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In this thesis, three topics in Mean Field Games in the absence of complete

information have been studied.

The first part of the thesis focus on Mean Field Stackelberg Games between a

large group of followers and a leader, in such a way that each follower is subject

to a delay effect inherited from the leader. The case with delays being identical

among the followers in the population is first considered. Under mild assumptions

of regular enough coefficients, the whole Stackelberg game problem is solved via

stochastic maximum principle. The solution could be represented by a system of

six coupled forward backward stochastic differential equations. A comprehensive

study on the particular Linear Quadratic case has been provided. By consider-

ing the corresponding linear functional, the time-independent sufficient condition

which warrants the unique existence of the solution of the whole Stackelberg game

is obtained. Several numerical examples are also demonstrated.

The second work studies another class of Stackelberg games, under a Linear

Quadratic setting, in the presence with an additional leader. Given the trajectories

of the mean field term and two leaders, the follower’s optimal control problem is
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first solved. Depending on whether or not the leaders cooperate, the solutions of

the respective Pareto and Nash games between the leaders are obtained, which can

be represented by systems of forward backward stochastic functional differential

equations. To numerically implement the obtained results, explicit expression of

solutions of the whole problem: Mean Field Game among the followers and Nash

(and Pareto) Game between the leaders, are provided. Finally, several examples

are given to study the impact of different games on the cost functionals of the

followers. An interesting example shows that the population are worse off as the

leaders cooperate.

The last part of the thesis studies discrete time partially observable mean

field systems in the presence of a common noise. Each player makes decision

solely based on the observable processes but not the common noise. Both the

mean field game and the associated mean field type stochastic control problem

are formulated. The mean field type control problem is solved by adopting the

classical discrete time Kalman filter with notable modifications; indeed, the unique

existence of the resulting forward-backward stochastic difference system is then

established by Separation Principle. The mean field game problem is also solved

via an application of stochastic maximum principle, while the existence of the

mean field equilibrium is shown by the Schauder’s fixed point theorem.
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Chapter 1

Introduction

To study and analyze the collective behavior of a dynamical system involving

multiple decision makers, one can model the population by stochastic differen-

tial games (SDGs). Under this framework, evolutions of individuals’ states are

described by stochastic differential equations (SDEs), each of which aims at op-

timizing certain objective functionals (e.g. cost minimization). The interactions

between each individual are explicitly given in terms governing the SDEs and the

cost functionals. For example, see Varaiya [47], Bensoussan and Frehse [7] for

details.

The computational complexity of the solution, for example, to solve for a Nash

equilibrium, increases dramatically as the number of particles in the system raises.

As an alternative macroscopic approach, Huang, Caines and Malhamé [29, 30] first

studied the limiting case - SDGs with infinitely many players. Independently,

Lasry and Lions [33, 34, 35] first developed the theory of Mean Field Games

(MFGs), which combines SDGs with the mean field theory originated in physics

describing phase transitions.

Unlike SDGs, which explicitly state the interactions between any two play-

ers, each individual in MFGs interacts with the community through a common

medium - the mean field term. By properly choosing it as a functional of the prob-
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ability distribution of the population, one can show that the empirical interacting

system converges to the analogical mean field system, as the number of particles

increases, see for example [10]. In the simplest MFGs, each agent in the population

interacts indirectly through the deterministic mean field term only. Individuals

can hence be regarded as independent of each other, which significantly simplifies

the analysis of the whole dynamical system. To solve a canonical MFG, one first

solves the individual’s optimal control problem, considering the mean field term

as exogenous and given. The second step is to tackle the fixed point problem, by

equating function of the probability distribution of an individual, who adopts the

optimal control solved in the first step (which is clearly a functional fo the given

mean field term), with the mean field term.

Since the celebrated work by Lasry and Lions [33, 34, 35], theories and appli-

cations of mean field games - the combination of mean field theory and SDG, has

enjoyed a rapid development. Carmona, Delarue and Lacker [19] studies Mean

Field Games with a common noise on top of the whole population. Unlike the

canonical case with a deterministic mean field term, the presence of a common

noise introduces randomness in that common medium. From modeling perspec-

tive, the common noise could be regarded as an external economic factor affecting

simultaneously the whole population. From the application perspective, Carmona,

Fouque and Sun [20] considers an interbank borrowing-lending model under the

mean field game framework. The log-monetary reserve of each bank is affected

not only by individual independent noises but also by a common noise, which

introduces a drastic effect on the dynamics and the value function of each bank,

and hence results in systemic risk. For other works in MFGs, also see Andersson

and Djehiche [1], Bardi [2], Bensoussan, Frehse and Yam[8], Buckdahn, Djehiche

and Li [13], Buckdahn, Djehiche, Li and Peng [14], Cardaliaguet [15], Carmona

and Delarue [16], Garnier, Papanicolaou and Yang [23], Guéant, Lasry and Lions

[24], Huang [27], Kolokoltsov, Troeva and Yang [32], Meyer-Brandis, Øksendal
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1.1. Mean Field Stackelberg Games with Heterogeneous Followers

and Zhou [37], Nourian and Caines [39], and the references therein.

Mean Field Type Control Problem is another topic that is connected to, but

fundamentally different from MFGs. In MFGs, the mean field term is exogenous

to individual’s optimal control problem - perturbing individual’s decision would

not affect the mean field term as it is fixed at the first place. Intuitively, it

means that individual behavior has a negligible effect on the whole community

as his noise is averaged out when the number of agents in the system gets huge.

For mean field type control problems, on the other hand, the mean field term is

endogenous and it is also a state to be controlled. It is also called the control

problem of McKean-Vlasov type in the literature, see the recent work by Pham

and Wei [41], where they consider a continuous time model with full observation

in the presence of a common noise.

In this thesis, three topics in Mean Field Games and Mean Field Type Control

Problems in the absence of complete information will be investigated. In the first

work, we consider MFGs between a leader and a group of followers, where each

follower makes decision based on the delayed information received from the leader.

The second work introduces one additional leader. Depending on whether or not

the leaders cooperate, we investigate the impact on the cost of followers. The last

part of this thesis consider a discrete time mean field game and mean field type

control problems under a partial observation setting. Each player does not have

the information of his own state.

1.1 Mean Field Stackelberg Games with Heterogeneous Followers

Stackelberg game is first introduced by Heinrich von Stackelberg [44] to solve

for an equilibrium in hierarchical markets with a leader and follower. Based on

the policies issued by the leader, the follower makes his optimal decision based

on his performance index and his choice has negligible impact on the leader.

Assuming the follower is rational, the leader then makes his decision based on
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1.1. Mean Field Stackelberg Games with Heterogeneous Followers

his objective functional. Mathematically, the follower would consider the leader

as exogenous factor in the follower’s stochastic control problem; while the leader

would consider the follower as a functional of the leader’s decision in his stochastic

control problem.

As a hierarchical model, Huang [28] first investigates mean field games between

a large group of small players and a big player under the Linear Quadratic setting

and later Nourian and Caines [39] generalize it to the general Lipschitz coefficients

case. In their model, the mean field term is exogenous to both the small players

and the big player; that is changes in decisions of the big player would not affect

the mean field term immediately. On the other hand, Bensoussan, Chau and Yam

[5] consider mean field games between a large group of followers and a leader,

where the mean field term is endogenous to the control problem of the leader.

Mathematically, the mean field term itself becomes a functional of the leader’s

control. Decisions of the leader would now directly affect the whole population

through the mean field term and this matches the philosophy of Stackelberg games.

Under a Linear Quadratic setting, our previous work [5] discuss the Mean Field

Stackelberg game with no terminal costs, where each follower is subject to a delay

affect from the leader. By choosing a suitable linear functional, a time dependent

sufficient condition is given to warrant the unique existence of the solution to the

Stackelberg game.

Chapter 2 generalizes our work [5] in certain aspects. We considers a general

Lipschitz Stackelberg game with terminal costs, where the dynamics and cost

functional of each follower is subject to an identical delay impact from the leader.

Interaction between followers are explicitly given as empirical measures. Assuming

the coefficients are sufficiently smooth, we argue that the empirical system would

converge to the limiting mean field one as the number of followers increase. We

then tackle the Stackelberg game by splitting it into three subproblems and they

are solved in order: 1) Follower’s Control Problem, 2) Mean Field Equilibrium
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1.2. Two-party Governance: Cooperation versus Competition

and 3) Leader’s Control Problem.

Given a pair of exogenous mean field term and leader’s state processes, ap-

plying the stochastic maximum principle, we derive the necessary condition for

follower’s optimality in Section 2.2. The mean field equilibrium is then obtained

by equating the given mean field term and the density function of the optimal

state of the follower, which yields a pair of Hamilton-Jacobi-Bellman and Fokker-

Planck equation (HJB-FP). Hence, the optimal control problem for the leader in-

volves three controlled states - his original state and the HJB-FP pair. Applying

the stochastic maximum principle again, we obtain three adjoint equations cor-

responding to the three controlled states. The necessary condition for the leader

is given in Theorem 2.2.2, which can be represented by a system of six forward

backward stochastic differential equations and forward backward stochastic par-

tial differential equations (2.2.19) and (2.2.20). The results are then generalized

to the case with multiple classes of delays in Subsection 2.2.3.

A comprehensive study of the particular LQ case is given in Section 2.3. By

modifying the linear functional in [5], we can represent the original system of six

forward backward stochastic differential equation by a forward backward stochas-

tic functional differential equation. We provide a set of sufficient conditions, which

is independent of time length, to guarantee the unique existence of the Stackel-

berg equilibrium in Section 2.4. Several numerical examples are demonstrated in

Section 2.5.

1.2 Two-party Governance: Cooperation versus Competition

In game theory, there are certain notions of solution concepts in a multiple players

game. Pareto equilibrium (or Pareto efficiency), named after the Italian economist

Vilfredo Pareto, is an optimal solution in allocation of resources such that no in-

dividual could be better off without hurting other players’ benefits if he moves

away from the equilibrium. Under the SDGs framework, it is a cooperative solu-
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1.2. Two-party Governance: Cooperation versus Competition

tion among all players. For example in a two person cost minimization SDG, one

could obtain the Pareto equilibrium by minimizing the sum of individual’s cost

functionals, such that infinitesimal changes in the decision of one player would

affect the choice of another player right away. See Chapter 5.2 in Yeung and

Petrosjan [48] and Reddy and Engwerda [42] for details.

Two persons would not always cooperate, see the prisoner’s dilemma, perhaps

the most famous layman’s example. Nash Equilibrium, first introduced by Nash’s

celebrated work [38] in 1950, plays a crucial role in a non-cooperative environ-

ment. In an interactive game, individual’s objective function depends not only on

his own decision, but also other players’. One should hence consider the choices of

all players in making decision, even in the non-cooperative setting. A Nash equi-

librium is a solution with the property that, assuming other players stand still,

one would be worse off if his decision moves away from the equilibrium point.

Nash equilibrium raises many applications in analyzing system with multiple in-

teractive decision makers in economics theory (Maskin [36]), evolutionary biology

((mathematical biology murray) Taylor [46]) and engineering (Ferris and Pang

[22]).

Chapter 2 considers first a SDG between a leader and a group of followers. By

mean field approximation, we formulate and solve the corresponding Mean Field

Stackelberg game. In reality, for example in an oligopoly market, there might be

multiple leaders announcing policies. Different interactions between them might

lead to a significant impact on the population. We consider a model with two

leaders over a group of followers. By the very definition of a Pareto game, as the

leaders cooperate, the total cost among them reduces comparing with the non-

cooperative Nash game. It is however nontrivial that whether such cooperation

would benefit the community and that is the rationale behind this study.

In Section 3.1, we consider another class of Stackelberg games under a Linear

Quadratic setting - two leaders over a group of followers. Each individual follower
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1.3. Mean Field Partially Observable Controlled Systems

has a negligible impact on two leaders as in the previous work and they are

significantly influenced by the policies set by the leaders. We assume that the

homogeneous followers would not cooperate. Given the evolutions of two leaders

and the population average (mean field term), we solve for the follower’s optimal

control and the ε-Nash equilibrium for the community in Section 3.2.1. Depending

on whether or not the leaders cooperate, we define and solve for the corresponding

Pareto and Nash games between them in Theorem 3.2.9 and 3.2.8. The solutions

can be represented by two systems of Forward Backward Stochastic Functional

Differential Equation. We provide the explicit expression of solutions to the whole

problem: Mean Field Game among the followers and Nash (and Pareto) Game

between the leaders in Section 3.3. Finally, several numerical examples are given

in Section 3.4 to study the impact of different games on the cost functionals of

the followers.

1.3 Discrete-time Mean Field Partially Observable Controlled Systems Sub-

ject to Common Noise

Classical stochastic control problem assumes that each decision maker has the

knowledge of the state evolution or even the underlying driving noises. Normally,

the control process is chosen based on this set of full information. In the real world,

however, neither of them are applicable, this raises the importance of studying

the problem under a partially observable framework. In particular, one could

only choose his control based on an intermediate observable process. See the

comprehensive introduction in Bensoussan [3] and the references therein.

To incorporate the mean field game theory with the partial observation feature,

Huang and Wang [26] solves the continuous time linear quadratic mean field game

with a common noise subject to partial observation; the decisions of the player

are assumed to be made based on the knowledge of both the observable process

and the common noise. Şen and Caines [43] studies general non-linear mean field
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1.3. Mean Field Partially Observable Controlled Systems

games with a major agent, in which the state of the major agent is partially

observed by individuals.

In Chapter 4, we consider a discrete time mean field game in a linear quadratic

setting, where each player makes decision based solely on the observable process,

in the absence of the knowledge of the common noise. The control in Huang

and Wang [26], by contrast, is still based on an observable common noise drives

the unobservable individual state. And their model can be solved by classical

Kalman filter as the evolution of the mean field process could be obtained easily.

In particular, to derive the evolution of the mean field process, they take expec-

tation on both sides conditional on the common noise to eliminate all negligible

individuals effects. If the control is adapted to both the filtration generated by

the common noise and the observable process, thanks to the tower property of

conditional expectation, the expectation of the control term conditional only on

the common noise could be greatly simplified. In our case, however, in which

the control process only depends on the observation but nothing more, the tower

property could not be applied and the mean field evolution is hardly obtained.

Our model brings in new mathematical challenges due to this implicit connection

between the filtrations generated by the common noise and that by the observable

process. Instead of finding the explicit evolution of the mean field process, we es-

tablish the existence of the equilibrium solution of the resulted forward backward

stochastic difference equation by an application of Schauder’s fixed point theorem.

Apart from the newly proposed mean field game, one may also be interested in

the mean field type stochastic control problem. While individuals have negligible

effect on the mean field term in mean field game, the mean field term is indeed

endogenous to the decision of the agent and is a functional of the density of the

agent’s state. To demonstrate the differences arising from the partial observation

feature, we also study mean field type stochastic control problems subject to only

the observable process. We anticipate that even under the same set of coefficients
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1.4. Hilbert Calculus and Mean Field Games

in the evolution and cost functional, due to the difference of the characters playing

in the mean field term, the very existence of the solutions of the mean field type

control problem and that of the mean field game control problem are not the

same.

We formulate the discrete time mean field partially observable systems subject

to a common noise in Section 4.1. Both the associated mean field game and mean

field type stochastic control problem are defined. We demonstrate the fundamen-

tal and structural differences of the mean field term between these two problems

due to the very definition: the mean field term is not affected by individual’s de-

cision in mean field game; while it is not the case in the corresponding mean field

type control problem. In Section 4.2, we first solve the mean field type stochas-

tic control problem, whose state is augmented with the mean field term, using

classical discrete time Kalman Filter with subtle modifications. We then decom-

pose the resulting forward backward stochastic difference equation into two parts.

The first system is decoupled whose unique existence is immediately guaranteed;

while the second part is a fully coupled forward backward system, in which the

solution of the backward equation can be written as an affine transformation of

the solution of the forward equation; and the unique existence of the second part

is therefore established by verifying with an Ansatz. For the mean field game,

we first solve for the individual optimal control in Section 4.3.1 by assuming the

existence of the mean field term. In Section 4.3.2, we seek for the equilibrium

solution by considering both the equilibrium condition and the optimal forward

backward system obtained in Section 4.3.1. Schauder’s fixed point is then utilized

to established the existence of the equilibrium forward backward system.

1.4 Hilbert Calculus and Mean Field Games

As shown in Chapter 2, using the tools in (stochastic) partial differential equa-

tion, the solution of a (stochastic) mean field game can be represented by a system

9



1.4. Hilbert Calculus and Mean Field Games

of (Stochastic) Hamilton-Jacobi-Bellman Equation and Fokker Planck Equation.

The unique existence of a solution to this system is however difficult to be clarified

due to 1) The forward-backward nature of the system and 2) The infinite dimen-

sionality of PDE. This Chapter provides another direction of future researches

in probabilistic analysis of mean field games. We aim at establishing the gen-

eral unique and existence results of a system of a non-linear Forward Backward

Stochastic Differential Equation resulted from Mean Field Games, by interpreting

the McKean Vlasov type equation in an appropriate Hilbert space. The sufficient

condition we assumed is likely to be independent of the time horizon. The SHJB-

FP pair in Chapter 2 is connected to the FBSDE of McKean Vlasov through a

“Master Equation”, see [9], [17] and [18] for details.
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Chapter 2

Mean Field Stackelberg Games

with Heterogeneous Followers

In Section 2.1, we first formulate the Stackelberg game with finitely many players.

Each follower is subject to an identical delay impact from the leader. Interac-

tions between followers are explicitly given in this empirical system. Providing

the coefficients are sufficiently smooth, the empirical system would converge to

the mean field counterpart as the number of followers increases. In Section 2.2,

by applying the stochastic maximum principle, the necessary conditions for the

optimal control problems of the follower and leader are given in Theorem 2.2.1 and

2.2.2 respectively. The equilibrium solution of the Stackelberg game can then be

represented by a system of six forward-backward stochastic differential equations

(2.2.19) and (2.2.20). The results are then generalized to the case with multiple

classes of delays in Subsection 2.2.3. A comprehensive study of the case with

linear dynamics and quadratics costs is given in Section 2.3. We provide a set

of sufficient conditions, which is independent of time horizon, to guarantee the

unique existence of the Stackelberg equilibrium in Section 2.4. Several numerical

examples are demonstrated in Section 2.5.
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2.1. Problem Setting

2.1 Problem Setting

Consider a complete probability space (Ω,F ,P). We first consider a fixed delay

θ ∈ (0,+∞) and a finite time horizon [−θ, T ]. We model a population consisting

of two types of individuals: a leader whose empirical dynamics are described by
dy0(t) = g0(y0(t),

1

N

N∑
j=1

δyj1(t), v0(t))dt+ σ0(y0(t))dW0(t), t ∈ (0, T ],

y0(t) = ξ0(t), t ∈ [−θ, 0];

(2.1.1)

and N followers whose empirical dynamics are given by
dyi1(t) = g1(yi1(t), y0(t− θ), 1

N

N∑
j=1

δyj1(t), v
i
1(t))dt+ σ(yi1(t))dW i

1(t), t ∈ (0, T ],

yi1(0) = ξi1,

(2.1.2)

where i ∈ {1, 2, . . . , N}. The (empirical) objective functional is defined as:

J N
0 (v0) := E

[ ∫ T
0
f0(y0(t), 1

N

∑N
j=1 δyj1(t), v0(t))dt+ h0(y0(T ), 1

N

∑N
j=1 δyj1(T ))

]
,

under control v0(t). The corresponding (empirical) objective functional of the i-th

follower is given by

J N,i
1 (v1) := E

[ ∫ T
0
f1(yi1(t), y0(t− θ), 1

N

∑N
j=1 δyj1(t), v0(t))dt

+h1(yi1(T ), y0(T − θ), 1
N

∑N
j=1 δyj1(T ))

]
,

where

v1 = (v1
1, v

2
1, . . . , v

N
1 )

with its i-th component being the control taken by the i-th follower. The ini-

tial condition ξ0 for the leader and the d0-dimensional Wiener process W0 are

independent, and together they generate the filtration

F0
t = σ(ξ0(s ∧ 0),W0(s ∨ 0) : s ∈ [−θ, t]), t ∈ [−θ, T ].
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Similarly the initial random variables i-th (i ∈ {1, 2, . . . , N}) for the followers and

the d1-dimensional Wiener process W i
1 are independent, that together generate

the filtration

F1,i
t = σ(ξi1,W

i
1(s) : s ∈ [0, t]).

We also assume that {ξi1}i (and {W i
1}i) are identically and independently dis-

tributed among different followers. The filtrations generated by the leader F0

and any i-th follower F1,i are also assumed to be independent.

Apart from the empirical system, we consider the analogical mean field system

for the leader and N followers, whose evolutions are respectively described by dx0(t) = g0(x0(t),m(t), v0(t))dt+ σ0(x0(t))dW0(t), t ∈ (0, T ],

x0(t) = ξ0(t), t ∈ [−θ, 0],
(2.1.3)

and dxi1(t) = g1(xi1(t), x0(t− θ),m(t), vi1(t))dt+ σ1(xi1(t))dW i
1(t), t ∈ (0, T ],

xi1(0) = ξi1.

(2.1.4)

The cost functionals in the mean field system are given by:

J0(v0) := E
[ ∫ T

0
f0(x0(t),m(t), v0(t))dt+ h0(x0(T ),m(T ))

]
.

and

J i1(vi1) := E
[ ∫ T

0
f1(xi1(t), x0(t− θ),m(t), vi1(t))dt+ h1(xi1(T ), x0(T − θ),m(T ))

]
.

(2.1.5)

In the mean field system, m(t) is a probability density process on Rn1 which is

F0
t−θ adapted and to be determined. We now define our admissible set of controls

for the followers in the mean field formulation:

Definition 2.1.1. The control for the i-th follower, conditioning on F0
·−θ, is in

feedback form. That is vi1(t) = V i1(xi1(t), t) and V satisfies the following two con-

ditions

13
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1. V i1(·, ·) ∈ L2([0, T ], L2
loc(Rn1));

2. V i1(·, t) is a F0
t−θ measurable random field on Rn1.

Without loss of generality, suppose that the first follower picks an arbitrary

admissible control v1
1 while other i-th followers adopt the same (functional form

described above) control ui1.

dx1
1(t) = g1(x1

1(t), x0(t− θ),m(t), v1
1(t))dt+ σ1(x1

1(t))dW 1
1 (t), x1

1(0) = ξ1
1 .

dxi1(t) = g1(xi1(t), x0(t− θ),m(t), ui1(t))dt+ σ1(xi1(t))dW i
1(t), xi1(0) = ξi1; i 6= 1.

Let k ∈ {0, 1}, before we move on, we first impose the following assumptions on

the coefficient functions:

1. gk, fk and hk are continuously differentiable in all Euclidean arguments with

bounded derivatives; σk is twice continuously differentiable with bounded

derivatives.

2. gk is Lipschitz, uniformly on (x1, x0, v0), in the measure argument with re-

spect to the 2nd-Wasserstein metric. In particular, there exists L > 0 such

that

|g0(x0,m, v0)− g0(x0,m
′, v0)|

+ |g1(x1, x0,m, v0)− g1(x1, x0,m
′, v0)| ≤ LW2(m,m′).

Here,

W2(m,m′) =
(

inf
γ∈Γ(m,m′)

∫
Rn1×Rn1

|x− y|2dγ(x, y)
) 1

2
,

where Γ is the collection of all measures with marginals m and m′.

3. f1, h1 satisfy the locally Lipschitz property

|f1(x1, x0,m, v1)− f1(x′1, x
′
0,m

′, v′1)|+ |h1(x1, x0,m)− h1(x′1, x
′
0,m

′)|

≤ L
[
1 + |x1|+ |x′1|+ |x0|+ |x′0|+W2(m, 0) +W2(m′, 0) + |v1|+ |v′1|

]
·
[
|x1 − x′1|+ |x0 − x′0|+W2(m,m′) + |v1 − v′1|

]
.
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Under these regularity assumptions, if we choose m(t) to be the conditional prob-

ability density function of xj1(j 6= 1), conditioning on F0
t−θ, such that the empirical

system (y0, y
1
1, {yi1}i) converge to the mean field system (x0, x

1
1, {xi1}i) in the sense

that

E supt≤T |y0(t)− x0(t)|2

+E supt≤T |y1
1(t)− x1

1(t)|2 + supi∈{2,...,N} E supt≤T |yi1(t)− xi1(t)|2 = o(1),

(2.1.6)

see Appendix in Bensoussan, Chau and Yam [6]. We call the measure m the mean

field term and its thorough description will be given in later sections. Recall that

m(t) is a probability density on Rn1 , we may write m(t) = m(x1, t) if necessary.

We also have the convergence for cost functionals:

|J N,i
1 (v1)− J i1(vi1)| = o(1), where v1 = (v1

1, u
2
1, . . . , u

N
1 ).

Hence, by tackling the optimal control problem described by the mean field dy-

namics and objective functional (2.1.4,2.1.5), an ε-Nash equilibrium for the em-

pirical system can be obtained:

Theorem 2.1.2. Suppose that v1 = (v1
1, u

2
1, . . . , u

N
1 ). Then u1 = (u1

1, u
2
1, . . . , u

N
1 )

is an ε-Nash equilibrium for the empirical system, where ui1 is optimal in the

stochastic control problem given by (2.1.4,2.1.5). In particular, we have

J N,i(u1) ≤ J N,i(v1) + o(1). (2.1.7)

Remark 2.1.3. In some mean field game literatures, one would directly consider

the limiting case with infinitely many players and no index i is involved in the evo-

lutions and cost functionals. As in Bensoussan [5], we here keep the indexes and

consider the finite N-player counterpart in order to obtain the rate of convergence.

In particular, if the second assumption is relaxed:

|g0(x0,m, v0)− g0(x0,m
′, v0)|

+ |g1(x1, x0,m, v0)− g1(x1, x0,m
′, v0)| ≤

∫
Rn1

x2m(x)dx,
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then we would obtain the respective rate of convergence in (2.1.6) and (2.1.7):

E supt≤T |y0(t)− x0(t)|2

+E supt≤T |y1
1(t)− x1

1(t)|2 + supi∈{2,...,N} E supt≤T |yi1(t)− xi1(t)|2 = O( 1
N

),

(2.1.8)

and

J N,i(u1) ≤ J N,i(v1) +O(
1√
N

). (2.1.9)

Nonetheless, the evolution (2.1.4) and cost functional (2.1.5) of the i-th follower

are in fact symmetric and independent of the index i. We shall call the i-th

follower the representative follower and for simplicity, we skip the index i if no

ambiguity is caused. For details, please refer to Section 2 in [5].

To motivate more results in the later development, we also need the following

additional assumptions:

4. gi, fi and hi are Gâteaux differentiable in the density argument. In partic-

ular, given m ∈ L2(Rn), m 7→ f(m) is said to be Gâteaux differentiable if

there uniquely exists ∂f
∂m

(m)(x) ∈ L2(Rn) such that

lim
ε→0

f(m+ εm̃)− f(m)

ε
=

∫
Rn

∂f

∂m
(m)(x)m̃(x)dx,

for any m̃ ∈ L2(Rn). We call ∂f
∂m

(m) as the Gâteaux derivative.

Example 2.1.4. Let G(m) =
∫
g(x)m(x)dx, where g ∈ L2(Rn). We have

lim
ε→0

G(m+ εm̃)−G(m)

ε
=

∫
g(x)m̃(x)dx,

and hence g is the Gâteaux derivative of G.

5. σi is uniformly elliptic.

Define the Lagrangian

L1(x1, x0,m, v1, λ) := f1(x1, x0,m, v1) + λ · g1(x1, x0,m, v1), (2.1.10)

16



2.2. General Setting

and the Hamiltonian

H1(x1, x0,m, λ) := inf
v1
L1(x1, x0,m, v1, λ).

We assume that the infimum is uniquely attained at u1(x1, x0,m, λ). Also define

the second order operator

Aϕ(x) := −1
2
tr
[
(σ1σ

∗
1)(x)D2ϕ(x)

]
,

and its adjoint is denoted by A∗.

2.2 General Setting

2.2.1 Optimal Control for the Follower

In canonical mean field games without common noise (see Bensoussan et al. [10]),

the mean field term is simply the law (or probability measure) of individual’s

state, which is deterministic. If one introduce an additional common noise to

the population, then the mean field term is no longer deterministic. To be precise,

as in the recent work by Pham et al. [41], the mean field term becomes the law of

individual’s state conditional on the filtration generated by the common

noise, which is a random process.

In the present setting with the presence of a leader, the mean field term is

the law of individual’s state conditional on the leader (the filtration generated

by the Brownian noise which drives the evolution of the leader, to be precise).

That is, the mean field term itself is random and depends on the leader. To be

precise, let pv1(x1, t) be the probability density function of x1(t) with control v1,

conditioning on F0
t−θ. Clearly, pv1 satisfies the Fokker Planck equation:

∂tp
v1(x1, t)

+
(
A∗pv1(x1, t) + div

(
g1(x1, x0(t− θ),m(t), v1(x1, t))p

v1(x1, t)
))
dt = 0,

pv1(x1, 0) = ω(x1);

(2.2.11)
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where ω is the density function of the initial random variable ξ1 of the fol-

lower. Note that the coefficients in (2.2.11) depends upon x0(t − θ) and m(t),

which are both F0
t−θ measurable. With our regularity assumptions on the co-

efficients, the Fokker Planck equation (2.2.11) admits a unique solution pv1 ∈

L∞([0, T ], L2(Rn1)) providing ω(x) ∈ L2 ∩ L∞(Rn1). See Le Bris and Lions [12]

for details.

Proposition 2.2.1 (Necessary Condition for Follower). Given x0 and m as ex-

ogenous process, which are adapted to F0
· and F0

·−θ respectively. The control for the

representative follower is optimal only if v1(t) = u1(x1(t), x0(t−θ),m(t),Dψ(x1(t), t)),

where u1 is the unique minimizer of the Lagrangian (2.1.10); ψ satisfies the

Stochastic Hamilton Jacobi Bellman (SHJB) equation (see Peng [40] for details):
−∂tψ(x1, t) =

(
H1(x1, x0(t− θ),m(t),Dψ(x1, t))−Aψ(x1, t)

)
dt

−Kψ(x1, t)dW0(t− θ),

ψ(x1, T ) = h1(x1, x0(T − θ),m(T )).

(2.2.12)

Proof. Suppose that ψ solves for the backward stochastic partial differential equa-

tion (BSPDE):
−∂tψ(x1, t) =

(
L1(x1, x0(t− θ),m(t), v1(x1, t),Dψ(x1, t))−Aψ(x1, t)

)
dt

−Kψ(x1, t)dW0(t− θ),

ψ(x1, T ) = h1(x1, x0(T − θ),m(T ));

Recall that x0(· − θ) and m(·) are F0
·−θ measurable, we then have the expression

J1(v1) = E
[ ∫ T

0
EF0

t−θf1(x1(t), x0(t− θ),m(t), v1(x1(t), t))dt

+EF0
T−θh1(x1(T ), x0(T − θ),m(T ))

]
= E

[ ∫ T
0

∫
Rn1 f1(x1, x0(t− θ),m(t), v1(x1, t))p

v1(x1, t)dx1dt

+
∫
Rn1 h1(x1, x0(T − θ),m(T ))pv1(x1, T )dx1

]
.
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Let ε ∈ R, ṽ1 be an arbitrary admissible control, where clearly v+ εṽ stays in the

admissible set. Consider the first order condition

0 = d
dε

∣∣
ε=0

J1(v1 + εṽ1)

= E
[ ∫ T

0

∫
Rn1 [f1,v1(x1, x0(t− θ),m(t), v1(x1, t))ṽ1(x1, t)p

v1(x1, t)

+f1(x1, x0(t− θ),m(t), v1(x1, t))p̃(x1, t)]dx1dt

+
∫
Rn1 h1(x1, x0(T − θ),m(T ))p̃(x1, T )dx1

]
,

(2.2.13)

where p̃ = d
dε

∣∣
ε=0

pv1+εṽ1 , satisfies
∂tp̃(x1, t) +

(
A∗p̃(x1, t) + div

(
g1,v1(x1, x0(t− θ),m(t), v1(x1, t))ṽ1(x1, t)p

v1(x1, t)
)

+div
(
g1(x1, x0(t− θ),m(t), v1(x1, t))p̃(x1, t)

))
dt = 0,

p̃(x1, 0) = 0.

