strength
of non-linearity could be achieved by the proposed method if the neural network was
appropriately trained. The present version of the proposed method can also provide a
limited indication of the non-linearity strength. This was seen in section 2.4 where the
transition between the linear and non-linear behaviour of the plate with cubic hardening
stiffness was indicated by the probability of output classes.

2.7 Conclusion
This chapter proposed a new method for detection and characterisation of non-linearities
based on the Hilbert transform in the frequency domain and artificial neural networks.
It was shown that the method is robust against measured noise and can be applied to
a single measured frequency response function. Due to the use of the artificial neural
network, the method does not require expertise decision making and is therefore suitable
as an automatised pre-step of the linear modal analysis in industrial context. The
proposed method fulfils the requirements of the first objective of this thesis, i.e. it enables
robust and fast detection and characterisation of non-linearity from a single frequency
response in an industrial framework.





Chapter 3

The Hilbert-Huang transform in
non-linear system identification

Abstract
This chapter creates a transition between the frequency domain detection and charac-
terisation used in the previous chapter and the non-linear system identification using
time-frequency methods used in the rest of the thesis. Firstly, it is discussed why the
representation of a time series by the instantaneous frequency (IF) and amplitude (IA)
can be potentially better than other time-frequency/time-scale methods. In particular, the
Hilbert-Huang transform (HHT) is described in detail. The HHT consists of two steps -
the empirical mode decomposition (EMD) and a method for instantaneous frequency and
amplitude estimation. The EMD, which allows a multi-scale decomposition of a signal
in terms of oscillatory functions, is reviewed and its problems and drawbacks discussed.
Then, the methods for estimation of instantaneous frequency and amplitude are described
and applied to the testing signal obtained from a Duffing oscillator to evaluate their
performance and identify the properties that can be used for system identification. A new
method which can identify intra-wave frequency modulation is proposed at the end of the
chapter.
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3.1 Introduction
In the previous chapter the new method for detection and characterisation from a
frequency response function was proposed. The first objective of the thesis, i.e. to
enable robust and fast detection and characterisation of non-linearity from a single
frequency response function in an industrial framework, has been therefore achieved.
This chapter starts addressing the second objective of the thesis, i.e. the investigation of
time-frequency methods and their use in non-linear system identification. This chapter
creates a transition between the frequency domain detection and characterisation and
the non-linear system identification using time-frequency methods.

In section 1.3.2 it was found that the Hilbert-Huang transform (HHT) is potentially
better than any other time-frequency analysis method because it does not use any
fixed basis for decomposition. It is therefore fully adaptive, so it does not require
any a priori knowledge of the system or non-linearity. Moreover, the HHT uses the
concept of instantaneous frequency and amplitude which has more natural physical
interpretation than the Fourier-based representation of time series. In the first step of
the HHT a complicated (potentially) multi-component, non-linear and non-stationary
signal is decomposed into oscillatory functions, termed intrinsic mode functions (IMFs).
Subsequently, the instantaneous frequency and amplitude are estimated by the Hilbert
transform or other methods.

The objective of the chapter is the introduce the Hilbert-Huang transform in detail.
The empirical mode decomposition is described and its limitations and problems discussed.
Then, a review of a number of methods for instantaneous frequency and amplitude
estimation developed in other fields is conducted in order to identify methods that
could potentially replace the Hilbert transform. This is needed because, despite the fact
that the Hilbert transform is traditional used for the IF and IA estimation, it suffers
from a number of numerical and mathematical issues which can cause problems when
interpreting its results. Based on the comparison and assessment of the alternative
methods, several suggestions about their usage is given and a new method which allows
identification of intra-wave frequency modulation is proposed.

This chapter is organised as follows: section 3.1.1 justifies the selection of the Hilbert-
Huang transform for non-linear system identification by showing the lack of physical
interpretation of other time-frequency methods. Then, the Hilbert-Huang transform is
described. Firstly, the empirical mode decomposition is introduced in section 3.2 where
its problems, such as mode mixing, are discussed and some solutions suggested. Then,
the review of methods for instantaneous frequency and amplitude estimation is conducted
in section 3.3. Based on this review, a new method for detection and characterisation
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of non-linearities using intra-wave frequency modulation is proposed in section 3.4 and
its application shown on two numerical cases. The chapter concludes by the discussion
(section 3.5) of problems and limitations of the Hilbert-Huang transform.

3.1.1 The physical interpretation of time-frequency methods
Three groups of time-frequency analysis methods have been described in section 1.3.2,
namely time-frequency methods, time-scale methods, and methods based on the instan-
taneous frequency and amplitude. Many Fourier-based system identification methods
(time-frequency and time-scale methods) have been developed as discussed in section 1.3.2.
However, the Fourier representation of data lacks a meaningful physical interpretation for
non-linear and non-stationary time series. This fact is discussed in this section to justify
the use of the Hilbert-Huang transform for non-linear system identification in this thesis.

Any data can be expressed using the Fourier expansion as

x(t) =
n∑

j=1
ajeiωjt, (3.1)

where the amplitudes aj and frequencies ωj are constants. In contrast, the same data
can be represented by the Hilbert-Huang transform [103] as

x(t) =
n∑

j=1
aj(t)ei

∫
ωj(t)dt, (3.2)

where the amplitudes and frequencies are functions of time. Therefore, they are called the
instantaneous amplitude (IA) and instantaneous frequency (IF), respectively. The Hilbert
representation of data is sometimes seen as a generalised Fourier expansion [101, 102]
because it enables to accommodate non-stationary and non-linear data. It should be
noted that Eq. (3.2) is very general, because both IF and IA are unspecified functions
of time. This equation is only a formal representation of the Hilbert-Huang transform
because it cannot be directly used to compute the transform.

The physical interpretation of the Fourier-based representation of measured time
series is discussed using the data which are used in section 3.3 to evaluate the performance
of IF and IA estimation methods. The system which has been used to compute the
data is not important at the moment, but it is important to note that the data are
both non-stationary and non-linear. The time series representing the displacement,
velocity and acceleration of the testing system are shown in Fig. 3.1. The displacement is
used to show why time-frequency and time-scale methods that are based on the Fourier
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Figure 3.1 Response of the Duffing oscillator described in section 3.3.1: (a) displacement, (b)
velocity and (c) acceleration

representation of the signals provide results which can be difficult to interpret [101–103]
for non-linear and non-stationary signals.

The first issue is that the Fourier transform requires stationarity in the data. Therefore,
it may not be clear how to interpret the spectrum of the displacement displayed in
Fig. 3.2(a). It can be seen that the spectrum contains a region of high amplitudes centred
about 1.5 Hz, which, however, does not look as a typical vibration mode with a sharp
peak. Instead, the magnitude of the peak increases with the increasing frequency between
1 Hz and 2 Hz. There is no reliable way how to accurately define the natural frequency
from this spectrum, or to known if the frequency is time-varying or if all frequency
components appear in the response simultaneously. There is also no way of knowing
whether the system approaches linear behaviour for high or low amplitudes. The use of
the Fourier transform to non-stationary signals is therefore quite misleading, given very
unclear information provided. However, if it is known that the peak corresponds to one
mode whose frequency varies in time, the frequency and corresponding amplitude can be
roughly estimated.

The requirement of stationarity can be removed by the application of the Fourier
or wavelet transform to short blocks of data. Non-stationary data can be analysed
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Figure 3.2 Application of the Fourier-based analysis to the testing signal: (a) spectrum and
(b) spectrogram

because some stationary exists in a block, thereby allowing to interpret a set of spectra.
However, a more serious issue remains - the Fourier transform does not have a meaningful
physical interpretation for non-linear processes which would be suitable for non-linear
system identification [103]. In order to describe non-linear signals, several harmonics are
needed, but they are sometimes regarded as a mathematical artefact of the selected data
processing [101, 102] as oppose to a reflection of a studied physical phenomenon. For
example, the spectrogram of the displacement in Fig. 3.1 obtained by the short-time
Fourier transform is shown in Fig. 3.2(b) where a logarithmic scale is used to emphasise
the harmonics. The dominant frequency component and several higher harmonics can be
seen. However, they cannot be directly observed in the time signals in Fig. 3.1 without
the knowledge of the Fourier transform. Observing these signals, one cannot see several
harmonic components with different decreasing amplitude and decreasing frequencies,
but rather signals with one decreasing amplitude and frequency that is almost constant,
fluctuating about a fix value. The fluctuating frequency is particularly visible in the
acceleration in Fig. 3.1(c), where the slope of the signal changes significantly close to
zero amplitudes. When Fourier based analysis methods are used for non-linear system
identification, the harmonics are often ignored and only the amplitude and frequency
of the dominant component are considered. That, however, means that the energy
of the signal will not be correctly interpreted because some components are missing,
and the amplitude of the dominant frequency does not correspondent correctly to the
amplitude of the signal. Moreover, by looking at Fig. 3.2(b), there is no way of knowing
how many structural modes should be estimated. One might correctly assume that the
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higher components are a consequence of non-linearity or they can be misinterpreted as
structural modes. Overall, the interpretation of the measured non-linear series based on
the Fourier series is not very natural [71]. The methods for instantaneous frequency and
amplitude estimation seem to offer more possibilities with regards to non-linear system
identification [103].

However, it should be stressed that it does not mean that the Fourier transform is an
invalid concept. Many extremely useful theories and methods (including the harmonic
balance method and non-linear modal analysis used in this thesis) have been developed
based on the Fourier transform and are widely used for computation studies in non-linear
dynamics. The Hilbert-Huang transform simply presents an alternative concept which
was observed to be better suited for the processing and interpretation of non-linear
and non-stationary data. Unlike the Fourier transform, the HHT has very limited
rigorous mathematical background, because Eq. (3.2) is only a formal representation of
the transform, but cannot be used to perform the transform itself. Its two steps - the
empirical mode decomposition and a method for instantaneous frequency and amplitude
estimation - are described in the following.

3.2 Empirical mode decomposition
The empirical mode decomposition (EMD) is a key and unique concept of the Hilbert-
Huang transform (HHT) which allows the decomposition of multi-component data into a
set of mono-component signals called intrinsic mode functions. This section describes a
basic algorithm of the EMD, the mode mixing problem and the methods that can remove
or significantly reduce the mode mixing.

3.2.1 Basic algorithm of the empirical mode decomposition
The basic idea of the empirical mode decomposition (EMD) [103] is to decompose a
multi-component, non-stationary and non-linear time series into a set of intrinsic mode
functions (IMFs). The IMFs, each evolving at a different characteristic time scale,
represent the oscillatory modes in the data. The decomposition is conducted in an
adaptive manner, thereby requiring no a priori knowledge of the signal.

The EMD only assumes that the data have at least one maximum and one minimum
and the characteristic physical time scale is defined by time span between the extrema.
The former requirement is always satisfied while considering the identification of vibration
systems, whereas the latter one is satisfied for the signals measured with a relatively
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high sampling frequency. Typically, the sampling frequency should be between 20 and 80
times higher than the highest frequency of interest [72].

The basic algorithm of the EMD consists of several steps that are schematically
summarised in the flowchart in Fig. 3.3 and explained in the following. Firstly, the

sifting process
Measured vibration data x(t)

Determine the minima and maxima

Find upper emax(t) and lower emin(t)
envelopes by interpolating extrema

Compute local mean
m(t) = emin(t)+emax(t)

2

Design a proto-mode function
hk(t) = x(t) − m(t)

Is hk(t) an IMF?

Assign a final IMF
ci(t) = hk(t)

Compute residue
r(t) = x(t) − ci(t)

Is r(t) ≈ 0 or a trend?

EMD finished
x(t) =

NIMF∑
i=1

ci(t) + rNIMF(t)

yes

yes

no
k = k + 1

no

i = i + 1

Figure 3.3 The basic algorithm of the empirical mode decomposition

maxima and minima of the multi-component signal x(t) which has been measured in the
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known spatial location of a structural system are identified by a peak finding algorithm.
These extrema are then interpolated, usually using cubic splines, to create the upper
emax(t) and lower emin(t) envelope. The difference of the envelopes defines the local mean
of the signal

m1(t) = emin(t) + emax(t)
2 . (3.3)

The first proto-mode function h1(t) is then estimated from the data as

h1(t) = x(t) −m1(t). (3.4)

Ideally, the h1(t) would be the first final intrinsic mode function that satisfies two basic
conditions: (i) the number of extrema and zero-crossing differs by no more than one and
(ii) the mean defined by the upper and lower envelopes is zero at any point. However,
due to the numerical problems and measured noise, these two conditions are not usually
satisfied after a single interaction. Therefore, the so-called sifting process is repeated,
i.e. the h1(t) is treated as the original data, the new mean m11(t) is found and the next
proto-mode function is obtained as

h11(t) = h1(t) −m11(t). (3.5)

The process is referred to as the sifting because it separates the data with the finest
characteristic time scale [102] of the rest of the signal. Generally, the sifting process must
be repeated k-th times until the last proto-mode function, defined by

h1k = h1(k−1) −m1k, (3.6)

has become the first final IMF
c1(t) = h1k. (3.7)

To guarantee that the final IMFs retain their physical interpretation, the sifting process
must be appropriately terminated. The termination is typically achieved by limiting the
size of the standard deviation computed from the two consecutive sifting results [103]
or by a fix number of sifting iteration k [221]. Once the first final IMF c1(t) has been
found, the following IMFs can be extracted from the residue

r1(t) = x(t) − c1(t) (3.8)



3.2 Empirical mode decomposition 85

by repeating the sifting process. The iterative process is repeated until all IMFs are
extracted from the subsequent residue

r2(t) = r1(t) − c2(t),
...

rNIMF = rNIMF−1 − cNIMF(t).

(3.9)

The decomposition ends when the residue rNIMF(t) after the extraction of the last
IMF cNIMF(t) becomes smaller than the predefined tolerance or when it is a monotonic
trend with no dominant extrema. The original response x(t) can be reconstructed by
summarising all the IMFs and the last residue

x(t) = c1(t) + c2(t) + · · · + cNIMF(t) + rNIMF(t). (3.10)

The EMD explores sequentially the different time scales in the data and the IMFs are
estimated from the highest-frequency to the lowest-frequency components. This may be
quite inconvenient when using the EMD for non-linear system identification or non-linear
modal analysis, because the last IMF cNIMF(t) corresponds to the first vibration mode
which is often the dominant mode of interest. Therefore, all other modes, that might
be potentially useless, must be firstly estimated before reaching the desired modes of
interest. In addition, because the lowest-frequency components are estimated as the last
ones, they may be influenced by numerical imperfections in the previous sifting processes.

The completeness of the decomposition is given by Eq. (3.10) and the orthogonality
of the IMFs (although not theoretically guaranteed) can be numerically verified by
orthogonality measures. The orthogonality of any two IMF ci(t) and cj(t) can be found
as [103]

Oij =
∑

t

ci(t)cj(t)
ci(t)2 + cj(t)2 . (3.11)

This criterion is equal to 0.5 for ci(t) = cj(t) and zero if ci(t) is orthogonal to cj(t).
Working with this criterion can be sometimes difficult, because it can also be negative.
Therefore, it is proposed here to replace Eq. (3.11) by

Oij = (ci(t) · cj(t))2

(cj(t) · cj(t))(ci(t) · ci(t))
, (3.12)

where ( · ) marks the dot product. Equation (3.12) (which is formally the same as the
widely-used modal assurance criterion (MAC) [63]) is also equal to zero when ci(t) and
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cj(t) are orthogonal, but it is normalised to unity for ci(t) = cj(t) and cannot be negative.
Therefore, it might be easier to observe any imperfection in orthogonality using Eq. (3.12)
than Eq. (3.11). The overall index of orthogonality O can be defined as the sum of all
elements that are equal to zero if all IMFs are orthogonal with respect to each other

O =
∑

i ̸=j

Oij. (3.13)

This index can be used to quantify the orthogonal properties of the IMFs by a single
value which should be as low as possible.

The described EMD algorithm is simple, quite intuitive and applicable to almost all
practical cases. Moreover, it was shown that its computation complexity is equivalent
to the fast Fourier transform (FFT) [277]. However, in the every step of the procedure
some signal processing related problems may occur [101, 211, 221].

• The task of finding maxima and minima of a signal does not have to be always
straightforward. It requires very good control of the peak finding algorithm as
shown in [211]. Any noise may introduce significant errors, which may lead to
spurious IMFs being estimated. To eliminate measured noise, a range of standard
smoothing techniques [242] can be used to pre-process the data.

• For fast-varying signals the cubic spline can over- or under-shoot the actually
envelope, which leads to the incorrectly computed mean of the signal and there-
fore prevents a successful sifting process. Several enhanced approaches to create
the envelope have been proposed, such as filtering of envelopes before mean es-
timation [40], replacement of cubic splines by rational splines [193] or Hermitian
polynomials [42]. In addition, several optimisation schemes to avoid over- and
under-shooting have been introduced [99, 209]. Nevertheless, despite a great num-
ber of available algorithms, their performance was found to be case sensitive. It
was also observed in [101] that the standard cubic spline works reasonable well for
most practical cases.

• Even in the cases where no over- or under-shooting occurred, the envelopes can
be badly estimated at the beginning and the end of the signal. These problems
are sometimes referred to as end-effects and, although the ends can be simply
excluded from the following analyses, it is better to avoid the end-effects completely
to maintain the full length of the data. To eliminate the end effects problem,
mirroring of the signal ends [101] and the extension of the signal on both sides by
neural networks [294] can be used.



3.2 Empirical mode decomposition 87

• If the over- or under-shooting occurs, the estimate of the mean can be significantly
influenced by the problems with the envelope, ultimately leading to estimation of
spurious IMFs. In some cases, the estimation of the mean through the envelope
can be completely avoided by finding the mean directly using the unconstrained
optimisation [45].

• The stopping criteria are ambiguous from the signal processing point of view, e.g.
even if the function appears as a trend, it still has several small maxima and minima
due to the numerical representation of the signal. Therefore, more sophisticated
stopping criteria are usually established based on a number of iteration in the
shifting process, standard derivation of subsequent prospective IMFs or the mean
value [221, 275]. These criteria may be combined and adjusted for a required
performance of the EMD algorithm.

• The IMFs, which represent the characteristic time scales in the data, should have
a physical meaning if the EMD algorithm has been executed properly. However,
some spurious IMFs without the physical meaning can be sometimes estimated due
to numerical problems in the shifting algorithm or measured noise. Fortunately, for
non-linear system identification in structural dynamics, the premise (later discussed
in chapter 4) is that the IMFs relate to the vibration modes of the investigated
structure. These modes are often known beforehand, either from the previous
testing or preliminary analysis of the structure. The knowledge of these modes can
then be used to distinguish between proper and spurious IMFs.

The EMD is an adaptive data processing method and therefore its results must be
carefully evaluated and verified. For certain cases of signals, one algorithm may perform
well, whereas the same algorithm may not work at all for other sets of data. If the EMD
algorithm fails, its modifications should be tried and the results compared to each other
with the aim to establish which sets of results are correct and which include spurious
intrinsic mode functions. The signal processing related issues described above can be
overcome by a number of techniques, but it was found in [101] that a basic algorithm of
the EMD is often sufficient in practical cases.

However, it was also found [101, 102] that so called intermittency is a major issue
while using the EMD. Intermittency refers to the situations in which the IMFs of a
particular time scale either suddenly appear in the signal or disappear entirely. Since
the EMD locally estimates the highest-frequency component first, intermittency causes
sudden jumps in the frequency of the extracted IMFs. The situation when an extracted
IMF has components of different frequencies due to intermittency is called mode mixing.
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The mode mixing is of particular concern in non-linear system identification, where it
is usually attempted to separate all structural modes correctly. The mode mixing can
sometimes limit the application of the EMD in structural dynamics and is therefore
discussed in more detail in the next section.

3.2.2 The mode mixing problem of the empirical mode decom-
position

The mode mixing refers to the fact that two or more mono-component functions with
different time scales are combined or that a part of a mono-component function is
estimated in a different IMF. This issue, also referred to as a frequency resolution of the
EMD [220], can be a key limitation while using the HHT in structural dynamics where
vibration structural modes are typically investigated. The separation of all modes is not
always possible due to the lack of local extrema in the signal that could be used in the
sifting process to separate the IMFs.

The frequency resolution of the EMD was numerically and analytically studied in [220].
The analysis is recalled here as it will be helpful in chapter 4 to investigate a range of
validity of the relation between the HHT and non-linear modes. The investigated signal
x(t) combines two vibration modes given by pure sine waves

x(t) = a1 sin(2πf1t+ ϕ1) + a2 sin(2πf2t+ ϕ2), (3.14)

where a1, a2 are the amplitudes of the modes (a2 ≤ a1), f1, f2 their frequencies (f2 ≥ f1),
and ϕ1, ϕ2 are phases. When the discretisation of time series does not have any practical
effects with regards to the EMD (the sampling frequency is sufficiently high), the problem
can be reduced to [220]

x(t) = sin(2πt) + a sin(2πft+ ϕ), a = a2

a1
, f = f2

f1
, ϕ = ϕ2 − ϕ1, (3.15)

and only three parameters a, f, ϕ studied. The frequency resolution of the EMD can be
investigated in a straightforward manner by performing the EMD for different combi-
nations of the parameters and evaluating the quality of the resulting IMFs measured
by

C = ∥c1(t) − a sin(2πft+ ϕ)∥
∥ sin(2πt)∥ . (3.16)
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If the first IMF c1(t) is fully separated from the original signal, then C = 0. On the
contrary, if the EMD does not change the original signal, then C = 1. If the EMD does
something else to the signal, then C ∈ (0, 1).

The frequency resolution will be investigated for f ∈ (1, 5], a ∈ (0, 1] and ϕ ∈ [0, 2π).
It will be shown the results of the decomposition correspond to intuitive physical
interpretation of the investigated signal. As an example, a set of signals for ϕ = 0
is shown in Fig. 3.4. In Fig. 3.4, the graphs under the line contain wave forms that

f=
1

f=
2

f=
3

f=
4

f=
5

a = 0 a = 0.25 a = 0.5 a = 0.75 a = 1

one mode

two modes

Figure 3.4 Two vibration modes with a different ratio of amplitudes and frequencies. The
orange line passing through the centre of the figure indicates the mode separation ability of the
empirical mode decomposition.

appear as one wave with modulated frequency and therefore it is not expected that the
EMD should decompose two modes. It does not have to be always necessary to process
such signals by the EMD because, despite being a combination of two modes, they can
be interpreted using a single mode with a modulated frequency and amplitude. On the
other hand, the signals above the line appear as two combined waves so it is natural
to expect that two modes would be extracted by the EMD. In a close proximity of the
dividing line, for example for f = 2 and a = 0.5, it is uncertain whether the signals
should be interpreted using one or two modes

This intuitive physical interpretation also corresponds to the evaluation of the factor
from Eq. (3.16) in Fig. 3.5. In order to display the results for all phases ϕ, the average
over the phase Cϕ and the standard deviation std(C)ϕ are used. The black lines added
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Figure 3.5 Frequency resolution of the EMD visualised using the quality factor from Eq. (3.16):
(a) average of the factor over the phase angle, and (b) corresponding standard deviation. Three
regions are numbered according to the ability of the EMD to separate the modes: (1) modes
are always separated, (2) modes may or may not be separated depending on the phase angle,
and (3) modes can never be separated.

in Fig. 3.5 are not only supported by the numerical results, but also theoretically
derived [220].

Three well separated regions can be distinguished in Fig. 3.5:

• Modes are separable (region (1) located in upper right corner) if

af ≥ 1 and f2 > 1.67f1 (3.17)

• Modes cannot be separated (region (3) located in the left bottom corner) if

af 2 ≤ 1 (3.18)

• The EMD does something else and, unlike in the previous cases, the result depends
on the phase (region (2) located between the black lines) if

af < 1 and af 2 > 1 (3.19)

What exactly happens in the last region (2) depends on the phase angle ϕ and the nature
of the signal. Sometimes, new spurious IMFs can even be created so the application of
the EMD in this region should be avoided or the results very well verified.
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These criteria are valid for the basic algorithm of the EMD where the spline fitting is
used to estimate the upper and lower envelopes. They can be used as a measure of closely
spaced modes, i.e. if two modes do not satisfy Eq. (3.17), they can be classified as closely
spaced. The relation between the HHT and complex non-linear modes in chapter 4 will
be meaningful for well spaced modes only.

The criteria can be investigated before applying the EMD by performing the FFT
and examining the frequency contents of the signal. Moreover, it is enough to investigate
the relation of amplitudes and frequencies of the modes, because the phase information
does not have to be considered as evidence by Fig. 3.5. Of course, the criteria cannot
be exactly evaluated for non-linear systems due to energy split and a frequency shift of
modes (see, for example, Fig. 3.2(a)). However, it can be assumed that the non-linear
modes are continuation of the linear modes, and therefore, the fundamental frequency
(the frequency corresponding to the highest amplitude of a mode) captured by the FFT
is a good representative of the frequency captured by the instantaneous frequency and
amplitude estimation methods.

Although the above analysis is performed for two pure linear tones, it is approximately
valid for damped non-linear waves as well due to the local nature of the EMD. The same
criteria can be applied when more than two modes are presented in the signal. As the
EMD always attempts to separate the highest frequency mode from the rest, the criteria
must be investigated for the two subsequent components.

To remove or reduce the frequency resolution issue, several alternatives of the EMD
have been developed, for instance, the application of a masking signal [50, 138] or the
ensemble empirical mode decomposition (EEMD) [292].

3.2.3 The application of masking signal
It was found in the previous section that the EMD cannot always separate all vibration
modes. Although it was argued that in some fields the separation of all modes does
not have to be a priority, in structural dynamics, it should be attempted to obtain as
many structural modes as possible. In order to improve the frequency resolution of the
EMD, the application of the masking signal was proposed in [50] and successfully used
in [137, 138, 237].

The basic idea of the masking signal is to insert a new, artificially created signal
into the original data. The signal must be chosen in such a way that it will prevent the
lower-frequency components to be estimated in the higher-frequency component. Since
the masking signal is known, it can be removed from the results.
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In order to extract the first IMF, the masking signal is firstly constructed as

sm(t) = am sin(2πfmt), (3.20)

where its amplitude am and frequency fm must be chosen appropriately (the phase
is not included because it has little influence on mode mixing as seen in Fig. 3.5(b)).
Both constants are empirical and non-unique. Therefore, they have to be tuned to
obtain required IMFs with no mode mixing. Some guidelines for the selection, which,
however, do not work well in all cases, were given in [50] and [237] based on the frequency
contents of the original signal x(t) which can be estimated by the FFT. In addition, an
optimisation method for the selection of the masking signal has been recently proposed
in [155]. Regardless of selected masking signal, the decomposition results must be well
verified based on the knowledge of the identification problem.

Once the masking signal has been selected, two new signals are constructed as

x−(t) = x(t) − s(t), and x+(t) = x(t) + s(t) (3.21)

and their first IMFs c−
1 (t) and c+

1 (t), respectively, are found. The first final IMF of the
original signal x(t) is found by averaging

c1(t) = c−
1 (t) + c+

1 (t)
2 . (3.22)

After the extraction of the first IMF, the EMD can continue for other IMFs with different
or without masking signal.

The masking signal has been used for non-linear system identification in [137, 138, 155]
with a great success and will be used in chapter 5 with the experimental data measured
from the ECL benchmark. The masking signal can be sometimes difficult to use because
its selection is empirical. On the hand hand, this method is suitable for the application
to vibration signals for which the extraction of structural modes should be a priority.
When the mode mixing problem needs to be overcome without any a priori knowledge of
the frequency contents or repeated selection of the masking signal, so-called ensemble
empirical mode decomposition (EEMD) may be used instead.

3.2.4 Ensemble empirical mode decomposition
In order to dramatically reduce the mode mixing (intermittency), the algorithm called
ensemble empirical mode decomposition (EEMD) was developed [292]. The core of the
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method is the basic algorithm of the EMD presented in section 3.2.1. The measured data
set is firstly polluted by the known amount of white Gaussian noise and then decomposed
by the EMD in order to obtain the IMFs. The process is repeated up to a hundred times
with different (randomly generated) noise and the IMFs are averaged so the ensemble
means of the IMFs are obtained. This should lead to correct estimation of all IMFs and
the mode mixing problem should be either completely avoided or massively reduced. At
the same time, however, several artificial IMFs can be created due to the artificially added
noise, so they must be removed from the final set of IMFs based on a priori knowledge of
the problem. The EEMD has become a standard tool for performing the EMD in the
fields where the changes in the signals (intermittency) are rapid and the masking signal
cannot be property defined. A timely feasible application of the EEMD is allowed due
to the optimised implementation of the EMD [277], which is equivalent to the FFT in
terms of the number of operations.

To make the EEMD even more robust against any uncertainty in the data, the
improved version was presented in [46, 299]. The complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) improves the generation of the random
noise into the data and therefore may potentially decrease the number of runs needed
for reliable estimation of all intrinsic mode function. On the other hand, it uses one
additional signal created by random noise which serves as the reference and must be
partly decomposed in each step. Therefore, this method is significantly slower than the
standard EEMD, but the results can be superior in some cases, mainly because very few
or no spurious IMFs should be estimated.

The EEMD and CEEMDAN are not very suitable for non-linear system identification
in structural dynamics, because typical scales in the data change slowly and, in cases
of free decay measurements that are of interest, all modes appear in the response
simultaneously. Therefore, intermittency is not significant and the mode mixing problem
can be removed using the masking signal in a more controlled manner. In addition, using
a single EMD run is much faster than repeating hundreds of independent runs in the
EEMD or CEEMDAN.

The EMD scheme used in this thesis is based on the code distributed alongside of
[221]1. In cases when many EMD runs must be executed, such as for the computation of
Fig. 3.5 or parametric studies in chapter 4, a faster implementation of the EMD provided
by [277]2 was used instead.

1Available at http://perso.ens-lyon.fr/patrick.flandrin/emd.html (cited in June 2017)
2Available at http://rcada.ncu.edu.tw/research1.htm (cited in June 2017)

http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://rcada.ncu.edu.tw/research1.htm
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3.3 Methods for instantaneous amplitude and fre-
quency estimation

The intrinsic mode functions (IMFs) are narrow-band frequency components whose mean-
ingful instantaneous frequency (IF) and amplitude (IA) can be estimated. Traditionally,
the Hilbert transform was used to estimate the IF and IA. However, it is known that
the HT can suffer from a number of numerical and mathematical issues [71]. Several
alternative methods have been developed in different fields. The alternative method are
compared in this section to evaluate their performance and identified their features that
may be suitable for non-linear system identification. For each method, a brief description
with relevant references is given, the application of the methods is demonstrated on the
testing signal obtained from the Duffing oscillator in section 3.3.1 and the results are
compared by means of backbone and damping curves.

The objective of this section is not only to show that all methods lead to very similar
results after some additional processing, but also to emphasise that replacing the HT can
help to recover additional information that can help to identify the system. Moreover, the
combination of the methods allowed a new method for the estimation of the intra-wave
frequency modulation (IFM) frequency to be proposed in section 3.4.

3.3.1 Testing signal and reference solutions
A well-known Duffing oscillator schematically shown in Fig. 3.6, which has extensively
been studied [71, 103, 118, 127, 173, 181], is used to compute the testing signal. The
Duffing oscillator is governed by

mẍ(t) + cẋ(t) + kx(t) + knlx
3(t) = 0, (3.23)

where m = 1 kg, c = 0.2 N m−1 s−1, k = (2π)2 ≈ 39.5 N m−1, and knl = 5 N m−3. The
initial conditions selected for the simulation were x(0) = 5 m and ẋ(0) = 0 m s−1, sampling
frequency fs = 50 Hz and time interval t = 0 − 30 s. The values of system parameters
and initial conditions are not realistic, but they have been chosen to allow reliable
demonstration of the presented methods. The validity of results is not corrupted by the
choice of these values. The testing signal is used throughout this section to evaluate the
performance of IF and IA estimation methods. It was also used in section 3.1.1 to show
the difference between the Fourier and Hilbert representation of the signal.

In order to compare the performance of the different IF and IA estimation methods,
the results are evaluated against two reference solutions. The first solution is obtained
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Figure 3.6 A single-degree-of-freedom system with a cubic hardening stiffness commonly
known as a Duffing oscillator

analytically using perturbation methods [158]. The backbone and damping curves are
given by

ω(a) = ω0 + 3knla
2/(8ω0), δ(a) = c/2, (3.24)

respectively, where ω0 is the angular natural frequency of the underlying linear system
and a is the amplitude of vibration. The second solution is obtained numerically using the
complex non-linear modal analysis [127, 134] that is described in detail in section 4.2.1.
Both solutions are shown in Fig. 3.7. It can be seen that the analytical and numerical
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Figure 3.7 Analytical and numerical reference solutions: (a) backbone and (b) damping curve

solutions of the backbone are not the same. This difference is due to the assumption
of weak non-linear behaviour in the analytical case, which is also the reason why both
backbones match at low amplitudes. On the other hand, practically no difference can
be observed in the damping curves in Fig. 3.7(b). It is anticipated that the numerical
solution should match the estimated values more closely because it is not subjected to
the assumption of weak non-linear behaviour.
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Both solutions are based on the Fourier approach, i.e. the solution is approximated
using a Fourier series in which a certain number of components (harmonics) is retained.
This approach is often used for computation analyses of non-linear systems, but it does
not offer a clear physical interpretation as discussed in section 3.1.1. The concept of
instantaneous frequency and amplitude offers more natural framework for the interpre-
tation of non-linear and non-stationary series by replacing the harmonics of constant
frequencies by time-varying frequency. In the instantaneous frequency and amplitude
concept, a new feature called intra-wave frequency modulation (IFM) can be found. The
IFM represents the changes of frequency within the vibration cycle. No such changes can
be seen in the Fourier concept because all frequencies are constant. This IFM concept
is rarely used in non-linear system identification and often the intra-wave frequency
modulation is incorrectly regarded as an unwanted distortion of results and consequently
it is simply removed by smoothing or averaging. The IFM does not have to be necessary
seen as unwanted high-frequency oscillations of the output and in fact, it can be used for
detection and characterisation of non-linearities as explained in section 3.3.1 and shown
in section 3.4. However, there are a few reasons for smoothing this frequency completely.
Firstly, the raw (without smoothing) IF cannot lead to good results when using in the
Freevib algorithm [67] to extract the backbone and damping curve, and secondly, the
traditionally used Hilbert transform is not a reliable tool for the estimation of the IFM,
thereby rendering its use impractical [71, 181]. Furthermore, the intra-wave frequency
modulation does not have a very solid mathematical background, which might be the
main reason why it is not so often used and well understood.

