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Abstract

In this dissertation we discuss two new constructions of Fano varieties, each directly

inspired by ideas in Mirror Symmetry. The first recasts the Fanosearch programme for surfaces

laid out in [1, 21] in terms of a construction related to the SYZ conjecture. In particular

we construct Q-Gorenstein smoothings of toric varieties via an application of the Gross–

Siebert algorithm [53,59] to certain affine manifolds. We recover the theory of combinatorial

mutation, which plays a central role in [21], from these affine manifolds.

Combining this construction and the work of Gross–Hacking–Keel [54,55] on log Calabi–

Yau surfaces we produce a cluster structure on the mirror to a log del Pezzo surface proposed

in [1, 21]. We exploit the cluster structure, and the connection to toric degenerations, to

prove two classification results for Fano polygons.

The cluster variety is equipped with a superpotential defined on each chart by a max-

imally mutable Laurent polynomial of [1]. We study an enumerative interpretation of this

superpotential in terms of tropical disc counting in the example of the projective plane (with

a general boundary divisor).

In the second part we develop a new construction of Fano toric complete intersections

in higher dimensions. We first consider the problem of finding torus charts on the Hori–

Vafa/Givental model, adapting the approach taken in [96]. We exploit this to identify 527

new families of four-dimensional Fano manifolds.

We then develop an inverse algorithm, Laurent Inversion, which decorates a Fano polytope

P with additional information used to construct a candidate ambient space for a complete

intersection model of the toric variety defined by P . Moving in the linear system defining this

complete intersection allows us to construct new models of known Fano manifolds, and also

to construct new examples of Fano manifolds from conjectured mirror Laurent polynomials.

We use this algorithm to produce families simultaneously realising certain collections of

‘commuting’ mutations, extending the connection between polytope mutation and deforma-

tions of toric varieties.
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CHAPTER 1

Introduction

1.1. Objectives

In this dissertation we develop a program which incorporates various techniques from

Mirror Symmetry and apply this program to problems related to the classification of Fano

manifolds.

This program builds on recent advances made by the Fanosearch group (Coates, Corti,

Kasprzyk et al.) at Imperial College, which have led to a completely new approach to Fano

classification. This perspective, laid out in [21], is based on a formulation of Mirror Symmetry

for Fano manifolds explored in [21,50,96]. In these papers the authors propose that Mirror

Symmetry for Fano manifolds can be understood in terms collections of mirror-dual Laurent

polynomials. While a good deal of progress has been made in this area [1,4,22,30,93], there

are many important open questions which require a deeper understanding of the situation.

We shall particularly focus on two of these questions.

• What class of Laurent polynomials is mirror to Fano varieties?

• Given a Laurent polynomial f conjecturally mirror to X, how can one construct the

variety X?

Robust solutions to these would have far reaching consequences. Indeed, given that candi-

date mirror-dual Laurent polynomials can be generated relatively easily, these solutions would

provide powerful tools to approach the classification of Fano 4-folds.

1.2. The Main Actors: Fano manifolds and Mirror Symmetry

Fano varieties are basic building blocks in algebraic geometry, both in the sense of the

Minimal Model Program [15,97], and as the source of many explicit constructions. In dimen-

sion one there is only one Fano manifold, the Riemann sphere P1. In dimension two there are

the famous del Pezzo surfaces: P1×P1 and the blow up of the projective plane P2 in 0 ≤ k < 9

general points. In dimension three there are 105 deformation families of Fano manifolds; the

classification here was completed by Mori–Mukai in the 1990s, building on work by Fano in

the 1930s and Iskovskikh in the 1970s. It is known there are only finitely many deformation

families of Fano manifolds in every dimension, but their classification is well beyond the reach

of traditional methods.

Mirror Symmetry, on the other hand, is a very modern area of mathematics, incorporating

many areas of active research. In its original physical formulation Mirror Symmetry proposes

13



14 1. INTRODUCTION

the equivalence of the A-twist and B-twist of the superconformal field theory attached to a non-

linear sigma model with a Kähler manifold target X with the B-twist and A-twist respectively

from a Landau–Ginzburg model with a mirror target X̆. Reconstructing rigorous mathematics

from this deep physical phenomenon has produced a wealth of remarkable results. Perhaps

most famously was the prediction, via Mirror Symmetry, of the virtual number of rational

curves of arbitrary degree on a quintic Calabi–Yau threefold by Candelas–de la Ossa–Green–

Parkes [17], later proved to be correct by Givental [48], as well as in the series of papers of

Lian–Liu–Yau [82–85].

Since then, the great industry to formulate the Mirror Symmetry correspondence in a

precise mathematical framework has led to the pursuit of many new fields of research. The

most dramatic of these is the Homological Mirror Symmetry conjecture of Kontsevich [77]

which ‘lifts’ mirror symmetry from a conjecture concerning variations of Hodge structure to a

conjecture between A∞ categories (a derived category of sheaves on one side, and the Fukaya

category on the other). Also prominent is the conjectural formulation of Mirror Symmetry

as a duality of special Lagrangian torus fibrations, first made precise in the Strominger–Yau–

Zaslow (SYZ) conjecture [105]. This is a very geometric interpretation of Mirror Symmetry,

and while its näıve versions have been shown to be too much to hope for [69], attempts to

prove ‘asymptotic’ versions of the conjecture have led to a great deal of beautiful mathematics.

In particular the central technical tools used in this dissertation were developed by Gross–

Siebert [58,59], building on work of Kontsevich–Soibelman [79] and Fukaya [42], to establish

exactly such a geometric Mirror Symmetry conjecture.

While string theory predicts that Mirror Symmetry should have important consequences

for Calabi–Yau manifolds there has also been a great interest in formulations of Mirror Sym-

metry in a more general setting. Most importantly for us, Mirror Symmetry was extended to

the case of Fano manifolds by Givental [45–47], Hori–Vafa [62] and Kontsevich [76], as well

as in the work of Eguchi–Hori–Xiong [31], and Batyrev [12]. Developing this deep conjecture,

a view of Mirror Symmetry between Fano manifolds and Landau–Ginzburg models has been

developed in [49] and in [95]. The results and examples obtained from this perspective form

the starting point for our study. Having made a Hodge theoretic mirror conjecture (in this

case a comparison of the Picard–Fuchs operator and quantum differential operator) it is nat-

ural to ask what the analogues of these more sophisticated formulations of Mirror Symmetry

are.

There is a version of the Homological Mirror Symmetry conjecture for Fano manifolds,

in which the Fukaya category associated to the Landau–Ginzburg model is now the Fukaya–

Seidel category (see, [101]). However this is only defined if the superpotential is sufficently

non-degenerate, that is, it defines a Lefschetz fibration. If this holds, the Fukaya–Seidel

category is conjecturally equivalent to the derived category of the mirror-dual Fano variety.

This has been achieved in some interesting examples, for example [8,9], building on [99,100].

However, in the vast majority of the cases we consider, we are not permitted to assume the
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superpotential defines a Lefschetz fibration, making the correct conjecture hard to formulate.

In the other direction, the derived category of matrix factorizations is conjecturally equivalent

to the Fukaya category of the mirror-dual Fano variety, here there is also interesting progress

[103].

For the SYZ conjecture the picture is more optimistic, and in one sense is the subject

of this dissertation. Auroux studies the case of a special Lagrangian torus fibration in the

complement of an anti-canonical divisor directly [6, 7]. Though this too is inaccessible in

general, the large programmes used to establish asymptotic versions of the SYZ conjecture do

have versions in this setting. In particular we shall study Fano manifolds and their mirrors

via the Gross–Siebert programme, taking particular inspiration from [18,53,59].

1.3. Overview

1.3.1. The Surface Case. Chapters 3, 4 and 5 of this dissertation are devoted to study-

ing Mirror Symmetry for log del Pezzo surfaces which admit a toric degeneration. Even in

this relatively simple setting there are many unanswered questions; log del Pezzo surfaces

have only been classified for Gorenstein index ≤ 3 [5, 37]. In Chapter 3 we lay out the full

form of our program for surfaces, taking advantage of the simpler formulations of the Gross–

Siebert algorithm in this setting. In particular we prove the following result, constructing

Q-Gorenstein deformations of toric Fano surfaces by perturbing the affine structure of a poly-

gon and applying the Gross–Siebert algorithm to this family of affine structures. This theorem

involves a number of definitions which we introduce in Chapter 3.

Theorem 1.3.1. Given a Fano polygon P denote its polar polygon Q := P ◦. Let P be

the polygonal decomposition via the spanning fan of Q and let s be trivial gluing data. From

this data we may form a flat family XQ → SpecC[α]JtK such that:

• Fixing t = 0, the restriction of XQ over SpecC[α] is X0(Q,P, s)×SpecC[α] a union

of toric varieties defined in Section 3.4.

• Fixing α = 0 the restriction of XQ over SpecCJtK is the Mumford degeneration of

the pair (Q,P)1.

