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Abstract

Cavity optomechanics has become an established and equally promising branch

in quantum optics. Thanks to the interaction between matter and electromagnetic

radiation, it has proved to be an optimal platform for a range of scopes, from weak

force sensing to the study of non-classicality of mechanical motion. Besides, the

capability to isolate genuine quantum features of the interaction represents a test

ground to address many important questions regarding decoherence, quantum-to-

classical transitions and the interface between quantum mechanics and gravity.

The first part of the research embedded in this thesis is addressed towards the

clear identification and characterisation of quantum features in optomechanics. The

main model we will refer to is a deformable Fabry-Pérot cavity where one of the two

mirrors moves under the radiation pressure of light. After having properly assessed

the quantum peculiarities of the system, and also having revised some intakes from

past literature, we will focus on the study of mechanical non-linearities, as they have

been proved to be a key resource to bring out and enhance quantum properties. These

investigations provide the basis to eventually propose a method to deterministically

prepare and measure macroscopic quantum superposition states of the movable

mirror. Such massive quantum states play a key role to inspect the foundations of

physics, e.g. to test the collapse of the wave function and phenomenological models

of quantum gravity, as well as to develop new enhanced quantum technologies.
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Introduction

Quantum theory is based on the superposition principle, asserting that any two

(or more) quantum states can be added together – superposed – and result in another

valid quantum state. Conversely, every quantum state can be represented as the

sum of two or more distinct states. The most popular example is Schrödinger cat,

which is closed in a box together with a poison vial and remains alive and dead at

the same time, until an observer opens the box and looks whether the vial broke or

not, making the cat collapse in either one of its two possibile states – alive or dead.

This picture contradicts our classical intuition, which is trained by daily experience

where objects of macroscopic size or mass follow classical laws, while quantum nature

is observed at small scales and energies of atoms and subatomic particles. At the

same time, the emergence of classicality from quantum mechanical microcosmos has

equally been a puzzle since the discovery of quantum mechanics.

In this direction, preparing a large object in a quantum state would be a powerful

resource and trigger ground-breaking investigations on foundations of physics, ranging

from the quantum-to-classical transition and collapse models to the interface between

quantum mechanics and gravity. One of the challenges is to isolate genuine quantum

features that are accessible in experiments, as several proposals to test the limits of

quantum theory rely on specific quantum control sequences.

However, the preparation of non-classical quantum states has been so far largely

limited by the stochastic nature that is common to quantum systems. Indeed, given

an object to be prepared in a specific quantum state via the interaction with a

subsidiary controlled system, correlations between the target and the bus arise such

that the state of the former probabilistically depends on the measurement of the

latter. Moreover, the larger the object is, the easier it correlates with its environment
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and the more difficult it is to isolate it in a well defined quantum superposition state.

With the exception of proof of principle examples with nanoscopic structures, there

was no known protocol to deterministically prepare a massive object in a quantum

state.

Optomechanical experiments in which a mesoscopic mechanical resonator interacts

with light open the possibility to investigate quantum states on the border between

quantum and classical worlds. The simplest framework consists of a cavity composed

by two mirrors, one of which is modelled as a harmonic oscillator, where a light

field is pumped from the outside and non-linearly interacts with the movable mirror

via radiation pressure. The arbitrary choice of the initial input state of the light

together with the cubic light-matter interaction allow the creation of a range of

quantum superpositions and entangled states between the cavity and the mirror. In

addition, the possibility to perform very precise interference measurements on the

field escaping from the cavity, e.g. homodyne and heterodyne detection, naturally

provides a precise readout of the system dynamics.

In this perspective, the first part of this thesis will be devoted to the study of non-

classical features arising from the motion of the mechanical oscillator. The comparison

with classical and semi-classical models will allow us to identify signatures of quantum

nature that could be used in a variety of different applications.

We will further our studies with the analysis of non-linearities other than the light-

matter interaction, such as mechanical anharmonicities, which are supposed to play

a fundamental role to bring out and enhance quantum properties. The protocol that

we present consists in displacing the mirror with a series of light pulses alongside

a loop in phase space and coincides with the scheme that has been suggested to

test more exotic topics, such as to measure deformations in commutation relations

predicted by quantum gravity. Within this same line of research, we are currently

working at exploiting the algebra of displacements in phase space (which is similar

to the one that characterises Pauli matrices) to present a gedanken experiment to

test contextuality with massive objects.

After these preliminary works where we investigate the quantum peculiarities of the

system and learn how to assess the non-classicality of the dynamics, we propose
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a scheme to create macroscopic quantum superposition states. By controlling the

optomechanical resonator through easy-to-achieve suitably shaped light fields pumped

with an external laser, we describe how to deterministically drive the mirror towards

a set of highly non-classical mechanical quantum states. For our purposes, we will

refer to quantumness as to the potential that an object driven in a superposition

state has to manifest quantum interference between the distinct component states. In

this context, we prove the achievement of maximum quantumness via a quantitative

estimator that could be practically used to keep track of the mechanical decoherence

of the mirror and to test the emergence of classicality and many other foundational

topics.

In terms of future perspectives, the ability to reliably prepare massive mechanical

states is not only a significant theoretical advance, but it opens up an avenue to

a series of opto-mechanical experiments both of fundamental and technological

nature. For example, the massive mirror could serve as continuous variable quantum

memory, or as the base brick to build new enhanced quantum technologies, for which

deterministic state preparation and measurement are an essential requirement and

which are expected to outperform the efficiency of todays classical architectures.

It is worth emphasising that while in this thesis we will always refer to the

practical case of an optomechanical resonator, the analysis and studies that we

conduct are not restricted to the mirror-cavity setup. Similar considerations and

conceptually similar control driving patterns can be successfully applied to a variety

of systems that share similar non-linear Hamiltonians such as atomic spin ensembles,

trapped atoms or levitated nanoparticles.

Boson Sampling and Integrated Circuits

Since the beginning of my PhD I have dedicated part of my studies to another

branch of research, providing theoretical support to experimentalists working with

integrated photonic circuits. Even though Boson Sampling and integrated circuits

are not going to be object of this thesis, it is worth to briefly summarise hereafter

the problems that I have addressed in the field so far.
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Quantum information science holds the promise of new technologies that can

overcome their corresponding classical implementations, with applications in com-

munication, sensing and computing. In particular, quantum supremacy, i.e. the

condition where a quantum device outperforms its classical counterpart, represents a

fundamental milestone to show the potential of quantum mechanics. In this context,

S. Aaronson and A. Arkhipov introduced Boson Sampling (BS) as a candidate to

reach the quantum supremacy regime for a specific computational problem. BS was

initially conceived as a quantum generalisation of Galton’s quinconce, which consists

of a vertical board with interleaved rows of pins. Balls are dropped from the top

and bounce either left or right as they hit the pins, being eventually collected into

one-ball-wide bins at the bottom. Instead of a single ball at a time, BS contemplates

a variety of possible inputs and replaces pins with a complex interference network

where bosons evolve through before being eventually sampled. The interest in the

problem arises since the final sampling can not be efficiently simulated by a mod-

ern computer, though it retrieves fundamental properties and information on the

evolution of the particles.

Our contribution to the field has been oriented towards the theoretical enlargement

of the domain of interest and applicability of BS through two different approaches.

On the one hand, we studied the generalisation of the problem to an exponentially

larger set of multiple random initial (input) states and introduced various sources

of boson losses in the model. These techniques have paved the way to a quantum

speedup of the problem complexity, and at the same time they have resolved the

issue of taking into account some unavoidable sources of experimental errors such as

erroneous preparation of the initial state or incorrect measurements and losses during

the evolution. On the other hand, we have studied the efficiency and validation of

various experimental approaches (optical networks, integrated circuits, quantum dot

sources, superconducting qubits and microwave photons), and we provided for the

first time a quantitative threshold that bounds the quantum supremacy regime.

Not only a thorough estimation of quantum supremacy is a pivot point for the

study of complexity classes and algorithmic efficiency, but it is also crucial because

in that regime classical control and correction systems are no longer reliable. Indeed,
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the certification of a BS machine is believed to be a computationally hard task itself.

Some effective ways that we provided to address this validation issue have enlightened

special features attributable to the bosonic nature and could lead to generalisations

for the solution of inverse problems. Up to date, BS has been demonstrated to

have applications in the solution of searching problems (e.g. search an item in

an unordered list) and in the efficient computation of molecular vibronic spectra.

For instance, spectroscopy is a key tool to probe molecular properties such as the

performance as solar cells or as dyes and to detect damage of deoxyribonucleic acid

molecules, leading to significant chemical and medical applications. Eventually, very

recent proposals to extend the BS problem to Gaussian states offer a formalism that

responds well to a large range of noise sources, which can be easily modelled as

Gaussian operations, and pave the way to further extensions of the problem.

Always looking at the potentialities of photonic systems, we also investigated the

advantages of mapping the transmission of information within Spin-chain models to

their bosonic counterparts. In particular, we have showed how to exploit the higher

dimensionality of the Hilbert space of the chain elements, that could be encoded in

qutrits and qudits in terms of Fock states, for the transmission of a larger amount of

information.

A summary of the topics discussed in the various chapters is presented below.

• The first chapter is a review of the state-of-the-art in optomechanics. We

present the general scheme of a Fabrit-Pérot cavity with a movable boundary

and introduce the most studied regimes, as well as a seminal proposal to probe

massive quantum superposition states.

• The second chapter is dedicated to the assessment of quantumness in op-

tomechanical experiments via the readout of the phase shift of the outcoming

light-field. The adoption of visibility in light interference fringes as a witness

of the creation of a quantum superposition state is challenged, and a new

explanation for the appearance of such losses and revivals of the visibility is

presented.
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• In the third chapter we investigate mechanical anharmonicities and present a

scheme that allows very precise measurements of the final state of the field.

The analysis is performed also in a fully classical picture to understand how

mechanical non-linearities affect the quantum-classical correspondence. We

conclude with a topological remark to link anharmonicity to a non-canonical

transformation of the Hilbert space.

• The fourth chapter is devoted to presenting a protocol for the deterministic

preparation of quantum states of the mirror through the engineering of suitably

designed driving patters. We show how to create squeezed as well as highly

non-classical massive superposition states. We provide evidence of the resilience

of the scheme to a series of possible experimental errors.

• The fifth chapter contains the final remarks as well as perspectives and proposals

for future investigations.
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Chapter 1

State of the art

1.1 Introduction

We devote this first chapter to reviewing the basis of quantum optomechanics,

specifically providing the state of the art on which we have grafted the research

presented in this thesis.

From suspended membranes and micro-mirrors to micro-rods and cold atoms, many

experimental groups have been working on a variety of approaches to couple me-

chanical objects to an optical field [1]. However, despite the range of different

implementation proposals, they all rely on the same conceptual scheme. We will start

by introducing such general model, composed of a macroscopic mechanical oscillator

with a reflective surface and a light field which is incident on it, to further focus on

the latest experimental proposals to prepare the system in a range of interesting

states. We will review the so called pulsed dynamics, which has been introduced in

different variations to create quantum superpositions of massive bodies [2], perform

tests of deformed commutation relations [3] and probe decoherence of macroscopic

objects [4, 5].

This first chapter serves as a starting point to address the novel research that has

been conducted in the field, which is presented in the second part of the thesis. There,

we will provide a detailed comparison between the study of optomechanics from

a classical and a quantum perspective, also revising some of the formerly adopted

19



indicators of quantumness. We will then analyse the role of mechanical non-linearities

in the dynamics and eventually propose a deterministic scheme to create and measure

highly non-classical macroscopic superposition states of a massive object.

1.2 The Model

An optomechanical cavity can be conceived as a Fabry-Pérot apparatus, consisting

of two highly reflective mirrors facing each other, which serve as boundaries for

the electromagnetic field inside the cavity. In particular, in this thesis we will

refer to a widely adopted implementation where the larger mirror is fixed while the

smaller is harmonically bounded to the longitudinal axis and moves under the effect

of radiation pressure (see Fig.1.1). This model of a deformable optical resonator

encloses a variety of experimental implementations and provides a well defined

starting point for theoretical studies. The movable mirror is modelled as a harmonic

oscillator with mass m and frequency ω. Its equilibrium position xm = 0 defines

the mean cavity length L, which in turn characterises the normal mode resonance

frequencies ωc(n) = πcn/L, with n ∈ N the mode number.

More generally, in a deformable cavity the frequencies are function of the oscillator

position and for small displacements can be approximated as

ωc(xm, n) =
πcn

L+ xm
' πcn

L

(
1− xm

L

)
. (1.1)

Eq.(1.1) is a direct consequence of boundary conditions imposed by classical electro-

dynamics to a stationary optical field in a cavity. This equation witnesses the Kerr

non-linearity induced by radiation pressure of the field on the mirror, which was

first observed by Dorsel et al. [6]. The length of the cavity depends on the optical

intensity and in turn the amount of radiation entering the cavity is a function of

the displacement of the mirror. Thanks to the high fidelity of todays accessible

monochromatic laser sources which are used to pump the cavity, we will assume

in the following, as in the majority of optomechanical schemes, that only a single

optical mode is excited.
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Figure 1.1: Conceptual scheme of the archetypical optomechanical setup. A control
driving laser with amplitude E is adopted to pump a deformable Fabry-Pérot cavity
whose resonance frequency at equilibrium is ωc and whose movable mirror is modeled
as a harmonic oscillator with mass m and frequency ω. When the light escapes the
cavity it is rotated by a λ/4 wave-plate, reflected by a polarizing beam splitter (PBS)
and measured interferometrically with respect to a reference beam.

Even though the relation between the resonance frequency and the position of the

mirror in Eq.(1.1) was derived by resorting to classical physics, it already provides a

good hint to obtain the quantised Hamiltonian of the system. It is not within the

scope of this thesis to discuss the rigorous procedure adopted for this purpose by Law

in Ref.[7]. Instead, we will naively proceed with an intuitive approach. We start by

applying canonical quantisation to the position in Eq.(1.1) xm → x0(b+ b†), where b

and b† are the mechanical annihilation and creation operators satisfying [b, b†] = 1 and

x0 =
√

~/(2mw) is the standard deviation of the mechanical ground-state width. We

then introduce the field operators a and a† and write the Hamiltonian of the system,

which corresponds to two harmonic oscillators representing the electro-magnetic field

and the mirror, where the frequency of the former depends on the position of the

latter 1

H

~
= ωc(xm)a†a+ ωb†b = 〈ωc〉a†a+ ωb†b− g0a

†a(b+ b†), (1.2)

with a†a (b†b) the number operator of the cavity (mirror). Eq.(1.2) is obtained after

having renormalized the zero point energy fluctuations of the optical field inside
1Hereafter we will always adopt a† , a (b† , b) to refer to the field (mirror) creation and annihilation

operators, choosing to drop the hat symbol "ˆ" for the sake of readability.
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the cavity with the ones in free space (in absence of the boundary conditions). The

difference between these two quantities is known as the Casimir force and will be

assumed to be negligible for sufficiently large L. This is an important conceptual

remark, as the outside field needs to be taken into account to maintain the consistency

of the theory.

In the following, we will usually refer to g0a
†a(b + b†) = Hint as the interaction

Hamiltonian (Hint) describing the non-linear light matter interaction. The quantity

g0 = 〈ωc〉x0/L is the coupling rate and has a key meaning in optomechanics. As we

shall discuss in details, indeed, Hint simultaneously induces a displacement of the

mirror proportional to the number of photons in the cavity and a phase shift of the

cavity optical field proportional to the mechanical displacement itself.

For a thorough understanding of the model presented so far we should now

investigate how the quantum interaction is related with the classical radiation

pressure and the standard parameters that define a Fabry-Pérot system. An important

quantity that accounts for the leakage of photons from the cavity is the decay rate

κ, defined as the inverse of photon lifetime τ = 1/κ = Nrt 2L/c, where Nrt = F ′/π
is the average number of round trips that light performs in the cavity and F ′

is the coefficient of finesse, which depends on the reflectivity of the mirrors (e.g.

F ′ = 4R/(1 − R)2 in case of identical mirrors).2 With these definitions at hand

we can write the (average) force acting on the mechanical mirror as a result of the

radiation pressure in more familiar terms

F = −∂H
∂x

=
2~ωcF ′〈a†a〉κ

πc
, (1.3)

where the cavity finesse linearly enhances the optical power transferred to the mirror.

In order to complete the picture of the general optomechanical framework, we

should include in the model an external driving source to generate the electromagnetic

field, e.g. a coherent laser entering through the fixed mirror (which is supposed to

have a certain transmittivity) (see Fig.1.1). The driving amplitude is defined as
2We have chosen the label "F ′", instead of the widely adopted character "F", to avoid overlapping

with the force acting on the oscillator, which will be denoted by "F". We recall here that the
coefficient of finesse is strictly related to the finesse F = π

√
R/(1−R), which corresponds to the

ratio between the free spectral range and the full-width half-maximum.
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E =
√

2Pκ/~ω0, where P is the laser power input and ω0 the laser driving frequency,

usually detuned from the cavity resonance. The Hamiltonian for a monochromatic

driving will thus read (setting ~ = 1)

H = ωca
†a+ ωb†b− g0a

†a(b+ b†) + iE(a†e−iω0t − aeiω0t) . (1.4)

This Hamiltonian fully characterises the unitary evolution of an optomechanical

system, though it does not account any noise or dissipative effect induced by the

environment. In particular, looking at the experimental state-of-the-art, we should

acknowledge that promising results have already been obtained in terms of controlling

the mechanical damping γm to build high-quality resonators with quality factor

Qm = ω/γm � 1. Conversely, many efforts are still dedicated to reducing optical

losses and achieving the so called resolved side-band regime, which is defined by the

condition κ� ω.

The common approach to describe the open quantum system dynamics is to adopt a

reference frame rotating at frequency ω0 and write the Langevin equations for the

field and the mirror by using the input-output theory for quantum damping [8, 9]

da

dt
= −i

[
ωc − ω0 − g0(b+ b†)

]
a+ E − κ

2
a+
√
κain ,

db

dt
= −i(ωb− g0a

†a)− γm
2
b+
√
γmbin ,

(1.5)

where ain and bin are noise operators associated with the input stochastic fluctuations.

They are assumed to have zero mean, i.e. 〈b(a)in〉 = 〈b†(a†)in〉 = 0, and to be delta

correlated, i.e. 〈ain(t)a†in(t′)〉 = δ(t− t′), with zero optical thermal occupation, and

〈bin(t)b†in(t′)〉 = (n̄+1)δ(t−t′), with n̄ = (exp[~ω/kBT ]−1)−1 the average occupation

defined by Bose statistics for a resonator at thermal equilibrium with the environment

at temperature T .

As we have already remarked through considerations arising from the classical picture,

the system of coupled equations in Eq.(1.5) displays a Kerr non-linearity since the

optical dynamics depends on the optical intensity rather than on the amplitude.

Because of this cubic non-linearity, an exact analytic solution for the motion has
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not been derived so far and a widely adopted approach has been instead to linearise

the differential equations [10, 11]. The procedure is effective in presence of strong

driving and consists in splitting the cavity field a into a fluctuating term δa and its

average coherent amplitude 〈a〉 = ᾱ =
√
〈a†a〉. The interaction Hamiltonian could

then be approximated as

Hint = −g0a
†a(b+ b†) ' −g0|α|2(b+ b†)− g0(ᾱ∗δa+ ᾱδa†)(b+ b†) , (1.6)

where the first term on the right hand side accounts for the average radiation pressure,

with |α|2 the mean intensity of the light field. It induces a shift of the equilibrium

position of the mirror by an amount +g0|α|2/ω with respect to the empty scenario.

Conversely, the second term, which is proportional to ∝ g0

√
〈a†a〉(δa+ δa†)(b+ b†),

represents the desired linearised interaction and can be solved analytically.

While the linearisation is sufficient to explain many facets of the light-matter interac-

tion (see Ref.[1] and references therein), e.g. entanglement generation, state transfer,

mechanical ground state cooling and squeezing, it fails to explain any non-Gaussian

evolution of the system. Besides, the main target of this thesis is to shed light on the

quantum (or deemed so) peculiarities of cavity optomechanics, which are achieved

precisely through the exploitation of the non-linear cubic interaction. We shall

broadly discuss how this requires the analysis of the quantum nature of the optical

light field entering the cavity and interacting with the mirror. Such exploitation of

the granular effects of the photon stream can be achieved in an experimental regime

characterized by a decay rate smaller than both the coupling and the mechanical

eigenfrequency, κ < g0 and κ� ω [12].

1.3 The measurement scheme

In the previous section we discussed the groundwork of the interaction between

an electromagnetic field and a reflective movable mirror in an optomechanical cavity,

suggesting that this would be at the core of the preparation and manipulation of
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quantum states of mechanical motion. We should now explain how to apply tools

from quantum optics to properly assess the distinctive features attributable to those

quantum states.

The measurement of a quantum state is a complex issue in quantum mechanics

and the collapse of the wavefunction as a result of a given measurement lies at the

basis of the theory. Quantum State Reconstruction (QSR) of individual systems,

i.e. the tomography of a quantum state, is a cornerstone of modern experimental

quantum optics and a considerable benefit in optomechanics consists in attaining

QSR of the mechanical motion by reading out the light leaking from the cavity.

This is possible thanks to the peculiar interaction that generates correlated states

of the field inside the cavity and the mirror. Indeed, since the cavity field and the

mirror are in a correlated state, performing a measurement on the former when it

escapes the cavity results in the probabilistic preparation of well defined mechanical

states. This technique has been defined as conditioning technique [13, 14], and it has

already been applied to achieve strong cooling via the well known Zeno effect [15].

Conversely, if at any point in time the system is in a separable state, then field and

Figure 1.2: Conceptual scheme of the archetypical homodyne measurement setup
for the light leaking from an optomechanical cavity. The coherent beam in input is
divided by a beam splitter BS: one arm is used to pump the cavity and the other
serves as a reference beam (LO) to perform interference measurements. Fringes are
extracted from the difference between photo-current intensities in the final detectors.
A polarising beam (PBS) and a λ/4 wave-plate are adopted to ensure that when
light escapes the cavity it is conveyed towards the measurement apparatus.
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mirror are uncorrelated and the latter is deterministically displaced in a given state.

In order to characterise this state, a protocol has been proposed where the cavity

is driven with a probe laser with frequency ω′0 = ωc − ω, the so called red detuned

driving, such that the mechanical state is swapped from the mirror to the light field

[11, 10]. A tomography of the original state of the mirror is eventually carried out

reconstructing the Wigner function of the radiation that escapes the cavity through

homodyne measurement [16]. This is a quasi-probability distribution that works as a

quantum moment-generating functional, and thus encodes all quantum expectation

values in phase space. From a mathematical perspective, the Wigner function of a

quantum state ρ is defined as the Fourier transform of its characteristic function:

W (α) = π−2
∫
d2β χ(β)e−2i(αrβi−αiβr), with χ(β) = Tr[ρ eβa

†−β∗a] and the subscript

r,(i) is used to indicate the real (imaginary) part of the object it is referred to.

Let us then briefly introduce homodyne detection, as it is a standard technique

consisting in measuring the probability distribution of the quadrature-field amplitudes.

Its convenience lies in the fact that it directly provides a complete characterisation

of the quantum state, which is achieved by reconstructing the Wigner distribution

and its density matrix [17, 18]. The procedure is based on Michelson interferometry

where the reference radiation, i.e. the local oscillator (LO), and the signal are derived

from the same source: this arrangement has the advantage of being insensitive to

fluctuations in the laser frequency (see Fig.1.2). The scattered light under scrutiny is

eventually mixed with the local oscillator on a beam splitter BS and the interference

fringes are measured subtracting the photo-current intensities on the final detectors.