However, a basic mathematical principle of intra-wave frequency modulation was
presented in [180]. The principle can be shown for the Duffing oscillator from Eq. (3.23)
that is excited by a harmonic force, i.e.

mẍ(t) + cẋ(t) + kx(t) + knlx
3(t) = cos(Ωt+ ϕ), with Ω = ω0, (3.25)

where ϕ is a phase angle and Ω is the excitation angular frequency which is equal to the
angular natural frequency ω0 of the underlying linear system. The solution of Eq. (3.25)
can be approximated using a second-order asymptotic perturbation form [180] as

x(t) = A1 cos(Ωt) + A3 cos(3Ωt), (3.26)
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where A3 = αA3
1

32Ω2 ≪ A1. Equation (3.26) consists of the first and third harmonic, but it
can also be rewritten into

x(t) =
√
A2

1 + A2
3 + 2A1A3 cos(2Ωt)

︸ ︷︷ ︸
AM (≈ A1 since A3 is small)

cos (Ωt+ Θ(t))︸ ︷︷ ︸
FM

. (3.27)

Equation (3.27) replaces the two harmonic components in Eq. (3.26) by a narrow-band
frequency modulation (FM) with the intra-wave frequency modulation (IFM) Θ(t). The
amplitude of x(t) in Eq. (3.27) is almost constant since the amplitude modulation (AM)
is very small. The IFM is approximately equal to [180]

Θ(t) ≈ A3

A1
sin(rΩt), with r = 2, (3.28)

which means that the IFM frequency ΩIFM = 2πfIFM = rΩ is modulated with the double
of the excitation frequency Ω. Although Eq. (3.28) was found for a harmonic force
excitation, the ratio of the IFM frequency and IF r = ΩIFM/Ω = fIFM/f = 2 also holds
for a resonant decay response [181]. Provided that this ratio can be found, it can be
used to gain insight into a type of non-linearity, because it is unique for odd and even
non-linearities, being r = 2 and r = 1, respectively. However, it was concluded in [180]
that it may be very difficult to find this ratio using the Hilbert transform due to its
numerical problems. Therefore, a new method that allows accurate estimation of the IF,
IFM and the ratio r = fIFM/f is proposed in section 3.4.

It can be seen that some basic mathematical relations exist between Fourier-based
representation of signals and the concept of instantaneous frequency and amplitude with
intra-wave frequency modulation. It was already discussed in section 3.1.1 that the
physical interpretation of these approaches is ideologically different. In the following, the
methods that can be used to estimate the instantaneous frequency and amplitudes are
described.

3.3.2 The Hilbert transform
The Hilbert transform (HT) has traditionally been used for the estimation of the instan-
taneous frequency and amplitude [71, 103]. The HT c̃(t) of a time domain signal c(t),
which is assumed to be an IMF, is defined as

c̃(t) = 1
π

pv
∞∫

−∞

c(τ)
t− τ

dτ, (3.29)
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where “pv” demotes the Cauchy principal value of the integral. The Hilbert transform
maps functions from a domain into the same domain by shifting their phases by −π/2.
The resulting signal c̃(t) is also called a quadrature of c(t). Numerically, the HT is
usually implemented via the fast Fourier transform (FFT) [147] which is fast, but might
be sometimes affected by the Gibbs phenomenon [71]. The direct method based on
Kronig-Kramers relations cannot be used in the time domain because it requires a
complex function, such as the frequency response functions used in chapter 2.

Once the HT has been found, the analytic signal z(t) can be derived as

z(t) = c(t) + ic̃(t) = a(t)eiθ(t) (3.30)

and the instantaneous amplitude a(t) and instantaneous phase θ(t) can be calculated

a(t) = |z(t)| =
√
c2(t) + c̃2(t), θ(t) = arg(z(t)) = arctan

(
c̃(t)
c(t)

)
. (3.31)

The instantaneous frequency (IF) is then defined as the time derivative of the instanta-
neous phase

ω(t) = dθ(t)
dt . (3.32)

There are several issues while evaluating the IF using the HT. It can sometimes
lead to the estimation of a negative frequency and suffer from end effects [71, 184]. In
addition, Eq. (3.31) involves the inverse tangent function which always produces sharp
jumps between −π and π and therefore an unwrapping algorithm is required. Moreover,
the numerical derivative in Eq. (3.32) can produce incorrect and noisy results.

To avoid some of these issues alternative formulas were developed [67, 71]. First of
them uses the initial signal c(t), its Hilbert transform c̃(t), and their time derivatives ċ(t)
and ˙̃c(t) to compute the IF ω(t) as

ω(t) = c(t) ˙̃c(t) − ċ(t)c̃(t)
a2(t) = ℑ

[
ż(t)
z(t)

]
. (3.33)

The derivatives of the signal can be computed numerically or the velocity can be
measured alongside the displacement. An unwrapping algorithm is not required when
using Eq. (3.33).

Another algorithm that allows the calculation of the IF without the need for unwrap-
ping or numerical derivative was proposed in [71]. Using this algorithm, the IF can be
computed as

ω(t) = arctan
(
znz

∗
n+1

)
, (3.34)
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where zn is a discrete analytic signal and ∗ marks the complex conjugate. Therefore, only
conjugate multiplication of adjacent complex samples and the inverse tangent must be
evaluated. It should be noted, however, that for a noiseless signal the IFs estimated by
Eq. (3.32), Eq. (3.33), and Eq. (3.34) are practically the same.

According to the Freevib algorithm [67], the estimated IF and IA are used to compute
the natural frequency and viscous damping rate using

ω2
0 = ω2 − ä

a
+ 2ȧ2

a2 + ȧω̇

aω
, δ = − ȧ

a
− ω̇

2ω , (3.35)

respectively. It should be added that the non-linear elastic Fel and dissipative Fd restoring
forces can be estimated using

Fel =




ω2

0a, c(t) ≥ 0
−ω2

0a, c(t) < 0
Fd =





2δaċ, ċ(t) ≥ 0
−2δaċ, ċ(t) < 0,

(3.36)

respectively, where aċ is the instantaneous amplitude (envelope) estimated from the
velocity signal. However, the estimation of the non-linear restoring force is not a focus of
this chapter, so only the amplitude-dependent frequency (backbone) and damping curves
are compared with the numerical and analytical references (described in section 3.3.1) to
observe the features of the described methods.

The Hilbert transform was applied to the testing signal and the results are summarised
in Fig. 3.8. It can be seen that the IA shown in Fig. 3.8(a) is originally not so smooth
and suffers from the end effects. Such results are usually smoothed, thereby leading
to the smooth envelope that encloses the signal very closely. The smoothing of the IF
was also needed as seen in Fig. 3.8(b) due to strong end effects and estimated intra-
wave frequency modulation (IFM). After the smoothing by low-pass filtering, the IF is
smooth and decreases with decreasing amplitude. This decreasing trend relates to the
hardening behaviour of the Duffing oscillator and can be used as a means of detecting
and characterising the non-linearity.

The comparison between the estimated and reference backbones in Fig. 3.8(c) reveals
some discrepancies, especially for higher amplitudes between the analytical solution and
the estimated backbones. On the other hand, the estimated results correspond to the
numerically obtained backbone very well. Even the results without smoothing capture
the overall behaviour quite well and it can be seen that if the fitting of the numerical
results to the initial (without smoothing) results were attempted, the result would not
be far from the correct numerical reference.
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Figure 3.8 The Hilbert transform (HT) applied to the testing signal: (a) signal and instanta-
neous amplitude, (b) instantaneous frequency, (c) backbone, and (d) damping curve

The damping curve shown in Fig. 3.8(d) is very close to the reference ones, except
large errors at low and high amplitudes that are caused by the derivatives in Eq. (3.35).
However, in practical applications, low and high amplitudes may be removed from the
results, which leave the damping curve close to the reference one with a slight include to
the left. It is important to note that it is practically impossible to obtain the damping
curve from the results that are not additionally smoothed. Sometimes, fitting of the
envelope using the exponential function is preferred to obtain the damping. However,
this fitting assumes that the damping is linear and the whole point of using adaptive
processing methods is therefore lost.

The Hilbert transform (HT) has been used for the estimation of the natural frequency
and viscous damping rate since the proposal of the well-known Freevib algorithm in [67].
As shown, the HT can deliver smooth results after the low-pass filtering. However, some
signal processing issues exist and smoothing and/or averaging of the results must always
be included. Having smoothed the results, the contribution of intra-wave frequency
modulation is eliminated which, on one hand, allows the comparison of estimated and
analytical backbones, but, on the other hand, it leads to the loss of some information about
the underlying dynamics. The computation of the Hilbert transform can be subjected
to a number of mathematical and numerical issues, such as the Gibbs phenomenon and
end-effects, or negative frequency may be accidentally estimated [71, 72, 103, 104] as
shown in Fig. 3.8(b) or Fig. 3.17(b).
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3.3.3 Normalised Hilbert transform
Some of the problems of the HT, including negative frequency estimation [43], occur
because the investigated data (even if they are IMFs) do not usually satisfy the Nut-
tall [171] and Bedrosian [18] theorems [104]. The Nuttall theorem gives the condition
under which the HT yields the correct quadrature (−π/2 shifted signal) of a signal, while
the Bedrosian theorem states that the data must be not only mono-component, but also
narrow band signal. If these conditions are not satisfied, the amplitude modulated (AM)
part of the signal contaminates the frequency modulated (FM) part, so the estimation of
the IF becomes more difficult and its physical interpretation is then impossible [104]. The
Bedrosian theorem is always satisfied if the EMD has been performed and the considered
signal c(t) is an IMF. To meet the Nuttall theorem as well, the empirical normalisation
scheme was proposed in [104]. This normalisation separates the AM from the FM part
of the signal. The HT can then be computed for the FM component which always fulfils
the criteria set by the Nuttall and Bedrosian theorems since the AM part has been
completely eliminated. The normalisation scheme can be summarised as follows:

1. Identify all the local maxima of the absolute values of the time domain data.

2. Connect all these maxima using, e.g. cubic splines to create an empirical envelope
ai(t) in the ith step of the normalisation.

3. Normalise the time domain data by dividing them by the envelope ai(t).

4. Repeat the first three steps using the normalised data until all absolute maxima
are lower than unity.

5. The FM part κ(t) of the signal is represented by the resulting normalised data and
the AM part a(t) is designed as a(t) = x(t)/κ(t).

The convergence of the normalisation is very fast - two or three iterations are usually
sufficient [104]. The resulting FM part κ(t) is a sinusoidal signal with a constant amplitude
equalled to 1 and varying, narrow-band frequency. The FM part is sustainable for the
computation of the IF using the standard Hilbert transform (Eq. (3.32)) because it
satisfies all required conditions. The process of the normalisation followed by the HT is
referred to as the normalised Hilbert transform (NHT).

It should be noted that other methods can be utilised to estimate the envelope of
the time domain data instead of the cubic spline in step 2 of the normalisation. The
envelope can be found using the HT (as in Eq. (3.31)), different types of spline fitting
[101, 193], or using optimisation [297]. The choice of the algorithm is case-dependent,
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but generally the cubic splines should be used, and if they fail, the alternatives should
be tried and compared to each other to ensure the validity of the results.

The normalised Hilbert transform has been applied to the testing signal and the
results are summarised in Fig. 3.9. The IA in Fig. 3.9(a) is smooth and encloses the

0
1
2
3
4
5

am
pl

itu
de

[m
]

signal initial results smoothed results analytical ref. numerical ref.

0 5 10 15 20 25 30
1

1.2
1.4
1.6
1.8

time [s]

fre
qu

en
cy

[H
z]

1 1.5 2
0

1

2

3

4

5

frequency [Hz]

am
pl

itu
de

[m
]

0.08 0.1 0.12
damping [s−1]

(a)

(b)

(c) (d)

Figure 3.9 Normalised Hilbert transform (NHT) applied to the testing signal: (a) signal and
instantaneous amplitude, (b) instantaneous frequency, (c) backbone, and (d) damping curve

signal perfectly. For noise-free signal, no smoothing is needed, but for noisy signal, some
smoothing may be necessary. There are no observable end effects in the IA, which is
not surprising, because both ends are smooth extensions of the cubic splines used in the
normalisation process. The instantaneous frequency is shown in Fig. 3.9(b) where some
minor end-effects can still be observed. However, compared to the Hilbert transform
(Fig. 3.8(b)), they are not significant and the estimation of the negative frequency has
not occurred. The intra-wave frequency modulation is present in the unsmoothed signal.
As can be seen from the inset in Fig. 3.9(b), the IF and IFM are smoother than those
estimated by the HT (see the inset in Fig. 3.8(b)). On the other hand, the NHT produced
somewhat uneven IFM which probably caused by the numerical issues of the HT [104].
The smoothing is again required in order to evaluate the conventional backbone and
damping curves.

After the smoothing, the estimated backbone shown in Fig. 3.9(c) corresponds quite
closely to the numerical reference. There is a slightly higher difference than in the case
of the Hilbert transform. The damping curve estimated in Fig. 3.9(d) fluctuates around
the correct value which is again caused by the derivative in Eq. (3.35) combined with
not so good smoothing of the IF.
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Despite the fact that some of the problems of the HT have been removed by the
normalised Hilbert transform. In particular, a negative frequency cannot be longer
estimated, the Hilbert transform must still be used. Therefore, general numerical
problems associated with the Hilbert transform remain and can influence the obtained
results. The method that uses the normalised data as well, but bypasses the Hilbert
transform completely is called the direct quadrature (DQ).

3.3.4 Direct quadrature
Having decomposed the signal into the AM and FM parts using the normalisation scheme
in section 3.3.3, the FM part can be used for the direct computation of the quadrature.
This approach avoids the HT completely and should provide an exact estimate of the
IF [104].

Knowing that the FM signal obtained by the normalisation scheme is sinusoidal
(κ(t) = sin (θ(t))), the IF can be determined using

ω(t) = dθ(t)
dt = d

dt [arccos(κ(t))] . (3.37)

Since Eq. (3.37) involves the evaluation of the inverse cosine, the numerical stability is
not very good near the local extrema. Therefore, the outliers in the phase are sometimes
fixed using a median filter [86] or a slightly different formulation can be used. Replacing
the inverse cosine by the inverse tangent as per goniometric formulas [104] leads to

ω(t) = d
dt


arctan


 κ(t)√

1 − κ2(t)




 . (3.38)

Equation (3.38) implies that κ(t) has to be perfectly normalised otherwise the quadrature
becomes complex. The approach allows the four-quadrant inverse tangent to be used in
order to uniquely determine the specific quadrant of the phase function. This leads to
the correct unwrapping.

Another algorithm to remove the outliers was proposed in [99]. After the normalisation,
Eq. (3.37) is evaluated only for values smaller than 0.9 and points with higher values
are interpolated using a cubic spline. This process avoids the numerical instability in a
proximity of the extrema. This procedure should provide a very good estimate of the IF,
but the interpolation should not be performed over a long interval to avoid undesired
distortion of results.
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The methods based on the normalised data should yield very good results, but their
main limitation is the normalisation process itself - it has to be perfect. If there are values
which are not lower than 1, the estimation of the IF becomes impossible as Eq. (3.37) and
Eq. (3.38) become complex. In general, the DQ appears to be particularly suitable for
situations where high accuracy of the extracted IF and IA is required, such as detection
of special events in the data or characterisation of non-linearities from noise-less data.
Theoretically, the method yields exact estimates of the instantaneous frequency, but the
noise level must be minimal.

The results obtained by the DQ using Eq. (3.38) are shown in Fig. 3.10. It can be
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Figure 3.10 Direct quadrature (DQ) applied to the testing signal: (a) signal and instantaneous
amplitude, (b) instantaneous frequency, (c) backbone, and (d) damping curve

seen that the IA shown in Fig. 3.10(a) is smooth and encloses the signal very closely.
This IA is exactly the same as for the normalised Hilbert transform in Fig. 3.9(a). The IF
in Fig. 3.10(b) does not exhibit any end effects and therefore provides information about
the frequency over the whole time interval. While smoothed using the same low-pass
filter as the Hilbert transform, the result is not so smooth as in Fig. 3.8(b). This is
believed to be caused by the higher amount of intra-wave frequency modulation which
has been estimated using the DQ and had to be smoothed out. The intra-wave frequency
modulation is not noisy as seen in the inset in Fig. 3.10(b) as opposed to Fig. 3.8(b).

The comparison of the estimated and reference backbones in Fig. 3.10(c) shows some
behaviour as in case of the NHT. The smoothed backbone is practically the same as the
numerical reference solution. The damping curves shown in Fig. 3.10(d) is very close to
the reference one and is much smoother than the one estimated by the NHT.
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The DQ is not a standard tool used in non-linear system identification, but it
offers the advantage of estimating the intra-wave frequency modulation very accurately.
Unfortunately, the backbone estimated in the presence of intra-wave frequency modulation
cannot be directly compared with that obtained analytically or numerically - some
examples can also be found in [71, 181, 184]. If the IFM is ignored and smoothed, the
results are very similar to those obtained by the Hilbert transform. This means that
for noiseless signals, the DQ provides more information while allowing to carry out a
well-established analysis.

3.3.5 Energy operators
The energy operators allow the computation of the IF and IA without an integral
transform since they are solely based on differentiation. In practice, they might be of a
limited use because they work properly for linear system only. On the other hand, this
can be seen as an advantage since it allows detection of non-linearity.

A signal c(t) of the form
c(t) = a(t) sin(ωt) (3.39)

is assumed. For such a signal, kth-order operator is defined [49, 229] as

ψp,q,m,l[c(t)] = c(p)(t)c(q)(t) − c(m)(t)c(l)(t), (3.40)

where the pth, qth, mth, and lth derivatives of the signal must satisfy the condition
k = p+ q = m+ l, p ̸= m and q ̸= l. The derivatives in Eq. (3.40) can be obtained either
using numerical differentiation or measured directly.

The discrete form of the operators can be obtained using symmetric differentiation
formulas as

ψp,q,m,l[c(n)] = 1
2[c(n+ p)c(n+ q) + c(n− p)c(n− q)

− (c(n+m)c(n+ l) + c(n−m)c(n− l))].
(3.41)

The IF and IA can be computed using

ω(n) =

√√√√ψp,q,m,l[c(n) − c(n− 1)]
ψp,q,m,l[c(n)] , (3.42)

a(n) =

√√√√ ψp,q,m,l[c(n)]
sin[(m− p)Ω] sin[(m+ p− k)Ω] , (3.43)
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where Ω = ω(n)dt.
Several energy operators are available in literature, such as the 1st order Teager

energy operator (TEO) [104] for k = 1, p = 1, q = 0, m = 0, l = 1, the 2nd order
differential energy operator (DEO) [49] for k = 2, p = 1, q = 1, m = 0, l = 2, and the
4th-order higher energy operator (HEO) [229] for k = 4, p = 4, q = 0, m = 3, l = 1.
When using higher-order operators, more sampling points are included, leading to lower
sensitivity of the results against frequency fluctuations and measured noise, but less
instantaneous results are estimated. For noise-free signal with a high sampling frequency,
all operators should yield the same instantaneous frequency and amplitude.

Unfortunately, the operators are only valid for a linear signal since Eq. (3.39) is
assumed. Therefore, they fail to extract any meaningful values a non-linear signal. It
can be clearly seen in Fig. 3.11 that the estimates using TEO do not correspond to the
correct IF or IA, especially for higher amplitudes of vibration. Although this makes a
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Figure 3.11 Teager energy operator (TEO) applied to the testing signal: (a) signal and
instantaneous amplitude and (b) instantaneous frequency

meaningful interpretation impossible, this feature may be used as a conclusive detector
of non-linearities [71, 104] in the initial step of non-linear system identification. The
results approach the correct amplitude and frequency of the under-lying linear system for
low amplitudes of motion. The behaviour indicates that the energy operators are able to
recover correct characteristics for linear systems. As the numerical derivatives must be
evaluated, the application to the signals polluted by measured noise can be complicated.
In such case, the higher order operators should yield better results because they take
into account a longer period of the signal and therefore they do not depend so strongly
on local behaviour.
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3.3.6 Zero-crossing methods
Several zero-crossing methods can be used to estimate the IF and IA [104, 142, 208] in
a simple and intuitive matter. The basic zero-crossing method from [142] is illustrated
in Fig. 3.12. The IF is determined from the inverse of the period over one complete

ti−2 ti−1 ti ti+1 ti+2

Ti = f(ti)−1

a(ti)
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Figure 3.12 Zero-crossing method for systems with symmetric restoring forces

vibration cycle and is assigned to the crossing time at the centre of this cycle.

ω(ti) = 2π (ti+1 − ti−1)−1 = 2πT−1
i . (3.44)

The IA is found using the first-order polynomial interpolation of the absolute extrema of
the signal. The values of these polynomials are evaluated at the zero-crossing points ti.
Thus, a set of discrete values (ω(ti), a(ti)) is obtained. This set does not characterise
frequency and amplitude locally, but with one cycle accuracy. Despite this fact, the
characteristics are commonly called instantaneous.

A slightly modified version of the ZC method has been recently presented in [207, 208].
In this modification a free decay response is divided into N intervals and the vibration
period is estimated as

Tk = 2(tk,nk
− tk,1)/(nk − 1), (3.45)

where tk,i is the ith zero-crossing point and nk is the number of zero-crossing points
within the kth interval. This method essentially averages the periods, assuming that the
frequency does not change significantly within the interval. The instantaneous amplitude
is found in a similar manner, i.e. absolute extrema of the signal are averaged over short
intervals. Due to the averaging, this version of the zero-crossing method provides even
less instantaneous results than the ZC, but it should be much less sensitive to measured
noise.

The zero-crossing methods are intuitive, straightforward, and easy to implement.
These methods do not capture any amplitude and frequency modulation within the
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vibration cycle. Therefore, they provide a reliable means of estimating the backbones
which correspond well with the backbones predicted using analytical and numerical
approaches [142, 174, 208].

The basic ZC (with no averaging) has been applied to the testing signal and the
results are visualised in Fig. 3.13. While most of the results are very similar to those
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Figure 3.13 Zero-crossing (ZC) applied to the testing signal: (a) signal and instantaneous
amplitude, (b) instantaneous frequency, (c) backbone, and (d) damping curve

obtained by the HT and DQ, no filtering, smoothing or averaging have been required.
The IA in Fig. 3.13(a) is smooth, encloses the signal very well and no end effects occur.
The IF in Fig. 3.13(b) is also very smooth and depicts the decreasing trend very well. The
comparison of the backbones in Fig. 3.13(c) again reveals that the estimated backbone is
practically identical to the numerical reference.

The damping curve shown in Fig. 3.13(d) seems a little more fluctuating than in
the previous methods, but overall, it captures the correct value quite well. However,
it should be noted that in order to obtain this damping curve, a careful evaluation
of the derivative in Eq. (3.35) is crucial. In the previous cases, both IF and IA were
continuous, so straightforward differentiation scheme could be used. In contrast, the IF
and IA obtained by the ZC are not defined in equidistant steps. Therefore, a numerical
differentiation rule that can incorporate an uneven time resolution must be utilised.

The zero-crossing method is able to estimate the trend in the IF, but fails to provide
any information about the intra-wave frequency modulation. This method is very intuitive,
straightforward, easy to implement, and its results can be easily verified. This, and the
fact that no smoothing of intra-wave modulation is needed, makes the results suitable
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for non-parametric identification of backbones of mechanical systems which was also
demonstrated previously in [142, 208].

3.3.7 Generalised zero-crossing method
The generalised zero-crossing (GZC) method was proposed in [104]. The GZC still uses a
few points to estimate the frequency and amplitudes, but provides better local properties
and improves the time resolution to the quarter of the vibration cycle. For every point
of interest the IF ω(t) is evaluated as

ω(t) = 2π
12


 1
T1

+
2∑

j=1

1
T2j

+
4∑

j=1

1
T4j


 , (3.46)

where the meaning of the periods is explained in Fig. 3.14. By a similar principle the IA
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Figure 3.14 Generalised zero-crossing method

can be evaluated [104], i.e. seven different amplitudes are assigned to a point of interest
and the averaged amplitude is computed in a similar way as the IF in Eq. (3.46). The
resulting values are constant over the interval in which the point of interest lies. These
estimates are the mean values of the instantaneous characteristics so they still retain a
physical interpretation.

The generalised zero-crossing method has been applied to the testing scheme and
the results are visualised in Fig. 3.15. The results need to be smoothed to obtain the
conventional backbone and damping curve, but the smoothing does not have to be so
strong as in the previous methods. The IA in Fig. 3.15(a) is constant on the quarter of a
wave, but encloses the signal very well and no end effects occur. The IF in Fig. 3.15(b)
appears to have some indication of intra-wave frequency modulation, but the true IF
cannot be fully obtained due to the limited resolution.
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Figure 3.15 Generalised zero-crossing (GZC) applied to the testing signal: (a) signal and
instantaneous amplitude, (b) instantaneous frequency, (c) backbone, and (d) damping curve

The comparison of the backbones in Fig. 3.15(c) again shows that the results are
practically the same as the numerical reference. The damping curve shown in Fig. 3.15(d)
seems to be quite accurate with a little fluctuation. However, it should be noted that in
order to obtain this damping curve, a careful evaluation of the derivative in Eq. (3.35) is
needed. The IF and IA are defined for all time, but they contain many jumps at the
boundaries of the intervals that must be smoothed (see insets in Fig. 3.15). Otherwise,
the numerical derivative would yield unrealistic results.

The GZC is a compromise between fully instantaneous results that follow the intra-
wave frequency modulation (IFM) closely and zero-crossing methods that estimate several
points. The method is still able to estimate some IFM with the resolution to a quarter of
vibration period. The GZC can be used to verify the results of other methods, because
the obtain IF and IA should be a mean of true characteristics [104]. This method is also
easy to implement and since it uses the zero-crossing points and maxima only, it may be
more robust against measured noise than the HT, NHT and DQ.

3.3.8 Summary of the IA and IF estimation methods
Several methods have been reviewed in this section. It should be, however, noted that
other methods, such as generalised pencil of function method [84], exist, but they are
not of interest here, because they do not bring such appealing features as the presented
methods. The Hilbert transform has been used for the estimation of the IF and IA for
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a long time. However, it can be replaced by other methods that not only provide very
similar results after low-pass smoothing, but also each method has unique properties
which can be utilised for the investigation of vibration signals.

• Hilbert transform (HT) - this method has been used for a long time and provided
good results (usually after additional low-pass smoothing) in many studies. However,
it suffers from a number of numerical and mathematical issues.

• Normalised Hilbert transform (NHT) - due to the normalisation scheme used, the
signal theoretically satisfies all conditions necessary to remove some problems of
the Hilbert transform. However, since the HT must still be used, some numerical
problems can occur.

• Direct quadrature (DQ) - this method theoretically provides absolutely accurate
instantaneous frequency, but it is sensitive to measured noise. Therefore, it is
suitable for applications where noise-free signals can be measured and where the
frequency must be tracked very accurately. It will be shown in the next section
that the DQ can be utilised for characterisation of non-linearities as well.

• Energy operators - this group of methods works correctly on linear time series only.
For non-linear data, it fails to provide any meaningful results. This feature can be
theoretically used for detection of non-linearities.

• Zero-crossing method - Unlike the previous methods, the ZC does not provide
instantaneous estimates of the IF and IA. The values are provided in zero-crossing
points only and do not capture any intra-wave frequency modulation (IFM). The
frequency estimated by this method is a mean of true IF. Due to a complete lack
of IFM, the results do not have to be smoothed for the identification of backbones
and damping curves.

• Generalised zero-crossing method - This method uses a similar principle as the
zero-crossing method, but it estimates the frequency and amplitude with the
resolution of a quarter the vibration period. This estimated frequency is a mean of
IF which, unlike the ZC, captures some information about the intra-wave frequency
modulation. Since this method is easy to implement and noise robust, it can be
used to verify other methods.

A new method, which is a combination of the described methods and which allows
the estimation of the intra-wave frequency modulation (IFM) frequency is described
in the next section. This method can be used for the characterisation of non-linearity
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using Eq. (3.28). It should be also noted that all described methods can estimate
the symmetric restoring forces using Eq. (3.36). A new method for the estimation of
asymmetric restoring forces in proposed in chapter 6.

3.4 A method for the estimation of the intra-wave
frequency modulation

Equation (3.28) can be used to decide whether a structural non-linearity is of a hardening
or softening type. However, in order to do that not only the IF must be identified
accurately, but also the intra-wave frequency modulation (IFM) must be found. Therefore,
it was concluded in [180] that this principle is of little practical value as neither the IF,
nor the IFM can be correctly estimated by the Hilbert transform.

Since the Hilbert transform can be replaced by other methods, in particular by direct
quadrature (DQ), the IF including the IFM part can be estimated properly. In addition,
a method which estimates the IFM frequency fIMF with the accuracy which is required
in Eq. (3.28) for characterisation of non-linear behaviour is proposed hereafter. The
method is suitable for mono-component functions and combines the direct quadrature
and zero-crossing method. The proposed method can be described in the following steps:

1. The IF is separately found using the DQ and ZC methods, yielding fDQ(t) and
fZC(ti), respectively.

2. Because fZC(ti) is estimated in the zero-crossing times ti, a cubic spline is used to
interpolate fZC(ti) to obtain fZC(t).

3. The signal which represents only the IFM is obtained by the subtraction fDQ(t) −
fZC(t). Because the fZC(t) is a mean of IF, the resulting signal should have zero
mean.

4. The ZC is again applied to the new signal in order to obtain the IFM frequency
fIFM(tj), which is again interpolated to fIFM(t).

5. The ratio r(t) = fIFM(t)/fZC(t) is obtained and used for characterisation of non-
linear behaviour based on Eq. (3.28), i.e. there is an odd non-linearity for r = 2
and even non-linearity for r = 1.

It is worth mentioning that the ZC method does not have to be necessary used in 1st
and 4th steps. Other methods could be used too as long as their results are smoothed
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to estimate the IF without any intra-wave modulation. However, when applying the
ZC it is guaranteed by the nature of Eq. (3.44) that the estimated IF is free of any
intra-wave modulation, but still represents the mean of IF. Similarly, the normalised
Hilbert transform could be used instead of the DQ. However, the DQ is preferable because
it theoretically leads to absolutely correct IF, whereas the NHT is still influenced by
numerical issues of the HT.

The DQ and ZC used in the proposed method are non-parametric, thereby requiring
no a priori knowledge of the system. However, in order to characterise non-linearity,
the characteristic ratio must be known beforehand. It was shown [184] that for odd
non-linearities this ratio is equal to 2, whereas for even non-linearities, this ratio is 1.
Therefore, this method can only distinguish between odd and even stiffness non-linearities
and it does not give any indications of their order. This, and the fact that the DQ can
be sensitive to measured noise, limits the practical applicability of the proposed method.
Nonetheless, it can still be used as an additional indicator of a non-linearity type.

In the following the method is applied to two simulated cases, first of which is the
testing signal used through this chapter and another one is a SDOF system with a
quadratic stiffness non-linearity.

3.4.1 Application to a system with cubic hardening stiffness
The same Duffing oscillator which was presented in section 3.3.1 and used as the testing
signal in this chapter is also used to demonstrate the proposed methodology. The IF
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Figure 3.16 Estimation of the intra-wave frequency modulation frequency for the system with
cubic hardening stiffness
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estimated by the DQ (from Fig. 3.10(b)) and ZC (from Fig. 3.13(b)) is again displayed
in Fig. 3.16 together with the IFM frequency fIFM(t) estimated by the proposed method.

It can be clearly seen that fIFM(t) is twice as high as fZC(t) over the most of the time
interval. The values of the IFM are distorted at the end (t ' 25 s) of the time interval
because the intra-wave frequency modulation is very low and therefore significantly
influenced by numerical errors.

The ratio r is also displayed in Fig. 3.16. This ratio is dimensionless, so its display
in the same figure is for convenience only. This ratio is almost entirely equal to 2 over
almost whole time interval which correctly indicates the hardening non-linearity (r = 2
in Eq. (3.28)).

3.4.2 Application to a system with quadratic stiffness
The second system that is used to demonstrate the proposed method is the system with
quadratic stiffness governed by

mẍ(t) + cẋ(t) + kx(t) + knlx
2(t) = 0, (3.47)

where m = 1 kg, c = 0.1 N s−1 m−1, and k = (2π)2 ≈ 39.5 N m−1 and knl = 3 N m−2. The
initial conditions were x(0) = 5 m and ẋ(0) = 0 m s−1, sampling frequency fs = 50 Hz
and the response was simulated for time t = 0 − 30 s.

The obtained signal is asymmetric due to the presence of asymmetric restoring force so
it cannot be studied by the Freevib algorithm. The same system is studied in section 6.4.3
to illustrate a new method for processing of asymmetric signals that is introduced in
chapter 6.

Although the restoring force cannot be correctly estimated by the Hilbert transform,
the IF and IA can still be found. The upper part (x(t) ≥ 0) of the signal with the
estimated IA are shown in Fig. 3.17(a). The Hilbert transform would not be necessary in
the proposed method, but it is included here to provide another example where the HT
estimates the negative frequency. It can be seen that the IA obtained using the HT and
DQ oscillates, i.e. it does not enclose the signal closely. These oscillations are caused by
the asymmetry of the signal. The HT and DQ yield instantaneous characteristics which
are defined for all times. In contract, the IA obtained using the ZC is defined only at
discrete time as emphasized by the markers in Fig. 3.17. The IA estimated by the ZC
does not enclose the signal either, because it is estimated via the interpolation of the
absolute values of minima and maxima (see Fig. 3.12). Regardless of the used method,
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Figure 3.17 The Hilbert transform, direct quadrature and zero-crossing method applied to the
system with quadratic stiffness: (a) signal and instantaneous amplitude and (b) instantaneous
frequency

the IA of the asymmetric signal estimated using any method is not very useful because
it does not enclose the signal closely.