• For each boundary zero-stratum p of X0(Q,P, s) there is neighbourhood Up in XQ
isomorphic to a family Y → SpecC[α]JtK obtained by first taking a one-parameter

Q-Gorenstein smoothing of the singularity of XQ at p and taking a simultaneous

maximal degeneration of every fiber in a formal parameter t.

The family Y appearing in the fourth point in fact has a simple general form. We see

in Lemma 2.3.1 that given a cyclic quotient surface sinuglarity 1
n(1, q) any Q-Gorenstein

deformation has the form

{xy + zw0fm(zr, α) = 0} ⊂ 1

r
(1, wa− 1, a)× SpecC[α],

1This is a flat family with general fiber XQ and special fiber the union of toric varieties with moment polyopes
given by the decomposition P, see Definition 3.4.10.
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where fm ∈ C[z, α] has z-degree m and the integers w, a, r are defined in Section 2.3. The

family Y is obtained by adding a formal parameter t,

{xy + tzw0fm(zr, α) = 0} ⊂ 1

r
(1, wa− 1, a)× SpecC[α]JtK.

The formality of the parameter t is obviously not required here, but appears in the construction

of the global family. Indeed, the use of an order-by-order scattering process means that,

outside of certain specific cases, we are unable to write down explicit expressions for the

general fibers of the toric degenerations we consider. One particularly striking case in which

this is possible is the case there is only a single singularity in the affine structure; analysing

this case leads us to recover a theorem of Ilten ([64]):

Theorem 1.3.2. For any combinatorial mutation from P to P ′ there is a polygonal de-

composition of the polar polygons Q and Q′ given by the domains of linearity of the mutation

between Q and Q′. There is a flat family X → C2 such that restricting to either co-ordinate

line produces the Mumford degeneration of XP and XP ′ determined by these decompositions

respectively.

We construct this from a family of affine manifolds in which a single singularity traverses

its mondromy invariant line. We refer to this family of affine manifolds as the tropical Ilten

family. The Ilten pencil, which has base P1, is obtained from the family in Theorem 1.3.2,

which has base C2, by taking the quotient by radial rescaling.

Following the ideas of [18] we expect mirror Laurent polynomials to appear from tropical

disc counts. Chapter 4 is devoted to a computation of all the Laurent polynomial mirrors to

P2 (known to be in bijection with integral solutions to the Markov equation) as tropical disc

counts by considering an infinite collection of scattering diagrams on an affine manifold. In

particular we prove the following result.

Theorem 1.3.3. Let Q be the moment polygon for P2 polarised by −KP2. Consider the

toric degeneration given by fixing a non-zero value of α in the family produced by Theo-

rem 1.3.1 applied to Q, corresponding to a particular choice of log structure on X0(Q,P, s)

and affine manifold BQ. Passing to a Legendre dual affine manifold B∨Q we can construct

a compatible structure S via the construction of Gross–Siebert in Section 3.5. There is a

domain U =
⋃
k≥0 Uk ⊂ B∨P2 such that:

• For all j ≥ k Pj restricted to Uk is a constant union of chambers u ∈ Chambers(S , k).2

• Each u ∈ Chambers(S , k) such that u ⊂ Uk for some k ≥ 0 is a triangle similar to a

Fano polygon Pu defined by the spanning fan of the central fiber of a toric degeneration

of P2.

• The union of the support of rays of S k for all k ≥ 0 restricted to B∨Q\U is dense.

2The decompositions Pk and the set of chambers Chambers(S , k) are defined using the compatible structure
S .
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Combining this with the results of [18] we can recover all the Laurent polynomial mirrors to

P2.

Theorem 1.3.4. The tropical superpotential (defined in Section 4.4) W k
ω,τ,u is manifestly

algebraic, in sense of [18], and may be identified with a maximally mutable Laurent polynomial

with Newton polygon Pu.

In Chapter 5 we make precise the connection between cluster algebras and mutations of

polygons. In particular given a Fano polygon P we define a quiver QP and cluster algebra

CP such that passing from P to QP commutes with mutation, while a mutation of a seed in

CP determines a mutation of P . We also see that Laurent polynomials admitting all possible

algebraic mutations (as defined in Chapter 2) are elements of the upper cluster algebra of CP .

We use these results to prove a finite type classification for Fano polygons.

Theorem 1.3.5. The mutation class of P is finite if and only if QP is mutation equivalent

to one of the following types:

• (A1)n, which we refer to as type In.

• A2, which we refer to as type II.

• A3, which we refer to as type III.

• D4 which we refer to as type IV .

These connections with cluster algebras provide concrete connections to the progam of [54,

55] and we expect completing this connection will settle an important conjecture (Conjecture

A) from [1] concerning the boundary of the moduli stack of del Pezzo orbifolds.

1.3.2. The Complete Intersection Case. Most of the constructions and results in

the chapters on the surface case do not generalise directly to higher dimensions. However,

many of definitions do extend and produce analogous, if more complicated, structures. In

particular, the notion of maximally mutable Laurent polynomial defined in the surface case

in [1] extends, following [71], to higher dimensions. Using this we can already easily produce

conjectural mirror-dual Landau–Ginzburg models to Fano varieties. The natural question

which emerges is then,

Given a Laurent polynomial f , conjecturally mirror-dual to a Fano variety X, how can one

construct the variety X from f?

Given that X should be provably mirror-dual to f it is logical to look first among the

toric complete intersections. Indeed, this is a rare setting in which mirror-duality between f

and X may actually be proved3, using the Quantum Lefschetz Theorem ([27]).

To begin to answer this question we first define a technique, the Przyjalkowski Method, for

obtaining a torus chart on the mirror-dual Givental/Hori–Vafa Landau–Ginzburg model for

a Fano complete intersection X. Using this we can classify Fano 4-fold complete intersections

3For example, in the sense defined in Section 2.1
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in smooth Fano 8-folds, in particular we have the result (from the work [20] joint with T.

Coates and A. Kasprzyk).

Theorem 1.3.6. There are 738 four dimensional Fano manifolds which appear as complete

intersections in smooth toric manifolds Y of dimension ≤ 8 by nef line bundles L1, · · ·Lc such

that −KY −
∑k

i=1 Li is ample.

Of these 738 there are 527 ‘new’ Fano fourfolds, in particular, those of Fano index 1 which

are neither smooth toric varieties nor products. We also consider how, via degenerations of

the ambient space, this technique may be extended to complete intersections in homogeneous

spaces. We then present a simple form of an inverse algorithm, Laurent Inversion, from which

one may attempt to reconstruct a Fano variety X starting from a Laurent polynomial f .

In particular we define a combinatorial decoration of a polytope P called a scaffolding in

Chapter 6. From a scaffolding one can produce a complete intersection model for XP in a

toric ambient space, we exhibit an example where the general fibre of this linear system is

smooth, and thus show that this technique produces potentially unknown Fano fourfolds. In

particular all 738 examples from Theorem 1.3.6 arise in such a way.



CHAPTER 2

Fano Manifolds and Mirror Symmetry

In this chapter we provide the background material on Mirror Symmetry required for the

later sections. There are a wealth of constructions and conjectures in Mirror Symmetry, and

we shall focus on two specific programmes within Mirror Symmetry.

The first of these is the surprising conjecture, made in [21], that a Fano manifold is mirror-

dual to a collection of Laurent polynomials f . We begin this chapter by describing the sense

in which [21] conjectures that a mirror correspondence holds. Based on a large quantity of

experimental data, as well as some general observations about the invariants Mirror Symmetry

is conjectured to equate, a theory of mutations of Laurent polynomials has developed around

this conjectural correspondence. We shall recall a number of the definitions and basic results

of this theory from the papers [4,21].

As discussed in the Introduction, the program we lay out in this dissertation places these

observations in a geometric framework. This framework is built from techniques and con-

structions derived from the study of another Mirror Symmetry conjecture - the Strominger–

Yau–Zaslow (SYZ) conjecture [105]. We very briefly outline the main ideas appearing in this

conjecture, how one might formulate such a conjecture for Fano manifolds and how it might

be explored using the Gross–Siebert programme.

2.1. Mirror Symmetry for Fano Manifolds

The central observation in [21] is that Mirror Symmetry for Fano manifolds may be un-

derstood very concretely by restricting the mirror-dual Landau–Ginzburg model to a Laurent

Polynomial. The existence of such a torus chart is not guaranteed, but experimentally and

conjectually these charts are in bijection with toric degenerations of the given Fano man-

ifold. Indeed the Newton polytope of the corresponding Laurent polynomial determines a

toric variety which is the candidate for the central fiber of this degeneration. In this section

we formulate what it means for a Fano manifold X and a Laurent polynomial f to be mirror-

dual. Given the rich structures present there are are number of ways of phrasing this mirror

conjecture, and we shall adopt the simple approach taken in [21]. Indeed, in order to state

the mirror correspondence of [21] we shall only require a pair of local systems, defined by the

Gromov–Witten theory X and periods of the fibration defined f respectively.