This difference, renormalised by the sum of the intensities, is defined as the visibility

of the fringes and it is an important figure of merit, which will generally be a function

varying with time and depending on a set of experimental parameters. The phase of

the local oscillator φ is used to maximise the visibility. It can be shown (as we will

do in Chap.2) that this scheme mathematically corresponds to a projection on light

quadrature operators eigenstates, Xφ|x〉φ = x|x〉φ, where Xφ = xc cosφ+pc sinφ, the

pair of operators (xc, pc) denote respectively the position and momentum operators

for the cavity field and φ is the phase relative to the local oscillator.
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1.4 The quantum pulsed model

In the next two chapters we will consider the case where the continuous optical

driving is turned off right after it has generated a defined light wave-packet within

a very short time frame, i.e. a pulse. The system is then described by the time

independent Hamiltonian presented in Eq.(1.2) (with ~ = 1): H = ωca
†a+ ωb†b−

ga†aX, where for convenience we have introduced the new symbol for the coupling

g =
√

2g0 and X = (b† + b)/
√

2 is the quadrature operator of the mirror. As the

photon number nc = a†a is conserved and commutes with the whole Hamiltonian

H, it is a common procedure to choose a frame rotating at the cavity frequency ωc
and subsequently describe the system in the interaction picture without the free

evolution of the cavity. Defining H0 = ωca
†a and H ′ = ωb†b− ga†aX, the states in

the interaction picture can be written as |ψ〉I = e−iH0t |ψ〉s, where |ψ〉s is expressed
in the Schrödinger picture, and the evolution is induced by

H ′int = eiωca
†atH ′e−iωca

†at = H ′ , (1.7)

where we exploited the commutativity between H0 and H ′. For the sake of simplicity,

in the next two chapters when no time dependent driving is considered, we will

always choose this interaction picture and drop the subscript to the Hamiltonian,

relabelling H ′ → H.

To further investigate the pulsed model, we present hereafter its application to two

different experimental regimes: the bad and the good cavity regime. They are defined

respectively by low and high reflectivity of the fixed mirror, which directly affects

the interaction time a single pulse remains into the cavity.

1.4.1 Bad cavity regime

The bad cavity regime has been developed over the last few years and is charac-

terised by a very high decay rate (or, equivalently, very low finesse κ = πc/(2LF ′)),
i.e. κ � ω, so that the interaction lasts much less than a mechanical period and

light quickly escapes the resonator prior to a significant change in the position of

27



the movable mirror [19, 20]. In this case, the optimal input shape-resilient driving

has proven to have a Lorentzian spectrum, which in the time domain assumes the

form αin(t) =
√
κe−|κ|t. It is interesting to remark that from a quantum perspective

the width of the light pulse δτ = κ−1 needs to satisfy the condition δτ � 2L/c

to preserve the single mode approximation. Indeed, from Heisenberg uncertainty

relation we know that the corresponding frequency bandwidth is δω = K(δτ)−1

(with K a factor of order O(10−1) depending on the shape of the pulse). Since from

the resonance condition we have ωc = (c/2L)n, with n the excited mode, we need

δω � (c/2L) to ensure that the adjacent modes to the resonance are not excited.

Actually, interaction happens thanks to the fact that the bandwidth is larger than

the length of the cavity, 3 while the pulsed condition κ � ω guarantees that the

mechanical harmonic evolution can be neglected when solving the system dynamics.

The interaction is thus determined via the unitary operator [20]

Up = eiλa
†aX , (1.8)

with λ = g/κ the rescaled coupling constant. We observe that this operator is

a displacement of the mechanical oscillator along P with amplitude λ〈nc〉, i.e.

conditioned by the number of photons. We recall that the displacement operator is

defined by its action on the vacuum state as D(β) |0〉 = |β〉, where |β〉 is a coherent

state, and reads

D(β) = eβb
†−β∗b = ei

√
2(βiX−βrP ), (1.9)

where βr(i) is the real (imaginary) part of β, corresponding to the amplitude by which

the ground state is displaced along the P (−X) axis. The algebra of these objects

derives from the commutation relation [b, b†] = 1 between b and b†, and is specified

in the identity

D(β)D(γ) = ei Im{βγ∗}D(β + γ) = e2i Im{βγ∗}D(γ)D(β) , (1.10)
3As we are going to discuss, this is in contrast with the classical description of the phenomenon,

where actually no interaction takes place, though light kicks the movable mirror and comes back
and forth for Nrt times within a time interval τ .
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where Im{βγ∗} = β · γ = |β| |γ| sin θβ,γ corresponds to twice the area in phase space

spanned by the pair of displacements and θβ,γ is the angle between them.

It is clear at this point that a series of optical pulses inside the cavity, each of

which are strongly interacting for a very short time, would result in a sequence of

non commuting displacements of the mechanical oscillator with an additional extra

phase term depending on the area enclosed in phase space. In particular, we will see

that the angle between two subsequent displacements depends on the time elapsed

between the two interactions. Opportunely tuning the time intervals among a series

of pulses it is thus possible to drive the oscillator alongside predetermined polygons

in phase space (either open or closed). To understand how this happens we should

consider that as soon as light escapes the cavity, the harmonic oscillator evolves

freely and X and P trade themselves under the action of Um(t) = e−ib
†bωt

X(t) = X(0) cosωt+ P (0) sinωt ,

P (t) = P (0) cosωt−X(0) sinωt .
(1.11)

The evolution in Eq.(1.11) corresponds a rotation in phase space by an amount

ωt, which will result in an angle of equal amplitude between two subsequent dis-

placements separated by a time interval t. As an example, we present in Fig.1.3

a) the experimental scheme to draw a square by concatenating a series of four

interactions and as many mechanical free evolutions, the former corresponding to

the edges and the latter resulting in the (external) angle between two consecutive

displacements. Let us then look closer at the analytical expression that describes

this square evolution (see Fig.1.3b))

ξsquare = Up U
π/ω
m Up U

π/ω
m Up U

π/ω
m Up

= Up U
3π/ω
m U−2π/ω

m Up U
2π/ω
m U−π/ωm Up U

π/ω
m Up ,

(1.12)

where for the sake of a compact expression we have Um(t) = U t
m. We also know that

in general, given an unitary operator T , we have that T f({Yi})T † = f({T YiT †}) for
any function f , unitary T and set of operators {Yi}. It is then straightforward from

Eq.(1.11) to verify that the operators U t
m rotate the mechanical quadrature in Up by
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Figure 1.3: a) Schematic representation of the pulsed model. A sharp laser pulse
horizontally polarised enters into an optomechanical cavity, interacts with the movable
mirror and escapes remaining in a delay loop for an engineered time. The apparatus
composed by the polarising beam splitters (PBSs), the λ/4 wave plate and the
Electro-Optic Modulator (EOM) is used to rotate the polarisation before and after
each pulse. After the last interaction the EOM does not rotate the polarisation and
the pulse is measured interferometrically with respect to a reference field. b) Scheme
of a four displacement operation in the phase space of the mechanical oscillator.

an angle ωt, e.g. U−π/ωm eiλa
†aX U

π/ω
m = eiλa

†aP . Hence, we can rewrite Eq.(1.12) as

(within a final rotation on the mechanics U3π/ω
m )

ξsquare = e−iλa
†aP e−iλa

†aXeiλa
†aP eiλa

†aX = eiλ
2(a†a)2

, (1.13)

where we have used Baker-Campbell-Hausdorf (BCH) formula eAeB = eA+Be[A,B]/2

to compute the product of the exponentials (BCH would generally contain also all

possible combinations of nested commutators, though in the present case they all

happen to be zero). This expression is strictly related to the commutation rules of

mechanical quadrature operators and as a whole it consists in a separable operator

acting only on the optical field and leaving the mechanical state unchanged. This

is a general property that applies to any evolution resulting in a closed polygon in

phase space, which makes these transformations particularly significant since not

only they leave the system in a separable state, but they are also noise resilient,

being insensitive to the initial conditions of the mirror (e.g. mechanical thermal

noise).

The separability of the system at the end of the evolution is the most significant

30



advantage of drawing closed loops in phase space, being an essential requirement

to perform deterministic measurements on the mirror and to prevent losses of

quantum coherence (which would be amplified by the presence of residual light-

matter correlations). Indeed, as we have already mentioned, the correlations between

the mirror and the optical field that arise during the interaction generally result in a

mixed quantum state to be attributed to each system alone, preventing deterministic

quantum preparation and measurement.

Eventually, let us anticipate a general property of ξloop, i.e. operators that describe

closed loops: the phase acquired by a state undergoing the evolution in Eq.(1.13)

always corresponds to the area drawn in the mechanical phase space when the system

is initially assumed in its ground state. This holds for any initial state of mirror

and is an important consequence of the Berry-like nature of the phase that we will

discuss in details in the next chapter.

As we explained in Sec.1.3, an effective procedure to extract information on the

operator in Eq.(1.13) is to perform an interference measurement between the light

escaping the cavity after the fourth interaction and a reference field. This allows the

reconstruction of the projection on light quadratures 〈Xφ〉 = (〈a†〉eiφ + 〈a〉e−iφ)/21/2

and finally perform QSR. From a theoretical perspective it is thus sufficient to

compute the mean value of the optical field 〈a〉 after applying the displacement in

(1.13) on the initial state of the system. As a first example, we take the field initially

in a coherent state |α〉, which can be decomposed in the basis of energy eigenstates

|j〉 as |α〉 = e−|α|
2/2
∑

j α
j/
√
j! |j〉, and the mirror in a generic, unspecified state. We

obtain

〈α|ξ†square a ξsquare|α〉 =〈α|aeiλ2(2a†a+1)|α〉

=e−Np α
∞∑
j=0

N j
p

j!
eiλ

2(2j+1)

=α e−Np(1−cos 2λ2)ei(λ
2+Np sin 2λ2) ,

(1.14)

where we have used the relation

eiSf [(a†a)k]ae−iSf [(a†a)k] = ae−iS(f [(a†a+1)k]−f [(a†a)k]) (1.15)
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and substituted |α|2 = 〈nc〉 = Np. Eq.(1.14) shows that both the modulus and the

phase of the field are affected by the non-linear interaction. On the one hand, the

coherent amplitude α is exponentially suppressed by the number of photons, i.e.

the intensity of the light field. This is directly attributable to the Kerr non-linear

effect experienced by the field when entering into the cavity [21]; for small coupling

the reduction can be estimated by expanding the cosine function with the factor

∼ e−2λ4Np . On the other hand, the coherent field acquires a phase ϕq = λ2+Np sin 2λ2,

which scales linearly with the number of photons and the square of the rescaled

coupling λ. In particular, as it emerges from Eq.(1.15), the offset term λ2 comes

exclusively from the commutation rules of the field. We anticipate here that both

the visibility and the phase shift carry important information on the system.

1.4.2 Good cavity regime

The good cavity regime is defined by the condition κ� ω, i.e. when the decay rate

is smaller than the mechanical frequency. redHere a substantial amount of the input

pulse remains in the cavity for a timescale that is comparable with the mechanical

period thanks to the higher coefficient of finesse. The exact solution for the dynamics

was firstly illustrated in Refs. [22, 2], where a detailed analysis is provided under

the hypothesis to initially prepare the optical field in a given state and subsequently

turn off the driving during the interaction. The assumption in this case is to operate

in the so called resolved side-band regime, where optical damping and photon leakage

from the cavity are negligible over an entire mechanical period and light and mirror

continuously interact until the field escapes the cavity. A major theoretical advantage

is that the time independent Hamiltonian H = ωb†b− g0a
†a(b† + b) is diagonalisable

and one can find the evolution operator U(t) = exp(−iHt) that fully describes the

system.

Hereafter, we will go through the procedure presented in Refs.[22, 2] which starts by

introducing the unitary operator

T = e−
g0
ω
a†a(b†−b) (1.16)
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to suitably transform U(t). In particular, we should consider the transformations

T bT † = b+
g0

ω
a†a , and

T a†aT † = a†a , leading to

T U(t)T † = e−ib
†b ωtei

g20
ω2 (a†a)2 ωt .

(1.17)

Defining k = g0/ω and multiplying the last expression on the left by T † and on the

right by T , so that to regain U(t), we get

U(t) = ei(ka
†a)2ωteka

†a(b†−b)e−ib
†b ωte−ka

†a(b†−b) . (1.18)

Multiplying on the right by the identity 1 = eib
†b ωte−ib

†b ωt, we swap the last two

exponentials to move to the right the operators that act on the mirror. We obtain

U(t) = ei(ka
†a)2ωteka

†a(b†−b)e−ka
†a(b†e−iωt−beiωt)e−ib

†bωt , (1.19)

where we have used e−ib†bωt[a†a(b† − b)]eib†bωt = a†a(b†e−iωt − beiωt) (see Eq.(1.15)).

Finally, by applying Baker-Campbell-Hausdorff formula we can combine the third

and fourth exponentials and retrieve the compact form

U(t) = eik
2(a†a)2(ωt−sinωt)eka

†a(ηb†−η∗b)e−ib
†bωt, (1.20)

with η = 1− e−iωt. We could think of Eq.(1.20) as the sequential application of three

operators. When U(t) is applied to a product state of the cavity and the mirror, it

first rotates the mechanical state by an angle ωt, then (with the term in the middle)

it displaces it by ka†aη, creating light-matter correlations, and finally it non-linearly

acts on the cavity field alone.

Importantly, after a closed loop lasting a mechanical period the evolution is sepa-

rable and results in U(T ) = exp(2πik2(a†a)2), where we have neglected the term

exp(−i2πb†b) corresponding to the identity. As in Eq.(1.13), the expectation value of

the final phase is related to the area drawn in the mechanical phase space assuming

the mirror initially in the ground state, i.e. 2πk2〈(a†a)2〉. We will recover the same
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result in the next chapter through a different approach.

Let us now look closer at the physics behind the continuous interaction and use

the operator U(t) in Eq.(1.18) to determine the evolution of an initial product state

|Ψ(0)〉 = |α〉f ⊗ |γ〉m, with |α〉f and |γ〉m respectively a coherent state of the field

and the oscillator. We obtain

|Ψ(t)〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
eik

2n2(ωt−sinωt)eikn[γR sinωt+γI(1−cosωt)]|n〉c ⊗ |Γn(t)〉m , (1.21)

where |n〉c is a Fock state of the cavity field, |Γn(t)〉m = |γe−iωt + kn(1− e−iωt)〉m a

displaced coherent state of the mechanical oscillator, γR and γI respectively the real

and imaginary part of γ.

Deriving the mean values of the oscillator position and momentum we reconstruct

the path that the mirror draws in its phase space alongside the evolution. Computing

the expectation values of mirror creation and annihilation operators

〈Ψ(t)| b |Ψ(t)〉 = γe−iωt + kNp(1− e−iωt) , (1.22)

one gets the average values

〈X(t)〉 =
√

2γR cosωt+
√

2γI sinωt+
√

2kNp(1− cosωt) ,

〈P (t)〉 =
√

2γI cosωt−
√

2γR sinωt+
√

2kNp sinωt .
(1.23)

As shown in Fig.1.4, Eqs.(1.23) define a harmonic evolution in the quadrature

phase space, i.e. a circle, shifted by
√

2kNp along X and with initial conditions

〈X(0)〉 =
√

2γr and 〈P (0)〉 =
√

2γI and energy (amplitude) E(t) = |γ|2+2(kNp)
2(1−

cosωt) + 2kNp[γI sinωt− γR(1− cosωt)].

Second order moments also provide important information. We plot in Fig.1.4

the product ∆X2(t)∆P 2(t) over a mechanical period as a quantifier of the quantum

uncertainty associated with the mirror dynamics. While Heisenberg principle is

always satisfied, the uncertainty oscillates and increases when mirror and light are

correlated, and reaches the zero point level ((∆X)2 = (∆P )2 = 1/2) at every period,

having a local minimum.
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Figure 1.4: On the left: representation of the mirror dynamics (〈X(t)〉,〈P (t)〉) in the
mechanical phase space with R = 2(|γ|2 +N2

p +Np(1− 2γRk). On the right: energy
of the mirror E(t) (blue) and Heisenberg quantum uncertainty ∆X2(t)∆P 2(t) (red)
over an entire mechanical period (theoretical parameters are set as: γR = γI = 0.5,
k = 0.1 and Np = 10).

Eventually, we conclude the discussion computing the phase shift imparted to

the light field after an interaction lasting a time t. In the case of a correlated state

as the one represented by Eq.(1.21), we get the mean value of the optical field as

〈Ψ(t)| a |Ψ(t)〉 = Tr[a ρc(t)], where ρc(t) = Trm [|Ψ(t)〉 〈Ψ(t)|] is the reduced density

matrix of the cavity at time t, obtained after having traced out the mechanical

degrees of freedom. The acquired phase shift reads

ϕq(γ, t) = 2k [γR sinωt+ γI(1− cosωt)] + PQ(t) +Np sin [2PQ(t)] , (1.24)

with PQ(t) = k2(ωt− sinωt). As anticipated for the case of closed polygons, also in

the continuous regime we recover the phase independence of the initial conditions

when the loop in phase space is closed: ϕq(γ, T ) ≡ ϕq(T ) = 2πk2 +Np sin[4πk2]. This

is a fundamental property that witnesses that any proposed experiment involving

closed loops does not require specific initial mechanical state preparation (e.g. strong

cooling). We will show in the next chapter how this plays a crucial role in the

assessment of the quantum nature of the interaction.
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1.5 Marshall et al. proposal

Prior to a thorough discussion on the features of the mechanical motion that

can be deduced from the measurement of light phase shifts, we deem it appropriate

to conclude this introductory review chapter by presenting the paper by William

Marshall et al. "Towards Quantum Superpositions of a Mirror" [5]. Indeed, taking

inspiration from the setup that was firstly proposed in Ref.[2], Marshall et al. argue

that the visibility pattern associated with the interference measurement of light can

be a tool to test the creation of superposition states of the mirror, and subsequently

observe their decoherence.

The proposal adopts a Michelson interferometer conceptually similar to the one in

Fig.1.2, that we represent in a slightly different version in Fig.1.5 for better clarity.

Differently from the coherent pulses that we have used so far, the adoption of single

photon sources is key to their gedanken-experiment, which also relies on a resolved

Figure 1.5: Proposed conceptual apparatus by Marshall et al. in Ref.[5]. A |ψ+〉
Bell state is created impinging a single photon on a Beam Splitter (BS). The two
outputs are sent respectively to a deformable cavity with a moving ending mirror (B)
and a stationary one (A) with the same equilibrium length. When the single photon
escapes the two resonators it interferes for a second time on the BS, whose outputs
(C and D) are eventually interferometrically measured. The phase shift φ is part of
the measuring scheme to maximise on the interference fringes.

36



sideband regime with very strong coupling g/ω & 1.

Let us then introduce the experimental apparatus, which is composed of two identical

cavities arranged at the end of each arm of the interferometers. While cavity in arm

A has a fixed reflective boundary, the one in arm B is supposed to have a movable

ending mirror (which will be modelled as a harmonic oscillator). The latter is cooled

down to its ground state and a single photon is injected in the interferometer so that

an entangled state |Ψ(0)〉 = 2−1/2(|0〉A |1〉B + |1〉B |0〉A) |0〉m between the two arms is

produced. After the interaction with the cavities, the photon exits the interferometer

from outputs C and D, and the whole system is in the superposition state

|Ψ(t)〉 =
1

2

[
|1〉C |0〉D (|0〉m + iei(PQ(t)−Φ) |Γ(t)〉m)

+ |0〉C |1〉D (i |0〉m + ei(PQ(t)−Φ) |Γ(t)〉m)
]
,

(1.25)

where PQ(t) = k2(ωt − sinωt) and Γ(t) = k(1 − e−iωt). Repeating the experiment

many times, we define with IC(D) the probability of detecting the photon in arm

C(D) (exploiting the similarity with the light intensity that is measured on the

corresponding detector when Gaussian states are used). We then name I = IC − ID,
such that the visibility for a single photon experiment can be expressed as the ratio

νsp = (Imax− Imin)/(Imax + Imin), where I is maximised and minimised by acting on

the phase Φ:

νsp = e−
|Γ(t)|2

2 = e−k
2(1−cosωt). (1.26)

Eq.(1.26) clearly shows that the visibility of the interference fringes displays an

oscillatory behaviour, being exponentially suppressed by the square of the coupling

and exhibiting revivals at each mechanical period. This characteristic has led

the authors in Ref.[5] to infer that "the revival demonstrates the coherence of the

superposition state that exists at intermediate times". Conversely, "if the environment

of the mirror "remembers" that the mirror has moved, then, even after a full period,

the photon will still be entangled with the mirror environment, and thus the revival

will not be complete". As a conclusion, the setup is eventually proposed as a tool to

measure the decoherence of the mirror.

In the next chapter we will show that the preparation of the apparatus in a non-
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classical state, i.e. ground state mechanical cooling and ultra-strong optomechanical

coupling g > ω, is an essential prerequisite to assess any form of decoherence. We

present a very similar experimental proposal adopting classical coherent light in

input. While no entanglement is generated in this way, still, we demonstrate that

thanks to the particular optomechanical interaction, the mirror is projected in a

superposition of coherent states with different amplitudes and the same figure for

the visibility is recovered. On the other hand, we show that an initial thermal state

of the mirror affects the visibility in a manner that can be fully explained from

a classical perspective, so that loss and revivals are obtained without resorting to

quantum mechanics.
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Chapter 2

Probing the Quantumness in Cavity

Optomechanics

2.1 Introduction

The content of this chapter (with the exception of the last section) is part of a

research that I conducted and shared in equal proportions together with a colleague

at Imperial College, Federico Armata. More specifically, the topics covered in this

chapter were the main object of a paper that has been published in Physical Review A

with the title "Quantum and classical phases in optomechanics" [23].

As a first step towards the study and manipulation of macroscopic quantum

states, we review in this chapter the theoretical proposals and analyses presented in

the state of the art, with the aim of identifying the truly quantum peculiarities of

optomechanical cavities. The interest in the proper assessment of the quantumness in

optomechanics stems from the fact that cavities are regarded as an optimal framework

for comparisons between the predictions of classical theory [24] and their quantum

counterparts [22, 2, 4], providing a thrilling arena to study the quantum-to-classical

transition [25, 26, 27], collapse and decoherence models [28, 29, 30] and the interface

between quantum mechanics and gravity [3, 31]. We will therefore devote the next

two chapters respectively to the investigation of mechanical non-linearities and the

deterministic creation of macroscopic quantum states.
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We will see how the classical radiation pressure force due to the reflection of light on

the mirror is able to explain the system dynamics under a wide range of achievable

experimental conditions. Besides, we should also argue that such quantum-classical

correspondence is not restricted to the specific optomechanical interaction propor-

tional to ∝ gncX. It is indeed a common feature of many two-body Hamiltonians

where the displacement of one body (e.g. the mirror in our case) is conditioned by

the state of the other (e.g. the cavity field) [32, 33, 34].

Deeper ongoing investigations consider this correspondence from a broader, topolog-

ical perspective, looking at the link between the geometric origin of the quantum

phase associated to the state of the system and the measurable classical optical

phase shift of the light, i.e. the Hannay angle. The former derives from the non-

commutativity of X and P [35], while the latter arises from the non-abelian character

of the operations that are implemented, e.g. displacements in phase space. The

phase acquired by a quantum state alongside its evolution is a topic of great interest,

being an important carrier of information and exhibiting non-trivial behaviour [35].

It has been exploited in various contexts (see [36] and references therein) and has

been considered as a candidate for quantum gate operations in quantum information

processing [37, 38, 39, 40, 41, 42, 43].

As we have already shown, an important advantage in optomechanics is that the

phase shift imparted to the light field during the interaction retrieves information on

the quantum phase relative to the quantum superposition state that jointly describes

the system of the cavity field and the mirror. As the optical phase can be easily

read-out through interference measurements of the out-coming radiation, it has been

reckoned as the ideal witness to measure quantumness in the motion of a mechanical

oscillator [5, 3, 31].

We start this chapter by presenting a radically different description of the optome-

chanical system dynamics through classical mechanics and offering further insights

on the transition from a bad to a good cavity regime. We then concentrate on the

seminal work proposed by Marshall et al. [5] that was presented in Sec.1.5, where

the authors suggested to study the creation and decoherence of superposition states

of the mirror through visibility loss and revival of the field interference fringes. Key
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to their proposal is the visibility recovery, which has always been of fundamental

importance in physics, being explained by the quantum recurrence theorem which

generalises Poincaré lemma1 to quantum states [44, 45, 46]. Following this route,

an intriguing problem is to clarify what can be predicted on the interaction of light

fields and macroscopic objects by using only classical mechanics.