The obtained IF is shown in Fig. 3.17(b). The HT estimated noisy IF despite the
noiseless input signal. Moreover, the end effect is easily observed and also the negative
frequencies were estimated at the end of the signal. The DQ produced smooth and
instantaneous estimate of the IF, whereas the ZC produced smooth, but only discrete IF
values without intra-wave frequency modulation. The IF obtained using the DQ and ZC
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Figure 3.18 Estimation of the intra-wave frequency modulation frequency for the system with
quadratic stiffness
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approaches the linear natural frequency of the system at the end of the time interval,
where the system behaves linearly.

The IF is again displayed in Fig. 3.18 together with the IFM frequency fIFM(t) that
was estimated by the proposed method. It can be seen that fIFM(t) is the same as the
mean value of fZC(t) over the most of the time interval. The ratio r(t) was also estimated
and is displayed in Fig. 3.18 as well. This ratio is almost entirely equal to 1 over almost
whole time interval, which correctly indicates even stiffness non-linearities [184].

3.5 Discussion
The Hilbert-Huang transform introduced in this chapter is a versatile tool which has
attracted a widespread interest in many fields, including structural dynamics where
it has been used for the experimental and operational modal analysis [210, 295, 296],
structural health monitoring [38], and parametric and non-parametric identification of
non-linear systems [25, 72, 182–184, 265]. Despite not having a rigorous mathematical
background, the method has a solid logical justification as evidenced by a number of
successful studies. In addition, physics-based foundations of the EMD were derived
in [118, 138]. Specifically, it was shown how IMFs relate to the slow-flow dynamics of
mechanical systems derived by the complexification-averaging technique (CxA). However,
no connection to non-linear modal analysis has so far been demonstrated in literature.
An attempt to connect the HHT and non-linear modal analysis is made in chapter 4.
The found approximative relation will serve as a theoretical base for non-linear system
identification method proposed in chapter 5.

The basic algorithm of the EMD was discussed in section 3.2 and some of the signal
processing issues reviewed. Then, a considerable focus was on the mode mixing problem
in section 3.2.2 where it was found that the EMD can, depending on the ratio of their
frequencies and amplitude, either (i) correctly separate two subsequent modes, (ii) leave
the signal unchanged or (iii) do something else, possibly even creating spurious IMFs. It
was argued that although the mode mixing does not have to be a significant problem
in the fields where the correct separation of the modes is not important, it is crucial
for non-linear modal analysis in this thesis. Fortunately, some techniques to remove
or significantly reduce the mode mixing exist, one of which, the masking signal (see
section 3.2.3) was found to be appropriate for the applications in structural dynamics.

The thorough comparison of methods for the instantaneous frequency and amplitude
estimation developed in other field was conducted in section 3.3 in order to evaluate their
potential for non-linear system identification. The summary of these methods and their
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features is given in section 3.3.8. It was found that not only all methods lead to very
similar results after low-pass filtering, but also that each method can provide unique
features that can be utilised for non-linear system identification. The combination of
the methods then led to the proposal of a new method for IFM frequency estimation in
section 3.4. The proposed method was applied to two numerical cases which highlighted
its functionality for noise-free signal. Unfortunately, a range of applicability of the
proposed method is quite narrow due to its sensitivity to measured noise and its ability
to distinguish solely between odd and even stiffness non-linearities. Nevertheless, the
method can still be used as an indicator of non-linearity type.

3.6 Conclusion
The Hilbert-Huang transform (HHT) was discussed in this chapter. In particular, the
mode mixing problem of the empirical mode decomposition was described and it was shown
how it can be investigated before applying the EMD. A significant part of the chapter was
devoted to the comparison and evaluation of the methods for instantaneous frequency and
amplitude estimation, namely normalised Hilbert transform, direct quadrature, energy
operators and zero-crossing methods. The comparison led to the conclusion that while
all methods provide equivalent results after low-pass filtering or other smoothing, each
method has unique features that can be used to detect and characterise the non-linearity.
In addition, this evaluation motivated the development of the new method for the
estimation the intra-wave frequency modulation (IFM). The method also provides the
ratio of the fundamental frequency and IFM frequency which is subsequently used to
determine the type of stiffness non-linearity. Although the proposed method can be used
as an additional indicator of the non-linearity type, its practical applicability is very
limited due to its sensitivity to measured noise. The Hilbert-Huang transform is used in
the following chapters for non-linear system identification.





Chapter 4

The relation between non-linear
modes and the Hilbert-Huang
transform

Abstract
In structural dynamics, the assertion that the Hilbert-Huang transform (HHT) relates
to non-linear vibration modes seems to be widely accepted. However, this relation has
never been systematically investigated. The objective of this chapter is therefore to study
this relation by examining the match between IMFs and non-linear modes responses.
The concept of complex non-linear modes (CNMs) is used because, unlike the normal
non-linear modes (NNMs), it can be applied to non-conservative systems. Since it has
been previously shown that the HHT relates to the slow-flow dynamics of the system
derived using a complexification-averaging (CxA) method, the relation between the HHT
and CNMs is also sought through the reduced order model (ROM) of slow-flow dynamics.
It is shown that the relation is supported by a number of similarities between the methods
and it is also highlighted by a range of numerical studies. However, it cannot be concluded
that the CNMs provide a solid theoretical framework for the HHT since the relation is
only approximative.
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4.1 Introduction
The Hilbert-Huang transform (HHT) has been identified as one of the most appealing
methods for time-frequency analysis in section 1.3.2. It does not use a traditional inter-
pretation of the frequency based on the Fourier transform, but utilises the instantaneous
frequency (IF) and amplitude (IA) instead. As such, it can supposedly estimate the
backbones, damping curves or intra-wave frequency modulation (IFM) as described in
chapter 3. Unfortunately, the HHT, especially the EMD, does not have a rigorous math-
ematical background. The physics-based foundation of the HHT was however already
established [118, 138] by showing the correspondence of the IMFs and slow-flow dynamics
derived by the complexification-averaging (CxA).

However, the relation between the HHT and non-linear modes has never been shown.
Yet, a number of studies [155, 168, 181] utilised the HHT for non-linear system identifica-
tion in a normal non-linear mode (NNM) framework. In these studies, it was intuitively
assumed that the IMFs should compose some approximation of the total response of
individual NNMs and therefore the estimated IF and IA correspond to the system’s
backbones. However, the relation of the IMFs and one of the concept of the non-linear
modal analysis has never been investigated in detail.

The objective of this chapter is to investigate if IMFs relate to the response of non-
linear modes of mechanical systems. By doing so, the premise that the HHT leads to the
estimation of correct backbones should be further strengthened. The often used concept
of non-linear normal modes (NNMs) is replaced by complex non-linear modes (CNMs)
to accommodate the potential non-linear dissipative effects in the system. The relation
between the HHT and CNMs is supported by showing the correspondence of intrinsic
mode functions (IMFs) and the reduced order model (ROM) of slow-flow dynamics
derived from CNMs on several MDOF non-linear systems. Unfortunately, it is found
that the relation is only approximative - qualitatively the ROM responses do correspond
to IMFs whereas some quantitative discrepancies can be observed. As a consequence, it
must be concluded that the CNMs cannot be accurately estimated by the HHT.

The chapter is organised as follows: Firstly, the theoretical background of the CNMs,
ROM and CxA is described in section 4.2. This is required in order to present the
argumentation supporting the relation between the HHT and CNMs in section 4.3. Then,
several numerical studies are used to demonstrate this relation in section 4.4. Three
non-linear systems are studied, namely a system with a cubic hardening spring, a system
with a quadratic damping and a cantilever beam with a geometric non-linearity. Free
decay responses are dominantly considered because they allow several vibration modes
to be measured simultaneously, thereby being suitable for the application of the EMD,
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but a few examples of resonant decay response and slow-sweep harmonic excitation are
also given. Section 4.5 then discusses a range of validity of the described relation, its
possible implications and limitations.

4.2 Theoretical background
The Hilbert-Huang transform has been introduced in detail in chapter 3. This section
introduces the background theory of complex non-linear modes (CNMs), reduced order
model (ROM) and complexification-averaging (CxA) that is necessary to discuss the
relation among them.

4.2.1 Complex non-linear modes of mechanical systems
A complex non-linear mode (CNM) of motion is defined in [135] as an oscillation of an
autonomous system with a (potentially) phase difference between its degrees of freedom.
The concept of complex non-linear mode has been chosen instead of widely-used non-
linear modes (NNM) or invariant manifold approach because, by definition, it is more
suitable for a free decay description. In addition, unlike NNMs, it can be applied to
non-conservative systems.

Consider an autonomous general dynamic system governed by

Mẍ(t) + Cẋ(t) + Kx(t) + f(x(t), ẋ(t)) = 0, x(0) = x0, ẋ(0) = ẋ0 (4.1)

where M is a mass matrix, C is a linear damping matrix, K is a linear stiffness matrix,
and x(t) is a vector of generalised coordinates. The operator f(x, ẋ) comprises all non-
linear effects, which depend on the displacement and velocity. In line with the definition
of the complex non-linear mode, the motion is sought in the form

x(t) = qℜ




Nh∑

n=0
ΨΨΨnenλt



 , (4.2)

where q is a modal amplitude, λ is a complex fundamental eigenfrequency, n is the index
of harmonics, and ΨΨΨn is a multi-harmonic complex eigenvector. Unlike in the linear
modal analysis, the complex eigenvector is approximated by a truncated Fourier series,
thereby having Nh components. The complex fundamental eigenfrequency λ relates to
an undamped natural angular frequency ω0 and a damping ratio ζ as

λ = −ζω0 + iω0

√
1 − ζ2. (4.3)
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A set of unknown parameters λ, ΨΨΨ0, ΨΨΨ1, . . . ,ΨΨΨNh can be then regarded as amplitude-
dependent modal properties.

Equation (4.2) is submitted to Eq. (4.1) and subsequent Fourier-Galerkin projection
yields the following non-linear system of algebraic equations [128, 135]

[
(nλ)2M + nλC + K

]
ΨΨΨnq + ⟨f(xp, ẋp), einω0t⟩ = 0, for n = 0, . . . , Nh. (4.4)

For the computation of the generalised Fourier coefficients ⟨f(xp, ẋp), einω0t⟩ of non-linear
effects, a periodic formulation of displacement xp(t) and velocity ẋp(t) are used (instead
of the pseudo-periodic formulation defined by Eq. (4.2)), i.e.

xp(t) = qℜ




Nh∑

n=0
ΨΨΨneinω0t



 , ẋp(t) = qℜ





Nh∑

n=0
inω0ΨΨΨneinω0t



 . (4.5)

Although this periodic formulation is an approximation, it is justified [134, 135] by
realising that the decrease of amplitude due to damping is relatively small within one
period of motion. The periodic definition allows an effective numerical evaluation
(analytical is rarely possible) of the generalised Fourier coefficients ⟨f(xp, ẋp), einω0t⟩.
The same Fourier coefficients are used in a conventional harmonic balance method so
all the approaches developed therein can be used here too, including the alternating
frequency/time-domain (AFT) procedure [29, 54, 134, 135] and condensation of the
problem into the non-linear degrees of freedom [127].

Equation (4.4) cannot be solved directly because the number of unknowns is greater
than the number of equations. Therefore, similarly to the linear modal analysis, normali-
sation conditions must be added. Several normalisation schemes have been proposed,
for instance using the modal amplitude [134, 135] or kinetic energy [127]. However,
the normalisation with respect to the mass matrix [128] is the most beneficial for the
computation of the ROM and is also consistent with the normalisation in the linear
modal analysis. Two normalisation conditions must be enforced

ΨΨΨH
1 MΨΨΨ1 = 1, ℜ{tHΨΨΨ1} = 0, (4.6)

where t is a complex vector. The first condition represents an amplitude constrain while
the second serves as a phase normalisation.

The frequency-domain solution of the non-linear eigenproblem given by Eq. (4.4)
subjected to normalisation conditions given by Eq. (4.6) can be found using a Newton-
Raphson method in conjunction with numerical continuation on modal amplitude such
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that q ∈ (qmin, qmax). The linear modal properties may be used as a suitable starting guess.
The numerical implementation of the complex non-linear modal analysis is described in
more detail in appendix B.

4.2.2 Reduced order model of slow-flow dynamics
Having obtained the amplitude-dependent modal properties, the reduced order model of
slow-flow dynamics can be derived. The slow-flow dynamics relies on the partition of
the dynamics to fast (the frequency of oscillation) and slow dynamics (slowly varying
amplitudes and phases). The ROM of slow-flow dynamics represents the system by
slowly-varying variables and it is restricted to a regime where no modal interaction
occurs.

The ROM can be derived by a modified complexification-averaging (CxA) tech-
nique [128]. The displacement and velocity are firstly transformed using complex variables
as

x(t) = q
ννν(q, ϑ) + ννν(q, ϑ)∗

2 , ẋ(t) = iΩqν
νν(q, ϑ) − ννν(q, ϑ)∗

2 , (4.7)

where the asterisk marks a complex conjugate, the manifold ννν(q, ϑ) is generally equal to

ννν(q, ϑ) =
Nh∑

n=0
ΨΨΨneinϑ, ϑ = ϑ(t) = φ(t) + Θ(t), q = q(t), (4.8)

and the angular frequency Ω is the time derivation of the fast phase φ(t). The angular
frequency relates to the excitation force (the right-hand side of Eq. (4.1)). For an
autonomous system, no excitation is present, so Ω = ω0. For a non-autonomous system,
the right-hand size of Eq. (4.1) may generally be expressed as

F(t) = Fe
eiφe(t) + e−iφe(t)

2 , (4.9)

where F(t) is a vector of excitation forces, Fe is a vector of the amplitudes of excitation
forces and φe(t) is an excitation phase. In this case, Ω = dφe

dt
.

An important aspect of the formulation in Eq. (4.8) is that the total phase ϑ(t)
combines fast φ(t) and slowly Θ(t) varying components. The fast varying phase can be
removed by an averaging process (detailed in [128]), and the amplitude q(t) and slow
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phase Θ(t) can be computed from an averaged system

2Ωq̇ = −2ζω0Ωq − ΨΨΨH
1 Fe sin Θ,

2ΩΘ̇ = ω2
0 − Ω2 − 1

q
ΨΨΨH

1 Fe cos Θ.
(4.10)

This system of non-linear differential equations can be numerically solved, provided
that the initial conditions q0,Θ0 are given. Unfortunately, the initial conditions are not
directly accessible because the initial state of the system is usually described by x0, ẋ0.
To estimate the initial conditions, an optimisation scheme was proposed in [128]

q0,Θ0 = argmin
q,Θ

∥x0 + 1
iΩ ẋ0 − qν(q, ϑ(Θ))∥. (4.11)

Using this optimisation, it is possible to find the closest projection of the initial states
x0, ẋ0 on the manifold of a vibration mode. In case that the initial states do not lie
on the manifold directly, the exact agreement with the original dynamics cannot be
guaranteed. However, it will be shown in section 4.4 that the total response can still be
well approximated even if the initial states are not directly on the manifold.

The system in Eq. (4.10) avoids the evaluation of the numerically expensive non-linear
effects f(x, ẋ) completely and has much lower dimension than the original system in
Eq. (4.1). In addition, Eq. (4.10) can be further reduced for an autonomous system [128]
to

q̇ = −2ζω0q and Θ = Θ0. (4.12)

and under the steady-state conditions (q̇ = Θ̇ = 0) to an algebraic system [127]

0 = −2ζω0Ωq − ΨΨΨH
1 Fe sin Θ, and 0 = ω2

0 − Ω2 − 1
q
ΨΨΨH

1 Fe cos Θ. (4.13)

After solving Eq. (4.10), Eq. (4.12) or Eq. (4.13) for q(t) and Θ(t), the displacement and
the velocity can be evaluated from Eq. (4.7).

Summary of the reduced order model computation

The following steps are required to obtain the ROM of slow-flow dynamics:

1. Compute λ, ΨΨΨ0, ΨΨΨ1, . . . ,ΨΨΨNh from Eq. (4.4) subjected to Eq. (4.6) using a contin-
uation on the modal amplitude for q ∈ [qmin, qmax] (see appendix B).

2. Project initial conditions x0, ẋ0 on the manifold using Eq. (4.11) to obtain q0 and
Θ0.
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3. To find slowly-varying variables q(t) and Θ(t), solve Eq. (4.10) for general excitation,
Eq. (4.12) for an autonomous system or Eq. (4.13) for steady-state excitation.

4. Construct the manifold ννν(q, ϑ) in Eq. (4.8) while considering the type of excitation.

5. Evaluate the displacement and velocity from Eq. (4.7).

4.2.3 Complexification-averaging technique
The complexification-averaging (CxA) is an analytical technique that derives a slow-flow
model of a system by partitioning its response into slow and fast components [118, 137,
138]. Such decomposition is possible when the response is composed by a number of
well-separated dominant fast-frequency (ω1, ω2, . . . , ωN ) components, so the response x(t)
can be expressed as the sum of these components

x(t) = y1(t) + y2(t) + · · · + yN(t). (4.14)

For each component, a new complex variable is introduced

ψm(t) = ẏm(t) + iωym(t) = ϕmeiωmt, m = 1, 2, . . . , N (4.15)

where eiωmt represents the fast component and ϕm is the slow complex component. The
latter can be expressed in the polar coordinates as

ϕm = a(t)eiΘ(t), (4.16)

where a(t) is the amplitude and Θ(t) is the slowly varying phase. By submitting Eq. (4.15)
into the equation of motion (Eq. (4.1)) and applying the method of multiphase averaging,
the fast-frequency components can be removed, and an averaged system governing the
slow-flow dynamics obtained

Φ̇ΦΦ = F(Φ), Φ = [ϕ1, ϕ2, . . . , ϕN ]T. (4.17)

The operator F can become quite cumbersome even for small systems, for example, for a
two-degree-of-freedom system studied in section 4.4.1 the operator, an 8 by 8 matrix, can
be found in [118]. The slowly varying amplitude and phase are then obtained by solving
this averaged system. In some cases, the system can be even solved analytically and this
is often the reason why the CxA is used to study non-linear systems. Unfortunately,
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the application of the method is limited to the small academic systems with simple
polynomial non-linearities.

4.3 The relation between the Hilbert-Huang trans-
form and non-linear modes

It has been shown in [118] that the slow-flow dynamics derived by the CxA relates to the
IMFs. The relation was not proven mathematically, but rather supported by a number
of similarities in the formal definitions of equations governing the CxA and HHT. The
relation was further studied in [138] by deriving approximative mathematical expressions
for the empirical slow-flow and showing the correspondence with the analytical expressions
derived by the CxA.

The reduced order model of slow-flow dynamics can therefore be seen the link between
the HHT and CxA, but also between the HHT and CNMs. The hypothesis of this relation
is supported by the following arguments:

• The representation of the total response is consistent in all three methods. The
HHT and CxA assume that the total response can be expressed as the sum of well
separated mono-components (Eq. (3.10) and Eq. (4.14), respectively). Although
the ROM is only exact in a close proximity of the mode, it has been already
suggested in [128] that by superimposing the responses of different modes (which
are always mono-component functions), the approximation of the total response
can be obtained. Moreover, [200] presented that the concept of invariant manifold
also leads approximately to the total response. Since CNMs trace trajectories on
this manifold, their superposition should also lead to the approximation of the total
response.

• All the methods share a common representation of dynamics. The methods partition
the dynamics into slow and fast components. Although this partition is not a priori
enforced in the HHT, the HHT always leads to it as evidenced by analytic signal
analysis [138]. The slow-fast partition is also a key concept of the CxA and ROM
given by Eq. (4.15) and Eq. (4.8), respectively.

• All three methods represent the signal in the complex domain, and these repre-
sentations are comparable. Each method transfers a real-valued response into the
complex domain. This complexification is carried out by the Hilbert transform (see
Eq. (3.30)) in the Hilbert-Huang transform and by Eq. (4.15) in the CxA. It might
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be argued that the complexification is merely a cosmetic choice, but it was shown
that these two complexifications are closely related [138]. The complexification
used in the ROM given by Eq. (4.7) is essentially the same as the one used in the
CxA. The difference is that the scalar complex variable in the CxA is replaced by
the multi-component complex manifold in the ROM.

• The approximative relation is supported by numerical studies. The relation between
the HHT and CxA was numerically demonstrated in [118, 137, 138] and the
numerical investigation is also carried out in section 4.4 to highlight the relation.

Based on these similarities, it can be hypothesised that the response of the ROM of
slow-flow dynamics derived from CNMs corresponds approximately to the IMFs obtained
by the EMD. By extension, this would mean that there is a relation between the HHT
and the CNMs of mechanical systems. If the hypothesis is proved to be true, the HHT
can be used as a means of non-linear modal analysis, i.e. to extract the CNMs from
experimental data. It is not possible to mathematically prove this hypothesis due to the
empirical and numerical nature of involved methods. Therefore, it is investigated using a
range of numerical examples and parametric studies.

4.4 Numerical investigation of the relation using
simulated data

In order to highlight the relation between the HHT and CNMs, three non-linear systems
are studied - a system with a cubic hardening spring, a system with a quadratic damper,
and a cantilever beam with geometric non-linearity. In each case, the equation of motion
is given and results of the complex non-linear modal analysis briefly presented. Then,
the time series is simulated using the direct time integration, processed by the empirical
mode decomposition and compared with the ROM. The focus is mainly on free decay
responses because they generally contain multiple vibration modes and are therefore
suitable for the application of the EMD.

4.4.1 A system with cubic hardening stiffness
A simple two-degree of freedom system with a cubic hardening stiffness is considered.
A similar system, sometimes with the same parameters, has been studied in many
publications, including [96, 117, 118, 127, 128, 191]. Since it is so often used, it is studied
here in more detail than other systems. The system consists of two masses connected by
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three linear springs as depicted in Fig. 4.1. The non-linear (cubic hardening) stiffness is

m1

k2

x2(t)x1(t)

k12

knl

k1

m2

Figure 4.1 A two-degree-of-freedom system with a cubic hardening stiffness

located between the left mass and the ground and the system is allowed to vibrate only
in the horizontal direction.

This system can be described by Eq. (4.1), in which

M =

m1 0

0 m2


 , K =


k1 + k12 −k12

−k12 k2 + k12


 , f(x, ẋ) =


knlx

3
1

0


 , (4.18)

where the parameters chosen in this study are the same as in [117, 128], i.e. m1 = m2 =
1 kg, k1 = k2 = k12 = 1 N m−1, knl = 0.5 N m−3 and modal damping ratio of 1% is also
introduced.

The computed backbones, normalised mode shapes and a set of frequency response
functions (computed using the harmonic balance method) can be seen in Fig. 4.2. It can

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
0

0.5

1

1.5

2

F

frequency [Hz]

am
pl

itu
de

[m
]

FRFs
mass 1 - backbone
mass 2 - backbone

Figure 4.2 The computed backbones (black) and normalised mode shapes (blue) of the system
with cubic hardening stiffness. The frequency response functions (grey) from both masses were
added to highlight their relation to the non-linear modes.

be seen that both modes are non-linear, exhibiting the hardening behaviour. The relation
between the non-linear modes and FRFs is also seen, i.e. all backbones pass the maximum
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amplitudes of the FRFs. The computed damping (not shown) is not amplitude-depended
and it is equal to the selected modal damping. The small insets in Fig. 4.2 depict the
normalised mode shapes to emphasise the difference between the dynamics for the first
and second mode. At the first mode, where both masses vibrate in phase, the amplitude
of mass 1 is lower than the amplitude of the mass 1 at high amplitudes. Whereas at
the second mode, the response of the first mass becomes dominant at high amplitudes.
These results are consistent with the NNMs presented, for example, in [117, 128].

The backbones will be used in the rest of this section to compute the ROM of slow-flow
dynamics which is then compared with the extracted IMFs. It should be noted that
the ratio of the natural frequencies of the system, f1 = 0.1591 Hz and f2 = 0.2757 Hz, is
equal to 1.73. It is therefore very close to the mode mixing limit set by Eq. (3.17) so it
is possible that some mode mixing may occur.

Three loading cases are considered - a resonant decay response of the first mode,
slow-sweep harmonic excitation response around the first mode, and a number of free
decays for general initial conditions. The first two cases are not so interesting from the
perspective of this study, because the EMD does not have to be used at all. In addition,
it was already shown in [128] that for these two cases, the ROM is exact. They are
included here to show that the performed evaluation is numerically correct.

A free decay computed for general initial conditions is studied more extensively,
because it cannot be directly compared to the ROM so the EMD must be performed.
Firstly, a detailed comparison (including the comparison with the CxA from [118, 138])
is made for the parameters of the nominal system listed above and one case of the
initial conditions. Then, the parameter space is greatly extended and it is studied how
the relation of the HHT and CNMs behaves for a wider range of non-linear stiffness
coefficients, modal damping ratios, and initial conditions.

A resonant decay response

Experimentally, the resonant decay response can be measured using phase resonance
testing (see section 1.3.3), whereas numerically, it can be found by setting the initial
conditions in such a way that the motion starts exactly on the invariant manifold and
stays on the manifold. Hence, it decays as a single-mode response. Here, the first mode,
which is excited for the initial displacement x0 = [1.1192 m, 1.4128 m]T and zero initial
velocity, is considered. These initial conditions have been chosen to allow a potential
comparison with [128].

The computed resonant decay responses of both masses can be seen in Fig. 4.3.
The signals do not consists of several frequency components and they can therefore be
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Figure 4.3 Resonant decay response of the first mode: (a) displacement of mass 1 and (b)
mass 2

considered as the IMFs without using the EMD.
For the same initial conditions, the ROM of slow-flow dynamics was computed using

the CNMs and CxA, and both sets of results are shown in Fig. 4.3 as well. As expected,
the match between the IMFs, ROM and CxA is extremely good. Since the time-domain
results are practically identical, the estimated IF and IA would also correspond very closely
(depending on the IF and IA estimation method selected as discussed in section 3.3).

Figure 4.3 evidences that the HHT relates to the CNMs through the ROM of slow-flow
dynamics in case of the excitation which is very close to a single non-linear mode. More
examples of resonant decay responses for this system, the influence of initial conditions,
and modal damping ratio can be found in [128].

A slow-sweep harmonic response

The response around the first mode to the excitation force given by Eq. (4.9) with
Fe = [N, 0]T , φe(t) = 0.0001t2 and zero initial displacements and velocities is shown
in Fig. 4.4. As the slow-sweep excitation was used, there is minimal influence of the
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Figure 4.4 Comparison of the IMFs and ROM for sweep excitation: (a) mass 1 and (b) mass 2



4.4 Numerical investigation of the relation using simulated data 131

second mode in the response of the first mode. Therefore, this is a trivial case from
the point of view of the presented topic as the EMD does not have to be used, i.e. the
response already corresponds to an IMF. The IMF has the shape that is typical for cubic
hardening stiffness. Unlike for a linear system, the peak is not symmetric due to the
hardening behaviour and sudden decrease in the amplitude can be observed.

For the same loading conditions, the ROM of slow-flow dynamics was computed and
is shown in Fig. 4.4 as well. It can be seen that the match between the two models is
very good, especially in a close vicinity of the first mode where the ROM is supposed to
be exact. Understandably, the differences are observable at the beginning of the time
interval, because the signal computed by the time-domain integration also includes a
transition zone where both natural frequencies are present at the same time. Likewise,
away from the resonance, the ROM is not exact, because it does not take into account
any influence of the second mode. These results are in line with [128], in which more
examples of sweep responses for this system and the study of influence of the sweep rate
can be found.

A free decay for general initial conditions

This case, in which a free decay response for general initial conditions is considered,
is the most interesting with regards to the presented topic. Free decays can be easily
experimentally obtained from the hammer impact test [63] which excites several modes
over a large frequency range simultaneously. Because the impulse is still finite, only the
first few modes are usually excited. Numerically, similar free decays can be obtained
by the numerical integration of an autonomous system subjected to the general initial
conditions. The difference between the measured and computed free decay is that the
computed one consists of all modes of the structure.

In this section, the initial displacement x0 = [1 m, 0]T and zero velocity are used.
The computed data are shown in Fig. 4.5. It can be seen that both responses consist
of two modes of different frequencies, so the EMD is necessary to separate the modes
from each other. The basic algorithm of the EMD described in section 3.2.1 was used
and the resulting IMFs (there were no spurious IMFs extracted) are shown in Fig. 4.6.
Unlike the original signal, the IMFs are single frequency components. Therefore, they
look very similar to resonant decay responses. Despite the use of the basic algorithm
of the EMD, no numerical problems can be observed, i.e. there are no end effects and
modes are clearly separated.

For the same initial conditions, the ROM of slow-flow dynamics derived from the
CNMs and by the CxA are also shown in Fig. 4.6. Overall, all three responses match
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Figure 4.5 Computed free decay response of the system with cubic hardening stiffness: (a)
mass 1 and (b) mass 2
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Figure 4.6 Comparison of the IMFs and ROM for the system with cubic hardening stiffness:
(a) first mode, mass 1, (b) first mode, mass 2, (c) second mode, mass 1, and (d) second mode,
mass 2

for both masses and both modes. However, there are a few small differences that are
worth noting. Firstly, the first mode response of the ROM is slightly different than the
response of the CxA and the IMFs. The amplitude (envelope) is captured correctly, but
the frequency appears to be slightly lower at the beginning which cumulatively causes
an apparent shift of the ROM response (see the inset in Fig. 4.6(a) and Fig. 4.6(b)).
Secondly, despite the fact that the amplitude of the CxA responses corresponds well to
the maxima of the IMFs, the amplitude appears to fluctuate in between extrema. Similar,
but not so severe, fluctuation of the amplitude can also be seen in [118]. Nevertheless,
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the final CxA response, seen in the insets in Fig. 4.6, appears to match the IMFs very
well, with no shift in the frequency or mismatch in the amplitude.

The Hilbert spectrum of the IMFs together with the ROM frequency is shown
in Fig. 4.7. It can be seen that the ROM indeed predicted the frequency lower than the
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Figure 4.7 The Hilbert spectrum of the two-degree-of-freedom system with the cubic hardening
non-linearity: (a) the first mode and (b) the second mode

frequency which is estimated by the HHT. The differences in frequency are less than 5 %
for both modes.

Based on the presented cases, it appears that some approximative relation may indeed
exist between the HHT and CNMs. However, it is also obvious that the match is not
exact. It appears that the match of the IMFs and ROM is less accurate for the first mode
due to the slightly lower frequency of the ROM response. This is unfortunate, because
the first mode is usually the most non-linear one, thereby being of the highest interest.

So far, only a single set of parameters and very few loading conditions have been
studied to support the assertion that the HHT relates to CNMs. In order to further
highlight the relation and improve the understanding of the difference observed between
the IMFs and ROM, two parametric studies are conducted.

Parametric study 1 - The influence of non-linear stiffness and modal damping
ratio

To further highlight the relation between the HHT and CNMs, a wider range of system
parameters is studied. It would be ideal to vary all parameters of the system and observe
how the relation holds. However, it would be practically impossible to visualise and
evaluate the results in a systematic manner. Therefore, the focus in this section is on
the influence of the modal damping ratio in a range ζ ∈ [0, 3] % and non-linear stiffness
coefficient knl ∈ [0, 2] N m−3. These two parameters have been previously observed
to have a significant influence on the ROM of a single mode of vibration [128]. The
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parameters of the under-lying conservative system and the initial conditions have not been
changed. The parametric study is conducted in an automatic manner so the performance
of the EMD is not explicitly verified for each case. However, the correspondence of the
ROM and IMFs is evaluated in such a way that possible end effects will not influence the
results.

In order to evaluate the correspondence of the ROM and IMFs, the following matching
factor has been used

C(k)
m =

∣∣∣∣∣

∣∣∣∣∣
(
c(k)

m

)2 −
(
x(k)

m

)2
∣∣∣∣∣

∣∣∣∣∣, (4.19)

where c(k)
m and x(k)

m are the IMF and the response of the ROM of the k-th mass and m-th
vibration mode, respectively. The factor C(k)

m is equal to zero if there is no difference
between the IMFs and ROM and increases with the increasing mismatch. It would be
also zero if c(k)

m and x(k)
m were the same, but out of phase signals (which has not happened

in either of the parametric studies presented herein). However, it should be noted that if
the only difference between the c(k)

m and x(k)
m is a phase angle, they can be considered as

identical with regards to the HHT, because their IF and IA would be the same. The
reason for this is the definition of the instantaneous frequency, which is a derivative
of phase (see, for example, Eq. (3.32)) so the constant off-set is not important. The
Eq. (4.19) takes into account the whole response so it captures the information about
the amplitude and frequency at the same time.

It should be mentioned that it would be probably better to use a factor which is
normalised in such a way that the worst possible case is equal to 1. In that case, it would
be easier to interpret the relative errors for different parameters. Unfortunately, it is
impossible to find a sensible normalisation which could be used in both parametric studies
for all investigated cases. In order to make up for this deficit of the performance factor,
the direct comparisons of the ROM and IMFs are included in the results. Therefore, it is
possible to see how the size of the factor relate to the amount of correspondence between
the IMFs and ROM.

Comparing whole responses would not be practical, due to significant changes in the
frequency and decay rate caused by the different stiffness and damping. Moreover, the
end effects of the EMD could influence the resulting factor too. Therefore, in order to
perform a meaningful comparison, first two periods of the response were removed and
the next five periods were used for the computation of C(k)

m .
In total, 77 systems for different values of non-linear stiffness coefficient and damping

ratio have been investigated. In each case, four factors, corresponding to two modes and
two masses, were obtained. To evaluate an overall relation between the HHT and CNMs,
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these four factors were averaged. The results of the first parametric study are shown
in Fig. 4.8. This surface covers a number of systems, ranging from linear to strongly
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Figure 4.8 Parametric study 1: the influence of the non-linear stiffness and modal damping
ratio on the relation between the HHT and CNMs visualised using the quality factor from
Eq. (4.19). The insets contain the comparison between the intrinsic mode functions (blue)
obtained by the empirical mode decomposition and the reduced order model (black) computed
from the complex non-linear modes.

non-linear (knl ∈ [0, 2] N m−3) with no to strong modal damping (ζ ∈ [0, 3] %). The
insets contain the direct comparison of the IMFs and ROM of the first mode and first
mass (similarly to Fig. 4.6(a)) and make up for the missing normalisation in Eq. (4.19).
This comparison in the insets is made for the five periods that have been used to evaluate
the matching factor. It should be noted that the insets represent the worst observed
cases since the match for the second mode is usually much better (similarly to Fig. 4.6).