We thus have

d
∫
Rn1 p̃(x1, t)ψ(x1, t)dx1

=
∫
Rn1 −p̃(x1, t)

[
f1(x1, x0(t− θ),m(t), v1(x1, t))

+Dψ(x1, t) · g1(x1, x0(t− θ),m(t), v1(x1, t))−Aψ(x1, t)
]

−
[
A∗p̃(x1, t) + div

(
g1,v1(x1, x0(t− θ),m(t), v1(x1, t))ṽ1(x1, t)p

v1(x1, t)
)

+div
(
g1(x1, x0(t− θ),m(t), v1(x1, t))p̃(x1, t)

)]
ψ(x1, t)dx1dt

+{. . . }dW0(t− θ).
(2.2.14)

We take integration over [0, T ] and then expectation on both sides of (2.2.14). A

further application of integration by parts yields

E
[ ∫

Rn1 h1(x1, x0(T − θ),m(T ))p̃(x1, T )dx1

+
∫ T

0

∫
Rn1 f1(x1, x0(t− θ),m(t), v1(x1, t))p̃(x1, t)dx1dt

]
= E

[ ∫ T
0

∫
Rn1 g1,v1(x1, x0(t− θ),m(t), v1(x1, t))ṽ1(x1, t)p

v1(x1, t) · Dψ(x1, t)dx1dt
]
.

Together with the first order condition (2.2.13), we have

0 = E
[ ∫ T

0

∫
Rn1

[
f1,v1(x1, x0(t− θ),m(t), v1(x1, t))

+Dψ(x1, t) · g1,v1(x1, x0(t− θ),m(t), v1(x1, t))
]
· ṽ1(x1, t)p

v1(x1, t)dx1dt
]
.
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Since pv1 is a probability density and hence always non-negative, and ṽ1 is arbi-

trary, we have the necessary condition for the optimal control

f1,v1(x1, x0(t− θ),m(t), v1(x1, t))

+Dψ(x1, t) · g1,v1(x1, x0(t− θ),m(t), v1(x1, t)) = 0, a.e.(ω, x1, t);

(ω, x1, t)-almost everywhere on the support of pv1 . To obtain the necessary con-

dition for the optimality, we choose v1 to be the minimizer of the Lagrangian and

hence we obtain the SHJB (2.2.12) from (2.2.1).

To obtain the equilibrium condition, i.e. the mean field term and the proba-

bility density function of x1 conditioning on F0
t−θ coincides, we have the following

coupled SHJB-FP equations

∂tm(x1, t) =
(
−A∗m(x1, t)− div

(
G1(x1, x0(t− θ),m(t),Dψ(x1, t))m(x1, t)

))
dt,

m(x1, 0) = ω(x1);

−∂tψ(x1, t) =
(
H1(x1, x0(t− θ),m(t),Dψ(x1, t))−Aψ(x1, t)

)
dt

−Kψ(x1, t)dW0(t− θ),

ψ(x1, T ) = h1(x1, x0(T − θ),m(T ));

where

G1(x1, x0(t−θ),m(t),Dψ(x1, t)) = g1(x1, x0(t−θ),m(t), u1(x1, x0(t−θ),m(t),Dψ(x1, t))).

Apparently, the backward equation in (2.2.1) is not classical SHJB as considered

in Peng [40] as it involves the delay x0(t− θ), which might make Kψ ill-posed as

we are working on the delayed filtration. That is not the case, as the whole system

(m,ψ) are F0
·−θ adapted and the time argument t inside are just served as indexes.

Indeed, one can define and solve (m∗(x1, t), ψ
∗(x1, t)) := (m(x1, t+θ), ψ(x1, t+θ)),

where the illusion of delays are eliminated in the new system.
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2.2.2 Optimal Control for the Leader

We next proceed to solve the control problem for the leader. Since the mean

field term is endogenous to the leader, he should consider the interaction with

(m,ψ) when making decision (control). We may write the three state processes

(x0,m, ψ) = (xv00 ,m
v0 , ψv0) to indicate the direct influence of v0. When we apply

the stochastic maximum principle to obtain the necessary condition for the leader’s

optimal control, we expect that there would be three adjoint equations as outlined

in the next theorem. We again define the Lagrangian

L0(x0,m, v0, λ) = f0(x0,m, v0) + λ · g0(x0,m, v0)

and the Hamiltonian

H0(x0,m, λ) = inf
v0
L0(x0,m, v0, λ).

We also assume that the infimum is uniquely attained at u0(x0,m, λ).

Proposition 2.2.2 (Necessary Condition of Leader). The control for the leader

is optimal only if v0(t) = u0(x0(t),m(t), p(t)), where p satisfies

−dp(t) = H0,x0(x0(t),m(t), p(t))dt

−
d0∑
l=1

K l
p(t)dW

l
0(t) +

d0∑
l=1

σl∗0,x0(x0(t))K l
p(t)dt, t ∈ (T − θ, T );

−dp(t) =
(
H0,x0(x0(t),m(t), p(t))

+

∫
Rn1
Dζ(x1, t+ θ)G1,x0(x1, x0(t),m(t+ θ),Dψ(x1, t+ θ))m(x1, t+ θ)dx1

+

∫
Rn1

η(x1, t+ θ)H1,x0(x1, x0(t),m(t+ θ),Dψ(x1, t+ θ))dx1

)
dt

−
d0∑
l=1

K l
p(t)dW

l
0(t) +

d0∑
l=1

σl∗0,x0(x0(t))K l
p(t)dt, t ∈ (0, T − θ);

p(T ) = h0,x0(x0(T ),m(T ));

p(T − θ) = p((T − θ)−)−
∫
Rn1

η(x1, T )h1,x0(x1, x0(T − θ),m(T ))dx1.

(2.2.15)
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−∂tζ(x1, t) =
(
−Aζ(x1, t) + EF0

t−θ
∂H0

∂m
(x0(t),m(t), p(t))(x1)

+Dζ(x1, t)G1(x1, x0(t− θ),m(t),Dψ(x1, t))

+

∫
Rn1
Dζ(ξ, t)

∂G1

∂m
(ξ, x0(t− θ),m(t),Dψ(ξ, t))(x1)m(ξ, t)dξ

+

∫
Rn1

η(ξ, t)
∂H1

∂m
(ξ, x0(t− θ),m(t),Dψ(ξ, t))(x1)dξ

)
dt

−Kζ(x1, t)dW0(t− θ),

ζ(x1, T ) = EF0
T−θ

∂h0

∂m
(x0(T ),m(T ))(x1) +

∫
Rn1

η(ξ, T )
∂h1

∂m
(ξ, x0(T − θ),m(T ))(x1)dξ.

(2.2.16)

∂tη(x1, t) =
(
−A∗η(x1, t)− div

(
η(x1, t)H1,λ(x1, x0(t− θ),m(t),Dψ(x1, t))

+G1,λ(x1, x0(t− θ),m(t),Dψ(x1, t))Dζ(x1, t)m(x1, t)
))
dt,

η(x1, 0) = 0.

(2.2.17)

Proof. Let p satisfies the backward stochastic differential equation (with jump at

t = T − θ)

−dp(t) =
(
f0,x0(x0(t),m(t), v0(t)) + g0,x0(x0(t),m(t), v0(t))p(t)

)
dt

−
∑d0

l=1 K
l
p(t)dW

l
0(t) +

∑d0
l=1 σ

l∗
0,x0

(x0(t))K l
p(t)dt, t ∈ (T − θ, T );

−dp(t) =
(
f0,x0(x0(t),m(t), v0(t)) + g0,x0(x0(t),m(t), v0(t))p(t)dt

+
∫
Rn1 Dζ(x1, t+ θ)G1,x0(x1, x0(t),m(t+ θ),Dψ(x1, t+ θ))m(x1, t+ θ)dx1

+
∫
Rn1 η(x1, t+ θ)H1,x0(x1, x0(t),m(t+ θ),Dψ(x1, t+ θ))dx1

)
dt

−
∑d0

l=1 K
l
p(t)dW

l
0(t) +

∑d0
l=1 σ

l∗
0,x0

(x0(t))K l
p(t)dt, t ∈ (0, T − θ);

p(T ) = h0,x0(x0(T ),m(T ));

p(T − θ) = p((T − θ)−)−
∫
Rn1 η(x1, T )h1,x0(x1, x0(T − θ),m(T ))dx1.

Here ζ and η are defined as in (2.2.16) and (2.2.17). We again consider the first
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order condition

0 = d
dε

∣∣
ε=0

J0(v0 + εṽ0)

= E
[ ∫ T

0
[f0,x0(x0(t),m(t), v0(t))x̃0(t)

+
∫
Rn1

∂f0
∂m

(x0(t),m(t), v0(t))(ξ)m̃(ξ, t)dξ

+f0,v0(x0(t),m(t), v0(t))ṽ0(t)]dt

+h0,x0(x0(T ),m(T ))x̃0(T )

+
∫
Rn1

∂h0
∂m

(x0(T ),m(T ))(ξ)m̃(ξ, T )dξ
]
.

(2.2.18)

where x̃0 = d
dε

∣∣
ε=0

xv0+εṽ0
0 , m̃ = d

dε

∣∣
ε=0

mv0+εṽ0 , ψ̃ = d
dε

∣∣
ε=0

ψv0+εṽ0 . We have

dx̃0(t) =
(
g0,x0(x0(t),m(t), v0(t))x̃0(t)

+
∫
Rn1

∂g0
∂m

(x0(t),m(t), v0(t))(ξ)m̃(ξ, t)dξ

+g0,v0(x0(t),m(t), v0(t))ṽ0(t)
)
dt

+
∑d0

l=1 σ
l
0,x0

(x0(t))x̃0(t)dW l
0(t),

x̃0(t) = 0, t ∈ [−θ, 0].

∂tm̃(x1, t) =
(
−A∗m̃(x1, t)

−div
(

[G1,x0(x1, x0(t− θ),m(t),Dψ(x1, t))x̃0(t− θ)

+
∫
Rn1

∂G1

∂m
(x1, x0(t− θ),m(t),Dψ(x1, t))(ξ)m̃(ξ, t)dξ

+G1,λ(x1, x0(t− θ),m(t),Dψ(x1, t))Dψ̃(x1, t)]m(x1, t)
)

−div
(
G1(x1, x0(t− θ),m(t),Dψ(x1, t))m̃(x1, t)

))
dt,

m̃(x1, 0) = 0.

−∂tψ̃(x1, t) =
(
H1,x0(x1, x0(t− θ),m(t),Dψ(x1, t))x̃0(t− θ)

+
∫
Rn1

∂H1

∂m
(x1, x0(t− θ),m(t),Dψ(x1, t))(ξ)m̃(ξ, t)dξ

+H1,λ(x1, x0(t− θ),m(t),Dψ(x1, t))Dψ̃(x1, t)

−Aψ̃(x1, t)
)
dt−Kψ̃(x1, t)dW0(t− θ),

ψ̃(x1, T ) = h1,x0(x1, x0(T − θ),m(T ))x̃0(T − θ)

+
∫
Rn1

∂h1
∂m

(x1, x0(T − θ),m(T ))(ξ)m̃(ξ, T )dξ.
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Applying Itô’s formula, we have the inner products(
E[p(T )x̃0(T )]− E[p(T − θ)x̃0(T − θ)]

)
+
(
E[p((T − θ)−)x̃0(T − θ)− 0]

)
= E

[ ∫ T
0
p(t)

∫
Rn1

∂g0
∂m

(x0(t),m(t), v0(t))(ξ)m̃(ξ, t)dξdt
]

+E
[ ∫ T

0
p(t)g0,v0(x0(t),m(t), v0(t))ṽ0(t)dt

]
−E
[ ∫ T

0
f0,x0(x0(t),m(t), v0(t))x̃0(t)dt

]
−E
[ ∫ T−θ

0

∫
Rn1 Dζ(x1, t+ θ)G1,x0(x1, x0(t),m(t+ θ),Dψ(x1, t+ θ))m(x1, t+ θ)dx1x̃0(t)dt

]
−E
[ ∫ T−θ

0

∫
Rn1 η(x1, t+ θ)H1,x0(x1, x0(t),m(t+ θ),Dψ(x1, t+ θ))dx1x̃0(t)dt

]
.

E
[ ∫

Rn1 ζ(x1, T )m̃(x1, T )dx1

]
= E

[ ∫ T
0

∫
Rn1 Dζ(x1, t)G1,x0(x1, x0(t− θ),m(t),Dψ(x1, t))x̃0(t− θ)m(x1, t)dx1dt

]
+E
[ ∫ T

0

∫
Rn1 Dζ(x1, t)G1,λ(x1, x0(t− θ),m(t),Dψ(x1, t))Dψ̃(x1, t)m(x1, t)dx1dt

]
−E
[ ∫ T

0

∫
Rn1

∂f0
∂m

(x0(t),m(t), v0(t))(x1)m̃(x1, t)dx1dt
]

−E
[ ∫ T

0

∫
Rn1

∂g0
∂m

(x0(t),m(t), v0(t))(x1)m̃(x1, t)dx1p(t)dt
]

−E
[ ∫ T

0

∫
Rn1

( ∫
Rn1 η(ξ, t)∂H1

∂m
(ξ, x0(t− θ),m(t),Dψ(ξ, t))(x1)dξ

)
m̃(x1, t)dx1dt

]
.

−E
[ ∫

Rn1 η(x1, T )ψ̃(x1, T )dx1

]
= E

[ ∫ T
0

∫
Rn1 η(x1, t)H1,x0(x1, x0(t− θ),m(t),Dψ(x1, t))x̃0(t− θ)dx1dt

]
+E
[ ∫ T

0

∫
Rn1 η(x1, t)

( ∫
Rn1

∂H1

∂m
(x1, x0(t− θ),m(t),Dψ(x1, t))(ξ)m̃(ξ, t)dξ

)
dx1dt

]
−E
[ ∫ T

0

∫
Rn1 G1,λ(x1, x0(t− θ),m(t),Dψ(x1, t))Dζ(x1, t)m(x1, t)Dψ̃(x1, t)dx1dt

]
.

Summing three equations and putting the terminal conditions, we have

E[h0,x0(x0(T ),m(T ))x̃0(T )]

+E[
∫
Rn1 η(x, T )h1,x0(x1, x0(T − θ),m(T ))dx1x̃0(T − θ)]

+E
[ ∫

Rn1 E
F0
T−θ

(
∂h0
∂m

(x0(T ),m(T ))(x1)

+
∫
Rn1 η(ξ, T )∂h1

∂m
(ξ, x0(T − θ),m(T ))(x1)dξ

)
m̃(x1, T )dx1

]
−E
[ ∫

Rn1 η(x1, T )
(
h1,x0(x1, x0(T − θ),m(T ))x̃0(T − θ)

+
∫
Rn1

∂h1
∂m

(x1, x0(T − θ),m(T ))(ξ)m̃(ξ, T )dξ
)
dx1

]
= −E

[ ∫ T
0

∫
Rn1

∂f0
∂m

(x0(t),m(t), v0(t))(x1)m̃(x1, t)dx1dt
]

+E
[ ∫ T

0
p(t)g0,v0(x0(t),m(t), v0(t))ṽ0(t)dt

]
− E

[ ∫ T
0
f0,x0(x0(t),m(t), v0(t))x̃0(t)dt

]
.
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Or we can rearrange and cancel the terms to obtain

E[h0,x0(x0(T ),m(T ))x̃0(T )] + E
[ ∫

Rn1
∂h0
∂m

(x0(T ),m(T ))(x1)m̃(x1, T )dx1

]
+E
[ ∫ T

0

∫
Rn1

∂f0
∂m

(x0(t),m(t), v0(t))(x1)m̃(x1, t)dx1dt
]

+E
[ ∫ T

0
f0,x0(x0(t),m(t), v0(t))x̃0(t)dt

]
= E

[ ∫ T
0
p(t)g0,v0(x0(t),m(t), v0(t))ṽ0(t)dt

]
.

Combining with the first order condition (2.2.18), we finally obtain

0 = E
[ ∫ T

0

(
f0,v0(x0(t),m(t), v0(t)) + p(t)g0,v0(x0(t),m(t), v0(t))

)
ṽ0(t)dt

]
.

Since v0 is arbitrary, we have the necessary condition for the optimal control

f0,v0(x0(t),m(t), v0(t)) + p(t) · g0,v0(x0(t),m(t), v0(t)) = 0 a.s.

We choose v0 to be the minimizer of the Lagrangian and we obtain (2.2.15).

Let G0(x0(t),m(t), p(t)) = g0(x0(t),m(t), u0(x0(t),m(t), p(t))). The full set of

solutions is represented by the system of six equations:

dx0(t) = G0(x0(t),m(t), p(t))dt+ σ0(x0(t))dW0(t),

x0(t) = ξ0(t), t ∈ [−θ, 0];

∂tm(x1, t) =
(
−A∗m(x1, t)− div

(
G1(x1, x0(t− θ),m(t),Dψ(x1, t))m(x1, t)

))
dt,

m(x1, 0) = ω(x1);

−∂tψ(x1, t) =
(
H1(x1, x0(t− θ),m(t),Dψ(x1, t))−Aψ(x1, t)

)
dt−Kψ(x1, t)dW0(t− θ)

ψ(x1, T ) = h1(x1, x0(T − θ),m(T )).

(2.2.19)
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−dp(t) = H0,x0(x0(t),m(t), p(t))dt

−
∑d0

l=1K
l
p(t)dW

l
0(t) +

∑d0
l=1 σ

l∗
0,x0

(x0(t))K l
p(t)dt, t ∈ (T − θ, T );

−dp(t) =
(
H0,x0(x0(t),m(t), p(t))

+
∫
Rn1 Dζ(x1, t+ θ)G1,x0(x1, x0(t),m(t+ θ),Dψ(x1, t+ θ))m(x1, t+ θ)dx1

+
∫
Rn1 η(x1, t+ θ)H1,x0(x1, x0(t),m(t+ θ),Dψ(x1, t+ θ))dx1

)
dt

−
∑d0

l=1K
l
p(t)dW

l
0(t) +

∑d0
l=1 σ

l∗
0,x0

(x0(t))K l
p(t)dt, t ∈ (0, T − θ);

p(T ) = h0,x0(x0(T ),m(T ));

p(T − θ) = p((T − θ)−)−
∫
Rn1 η(x1, T )h1,x0(x1, x0(T − θ),m(T ))dx1.

−∂tζ(x1, t) =
(
− Aζ(x1, t) + EF0

t−θ ∂H0

∂m
(x0(t),m(t), p(t))(x1)

+Dζ(x1, t)G1(x1, x0(t− θ),m(t),Dψ(x1, t))

+
∫
Rn1 Dζ(ξ, t)∂G1

∂m
(ξ, x0(t− θ),m(t),Dψ(ξ, t))(x1)m(ξ, t)dξ

+
∫
Rn1 η(ξ, t)∂H1

∂m
(ξ, x0(t− θ),m(t),Dψ(ξ, t))(x1)dξ

)
dt

−Kζ(x1, t)dW0(t− θ),

ζ(x1, T ) = EF0
T−θ ∂h0

∂m
(x0(T ),m(T ))(x1) +

∫
Rn1 η(ξ, T )∂h1

∂m
(ξ, x0(T − θ),m(T ))(x1)dξ.

∂tη(x1, t) =
(
−A∗η(x1, t)− div

(
η(x1, t)H1,λ(x1, x0(t− θ),m(t),Dψ(x1, t))

+G1,λ(x1, x0(t− θ),m(t),Dψ(x1, t))Dζ(x1, t)m(x1, t)
))
dt,

η(x1, 0) = 0.

(2.2.20)

The unique existence of the system of SPDEs and SDEs (2.2.19,2.2.20) is difficult

to clarify and remains an open problem to literature. Apart from the partial

differential equation approach introduced in this chapter, a pure probabilistic

framework is recently gaining its popularity and we will discuss some results in

this direction in Chapter 5. Besides, we will apply the obtained results in the

PDE framework under a linear quadratic setting in Section 2.3. The existence for

the corresponding system is provided in Section 2.4.
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2.2.3 Multiple Classes

Consider now θ is discretely distributed in {a = θ1 < θ2 < · · · < θn = b} with

probability distribution {p1, p2, . . . , pn}. Applying Proposition 2.2.1 analogically,

we have the necessary condition for the optimal control for the representative

follower with delay θk:

Proposition 2.2.3 (Necessary Condition). Consider x0 and m as exogenous,

the control for the representative follower with delay δk is optimal only if vk1(t) =

uk1(xk1(t), x0(t−θk),m(t),Dψk(xk1(t), t)), where ψ satisfies the Stochastic Hamilton

Jacobi Bellman equation:

−∂tψk(x1, t) =
(
H1(x1, x0(t− θk),m(t),Dψk(x1, t))−Aψk(x1, t)

)
dt

−Kψk(x1, t)dW0(t− a);

ψk(x1, T ) = h1(x1, x0(T − θk),m(T )).

We can write down the FP equation for the follower with delay δk:

∂tm
k(x1, t) =

(
−A∗mk(x1, t)− div

(
G1(x1, x0(t− θk),m(t),Dψk(x1, t))m

k(x1, t)
))
dt,

mk(x1, 0) = ω(x1).

The fixed point problem for the equilibrium condition is now m =
∑n

k=1 p
kmk

(see Bensoussan et al. [5]), or we can write the pair

∂tm
k(x1, t) =

(
−A∗mk(x1, t)

− div
(
G1(x1, x0(t− θk),

n∑
k=1

pkmk(t),Dψk(x1, t))m
k(x1, t)

))
dt,

mk(x1, 0) = ω(x1);

−∂tψk(x1, t) =
(
H1(x1, x0(t− θk),

n∑
k=1

pkmk(t),Dψk(x1, t))−Aψk(x1, t)
)
dt

−Kψk(x1, t)dW0(t− a),

ψk(x1, T ) = h1(x1, x0(T − θk),
n∑
k=1

pkmk(T )).
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Similar to the proof of Proposition 2.2.2, we now state the main results in this

section:

Proposition 2.2.4 (Necessary Condition of Leader). The control for the leader

is optimal only if v0(t) = u0(x0(t),m(t), p(t)), where p satisfies

−dp(t) = H0,x0(x0(t),m(t), p(t))dt

−
∑d0

l=1 K
l
p(t)dW

l
0(t) +

∑d0
l=1 σ

l∗
0,x0

(x0(t))K l
p(t)dt, t ∈ (T − a, T );

−dp(t) =
(
H0,x0(x0(t),m(t), p(t))

+
∑n

k=1 p
kI[0,T−θk](t)

∫
Rn1 Dζ

k(x1, t+ θk)·

G1,x0(x1, x0(t),m(t+ θk),Dψk(x1, t+ θk))m
k(x1, t+ θk)dx1

+
∑n

k=1 p
kI[0,T−θk](t)

∫
Rn1 η

k(x1, t+ θk)·

H1,x0(x1, x0(t),m(t+ θk),Dψ(x1, t+ θk))dx1

)
dt

−
∑d0

l=1K
l
p(t)dW

l
0(t) +

∑d0
l=1 σ

l∗
0,x0

(x0(t))K l
p(t)dt, t ∈ (0, T − a);

p(T ) = h0,x0(x0(T ),m(T ));

p(T − θk) = p((T − θk)−)

−pk
∫
Rn1 η

k(x1, T )h1,x0(x1, x0(T − θk),m(T ))dx1, k = 1, . . . , n;

−∂tζk(x1, t) =
(
−Aζk(x1, t) + EF0

t−a ∂H0

∂m
(x0(t),m(t), p(t))(x1)

+Dζk(x1, t)G1(x1, x0(t− θk),m(t),Dψk(x1, t))

+
∑n

j=1 p
jI[0,T−θj ](t)·∫

Rn1 Dζ
j(ξ, t)∂G1

∂m
(ξ, x0(t− θj),m(t),Dψj(ξ, t))(x1)mj(ξ, t)dξ

+
∑n

j=1 p
jI[0,T−θj ](t)·∫

Rn1 η
j(ξ, t)∂H1

∂m
(ξ, x0(t− θj),m(t),Dψj(ξ, t))(x1)dξ

)
dt

−Kζk(x1, t)dW0(t− a),

ζk(x1, T ) = EF0
T−a ∂h0

∂m
(x0(T ),m(T ))(x1)

+
∑n

j=1 p
j
∫
Rn1 η

j(ξ, T )∂h1
∂m

(ξ, x0(T − θj),m(T ))(x1)dξ.

∂tη
k(x1, t) =

(
−A∗ηk(x1, t)− div

(
ηk(x1, t)H1,λ(x1, x0(t− θk),m(t),Dψk(x1, t))

+G1,λ(x1, x0(t− θk),m(t),Dψk(x1, t))Dζk(x1, t)m(x1, t)
))
dt,

ηk(x1, 0) = 0.
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2.3 Linear Quadratic Case

In this section we derive the solution for the linear quadratic problem from the

six equations in (2.2.19) and (2.2.20) directly. Let

g0(x0,m, v0) = A0x0 +B0

∫
ξm(ξ)dξ + C0v0;

σ0(x0) = σ0;

g1(x1, x0,m, v1) = A1x1 +B1

∫
ξm(ξ)dξ + C1v1 +D1x0;

σ1(x1) = σ1;

f0(x0,m, v0) = 1
2
[|x0 − E0

∫
ξm(ξ)dξ −G0|2Q0

+ v∗0R0v0];

f1(x1, x0,m, v1) = 1
2
[|x1 − E1

∫
ξm(ξ)dξ − F1x0 −G1|2Q1

+ v∗1R1v1];

h0(x0,m) = 1
2
[|x0 − Ē0

∫
ξm(ξ)dξ − Ḡ0|2Q̄0

]

h1(x1, x0,m) = 1
2
[|x1 − Ē1

∫
ξm(ξ)dξ − F̄1x0 − Ḡ1|2Q̄1

].

2.3.1 Optimal Control for the Follower

For simplicity, we may write z =
∫
ξm(ξ)dξ. We can write down the Lagrangian

for the representative follower

L1(x1, x0,m, v1, λ) = 1
2
|x1 − E1z − F1x0 −G1|2Q1

+λ · (A1x1 +B1z +D1x0) + 1
2
v∗1R1v1 + λ · C1v1.

and the Hamiltonian

H1(x1, x0,m, λ) = 1
2
|x1 − E1z − F1x0 −G1|2Q1

+ λ · (A1x1 +B1z +D1x0)

−1
2
λ∗C1R

−1
1 C∗1λ

in which the minimum is evaluated at

u1 = −R−1
1 C∗1λ.

Let P (t), β(t), α(t), Kβ(t) and Kα(t) be F0
t−θ adapted, and P (t) ∈ Rn1 × Rn1 is

a symmetric matrix for all t ∈ [0, T ]. We give the Ansatz that

ψ(x1, t) = 1
2
x∗1P (t)x1 + β∗(t)x1 + α(t)
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and

Kψ(x1, t) = Kβ(t)x1 +Kα(t).

We then have Dψ(x1, t) = P (t)x1 + β(t) and D2ψ(x1, t) = P (t), and hence the

optimal control for the representative follower is

u1(t) = −R−1
1 C∗1(P (t)x1(t) + β(t)).

Then the coupled SHJB-FP becomes
∂tm(x1, t) =

(
−A∗m(x1, t)− div[(A1x1 +B1z(t)− C1R

−1
1 C∗1(P (t)x1 + β(t))

+D1x0(t− θ))m(x1, t)]
)
dt,

m(x1, 0) = ω(x1);

−∂tψ(x1, t) =
[

1
2
|x1 − E1z(t)− F1x0(t− θ)−G1|2Q1

+(P (t)x1 + β(t))∗(A1x1 +B1z(t) +D1x0(t− θ))

−1
2
(P (t)x1 + β(t))∗C1R

−1
1 C∗1(P (t)x1 + β(t)) + 1

2
tr[σσ∗P (t)]

]
dt

−(Kβ(t)x1 +Kα(t))dW0(t− θ);

ψ(x1, T ) = 1
2
[|x1 − Ē1z(T )− F̄1x0(T − θ)− Ḡ1|2Q̄1

].

Recall that ∂tψ(x1, t) = 1
2
x∗1(dP (t))x1 + dβ∗(t)x1 + dα(t). Comparing coeffi-

cients yields

−dP (t) = (Q1 + P (t)A1 + A∗1P (t)− P (t)C1R
−1
1 C∗1P (t))dt,

P (T ) = Q̄.

−dβ(t) =
[
−Q1(E1z(t) + F1x0(t− θ) +G1)

+P (t)(B1z(t) +D1x0(t− θ)) + A∗1β(t)

−P (t)C1R
−1
1 C∗1β(t)

]
dt−Kβ(t)dW0(t− θ)

=
[
(A∗1 − P (t)C1R

−1
1 C∗1)β(t) + (P (t)B1 −Q1E1)z(t)

+(P (t)D1 −Q1F1)x0(t− θ)−Q1G1

]
dt−Kβ(t)dW0(t− θ),

β(T ) = −Q̄1(Ē1z(T ) + F̄1x0(T − θ)− Ḡ1).
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−dα(t) =
[

1
2
|E1z(t) + F1x0(t− θ) +G1|2Q1

+β∗(t)(B1z(t) +D1x0(t− θ))

−1
2
β∗(t)C1R

−1
1 C∗1β(t) + 1

2
tr[σσ∗P (t)]

]
dt−Kα(t)dW0(t− θ),

α(T ) = 1
2
|Ē1z(t) + F̄1x0(t− θ) + Ḡ1|2Q̄1

.

On the other hand, we have

dz(t) = d
∫
Rn1 x1m(x1, t)dx1

=
∫
Rn1 x1

(
− A∗m(x1, t)

−div[(A1x1 +B1z(t)− C1R
−1
1 C∗1(P (t)x1 + β(t)) +D1x0(t− θ))m(x1, t)]

)
dx1dt

= ((A1 +B1 − C1R
−1
1 C∗1P (t))z(t)− C1R

−1
1 C∗1β(t) +D1x0(t− θ))dt;

z(0) = E[ξ1].

Observe that P satisfies a symmetric Riccati equation which guarantees a solution

on [0, T ]; on the other hand, the BSDE α always admits a solution once we solve

for z and β. Hence the solvability of the mean field equilibrium, that is the coupled

SHJB-FP, reduce to the solvability of the following FBSDE: dz(t) = ((A1 +B1 − C1R
−1
1 C∗1P (t))z(t)− C1R

−1
1 C∗1β(t) +D1x0(t− θ))dt;

z(0) = E[ξ1].
−dβ(t) =

[
(A1 − C1R

−1
1 C∗1P (t))∗β(t) + (P (t)B1 −Q1E1)z(t)

+(P (t)D1 −Q1F1)x0(t− θ)−Q1G1

]
dt−Kβ(t)dW0(t− θ),

β(T ) = −Q̄1(Ē1z(T ) + F̄1x0(T − θ)− Ḡ1).

(2.3.21)

2.3.2 Optimal Control for the Leader

In this subsection we investigate the six equations (2.2.19,2.2.20) derived in the

optimal control problem for the leader. Again we can write down the Lagrangian

L0(x0,m, v0, λ) = 1
2
|x0 − E0z −G0|2Q0

+ λ · (A0x0 +B0z) + 1
2
v∗0R0v0 + λ · C0v0.

Similarly, the Hamiltonian is given by

H0(x0,m, λ) = 1
2
|x0 − E0z −G0|2Q0

+ λ · (A0x0 +B0z)− 1
2
λ∗C0R

−1
0 C∗0λ
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in which the minimum point if evaluated at

u0 = −R−1
0 C∗0λ.

Similarly, for some F0
t−θ adapted q, γ, Kq and Kγ, we give the Ansatz:

ζ(x1, t) = q∗(t)x1 + γ(t) (2.3.22)

and

Kζ(x1, t) = Kq(t)x1 +Kγ(t).

Clearly we haveDζ(x1, t) = q(t) andD2ζ(x1, t) = 0. We write r(t) =
∫
Rn1 x1η(x1, t)dx1.

To compute the Gâteaux derivative, for example, ∂G1

∂m
(x1, x0(t−θ),m(t),Dψ(x1, t))(·),

we first have

G1(x1, x0(t− θ),m(t),Dψ(x1, t))

= A1x1 +B1

∫
Rn1 ξm(ξ, t)dξ − C1R

−1
1 C∗1Dψ(x1, t) +D1x0(t− θ).