To this extent, we will show that the quantum and classical phases acquired by

the field after the interaction with the mechanical oscillator coincide within today’s

widely used experimental parameters, with the exception of an offset, which we thus

identify as the pure signature of quantumness. In addition, we find that both in the

classical and in the quantum description the phase change becomes independent of

the initial state of the oscillator at some interaction times where field and mirror are

uncorrelated. As a direct consequence, the loss and revival of the visibility pattern

can be recovered through a completely classical approach, which in turn implies that

the visibility alone cannot be considered as a witness of quantum dynamics, i.e. as a

proof of non-classical correlations between light and matter. Conversely, the classical

analysis will allow us to attribute the visibility loss and revivals to an ebb and flow

of information, which are related to a statistical uncertainty on the system initial

condition.

2.2 The classical pulsed model

An optical field that reflects many times off a movable boundary gets a phase

shift that is due to a doppler shift and a displacement of the mirror [47, 48]. More

specifically, the phase associated with a single reflection of a field on a movable mirror

is proportional to the product of the field wavevector kf and the mirror position.

Indeed, let us define with γ = (c− v)/(c+ v) ' 1− 2v/c the Doppler coefficient for

the reflection from a boundary moving with velocity v � c. The phase shift for a
1In Hamiltonian mechanics Poincaré lemma states that: A system evolving in a bounded phase

space will occupy a state arbitrarily close to its starting point after a sufficiently long time.
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planar wave can be written as

dϕc
dt

= −(1− γ)ckf → ϕc(x) = 2kf

∫
vdt = 2kf

∮
dx , (2.1)

where the path-integral extends over all the positions occupied by the reflective

mirror during the interaction.

In the bad cavity regime, the interaction described by Up in Eq.(1.8) can be

classically depicted as a light kick transferring a momentum I = 2Nrt(E0/c) to the

mechanical oscillator, where E0 is the energy of the input pulse. This could be

naively explained if we consider that light remains inside the cavity for a time τ ,

during which it performs Nrt = cτ/2L round trips, and at each reflection it transfers

a momentum 2E0/c
2.

Since in the bad cavity regime the interaction time is assumed to be much smaller

than the mechanical timescale, τ � ω−1, the mirror position is considered constant

and a single reflection at position x̃ gives

ϕc(x̃) = 2kf

∫ τ

0

x̃dt = 2kfNrtx̃ , (2.2)

where time can be naively discretised by imposing the relation dt = 2L/c. The

enhancement Nrt = F ′/π arises if we consider that the interaction is composed of

multiple reflections taking place within the short interval τ .

Following Eq.(2.2), after a single kick the field picks up a global phase shift

depending on the reference frame, which does not contain any extractable, frame

independent information on the performed displacement. This is in agreement with

the discussion in Sec.1.4.1 on the bad cavity regime, where a single displacement pro-

jected the system in a correlated state of mirror and light, without being measurable

independently of the initial state. Conversely, it is interesting to extend this classical

scheme to closed loops generated by multiple interactions. We use the 4 kicks case
2A rigorous solution of the dynamics induced by light reflection would also take into consideration

the conservation of energy. The field frequency is in fact red-shifted after each "kick" and the
momentum acquired by the mirror should be conveniently rescaled. However, the overall correction
on I given by the exact solution scales as δI/I = O(I/(mc)) ∼ 10−8 and can thus be neglected.
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as specimen

ϕc = 2kfNrt

3∑
j=0

x(tj) , (2.3)

where x(tj) are the classical positions of the mirror at times tj = jπ/(2ω), before

the (j + 1)th pulse enters the cavity. For a better understanding of the dynamics,

we show in Fig.2.1 the evolution of the mirror in the classical phase space, together

with the related quantum operators in the quadratures phase space. Each kick

corresponds to an instantaneous variation of the mechanical momentum, i.e. to a

vertical displacement in the classical phase space, while the harmonic evolutions are

represented by blue circle arcs with amplitude π/2 (they are all supposed to last

a quarter of period). Starting with the mirror at rest in a reference frame where

x(0) = 0, the first kick transfers a momentum I, such that after a time t1 = T/4

it moves to x(t1) = I/(mω) with instantaneous zero velocity p(t1) = 0. A second

kick comes in the cavity with the same momentum I and increases the energy of

the oscillator, which is found at t2 in the same position x(t2) = x(t1), though with a

Figure 2.1: Four pulses cyclic evolution of the mirror. a) Motion in the classical phase
space where the red arrows correspond to the instantaneous kicks each transferring a
momentum I and the blue circle arcs the harmonic evolutions lasting a quarter of
period. For the sake of a compact expansion we have xj = x(tj), with x0 = x3 = 0
and x1 = x2 = I/(mω). b) Quadrature mechanical phase space: the displacements
are represented by the same red arrows and the harmonic evolution within each
interaction corresponds to the external angle. The two plots are related through the
dimensional identity I =

√
~ωm〈λn〉. (The figure has been readapted from Ref.[23].)
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negative momentum −I. The third kick instantaneously stops the mirror though

the remaining energy makes it evolve harmonically for another quarter of period,

when, in correspondence with the origin, it is definitely halted by a fourth kick.

Substituting in Eq.(2.3) the positions at which the four reflections take place we

obtain the classical phase

ϕc = 2kfNrt 2 x
(π
ω

)
= 4kfNrt

I
mω

, (2.4)

where the linear scaling with respect to the light intensity is distinctive of a (classical)

Kerr effect. This phase dependency on the intensity of the electromagnetic field,

rather than its amplitude, plays a key role in the effectiveness of the classical

description as well as in the quantum-classical parallelism. Hence, using Planck’s

law we express the transferred momentum in terms of the electromagnetic frequency

and the number of incident photons to compare Eq.(2.4) to the quantum case.

Substituting E0 → Np~ωc, we get ϕc = 2λ2Np which indicates how for today’s

state-of-the-art experimental parameters, i.e. small coupling and large number of

photons [49, 1], we recover the classical limit of the quantum phase and ϕq → ϕc.

The discrepancy between the two pictures becomes instead substantial for large

coupling and small Np, when quantum features of the system are strongly enhanced

[50, 51, 52]. It is worth noticing that the small coupling limit (ϕq → λ2(2Np + 1))

reveals quantum peculiarities due to the quantization of the field: i.e. the +1 term

coming from field-bosonic commutation rules. Within such a feasible experimental

regime, the main difference between ϕq and ϕc is an offset depending on λ2. Since

this offset can not be predicted with semi-classical descriptions where either the light

or the mirror is quantised and the other is treated classically (see AppendixA for

further details on semi-classical pictures), it represents the most accurate measurable

signature of the quantum nature of the light-matter interaction. Indeed, one could

engineer an experiment to measure the phase as a function of the photon number per

pulse Np and fit the resultant data to obtain an estimate for λ2. Counter-intuitively,

a large optomechanical coupling is not strictly necessary for the purpose, as long

as the phase is detected with high precision. Indeed, uncertainty is experimentally
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mainly amenable to the quantum noise of the coherent state probe, which scales

approximately as δϕq ∼ 1/
√
NpNr, where Nr is the number of experimental runs.

Current experiments that operate in the range 10−5 . λ . 10−1 and Np ∼ 108

[53, 54] would thus satisfy δϕq < λ2 and provide a good estimate for the quantum

offset.

2.3 Multiple pulses: towards the continuous inter-

action

In the last section we have presented a parallelism between classical and quantum

pictures when dealing with the pulsed driving of a bad cavity introduced in Sec.1.4.1.

Aiming to derive an analogous equivalence for the good cavity regime, we now

generalise the above argument and extend the correspondence between ϕq and ϕc
to a generic number of kicks N , drawing N -sided polygons in phase space. This is

achieved by reducing the waiting time between two consecutive pulses in Eqs.(1.11)-

(1.12) and tuning it to ∆t = 2π/(Nω). We display in Fig.2.2 the evolution for six and

eight kicks in phase space of the mechanical degree of freedom. Pulses correspond to

straight displacements while harmonic evolution between two subsequent interactions

Figure 2.2: Quadrature phase space representation of a multiple pulse interaction
with six (a) and eight (b) kicks. Red arrows depict the displacements induced by the
short interaction with the strong light pulses. The length of the arrows is related to
the intensity of the transferred momentum by I =

√
~ωm〈λn〉. Mechanical harmonic

evolutions within each interaction lasting T/6 (a) and T/8 (b) correspond to the
external angles.
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results in a rotation in phase space by θ = 2π/N .

Quantum scheme. For this scope it is useful to define the general displacement

operator ξN which generalises Eq.(1.13) and corresponds to a closed trajectory in

the phase space of the oscillator with the shape of a regular polygon of N sides of

amplitude η = λnc

ξN =
N−1∏
j=0

eiη[X cos(θj)+P sin(θj)] , (2.5)

with X cos(θj) + P sin(θj) = X(θj) from Eq.(1.11). This expression can be analyti-

cally calculated with a generalisation of first order Baker-Campbell-Hausdorff (BCH)

formula to the product of N exponentials as

N−1∏
k=0

eAk = exp

[
N−1∑
k=0

Ak +
1

2

∑
k>j

[Ak, Aj]

]
, (2.6)

where the sum is extended over all the ordered combinations of couples of exponentials,

and where we exploited the fact that since [Ak, Aj] is a number, all other possible

nested commutators in BCH expansion are zero. As expected in case of closed loops,

the result does not contain any operators of the mechanical oscillator and can be

written in a compact form as

ξN = eiΦ(η,N ), (2.7)

where 〈Φ(η,N )〉 = 1
4
〈η2〉N cot(π/N ) is the area mapped out by the sequence of

displacements in phase space. We repeat the same algebraic steps performed in

Eq.(1.14) to extract the phase and visibility of the outcoming field that is used to

probe the mechanical dynamics. Assuming the incoming radiation initially in a

coherent state |α〉f , we find the mean value of the optical field when the operator in

Eq.(2.7) is applied

〈a〉 = 〈ψ0|ξ†Na ξN |ψ0〉 = α e−Np(1−cos 2c)ei(c+Np sin 2c) , (2.8)

with c = (λ2/4)N cot(π/N ). The first exponential factor on the right hand side of

Eq. (2.8) represents the amplitude of the outcoming radiation, while the second
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characterises the phase shift that we rewrite for clarity

ϕq =
λ2

4
N cot

( π
N

)
+Np sin

[
λ2

2
N cot

( π
N

)]
. (2.9)

As for the pulsed and the continuous regimes discussed in Sec.1.4.1-1.4.2, Eqs.(2.7)-

(2.8) are independent of the initial state of the mirror, being referred to an evolution

lasting an entire mechanical period and performing a closed loop in phase space.

We observe from Eq.(2.9) that the phase shift, as well as the quantity Φ(η,N ) in

Eq.(2.7), scales quadratically in the number of kicks, being N cot(π/N ) ∼ N 2/π for

large N . This is consistent with the geometric representation in Fig.2.2, where the

area enclosed in phase space scales quadratically in N if one keeps the side of the

polygon constant and increases the number of sides. However, such regime does not

have a meaningful physical interpretation, since for arbitrary N it would lead to

arbitrarily large displacements and energies, outside the scope of applicability of the

interaction Hamiltonian Hint [7] and of the pulsed-bad cavity regime (Nrt > 1).

Instead, one obtains feasible results by conveniently rescaling the transferred

momentum while reducing the waiting time between two pulses, and thus increasing

the number of pulses applied in one mechanical period. To understand the procedure,

let us start from the end and take the limit N → ∞: the evolution naturally

approaches the case of a continuous interaction given by the unitary operator in

Eq.(1.20), i.e. when light remains in the cavity for the entire mechanical period.

Interestingly, as we have already mentioned, this corresponds to a different regime,

long-pulsed or continuous, characterised by optimal cavity reflectivity and negligible

decay κ� ω. The connection can be explored by modelling the continuous interaction

as a series of kicks, each followed by a very short harmonic evolution. This is indeed

the very general assumption at the basis of the Suzuki-Trotter expansion for a unitary
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operator, which in our case reads

e−
i
~Ht = lim

N→∞
(e−

i
~H0t/N e−

i
~Hintt/N )N

= lim
N→∞

N−1∏
j=0

(e−
i
~H0tj/N e−

i
~Hintt/N e−

i
~H0tj/N )

= lim
N→∞

N−1∏
j=0

eignc[X cos(θj)+P sin(θj)] tN .

(2.10)

It is straightforward to notice that Eq.(2.10) corresponds to the limit N → ∞ in

Eq. (2.5), with the rescaling η → ηt/N . This is a counterintuitive identity between

two opposite physical regimes. While the continuous dynamics is obtained in the

good cavity regime, when the reflectivity of the mirror is very high and light remains

in the cavity for a long time, applying the rescaling in Eq.(2.5) implies a very poor

mirror reflectivity with a finesse inversely proportional to N . Here, light interacts

for a very short time t/N & 2L/c, escapes the resonator and is equally rapidly

re-injected. This last assumption will prove to be essential to retrieve the good cavity

regime. The mathematical limit for N →∞ can be computed analytically and for

t = T = 2π/ω gives

e−iH
2π
ω = ei

πg2n2
c

ω2 , (2.11)

which corresponds to the unitary operator in Eq.(1.20) evaluated after a mechanical

period and describing a circle with radius g〈nc〉/ω in phase space.

Classical scheme. From a conceptual point of view, it is straightforward to extend

the model that regulates the phase shift imparted to the light in Eq.(2.3) to a general

number of light kicks N occurring at times tj = 2jπ/(Nω)

ϕc = 2kfNrt

N−1∑
i=0

x(ti) . (2.12)

During the time between two consecutive kicks the movable mirror freely evolves

accordingly to the equations of motion of a harmonic oscillator x(t) = x(tj) cosω(t−
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tj) + p(tj)/(mω) sinω(t− tj) with t ∈ [tj, tj+1]. In this period of time a waiting loop

should be engineered to delay the light pulse before it is re-injected in the cavity. The

length of such loop should linearly decrease with N , as the time window corresponds

to the external angle between two subsequent displacements in phase space (i.e. two

subsequent sides of the polygon).

The general idea is that for a large N we will progressively go towards a regime with

a lower finesse and where the number of round trips Nrt that light performs in the

cavity at each interaction decreases. This physically corresponds to a rescaling of

the transferred momentum I → I/N and mathematically matches the rescaling of

the interaction in Eq.(2.10) g〈nc〉τ → g〈nc〉τ/N that arises with Trotter expansion.

Without losing generality, we suppose the mirror initially at rest in (x = 0,

p = 0)3 and plot in Fig.2.3 a loop of six kicks in the phase space of the harmonic

oscillator and compare it with the four kicks case. The solution of such discrete

dynamics for a general number of kicks N is quite a pedantic arithmetic problem

that requires a non-trivial parametrisation of the motion in phase space. We proceed

through geometric considerations and swap to the polar coordinates (R(tj), ϑ(tj)) to

describe the state of the mirror at time tj , just before the (j + 1)th kick (see Fig.2.3).

At the first interaction we have R(t0) = 0 and ϑ(t0) = 0 while, for the following

kicks, i.e. j = 1, ..., (N − 1), we have

R(tj) =
√
ζ2 + 2R(tj−1)ζ · cos (ϑ(tj−1)) +R(tj−1)2

ϑ(tj) =
2π

N
+ arcsin

[
R(tj−1)

R(tj)
· sin (ϑ(tj−1))

]
,

(2.13)

where ζ = I/(mω) quantifies the classical displacement and the positions x(tj) are

simply given by the projections x(tj) = R(tj) sin(ϑ(tj)). The sum over all the N
positions turns out to have a simple analytical expansion

∑N−1
j=0 xj = ζN cot(π/N )/2,

which leads directly to the classical phase (substituting in Eq. (2.12))

ϕc = kfNrt
I
mω
N cot

( π
N

)
→

2~F ′2k2
fNp

π2mω
N cot

( π
N

)
, (2.14)

3The generalisation to different initial conditions is obtained by simply applying a translation in
phase space.
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Figure 2.3: Phase space description of the mirror dynamics in a pulsed experiment
in the classical picture. a) Four pulse interaction model: the oscillator is assumed at
rest at the origin of the phase space. The oscillator gains a momentum I due to the
interaction at t = t0. Then it freely evolves to the maximum amplitude x(t1) when
the second pulse happens, this causes another momentum gain of the oscillator at
time t1. At this time the oscillator evolves to x(t2) = x(t1) where the third pulse
interaction brings its momentum to zero. Now, it evolves to x(t3) = 0 where its
momentum becomes −I. Finally, the oscillator is brought back to the origin of the
phase space by the last pulse-oscillator interaction. b) A similar dynamics is plotted
for the six pulse interaction.

where we have replaced the classical expressions for I and E0.

The relation between the quantum and classical optical phases in Eqs. (2.14)

and (2.9) is the same as for the pivotal case with four kicks. Eq.(2.9) holds also for

strong coupling regimes where quantum features of the system are enhanced and the

+1 term in Eq.(2.15) reveals quantum peculiarities due to the quantization of the

field. Nevertheless, for the most common experimental conditions, i.e. small coupling

(λ� 1) and strong laser sources (Np � 1), quantum and classical phases coincide.

Indeed, in the reasonable experimental limit of small coupling in Eq.(2.9) we have

ϕq '
λ2

4
N cot

( π
N

)
(1 + 2Np) =

~F2k2
f

π2mω
N cot

( π
N

)
(1 + 2Np) . (2.15)
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2.4 The Classical Continuous interaction

We now approach the case of a continuous interaction in a good cavity regime from

a classical perspective (with pulsed driving). As suggested by the past analysis with

an asymptotically large number of pulses, we will retrieve the same correspondence

between the two pictures. However, instead of taking the limit of the discrete regime

for large N , we prefer to directly write and solve the classical Hamiltonian of the

system. This is a rather easy problem since the continuous interaction consists in

a constant force during the whole evolution, whose strength is derived from the

impulse-momentum theorem F = ∂P/∂t = 2E0/(cdt) = E0/L, with E0 the field

energy. The classical Hamiltonian will then read

Hc =
1

2
mω2x2 +

1

2m
p2 − E0

L
x , (2.16)

and gives rise to the solution

x(t) = x(0) cosωt+
p(0)

mω
sinωt+

E0

mω2L
(1− cosωt) . (2.17)

Substituting the optomechanical parameters and bearing in mind that E0 = ~ωcNp

and that the initial displaced Gaussian quantum state |γ〉m corresponds to the

classical boundary conditions x(0) =
√

2γR
√

~/(mω) and p(0) =
√

2γI
√
~mω, we

verify the correspondence with the quantum dynamics found in Eq.(1.23).

Furthermore, we derive the classical phase acquired during a continuous evolution

by generalising Eq.(2.2) to the case in which the mirror position changes during the

interaction

ϕc(x(0), p(0), t) = 2
kf
dτ̃

∫ t

0

x(τ)dτ

=
ωc
Lω

[
x(0) sinωt+

p(0)

mω
(1− cosωt)

]
+

ωc
ω3mL2

E0(ωt− sinωt),

(2.18)

with dτ̃ = 2L/c the round trip time.

The limit ϕq → ϕc is satisfied for small coupling and large photon number and for a
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closed loop we get a phase shift ϕc(T ) = 2πωcE0/(ω
3mL2) = 4πk2Np that is linearly

dependent on the field intensity.

Again, the main difference between ϕq and ϕc is an offset depending on k2 (it

coincided with λ2 for the four pulse case), whose measurement would certify the

quantum nature of the light-matter interaction in an experiment.

2.5 Quantum vs classical visibilities

Figure 2.4: Michelson interferometer: a coherent field |α〉f is split by a beam splitter
(BS) in the two arms of the interferometer. Arm B ends with an optomechanical
cavity with a movable oscillator, while arm A is composed of a phase shifter and a
stationary cavity. Homodyne detection is performed subtracting the photo-currents
in the detectors at the end of arms C and D.

In the following, we will see how the dependence of the light phase shift on the

initial conditions is related to the creation of correlations between light and matter.

This will have non-trivial implications on the quantum-classical correspondence. Let

us refer to the Michelson interferometer that we presented in Sec.1.5 and reproduced

in a slightly different version in Fig.2.4 for better clarity. Differently from previous

proposals, we study the visibility of the interference pattern assuming the field

initially in a coherent state |α〉. The choice of such a Gaussian state, that has its

classical counterpart in a monochromatic wave, allows us to perform a comparison

52



between the two pictures. Besides, coherent states are deterministically split into

two equal components by 50 : 50 beam splitters, and no (quantum) entanglement is

created between the arms of the interferometer, as was the case in previous proposals

[5, 55].

Quantum Picture. We assume the input field and the mirror initially in a separable

state, the latter being in a mechanical thermal state ρm(0) at equilibrium with the

environment at temperature Te

ρ(0) = ρc(0)⊗ ρm(0) = |α〉c 〈α| ⊗
1

πn̄

∫
d2γe−

|γ|2
n̄ |γ〉m 〈γ| , (2.19)

where n̄ = 1/(eβ~ω − 1) is the average thermal occupation number and β = (kBTe)
−1,

with kB the Boltzmann constant. By solving Liouville equation ρ̇ = −i[ρ,H] for the

system density matrix one obtains the evolution at time t

ρ(t) = e−|α|
2
∑
m,n

αnα∗m√
n!m!

× eiPQ(t)(n2−m2)D[knγ]ρm(0)D[−kmγ] |n〉c 〈m| , (2.20)

with PQ(t) = k2(ωt − sinωt) and D(σ) = exp[σb† − σ∗b]. As the reader will know

by now, we will eventually read out the mechanical motion through interference

measurements of the field. Let us then calculate the field reduced density matrix

tracing out the mechanical degrees of freedom. Remembering that the trace is

invariant under cyclic permutations and that the product of two displacements

satisfies D(ς)D(σ) = eiIm[ςσ∗]D(ς + σ), we get

ρc(t) = e−|α|
2
∑
m,n

αnα∗m√
n!m!

× eiPQ(t)(n2−m2)e−k
2(n−m)2(1−cosωt)(2n̄+1) |n〉c 〈m| . (2.21)

With the state of the cavity field at hand, the intensities on the output detectors

ICD(t) in Fig.1.5 read

ICD(t) =
I0

2

(
1± 〈Xφ〉√

2

)
=
I0

2
{1∓ e−{k2[1−cosωt](2n̄+1)+Np[1−cos(2PQ(t))]}×

× cos[PQ(t)− φ−Np sin(2PQ(t))]} ,
(2.22)

where I0 is the intensity measured on the detectors for the unperturbed initial
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Figure 2.5: Quantum visibilities νq(t) in Eq.(2.23) for Te = 10−5k (blue dotted line),
Te = 10−2k (red continuous line) and Te = 1 k (green dashed line); optomechanical
coupling k = 10−2, number of photons Np = 105 and period T = 10−5s. For relatively
high temperature the visibility is strongly suppressed within every single oscillating
period. Instead, in the low temperature limit visibility is slightly lowered and the
main effect is due to the Kerr non-linearity experienced by the field. (The figure has
been taken from Ref.[23].)

coherent state. As we have already discussed, performing homodyne detection

basically consists in operating on the local oscillator to vary the phase shift φ such

that φ = PQ(t)−Np sin(2PQ(t)) and the difference of the two induced photo-currents

is maximised. The exponential in Eq.(2.22) then corresponds to the related quantum

visibility νq(t) and can be conveniently expressed as the product of two components

νq(t) = νcorq (t)νKerrq (t)

νcorq (t) = e−k
2(1−cosωt)(2n̄+1) , and

νKerrq (t) = e−Np[1−cos(2k2(ωt−sinωt))] ,
(2.23)

which will later be linked to the light-matter correlations and the Kerr non-linearity.

In Fig.2.5 we plot the visibility νq(t) over several mechanical periods and for different

initial temperatures. The picture shows how the combination of two periodic functions

with different frequencies in Eq.(2.23) gives rise to visibility drops and revivals over

two time scales. The thermal noise in the initial state of the mechanical oscillator

is responsible for the fastest oscillations νcorq (t) = e−k
2(2n̄+1)(1−cosωt), whose period

54



coincides with the mechanical period T = 2π/ω, as expected from the fact that the

mirror displaces closed loops in phase space. These oscillations act as a carrier wave

for the modulation in the visibility pattern induced by νKerrq (t) that operates on a

longer timescale τ ′ = 2π/(2k2ω)→ T/2k2. This behaviour had never been studied

before and plays a crucial role for the visibility: for a complete understanding of the

phenomenon it is essential to regard the two terms in comparison.