It is clear from Fig. 4.8 that for linear systems the match between the IMFs and ROM
is perfect and independent of the damping. On the other hand, for non-linear systems,
the factor is not equal to zero and the damping, albeit linear, also influences its value. A
trend can be observed - the factor increases with the increasing stiffness and decreasing
damping. This means that the overall correspondence between the HHT and CNMs is
not so good for lightly damped, strongly non-linear systems. The insets in Fig. 4.8 show
that in a majority of cases, the discrepancies between the HHT and CNMs originate in
the difference between the frequencies, whereas the amplitudes match reasonably well.
This is not true for the largest values of non-linear stiffness and lowest damping. In that
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case, even the amplitudes do not match very well as visualised for knl = 2 N m−3 and
ζ = 0 % (the upper right inset in Fig. 4.8).

The blue square in Fig. 4.8 at knl = 0.5 N m−3 and ζ = 1 % indicates the system
which was investigated in detail in Fig. 4.6. Similar conclusions as for this system can be
made for a large number of systems investigated in this parametric study too. Mainly,
the frequency obtained by the ROM seems to be slightly lower at the beginning of the
time interval, which then causes the shift of the ROM response. The CxA response has
not been shown in this parametric study, but similarly to Fig. 4.6 the CxA produces
very good approximation of the IMFs. Unlike the ROM, the CxA is able to describe the
frequency more accurately, but the fluctuating amplitude is obtained. It should be also
noted that the correspondence for the first mode and the first mass is not so good as
for other IMFs (again, similarly to Fig. 4.6). Therefore, the responses in the insets in
Fig. 4.8 represent one of the worst scenarios.

The ROM can fail to predict the phase of the signal correctly if the optimisation in
Eq. (4.11) fails. The unique solution of such optimisation is not guaranteed in a general
case so it is possible that some shift of the ROM can be caused by inappropriate initial
conditions for the solutions of Eq. (4.10). These shifts are visible in the considered time
domain signals but since they are almost constant, they have a little impact on the
estimated frequency and amplitude, especially toward the end of the signal.

To summarise the first parametric study, it can be stated that the relation between
the HHT and CNMs approximately holds for a wide range of damping and non-linear
stiffness parameters. The relation is not exact - despite the fact that the IMFs and ROM
exhibit always the same qualitative features, the quantitative error may be significant
in some cases. However, with regards to strong non-linearities considered and that fact
that a widely-studied configuration of the system shows satisfactory results, it can be
concluded that the assertion of the approximative relation between the HHT and CNMs
is justified.

Parametric study 2 - The influence of initial conditions

The free decay response of a system is significantly influenced by not only the system
parameters, but also by the initial conditions. For this reason, the influence of the initial
displacements on the relation between the HHT and CNMs is investigated in a range
x1(0) ∈ [0, 1.5] m and x2(0) ∈ [0, 1.5] m. The other parameters of the system were the
same as in the original configuration and the initial velocity was set to zero. The analysis
has been conducted in the same manner to the previous parametric study, i.e. the time
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response was calculated, the EMD applied and compared to the ROM by means of the
matching factor from Eq. (4.19).

Because both initial conditions varied, it was not always possible to decompose the
response into two IMFs for each mass. Sometimes, only a resonant decay response is
excited whereas in some cases, the contribution of one of the modes is so weak that the
EMD cannot extract both modes property. Therefore, for the evaluation using Eq. (4.19),
only the first mode from the first mass is considered, i.e. only the factor C(1)

1 is determined.
Furthermore, before attempting the EMD, it was verified whether it can obtain the
proper IMFs. This was achieved by applying the process described in section 3.2.2. The
FFT was applied, the fundamental frequency and corresponding amplitude of both modes
investigated, and the criteria given by Eqs. (3.17)-(3.19) evaluated. When it was found
that the EMD can separate the modes clearly (region (1) in Fig. 3.5), the ROM of the
first mass was compared with the last IMF, which corresponds to the first mode. On the
other hand, when it was determined that the EMD cannot separate the modes (region (3)
in Fig. 3.5), the response of the system, which is very close to a resonant decay response,
was directly compared with the ROM of the first mode. The cases where the EMD
cannot clearly separate the modes, but changes the original signal (region (2) in Fig. 3.5),
were not considered.

In total, 10200 systems for different values of the initial displacements have been
investigated. The parametric study yielded the surface shown in Fig. 4.9 which covers the
area around the first mode. Three well separated regions can be recognised, specifically,
in region (1) the EMD returns 2 correct modes, in region (2) the EMD changes the
signal, but cannot give correct modes, and in region (3) the EMD cannot decompose
the signal at all without using the masking signal, EEMD or CEEMAN as discussed in
section 3.2. The theoretical lines corresponding to the criteria from Eqs. (3.17)-(3.19)
are also shown. In addition, the dashed line, passing roughly through the center of the
graph in region (3), indicates the initial conditions which lead to the excitation of a
resonant decay response of the first mode only. The shown factor C(1)

1 is not normalised,
so the insets in Fig. 4.9 contains the direct comparison of the ROM with either the IMFs
(region (1)) or the response of the system (in regions (2) and (3)).

In region (1), the factor monotonically increases with increasing initial conditions,
indicating that the match between the IMFs and ROM is not so good for high initial
displacements. This is in line with the previous observation, since the increase of initial
conditions essentially leads to stronger non-linear behaviour for higher amplitude at
the beginning of the signal. It therefore indicates that the relation of the HHT and
CNMs is less accurate for strong non-linearity. Most of the discrepancies between the
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Figure 4.9 Parametric study 2: the influence of the initial displacement on the relation between
the HHT and CNMs visualised using the quality factor from Eq. (4.19). The thick black lines
represent the criteria for the frequency resolution of the EMD developed in section 3.2.2 and
divide the graph into three regions: (1) the EMD separated the vibration modes, (2) the EMD
was not applied since its effect to the signal is uncertain, and (3) the EMD cannot separate
the modes so the simulated signals were directly compared to the ROM computed from the
complex non-linear modes.

IMFs and ROM originate in the frequency, whereas the amplitude appears to match
well. This can be nicely observed in the insets in Fig. 4.9 for x0 = [0.4, 1.5]m (upper
left) and x0 = [1.5, 0.6]m (bottom right). In both cases, the amplitude match very well
while the frequency causes an apparent shift of the ROM response. As expected, the
factor approaches zero for very low initial conditions. This is due to the fact, that for
such a low initial displacement, the system basically behaves as a linear one. The blue
square in Fig. 4.9 marks the configuration of the system studied previously in Fig. 4.6.
Similar conclusions can be drawn for a number of systems in this parametric study
too. It can be again argued that the insets represent the worst possible cases of the
correspondence between the IMFs and ROM. This means that the relation between the
HHT and CNMs appears satisfactory for a wide range of initial conditions, provided that
the EMD has extracted correct structural modes. However, the relation is not exact, but
rather approximative, due to the quantitative errors that exist between the IMFs and
ROM responses.
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In region (3), in which the EMD neither separates the modes, nor changes the original
signal, the first observation is that for the low initial displacements (< 0.5 m), the match
of the response of the system and the ROM is very good, despite the fact that no EMD
was needed. For higher initial conditions, the match is extremely good when the system
is released with the initial conditions corresponding to the first mode (dashed line in
Fig. 4.9), or in a close proximity of these conditions. The example of an exact match for
the initial conditions that are indicated by the blue dot in Fig. 4.9 was previously given
in Fig. 4.3. The region (3) suggests that even if the initial conditions are not adjusted
perfectly for resonant decay measurements in an experimental setting, it may still be
possible to capture a resonant decay response of a considered mode exactly. However,
it must be noted that for the higher initial conditions, the ROM ceases to exist due
to modal interactions [128] so the comparison with the HHT is no longer possible. In
the rest of region (3), the factor C(1)

1 increases with the distance from the resonant
decay response. This is in line with the under-lying assumption that the accuracy of
the relation between the HHT and CNMs is violated when the IMF is not extracted or
measured appropriately as well as the fact the ROM can capture only non-linear modal
responses accurately. Most of the discrepancies seen between the HHT and ROM are
caused by mismatch in the frequency, whereas the total amplitude seems to be captured
correctly. For example, the insets in Fig. 4.9 for x0 = [1.5, 1.5]m (upper right corner) and
x0 = [1.5, 1.1]m (under the legend) show that the overall amplitude is correctly captured,
whereas the frequency seems to have a significant modulated component that causes
the mismatch of the responses. Based on these findings, it can be concluded that the
response of the first mode can still be approximated by the ROM of slow-flow dynamics,
even if it has not been measured with the exact initial conditions of a considered mode.

In region (2), no factor has been evaluated, because the EMD may lead to spurious
IMFs and directly measured responses are far from the resonant decay response. It can
be seen in the insets for x0 = [0.4, 1.4]m (right) and x0 = [1.4, 0.8]m (above) that the
time domain signal is composed of two modes, but these cannot be separated by the
EMD due to a lack of local extrema. When showing the ROM in the same inserts, it is
revealed that the qualitative difference between two signals is quite significant, thereby
rendering any comparison meaningless.

To summarise the second parametric study that explored the influence of the initial
conditions on the relation between the HHT and CNMs. Provided that the EMD has
led to the correct structural modes, they match with the ROM quantitatively very well.
However, for general initial conditions, some quantitative differences exist which renders
the relation between the HHT and CNMs approximative. On the other hand, in the
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case that the initial conditions are such that a specific mode is excited, the response of
the system corresponds to the ROM accurately. In the region where the EMD does not
produce correct modes, the HHT cannot be related to the CNMs at all. It should be
noted that it does not mean that the practical application of the EMD is significantly
limited. As described in section 3.2, a number of methods can be used to resolve a mode
mixing problem, usually extending the feasibility of the EMD to all practical cases.

4.4.2 A system with quadratic damping
A simple two-degree of freedom system with non-linear quadratic damping is considered
in this section. The system has the same spatial layout as the system in Fig. 4.1, but the
cubic spring has been replaced by a non-linear dashpot. Such system can be therefore
described by Eq. (4.1) with mass and stiffness matrix given by Eq. (4.18), but the
non-linear restoring force now reads

f(x, ẋ) =

cnlẋ1|ẋ1|

0


 , (4.20)

where cnl is the coefficient of the quadratic damping. The parameters of the system chosen
in this study were m1 = m2 = 1 kg, k1 = 0.1 N m−1, k2 = k12 = 1 N m−1, cnl = 0.5 N s m−1

and linear modal damping of 1 % was introduced as well. Due to the presence of the
non-linear damping, this case cannot be studied by the classical definition of the NNMs.

The computed backbones, damping curves, normalised mode shapes and a set of
frequency response functions can be seen in Fig. 4.10. Despite the fact that no stiffness
non-linearity has been added to the system, the backbones lean slightly to the left. This
amplitude-dependent nature of the resonance frequency due to the quadratic damping
has also been observed in [82]. Unlike in Fig. 4.2, the backbones do not pass through the
peak of the FRFs exactly. The validity of the FRFs and backbones have been verified
by convergence studies for different number of harmonics, but the results remained
unchanged. The difference between the peaks of FRFs and backbones is less than 8 %
in all cases and it is most likely caused by the used periodic formulation in Eq. (4.4).
This formulation assumes that the decrease in the amplitude due to damping is relatively
small. However, it will be seen in this section that this assumption is not well satisfied
for this system, thereby probably causing a slight mismatch between the FRFs and the
backbones.

Unlike in the previous system with cubic hardening non-linearity, the damping curves
are strongly dependent on the amplitude as seen in Fig. 4.10(b). The damping increases
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Figure 4.10 The system with quadratic damping: (a) backbones, normalised mode shapes
and frequency response functions, and (b) the modal damping

non-proportionally with the increasing amplitude, which is in line with [82] in which
a similar linearity plot of a SDOF with quadratic damping was presented. The non-
linear behaviour of the frequency and damping can be also observed from the FRFs in
Fig. 4.10(a). The FRFs are flat due to damping just like the FRFs in Fig. 2.4(e) for a
SDOF with the same non-linearity, and their peaks are slightly shifted to the left. As can
be seen in the insets in Fig. 4.2, the non-linear mode shapes exhibit the same behaviour
as for the previous system, i.e. at the first mode, the motion of mass 1 becomes prominent
at high amplitudes, whereas at the second mode, mass 2 has larger displacements.

The results of non-linear modal analysis will be used to compute the ROM that is
compared to either the resonant decay response, sweep response or estimated IMFs.

A resonant decay response

As for the system with the cubic hardening spring, the resonant decay response has been
obtained by setting the initial conditions which correspond directly to the first mode,
i.e. x0 = [1, 0.6466]T and zero velocity. The resonant decay responses of both masses are
displayed in Fig. 4.11. It can be seen that although computed for the MDOF system, the
responses again consist of a single mode of vibration. Therefore, they do not require the
EMD to be used and can be directly considered as the IMFs. Compared with the cubic
system in Fig. 4.3 the effect of damping is clearly seen. The amplitude is reduced by
50 % in the first vibration period, but then the rate of amplitude decrease is much lower.

The ROM has been computed for the same initial conditions. Despite the rapid
decrease of the amplitude at the beginning of the signal, which seems to violate the
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Figure 4.11 Resonant decay response of the first mode: (a) mass 1 and (b) mass 2

assumption of the periodic formulation in Eq. (4.4), the ROM matches the resonant decay
responses exactly for both masses of the system. This match once again demonstrates
that the ROM is able to capture the behaviour of a non-linear system exactly in a close
proximity of the resonance.

A slow-sweep harmonic response

The response around the first mode to the excitation force given by Eq. (4.9) with
Fe = [0.1, 0]T, φe(t) = 0.0002t2 and zero initial displacements and velocities is shown
in Fig. 4.12. Due to the slow-sweep excitation used, the response has a single-mode
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Figure 4.12 Comparison of the IMFs and ROM for sweep excitation: (a) mass 1, and (b)
mass 2

characters with no influence of the second mode. Therefore, the EMD does not have to
be used and the response can be considered as an IMF. The response has a very different
shape than for the cubic hardening non-linearity in Fig. 4.4. There is no sudden decrease
in the amplitude due to the stiffness, but rather a gradual transition over the resonance.

For the same loading conditions, the ROM of slow-flow dynamics is shown in Fig. 4.12
as well. It can be seen that the match is very good, especially in a close proximity of the



4.4 Numerical investigation of the relation using simulated data 143

resonance crossing. Again, some differences occur at the beginning and the end of the
signal, but this was expected because the ROM is not valid when there is a contribution
of multiple modes in the response.

A free decay for general initial conditions

The free decays shown in Fig. 4.13 were computed for the initial displacement x0 = [1, 0]T

and zero initial velocities. It can be seen that both responses consist of both modes.
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Figure 4.13 Computed free decay response of the system with quadratic damping: (a) mass 1
and (b) mass 2

The overall character of the response is significantly different compared to Fig. 4.13 for
the system with cubic hardening stiffness. The presence of strong damping effects is
prominent at the beginning of the signal where a dramatic decrease in the amplitude
can be clearly seen. Despite the fact that mass 1 was released from 1 m, its amplitude
was less than 0.4 m in the second period of vibration. The damping is much stronger at
the beginning, but becomes weaker toward the end of the signal as can be seen from the
gradual decay rate after first 20 s.

Because the signals consist of both vibration modes, they must be decomposed into
the IMFs by the EMD. The IMFs are shown in Fig. 4.14. Unlike the original signal, the
IMFs seemingly look as responses of a SDOF system or resonant decay responses. There
are several numerical imperfections which originated in the EMD that can be observed
in the IMFs. Most importantly, the end-effects at the beginning of the signal can be seen
in Fig. 4.14(c). There is no physical reason for a short increase in the amplitude at the
beginning of the signal, so this is regarded as the unwanted end-effect. In addition, the
correct initial value of 1 m is not obtained by summarising the amplitudes of the IMFs
corresponding to mass 1 (Fig. 4.14(a) and Fig. 4.14(c)). The total amplitude would be
approximately 20 % lower that the original one.
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Figure 4.14 Comparison of the IMFs and ROM for the system with quadratic damping: (a)
first mode, mass 1, (b) first mode, mass 2, (c) second mode, mass 1, and (d) second mode,
mass 2

For the same initial conditions, the ROM has been computed and the results are
shown in Fig. 4.14 as well. As can be seen, the match of the ROM and IMFs is very good,
apart from the beginning, for the second mode (Fig. 4.14(c) and Fig. 4.14(d)) where
both amplitude and frequency match to each other. On the other hand, the match of
amplitudes is not so good for the first mode (Fig. 4.14(a) and Fig. 4.14(b)) where the
amplitude of the IMFs seems to be decreasing more rapidly at the beginning of the time
interval. This is probably caused by the numerical problems in the EMD which has not
been able to recover the beginning of the original signal correctly. This is particularly
visible in Fig. 4.14(c) where the end-effects of the EMD caused the amplitude of the first
period to be lower than the second one. In spite of the difference in the amplitude, the
frequency of the ROM matches the IMF very well. Although the match of the IMFs and
ROM is not exact for the first mode, this system again demonstrates that the relation
between the HHT and CNM approximately holds even for non-linear damping.

4.4.3 A cantilever beam with geometric non-linearity
For the last demonstration, a numerical model of a cantilever beam is used. This model
is based on the ECL benchmark, which was originally designed for the comparison of
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non-linear system identification methods [119, 261] and has been intensively used ever
since, e.g. for numerical [190] and experimental demonstration of NNMs [191]. The ECL
benchmark consists of a long cantilever beam with a geometric non-linearity introduced
by a much thinner beam at one end (see chapter 5 for details).

The finite element (FE) model of the beam is graphically represented in Fig. 4.15.
The main beam was discretised by 10 Euler-Bernoulli beam elements and the effect of
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Figure 4.15 A model of the cantilever beam with geometric non-linearity

the thin beam was introduced by the cubic hardening spring at the tip of the main beam.
The geometrical and mechanical properties of the beam were L = 0.7 m, W = 0.014 m,
E = 2.1 × 1011 Pa, ρ = 7800 kg m−3 and the system is allowed to vibration in the vertical
direction.

The system can be modelled based on the FE model using Eq. (4.1), in which the
mass M and stiffness K were assembled by a standard FE procedure using beam elements
(the vector x consists of displacements and rotations). Unlike in the previous cases, the
linear viscous damping was introduced using Rayleigh’s proportional damping model, i.e.
C = αM + βK, with α = 2 and β = 1 × 10−8. The vector of non-linear restoring forces
consists of a single non-zero element corresponding to the displacement DOF of node 10
with the chosen cubic hardening stiffness coefficient knl = 1 × 108 N m−3.

The computed backbones, normalised mode shapes and a set of frequency response
functions can be seen in Fig. 4.16. Three harmonics were again used in both non-linear
modal analysis and harmonic balance method since the convergence analysis indicated
that this number was sufficient. It can be seen that both displayed modes are non-linear,
exhibiting the hardening behaviour. The backbones pass correctly the peaks of the FRFs
and the computed damping (not shown) is not amplitude-dependent. The first and
second mode shapes, which are normalised so that the amplitude of node 10 is equal to 1
or -1, respectively, are depicted in Fig. 4.16(c) and Fig. 4.16(d), respectively. It can be
seen that both mode shape change with the increasing amplitude. However, the change
is not so dramatic as in the simpler systems that were previously studied. These results
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Figure 4.16 The cantilever beam with geometric non-linearity: (a) computed backbones and
frequency response functions of the first mode, (b) computed backbones and frequency response
functions of the second mode, (c) the first mode shape, and (d) the second mode shape

are consistent with the computational studies of the ECL benchmark using NNMs in
[189, 190, 192] and will be also obtained experimentally in chapter 5.4.

Resonant decay response

The computed resonant decay responses can be seen in Fig. 4.17. The initial conditions
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Figure 4.17 Resonant decay response of the first mode: (a) displacement of node 4 and (b)
displacement of node 10
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have been set in such a way that the beam was released from the first bending mode with
the displacement of node 10 equal to x10(0) = 0.005 m. The responses do not consists of
several frequency components and they can therefore be considered as the IMFs without
using the EMD.

For the same initial conditions, the ROM of slow-flow dynamics had been computed
using the CNMs and added to Fig. 4.17. As expected, the match between the IMFs and
ROM response is extremely good. Since the time-domain results are practically identical,
the estimated IF and IA would also correspond very closely.

Figure 4.17 again evidences that the HHT relates to the CNMs through the ROM of
slow-flow dynamics in case of the excitation which is very close to a single non-linear
mode.

Free decay response for general initial conditions

The response of the system was simulated for the initial displacement of the tip of the
beam x10(0) = 0.1 m and the free decays obtained can be seen in Fig. 4.18. The results
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Figure 4.18 Free decay responses of the cantilever beam with geometric non-linearity: (a)
node 4, (b) node 10

are herein presented for the vertical displacements of two nodes - node no. 4, which is
close to the middle of the beam, and node no. 10, which is at the tip of the beam and to
which the non-linear spring is attached. As can be seen, both responses exhibit multiple
modes, thereby preventing direct estimation of the IF and IA.

After the application of the EMD, several IMFs have been obtained. In Fig. 4.19, only
the last two IMFs, which correspond to the first and second mode, are shown. Because
these two IMFs are the last ones that were extracted using the EMD (excluding the final
trend), the quality of them is not so high as in the previous cases. A noisy appearance
is caused by the imperfections in the shifting process. It will be observed in chapter 5
that the EMD performs much better for experimental data. The reason is that when
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Figure 4.19 Comparison of the IMFs and ROM for the cantilever beam with geometric
non-linearity: (a) first mode, node 4, (b) first mode, node 10, (c) second mode, node 4, and (d)
second mode, node 10

computing free decay by setting initial conditions instead of applying a short time impact,
all structural modes are excited and must therefore be separated from the data. On
the other hand, if real impulse excitation is applied, only a first few modes are excited,
allowing the EMD to perform better. Nevertheless, it is clear that the IMFs in Fig. 4.19
are not multi-component signals any more and that they vibrate with different time
scales.

For the same initial conditions, the ROM has been computed and is shown in Fig. 4.19
as well. Although the match of IMFs and ROM is not so good as in the previous cases,
the amplitudes seem to match quite well. The local discrepancies in the amplitudes are
believed to be mainly caused by the imperfections of the EMD. The match in terms of
frequency is acceptable as well. However, some small differences can still be observed,
indicating slightly higher frequency of the IMFs.

To further investigate the difference between the ROM and IMFs in this case, the
IF and IA are estimated using the ZC method. The results are plotted in the Hilbert
spectrum (time-frequency-amplitude maps [102]) in Fig. 4.20. The Hilbert spectrum
of the first mode (Fig. 4.20(a)) shows that the estimated IF is indeed higher than
the frequency predicted by the ROM at the beginning of the signal. The difference is
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Figure 4.20 The Hilbert spectrum of the cantilever beam with geometric non-linearity: (a)
the first mode (b) the second mode

approximately 10 %, which is quite significant. On the other hand, the frequency of the
second mode predicted by the ROM fits the IF very well. It can be seen that the second
mode does not display such a strong non-linear behaviour. The Hilbert spectrum is
not so clear, especially for the lower amplitudes. This is believed to be caused by the
numerical imperfections in the EMD.

A reasonably good match between the response of the ROM and IMFs in Fig. 4.19
and the frequency predicted by the ROM and the estimated IF in Fig. 4.20 further
supports the assertion that the HHT relates to the CNMs at least approximately. Using
this case, it was possible to show that the relation holds even in case when many modes
must be extracted from the data before reaching the modes of interest.

4.5 Discussion
The objective of the chapter was to support the assertion that the relation between the
Hilbert-Huang transform (HHT) and complex non-linear modes (CNMs) exists. The
investigation was conducted in preparation for the use of the HHT and CNMs for non-
linear system identification. It was suggested that this relation should approximately hold
based on the similarities of the methods involved. The link among the methods has been
established by the reduced order model (ROM) of slow-flow dynamics and supported
by a variety of numerical cases and parametric studies in section 4.4. Unfortunately, it
was found that this link holds only approximately, which will limit the capability of the
identification method introduced in chapter 5.

A similar relation was already utilised in a number of papers [155, 164, 181] where the
HHT was used for non-linear system identification in a non-linear normal mode (NNM)
framework. However, no validation that the HHT relates to the NNMs was given. It
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was only intuitively assumed that the IMFs should compose some approximation of the
responses of individual NNMs. Subsequently, the estimated IF and IA should correspond
to the computed backbones. However, the NNMs are not defined for the conservative
system, so their use for non-linear system identification of dissipative systems might be
sometimes complicated, at least ideologically. For these reasons, the use of CNMs appears
to be preferable - not only the relation between the HHT and CNMs has been shown
in this chapter in terms of IMFs and ROM, but the applicability to non-conservative
systems can be guaranteed.

The HHT does not have a rigid mathematical background, but the physics-based
foundation was already established [118, 138]. This was achieved by showing the corre-
spondence of the IMFs and slow-flow dynamics derived by the CxA. This relation has
been used throughout this study to further support the assertion of the HHT-CNM
relation. Unfortunately, the CxA is an analytical method and its applicability is there-
fore limited to small academic systems with simple non-linearities. In contrast, the
CNMs can be numerically computed for large industrial structures with complex non-
linearities [127, 129, 134, 135]. Therefore, effectively replacing the CxA with the CNMs
may extend the applicability to a broader range of non-linear systems with complex
non-linearities. This means that the gap between the academic studies and industrial
application has been slightly reduced.

In full accordance with the fundamental restriction of the ROM, i.e. it does not take
into account more than one mode which automatically excludes any modal interactions,
the response is predicted accurately in the close proximity of a non-linear mode. This
accuracy was shown for the resonant decay responses in [128] and in section 4.2. In
addition, the accuracy was demonstrated for near resonance forcing, provided by a slow
sweep excitation, in [128] and in section 4.2 as well. These cases are trivial from the
point of view of the presented topic, because the EMD, a key and unique concept of the
HHT, does not have to be applied.

In [118, 137, 138], it was concluded that the CxA led to the satisfactory approximation
of the response. A similar degree of approximation has been observed for the ROM
derived by the CNMs in this chapter. The approximation of the total response was already
theorised in [128] where it was stated that by simply superimposing the ROM responses of
several modes, the total response could be obtained. However, this theoretical claim was
not further investigated in [128]. Although this chapter did not target this in particular
detail, it partly addressed this issue too. It has been found that the response of the ROM
approximates the IMFs and since the superposition of the IMFs always gives the total
response (guaranteed by Eq. (3.10)), it follows that also the superposition of the ROM
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responses leads to the total response. Therefore, the theoretical claim from [128] is partly
validated. The total response, however, is not obtained exactly, but only approximately.
This is also in line with [200] which showed that the concept of invariant manifold
also approximatively leads to the total response. Since CNMs trace trajectories on the
manifolds, their superposition should also lead to a good approximation of the total
response.

Strictly speaking, the relation between the HHT and CNMs must be considered as
an approximation. It was shown that even for noise-free decay, the match of the ROM
response and IMFs is not exact. Furthermore, since the HHT is used for the processing
of experimental data, the errors originating in experimental setting imperfections, mea-
sured noise, and data processing uncertainty might further increase the margin of this
approximation. Therefore, it cannot be concluded that the CNMs provides mathematical
framework for the empirical HHT.

The range of validity and applicability of the relation between the HHT and CNMs
is given by the limitations of the methods involved. Several important limitations are
introduced by the HHT, especially by the EMD. The most concerning one is the mode
mixing problem described in section 3.2.2. However, it was shown in section 3.2.3 that
by applying a simple procedure, the frequency splitting capabilities can be investigated
before applying the EMD. This has been demonstrated in the second parametric study
where the region in which the EMD can accidentally extract spurious IMFs was not
identified. The mode mixing may also be overcome by increasing the number of shifting
iterations [103] or by applying some of the advanced EMD schemes [45, 50, 137, 292] as
described in chapter 3.

One more problem associated with the HHT can be troublesome in practical situations.
The EMD yields, by definition, symmetric IMFs so when applied to systems with
asymmetric restoring forces it can lead to physically incorrect conclusions. Moreover,
even if the resonant decay response of a system with asymmetric non-linearity is measured,
the Hilbert transform or any of its alternatives from section 3.3 cannot estimate the forces
correctly (the Freevib algorithm cannot be used in a presence of asymmetric restoring
forces [67]). The analysis of the systems with asymmetric non-linearities, including gaps,
pre-stress effects and piece-wise linear stiffness, has just recently been allowed by the
Hilbert vibration decomposition (HVD) [73]. However, the HVD is difficult to used due
to a number of sophisticated signal processing techniques needed. A new method which
is based on the zero-crossing, is proposed in chapter 6. The developed method as well as
the HVD provide equivalent results which characterise the non-linear behaviour in terms
of congruent functions, also called pseudo-backbones and pseudo-damping in chapter 6.
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Whether or not the congruent functions relate to the CNMs is not clear because the
congruent functions, which are a direct consequence of the selected signal processing [72],
cannot be analytically or numerically computed.

A key limitation given by the ROM derived from the CNMs is its incapability to
deal with internal resonances. Therefore, internal resonances have been excluded from
the consideration in this thesis. It can be, however, stated that the relation of the HHT
and CNMs is not guaranteed in the presence of internal resonances, because the key link
cannot be found. It is quite possible, that this limitation of the ROM will be removed
in the future. The concepts of the CNMs and associated ROM have just recently been
developed and are still establishing their place in the field of non-linear dynamics. It
has been already suggested that the future development of the ROM should address
the cases where modal interactions do exist [128]. When and if such extended ROM is
developed, it is possible that the accuracy and a range of applicability of the argued
relation between the HHT and CNMs will extend too. It can be only hypothesised that
the ROM which includes several non-linear modes would lead to the IMFs exactly.

However, even if the ROM could describe the internal resonances, it is unclear
how the HHT should be used to study them. Due to its definition, the HHT cannot
extract dependencies between the IMFs (the IMFs are practically orthogonal to each
other). Therefore, it is likely that the internal resonances cannot be studied by the
traditional HHT at all. However, an extension of the HHT, called the Holo-Hilbert
spectral analysis (HHSA) method [100], has been recently proposed. Theoretically, it
should allow to recover cross-scale coupling between the IMFs so it may perhaps be
possible to study internal resonances using this method. It has never been applied in
structural dynamics so its practical feasibility is yet to be determined.

In spite of the described limitations, the established relation theoretically means that
the ROM could be directly computed from the measured mass-normalised non-linear
modes of the system. Although this possibility has not been further investigated in
this thesis, it means that the non-linearity would not have to be quantified or even
characterised because it is not explicitly used in the ROM. On the other hand, it would
require to estimate the mass normalised non-linear modes (see Eq. (4.6)). However, the
mass normalisation is not generally possible to achieve from the experimental data as
discussed in chapter 5.

It should be also noted that the relation between the HHT and vibration modes
is exact for linear systems so the HHT can be also used for linear modal analysis as
in [295, 296]. However, since the system is linear, it is better to use other techniques for
linear modal analysis, thereby avoiding potential numerical imperfections of the HHT.
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For non-linear systems, the relation between the HHT and CNMs provides a theoretical
base for non-linear experimental modal analysis proposed in chapter 5. However, the
proposed method would work well for the cases where the relation of the HHT and CNMs
is exact, i.e. for resonant free decays and nearly resonant forcing. The accuracy of the
proposed method will be limited for general initial conditions, because the relation found
in this chapter is only approximative.

4.6 Conclusion
The objective of this chapter has been to demonstrate that the Hilbert-Huang trans-
form (HHT) relates to complex non-linear modes (CNMs) of mechanical systems. This
has been achieved by studying a relation between the intrinsic mode functions (IMFs)
and reduced order model (ROM). It was discussed that the relation is supported by a
number of similarities between the methods and it has been highlighted using a range
of numerical studies. This relation paves the way for using the HHT for non-linear
system identification in a non-linear modal analysis framework. Such non-linear system
identification method would be based on a direct decomposition of measured data, thereby
requiring no a priori detection or characterisation of non-linearity. In addition, it would
be very similar to the well-established experimental modal analysis for linear systems in
terms of excitation and expected results. This non-linear system identification method is
proposed in the next chapter.





Chapter 5

Non-linear system identification
using the Hilbert-Huang transform
and non-linear modes

Abstract
In this chapter an approach to experimental non-linear modal analysis is introduced. It
builds on the approximative relation between the Hilbert-Huang transform (HHT) and
complex non-linear modes (CNMs). Firstly, the non-linearity in the system is detected and
characterised using the HHT and then the quantification is performed via the optimisation
in terms of CNMs. The accuracy of the quantification is limited by the approximative
relation between the HHT and CNMs. The introduced method is applied to several
numerical test cases and demonstrated on the experimental data obtained from the ECL
benchmark. The limitations and applicability of the method are discussed at the end of
the chapter.
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5.1 Introduction
In non-linear system identification, the Hilbert-Huang transform usually serves as a
means of detecting and characterising a structural non-linearity. The quantification of
non-linearity can be performed as well, but it was not entirely clear how to use the
instantaneous frequency (IF) and instantaneous amplitude (IA) to obtain the parameters
of a selected structural model or what the model should be. Several ways of quantifying
non-linear behaviour using the HHT can be found in literature.

Firstly, the quantification can be performed by fitting the analytical expression [181,
184, 185] which has been previously found for the given system using the perturbation
analysis [158]. This is limited to SDOF systems with polynomial non-linearities and
works well under the assumption of weak non-linearities. The analytical solution is not
accurate for stronger non-linear behaviour as already evidenced in section 3.3 where the
analytical solution obtained using Eq. (3.24) did not match to the estimated backbones
of the Duffing oscillator or numerically computed non-linear modes. In order to find the
analytical expression for MDOF systems, it must be assumed that an IMF represents a
single vibrational system which can be represented by an independent SDOF equation of
motion whose analytical solution can be found. This independent equation of motion
does not have a relation to the original equations of motion, which describes a MDOF
system, so it does not enable the quantification of non-linear coefficients in the physical
space.

A similar assumption, i.e. an IMF corresponds to a single mode of vibration, has
also been utilised in [39, 62, 137] where a method, called a time domain non-linear
system identification based on multi-scale dynamic partitions, was proposed. Instead
of quantifying the non-linearities, the dynamics of the system is represented through
reduced order modes, termed intrinsic modal oscillators (IMOs). The IMOs are defined as
the equivalent linear oscillators that can reproduce a given time series over different time
scales and whose forcing terms are derived directly from the experimental measurements.
The forcing terms of the IMOs can also include information about other vibration modes
so it is possible to use IMOs for the computation of internal resonances.