Hence

limε→0
G1(·,m(t)+εm̃(t),·)−G1(·,m(t),·)

ε

=
∫
Rn1 (B1ξ)(m̃(ξ, t))dξ,

in which we have ∂G1

∂m
(x1, x0(t − θ),m(t),Dψ(x1, t))(ξ) = B1ξ. Other derivatives

can be obtained by similar arguments. The six equations (2.2.19), (2.2.20) become

dx0(t) = (A0x0(t) +B0z(t)− C0R
−1
0 C∗0p(t))dt+ σ0dW0(t),

x0(t) = ξ0(t), t ∈ [−θ, 0];

∂tm(x1, t) =
(
−A∗m(x1, t)− div[(A1x1 +B1z(t)− C1R

−1
1 C∗1(P (t)x1 + β(t))

+D1x0(t− θ))m(x1, t)]
)
dt,

m(x1, 0) = ω(x1);

−∂tψ(x1, t) =
[

1
2
|x1 − E1z(t)− F1x0(t− θ)−G1|2Q1

+(P (t)x1 + β(t))∗(A1x1 +B1z(t) +D1x0(t− θ))

−1
2
(P (t)x1 + β(t))∗C1R

−1
1 C∗1(P (t)x1 + β(t)) + 1

2
tr[σσ∗P (t)]

]
dt

−(Kβ(t)x1 +Kα(t))dW0(t− θ);

ψ(x1, T ) = 1
2
[|x1 − Ē1z(T )− F̄1x0(T − θ)− Ḡ1|2Q̄1

].

(2.3.23)
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−dp(t) =
(
A∗0p(t) +Q0(x0(t)− E0z(t)−G0)

)
dt−Kp(t)dW0(t), t ∈ (T − θ, T );

−dp(t) =
(
A∗0p(t) +Q0(x0(t)− E0z(t)−G0)

+
∫
Rn1 D

∗
1q(t+ θ)m(x1, t+ θ)dx1

+
∫
Rn1 η(x1, t+ θ)[−(Q1F1)∗(x1 − E1z(t+ θ)− F1x0(t)−G1)

+D∗1(P (t+ θ)x1 + β(t+ θ))]dx1

)
dt−Kp(t)dW0(t),

t ∈ (0, T − θ);

p(T ) = Q̄0(x0(T )− Ē0z(T )− Ḡ0);

p(T − θ) = p((T − θ)−) +
∫
Rn1 η(x1, T )[(Q̄1F̄1)∗(x1 − Ē1z(T )− F̄1x0(T − θ)− Ḡ1)]dx1.

−∂tζ(x1, t) =
(
EF0

t−θ [−(x0(t)− E0z(t)−G0)∗(Q0E0)x1 + p∗(t)B0x1]

+q∗(t)[A1x1 +B1z(t)− C1R
−1
1 C∗1(P (t)x1 + β(t)) +D1x0(t− θ)]

+
∫
Rn1 q

∗(t)B1x1m(ξ, t)dξ

+
∫
Rn1 η(ξ, t)[−(ξ − E1z(t)− F1x0(t− θ)−G1)∗(Q1E1)x1

+(P (t)ξ + β(t))B1x1]dξ
)
dt

−(Kq(t)x1 +Kγ(t))dW0(t− θ),

ζ(x1, T ) = EF0
T−θ [−(x0(T )− Ē0z(T )− Ḡ0)∗(Q̄0Ē0)x1]

+
∫
Rn1 η(ξ, T )[−(ζ − Ē1z(T )− F̄1x0(T − θ)− Ḡ1)∗(Q̄1Ē1)x1]dξ.

∂tη(x1, t) =
(
−A∗η(x1, t)

−div
(
η(x1, t)[A1x1 +B1z(t)− C1R

−1
1 C∗1(P (t)x1 + β(t)) +D1x0(t− θ)]

−C1R
−1
1 C∗1q(t)m(x1, t)

))
dt,

η(x1, 0) = 0.

(2.3.24)

From (2.3.22), we have ∂tζ(x1, t) = dq∗(t)x1 + (dγ(t)); while
∫
Rn1 η(x1, t)dx1 = 0.

Comparing coefficients yields

dq(t) =
(

(A1 +B1 − C1R
−1
1 C∗1P (t))∗q(t) +B∗0EF

0
t−θp(t) + (P (t)B1 −Q1E1)∗r(t)

−(Q0E0)∗(EF0
t−θx0(t)− E0z(t)−G0)

)
dt−Kq(t)dW0(t− θ),

q(T ) = −(Q̄0Ē0)∗(EF0
T−θx0(T )− Ē0z(T )− Ḡ0)− (Q̄1Ē1)∗r(T ).
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dγ(t) = q(t)∗[B1z(t)− C1R
−1
1 C∗1β(t) +D1x0(t− θ)]dt− Zγ(t)dW0(t− θ),

γ(T ) = 0.

On the other hand, we have

dr(t) =
∫
Rn1 x1(∂tη(x1, t))dx1

=
∫
Rn1 x1

(
−A∗η(x1, t)− div

(
η(x1, t)[A1x1 +B1z(t)− C1R

−1
1 C∗1(P (t)x1 + β(t))

+D1x0(t− θ)]− C1R
−1
1 C∗1q(t)m(x1, t)

))
dx1dt

= (A1 − C1R
−1
1 C∗1P (t))r(t)− C1R

−1
1 C∗1q(t),

r(0) = 0.

Note that the BSDE γ always admits a solution once we can solve for q, z, β

and x0. Hence, under the LQ setting, the solvability of the original six equations

(2.3.23, 2.3.24) reduced to the solvability of the following FBSDEs:

dx0(t) = (A0x0(t) +B0z(t)− C0R
−1
0 C∗0p(t))dt+ σ0dW0(t),

x0(t) = ξ0(t), t ∈ [−θ, 0];

dz(t) = ((A1 +B1 − C1R
−1
1 C∗1P (t))z(t)− C1R

−1
1 C∗1β(t) +D1x0(t− θ))dt;

z(0) = E[ξ1].

−dβ(t) =
[
(A1 − C1R

−1
1 C∗1P (t))∗β(t) + (P (t)B1 −Q1E1)z(t)

+(P (t)D1 −Q1F1)x0(t− θ)−Q1G1

]
dt−Kβ(t)dW0(t− θ),

β(T ) = −Q̄1(Ē1z(T ) + F̄1x0(T − θ)− Ḡ1).

(2.3.25)
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−dp(t) =
(
A∗0p(t) +Q0(x0(t)− E0z(t)−G0)

)
dt

−Kp(t)dW0(t), t ∈ (T − θ, T );

−dp(t) =
(
A∗0p(t) +Q0(x0(t)− E0z(t)−G0)

+D∗1q(t+ θ) + (P (t+ θ)D1 −Q1F1)∗r(t+ θ)
)
dt

−Kp(t)dW0(t), t ∈ (0, T − θ);

p(T ) = Q̄0(x0(T )− Ē0z(T )− Ḡ0);

p(T − θ) = p((T − θ)−) + (Q̄1F̄1)∗r(T ).

−dq(t) =
(

(A1 +B1 − C1R
−1
1 C∗1P (t))∗q(t) +B∗0EF

0
t−θp(t)

+(P (t)B1 −Q1E1)∗r(t)

−(Q0E0)∗(EF0
t−θx0(t)− E0z(t)−G0)

)
dt−Kq(t)dW0(t− θ),

q(T ) = −(Q̄0Ē0)∗(EF0
T−θx0(T )− Ē0z(T )− Ḡ0)− (Q̄1Ē1)∗r(T ).

dr(t) = ((A1 − C1R
−1
1 C∗1P (t))r(t)− C1R

−1
1 C∗1q(t))dt,

r(0) = 0.

(2.3.26)

2.4 Sufficient Condition for Unique Existence

In this section we demonstrate the sufficient condition which guarantees the exis-

tence of a unique solution to the forward backward stochastic differential equation

(2.3.25), (2.3.26). We first show the following lemma regarding the solvability of

system (2.3.21):

Lemma 2.4.1. Let x0 be a given square integrable F0 adapted process. Suppose

that the following conditions are satisfied:
λmin(Q1(I − E1))− ‖B∗1B1‖

2λmin(C1R
−1
1 C∗1)

:= K1 > 0,

λmin(Q̄1(I − Ē1)) := K2 > 0;

(2.4.27)

then the forward backward system (2.3.21) admits a unique solution.

Proof. To obtain the condition (2.4.27), which is independent of time, we first
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denote

β′(t) = P (t)z(t) + β(t). (2.4.28)

We argue that the drift coefficients of z and β′ is then independent of t. In

particular, a simple application of the Itô’s formula shows that (z, β′) satisfies:

dz(t) = ((A1 +B1)z(t)− C1R
−1
1 C∗1β

′(t) +D1x0(t− θ))dt;

z(0) = E[ξ1];

−dβ′(t) =
[
A∗1β

′(t) +Q1(I − E1)z(t)−Q1F1x0(t− θ)−Q1G1

]
dt−Kβ′(t)dW0(t− θ),

β′(T ) = Q̄1(I − Ē1)z(T )− Q̄1F̄1x0(T − θ)− Q̄1Ḡ61.

(2.4.29)

Define two linear operators

A : Rn1 ⊕ Rn1 → Rn1 ⊕ Rn1 ,

and

Ā : Rn1 → Rn1 .

In particular, A is defined through the drift coefficients in system (2.4.29)

A

 z

β′

 =

 −A∗1β′ −Q1(I − E1)z

(A1 +B1)z − C1R
−1
1 C∗1β

′

 ;

while Ā associates with the terminal condition in (2.4.29)

Ā(z) = Q̄1(I − Ē1)z.

To obtain a unique solution of (2.4.29), it suffices to check the monotonicity con-

dition proposed in Hu and Peng [25] is satisfied. Providing there is no ambiguity,
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〈·〉 represents the usual inner product on Euclidean space. To be precise, we have,〈
A

 z

β′

 ,

 z

β′

〉 = 〈B1z, β
′〉 − 〈Q1(I − E1)z, z〉 − 〈β′, C1R

−1
1 C∗1β

′〉

≤ ‖B∗1B1‖
4λmin(C1R

−1
1 C∗1)

‖z‖2 + λmin(C1R
−1
1 C∗1)‖β′‖2

− λmin(Q1(I − E1))‖z‖2 − λmin(C1R
−1
1 C∗1)‖β′‖2

≤
( ‖B∗1B1‖

4λmin(C1R
−1
1 C∗1)

− λmin(Q1(I − E1))
)
‖z‖2;

where we apply the Young’s inequality in the second row. On the other hand,

〈Ā(z0), z0〉 = 〈Q̄1(I − Ē1)z0, z0〉 ≥ λmin(Q̄1(I − Ē1))‖z0‖2.

We conclude that the monotonicity condition is satisfied providing the statement

hypothesis holds. After obtaining the unique existence of the pair (z, β′), we can

recover the original (z, β) by reading equation (2.4.28) from right hand side.

Remark 2.4.2. Recall that Q1, Q̄1 and C1R
−1
1 C∗1 are positive definite matrices.

Lemma 2.4.1 suggests that providing the influences generated by the mean field

term (or the magnitude of B1, E1 and Ē1) on the followers are small, the mean

field term system (2.4.1) admits a unique solution for any given state process of

the leader (x0).

We assume that the two sufficient conditions (2.4.27) in Lemma 2.4.1 are sat-

isfied in the rest of this work. As in Bensoussan et al. [5] and Bensoussan et al.

[4], we can decompose forward backward system (2.3.21) such that (z, β,Kβ) =

(z0, β0, Kβ0) + (zc, βc, 0), where (z0, β0, Kβ0) is linear to x0 and (zc, βc, 0) is deter-

ministic (and hence the third element vanishes).

dz0(t) = ((A1 +B1 − C1R
−1
1 C∗1P (t))z0(t)− C1R

−1
1 C∗1β0(t) +D1x0(t− θ))dt;

z0(0) = 0.

−dβ0(t) =
[
(A1 − C1R

−1
1 C∗1P (t))∗β0(t) + (P (t)B1 −Q1E1)z0(t)

+(P (t)D1 −Q1F1)x0(t− θ)
]
dt−Kβ0(t)dW0(t− θ),

β0(T ) = −Q̄1(Ē1z0(T ) + F̄1x0(T − θ)).
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dzc(t) = ((A1 +B1 − C1R
−1
1 C∗1P (t))zc(t)− C1R

−1
1 C∗1βc(t))dt;

zc(0) = E[ξ1].

−dβc(t) =
[
(A1 − C1R

−1
1 C∗1P (t))∗βc(t) + (P (t)B1 −Q1E1)zc(t)−Q1G1

]
dt,

βc(T ) = −Q̄1(Ē1zc(T )− Ḡ1).

Let κ ≥ 0 and n ≥ 1, consider the Hilbert Space:

H(κ, n) = {{f(t)}t∈[−κ,T−κ] : f is progressively measurable (w.r.t.B([−κ, t])⊗F0
t−θ+κ) in Rn.}

with inner product

〈f1, f2〉H(κ,n) = E
[ ∫ T−κ
−κ f1(t) · f2(t)dt+ f1(T − κ) · f2(T − κ)

]
.

Consider the linear operator

L : H(θ, n0)→ H(0, n1)

defined by

L(x0)(t) = z0(t). (2.4.30)

The linear operator L is well defined as shown in Lemma 2.4.1; we argue in the

following that it is also bounded:

Lemma 2.4.3. The linear operator L defined in (2.4.30) is bounded.

Proof. Similar to the proof in Lemma 2.4.1, we define

β′0(t) = P (t)z(t) + β0(t),

where (z0, β
′
0) satisfies the forward backward stochastic differential equation:

dz0(t) = ((A1 +B1)z0(t)− C1R
−1
1 C∗1β

′
0(t) +D1x0(t− θ))dt;

z(0) = 0;

−dβ′0(t) =
[
A∗1β

′
0(t) +Q1(I − E1)z0(t)−Q1F1x0(t− θ)

]
dt−Kβ′(t)dW0(t− θ),

β′0(T ) = Q̄1(I − Ē1)z0(T )− Q̄1F̄1x0(T − θ).
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Applying Itô’s formula on the inner product 〈z0(t), β′0(t)〉 yields

E[〈z0(T ), β′0(T )〉] = E
∫ T

0

〈B1z0(t), β′0(t)〉dt

− E
∫ T

0

〈C1R
−1
1 C∗1β

′
0(t), β′0(t)〉dt− E

∫ T

0

〈Q1(I − E1)z0(t), z0(t)〉dt

+ E
∫ T

0

〈D1x0(t− θ), β′0(t)〉dt+ E
∫ T

0

〈Q1F1x0(t− θ), z0(t)〉dt.

Together with the terminal condition of β′0, we have

E[〈z0(T ), Q̄1(I − Ē1)z0(T )〉]

= E[〈z0(T ), Q̄1F̄1x0(T − θ)〉] + E
∫ T

0

〈B1z0(t), β′0(t)〉dt

− E
∫ T

0

〈C1R
−1
1 C∗1β

′
0(t), β′0(t)〉dt− E

∫ T

0

〈Q1(I − E1)z0(t), z0(t)〉dt

+ E
∫ T

0

〈D1x0(t− θ), β′0(t)〉dt+ E
∫ T

0

〈Q1F1x0(t− θ), z0(t)〉dt.

Applying the Young’s inequality as before gives

λmin(Q̄1(I − Ē1))‖z0(T )‖2
L2

≤ λmin(Q̄1(I − Ē1))

2
‖z0(T )‖2

L2 +
‖F̄ ∗1 Q̄1Q̄1F̄1‖

2λmin(Q̄1(I − Ē1))
‖x0(T − θ)‖2

L2

+
‖B∗1B1‖

2λmin(C1R
−1
1 C∗1)

‖z0‖2
L2([0,T ]) +

λmin(C1R
−1
1 C∗1)

2
‖β′0‖2

L2([0,T ])

− λmin(C1R
−1
1 C∗1)‖β′0‖2

L2([0,T ]) − λmin(Q1(I − E1))‖z0‖2
L2([0,T ])

+
‖D∗1D1‖

2λmin(C1R
−1
1 C∗1)

‖x0‖2
L2[−θ,T−θ] +

λmin(C1R
−1
1 C∗1)

2
‖β′0‖2

L2([0,T ])

+
‖F ∗1Q1Q1F1‖

2K1

‖x0‖2
L2[−θ,T−θ] +

K1

2
‖z0‖2

L2([0,T ]).

We can hence obtain the estimate

K2‖z0(T )‖2
L2 +K1‖z0‖2

L2([0,T ])

≤ ‖F̄ ∗1 Q̄1Q̄1F̄1‖
λmin(Q̄1(I − Ē1))

‖x0(T − θ)‖2
L2

+
[ ‖D∗1D1‖
λmin(C1R

−1
1 C∗1)

+
‖F ∗1Q1Q1F1‖

K1

]
‖x0‖2

L2[−θ,T−θ],

=: K3‖x0(T − θ)‖2
L2 +K4‖x0‖2

L2[−θ,T−θ]
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which concludes that L is bounded.

Denote

K5 =
K3 ∨K4

K1 ∧K2

, (2.4.31)

we easily have ‖L‖2 ≤ K5. Once the boundedness of L is guaranteed, by the

Risez representation theorem, the adjoint L∗ uniquely exists. In particular, for

any f ∈ H(0, n1) and g ∈ H(θ, n0), we have 〈f,L(g)〉H(0,n1) = 〈L∗(f), g〉H(θ,n0).

That is:.

E
[ ∫ T

0
f(t) · L(g)(t)dt+ f(T ) · L(g)(T )

]
= E

[ ∫ T−θ
−θ L

∗(f)(t) · g(t)dt+ L∗(f)(T − θ) · g(T − θ)
]
.

(2.4.32)

The explicit form of L∗ is also given by the next theorem:

Theorem 2.4.4.

L∗(f)(t) = D∗1q(t+ θ) + (P (t+ θ)D1 −Q1F1)∗r(t+ θ), t ∈ [−θ, T − θ),

L∗(f)(T − θ) = −(Q̄1F̄1)∗r(T );

where

−dq(t) =
(

(A1 +B1 − C1R
−1
1 C∗1P (t))∗q(t) + (P (t)B1 −Q1E1)∗r(t) + f(t)

)
dt

−Kq(t)dW0(t− θ),

q(T ) = f(T )− (Q̄1Ē1)∗r(T ).

dr(t) = (A1 − C1R
−1
1 C∗1P (t))r(t)− C1R

−1
1 C∗1q(t),

r(0) = 0.

Proof. Consider the difference of the inner products

d(〈q, z0〉 − 〈r, β0〉)

=
[
q∗(t)D1x0(t− θ)− f ∗(t)z0(t) + r∗(t)(P (t)D1 −Q1F1)x0(t− θ)

]
dt

+z∗0(t)Kq(t)dW0(t− θ)− r∗(t)Kβ0(t)dW0(t− θ).

Taking integration on [0, T ] and expectation on both sides yields

E
[
(f ∗(T )− r∗(T )(Q̄1Ē1))z0(T ) + r∗(T )Q̄1(Ē1z0(T ) + F̄1x0(T − θ))

]
= E

∫ T
0

[
q∗(t)D1x0(t− θ)− f ∗(t)z0(t) + r∗(t)(P (t)D1 −Q1F1)x0(t− θ)

]
dt.
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After rearranging, and by definition z0(t) = L(x0)(t), we have

E
[ ∫ T

0
f(t) · L(x0)(t)dt+ f(T ) · L(x0)(T )

]
= E

[ ∫ T−θ
−θ (D∗1q(t+ θ) + (P (t+ θ)D1 −Q1F1)∗r(t+ θ)) · x0(t)dt

−(Q̄1F̄1)∗r(T ) · x0(T − θ)
]
.

By putting
f(t) = B∗0EF

0
t−θp(t)

−(Q0E0)∗(EF0
t−θx0(t)− E0(L(x0)(t) + zc(t))−G0), t ∈ [0, T );

f(T ) = −(Q̄0Ē0)∗(EF0
T−θx0(T )− Ē0(L(x0)(T ) + zc(T ))− Ḡ0),

in the explicit adjoint operator L∗ given in Theorem 3.2.7, we can represent the

original six equations derived in (2.3.25) and (2.3.26) in the following functional

form:

dx0(t) = (A0x0(t) +B0(L(x0)(t) + zc(t))− C0R
−1
0 C∗0p(t))dt+ σ0dW0(t),

x0(t) = ξ0(t), t ∈ [−θ, 0];

−dp(t) =
(
A∗0p(t) +Q0(x0(t)− E0(L(x0)(t) + zc(t))−G0)

)
dt

−Kp(t)dW0(t), t ∈ (T − θ, T );

−dp(t) =
(
A∗0p(t) +Q0(x0(t)− E0(L(x0)(t) + zc(t))−G0) + L∗(f)(t)

)
dt

−Kp(t)dW0(t), t ∈ (0, T − θ);

p(T ) = Q̄0(x0(T )− Ē0(L(x0)(T ) + zc(T ))− Ḡ0);

p(T − θ) = p((T − θ)−)− L∗(f)(T − θ).
(2.4.33)

The next theorem provides time independent sufficient conditions which guarantee

the unique existence of a solution to the forward backward stochastic functional

differential equation (2.4.33).
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2.4. Sufficient Condition for Unique Existence

Theorem 2.4.5. Define the constants K6 = λmin(Q̄0)∧λmin(Q0), K7 = λmin(C0R
−1
0 C∗0),

and K5 is given in (2.4.31). In addition to the assumptions in Lemma 2.4.1, sup-

pose that the following conditions are satisfied:

2K5

[ ‖B∗0B0‖
2K7(K6 ∧K7)

+
2(‖Ē∗0Q̄0Q̄0Ē0‖ ∨ ‖E∗0Q0Q0E0‖) + ‖Ē∗0Q̄0Ē0‖2 ∨ ‖E∗0Q0E0‖2

K6(K6 ∧K7)

]
< 1;

2K5‖B∗0B0‖
K6(K6 ∧K7)

< 1.

(2.4.34)

Then the Forward Backward Stochastic Functional Differential Equation (2.4.33)

admits a unique solution.

Proof. Consider the Hilbert spaces

H1 = {{f}t∈[−θ,T ] :f is progressively measurable (w.r.t.B([−θ, t])⊗F0
t ) in Rn0 ;

f(t) = ξ0(t), t ∈ [−θ, 0].}

and

H2 = {{f}t∈[0,T ] :f is progressively measurable (w.r.t.B([0, t])⊗F0
t ) in Rn0 .}

with corresponding norms

‖f‖2
H1

= ‖f(T )‖2
L2 + ‖f‖2

L2([0,T ]),

and

‖f‖2
H2

= ‖f‖2
L2([0,T ]).

Let X0 ∈ H1, P ∈ H2. Consider the mapping T : (X0,P) ∈ H1 × H2 7→ (x, p) ∈
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H1 ×H2 defined by

dx0(t) = (A0x0(t) +B0(L(X0)(t) + zc(t))− C0R
−1
0 C∗0p(t))dt+ σ0dW0(t),

x0(t) = ξ0(t), t ∈ [−θ, 0];

−dp(t) =
(
A∗0p(t) +Q0(x0(t)− E0(L(X0)(t) + zc(t))−G0)

)
dt

−Kp(t)dW0(t), t ∈ (T − θ, T );

−dp(t) =
(
A∗0p(t) +Q0(x0(t)− E0(L(X0)(t) + zc(t))−G0) + L∗(F)(t)

)
dt

−Kp(t)dW0(t), t ∈ (0, T − θ);

p(T ) = Q̄0(x0(T )− Ē0(L(X0)(T ) + zc(T ))− Ḡ0);

p(T − θ) = p((T − θ)−)− L∗(F)(T − θ).
(2.4.35)

Here F ∈ H(0, n1) is defined by
F(t) = B∗0EF

0
t−θP(t)

−(Q0E0)∗(EF0
t−θX0(t)− E0(L(X0)(t) + zc(t))−G0), t ∈ [0, T ).

F(T ) = −(Q̄0Ē0)∗(EF0
T−θX0(T )− Ē0(L(X0)(T ) + zc(T ))− Ḡ0).

(2.4.36)

We first argue that the mapping T is well defined. In particular, for any given

X0,P, system (2.4.35) is a classical linear forward backward stochastic differential

equation. The monotonicity condition suggested in Hu and Peng [25], which

guarantees the existence of a unique solution to (2.4.35), can easily be checked.

It remains to show that T is a contraction under the conditions (2.4.34). De-

note (X0,P) and (X′0,P′) the two inputs into T, with corresponding outputs (x0, p)
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and (x′0, p
′). The difference (x̂0, p̂) := (x0 − x′0, p− p′) satisfies:

dx̂0(t) = (A0x̂0(t) +B0L(X̂0)(t)− C0R
−1
0 C∗0 p̂(t))dt,

x̂0(t) = 0, t ∈ [−θ, 0];

−dp̂(t) =
(
A∗0p̂(t) +Q0(x̂0(t)− E0L(X̂0)(t))

)
dt

−Kp̂(t)dW0(t), t ∈ (T − θ, T );

−dp̂(t) =
(
A∗0p̂(t) +Q0(x̂0(t)− E0L(X̂0)(t)) + L∗(F̂)(t)

)
dt

−Kp̂(t)dW0(t), t ∈ (0, T − θ);

p̂(T ) = Q̄0(x̂0(T )− Ē0L(X̂0)(T ));

p̂(T − θ) = p̂((T − θ)−)− L∗(F̂)(T − θ).

X̂0 and P̂ are defined similarly as the difference between the inputs. We also have F̂(t) = B∗0EF
0
t−θ P̂(t)− (Q0E0)∗(EF0

t−θX̂0(t)− E0L(X̂0)(t)), t ∈ [0, T )

F̂(T ) = −(Q̄0Ē0)∗(EF0
T−θX̂0(T )− Ē0L(X̂0)(T )).

Applying Itô’s formula on the inner product 〈x̂0, p̂〉, we have

E[〈x̂0(T ), Q̄x̂0(T )〉]− E[〈x̂0(T ), Q̄0Ē0L(X̂0)(T )〉] + E[〈x̂0(T − θ),L∗(F̂)(T − θ)〉]

=− E[

∫ T

0

〈p̂(t), C0R
−1
0 C∗0 p̂(t)〉dt]− E[

∫ T

0

〈x̂(t), Q0x̂(t)〉dt]

+ E[

∫ T

0

〈B0L(X̂)(t), p̂(t)〉dt] + E[

∫ T

0

〈Q0E0L(X̂)(t), x̂0(t)〉dt]

− E[

∫ T−θ

0

〈L∗(F̂)(t), x̂0(t)〉dt].

After rearranging and some algebra, we have

E[〈x̂0(T ), Q̄x̂0(T )〉] + E[

∫ T

0

〈p̂(t), C0R
−1
0 C∗0 p̂(t)〉dt] + E[

∫ T

0

〈x̂(t), Q0x̂(t)〉dt]

=E[〈x̂0(T ), Q̄0Ē0L(X̂0)(T )〉]

+ E[

∫ T

0

〈B0L(X̂)(t), p̂(t)〉dt] + E[

∫ T

0

〈Q0E0L(X̂)(t), x̂0(t)〉dt]

− E[〈x̂0(T − θ),L∗(F̂)(T − θ)〉]− E[

∫ T−θ

0

〈L∗(F̂)(t), x̂0(t)〉dt].
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Using the fact that x̂0 = 0 on [−θ, 0], together with the property of the adjoint

operator (2.4.32), it becomes

E[〈x̂0(T ), Q̄x̂0(T )〉] + E[

∫ T

0

〈p̂(t), C0R
−1
0 C∗0 p̂(t)〉dt] + E[

∫ T

0

〈x̂(t), Q0x̂(t)〉dt]

=E[〈x̂0(T ), Q̄0Ē0L(X̂0)(T )〉]

+ E[

∫ T

0

〈B0L(X̂)(t), p̂(t)〉dt] + E[

∫ T

0

〈Q0E0L(X̂)(t), x̂0(t)〉dt]

− E[〈L(x̂0)(T ), F̂(T )〉]− E[

∫ T

0

〈L(x̂0)(t), F̂(t)〉dt].

One could get the following estimates by several applications of the Young’s in-

equality

K6(‖x̂0(T )‖2
L2 + ‖x̂0‖2

L2([0,T ])) +K7‖p̂‖L2([0,T ])

≤K6

4
‖x̂0(T )‖2

L2 +
1

K6

‖Ē∗0Q̄0Q̄0Ē0‖‖L(X̂0)(T )‖2
L2

+
K7

2
‖p̂‖2

L2([0,T ]) +
1

2K7

‖B∗0B0‖‖L(X̂0)(T )‖2
L2([0,T ])

+
K6

4
‖x̂0‖2

L2([0,T ]) +
1

K6

‖E∗0Q0Q0E0‖‖L(X̂0)‖2
L2([0,T ])

+
K6

4K5

‖L(x̂0)(T )‖2
L2 +

K5

K6

‖F̂(T )‖2
L2

+
K6

4K5

‖L(x̂0)‖2
L2([0,T ]) +

K5

K6

‖F̂‖2
L2([0,T ]).

Using the operator bound obtained in (2.4.31), further simplification yields

K6

2
(‖x̂0(T )‖2

L2 + ‖x̂0‖2
L2([0,T ])) +

K7

2
‖p̂‖L2([0,T ])

≤ 1

K6

‖Ē∗0Q̄0Q̄0Ē0‖‖L(X̂0)(T )‖2
L2 +

1

2K7

‖B∗0B0‖‖L(X̂0)(T )‖2
L2([0,T ])

+
1

K6

‖E∗0Q0Q0E0‖‖L(X̂0)‖2
L2([0,T ]) +

K5

K6

‖F̂(T )‖2
L2 +

K5

K6

‖F̂‖2
L2([0,T ])

≤K5

[2(‖Ē∗0Q̄0Q̄0Ē0‖ ∨ ‖E∗0Q0Q0E0‖) + ‖Ē∗0Q̄0Ē0‖2 ∨ ‖E∗0Q0E0‖2

K6

+
‖B∗0B0‖

2K7

]
· (‖X̂0(T )‖2

L2 + ‖X̂0‖2
L2([0,T ])) +

K5

K6

‖B∗0B0‖‖P̂‖2
L2([0,T ])
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Thus,

(‖x̂0(T )‖2
L2 + ‖x̂0‖2

L2([0,T ])) + ‖p̂‖L2([0,T ])

≤2K5

[2(‖Ē∗0Q̄0Q̄0Ē0‖ ∨ ‖E∗0Q0Q0E0‖) + ‖Ē∗0Q̄0Ē0‖2 ∨ ‖E∗0Q0E0‖2

K6(K6 ∧K7)
+

‖B∗0B0‖
2K7(K6 ∧K7)

]
· (‖X̂0(T )‖2

L2 + ‖X̂0‖2
L2([0,T ])) +

2K5

K6(K6 ∧K7)
‖B∗0B0‖‖P̂‖2

L2([0,T ]).

We conclude that T is a contraction providing the conditions in Theorem state-

ment hold.

Remark 2.4.6. Providing the mean field component is removed from the dynamics

and cost functional of the leader (B0 = 0 and E0 = Ē0 = 0), the stochastic optimal

control problem for the leader is always solvable as in the classical case. In other

words, the conditions (2.4.34) in Theorem 2.4.5 state that if the mean field effects

are sufficiently small (magnitude of B0, E0 and Ē0) in the control problem for the

leader, then the stochastic functional differential equation (2.4.33) admits a unique

solution. The whole mean field Stackelberg game is hence uniquely solvable.
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2.5 Numerical Examples

We assume that σ0 ≡ 0 in this section, i.e. the control problem for the leader is

deterministic; while we keep the followers’ randomness in their state evolutions.

Consider the following example:

Follower’s Problem
dx1(t) =

[(
0.2x1(t) + 0.2z(t)− 0.4x0(t− θ)

)
+ 0.4v1(t)

]
dt+ 0.1dW (t);

x1(0) = 1.

J1(v1) = E
[ ∫ T

0

[
10|x1(t)− x0(t− θ)|2 + 0.1|v1(t)|2

]
dt+ 10|x1(T )− x0(T − θ)|2

]
Leader’s Problem
dx0(t) =

[(
0.1x0(t)− 0.1z(t)

)
+ 0.2v1(t)

]
dt;

x0(0) = 1.

J0(v0) = E
[ ∫ T

0

[
10|x0(t)− 1.5|2 + 0.1|v1(t)|2

]
dt+ 10|x0(T )− 1.5|2

] (2.5.37)

It is easy to verify that the conditions in Theorem 2.4.5 are satisfied. The

history of x0 before t = 0 is assumed to be sinusoidal. The follower would like

to minimize the squared distance between his own state (x1(t)) and the delayed

leader’s state (x0(t − θ)); while the leader would like to minimize the squared

distance between his own state x0(t) and the desired level 1.5.

As in Theorem 2.4.5 regarding the uniqueness and existence of the solution of

Stackelberg game, for any given X0 and P, we first numerically solve for L(X0)

and L∗(F) by finite difference method, where F is given in (2.4.36).

For T = 1, Figure 2.1 and 2.2 respectively show the simulation results for the

case with θ = 0 (no delay) and θ = 1. The smooth red and blue lines respectively

represent the leader’s state and the mean field term; while we simulate five paths

of followers. As there is no randomness in the leader, trajectory of the mean field

term is in fact the average of individuals’. Starting from time 0, the leader’s state
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Figure 2.1: Trajectories of leader, mean

field term and followers (T = 1, θ = 0).