νcorq (t) shows revivals of the visibility only due to the decoupling of field and mirror

after an integer number of periods (i.e. for a closed loops in phase space) and witnesses

light-matter correlations at intermediate times (see Fig.2.5). However, as we will

verify in the next section, the +1 term in the exponent −k2(1− cosωt)(2n̄+ 1) is the

only reliable marker of quantum correlations, corresponding to the result obtained

in Eq.(1.26), where the creation of light-matter entangled states was proposed via

a single photon experiment. Conversely, without initial ground state cooling, the

predominant term depending on the average thermal population n̄ causes a drop

in the visibility that is due to the statistical uncertainty of the initial state of the

mirror, on which the phase shift strongly depends (see Eq.(1.24)).

On the other hand, νKerrq (t) arises from the Kerr effect experienced by the field when

entering into the cavity [21]. In particular, while the mirror returns to its original

position in phase space after a mechanical period T , this does not apply to the

field. The coherent state |α〉 is not an eigenstate of the number operator nc in the

interaction Hamiltonian ∝ ncX, and the field is transformed in a different coherent

superposition of Fock states. In other words, from a quantum perspective a coherent

field is not monochromatic, being actually defined by a precise, Poissonian, energy

distribution: it is exactly this uncertainty of the energy of the state that causes the

loss of visibility over a timescale τ ′. This explanation will become more clear in

the next section, where we discuss the expected visibility pattern under a classical

perspective. Most importantly, however, we are already able to induce a general rule:

the loss of visibility is always associated with a source of uncertainty on the initial

conditions.

Classical Picture. Let us now investigate the system with a fully classical approach

and show under which conditions the visibility pattern with losses and revivals
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can be recovered. We will conclude that correlations between light and matter

predominantly have a classical nature and are due to the statistical uncertainty on

the initial conditions.

We start by describing the Michelson interferometer in Fig.2.4 in a classical

picture. After escaping the cavities the two fields have the form

EC =
i√
2
E0e

iϕc(t) ,

ED =
1√
2
E0e

iφ ,
(2.24)

with E0 the input field amplitude and ϕc(t) and φ the phases acquired in the

deformable and fixed cavity respectively. The final intensity on the detectors results

in

ICD(t) =
I0

2
[1± cos(ϕc(t)− φ)] , (2.25)

where as usual I0 = |E0|2 is related to the energy E0 carried by the field. We introduce

thermal fluctuations on the mirror by expressing the initial state in terms of polar

coordinates % and θ as

x(t = 0, θ, Te) =
√

2/(mω2)%(Te) cos θ ,

p(t = 0, θ, Te) =
√

2m%(Te) sin θ ,

%2(Te) =
mω2

2
x2(0, θ, Te) +

p2(0, θ, Te)

2m
,

(2.26)

where %2(Te) is the initial thermal energy of the mirror defined by a Maxwell-

Boltzmann distribution (see Fig.2.6a for the probability density function that char-

acterises the distribution of %(Te)). Such classical thermal state is characterised by

zero mean values of the oscillator position and momentum, x̄ = 0 and p̄ = 0, and

average energy ρ̄2(Te) = β−1 = kBTe. The phase shift associated with each possible

evolution starting at various initial points in phase space is obtained by substituting

Eqs.(2.26) as initial conditions in Eq. (2.18):

ϕc(%, θ, t) =
√

2χ% [cos θ sinωt+ sin θ(1− cosωt)] +
ω

ωc
E0χ

2(ωt− sinωt) , (2.27)
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Figure 2.6: a) Maxwell-Boltzmann probability density function of the radius %(T ),
i.e. the square root of the energy, characterising the initial thermal state of the
mirror. The mode of the distribution is (β/2)−1/2, while the average is β−1/2. b)
Phase space representation of some paths in phase space: for %(Te) = 0 we have the
ground state case (black circle), while for %(Te) > 0 depending on the initial point
(x(0), p(0)) we may have longer (red dashed circle) or shorter (blue dotted circle)
contributions. Interestingly, the path integral of x(τ) over a period T is the same in
all cases.

where χ = ωc/(ω
2L
√
m). Fig.2.6b sketches a few examples of evolution paths: the

total phase shift of the field will result from the contribution of all possible paths in

phase space, weighted by the thermal distribution on the initial conditions (%(Te), θ).

While dynamical fluctuations average to zero at any time t, and so does the first

term in Eq.(2.27), this does not apply to the intensities in Eq.(2.25), which instead

result in

〈(IC − ID)(t)〉 =
β

π

∫ ∞
0

% d%

∫ 2π

0

dθ (IC − ID)(%, θ, t) e−β%
2

= I0e
−χ

2

β
(1−cosωt) cos

[
ω

ωc
E0χ

2(ωt− sinωt)− φ
]
.

(2.28)

The argument of the cosine function corresponds to the average phase shift of

the field that is measured by operating on the phase shifter (φ) maximising the

visibility. While when the initial conditions are known and fixed the exact shift can

be observed and one obtains full visibility equal to one, the exponential pre-factor

in Eq.(2.28) arises from the uncertainty on the initial conditions (due to classical

thermal fluctuations). In other words, as long as we are not able to reconstruct the
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path in phase space due to an intrinsic source of uncertainty on the system (and on

its dynamics), the visibility is lowered also in a classical experiment. More precisely,

we could then define the classical visibility as

νc(t) = e−
χ2

β
(1−cosωt) . (2.29)

This expression leads to a full recovery of visibility after every mechanical period,

when all paths in phase space yield the same contribution to the phase shift. Such

full revivals are also possible since from a classical perspective the initial mechanical

thermal distribution is the only source of uncertainty and the light field is treated as

a perfectly monochromatic planar wave.

To look deeper into the comparison, we substitute the optomechanical parameters

(k = χ
√

~ω/2) and write the classical visibility as νc(t) = e−
2k2

β~ω (1−cosωt), which

approaches νcorq (t) in the limit kBTe � ~ω. Actually, the discrepancy between

the two pictures is negligible also at very low temperatures, as long as n̄ & 1 (for

Te = 10−6K and ω = 2π × 105 Hz we have |νcorq − νc| ≤ |e−2k2 − 1| ∼ 0.01 even

pushing the coupling to k = 0.5).
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Figure 2.7: Quantum (red continuous line) and classical (blue dotted line) visibilities
in Eqs. (2.23) and (2.29) for temperature Te = 5 × 10−2K. Other parameters
are: optomechanical coupling k = 10−2, number of photons Np = 105 and period
T = 10−5s. (The figure has been taken from Ref.[23].)
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This result confirms that the loss of visibility related to the light-matter correlations

νcorq (t) has to be attributed to the random thermal phase arising because of the

uncertainty associated to the statistical initial thermal fluctuations of the mirror.

The correspondence of the interference patterns and the revivals is then a direct

consequence of the equality of the phase shift in the two pictures as well as its

independence from the initial state of the mirror after an integer number of mechanical

periods.

Moreover, we identify the component νKerrq (t) as the quantum effect due to the

non-linear Kerr interaction that can not be recovered in a classical picture. Indeed,

if we model coherent states as perfectly monochromatic waves, the field is classically

unaffected by interaction (a part from a vary small frequency contraction that

conserves the energy). We show in Fig.2.7 that while the classical result displays

a complete revival after every mechanical period, the Kerr nonlinearity lowers the

visibility and gives rise to a partial revival in a quantum picture. This effect is

however very small and in order to observe significant deviations (|νq − νc| ≥ 10−4

within a mechanical period) we need to push the coupling constant and the number

of photons to k ≥ 10−3 and Np ≥ 106, independently of the temperature.

The analysis presented in this section clearly entails that, from a rigorous point

of view and in a large range of experimental conditions, the visibility pattern alone

is not sufficient to infer non-classicality of the system dynamics, nor to study the

correlation between field and mirror (as it was proposed in Refs.[5, 55, 56, 57]).

Besides, it is worth noticing that Eq.(2.23) and Eq.(2.29) are independent of the

number of photons in the limit k2Np � n̄ and kBTe � ~ω. In particular, in the

same limit, the classical visibility, the quantum visibility in the case of a coherent

state and the one found in [5, 55] with single a photon Fock state in input have the

same qualitative behaviour.

2.5.1 A magic effect: noise

The energy distribution that characterises a coherent state has an intrinsic

quantum origin. From a classical perspective the energy quanta cannot be resolved

and the light field is described as a monochromatic wave. However, in light of our
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findings that link the visibility loss to any uncertainty of the state of the system,

we can push forward the similarities between the classical model and the quantum

picture, looking at the conditions at which a classical suppression of the visibility

analogous to νKerrq (t) is experienced.

Let us start by the (unavoidable) experimental assumption that the coherent light

field has some intrinsic noise. In the most naive hypothesis of Gaussian noise

[58], the field energy in the classical Hamiltonian Hc could be written as E(ε) =

E0(1 − ε), where the dimensionless parameter ε is described by the distribution

P(ε) = 1/(
√

2π∆)e−
ε2

2∆2 , with ∆2 the dimensionless variance (that is equivalent to

assuming a photon distribution N(ε) = Np(1− ε) with variance N2
p∆2). The classical

phase in Eq. (2.27) and the intensities in Eq. (2.28) will now depend on the noise

ε: defining CP (t) = ω
ωc
E0χ

2(ωt − sinωt) and further averaging Eq.(2.28) over the

Gaussian distribution we get the intensities

〈(IC − ID)(t)〉 =I0e
−χ

2

β
(1−cosωt)e−(CP (t)∆)2

×
{

cos [CP (t)− φ]− CP (t)∆2 sin [CP (t)− φ]
}
.

(2.30)

The trigonometric function is maximised when φ = CP (t), thus leading to the

visibility

ν̃c(t) = νc(t)e
−2k4Np(ωt−sinωt)2

, (2.31)

where we used E0 = ~ωcNp and ∆2 = 1/Np to compare the Gaussian noise with the

Poissonian energy distribution of a coherent state. Because of the classical Kerr-

nonlinearity of the phase, which depends on the energy of the driving field rather

than on the amplitude (see Eq. (2.18)), any statistical noise causes a further loss in

the classical visibility. In particular, in the limit of small coupling k2ωt� 1 and large

intensities Np � 1, the figure of merit ν̃c(t) approaches over several time periods the

quantum prediction νKerrq (t) in Eq. (2.23). Still, there is deep difference between the

two pictures. While from a quantum perspective the well defined Poissonian energy

distribution makes νKerrq periodic, so that to cause revivals, the classical Gaussian

noise acts Markovianly and only lowers the visibility.

Interestingly, one could push the similarity even further and verify what happens if the
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incoming classical field has a Poissonian distribution of the energy P (ε) = εne−ε/n!.

This assumption would imply a classical resolution of the quantisation of the energies

through photon counting detectors and therefore goes far beyond a purely classical

model. However, it is of didactic benefit in order to understand the nature of the

visibility pattern and its relation with the initial state of the system. Hence, following

the standard classical approach we find the expected phase shift for an initial mixed

state of the field with Poissonian distribution of the energy

˜̃φc(t) = N̄p sin(2k2(ωt− sinωt)) , (2.32)

where for the sake of readability we have omitted the dependance on the initial

conditions of the mirror that we have already discussed (see Eq.(2.18)). Interestingly,

this phase coincides to the one obtained in a quantum picture in Eq.(1.24), within

the additional k2 term, which derives exclusively from the commutation relations of

the field. This is an additional proof that measuring the k2 term is the only reliable

witness of the quantumness of the system. This argument holds both with respect

to the phase shift (as in Eq.(1.24)) and to the visibility term νcorq (t) (see Eq.(2.23)).

Meanwhile, the visibility associated with the interference measurement of the phase
˜̃φc(t) reads

˜̃νc(t) = νc(t)e
−N̄p[1−cos(2k2(ωt−sinωt))] , (2.33)

which corresponds to the average value of Eq.(2.23), thus perfectly reproducing the

curve trend of νKerrq (t).

2.6 Berry phase and Hannay angle

By this point it should be clear that the cyclic nature of the dynamics plays a

key role in the evolution of our system, being responsible for the periodic creation

and disappearance of light-matter correlations (or entaglement). It is worth now

furthering the discussion in more general terms to frame it in a broader context, as

well as to better understand the quantum-classical correspondence.

Let us start by observing that when a system undergoes a cyclic evolution in

61



quantum mechanics, the initial and final state vectors may differ by a phase factor,

i.e. |Ψ(T )〉 = eiφ |Ψ(0)〉, which can have observable consequences. This extra phase φ

exclusively depends on the structure of the Hilbert space H and the geometry drawn

in phase space. This peculiarity makes it resilient to noise perturbations alongside the

evolution and promotes it as an optimal candidate to study, for example, quantum

features of massive objects.

The importance of such phase was firstly recognised only towards the end of the last

century by Michael Berry [35] for Hamiltonians depending on a set of parameters

slowly varying in time, when the adiabatic theorem [59] ensures that the initial state

remains in an instantaneous eigenstate during the variation of the parameters.

While the proper assessment of the geometric phase is relatively recent, its

classical counterpart, the holonomic angle, was firstly introduced in 1900 by Tullio

Levi Civita, who formulated the concept of the parallel transport of vectors on a

surface. This consists in translating a vector alongside a closed path C, always

keeping it tangent to the surface Ω which contains C. After a closed loop the vector

is rotated with respect to its original orientation by an angle whose amplitude and

sign respectively depend on the geometry of the loop and on the direction along

which it was displaced. Foucault pendulum is probably the most popular device

used to provide physical evidence of this mathematical peculiarity that has a more

general interpretation. We could state that identical paths in Hilbert space yielding

to non equivalent transformations when travelled in different directions witness the

non-abelian character of holonomic operations.

The first rigorous analysis of these properties is due to John Hannay [60], who

found an algebraic relation between the quantum geometric Berry phase and the

classical Hannay angle [60, 61]. Thereafter, the connection between the two pictures

has been proven for a wide set of quadratic Hamiltonians and in a range of different

contexts [62, 63]. Hence, the aim of this section is precisely to contextualise Berry

phase and Hannay angle within the optomechanical framework to provide a complete

understanding of the theoretical structure underlying the dynamics. Since the light-

matter interaction is regulated by a non-linear cubic term, i.e. ga†a(b† + b), the

retrieved quantum-classical correspondence will be of great interest.
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2.6.1 Berry phase

We start by looking at the system in a quantum picture to evaluate the geometrical

and dynamical contributions to the quantum phase [35]. To this end, we follow the

approach in [64] where phase changes in cyclic evolutions are considered without any

further theoretical restriction such as adiabaticity.

Given a Hilbert space H where a state vector that undergoes a closed loop acquires

a phase factor φ, i.e. |ψ(T )〉 = eiφ(T ) |ψ(0)〉, we consider the map Π(|ψ〉) = {|ψ′〉 :

|ψ′〉 = c |ψ〉, with c a complex number} that projects the states on a new Hilbert

space H′, Π : H → H′, where after one period the evolution is actually closed:

|ψ′(T )〉 = |ψ′(0)〉, being |ψ(t)〉 = eif(t) |ψ′(t)〉, with f(t) − f(0) = φ. Explicitly

writing the Schrödinger equation for |ψ(t)〉 we have

i
d

dt
|ψ′(t)〉 = (H + ḟ) |ψ′(t)〉 , and

ḟ = i
∂

∂t
|ψ′(t)〉 −H |ψ′(t)〉 .

(2.34)

Integrating the last equation over a path C in phase space one obtains∫ t

0

ḟdτ = φ = θd + θg ,with

θd(t) = −
∫ t

0

dτ 〈ψ(τ)|H |ψ(τ)〉 and

θg(t) = i

∫
C

〈ψ′(τ)| ∂
∂τ
|ψ′(τ)〉 ,

(2.35)

where θd(t) and θg(t) are defined as the dynamic and geometric phase respectively.

Relevantly, θd does not depend on the map Π and can be calculated easily in our case

since the pulsed Hamiltonian H is time independent: substituting from Eq.(1.21)

the state |Ψ(t)〉 in Eq.(2.35) we get for a generic time t

θd(t) = (2γRkNp − |γ|2)ωt. (2.36)

The calculation for θg is a bit more laborious since it specifically requires the map Π.

In this direction, it is helpful for our purpose to reconsider the evolution operator in
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Eq.(1.20) and observe that it is diagonal in the cavity Fock state basis. Thanks to

this property, the state

|Ψ(t)〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
eik

2n2(ωt−sinωt)eikn[γR sinωt+γI(1−cosωt)]|n〉c ⊗ |Γn(t)〉m , (2.37)

which was introduced in Eq.(1.21), offers a decomposition that automatically satisfies

|Ψ(t)〉 =
∞∑
j=0

eifn(t) |Ψ′(t)〉n , (2.38)

with |Ψ′(t)〉n = |n〉c ⊗ |Γn(t)〉m and |Γn(t)〉m = |γe−iωt + kn(1− e−iωt)〉m. Substi-

tuting this decomposition in Eq.(2.35) and remembering that the derivative of a

coherent state ∂
∂t
|Γ〉 gives 〈Γ| ∂

∂t
|Γ〉 = ∂

∂t
|Γ|2

2
+ Γ∗ ∂Γ

∂t
, we obtain the Berry phase

θg(t) = (|γ|2−2γRkNp)ωt+kNp[γI(1−cosωt)+γR sinωt]+k2(N2
p +Np)(ωt−sinωt).

(2.39)

The reason of the name "geometric phase" can be inferred from this last equation,

which also suggests an important generalisation of the analysis to the case of open

paths in phase space. Indeed, in the calculations so far we have not assumed the

state to describe a closed loop, but rather we referred to a generic evolution time.

Eq.(2.39) suggests that we could actually imagine to artificially close a loop by

virtually connecting with a single displacement the generic point reached in phase

space at time t ∈ [0, T ] with the starting point of the motion at time t = 0. θg will

then correspond to the convex area spanned in phase space by the line segment that

joins the instantaneous position to the starting point of the dynamics (see Fig.2.8

for a graphical representation).

Even if each component θg(t), θd(t) depends on the initial conditions, after a mechan-

ical period T = 2π/ω their sum φ(T ) = θg(T ) + θd(T ) = 2πk2N2
p solely depends on

the geometry of the evolution in space. More specifically, it is instructive to consider

the limit of small coupling k � 1, which we could identify with the adiabatic regime.

In this limit, indeed, the initial coherent state |α〉 (and the state vector |Ψ(t)〉 in
Eq.(2.37)) is approximately an eigenstate of the Hamiltonian: the phase φ(t) thus
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Figure 2.8: Representation of the geometric phase in phase space. The trajectory (of
the mirror) is depicted with a continuum line and the geometric phase corresponds to
the shaded region delimited by the trajectory and by the dashed line that connects
(X(t), P (t)) to (X0, P0). As a convention, areas enclosed clockwise are positive, those
travelled anti-clockwise negative.

coincides with the global phase we could attribute to the quantum superposition

state of the system |Ψ(t)〉.

2.6.2 Hannay angle

Non-dissipative models are usually associated with a conserved quantity, namely

the total energy (or the number of photons in our case). Within this class of models,

periodic motions deserve special attention, as many peculiarities can be sorted out

by simply applying a canonical transformation of second type. To this end, it is

convenient to switch from the Hamiltonian classical variables (q, p) to the so-called

action-angle coordinate system (φ, I), which is characterised by a conserved quantity

I (usually representing the total energy), that unambiguously identifies the orbit

in phase space, and a periodic variable φ, that univocally determines the position

of the system on the orbit at any given time. A possible candidate as generating
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function to provide the desired transformation is

S(q, I) =

∫ q

q0

p(q′, I)dq′ , (2.40)

where the integral is performed along the orbit defined by I, e.g. with fixed and

constant energy. The canonically conjugate variables can then be derived from S(q, I)

as p = ∂S
∂q
, which follows straightforwardly by simple substitution in Eq.(2.40), and

φ = ∂S
∂I
.

Let us then calculate the phase φ related to our case of interest, generalising the

procedure rigorously addressed in Refs.[60, 61] to non-closed loops in phase space by

applying the same technique we presented in the last section to artificially close the

path at each time t.

We know that a second type generating function (as the one in Eq.(2.40)) transforms

the Hamiltonian as H ′ = H + ∂S/∂t: we can thus derive the phase change rate from

Hamilton equation as

φ̇ =
∂H ′

∂I
=
∂H

∂I
+

∂2S̃

∂t∂I
− ∂

∂I

∂

∂t
pdq , (2.41)

where we have expressed ∂S/∂I in terms of the new angle-action variables: dS̃(φ, I) =

dS(q, I) + ∂S
∂q
dq.

The classical phase associated with a (closed) path C in phase space is then obtained

by integrating

φ(t) =

∫ t

0

∂H

∂I
dτ − ∂

∂I

∫
C

pdq , (2.42)

where we have exploited that ∂S̃
∂I

= 0, i.e. I is constant alongside C.

At this point we need to choose a conserved quantity to be associate to I, of which

we will compute the related conjugate angle variable with Eq.(2.42). We choose

I = E0/ωc, which corresponds to I = ~Np in a quantum framework.

Interestingly, we further notice that Eq.(2.42) consists of two parts that are related
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with the dynamical and geometric phase state components introduced in Eq.(2.35)

φd(t) =

∫ t

0

∂H

∂I
dτ =

ωcx(0)t

L
,

φg(t) =− ∂

∂I

∫
C

pdq = −ωcx(0)t

L
+

ωc
ω3mL2

E0(ωt− sinωt)

+
ωc

2Lω

[
x(0) sinωt+

p(0)

mω
(1− cosωt)

]
.

(2.43)

When the loop is (artificially) closed in phase space, then for Stokes theorem φg(t)

corresponds to the area enclosed by the trajectory. It is usually referred to as Hannay

angle, named after the physicist John H. Hannay, who first identified the quantity

in adiabatic classical systems as the derivative of the Berry phase (see Eq.(2.39))

with respect to the action variable. Replacing the quantum parameters with their

classical average expectation values, we verify in our case the relation φg(t) = dθg(t)

dI

that was so far proved only for quadratic Hamiltonians.

2.7 Conclusions

In this chapter, we have explored the quantum-classical correspondence of the

phase acquired by an optical field after its interaction with a movable mirror in an

optomechanical cavity. We have seen that both the nonlinear phase shift due to

the Kerr effect and the mirror decoupling at certain interaction times are common

features of the two descriptions. These findings have further allowed us to challenge

the drop of the visibility pattern as a quantum signature. Besides, we inferred that

correlations arise because of (classical) statistical uncertainty on the initial state

of the system and lead to effects that are qualitatively identical and quantitatively

larger than those theoretically observed in a single-photon experiment. Conversely,

we were able to isolate genuine quantum features of the interaction that appear

on the phase and the visibility, which might be probed in future optomechanical

experiments, even in the weak coupling limit. Also, the preparation and assessment

of a truly quantum mechanical state would be an essential prerequisite for probing

decoherence models, as well as the interface of gravity with quantum mechanics (this
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point will be discussed intensively in Chapter4, where we propose a scheme to create

non-classical macroscopic quantum states of the harmonic oscillator).

Eventually, we contextualized our discussion in the more general framework of

non-abelian transformations in phase space. We successfully verified that also for

the cubic non-linear optomechanical interaction the quantal geometric phase causes

the state to be displaced along the classical trajectory by an amount equal to the

classical geometric phase (Hannay angle) [65].
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Chapter 3

Probing anharmonicity of a quantum

oscillator in an optomechanical

cavity

3.1 Introduction

The content of this chapter (with the exception of the last section) is part of a

research that I conducted and shared in equal proportions together with a colleague

at Imperial College, Federico Armata. More specifically, the topics covered in this

chapter were the main object of a paper that has been published in Physical Review A

with the title "Probing anharmonicity of a quantum oscillator in an optomechanical

cavity" [66].

Thanks to the possibility to perform very precise position measurements, optome-

chanical systems have been historically studied in the context of force sensing [67, 19]

and were very recently adopted for the ground breaking observation of gravitational

waves [68].