The two previous approaches to the quantification (analytical expression and IMOs)
cannot quantify the physical coefficients of non-linearity for MDOF systems. Instead,
they attempt to create equivalent models that can reproduce the motion for a given time
scale and measured location. The physical coefficients of non-linearities, which can be
found in the original equations of motion, can be identified through the complexification-
averaging (CxA) as presented in [118] by direct fitting of the operator F from Eq. (4.17).
However, as pointed out in section 4.2.3 the operator is cumbersome even for small
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systems so it is not applicable for more complex structures and non-linearities. In
[189, 191], it was shown that the IF and IA estimated from a resonant decay response
by the wavelet transform correspond to the non-linear normal mode. Therefore, it is
theoretically possible to identify the parameters of the system by matching the estimated
IF and IA with the NNMs. A similar idea, which can be used to identify the coefficients
of non-linearities of the original equations of motion, also motivated this chapter.

It should be noted that the contents of this chapter had been developed before the
detailed analysis of the relation between the HHT and CNMs studied in chapter 4. Since
the relation had not been investigated and its approximative nature had been unknown,
the original idea that led to this chapter was to use the Hilbert-Huang transform in
conjunction with the complex non-linear modes to detect, characterise and quantify the
non-linearity. The quantification would be performed by matching the CNMs and the
estimated backbones and damping curves. Unfortunately, since it was later found in
chapter 4 that the complex non-linear modes do not correspond to the IMFs exactly, the
accuracy of the quantification is very pure for transient data. Therefore, the proposed
method can, for general data, only detect and characterise non-linearities. However, it
allows accurate quantification only for resonant decay responses. Despite the fact that
the attempt to develop a general approach to the experimental non-linear modal analysis
has not been successful, the method offers the possibility to quantify the coefficients of
the original equation of motion with potentially damping non-linearities.

This chapter is organised as follows: the proposed non-linear system identification
method using the Hilbert-Huang transform is described. Then, it is applied to some
of the numerical cases used in chapter 4 where it is shown that the accuracy of the
quantified parameters is not high for general free decays, but very high for the resonant
decay responses. In section 5.4 the described method is applied to the experimental
data obtained from the ECL benchmark where three non-linear modes are recovered for
a free decay response. At the end of the chapter, the advantages of limitations of the
suggested approach to experimental non-linear modal analysis using the HHT and CNM
are discussed.

5.2 Towards experimental non-linear modal analysis
The method described in this chapter combines the Hilbert-Huang transform (HHT) and
the complex non-linear modes (CNMs). A structural non-linearity is firstly detected and
characterised using the HHT and subsequently the coefficients of the selected model are
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quantified by the optimisation in terms of the CNMs. The proposed method can be
summarised in the following steps:

1. Measured (or simulated) data of a particular form (section 5.2.1)

2. The Hilbert-Huang transform (chapter 3)

(a) Empirical mode decomposition (section 3.2)

(b) Instantaneous amplitude and frequency estimation (section 3.3)

3. Extraction of non-linear modes (section 5.2.2)

4. Detection (section 5.2.3) and characterisation (section 5.2.4) of non-linearity

5. Model selection (section 5.2.5)

6. Optimisation of the selected model based on the CNMs by a weighted global
criterion method (section 5.2.6)

The outlined method works for the systems with localised or geometrical non-linearities
with symmetric restoring forces. The method works only in presence of no mode
interaction and for well separated modes since it is subjected to the frequency resolution
capabilities of the EMD. It must be emphasised that the accuracy of the quantification is
significantly limited by the relation between the HHT and CNMs described in chapter 4.

5.2.1 Experimental data requirements
A specific and well controlled experimental measurements must be usually used for
dynamic testing based on non-linear modes. Each type of excitation leads to a different
data type. The data types suitable for the presented methods are:

• Resonant decay response - since this response consists of a single mode of vibration,
it is expected that the proposed non-linear system identification method will work
very well for this type of data. The excitation force history or initial conditions do
not have to be explicitly recorded. Experimentally, the resonant decay response
can be obtained using the sophisticated phase resonance testing [59, 190, 191, 291]
described in section 1.3.3. The requirements for the experimental set-up, acquisition
hardware and control software are high.

• Free decay - unlike the resonant decay response, a free decay consists of several
vibration modes. Therefore, the EMD must be used to decompose it into intrinsic
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mode functions before the IF and IA can be estimated. It was shown in chapter 4
that the obtained IMFs correspond only approximately to the response of the
ROM derived from the CNMs. Hence, the IF and IA estimated from the IMFs
only approximately match to the CNMs. Since it was observed that the match is
not exact, it is expected that, although the described method would be able to
detect and characterise non-linear behaviour correctly, it would fail to quantify it
accurately. Experimentally, acquisition of free decays is very quick compared to
any other excitation types. A simple hammer impact excitation [63] can be used
so no sophisticated experimental set-up is needed. On the other hand, it might
be difficult to excite the non-linearity adequately [289] by this excitation. The
excitation force history or initial conditions do not have to be explicitly recorded.

• Slow-sweep harmonic response - in this case, the EMD does not have to be applied
since the slow-sweep excitation produces mono-component responses. However,
some additional data processing is needed to estimate the modal characteristics
property. The Forcevib [68, 71], which takes into account the excitation force, must
be performed. Therefore, the excitation force history must be recorded. This type
of data is not considered in this chapter any further.

It should be noted, that the steady-state excitation, often used for the testing of non-linear
systems using frequency response functions (FRFs), is not suitable. Similarly, the random
excitation does not provide vibration data appropriate for the introduced method.

Regardless of the excitation type, care should be taken to minimise the amount
of measured noise as much as possible. In addition, the sampling frequency must be
relatively high since the HHT is used. It is recommended in [71] to use the sampling
frequency 20 to 80 times higher than the highest frequency of interest.

5.2.2 Non-linear modes extraction
The instantaneous frequency (IF) and amplitude (IA) are extracted by means of the
Hilbert-Huang transform as described in chapter 3. The extraction of vibration charac-
teristics, which approximately relate to complex non-linear modes as shown in chapter 4,
is similar to [10] in which the wavelet transform was used instead of the HHT and to
[295, 296] where the HHT was utilised for the linear modal analysis. To comply with
the CNMs definition, the IF and IA should be as smooth as possible so the ZC method
described in section 3.3.6 is preferable and additional smoothing, either by a conventional
low-pass filter or Whittaker smoother (see appendix C), can be also recommended. It is
also necessary to note that the IF and IA should be known for all sampled time points
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of the original signal. Therefore, if the ZC method, which estimates the IF and IA in
the discrete zero-crossing points, has been used, the IF and IA must be fitted either by
polynomials or splines.

The instantaneous frequency ω(t) = ωk
m(t) = 2πfk

m(t) and amplitude a(t) = ak
m(t) of

the m-th vibrational mode measured in k-th location, are used to compute the natural
frequency using the Freevib algorithm [67, 68] as

ω0(t)2 = ω(t)2 − ä(t)
a(t) + 2ȧ(t)2

a(t)2 + ȧ(t)ω̇(t)
a(t)ω(t) . (5.1)

Often, it is possible to neglect the second-order terms and higher derivatives [71], so the
natural frequency is well approximated by the measured IF, i.e. ω0(t) ≈ ω(t).

The viscous damping rate δ(t) = δk
m(t) of the m-th mode measured in k-th location

can be also evaluated based on the Freevib algorithm as

δ(t) = − ȧ(t)
a(t) − ω̇(t)

2ω(t) . (5.2)

However, it was seen in chapter 3 that the damping estimation in this way can be
sometimes quite inaccurate even for the Duffing oscillator due to the need to evaluate
the derivatives of the amplitude and frequency. Therefore, it can be sometimes better to
assess the linear viscous damping by examining the logarithmic value of the amplitude

dk
m(t) = log(ak

m(t)). (5.3)

It is well known that dk
m(t) is a straight line when the system is linear so the factor dk

m(t)
indicates the deviation from the linear damping.

The fundamental amplitude of the m-th mode shape |φk
m(t)| measured in k-th location

can be determined from the instantaneous amplitude as

|φk
m(t)| = ak

m(t)
ak0

m (t) (5.4)

where k0 is the index of the selected location. The difference between the phase angle of
two modal elements φk

m(t) and φk+1
m (t) can be determined from

∠φk
m(t) = θk

m(t) − θk+1
m (t), (5.5)
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where θ(t) is the instantaneous phase defined by Eq. (3.31). The investigation of the phase
does not always have to be conducted since the non-linear modes are the continuation of
the linear modes so the approximate phases can be taken from the linear modal analysis.

Both absolute values and phase angles of all modal elements relative to the selected
element can be determined and the mode shapes vector φφφm = [φ1

m, φ
2
m, . . . , φ

k
m]T assembled.

It must be emphasised that the estimated modes shapes φφφm are not entirely the same as the
modes shapes defined by Eq. (4.2). Firstly, the difference is that only the fundamental
amplitude of the mode shape is captured in φφφm and secondly, the estimated modes
are normalised with respect to the selected coordinate k0 instead of the mass matrix.
Unfortunately, it is not possible to correctly enforce the mass normalisation according to
Eq. (4.6) because the mass matrix is generally unknown. Even if it was known, not only
the values of the modes shapes in Eq. (4.6) but also the modal amplitude q in Eq. (4.2)
would need to be adjusted to obtain a correct set of mass normalised non-linear modes.

Eventually, for m-th mode and k-th measured location, the frequency ωk
m, damping

δk
m and mode shape φφφm are identified. This set of modal properties is then used for

detection, characterisation and quantification of non-linearities.
It would be also possible to compute the non-linear elastic Fk

el,m = Fel and dissipative
Fk

d,m = Fd restoring forces using the Freevib algorithm as

Fel =




ω2

0a, x(t) ≥ 0
−ω2

0a, x(t) < 0
Fd =





2δaẋ, ẋ(t) ≥ 0
−2δaẋ, ẋ(t) < 0,

(5.6)

respectively, where aẋ is the instantaneous amplitude estimated from the velocity signal.
However, these restoring forces are not directly related to the original restoring force in
the equation of motion. Therefore, they cannot serve for the quantification, although
they can still be used for the detection and characterisation.

5.2.3 Detection
At this stage, the Hilbert-Huang transform has been applied to the measured data
as described in chapter 3 and the non-linear modes extracted. It is assumed that all
processing problems, such as mode mixing and end-effects, have been effectively avoided
or reduced so the extracted non-linear modes are not significantly influenced.

Several simple visual ways to detect non-linearity can be used.

• The basic feature of the linear modal analysis is that the modal properties are
amplitude independent. Therefore, any significant amplitude dependency of the



162 Non-linear system identification using the HHT and non-linear modes

backbones or damping curves is a consequence of non-linearity. The visualisation
of modal properties as a function of the vibration amplitude is sometimes called a
linearity plot [82].

• The presence of the intra-wave modulation frequency, which must be smoothed to
obtained required form of the non-linear modes, is a direct consequence of non-
linearity as discussed in section 3.4. Therefore, it can be used to detect non-linearity
prior to the extraction of the mode shapes.

• Alternatively, the non-linear restoring forces may be examined. If the force charac-
teristics are not linearly dependent on the vibration amplitude, the system is
non-linear.

• When the energy operators [229] described in section 3.3.5 are used, the extracted
IF does not make any sense when the system is non-linear [104]. However, the
application of this detection method can be somewhat complicated, because it is
unclear how different the estimated IF and IA should be.

• The damping estimation using Eq. (5.2) can be often inaccurate as shown in
chapter 3. Therefore, it is often better to assess the damping using the logarithmic
value in Eq. (5.3). The factor dk

m is linearly dependent on the amplitude if the
system is linear whist it deviates from the straight line for systems with non-linear
dissipative effects.

As discussed in section 1.2.1 it may be sometimes beneficial to estimate to what extent
the non-linearity influences the linear behaviour of the structure, i.e. to quantify whether
the non-linearity is weak, moderate or strong. This can be achieved by the described
detection approaches as well, simply by quantifying the difference between the measured
characteristics and their linear counter-pairs. However, this is not further investigated in
this thesis, because, as discussed in section 1.2.1, there is no universal way to quantify
what weak, moderate or strong non-linearity mean. Such classification would need to be
bound to a specific application in which strong non-linearities would, for example, lead
to performance loss, whereas weak non-linearities would only shift the frequency of the
maximum vibration amplitude.

5.2.4 Characterisation
Characterisation of the non-linearity which has been previously detected in the structure
can be performed based on the extracted non-linear modes as well.
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• Similarly to a typical shape of frequency response functions, the estimated backbones
and damping curves have also their typical shapes determined by the type of non-
linearity. The backbones and damping curves can be visually compared to typical
shape or a decision making algorithm, similar to the one presented in chapter 2,
could be designed. The backbones and damping curves for the same types of non-
linearities whose FRFs are shown in Fig. 2.4 are shown in Fig. 5.1. This figure can
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Figure 5.1 Backbones and damping curves for the first mode and mass 1 (gray) and mass
2 (black) of a two-degree-of-freedom system with: (a) no non-linearity, (b) cubic hardening
stiffness, (c) cubic softening stiffness, (d) clearance, (e) quadratic damping, and (f) Coulomb
friction

serve as a reference (sometimes called a footprint library [83]) for characterisation.
The non-linear systems used to produce the figure were:
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(a) the two-degree of freedom system described in section 4.4.1, but without
non-linear stiffness or damping

(b) the two-degree of freedom system with cubic hardening stiffness described in
section 4.4.1

(c) the two-degree of freedom system described in section 4.4.1, but the non-linear
stiffness was negative knl = −0.5 N m−3 leading to the softening behaviour

(d) the two-degree of freedom system described in section 4.4.1, but the cubic
stiffness was replaced by the clearance non-linearity defined by

fnl =





knlx− knlb, x > b

0, |x| < b

knlx+ knlb, x < −b

where the coefficients were chosen as b = 0.5 m and knl = 1 N m−1.

(e) the two-degree of freedom system with the quadratic damping described in
section 4.4.2

(f) the two-degree of freedom system with Coulomb friction presented in ap-
pendix B

• An interesting way to characterise geometrical non-linearities was presented in [184],
where, a unique ratio of fundamental and intra-wave frequency modulation was
established based on the perturbation analysis. Subsequently, this ratio was used
to determine whether the geometrical non-linearity is even or odd. The method
for the estimation of this ratio was proposed in section 3.4 and its application
demonstrated on two simulated examples.

• The shape of elastic or dissipative restoring forces can be used to characterise the
non-linearity as well.

The characterisation of non-linearity is arguably the most difficult step in non-linear
system identification since a wide range of structural non-linearities exists [119]. Despite
the fact that the HHT does not require any a priori information about the type of non-
linearity to obtain the backbones and damping curves, considerable experience is needed
to characterise the non-linear behaviour correctly. Although no additional information
about the structure is theoretically needed, having the engineering knowledge of the
problem can significantly increase the likelihood of characterising the mechanism of non-
linearity correctly. The care should be also taken to correctly determine if the deviation
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of the backbones and damping curves from their linear counter-pairs are statistically
significant. Sometimes, the non-linear appearance may be a consequence of experimental
and processing errors, such as measured noise or end effects.

5.2.5 Model selection
At this stage, it is already known that a structural non-linearity is present in the system
and its type has also been characterised. So far, the used methods could have been
regarded as non-parametric, i.e. no model of the structure has been needed. However, for
the quantification of non-linearity using non-linear modes the model must now be selected.
There are several possible choices. The complexity of the selected model depends on
its required application, the amount of information known about the structure, and the
computational and software resources available for the quantification.

• A single-degree-of-freedom model can be used to describe one specific measured
location and mode of interest. This is the simplest approach, which has been
previous used in conjunction with the HHT in [10, 71]. Since the analytical
expressions for the backbone and damping curve can be found for a SDOF with
polynomial non-linearity, they can be fitted to the estimated backbones and damping
curves and the model can be therefore quantified. However, this process does not
consider the multi-degree of freedom nature of structures and it does not directly
use any non-linear modes. On the other hand, the model obtained in this way
is relatively simple, but should still be able to describe the vibration in the
selected spatial location in a close proximity of the mode of interest. The range
of applicability of this model would be similar to the IMOs used in [39, 62, 137],
i.e. it should accurately represent the dynamics for each location and the mode
of interest. On one hand, this is not very practical since the description of the
structure as a whole is not available and the physical mechanism of non-linearity
is not quantified. On the other hand, all computational studies on a set of such
SDOF models are bound to be quick or even analytical.

• A simple multi-degree-of-freedom model which masses correspond to the measured
locations. Such a model should be already able to capture the multi-mode nature
of the vibration structure including the non-linear structural effects. No analytical
expressions that would describe the backbones and damping curves can be found for
such a model, thereby allowing no direct fitting of measured results. For this type
of model, the quantification described in section 5.2.6 must be used. If successfully
quantified, the model is able to provide much more information about the structure
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than a simple SDOF model. This type of model can still be considered as a
low-fidelity one because it is unlikely that it would be able to describe any local
behaviour. The advantage of this model is that the important information about
the dynamics can be obtained while the computational effort can be kept minimal.
The size of the model is given by a number of measured locations.

• A full finite element (FE) model can be used as a means of high-fidelity modelling
of the investigated structure. Clearly, this model is the most complex, thereby
potentially requiring significant computational effort during the quantification and
in subsequent analyses. Theoretically, the size of the model is only limited by the
computational resources and the required application of the quantified model.

Regardless of the selected model type, the location and mathematical form of non-linearity
must be specified. The presented method does not offer any possibility of locating the
non-linearity within the structure. Therefore, the location must be determined based on
the knowledge of the problem, its geometry and modelling possibilities. The selection of
the mathematical form of non-linearity can be complicated as well. The mathematical
form of non-linearity is often determined by its type. However, any closer indication as
to what mathematical expression(s) should be used to model the characterised type is
not readily available in the proposed method.

5.2.6 Quantification
This part of the proposed method is essentially a model updating technique. It is no
longer non-parametric because the model of the structure with unknown parameters
has to be selected. These parameters are now quantified using the complex non-linear
modes. The non-linear modes can be estimated for all measured locations and (possibly)
several vibration modes. It was found in chapter 4 that the backbones and damping
curves approximately correspond to these modes. Therefore, in order to quantify the
non-linear behaviour, these two sets of results must be matched by adjusting the linear
and non-linear parameters of the selected model. The quantification can be done either
manually by adjusting the parameters of the model until the required match is achieved,
or the following optimisation procedure may be used instead.

If the estimated frequency and damping rate of the m-th mode measured in the
location k are marked ω̂k

m and δ̂k
m, respectively, and the corresponding computed modal

properties as ωk
m and δk

m, then a single objective function can be formulated as

Gk
m(u) = ∥ω̂k

m − ωk
m(u)∥ + ∥δ̂k

m − δk
m(u)∥, (5.7)
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where ∥ · ∥ is the Euclidean norm, i.e. the distance between the two characteristics, and
the vector u contains all structural parameters that are being sought. It may be beneficial
to normalise the parameters in u by their nominal values (if known) in such a way that the
rate of change of the objective function with respect to all parameters is approximately
the same. Although the normalisation is not necessary, it may sometimes improve the
performance of the optimisation algorithms. The suggested objective function cannot
be negative and is (i) equal to zero if the measured and computed non-linear modes are
exactly the same or (ii) positive for non-matching results. The progress and results of
the optimisation can be graphically visualised by comparing the measured and optimised
backbones, damping curves and potentially mode shapes.

Alternatively, the objective function could be assembled based on the reduced order
model (ROM) and the IMFs as

Gk
m(u) = ∥ck

m − xk
m(u)∥ (5.8)

where xk
m(u) is the response of the ROM presented in section 4.2.2 which depends on the

model parameters u, and ck
m is the corresponding IMF obtained by the EMD. A possible

advantage of this objective function would be that it would remove the need to use the
IF and IA methods. However, the computation of the ROM brings additional numerical
difficulties and increases the computational burden. For these reasons, this objective
function has not further been investigated in this thesis. Only the objective function
given by Eq. (5.7) is used in the following.

A set of single objective functions

G(u) =
[
G1

1(u), G1
2(u), . . . , G1

m(u), G2
1(u), . . . , Gk

m(u)
]

(5.9)

can be simultaneously minimised by a multi-objective optimisation method [11]. In the
case of the proposed method, the optimisation is typically subjected to several linear
and non-linear constrains. The range of parameters u ∈ [umin,umax] should be typically
provided based on the physical understanding of the problem. It is important to note that
this is not the multi-objective problem since one vector of unknowns u should optimise all
objective functions to the level of numerical and experimental error. Theoretically, there
should not be any conflict between the objective functions, so the parameters u that
minimise one of the objective functions should also minimise the other individual objective
functions. This is expected to hold quite well for the structural systems. However, it is
still better to consider this problem as a multi-objective optimisation because it allows
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one to take into account several modes and measured locations simultaneously. Therefore,
the model that can adequately describe a full set of measured data can be obtained.

There are many methods for optimisation available in literature [11]. Since the
objective functions are non-linear, it might be difficult to select one method which would
work universally. In order to evaluate the objective function, the CNMs must be computed
by the process described in appendix B which can be relatively time-consuming process.
Therefore, it is ideal to use such optimisation methods which require a low number of
evaluations of the objective function. The global weighted criterion method described in
the following section offers extensive possibilities that can help to establish a good model
of the structure while minimising the number of evaluations of the objective functions.

It should be also noted, that the manual adjustment of the coefficients might sometimes
be better than any optimisation method due to several reasons. Firstly, the optimisation
problem is non-linear so its solution cannot be guaranteed and optimisation procedure
can diverge. Secondly, the shape of the objective function is not generally known so the
optimisation can take a long time to reach or even approach the minimum. Lastly, due
to the nature of the problem, several acceptable local minima can co-exist so the results
must be always carefully assessed even if the optimisation converged.

Weighted global criterion method (WGC)

It is suggested to use the weighted global criterion method (WGC) [11] for the quantifi-
cation of non-linearities. The WGC can optimise the functions in Eq. (5.7) separately as
well as all at once with preferences. The WGC is a scalarisation method that combines all
normalised objective functions to form a single objective function which is then minimised.
The minimisation problem can be written as

min
u

{∑

m

∑

k

[
wk

m

(
Gk

m(u) −Gko
m

)]p
}1/p

, (5.10)

where the weights wk
m reflect the preferences, p governs the physical interpretation of

the optimisation problem, and Gko
m are the minima of the single objective functions (also

called utopia points [11]).
The WGC is very flexible in terms of user preferences and any optimisation engine

can be used (local, global or genetic). If the utopia points Gko
m are the same for each

function (or lie in the range of required accuracy), the multi-objective optimisation does
not have to be performed. Although it is not necessary, a full set of Pareto front points
can be theoretically obtained by systemically varying the weights. Generally, the WGC
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requires fewer objective function evaluations compared to genetic algorithms to obtain
the Pareto front [11]. The global minimum may or may not be found depending on the
used optimisation engine and starting point. In any case, the performance of optimisation
should be carefully monitored by a direct comparison of the backbones and damping
curves, and by assessing the quality of the final parameters. Sometimes, even parameters
corresponding to local minima can be satisfactory.

The proposed quantification of non-linearities using the optimisation can be sum-
marised in the following steps:

1. Minimise single-objective functions in Eq. (5.7) for all m and k to obtain the utopia
points Gko

m and the corresponding parameters uko
m .

2. Check whether uko
m are the same for all objective functions considering predefined

range of accuracy

• if so, all single objective functions have been optimised by uko
m so the parameters

of the system are quantified. This should be verified by the visual comparison
of the estimated non-linear modes with the optimisation results.

• if not, the system might be badly defined, i.e. a wrong type of non-linearity
might have been selected or multi-objective optimisation must be carried out
due to the presence of the trade-off in the objective functions. The trade-
off should not relate to the physical structure, but rather to random errors
originating in experimental set-up, data acquisition and processing.

3. For multi-objective optimisation using the WGC, select p (typically p = 1) and
preferable weights wk

m. If the weights are the same for all modes and measured
location, no preferences are considered

4. Solve Eq. (5.10) and then decide whether the results are plausible. If not, change
the model or optimisation preferences.

The main advantage of the proposed procedure is that if there are no trade-offs, it is
theoretically enough to evaluate one utopia point and check how well other objective
functions satisfy that solution. This can dramatically reduce the number of evaluations
of the objective function(s). The evaluation of the objective function can take a long
time, so the reduction of the evaluation count is desired. The starting point needs to be
selected only once and after the first utopia point has been found, it can be used as the
next starting point. This should also reduce the number of evaluations of the objective
functions.
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In terms of the optimisation engine, it is proposed to use classical optimisation
algorithms, such as a Newton’s iterative method and its derivatives, which generate a
single point at each iteration by deterministic computation and use the sequence of points
to approach an optimal solution. Compared to the heuristic algorithms, for instance
genetic algorithms, which generate a population of points at each iteration and select the
next population by the computation involving random number generators, the classical
algorithms do not usually guarantee that the global minimum is found. If needed, this
disadvantage can be overcome by running the optimisation from a number of different
starting points and evaluating the results. In addition, the classical algorithm cannot
be used for non-smooth problem so the smoothness of the problem must be ensured by
the selection of the suitable range of optimised parameters. The classical algorithms
are preferred over the heuristic approaches to reduce the number of evaluation of the
objective function.

It should be noted that the described optimisation is quite general since it takes
into account multiple modes and multiple locations. However, in chapter 4 it was found
that the accuracy of the obtained parameters will be high only for the resonant decay
responses whereas the free decay response will be subjected to the error caused by the
discrepancies between the HHT, ROM and CNM.

5.3 Application to simulated data
In this section, the described quantification of non-linearity is demonstrated on the
simulated data from the numerical examples used in chapter 4. The two-degree of
freedom system with cubic stiffness and quadratic damping as well as the beam with a
geometric non-linearity are considered.

5.3.1 A system with cubic hardening stiffness
The same system with a cubic hardening spring that was used throughout section 4.4.1
is presented hereafter. Firstly, the resonant decay response is considered for which it is
shown that the quantification is very accurate. Subsequently, the case of the free decay
response is described to show that the quantification struggles due to the error in the
relation between the IMFs and ROM presented in chapter 4.
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Resonant decay response

The simulated resonant decay response, which has been compared to the ROM in Fig. 4.3,
is used. The IF and IA have been estimated by the ZC method from the simulated
signals in Fig. 4.3 and the non-linear modes extracted. The extracted backbones for both
masses can be seen in Fig. 5.2(a) and the logarithm of the amplitude in Fig. 5.2(b).
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Figure 5.2 Vibration characteristics of the system with cubic hardening stiffness estimated
from resonant decay responses: (a) backbones and (b) logarithm of the amplitude

Detection and characterisation can be performed using these characteristics. It can
be seen that the frequency is dependent on the amplitude, whereas damping is not. This
means that the non-linearity is present in the stiffness, but the damping behaves linearly.
The cubic non-linear stiffness could be also characterised by comparing the backbones in
Fig. 5.2(a) to the footprint library in Fig. 5.1.

Since the damping is linear, its numerical values can be estimated by the line fitting
approach [63]. The obtained damping is tabulated in Tab. 5.1. All estimated damping
values are very close to the original ones, with the maximum error being 3 %.

The cubic hardening spring coefficient cannot be quantified directly by fitting the
backbones in Fig. 5.2(a) since, as discussed in section 5.2.5, the analytical expressions for
MDOF system backbones are not readily obtainable. The analytical expression found
for the SDOF system with a cubic stiffness spring in Eq. (3.7) could be used instead to
fit the backbones curves separately. However, such process would obviously lead to a
different non-linear coefficient for each mass. Moreover, it would not consider the MDOF
nature of the system, thereby limiting the applicability of the obtained model(s).

In contrast, the described quantification procedure is able to identify the coefficient
of the cubic spring for the MDOF system. The structural model selected for the
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Method k [N m−1] knl [N m−3] ζ [%]

Original 1 0.5 1
Estimated from mass 1 1.0008 (0.08 %) 0.4864 (−2.72 %) 0.97 (−3 %)
Estimated from mass 2 0.9998 (−0.02 %) 0.5167 (3.34 %) 1.01 (1 %)
WGC 1.0006 (0.06 %) 0.4940 (−1.20 %) -

Table 5.1 The quantification results for a two-degree-of-freedom system with cubic hardening
stiffness from resonant decay responses (values in parentheses indicate the relative error of
estimated parameters)

quantification was the same as in Eq. (4.18). It was assumed that the mass is known and
since the damping has been already identified, the unknown coefficients were k = k1 =
k12 = k2 and knl. Therefore, the vector of unknowns to be quantified is u = [k, knl]T .

The quantification procedure described in section 5.2.6 was conducted and the results
are summarised in Tab. 5.1. Even when the objective functions were optimised separately
(which led to the utopia points) the results were quite accurate. The errors in the linear
stiffness were practically zero, whereas the errors in non-linear stiffness coefficients did not
exceed 3.5 per cent for either mass. For the application of the weighted global criterion
method (WGC) the equal weights for both masses were used which led to the lower error
in the estimated cubic stiffness coefficient while the linear stiffness has not changed. The
equal weight are justified in this case because there is no reason or indication to prefer
one backbone over the other.

This example demonstrates that the quantification is very accurate for the resonant
decay response of the system with an elastic structural non-linearity.

Free decay

The free decay data which were compared to the ROM in Fig. 4.6 are now considered.
The IF and IA, which are also shown in the Hilbert spectrum in Fig. 4.7, were estimated
by the ZC method and the non-linear modes extracted. Since the damping is linear, it is
not shown again. The extracted backbones for both masses and both modes can be seen
in Fig. 5.3. Clearly, the estimated backbones and computed original non-linear modes do
not match. This was also seen in Fig. 4.7 in which the ROM was superposed onto the
Hilbert spectrum and the same discrepancy revealed. This mismatch is not caused by
the error in the estimation of the IF and IA, but it is a consequence of the fundamental
inability of the HHT to recover the IMFs which would match the ROM as shown in
chapter 4. Although it is anticipated that the quantification of non-linearity will yield
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Figure 5.3 Backbones of the two-degree-of-freedom system with cubic hardening stiffness
estimated from free decays of mass 1 (solid lines) and mass 2 (dashed lines): (a) 1st mode and
(b) 2nd mode

incorrect results, it is shown in this example to highlight the amount of the error in the
obtained linear and non-linear parameters.

As for the resonant decay response, the vector of unknowns to be determined was
u = [k, knl]T . The results of the quantification are summarised in Tab. 5.2. It can be

Method k [N m−1] knl [N m−3]

Original 1 0.5
Mass 1 mode 1 1.0010 (0.10 %) 1.8000 (260 %)
Mass 2 mode 1 0.9990 (−0.1 %) 1.9800 (296 %)
Mass 1 mode 2 1.0002 (0.02 %) 1.1980 (139.6 %)
Mass 2 mode 2 1.0000 (0 %) 1.2300 (146.0 %)
WGC 1.0000 (0 %) 1.2125 (142.5 %)

Table 5.2 The quantification results for a two-degree-of-freedom system with cubic hardening
stiffness from a free decay (values in parentheses indicate the relative error of estimated
parameters)

seen that only the linear stiffness has been quantified correctly with practically zero
errors. On the contrary, truly significant errors were obtained for the non-linear stiffness
coefficients. When the objective functions were optimised separately (the utopia points
found), the results for knl also varied significantly. In particular, the difference between
the first and second mode is distinct. The values estimated from the first mode are nearly
three times as high as the original value whereas the cubic stiffness coefficients estimated
from the second mode are much closer to the original values, but still over twice as high.
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This incorrect quantification is in line with chapter 4 where it was observed that the
mismatch of the IMF and ROM for the first mode is typically greater than for higher
modes. Reflecting on this knowledge, the weights in the WGC (in Eq. (5.10)) were chosen
in such a way that the first mode was considered by 20 per cent and the second by 80 per
cent, i.e. w1

1 = w2
1 = 0.1 and w1

2 = w2
2 = 0.4. Setting the weights in this way yielded the

non-linear stiffness coefficient with the error of nearly 150 %. As can be seen in Fig. 5.3
the backbones after the WGC match for the second mode and are closer to the estimate
backbone for the first mode. However, since the estimated backbones do not match the
original ones, the quantification has not been successful.

This again confirms the unfortunate findings of chapter 4 that the IMFs compose only
the approximation of the CNMs. This means that the described quantification cannot be
used with the free decays to identify coefficients of MDOF non-linear systems as originally
intended. The amount of error in the estimated coefficients varies with the changes in
the accuracy of the relation between the IMF and ROM. In spite of the fact that the
quantification fails for free decays, it was shown that it is accurate for resonant decay
responses. Moreover, in contrast to the NNMs, the systems with non-linear damping can
be also correctly quantified (from resonant decay responses) as evidenced in the following
section.

5.3.2 A system with quadratic damping
Only the resonant decay response data which are seen in Fig. 4.11 are considered since
it has been already concluded that there is no point trying to quantify the system
accurately from free decays. The IF and IA have been estimated by the ZC method
and the non-linear modes extracted according to section 5.2.2. The extracted damping
rate for both masses can be seen in Fig. 5.4. It is clear that the damping rate increases
rapidly with the vibration amplitude. This behaviour clearly indicates that the damping,
and by extension the system, is non-linear. Despite of the damping fluctuation at higher
amplitudes the non-linearity can be characterised as quadratic damping by visually
comparing Fig. 5.4 to the footprint library in Fig. 5.1.

For the quantification of the system, the model used in section 4.4.2 was again
utilised. The selected optimisation parameters were the stiffness coefficient k1 of the
linear spring parallel to the non-linear damper described by cnl. The vector of unknowns
was therefore u = [k1, cnl]T . The quantification results are tabulated in Tab. 5.3. The
errors were slightly higher than for the resonant decay response of the system with the
cubic hardening stiffness. The lower errors are obtained for the linear stiffness coefficient
k1 and larger for the non-linear damping. When the optimisation of the single objective
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Figure 5.4 Damping curves of the two-degree-of-freedom system with quadratic damping
estimated from resonant decay responses of the first mode: (a) mass 1 and (b) mass 2

Method k1 [N m−1] cnl [N s m−1]

Original 0.1 0.5
Estimated from mass 1 0.0977 (−2.3 %) 0.5361 (7.22 %)
Estimated from mass 2 0.1015 (1.5 %) 0.5171 (3.42 %)
WGC 0.0991 (−0.9 %) 0.5265 (5.3 %)

Table 5.3 The quantification results for a two-degree-of-freedom system with quadratic damping
from resonant decay responses (values in parentheses indicate the relative error of estimated
parameters)

function is carried out, the results are more accurate for mass 2 than mass 1. It is
possible that the results are influenced by the fluctuation of the damping around the
original values. Since there is no reason to prefer one damping curve over the other, the
weights for the WGC were equal. The obtained results, also in Tab. 5.3, are essentially
a compromise between the mass 1 and 2. The stiffness was quantified with the error
less than 1 % whereas the non-linear damping coefficient with over 5 %. These errors are
not considered to be significant because they do not lead to the significant discrepancies
between quantified and original damping curves in Fig. 5.4.