19



20 2. FANO MANIFOLDS AND MIRROR SYMMETRY

2.1.1. A pair of local systems. First we consider a ‘B-model’ local system for f . Recall

from [21] that given a Laurent polynomial f , its classical period is

πf (t) :=

(
1

2πi

)n ∫
Γ

1

1− tf
dx1

x1
∧ · · · ∧ dxn

xn

where Γ is the torus {|xi| = 1|1 ≤ i ≤ n}.

Theorem 2.1.1 ( [21, Theorem 3.2]). The classical period πf is in the kernel of a polyno-

mial differential operator L ∈ C〈t,D〉 where D = t ddt .

Definition 2.1.2. For operators L such that Lπf ∼= 0 write

L =
k∑
j=0

pj(t)D
j

The Picard–Fuchs operator Lf is the unique (up to multiplication by a constant) operator

such that k is as small as possible and having fixed k the degree of pk is as small as possible.

Remark 2.1.3. Functions in the kernel of Lf form a local system, a summand of the

variation of Hodge structure Rn−1f!Z(C?)n .

Remark 2.1.4. Given a Laurent polynomial f the power series expansion of πf (the period

sequence) is easily computed:

πf (t) =
∑
m≥0

cmt
m

Where cm = coeff1(fm). In practice the compution of Lf involves using the above formula to

compute tems of πf (t), guessing a recursion relation of the form
∑
Pk(m− k)cm−k = 0 and

reconstructing Lf =
∑
tkPk(D).

Having fixed the B-model D-module over a disc, we turn to a summary of the A-model

D-module. This is the local system of solutions of the Fourier–Laplace transform (or regulari-

sation) Q̂X of the quantum differential operator QX . We summarize the construction of QX ,

following [21], from the Gromov–Witten invariants of X in the following steps.

(1) The Gromov–Witten invariants of X define a deformation of the cup product on

cohomology, the quantum cohomology.

(2) This product induces a connection, the Dubrovin connection, on the trivial Hev(X,C)

bundle over C? ⊗H2(X,Z). The WDVV equations imply this connection is flat.

(3) This flat connection defines the quantum D-module of sections of this bundle, and

hence a local system of solutions.

(4) Tautologically these are the solutions of a cohomology valued PDE. Restricting to

the degree zero component and to the line generated by [−KX ] ∈ H2(X), we obtain

scalar-valued functions that are annihilated by an algebraic ODE QX . In particular

the restriction of the degree zero part of the J-function, denoted GX , is annihilated

by QX .
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We can now state the formulation of mirror-duality from [21]

Definition 2.1.5. The Laurent polynomial f is mirror-dual to the Fano manifold X if

Q̂X = Lf . Here Q̂X is the differential operator of lowest order such that Q̂XĜX = 0 where

ĜX is the Fourier-Laplace transform of GX . This regularization is required since QX and Lf

do not have the same singularities.

Example 2.1.6. The prototypical example is that of P2 which will be studied in much

more detail in Chapter 4. There is a well known mirror model due to Givental/Hori–Vafa

given by f(x, y) = x+ y + 1
xy and

πf (t) =
∑
m≥0

(3m)!

(m!)3
t3m

On the other hand the matrix M of quantum multiplication by −KX for P2 is given by0 0 27t3

1 0 0

0 1 0


From the discussion of the A-model local system, they satisfy a cohomology-valued differential

equation, D(s0, s1, s2) = (s0, s1, s2)M . Looking at the degree-zero component, we see that s0

is annihilated by QX := D3 − 27t3 and so GX(t) =
∑

m≥0
1

(m!)3 t
3m, which is related to πf (t)

by Fourier–Laplace transform.

Having formulated this notion of Mirror Symmetry it is natural to ask if we can find char-

acterisation the local systems Sol Q̂X given by the quantum cohomology of a Fano manifold.

One approach to this is to consider the ramification of the local system [50].

Definition 2.1.7. Let V be a local system over P1\S, for a finite set S ⊂ P1. Given a

point s ∈ S there is a monodromy operator Ts ∈ AutVx, for a base point x. The ramification

of V is defined to be,

rf V =
∑

dim(Vx/VTsx )

Remark 2.1.8. It follows from Euler–Poincaré that,

rf V− 2 rkV = h1(P1, j?V) ≥ 0

where j is the inclusion j : P1\S ↪→ P1.

Definition 2.1.9. A local system V over P1\S is extremal if it is irreducible, non-trivial

and rf V = 2 rkV.

Thus we can define an extremal Laurent polynomial to be a Laurent polynomial such that

SolLf is an extremal local system. In Chapter 6 we shall see examples of four dimensional

Fano manifolds and mirror-dual Laurent polynomials; as we shall see, these examples have

low ramification.
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Example 2.1.10. For the eight del Pezzo surfaces with very ample anti-canonical bundle

one can obtain a mirror Laurent polynomial with reflexive Newton polygon. Of these six are

extremal and two (mirror-dual to F1 and dP7) have rf V−2 rkV = 1. See [21] for more details.

2.1.2. Mutations of Laurent Polynomials. Observe that according to Definition 2.1.5

Laurent polynomials with the same classical period are regarded as mirror dual to the same

(if any) Fano manifold. The key ingredient for understanding this many-to-one relation is

the notion of mutation introduced to explain it, following the notion of mutation of potential

in [44].

Definition 2.1.11. Fix a lattice N , w ∈ M := Hom(N,Z) and F ∈ C[w⊥]. An (alge-

braic) mutation (or symplectomorphism of cluster type [72]) is a birational transformation

θw,F : TM 99K TM is defined by

zn 7→ zn · F 〈w,n〉,

where TM := SpecC[N ]. Given f ∈ C[N ] such that θ?(f) ∈ C[N ] we define mutw(f, F ) :=

θ?(f) the mutation of f with weight vector w and factor F .

Remark 2.1.12. There are striking parallels to the wall-crossing formulas appearing, for

example, in the work of Gross–Siebert [59], and with the mutations (in their coordinate free

form) of seeds in cluster algebras defined by Fomin–Zelevinsky [35].

Since we insist in Definition 2.1.11 that an algebraic mutation maps a Laurent polynomial

f to another Laurent polynomial by considering Newt(f) and Newt(mutw(f, F )) mutations

define an action on the Newton polygons, leading to a purely combinatorial definition of

mutation, to which we now turn.

2.2. Mutation of Fano polygons

In this section we introduce the fundamental combinatorial notions of the Fanosearch

program, following the treatment in the joint work [70]. The definitions in this section

originate from the papers [3,4].

Definition 2.2.1. A Fano polygon P is a convex polytope in NQ := N ⊗Z Q, where N is

a rank-two lattice, with primitive vertices V(P ) in N such that the origin is contained in its

strict interior, 0 ∈ P ◦.

A Fano polygon defines a toric surface XP given by the spanning fan of P ; that is, XP is

defined by the fan whose cones are spanned by the faces of P . The toric surface XP has cyclic

quotient singularities (corresponding to the cones over the edges of P ) and the anti-canonical

divisor −KX is Q-Cartier and ample. Consequently XP is a toric del Pezzo surface.

In [4, §3] the concept of mutation for a lattice polytope was introduced. We state it here

in the simplified case of a Fano polygon P ⊂ NQ and refer to [4] for the general definitions.
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2.2.1. Mutation in N . Fixing a lattice N and a Fano polygon P , we now set up the

notation required to define a mutation. As discussed, this is a combinatorial analogue of the

birational map defined in Section 2.1.

Let w ∈ M := Hom(N,Z) be a primitive inner normal vector for an edge E of P , so

w : N → Z induces a grading on NQ and w(v) = −`E for all v ∈ E, where `E is the lattice

height of E. Define

hmax := max{w(v) | v ∈ P} > 0 and hmin := −`E = min{w(v) | v ∈ P} < 0.

For each h ∈ Z we define wh(P ) to be the (possibly empty) convex hull of the lattice points

in P at height h,

wh(P ) := conv{v ∈ P ∩N | w(v) = h}.

By definition whmin(P ) = E and whmax(P ) is either a vertex or an edge of P . Let vE ∈ N
be a primitive lattice element of N such that w(vE) = 0, and define F := conv{0, vE}, a

line-segment of unit lattice length parallel to E at height 0. Observe that vE , and hence F ,

is uniquely defined up to sign.

Definition 2.2.2. Suppose that for each negative height hmin ≤ h < 0 there exists a

(possibly empty) lattice polytope Gh ⊂ NQ satisfying

(2.2.1) {v ∈ V(P ) | w(v) = h} ⊆ Gh + |h|F ⊆ wh(P ).

where ‘+’ denotes the Minkowski sum, and we define ∅ +Q = ∅ for any polygon Q. We call

F a factor of P with respect to w, and define the mutation given by the primitive normal

vector w, factor F , and polytopes {Gh} to be:

mutw(P, F ) := conv

 −1⋃
h=hmin

Gh ∪
hmax⋃
h=0

(wh(P ) + hF )

 ⊂ NQ.