However, despite the capability to detect small deviations from standard harmonic

dynamics, intrinsic anharmonic contributions to the motion of the quantum mechan-

ical oscillator have been so far neglected in nearly every theoretical proposal and

experimental realisation to probe fundamental physics or to measure decoherence [1].
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This is surprising if we consider the importance that has been recently recognised

to anharmonicity to bring out quantum peculiarities (aside from perturbing the

behavior and results that one would obtain in the harmonic case). For instance,

Milburn and Holmes studied the quantum and classical dynamics of an anharmonic

oscillator in phase space showing that a reduction of coherence results in quantum-

to-classical-transition [69]. On the other hand, anharmonicity has proven to be a

resource to generate non-classical quantum states [70, 71, 72].

Furthermore, the state-of-the-art in experiments is encouraging since the anharmonic

regime has been accessed in a range of different physical platforms, and a measure

able to quantify the non-linearity of a quantum oscillator has been recently proposed

[73]. To cite a few specific examples, the effects of nonlinearities have been explored

(and exploited) in mechanical resonators based on graphene and carbon structures

[74, 75], and electrostatic gradient forces produced with NEMS (Nanoelectrome-

chanical Systems) chips are used to enhance the intrinsic quartic anharmonicity of

a carbon nanotube [76]. In another framework, the thermal energy of a levitated

nanosphere was shown to be sufficient to drive its motion into the nonlinear regime

[77].

Given these premises, we would like to dedicate this chapter to propose a protocol

able to efficiently measure anharmonicity and analyse its contribution to the dynamics,

also in comparison with the harmonic case we have just extensively discussed.

We will present a scheme to estimate the mechanical anharmonicity of a quantum

optomechanical resonator, adopting the bad cavity regime introduced in Sec.1.4.1,

where a short light pulse is iteratively injected four times into the cavity so that

to drive the mirror alongside a closed deformed square loop in phase space. The

anharmonicity will induce some modifications in the mechanical evolution with

respect to the harmonic case that we discussed in Sec.1.4.1, which will be enhanced

by the non-abelian character of a loop operation in phase space. We will provide

evidence that our protocol allows high precision measurements, only requiring feasible

initial cooling of the oscillator via dilution refrigeration techniques. We will also

discuss the resilience of the scheme against optical losses. Further to calculating

the Quantum Fisher Information (QFI) to obtain the ultimate quantum bound on
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anharmonicity estimation that is achievable through an optomechanical setup, we

compare it to the Fisher Information (FI) extractable with standard measurements

on the optical field, such as homodyne and heterodyne detection, verifying the

optimality of the former technique.

In order to investigate the connection between non-linearities and the emergence

of quantum properties, we integrate the discussion we started in the past chapter

analysing anharmonicity in a fully classical picture. The phase shift imparted to

light can still be used as a reliable indicator of quantumness in optomechanics, even

though the two regimes are much closer than what was previously thought, and the

mechanical non-linearity leads to conceptually and quantitatively very similar results

in both frameworks (particularly in the limit of large displacements λNp � 1).

Eventually, we illustrate how anharmonicity can be traced back to the application

of a non canonical transformation. This allows us to relate it to a wider class of

systems where the topology of the Hilbert space is deformed, i.e. some of the latest

proposals to test the interface between quantum mechanics and gravity [3, 31].

3.2 The anharmonic evolution

We generalise the quantum pulsed model depicted in Sec.1.4.1 for a harmonic

oscillator to the case where a mechanical anharmonicity is included in the Hamiltonian.

The procedure to design a closed loop in phase space, calculate the related total

unitary operator and finally access the resulting phase shift imparted to the light are

the same we have already discussed. However, the additional anharmonicity not only

requires further algebraic manipulations to derive the dynamics, but it also induces

some fundamental differences in the evolution, creating further correlations between

the field and the mirror that should be considered carefully.

Let us start by introducing a standard anharmonic term scaling as the fourth

power of the position ∝ X4. This is a very common choice due to symmetry-parity

reasons and to the great role played by quartic terms in various physical contexts,

from classical Duffing equation and the generation of chaotic motion to quantum
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field theory1. Nonetheless, we will replicate all the results for the case of a cubic

anharmonicity in Appendix B to provide an insightful comparison between odd and

even contributions.

The effective Hamiltonian describing the system in a frame rotating with the optical

cavity frequency reads H = H0 +Hint, where Hint = −gncX and

H0 =
1

2
~ω
(
X2 + P 2

)
+
γ

4
~ωX4 , (3.1)

with γ � 1 the amplitude of the quartic anharmonicity.

We propose to operate in a bad cavity regime where we inject a light pulse in the

cavity that interacts with the mirror for a short time τ = 1/κ and then escapes out.

Our aim is to reproduce the protocol presented in Sec.1.4.1 where the phase space

trajectory of the mirror performed a square. We demand to arrange a very strong

(with a large number of photons) and short interaction, so that the mechanical motion

can be neglected within the interval τ . The pulse is then delayed in an engineered

loop for a quarter of mechanical anharmonic period before being re-injected: the cycle

is iterated four times after which the pulse is eventually measured interferometrically

with respect to a reference field. The total unitary operator that characterises the

process can be recovered (up to a final rotation of 3π/2 on the mechanical oscillator)

following the steps in Eq.(1.12) and reads

U = eiλncX( 3π
2ω′ )eiλncX( π

ω′ )eiλncX( π
2ω′ )eiλncX , (3.2)

where X(t) is the trajectory in real space of the anharmonic oscillator and ω′ its

frequency. Hence, we first need to solve the anharmonic dynamics to explicitly

compute Eq.(3.2). To this end, it is convenient to derive the evolution of annihilation

and creation operators induced by H0 in Heisenberg picture. This has already been

obtained in Refs.[78, 79] with a perturbative approach in γ via a multiscale technique:

in the following we will capitalise that result. Although a detailed discussion on

the derivation is out of the present purposes, we should remind the reader that a
1The simplest type of self-interaction in scalar field theory is given by the quartic interaction

λ
4!ϕ

4.
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multiscale approach is adopted when the perturbative expansion of the solution

contains diverging time dependent terms that violate the expansion itself. As an

example, consider the expansion x(t) = x0(t) + x1(t) + x2(t) + . . . , where each term

xj is supposed to be of the order γj, i.e. xj ∼ O(γj). However, if x1 happens to be

time divergent (as it is in this case), the range of applicability of the solution will

be constrained to those times satisfying x1(t) � x0(t). Alternatively, to obtain a

result that is applicable for a longer time window, one needs to compensate for this

divergence by adding another time scale, e.g. t1 = γt, and accordingly adapt the

zeroth order. In general, the divergences at a given order are counterbalanced and

canceled by rescaling the time dependence at previous orders (further details are

provided in Sec.3.5 where we solve the dynamics in the classical picture).

Let us then write the evolution induced by Eq.(3.1) at the leading order in γ (for

times t such that (ωt)γ|A|2 � 1)

b(t) 'e−iω′t
{
b0 +

γ

4

[(
1− e+4iω′t

) b†30

4
+
(
e−2iω′t − 1

) b3
0

2

+
(

1− e2iω′t
) 3

2
b†0

(
1 + b†0b0

)]}
,

ω′ =ω +
3

8
γω (2 + |A|2) ,

(3.3)

where |A| is the oscillation amplitude for the unperturbed harmonic oscillator. The

frequency shift in Eq.(3.3) implicitly provides a condition on the viability of the

perturbative approach, i.e. γ|A|2 = γ(λNp)
2 � 1, which actually corresponds to

requiring small deviations from the harmonic displacement. Defining the anharmonic

period as T ′ = 2π/ω′, it is straightforward to find quadrature operators

X(0) = X ,

X

(
T ′

4

)
' P + i

γ

4
∆ ,

X

(
T ′

2

)
' −X ,

X

(
3T ′

4

)
' −P − iγ

4
∆ ,

(3.4)
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at times t = 0, T ′/4, T ′/2, 3T ′/4, by simple substitution in Eq.(3.3) and with the

deformation ∆ = b3
0− b

†3
0 −3b†0 + 3b0−3b†20 b0 + 3b†0b

2
0 due to the anharmonic evolution.

We remark that at time t = T ′, when the final measurement is performed, the

oscillator returns to its initial position (X(T ′) = X). As we have already discussed,

this is a necessary requirement – though not sufficient – to perform the experiment.

Indeed, only with closed loops field and oscillator can be uncorrelated at the end of

the evolution, provided that they were initially prepared in a product state [22, 2]2.

In particular, to close the loop we need to estimate in advance the anharmonic

frequency, which turns out to be itself a function of the anharmonicity we want to

estimate (see Eq.(3.3)). This is a common situation in local quantum estimation

theory and can be worked out through subsequent adaptive measurements [80, 81, 82].

To this end, since the final goal is to measure γ via an interferometric scheme, an

experimentalist could start with a rough prediction on the anharmonicity to perform

the first measurement and subsequently ensure the closure of the loop by tuning the

waiting time between two pulses so that the visibility of the interference fringes is

maximised.

It is worth mentioning in this context that other sources of anhamonicity, e.g. the

cubic case ∝ X3 discussed in Appendix B, do not alter the mechanical frequency.

This peculiarity can be exploited to distinguish among different anharmonicities by

only looking at the interferometric pattern.

The unitary operator describing the evolution corresponding to the whole square

loop is obtained by substituting the mirror dynamics in Eqs.(3.4) into Eq.(3.2) and

reads

U = eiλnc(−P−i
γ
4

∆)e−iλncXeiλnc(P+i γ
4

∆)eiλncX . (3.5)

We now aim to rewrite this expression in a more compact form, as the product of the

harmonic square displacement in Eq.(1.13) and a perturbative anharmonic correction.

To this end, we apply BCH at the first order in γ to Eq.(3.5) and rephrase the first
2An open loop would imply the application of a displacement operator on the mirror, conditioned

by the cavity photon number.
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and third term respectively as 3

e−iλnc(P+i γ
4

∆) 'e−iλncP e
γ
4
f1(b0,b

†
0) ,

eiλnc(P+i γ
4

∆) 'eiλncP e
γ
4
f2(b0,b

†
0) ,

(3.6)

where

f1(b0, b
†
0) = λnc∆− 3λ2n2

c(b
†2 − b2) + 2iλ3n3

cP ,

f2(b0, b
†
0) = −λnc∆− 3λ2n2

c(b
†2 − b2)− 2iλ3n3

cP .
(3.7)

Further proceeding with the BCH expansion to move f1 and f2 to the right in Eq.(3.5)

we obtain the evolution operator

U = eiλ
2n2
c+

γ
4
F (b0,b

†
0) , (3.8)

where F (b0, b
†
0) corresponds to the sum of f1 and f2, after the swap at the sides of

Eq.(3.5). Even though the explicit form of F (b0, b
†
0) is a very bulky expression, it

is not of any particular interest, since we already know that we are going to read

out the mirror dynamics from interference measurements of the light. We are thus

interested in the reduced dynamics of the field, which is given by the completely

positive map E defined as

E(%c) = Trm[U%c ⊗ νU †] , (3.9)

where Trm[•] denotes the partial trace on the mechanical oscillator, while %c and ν

are the initial states of cavity and mirror respectively.

We will focus on the relatively general case where the oscillator is prepared in a state

diagonal in the Fock basis, i.e. ν =
∑

n νn|n〉〈n|, that includes the case of a Gibbs

thermal state, which is a good approximation of the most common experimental

conditions. Performing the trace in Eq.(3.9) we recover the effective unitary operator
3If the chained commutator [A, [A, [A,B]]] is a number, then eA+γB can be rewritten at the first

order in γ as exp[A+ γB] = exp[A]exp[γ (B − [A,B]/2 + [A, [A,B]]/6− [A, [A, [A,B]]]/24)].
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ξeff such that E(%c) = ξeff%cξ
†
eff , with

ξeff = exp
{
i[λ2n2

c −
γ

2
(λ4n4

c + 3λ2n2
c n̄)]

}
, (3.10)

where n̄ is the average initial thermal phonon number. ξeff acts on the cavity field

and retains all the information on the dynamics, and in particular on the effects

induced by anharmonicity. It is worth noticing that in addition to the well known

Kerr-nonlinearity scaling as n2
c , the effective anharmonicity is highly enhanced by

our protocol, depending on the fourth power of the photon number n4
c . This is due

to the high degree of non-commutativity of the cubic operator ∆, with respect to

the linear operators X and P , whose effects become measurable when performing a

loop in phase space. Provided that a strong optical field is used, this indicates the

optimality of our scheme to boost the effect of very small anharmonicities.

Importantly, we notice that Eq.(3.10) witnesses the creation of correlations between

the field and the mirror which might affect a deterministic parameter measurement,

as well as the visibility of the interference fringes when reading out the optical phase.

Still, the mild condition on the average number of thermal phonons λ2〈nc〉2 � n̄,

which can be satisfied with doable initial mechanical cooling, guarantees that within

a range of experimental parameters the oscillator is approximately uncorrelated to

the field when the final measurement is performed.

Provided the conditions γλ4N3
P � 1 and (λNP )2 � n̄ are satisfied (at the end of

our analysis we will suggest a possible set of experimental parameters), we calculate

the mean value of the optical field after a four-pulse interaction. If the cavity is

initialised with a coherent state %0 = |α〉 〈α|, it reads

〈a〉 = 〈α|ξ†effaξeff |α〉

= αe−(|α|2+iλ2)

∞∑
n=0

|α|2n

n!
e−2iλ2ne−i

γ
2
λ4(4n3+6n2+4n+1)

' α〈a〉0e−i
γ
2
λ4(4N3

p+18N2
p+14Np+1),

(3.11)

with 〈a〉0 = e−iλ
2−Np(1−e−i2λ2

) the phase acquired by the field in the harmonic case.
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3.2.1 Effect of losses

Since we aim at measuring a very small parameter γ, and Eq.(3.10) already

includes the disturbance due to thermal noise, it is worth making a short digression

on the estimation of photon losses that might occur in the delaying fiber loops. While

our protocol theoretically relies on having the same light pulse for each interaction,

we could naively model the ratio between the number of photons in two consecutive

pulses as Npi+1
/Npi = 1− ε, with i ∈ [1, 4]. This scheme will provide an estimate on

the impact of optical losses on the dynamics, as well as on the amount of losses that

can be tolerated.

To begin with, we point out that the lossy scheme is equivalent to a system with

decreasing coupling strengths, i.e. with constant photons but where the couplings

satisfy λi+1/λi = 1− ε. The corresponding evolution operator reads

U ' e−iλ4ncP e
γ
4
f1(b0,b

†
0)eiλ4ncP ξhe

−iλ1ncXe
γ
4
f2(b0,b

†
0)eiλ1ncX , (3.12)

where ξh is the new lossy harmonic displacement given by

ξh = D(ncµ)ein
2
c [λ3λ2+ 1

2
(λ2−λ4)(λ1−λ3)] , (3.13)

with D(ncµ) = enc(µb
†−µ∗b) and µ = (1/

√
2)[(λ4 − λ2) + i(λ1 − λ3)]. D(ncµ) is a

displacement operator, conditioned by the number of photons, which acts on the

resonator and prevents light and mirror to be disentangled after a closed loop.

The functions f1(b0, b
†
0) and f2(b0, b

†
0) have the same formal definitions as in (3.7)

with λ→ λ4 and λ→ λ1, respectively. Calculating the exponentials in (3.12) and

expanding at the first order in γ we get the propagator

U ' ξh +
γ

4
ξhF (b0, b

†
0) . (3.14)

Performing the partial trace over the mechanical degrees of freedom of Eq.(3.14) and

comparing the order of magnitude of each term separately provides an estimate of
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the contribution of losses. We obtain

〈ξh〉 = e−
|µ|2

2
n2
c(1+2n̄)ein

2
c [λ3λ2+ 1

2
(λ2−λ4)(λ1−λ3)] ,

γ

4
〈F (b0, b

†
0)〉 ' −γ

4
λ4n4

c +O(ελ4n3
c n̄) .

(3.15)

From this result we infer that losses affect the evolution operator, and in particular

the separability of mirror and field at the end of the period. The expectation value

of 〈ξh〉 reveals that not only we will experience a smaller phase shift of the field, but

also a reduction in the visibility that could be estimated by exp(−|µ|2nc(1 + 2n̄)).

Luckily, since µ ∼ O(ελ) this term is expected to be relatively small, scaling as

exp(−|µ|2nc(1 + 2n̄)) ∼ 1−O(ε2λ2Npn̄) and could be easily neglected.

Finally, Eq.(3.15) provides a bound on the disturbance that optical losses induce

on the estimate of mechanical anharmonicity. We conclude that for our purposes

we should require εn̄� Np, which is feasibly satisfied in todays experiments with

Np ∼ 108 and n̄ ∼ 106 (corresponding to a few kelvin).

3.3 QFI and FI in anharmonicity estimation

Now that we have studied how mechanical anharmonicity affects the evolution

and how this is reflected on the expectation value of the measured light phase shift

(and visibility), we discuss the effectiveness of such interference measurements at

estimating the parameter γ. Exploiting the tools from local quantum estimation

theory [83], we derive the ultimate bounds on the estimation precision and compare

them with widely used measurement schemes. We start by calculating the QFI

associated to γ for the output state generated by the propagator in Eq.(3.10). As

the effective dynamics is unitary, an initial pure coherent state |α〉, will result in

another pure state, i.e. |ψγ〉 = ξeff |α〉, and the QFI can be evaluated as follows

Qγ = 4
(
〈ψ′γ|ψ′γ〉 − |〈ψ′γ|ψγ〉|2

)
= λ8

(
〈ψγ|n8

c |ψγ〉 − 〈ψγ|n4
c |ψγ〉2

)
= λ8(16N7

p + 216N6
p + 964N5

p + 1640N4
p + 952N3

p + 126N2
p +Np) ,

(3.16)
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where |ψ′γ〉 is the derivative of the state with respect to γ. Qγ sets the ultimate lower

bound on the estimation precision for the parameter γ, quantified by the variance

of an unbiased estimator through the so-called quantum Cramér-Rao theorem that

reads (in the limit Np � 1)

Var(γ) ≥ 1

MQγ

&
1

16Mλ8N7
p

, (3.17)

where M denotes the number of measurements performed. This last relation implies

that the estimation is highly enhanced by the Kerr-nonlinearity in Eq.(3.10), where

the anharmonic contribution scales as ∼ γλ4n4
c . This is what makes the optomechan-

ical framework particularly appropriate for this kind of measurement.

The quantum bound for a single parameter in Eq.(3.17) is in principle always achiev-

able, in the sense that there exists a POVM whose (classical) FI is equal to the QFI.

To evaluate if feasible measurements are optimal we proceed by calculating the FI,

which in general reads

Fγ =

∫
d • (∂γp(•|γ))2

p(•|γ)
, (3.18)

where p(•|γ) is a generic conditional probability to obtain the measurement outcome

•, given the value of the parameter γ. We will specifically refer to the two most

common strategies when dealing with phase measurements: homodyne and heterodyne

detection.

We have already mentioned that homodyne detection corresponds to a projection

on quadrature operators eigenstates, Xφ|x〉φ = x|x〉φ, where Xφ = xc cosφ+ pc sinφ,

and the pair of operators (xc, pc) denote respectively the position and momentum

operators for the cavity field. Since the evolution operator in Eq.(3.10) is diagonal in

the Fock basis, as suggested in Ref.[84], it is convenient to write also the quadrature

operator eigenstates as

|x〉φ = e−x
2/2

(
1

π

)1/4 ∞∑
m=0

Hm(x)

2m/2
√
m!
e−imφ|m〉 , (3.19)
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where Hm(x) is the m-th Hermite polynomial. Given a certain anharmoniciy γ, we

then find the conditional probability of obtaining the outcome x

p(x|γ) = |φ〈x|ψγ〉|2

=
e−(|α|2+x)

√
π

∣∣∣∣∣
∞∑
m=0

αmHm(x)

2
m
2 m!

eim[φ−λ2m(1+ γ
2
λ2m2)]

∣∣∣∣∣
2

.
(3.20)

Unfortunately, there is no analytical way to compute this series in a more compact

expression. However, by fixing all the parameters {α, φ, λ, γ} and by varying

the measurement outcome x, we can numerically evaluate the integral and find the

FI as in Eq. (3.18). The phase dependence is optimised by the choice φ = π/2,

independently of the set of experimental parameters. We can then adopt a reasonable

value for the rescaled coupling, e.g. λ ∼ 1.5× 10−5, to compute the ratio between

homodyne FI and the corresponding QFI as a function of the number of photons in

the cavity (see Fig.3.1). We infer that the larger Np is, the more the ratio F hom
γ /Qγ

approaches one: we already reach a very good agreement with 30 photons, though

Figure 3.1: Ratio F hom
γ /Qγ for cubic (red triangles) and quartic (blue dots) an-

harmonicities as functions of the average number of photons Np. Experimental
parameters are set as λ ∼ 1.5 × 10−5, γ = 10−25 and the phase φ is optimized to
φ = π/2. (The figure has been extracted from Ref.[66].)
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this is still very low compared to the number of photons in a standard optomechanical

cavity setup (where Np ∼ 108(9)). This clearly shows that homodyne detection is an

advantageous method to probe anharmonicity with arbitrarily high precision, and

we could conjecture its optimality in the limit of large number of photons.

On the other hand, heterodyne detection consists in projecting on a coherent state

|η〉 and is usually performed through a double-homodyne detection scheme [85]. The

corresponding conditional probability is given by

p(η|γ) = |〈η|ψγ〉|2

= e−(|α|2+|η|2)

∣∣∣∣∣
∞∑
m=0

αmη∗m

m!
e−iλ

2m2(1+ γ
2
λ2m2)

∣∣∣∣∣
2

,
(3.21)

and the related FI can be computed by integrating over the whole complex plane

spanned by coherent states

F het
γ =

1

π

∫
d2η

(∂γp(η|γ))2

p(η|γ)
, (3.22)

where the dependence on the phase parameter has dropped out, as opposed to the

case of homodyne detection. We evaluated the FI also in this case, for an initial

coherent state with up to 35 photons, and numerical results displayed a fixed, constant

ratio between FI and QFI, i.e. F het
γ /Qγ = 0.5, independently of the experimental

parameters.

We conclude that homodyne measurements on the cavity field are the most effective

for precise anharmonicity estimation, being nearly quantum limited.

3.4 Signal-to-noise ratio

While the fact that homodyne FI saturates the QFI witnesses the optimality

of such interference measurements at extracting information on mechanical anhar-

monicity, FI alone is not sufficient to guarantee the accuracy of the scheme. We

should consider indeed that we are dealing with phase measurements, where the
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power to discriminate between very small phase shifts is required: to perform efficient

metrology it is essential to take into account the signal-to-noise ratio. This important

figure of merit quantifies how the genuine contribution of the desired signal compares

to the intrinsic noise typical of the quantum measurement under consideration. In

particular, bearing in mind the Cramér-Rao bound theorem, we can define for any

parameter ζ its signal-to-noise ratio Rζ and derive the upper bound:

Rζ =
ζ2

Var(ζ)
≤ ζ2MQζ , (3.23)

where Qζ denotes the QFI, or the FI in case of non-optimal measurements, for

the parameter of interest. A key condition for accurate metrology is to achieve a

significant value of the signal to noise ratio Rζ > 1 with a reasonable number of

experimental runs. In our specific case, in the limit of large number of photons we

get

1 < R(4)
γ . 16γ2λ8N7

pM , (3.24)

which could be easily satisfied with homodyne detection in the limit of large number

of phonons.

Substituting common up-to-date values of cavity parameters in Eq.(3.24), e.g. Np ∼
109 and λ ∼ 10−4, and considering M ∼ 104 experimental runs (which still allows us

to use optimal asymptotic estimators, such as the Bayesian or the MaxLik estimator),

one could in principle probe anharmonicities as low as γ ∼ 10−20 for the quartic case

(and δ ∼ 10−15 for the cubic case, as shown in Appendix B).

Eventually, we observe that for these values of the parameters all the assumptions that

we have made (i.e. γλ4N3
p � 1, λ2N2

p � n̄, εn̄� Np) are satisfied for temperatures

of a few kelvin, which can be easily achieved through dilution refrigeration techniques,

without requiring sideband cooling [1].