Figure 2.2: Trajectories of leader, mean

field term and followers (T = 1, θ = 1).

in both graphs move towards the level 1.5 stated in the cost functional (2.5.37).

Nonetheless, follower’s state (and the mean field term) evolutes differently in

different cases. The increase of x0 instantly affects the follower’s evolution in

Figure 2.1 (θ = 0); while the followers are influenced by the delayed sinusoidal

pattern of x0 in Figure 2.2.

Note that the sufficient conditions assuring the unique existence of the Stack-

elberg solution given in Theorem 2.4.5 is independent of T . It is interesting to

investigate numerically solution of the Stackelberg game under a longer time hori-

zon. Figure 2.3 demonstrates the simulated evolutions of the leader and followers

with θ = 1 and T = 5. The leader’s state surges from T = 0, and becomes steady

as it approaches 1.5. While the followers’ trajectories appear to be the leader’s

path shifted by a time length of 1.
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Figure 2.3: Trajectories of leader, mean field term and followers (T = 5, θ = 1).

2.6 Conclusion

Mean field Stackelberg games under a linear quadratic setting with no terminal

cost has been studied previously in our previous work [5]. The sufficient condition

to guarantee the unique existence of a solution in [6] is also time horizon depen-

dent. In this chapter, we consider Mean field Stackelberg game with Lipschitz

coefficients and the presence of terminal costs. We provide the necessary condi-

tions of optimality under sufficiently smooth functional coefficients. We showed

that the resulting system of six forward backward stochastic differential equa-
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tions reduced to those in [5] under the Linear Quadratic setting. Choosing an

appropriate Hilbert space and a linear functional, the system of six equations is

equivalent to a forward backward stochastic functional differential equation. A

set of sufficient conditions, which is independent of the time horizon, is given to

guarantee the unique existence of the Stackelberg solution. This algorithm is then

numerically implemented in the example given in Section 2.5, which demonstrates

impact of different delay magnitudes and time horizon on the state evolutions of

the both leader, followers and the mean field term.
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Chapter 3

Two-party Governance:

Cooperation versus Competition

In this chapter we consider another class of Stackelberg games under a Linear

Quadratic setting - two leaders over a group of followers. Depending on whether

or not the leaders cooperate, we solve for the respective Pareto and Nash game

between the leaders in Theorem 3.2.9 and 3.2.8. For the ease of studying the whole

Stackelberg game numerically, we provide the explicit expression of solutions to

the whole problem: Mean Field Game among the followers and Nash (and Pareto)

Game between the leaders in Section 3.3. Finally, several numerical examples are

given in Section 3.4 to study the impact of different games on the cost functionals

of the followers.

3.1 Problem Setting

Consider a complete probability space (Ω,F ,P). Let T ∈ R+ be the fixed terminal

time, also let dα, dβ and d1 ∈ N+. Assume that Wα,W β and {W i
1}i∈{1,...,N}

are independent Wiener processes over Rdα , Rdβ and Rd1 respectively. Suppose

that the random variables ξα and ξβ, representing the initial states of the two

leaders, are square integrable and are independent of each other and the mentioned
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Wiener processes. Also let the random variables {ξi1}i∈{1,...,N}, representing the

initial states of the followers, be square integrable, identically and independently

distributed and they are also independent of ξα and ξβ; again they are assumed

to be independent of all the mentioned Wiener processes. Define the following

filtrations,

Fα := σ(ξα,W
α(s) : s ≤ t), t > 0;

Fβ := σ(ξβ,W
β(s) : s ≤ t), t > 0;

F i := σ(ξi1,W
i
1(s) : s ≤ t), t > 0.

We now introduce the dynamical system of two leaders over N small players. The

empirical states for the leaders are described by the following stochastic differential

equations on Rnα and Rnβ respectively: dyα =
(
Aαyα(t) +Bαyβ(t) + Cα

∑N
j=1, y

j
1(t)

N
+Dαvα(t)

)
dt+ σαdW

α(t);

yα(0) = ξα,

(3.1.1) dyβ =
(
Aβyα(t) +Bβyβ(t) + Cβ

∑N
j=1, y

j
1(t)

N
+Dβvβ(t)

)
dt+ σβdW

β(t);

yβ(0) = ξβ.

(3.1.2)

The followers are homogeneous, and the empirical state for the i-th player is given

by the SDE on Rn1 :
dyi1 =

(
A1y

i
1(t) +B1

∑N
j=1,j 6=i y

j
1(t)

N − 1
+ C1yα(t) +D1yβ(t) + E1v

i
1(t)
)
dt+ σ1dW

i
1(t);

yi1(0) = ξi1.

(3.1.3)

Here vα, vβ and vi1 represent the controls for two leaders and the i-th follower corre-

spondingly. The matricesAα, Bα, Cα, Dα, σα, Aβ, Bβ, Cβ, Dβ, σβ, A1, B1, C1, D1, E1

and σ1 are assumed to be constant with appropriate dimensions. It is natural to
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assume that vα, vβ ∈ Fα ∨ Fβ and vi1 ∈ Fα ∨ Fβ ∨ F i. The two leaders and the

i-th player aim to minimize the following cost functionals respectively:

Jα(vα; vβ) = E
∫ T

0

∣∣∣∣yα(t)− Fα

∑N
j=1 y

j
1(t)

N
−Gαyβ(t)−Mα

∣∣∣∣2
Qα

+ |vα(t)|2Rαdt;

Jβ(vα, vβ) = E
∫ T

0

∣∣∣∣yβ(t)− Fβ

∑N
j=1 y

j
1(t)

N
−Gβyα(t)−Mβ

∣∣∣∣2
Qβ

+ |vβ(t)|2Rβdt;

J i
1(vi1) = E

∫ T

0

∣∣∣∣yi1(t)− F1

∑N
j=1,j 6=i y

j
1(t)

N − 1
−G1yα(t)−H1yβ(t)−M1

∣∣∣∣2
Q1

+ |vi1(t)|R1dt.

(3.1.4)

where vi1 = (v1
1, . . . , v

N
1 ), |·|Q := 〈·,Q·〉 for any positive definite matrixQ and 〈·, ?〉

is the usual Euclidean inner product. The matrices Fα, Gα,MαQα, Rα, Fβ, Gβ,Mβ,

Qβ, Rβ, F1, G1, H1, Q1 and R1 are assumed to be constant with appropriate dimen-

sions; while Qα, Rα, Qβ, Rβ, Q1 and R1 are positive definite.

Solving this stochastic differential games (either in the sense of a Nash game or

a Pareto game to be described in Definition 3.1.2 and 3.1.3) is rather complicated

as N becomes very large. On the other hand, we can transform the original

problem under the context of mean field game. Consider the limiting mean field

evolutions for the two leaders and the i-th player respectively(to be justified in

Theorem 3.1.1):dxα =
(
Aαxα(t) +Bαxβ(t) + Cαz(t) +Dαvα(t)

)
dt+ σαdW

α(t);

xα(0) = ξα,

(3.1.5)

dxβ =
(
Aβxα(t) +Bβxβ(t) + Cβz(t) +Dβvβ(t)

)
dt+ σβdW

β(t);

xβ(0) = ξβ,

(3.1.6)

dx
i
1 =

(
A1x

i
1(t) +B1z(t) + C1xα(t) +D1xβ(t) + E1v

i
1(t)
)
dt+ σ1dW

i
1(t);

xi1(0) = ξi1.

(3.1.7)
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Their cost functionals are respectively given by

Jα(vα, vβ) = E
∫ T

0

|xα(t)− Fαz(t)−Gαxβ(t)−Mα|2Qα + |vα(t)|2Rαdt;

Jβ(vα, vβ) = E
∫ T

0

|xβ(t)− Fβz(t)−Gβxα(t)−Mβ|2Qβ + |vβ(t)|2Rβdt;
(3.1.8)

J i1(vi1;xα, xβ, z) = E
∫ T

0

|xi1(t)− F1z(t)−G1xα(t)−H1xβ(t)−M1|2Q1
+ |vi1(t)|2R1

dt.

(3.1.9)

Here z is called the mean field term which is a stochastic process adapted to

Fα ∨ Fβ to be introduced later in Theorem 3.1.1. Given z, xα and xβ, the i-th

follower aims at solving the optimal control problem defined by (3.1.7) and (3.1.9),

that is

ui1 = arg min
vi1

J i1(vi1;xα, xβ, z). (3.1.10)

Motivated by the results in [5] and [10], we can easily obtain the following result,

and the proof is omitted here.

Theorem 3.1.1. Given z, xα and xβ, suppose that the ith player adopts the

optimal control ui1, and we denote xi1(z, xα, xβ) = xi1 and yi1 the corresponding

trajectory of (3.1.7) and (3.1.3) under ui1. If z is chosen such that the fixed point

z(t) = EFαt ∨F
β
t x1

1(t) holds, then

E
[

sup
t
|yα−xα|2(t)+sup

t
|yβ−xβ|2(t)+sup

i
sup
t
|yi1−xi1|2(t)

]
= O

(
1

N

)
. (3.1.11)

Moreover, (u1
1, u

2
1, . . . , u

N
1 ) served as an ε-Nash equilibrium (of order O

(
1√
N

)
)

among the followers for the original empirical problem. That is for arbitrary vi1,

we have

J1(u1
1, . . . , u

i−1
1 , ui1, u

i+1
1 , . . . , uN1 ) ≤ J1(u1

1, . . . , u
i−1
1 , vi1, u

i+1
1 , . . . , uN1 ) +O

(
1√
N

)
.

(3.1.12)

The above theorem allows us to consider the much simpler mean field dynam-

ical system. Note that, given z, xα and xβ, {xi1}ni=1 described by (3.1.7) are i.i.d..
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We therefore drop the index i in (3.1.7), (3.1.9) and call x1 the (representative)

follower throughout this chapter.

Depending on whether or not the two leaders cooperate, we consider two kinds

of stochastic differential games. In particular, we make the following definitions:

Definition 3.1.2 (Nash Game). The optimal control uNα and uNβ for the non-

cooperative Nash game between the two leaders are define as follows:

uNα := arg min
vα

Jα(vα, u
N
β ); (3.1.13)

uNβ := arg min
vβ

Jβ(uNα , vβ).

Definition 3.1.3 (Pareto Game). The optimal control uPα and uPβ for the cooper-

ative Pareto game between the two leaders are define as follows:

(uPα , u
P
β ) = arg min

vα,vβ

(
Jα(vα, vβ) + Jβ(vα, vβ)

)
. (3.1.14)

The notion of ε-Nash equilibrium among the group of followers introduced

in Theorem 3.1.1 should not be confused with the Nash (or Pareto) game in

Definition 3.1.2 (or 3.1.3) between the two leaders. We solve the whole leader-

follower problem by introducing three sub-problems in order:

Problem 3.1.4. Given xα, xβ and z, find a control u1 such that

J1(u1;xα, xβ, z) = min
v1

J1(v1;xα, xβ, z).

Problem 3.1.5. Find the process z such that the fixed point property is satisfied:

z(t) = EFαt ∨F
β
t x1(t) (3.1.15)

where x1 is the optimal trajectory given by the solution of Problem 3.1.4, which

clearly also depends on z.

Problem 3.1.6. Find the optimal control for the Nash and Pareto Games defined

in Definition 3.1.2 and 3.1.3 respectively, where z is the solution in Problem 3.1.5.
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3.2. Solution

3.2 Solution

3.2.1 Optimal Control for the Follower

Similar to our previous work [5] and [6], we can state the optimal control of the

follower:

Theorem 3.2.1. Given xα, xβ and z, Problem 3.1.4 is uniquely solvable and the

optimal control is given by u1(t) = −R−1
1 E1n(t), where n(t) satisfies the following

backward stochastic differential equation:
−dn =

(
A∗1n(t) +Q1

(
x1(t)− F1z(t)−G1xα(t)−H1xβ(t)−M1

))
dt− Zn,αdWα(t)

− Zn,βdW β(t)− Zn,1dW 1(t),

n(T ) = 0.

(3.2.16)

Substituting the optimal control of the follower given in Theorem 3.2.1 into

equation (3.1.7), the solution of Problem 3.1.4 is completely characterized by the

following forward backward stochastic differential equation:

dx1 =
(
A1x1(t) +B1z(t) + C1xα(t) +D1xβ(t)− E1R

−1
1 E∗1n(t)

)
dt+ σ1dW1(t),

x1(0) = ξ1;

−dn =
(
A∗1n(t) +Q1

(
x1(t)− F1z(t)−G1xα(t)−H1xβ(t)−M1

))
dt− Zn,αdWα(t)

− Zn,βdW β(t)− Zn,1dW 1(t),

n(T ) = 0.

(3.2.17)

Theorem 3.2.2. The FBSDEs (3.2.17) admits a unique solution.

Proof. Given z, xα and xβ, the system (3.2.17) satisfies certain monotonicity con-

dition proposed in Hu and Peng [25]. The unique existence of a L2-solution is

hence ensured. One can refer to Lemma 2.4.1 for details.
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3.2. Solution

To obtain the mean field equilibrium stated in Problem 3.1.5, we take condi-

tional expectation on Fαt ∨ F
β
t on both sides of (3.2.17), which yields

dz =
(

(A1 +B1)z(t) + C1xα(t) +D1xβ(t)− E1R
−1
1 E∗1m(t)

)
dt,

z(0) = E[ξ1];

−dm =
(
A∗1m(t) +Q1(I − F1)z(t)−Q1G1xα(t)−Q1H1xβ(t)−Q1M1

)
dt

− Zm,αdWα(t)− Zm,βdW β(t),

m(T ) = 0.

(3.2.18)

Define the constant

K1 := λmin(Q1(I − F1))− ‖B∗1B1‖
2λmin(E1R

−1
1 E1)

(3.2.19)

Theorem 3.2.3. Under the condition that K1 > 0, the system (3.2.18) has a

unique solution.

Proof. See the proof of Theorem 2.4.1 in Chapter 2 for details.

Remark 3.2.4. The condition in Theorem 3.2.3 is satisfied when the coefficients

of the mean filed term, B1 and F1, have small magnitudes. In particular, if

B1 = 0 = F1, then (3.2.18) always admit a unique solution, which agrees with

the classical Linear Quadratic control problem.

3.2.2 Optimal Control for the Leader

From now on, we assume the condition in Theorem 3.2.3 holds. Before we proceed

to the optimal control problem for the two leaders, we first introduce two linear

operators:

Lα : xα ∈ L2([0, T ];Rnα) 7→ zα ∈ L2([0, T ];Rn1) (3.2.20)
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3.2. Solution

given by

dzα =
(

(A1 +B1)zα(t) + C1xα(t)− E1R
−1
1 E∗1mα(t)

)
dt,

zα(0) = 0;

−dmα =
(
A∗1mα(t) +Q1(I − F1)zα(t)−Q1G1xα(t)

)
dt− Zmα,αdWα(t),

mα(T ) = 0;

(3.2.21)

and

Lβ : xβ ∈ L2([0, T ];Rnβ) 7→ zβ ∈ L2([0, T ];Rn1) (3.2.22)

given by

dzβ =
(

(A1 +B1)zβ(t) +D1xβ(t)− E1R
−1
1 E∗1mβ(t)

)
dt,

zβ(0) = 0;

−dmβ =
(
A∗1mβ(t) +Q1(I − F1)zβ(t)−Q1H1xβ(t)

)
dt− Zmβ ,βdW β(t),

mβ(T ) = 0.

(3.2.23)

Lemma 3.2.5. Given that the condition in Theorem 3.2.3 holds, then Lα and Lβ
are bounded. In particular

‖Lα‖2 ≤ 1

K1

( ‖C∗1C1‖
λmin(E1R

−1
1 E∗1)

+
‖G∗1Q1Q1G1‖

λmin(Q1(I − F1))

)
‖Lβ‖2 ≤ 1

K1

( ‖D∗1D1‖
λmin(E1R

−1
1 E∗1)

+
‖H∗1Q1Q1H1‖

λmin(Q1(I − F1))

) (3.2.24)

Proof. We consider Lα and the bound estimate for Lβ can be obtained similarly.

Applying Itô;s formula to the inner product 〈zα,mα〉, then taking integration on
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3.2. Solution

[0, T ] and also taking expectation, we can get

0 =E
∫ T

0

〈B1zα(t),mα(t)〉dt+ E
∫ T

0

〈C1xα(t),mα(t)〉dt+ E
∫ T

0

〈Q1G1xα(t), zα(t)〉dt

− E
∫ T

0

〈E1R
−1
1 E∗1mα(t),mα(t)〉dt− E

∫ T

0

〈Q1(I − F1)zα(t), zα(t)〉dt

≤ ‖B∗1B1|
2λmin(E1R

−1
1 E∗1)

‖zα‖2 +
1

2
λmin(E1R

−1
1 E∗1)‖mα‖2

+
‖C∗1C1‖

2λmin(E1R
−1
1 E∗1)

‖xα‖2 +
1

2
λmin(E1R

−1
1 E∗1)‖mα‖2

+
‖G∗1Q1Q1G1‖

2λmin(Q1(I − F1))
‖xα‖2 +

1

2
λmin(Q1(I − F1))‖zα‖2

− λmin(E1R
−1
1 E∗1)‖mα‖2 − λmin(Q1(I − F1))‖zα‖2,

Under the condition that K1 > 0, we have

‖zα‖2 ≤ 1

K1

( ‖C∗1C1‖
λmin(E1R

−1
1 E∗1)

+
‖G∗1Q1Q1G1‖

λmin(Q1(I − F1))

)
‖xα‖2,

which show that Lα is bounded.

Remark 3.2.6. We observe that the norms of the operators are small providing

that the mean field effects (B1 and F1) and leaders effects (C1 and D1)on the

followers are small.

By Riesz Representation Theorem, the adjoint operators of Lα and Lβ uniquely

exist such that for all f ∈ L2([0, T ];Rnα), g ∈ L2([0, T ];Rn1), h ∈ L2([0, T ];Rnβ),

we have

E
∫ T

0

〈Lα(f)(t), g(t)〉dt = E
∫ T

0

〈f(t),L∗α(g)(t)〉dt;

E
∫ T

0

〈Lβ(h)(t), g(t)〉dt = E
∫ T

0

〈h(t),L∗β(g)(t)〉dt.

The explicit form of the adjoint operators are given by the following theorem.

Theorem 3.2.7. The adjoints L∗α : L2([0, T ];Rn1) → L2([0, T ];Rnα) and L∗β :

L2([0, T ];Rn1) → L2([0, T ];Rnβ) of Lα and Lβ respectively, defined by (3.2.20)
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3.2. Solution

and (3.2.22), are given by

L∗α(g1)(t) := C∗1rα(t)− (Q1G1)∗sα(t); (3.2.25)

L∗β(g2)(t) := D∗1rβ(t)− (Q1H1)∗sβ(t); (3.2.26)

for any g1, g2 ∈ L2([0, T ];Rn1), where

−drα = (A1 +B1)∗rα(t) + (Q1(I − F1))∗sα(t) + g1(t)− Zrα,αdWα(t)− Zrα,βdW β(t),

rα(T ) = 0;

dsα = A1sβ(t)− E1R
−1
1 E∗1rβ(t),

sα(0) = 0;

−drβ = (A1 +B1)∗rβ(t) + (Q1(I − F1))∗sβ(t) + g2(t)− Zrβ ,αdWα(t)− Zrβ ,βdW β(t),

rβ(T ) = 0;

dsβ = A1sβ(t)− E1R
−1
1 E∗1rβ(t),

sβ(0) = 0.

Proof. Clearly, L∗α and L∗β as defined above in (3.2.25) and (3.2.26) respectively

are linear. Applying Itô’s formula to 〈rα, zα〉 − 〈sα,mα〉, we can get that

E
∫ T

0

〈zα(t), g(t)〉dt = E
∫ T

0

〈rα(t), c1xα(t)〉dt− E
∫ T

0

〈sα(t), Q1G1xα(t)〉dt

= E
∫ T

0

〈L∗α(g)(t), xα(t)〉dt,

since g is arbitrary, the claim for L∗α follows. Similarly, if we consider 〈rβ, zβ〉 −

〈sβ,mβ〉, the result for L∗β also follows.

Similar to Chapter 2.4 and [5], we can decompose the forward equation in

(3.2.18) into sum of three parts given by

z(t) = zα(t) + zβ(t) + zc(t) = Lα(xα)(t) + Lβ(xβ)(t) + zc(t), (3.2.27)
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3.2. Solution

where zc is satisfies the deterministic system:

dzc =
(

(A1 +B1)zc(t)− E1R
−1
1 E∗1mc(t)

)
dt,

z(0) = E[ξ1];

−dmc =
(
A∗1mc(t) +Q1(I − F1)zc(t)−Q1M1

)
dt,

m(T ) = 0.

(3.2.28)

We can express the evolutions and objective functionals for the leaders in the

following functional form
dxα =

(
Aαxα(t) +Bαxβ(t) + Cα

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
+Dαuα(t)

)
dt

+ σαdW
α(t),

xα(0) = ξα;

(3.2.29)
dxβ =

(
Aβxα(t) +Bβxβ(t) + Cβ

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
+Dβuβ(t)

)
dt

+ σβdW
β(t),

xβ(0) = ξβ;

(3.2.30)

and

Jα(uα, uβ) = E
∫ T

0

∣∣∣xα(t)− Fα
(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gαxβ(t)−Mα

∣∣∣2
Qα

+ |uα(t)|2Rαdt;

Jβ(uα, uβ) = E
∫ T

0

∣∣∣xβ(t)− Fβ
(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gβxα(t)−Mβ

∣∣∣2
Qβ

+ |uβ(t)|2Rβdt.

3.2.3 Nash Game

In this section we solve the Nash game introduced in Definition 3.1.2 via the

operator approach.
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Theorem 3.2.8. The solution of the Nash Game is

uNα (t) = −R−1
α D∗αp

N
α (t),

uNβ (t) = −R−1
β D∗βp

N
β (t);

where pNα and pNβ are given by the backward stochastic functional differential equa-

tions:



−dpNα =
(
A∗αp

N
α (t) + L∗α(C∗αp

N
α )(t)

+Qα

(
xα(t)− Fα

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gαxβ(t)−Mα

)
− L∗α

[
(QαFα)∗

(
xα − Fα

(
Lα(xα) + Lβ(xβ) + zc

)
−Gαxβ −Mα

)]
(t)
)
dt

− ZpNα ,αdW
α(t)− ZpNα ,βdW

β(t),

pNα (T ) = 0;

(3.2.31)

and

−dpNβ =
(
B∗βp

N
β (t) + L∗β(C∗βp

N
β )(t)

− L∗β
[
(QβFβ)∗

(
xβ − Fβ

(
Lα(xα) + Lβ(xβ) + zc

)
−Gβxα −Mβ

)]
(t)

+Qβ

(
xβ(t)− Fβ

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gβxα(t)−Mβ

))
dt

− ZpNβ ,αdW
α(t)− ZpNβ ,βdW

β(t),

pNβ (T ) = 0.

(3.2.32)

Proof. We first consider the optimal control problem for the α-leader. Under the

Nash Game setting, the α-leader assumes that the β-leader uses an optimal strat-

egy and hence xβ is considered unchanged and exogenous. Due to the convexity

and coerciveness of the quadratic cost functional, we can directly apply standard

stochastic maximum principle. Consider a perturbation of the optimal control

uNα (t) + τ ũα(t), where ũα is arbitrarily chosen adapted to Fα ∨Fβ. The state for
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the α-leader becomes xα + τ x̃α, where
dx̃α =

(
Aαx̃α(t) + CxαLα(x̃α)(t)

)
dt,

x̃α(0) = 0.

The optimality of uNα yields the Euler condition:

0 =
d

dτ

∣∣∣∣
τ=0

Jα(uNα (t) + τ ũα(t), uβ(t))

= 2E
∫ T

0

{〈
x̃α(t)− FαLα(x̃α)(t)

, Qα

(
xα(t)− Fα

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gαxβ(t)−Mα

)〉
+ 〈ũα(t), Rαu

N
α (t)〉

}
dt.

(3.2.33)

On the other hand, applying Itô’s formula to the inner product 〈pNα , x̃α〉 and

combining with (3.2.33), following similar arguments found in Chapter 2 and [5],

we get

0 = E
∫ T

0

〈ũα(t), Rαu
N
α (t) +D∗αp

N
α (t)〉dt.

Since ũα(t) is arbitrary, we obtain the optimal control uNα = −R−1
α D∗αp

N
α (t). The

optimal control uNβ can be obtained similarly.

The full solution of the Nash game in operator form is given by the following
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system of forward backward stochastic functional differential equations:

dxNα =
(
Aαx

N
α (t) +Bαx

N
β (t) + Cα

(
Lα(xNα )(t) + Lβ(xNβ )(t) + zc(t)

)
−DαR

−1
α D∗αp

N
α (t)

)
dt+ σαdW

α(t),

xNα (0) = ξα;

dxNβ =
(
Aβx

N
α (t) +Bβx

N
β (t) + Cβ

(
Lα(xNα )(t) + Lβ(xNβ )(t) + zc(t)

)
−DβR

−1
β D∗βp

N
β (t)

)
dt+ σβdW

β(t),

xNβ (0) = ξβ;

−dpNα =
(
A∗αp

N
α (t) + L∗α(C∗αp

N
α )(t)

+Qα

(
xNα (t)− Fα

(
Lα(xNα )(t) + Lβ(xNβ )(t) + zc(t)

)
−Gαx

N
β (t)−Mα

)
− L∗α

[
(QαFα)∗

(
xNα − Fα

(
Lα(xNα ) + Lβ(xNβ ) + zc

)
−Gαx

N
β −Mα

)]
(t)
)
dt

− ZpNα ,αdW
α(t)− ZpNα ,βdW

β(t),

pNα (T ) = 0;

−dpNβ =
(
B∗βp

N
β (t) + L∗β(C∗βp

N
β )(t)

− L∗β
[
(QβFβ)∗

(
xNβ − Fβ

(
Lα(xNα ) + Lβ(xNβ ) + zc

)
−Gβx

N
α −Mβ

)]
(t)

+Qβ

(
xNβ (t)− Fβ

(
Lα(xNα )(t) + Lβ(xNβ )(t) + zc(t)

)
−Gβx

N
α (t)−Mβ

))
dt

− ZpNβ ,αdW
α(t)− ZpNβ ,βdW

β(t),

pNβ (T ) = 0.

(3.2.34)
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3.2.4 Pareto Game

In this section we solve the Pareto game introduced in Definition 3.1.3 via the

operator approach.

Theorem 3.2.9. The solution of the Pareto Game is

(uPα (t), uPβ (t)) = (−R−1
α D∗αp

P
α (t),−R−1

β D∗βp
P
β (t)),

where pPα and pPβ are given by the backward stochastic functional differential equa-

tions:

−dpPα =

(
A∗αp

P
α (t) + A∗βp

P
β (t) + L∗α(C∗αp

P
α )(t) + L∗α(C∗βp

P
β )(t)

+Qα

(
xα(t)− Fα

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gαxβ(t)−Mα

)
− L∗α

[
(QαFα)∗

(
xα − Fα

(
Lα(xα) + Lβ(xβ) + zc(t)

)
−Gαxβ −Mα

)]
(t)

− (QβGβ)∗
(
xβ(t)− Fβ

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gβxα(t)−Mβ

)
− L∗α

[
(QβFβ)∗

(
xβ − Fβ

(
Lα(xα) + Lβ(xβ) + zc

)
−Gβxα −Mβ

)]
(t)

)
dt

− ZpPα ,αdW
α(t)− ZpPα ,βdW

β(t),

pPα (T ) = 0;

and

−dpPβ =

(
B∗βp

P
β (t) +B∗αp

P
α (t) + L∗β(C∗αp

P
α )(t) + L∗β(C∗βp

P
β )(t)

+Qβ

(
xβ(t)− Fβ

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gβxα(t)−Mβ

)
− L∗β

[
(QβFβ)∗

(
xβ − Fβ

(
Lα(xα) + Lβ(xβ) + zc(t)

)
−Gβxα −Mβ

)]
(t)

− (QαGα)∗
(
xα(t)− Fα

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gαxβ(t)−Mα

)
− L∗β

[
(QαFα)∗

(
xα − Fα

(
Lα(xα) + Lβ(xβ) + zc

)
−Gαxβ −Mα

)]
(t)

)
dt

− ZpPβ ,αdW
α(t)− ZpPβ ,βdW

β(t),

pPβ (T ) = 0.

65



3.2. Solution

Proof. Similar to the proof of Theorem 3.2.8, we apply the standard stochastic

maximum principle. Note that under this Pareto game setting, controls of the

leaders would both be perturbed simultaneously. In particular, consider the per-

turbation of the optimal controls (uPα (t), uPβ (t)) + τ(ũα(t), ũβ(t)), where ũα and ũβ

are arbitrarily square integrable processes adapted to Fα ∨Fβ. The states of two

leaders become xα + τ x̃α and xβ + τ x̃β respectively, where

dx̃α =
(
Aαx̃α(t) +Bαx̃β(t) + Cα

(
Lα(x̃α)(t)Lβ(x̃β)(t)

)
+Dαũα(t)

)
dt, x̃α(0) = 0;

dx̃β =
(
Aβx̃α(t) +Bβx̃β(t) + Cβ

(
Lα(x̃α)(t)Lβ(x̃β)(t)

)
+Dβũβ(t)

)
dt, x̃β(0) = 0.

We consider the first order condition

0 =
d

dτ

∣∣∣∣
τ=0

(
Jα(uPα (t) + τ ũα(t), uPβ (t) + τ ũβ(t)) + Jβ(uPα (t) + τ ũα(t), uPβ (t) + τ ũβ(t))

)
= 2E

∫ T

0

{〈
x̃α(t)− Fα

(
Lα(x̃α)(t) + Lβ(x̃β)(t)

)
, Qα

(
xα(t)− Fα

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gαxβ(t)−Mα

)〉
+ 〈ũα(t), Rαu

P
α (t)〉

+
〈
x̃α(t)− Fβ

(
Lα(x̃α)(t) + Lβ(x̃β)(t)

)
, Qβ

(
xβ(t)− Fβ

(
Lα(xα)(t) + Lβ(xβ)(t) + zc(t)

)
−Gβxα(t)−Mβ

)〉
+ 〈ũβ(t), Rβu

P
β (t)〉

}
dt.

(3.2.35)

On the other hand, applying Itô’s formula to the inner products 〈pPα , x̃α〉, 〈pPβ , x̃β〉

and combining with the first order condition (3.2.35), following similar arguments

found in Chapter 2 and [5], we get

0 = E
∫ T

0

〈ũα(t), Rαu
P
α (t) +D∗αp

P
α (t)〉+ 〈ũβ(t), Rβu

P
β (t) +D∗βp

P
β (t)〉dt.

Since ũα(t), ũβ(t) are arbitrary, we obtain the optimal control

(uPα (t), uPβ (t)) = (−R−1
α D∗αp

P
α (t),−R−1

β D∗βp
P
β (t)),
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The full solution of the Pareto game in operator form is given by the following

forward backward stochastic functional differential equations:

dxPα =
(
Aαx

P
α (t) +Bαx

P
β (t) + Cα

(
Lα(xPα )(t) + Lβ(xPβ )(t) + zc(t)

)
−DαR

−1
α D∗αp

P
α (t)

)
dt+ σαdW

α(t),

xPα (0) = ξα;

dxPβ =
(
Aβx

P
α (t) +Bβx

P
β (t) + Cβ

(
Lα(xPα )(t) + Lβ(xPβ )(t) + zc(t)

)
−DβR

−1
β D∗βp

P
β (t)

)
dt+ σβdW

β(t),

xPβ (0) = ξβ;

−dpPα =

(
A∗αp

P
α (t) + A∗βp

P
β (t) + L∗α(C∗αp

P
α )(t) + L∗α(C∗βp

P
β )(t)

+Qα

(
xPα (t)− Fα

(
Lα(xPα )(t) + Lβ(xPβ )(t) + zc(t)

)
−Gαx

P
β (t)−Mα

)
− L∗α

[
(QαFα)∗

(
xPα − Fα

(
Lα(xPα ) + Lβ(xPβ ) + zc(t)

)
−Gαx

P
β −Mα

)]
(t)

− (QβGβ)∗
(
xPβ (t)− Fβ

(
Lα(xPα )(t) + Lβ(xPβ )(t) + zc(t)

)
−Gβx

P
α (t)−Mβ

)
− L∗α

[
(QβFβ)∗

(
xPβ − Fβ

(
Lα(xPα ) + Lβ(xPβ ) + zc

)
−Gβx

P
α −Mβ

)]
(t)

)
dt

− ZpPα ,αdW
α(t)− ZpPα ,βdW

β(t),

pPα (T ) = 0;

−dpPβ =

(
B∗βp

P
β (t) +B∗αp

P
α (t) + L∗β(C∗αp

P
α )(t) + L∗β(C∗βp

P
β )(t)

+Qβ

(
xPβ (t)− Fβ

(
Lα(xPα )(t) + Lβ(xPβ )(t) + zc(t)

)
−Gβx

P
α (t)−Mβ

)
− L∗β

[
(QβFβ)∗

(
xPβ − Fβ

(
Lα(xPα ) + Lβ(xPβ ) + zc(t)

)
−Gβx

P
α −Mβ

)]
(t)

− (QαGα)∗
(
xPα (t)− Fα

(
Lα(xPα )(t) + Lβ(xPβ )(t) + zc(t)

)
−Gαx

P
β (t)−Mα

)
− L∗β

[
(QαFα)∗

(
xPα − Fα

(
Lα(xPα ) + Lβ(xPβ ) + zc

)
−Gαx

P
β −Mα

)]
(t)

)
dt

− ZpPβ ,αdW
α(t)− ZpPβ ,βdW

β(t),

pPβ (T ) = 0.