Although not immediately obvious from the definition, the resulting mutation is indepen-

dent of the choices of {Gh} [4, Proposition 1]. Furthermore, up to isomorphism, mutation

does not depend on the choice of vE : we have that mutw(P, F ) ∼= mutw(P,−F ). Since we

consider a polygon to be defined only up to GL2(Z)-equivalence, mutation is well-defined and

unique. Any mutation can be inverted by inverting the sign of w: if Q := mutw(P, F ) then

P = mut−w(Q,F ) [4, Lemma 2]. Finally, we note that P is a Fano polygon if and only if the

mutation Q is a Fano polygon [4, Proposition 2].

We call two polygons P and Q ⊂ NQ mutation-equivalent if there exists a finite sequence

of mutations between the two polygons (considered up to GL2(Z)-equivalence). That is, if

there exists polygons P0, P1, . . . , Pn with P ∼= P0, Pi+1 = mutwi(Pi, Fi), and Q ∼= Pn, for some

n ∈ Z≥0.

In two dimensions, mutations are completely determined by the edges of P :

Lemma 2.2.3. Let E be an edge of P with primitive inner normal vector w ∈ M . Then

P admits a mutation with respect to w if and only if |E ∩N | − 1 ≥ `E.
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Proof. Let k := |E ∩ N | − 1 be the lattice length of E. At height h = hmin = −`E ,

condition (2.2.1) becomes E = Ghmin + `EF . Hence this condition can be satisfied if and only

if k ≥ `E . Suppose that k ≥ `E and consider the cone C := cone(E) generated by E. At

height hmin < h < 0, h ∈ Z, the line-segment Ch := {v ∈ C | w(v) = h} ⊂ NQ (with rational

end-points) has lattice length |h|k/`E ≥ |h|. Hence wh(C) ⊂ wh(P ) has lattice length at least

|h| − 1. Suppose that there exists some v ∈ V(P ) such that w(v) = h. Since v 6∈ wh(C) we

conclude that wh(P ) has lattice length at least |h|. Hence condition (2.2.1) can be satisfied. If

{v ∈ V(P ) | w(v) = h} = ∅ then we can simply take Gh = ∅ to satisfy condition (2.2.1). �

2.2.2. Mutation in M . Given a Fano polygon P ⊂ NQ we define the dual polygon

P ∗ := {u ∈MQ | u(v) ≥ −1 for all v ∈ P} ⊂MQ.

In general this has rational-valued vertices and necessarily contains the origin in its strict

interior. Define ϕ : MQ → MQ by u 7→ u − uminw, where umin := min{u(v) | v ∈ F}. Since

F = conv{0, vE}, this is equivalent to

ϕ(u) =

u, if u(vE) ≥ 0;

u− u(vE)w, if u(vE) < 0.

This is a piecewise-GL2(Z) map, partitioning MQ into two half-spaces whose common bound-

ary is generated by w. Crucially [4, Proposition 4]:

ϕ(P ∗) = Q∗, where Q := mutw(P, F ).

An immediate consequence of this is that the volume and Ehrhart series of the dual polygons

are preserved under mutation: Vol(P ∗) = Vol(Q∗) and EhrP ∗(t) = EhrQ∗(t). Equivalently,

mutation preserves the anti-canonical degree and Hilbert series of the corresponding toric

varieties: (−KXP )2 = (−KXQ)2 and Hilb(XP ,−KXP ) = Hilb
(
XQ,−KXQ

)
.

Example 2.2.4. Consider the polygon P(1,1,1) := conv{(1, 1), (0, 1), (−1,−2)} ⊂ NQ. The

toric variety corresponding to P(1,1,1) is P2. Let w = (0,−1) ∈ M , so that hmin = −1 and

hmax = 2, and set F = conv{0, (1, 0)} ⊂ NQ. Then F is a factor of P(1,1,1) with respect to

w, giving the mutation P(1,1,2) := mutw(P(1,1,1), F ) with vertices (0, 1), (−1,−2), (1,−2) as

depicted below. The toric variety corresponding to P(1,1,2) is P(1, 1, 4).

NQ : 7→

In MQ we see the mutation as a piecewise-GL2(Z) transformation. This acts on the left-hand

half-space {(u1, u2) ∈MQ | u1 < 0} via the transformation

(u1, u2) 7→ (u1, u2)

(
1 −1

0 1

)
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and on the right-hand half-space via the identity.

MQ : 7→

2.2.3. Singularity content. An important mutation invariant of Fano polygons is its

singularity content, [3]. This is a pair (n,B) where n is an integer and B is the basket of

residual singularities. Geometrically, these are invariants of the surface X obtained from toric

surface XP by a generic Q-Gorenstein deformation. Under this interpretation n = e(X0),

the topological euler number of the smooth locus of X, and B is the collection of locally Q-

Gorenstein rigid singularities of X. This will be discussed more in the next section. For now

we provide definitions directly from the polygon P . First we recall that a 1
n(1, q) singularity

is the quotient of C2 by the action of µn determined by fixing the action of ω, a primitive

n-th root of unity, to be (x, y) 7→ (ωx, ωqy).

Definition 2.2.5. Given a 1
n(1, q) singularity, write p = 1+q, w = hcf(n, p), n = wr, p =

wa and w = mr + w0, m is called the singularity content of 1
n(1, q). Any singularity with

m = 0 is said to be residual. A singularity with w0 = 0 is a T-singularity and a singularity

with m = 1 and w0 = 0 is called a primitive T-singularity. The residual part of 1
n(1, q) is

defined to be 1
w0r

(1, w0a− 1), a residual singularity.

Remark 2.2.6. We recall the value r is the Gorenstein or local index of the singularity
1
n(1, q). In general for a variety X this is the smallest r such that rKX is Cartier. For a Fano

polygon P the Gorenstein index of XP is the lowest common multiple of the local indices.

T-singularities and residual singularities have an explicit form, which we also recall.

Lemma 2.2.7. Any T-singularity has form 1
nl2

(1, nlc − 1) where k = nl, the primitive

T-singularities are precisely those with n = 1. A residual singularity has the general form
1
kl (1, kc− 1) with k < l.

Remark 2.2.8. T-singularities appear the work of Wahl [107] and Kollár–Shepherd-

Barron [74]. T-singularities are precisely those which admit a Q-Gorenstein smoothing. In

comparison, as mentioned above, residual singularities are those which are Q-Gorenstein rigid.

Definition 2.2.9. The singularity content (n,B) is the pair consisting of the total sin-

gularity content over the edges of P , B is a cyclically ordered list of the residual parts of the

cyclic quotient singularities Cone(E) for E an edge of P .

Remark 2.2.10. The singularity content n will appear later as the number of focus-focus

singularities in an affine structure.
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2.3. Classifying Orbifold del Pezzo surfaces

Before moving onto the perspective on the program of [21] afforded by open-string Mirror

Symmetry we summarize some of the important aspects of the joint work [1]. In particular

we shall describe one of the central constructions and one conjecture of [1] which will provide

a precise context for Chapter 3.

First we recall that given a variety X with at worst quotient singularities and with Goren-

stein index r a Q-Gorenstein deformation X → S is a flat deformation such that rKX/S is a

relative Cartier divisor. Given any cyclic quotient surface singularity 1
n(1, q) one can describe

its Q-Gorenstein deformation functor DefqG( 1
n(1, q)):

Lemma 2.3.1 ([74]). Given the singularity 1
n(1, q), define p := 1 + q, w := hcf(n, p), n =

wr, p = wa, and w = mr + w0, then DefqG( 1
n(1, q)) ∼= Cm with universal family{

xy + zw0

(
zrm + a1z

r(m−1) + · · · am
)

= 0
}
⊂ 1

r
(1, wa− 1, a)

The conjecture from [1] we are primarily concerned with, ‘Conjecture A’, compares certain

Q-Gorenstein deformation classes with of mutation equivalence classes of Fano polygons.

Conjecture 2.3.2 (Conjecture A). There is a one-to-one correspondence between:

• Mutation equivalence classes of Fano polygons; and

• Q-Gorenstein deformation equivalence classes of locally Q-Gorenstein rigid del Pezzo

surfaces X which:

– admit a Q-Gorenstein degeneration to a toric variety; and

– have at worst cyclic quotient singularities.

This bijection sends a representative Fano polygon P to a generic Q-Gorenstein deformation

of XP .

This conjecture characterizes, solely in terms of algebraic geometry, of the objects ap-

pearing on the A-model (Fano manifold) side of the proposed Mirror correspondence. Having

established the A-model objects we are led to ask the natural question of what objects appear

on the mirror-dual side of the correspondence, that is:

Which class of Laurent polynomials are mirror-dual to Fano varieties?

The construction given in [1] which conjecturally answers this for orbifold del Pezzo sur-

faces (and, with modification, in greater generality) is that of maximally mutable Laurent

polynomials.

Remark 2.3.3. Note that we implicity consider Mirror Symmetry for families of complex

surfaces. This parameter space of complex structures should also appear in the form of Kähler

moduli of the mirror. We propose that toric degenerations of the complex structure of a log

del Pezzo surface correspond under Mirror Symmetry to choosing torus charts on the mirror-

dual Landau–Ginzburg model and speculate that these represent points of a Kähler moduli



2.4. THE SYZ CONJECTURE AND FANO MANIFOLDS 27

space at which some symplectic inflation has occured at the boundary. However we do not

rigourously explore this possibility further in this dissertation.