3.5 Classical anharmonicity

Since non-linearities are believed to play a key role in the generation of non-

classical states [70, 71, 72], we dedicate this section to the study of mechanical
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anharmonicity in optomechanics. Similarly to Chap.2, where we discussed the

harmonic case, we will approach the problem from a classical picture, which will also

help us to get a complete understanding of the dynamics. Besides, the interest in the

quantum-to-classical transition goes beyond a didactic purpose and lies in the need to

properly assess which features of motion can be attributed a quantum nature. This is

a prerequisite that one has to address prior to proposing optomechanical resonators

for future investigations on more exotic topics such as, for example, quantum gravity

and decoherence models [28, 86, 29, 57]. In this direction, we will discuss in Sec.3.6

the connection between anharmonic dynamics and the one induced by deformed

commutation relations predicted by quantum gravity theories [87, 88].

Let us then start by writing the classical Hamiltonian of an anharmonic oscillator,

corresponding to taking the expectation values of the operators in Eq.(3.1):

Hclass =
p2

2m
+

1

2
mω2x2 +

γ̃

4
mω2x4 , (3.25)

where γ̃ = (mω/~)γ has dimensions [γ̃] = [L−2]. Through Hamilton’s equations we

obtain the differential equation of motion

ẍ+ ω2x+ ω2γ̃x3 = 0 , (3.26)

which is the well known Duffing equation, whose general solution to first order in

γ̃ has been derived through various methods (e.g. multiscale and renormalisation

approaches, see Ref.[78]) and reads, for times t such that (ωt)γ̃R2
0 � 1,

x(t) = R0 cos [ω′t+ θ0] +
γ̃

32
R3

0 cos [3(ω′t+ θ0)] , (3.27)

with R0 the unperturbed amplitude and ω′ = ω(1 + 3
8
γ̃R2

0) the anharmonic frequency.

The constraint on the integration time and the frequency shift are the same as in

Eq.(3.3), being typical of the multi-scale approach, whose accuracy in time increases

at the jth order as ωt � (γ̃R2
0)−j. This is a common feature of all differential

equations that contain secular terms, i.e. terms whose amplitude grows without

boundaries in time. The validity of the perturbative expansion of the solution is
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preserved adapting the result at any given order by imposing the suppression of the

divergences that arises at the following ones.

With the solution of the anharmonic motion at hand in Eq.(3.27), we reconstruct

the classical dynamics of the system through the same scheme we applied for the

harmonic case (that was depicted in Fig.2.1). Imposing the appropriate initial

conditions for x and ẋ after each of the four kicks, we let the oscillator freely evolve

anharmonically for a quarter of period: the phase shift imparted to the light will

depend on the sum of the mirror positions at each reflection time. This approach

leads to the classical equivalent of the quantum-mechanical evolution defined in

Eqs.(3.4)-(3.10). Considering the mirror initially at rest in its equilibrium position4

and defining R̄ = I/(mω), we get for the first three kicks

1st

x(0) = 0, ẋ(0) = I
m

x(t) =
(
R̄− 9

32
γ̃R̄3

)
sin(ω′t)− γ̃

32
R̄3 sin(3ω′t)

,

2nd

x(0) = R̄− γ̃
4
R̄3, ẋ(0) = I

m

x(t) =
√

2
(
R̄− 9

16
γ̃R̄3

)
cos
(
ω′t− π

4
+ 3γ̃

8
R̄
)2

+ γ̃
√

2
16
R̄3 cos(3(ω′t− π

4
))

,

3rd

x(0) = R̄− γ̃R̄3, ẋ(0) = −3
4
γ̃ωR̄3

x(t) =
(
R̄− 33

32
γ̃R̄3

)
cos
(
ω′t+ 3γ̃

4
R̄
)2

+ γ̃
32
R̄3 cos(3ω′t)

.

(3.28)

The dynamics after the fourth kick can be neglected as we have x( 3π
2ω′

) = 0 +O(γ̃2)

and ẋ( 3π
2ω′

) = 0 +O(γ̃2).

The first order in γ̃ in Eqs. (3.28) corresponds to the classical deviations ∆x(ti) from

the harmonic dynamics where x(ti) are the positions of the oscillator at different

times ti. Following Eq.(2.3) and summing all these contributions we obtain the
4We have widely discussed in Chap.2 how this can be generalised to any initial condition, among

which an initial thermal state.
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anharmonic correction to the phase shift

∆ϕclass = 2kfNrt

4∑
i=1

∆x(ti) = −22γ̃kfNrt

(
I

mω

)3

~2
N3
pF ′

4

λ4
L(mω)2

, (3.29)

which is acquired by the field after a square-loop pulsed interaction.

Similarly to the harmonic case in Chap.2, we verify that in the limit of large

photon number and small coupling the classical additional phase shift reproduces the

quantum result in Eq.(3.11) (for the comparison we recall the relations I/(mω) =√
~/(mω)λNp, Nrt = F ′/π and λ = 4F ′/λL

√
~/(mω′)). This equivalence can be

explained by considering that in the same limit the dynamics of the mirror coincides

in the two pictures, i.e. the mean value of the position operator on the oscillator

state using Eq.(3.3) tends to Eq.(3.28). For example, after the first interaction with

the field, the oscillator is displaced in a coherent state of amplitude λNp/
√

2, whose

subsequent anharmonic evolution is described by

〈X(t)〉 =

[
λNp sin(ω′t)− γ

4

(
3λNp sin(ω′t) +

9

8
λ3N3

p sin(ω′t) +
λ3N3

p

8
sin(3ω′t)

)]
,

(3.30)

which tends to the first line in Eq.(3.28) at the leading order in (λNp). This implies

that in the limit of large displacements λNp � 1 the quantumness of the anharmonic

oscillator is lost and the dynamics approaches the classical prediction. On the

other hand, in a strong coupling and single photon regime we should be able to

measure different phase shifts, due to significant deviations between classical and

quantum descriptions. This happens not only because of the quantisation of the field

(as discussed for the harmonic case), but also since the dynamics of the quantum

anharmonic oscillator differs from the classical one.

3.6 Generalization to non canonical transformations

We devote this section to a very specific, though enlightening, occurrence: we

show how anharmonicity can derive from a deformation of the Hilbert space like the

application of a non canonical transformation. As a consequence, any deformation in
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commutation relations between x and p, e.g. those predicted by almost all quantum

gravity theories [89, 87, 88], can be translated in a form of anharmonicity and vice-

versa. This imposes severe restrictions to the attribution of observable deviations

from the harmonic dynamics to either of the two scenarios. Besides, it certifies that

the phase shift found in Eq.(3.11) coincides with the one in Refs.[3, 31] that was

ascribed to gravity deformations of Heisenberg commutator.

Let us then start the demonstration with a harmonic oscillator, H = (x2 + p2)/2,

embedded in an environment where x and p satisfy the general commutation rule

[x, p] = i[1 +λS(x, p)], where λ is a small parameter and S(x, p) is a generic function

of x and p. We thus apply the non-canonical transformation

x′ = x+ λf(x, p) ,

p′ = p+ λg(x, p) ,
(3.31)

with x′ and p′ verifying

[x′, p′] = i+ iλ

(
S(x, p) +

∂f

∂x
+
∂g

∂p

)
. (3.32)

It is then sufficient to choose f and g such that S(x, p) + fx + gp = 0 in order to

impose the canonical commutation relations on x′ and p′. Interestingly, we discover

that in principle one only needs to transform one coordinate to fulfill this condition,

leaving the other unchanged.

The transformed Hamiltonian will read (at the first order in λ)

H ′ =
x2′ + p2′

2
− λ[x′f(x′, p′) + p′g(x′, p′)] , (3.33)

from which we derive the equations of motion in the transformed frame (i.e. where

x′ and p′ satisfy the standard commutation relations)

ẋ′ =
∂H ′

∂p′
= p′ − λ

[
x
∂f

∂p
+ g + p

∂g

∂p

]
,

ṗ′ = −∂H
′

∂x′
= −x′ + λ

[
x
∂f

∂x
+ f + p

∂g

∂x

]
.

(3.34)
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It is now easy to verify that this dynamics is indistinguishable from the one arising

in the original frame with deformed commutators. Such a reference frame would

be the result of a non-canonical transformation on a Hamiltonian system, which

implies that it will not be Hamiltonian. This means that we will need the "classical"

generalised Poisson brackets to derive the equations of motions. As described in

Ref.[90], these read

ẋ =
∂H

∂p
{x, p} = p− λ

[
p
∂f

∂x
+ p

∂g

∂p

]
,

ṗ = −∂H
∂x
{x, p} = −x+ λ

[
x
∂f

∂x
+ x

∂g

∂p

]
.

(3.35)

Substituting the relation ḟ = ẋfx + ṗfp = pfx − xfp (and its analogous for g) it is

eventually straightforward to verify that Eqs.(3.34) and (3.35) describe the same

dynamics. Without knowing a priori whether canonical or deformed commutation

rules apply in a certain environment, it is thus impossible to distinguish between

an anharmonic motion occurring in the former frame and a harmonic motion in the

latter.

As a practical example, we calculate the deformed commutators that would lead

to the same dynamics induced by the anharmonicity we have been studying in this

chapter. We have
γ

4
X4 = −λ[Xf(X,P ) + Pg(X,P )] , (3.36)

from which we easily derive g ≡ 0, λ ≡ γ and f ≡ −X3/4, which implies that the

associated deformed commutators would read [X ′′, P ′′] = i(1 + 3/4 γX ′′2).

Conversely, gravity modification of canonical commutation relations is expected

to scale as ∼ γP ′′2, thus implying a more unusual kind of anharmonicity related

to the momentum, which might be excluded in experiments from other physical

considerations.
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3.7 Conclusions

In this chapter we have manipulated the results presented in Chap.1-2, such as

the exploitation of the bad cavity regime, to engineer closed loops in the mechanical

phase space in order to estimate the anharmonicity of a macroscopic oscillator.

Relying on a four-pulse interaction with a coherent optical field in input, under

an experimentally achievable initial cooling of the mirror, the system ends up in a

separable state. Specifically, the oscillator returns to its initial position, while the

cavity field undergoes an effective unitary operator which retains information on

the anharmonicity of the mechanics. By using tools from local quantum estimation

theory, we have derived the ultimate bounds on the estimation precision, showing

how this can be arbitrarily high by increasing the number of photons of the initial

coherent state. This has allowed us to prove the optimality of homodyne detection in

the limit of large number of photons, and the efficiency of our method at estimating

small anharmonicities by considering state-of-the-art values of the optomechanical

parameters. Also, since different anharmonicities have different impacts on the

shift of both mechanical frequency and light phase, the joint measurement of these

observables could make the scheme able to discriminate multiple non-linearities.

In addition, to provide a deeper understanding of such mechanical anharmonicities,

we have presented a full description of the model in a classical picture, being able to

identify the true signatures of quantumness in the dynamics. Besides, we have shown

the close relationship that mechanical non-linearities share with more fundamental

modifications of the Hilbert space topology, e.g. the supposed deformation of

commutation relations predicted by quantum gravity.
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Chapter 4

Preparation of Macroscopic

Quantum States

4.1 Introduction

The content of this chapter is the result of the research that I conducted under the

supervision of Dr Florian Mintert at Imperial College. The work that is presented

here is currently under revision at Physical Review Letters and is available on the

arXiv with the title "Deterministic preparation of highly non-classical quantum states

of massive oscillators" [91].

After having discussed the role of Kerr and mechanical non-linearities, also in

context of the quantum-to-classical correspondence, we devote this chapter to propose

a scheme to deterministically prepare a range of quantum superposition states of

the mirror. While literature has been historically focused on the quantumness of

microscopic objects, it is a challenge to deterministically isolate genuine quantum

features in the macroscopic world that can be accessed in experiments. Few attempts

have reported coherent superpositions of quantum objects with large mass [92, 93].

Still, the preparation of a massive system in a quantum state is a matter of great

interest both theoretically and experimentally, as it is expected to shed new light

on a variety of topics ranging from quantum-to-classical transitions [25, 26, 27]

and collapse models [28, 29, 30] to the interface between quantum mechanics and
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gravity [3, 31]. In particular, we have seen in previous chapters how optomechanical

cavities offer a practical table-top scenario to investigate the dynamics of massive

mechanical oscillators [49, 94, 95, 1]. These were proven to exhibit a large degree of

macroscopicity, reaching µ = 19 on a scale where the Mach-Zender interference of Cs

[96] and the Schrödinger gedanken experiment reach values of µ = 10.6 and µ ∼ 55

respectively [97].

While the light-matter interaction in cavity optomechanics has been already proposed

as a resource to prepare non-classical states of the mechanical motion, such as squeezed

states [98, 99, 100], single phonon excitations [101, 102, 103] and Schrödinger cat

states [2, 5, 104, 105], none of these proposals has come up with the deterministic

creation of a macroscopic state, relying instead on a probabilistic approach [106, 107]

or on a transient regime [108, 109].

In this chapter we will present a protocol to prepare the optomechanical system in a

product state of the cavity field and the mirror by driving the latter with appropriately

chosen pump profiles with external lasers. As we have already discussed, separability

is an essential prerequisite to achieve deterministic preparation of quantum mechanical

states of the mirror, which in our case will consist in squeezed states and non-Gaussian

coherent superpositions exhibiting sizeable negativity of the Wigner function.

Special attention will be devoted to the latter case where non-classical states are

achieved. Besides, we will employ a quantitative measure able to evaluate the degree

of non-classicality of a given state. Not only this will allow us to certify the creation

of maximally non-classical states of the mirror, but it will also make our proposal

optimal for accurate tests of decoherence models and of potential limitations on

coherent superpositions of a massive object.

We will begin the discussion assuming the ideal initial situation when the system

is initially cooled down to the ground state and undergoes a unitary evolution,

and we will later analyse the resilience of our scheme to various possible sources of

experimental error, from mechanical and optical damping, to thermal mechanical

noise and imperfections in the driving pattern.

For ease of reading, we detail hereafter a summary of the content of the chapter.

– In Sec.4.2 we recapitulate the model of a driven optomechanical cavity and formalise
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the scope of our investigation. We also introduce the Magnus expansion technique

to perturbatively solve a non-linear time dependent Schrödinger equation.

– Sec.4.3 is devoted to the derivation of the driving profiles that have to be applied

to obtain the desired quantum states of the mirror, i.e. squeezed states (4.3.1)

and highly non-classical coherent superpositions (4.3.2). In subsection (4.3.3) we

discuss the effectiveness of the perturbative approach, while (4.3.4) reviews standard

measurement techniques to experimentally readout such non-trivial mechanical

states.

– In Sec.4.4, we analyse and characterise the state of the mirror in terms of the

negativity of its Wigner function and of a rigorous measure of non-classicality.

– Sec.4.5 is dedicated to the resilience of the control scheme to a range of experimental

imperfections, looking at the effects of optical and mechanical decoherence, initial

mechanical thermal noise and imperfect optical driving.

4.2 The Model

Unlike the pulsed regime that we have adopted in the previous chapters, we will

now contemplate a general multi-chromatic external continuous driving of the cavity

ξ(t). We will refer to the optomechanical scheme depicted in Fig.1.1 and described

by the Hamiltonian in Eq.(1.4), though we will consider the possibility to have more

than one external laser source. The complete Hamiltonian of the system reads (see

Sec.1.2)

H = H0 +Hint , with

H0 = ωca
†a+ ωb†b+ i

(
ξ(t)a† − ξ∗(t)a

)
and

Hint = −g0a
†a(b+ b†) ,

(4.1)

and thanks to the cubic optomechanical interaction, Hint, it is expected to induce

non-Gaussian states of the system. However, as we have already discussed in Chap.1-

2, where the driving was turned off during the interaction, the evolution will generally

result in a correlated state of the field and the mirror, such that only a mixed
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quantum state could to be attributed to each subsystem alone.

Conversely, we will now design ad hoc driving patterns ξ(t) to leave the system

in a separable state at the end of the preparation time. In other words, if U(t)

is the solution of Schrödinger equation at time t relative to the whole system, i.e.

it satisfies iU̇(t) = H(t)U(t), the functions ξ(t) will be engineered such that, at a

predetermined time t′, U(t′) factorises in the product of two separable propagators

U(t′) = Uc(t
′) ⊗ Um(t′), acting on the cavity and on the mirror respectively. In

particular, we will ensure that the former ends up in its initial state, Uc(t′) = 1, in

order to significantly ease the readout subsequent to the state preparation. As we

will discuss in Sec.4.3.4, this is required because most of current state reconstruction

techniques of mechanical motional states are achieved through homodyne tomography

of a probe light field, via the so called back-action-evading interaction [11, 100, 110].

4.2.1 The time evolution

A convenient approach to express the time evolution resorts to factorising the

propagator U(t) = U0(t)V (t) in the product of the harmonically driven dynamics

(U0(t)), originated by the non-interacting Hamiltonian H0(t), and the one induced

by the non-linear interaction in Hint(t) (V (t)). The Schrödinger equation can then

be split in a system of coupled equations

iU̇0(t) = H0(t)U0(t) , and

iV̇ (t) = HI(t)V (t) ,
(4.2)

where HI(t) = U †0(t)Hint(t)U0(t) is the interaction Hamiltonian in the interaction

picture defined by U0(t). SinceH0(t) is harmonic, and actually refers to two uncoupled

harmonic oscillators, one of which being forced by the time dependent driving ξ(t),
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its explicit solution can be constructed exactly and reads

U0(t) = e−iωcncte−iωnmte(f1(t)a†−f∗1 (t)a)+f2(t)1 , with

f1(t) =

∫ t

0

dt1ξ(t1)eiωc(t1) , and

f2(t) =
1

2

∫ t

0

dt1ξ(t1)eiωc(t1)f ∗1 (t1)− h.c. .

(4.3)

With this at hand, one extracts the interaction Hamiltonian in the frame defined by

the harmonic motion as

HI(t) = −g0

(
nc − (f1a

† + f ∗1a) + |f1|2
)
X(t) . (4.4)

Because of the cubic nature and the time-dependence, there is no known exact

analytical solution for the dynamics induced by HI(t). Still, in the limit of weak

coupling, k = g0/ω � 1, which is in agreement with state-of-the-art experiments

operating at k . 10−2 [49, 1], we can construct the time-evolution operator V (t, t0)

in a perturbative expansion in powers of k through the Magnus series [111]

V (t, t0) = exp
(
−i
∑
j

Mj(t, t0)
)
, (4.5)

where the individual terms

M1(t, t0) =

∫ t

t0

dt1HI(t1) ,

M2(t, t0) = − i
2

∫ t

t0

dt1 [HI(t1),M1(t1, t0)] ,

M3(t, t0) = − i
3

∫ t

t0

dt1 [HI(t1),M2(t1, t0)]− 1

6

∫
d3τ [HI(t3), [HI(t2), HI(t1)]] ,

(4.6)

(the last integration with d3τ = dt1dt2dt3 is taken over t ≥ t1 ≥ t2 ≥ t3 ≥ t0) and

similar higher order terms satisfy the proportionalityMj(t, t0) ∼ kj for any given

driving profile ξ(t).

In the first two chapters of this thesis we showed how light-matter correlations
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arosed alongside the evolution when no continuous driving was applied. From the

expression for HI(t) in Eq. (4.4), it emerges that the lowest order termM1(t, t0) will

already contain such correlating terms. Besides, the adoption of the external drivings

will also induce single-particle terms of the mirror and the cavity alone, which will

appear at higher order expansionsMj(t, t0) (j > 1). In order to achieve deterministic

state preparation, we will need that all interaction terms and all single-particle terms

of the cavity vanish at t′, while the single-particle terms of the mirror induce highly

non-classical states.

For this purpose, it will prove useful to consider the case when t′ corresponds

to an integer number N of periods of the mechanical motion, i.e. t′ = NT with

T = 2π/ω. We shall then express the propagator V (TN, 0) over N periods as

V (TN, 0) =
N∏
s=1

V (Ts, T (s− 1)) =
N∏
s=1

exp(−iM(s)) , (4.7)

where V (Ts, T (s− 1)) is the propagator of the system for the sth driving period, i.e.

the time window where t ∈ [(s− 1)T, sT ]. It is also implied in Eq.(4.7) that terms

are ordered with decreasing value of s in the product. TheM(s) are defined via the

relation exp(−iM(s)) = V (Ts, T (s− 1)), and can be expanded in the series

M(s) =
∑
j

M(s)
j , (4.8)

analogously to Eq. (4.6). The Baker-Campbell-Hausdorff relation yields

M1(TN, 0) =
N∑
s=1

M(s)
1 ,

M2(TN, 0) =
N∑
s=1

M(s)
2 −

i

2

N∑
s>l=1

[M(s)
1 ,M(l)

1 ] ,

M3(TN, 0) =
N∑
s=1

M(s)
3 −

i

2

N∑
s>l=1

(
[M(s)

1 ,M(l)
2 ] + [M(s)

2 ,M(l)
1 ]
)

− 1

6

N∑
j≥s≥l

(
[M(j)

1 , [M(s)
1 ,M(l)

1 ]] + [M(l)
1 , [M

(s)
1 ,M(j)

1 ]]
)
,

(4.9)
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and similar contributions for higher order terms. Now that we have decomposed the

evolution operator into the sum of N time windows, we can consider the situation

where we adopt simple, though different, driving profiles for each period. More

specifically, we will consider the set of time dependent functions ξs(t), with s ∈ [1, N ],

resulting in different interaction Hamiltonians H(s)
I (t) in each interval. The adoption

of different drivings in the various intervals algebraically corresponds to applying

a set of operators {Ws} such that, with the specific choice H(s)
I (t) = W †

sH
(1)
I (t)Ws

(with W1 = 1), one obtains

V (TN, 0) =
N∏
s=1

W †
sV (T, 0)Ws =

N∏
s=1

exp(−iM(s)) , (4.10)

withM(s) = W †
sM(1)Ws. We have thus brought the problem back to reconstructing

the dynamics over the first mechanical period. Once this is done, we have to engineer

the set {Ws}, and the corresponding driving pattern, such that any undesired term

inMj vanishes or is modified as desired.

Eq.(4.10) provides a convenient expression to understand how to design the control

scheme and in the next section we will propose physically motivated choices for the

Ws that achieve the aim and that translate into rather simple driving profiles.

4.3 State preparation

Now that we have laid out the algebraic framework, we have all the tools to find

explicit driving profiles ξ(t) that result in desired dynamics. First of all we notice

that due to the large separation of the resonance frequencies of cavity and mirror, it

is recommended to drive the former close to the sidebands with frequencies ωc ± ω
to enable the exchange of excitations between the two subsystems. In the next two

sections, (4.3.1 and 4.3.2), we will derive suitable control patterns to lead the mirror

into a strongly squeezed state and a state with pronounced non-Gaussian and non-

classical features respectively. Apart from an interest in its own, the discussion on

strongly squeezed states in Sec.4.3.1 shall help to exemplify the framework developed

above, with simpler algebra than found in the preparation of non-classical states.
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4.3.1 Preparation of macroscopic squeezed states

The first order expansion of V (T, 0), i.e. M(1)
1 , both with a blue or a red detuned

driving alone (respectively ωc + ω and ωc − ω) leads to well known propagators that

respectively create or exchange excitations between the cavity field and the mirror.

However, not only do they both induce light-matter correlations, but they both also

induce a displacement of the mirror. Since this effect would outshine the mechanical

squeezing, which, as we will see, is a second order effect in k, we adopt a bi-chromatic

driving with both the detuned lasers ±ω. The corresponding driving profile

ξ(t) = Ee−iωct(eiωt + e−iωt) , (4.11)

with amplitude E results in the lowest order contribution to the Magnus expansion

M(1)
1 = −2πkηXcP , (4.12)

with the cavity quadrature Xc = a + a† and the unitless amplitude constant η =

E/ω. Since the mechanical frequency provides the characteristic time-scale of an

optomechanical experiment, it is a common custom to use ω as a term of reference

for all other experimental parameters (drivings, coupling, mechanical and optical

damping). In the following, the introduction of η will also help to provide more

compact analytical expressions.