(3.2.36)
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3.3 Explicit Solutions

3.3.1 Explicit solution for the Nash Game

In lights of the explicit form of L∗α and L∗β derived in Theorem 3.2.7, we can get

a full solution of the Nash Game for both the leader and follower by substituting

g1 = C∗αp
N
α − (QαFα)∗

(
xNα − Fαz −Gαx

N
β −Mα

)
and

g2 = C∗βp
N
β − (QβFβ)∗

(
xNβ − Fβz −Gβx

N
α −Mβ

)
into (3.2.25) and (3.2.26) respectively:

dx1 =
(
A1x1(t) +B1z(t) + C1x

N
α (t) +D1x

N
β (t)− E1R

−1
1 E∗1n(t)

)
dt+ σ1dW1(t),

xN1 (0) = ξ1;

dxNα =
(
Aαx

N
α (t) +Bαx

N
β (t) + Cαz(t)−DαR

−1
α D∗αp

N
α (t)

)
dt+ σαdW

α(t),

xNα (0) = ξα;

dxNβ =
(
Aβx

N
α (t) +Bβx

N
β (t) + Cβz(t)−DβR

−1
β D∗βp

N
β (t)

)
dt+ σβdW

β(t),

xNβ (0) = ξβ;

dz =
(

(A1 +B1)z(t) + C1x
N
α (t) +D1x

N
β (t)− E1R

−1
1 E∗1m(t)

)
dt,

m(0) = E[ξ1];

dsα =
(
A∗1sα(t)− E1R

−1
1 E∗1rα(t)

)
dt,

sα(0) = 0;

dsβ =
(
A∗1sβ(t)− E1R

−1
1 E∗1rβ(t)

)
dt,

sβ(0) = 0.

(3.3.37)

68



3.3. Explicit Solutions



−dn =
(
A∗1n(t) +Q1(x1(t)− F1z(t)−G1x

N
α (t)−H1x

N
β (t)−M1)

)
dt

− Zn,αdWα(t)− Zn,βdW β(t)− Zn,1dW 1(t)

n(T ) = 0;

−dpNα =
(
A∗αp

N
α (t) + C∗1rα(t)− (Q1G1)∗sα(t) +Qα(xNα (t)− Fαz(t)−Gαx

N
β (t)−Mα)

)
dt

− ZpNα ,αdW
α(t)− ZpNα ,βdW

β(t),

pNα (T ) = 0;

−dpNβ =
(
B∗βp

N
β (t) +D∗1rβ(t)− (Q1H1)∗sβ(t) +Qβ(xNβ (t)− Fβz(t)−Gβx

N
α (t)−Mβ)

)
dt

− ZpNβ ,αdW
α(t)− ZpNβ ,βdW

β(t),

pNβ (T ) = 0;

−dm =
(
A∗1m(t) +Q1(I − F1)z(t)−Q1G1x

N
α (t)−Q1H1x

N
β (t)−Q1M1

)
dt

− Zm,αdWα(t)− Zm,βdW β(t)

m(T ) = 0;

−drα =
(

(A1 +B1)∗rα(t) + Cαp
N
α (t) + (Q1(I − F1))∗sα(t)

− (QαFα)∗(xNα (t)− Fαz(t)−Gαx
N
β (t)−Mα)

)
− Zrα,αdWα(t)− Zrα,βdW β(t),

rα(T ) = 0;

−drβ =
(

(A1 +B1)∗rβ(t) + Cβp
N
β (t) + (Q1(I − F1))∗sβ(t)

− (QβFβ)∗(xNβ (t)− Fβz(t)−Gβx
N
α (t)−Mβ)

)
− Zrβ ,αdWα(t)− Zrβ ,βdW β(t),

rβ(T ) = 0.

(3.3.38)
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We can express this linear system in matrix form:

dxN =
(
ANxN (t)−BNpN (t)

)
dt+ ΣNdW(t),

xN (0) = Ξ;

−dpN =
(
CNpN (t) + DNxN (t) + MN

)
dt− ZN (t)dW(t),

pN (T ) = 0,

(3.3.39)

where

xN :=


x1
xNα
xNβ
z
sα
sβ

 , pN :=

 n
pNα
pNβ
m
rα
rβ

 , Ξ :=

 ξ1
ξα
ξβ

E[ξ1]
0

 ,

and

AN :=


A1 C1 D1 B1 0 0
0 Aα Bα Cα 0 0
0 Aβ Bβ Cβ 0 0
0 C1 D1 A1+B1 0 0
0 0 0 0 A1 0
0 0 0 0 0 A1

 ,

BN :=


E1R

−1
1 E∗1 0 0 0 0 0

0 DαR
−1
α D∗α 0 0 0 0

0 0 DβR
−1
β D∗β 0 0 0

0 0 0 E1R
−1
1 E∗1 0 0

0 0 0 0 E1R
−1
1 E∗1 0

0 0 0 0 0 E1R
−1
1 E∗1

 ,

ΣN :=

 σ1 0 0
0 σα 0
0 0 σβ
0 0 0
0 0 0
0 0 0

 , dW(t) :=

(
dW1(t)
dWα(t)

dWβ(t)

)
,

CN :=


A∗1 0 0 0 0 0
0 A∗α 0 0 C∗1 0
0 0 B∗β 0 0 D∗1
0 0 0 A∗1 0 0

0 Cα 0 0 (A1+B1)∗ 0
0 0 Cβ 0 0 (A1+B1)∗

 ,

DN :=


Q1 −Q1G1 −Q1H1 −Q1F1 0 0
0 Qα −QαGα −QαFα −(Q1G1)∗ 0
0 −QβGβ Qβ −QβFβ 0 −(Q1H1)∗

0 −(Q1G1) −(Q1H1) Q1(I−F1) 0 0
0 −(QαFα)∗ (QαFα)∗Gα (QαFα)∗Fα Q1(I−F1)∗ 0
0 (QβFβ)∗Gβ −(QβFβ)∗ (QβFβ)∗Fβ 0 Q1(I−F1)∗

 ,

MN :=


−Q1M1

−QαMα

−QβM)β
−Q1M1

(QαFα)∗Mα

(QβFβ)∗Mβ

 .
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Theorem 3.3.1. Given any square integrable process x, suppose that the following

non-symmetric Riccati equation

dΓNt + ΓNt AN + CNΓNt − ΓNt BNΓNt + DN = 0, ΓN (T ) = 0 (3.3.40)

admits a unique solution on [0, T ], then there is a unique solution to (3.3.39).

Proof. It is easy to check pN (t) = ΓNt xN (t) + gN (t), where
−dgN =

(
(CN − ΓNt BN )gN (t) + MN

)
dt,

gN (T ) = 0.

The existence of the forward equation x is then immediate. The uniqueness is

clear.

Denote

MN :=

 AN −BN

−DN −CN

 (3.3.41)

then the solution of (3.3.40) is given by:

ΓNt = −
[

( 0 I ) eM
N (T−t) ( 0

I )

]−1[
( 0 I ) eM

N (T−t) ( I0 )

]
.

We then rewrite equation (3.3.39) in the following decoupled form:

dxN =
(

(AN −BNΓNt )xN (t)−BNgN (t)
)
dt+ ΣNdW(t),

xN (0) = Ξ;

−dgN =
(

(CN − ΓNt BN )gN (t) + MN
)
dt,

gN (T ) = 0.

(3.3.42)

3.3.2 Explicit solution for the Pareto Game

Similarly, by putting

g1 = C∗αp
P
α + C∗βp

P
β − (QαFα)∗

(
xPα − Fαz −Gαx

P
β −Mα

)
− (QβFβ)∗

(
xPβ − Fβz −Gβx

P
α −Mβ

)
= g2,
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the full solution of the Pareto game for both the leader and follower can be char-

acterized by the following system of FBSDEs:

dx1 =
(
A1x1(t) +B1z(t) + C1x

P
α (t) +D1x

P
β (t)− E1R

−1
1 E∗1n(t)

)
dt+ σ1dW1(t),

x1(0) = ξ1;

dxPα =
(
Aαx

P
α (t) +Bαx

P
β (t) + Cαz(t)−DαR

−1
α D∗αp

P
α (t)

)
dt+ σαdW

α(t),

xPα (0) = ξα;

dxPβ =
(
Aβx

P
α (t) +Bβx

P
β (t) + Cβz(t)−DβR

−1
β D∗βp

P
β (t
)
dt+ σβdW

β(t)

xPβ (0) = ξβ;

dz =
(

(A1 +B1)z(t) + C1x
P
α (t) +D1x

P
β (t)− E1R

−1
1 E∗1m(t)

)
dt,

z(0) = E[ξ1];

ds =
(
A∗1s(t)− E1R

−1
1 E∗1r(t)

)
dt,

s(0) = 0.

(3.3.43)

72



3.3. Explicit Solutions



−dn =
(
A∗1n(t) +Q1(x1(t)− F1z(t)−G1x

P
α (t)−H1x

P
β (t)−M1)

)
dt

− Zn,αdWα(t)− Zn,βdW β(t)− Zn,1dW 1(t),

n(T ) = 0;

−dm =
(
A∗1m(t) +Q1(I − F1)z(t)−Q1G1x

P
α (t)−Q1H1x

P
β (t)−Q1M1

)
dt

− Zm,αdWα(t)− Zm,βdW β(t),

m(T ) = 0;

−dpPα =
(
A∗αp

P
α (t) + A∗βp

P
β (t) + C∗1r(t)− (Q1G1)∗s(t) +Qα(xPα (t)− Fαz(t)−Gαx

P
β (t)−Mα)

+ (QβGβ)∗(xPβ (t)− Fβz(t)−Gβx
P
α (t)−Mβ)

)
dt− ZpPα ,αdW

α(t)− ZpPα ,βdW
β(t),

pPα (T ) = 0;

−dpPβ =
(
B∗βp

P
β (t) +B∗αp

P
α (t) +D∗1r(t)− (Q1H1)∗s(t) +Qβ(xPβ (t)− Fβz(t)−Gβx

P
α (t)−Mβ)

+ (QαGα)∗(xPα (t)− Fαz(t)−Gαx
P
β (t)−Mα)

)
dt− ZpPβ ,αdW

α(t)− ZpPβ ,βdW
β(t),

pPβ (T ) = 0;

−dr =
(

(A1 +B1)∗r(t) + Cαp
P
α (t) + Cβp

P
β (t) + (Q1(I − F1))∗s(t)

− (QαFα)∗(xPα (t)− Fαz(t)−Gαx
P
β (t)−Mα)

− (QβFβ)∗(xPβ (t)− Fβz(t)−Gβx
P
α (t)−Mβ)

)
dt

− Zrα,αdWα(t)− Zrα,βdW β(t).

(3.3.44)

Similar to Section 3.3.1, the matrix form of system (3.3.43) is as follows:

dxP =
(
APxP(t)−BPpP(t)

)
dt+ ΣPdW(t),

xP(0) = Ξ;

−dgN =
(

(CN − ΓNt BN )gN (t) + MN
)
dt,

gN (T ) = 0.

(3.3.45)

where

xP :=

( x1
xPα
xPβ
z
s

)
, pP :=

( n
pPα
pPβ
m
r

)
, Ξ :=

 ξ1
ξα
ξβ

E[ξ1]
0

 ,
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and

AP :=

 A1 C1 D1 B1 0
0 Aα Bα Cα 0
0 Aβ Bβ Cβ 0
0 C1 D1 A1+B1 0
0 0 0 0 A1

 ,

BP :=


E1R

−1
1 E∗1 0 0 0 0

0 DαR
−1
α D∗α 0 0 0

0 0 DβR
−1
β D∗β 0 0

0 0 0 E1R
−1
1 E∗1 0

0 0 0 0 E1R
−1
1 E∗1

 ,

ΣP :=

(
σ1 0 0
0 σα 0
0 0 σβ
0 0 0
0 0 0

)
, dW(t) :=

(
dW1(t)
dWα(t)

dWβ(t)

)
,

CP :=


A∗1 0 0 0 0
0 A∗α A∗β 0 C∗1
0 B∗α B∗β 0 D∗1
0 0 0 A∗1 0

0 C∗α C∗β 0 (A1+B1)∗

 ,

DP :=

Q1 −Q1G1 −Q1H1 −Q1F1 0
0 Qα+(QβGβ)∗Gβ −QαGα−(QβGβ)∗ −QαFα+(QβGβ)∗Fβ −(Q1G1)∗

0 −QβGβ−(QαGα)∗ Qβ+(QαGα)∗Gα −QβFβ+(QαGα)∗Fα −(Q1H1)∗

0 −(Q1G1) −(Q1H1) Q1(I−F1) 0
0 −(QαFα)∗+(QβFβ)∗Gβ −(QβFβ)∗+(QαFα)∗Gα (QαFα)∗Fα+(QβFβ)∗Fβ Q1(I−F1)∗

 .

MP :=

 −Q1M1

−QαMα

−QβM)β
−Q1M1

(QαFα)∗Mα+(QβFβ)∗Mβ

 .

Similar to Section 3.3.1, we define another non-symmetric Riccati equation

dΓPt + ΓPt AP + CPΓPt − ΓPt BPΓPt + DP = 0, ΓP(T ) = 0. (3.3.46)

We then rewrite equation (3.3.45) in the following decoupled form:

dxP =
(

(AP −BPΓPt )xP(t)−BPgP(t)
)
dt+ ΣPdW(t),

xP(0) = Ξ;

−dgP =
(

(CP − ΓPt BP)gP(t) + MP
)
dt,

gP(T ) = 0.

(3.3.47)

3.4 Numerical Results

Using the explicit form obtained in Section 3.3, we can easily simulate the Stack-

elberg Game under both the Nash and Pareto setting.
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3.4.1 Simple Example

Consider the following simple example, where we do not introduce mean field effect

here. Evolutions and cost functionals of the leaders and followers are respectively

given by

dxα = vα(t)dt+ 0.1dWα(t); xα(0) = 1, (3.4.48)

dxβ = vβ(t)dt+ 0.1dW β(t); xβ(0) = 1, (3.4.49)

dxi1 = vi1(t)dt+ 0.1dW i
1(t); xi1(0) = 1; (3.4.50)

and

Jα(vα, vβ) = E
∫ T

0

10|xα(t)− 1.5|2 + |vα(t)|2dt; (3.4.51)

Jβ(vα, vβ) = E
∫ T

0

10|xβ(t)− xα(t)|2 + |vβ(t)|2dt; (3.4.52)

J i1(vi1;xα, xβ, z) = E
∫ T

0

|xi1(t)− xβ(t)|2 + |vi1(t)|2dt. (3.4.53)

Both the states of two leaders and followers start at the same level 1, and the

drift coefficients in three stochastic differential equations (3.4.48)-(3.4.50) involve

respective control variables only. The objective of α-leader (3.4.51) is to minimize

the squared distance between his state and the level 1.5; β-leader on the other

hand tries to minimize his distance from the α-leader in (3.4.52). Finally, the

homogeneous individual followers aim at minimizing their distance from the β-

leader.

Figure 3.1 shows the simulation results of two leaders. The rough lines de-

note one of the simulated scenario, while the (relatively) smooth lines represent

the average of 1,000 paths. The evolutions of xα and xβ are in black and grey

respectively. The solid lines indicate the Nash setting, while the dashed lines

demonstrate the Pareto case. To qualitatively study the simulated results of this

simple model, we focus on the average smooth lines in Figure 3.1. xα surges

sharply at first and becomes steady as it approaches the level 1.5 stated in the
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cost functional (3.4.51). To reduce the squared distance from the α-leader, xβ

mimics his evolution - increases fast initially and becomes flattish later on.

One can also observe that, for both leaders, the smooth solid (Nash) lines lie

above the dashed (Pareto) lines. In the cooperative Pareto game, α-leader not

only tries to minimize his own cost functional Jα, but also Jβ - the cost of β-leader.

Intuitively, α-leader scarifies himself by not getting close to the level 1.5 as in the

Nash game, and tries to reduce his distance from β-leader. On the other hand,

β-leader benefits from the cooperative game as he can now adopts a smaller value

of control vβ to minimize his distance from the α-leader. Figure 3.2 shows the

average of 1,000 simulated cost of α-leader in black, β-leader in grey and their sum

in blue under different games. The total cost of the two leaders reduces through

cooperation by comparing the blue solid and dashed lines. While β-leader’s cost

becomes smaller in the Pareto setting, α-leader’s terminal cost is higher. Finally,

as the trajectory of β-leader moves downward in the Pareto game as shown in

Figure 3.2, we expect that the follower would use a small control process to reduce

the distance between his state and the β-leader. Figure 3.3 shows the average cost

of 1,000 simulation for follower under different game setting, which clearly shows

that the follower benefits from the cooperation between leaders in this simple

example.
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Figure 3.1: Evolution of leaders in two games.

3.4.2 Study on mean field effect

Next, we introduce a mean field effect into the simple example in Section 3.4.1.

In particular, we change the cost functional of the follower:

J i1(vi1;xα, xβ, z) = E
∫ T

0

|xi1(t)− (1− c)z(t)− cxβ(t)|2 + |vi1(t)|2dt, (3.4.54)

where c ∈ [0, 1]. That is, the follower aims at minimizing the distance between its

own states and

(1− c)z(t) + cxβ(t),

the convex combination of the mean field term and the state of β-leader. As the

value of c approaches 1, the impact of mean field term on each follower increase;
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Figure 3.2: Cost of leaders in two games.

while the influence of β-leader diminishes. Figure 3.4 shows the average costs

of 1,000 simulation with different value of c in both Nash game (solid lines) and

Pareto game (dashed lines). As the value of c increases, the cost difference be-

tween two games drops. That is the benefit follower received through cooperation

between leaders shrink.

3.5 Conclusion

Mean field Stackelberg games with one leader under a linear quadratic setting

has been studied previously in our previous work [5] and Chapter 2. In this

Chapter, we consider an interesting class extension by considering two leaders
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3.5. Conclusion

Figure 3.3: Cost of followers in two games.

over a group of followers. Depending on whether or not they cooperate, we solve

for the respective Nash and Pareto game. Under the simple model proposed in

Section 3.4, the group of followers benefits as the leaders cooperate. Due to the

large number of parameters in the original model, the general sufficient condition

for followers gaining (or losing) due to the cooperation of leaders is not discussed

in this chapter and will be explored in future works.
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3.5. Conclusion

Figure 3.4: Cost of followers in two games.
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Chapter 4

Discrete-time Mean Field

Partially Observable Controlled

Systems Subject to Common

Noise

This chapter provides a systemic study on discrete time partially observable mean

field systems in the presence of a common noise. Each player makes decision solely

based on the observable process. Both the mean field games and the associated

mean field type stochastic control problem are formulated in Section 4.1. We first

solve the mean field type control problem using classical discrete time Kalman fil-

ter with notable modifications in Section 4.2. The unique existence of the resulted

forward backward stochastic difference system is then established by Separation

Principle. The mean field game problem is also solved via an application of

stochastic maximum principle, while the existence of the mean field equilibrium

is shown by the Schauder’s fixed point theorem in Section 4.3.
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4.1. Problem Setting

4.1 Problem Setting

4.1.1 Mean Field Game

Let P ∈ N. Consider a complete probability space (Ω,F ,P) equipped with inde-

pendent discrete standardized Gaussian white noise processes W i, W̃ ∈ Rdx and

V i ∈ Rdy , for i = 1, . . . , P ; their means are all zero vector, while their covariance

matrices are identity; to avoid unnecessary technical details, we assume that all

the volatilities in whatever dynamics appeared in the rest of this article are stan-

dardized to be equal to one. Here the dimensions dx and dy stand for that of

the unobservable state space and observable state space respectively. Also define

square integrable Gaussian random vectors ξi ∈ Rdx , for i = 1, . . . , P , which are

independently and identically distributed, and they are also assumed to be inde-

pendent of the mentioned white noise processes. Next, let k ≤ N ∈ N, define the

following filtrations

Fk : = σ{ξ,W 1
r , . . .W

P
r , W̃r, V

1
r−1, . . . , V

P
r−1 : 1 ≤ r ≤ k, };

FW i

k : = σ{W i
r : 1 ≤ r ≤ k};

FW̃k : = σ{W̃r : 1 ≤ r ≤ k};

FV ik : = σ{V i
r : 0 ≤ r ≤ k}.

Here, Fk represents the flow of history of all the information up to time k; FW i

k

and FW̃k stand for that caused by the ith individual noise and the common noise

respectively; FV ik is the filtration induced by the ith observational noise.

We first consider a finite number of P player system in which the unobservable

state evolution for the ith player is modelled by the following difference equations,

for i = 1, . . . , P ,
X i
k+1 = AkX i

k + Āk

∑P
j=1 X

j
k

P
+Bkv

i
k +W i

k+1 + W̃k+1,

k ∈ {0, 1, . . . , N − 1},

X i
0 = ξi.

(4.1.1)
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4.1. Problem Setting

In the case of any potential ambiguity, we prefer to adopt the self-explaining no-

tation X i,v with superscript v indicating that the dynamics being governed by

the specific control v; otherwise, we omit this extra superscript if the underlying

context is clear. However, the information from X could be distorted in any com-

mon economic modelling, more specifically, due to the technological limitations

encountered by the agents, the ith player can only make his own decision based on

another observable process Y i which is described by another difference equation:

Y ik = HkX i
k + H̄k

∑P
j=1X

j
k

P
+ V i

k , k ∈ {0, 1, . . . , N − 1}. (4.1.2)

Again, to avoid unnecessary technical details, we assume that all matricesAk, Āk, Bk, Hk, H̄k,

for k = 0, . . . , N − 1, are constant with appropriate dimensions. In the sequel,

M∗ denotes the transpose of an arbitrary matrix M .

The ith player aims at minimizing the following quadratic cost functional:

J i,P (v) :=
N−1∑
k=0

E
(
‖X i

k‖2
Qk

+ ‖vik‖2
Rk

+

∥∥∥∥X i
k − Sk

∑P
j=1X

j
k

P

∥∥∥∥2

Q̄k

)

+ E
(
‖X i

N‖2
QN

+

∥∥∥∥X i
N − SN

∑P
j=1X

j
N

P

∥∥∥∥2

Q̄N

)
,

where v = (v1, v2, . . . , vP ), | · |Q := 〈·,Q·〉 for any positive definite matrix Q and

〈·, ?〉 is the usual Euclidean inner product. The matrices Qk, Rk, Sk, Q̄k for k =

0, . . . , N − 1 and QN , SN , Q̄N are again assumed to be constant with appropriate

dimensions; while Qk, Rk, Q̄k for k = 0, . . . , N are positive definite.

On the other hand, we now consider the limiting mean field system in which

the unobservable individual state evolution is given byx
i
k+1 = Akx

i
k + Ākzk +Bkv

i
k +W i

k+1 + W̃k+1, k ∈ {0, 1, . . . , N − 1},

xi0 = ξi;

(4.1.3)

with the corresponding observable state process

yik := Hkx
i
k + H̄kzk + V i

k , k ∈ {0, 1, . . . , N}; (4.1.4)

83



4.1. Problem Setting

while the cost functional for the ith player is given by:

J i(v) =
N−1∑
k=0

E
(
‖xik‖2

Qk
+ ‖vik‖2

Rk
+ ‖xik − Skzk‖2

Q̄k

)
(4.1.5)

+ E
(
‖xiN‖2

QN
+ ‖xiN − SNzN‖2

Q̄N

)
,

where z is the mean field term to be determined as follows. Same as above, we

adopt the custom of using the notation xi,v when the underlying particular control

v has to be specified.

Denote

Fy
i

k := σ{yir : 0 ≤ r ≤ k}

to be the filtration generated by the observable state process of the ith individual

in the mean field framework. As for the finite counter part, the ith player makes

his own decision based on his observations only. Therefore, the only admissible

controls in this problem are those vik’s adapting to the filtration Fy
i

k , or mathe-

matically, vik is a functional of yi0, . . . , y
i
k, i.e., vik = vik(y

i
0, . . . , y

i
k). The present

model is fundamentally different from that in [10] in which the decision making

of each player bases directly on his own criteria and certain summary statistics

(i.e., the mean field term) about the community as the optimal control was as-

sumed to adapt to the filtration generated by the individual noise. In contrast,

our model here assumes that each player’s optimal control could only rely on his

own observable state whose dynamics possesses the community information just

implicitly.

In order to solve for an equilibrium solution of the mean field game, the first

step is to establish the optimal control of the representative agent subject to an

arbitrary assignment of z in the agent’s dynamics. An equilibrium solution can

then be resolved by choosing a desired z so that it is a FW̃ -adapted process.

Indeed, in light of previous works [5] and [10], we can state the following theorem:
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Theorem 4.1.1. Suppose that the ith player adopts the optimal control ui defined

in the system (4.1.3), (4.1.4) and (4.1.5). We denote xi,u
i

and X i,ui the corre-

sponding trajectory of (4.1.3) and (4.1.1) under ui(yi0, . . . , y
i
k) and ui(Y i0, . . . ,Y ik)

respectively. If z is chosen such that the fixed point property

zk = E
[
x1,u1

k

∣∣FW̃k ], (4.1.6)

holds, then

sup
i∈{1,...,P}

E sup
k≤N
|xi,u

i

k −X i,ui

k |
2 = o(1). (4.1.7)

Moreover, (u1, u2, . . . , uP ) served as an ε-Nash equilibrium for the original empir-

ical problem. That is for arbitrary vi, we have

J i,P (u1, . . . , ui−1, ui, ui+1, . . . , uP ) ≤ J i,P (u1, . . . , ui−1, vi, ui+1, . . . , uP ) + o(1).

(4.1.8)

This convergence result suggests that, in the mean field limit, both the state

process and the cost functional of each individual are identical to that of each

other; we then drop off the index i for the sake of notational simplicity. In this

article, the limiting mean field problem of interest can be summarized as follows:

Problem 4.1.2. (a) Let zk be an FW̃k -adapted process, for k = 0, . . . , N . Find

the optimal admissible control uzk which minimizes the cost functional

J(v) :=
N−1∑
k=0

E
(
‖xk‖2

Qk
+ ‖vk‖2

Rk
+ ‖xk − Skzk‖2

Q̄k

)
+ E

(
‖xN‖2

QN
+ ‖xN − SNzN‖2

Q̄N

)
,

where the unobservable and observable states are respectively described by the

following difference equationsxk+1 = Akxk + Ākzk +Bkvk +Wk+1 + W̃k+1, k ∈ {0, 1, . . . , N − 1},

x0 = ξ;

(4.1.9)
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and

yk = Hkxk + H̄kzk + Vk, k ∈ {0, 1, . . . , N}. (4.1.10)

(b) Find the equilibrium solution by searching for a zk such that the fixed point

property

zk = E
(
xk|FW̃k

)
(4.1.11)

is satisfied. Here, xk on the right hand side of (4.1.11) is the trajectory induced

by the optimal control uzk which is further a functional of z.

The resolution of Problem 4.1.2 will be elaborated in detail in Section 4.3.

4.1.2 Mean Field Type Control Problem

Up to the moment, we have only considered the mean field game as stated in

equation (4.1.9)-(4.1.11) in Problem 4.1.2. In mean field theory, one also finds

interest in another framework namely, mean field type stochastic control prob-

lems. The fundamental difference between these two frameworks is that, in mean

field games, the mean field term is now exogenous to every agent’s optimal con-

trol problem; while the mean field term is endogenous in mean field type control

problem.

The mean field type control problem is described by:

Problem 4.1.3. Find the optimal admissible control uk which minimizes the cost

functional

J(v) :=
N−1∑
k=0

E
(
‖xk‖2

Qk
+ ‖vk‖2

Rk
+
∥∥∥xk − SkE[xk|FW̃k ∨ Fyk−1

]∥∥∥2

Q̄k

)
+ E

(
‖xN‖2

QN
+
∥∥∥xN − SNE[xN |FW̃N ∨ FyN−1

]∥∥∥2

Q̄N

)
,
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where the individual unobservable and observable states are respectively given by:
xk+1 = Akxk + ĀkE

[
xk|FW̃k ∨ F

y
k−1

]
+Bkvk +Wk+1 + W̃k+1, k ∈ {0, 1, . . . , N − 1},

x0 = ξ;

(4.1.12)

and

yk = Hkxk + H̄kE
[
xk|FW̃k ∨ F

y
k−1

]
+ Vk, k ∈ {0, 1, . . . , N}. (4.1.13)

Observe that the mean field term

zk = E
[
xk|FW̃k ∨ F

y
k−1

]
is assumed to be adapted to FW̃k ∨F

y
k−1, where we justify this form in the following.

4.1.2.1 Full Observation - in the Absence of a Common Noise

Suppose that the state process xk is observable to the agent, the control vk de-

pends on x0, . . . , xk, that is vk = vk(x0, . . . , xk). Let mk be the probability density

function of xk (at time k) on Rdx ; also denote the probability density of an ar-

bitrary random vector η by fη. We can rewrite Equation (4.1.12) (without the

common noise W̃ ) into the following form:

Wk+1 = xk+1 − Akxk − Ākzk −Bkvk(x0, . . . , xk).

In our linear quadratic setting, the mean field term zk, as a functional of the

density mk, is the first moment, i.e. zk =
∫
Rdx xkmk(xk)dxk, and mk is recursively

defined as follows. In particular, the density function m1 is then given by

m1(x1) =

∫
Rdx

fW1(x1 − A0x0 − Ā0z0 −B0v0(x0))m0(x0)dx0

=

∫
Rdx

fW1(x1 − A0x0 − Ā0z0 −B0v0(x0))fξ(x0)dx0.
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Inductively, we have

mk+1(xk+1)

=

∫
Rdx
· · ·
∫
Rdx

fWk+1
(xk+1 − Akxk − Ākzk −Bkvk(x0, . . . , xk))

· fWk
(xk − Ak−1xk−1 − Āk−1zk−1 −Bk−1vk−1(x0, . . . , xk−1))

. . . fξ(x0)dxk . . . dx0.

(4.1.14)

We notice that the right hand side of Equation (4.1.14) is deterministic.

4.1.2.2 Full Observation - in the Presence of a Common Noise

In this case, the state process xk is again observable to the agent, and the control

can also be expressed as vk = vk(x0, . . . , xk). Let mk be the density function of

xk (at time k) on Rdx conditional on a filtration to be identified. Similar to the

argument in previous case, we can rewrite Equation (4.1.12) with the common

noise into the following form:

Wk+1 = xk+1 − Akxk − Ākzk −Bkvk(x0, . . . , xk)− W̃k+1,

where, again, the mean field term zk is the first moment under the density mk,

which is recursively defined as follows:

m1(x1) =

∫
Rdx

fW1(x1 − A0x0 − Ā0z0 −B0v0(x0)− W̃1)m0(x0)dx0

=

∫
Rdx

fW1(x1 − A0x0 − Ā0z0 −B0v0(x0)− W̃1)fξ(x0)dx0.

Inductively, we obtain

mk+1(xk+1)

=

∫
Rdx
· · ·
∫
Rdx

fWk+1
(xk+1 − Akxk − Ākzk −Bkvk(x0, . . . , xk)− W̃k+1)

· fWk
(xk − Ak−1xk−1 − Āk−1zk−1 −Bk−1vk−1(x0, . . . , xk−1)− W̃k)

. . . fξ(x0)dxk . . . dx0.