This example demonstrates that the quantification can be carried out accurately for
a MDOF system with the non-linear damping from the resonant decay response. Similar
quantification cannot be achieved by other quantification approaches, usually due to
their inability to cope with non-conservative systems.
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5.3.3 A cantilever beam with geometric non-linearity
The final simulated example is the beam studied in section 4.4.3. Specifically, the resonant
decay responses compared to the ROM in Fig. 4.17 are considered. The IF and IA have
been again estimated by the ZC method and the non-linear modes extracted. The
backbones are shown in Fig. 5.5 (the damping is linear so it is not considered). Unlike

24 25 26 27 28 29
0

2

4

6

×10−3

frequency - f [Hz]

am
pl

itu
de

-a
[m

]

node 4

node 10

original
estimated
single objective
WGC

Figure 5.5 Backbones of the cantilever beam with geometric non-linearity estimated from
resonant decay responses

in the previous cases, it can be noticed that the estimated backbones are not exactly
the same as the original one. A larger difference can be observed for the node 10. The
discrepancies are caused by the smoothing which had to be applied to estimate the
backbones in order to comply with the definition of the CNMs.

Detection and characterisation could be again carried out using these backbones. For
the quantification, the full FE model used from section 4.4.3 was used and the Young’s
modulus E and non-linear stiffness knl were considered as unknowns. The results of the
quantification are summarised in Tab. 5.4. The non-linear stiffness has been estimated

Method knl [N m−3] E [Pa]

Original 1e8 2.1e11
Estimated from node 4 8.9775e7 (−10.22 %) 2.1005e11 (0.02 %)
Estimated from node 10 8.6547e7 (−13.45 %) 2.0998e11 (−0.01 %)
WGC 8.7987e7 (−12.01 %) 2.0998e11 (−0.01 %)

Table 5.4 The quantification results for the cantilever beam with geometric non-linearity
from resonant decay responses (values in parentheses indicate the relative error of estimated
parameters)
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with higher errors, exceeding 10 %, but Young’s modulus was estimated very accurately.
The errors in the non-linear stiffness seem to originate in the error of the ZC method
for the estimation of the backbones. However, as it can be seen in Fig. 5.4 the error
might seem to be significant, but the visual difference in the re-contracted and original
backbones are not dramatic.

5.4 Application to experimental data
The proposed method is now demonstrated on the experimental data acquired from
the ECL benchmark described in section 2.5.3. The experimental set-up is the same
as in Fig. 2.16. In this section, the linear modal analysis and the demonstration of the
proposed method will be described.

Linear modal analysis
The linear modal analysis was performed on the main beam only, i.e. without the
thin beam attached. The accelerometer on the tip of the beam (in node 10) was used
and the impact hammer excitation was applied to measure the frequency response
functions (FRFs). The FRFs were processed using a least-squares frequency domain
method [172] which estimated natural frequencies and damping ratios summarised in
Tab. 5.5 and corresponding modes shapes depicted in Fig. 5.6. It can be seen that four

Mode no. natural frequency [Hz] damping ratio ζ [%]

Mode 1 23.8 0.33
Mode 2 148.1 0.052
Mode 3 414.4 0.024
Mode 4 806.9 0.015

Table 5.5 Linear natural frequencies and damping ratios of the ECL benchmark without the
thin beam

natural frequencies have been identified in the frequency band 0 − 1000 Hz. The natural
frequencies are not close to each other so no significant mode mixing in the EMD should
occur unless there is a prominent difference in amplitudes as discussed in section 3.2.2.
The damping ratios are relatively weak, being less than 0.1 % for higher modes. This
fact justified the use of the ECL benchmark in the studies about NNMs [189, 191] in
which the damping is not considered but the conservative system can be still adequately
studied.
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The modes shapes shown in Fig. 5.6 are normalised so that the amplitude is equal to
one or minus one in node 10. It can be seen that the estimated mode shapes are well
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Figure 5.6 The (linear) modes shapes of the ECL benchmark without the thin beam

known shapes of a cantilever beam. In the following, the frequency range 0 − 500 Hz will
be studied so only the first three non-linear modes will be considered.

The demonstration of the proposed method
As seen from the application to simulated data, the method leads to accurate results only
when a resonant decay response is used. Unfortunately, due to the problems with the
control of the excitation and the fact that it was not possible to disconnect the shaker
without significantly influencing the dynamics of the system, the acquisition of resonant
decay responses has not been successful.

Therefore, the method is demonstrated on the free decay responses which were
measured by applying a short impact to node 9. All three accelerometers simultaneously
acquired the response in nodes 4,7 and 10. The processing will be shown in detail for the
responses of node 4 and 10 shown in Fig. 5.7. These responses have a multi-component
character so the IF and IA cannot be directly estimated. Therefore, the EMD must be
applied to obtain the IMFs. The acceleration has been measured, but the method is
intended to be used with the displacement signals. Therefore, the responses have been
integrated twice to obtain the required form of data. It should be noted that a trend in
the data usually appears after the integration. This trend can be removed by standard
de-trending algorithms or it can be left in the data, because the EMD will remove it
automatically as well.

The EMD was not initially able to estimate clear modes that would be close to
nominal linear modes due to mode mixing problems. However, by applying the masking
signal approach repeatedly (for each IMFs a different masking signal was used), it was
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Figure 5.7 The measured free decay acceleration of the ECL benchmark: (a) node 4 and (b)
node 10

possible to separate the three intrinsic mode functions shown in Fig. 5.8. These IMFs
correspond to the first three non-linear modes of the structure. It can be seen that the
IMFs look like individual resonant decay responses. Unlike the IMFs of a cantilever
beam in Fig. 4.19 they are not so noisy. This is caused by the fact that not so many
modes were excited in this experiment. In fact, there were only a few spurious IMFs
which did not seem to have any relation to the non-linear modes and which had an order
of magnitude lower amplitude. Most of them seemed to be a consequence of the data
processing so they were not shown here. Although the IMFs appear to be sufficiently
smooth, some end-effects can be seen at the beginning and the end of the signals. These
regions are therefore excluded from the subsequent analyses.

Because a sequence of the masking signals had to be used, the orthogonality of IMFs
might have been violated. Therefore, the orthogonality is verified using the index of
orthogonality proposed in Eq. (3.12). The orthogonality of the three IMFs and the
residuum, which was obtained by subtracting the sum of IMFs from the signal, can be
seen in Fig. 5.9. Since the index of orthogonality is equal to one for the same IMFs
and zero otherwise, the IMFs are orthogonal to each other. They are also orthogonal
to the residuum which implies that the contribution of the individual modes has been
completely estimated in the respective IMFs. The overall index of orthogonality defined
by Eq. (3.13) is only 2.2534 × 10−4. The orthogonality analysis confirms that the IMFs
are correct.

Prior to the IF and IA estimation, it is attempted to detect the non-linearity using
the Teager energy operator (TEO) as described in section 3.3.5. The frequency and
amplitude have been estimated using Eq. (3.42) and Eq. (3.43), respectively, and the
results are shown in Fig. 5.10. It can be seen that the TEO did not produce a smooth
envelope or frequency. However, it did not produce characteristics that do not make
any sense either (it is stated in [104] that if the system is non-linear, the TEO results
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Figure 5.8 Intrinsic mode functions extracted from free decays of the ECL benchmark: (a)
3rd mode, node 4, (b) 3rd mode, node 10, (c) 2nd mode, node 4, (d) 2nd mode, node 4, (e) 1st
mode, node 4, and (f) 1st mode, node 10

should not make any sense, i.e. it should be impossible to interpret the results). This
seems to be a serious problem of this detection approach because it is not clear what can
be considered as the indication of non-linearity and what can be a consequence of the
measured noise. It can be seen in Fig. 5.10(a) and Fig. 5.10(c) that the distortion of the
amplitude increases with the increasing amplitude. This could be interpreted in such a
way that the TEO actually indicates non-linear behaviour at the high amplitude and
rather linear behaviour at the low amplitude. The frequency estimated using the TEO is
spread around the frequencies which will be also estimated by the zero-crossing method.
The estimated frequency can be either interpreted as the consequence of non-linearity or
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Figure 5.9 Index of orthogonally for the first three modes and the residuum related to (a)
node 4 and (b) node 10

the correct, albeit noisy, frequency. Therefore, the Teagor energy operator does not seem
to be a reliable means of detecting the non-linearity in this case.

The final IF and IA have been estimated by the ZC method. Consequently, the
backbones were calculated and the damping assessed by the logarithm of the amplitude.
The results are shown in Fig. 5.11. From the backbones, it is immediately obvious that
the system is non-linear and that it exhibits the hardening type of non-linearity. The
hardening behaviour can be observed in all three investigated modes. The frequency
shift is dominant for the first mode (over 10 Hz) and smaller for the second and third
modes. It can be also noticed that the frequencies for very low amplitudes (presumably
linear natural frequencies) are not identical to the frequency of the main beam without
the non-linearity summarised in Tab. 5.5. The first frequency is slightly higher whereas
the other two are slightly lower. It was found that this phenomenon is caused by the
thin beam which, besides introducing the non-linearity, adds the linear stiffness that
causes the shift of the frequencies. It was also observed that the pre-stress of the thin
beam influences this stiffness as well. Unfortunately, a means of controlling the pre-stress
of the thin beam was not available so a more detailed, systematic study of its effects
have not been conducted. A similar shift in the linear natural frequency due to the
presence of the thin beam has been also observed in other studies [119, 189, 191]. To
account for this effect in computational models, the rotational stiffness that captures the
presence of the beam and its pre-stress was often added. It can be also noted that the
amplitude-dependent frequency of the first mode in Fig. 5.11(a) is roughly 2 Hz lower
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Figure 5.10 Application of the Teager energy operator (TEO) to the ECL benchmark at node
10: (a) frequency of the 3rd mode, (b) amplitude of the 3rd mode, (c) frequency of the 2nd
mode, (d) amplitude of the 2nd mode, (e) frequency of the 1st mode, and (f) amplitude of the
1st mode

than the frequency of the FRFs shown in Fig. 2.17. This difference is believed to be
caused by the presence of the shaker that was used to measure the FRFs in chapter 2.

No significant non-linearity in damping can be observed from the logarithm of the
amplitude in Fig. 5.11. Therefore, the linear damping ratios can be estimated by the
line fitting which yields ζ1 = 0.3415 % for mode 1, ζ2 = 0.0539 % and ζ3 = 0.0396 % for
mode 3. The estimated values are slightly higher than the values obtained by the linear
modal analysis. The small discrepancies do not have to be solely caused by the presence
of the thin beam. They can also be a consequence of different estimation methods.

It should be also mentioned that the backbone in Fig. 5.11(b) for node 7 is not
estimated for the frequency higher than 150 Hz. Likewise, the factor d7

2(t) in Fig. 5.11(e)
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Figure 5.11 Estimated non-linear modes of the ECL benchmark: (a)-(c) the backbones of the
first three modes and (d)-(f) the logarithms of the vibration amplitude of the first three modes

is not available for the time lower than 0.7 s. These missing parts of the results are a
consequence of the end effects that occurred in the EMD. It is possible that the second
mode in node 7 is influenced by the end-effects more than the other results, because
node 7 lies close to the node of vibration (zero value of mode shape) of the second mode.
Therefore, the data acquired are more likely to be corrupted by measured noise and
processing errors.

The mode shapes estimated according to section 5.2.2 as a function of time are shown
in Fig. 5.12. By comparing the mode shapes with Fig. 5.6 it is clear that the character
of the mode shapes estimated for the non-linear system is the same as the linear mode
shapes. This was expected because the estimated non-linear modes are the continuation
of their linear companions.

In order to illustrate the change of the mode shapes due to the non-linearity, the first
two modes shapes are shown in Fig. 5.13 again. The third mode is not included because
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Figure 5.12 The estimated mode shapes of the ECL benchmark as a function of time: (a) 1st
mode, (b) 2nd mode, and (c) 3rd mode
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Figure 5.13 Estimated modes shapes of the ECL benchmark: (a) 1st mode and (b) 2nd mode.
These estimated mode shapes are very similar to the mode shapes of the simulated cantilever
beam shown in Fig. 4.16.

it does not display any significant change. It can be seen that the mode shapes change
with the frequency (and therefore amplitude) of vibration. The normalised values of the
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first mode increase for the higher frequency whereas the normalised amplitude of the
second mode decreases. This is consistent with the simulated CNMs of the beam with a
geometric non-linearity seen in Fig. 4.16(c) and Fig. 4.16(d). The estimated modes shown
not only confirm the presence of the cubic hardening but also demonstrate the ability of
the HHT to obtain multiple non-linear modes from a single measurement. However, it
should be noted that the level of measured noise was minimal and no uncertainty has
been considered.

The detection and characterisation of non-linearity as well as the quantification
of damping have now been shown. For the quantification of the non-linearity, the
model similar to Fig. 4.15 with the rotational linear stiffness in node 10 could be
selected. Unfortunately, it has been concluded that the quantification without measured
resonant decay responses does not lead to the satisfactory results. Since the experimental
measurement of resonant decay responses using phase resonant testing has not been
successful, the quantification has not been performed.

Summary of the application to experimental data
The proposed method has been applied to a free decay response of the ECL benchmark.
It has been able to determine the presence and the character of non-linear behaviour.
The non-linear behaviour in stiffness has been detected by the amplitude dependence of
the backbones and characterised by visual inspection. The damping was determined as
being linear by examining the logarithm of the vibration amplitude. Unfortunately, the
method is not able to quantify the non-linear behaviour since the resonant decay response
has not been measured. Although the method cannot be used for the quantification,
it brought a lot of information about the structural behaviour in a non-linear modal
analysis framework from a single, very quick measurement.

5.5 Discussion
The original idea of this chapter was to use the Hilbert-Huang transform (HHT) in
conjunction with the complex non-linear modal analysis to perform non-linear system
identification. The identification would be conducted in modal analysis framework, i.e.
the amplitude-dependent frequency, damping and mode shapes would be directly used to
detect, characterise and quantify non-linear behaviour of structure. The described method
enables non-parametric detection and characterisation of structural non-linearities for free
decays as well as quantification of full FE structural models of non-linear conservative and
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non-conservative systems if resonant decay responses have been measured. Unfortunately,
the accurate quantification from free decays is not possible due to the findings in chapter 4
that the non-linear modes cannot be correctly reproduced by the HHT.

The detection of structural non-linearities is performed by one or more concepts
described in section 5.2.3. Most of them are based on the violation of basic properties of
linear systems. The characterisation is then carried out by a careful visual inspection
of the estimated non-linear modes as described in section 5.2.4. The idea of a footprint
library (Fig. 5.1) can be used to simplify the decision. The main issues with both
detection and characterisation is how to establish when the deviation of the non-linear
modes from their linear counter-pairs is statistically significant and when it is merely
caused by experimental and processing errors. As many visual inspection techniques
as possible should be used or it may perhaps be possible to design a decision making
algorithm based on artificial neural networks similar to the method described in chapter 2
which would remove the need to visually inspect each result separately.

The quantification of the non-linear behaviour described in section 5.2.6 is based on
the optimisation of the selected model in terms of the complex non-linear modes (CNMs).
The weighted global criterion method (WGC) was suggested for this application. The
method is often used for the multi-objective optimisation, but here, it is used only as a
means of combining several objective functions with preferences. The full set of Pareto
front points is therefore not computed. The WGC is mainly used to minimise the time of
the optimisation and include the preferences. However, even if the WGC is applied the
optimisation still leads to the satisfactory results only for the resonant decay responses.
It was shown that the optimisation (or even manual adjustments of the parameters) fails
for free decays, which was expected due to the findings in chapter 4.

The method is mainly designed to work with free decays and resonant decay responses.
However, it would be also able to process the slow-sweep data if the Forcevib algorithm [68]
was added to the extraction of non-linear modes in section 5.2.2. The slow-sweep harmonic
excitation is able to excite the non-linearity very well, but the experimental hardware
and software need to be sophisticated. On the contrary, the free decay response can
be measured very quickly with a minimum requirements on the experimental set-up,
hardware and software. It is known that it has a distinct disadvantage of being unable
to excite the non-linearity fully [289]. The resonant decay response is potentially the
most suitable type of data for the proposed method as evidenced by the simulated
cases and supported by a number of studies which use the NNMs [142, 168, 189, 215].
However, in order to measure the resonant decay response using the phase resonance
testing [59, 190, 191, 291] a very sophisticated experimental set-up, acquisition hardware
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and control software need to be adopted. Especially, a reliable control must be used and
a means of removing the excitation suddenly designed.

Unlike other methods, such as the complexification-averaging [118] or time-domain
non-linear system identification based on multi-scale dynamic partitions leading to the
intrinsic modal oscillators [39, 62, 137], the proposed approach offers the opportunity to
quantify the linear and non-linear coefficients of a full FE model instead of representing
the dynamics using a SDOF approximation or the need to know analytical expressions.
Moreover, the use of complex non-linear modes enables applications to systems with
dissipative non-linear effects.

The limitations of the proposed method are given by the techniques involved (EMD,
IF and IA estimation and numerical computation of the CNMs) and were discussed in
section 4.5. Despite the fact that the described quantification is able to work accurately
for resonant decay responses, it will not provide accurate results for free decays since it
has been found in chapter 4 that the ROM derived from the CNMs does not correspond
to the IMFs obtained by the EMD. This means that the CNMs cannot be correctly
recovered using the HHT as also shown in Fig. 5.3.

The experimental non-linear modal analysis is not older than 10 years as evidenced
by a lack of publications in [119] on this topic and a number of publications in [168].
All the methods from this category are not yet ready for an industrial usage, but are
elements of basic research. The proposed method is the same - unfortunately, it is not
possible to apply it to industrial cases, but it is believed it contributes to the developing
field of non-linear modal analysis.

5.6 Conclusion
In this chapter, the method for detection, characterisation and quantification of structural
non-linearities has been described. The detection and characterisation are conducted in
non-parametric matter since the Hilbert-Huang transform is used. A full FE model or
low-fidelity models can be quantified through the optimisation in terms of CNMs, but
the accuracy of this optimisation is only guaranteed for the resonant decay responses.
The method was applied to three simulated cases, namely to a two-degree of freedom
system with cubic hardening stiffness, a two-degree of freedom system with quadratic
non-linearity, and a cantilever beam with a geometric non-linearity. It was found that
the accuracy of the quantification vary even in case of resonant decay response, but
the error in the quantified parameters was rarely greater than 10 per cent. The linear
coefficients were quantified with higher accuracy than the non-linear ones. The method
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was also applied to free decay responses of the ECL benchmark where it has been shown
that multiple modes can be simultaneously recovered from a single, simple and quick
measurement. Despite the fact that the applicability of the quantification is limited to
the cases where the resonant decay response has been measured, it is believed that the
described method presents the step forward in the fundamental research of experimental
non-linear modal analysis because of its use of complex non-linear modes which can be
applied to non-conservative system.



Chapter 6

Identification of systems with
asymmetric restoring forces

Abstract
In the chapter a method for non-parametric identification of systems with asymmetric
non-linear restoring forces is proposed. The method, named the zero-crossing method for
systems with asymmetric restoring forces (ZCA), is an extension of zero-crossing methods
and allows identification of vibration characteristics from a resonant decay response. The
validity of the proposed method is firstly demonstrated on three simulated resonant decay
responses of the systems with off-centre clearance, bilinear and quadratic stiffness. Then,
the method is applied to experimental data from a micro-electro-mechanical resonator in
order to quantify its non-linear damping and stiffness effects. Throughout the chapter the
proposed method is also compared with the Hilbert vibration decomposition to demonstrate
that the ZCA yields more accurate results with much less effort.
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6.1 Introduction
A number of non-linear system identification methods, including those proposed in the
previous chapters of this thesis, is limited to systems with symmetric restoring forces. The
measured signals may however exhibit asymmetry with respect to the time axis caused by
different stiffness or dissipative restoring forces for the positive and negative part of the
motion. Such signals can originate from systems with bilinear, piecewise or off-set stiffness,
which are not uncommon in engineering structures. For instance, gaps, end stops and
pre-stress effects can exhibit asymmetric restoring forces. These signals cannot be readily
analysed to obtain asymmetric restoring forces by the methods described in section 3.3.
An example of this could be seen in section 3.4.2 where a SDOF system with quadratic
(asymmetric) stiffness was analysed by the Hilbert transform, zero-crossing method and
direct quadrature. Although these methods can be applied, their results cannot be
interpreted correctly, because as seen in Fig. 3.17(a) the instantaneous amplitude does
not represent the amplitude of the signal. The only method based on the IF and IA
capable of such identification is the Hilbert vibration decomposition (HVD) [71–73]. The
HVD will be used throughout this chapter for comparison purposes.

The chapter is organised as follows: the Hilbert vibration decomposition is firstly
briefly introduced in section 6.2. Then, the zero-crossing method for asymmetric systems
(ZCA) is described in section 6.3. In section 6.4 the ZCA is applied to three simulated
cases, namely to the systems with bilinear stiffness, off-centre clearance (backlash) and
quadratic stiffness. Section 6.5 then shows the application of the ZCA to the data
obtained experimentally from a micro-electro-mechanical beam ring-down measurements.
Section 6.6 discusses the limitations and a range of applicability of the proposed method.

6.2 The Hilbert vibration decomposition
The Hilbert vibration decomposition (HVD) [25, 69–73] is a method dedicated to the
analysis of quasi-periodic or almost periodic oscillating signals, such as free decays of
non-linear systems. It is an extension of the Hilbert transform that allows to estimate the
instantaneous frequency (IF) and amplitude (IA) of a multi-component non-stationary
and non-linear vibration signal. It is similar to the Hilbert-Huang transform (HHT)
described in chapter 3, but it does not use the empirical sifting process based on the cubic
splines but rather it separates the different time scales based on the time domain analysis
of the IF of the original signal. The HVD assumes that (i) the signal is a superposition of
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quasi-harmonic components, (ii) the envelopes of each component differ, and (iii) several
longest periods of the corresponding slowest components are included in the signal.

The HVD decomposes a multi-component signal x(t) into a sum of components xi(t)
with slowly varying IF and IA as

x(t) =
NHVD∑

i=1
xi(t) =

NHVD∑

i=1
ai(t) cos

(∫
ωi(t)dt

)
, (6.1)

where ai(t) is the IA and ωi(t) is the IF of the i-th component. The decomposition is
performed by iterating the following steps [69]: (1) the IF ωi(t) of the largest energy
component is extracted by low-pass filtering of the IF of the original signal (which is not
physical meaningful) obtained by the Hilbert transform, (2) the synchronous detection,
which is also based on the Hilbert transform and low-pass filtering, then extracts the
amplitude ai(t) of the vibration component with the previously estimated frequency, (3)
having estimated the IF and IA of the largest energy component, it can be subtracted
from the original signal and the process repeated until all NHVD components are extracted.
The decomposition ends when the standard deviation of two subsequent components
is smaller than a defined tolerance or the selected total number of components NHVD

has been reached. The obtained components are not generally equal to intrinsic mode
functions obtained by the empirical mode decomposition (EMD) described in section 3.2
because the means of decomposition is different. The HVD does not use the shifting
process so the potentially problematic cubic spline fitting is avoided and the frequency
resolution of the HVD can be better [71]. On the other hand, the low-pass filtering and
the Hilbert transform are extensively used, both of which are influenced by numerical
problems. The properties of the low-pass filter, especially the cut-off frequency, must be
carefully selected because the results of the decomposition can vary significantly due to
the setting of the filter.

The Hilbert vibration decomposition for asymmetric systems is based on the idea
that each signal branch (the lower and upper part of the signal with respect to time axis)
is defined on its half-plane only. Therefore, in order to recover the initial restoring forces,
these parts must be analysed separately. The applicability of the HVD for asymmetric
systems is limited to resonant decay responses for which the extracted components xi

represent the primary and higher harmonics.
In order to identify asymmetric restoring forces, a congruent amplitude and frequency

must be defied as [73]

ac(t) =
NHVD∑

i=1
ai(t) cos (φi(t)) , (6.2)
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and
ωc(t) =

NHVD∑

i=1
ωi(t) cos (φωi(t)) , (6.3)

where φi(t) and φωi(t) are phase angles between the amplitude and frequency of the
primary and i-th harmonic, respectively. The congruent amplitude represents is an
envelope of the amplitude (also called the envelope of the envelope in [73]). For instance,
it could be seen in Fig. 3.17(a) that the amplitude estimated by the Hilbert transform
oscillates. Its values vary between the envelope of the upper and lower part of the
signal. Therefore, by defining the congruent amplitude as the envelope of the envelope
(and similarly the congruent frequency as the envelope of the frequency), the correct
instantaneous characteristics for the positive acp (ωcp) and negative acn (ωcn) part of the
original signal can be obtained as

ac(t) =




acp(t), xi(t) ≥ 0
acn(t), xi(t) < 0

ωc =




ωcp(t), xi(t) ≥ 0
ωcn(t), xi(t) < 0

. (6.4)

The congruent functions allow to estimate the static restoring forces separately for the
positive and negative parts of a signal as

Fel =




ω2

cpacp, x(t) ≥ 0
ω2

cnacn, x(t) < 0,
Fd =





2δcpaẋcp, x(t) ≥ 0
2δcnaẋcn, x(t) < 0,

(6.5)

where δcp and δcn are congruent damping rates estimated using Eq. (5.2) from the positive
and negative part, respectively, and aẋcn and aẋcn are congruent amplitude of the positive
and negative parts of the velocity, respectively. Although the damping was not considered
in [73] it will be shown that it can be estimated using the HVD as well. It should be
noted that for asymmetric resonant decay responses, the trend (aperiodic slowly varying
component) should be excluded.

The modal frequency and damping obtained by the HVD are called congruent modal
properties. The word “congruent” refers to the fact that these characteristics are obtained
in line with the concept of phase congruency as the envelope of (signal) envelope or
envelope of frequency [72, 73]. The term “congruent modal properties” would not be
appropriate for the results of the ZCA as the concept of phase congruency is not directly
applied. However, in order to distinguish the modal properties defined by the complex
non-linear modes in section 4.2.1 from the modal properties obtained from the upper and
lower part of the signal, the latter will be referred to as pseudo-modal properties. For the
same reason, the terms “pseudo-backbones” and “pseudo-damping curves” will also be
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used. Although the HVD and ZCA estimate pseudo-modal properties, both methods
recover the initial non-linear restoring forces.

The Hilbert vibration decomposition determines the congruent backbones, damping
curves, elastic and dissipative asymmetric non-linear restoring forces. However, it involves
extensive signal processing which may be sensitive to measured noise and suffer from
numerical issues of the Hilbert transform. The HVD used throughout this chapter as
a reference method was computed by the code distributed alongside of [71]1. It will be
shown that the proposed method based on the zero-crossing method can estimate the
vibration characteristics with higher accuracy while being less demanding in terms of
signal processing.

6.3 A zero-crossing method for systems with asym-
metric restoring forces

A straightforward, intuitive and easy to implement method, hereafter referred to as
zero-crossing method for systems with asymmetric restoring forces (ZCA), is described
in this section. The ZCA allows non-parametric identification of non-linear vibration
systems with asymmetric non-linearities from a resonant decay response. The proposed
method is an extension of the ZC methods described in section 3.3.6 and follows the same
principal idea as the Hilbert vibration decomposition, i.e. by identifying the instantaneous
frequency and amplitude of the upper and lower part of the signal individually, the
vibration characterisations of the system can be obtained.

In line with the principal idea, the upper (in the following marked by subscript u)
and lower (subscript l) parts of the signal are treated separately as indicated in Fig. 6.1
where tu and tl stand for the times of maxima and minima of the upper and lower part,
respectively, and ti marks the zero-crossing points. The IF of the upper and lower part
are estimated as inverse values of the periods Tu and Tl from Fig. 6.1. The values of the
IF are then assigned to the time of maxima or minima and marked as fu(tu) and fl(tl),
respectively. The IA of the upper au(tu) and lower al(tl) part are given by the maxima
and minima as indicated in Fig. 6.1. The procedure does not yield fully instantaneous
results, i.e. fu(tu), fl(tl), au(tu) and al(tl) are not estimated for all time, but only at
the times of maxima and minima. This resolution is, however, sufficient for reliable
identification as demonstrated in section 6.4 and section 6.5.

1Available at http://ht.net.technion.ac.il/ (cited on 5 July 2017)

http://ht.net.technion.ac.il/
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Figure 6.1 Zero-crossing method for non-linear vibration systems with asymmetric restoring
forces

Two sets of values [fu, au] and [fl, al] (the time-dependency is dropped for brevity) can
be recast into pseudo-modal properties. Similarly to the evaluation of modal properties
in the Freevib algorithm [67] in section 5.2.2, it is assumed that the mode of interest can
be described by the following general model with viscous damping

ẍ+ 2δ(ẋ)ẋ︸ ︷︷ ︸
Fd

+ω0(x)2x︸ ︷︷ ︸
Fel

= 0, (6.6)

where Fel is an elastic restoring force, Fd is a dissipative restoring force, δ is a damping
rate and ω0 is a modal angular frequency. Then, the angular pseudo-modal frequency
can be evaluated separately for the upper and lower part as

ω2
0u(t) = ω2

u − äu

au
+ 2ȧ2

u
a2

u
+ ȧuω̇u

aωu
, ω2

0l(t) = ω2
l − äl

al
+ 2ȧ2

l
a2

l
+ ȧlω̇l

alωl
(6.7)

with ωu = 2πfu and ωl = 2πfl. If it is further assumed that the variation in the IF and IA
is not significant, it is possible to neglect the second-order derivatives. This assumption
is well justified while estimating the IF and IA using Fig. 6.1, because no intra-wave
modulation can be captured. The angular pseudo-modal frequency of the upper and
lower parts is then reduced to

ω0u ≈ 2πfu, ω0l ≈ 2πfl. (6.8)

In the following, the subscript 0 is dropped and all frequencies are assumed to be
pseudo-modal. The pseudo-modal damping rate of the upper and lower parts is given by

δu(tu) = − ȧu

au
− ω̇u

2ωu
, δl(tl) = − ȧl

al
− ω̇l

2ωl
, (6.9)
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where the first-order numerical derivatives must be evaluated numerically. Unfortunately,
the numerical differentiation is often problematic and it can yield distorted results. This
can be partly prevented by the use of sophisticated differentiation formulas, for instance,
the central difference approximation of the fourth order was used in this thesis. However,
in cases where linear behaviour in the damping can be assumed, the use of the logarithm
of the amplitude from Eq. (5.3) should be preferred as it is often more robust against
the measured noise [142, 208].

Having estimated pseudo-modal frequency and pseudo-modal damping, the elastic
Fel and dissipative Fd restoring forces can be calculated using

Fel =





4π2f 2
uau, x(t) ≥ 0

4π2f 2
l al, x(t) < 0,

Fd =





2δuaẋu, x(t) ≥ 0
2δlaẋl, x(t) < 0,

(6.10)

where aẋu and aẋl are the maxima and minima of velocity. Equation (6.10) is generally
valid for all common types of non-linearities and its apparent simplicity neither prevents,
nor limits the identification of the original restoring forces.

All results obtained by the proposed method closely correspond to those obtained by
the HVD, because the HVD and ZCA share the same underlying idea. In addition, the
identification of damping and restoring forces is governed by the same equations. The
key difference is that the IF and IA from the upper and lower part used in Eq. (6.10) are
replaced by positive and negative congruent characteristics in Eq. (6.5).

Although the two methods can theoretically reach the same accuracy, the results
of the ZCA are obtained with much less effort in contrast to the HVD. There is no
complicated decomposition or filtering required so the method is straightforward to
implement. Moreover, the ZCA should be less sensitive to measured noise due to the
use of maxima, minima and zero-crossing points only. As long as these points are well
estimated, the noise in the rest of the signal does not have any effect on the estimated
results. In order to estimate zero-crossing points of a noisy signal, a local smoothing [142]
or interpolation [207] around zero-crossing points may be used. Furthermore, similarly
to the zero-crossing method proposed in [208] and described in section 3.3.6, a sensitivity
of the ZCA to measured noise may be improved by averaging of the frequencies and
amplitudes over the intervals in which neglectful changes of the IF and IA are assumed.
Although some information may be lost due to the averaging, the results are much
smoother, allowing better visualisation and interpretation. This averaging capability is
shown in section 6.5 for the experimental data. In general, a range of standard tools for
de-noising of the signal may be used, one of which, the Whittaker smoother described in
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appendix C, has also been used in this thesis. The use of the Whittaker smoother was
mainly required to allow a reliable comparison between the ZCA and HVD.

The pseudo-modal frequency, pseudo-modal damping and restoring forces are obtained
in a non-parametric manner, i.e. no specific model of the structure is needed and only a
general governing equation (Eq. (6.6)) is assumed. If the proposed method is applied
to a system with symmetric restoring forces, the identified characteristics for the upper
and lower parts will be the same and they will correspond to the results obtained by
zero-crossing methods [173]. The shape of the pseudo-backbones, pseudo-damping curves
and restoring forces can be used for detection and characterisation of non-linearities as
well. If these backbones and damping curves are straight lines and the same for the upper
and lower parts of the signal, the system is linear. If there is any significant deviation
from the constant values and/or the characteristics are not the same for the upper
and lower part, the system is non-linear. Furthermore, the shape of pseudo-backbones,
pseudo-damping curves and restoring forces is unique for common types of non-linearities
as evidenced in section 6.4. Therefore, the shape can help to deduce the type and the
mathematical expression of the non-linearity. This expression can then be fitted to
restoring forces to obtain the coefficients of non-linearities.