Definition 2.3.4. Given a Fano polygon P and let g be a Laurent polynomial supported

on P , i.e. of the form

g =
∑

γ∈P∩N
aγz

γ

Then g is said to be maximally mutable if and only if for each sequence of mutations

P = P0
// P1

// · · · // Pn

the sequence of rational functions gi where g0 = g and gi+1 is the result of the mutation

Pi → Pi+1 applied to gi is a sequence of Laurent polynomials1.

Remark 2.3.5. As we describe in Chapter 5, the definition of maximally mutable Laurent

polynomial may be made in terms of an appropriate upper cluster algebra. Combined with

Conjecture A, this would establish a bijection between the seed tori on a certain cluster variety

and the Q-Gorenstein toric degenerations of X.

Remark 2.3.6. We shall see in Chapter 4 that in the case of P2 the maximally mutable

Laurent polynomials are precisely those coming from certain tropical disc counts. This is

conjectured to be more generally true, and is closely related to the work of Carl–Pumperla–

Siebert [18].

A more precise version of the conjecture that the maximally mutable Laurent Polynomials

‘are’ the mirror-dual objects to Q-Gorenstein deformation classes of orbifold del Pezzo surfaces

is formulated in [1] as ‘Conjecture B’. The assertion there is that there is an affine-linear

isomorphism φ : LTP → Hts
X such that ĜX ◦ φ = πf . The respective objects appearing in this

conjecture are,

(1) the affine space LTP of maximally mutable Laurent polynomials supported on P .

(2) the sum

Hts
X :=

⊕
1≤i≤r

Cui

of certain twisted sectors of the Chen–Ruan cohomology of X.

For a full discussion of this conjecture see [1].

2.4. The SYZ conjecture and Fano manifolds

Up to this point we have only regarded formulations of Mirror Symmetry in terms of closed-

string sectors, that is, as an identification between the structures obtained from the Gromov–

Witten invariants of X, and oscillating integrals on a Landau–Ginzburg model. However,

there are other, ‘open-string’, formulations of Mirror Symmetry which have been the subject of

intense research in the last 20 years. One of the most prominent is the Strominger–Yau–Zaslow

1recalling that this makes sense in two dimensions as there is a canonical choice of factor polynomial



28 2. FANO MANIFOLDS AND MIRROR SYMMETRY

Figure 2.4.1. A torus fibration over a manifold with boundary

conjecture [105], which roughly states that a mirror pair of Calabi–Yau varieties carry a dual

pair of special Lagrangian torus fibrations. Intensive studies of this conjecture [58,59,78,79]

have revealed a beautiful, geometric, interpretation of Mirror Symmetry in terms of “quantum

corrected T-duality”.

Whilst the varieties we consider are not Calabi–Yau, by taking the complement of an

anti-canonical divisor, one can recover a Calabi–Yau on which to formulate the conjecture.

Following the treatment in [6] we may formulate a a näıve version of this conjecture as follows.

Conjecture 2.4.1. Given a compact Kähler manifold (X, J, ω) let D be an anti-canonical

divisor and Ω a holomorphic volume form over X\D. The mirror dual M is a moduli space

of special Lagrangian tori with flat U(1) connections. The superpotential W : M → C is given

by the m0 obstruction of Fukaya–Oh–Ohta–Ono [43].

We recall that m0 obstruction is, defined to be a virtual count of Maslov index two discs

β with boundary on a given Lagrangian torus fiber L of X

m0(L,∇) =
∑

β∈H2(X,L)

nβ(L)e−
∫
β ω hol∇(∂β)

That is, a series whose coefficents are given by counts nβ(L) of discs which intersect the

boundary divisor D in a single point (see [6]). We recall that this formula may also undergo

certain wall crossing discontinuities as L varies, and thus only defines a global function on the

proposed SYZ mirror-dual manifold after certain corrections.
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Remark 2.4.2. As well as the open Calabi–Yau in the complement of an anti-canonical

divisor, it is natural to restrict to the anti-canonical hypersurface. The interaction between

Mirror Symmetry for the hypersurface and for its complement is explored in [6,7].

Remark 2.4.3. Another important variant on this theory is obtained by forgetting the

anti-canonical divisor entirely. Consequently there are no Maslov index two discs intersecting

boundary divisors and no superpotential. This log Calabi–Yau setting is intensively studied

by Gross–Hacking–Keel in [54,55] and they provide a rich geometric picture of the underlying

mirror object to Fano surfaces. We explore this connection further in Chapter 5.

Example 2.4.4. An important class of examples where the SYZ conjecture can be checked

comes from toric geometry. Indeed, we recall that in toric geometry a polygon P∨ is the base

of a special Lagrangian torus fibration given by the moment map for XP . The Maslov index

two discs in a fiber are in bijection with the facets of the moment polytope P∨, for more

details of this case see [6,19].

Example 2.4.5. The most important non-toric example of a special Lagrangian torus

fibration for this dissertation is constructed by Auroux in [6] and we summarize it here,

adapting it somewhat to our context. Define the pair (X,D) to be (P2, C + L) where C is

a plane conic and L is a line. The complement of an anti-canonical divisor is then simply

{xy − ε = 0} ⊂ C2
x,y the affine chart C2 ∼= P2\L. Taking the holomorphic volume form

Ω =
dx ∧ dy
xy − ε

and the standard Fubini-Study form on P2 Auroux constructs a special Lagrangian torus

fibration via the following observations:

(1) The function f(x, y) = xy defines a conic fibration on X, which admits a fiber-wise

S1 action θ : (x, y) 7→ (eiθx, e−iθy).

(2) The moment map δ of this S1 action is preserved by symplectic parallel transport in

the fibration f .

(3) Considering circles Γ = {|xy− ε| = r} in the base of the conic fibration f one defines

tori Tr,λ := f−1(Γ) ∩ δ−1(λ).

The pair (r, λ) define a special Lagrangian torus fibration (see Proposition 5.2 of [6]) with one

singular fiber, induced by the singular conic xy = 0. There is a one dimensional subspace of

the base, a ‘wall’, for which the torus fibers bound discs of Maslov index zero, this divides the

base into two regions. The mirror M is constructed from two charts related by a birational

transformation, i.e. taking the dual fibration on each region and ‘inflating’ one finds a pair

of coordinate charts related by a wall-crossing formula. To see what happens as we vary ε

consider Xε
∼= P2 embedded in P(1, 1, 1, 2) with coordinates (x0, x1, x2, u) via

{x0x2 = εx2
1 + u}
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Further, set Dε to be {x1u = 0}∩Xε. On the mirror M , the superpotential on each coordinate

chart defines a pair of Newton polygons such that their spanning fans define the surfaces P2

and P(1, 1, 4) respectively. In fact this example admits many of the features we study in a

more general setting in Chapter 3:

(1) As one varies ε the respective size of the regions in the base changes, with one region

‘filling out’ the total space as ε→ 0 or ∞ respectively.

(2) As ε→ 0 the fibration converges to the moment map on P2.

(3) Change variables so that the above family as ε → ∞ is replaced by the following

family as ε′ → 0

{x0x2 = x2
1 + ε′u}

Over ε′ = 0, the conic component C of D persists as a smooth conic, but the line L

breaks into two (x0x2 = 0). The limiting variety is P(1, 1, 4) with its toric boundary,

and after an appropriate rescaling of (r, λ) the moment map of P(1, 1, 4) is the limiting

fibration as ε′ → 0.

These important examples not withstanding, we recall that such näıve versions of the SYZ

conjecture are unable to hold in general. Indeed, even if special Lagrangian torus fibrations

could be found in any generality, such a fibration is expected to have singular fibers (see

Figure 2.4.1) which create quantum corrections to the mirror geometry. Roughly, these cor-

rections may be encoded as a wall-and-chamber structure in X, which make m0 multi-valued.

In [6] Auroux investigates the symplectic geometry around this conjecture in detail. Rather

than exploring these details we shall observe striking parallels between the picture suggested

by the symplectic geometry and the polygons appearing in the program outlined in [21] which

we heavily exploit in the next chapter.

In order to navigate some of the difficulties involved in proving the SYZ conjecture various

alternative constructions have been proposed [59, 79]. The construction we will make most

use of in subsequent chapters is that of the Gross–Siebert algorithm. As described in [51,58]

the starting point of the program is the idea to replace the special Lagrangian fibration with

a toric degeneration. A toric degeneration is, roughly, a degeneration of (X,D) to a union

of toric varieties identified along toric strata with conditions imposed on the singularities of

the total space of the degenerating family. In particular from this union of toric varieties

one can construct a candidate base manifold B, without knowing a torus fibration, the (dual)

intersection complex.