(4.1.15)
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The right hand side of Equation (4.1.15) is no longer deterministic. Indeed, the

density functionmk+1 depends on the evolution of the common noise {W̃1, W̃2, . . . , W̃k+1},

and hencemk+1 is in fact the density function of xk+1 conditional on {W̃1, W̃2, . . . , W̃k+1},

or FW̃k . We conclude that zk = E[xk|FW̃k ].

4.1.2.3 Partial Observation - in the Presence of a Common Noise

Under the partial observation case, the agent makes his own decision based on his

observations only, and hence the only admissible controls in this problem are those

vk’s adapted to the filtration Fyk , or mathematically, vk is a function of y0, . . . , yk,

i.e., vk = vk(y0, . . . , yk). Again, as in Subsection 4.1.2.2, we denote mk the density

function of xk (at time k) on Rdx conditional on a filtration to be determined. In

this case, Equation (4.1.12) becomes

Wk+1 = xk+1 − Akxk − Ākzk −Bkvk(y0, . . . , yk)− W̃k+1,

Similar to (4.1.14) and (4.1.15), we have

mk+1(xk+1)

=

∫
Rdx
· · ·
∫
Rdx

fWk+1
(xk+1 − Akxk − Ākzk −Bkvk(y0, . . . , yk)− W̃k+1)

· fWk
(xk − Ak−1xk−1 − Āk−1zk−1 −Bk−1vk−1(y0, . . . , yk−1)− W̃k)

. . . fξ(x0)dxk . . . dx0.

(4.1.16)

The randomness in the right hand side of (4.1.16) clearly comes from both the

common noise {W̃1, . . . , W̃k+1} and the observations {y0, . . . yk}, or FW̃k+1 ∨ F
y
k .

Therefore, we have

zk =

∫
Rdx

xkmk(xk)dxk = E[xk|FW̃k ∨ F
y
k−1]. (4.1.17)

To conclude, by an alternative expression of the individual noise {W1,W2, . . . ,Wk}

in the density mk+1 in a sequence of three cases, the form of mean field term in

our mean field type control problem 4.1.3 is justified.
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Due to the different characters playing in the mean field term, the very exis-

tence of the respective solutions of the mean field type control problem and mean

field games control problem are not the same; details will be given in Section 4.2

and 4.3 respectively.

4.2 Solution of Mean Field Type Control Problem

Due to the relatively simpler in nature, we first provide a comprehensive study in

this section on Problem 4.1.3 under the mean field type setting.

We first establish the recursive form of the mean field term E
[
xk|FW̃k ∨ F

y
k−1

]
.

For j ≤ k ≤ N , denote x̂k|j := E[xk|FW̃j+1 ∨ F
y
j ] and the “covariance matrix”

Pk|j := E[(xk−x̂k|j)(xk−x̂k|j)∗]. Also denote the initial point x̂0|−1 := E[x0] = E[ξ].

Taking conditional expectation on both sides of (4.1.12), we obtain that

x̂k+1|k = Akx̂k|k + Ākx̂k|k−1 +Bkvk + W̃k+1. (4.2.18)

Further, consider the difference of (4.2.18) from (4.1.12), and by a simple calcu-

lation, we then have

Pk+1|k = AkPk|kA
∗
k + I. (4.2.19)

Assume that x̂k|k is in the following form with K ′k and Kk to be determined:

x̂k|k = K ′kx̂k|k−1 +Kkyk. (4.2.20)

The unbiased condition, that is E[x̂k|k−1] = E[xk], yields that

K ′kE[xk] +KkE[yk] = E[xk],

by using (4.1.13), we can get that

K ′kE[xk] +Kk(Hk + H̄k)E[xk] = E[xk]. (4.2.21)

As (4.2.21) holds for an arbitrary value of E[xk], we have, for any k = 0, . . . , N−1,

K ′k = I −Kk(Hk + H̄k). (4.2.22)
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On the other hand, by using (4.1.13), (4.2.20) and (4.2.22), we also have,

xk − x̂k|k = (I −KkHk)(xk − x̂k|k−1)−KkVk. (4.2.23)

Hence,

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
∗ +KkK

∗
k . (4.2.24)

Kk is chosen such that the L2 error, E‖xk − x̂k|k‖2, is minimized, in particular,

min
Kk

E‖xk − x̂k|k‖2 = min
Kk

E[tr(xk − x̂k|k)(xk − x̂k|k)∗] = min
Kk

tr(Pk|k), (4.2.25)

where this minimizer is

Kk = Pk|k−1H
∗
k(HkPk|k−1H

∗
k + I)−1, (4.2.26)

which is independent of the choice of the control variable v. To conclude, using

(4.2.19), we have

Pk+1|k = Ak(I −KkHk)Pk|k−1(I −KkHk)
∗A∗k + AkKkK

∗
kA
∗
k + I, (4.2.27)

where Kk is given by (4.2.26).

Finally, the mean field term has the expression as follows:
x̂k+1|k = Ak

((
I −Kk(Hk + H̄k)

)
x̂k|k−1 +Kkyk

)
+ Ākx̂k|k−1 +Bkvk + W̃k+1

=
(
Ak

(
I −Kk(Hk + H̄k)

)
+ Āk

)
x̂k|k−1 +Bkvk + AkKkyk + W̃k+1,

x̂0|−1 = E[ξ].

(4.2.28)

We can rewrite the original mean field optimal control problem in terms of the

augmented state (x·, x̂·|·−1) as:

Minimize

J(v) =
N−1∑
k=0

E
(
‖V1·Xk‖2

Qk
+‖vk‖2

Rk
+‖V2,k·Xk‖2

Q̄k

)
+E
(
‖V1·XN‖2

QN
+‖V2,N ·XN‖2

Q̄N

)
,

(4.2.29)
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subject to the unobservable processXk+1 = AkXk + Bkvk + Ckyk + ΣkWk+1,

X0 = Ξ;

(4.2.30)

and the observable process

yk = HkXk + Vk; (4.2.31)

where

Xk =

 xk

x̂k|k−1

 ; Ξ =

 ξ

E[ξ]

 ; Wk+1 =

Wk+1

W̃k+1

 ;

V1 =
(
I, 0

)
; V2,k =

(
I, −Sk

)
;

Ak =

Ak Āk

0 Ak

(
I −Kk(Hk + H̄k)

)
+ Āk

 ; Bk =

Bk

Bk

 ; Ck =

 0

AkKk

 ;

Σk =

I I

0 I

 ; Hk =

Hk

H̄k

 .

(4.2.32)

Note that the augmented unobservable state X now depends explicitly on the

observation y. We adopt the ideas in Section 2.4 in [3] in the present discrete time

setting with notable modifications. In particular, we first propose the following

decomposition, (X, y) = (X0, y0) + (X1, y1):
X0
k+1 = AkX0

k + ΣkWk+1,

X0
0 = Ξ;

y0
k = HkX0

k + Vk.

(4.2.33)


X1
k+1 = AkX1

k + Bkvk + Ck(y
0
k + y1

k),

X1
0 = 0;

y1
k = HkX1

k.

(4.2.34)
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Note that, since vk is adapted to Fyk , we have that (X1
k+1, y

1
k) is Fyk -measurable;

therefore, y0
k = yk − y1

k is also Fyk -measurable. We then have

X̂k+1|k := E[Xk+1|Fyk ] = E[X0
k+1|F

y
k ] + X1

k+1, for k = 0, . . . , N − 1. (4.2.35)

Lemma 4.2.1.

E[X0
k+1|F

y
k ] = E[X0

k+1|F
y0

k ] for k = 0, . . . , N − 1. (4.2.36)

Proof. For a fixed k, define

λk := Πk
i=1 exp(X∗iH∗i yi −

1

2
X∗iH∗iHiXi), and λ1 := 1; (4.2.37)

and

dQk

dP
:= λ−1

k . (4.2.38)

We first show that λ−1
k is a Fk+1-martingale under P.

E[λ−1
k | Fk]

=E
[
Πk
i=1 exp(−X∗iH∗i yi +

1

2
X∗iH∗iHiXi) | Fk

]
=Πk−1

i=1 exp(−X∗iH∗i yi +
1

2
X∗iH∗iHiXi)E

[
exp(−X∗kH∗kyk +

1

2
X∗kH∗kHkXk) | Fk

]
=Πk−1

i=1 exp(−X∗iH∗i yi +
1

2
X∗iH∗iHiXi)E

[
exp(−X∗kH∗k(HkXk + Vk) +

1

2
X∗kH∗kHkXk) | Fk

]
=Πk−1

i=1 exp(−X∗iH∗i yi +
1

2
X∗iH∗iHiXi)E

[
exp(−X∗kH∗kVk −

1

2
X∗kH∗kHkXk) | Fk

]
=Πk−1

i=1 exp(X∗iH∗i yi −
1

2
X∗iH∗iHiXi) exp(−1

2
X∗kH∗kHkXk)E

[
exp(−X∗kH∗kVk) | Fk

]
=Πk−1

i=1 exp(X∗iH∗i yi −
1

2
X∗iH∗iHiXi) exp(−1

2
X∗kH∗kHkXk) exp(

1

2
X∗kH∗kHkXk)

=Πk−1
i=1 exp(X∗iH∗i yi −

1

2
X∗iH∗iHiXi) = λ−1

k−1.

And hence Qk is a probability measure by noting that

E[λ−1
k ] = λ−1

1 = 1.
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4.2. Solution of Mean Field Type Control Problem

Now, note that

EQk [exp(iαyk) | Fk]

= E[exp(−X∗kH∗kyk +
1

2
X∗kH∗kHkXk) exp(iαyk) | Fk]

= exp(
1

2
X∗kH∗kHkXk)E[exp(−X∗kH∗kyk) exp(iαyk) | Fk]

= exp(
1

2
X∗kH∗kHkXk)E[exp((−X∗kH∗k + iα)(HXk + Vk)) | Fk]

= exp(
1

2
X∗kH∗kHkXk) exp((−X∗kH∗k + iα)(HXk))E[exp((−X∗kH∗k + iα)(Vk)) | Fk]

= exp(
1

2
X∗kH∗kHkXk) exp((−X∗kH∗k + iα)(HXk)) exp(

1

2
(−X∗kH∗k + iα)2)

= exp(−1

2
α2),

which shows that under Qk, yk is a standardized Gaussian white noise and is in-

dependent of W1, . . . ,Wk, W̃1, . . . , W̃k, and V1, . . . , Vk−1. Next, using Bayes rule,

we have

E[X0
k+1|F

y
k ]

=
EQk [λ−1

k X0
k+1|F

y
k ]

EQk [λ−1
k |F

y
k ]

=
EQk [Πk

i=1 exp(−X∗iH∗i yi + 1
2
X∗iH∗iHiXi)X0

k+1|F
y
k ]

EQk [Πk
i=1 exp(−X∗iH∗i yi + 1

2
X∗iH∗iHiXi)|Fyk ]

=
EQk [Πk

i=1 exp(−(X0
i + X1

i )
∗H∗i yi + 1

2
(X0

i + X1
i )
∗H∗iHi(X0

i + X1
i ))X0

k+1|F
y
k ]

EQk [Πk
i=1 exp(−(X0

i + X1
i )
∗H∗i yi + 1

2
(X0

i + X1
i )
∗H∗iHi(X0

i + X1
i ))|F

y
k ]

=
EQk [Πk

i=1 exp(−X0
i
∗H∗i yi + 1

2
X0
i
∗H∗iHiX0

i + X0
i
∗H∗iHiX1

i )X0
k+1|F

y
k ]

EQk [Πk
i=1 exp(−X0

i
∗H∗i yi + 1

2
X0
i
∗H∗iHiX0

i + X0
i
∗H∗iHiX1

i )|F
y
k ]

,

(4.2.39)

where the last equality holds by noting that the same term Πk
i=1 exp(−(X1

i )
∗H∗i yi+

1
2
(X1

i )
∗H∗iHi(X1

i )) being adapted to Fyk in both numerator and denominator can

be cancelled off. Plugging the relation yi = y0
i + y1

i = y0
i + HX1

i into (4.2.39), we

have

E[X0
k+1|F

y
k ] =

EQk [Πk
i=1 exp(−X0

i
∗H∗i y0

i + 1
2
X0
i
∗H∗iHiX0

i )X0
k+1|F

y
k ]

EQk [Πk
i=1 exp(−X0

i
∗H∗i y0

i + 1
2
X0
i
∗H∗iHiX0

i )|F
y
k ]

. (4.2.40)

94



4.2. Solution of Mean Field Type Control Problem

We note that y0
i is Fyk -measurable and X0

i is independent of Fyk for i ≤ k; also

X0
i+1 is independent of Fyk . We then have

E[X0
k+1|F

y
k ] =

EQk [Πk
i=1 exp(−X0

i
∗H∗i ζi + 1

2
X0
i
∗H∗iHiX0

i )X0
k+1]

EQk [Πk
i=1 exp(−X0

i
∗H∗i ζi + 1

2
X0
i
∗H∗iHiX0

i )]

∣∣∣∣
ζ1=y01 ,...,ζk=y0k

.

(4.2.41)

Therefore, we conclude that the conditional expectation E[X0
k+1|F

y
k ] is actually

Fy
0

k measurable, and hence with a simple application of tower property,

E[X0
k+1|F

y
k ] = E

[
E[X0

k+1|F
y
k ]|Fy

0

k

]
= E[X0

k+1|F
y0

k ],

which concludes the claim. �

To proceed further, we now use the standard procedure to obtain the Kalman

filter of X0
k+1, X̂0

k+1|k := E[X0
k+1|F

y0

k ]. In particular, taking the conditional expec-

tation of both sides of (4.2.33) given Fy
0

k , similar derivation leading to (4.2.28)

can be applied to get the recursive relation:X̂0
k+1|k = Ak(I −KkHk)X̂0

k|k−1 + AkKky
0
k,

X̂0
0|−1 = E[Ξ],

(4.2.42)

where Kk = Pk|k−1H∗k(HkPk|k−1H∗k + I)−1,

Pk+1|k = Ak(I −KkHk)Pk|k−1(I −KkHk)
∗A∗k + AkKkK∗kA∗k + ΣΣ∗.

(4.2.43)

Let εk+1 := Xk+1 − X̂k+1|k = X0
k+1 − X̂0

k+1|k, which follows from (4.2.35). Ac-

cording to (4.2.33), we know that X0
k+1 and y0

k would not be affected by the control

vk. Therefore, Lemma 4.2.1 also implies that vk would not affect εk. Note that

for any matrix A,

E‖AXk+1‖2 =E‖AX̂k+1|k +Aεk+1‖2

=E‖AX̂k+1|k‖2 + E‖Aεk+1‖2 + 2E
[
X̂∗k+1|kA∗AE[εk+1 | Fyk ]

]
=E‖AX̂k+1|k‖2 + E‖Aεk+1‖2.
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4.2. Solution of Mean Field Type Control Problem

Therefore, we have

J(v) =
N−1∑
k=0

E
(
‖V1 · Xk‖2

Qk
+ ‖vk‖2

Rk
+ ‖V2,k · Xk‖2

Q̄k

)
+ E

(
‖V1 · XN‖2

QN
+ ‖V2,N · XN‖2

Q̄N

)
=

N−1∑
k=0

E
(
‖V1 · X̂k|k−1‖2

Qk
+ ‖vk‖2

Rk
+ ‖V2,k · X̂k|k−1‖2

Q̄k

)
+ E

(
‖V1 · X̂N |N−1‖2

QN
+ ‖V2,N · X̂N |N−1‖2

Q̄N

)
(4.2.44)

+
N−1∑
k=0

E
(
‖V1 · εk‖2

Qk
+ ‖V2,k · εk‖2

Q̄k

)
+ E

(
‖V1 · εN‖2

QN
+ ‖V2,N · εN‖2

Q̄N

)
,

(4.2.45)

where (4.2.45) is invariant for whatever choices of the control v·’s. Therefore, the

mean field type optimal control problem 4.1.3 can be reduced to the one under

the standard full observation setting by considering the objective function (4.2.44)

only:

Problem 4.2.2. Minimize

Ĵ(v) :=
N−1∑
k=0

E
(
‖V1 · X̂k|k−1‖2

Qk
+ ‖vk‖2

Rk
+ ‖V2,k · X̂k|k−1‖2

Q̄k

)
(4.2.46)

+ E
(
‖V1 · X̂N |N−1‖2

QN
+ ‖V2,N · X̂N |N−1‖2

Q̄N

)
,

subject to 

X̂k+1|k = X̂0
k+1|k + X1

k+1,

X1
k+1 = AkX1

k + Bkvk + Ck(y
0
k + y1

k),

X1
0 = 0,

X̂0
k+1|k = Ak(I −KkHk)X̂0

k|k−1 + AkKky
0
k,

X̂0
0|−1 = E[Ξ],

(4.2.47)

where y0
k and y1

k satisfy the system (4.2.33) and (4.2.34) respectively.
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4.2. Solution of Mean Field Type Control Problem

Theorem 4.2.3. The optimal control of fully observable Problem 4.2.2 is given

by

uk = −R−1
k B∗kp̂k+1, for k = 0, 1, ..., N − 1, (4.2.48)

such that p̂k exists and satisfies the following Backward Stochastic Difference Equa-

tion:p̂k = (Ak + CkHk)
∗p̂k+1 + (V∗1QkV1 + V∗2,kQ̄kV2,k)X̂k|k−1 −∆M p̂

k ,

p̂N = (V∗1QNV1 + V∗2,NQ̄NV2,N)X̂N |N−1,

(4.2.49)

where ∆M p̂
k is a martingale difference and the generated martingale is adapted to

the filtration Fyk .

Proof. Consider a perturbation of the optimal control u + τ ũ, where τ ∈ R is

arbitrary and ũ := (ũ0, ..., ũN−1) and ũk is adapted to the filtration Fyk , for k =

1, ..., N − 1. The original state X̂k+1|k becomes X̂k+1|k + τ X̃k+1|k with

X̃k+1|k = X̃1
k+1,

X̃1
k+1 = AkX̃1

k + Bkũk + Ckỹ
1
k,

ỹ1
k = HkX̃1

k,

X̃1
0 = 0.

(4.2.50)

The optimality of u would satisfy the Euler’s condition:

0 =
d

dτ

∣∣∣∣∣
τ=0

Ĵ(u+ τ ũ)

= 2E
[
〈u0, ũ0〉R0 (4.2.51)

+
N−1∑
k=1

(
〈V1X̂k|k−1,V1X̃k|k−1〉Qk + 〈uk, ũk〉Rk + 〈V2,kX̂k|k−1,V2,kX̃k|k−1〉Q̄k

)
+ 〈V1X̂N |N−1,V1X̃N |N−1〉QN + 〈V2,N X̂N |N−1,V2,N X̃N |N−1〉Q̄N

]
.
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4.2. Solution of Mean Field Type Control Problem

Define the adjoint process satisfying (4.2.49). Consider

〈X̃k+1|k, p̂k+1〉 − 〈X̃k|k−1, p̂k〉

=〈X̃k+1|k − X̃k|k−1, p̂k+1〉+ 〈X̃k|k−1, p̂k+1 − p̂k〉

=〈(Ak + CkHk)X̃k|k−1 + Bkũk − X̃k|k−1, p̂k+1〉

+ 〈X̃k|k−1, p̂k+1 − (Ak + CkHk)
∗p̂k+1 − (V∗1QkV1 + V∗2,kQ̄kV2,k)X̂k|k−1〉

+ 〈X̃k|k−1,∆M
p̂
k 〉

=〈X̃k|k−1,−(V∗1QkV1 + V∗2,kQ̄kV2,k)X̂k|k−1〉+ 〈Bkũk, p̂k+1〉+ 〈X̃k|k−1,∆M
p̂
k 〉,

summing up from k = 0 to N − 1 and taking expectation, we have

0 =E
[
−
〈
X̃N |N−1, (V∗1QNV1 + V∗2,NQ̄NV2,N)X̂N |N−1

〉
+

N−1∑
k=0

(
〈X̃k|k−1,−(V∗1QkV1 + V∗2,kQ̄kV2,k)X̂k|k−1〉+ 〈Bkũk, p̂k+1〉

)]
.

Using (4.2.51), we can get

0 = E
[N−1∑
k=0

〈Rkuk + B∗kp̂k+1, ũk〉
]
.

Note that uk and ũk is adapted to Fyk , since ũ is arbitrary, we deduce the optimal

control uk = −R−1
k B∗kp̂k+1 for k = 0, 1, . . . , N − 1. For the very existence of p̂k,

we shall discuss in detail in the rest of this section. �

In the remaining part of this section, we shall establish the unique existence
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4.2. Solution of Mean Field Type Control Problem

of the following forward backward stochastic differential equation (X̂, p̂):

X̂k+1|k = X̂0
k+1|k + X1

k+1, (4.2.52)X1
k+1 = AkX1

k − BkR−1
k B∗kp̂k+1 + Ck(y

0
k + y1

k),

X1
0 = 0,X̂0
k+1|k = Ak(I −KkHk)X̂0

k|k−1 + AkKky
0
k,

X̂0
0|−1 = E[Ξ],p̂k = (Ak + CkHk)

∗p̂k+1 + (V∗1QkV1 + V∗2,kQ̄kV2,k)X̂k|k−1 −∆M p̂
k ,

p̂N = (V∗1QNV1 + V∗2,NQ̄NV2,N)X̂N |N−1,

where y0 and y1 are defined in Equations (4.2.33) and (4.2.34) respectively. Also

note that y0 is well defined by its own right in Equation (4.2.33) as it is independent

of the control process v; while y1 = HX1 in Equation (4.2.34). Hence, we can
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4.2. Solution of Mean Field Type Control Problem

rewrite (4.2.52) as follows:X̂k+1|k = X̂0
k+1|k + X1

k+1,

p̂k = p̂0
k + p̂1

k,

(4.2.53)

such that

X̂0
k+1|k = Ak(I −KkHk)X̂0

k|k−1 + AkKky
0
k,

X̂0|−1 = E[Ξ];

p̂0
k = (Ak + CkHk)p̂

0
k+1 + (V∗1QkV1 + V∗2,kQ̄kV2,k)X̂0

k|k−1 −∆M p̂0

k ,

p̂0
N = (V∗1QNV1 + V∗2,NQ̄NV2,N)X̂0

N |N−1,

(4.2.54)

X1
k+1 = AkX1

k − BkR−1
k B∗kp̂k+1 + Ck(y

0
k + HkX1

k),

X1
0 = 0;

p̂1
k = (Ak + CkHk)p̂

1
k+1 + (V∗1QkV1 + V∗2,kQ̄kV2,k)X1

k −∆M p̂1

k ,

p̂1
N = (V∗1QNV1 + V∗2,NQ̄NV2,N)X1

N ,

(4.2.55)

where ∆M p̂0

k is a martingale difference adapted to Fy
0

k , and ∆M p̂1

k is another

martingale difference adapted to Fyk . Since y0 is well-defined in (4.2.33), X̂0
k+1|k

exists as a solution of the forward stochastic difference equation in (4.2.54); and

the readiness of the existence of X̂0 and y0 guarantees the existence of the backward

stochastic difference equation p̂0 in (4.2.54) too. So the existence issue only comes

with the forward backward stochastic difference equations system (4.2.55).

Assume the following Ansatz:

p̂1
k = ΓkX1

k + gk, (4.2.56)

for some gk adapted to Fyk−1, for k = 1, . . . , N , and positive definite deterministic

matrix {Γk}Nk=1 to be confirmed. Clearly,

X1
k+1 = (I + BkRkB∗kΓk+1)−1

(
(Ak + CkHk)X1

k − BkRkB∗kgk+1 + Cky
0
k

)
, (4.2.57)
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4.2. Solution of Mean Field Type Control Problem

where the matrix inverse (I + BkRkB∗kΓk+1)−1 is well defined; indeed,

(I + BkRkB∗kΓk+1)−1 =
(

(Γ−1
k+1 + BkRkB∗k)Γk+1

)−1

= Γ−1
k+1(Γ−1

k+1 + BkRkB∗k)−1,

(4.2.58)

where Γ−1
k+1 is positive definite and BkRkB∗k is non-negative definite as Rk > 0.

Hence, Γ−1
k+1 + BkRkB∗k is positive definite and so invertible, and we conclude the

claim. Taking conditional expectation on both sides of the backward difference

equation in Equation (4.2.55), and then substitute back the Ansatz (4.2.56), we

obtain

p̂1
k = (Ak + CkHk)

∗E[p̂1
k+1|F

y
k−1] + (V∗1QkV1 + V∗2,kQ̄kV2,k)X1

k

= (Ak + CkHk)
∗E[Γk+1X1

k+1 + gk+1|Fyk−1] + (V∗1QkV1 + V∗2,kQ̄kV2,k)X1
k

= (Ak + CkHk)
∗Γk+1E

[
(I + BkRkB∗kΓk+1)−1

(
(Ak + CkHk)X1

k − BkRkB∗kgk+1 + Cky
0
k

)
|Fyk−1

]
+ (Ak + CkHk)

∗E[gk+1|Fyk−1] + (V∗1QkV1 + V∗2,kQ̄kV2,k)X1
k

= (Ak + CkHk)
∗Γk+1(I + BkRkB∗kΓk+1)−1(Ak + CkHk)X1

k + (V∗1QkV1 + V∗2,kQ̄kV2,k)X1
k

− (Ak + CkHk)
∗Γk+1E

[
(I + BkRkB∗kΓk+1)−1

(
− BkRkB∗kgk+1 + Cky

0
k

)
|Fyk−1

]
+ (Ak + CkHk)

∗E[gk+1|Fyk−1].

(4.2.59)

Comparing coefficients of (4.2.59) with the Ansatz (4.2.56), it yields that
Γk = (Ak + CkHk)

∗Γk+1(I + BkRkB∗kΓk+1)−1(Ak + CkHk)

+(V∗1QkV1 + V∗2,kQ̄kV2,k),

ΓN = (V∗1QNV1 + V∗2,NQ̄NV2,N);

(4.2.60)

gk = (Ak + CkHk)
∗E
[
Γk+1(I + BkRkB∗kΓk+1)−1(−BkRkB∗kgk+1 + Cky

0
k) + gk+1|Fyk−1

]
,

gN = 0.

(4.2.61)

It remains to show that Γ and g indeed satisfy the requirement as demanded

in the Ansatz (4.2.56). Note that that filtration Fyk−1, depending on the past
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4.2. Solution of Mean Field Type Control Problem

unobservable states X0, . . . ,Xk−1, also depends on g1, . . . , gk−1 through the con-

trols; meanwhile, gk defined in Equation (4.2.61) relies on its future evolution

and hence the existence of gk cannot be readily concluded due to this forward-

backward structure. And therefore the forward-backward system (4.2.55) is fully

coupled.

Lemma 4.2.4. Suppose that Γk+1 is positive definite. Then Γk is also positive

definite.

Proof. Since V1,V2,k are of full rank, and Qk, Q̄k are positive definite, we have

V∗1QkV1 + V∗2,kQ̄kV2,k > 0. It remains to show that

(Ak + CkHk)
∗Γk+1(I + BkRkB∗kΓk+1)−1(Ak + CkHk)

is non-negative definite. We have

(I + BkRkB∗kΓk+1)−1 = Γ−1
k+1(Γ−1

k+1 + BkRkB∗k)−1,

from Equation (4.2.58), which is well defined as Γk+1 is invertible by assumption.

Finally, we have

(Ak + CkHk)
∗Γk+1(I + BkRkB∗kΓk+1)−1(Ak + CkHk)

=(Ak + CkHk)
∗(Γ−1

k+1 + BkRkB∗k)−1(Ak + CkHk) ≥ 0,

since Γ−1
k+1 > 0 and BkRkB∗k ≥ 0, so our claim follows.

Clearly, ΓN is positive definite and we conclude that {Γk}Nk=1 is positive definite

and deterministic by Lemma 4.2.4.

Lemma 4.2.5. The sequence {gk}Nk=1 satisfying (4.2.61) exists, i.e. fulfilling the

adaptedness requirement.

Proof. For notational simplicity, we rewrite Equation (4.2.61):

gk = E[hkgk+1 + h̃ky
0
k|F

y
k−1], gN = 0.
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Hence

gk = E[hkgk+1 + h̃ky
0
k|F

y
k−1]

= E
[
hkE[hk+1gk+2 + h̃k+1y

0
k+1|F

y
k ] + h̃ky

0
k|F

y
k−1

]
= E

[
hkhk+1gk+2 + hkh̃k+1y

0
k+1 + h̃ky

0
k|F

y
k−1

]
= E

[
h̃ky

0
k +

N−1∑
i=k+1

hkhk+1 · · ·hi−1h̃iy
0
i |F

y
k−1

]
.

We first claim that g1 exists; indeed,

g1 = E
[
h̃1y

0
1 +

N−1∑
i=2

h1h2 · · ·hi−1h̃iy
0
i

∣∣y0

]
, (4.2.62)

and hence g1 exists as y0
· is well defined in (4.2.33) and y0 = H0ξ+ V0. The ready

existences of Γ1 and g1 guarantee that X1
1 exists by applying Equation (4.2.57).

Next, consider

g2 = E
[
h̃2y

0
2 +

N−1∑
i=3

h2h3 · · ·hi−1h̃iy
0
i

∣∣∣y0, y1

]
, (4.2.63)

y1 = H1X1 + V1 = H1(X0
1 + X1

1) + V1 exists as X0
1 is well defined in Equation

(4.2.33). Therefore, g2 exists since y0
· and y0, y1 exist, so does X1

2 by Equation

(4.2.57). In general, we could obtain gk by inductive argument.

Due to the convexity and coerciveness of the quadratic cost functional, the

Euler’s condition is also a sufficient condition for the oprimal control. In conclu-

sion, the solution for the original mean field type optimal control problem is given

as follows:

Corollary 4.2.6. The optimal control of Problem 4.1.3 is given by (4.2.48).

4.3 Solution of Mean Field Game

4.3.1 Individual’s Optimal Control Problem

Theorem 4.3.1. Let z· be an arbitrary FW̃· -adapted process.
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1. Suppose that for k = 0, 1, ..., N − 1, the optimal control uk of Problem

4.1.2(a) exists. Then

uk = −R−1
k B∗kqk, (4.3.64)

where qk can be constructed so that qk satisfies the following Backward

Stochastic Difference Equation:qk = A∗k+1qk+1 + (Qk+1 + Q̄k+1)E(xk+1|Fyk )− (Q̄k+1Sk+1)E(zk+1|Fyk )−∆M q
k ,

qN−1 = (QN + Q̄N)E(xN |FyN−1)− (Q̄NSN)E(zN |FyN−1),

(4.3.65)

where ∆M q
k is a martingale difference and the corresponding martingale is

adapted to the filtration Fyk .

2. Conversely, suppose that the solution q· of system (4.3.65) exists. Then

uk = −R−1
k B∗kqk is the optimal control for Problem 4.1.2(a).

Remark 4.3.2. From this theorem, we know that the solution of Problem 4.1.2(a)

corresponds to the following forward backward difference equation system:

xk+1 = Akxk + Ākzk −BkR
−1
k B∗kqk +Wk+1 + W̃k+1,

x0 = ξ;

qk = A∗k+1qk+1 + (Qk+1 + Q̄k+1)E(xk+1|Fyk )− (Q̄k+1Sk+1)E[zk+1|Fyk ]−∆M q
k ,

qN = (QN + Q̄N)E(xN |FyN−1)− (Q̄NSN)E(zN |FyN−1),

∆M q
k = A∗k+1

(
qk+1 − E(qk+1|Fyk )

)
.

(4.3.66)

Therefore, the solution (x·, q·) of (4.3.66) can be regarded as a functional of

(z0, . . . , zN). For the sake of convenience in the later part of our article, we define

the mapping L : (z0, . . . , zN) 7→ (x0, . . . , xN) through the system (4.3.66).
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4.3. Solution of Mean Field Game

Proof. 1. Consider a perturbation of the optimal control u+ τ ũ, where τ ∈ R

is arbitrary and ũ = (ũ0, ..., ũN−1) and ũk is adapted to the filtration Fyk ,

for i = 1, ..., N − 1. The original state xk becomes xk + τ x̃k withx̃k+1 = Akx̃k +Bkũk,

x̃0 = 0.

The optimality of u would satisfy the Euler’s condition:

0 =
d

dτ

∣∣∣∣∣
τ=0

J(u+ τ ũ)

= 2E
[
〈u0, ũ0〉R0 +

N−1∑
k=1

(
〈xk, x̃k〉Qk + 〈uk, ũk〉Rk + 〈xk − Skzk, x̃k〉Q̄k

)
+ 〈xN , x̃N〉QN + 〈xN − SNzN , x̃N〉Q̄N

]
. (4.3.67)

Define the adjoint process by the following backward stochastic difference

equation, for k = 1, ..., N − 1,pk = A∗kpk+1 + (Qk + Q̄k)xk − (Q̄kSk)zk −∆Mp
k ,

pN = (QN + Q̄N)xN − (Q̄NSN)zN .