The ZCA can be applied to any resonant decay response which may be described by
Eq. (6.6). Such resonant decay response can be either measured from a SDOF system or
using a phase resonance method (also known as force appropriation) [59, 191, 291].

6.4 Application to simulated data
To demonstrate the validity of the ZCA, it is applied to three numerical examples in this
section, namely to the systems with bilinear stiffness, off-centre clearance (backlash), and
quadratic stiffness. The corresponding non-linear restoring forces are drawn in Fig. 6.2.
These three cases are described here to show the capabilities of the ZCA and allow its
detailed comparison with the HVD.

In each case, the resonant decay response was simulated by the numerical integration.
For the piece-wise characteristics, i.e. bilinear stiffness and off-centre clearance, a special
integration scheme had to be implemented [290]. A sampling frequency was fifty times
higher than the expected natural frequency. This value of sampling frequency is in line
with the recommendations given in [71, 72] for the HVD which requires the sampling
frequency to be twenty to eighty times higher than the highest frequency of interest. By
using this high sampling frequency, some of the possible signal processing problems in
the HVD were prevented and a reliable comparison with the ZCA therefore allowed.
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Figure 6.2 Asymmetric non-linear restoring forces of simulated systems: (a) bilinear stiffness,
(b) off-centre clearance, and (c) quadratic stiffness

Before applying the ZCA and HVD, the response was polluted by white Gaussian noise
with signal-to-noise ratio 25 dB to make the data more realistic. Although some amount
of noise in the data does not prevent either of the methods to estimate the IF and IA, it
was decided to apply to the Whittaker smoother before applying the methods. Without
this initial smoothing, the results obtained by the HVD and pseudo-modal damping
obtained by the ZCA according to Eq. (6.9) were very distorted. As a consequence, no
reliable comparison of the methods was possible in that case.

6.4.1 A system with bilinear stiffness
The system is governed by

mẍ(t) + cẋ(t) + fnl(x) = 0, fnl(x) =




k1, x(t) ≤ 0
k2, x(t) > 0,

(6.11)

where m = 1 kg and c = 0.2 N s m−1. The non-linear elastic restoring force fnl(x) is shown
in Fig. 6.2(a) and its coefficients are k1 = (2π2)2 ≈ 157.9 N m−1 and k2 = (2π4)2 ≈
631.7 N m−1. These stiffness values were chosen so that the pseudo-modal frequencies of
the upper and lower parts are 2 Hz and 4 Hz, respectively. The initial conditions were
x(0) = 5 m and ẋ(0) = 0 m s−1, sampling frequency fs = 200 Hz, and the response was
simulated for time t = 0 − 25 s. The large initial displacement was selected to emphasise
the effect of the non-linearity. The displacement of 5 m is not common, but the validity
of the results is not corrupted by this choice. These parameters and the initial conditions
were chosen to allow reliable demonstration of the proposed method and its comparison
with the HVD.

The noisy resonant decay response was processed using the Whittaker smoother. The
smoothing parameter was automatically determined by a leave-one-out strategy (see
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appendix C). The original and smoothed signals are shown in Fig. 6.3(a). It can be seen
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Figure 6.3 Bilinear stiffness: (a) resonant decay response with instantaneous amplitude and
(b) instantaneous frequency

that despite a significant level of noise, especially in a region of lower amplitudes, the
Whittaker smoother was able to achieve reasonably smooth and accurate approximation
of the original signal. However, some inaccuracies in extreme amplitudes can still be
observed in the region of lower amplitudes as seen in the right inset in Fig. 6.3(a).

The resonant decay response is not symmetric with respect to the time axis. Although
the initial displacement was x(0) = 5 m, the minimum value of displacement is almost
10 m. This increase in the absolute amplitude is given by the significantly lower stiffness
k1 for x ≤ 0.

The ZCA and HVD were applied to the smoothed signal. The resulting IA is displayed
in Fig. 6.3(a). The IA estimated using the ZCA corresponds by definition to the maxima
(minima) of the signal. The HVD did not initially produce the smooth estimate of the IA.
However, after additional low-pass filtering the IA was also obtained with good accuracy.
This IA is relatively smooth and encloses the signal closely.

The IF estimated using the ZCA and HVD is shown in Fig. 6.3(b). These frequencies
are the pseudo-modal frequencies defined by Eq. (6.4) and Eq. (6.8). The two estimated
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frequencies are in line with Eq. (6.11) which, if treated piece-wise, describes two linear
systems with different natural frequencies of 2 Hz and 4 Hz. The ZCA was able to
estimate both of these frequencies correctly. Some small discrepancies can be observed
close to the end of the signal (t > 20 s) where the smoothing of the original noisy signal
is not as good as at the beginning (see the insets in Fig. 6.3(a)). The HVD produced
two fluctuating IF so they had to be again smoothed using a low-pass filter and the ends
excluded to obtain the desired estimates.

The estimated pseudo-backbones of the system are shown in Fig. 6.4(a). For the sake
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Figure 6.4 Bilinear stiffness: (a) pseudo-backbone and (b) pseudo-damping curve

of clarity, the raw (without smoothing) results of the HVD are not shown. The two clearly
separated pseudo-backbones centred around 2 Hz and 4 Hz can be seen. The difference
between the ZCA and the smoothed HVD results is minimal. Both pseudo-backbones
are only slightly influenced by residual noise. On the other hand, the distortion of the
estimated pseudo-damping curves in Fig. 6.4(b) is more significant despite the additional
smoothing. This highlights the problems with the numerical differentiation in Eq. (6.8).
Due to residual noise, the estimated amplitudes are not perfectly smooth decreasing
functions so the numerical derivative cannot be estimated accurately. The ZCA is less
influenced because it uses fewer amplitude points. Nevertheless, despite this distortion
the values of the estimated damping rate are centred around the correct value of 0.1 s−1.

The estimated elastic restoring forces are shown in Fig. 6.5(a). Similarly to the pseudo-
backbones, the qualitative difference between the two methods is minimal. Both of them
led to visually smooth elastic restoring forces that correspond to the original restoring
force given by Eq. (6.11). The estimated dissipative restoring forces shown in Fig. 6.5(b)
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Figure 6.5 Bilinear stiffness: (a) elastic and (b) dissipative restoring forces

correspond to the original one as well. However, similarly to the pseudo-damping curves,
they are influenced by residual noise.

The detection and characterisation of non-linearity are possible using the pseudo-
backbones and pseudo-damping curves as well as the restoring forces. The two pseudo-
backbone curves in Fig. 6.4(a) are straight lines, but on different frequencies. This is
a clear indication that the dynamics of the system is different for the upper and lower
part of the signal. Based on this finding the bilinear stiffness model can be deduced.
In contrast, the pseudo-damping curves in Fig. 6.4(b) are straight, but on the same
amplitude. Therefore, no non-linearity in damping is indicated.

The estimated restoring forces in Fig. 6.5 describe directly the non-linear phenomena
of the system. Therefore, an appropriate model can be easily selected and fitted to these
forces. The bilinear stiffness coefficients and damping coefficients were found by the fitting
of the elastic and dissipative forces, respectively. The results are summarised in Tab. 6.1
in which the relative errors of the estimated coefficients are written in parentheses. The

Method k1 [N m−1] k2 [N m−1] c [N s m−1]

original 157.9 631.7 0.2
ZCA 158.30 (0.24 %) 629.79 (−0.29 %) 0.19 (−3.26 %)
HVD 143.75 (−9.85 %) 624.75 (−1.11 %) 0.20 (1.05 %)

Table 6.1 The estimated coefficients of the system with bilinear stiffness (the values in
parentheses are the relative errors (in %) between the estimated and original coefficients)

bilinear stiffness coefficients were estimated by the ZCA extremely accurately, having
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the error less than 0.5 %. The HVD also estimated the stiffness coefficients quite well,
but with slightly lower accuracy than the ZCA with the largest error being close to 10 %.
The damping coefficients were estimated by both methods accurately. Again, the ZCA
produced slightly higher relative error than the HVD.

Based on the result presented so far it can be stated that the ZCA can obtain the
equivalent results with similar or better accuracy compared to the HVD. It is important
to note that the HVD required more sophisticated signal processing and additional
filtering. Therefore, the ZCA generally needs less effort to achieve the same results. In
addition, the detection and characterisation may be generally clearer while using the
ZCA, because the measured noise does not influence the results as much as in the HVD.

6.4.2 A system with off-centre clearance
The system is governed by

mẍ(t) + cẋ(t) + kx(t) + fnl(x) = 0, (6.12)

where m = 1 kg, c = 0.8 N s m−1, and k = (2π)2 ≈ 39.5 N m−1. The off-centre clearance
fnl(x) is shown in Fig. 6.2(b) and it is described by

fnl(x) =





knl(x(t) + b1), x(t) < −x1

0, −x1 ≤ x(t) ≤ x2

knl(x(t) − b2), x > x2,

(6.13)

where the off-centre clearance stiffness coefficient was knl = 6000 N m−1 and the thresholds
of the clearance described by the constants b1 and b2 were chosen to be 0.02 m and 0.05 m,
respectively. The initial conditions were x(0) = 0.1 m and ẋ(0) = 0 m s−1, sampling
frequency fs = 500 Hz and the response was simulated for time t = 0 − 10 s. The
computed response was again polluted by white noise to simulate more realistic data.

The noisy response was processed using the Whittaker smoother. As the signal is
significantly different at the beginning and the end of the time interval, the first (t ≤ 4.5 s)
and second parts (t > 4.5 s) were smoothed separately to improve the performance of
the smoother. The smoothing parameter was determined for each part separately using
a leave-one-out validation strategy. The performance of the smoother was very similar
to the case of bilinear stiffness so only the smoothed signals are shown in Fig. 6.6(a).
It can be seen that the signal is not only asymmetric, but also significantly different in
frequencies at the beginning and the end. The frequency at the beginning is very high
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Figure 6.6 Off-centre clearance stiffness: (a) resonant decay response with instantaneous
amplitude and (b) instantaneous frequency

due to the presence of the high stiffness caused by the off-centre clearance. In contrast,
the frequency at the end of the free decay is very low due to the low stiffness of the
underlying linear system.

The ZCA and HVD were applied to the smoothed signal. The resulting IA is shown
in Fig. 6.6(a). As for the system with bilinear stiffness, the HVD did not initially produce
the smooth estimate of the IA. Therefore, additional smoothing was needed and the end
effects had to be excluded. Despite this smoothing, the envelope was badly estimated
around the thresholds of the clearance between 4 and 5 s. On the other hand, the ZCA
led to accurate estimate of the IA.

The estimated pseudo-modal frequency is shown in Fig. 6.6(b). It can be seen that
two different frequencies were estimated in the first half of the time interval. These
frequencies are higher at the beginning and merge into a single frequency for lower
amplitudes. Unlike for the system with bilinear stiffness, significant differences in the IF
occurred between the ZCA and HVD results. Overall, the latter is not so smooth despite
the additional smoothing. Nevertheless, both methods were able to estimate the natural
frequency of the linear system in the second half of the time interval (t > 5 s) correctly.

The estimated pseudo-backbone of the system is shown in Fig. 6.7(a). For the sake
of clarity, the initial (without smoothing) results of the HVD are not shown. It can be
seen that two pseudo-backbones were estimated by each method. They both start on
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Figure 6.7 Off-centre clearance stiffness: (a) pseudo-backbone and (b) pseudo-damping curve

the natural frequency of the underlying linear system and bend to the right at higher
amplitude. The HVD did not estimate the region between linear and non-linear behaviour
(for amplitudes a ∈ (0.02, 0.05)m) as well as the ZCA. The thresholds of the off-centre
clearance can be clearly determined from the pseudo-backbones estimated by the ZCA
whereas they are indistinguishable for the HVD. In addition, the pseudo-backbone for
the negative part estimated using the HVD has significantly different slope at higher
amplitudes.

The pseudo-damping curves are shown in Fig. 6.7(b). They are not so smooth as
the pseudo-backbones due to the numerical derivative used in Eq. (6.9). As for the
system with bilinear stiffness, the ZCA appears to estimate smoother characteristics.
The pseudo-damping curves estimated by the ZCA are much closer to the correct value
of 0.4 s−1 than those estimated by the HVD.

The non-linear elastic restoring force is shown in Fig. 6.8(a). As can be seen, both
methods follow the original characteristics qualitatively quite well. Three piece-wise
linear regions can be clearly distinguished. From these non-linear restoring forces, the
thresholds of non-linearities can be easily established. On the other hand, neither of the
method was able to estimate the upper part of clearance stiffness correctly.

The estimated dissipative restoring forces are shown in Fig. 6.8(b). Again, both
methods seem to follow the original force quantitatively very well. However, in order to
obtain this characteristics by the HVD the end effects were removed.

The detection and characterisation of non-linearity are possible using the pseudo-
backbones and pseudo-damping curves as well as the restoring forces. The two pseudo-
backbone curves in Fig. 6.7(a) are straight for low amplitudes and bend to the right at
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Figure 6.8 Off-centre clearance stiffness: (a) estimated elastic and (b) dissipative restoring
forces

higher amplitude. Moreover, each of them divide from the straight line at a different
amplitude. This is a clear indication that the dynamics of the system is different for the
upper and lower part of the signal. Moreover, piece-wise behaviour can be deduced from
these pseudo-backbones. The pseudo-damping curves in Fig. 6.7(b) are not so smooth as
the pseudo-backbones, but it is still possible to deduce that they are essentially straight
lines. Therefore, there is no non-linearity in damping. The detection and characterisation
may be generally clearer while using the ZCA, because the measured noise does not
influence the results as much as in the HVD. For example, from the pseudo-damping
curves it could wrongly assume that the results of the HVD indicate hardening behaviour
in the damping.

The estimated restoring forces in Fig. 6.8 describe directly the non-linear phenomena
of the system. Therefore, an appropriate model can be easily selected and fitted to these
forces. By doing so, the system if fully qualified. So the off-centre clearance stiffness
coefficients and damping coefficients were found by the fitting of the elastic and dissipative
forces, respectively. The results are summarised in Tab. 6.2 in which the relative errors of
the estimated coefficients are written in parentheses. To avoid significant errors, points
around the threshold (corresponding to the amplitude a ∈ (−0.3,−0.1) ∪ (0.4, 0.6)) were
excluded from the fitting. The upper and lower parts were fitted separately, yielding k(l)

nl

and k
(u)
nl , respectively. In almost all cases the ZCA led to more accurate estimates. The

largest error of 15 % was obtained for the non-linear stiffness coefficients of the upper
part. In contrast, the largest errors of the HVD was more than 50 %. The ZCA also
yielded a slightly better estimates of damping. As for the system with bilinear stiffness,
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Method k
(l)
nl [N m−1] k

(u)
nl [N m−1] k [N m−1] c [N s m−1]

original 6000 6000 39.5 0.8
ZCA 5795.16 (-3.53) 5194.66 (-15.50) 39.58 (-0.31) 0.76 (-4.83)
HVD 8079.09 (25.73) 5349.13 (-12.17) 86.64 (54.43) 0.75 (-6.25)

Table 6.2 Identified coefficients of the off-centre clearance (the values in parentheses are the
relative errors between the estimated and original coefficients)

the results indicate that the ZCA can obtain the same results with similar or better
accuracy than the HVD while requiring less effort for signal processing and additional
smoothing.

6.4.3 A system with quadratic stiffness
This testing case is described here to not only support the relevance of the ZCA, but to
also allow better evaluation of the experimental findings in section 6.5. The same system
was used in section 3.4.2 to demonstrate the application of the method for intra-wave
frequency modulation estimation. The system with quadratic stiffness is governed by

mẍ(t) + cẋ(t) + kx(t) + knlx
2(t) = 0, (6.14)

where m = 1 kg, c = 0.1 N s m−1, and k = (2π)2 ≈ 39.5 N m−1. The non-linear restoring
force is shown in Fig. 6.2(c) and its coefficient is knl = 3 N m−2. The initial conditions
were x(0) = 5 m and ẋ(0) = 0 m s−1, sampling frequency fs = 50 Hz and the response
was simulated for time t = 0 − 50 s. The large initial displacement has been chosen
to allow reliable demonstration of the proposed method and its comparison with the
HVD. The choice of the system parameters does not corrupt the validity of the results.
The computed resonant decay response was again polluted by white Gaussian noise to
simulate more realistic measured data.

The noisy free decay was processed using the Whittaker smoother with the smoothing
parameter evaluated by the leave-one-out procedure. The performance of the smoother
was very similar to the case of bilinear stiffness so only the smoothed signals shown
in Fig. 6.9(a). It can be seen that the nature of this signal is different than in the
two previous cases. This free decay does not have any regions of significantly higher
frequencies or significantly different amplitudes of the upper and lower parts. The
asymmetry is not so apparent so the signal overall appears to be a free decay of a linear
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Figure 6.9 Quadratic stiffness: (a) resonant decay response with instantaneous amplitude and
(b) instantaneous frequency

SDOF system. In addition, the non-linearity in Eq. (6.14) is smooth whereas the previous
non-linearities were piece-wise linear.

The ZCA and HVD were applied to the smoothed signal. The resulting IA is shown
is Fig. 6.9(a). It can be seen that the IA estimated using the HVD did not require so
strong additional smoothing, but the end effects had to be again removed.

The IF estimated using the ZCA and HVD are shown in Fig. 6.9(b). These two
frequencies can be again regarded as pseudo-modal. It can be seen that at the beginning
of the signal, two different frequencies were estimated using both methods. Towards
the end (t > 25) these two frequencies merge for the HVD and stay very close to each
other in case of the ZCA. The value of the frequency towards the end of the time
interval corresponds to the natural frequency of the underlying linear system. One of the
frequencies at the beginning is higher than the natural frequency and the other one is
lower, indicating hardening and softening behaviour, respectively. This is in line with
the quadratic restoring forces in Fig. 6.2(c).

The pseudo-backbones are shown in Fig. 6.10(a). For the sake of clarity, only
the smoothed results of the HVD are shown. Two pseudo-backbones were estimated,
corresponding to the softening and hardening behaviour. The results of both methods
correspond very well at higher amplitudes (a > 2 m). In contrast, a single value of the
backbones, indicating linear behaviour, was estimated using the HVD at low amplitudes,



6.4 Application to simulated data 207

0.8 0.9 1 1.1 1.2
0

2

4

6

frequency - f [Hz]

am
pl

itu
de

-a
[m

]

ZCA upper part
ZCA lower part
HVD positive
HVD negative

0 0.05 0.1 0.15
0

2

4

6

damping rate - δ [s−1]

am
pl

itu
de

-a
[m

]

ZCA upper part
ZCA lower part
HVD positive
HVD negative

(a) (b)

Figure 6.10 Quadratic stiffness: (a) pseudo-backbones and (b) pseudo-damping curve

while the ZCA estimated two separated backbones, albeit slightly distorted and close to
each other, at this amplitude level. This finding indicates that the ZCA might be able to
qualitatively distinguish weaker non-linear behaviour better than the HVD.

The pseudo-damping curves are shown in Fig. 6.10(b). In this case, both methods
were able to produce good estimates although the residual noise still influences the
smoothness of the results. Both pseudo-damping curves are close to the correct value of
0.05 s−1.

The elastic and dissipative restoring forces are shown in Fig. 6.11. It can be seen

−6 −4 −2 0 2 4 6

−100

0

100

200

original

amplitude - a [m]

el
as

tic
fo

rc
e

-F
el

[N
]

−30 −20 −10 0 10 20 30

−3
−2
−1

0
1
2
3

original

velocity amplitude - aẋ [m s−1]
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Figure 6.11 Quadratic stiffness: (a) elastic and (b) dissipative restoring forces

that the difference between the methods is minimal. Neither of them was however able
to estimate the elastic force very accurately. Although the elastic force is estimated
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qualitatively quite well, the absolute values, especially for lower part of the signal, are
different.

Again, the detection and characterisation of non-linearity are possible using the
pseudo-backbones and pseudo-damping curves as well as the restoring forces. The
two pseudo-backbone curves in Fig. 6.10(a) are not straight lines, which immediately
eliminates the possibility of the linear system. Moreover, one of them indicates softening
and the other hardening behaviour. From these findings, the quadratic stiffness can be
deduced. The pseudo-damping curves in Fig. 6.10(b) are straight lines centred around
one value. Therefore, there is no non-linearity in damping. In this case, the detection
and characterisation are not influenced by the residua noise so much.

The coefficients of the quadratic knl and linear k stiffness and damping c were found
using the fitting of the elastic and dissipative restoring forces. Their determined values are
tabulated in Tab. 6.3 with their relative errors in the parentheses. It can be seen from the

Method γ [N m−2] k [N m−1] c [N s m−1]

original 3 39.5 0.1
ZCA 2.54 (-17.92) 39.43 (-0.11) 0.095 (-4.88)
HVD 2.57 (-16.69) 39.65 (0.43) 0.098 (-1.26)

Table 6.3 Identified coefficients of the quadratic stiffness (the values in parentheses are the
relative errors between the estimated and original coefficients)

presented results that both methods were able to estimate the qualitative characteristics
very well. In this testing case the accuracy of the ZCA and HVD was almost identical.
However, it appears that the ZCA was able to correctly describe non-linear behaviour at
lower frequency where the HVD misleadingly identified linear behaviour.

6.4.4 Summary of the application to simulated data
The results obtained by the proposed ZCA have been compared with the results estimated
by the HVD. Although the results varied for each simulated case, the proposed ZCA
generally estimated the coefficients of non-linearities with higher accuracy. For the system
with the bilinear stiffness the ZCA estimated the coefficients with less than 1 % relative
error whereas and the HVD obtained the same coefficients with the relative error of
almost 10 %. In the case of the off-centre stiffness the difference was even more dramatic.
While the ZCA estimated the non-linear coefficients with the maximum relative error
of 10 %, the coefficients estimated by the HVD were up to 50 % higher than the correct
values. In the third case, in which quadratic stiffness was used, the accuracy of both
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methods was almost the same. However, the ZCA was able to qualitatively identify
non-linear behaviour even at low amplitudes where the HVD misleadingly indicated
linear behaviour (see Fig. 6.10(a)). Based on the investigated simulated cases it can be
concluded that the ZCA can identify the coefficients of asymmetric restoring forces with
higher accuracy. It may also qualitatively describe weaker non-linearity better than the
HVD. Overall, with regards to sophisticated signal processing and the need for additional
smoothing in the HVD, the ZCA seems to provide at least the same or better results
with much less effort.

6.5 Application to experimental data from a micro-
electro-mechanical system

To demonstrate the capabilities of the ZCA, it is used for the identification of elastic
and dissipative non-linearities in a double-anchored double-ended-tuning-fork micro-
electro-mechanical (MEMS) resonator. The resonator was developed and tested, and
the data were kindly provided by Stanford University [206–208, 298]. The resonator,
which was designed for time-keeping applications, consists of two micro-mechanical beams
(200 µm long, 6 µm wide and 40 µm thick) that are connected on both ends to perforated
masses, which are attached to the base. In order to obtain the resonant decay response
(ring-down) data, the phase resonance testing was used. The system was driven into the
non-linear resonant regime and, once the system reached its steady-state response at a
specific amplitude and frequency, the external forcing was turned off and the transient
ring-down response recorded. More information about the micro-electro-mechanical
resonator and measurement set-up can be found in [206–208, 298].

The voltage linearly proportional to the displacement was measured and the resonant
decay acquired with the sampling frequency of fs = 50 MHz for three levels of excitation,
leading to maximum initial amplitudes of a0 = 125 mV, 165 mV, and 225 mV. The
application of the ZCA is shown in detail for a0 = 165 mV and only the most significant
results of the two other cases are presented. The data are significantly different than the
simulated cases in terms of time and frequency scales. The simulated cases had their
pseudo-modal frequencies in order of several hertz, the frequency of the MEMS resonant
is in order of megahertz. However, it will be shown that the ZCA can be reliably applied
in this case too.

To allow a reliable comparison of the ZCA with the HVD, the Whittaker smoother
was used to reduce measured noise. The resulting resonant decay response shown in
Fig. 6.12(a) appears to be almost symmetric with respect to the time axis. This apparent
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Figure 6.12 Micro-electro-mechanical resonator: (a) ring-down response with instantaneous
amplitude and (b) instantaneous frequency

symmetry led to the assumption of symmetric restoring forces and the development
of a non-linear vibration model for this MEMS resonator in [206–208]. However, after
a closer examination of the free decay in Fig. 6.12(a) and the other two cases for the
different initial amplitudes (not shown here), it was observed that some asymmetry
exists in the data. This observed asymmetry suggested that the restoring forces might
be asymmetric. The presence of the asymmetry was also confirmed by the restoring
force surface method in [173]. This asymmetry is more significant at higher amplitudes
and almost disappears at lower amplitudes of vibration. The fact that the asymmetry
disappears at low amplitudes indicates that the system approaches linear behaviour.

The ZCA and HVD have been applied to the signal and the IA is shown in Fig. 6.12(a).
Both ZCA and HVD were influenced by residual noise, especially at lower amplitudes.
The HVD also suffered from strong end-effects, which were eventually removed and
additional smoothing had to be used to obtain the shown results.

It can be seen in Fig. 6.12(b) that two clearly separated pseudo-modal frequencies
are present at high amplitudes at the beginning of the signal. These two frequencies then
slowly merge towards the end of the time interval, indicating linear behaviour at lower
amplitudes. The results of both methods correspond qualitatively to each other very well,
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thereby highlighting the reliability of the proposed ZCA as well as demonstrating that
with some careful signal processing the HVD can be used with experimental data. One of
the frequencies is lower than the natural frequency, the other one is higher. This indicates
that there is hardening behaviour for positive amplitudes and softening behaviour for
the negative ones.

Despite the same global qualitative appearance of the pseudo-modal frequencies there
are a few differences which are worth mentioning. Firstly, the HVD indicates slightly
stronger non-linear behaviour. Secondly, the branches of the IF estimated by the ZCA
appear to be smoother than those from the HVD, even though the additional smoothing
was not used. Lastly, the HVD produced a strange discontinuity in the IF from the
negative part of the free decay (see Fig. 6.12(b) for t < 0.002 s), whereas the ZCA
estimated a smooth frequency in this region.

The extracted pseudo-backbones are shown in Fig. 6.13(a). In order to visualise
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Figure 6.13 Micro-electro-mechanical resonator: (a) pseudo-backbone and (b) pseudo-damping
curves

the results clearly, only every 50th point estimated by the ZCA was plotted. Two
separated pseudo-backbones were clearly obtained by both methods and they exhibit
similar discrepancies as the pseudo-modal frequency. Qualitatively, the results are the
same, while quantitatively they are slightly different since the HVD indicates stronger
non-linear behaviour. Both sets of results, however, approach the same linear natural
frequency at lower amplitudes.

The estimated pseudo-damping curves are shown in Fig. 6.13(b). Again, to allow a
better visualisation, only every 50th point estimated by the ZCA was plotted. The both
sets of results are highly distorted due to residual measured noise, especially at lower
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amplitudes. Even after additional filtering, the HVD produced much more distorted
results than the ZCA. The detection of non-linearity could be difficult using the HVD
results, because one could argue that this pseudo-damping curve is a straight, highly
distorted line. On the other hand, while considering the pseudo-damping curve estimated
by the ZCA, the non-linear behaviour is more evident. Moreover, this behaviour is of a
hardening type because the damping rate increases with the increasing amplitude.

The estimated elastic and dissipative restoring forces are shown in Fig. 6.14. Unfor-
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Figure 6.14 Micro-electro-mechanical resonator: (a) elastic and (b) dissipative restoring forces

tunately, due to significantly different orders of magnitude on the x- and y-axis, both
restoring forces appear to be almost straight lines. Nonetheless, it can be seen that the
difference between the methods is not significant.

The comparison of the experimental results with the results for the system with the
quadratic stiffness suggests that the quadratic stiffness could be present in the MEMS
resonator. In particular, Fig. 6.9 and Fig. 6.12 exhibit the same features - a signal
which is asymmetric at the beginning, but becomes symmetric towards the end and the
two different pseudo-frequencies which merge at low vibration amplitudes. The pseudo-
backbones in Fig. 6.10(a) and Fig. 6.13(a) are also qualitatively the same, having a
V-shape created by the estimates from the upper and lower parts. Both pseudo-backbones
suggest the presence of hardening behaviour for the positive amplitudes and softening
behaviour for the negative amplitudes. Therefore, it can be concluded that the elastic
restoring force of the MEMS can be modelled using quadratic stiffness. This observation
was also confirmed in [173] by the use of the restoring force surface (RFS) method.

The pseudo-damping curves indicate that the damping exhibits non-linear behaviour
which increases with the increasing amplitude. This finding is also supported by the
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theoretical explanation of the possible origin of the non-linear dissipation. Based on
the microscopic theory of dissipation, the non-linear dissipative phenomenon can be
explained using the non-linear interaction of the primary resonant mode with photons as
detailed in [208]. Therefore, it is possible to conclude that the dissipative behaviour can
be modelled using a cubic damping model.

All presented results were obtained for the initial amplitude a0 = 165 mV. To
illustrate that the results are consistent for all three available initial amplitudes, the
pseudo-backbones and pseudo-damping curves for all three cases estimated by the ZCA
are shown together in Fig. 6.15. For clarity of presentation, several periods were averaged
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Figure 6.15 Micro-electro-mechanical resonator for different initial amplitudes: (a) pseudo-
backbones and (b) pseudo-damping curves

(as described in section 6.3) and the HVD results are not shown. It is clear that the
pseudo-backbones for all initial amplitudes are very close to each other, having the
matching V-shape with different amplitudes. All of them also approach the same natural
linear frequency at low amplitudes. The pseudo-damping curves also overlay well and all
of them indicate hardening behaviour.

The previous detection and characterisation have been done in a non-parametric
manner and led to the following model

ẍ(t) + 2δẋ(t) + cnlẋ
3(t)︸ ︷︷ ︸

Fd

+ 4π2f 2
0x(t) + knlx

2(t)︸ ︷︷ ︸
Fel

= 0, (6.15)

where x(t) is a voltage proportional to the displacement, δ is a damping rate, cnl is a cubic
hardening damping coefficient, f0 is a natural frequency, and knl is a quadratic stiffness
coefficient. Since the mass of the MEMS resonator does not have to be considered,
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the restoring forces can be evaluated in units of V s−2. To quantify all parameters, the
restoring forces in Fig. 6.14 were fitted by the expressions outlined in Eq. (6.15). The
resulting coefficients are summarised in Tab. 6.4.

Method a0 [mV] knl [V−1 s−2] f0 [Hz] cnl [V−2 s−1] δ [s−1]

125 2.81 × 1013 1.217 × 106 3.13 × 10−11 112.72
ZCA 165 2.82 × 1013 1.217 × 106 3.35 × 10−11 112.17

225 2.97 × 1013 1.217 × 106 5.36 × 10−11 108.01

125 3.46 × 1013 1.217 × 106 2.64 × 10−11 131.34
HVD 165 3.43 × 1013 1.216 × 106 3.89 × 10−11 121.36

225 3.74 × 1013 1.220 × 106 2.63 × 10−10 160.26

Table 6.4 Identified coefficients of the micro-electro-mechanical resonator

The coefficients of the quadratic stiffness knl seems to be increasing with increasing
initial amplitude for both methods. The coefficients are not exactly the same for all
cases, but they have the same order of magnitude. They also correspond to the quadratic
stiffness coefficient estimated by the RFS in [173]. The coefficients identified using the
ZCA are slightly lower than those identified by the HVD, which is in line with the
previous observation of weaker non-linear behaviour estimated by the ZCA in Fig. 6.12(a)
and Fig. 6.13(a).

It can be seen that the natural frequency f0 is more less the same for all initial
amplitudes and both methods. It corresponds to the natural frequency that was estimated
using the ZC in [207, 208] and by the restoring force method in [173]. The same natural
frequency can also be visually identified in Fig. 6.12(b), Fig. 6.13(a) and Fig. 6.15(a).

The non-linear cubic damping coefficients cnl are very small. This is caused by the
significantly different orders of magnitude of the velocity amplitude and dissipative force
(see Fig. 6.14(b)). Unfortunately, a comparison with other studies is not possible because
none of them has used the same model of damping. Nonetheless, most of the coefficients
have the same order of magnitude and the results of both methods are quite close to each
other. There is a difference between the ZCA and HVD for the highest initial amplitude
(a0 = 225 mV). This difference can, however, be explained by the strong distortion of the
dissipative forces that have been fitted.

The damping rates δ estimated by the ZCA are almost the same for all investigated
cases. Moreover, they match very well to the damping rates estimated in [207, 208].
On the other hand, the damping rates estimated by the HVD are higher and quite
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scattered. This, however, is not surprising given the amount of distortion in Fig. 6.13(b)
and Fig. 6.14(b).

Overall, with regards to the simulated cases for which the accuracy of the ZCA was
often better and due to extensive signal processing used in the HVD, it is likely that the
coefficients estimated by the ZCA are more accurate. The comparison of the estimated
coefficients with other studies shows that the accuracy of the ZCA is the same as that of
the zero-crossing method [207, 208] and restoring force surface method [173]. Based on
the presented findings it can be concluded that the newly developed ZCA method can be
used reliably for the identification of non-linear systems with asymmetric restoring forces
from an experimentally obtained resonant decay response.

6.6 Discussion
The zero-crossing method for systems with asymmetric non-linearities (ZCA) proposed in
this chapter is an extension of the ZC methods (see chapter 3). It allows non-parametric
identification of pseudo-backbones, pseudo-damping curves, and elastic and dissipative
restoring forces from a resonant decay response without any a priori knowledge of the
signal or the system parameters. The ZCA is based on the idea that since each signal
branch is defined on its half-plane only, it is practically enough to identify matching
instantaneous characteristics of each signal branch. To observe the capability of the ZCA
and compare it with the Hilbert vibration decomposition in detail, these methods have
been applied to three simulated resonant decay responses from the systems with bilinear,
off-centre clearance and quadratic stiffness. Before applying the methods, the resonant
decay responses obtained by the numerical integration were polluted by white Gaussian
noise with signal-to-noise ratio 25 dB to make the data more realistic. Although some
noise in the data does not generally prevent either method from estimating the IF and
IA, the use of the Whittaker smoother (see appendix C) led to very good noise removal
from the vibration signal in all investigated cases and there are several reasons why it
seems to be appealing for similar applications.