If B was in fact known to be the base of a special Lagrangian torus fibration it would

carry a dual pair of affine structures2 induced by the Kähler and holomorphic volume forms

respectively. Thus, the Gross–Siebert reformulation of the SYZ conjecture states that for a

mirror Calabi–Yau pair X, X̆, X admits a toric degeneration to X0, which induces a pair of

2Here, since X is Fano rather than Calabi–Yau, the affine manifold B will have non-empty boundary and its

Legendre dual B̆ will be non-compact.
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affine structures on a manifold B, and X̆ admits a toric degeneration to X̆0 which exchanges

the induced affine structures on B.

In fact the Gross–Siebert algorithm produces a constructive formulation of Mirror Symme-

try: X̆0 is easily recovered from the pair of affine structures induced by a toric degeneration

of X. The mirror X̆ is formally recovered from X̆0 using additonal data (a log structure)

which forms the input for an algorithm which produces a formal smoothing of X̆. Similarly,

the starting point in Chapter 3 is also an affine manifold (with boundary) and the combina-

torial aspects of the program outlined in [21] are incorporated in the geometry of these affine

manifolds. In fact, we will consider a certain family of log-structures, at the central fiber of

this family the reconstruction algorithm will produce a Fano toric variety and varying the

log-structure will produce a smoothing. We can in fact describe neighbourhoods of the toric

fixed points explicitly, comparing the local pieces produced by the Gross–Siebert algorithm

with a standard model for the Q-Gorenstein smoothing of a cyclic quotient singularity. In

this way we pass between algebraic smoothings of toric Fano varieties and perturbations of

an affine structure in a tropical manifold.

The ‘perturbations’ of a polygon (to an affine manifold with singularities) that we consider

have been explored in the symplectic category in [106] and [81]. In [81] Leung–Symington

provide a classification up to diffeomorphism of almost-toric fourfolds, which by definition

are those symplectic fourfolds which admit a Lagrangian fibration with an affine structure

which contains a number of focus-focus singularities (the singularities we consider). The

central operation on the affine manifold we introduce to recover the notion of combinatorial

mutation (‘smoothing corners’ and ‘sliding slingularities’) appears in this work as nodal slide

and nodal trade, as well in the work of Kontsevich–Soibelman as worm deformations. In [7]

Auroux exploited these affine manifolds to produce special Lagrangian torus fibrations and

in the next chapter we use it as the central tool connecting the combinatorics of mutations of

polygons with Q-Gorenstein families of del Pezzo surfaces with cyclic quotient singularities.





CHAPTER 3

Smoothing Toric Fano Surfaces

3.1. Introduction

This chapter is devoted to a proof of Theorem 1.3.1 and proceeds in the following three

steps.

• First we recast the theory of combinatorial mutation for surfaces in the language of

affine manifolds with singularities.

• Second, we recover statements in algebraic geometry by applying the Gross–Siebert

algorithm to pass from the ‘base’ manifold (if there were a genuine special Lagrangian

fibration) to the ‘total space’.

• Finally we show that these deformations of affine structures lift to Q-Gorenstein

deformations via the Gross–Siebert algorithm.

Phrasing the last point differently, the polygons P of toric surfaces XP to which a del

Pezzo surface X degenerates appear as zero-strata in a space of affine manifolds; lifting neigh-

bourhoods around these zero-strata to deformations of the corresponding toric surface we

obtain the Q-Gorenstein deformation space.

3.2. Affine Manifolds With Singularities

In this section we shall introduce affine manifolds with singularities. From our point of

view these are tropical or combinatorial avatars of algebraic varieties. We shall briefly discuss

the connection to the SYZ conjecture, which also offers a first justification for this point of

view: the base of a special Lagrangian torus fibration naturally has the structure of an affine

manifold. By way of example: given a toric variety we can form an affine manifold via its

moment map, isomorphic to a polygon Q. We shall then consider a suitable notion of families

of these objects and specifically how one can ‘smooth’ the corners of a polygon by replacing

them with singularities in the interior. In particular, starting with a Fano polygon Q this will

form a combinatorial analogue of the Q-Gorenstein deformations of the associated del Pezzo

surface: indeed, the bulk of the later sections is devoted to reconstructing such an algebraic

deformation from this combinatorial data.

Definition 3.2.1. An affine manifold with singularities is a piecewise linear (PL) manifold

B together with a dense open set B0 ⊂ B and a maximal atlas on B0 that is compatible with

the topological manifold structure on B and which makes B0 a manifold with transition

functions in GLn (Z) oRn.

33
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Remark 3.2.2. To give a maximal atlas on B0 with transition functions in GLn (Z)oRn is

the same as to give the structure of a smooth manifold on B0 together with a flat, torsion-free

connection on TB0 and covariant lattice Γ in TB0.

Following Kontsevich–Soibelman [79] we can reinterpret this definition in terms of the

sheaf of affine functions:

Definition 3.2.3. The sheaf of affine functions AffZ,X on an affine manifold X is the

sheaf of functions which, on restriction to any affine chart, give Z-affine functions1.

Lemma 3.2.4 ([79]). Given a Hausdorff topological space X, an affine structure on X is

uniquely determined by a subsheaf AffZ,X of the sheaf of continuous functions on X, such that

locally (X,AffZ,X) is isomorphic to (Rn,AffZ,Rn).

Remark 3.2.5. AffZ,X is a sheaf of R-vector spaces, but as the product of two affine

functions is not in general affine, it is not a sheaf of rings. There is a subspace analogous to

the maximal ideal of a local ring, given by the kernel of the evaulation map ev : AffZ,Bp → R.

Definition 3.2.6. A morphism of affine manifolds is a continuous map f : B → B′ that

is compatible with the affine structures on B and B′.

Definition 3.2.7. In [59] the authors refer to our affine manifolds as tropical affine

manifolds, and refer to atlases with transition functions in GLn (R)oRn as affine strcutures.

If the transition functions lie in GLn (Z)oZn then the affine manifold is called integral ; this is

equivalent to insisting that there there is a lattice in B0 preserved by the transition functions.

Notation 3.2.8. Define ∆ := B \ B0, and refer to it as the singular locus of the affine

structure. If ∆ = ∅ then the corresponding affine manifold is called smooth. Since we always

assume that transition functions lie in GLn (Z)oRn there is a covariant lattice in TB0 which

we denote Λx ⊆ TxB0.

The relevance of affine manifolds to mirror symmetry comes from the SYZ conjecture [105],

which roughly speaking states that a pair of mirror manifolds should carry special Lagrangian

torus fibrations that are dual to each other. If one is in such a favourable setting, the base

of this fibration carries a pair of (smooth) affine structures, and, in this so-called semi-flat

setting, one can reconstruct the original pair of manifolds, X, X̆ from the affine structures.

Indeed from a given smooth tropical affine manifold B one may construct a pair of manifolds

X = TB/Λ, X̆ = T ∗B/Λ̆ where Λ is the covariant lattice in TB defined by the affine structure

and Λ̆ ⊂ T ∗B is the dual lattice. The manifold X carries a canonical complex structure and

the manifold X̆ carries a canonical symplectic structure [51]. To endow X with a symplectic

structure, respectively X̆ with a complex structure, we need to attach to B a (multivalued,

strictly) convex function ϕ : B → R. Here there is a canonical choice for ϕ: the Kähler po-

tential for the McLean metric on B [51, 87]. The convex function ϕ allows us to define the

1That is, functions of the form, f =
∑
j ajxj + b with aj ∈ Z for each j, b ∈ R and local coordinates xj
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Legendre dual B̆ of the affine manifold B, and one can show that Legendre duality B ↔ B̆

interchanges the pair of affine structures coming from a special Lagrangian torus fibration.

This identification of TB/Λ with T ∗B̆/Λ̆, and T ∗B/Λ̆ with TB̆/Λ recovers, as promised, the

mirror pair of Kähler manifolds X, X̆.

Example 3.2.9. The standard examples of affine manifolds without boundary or singu-

larities are tori, which have natural flat co-ordinates. For example, taking the base manifold

B to be S1 and endowing X = TB/Λ with the canonical complex structure described above

yields an elliptic curve X.

Example 3.2.10. Consider a polytope P ⊂ Rn. The inclusion P → Rn equips the interior

B of P with the structure of an affine manifold. The non-compact symplectic manifold T ?B/Λ̆

admits a Hamiltonian action of (S1)n for which the moment map is given by the projection

to B. It is clear in such examples how to extend the construction of this torus bundle over

B to the boundary strata of P : indeed this is nothing other than Delzant’s construction of

symplectic toric varieties from their moment polytopes [29].

Remark 3.2.11. As the last example demonstates we shall often be interested in cases

where B (or B0) is a manifold with corners. A discussion of mirror symmetry for toric

varieties from this perspective may be found in [6]. Auroux explains there that one may define

complex co-ordinates on X̆ by taking the areas of certain holomorphic cylinders in X, together

with certain U(1)-holonomies. After adding compactifying divisors to X, these cylinders

become discs, and so co-ordinates on the mirror manifold X̆ are determined by computing

the areas of certain holomorphic discs. In the toric setting (Example 3.2.10) this construction

gives global co-ordinates on X̆. In general, and certainly in our case (where singularities are

present), computing areas of holomorphic discs will give only local co-ordinates on X̆, with the

transition functions between these co-ordinate patches reflecting instanton corrections. From

this perspective, much of the rest of this chapter consists of a careful analysis of the instanton

corrections in our setting: computing them explicitly where possible, and determining how

they vary in certain simple families. We return to this point in the Conclusion on page 82.