(4.3.68)

where ∆Mp
k is the following Fk+1-measurable martingale difference

∆Mp
k = A∗k(pk+1 − E(pk+1|Fk)). (4.3.69)

Note that the very existence of pk = (Qk+Q̄k)xk−(Q̄kSk)zk+A
∗
kE(pk+1|Fk) ∈

Fk, since xk, zk ∈ Fk, is ensured by that of uk which in turn warrants the

existence of xN , and then establishing those pk backwards.
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4.3. Solution of Mean Field Game

Consider

〈x̃k+1, pk+1〉 − 〈x̃k, pk〉 = 〈x̃k+1 − x̃k, pk+1〉+ 〈x̃k, pk+1 − pk〉

=〈x̃k, pk+1 − A∗kpk+1 − (Qk + Q̄k)xk + (Q̄kSk)zk〉

+ 〈Akx̃k +Bkũk − x̃k, pk+1〉+ 〈x̃k,∆Mp
k 〉

=〈x̃k, (I − Ak)∗pk+1〉 − 〈(I − Ak)x̃k, pk+1〉

+ 〈x̃k,−(Qk + Q̄k)xk + (Q̄kSk)zk〉+ 〈Bkũk, pk+1〉+ 〈x̃k,∆Mp
k 〉,

summing up from k = 0 to N − 1 and taking expectation, we have

0 =E
[
−
〈
x̃N , (QN + Q̄N)xN − (Q̄NSN)zN

〉
+

N−1∑
k=0

(
〈x̃k,−(Qk + Q̄k)xk + (Q̄kSk)zk〉+ 〈Bkũk, pk+1〉

)]
.

Using (4.3.67) and noting that uk and ũk is adapted to Fyk , we can get

0 = E
[N−1∑
k=0

〈Rkuk +B∗kpk+1, ũk〉
]

= E
[N−1∑
k=0

〈
Rkuk + E(B∗kpk+1|Fyk ), ũk

〉]
.

Since ũ is arbitrary, we get the optimal control uk = −R−1
k B∗kE(pk+1|Fyk ) for

k = 1, 2, ..., N − 1.

Let qk := E(pk+1|Fyk ), taking conditional expectation given Fyk on both sides

of (4.3.68) yields that

qk = A∗k+1E(pk+2|Fyk ) + (Qk+1 + Q̄k+1)E(xk+1|Fyk )− (Q̄k+1Sk+1)E(zk+1|Fyk )

= A∗k+1qk+1 + (Qk+1 + Q̄k+1)E(xk+1|Fyk )− (Q̄k+1Sk+1)E(zk+1|Fyk )−∆M q
k ,

where

∆M q
k = A∗k+1qk+1 − A∗k+1E(pk+2|Fyk ) = A∗k+1qk+1 − A∗k+1E(E(pk+2|Fyk+1)|Fyk )

= A∗k+1qk+1 − A∗k+1E(qk+1|Fyk ),

∆M q
k is the new martingale difference measurable with respect to Fyk+1. We

can easily see that ∆M q
k 6= E(∆Mp

k |F
y
k ).
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4.3. Solution of Mean Field Game

Therefore, the optimal control is given by

uk = −R−1
k B∗kqk,

where qk satisfies (4.3.65).

2. Conversely, suppose that the solution q· of system (4.3.65) exists. Then

taking uk = −R−1
k B∗kqk, we can work backward in the part 1, as the existence

of the process p· can be constructed and ensured by using xu, and we can

see that the Euler’s condition (4.3.67) can be satisfied.

By the convexity and coerciveness of the quadratic cost functional, the optimal

control for the individual follower is uniquely defined and this necessary condition

is automatically a sufficient one.

4.3.2 Existence of an Equilibrium Solution

In order to look for the equilibrium solution, we have to seek for a z· such that it

satisfies the fixed point property (4.1.11) in Problem 4.1.2(b):

zk = E(L(z0, . . . , zN)k|FW̃k ), for k = 0, . . . , N. (4.3.70)

so that the limiting system with which the finite player system should converge

to.

A control uk is said to be an equilibrium control of the mean field game prob-

lem, if uk = uzk, where uzk is itself the optimal control for the control problem

in Theorem (4.3.1) when zuk = E(xuk|FW̃k ). Therefore, the solution approaches to

Problem 4.1.2 (a) and (b) can be combined by considering the fixed point prob-

lem (4.3.70) and the system (4.3.66) together, i.e. the solution of Problem 4.1.2
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4.3. Solution of Mean Field Game

is given by the following forward backward stochastic difference equation:

xk+1 = Akxk + ĀkE(xk|FW̃k )−BkR
−1
k B∗kqk +Wk+1 + W̃k+1,

x0 = ξ;

qk = A∗k+1qk+1 + (Qk+1 + Q̄k+1)E(xk+1|Fyk )

−(Q̄k+1Sk+1)E[E(xk+1|FW̃k+1)|Fyk ]−∆M q
k ,

qN = (QN + Q̄N)E(xN |FyN−1)− (Q̄NSN)E(E(xN |FW̃N )|FyN−1),

∆M q
k = A∗k+1

(
qk+1 − E(qk+1|Fyk )

)
,

(4.3.71)

with the corresponding observable process

yk = Hkxk + H̄kE(xk|FW̃k ) + Vk.

Before we proceed to establish the existence of the system (4.3.71), we would

like to make the following comments. Firstly, in the continuous time setting, the

interesting work [26] studied the case where all admissible controls for each player

adapt not only to his observable process, but also to the common noise (W̃ ), this

setting makes their work to have a limited use in the usual economic context as the

common noise for the whole community can hardly be observed directly. Putting

their framework in our own problem, if we assume that all the admissible controls

adapt to Fyk ∨FW̃k+1, since the optimal control uk = −R−1
k B∗kqk, qk now also adapts

to Fyk ∨FW̃k+1, and the iterated conditional expectation E[E(xk+1|FW̃k+1)|Fyk ] in the

backward equation of system (4.3.71) becomes

E[E(xk+1|FW̃k+1)|Fyk ∨ F
W̃
k+1] = E(xk+1|FW̃k+1), (4.3.72)

so we do not need to consider the complicated dependence structure between Fy

and FW̃ , and the existence result is rather immediate. The following section

demonstrates how this implicit dependence structure makes the existence result

of system (4.3.71) subtle.
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4.3. Solution of Mean Field Game

Secondly, we have an alternative expression for the solution of the backward

stochastic difference equation in system (4.3.71), which will facilitate the establish-

ment of the existence result of system (4.3.71). By taking conditional expectation

given Fyk on both sides of the backward equation in (4.3.71), we get
qk = A∗k+1E(qk+1|Fyk ) + (Qk+1 + Q̄k+1)E(xk+1|Fyk )

−Q̄k+1Sk+1E(E(xk+1|FW̃k+1)|Fyk ),

qN−1 = (QN + Q̄N)E(xN |FyN−1)− (Q̄NSN)E(E(xN |FW̃N )|FyN−1).

Inductively, we then obtain:

qk =(Qk+1 + Q̄k+1)E(xk+1|Fyk )− Q̄k+1Sk+1E(E(xk+1|FW̃k+1)|Fyk ) (4.3.73)

+
N∑

r=k+2

A∗k+1A
∗
k+2 · · ·A∗r−1

(
(Qr + Q̄r)E(xr|Fyk )− Q̄rSrE(E(xr|FW̃r )|Fyk )

)
.

Therefore, the existence of the solution of system (4.3.71) is equivalent to the

solvability of the following particular forward system:

xk+1 = Akxk + ĀkE(xk|FW̃k )

−BkR
−1
k B∗k

(
(Qk+1 + Q̄k+1)E(xk+1|Fyk )− Q̄k+1Sk+1E

(
E(xk+1|FW̃k+1)|Fyk

)
+
∑N

r=k+2A
∗
k+1 · · ·A∗r−1

(
(Qr + Q̄r)E(xr|Fyk )− Q̄rSrE

(
E(xr|FW̃r )|Fyk

)))
+Wk+1 + W̃k+1,

yk = Hkxk + H̄kE(xk|FW̃k ) + Vk.

(4.3.74)

It is now ready to establish the existence of the solution of the system (4.3.71).

Define the Gaussian space

G := {(x, α, β, γ)| x = (x1, · · · , xN)∗, α = (α1, · · · , αN)∗, β = (β1, · · · , βN)∗,

γ = (γ0, · · · , γN−1)∗ are jointly Gaussian, with xk ∈ Fk in Rdx ,

αk ∈ FWk in Rdx , βk ∈ FW̃k in Rdx , γk ∈ FVk in Rdy ;

for k = 1, · · · , N},
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4.3. Solution of Mean Field Game

which is equipped with a canonical L2 norm:

‖(x, α, β, γ)‖2
L2 :=

N∑
k=1

E‖xk‖2 +
N∑
k=1

E‖αk‖2 +
N∑
k=1

E‖βk‖2 +
N−1∑
k=0

E‖γk‖2. (4.3.75)

Clearly, (G,L2) is a vector space. In fact it is also complete. Let (xn, αn, βn, γn)

be a Cauchy sequence in (G,L2). By the completeness of finite sequence of

square integrable random variables under L2, the Cauchy sequence converges to

(x, α, β, γ). It remains to check that: 1. (x, α, β, γ) preserves the adaptedness; 2.

(x, α, β, γ) are jointly Gaussian. The definition (4.3.75) implies that, component-

wisely, for each k, {xnk}n is again a Cauchy sequence. Using Riesz-Fischer the-

orem (see, for example, [45] or [31]), xnk converges a.e. and L2 to xk. Since the

sequence {xnk}n is Fk measurable, so does the a.e. limit xk. Similarly, we have

αk ∈ FWk , βk ∈ FW̃k , γk ∈ FVk . For the second point, note that the L2 convergence

of Gaussian random variables implies the mean and variance converge (and hence

the characteristic function). The L2 limit remains Gaussian is then immediate.

For any K > 0, we define the nonempty subset CK of G by

CK := {(x, α, β, γ)| (x, α, β, γ) ∈ G,

1. sup
‖c‖≤1

E|c∗x|2 ≤ K;

2. xk = aξ +
k∑
i=1

biWi +
k−1∑
i=0

ciVi +
k∑
i=1

diW̃k + e, k = 1, . . . , N ;

3. α = W := (W1, · · · ,WN), β = W̃ := (W̃1, · · · , W̃N),

γ = V := (V0, · · · , VN−1), };

where a, bi, ci, di, e are constant matrices with appropriate dimensions. We have

shown that the L2 limit preserves the adaptedness, Gaussian structure and hence

CK is closed. We argue that CK is also convex. For any (x, α, β, γ), (x′, α′, β′, γ′) ∈
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4.3. Solution of Mean Field Game

CK , we can see that

E|c∗(λx + (1− λ)x′)|2

= λ2E|c∗x|2 + 2λ(1− λ)E|(c∗x)∗(c∗x′)|+ (1− λ)2E|c∗x′|2

≤ λ2E|c∗x|2 + 2λ(1− λ)(E|c∗x|2E|c∗x′|2)
1
2 + (1− λ)2E|c∗x′|2 ≤ K.

Due to linearity in x, it is clear that CK preserves the adaptedness structure.

That is for any element (x, α, β, γ) ∈ CK , we have xk ∈ Fk.

In light of (4.3.74), define the mapping T : (x,W,W̃,V) ∈ CK 7→ (X,W,W̃,V) ∈

G, such that:

Xk+1 = Akxk + ĀkE(xk|FW̃k )

−BkR
−1
k B∗k

(
(Qk+1 + Q̄k+1)E(xk+1|Fyk )− Q̄k+1Sk+1E

(
E(xk+1|FW̃k+1)|Fyk

)
+
∑N

r=k+2A
∗
k+1 · · ·A∗r−1

(
(Qr + Q̄r)E(xr|Fyk )− Q̄rSrE

(
E(xr|FW̃r )|Fyk

)))
+Wk+1 + W̃k+1,

yk = Hkxk + H̄kE(xk|FW̃k ) + Vk,

(4.3.76)

where k = 0, · · · , N − 1 and x0 = ξ is a Gaussian random variable. Clearly,

the image Xk is Gaussian since any conditional expectations of jointly Gaussian

random variables remain Gaussian and are adapted to Fk, and hence the mapping

T is well-posed. We next have the following lemmas.

Lemma 4.3.3. T is a continuous mapping.

Proof. Suppose that {(xn,W,W̃,V)}n ⊂ CK is a sequence converging to (x,W,W̃,V) ∈

CK in L2. It suffices to check that the corresponding images under T , (Xn,W,W̃,V),

converges to (X,W,W̃,V) in L2.

Let W̃k := (W̃1, . . . , W̃k), ynk := (yn0 , y
n
1 , . . . , y

n
k ). The following conditional

expectations of Gaussian random variables can be expressed as:
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4.3. Solution of Mean Field Game

i) E(xnk |FW̃k ) = E(xnk)− Cov(xnk ,W̃k)Var−1(W̃k)(W̃k − E(W̃k));

ii) E(xnr |F
yn

k ) = E(xnr )−Cov(xnr ,y
n
k )Var−1(ynk )(ynk−E(ynk )), for r = k+1, . . . , N ;

iii)

E(E(xnr |FW̃r )|Fy
n

k ) = E(xnr )− Cov(xnr ,W̃r)Var−1(W̃r)E(W̃r|Fy
n

k )

=E(xnr )− Cov(xnr ,W̃r)Var−1(W̃r)
(
E(W̃r)− Cov(ynk ,W̃r)Var−1(ynk )(ynk − E(ynk ))

)
;

and similarly, in the limiting case,

i′) E(xk|FW̃k ) = E(xk)− Cov(xk,W̃k)Var−1(W̃k)(W̃k − E(W̃k));

ii′) E(xr|Fyk ) = E(xr)−Cov(xr,yk)Var−1(yk)(yk−E(yk)), for r = k+1, . . . , N ;

iii′)

E(E(xr|FW̃r )|Fyk ) = E(xr)− Cov(xr,W̃r)Var−1(W̃r)E(W̃r|Fyk )

=E(xr)− Cov(xr,W̃r)Var−1(W̃r)
(
E(W̃r)− Cov(yk,W̃r)Var−1(yk)(yk − E(yk))

)
.

Note that the assumption of L2 convergence (xn,W,W̃,V)→ (x,W,W̃,V)

implies the mean and variance convergence of the jointly Gaussian random vari-

ables. In otherwors, we clearly have E(xnk)→ E(xk), Cov(xnk ,W̃k)→ Cov(xk,W̃k)

and Cov(ynk ,W̃k)→ Cov(yk,W̃k).

So according to (4.3.76) if we rewrite

Xn
k+1 = (ank)∗xn + (bnk)∗E(xn) + (cnk)∗W + (dnk)∗W̃ + (enk)∗V,

and

Xk+1 = (ak)
∗x + (bk)

∗E(x) + (ck)
∗W + (dk)

∗W̃ + (ek)
∗V,

we see that all the coefficients ank → ak, b
n
k → bk, c

n
k → ck, d

n
k → dk, e

n
k → ek

converges as real vectors and xn → x in L2 as n→∞. Therefore, (Xn,W,W̃,V)
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converges to (X,W,W̃,V) in L2 by triangle inequality. In particular,

E|Xn
k+1 −Xk+1|2

≤5
(
E|(ank)∗xn − (ak)

∗x|2 + E|(bnk)∗E(xn)− (bk)
∗E(x)|2

+ E|(cnk − ck)∗(W)|2 + E|(dnk − dk)∗(W̃)|2 + E|(enk − ek)∗(V)|2
)

≤5
(

2|ank − ak|2E|xn|2 + 2|ak|2E|xn − x|2

+ 2|bnk − bk|2|E(xn)|2 + 2|bk|2|E(xn)− E(x)|2

+ |cnk − ck|2E|W|2 + |dnk − dk)|2E|W̃|2 + |enk − ek|2E|V|2
)

≤5
(

2K|ank − ak|2 + 2|ak|2E|xn − x|2 + 2K|bnk − bk|2 + 2|bk|2|E(xn)− E(x)|2

+ |cnk − ck|2E|W|2 + |dnk − dk)|2E|W̃|2 + |enk − ek|2E|V|2
)
,

(4.3.77)

where the right hand side clearly goes to zero as n→∞.

Lemma 4.3.4. Denote

η :=8

N∑
k=1

{
(‖Ak‖2 + ‖Āk‖2‖) + ‖Bk−1R

−1
k−1B

∗
k−1‖2(‖(Qk + Q̄k)‖2 + ‖Q̄kSk‖2)

+N
k−2∑
r=0

‖BrR−1
r B∗r‖2‖A∗r+1 · · ·A∗k−1‖2

(
‖(Qk + Q̄k)‖2 + ‖Q̄kSk‖2

)}
.

Suppose η < 1, and we choose M such that

8(‖A0‖2 + ‖Ā0‖2)E‖ξ‖2 + 8
∑N−1

k=0 Tr(σ2
k+1 + σ̃2

k+1)

1− η
< M, (4.3.78)

then, for any x ∈ CM , X = T (x) ∈ CM , and hence T is a self- mapping in CM .

Remark 4.3.5. Our model is mimicking a continuous time model setting, in which

the coefficients are commonly proportional to the length of each time interval of the

partition. Hence, it is common that the coefficients Ak, Bk, Rk, Qk, σ2
k and σ̃2

k are

of order O( 1
N

); while Sk and E‖ξ‖2 are of order O(1) as Sk is the weight of mean

field term and E‖ξ‖2 is the second moment of the initial random variable. Hence
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η = O( 1
N

) and the first condition η < 1 can be easily satisfied. Moreover, the left

hand side of (4.3.78) is of order O(1), and we can then pick up a sufficiently large

M so that the second condition (4.3.78) holds.

Proof. By (4.3.76), we have

‖Xk+1‖2

≤8

{
‖Ak‖2‖xk‖2 + ‖Āk‖2‖E(xk|FW̃k )‖2

+ ‖BkR−1
k B∗k‖2

[
‖(Qk+1 + Q̄k+1)‖2‖E(xk+1|Fyk )‖2 + ‖Q̄k+1Sk+1‖2

∥∥E(E(xk+1|FW̃k+1)|Fyk
)∥∥2

+ (N − k − 1)

N∑
r=k+2

‖A∗k+1 · · ·A∗r−1‖2
(
‖(Qr + Q̄r)‖2‖E(xr|Fyk )‖2

+ ‖Q̄rSr‖2‖E
(
E(xr|FW̃r )|Fyk

)
‖2
)]

+ ‖Wk+1‖2 + ‖W̃k+1‖2
}
,
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summing up from k = 0 to N − 1 on both sides, then taking expectation, we have

E
N−1∑
k=0

‖Xk+1‖2

≤8
N−1∑
k=0

{
‖Ak‖2E‖xk‖2 + ‖Āk‖2E‖E(xk|FW̃k )‖2

+ ‖BkR
−1
k B∗k‖2

[
‖(Qk+1 + Q̄k+1)‖2E‖E(xk+1|Fyk )‖2

+ ‖Q̄k+1Sk+1‖2E
∥∥E(E(xk+1|FW̃k+1)|Fyk

)∥∥2

+ (N − k − 1)
N∑

r=k+2

‖A∗k+1 · · ·A∗r−1‖2
(
‖(Qr + Q̄r)‖2E‖E(xr|Fyk )‖2

+ ‖Q̄rSr‖2E‖E
(
E(xr|FW̃r )|Fyk

)
‖2
)]

+ E‖Wk+1‖2 + E‖W̃k+1‖2

}
≤8

N−1∑
k=0

{
(‖Ak‖2 + ‖Āk‖2‖)E‖xk‖2

+ ‖BkR
−1
k B∗k‖2

[
(‖(Qk+1 + Q̄k+1)‖2 + ‖Q̄k+1Sk+1‖2)E‖xk+1‖2

+N
N∑

r=k+2

‖A∗k+1 · · ·A∗r−1‖2
(
‖(Qr + Q̄r)‖2 + ‖Q̄rSr‖2

)
E‖xr‖2

]}

+ 8
N−1∑
k=0

Tr(σ2
k+1 + σ̃2

k+1)

≤8(‖A0‖2 + ‖Ā0‖2)E‖ξ‖2

+ 8
N∑
k=1

{
(‖Ak‖2 + ‖Āk‖2‖) + ‖Bk−1R

−1
k−1B

∗
k−1‖2(‖(Qk + Q̄k)‖2 + ‖Q̄kSk‖2)

+N
k−2∑
r=0

‖BrR
−1
r B∗r‖2‖A∗r+1 · · ·A∗k−1‖2

(
‖(Qk + Q̄k)‖2 + ‖Q̄kSk‖2

)}
E‖xk‖2

+ 8
N−1∑
k=0

Tr(σ2
k+1 + σ̃2

k+1) ≤M.

Lemma 4.3.6. The complete metric space (CM , L2) is a compact subset in G.
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4.4. Conclusion

Proof. For any sequence {Xn} ⊂ CM , Xn = (xn,W,W̃,V) with xnk = anξ +∑k
i=1 b

n
iWi +

∑k−1
i=0 c

n
i Vi +

∑k
i=1 d

n
i W̃k + en and Xn is Gaussian and E|Xn|2 ≤

M . That is, the means and variances of Xn’s are uniformly bounded. Hence,

an, bni , c
n
i , d

n
i , e

n are also bounded for i = 1, . . . , k, k = 1, . . . , N and all n ∈

N. By the Bolzano-Weierstrass theorem applying to an, bni , c
n
i , d

n
i , e

n, we can find

a subsequence anj , b
nj
i , c

nj
i , d

nj
i , e

nj such that anj , b
nj
i , c

nj
i , d

nj
i , e

nj all converge to

limits a, bi, ci, di, e. Let X = (x,W,W̃,V) with xk = aξ+
∑k

i=1 biWi+
∑k−1

i=0 ciVi+∑k
i=1 diW̃k + e. It’s easy to see that X ∈ CM and, by applying triangle inequality

similar to (4.3.77), Xnj converge to X in L2. It is clear that the limit preserves

adaptivity, that is xk ∈ Fk.

We next recall a standard result:

Theorem 4.3.7 (Schauder’s fixed point theorem). (see Theorem 7, p.219, in

[11]) Let A be a (non-empty) closed convex subset of a normed space X and let

f : A → A be a continuous map such that K = f(A) is compact in X. Then f

has a fixed point.

Theorem 4.3.8. Suppose the condition (4.3.78) in Lemma 4.3.4 holds, then the

system (4.3.71) admits a solution.

Proof. Now G is a Hausdorff topological vector space and CM is a nonempty,

closed and convex subset of G. If the condition (4.3.78) in Lemma 4.3.4 holds,

T is a continuous convex map from CM into CM and CM is compact in G. By

Theorem 4.3.7, T has a fixed point in CM and hence the solution of system (4.3.74)

exists. Therefore, the solution of system (4.3.71) exists by the equivalence of the

systems (4.3.74) and (4.3.71).

4.4 Conclusion

Under the discrete time partial observation setting in which individual only makes

decision based on the observable processes, the mean field type control problem is
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4.4. Conclusion

always uniquely solvable. Nonetheless, due to a mixture information flows men-

tioned in this chapter, a similar result is not ready for mean field games. By

applying the Schauder’s fixed point theorem and introducing several conditions

suggested in Lemma 4.3.4, the existence of a solution to mean field game is estab-

lished. A generalization to the continuous time setting is rather difficult, as our

proof is based heavily on the preservation of Gaussian structure in the difference

equation, where we lost such property in the continuous time case. The results in

this chapter is published in [21].
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Chapter 5

Hilbert Calculus and Mean Field

Games

This chapter introduces a probabilistic approach to obtain general unique and

existence results of a non-linear Forward Backward Stochastic Differential Equa-

tion (FBSDE) related to Mean Field Games, by interpreting McKean Vlasov type

equations in an appropriate Hilbert space. The SHJB-FP pair in Chapter 2 is con-

nected to the FBSDE of McKean Vlasov type introduced in this Chapter through

a “Master Equation”, see [9], [17] and [18] for details, which is beyond the scope

of the present thesis.

The sufficient condition we demonstrated is likely to be independent of time

horizon. In the abstract sense, the individual state evolution satisfies the following

stochastic differential equation:dxs = f(xs,Ls, us)ds+ σdWs,

xt = ξ.
(5.0.1)

The cost functional is given by

J(U) =

∫ T

t

E[g(xs,Ls, us)]ds+ E[h(xT ,LT )]. (5.0.2)

In mean field game, the mean field term Ls is exogenous to the control problem
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at the first place. To solve this mean field game, given the mean field term, one

first solves the stochastic optimal control problem described by (5.0.1) and (5.0.2).

The mean field term L would then be replaced by Lxs , the measure of the optimal

trajectory of the state variable obtained in the first step.

The domain and image of the functional coefficients are specified as follows

f : Rnx ⊕ P2(Rnx)⊕ Rnu → Rnx ;

g : Rnx ⊕ P2(Rnx)⊕ Rnu → R;

h : Rnx ⊕ P2(Rnx)→ R;

σ ∈ L(Rnw ;Rnx).

(5.0.3)

Here P2 is the space of probability measure of finite second moment in Rnx

equipped with the 2nd-Wasserstein metric:

W2(X, Y ) = inf
πX,Y

∫
Rnx
|x− y|2dπX,Y (x, y), X, Y ∈ L2(Ω,Rnx); (5.0.4)

where the infimum is taking over all joint measures for the random variables

X, Y . As remark, the convergence of random variables in L2(Ω,Rnx) implies

the convergence of the associated measures in W2. Assume that the coefficients

are Lipschitz and differentiable. Applying the stochastic maximum principle, we

obtain the following classical FBSDE for a mean field game:

dxs = f(xs,Ls, u)|u=u(xs,Ls,ps)ds+ σdWs,

xt = ξ;

−dps =
[
〈Dxf

∗(xs,Ls, u)|u=u(xs,Ls,ps), ps〉Rnx +Dxg(xs,Ls, u)|u=u(xs,Ls,ps)

]
ds

− ZsdWs,

pT = Dxh(xT ,LT ),

(5.0.5)

where Dx denotes the gradient with respect to the spatial variable. Here u(x,L, p)

is the unique minimizer of the Lagrangian:

u(x,L, p) := argminu∈Rnu{〈f(x,L, u), p〉Rnx + g(x,L, u)}, (5.0.6)
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5.1. Preliminaries - Calculus in H

which implies the first order condition:

Du

(
〈f(x,L, u)|u=u(x,L,p), p〉Rnx+g(x,L, u)|u=u(x,L,p)

)
= 0, ∀x, p ∈ Rnx ,L ∈ P2(Rnx).

(5.0.7)

In mean field games, after solving the control problem, we will then replace Ls
by Lxs , the law of xs. (5.0.5) becomes a system of Forward Backward Stochastic

Differential Equation of McKean Vlasov type.

dxs = f(xs,Lxs , u)|u=u(xs,Ls,ps)ds+ σdWs,

xt = ξ;

−dps =
[
〈Dxf

∗(xs,Lxs , u)|u=u(xs,Ls,ps), ps〉Rnx +Dxg(xs,Lxs , u)|u=u(xs,Ls,ps)

]
ds− ZsdWs,

pT = Dxh(xT ,LxT ).

(5.0.8)

The first order condition (5.0.7), after putting L = Lx, becomes

Du

(
〈f(x,Lx, u)|u=u(x,Lx,p), p〉Rnx+g(x,Lx, u)|u=u(x,Lx,p)

)
= 0, ∀x, p ∈ Rnx ,Lx ∈ P2(Rnx).

(5.0.9)

The aim of this chapter is to establish the unique existence of a global (in

time) solution of the system (5.0.8). The mean field term Lxs is a probability

measures in P2, which is clearly not a vector space. As suggested by in [9], we

can interpret the whole equation in terms of an appropriate Hilbert space H.

5.1 Preliminaries - Calculus in H

We introduce the notion of calculus in H we used throughout this work and make

a connection with other (differential) operators commonly found in the literature.

5.1.1 Functional of law

For any positive integer n, let Hn = L2(Ω,Rn) be the canonical Hilbert space

for square integrable random variables on Rn equipped with the standard inner
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5.1. Preliminaries - Calculus in H

product

〈x, y〉Hn = E[x · y] = E[〈x, y〉Rn ]

Let F : Hn → R and f depends on X ∈ Hn only through its law, i.e. F (X) =

F (Y ) whenever LX = LY on their support. We have F (X) is a deterministic

number for any input X ∈ Hn and ω ∈ Ω. Whenever it exists, the (Gâteaux)

derivative of F with respect to X is denoted by DXF (X), which is given by

lim
θ→0

F (X + θY )− F (X)

θ
= 〈DXF (X), Y 〉Hn , Y ∈ Hn. (5.1.10)

Clearly DXF is an operator specified by DXF : Hn → Hn. On the other hand,

since F depends on X only through its law, we can write

F (X) = f(LX), (5.1.11)

where f : P2(Rn) → R. Suppose that a random variable X admits a smooth L2

density πX on Rn. If there is no ambiguity, we may interchange the usage of law

and density of X and we write

F (X) = f(LX) = f(πX). (5.1.12)

We now make a connection between this derivative and Wasserstein gradient. (see

[9])

Proposition 5.1.1. DXF (X) agrees with the Wasserstein gradient:

DXF (X) = Dx
∂f

∂m
(πX)(x)

∣∣∣
x=X

. (5.1.13)

Proof. Let Y be another random variable in Hn possesses together with X a

smooth joint L2 density πX,Y (x, y). By the definition of the left hand side of

(5.1.13), we have

lim
θ→0

F (X + θY )− F (X)

θ
=: 〈DXF (X), Y 〉Hn . (5.1.14)
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5.1. Preliminaries - Calculus in H

On the other hand, the density πX+θY of X + θY is given by the convolution

πX+θY (x) =

∫
Rn
πX,Y (x− θy, y)dy, (5.1.15)

with partial derivative

∂πX+θY

∂θ
= −divx

∫
Rn
πX,Y (z − θy, y)ydy. (5.1.16)

Hence

lim
θ→0

F (X + θY )− F (X)

θ
= lim

θ→0

f(πX+θY )− f(πX)

θ

=

∫
Rn

∂f

∂m
(πX)(x)

∂πX+θY

∂θ
(x)dx

= −
∫
Rn

∂f

∂m
(πX)(x)divx

∫
Rn
πX,Y (x, y)ydydx

=

∫
Rn
Dx

∂f

∂m
(πX)(x)

∫
Rn
πX,Y (x, y)ydydx

= E
[
Dx

∂f

∂m
(πX)(x)

∣∣∣
x=X

Y
]

=:
〈
Dx

∂f

∂m
(πX)(x)

∣∣∣
x=X

, Y
〉
Hn
.

(5.1.17)

Comparing (5.1.14) and (5.1.17) concludes the result.

Proposition 5.1.1 suggests that, even in the simplest case that F depends on its

argument X ∈ Hn only through its law (or density), the derivative DXF depends

on both the law and state (or realization) of the random variable. To proceed

on studying higher order derivative, we have to extend the result obtained in

Proposition 5.1.1.

5.1.2 Functional of both state and law

Let F : Hn → Hm and F depends on X ∈ Hn both through its state and law.

We note that F (X) is a random variable in Hm for any X ∈ Hn, instead of a

deterministic number as in the previous case. The (Gâteaux) derivative of F with

respect to X is an operator specified by

DXF : Hn → L(Hn;Hm),
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5.1. Preliminaries - Calculus in H

which is define through (in weak sense)

lim
θ→0

〈F (X + θY ), Z〉Hm − 〈F (X), Z〉Hm
θ

=
〈
DXF (X)(Y ), Z

〉
Hm
, Y ∈ Hn;Z ∈ Hm.

(5.1.18)

Since F depends on X ∈ Hn both through its state and law, we may write

F (X) = f(X,LX) = f(x,LX)|x=X ,

where f : Rn ⊕ P2(Rn) → Rm. Similar to Section 5.1.1, suppose that a random

variable X admits a smooth L2 density πX on Rn, we have

F (X) = f(X, πX) = f(x, πX)|x=X . (5.1.19)

Proposition 5.1.2. If Y is another random variable in Hn with smooth L2 density

in Rn, then DXF (X)(Y ) is given by

DXF (X)(Y ) = Dxf(x, πX)|x=X · Y + EX̃Ỹ [Dx̃
∂

∂m
f(X, πX)(x̃)|x̃=X̃(Ỹ )],

(5.1.20)

where (X̃, Ỹ ) is a pair of independent copy of (X, Y ), and EX̃Y takes expectation

of the random variable in the bracket by integrating with the joint density of X̃

and Ỹ only.