As we anticipated, we notice that after the first driving period correlations between

cavity position quadrature and mirror momentum – ∝ XcP – are created at the

first order in the coupling. Let us then consider the particularly simple choice

Ws = exp(−incϕs), that rotates cavity operators in phase space as

eincϕsXce
−incϕs = Xc cosϕs + Pc sinϕs ,

eincϕsPce
−incϕs = Pc cosϕs −Xc sinϕs ,

(4.13)

with Pc = i(a† − a). The set of transformations {Ws} is obtained by reverse-

engineering the derivation of the interaction Hamiltonian (see Eq. (4.4)), and corre-
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sponds to the modified driving profiles

ξs(t) = Eeiϕse−iωct(eiωt + e−iωt) . (4.14)

These are rather elementary to implement, as different driving periods differ from

each other merely by the phase shift ϕs, and a simple bi-chromatic driving with a

step-like phase variation realises the desired dynamics.

Substituting Eqs. (4.12) and (4.13) inside Eq.(4.9) we get

N∑
s=1

M(s)
1 =

N∑
s=1

exp(incϕs)M(1)
1 exp(−incϕk)

= −2π kη

(
N∑
s=1

Xc cosϕs + Pc sinϕs

)
P ,

such that any undesired interaction term proportional to ∝ kXc(Pc)P cancels for

any choice satisfying
∑

s e
iϕs = 0.

We should now repeat the same reasoning with the second order expansion in Eq.(4.9).

Making explicit the quadratic terms in the Magnus expansion over the first period

one obtains

M(1)
2 = −πk2

(
mc

2 +mI
2 +

20

3
η4

)
, with

mc
2 = 3η2X2

c + 8η2nc + 2n2
c and

mI
2 = 2ηPcP

2 ,

(4.15)

together with contributions arising from the commutators

i

2
[M(s)

1 ,M(l)
1 ] = 4π2k2η2 sin(ϕs − ϕl)P 2 . (4.16)

As for the first order case, the choice
∑

s ϕs = 2π guarantees
∑

sW
†
sPcWs = 0, so

that the interaction terms mI,s
2 add up to 0 as desired.

Moreover, given the relation

exp(incϕs)X
2
c exp(−incϕs) = a2e−i2ϕs + a†

2
ei2ϕs + 2nc + 1/2 ,
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Figure 4.1: Phase space schematic representation of the algebra that lies under the
sum of exponential operators that are rotated by angles ϕs. As illustrated on the
left, we consider the case where the set of phases satisfies

∑N
s=1 e

iϕs = 0. On the
right we show that the total area spanned by the representation of such phases
in phase space is related to the sum over all the combinations of commutators:
A =

∑
s>l[ϕl, ϕs]/4 = N cot[π/N ]/4.

it is desirable to achieve also
∑

s e
i2ϕs =

∑
s e
−i2ϕs = 0, which eventually motivates

the selection ϕs = 2π(s− 1)/N (assuming N > 2, see Fig.4.1).

The remaining terms in mc,s
2 depending on nc are independent of the choice of ϕs and

can not be modified. The last, and most important, contribution toM2 is given by

Eq. (4.16). With the choice ϕs = 2π(s− 1)/N , the sum over the sin-terms results in

∑
l<s

sin

(
2π

(s− l)
N

)
=
N

2
cot
( π
N

)
, (4.17)

which scales quadratically in the driving time ∼ N2/(2π), as illustrated in Fig. 4.1.

Eventually, we have thus arrived at dynamics, such that no results of an interaction

appear at the final instance in time and no excitations in the cavity have been

created. Up to a global phase factor, which we will henceforth always neglect, the

full propagator reads V (TN, 0) = Vc(N)⊗ V (2)
m (N) with

Vc(N) = exp
(
2πi Nk2 (n2

c + 7η2nc)
)
, and

V (2)
m (N) = exp

(
2i (πkη)2N cot

( π
N

)
P 2
m

)
,

(4.18)

where V (2)
m (N) is a unitary operator acting on the mirror and corresponding to a

squeezing operation. Indeed, we should recall to the reader that a single mode
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quadrature squeezing S(β) is defined by the Gaussian unitary operator [112]

S(β) = e
1
2

(β∗b2−βb†2) . (4.19)

The state obtained by applying S(β) to the vacuum is called a squeezed-vacuum state

and is characterized by having, for some values of β, one of its quadrature variances,

i.e. ∆X2 or ∆P 2, below the zero-point level of 1/2.

Let us then show how to recast Eq.(4.18) in the form V
(2)
m (N) = eiδb

†be
1
2

(ζ∗b2−ζb†2),

with the squeezing parameter

ζ = i (2πkη)2N cot
( π
N

)
eiδ ,

that scales as |ζ| ∼ N2. This transformation can be obtained by considering the

action of V (2)
m (N) on the annihilation operator b in Heisenberg picture

V (2)
m

†
(N)bV (2)

m (N) = (1 + i|ζ|)b− i|ζ|b† , (4.20)

and looking for the application of a vacuum squeezing operation S(β) followed by a

rotation R(φ) that corresponds to it

R(φ)†S(β)†bS(β)R(φ) = beiφ cosh r − b†ei(θ−φ) sinh r , (4.21)

where β = r eiθ. By matching Eqs.(4.20) and (4.21) we obtain β = ζ and θ = δ.

As we show in Fig.4.2, up to a rotation δ = arctan(|ζ|), the quadratic dependence
on time allows substantial squeezing already after a few intervals. Besides, we should

keep in mind that the perturbative regime requires reasonably short propagation

times, i.e. small values of N , and the present analysis is valid in the limit k � 1,

as the neglected third order term scales as M3 ∼ k3η2N . For a relatively weak

interaction, k = 1/400, and sufficiently strong driving, η = 10, one achieves a

squeezing of the position quadrature resulting, after N = 11 periods, in ∆P 2
m = 1.57

and ∆X2
m ' 0.16 (see Fig.4.2).
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Figure 4.2: Expected values for the quadratures of the mirror as a function of the
total driving time expressed in terms of driving periods. Black circles represent
∆P 2 and red triangles ∆X2, which is squeezed by the evolution operator up to
∆X2 = 0.16. Experimental parameters are set as: η = 10, k = 1/400.

4.3.2 Non-classical Quantum States

The creation of non-classical states relies on third order contributions to the

dynamics and thus requires the suppression not only of interaction effects, but also

of second order Gaussian terms, since these will outshine the non-linearity and lead

the system towards classical states. It is therefore advisable to double the detuning

as compared to Sec. 4.3.1, but employ qualitatively similar driving profiles

ξs(t) = Eeiϕse−iωct(ei2ωt + e−i2ωt) , (4.22)

with a new set of phase shifts ϕs.

Thanks to the chosen double side-band detuning, the first order MagnusM1 vanishes

regardless of the choice for the ϕs. The second and third order expansions of the
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propagator for the first driving period are instead

M(1)
2 = πk2

(
mc

2 +mI
2 −

29

60
η4

)
, with

mc
2 = −2n2

c +
1

3
η2(X2

c − 6nc) and

mI
2 = ηPc(b

2 + b†
2
) ;

(4.23)

as well asM(1)
3 = π

3
k3η

(
mm

3 +mI
3

)
with

mI
3 =

[
14i(a†nc − nca)−

(
36

5
η2 + 4

)
Pc

]
X

+
[
3Xc + 6iη(a2 − a†2)

]
P − 3

4
PcQm ,

(4.24)

and mm
3 = η Qm with

Qm =

[(
X + i

P√
3

)3

+

(
X − i P√

3

)3

+
3

2
X

]
.

Thanks to the fact thatM(s)
1 vanishes, all terms at the second and third order in

the coupling resulting from non-commutativity of M(s)
1/2 and M(l)

1 vanish as well.

Following Eq. (4.9), we can thus reconstruct the generator of the dynamics over N

periods by consideringM2 =
∑N

s=1M
(s)
2 andM3 =

∑N
s=1M

(s)
3 , where the terms

M(s)
2/3 are obtained from Eqs. (4.23) and (4.24) by applying the transformation in

Eq.(4.10).

Let us then discuss how the new set of phase shifts {ϕs} should be designed to

achieve the desired goals of a product state with an empty cavity and a non-classical

state of the mirror. From the past section, we have learned that a bichromatic

driving as the one in Eq.(4.22) induces a different rotation at each period of the field

operators a and a† by an amount −ϕs and ϕs respectively. Since every element of

the interaction terms mI
2 and mI

3 at each period, W †
sm

I
jWs (j = 2, 3), is proportional

to exp(±iϕs) or exp(±i2ϕs), then the choice ϕs = 2π(s− 1)/N ensures that they all

cancel each other via the same mechanism we showed for the creation of squeezed

states in Sec.4.3.1.
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Making use of all the cancellations when summing over the N periods of driving, we

arrive at a separable propagator V (TN, 0) = Vc(N)⊗ V (3)
m (N) with

V (3)
m (N) = exp

(
−π

3
i Nk3η2 Qm

)
, and

Vc(N) = exp

(
2πi k2

(
n2
c +

2

3
η2nc

)
N

)
.

(4.25)

As expected, since all powers of a† and a average to zero (with the only exception of

terms proportional to ∝ a†a), Vc does not create any excitations in the cavity and

the initial optical vacuum state is preserved by the dynamics. Instead, the cubic

mirror operator Qm induces highly non-classical states, which we will examine in

detail in Sec.4.4.

Perturbative correction of the driving profiles

Prior to an accurate discussion on the mechanical states induced by Qm, however,

it is worth taking a critical look at the perturbative expansion. In fact, since the

generator V (3)
m in Eq.(4.24) scales as k3η2, the cubic dependence on k requires a

fairly strong coupling to yield to sizeable effects on the mirror. This would generally

make an experimental realisation more challenging than the one proposed to create

squeezed states, which are a second order effect. Still, thanks to the quadratic

dependence on η2, strong driving can compensate for the weak interaction. Yet,

the strong driving regime should be handled with care, as it may compromise the

effectiveness of the perturbative Magnus expansion which contains at each order

raising powers of k and η. In this sense, particular attention should be devoted

to the product kη. Let us then start our analysis by looking atM(1)
2 in Eq.(4.23),

which contains terms ∼ (kη)2nc , as well as it generates fourth order contributions

∼ (kη)4nc resulting from the commutators [M(s)
2 ,M(l)

2 ]. These should not have

directly a detrimental impact on the state preparation, since such terms describe

neither an interaction between cavity and mirror nor do they create excitations in

the system. They do induce, however, a back-action effect on the dynamics, rotating

the cavity field at each period and spoiling the effect of the previously engineered set

of rotations Ws = exp(−incϕs). The driving profiles need to be adapted so that to
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compensate this extra unwanted rotation, ensuring that at the end of the driving

time the propagator factorises into individual propagators of mirror and cavity.

To this end, it is instructive to look deeper at the role played by the operators Ws

and rewrite the propagator over the first interval, neglecting terms of order k4ηq with

q < 4 and terms of order kj with j > 4 as

V (T, 0) ' ei
4
3
πk2η2nce−iM̃

(1)

, with

M̃(1) = πk2(m̃c
2 +mI

2) +M(1)
3 , and

m̃c
2 = −2n2

c + η2(a†
2

+ a2 + 1)/3 ,

(4.26)

where the term exp(i4
3
πk2η2nc) in the expression for V (T, 0) is the undesired extra-

rotation (which similarly arises at every period for V (sT, (s − 1)T )). Recalling

Eq. (4.10), the propagator over N periods can be conveniently written as

V (TN, 0) = W †
N+1

(
N∏
s=1

Ws+1W
†
sV (T, 0)

)
W1 ,

from which it is clear that the extra term ei
4
3
πk2η2nc in Eq. (4.26) that arises at each

period can be cancelled by appropriately choosing the set of Ws, i.e. the prefactors

Ws+1W
†
s . This is achieved with the new set of phases

ϕs =

(
2π

N
+

4π

3
(kη)2

)
(s− 1) , (4.27)

which counterbalances exactly the phase shift ∆ = 4π
3
k2η2 that the cavity experiences

through the driving over each period as described in Eq.(4.26). Hence, the propagator

can be recasted in the form

V (TN, 0) =
N∏
s=1

exp
(
e

2πi
N

(s−1)ncM̃(1)e−
2πi
N

(s−1)nc
)
, (4.28)

and the basic principles for the cancellation of field operators within the sum over

the N driving periods developed above apply. However, the terms ∼ (kη)2nc no

longer appear, and the only remaining contribution scaling as ∼ (kη)2 in mc
2 in
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Eq. (4.26) is the polynomial a†2 + a2 + 1. Operators a†2 and a2 cancel out exactly

in the summation defined in Eq. (4.9) thanks to the specific set of phase shifts,

and the ‘+1’ brings an irrelevant global phase. The terms ∼ (kη)4 arising from the

commutators [M(s)
2 ,M(l)

2 ] (which are of the form [a2, a†
2
] = 4nc+2) contribute either

to the global phase or to a global final rotation in Vc. Lastly, we will see that the

only term ∼ (kη)4 inM(1)
4 depends on Pc and averages out in the summation over

the N periods.

Overall, the mirror will undergo the same evolution defined by V (3)
m in Eq.(4.25),

while the propagator for the field will read

Vc(N) = e
2πNi k2

[
nc+

2
3
η2+ 2πk2η4

9
cot( 2π

N )
]
nc
, (4.29)

which corresponds to the one in Eq. (4.25), up to the perturbative modification in

the cavity phase shift
(

2πk2η2

3

)2

N cot
(

2π
N

)
.

4.3.3 Perturbative regime

As is has emerged from the past discussion, it is essential to gauge the range

of applicability of the perturbative approximation. To this end, we devote this

subsection to the comparison between the dynamics obtained with the Magnus

expansion in third and fourth order approximation.

The operator V (4)
m is constructed in the same way as the corresponding second and

third order generators V (2)
m and V (3)

m , which we dealt with in the past two sections.

However, this time we will also need to compute the fourth order Magnus expansion

M4(NT, 0), which can be rewritten, under the adoption of the usual set of operators

{Ws}, in the form

M4(NT, 0) =
N∑
s=1

M(s)
4 −

i

2

N∑
s>l=1

[M(s)
2 ,M(l)

2 ] , (4.30)

where the full expression has been simplified by exploiting the fact that there is

no contribution from the first order in Magnus. Choosing the same set of phases

{ϕs} proposed in Eq.(4.27), one takes advantage of the same crossing-out of the field
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operators we presented in Sec.4.3.2 and obtains a separable evolution of the system.

This results in the fourth-order generator V (4)
m acting on the mirror, which reads

V (4)
m (N) =e−

π
3
i Nk3η2Qm e−i

ζ(4)

2
(b†

2
+b2)2

×eiπk4η2 N[ 124η−5
20

(b2+b†
2
)+ 575+634η

90
b†b] ,

(4.31)

with ζ(4) = (πk2η)2N cot(π/N).

In order to quantitatively evaluate the accuracy of the perturbative approach, we

construct V (3)
m (N) and V (4)

m (N) numerically in a truncated Hilbert space including up

to 80× 103 excitations. As a prototype also for other future discussions, we choose

the specific experimental parameters values η = 20 and k = 1/60, consistently with

the perturbative expansion. We will consider the states |ψ3(N)〉 = V
(3)
m (N) |0〉 and

|ψ4(N)〉 = V
(4)
m (N) |0〉 obtained after N periods of driving with the mirror initially

in its ground state.

For a thorough discussion, it proves very useful, here and in the following, to recall

an important figure of merit, i.e. the state fidelity between two quantum states,

which is defined from their density operators %A and %B as

FA,B =

(
Tr
√
%

1/2
A %B%

1/2
A

)2

. (4.32)

This quantity can be adopted to provide an estimate of the accuracy of the third

order Magnus preparation of the mirror by comparing its reduced density matrix

%3 = |ψ3(N)〉 〈ψ3(N)| with its fourth order correspondent %4 = |ψ4(N)〉 〈ψ4(N)|,
obtained numerically propagating Eq.(4.31). Fig. 4.3 depicts F3,4 as function of

the integration time. We infer that the deviations between %3 and %4 are in the

permille regime for the first 10 driving periods, and even at N = 20, the third order

approximation is accurate within ' 1%. We deem an error of 1% below the accuracy

of what could be achieved experimentally within the next years, and thus feel that

the perturbative treatment is highly adequate for the present purpose.

It is also worth remarking that the accuracy of the third order approximation in

Magnus should not be considered a limiting factor, as long as one can prove the

achievement of a maximally non-classical state (which we will address shortly). In
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Figure 4.3: Fidelity between the state of the mirror computed via a third and a
fourth order Magnus expansion as a function of the integration time, expressed in
terms of mechanical driving periods. The experimental parameters are set as η = 20,
k = 1/60. The graph indicates that high fidelity is obtained up to N = 20 driving
periods: F3,4 & 0.985.

other words, we expect that at higher orders in Magnus similar techniques apply

to those we have adopted so far to obtain a separable state for the cavity and the

mirror at the end of the interaction. Since non-classicality is induced by non-linear

operators, it is reasonable to conjecture that those higher-than-cubic terms arising

at the subsequent orders in Magnus would give rise to interesting quantum states of

the mirror, and actually also potentially enlarge the experimental domain to larger

coupling and/or longer interaction times.

4.3.4 Readout

The final readout of the mechanical motion is a matter that has been widely

analysed theoretically [11, 16] and implemented experimentally [100, 110] with high

precision. We presented in Sec.1.3 (and applied throughout the manuscript) the

interference measurement schemes based on homodyne and heterodyne detection

to reconstruct the field wavefunction. However, in our specific situation, we end

up with a separable state of the system, the cavity being empty at the end of the
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interaction. In order to perform quantum state reconstruction we thus need first to

induce an exchange of excitations from the mirror to the cavity and then perform a

measurement of the field. In this direction, the most promising technique is called

back-action-evading interaction and is based on state transfer. When bichromatic

driving is turned off, the mirror is in the state of interest and the cavity is empty,

a red detuned laser with frequency ωd = ωc − ω induces a swap between the two

subsystems. Hence, tomography of the prepared mechanical state of the mirror can

be deterministically carried out through homodyne measurement of the light leaking

out of the cavity [17, 18].

A clue to understand how the exchange process works comes from the first order

Magnus expansion of the related interaction Hamiltonian: M(1)
m (t) = E ′gt

ω
[E
′

ω
(b† +

b) + i(a†b − ab†)], with E ′ the driving amplitude adopted for the measurement.

The corresponding propagator induces a quantum state transfer of the mechanical

excitations onto the cavity field as the two states interchange themselves at a rate

2kE ′ [10]. The relation between the expectation values of the operators of the field

and the mirror after the measurement time tm = (2kE ′)−1 can be derived easily

〈a(a†)(tm)〉 = sin(Θ)m〈ψ(t′)|b(b†) |ψ(t′)〉m ,

〈a†a(tm)〉 =
1− cos(2Θ)

2 m〈ψ(t′)|b†b |ψ(t′)〉m ,

〈a2(a†
2
)(tm)〉 =

1− cos(2Θ)

2 m〈ψ(t′)|b2(b†
2
) |ψ(t′)〉m ,

(4.33)

where Θ = kE ′T and t′ = NT . As a matter of fact, it is worth mentioning that this

measuring scheme is interesting per se, having a variety of applications in literature.

On the one hand, it was shown in [113] that when a red detuned laser enters the

cavity, photons are more likely to increase their frequency to ωc because the photon

density of states is maximal around resonance. This requires one phonon of energy

from the mechanical motion, thus inducing the so-called sideband cooling of the

mirror [114, 115].

On the other hand, a novel approach to light storage was suggested in Ref.[116],

where the authors studied the coupling of an optical waveguide to an optomechanical

crystal array. Light in the waveguide is dynamically and coherently transferred
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into long-lived mechanical vibrations of the array, which would be theoretically

capable of achieving large bandwidths and storage/delay times, paving the way to

the implementation of a continuous variable quantum memory.

4.4 State Analysis

In contrast to the well characterised squeezed states discussed in Sec. 4.3.1, it is

not clearly established what type of states are obtained with the cubic generator

V (3)
m (N) = exp(−π/3i Nk3η2 Qm) (4.34)

at the third order in the coupling (see Eq. (4.25)). We will devote this section to the

analysis of such mechanical states via a numerical computation of V (3)
m .

For this purpose, it is advantageous to represent the quantum state of the mirror ρ

in terms of its Wigner function

W (q, p) =
1

π

∫ ∞
−∞
〈q + y|ρ|q − y〉e−2ipydy , (4.35)

which is a quasi-probability distribution in phase space spanned by momentum and

displacement variables p and q. Fig. 4.4a) depicts the Wigner function for the state

(a) (b)

Figure 4.4: a) 3D Wigner function of the mirror after 20 driving periods and b) its
profile when it is cut by the plane p = 0. The experimental parameters are set as
η = 20, k = 1/60 and the resulting average population is 〈b†b〉 ' 20.
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ρ = |ψ3(20)〉 〈ψ3(20)|. The non-classical nature of a given state is well reflected by

oscillations of W (q, p) including negative values. The amplitude of these oscillations

is linked to the degree of coherence, while their wave-length is inversely related to

the macroscopicity of the state. As one can see, the Wigner function of |ψ3(20)〉
features short wavelength oscillations with large amplitudes. This is visible on a

more quantitative level also in Fig. 4.4b) which shows the cut W (q, 0) through the

Wigner function.

For a quantitative assessment of the quantumness of the state, we resort to the

measure of non-classicality proposed in Ref.[117]

I = −π
2

∫
dp dq W (q, p)

(
∂2

∂q2
+

∂2

∂p2
+ 1

)
W (q, p) . (4.36)

While there is no fundamental reason to choose this specific functional among others

that have been proposed in literature, this quantity has a convenient feature. Indeed,

it lies in the interval I ∈ [0, 〈n〉], where 〈n〉 is the average number of excitations in

the system. The minimal value Imin = 0 is obtained for classical states like Gaussian

or thermal states, while purely quantum states, such as for example Fock and cat
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Figure 4.5: Comparative plot of the quantum estimator I (red triangles) and the
average number of mechanical excitations 〈nm〉 (blue dots) as functions of the number
of driving periods. The experimental parameters are set as η = 20, k = 1/60.
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states, yield the maximum value of Imax = 〈n〉. Fig.4.5 depicts I (red triangles)

and Imax = 〈n〉 (blue dots) as functions of the total driving time expressed in terms

of mechanical periods. As one can see, quantumness and population both increase

approximately exponentially in time and the former nearly saturates the bound

Imax imposed by the latter. This witnesses the rapid evolution towards states of

macroscopic character as well as their close-to-maximal non-classicality.

4.5 Experimental imperfections

So far, we have addressed the theoretical principles that allow deterministic

state preparation and proposed the adoption of different, easy-to-perform, driving

profiles to prepare a set of macroscopic superposition states of the mirror. We would

now like to discuss how several possible sources of experimental imperfections could

affect the desired process. Going beyond the ideal case of unitary evolution, we will

also estimate the effect of noise and dissipation induced by the environment. More

specifically, we will look at the impact of optical and mechanical decoherence, initial

thermal excitations in the mirror and imperfect phase shifts of the driving fields.

4.5.1 Optical decoherence

From an experimental perspective, the most delicate aspect affecting the unitarity

of the evolution, and consequently the preparation of the desired mechanical state,

is attributable to optical losses. Instead, since it can be safely assumed to arrange a

cavity with zero initial thermal population, i.e. 〈nthc 〉 = 0, we will henceforth neglect

the effect of decoherence arising from a nonzero optical thermal distribution.

A common approach to include the leakage of photons from the cavity in the dynamics

is to express the evolution in terms of the Master equation ρ̇ = −i [H, ρ] + κL[ρ],

where H is the system Hamiltonian, ρ the density matrix, L[ρ] the Lindblad operator

L[ρ] = (aρa†−{a†a, ρ}/2) and κ the cavity decay rate. Moreover, we should consider

that many experimental groups have already managed to access the resolved sideband

regime with κ� ω [118, 113, 1, 98]. This allows us to gauge the impact of photon

loss in terms of a perturbative solution of the Master equation. For this purpose, it is
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convenient to consider the Master equation for ρ̃ = V (t)ρV †(t), where V (t) satisfies

iV̇ = HIV , as detailed in Secs. 4.2.1 - 4.3.