3.2.1. Focus-focus singularities. In the rest of this paper, we will primarily be con-

cerned with affine manifolds that arise from polytopes, but rather than taking the polytope

Q itself as the affine manifold, we shall instead smooth the boundary, exchanging the corners

of Q for singularities in the interior of the polytope. The local model for this situation is as

follows. Consider a two-dimensional affine manifold Sκ, where κ is a parameter, defined via

a covering by two charts:

U1 = R2 \
(
R≥0 × {0}

)
U2 = R2 \

(
R≤0 × {0}

)
with transition function φ from U1 to U2 given by:

(x, y) 7→

(x, y) y > 0

(x+ κy, y) y < 0
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Figure 3.2.1. Straight lines in the two charts of a focus-focus singularity

The transition function is piecewise-linear: on the upper half-plane it is the identity transfor-

mation, and on the lower half-plane it is a horizontal shear with parameter κ. We will assume

throughout that κ ∈ Z; in this case, the affine manifold Sκ is integral. We will consider only

affine manifolds with singularities that are locally modelled on some Sκ.

Definition 3.2.12. A singularity of type κ in an affine manifold B is a point p ∈ ∆ such

that p 6∈ ∂B and that there is a neighbourhood of p isomorphic as an affine manifold to a

neighbourhood of 0 ∈ Sκ.

Remark 3.2.13. In the theory of Lagrangian fibrations such affine structures appear on

the base of the fibration restricted to a neighbourhood of a nodal fiber. In this context κ is

the number of nodes appearing the fiber and the vector (1, 0) in this standard model may be

identified with the class of the vanishing cycle of this fibration.

Definition 3.2.14. The monodromy around a singularity of type κ acts on TpB0
∼= R2

for p ∈ B0. The monodromy operator fixes a one-dimensional subspace we refer to as its

monodromy invariant line. In the local model Sκ this is the line R× {0}.

Convention 3.2.15. Henceforth any affine manifold B that we consider will be two-

dimensional and such that each p ∈ ∆ is a singularity of type κp for some κp ∈ Z. In

particular, the singular locus ∆ of B is disjoint from the boundary of B.

We will be primarily interested in one-parameter families of such affine structures, and in

applying the Gross–Siebert algorithm ‘fiberwise’ to reconstruct a degenerating family.

Remark 3.2.16. The Gross–Siebert algorithm for surfaces cannot be applied to certain

‘illegal’ configurations: one needs to insist that both monodromy-invariant lines and the rays

introduced by scattering miss the singular locus. In practice one often guarantees this by en-

suring that singularities have irrational co-ordinates. (In this context, monodromy-invariant

lines and rays have rational slope.) But this approach generally precludes moving the singu-

larities. As we shall see, smoothing the corners of a polygon is a particularly fortunate setting,

where one can freely slide singularities along monodromy-invariant lines without risking illegal

configurations.
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3.2.2. Exchanging corners and focus-focus singularities. We shall now construct

a local model for a degeneration. The most general definition of ‘family of affine manifolds’

we shall need consists of locally trivial families of affine structures together with finitely many

copies of this local model.

Fix a rational, convex cone C in R2 and denote the primitive integral generators of its

rays by v1 and v2. Fix a rational ray L contained in the interior of C, let ` be the primitive

integer generator of L, and fix a k ∈ Z≥0 such that the (convex) rational cone generated by v1

and v2−k` either contains L or is itself a line in R2. We shall construct a topological manifold

BC,L,k, together with a sheaf of affine functions on BC,L,k and a map πk : BC.L.k → R≥0 of

affine manifolds (where R≥0 has its canonical affine structure).

Definition 3.2.17. As a topological manifold BC,L,k is equal to C × R≥0. We give it an

affine structure via an atlas with k+1 charts. We define each chart Ui = (C × R≥0) \Vi where

each Vi is a subset of L× R≥0 as follows:

V0 = {(x`, t) : 0 ≤ x ≤ t <∞}

Vi = {(x`, t) : 0 ≤ x ≤ it or (i+ 1)t ≤ x <∞} for i ∈ {1, · · · , k − 1}

Vk = {(x`, t) : 0 < kt ≤ x <∞}

with transition functions fixed by the requirement that, for 1 ≤ i ≤ k and for all t > 0,

the charts Ui−1, Ui make the point (it`, t) in the fiber C × {t} a type 1 singularity which

monodromy invariant direction L.

Note that this only makes the complement of (0, 0) an affine manifold, as the origin is

in the closure of the singular locus but not contained in it. Despite this, the sheaf of affine

functions is still defined in a neighbourhood of (0, 0).

Remark 3.2.18. We can interpret this family as ‘exchanging corners for singularities’ by

studying the fibers of the projection to R≥0. For t = 0 the fiber is the cone C we wish to

‘deform’. For all non-zero t the tangent wedge at the apex of the cone C is a different cone

C ′ obtained from C by a PL transformation which ‘flattens’ it. In some cases (which we will

see are precisely the ‘T’ or ‘smoothable’ cases) the boundary of the cone can be made entirely

flat by this process and the tangent wedge ceases to be strictly convex. In Figure 3.2.2 we see

an example (geometrically coming from an A1 singularity) of a cone C, line L and generators

v1, v2. In this example precisely one focus-focus point is introduced.

Remark 3.2.19. Later on we will restrict this family to a subset, replacing C × R≥0 by

U × [0, T ) where U is a neighbourhood of the origin in C and T is sufficiently small that there

are k singular points on the fiber U × {T}.

Remark 3.2.20. There is an obvious generalization of this local model, which would allow

the construction of more complicated degenerations. Rather than introduce a singularity of
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Figure 3.2.2. An example of a (partial) corner smoothing for given cone C
and line L

type 1 for each 1 ≤ i ≤ k, we may consider a partition k = (k1, · · · , km) of k and construct a

version BC,L,k of BC,L,k, in which the fiber over t ∈ R≥0 contains a singularity of type ki at

(it`, t) for 1 ≤ i ≤ m.

3.2.3. One-parameter families.

Definition 3.2.21. We define a one-parameter degeneration of affine structures to be a

topological manifold with corners B and a continuous map:

π : B → R≥0

such that:

• for some finite set S of points in the boundary of π−1(0), B\S is an affine manifold

with corners and π is a locally trivial map of affine manifolds; and

• for each p ∈ S there is a neighbourhood U of p in B and a triple (C,L, k) such that

U is isomorphic, as an affine manifold, to an open set of BC,L,k, via an isomorphism

that identifies π with πC,L,k.

Remark 3.2.22. We will need to consider only one-parameter degenerations of affine

structure such that a neighbourhood of the central fiber is locally modelled on BC,L,k for

various triples (C,L, k), possibly with k = 0.

It would be interesting to consider the generalization of this notion to families over arbitrary

affine manifolds, and the associated moduli problems.

3.2.4. Polygons and Singularity Content. In this section we shall construct a one-

parameter degeneration of affine structures from a given Fano polygon which partially smooths

each vertex, in the sense we have described above. This is closely related to the notions of

singularity content, class T and class R singularities which appear in [3].

A polygon P is Fano if it is integral, contains the origin and has primitive vertices. Fix

such a polygon P and denote its polar polygon Q := P ◦. In particular the origin is contained

in the interior of Q. Fix a polyhedral decomposition P of Q by taking the spanning fan and

restricting this fan to the polytope Q.
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Fix a vertex v ∈ Vert(Q). The decomposition P induces a canonical choice of 1-cell Lv

for each v ∈ Vert (Q): the 1-cell which is a cone of the spanning fan of Q. Consider the subset

Uv = Star(v) ⊂ Q; Uv is isomorphic to an open subset of a cone Cv with origin v and bounded

by the rays containing each edge of Q incident to v. The 1-cell Lv becomes the restriction

of a ray in this cone. To form a triple (Cv, Lv, k) as in §3.2.2 we still require the choice of a

suitable integer k.

Definition 3.2.23. We shall refer to the maximal integer k such that (C,L, k) satisfy the

conditions just before Definition 3.2.17 as the singularity content of the pair (C,L).

For each vertex v ∈ Q denote by kv the singularity content of (Cv, Lv), and choose

a function k : Vert(Q) → Z≥0 such that 0 ≤ k(v) ≤ kv. We may now form the families

BCv ,Lv ,k(v). Restrict each family to Uv × [0, Tv) where the fiber over Tv contains k(v) singular

points.

Definition 3.2.24. Let πQ,k : BQ,k → [0, T ) where T = minv(Tv) be the following one-

parameter degeneration of affine manifolds. As a topological manifold it is Q× [0, T ), covered

by the following charts:

• Uv × [0, T ) as defined above for each vertex of Q and,

• W × [0, T ) where W is a neighbourhood of the origin.