Proof. Let Z ∈ Hm with smooth density in Rm. Using (5.1.19), we have

lim
θ→0

〈F (X + θY ), Z〉Hm − 〈F (X), Z〉Hm
θ

= lim
θ→0

〈f(X + θY, πX+θY ), Z〉Hm − 〈f(X, πX), Z〉Hm
θ

=
〈
Dxf(x, πX)|x=X · Y, Z

〉
Hm

+ lim
θ→0

E[f(X, πX+θY ) · Z]− E[f(X, πX) · Z]

θ

=
〈
Dxf(x, πX)|x=X · Y, Z

〉
Hm

+ lim
θ→0

E[f(X, πX̃+θỸ ) · Z]− E[f(X, πX̃) · Z]

θ
.

(5.1.21)

Note that the numerator in the second term has the expression∫
Rm

∫
Rm

f(x, πX̃+θỸ ) · zπX,Z(x, z)dxdz −
∫
Rm

∫
Rm

f(x, πX̃) · zπX,Z(x, z)dxdz,

(5.1.22)
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which is a deterministic number. Applying Proposition 5.1.1, (5.1.21) becomes〈
Dxf(x, πX)|x=X · Y, Z

〉
Hm

+
〈
Dx̃

∂

∂m
EXZ [f(X, πX) · Z](x̃)|x̃=X̃ , Ỹ

〉
Hn
.

(5.1.23)

Since the operators in the second term of (5.1.23) are commutative, we have

lim
θ→0

〈F (X + θY ), Z〉Hm − 〈F (X), Z〉Hm
θ

=
〈
Dxf(x, πX)|x=X · Y, Z

〉
Hm

+ EXZ
[
EX̃Ỹ [Dx̃

∂

∂m
f(X, πX)(x̃)|x̃=X̃(Ỹ )] · Z

]
,

(5.1.24)

which concludes the proof.

For F : Hn → Hm being a function depends on X ∈ Hn only through its state

and law, we define the following operator

Definition 5.1.3.

DLF : Hn → L(Hn;Hm);

DLF (X) = DXF (X)−Dxf(x,LX)|x=X .
(5.1.25)

By Proposition 5.1.2, providing that X possess a smooth L2 density on Rn,

we have

DLF (X)(Y ) = EX̃Ỹ [Dx̃
∂

∂m
f(X, πX)(x̃)|x̃=X̃(Ỹ )]. (5.1.26)

We have the following immediate application of Proposition 5.1.2. Suppose

that G : Hn → R, where G depends on X ∈ Hn only through its law. The first

and second order derivatives are specified by

DXG : Hn → Hn;

DXXG : Hn → L(Hn;Hn).X

To connect the second order derivative with other differential operators, we fur-

ther assume that X has a smooth density πX on Rn. Since G only depends
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5.1. Preliminaries - Calculus in H

on the law of the argument, by Proposition 5.1.1, we put F (X) = DXG(X) =

Dx
∂g
∂m

(πX)(x)|x=X into (5.1.20):

DXXG(X)(Y )

=DX(DXG(X))(Y )

=Dxx
∂

∂m

(
g(πX)

)
(x)|x=X · Y + EX̃Ỹ [Dx̃

∂

∂m

(
Dx

∂

∂m

(
g(πX)

)
(x)|x=X

)
(x̃)|x̃=X̃(Ỹ )].

(5.1.27)

We further define the following derivatives, whose connections with Wasser-

stein gradient are omitted here. They can be obtained using similar arguments as

in Proposition 5.1.1 and 5.1.2. Let F (X1, X2) be a function in F : Hn1 ⊕Hn2 →

Hm.

1. We define the partial derivative

DX1F : Hn1 ⊕Hn2 → L(Hn1 ;Hm)

through

lim
θ→0

〈F (X1 + θY,X2), Z〉Hm − 〈F (X1, X2), Z〉Hm
θ

=
〈
DX1F (X1, X2)(Y ), Z

〉
Hm
,

(5.1.28)

for all Y ∈ Hn;Z ∈ Hm.

2. We define the cross derivative

DX2X1F : Hn1 ⊕Hn2 → L(Hn2 ⊗Hn1 ;Hm)
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through

lim
θ,γ→0

〈F (X1 + θY1, X2 + γY2), Z〉Hm − 〈F (X1, X2 + γY2), Z〉Hm
θγ

+ lim
θ,γ→0

〈F (X1, X2), Z〉Hm − 〈F (X1 + θY1, X2), Z〉Hm
θγ

= lim
γ→0

〈
DX1F (X1, X2 + γY2)(Y1), Z

〉
Hm
−
〈
DX1F (X1, X2)(Y1), Z

〉
Hm

γ

=
〈
DX2

(
DX1F (X1, X2)(Y1)

)
(Y2), Z

〉
Hm

= :
〈
DX2X1F (X1, X2)(Y2, Y1), Z

〉
Hm

(5.1.29)

for all Y1, Y2 ∈ Hn;Z ∈ Hm. Clearly, we have

DX2X1F (X1, X2)(Y2, Y1) = DX1X2F (X1, X2)(Y1, Y2) ∈ Hm (5.1.30)

by symmetry.

5.2 A Hilbert Space Interpretation

As in the previous section, denote Hk = L2(Ω,Rk) the Hilbert space of square

integrable random variables on Rk. We first interpret the functional coefficients

in system (5.0.8):

F (X,U) : = f(x,L, u)|x=X,L=LX ,u=U ,

G(X,U) : = g(x,L, u)|x=X,L=LX ,u=U ,

H(X) : = h(x,L)|x=X,L=LX ;

(5.2.31)

where F : Hnx ⊕Hnu → Hnx , G : Hnx ⊕Hnu → H1 and H : Hnx → H1. We thus

have

DXF : Hnx ⊕Hnu → L(Hnx ;Hnx) ;DXF : Hnx ⊕Hnu → L(Hnu ;Hnx);

DXG : Hnx ⊕Hnu → L(Hnx ;H1) ;DUG : Hnx ⊕Hnu → L(Hnu ;H1);

DXH : Hnx → L(Hnx ;H1).

(5.2.32)
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5.2. A Hilbert Space Interpretation

The transpose DXF
∗ : Hnx ⊕Hnu → L(Hnx ;Hnx) operator satisfies

〈DXF (X,U)(φx), γx〉Hnx = 〈φx, DXF
∗(X,U)γx〉Hnx , ∀φx, γx ∈ Hnx .

Similarly, we have DUF
∗ : Hnx ⊕Hnu → L(Hnx ;Hnu), which satisfies

〈DUF (X,U)(φu), γx〉Hnx = 〈φu, DXF
∗(X,U)γx〉Hnu ,∀φu ∈ Hnu , γx ∈ Hnx .

We recall that the minimizer of the Lagrangian is given by

u(x,L, p) := argminu∈Rnu{〈f(x,L, u), p〉Rnx + g(x,L, u)}, (5.2.33)

and the first order condition

Du

(
〈f(x,L, u)|u=u(x,L,p), p〉Rnx+g(x,L, u)|u=u(x,L,p)

)
= 0, ∀x, p ∈ Rnx ,L ∈ P2(Rnx).

(5.2.34)

Their H interpretation are respectively given by

U(X,P ) = u(x,LX , p)|x=X,p=P (5.2.35)

and

DU〈F (X,U)|U=U(X,P ), P 〉Rnx +DUG(X,U)|U=U(X,P ) = 0, ∀X,P ∈ Hx.

(5.2.36)

The system (5.0.8) can be written as:

dXs = F
(
Xs, U(Xs, Ps)

)
ds+ σdWs,

Xt = ξ;

−dPs =
[
DX〈F ∗(Xs, U(Xs, Ps)), Ps〉Rnx +DXG(Xs, U(Xs, Ps))

]
ds

−
[
DL〈F ∗(Xs, U(Xs, Ps)), Ps〉Rnx +DLG(Xs, U(Xs, Ps))

]
ds− ZsdWs,

PT = DXH(XT )−DLH(XT );

(5.2.37)

where DL is defined in Definition 5.1.3. As we will explain in later sections,

it is stimulating to regard the second bracket in the backward equation as the

asymmetry arising from the very definition of mean field games.
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5.3. Revisit the First Order Condition

5.3 Revisit the First Order Condition

We adopt the notations for second order operators: DijF (X,U) = Di(DjF (X,U)).

We have the following second order operators:

DXXF
∗ : Hnx ⊕Hnu → L(Hnx ⊗Hnx ;Hnx); DUXF

∗ : Hnx ⊕Hnu → L(Hnu ⊗Hnx ;Hnx);

DXUF
∗ : Hnx ⊕Hnu → L(Hnx ⊗Hnx ;Hnu); DUUF

∗ : Hnu ⊕Hnu → L(Hnu ⊗Hnx ;Hnu);

DXXG : Hnx ⊕Hnu → L(Hnx ⊗Hnx ;R); DUXG : Hnx ⊕Hnu → L(Hnu ;Hnx);

DXUG : Hnx ⊕Hnu → L(Hnx ;Hnu); DUUG : Hnx ⊕Hnu → L(Hnu ;Hnu);

DXXH : Hnx → L(Hnx ;Hnx).

(5.3.38)

We argue that both DXXF
∗, DUUF

∗, DXXG and DUUG are symmetric, in the

sense that, taking DUUf
∗ as an illustrative example:

DUUF
∗(X,U)(φu, φx)(γu) = DUUF

∗(X,U)(γu, φx)(φu), φx ∈ Hnx ;φu, γu ∈ Hnu .

(5.3.39)

In particular,

DUUF
∗(X,U)(φu, φx)(γu)

= 〈DUUF
∗(X,U)(φu, φx), γu〉Hnu

= lim
θ→0
〈DUF

∗(X,U + θφu)(φx)−DUF
∗(X,U)(φx)

θ
, γu〉Hnu

= lim
θ→0
〈φx,

DUF (X,U + θφu)(γu)−DUF (X,U)(γu)

θ
〉Hnx

=: 〈φx, DUUF (X,U)(φu, γu)〉Hnx

=: 〈φx, DUUF (X,U)(γu, φu)〉Hnx

= DUUF
∗(X,U)(γu, φx)(φu),

(5.3.40)

where we use (5.1.30) in the second last equality and the last row follows by

reversing the steps. If there is no ambiguity in the partial derivative, we may

factor out the differential operator. For example,

DX(F ∗(P )+G) := DXF
∗(P )+DXG := DXF

∗(X,U)(P )+DXG(X,U). (5.3.41)
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5.3. Revisit the First Order Condition

For notational simplicity, we may omit arguments (X,U) in the functional coeffi-

cients.

We now revisit the first order condition implied in Equation (5.2.36):

DUF (X,U(X,P ))(P ) +DUG(X,U(X,P )) = 0, ∀X,P ∈ Hx.

Property 5.3.1 (Differentiate (5.2.36) w.r.t. X).

0 = DX

[
DUF

∗(X,U(X,P ))(P ) +DUG(X,U(X,P ))
]
(φx)

= DXUF
∗(X,U(X,P ))(φx, P ) +DXUG(X,U(X,P ))(φx)

+DUUF
∗(X,U(X,P ))

(
DXU(X,P )(φx), P

)
+DUUG(X,U(X,P ))

(
DXU(X,P )(φx)

)
.

(5.3.42)

Property 5.3.2 (Differentiate (5.2.36) w.r.t. P ).

0 = DP

[
DUF

∗(X,U(X,P ))(P ) +DUG(X,U(X,P ))
]
(γx)

= DUF
∗(X,U(X,P ))(γx)

+DUUF
∗(X,U(X,P ))

(
DPU(X,P )(γx), P

)
+DUUG(X,U(X,P ))

(
DPU(X,P )(γx)

)
.

(5.3.43)

Property 5.3.3 (Combine (5.3.42) and (5.3.43)). Applying DPU(X,P )(γx) ∈

Hnu in (5.3.42), we have

0 =
〈
DXUF

∗(X,U(X,P ))(φx, P ) +DXUG(X,U(X,P ))(φx)

+DUUF
∗(X,U(X,P ))

(
DXU(X,P )(φx), P

)
+DUUG(X,U(X,P ))

(
DXU(X,P )(φx)

)
, DPU(X,P )(γx)

〉
Hnu

=
〈
DXUF

∗(X,U(X,P ))(φx, P ) +DXUG(X,U(X,P ))(φx), DPU(X,P )(γx)
〉
Hnu

+
〈
DUUF

∗(X,U(X,P ))
(
DPU(X,P )(γx), P

)
+DUUG(X,U(X,P ))

(
DPU(X,P )(γx)

)
, DXU(X,P )(φx)

〉
Hnu

,

(5.3.44)
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where we used the symmetric property of DUUF
∗ and DUUg shown in (5.3.40).

Similarly, applying DXU(X,P )(φx) ∈ Hnu in (5.3.43), we have

0 =
〈
DUF

∗(X,U(X,P ))(γx), DXU(X,P )(φx)
〉
Hnu

+
〈
DUUF

∗(X,U(X,P ))
(
DPU(X,P )(γx), P

)
+DUUG(X,U(X,P ))

(
DPU(X,P )(γx)

)
, DXU(X,P )(φx)

〉
Hnu

.

(5.3.45)

Combining Equation (5.3.44) and (5.3.45) yields〈
DXUF

∗(X,U(X,P ))(φx, P ) +DXUG(X,U(X,P ))(φx), DPU(X,P )(γx)
〉
Hnu

=
〈
DUF

∗(X,U(X,P ))(γx), DXU(X,P )(φx)
〉
Hnu

.

(5.3.46)

Property 5.3.4. Multiplying (5.3.42) on both sides with DXU(X,P )(φx), we have

0 =
〈
DXUF

∗(X,U(X,P ))(φx, P ) +DXUG(X,U(X,P ))(φx), DXU(X,P )(φx)
〉
Hnu

+
〈
DUUF

∗(X,U(X,P ))
(
DXU(X,P )(φx), P

)
+DUUG(X,U(X,P ))

(
DXU(X,P )(φx)

)
, DXU(X,P )(φx)

〉
Hnu

.

(5.3.47)

Property 5.3.5. Multiplying (5.3.43) on both sides with DPU(X,P )(γx), we have

0 =
〈
DUF

∗(X,U(X,P ))(γx), DPU(X,P )(γx)
〉
Hnu

+
〈
DUUF

∗(X,U(X,P ))
(
DPU(X,P )(γx), P

)
+DUUG(X,U(X,P ))

(
DPU(X,P )(γx)

)
, DPU(X,P )(γx)

〉
Hnu

.

(5.3.48)

We introduce the following assumptions
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(A.1) The Hessian of the Hamiltonian is positive:DXX DXU

DUX DUU

 (F ∗(P ) +G)
(
φx, φu

)⊗2

:=

DXX DXU

DUX DUU

 (F ∗(X,U(X,P ))(P ) +G(X,U(X,P )))
(
φx, φu

)⊗2

≥λ
(
‖φx‖2

Hnx + ‖φu‖2
Hnu

)
, ∀X,P ∈ Hnx .

(5.3.49)

(A.2) The second order derivative in the control of the Hamiltonian is invertible.

That is [
D−1
UUDUU

]
(F ∗(P ) +G)(φu)

:=D−1
UU(F ∗(P ) +G)DUU(F ∗(P ) +G)(φu) = φu,

(5.3.50)

where D−1
UU(F ∗(P ) + G) := D−1

UU

(
F ∗(X,U(X,P ))(P ) + G(X,U(X,P ))

)
is

the inverse operator of

DUU(F ∗(P ) +G) := DUU

(
F ∗(X,U(X,P ))(P ) +G(X,U(X,P ))

)
.

(A.3) The second order derivative in the terminal condition is positive:

〈DXXh(φx), φx〉Hnx ≥ λ‖φx‖2
Hnx , ∀X ∈ Hnx . (5.3.51)

Lemma 5.3.6. Suppose that the assumptions (A.1) and (A.2) hold, then the Schur

complement[
DXX −DUXD

−1
UUDXU

]
(F ∗(P ) +G)

:= DXX

(
F ∗(P ) +G

)
−DUX

(
F ∗(P ) +G

)
D−1
UU

(
F ∗(P ) +G

)
DXU

(
F ∗(P ) +G

)
is semi-positive, for all X,P ∈ Hnx.
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Proof.DXX DXU

DUX DUU

 (F ∗(P ) +G)
(
φx, φu

)⊗2

=DXX(F ∗(P ) +G)(φx, φx) + 2DXU(F ∗(P ) +G)(φx, φu) +DUU(F ∗(P ) +G)(φu, φu)

=DXX(F ∗(P ) +G)(φx, φx) + 〈2DXU(F ∗(P ) +G)(φx), φu〉Hnu + 〈DUU(F ∗(P ) +G)(φu), φu〉Hnu

=DXX(F ∗(P ) +G)(φx, φx) + 〈2DXU(F ∗(P ) +G)(φx) +DUU(F ∗(P ) +G)(φu), φu〉Hnu

=
〈
DXX(F ∗(P ) +G)(φx), φx

〉
Hnx

+
〈
DUU(F ∗(P ) +G)

(
φu +

[
D−1
UUDXU

]
(F ∗(P ) +G)(φx)

)
, φu +

[
D−1
UUDXU

]
(F ∗(P ) +G)(φx)

〉
Hnu
−
〈
φx,
[
DUXD

−1
UUDXU

]
(F ∗(P ) +G)(φx)

〉
Hnx

=
〈[
DXX −DUXD

−1
UUDXU

]
(F ∗(P ) +G)(φx), φx

〉
Hnx

+
〈
DUU(F ∗(P ) +G)

(
φu +

[
D−1
UUDXU

]
(F ∗(P ) +G)(φx)

)
, φu +

[
D−1
UUDXU

]
(F ∗(P ) +G)(φx)

〉
Hnu

(5.3.52)

Recall that DUU(F ∗(P ) +G) is positive by (A.2). We can choose

φu = −[D−1
UUDXU ](F ∗(P ) +G)(φx)

and the second term on the right hand side attains its minimum and vanishes;

while the left hand side is positive by (A.1). Since φx is arbitrary, we conclude

that the Schur complement is semi-positive.

(A.4) The bilinear operator DUfDUF
∗ on Hnx is positive and bounded:

λ‖φx‖2
Hnx ≤ 〈DUF (X,U)DUF

∗(X,U)(φx), φx〉Hnx ≤ Λ‖φx‖2
Hnx , ∀X ∈ Hnx , U ∈ Hnu .

(5.3.53)

With assumption (A.2), we can rewrite Equations (5.3.42) and (5.3.43) respec-

tively:

0 =
[
D−1
UUDXU

](
F ∗(P ) +G

)
(φx) +DXU(X,P )(φx). (5.3.54)
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and

0 = D−1
UU

(
F ∗(P ) +G

)
DUF

∗(γx) +DPU(X,P )(γx). (5.3.55)

5.4 Boundedness of Jacobian Flow

Recall that ξ ∈ Hnx 7→ Xs, Ps ∈ Hnx . Let φx, γx ∈ Hnx be test functions. We first

consider the case with DLF ≡ 0 ≡ DLG. By differentiate (5.2.37) with respect

to the initial random variable ξ, we obtain the following Jacobian flow system

specified by ξ ∈ Hnx → DXs, DPs ∈ L(Hnx ,Hnx):

dDXs(φx) =

(
DXFs

(
DXs(φx)

)
+DUFs

(
DXUs

(
DXs(φx)

))
+DUFs

(
DPUs

(
DPs(φx)

)))
ds,

DXt(φx) = φx;

−dDPs(γx) =
[
DXX

(
F ∗s (Ps) +Gs

)(
DXs(γx)

)
+DUX

(
F ∗s (Ps) +Gs

)(
DXUs

(
DXs(γx)

))
+DUX

(
F ∗s (Ps) +Gs

)(
DPUs

(
DPs(γx)

))
+DXF

∗
s (DPs(γx))

]
ds

−
[
DXL

(
F ∗s (Ps) +Gs

)(
DXs(γx)

)
+DUL

(
F ∗s (Ps) +Gs

)(
DXUs

(
DXs(γx)

))
+DUL

(
F ∗s (Ps) +Gs

)(
DPUs

(
DPs(γx)

))
+DLF

∗
s (DPs(γx))

]
−DZs(γx)dWs,

DPT (γx) = DXXhT

(
DXT (γx)

)
−DXLhT

(
DXT (γx)

)
.

(5.4.56)

The following lemma is crucial to the main result in this section.

Lemma 5.4.1. Suppose that the assumptions (A.1), (A.2) and (A.3) hold, then

‖DPt(φx)‖Hnx ≥
∫ T

t

λ2‖DPs(φx)‖2
Hnxds, ‖φx‖Hnx ≤ 1. (5.4.57)
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Proof. Consider the inner product process:

d〈DXs(φx), DPs(φx)〉Hnx

=
〈
DXFs

(
DXs(φx)

)
+DUFs

(
DXUs

(
DXs(φx)

))
+DUFs

(
DPUs

(
DPs(φx)

))
, DPs(φx)

〉
Hnx

ds

−
〈
DXs(φx),

[
DXXF

∗
s

(
DXs(φx), Ps

)
+DXXGs

(
DXs(φx)

)
+DUXF

∗
s

(
DXUs

(
DXs(φx)

)
, Ps

)
+DUXGs

(
DXUs

(
DXs(φx)

))
+DUXF

∗
s

(
DPUs

(
DPs(φx)

)
, Ps

)
+DUXGs

(
DPUs

(
DPs(φx)

))
+DXF

∗
s (DPs(φx))

]〉
Hnx

ds

−
〈
DXs(φx), DZs(φx)dWs

〉
Hnx

=
〈
DXUs

(
DXs(φx)

)
+DPUs

(
DPs(φx)

)
, DUF

∗
s (DPs(φx))

〉
Hnu

ds

−
〈
DXs(φx),

[
DXXF

∗
s

(
DXs(φx), Ps

)
+DXXGs

(
DXs(φx)

)
+DUXF

∗
s

(
DXUs

(
DXs(φx)

)
, Ps

)
+DUXGs

(
DXUs

(
DXs(φx)

))]〉
Hnx

ds

−
〈
DXUF

∗
s

(
DXs(φx), Ps

)
+DXUGs

(
DXs(φx)

)
, DPUs

(
DPs(φx)

)〉
Hnu

ds

(5.4.58)

We can now replace respectively φx and γx by DXs(φx) and DPs(φx) in Equation

(5.3.46), we have

d〈DXs(φx), DPs(φx)〉Hnx

=
〈
DPUs

(
DPs(φx)

)
, DUF

∗
s (DPs(φx))

〉
Hnu

ds

−
〈
DXs(φx), DXXF

∗
s

(
DXs(φx), Ps

)
+DXXGs

(
DXs(φx)

)〉
Hnx

ds

−
〈
DXUF

∗
s

(
DXs(φx), Ps

)
+DXUGs

(
DXs(φx)

)
, DXUs

(
DXs(φx)

)〉
Hnu

ds.

(5.4.59)

Now we replace respectively φx, γx withDXs(φx), DPs(φx) in (5.3.47) and (5.3.48).
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Equation (5.4.59) becomes

d〈DXs(φx), DPs(φx)〉Hnx

=−
〈
DUUF

∗
s

(
DPUs(DPs(φx)), Ps

)
+DUUGs

(
DPUs(DPs(φx))

)
, DPUs

(
DPs(φx)

)〉
Hnu

ds

−
〈
DXXF

∗
s

(
DXs(φx), Ps

)
+DXXGs

(
DXs(φx)

)
, DXs(φx)

〉
Hnx

ds

+
〈
DUUF

∗
s

(
DXUs(DXs(φx)), Ps

)
+DUUGs

(
DXUs(DXs(φx))

)
, DXUs(DXs(φx))

〉
Hnu

ds.

(5.4.60)

Finally, using Equation (5.3.54) and (5.3.55), (5.4.60) becomes

d〈DXs(φx), DPs(φx)〉Hnx

=−
〈
D2F

∗
s

(
DPs(φx)

)
, D−1

UU

(
F ∗s (Ps) +Gs

)
D2F

∗
s

(
DPs(φx)

)〉
Hnu

ds

−
〈
DXX

(
F ∗s (Ps) +Gs

)(
DXs(φx)

)
, DXs(φx)

〉
Hnx

ds

+
〈
DXU

(
F ∗s (Ps) +Gs

)(
DXs(φx)

)
, D−1

UU

(
F ∗s (Ps) +Gs

)
DXU

(
F ∗s (Ps) +Gs

)(
DXs(φx)

)〉
Hnu

ds

=−
〈
D−1
UU

(
F ∗s (Ps) +Gs

)
DUF

∗
s

(
DPs(φx)

)
, DUF

∗
s

(
DPs(φx)

)〉
Hnu

ds

−
〈[
DXX −DUXD

−1
UUDXU

](
F ∗s (Ps) +Gs

)(
DXs(φx)

)
, DXs(φx)

〉
Hnx

ds.

(5.4.61)

Applying Lemma 5.3.6 and (A.2), we have

d〈DXs(φx), DPs(φx)〉Hnx ≤ −λ‖DUF
∗
s

(
DPs(φx)

)
‖2
Hnuds. (5.4.62)

Using (A.4) yields

d〈DXs(φx), DPs(φx)〉Hnx ≤ −λ2‖DPs(φx)‖2
Hnxds. (5.4.63)

Integrate both sides on [t, T ], together with (A.3), we have

〈φx, DPt(φx)〉Hnx ≥ 〈DXT (φx), DXXhT (DXT (φx))〉Hnx +

∫ T

t

λ2‖DPs(φx)‖2
Hnxds

≥
∫ T

t

λ2‖DPs(φx)‖2
Hnxds.

(5.4.64)
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Choose φx such that ‖φx‖Hnx ≤ 1,

‖DPt(φx)‖Hnx ≥
∫ T

t

λ2‖DPs(φx)‖2
Hnxds, ‖φx‖Hnx ≤ 1. (5.4.65)

We prove the main result in this section:

Theorem 5.4.2. Suppose that the assumptions (A.1 − A.4) hold, then DPs is

bounded.

Proof.

d‖DXs(φx)‖2
Hnx

=d〈DXs(φx), DXs(φx)〉Hnx

=2
〈
DXs(φx), DXFs

(
DXs(φx)

)
−DUFs

([
D−1
UUDXU

](
F ∗s (Ps) +Gs

)(
DXs(φx)

))〉
Hnx

ds

+ 2
〈
DXs(φx),−DUFs

(
D−1
UU

(
F ∗s (Ps) +Gs

)
D2F

∗
s

(
DPs(φx)

))〉
Hnx

ds

≤2
(
‖DXf‖+ ‖DUf [D−1

UUDXU ](F ∗(P ) +G)‖
)
‖DXs(φx)‖2

Hnxds

+
(
‖DUfD

−1
UU(F ∗(P ) +G)DUF

∗‖
)
‖DXs(φx)‖2

Hnxds

+
(
‖DUfD

−1
UU(F ∗(P ) +G)DUF

∗‖
)
‖DPs(φx)‖2

Hnxds

(5.4.66)

Using Gronwall’s inequality, we have

‖DXs(φx)‖2
Hnx ≤

[
‖φx‖2

Hnx +
(
‖DUfD

−1
UU(F ∗(P ) +G)DUF

∗‖
)∫ s

t

‖DPu(φx)‖2
Hnxdu

]
· exp

{
2
(
‖DXf‖+ ‖DUf [D−1

UUDXU ](F ∗(P ) +G)‖
)

(s− t)

+
(
‖DUfD

−1
UU(F ∗(P ) +G)DUF

∗‖
)

(s− t)
}

≤
[
‖φx‖2

Hnx +B

∫ s

t

‖DPu(φx)‖2
Hnxdu

]
e(2A+B)(s−t)

(5.4.67)
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for t ≤ s ≤ T . On the other hand,

d‖DPs(φx)‖2
Hnx

=d〈DPs(φx), DPs(φx)〉Hnx

=− 2
〈
DPs(φx),

[
DXX −DUXD

−1
UUDXU

](
F ∗s (Ps) +Gs

)(
DXs(φx)

)
−
[
DUXD

−1
UU

](
F ∗s (Ps) +Gs

)
D2F

∗
s

(
DPs(φx)

))
+DXF

∗
s (DPs(φx))

〉
Hnx

ds

+
〈
DZs(φx)dWs, DZs(φx)dWs

〉
Hnx

(5.4.68)

We have

‖DPs(φx)‖2
Hnx +

〈
DZs(φx)dWs, DZs(φx)dWs

〉
Hnx

=‖DPT (φx)‖2
Hnx + 2

∫ T

s

〈
DPu(φx),

[
DXX −DUXD

−1
UUDXU

](
f ∗u(Pu) +Gu

)(
DXu(φx)

)〉
Hnx

du

+ 2

∫ T

s

〈
DPu(φx),

[
DUXD

−1
UU

](
f ∗u(Pu) +Gu

)
D2f

∗
u

(
DPu(φx)

)〉
Hnx

du

− 2

∫ T

s

〈
DPu(φx), DXF

∗
u (DPu(φx))

〉
Hnx

ds

(5.4.69)

Hence

‖DPs(φx)‖2
Hnx

≤‖DXXhT

(
DXT (φx)

)
‖2
Hnx +

∫ T

s

C‖DXu(φx)‖2
Hnx + (C + 2D)‖DPu(φx)‖2

Hnxdu.

(5.4.70)

Again, we use the Gronwall’s inequality:

‖DPs(φx)‖2
Hnx ≤

{
‖DXXhT

(
DXT (φx)

)
‖2
Hnx +

∫ T

s

C‖DXu(φx)‖2
Hnxdu

}
e(C+2D)(T−s).

(5.4.71)

We consider the following estimates:

‖DPt(φx)‖Hnx ≥
∫ T

t

λ2‖DPs(φx)‖2
Hnxds (5.4.72)
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‖DXs(φx)‖2
Hnx ≤

[
‖φx‖2

Hnx +B

∫ s

t

‖DPu(φx)‖2
Hnxdu

]
e(2A+B)(s−t), (5.4.73)

‖DPs(φx)‖2
Hnx ≤

{
‖DXXhT

(
DXT (φx)

)
‖2
Hnx+

∫ T

s

C‖DXu(φx)‖2
Hnxdu

}
e(C+2D)(T−s).

(5.4.74)

Combining (5.4.72) and (5.4.73), we have

‖DXs(φx)‖2
Hnx ≤

[
‖φx‖2

Hnx +
B

λ2
‖DPt(φx)‖Hnx

]
e(2A+B)(s−t) (5.4.75)

Combing (5.4.74) and (5.4.75), we have

‖DPs(φx)‖2
Hnx

≤
{
‖DXXhT‖

[
‖φx‖2

Hnx +
B

λ2
‖DPt(φx)‖Hnx

]
e(2A+B)(T−t)

+ C
[
‖φx‖2

Hnx +
B

λ2
‖DPt(φx)‖Hnx

] ∫ T

s

e(2A+B)(u−t)du
}
e(C+2D)(T−s)

≤K
[
‖φx‖2

Hnx + ‖DPt(φx)‖Hnx
]
e2(T−t).

(5.4.76)

Finally,

‖DPs(φx)‖Hnx ≤K
[ ‖φx‖2

Hnx

‖DPs(φx)‖Hnx
+ 1
]
e2(T−t). (5.4.77)

Clearly,

‖DPs(φx)‖Hnx ≤K
[
‖φx‖2

Hnx + 1
]
e2(T−t) ∨ 1. (5.4.78)

5.5 Future Extension

The main result in this chapter is to give a global (in time) bound of the Jacobian

flow of the McKean Vlasov Forward Backward Stochastic Differential Equation

resulted from Mean Field Games. This bound is crucial in constructing the global

solution of the FBSDE piece-wisely and backwardly from the terminal time T , as
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it stabilize the estimates in the induction argument.

The steps to complete the proof of uniqueness and existence of system (5.2.37)

are outlined as below

1. Revise the bound of the Jacobian Flow under the relaxed condition that

DLF,DLG 6= 0

2. Show that the Jacobian Flow (DX,DP ) in (5.4.56) admits a unique (global)

solution for any given X,P ;

3. Find a small time ∆, such that for all initial ξ and T < ∆, (X,P ) in (5.2.37)

admits a unique (local) solution;

4. Introduce a time partition {tj}nj=1 on [0, T ], such that |tj − tj−1| < ∆, prove

inductively that if (X,P ) admit a unique solution on [tj∗ , T ], then so does

[tj∗−1, T ].

The first task can be accomplished by controlling the norm of DLF and DLG.

Thanks to the monotonicity condition implicitly proved in (5.4.63), the second step

can be done using classical results in Forward Backward Stochastic Differential

Equation. The third step is relatively standard. Finally, with the revised bound

of the Jacobian flow, the induction in the final step is valid.
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