Solving this perturbatively, yields the contribution of photon loss to the dynamics

in terms of powers of κ/ω. The integration for a generic time t assumes a rather

complex form and extra correlations between field and mirror are created because of

dissipation. However, thanks to the very specific bi-chromatic driving pattern many

terms cancel out at the end of the evolution. Actually, our proposed set of constant

phase shifts {ϕs} is crucial to suppress the majority of these unwanted non-unitary

and de-coherent contributions, including all correlation terms proportional to the

driving amplitude η.

More specifically, at leading order in k and κ, we obtain

ρ̃(t) = ρ̃(0) + κ

∫ t

0

(
a(τ)ρ̃a†(τ)− {a†a(τ), ρ̃}/2

)
dτ , with

a(τ) = e−i
∫ τ
0 HI(τ ′)dτ ′aei

∫ τ
0 HI(τ ′)dτ ′ ,

(4.37)

which at the end of the preparation time, when t = NT, reduces to an expression

that is completely independent of η and is thus well suited to describe the strong
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Figure 4.6: Fidelity between the final state of the system (cavity plus mirror) in case
of photon losses and the ideal scenario as a function of the cavity decay rate κ for an
evolution lasting N = 20 mechanical periods.
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driving regime

ρ̃(NT ) = ρ̃(0) + κNT
(
ãρ̃ã† − {ã†ã, ρ̃}/2

)
, with

ã = ae
g0
ω

(b†−b) .
(4.38)

This is a convincing result, as it has a clear physical interpretation. In fact, we know

that the light-matter interaction conditionally displaces the mirror by an amount

proportional to the number of photons in the cavity times k = g0/ω. We thus expect

each photon that has leaked out of the resonator to induce a missing displacement

eg0(b†−b)/ω of the mirror.

We depict in Fig.4.6 the state fidelity (as it was defined in Eq.(4.32)) as a function

of the ratio κ/ω between the full state of the system (cavity plus mirror) obtained

in the leaking scenario in Eq.(4.37) and the ideal one predicted by Eq.(4.25). We

extrapolate from the plot that a loss rate satisfying κ/ω < 10−2 results in a reduction

of the fidelity by . 3%. This condition, together with the adoption of a strong

driving regime, is in accordance with Ref.[12], where the resolved sideband regime

and the condition g0/κ > 1 were theoretically derived as requirements to resolve the

granularity of the photon stream and fully exploit the non-linearity of the system to

observe purely quantum features.

4.5.2 Thermal initial state of the mirror

As we have already widely discussed, the evolution operator in Eq.(4.25) factorises

into a propagator for the mirror and a propagator for the cavity, so that no light-

matter correlations are created at the end of the driving time. This means that there

is no fundamental need to require mirror and cavity to be initially cooled exactly to

the ground state (as we assumed for ease of calculations in Sec.4.4), and we are in

principle allowed to consider a wider range of possible initial conditions, among which

the very common case of a Gibbs thermal state. However, as we remarked when

we arranged the driving detunings so that to cancel out the second order Gaussian

contributions (see Sec.4.3.2), such classical thermal fluctuations could potentially

outshine the quantumness of the achieved mechanical state. An accurate analysis of
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Figure 4.7: Comparison of the cut profiles p = 0 of the Wigner function of the state of
the mirror after an evolution lasting 20 mechanical periods with the mirror initially in
its ground state (blue dotted line) and two thermal states with respectively 〈nthm〉 ∼ 1
(green dashed line) and 〈nthm〉 ∼ 10 (red line). The experimental parameters are set
as η = 20, k = 1/60 and ω = 2π × 107Hz.

the impact that an initial thermal occupation of the mirror has on the dynamics is

thus in order.1

In this perspective, we depict in Fig.4.7 cuts through the Wigner function of

the mirror at p = 0 for different initial thermal populations with 〈nthm〉 = 1 and

〈nthm〉 = 10 (the latter can be reached by only using dilution refrigeration techniques).

Nevertheless, such states are both above the experimental threshold of 〈nthm〉 ∼ 0.2

achievable with sideband cooling (at a mechanical frequency ω = 2π × 107Hz)

[113, 110]. The strong oscillatory behaviour with negative values of W is clearly still

displayed for an initial state with 〈nthm〉 = 1. Only for 〈nthm〉 = 10, which could be

considered substantially above what is obtained with sideband cooling, the quantum

mechanical features are mostly washed out by the thermal contributions.

Even though the preparation of a non-classical state seems to be undermined

at large temperatures, we should consider, as we discussed in Sec.4.3.3, that the
1We remark that while it is feasible to assume a cavity with fixed boundaries to be empty when

no driving is applied, i.e. 〈a†a(0)〉 = 0 (as we have already done in the manuscript), cooling a
movable mirror close to its ground state is experimentally more challenging.
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technique to find optimal driving patterns can be easily extended to higher orders in

the Magnus expansion and correspondingly longer propagation times and/or larger

coupling k. We expect that these conditions would give rise to more highly excited

states and hence to measurable quantum effects also in case of higher initial thermal

noise. Unfortunately, the simulation of such a regime with higher temperatures and

larger populated states is restricted by the limited computational resources on a

personal computer.

4.5.3 Mechanical decoherence

As every quantum system does, macroscopic states particularly suffer from the

effect of decoherence. This is because the larger an object is, the more interactions

it establishes with its surrounding environment, and undesired correlations that are

at the basis of the decoherence process spontaneously arise [119]. One therefore

needs to ensure that noise originated from the environment on the motional state of

the mirror remains negligible for the entire duration of the experiment so that to

preserve mechanical non-classicality.

Given the damping rate γm, which is defined through Eq.(1.5) as the analogous of

field decay rate κ for the mirror, Refs.[4, 5] provide an estimate for the mechanical

decoherence rate Γm as Γm = γmkBTE〈nm〉/(~ω), where kB is the Boltzmann constant,

TE the temperature of the environment and 〈nm〉 the average number of phonons. This

quantity corresponds to the rate at which the non-diagonal elements of the density

matrix that describes the mirror exponentially decay with time, inducing decoherence

towards a classical mixed state. The condition ΓmNT � 1 gives a rough bound on

the number of driving periods that can be safely performed N � ~ωQ〈nm〉/(kBTE),

with Q = ω/γm the quality factor of the mechanical oscillator. Assuming a state-of-

the-art quality factor Q ∼ 105 [120, 1] and initial mechanical sideband cooling, we

obtain N & 102.

From this coarse analysis we infer that with present technology thermal induced

mechanical decoherence has a far less detrimental impact than photon leakage from

the cavity, which is actually a direct consequence of the experimental relation that is

satisfied by most of todays physical implementations γm � κ.
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Figure 4.8: Fidelity between the final state of the system (cavity plus mirror) in
case of a mechanical damped evolution and the ideal scenario as a function of the
mechanical quality factor Q = ω/γm. The total evolution is supposed to last 20
mechanical periods with the mirror initially in its ground state and the dimensionless
driving and coupling respectively set as η = 20 and k = 1/60.

Even though we have just shown that optomechanical resonators provide a

framework particularly resilient to mechanical decoherence, since highly non-classical

coherent superpositions of macroscopical states are per se extremely sensitive to

decoherence, a critical assessment of motional decoherence is still in order. To this

end, we use a stochastic perturbative model of mechanical damping. We assume

coherent dynamics during each period T , after which the state vector suffers a

phonon loss described by the jump operator (1⊗ bm) |Ψ〉 with probability p = γmT .

A mixed state of the mirror is obtained by averaging over such processes, and since

p is sufficiently small, one can safely restrict the average to processes including at

most two phonon losses.

Fig.4.8 depicts the state fidelity after N = 20 periods of driving as a function of Q.

Despite the general sensitivity of non-classical states to decoherence, the impact of

mechanical damping on the state fidelity is of the order O(10−4), and thus negligible

as compared to the other imperfections discussed above.

This high degree of robustness against mechanical damping, which is intrinsic to

the optomechanical platform, is a promising feature that appears to be essential
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to perform sensitive measurements of other more exotic sources of mechanical

decoherence (also through estimators such as the one we proposed in Sec.4.4), e.g.

from gravitational effects to collapse models.

4.5.4 Laser driving

The exchange of excitations from the cavity to the mirror is achieved through the

employment of a pair of oppositely detuned lasers with respect to the cavity resonance

frequency. In particular, the application of appropriate phase shifts after each period

of driving is key for the deterministic state preparation. We trust the experimental

implementation of such phase shifts to be feasible, as they are required to operate

at the mechanical rate ω ∼ 106s−1, which is orders of magnitude smaller than the

optical characteristic frequency. Still, we deem it useful to assess the resilience of

our proposal to imperfections in the driving profiles by considering the impact of

deviations from the ideal control scheme with the step-like phase shifts ϕs described

in Sec.4.3.

To this end, let us replace the discontinuously evolving phase ϕ(t) = 2π
N

∑
s Θ(t−sT )2

with the continuous function

ϕ(d)
c (t) =

2π

N

t

T
+

d∑
l=1

ϕl(t) ,

where 2π
N

t
T
is a linearly increasing phase factor and each term ϕl(t) = Al sin(lωt)

oscillates with frequency lω and amplitude Al. The set of amplitudes is chosen such

that at any order d, ϕ(d)
c (t) is tangent to the step function in the centre of the step,

i.e. for t = (2jπ+1)/ω with j ∈ [0, N−1] (see Fig.4.9 for a graphical representation).

It is possible to verify that limd→∞ ϕ
(d)
c (t) = ϕ(t) = 2π

N

∑
s Θ(t− sT ).

Since ϕ(d)
c (t) is a continuous function of time for every d, we can analytically

compute the generator V (t, 0) with a Magnus expansion for a generic time t (as

discussed in Sec.4.2.1), and subsequently numerically integrate the dynamics directly

over N mechanical periods (without having to consider the contribution of each

single period separately). Interestingly, one obtains a separable propagator for the
2The Θ (theta) function is defined as Θ(x < 0) = 0 and Θ(x ≥ 0) = 1.

116



Figure 4.9: Cavity occupation renormalized with respect to the population of the
mirror 〈nc〉′ = 〈nc〉/〈nm〉 as a function of the order of the decomposition of the step
function d. In the top-right corner we plot an enlargement of the driving profiles
defined by ϕ(d)

c (t) over the first mechanical period: linear approximation with d = 0
(black line), d = 1 (blue dashed-dotted), d = 2 (green dotted) and d = 3 (red dashed).
The experimental parameters are set as η = 20, k = 1/60, N = 20.

cavity and for the mirror at every order d, thus naturally resulting in the desired

deterministic state preparation.

However, looking closer at the dynamics, we observe that single-particle terms of

the cavity do not completely cancel out if we resort to the sole linear function 2π
N

t
T
,

inducing a non-negligible final average population 〈nc〉 ∼ 0.2〈nm〉. As we show in

Fig.4.9, these contributions are efficiently suppressed already at the second order

d = 2, when 〈nc〉 ∼ O(10−7)〈nm〉, which is an essential requirement to prevent cavity

excitations from affecting the final readout through back-action-evading interaction.3

Besides, we also numerically observe that the final non-classical mechanical state

of the mirror obtained with these imperfect driving patterns presents high fidelity
3It is unclear, at least to the extent of the author, how to justify the significant improvement of

several orders of magnitude that takes place from d = 1 to d = 2, though this has been confirmed by
the numerical simulation. Still, we notice that at the first order there is an important improvement
of the overall fidelity thanks to cancellation of an unwanted displacement of the mirror that is
introduced with the linearly increasing phase shift at the zeroth order. Hence, when considering
the whole system, both the first two orders in the expansion contribute significantly to improve the
state fidelity (the first having a larger impact on the mirror, the second on the light).
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F ' 0.98 with the ideal step-like case.

4.6 Conclusions

This chapter has addressed the instance of deterministically creating macroscopic

massive quantum states. Exploiting the Magnus expansion formalism to deal with the

cubic equations of motion induced by the non-linear optomechanical interaction, we

were able to perturbatively solve the dynamics without recurring to any linearisation.

We have thus derived a control protocol to prepare a range of interesting quantum

states of the mirror, obtaining strong squeezing of the mechanical quadrature as well

as maximally non-classical quantum superposition states. We have also provided

evidence of the resilience of the scheme to various potential sources of experimental

imperfections, from mechanical thermal noise to non-optimal implementation of

the driving pattern. From an open quantum systems perspective, our proposal has

responded positively to optical decoherence, as well as, thanks to the high degree of

insulation of optomechanical resonators, it has proved to be robust against mechanical

damping.

This last property will turn out to be essential for many future theoretical and

practical applications, such as the use of the mirror as a continuous variable quantum

memory, which has already been proposed in Ref.[115], or as probe for decoherence.

To this end, the measure of non-classicality I of the mirror is an ideally suited

quantitative indicator in the light of the very sensitive measurements of decoherence

which are required to probe fundamental physics, such as gravitationally induced

effects on the mechanical motion.

As a general comment, we should point out that the approach to find optimal

driving patterns can be easily extended to higher orders in the Magnus expansion,

allowing longer propagation times and/or larger coupling k to be considered. These

would give rise to more highly excited states and hence to measurable quantum

effects also in presence of relatively small classical contributions that would otherwise

outshine the non-classicality of the state, e.g. higher initial thermal noise.

Remarkably, we should eventually stress that the proposed control scheme is not
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necessarily restricted to the mirror-cavity setup discussed here, but similar driving

patterns can also be applied to a variety of systems that share similar non-linear

Hamiltonians such as atomic spin ensembles, trapped atoms or levitated nanoparticles

[121, 122, 33, 123].
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Chapter 5

Conclusions and outlook

In this thesis we have investigated the non-classical features arising within a widely

employed optomechanical setup, consisting of a Fabrit-Pérot cavity with a movable

boundary. The main results of the present work have been (i) the exploration

of the quantum-classical correspondence, (ii) the characterisation of mechanical

anharmonicities and (iii) the theoretical proposal to prepare highly non-classical

superpositions states of the mirror. Our methods have proved themselves promising to

exploit optomechanical resonators for a range of theoretical and practical applications,

from the foundations of quantum mechanics and the test of some of the latest studies

on decoherence models and quantum gravity, to force sensing and the potential

engineering of future quantum technologies. The suggested set of experimental

parameters is within reach with up-to-date technologies.

First of all, the identification of classical and quantum features in the dynam-

ics has challenged some of the intakes from past literature, such as adopting the

visibility pattern as a signature of the creation of a quantum superposition state.

Most importantly, we have shed new light on the topic showing that light-matter

correlations can be largely explained by considering the (classical) statistical uncer-

tainty on the initial state of the system. As far as cavity and mirror are defined by a

probability distribution exhibiting classical features, it is not trivial to attribute any

non-classical behaviour to the dynamics. Many properties of the observables in a

classical experiment, instead, are qualitatively very similar, for example, to those that

120



were theoretically predicted to be observed in experiments relying on single-photon

sources. Still, we have been able to isolate genuine quantum peculiarities of the

interaction that appear on the optical phase shift and on the visibility pattern, which

might be probed in future optomechanical experiments, even in the weak coupling

limit. For a deeper understanding of the quantum-classical correspondence, as well

as to contextualise our discussion in the more general framework of non-abelian

transformations in phase space, we also provided a topological interpretation of the

problem. Resorting to the formalism of the geometric phase introduced by Michael

Berry and John Hannay we verified that the quantal geometric (Berry) phase causes

the state of the system to be displaced along the classical trajectory by an amount

equal to the classical geometric phase (Hannay angle).

Secondly, we presented a protocol to estimate the anharmonicity of a macroscopic

oscillator up to very small values. Relying on the so called bad cavity regime, we

adopted a four-pulse interaction with a coherent optical field in input, which, under

reasonable initial cooling of the mirror, leaves the system in a product state of the

light and the mechanics. Specifically, after the fourth interaction, when the mirror

returns back to its original position, the optical field escapes the cavity and retains

important information on mechanical anharmonicity, which can thus be optimally

estimated via homodyne detection. We have shown how state-of-the-art values of

optomechanical parameters are already sufficient to saturate the ultimate bound on

the measurable precision given by quantum estimation theory. A parallel analysis

has been conducted in a fully classical picture to identify, also in this case, reliable

quantum signatures of the dynamics. Always in light of providing a more general

interpretation of our results, we have also illustrated the close relationship that

mechanical non-linearities share with more fundamental modifications of the Hilbert

space topology, e.g. the supposed deformation of commutation relations predicted

by quantum gravity.

Third, having acquired the tools for assessing non-classical features in optome-

chanics, we proposed a scheme to deterministically create a range of quantum

superposition states of the mirror. Without resorting to any linearisation of the

Hamiltonian, we capitalised on the cubic optomechanical interaction and resorted to
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the Magnus expansion formalism to perturbatively solve the dynamics. Our control

protocol has proved that strong squeezing of the mechanical quadrature as well as

maximally non-classical quantum superposition states can be achieved.

We discussed how the robustness of optomechanical resonators against mechanical

damping makes them an ideal platform for many future theoretical and practical

applications, such as the use of the mirror as a continuous variable quantum memory

or as probe for decoherence. In the same direction, the quantitative measure of

non-classicality (I) for the mirror that we adopted is a well suited estimator that

could be used for very sensitive measurements of decoherence to probe fundamental

physics, including gravitationally induced effects on the mechanical motion.

Overall, we hope the results presented in this thesis will be of some inspiration for

future works. More specifically we could identify a set of possible upcoming related

lines of research:

• The relationship between an initial classical statistical distribution of the

system, which we could naively conceive as a "lack of knowledge" on the exact

initial state, and the correlated state that arises during the evolution could be

investigated in more general terms. In particular it would be interesting to

understand which non-classical features an initial state should have to give rise

to genuinely quantum correlations.

• The pulsed scheme has been shown to be a promising platform to perform very

precise measurements. This advantage could be exploited to build compact

force sensors, as well as gravimeters and accelerometers, which would find

practical application in a series of technological devices.

• The ability to perform holonomic operations on a massive mirror and to

subsequently deterministically read out the dynamics could pave the way to

design contextuality inequalities with continuous variables to be violated by

massive objects. In this direction, it has already been shown that the algebra

of displacements in phase space can be adapted to the one obeyed by Pauli

operators to construct a Peres-Mermin like inequality in phase space [124].
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• The deterministic creation of interesting massive mechanical non-classical states

via easy-to-perform control schemes is a breakthrough in terms of quantum

state preparation techniques. We expect future works to investigate the range

of states that can be achieved, also broadening the attention to a variety of

setups that share similar non-linear Hamiltonians with the optomechanical

case. Such investigations would trigger novel studies on foundations of quan-

tum mechanics, as well as unprecedented applications to build new enhanced

quantum technologies.
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Appendix A

Semiclassical approach

After having discussed the fully quantum and classical descriptions of the system,

it is interesting to see which are the predictions of a semiclassical approach, i.e. when

one of either the optical field or the mirror is described classically.

Let us first consider a quantum field and a classical oscillator. The field Hamiltonian

in a frame rotating at frequency ωf can be written as Ĥf = εâ†âx(t) where x(t)

is the classical equation of motion of the oscillator and ε = ~ωf/L is the resulting

coupling constant. If the field is initially in the coherent state |α〉f and a continuous

interaction with the mirror takes place, the field density matrix will read

ρ̂f (t) = e−|α|
2
∑
n,m

αnα∗m√
n!m!

e−
i
~ ε(n−m)

∫ t
0 x(τ)dτ |n〉f〈m| (A.1)

and the mean value of the optical field which gives us the acquired optical phase is

〈â〉 = αe−
i
~ ε
∫ t
0 x(τ)dτ . (A.2)

If we model the classical mirror as a harmonic oscillator driven by a constant force

E0/L as in Eq.(2.16) where here E0 is the mean value of the field energy distribution,

we can safely substitute the dynamics in Eq.(2.17) into Eq. (A.2) obtaining

〈â〉 = αe−iϕ(t) (A.3)
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where the phase ϕ(t) coincides with the classical phase showed in Eq. (2.18). We

deduce from Eq.(A.3) that when the field is quantized and the oscillator is classical

we regain exactly the classical result for the phase.

We are now going to show that the same happens for the inverse situation, when the

field is described classically and the mirror quantum-mechanically. In this case, the

phase acquired by the optical field will be given by

ϕ(t) = 2
kf
dτ̃

∫ t

0

〈x̂(τ)〉dτ (A.4)

i.e. the integral over the interaction time of the mean value of the oscillator position.

If we assume the mirror initially in a coherent state |Ψ̃(0)〉 = |γR + iγI〉, its evolution
under the quantum Hamiltonian Ĥm = ~ωb̂†b̂− E0

L

√
~

2mω
(b̂† + b̂) reads

|Ψ̃(t)〉 = eik
2N2

p (ωt−sinωt)

× ei2kNp[γI(1−cosωt)+γR sinωt]|γe−iωt + kNp(1− e−iωt)〉,
(A.5)

where we have used kNp = E0/(Lω
√

2~mω) to express the result in terms of the

characteristic optomechanical parameters. It can be easily verified that the mean

value of the position operator given by Eq.(A.5) coincides with the results found

in Eqs.(1.23) and (2.17) within a fully quantum and/or classical description of the

interaction. Hence, the phase acquired by the optical field in Eq. (A.4) coincides

with the classical result reported in Eq. (2.18). Again, in terms of optical phase shift

a semiclassical description provides the same result of the fully classical one. We can

then infer, as already highlighted in the main manuscript, that such a semi-classical

description is insufficient to describe all features of the full interaction. Similar

considerations can be extended to the visibility.
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Appendix B

Cubic Anharmonicity

In the case of a cubic anharmonicity the correction to the free Hamiltonian reads

Han =
δ

3
~ωmX3

m , (B.1)

where the parameter δ quantifies the anharmonicity. Following [79] we get the

evolution for annihilation (creation) operator at the first order in δ and for initial

displacements that satisfy δλNp � 1

b(t) ' e−iωt

{
b0 +

δ

23/2

[ (
eiωt + 1

) (
2b†0b0 + 1

)
+
(
e−iωt − 1

)
b2

0 + (1− e3iωt)
b†20

3

]}
,

(B.2)

where in this case ω = ωm since the frequency is unperturbed at the first order in δ.

We highlight that we might exploit this feature to distinguish the two anharmonicities

by looking at the revival in the visibility interference. The overall evolution operator

can thus be evaluated as in Eq.(3.2) by the anharmonic evolution of quadrature
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operators, which results in

Xm(0) = Xm

Xm

(
T

4

)
' Pm + δ(∆ + b†20 ν + b2

0ν
∗)

Xm

(
T

2

)
' −Xm + δ(2∆ +

1

3
(b†20 + b2

0))

Xm

(
3T

4

)
' −Pm + δ(∆ + b†20 ν

∗ + b2
0ν)

(B.3)

being ∆ = −(b†0b0 + 1/2) and ν = −(1/6)(2i+ 1). Going through the same procedure

we showed in Sec.3.2, we recover the final effective evolution operator for the cavity

field only (in the limit λ2N2
p � n̄)

ξeff ' exp{i(λ2n2
c −

2δ

9
λ3n3

c)}. (B.4)

From which we deduce that the optical field experiences a Kerr nonlinearity ∝ n3
c

entering into the cavity. Hence, the mean value of the optical field after four pulses

now results (in the limit δλ3N2
p � 1)

〈a〉 = 〈α|ξ†effaξeff |α〉 ' α〈a〉0e−i
2
9
δλ3(3N2

p+3Np+1). (B.5)

Given an initial coherent state |α〉, the corresponding extractable QFI for a cubic

anharmonicity δ reads

Qγ = 4
(
〈ψ′γ|ψ′γ〉 − |〈ψ′γ|ψγ〉|2

)
' λ6

(
〈ψγ|n6

c |ψγ〉 − 〈ψγ|n3
c |ψγ〉2

)
' 16

81
λ6(9N5

p + 54N4
p + 84N3

p + 30N2
p +Np)

(B.6)

which leads to the Cramér-Rao bound,

Var(δ) ≥ 1

MQγ

&
9

16Mλ6N5
p

, (B.7)
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and to the corresponding signal-to-noise ratio

R(3)
γ .

16

9
δ2λ6N5

pM . (B.8)
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