In order to perform the relevant comparison of the ZCA with the HVD, some known
issues of the HVD were avoided beforehand by selecting a relatively high sampling
frequency. Generally, the HVD requires the sampling frequency to be twenty to eighty
times higher than the highest frequency of interest [71, 72]. In addition, extra smoothing
and filtering had to be used in the HVD to obtain the presented results. In contrast,
the ZCA does not require the additional smoothing. There is no requirement on the



216 Identification of systems with asymmetric restoring forces

sampling frequency either. As long as the zero-crossing points, minima and maxima are
estimated, the rest of the signal is not important.

To further demonstrate the capabilities of the ZCA as well as the HVD whose
application to the experimental data has rarely been reported in literature [71], both
methods have been used to investigate the experimentally acquired ring-down response
of a micro-electro-mechanical resonator [206–208, 298]. Despite the need for additional
smoothing and end-effects removing in the HVD, both methods were eventually able to
estimate reasonable results. Although some differences may be observed, they cannot be
readily explained based on the data. However, it may be argued that since the ZCA did
not require extensive signal processing, was not influenced by any end-effects, and the
results were overall smoother, it is likely that the results estimated by the ZCA are more
accurate than those obtained by the HVD.

The ZCA is a non-parametric method which can be applied to any resonant decay
response that may be described by Eq. (6.6). Such a resonant decay response can be
either measured from a SDOF system or using a phase resonance testing [59, 191, 291]
for a MDOF system. Similar resonant decay responses can also be obtained by the
EMD as discussed in chapter 3 for a MDOF system. If the resonant decay response has
been obtained from a SDOF system, the model in Eq. (6.6) with quantified coefficients
describes the system completely. Theoretically, this model can be used to predict the
response of the system for any range of loading conditions. On the other hand, for a
resonant decay response of a MDOF system (obtained either by the phase resonance
testing or using the EMD), the model is only valid for the given mode of vibration.
Therefore, this model should be used to compute the response of the system only in a
close proximity of this mode.

6.7 Conclusion
This chapter proposed a non-parametric method for the identification of systems with
asymmetric restoring forces from a resonant decay response. Since the method is based on
the zero-crossing method, it is termed zero-crossing methods for systems with asymmetric
restoring forces (ZCA). It was demonstrated on the simulated and experimental data
that it can provide results of the same or higher accuracy than the Hilbert vibration
decomposition. At the same time, however, it is more robust against measured noise and
requires less sophisticated signal processing.



Conclusion

This chapter concludes the thesis by summarising the research outcomes, stating the
main original contributions and presenting the suggested avenues of future research.

Summary of the thesis
The overall focus of this thesis was on the development of non-linear system identification
methods. Two main objectives defined in the introduction were:

1. Enable robust and fast detection and characterisation of non-linearity from a single
frequency response function applicable in an industrial framework.

2. Develop an approach to experimental non-linear modal analysis by investigating the
use of time-frequency methods based on instantaneous frequency and amplitude and
their possible relation to one of the concepts of non-linear modal analysis.

The first objective of the thesis was motivated by the industrial needs for a practical
methodology dedicated to real-life non-linear mechanical systems. This objective was
achieved by the method for detection and characterisation of non-linearities proposed
in chapter 2. The second objective was motivated by the current research trends in
non-linear modal analysis and adaptive data processing. In order to meet this objective,
several topics have been addressed, namely the Hilbert-Huang transform was examined
in chapter 3, the relation between the Hilbert-Huang transform and recently developed
complex non-linear modes was studied in chapter 4 and the approach to experimental
non-linear modal analysis was developed in chapter 5. In addition, since the Hilbert-
Huang transform cannot analyse systems with asymmetric restoring forces, a new method
for this purpose was developed in chapter 6. Therefore, the second objective of the thesis
was achieved as well. The rest of this section consists of a more detailed description of
each chapter and main outcomes.

The literature review of state-of-the-art was conducted in chapter 1. Firstly, the
theoretical modelling, numerical analysis and experimental testing in non-linear structural
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dynamics were briefly described to introduce the wider context of the topic. Then, the
main focus was on non-linear system identification. In particular, the methods for the
detection and characterisation of structural non-linearities in the frequency domain,
time-frequency analysis, and theoretical and experimental non-linear modal analysis
were reviewed. The purpose of this review was to identify the limitations of the current
approaches, which were addressed in the following chapters.

In chapter 2 a new method for detection and characterisation of non-linearities based
on the Hilbert transform in the frequency domain and artificial neural networks was
proposed. It was demonstrated that the method is robust against measured noise while
being able to detect and characterise the non-linear behaviour from a single measured
frequency response function. The method was also applied to three different experimental
data sets for which it was able to provide reliable results. The method is applicable to
a frequency response function of a multi-degree-of-freedom with well spaced vibration
modes. Once the network has been trained, the method does not require expertise
decision making and is very fast. Overall, it is suitable as an automatised pre-step of
the linear modal analysis in an industrial framework to verify the assumption of linear
behaviour.

Chapter 3 introduced the concept of time-frequency analysis and discussed the Hilbert-
Huang transform (HHT) and its numerical problems in detail. In particular, the mode
mixing problem of the empirical mode decomposition was described and it was shown how
it can be investigated before applying the EMD. A significant part of chapter 3 was then
devoted to the comparison and evolution of the methods for instantaneous frequency and
amplitude estimation, namely normalised Hilbert transform, direct quadrature, energy
operators and zero-crossing methods. The objective of this part was to determine if the
Hilbert transform, which is used to estimate the IF and IA in a vast majority of cases
despite being sensitive to numerical issues, can be replaced by one of the other methods.
The comparison led to the conclusion that while all methods provide equivalent results
after low-pass filtering or other smoothing, each method has unique features that can be
used to detect and characterise the non-linearity. These features were summarised in
section 3.3.8. In addition, this evaluation motivated the development of the new method
for the estimation the intra-wave frequency modulation in section 3.4. The method also
provides the ratio of the fundamental frequency and IFM frequency which is subsequently
used to determine the type of stiffness non-linearity. Although the proposed method can
be used as an additional indicator of the non-linearity type, its practical applicability is
very limited due to its sensitivity to measured noise.
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The objective of chapter 4 was to investigate a hypothesis that the HHT relates to
complex non-linear modes (CNMs) of mechanical systems. The hypothesis was supported
by a number of similarities between the methods, but mainly by the existence of the
common link which is the slow-flow dynamics. Since the hypothesis cannot be proven
mathematically due to the empirical and numerical nature of the HHT and CNMs,
respectively, it was investigated using a series of numerical cases and parametric studies.
It was concluded that in spite of the fact that the intrinsic mode functions and reduced
order model of slow-flow dynamics exhibit the same qualitative features, the quantitative
error may be significant in some cases. That means that the computed CNMs do not
match to those extracted using the HHT when the response of many modes has been
measured. In contrast, if the isolated response of one non-linear mode has been directly
measured, i.e. resonant decay responses or slow-sweep harmonic response has been
acquired, the extracted and computed modes correspond to each other exactly. These
findings limit the accuracy of the quantification proposed in chapter 5.

Chapter 5 described a complete approach to non-linear modal analysis in which the
non-linear modes are used to detect, characterise and quantify structural non-linearities.
The method firstly detects and characterises the type of structural non-linearity using
the HHT. Since the HHT is a non-parametric method, no model of the system is required
at this stage. This feature of the proposed method is particularly appealing because it
enables to investigate systems based on the experimental data without introducing any
assumptions about their character. Once the presence and type of non-linearity have
been established, a low-fidelity or full FE model must be selected in order to quantify
non-linearity through the optimisation in terms of the CNMs. The final output of the
method is a structural model with fully identified linear and non-linear parameters. The
detection and characterisation can be performed on virtually any time domain data
whereas the accuracy of the quantification is only guaranteed for resonant decay responses
due to the only approximative relation between the HHT and CNMs found in chapter 4.
The method was applied to experimental data acquired from the ECL benchmark and
it was able to successfully extract and characterise first three modes from a single free
decay measurement.

The limitation of the Hilbert transform to analyse systems with asymmetric restoring
forces was addressed in chapter 6. The new method, named zero-crossing method for
systems with asymmetric restoring forces (ZCA), treats the upper and lower part of
the resonant decay response separately and allows identification of amplitude-dependent
natural frequency, damping and restoring forces. The application of the method was
demonstrated on a number of numerical validation cases for which it is shown that the
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results are equal or more accurate than the results obtained by the Hilbert vibration
decomposition (HVD). The proposed method was applied to the experimental data
obtained from a micro-electro-mechanical device. It is found that the ZCA yielded more
accurate results then the HVD while requiring much less effort and less sophisticated
signal processing.

Main contributions
The main original contributions of the research work presented in this thesis are:

• The new method for detection and characterisation of structural non-linearities
based on the Hilbert transform in the frequency domain and artificial neural network
described in chapter 2. The method was already published in a journal paper [175].

• The comparison of methods for instantaneous frequency and amplitude estimation
conducted in section 3.3 which identified potential features that can provide insight
into the presence and character of non-linearity. A similar comparison was already
published in a conference paper [173].

• The proposed method for the estimation of intra-wave frequency modulation which
can be used for detection and characterisation of stiffness non-linearities presented in
section 3.4. The proposed method was briefly described in a conference paper [174].

• The original analysis of the relation between the Hilbert-Huang transform and
complex non-linear modes in chapter 4.

• The approach to non-linear modal analysis which uses extracted non-linear modes
to detect, characterise and quantify non-linearity described in chapter 5. A journal
paper which documents the proposed approach to non-linear modal analysis and
includes the findings of chapter 4 is under preparation.

• The new method for the analysis of resonant decay responses of systems with
asymmetric restoring forces presented in chapter 6. A journal paper describing this
method is being prepared.

Suggested directions of future research
The avenues of future research in non-linear system identification that directly relate to
the work presented in this thesis could include the following
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• Development of a method for automatic detection and characterisation of non-
linearities based on the extracted non-linear modes.

At the moment, the extracted non-linear modes must be visually inspected in
order to detect and characterise the non-linearity in chapter 5. However, this
inspection may require a good knowledge of the problem and may not be suitable
for industrial use where automatised procedures are often preferred. A new method
could be similar to the method proposed in chapter 2. Instead of using frequency
response functions to create a set of features that are classified by the artificial
neural network, the non-linear backbones, damping curves and mode shapes would
be used.

• Definition of non-linearity strength and its assessment

It was discussed in section 1.2.1 that it might be beneficial to assess the strength of
non-linearity before proceeding further with the identification. If the non-linearity
is weak, the non-linear identification is not necessary and the system can be treated
as being linear. The assessment of non-linearity strength has not been attempted
in the thesis since this quantity cannot be generally defined. However, it might be
possible to define the strength of non-linearity for a particular mechanical system
based on, for example, a frequency shift, reduction or increase in the amplitude or
amount of vibration-induced noise. Provided that the definition of the non-linear
strength is available, it can be included in the method proposed in chapter 2 by
training the artificial neural network appropriately.

• Improvement of the proposed approach to non-linear modal analysis

New ways for non-linear modal analysis which would allow to obtain correct non-
linear structural models even from free decay measurements should be sought. The
detection and characterisation as proposed in chapter 5 could remain unchanged.
The quantification, which is currently accurate only for resonant decay responses,
would not have to be modified either because it was proposed in such a way that it
allows to incorporate several measured modes and multiple measured locations. If
the modes were correctly estimated, it is anticipated that the quantification proce-
dure would lead to the correct results. In order to achieve significant improvements
of the proposed approach, the way to extract non-linear modes must be revised.
This could be achieved either by replacing the HHT by other time-frequency analysis
method or it might be perhaps possible to modify the extraction of the non-linear
modes in section 5.2.2 in such a way that the difference between the HHT and
CNMs observed in chapter 4 will be considered and CNMs appropriately corrected.
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• The use of the Holo-Hilbert spectral analysis for non-linear system identification

Although the HHT is very popular method for adaptive data processing in many
fields, it cannot extract dependencies between the intrinsic mode functions. There-
fore, it is likely that it does not allow to study internal resonances. However, an
extension of the HHT, called the Holo-Hilbert spectral analysis (HHSA) [100], has
been recently proposed. Theoretically, it should allow to recover cross-scale coupling
between the IMFs so it may perhaps be possible to study internal resonances using
this method. It has never been applied in structural dynamics so its practical
feasibility is yet to be determined.

• Extension of the non-linear modal analysis to industrial cases

The dominant focus of this thesis was on resonant and free decay measurements,
which are usually used for dynamic testing of non-linear modes due to their
prominent properties and short measurement times. However, the forced testing is
often used in industry, for instance the commissioning tests of aircraft engines and
their components are usually conducted using sweep excitation. Future research
could therefore extend the methodology presented in chapter 5 to these cases by
incorporating the Forcevib [68] into the extraction of non-linear modes. It was
shown in chapter 4 that since the empirical mode decomposition does not have to
be applied for this excitation type, the quantification of non-linearity should be
exact provided that the non-linear modes have been correctly extracted. Several
problems could arise with the processing of data from commissioning test of aircraft
engines. The excitation force is not often measured but it is rather estimated with
some degree of uncertainly. This fact would need to be considered in a new method.
Similarly, the sweep rate can vary significantly so a series of parametric studies
would need to assess its effect on estimated non-linear models.

• Characterisation of spatial location of non-linearity

The non-linearity is said to be characterised when its type, spatial location and
mathematical form have been found. None of the methods presented in this thesis
offers a possibility to characterise the spatial location of the detected non-linearity.
Without deep engineering understanding of the problem, the localisation of non-
linearity may be very complicated since there are very few methods in literature (a
list of methods can be found in appendix A) that can be applied for this purpose.
Moreover, most of the available methods are based on machine learning or brute
force approaches. Therefore, the future research should attempt to develop a
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non-parametric method for localisation of non-linearities which would not require
detailed understanding of the system.

• Assessment of uncertainty in the system and data processing

It is known that every mechanical system is influenced by uncertainties. They
can originate in imperfections of the manufacturing process, problems during the
assembly or arise as a consequence of wear. It is also common that any measured
data are polluted by noise and influenced by imperfections of experimental set-
ups. As a consequence, many signal processing techniques, such as smoothing and
filtering, must be usually applied to obtain the required results. However, the effect
of these techniques on the obtained model is not usually taken into account. Even
in the computational modelling, the uncertainties are not often considered despite
the awareness that a small change in input parameters can significantly alter the
response of a non-linear system. Therefore, future research should focus on the
assessment of uncertainty in both system identification and simulation in order to
obtain more accurate structural models.

Non-linear system identification is still an active research area in which many new
methods are constantly being developed. To this day, no method that would be applicable
to a wide range of industrial structures has been developed. Out of the great number of
approaches, non-linear modal analysis seems to be the one with the greatest progress
in recent years. The research effort is probably motivated by the desire to develop
a successor of linear modal analysis which could be universally applied to non-linear
systems. However, the non-linear modal analysis is yet to reach its full potential. Until
then, much research must be conducted to achieve ambitious objectives of non-linear
system identification.
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Appendix A

Methods for non-linear system
identification

Non-linear system identification is a vast field in which many methods and approaches
have been developed. This appendix complements the literature review in chapter 1
by providing a more complete list of methods with a basic indication of their function
(detection, characterisation or quantification) and a few (by far not all) references. It
should be noted that the categorisation of the methods can be misleading because the
limitations and assumptions are not mentioned. Therefore, even if a method provides
all functions, it does not automatically mean that it should be the method of choice in
every situation.

Besides the references given, several books and review papers have been published [2,
20, 30, 31, 97, 119, 164, 269, 289]. In the following table over 70 different methods can
be found. Some methods have a number of variants and minor modifications, but these
are not listed. The methods are color-coded according to their function as:

D : Detection - These methods can determine the presence of a structural non-linearity.

S : Strength of non-linearity - The strength of non-linearity can be assessed by the
visual inspection of the difference between the characteristics of non-linear systems
and their linear counter-pairs. This category does not include the methods based
on the visual inspection because they are usually very subjective, but it rather
focuses on the methods that provide a numerical indication of the non-linearity
strength.



252 Methods for non-linear system identification

T : Type characterisation - This category includes methods that allow characterisation of
a non-linearity type either by visual inspection or by more sophisticated (potentially
automatic) procedures.

L : Location characterisation - These methods can assist to decide about the spatial
location of the non-linearity within the structure.

F : Functional (mathematical) form characterisation - The mathematical expression
must often be selected based on the non-linearity type and with the physical under-
standing of the problem. The possible models of non-linearities are summarised in
section 1.1.1. If a method can improve the selection of this model, it is included in
this category. Many brute force (trial-error) approaches can be found here as well.

Q : Quantification - All the methods that belong to this category can quantify the
coefficients of structural non-linearities or obtain a model of the structure without
considering the non-linearities explicitly. After the application of these methods
the identification procedure is finished.

U : Uncertainty quantification - The experimental testing and processing of measured
data are subjected to many uncertainties. Although uncertainties are not yet
often considered in non-linear dynamics, their quantification is important. The
methods in this category attempt to take into account the effect of uncertainty
while identifying non-linear behaviour.

NP : Non-parametric methods - This marks the methods that do not require a great
amount of information to be known or assumed before the identification process. In
particular, no specific knowledge of the non-linearity is needed and the estimation
of under-lying linear system is not required.
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Method Function References

Amplitude and frequency modulation D T NP [180, 184, 185], section 3.4
Bayesian scheme Q U [282, 284, 285]
Bicoherence D S NP [44, 97]
Bispectrum D S T NP [47]
Carpet plot D T [63]
Coherence D S NP [19, 26, 63, 97, 242]
Conditioned reverse path (CRP) L Q [108, 144, 217, 301]
Corehence D NP [212]
Correlation-based indication functions D S NP [289]
Correlation coefficient D S NP [130], section 2.2.3
Complex stiffness method D T Q [150]
Complexification-averaging (CxA) Q [118], section 4.2.3
Conjugate-pair decomposition D T Q [181, 184]
Control-based continuation D T NP [16, 17, 243]
Damage localisation techniques L [145]
Describing function inversion D T L Q [15, 177]
Distortion of frequency response functions D T NP [63, 234, 268], chapter 2
Direct parameter estimation Q [31, 153]
Direct quadrature (DQ) D T NP [86, 102], section 3.3.4
Equivalent linearisation Q [286]
Energy operators D [49, 104, 229], section 3.3.5
Footprint libraries D T [83]
Forcevib D T Q NP [68]
Formap identification method D T Q NP [74]
Freevib D T Q NP [67], section 5.2.2
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identification
Frequency-domain ARX model Q [1]
Frequency domain non-linear subspace identification (FNSI) Q [163]
Gabor transform D T Q NP [77, 250]
Genetic algorithm T Q [83]
Generalised zero-crossing D T Q NP [104], section 3.3.7
Harmonic detection D NP [150]
Harmonic distortion D NP [289]
Higher-order frequency response functions D T NP [28, 256]
Higher-order spectra D S T NP [44]
Hilbert transform describes D S [263], section 2.2.3
Hilbert transform in the frequency domain D T NP [71, 263, 289], chapter 2
Hilbert transform in the time domain D T Q NP [71, 104, 181], chapter 3
Hilbert-Huang transform (HHT) D T Q NP [103, 292], chapter 3
Hilbert vibration decomposition (HVD) D T Q NP [71, 73], section 6.2
Homogeneity test D NP [31, 130, 289]
Identification based on multi-scale dynamic partition D T Q [39, 62, 137], section 5.1
Kalman filters Q [20, 286]
Linearity J-factor factor D S NP [123]
Linearity plots D T [82]
Machine learning Q U NP [66, 194, 286]
NARMAX models Q [20]
Neural networks for classification D T L [125, 126, 279], chapter 2
Nearest neighbour approach T L [264]
Non-causal power ratio (NPR) D NP [121]
Non-linearity indexes (NLIs) D S T NP reviewed in [97], section 2.2.3
Non-linear identification through feedback of the outputs (NIFO) Q [3, 4, 92]
Non-linear modal grade D S [244]



255
Non-linear output FRFs D T Q [133]
Non-linear resonant decay (force appropriation) D T Q [159, 205]
Normal non-linear modes (NNMs) D T NP [117, 191, 192, 266]
Normalised Hilbert transform (NHT) D T Q NP [104], section 3.3.3
Pattern recognition or classification T [83, 264]
Principal component analysis D T Q NP [113, 289]
Reciprocal modal vectors D [41]
Reciprocity test D NP [289]
Residual autocorrelation functions D NP [5]
Restoring force surface (RFS) D T L Q NP [8, 23, 48, 148, 166]
Sig-function D S NP [150]
Significance factor F [12]
Stabilisation diagram D [146, 162, 163, 169]
Structural model updating and upgrading T L F Q [32, 65, 78, 160]
Superposition principle D NP [289]
Short-time Fourier transform (STFT) D T Q NP [76, 161, 173]
Time domain Fourier filter output (TDFFO) Q [226]
Time domain non-linear subspace identification (TNSI) Q [146, 167]
Type-analysis correlation D T L [141]
Volterra kernels processing D T NP [6]
Volterra series D T NP [36, 37, 289]
Wavelet transform (WT) D T Q NP [10, 76, 161, 189]
Wigner-Ville distribution D T Q NP [75, 161]
Zero-crossing methods (ZC) D T Q NP [104, 207], section 3.3.6





Appendix B

Numerical implementation of
complex non-linear modes

The theory of the complex non-linear modes (CNMs) of mechanical systems was described
in section 4.2.1 and their relation to the Hilbert-Huang transform was investigated in
chapter 4. They were also used in chapter 5 to develop an approach to non-linear modal
analysis. This appendix aims to complement section 4.2.1 by providing a description of
the numerical implementation. The implementation is very similar to the conventional
harmonic balance method described, for example in [29, 54, 156, 202, 227]. The use of
the CNMs has been demonstrated on a number of systems in this thesis and one more
verification example created by a two-degree-of-freedom system with Coulomb friction
from [128, 134, 135] is given in the second part of this appendix.

B.1 Numerical implementation
An autonomous general dynamic system is considered

Mẍ + Cẋ + Kx + fnl(x, ẋ) = 0 (B.1)

where M, C and K are n× n mass, damping and stiffness matrices, respectively, and
x = x(t) is an n×1 vector of generalised coordinates. The n×1 vector fnl(x, ẋ) comprises
all non-linear effects, which depend on the displacement and velocity. In line with the
definition of the complex non-linear mode in Eq. (4.2), the solution is numerically sought
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in a form of generalised Fourier series

x(t) = q



c0 +

Nh∑

k=1
e−kδt (sk sin(kωt) + ck cos(kωt))



 , (B.2)

where c0, sk and ck are the vectors (n× 1) of the Fourier coefficients related to zeroth
harmonic, sine and cosine terms of k-th harmonic, Nh is the total number of harmonics
and q is a modal amplitude. Equation (B.2) is equivalent to Eq. (4.2) with the difference
that the former is written using the real coefficients whereas the latter using the complex
representation which is better for a theoretical description, but unsuitable for the
numerical implementation.

The eigenvalue of the mode is defined using the natural angular frequency ω0 and
modal damping ratio ζ as λ = −δ + iω = −ζω0 + iω0

√
1 − ζ2, where δ is a damping

rate and ω is a damped natural angular frequency. The Fourier coefficients, which
represent the eigenvector of the complex mode in the frequency domain, are organised
into (2Nh + 1)n× 1 vector as

z = [c0, s1, c1, s2, c2, . . . , sNh
, cNh

] . (B.3)

For the evaluation of the non-linear effects that are velocity dependent, the velocity can
be expressed using

ż = ∇(λ)z, (B.4)

where the differential operator ∇(λ) is given by

∇(λ) = diag [0, ∇1, . . . , ∇k, . . . , ∇Nh
] , with ∇k = ∇k(λ) = k


−δ −ω
ω −δ


 . (B.5)

It should be noted that this operator is one of the main differences between the CNM
and HBM in which it reads

∇k(ω) = k


0 −ω
ω 0


 . (B.6)

Using the operator ∇(λ) it is possible to define the dynamic stiffness matrix of the
underlying linear system [54] as

A(λ) = ∇(λ)2 ⊗ M + ∇(λ) ⊗ C + I2Nh+1 ⊗ K, (B.7)
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where ⊗ is the Kronecker tensor product and I2Nh+1 is an identity matrix of the size
2Nh + 1. The dynamic stiffness matrix A(λ) has the size (2Nh + 1)n× (2Nh + 1)n.

The non-linear term fnl(x, ẋ) which depends on the displacement and velocity cannot
be usually evaluated analytically in the frequency domain. Therefore, an alternating
frequency-time domain procedure (AFT) [29] is very often used:

z FFT−1
−−−−→ x −→ f(x, ẋ) FFT−−→ b(z) (B.8)

The unknown coefficients z are transformed from the frequency domain to the time
domain using the inverse Fourier transform, the non-linear (and in the case of the HBM
also the excitation) forces are evaluated in the time domain and transformed back to
the frequency domain by means of the direct Fourier transform. As emphasised in
section 4.2.1 the periodic representation of the displacement and the velocity must be
used in the AFT procedure. The direct and inverse Fourier transform can be computed
effectively using the operator Γ(ω). The inverse Fourier transform can be written as a
linear operation

x† = Γ(ω)zq (B.9)

with the nNt × (2Nh + 1)n operator given by

Γ(ω) =




In ⊗




1
1
...
1



, In ⊗




sin(ωt1)
sin(ωt2)

...
sin(ωtNt)



, In ⊗




cos(ωt1)
cos(ωt2)

...
cos(ωtNt)



,

. . . , In ⊗




sin(Nhωt1)
sin(Nhωt2)

...
sin(NhωtNt)



, In ⊗




cos(Nhωt1)
cos(Nhωt2)

...
cos(NhωtNt)







, (B.10)

where Nt is the number of time samples used to approximate a single period of oscillation.
The vector of the size nNt × 1 containing these time samples will be organised as

x† = [x1(t1), . . . , x1(tNt), . . . , xn(t1), . . . , xn(tNt)]
T (B.11)

and must be appropriately used to evaluate the non-linear restoring forces fnl(x, ẋ). The
evaluated non-linear forces f † are transformed back to the frequency domain using the
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direct Fourier transform as
b(z) = Γ(ω)+f †, (B.12)

where (•)+ denotes the Moore-Penrose pseudo-inverse. The AFT procedure must be
repeated in each iteration of the solver.

In order to find the unknown Fourier coefficients z and modal properties ω and δ for
a given modal amplitude q the following system of non-linear algebraic equations needs
to be solved

A(λ)zq + b(z) = 0. (B.13)

However, as mentioned in section 4.2.1 two equations are missing so the mode normalisa-
tion must be introduced. The normalisation with respect to the selected degree-of-freedom
can be used

s1 = qs, c1 = qc. (B.14)

where qs and qc are the defined modal amplitudes of the sine and cosine part of the first
harmonic of the selected degree-of-freedom. Although the above normalisation is easier
to numerically implement, the mass normalisation has been used in this thesis, because
the reduced order model in chapter 4 required mass normalised non-linear modes. Two
normalisation conditions must be enforced

ΨΨΨH
1 MΨΨΨ1 = 1, ℜ{tHΨΨΨ1} = 0, (B.15)

where t is a complex vector and ΨΨΨ1 is the first harmonic of a mode shape. The
first condition represents an amplitude constrain while the second provides a phase
normalisation.

Equation (B.13) subjected to either the coordinate normalisation (Eq. (B.14)) or to
the mass normalisation (Eq. (B.15)) can now be solved for z, ω and δ. The solution for
a very low modal amplitude can be obtained by a Newton-like solver with the linear
modal properties as a starting guess. However, since the modal properties are amplitude-
dependent, it is beneficial to use a continuation procedure on the modal amplitude
q ∈ (qmin, qmax).

There are many continuation schemes available in literature [239]. Every continuation
method has three basic steps, namely predictor, corrector and the step length adaptation.
The prediction using a secant method and the correction via arc-length continuation
worked very well for the systems considered in this thesis. The continuation procedure
consisted of
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1. The prediction of the next solution point using a secant method as

y(i+2) = y(i+1) + s[y(i+1) − y(i)], (B.16)

where s is a step length, y = [q, ω, δ, z]T is an extended vector of unknowns, y(i+1)

and y(i) are the last two converged solutions and y(i+2) is a new starting point
which will be updated in the correction step to obtain the correct solution.

2. The correction was performed using an extended system of equations

||y − y(i+1)|| − s

A(λ)zq − b(z)


 =


0
0


 . (B.17)

The first equation represents the arc-length continuation and the second one is
Eq. (B.13) in which the coordinate normalisation given by Eq. (B.14) has been
considered or the mass normalisation given by Eq. (B.15) enforced via a constrained
optimisation using the Lagrange multipliers. In the harmonic balance method the
normalisation is not necessary so the correlation step is much simpler.

3. The step length adaptation was based on the number of iterations of the corrector.
By changing the step adaptation conditions, the performance of the continuation
can be influenced. Typically, the step s was doubled when the corrector converged
in less than 5 iterations, remained unchanged when the convergence was reached in
5 to 10 iterations and was halved when the number of correction iterations exceeded
10.

The continuation procedure with an adaptive step length has a very good performance
because if the solution changes rapidly with the modal amplitude, the length can be
shorten to avoid convergence issues. On the other hand, if the solution does not change,
the step can be longer. This leads to the time-efficient computation and unstable solutions
can be also tracked. If the results are required in equidistant steps, for instance, for the
computation of the reduced order model in chapter 4, the results must be appropriately
interpolated.

The described numerical procedure has been implemented and used throughout this
thesis. However, it should be noted that it is suitable only for smaller systems because
it omits the condensation of the equations of motion [156, 202] into the non-linear
degrees-of-freedom and can be therefore time-consuming for large systems.
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B.2 Numerical verification case
A two-degree-of-freedom system with a Coulomb friction element is considered as a
verification case of the numerical implementation of the CNMs. The same system
was used in a number of studies, including [128, 134, 135], because it is a numerically
challenging example of a system with strong non-linear behaviour.

The system consists of two masses connected by two linear springs as depicted in
Fig. B.1. The non-linear behaviour is introduced by Coulomb friction between the right

m1

x2(t)x1(t)

k2k1
m2

µNfsgn(ẋ2)

Figure B.1 Two-degree of freedom system with friction

mass and the ground. The system is allowed to vibrate only in the horizontal direction.
This system can be described by Eq. (B.1) in which

M =

m1 0

0 m2


 , K =


k1 + k2 −k2

−k2 k2


 , fnl(x, ẋ) =


 0
µNf tanh

(
ẋ2
ϵ

)

 , (B.18)

where m1 = 1 kg, m2 = 0.02 kg, k1 = 600 N m−1, k2 = 40 N m−1 and linear damping
equivalent to the modal damping ratio of 0.1 % was also introduced. Although the
Coulomb friction is theoretically described by the signum function, it is usually ap-
proximated using an hyperbolic tangent due to improved numerical properties. The
friction coefficient was µ = 0.2, normal force Nf = 10 N and a small parameter ϵ = 0.01.
Generally, a smaller ϵ leads to a better approximation of the signum function.

The computed backbones and a set of frequency response functions (computed using
the harmonic balance method implemented based on a similar procedure as the CNMs)
can be seen in Fig. B.2. Thirteen harmonics were used in both non-linear modal analysis
and harmonic balance method to capture strong non-linear behaviour of the system.

Two limit states can be recognised from the backbone in Fig. B.2(a). For the very
low amplitudes (less than 0.07 m) the friction element is fully stuck so the displacement
of the right mass is equal to zero. For very high amplitudes, on the other hand, the
friction contact is fully slipping, so the modal properties approach the modal properties
of the underlying linear system. As the modal amplitude increases between these two
limit states the transition zone of the partial slip occurs. As seen in Fig. B.2(c) and
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Figure B.2 The first vibration mode of the system with the Coulomb friction: (a) backbones
and frequency response functions of the first mass, (b) backbones and frequency response
functions of the second mass, (c) modal damping ratio of the first mass, and (d) modal damping
ratio of the second mass

Fig. B.2(d) the modal damping reaches its maximum value in the region of the partial
slip. Therefore, as also discussed in [129], the friction joints should be ideally designed in
such a way that they operate in this region of the maximum dissipation.

Since the presented results are in accordance with similar studies [128, 134, 135], the
numerical procedure used to compute the CNMs in this thesis has been verified.





Appendix C

Whittaker smoother

The Whittaker smoother [60] is a data smoothing method that fits the data using the
penalty least square method by balancing the fidelity of the data and their roughness:

min
y

[∑

i

(xi − yi)2
︸ ︷︷ ︸

fidelity

+λW
∑

i

(yi − 2yi−1 + yi−2)2
︸ ︷︷ ︸

smoothness

]
, (C.1)

where xi = x(ti) is an initial (noisy) signal, yi = y(ti) is a smoothed signal and λW is a
smoothing parameter. The smoothing parameter weights the fidelity and the smoothness
of the data. The requirement of the smoothness is stronger for larger values of λW.
Therefore, while y becomes smoother for larger λW, the fit of the original data x becomes
worse. The appropriate λW might be chosen by tuning it until the resulting series y is
visually satisfying. However, this parameter can be also determined automatically (and
more objectively) based on the leave-one-out cross validation strategy combined with
minimum search optimisation.

The leave-one-out cross validation strategy is one of many cross validation procedures
used in a machine learning community [255, 286]. In case of the Whittaker smoother,
this strategy consists of removing one element of the series x, smoothing the remaining
data, and evaluating the error of the prediction for the removed element. After repeating
this process for all elements in x, the total standard error can be calculated [60, 255].
Then, the smoothing parameter λW for which this total standard error is at its minimum
is taken as the optimal value.

The Whittaker smoother was originally proposed in chemical engineering [60], but it
has many attractive properties for the non-linear system identification as well:

• It is very quick even if the cross validation procedure is used.
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• It handles missing data and adapts to boundaries automatically, so it does not
suffer from any end effects.

• The smoothness is controlled using a single parameter which can be selected
automatically.

• It does not assume any particular form (polynomial or sinusoidal) of the signal [13].

• Since the smoothness of the derivative is required, the methods that use this
derivative, such as the Freevib algorithm in section 5.2.2 or the zero-crossing
method for systems with asymmetric restoring forces (ZCA) in section 6.3, can
benefit from the use of the Whittaker smoother.

The Whittaker smoother used in this thesis has been implemented based on the pseudo-
code provided in [60] and complemented by an optimisation procedure to determine the
smoothing parameter λW automatically using the leave-one-out cross validation strategy.
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