We may regard Uv×[0, T ) as an affine manifold, with affine structure induced from BCv ,Lv ,k(v).

We define the affine structure on BQ,k by insisting that the transition functions between the

k(v)th chart of Uv × [0, T ) and the k(v′)th chart of Uv′ × [0, T ) is the identity for vertices v

and v′, and the transition function between each of these charts and W × [0, T ) is also the

identity.

Notation 3.2.25. We will typically wish to smooth the corners as much as possible, so

we use the notation πQ : BQ → R≥0 for the map πQ,k : BQ,k → R≥0 where k is the function

sending each vertex to its singularity content.

We next show that our notion of singularity content (Definition 3.2.23) coincides with that

of Akhtar–Kasprzyk [3]. We recall that given a Fano polygon P ⊂ NR we may consider an

edge e containing v1, v2 ∈ Vert(P ). The edge defines an (inward-pointing, primitive) element

of the dual lattice w ∈ M such that w(e) is a constant non-zero integer l. We may also

consider the cone over the edge e, which we denote Ce. Let θ denote the lattice length of the

line segment from v1 to v2. Writing θ = nl + r where 0 ≤ r < l, decomposes Ce into:

(1) A collection of n cones whose intersection with the affine hyperplane defined by

w(v) = l is a line segment of length l; and, if r > 0,

(2) A single cone of width r < l. This is the residual cone from [3].

If Ce contains no residual cone then we say that Ce is of class T. Akhtar–Kasprzyk call n the

singularity content of Ce.
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Consider an edge e of P with vertices v1, v2; this determines a vertex ve of the polar

polygon Q, and thus a cone C with origin at ve, having rays dual to v1 and v2. The normal

direction to e defines a ray in Q passing though ve and the origin. Thus to the polygon P

and edge e, we may associate a pair (C,L).

Lemma 3.2.26. The singularity content of (C,L) as in Definition 3.2.23 is equal to the

singularity content of the cone over the edge e as defined in [3].

Proof. After a change of co-ordinates in N we may assume that the vertices v1, v2 of e are

(a1,−h) and (a2,−h) respectively. The rational polygon Q then has a vertex ve = (0,−1/h)

and edges which contain this vertex in directions (−h,−a1) and (h, a2). This defines the cone

C above. The ray L is vertical, and the singularity content of (C,L) is:

max{k ∈ Z≥0 : a2 − kh ≥ a1}

This is the largest k such that kh ≤ a2 − a1, and since θ = a2 − a1 is the lattice length of the

edge e, we see that the two definitions of singularity content coincide. �

Definition 3.2.27. Let B be an affine manifold with singularities and corners, and P a

polygonal decomposition of B. This pair is of polygon type if it is isomorphic to a fibre of a

family πQ,k : BQ,k → R≥0.

3.3. From Affine Manifolds to Deformations: an Outline

We are now nearly in a position to apply the Gross–Siebert reconstruction algorithm

to our base manifolds. Since we will require a slight generalization of the Gross–Siebert

algorithm and since some of the details will be important later in the paper, we present the

procedure in some detail. As a consequence sections 3.4 to 3.7 draw heavily on the paper [59]

of Gross–Siebert and the book [53] by Gross.

As input data for this algorithm we require a two-dimensional affine manifold with sin-

gularities, plus some extra data attached to it. In section 3.4 we describe this extra data,

introducing the notion of log structure and open gluing data, and explain how these data

together determine the central fiber X0(B,P, s) of a toric degeneration.

In section 3.5 we define the structure on the affine manifold with singularities plus log data,

referred to simply as a structure, which encodes an nth-order deformation of X0(B,P, s). Sec-

tion 3.6 is then devoted to a description of the process (“scattering”) by which an n-structure

can be transformed into an (n + 1)-structure; in other words, an nth-order deformation can

be prolonged to an (n+1)st-order deformation. Finally we describe in section 3.7 how to pass

from a structure to an nth-order deformation of the central fiber.

The rest of the chapter then applies this reconstruction algorithm to our original problem

of smoothing cyclic quotient surface singularities. This is accomplished in a series of steps:

(1) In Section 3.8 we compute explicitly the local model at each boundary zero stratum.
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(2) In Section 3.9 we return to the original problem: taking a polygon we show how the

family of affine structures constructed in section 3.2 may be lifted order by order to

give an algebraic family over SpecC[α]JtK. Away from the central fiber, this is an

application of the generalized Gross–Siebert algorithm; near the central fiber, this

makes use of the local models computed in section 3.8. We further show that the

local models at the vertices are compatible with the canonical cover construction,

and thus that the family that we construct is Q-Gorenstein.

(3) In section 3.10 we consider the special case in which a single singularity slides along

its monodromy-invariant line from one corner into the opposite edge. Since there

is no scattering diagram to consider, the tropical family here may be lifted to an

algebraic family over P1; once again this algebraic family is Q-Gorenstein.

3.4. Log Structures on the Central Fiber

In Section 3.2 we have considered the tropical analogue of smoothing the class-T singu-

larities of a Fano toric surface. As explained, a version of the Gross–Siebert algorithm will

allow us to reconstruct from this an algebraic family, the central fiber of which is itself the

restriction to a formal neighbourhood of the central fiber of a degeneration of the Fano toric

surface. The general fiber will be a different formal family with the same central fiber. The

data appended to this central fiber that dicates which smoothing we take is a log structure.

In this section we give a very functional description these log structures. However for a com-

plete explanation of this notion, and its relevance to the Gross–Siebert algorithm, the reader

is referred to [58, 59]. For the rest of this section we fix a triple (B,P, s), where P is a

polyhedral subdivison of B into convex, rational polyhedra. Here s is a choice of open gluing

data, a concept we will also summarise in this section.

3.4.1. Construction of the central fiber. The method for constructing a scheme

from the pair (B,P) is straightforward. Each polygon in the decomposition P defines a

toric variety via its normal fan, and the central fiber is constructed by gluing these along the

strata they meet along in P. Formally speaking, in order to define this gluing, we define a

small category associated to a polyhedral decomposition:

Definition 3.4.1. Let P also denote the category which has:

Objects: The strata of the decompostion.

Morphisms: At most a single morphism between any two objects, where e : ω → τ exists iff

ω ⊆ τ .

We next define a contravariant functor V : P ⇒ AffSchemes. Its action on objects is as

follows. Fix a vertex v ∈P0. At v there is a fan Σv ⊆ TvB given by all the strata of P that

meet v. Define Kω to be the cone in Σv defined by the element ω ∈P.
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Definition 3.4.2 (of V on zero-dimensional objects). The co-ordinate ring of V (v) is

given by the Stanley–Reisner ring of the fan Σv: for lattice points m1, m2 ∈ |Σv|, we set

m1.m2 =

m1.m2 if m1, m2 ∈ Kω for some ω ∈ Σv

0 otherwise

Given a stratum τ ∈P and a vertex v of τ , we define a fan around v:

τ−1Σv = {Ke + Λτ,R : Ke ∈ Σv, e : v → σ factoring though τ}

recalling from [59] that Λτ,R is the linear subspace generated by τ in TvB. We remark, as

in [59], that this subspace depends only on τ and not on the choice of vertex v. We can now

define the image of a stratum τ under V :

Definition 3.4.3 (of V on positive-dimensional objects).

V (τ) = Spec k
[
τ−1Σv

]
where this k-algebra is interpreted as the Stanley–Reisner ring, as in Definition 3.4.2.

We now wish to define the functor V on morphisms. There is an obvious choice, namely

sending a morphism τ → ω to the natural inclusion map V (τ) → V (ω) given by the fan.

However one is free to compose this inclusion map with any choice of toric automorphism

of V (τ). The choices of such automorphisms for every inclusion ω ↪→ τ form exactly the

Open gluing data of [59], which we denote by s. This choice is not arbitrary, since V should

be functorial: this constraint leads to the precise definition of open gluing data which we

shall describe below. Once the definition of open gluing data is in place, and thus we have a

well-defined functor V , we may then define the central fiber as the colimit:

(3.4.1)
∏
ω∈P

V (ω)→ X0 (B,P, s)

3.4.1.1. Open Gluing Data: In [59] the authors explain that the toric automorphisms of

an affine piece V (τ) = Spec
(
k
[
τ−1Σv

])
for v a vertex of τ are in bijection with elements of

a set PM (τ) defined as follows.

Definition 3.4.4. Given τ ∈ P and a vertex v ∈ τ we define PM (τ) to be the set of

maps µ : Λv ∩ |τ−1Σv| → k× such that:

• for any maximal cone σ of τ−1Σv, the restriction of µ to Λv ∩ σ is a homomorphism;

and

• for any two maximal dimensional cones σ, σ′, we have

µσ|Λv∩σ∩σ′ = µσ′ |Λv∩σ∩σ′ .

As remarked in [59], whilst this description of PM (τ) depends on v ∈ τ , the set itself is

independent of v.
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Remark 3.4.5. An elementary observation we shall use repeatedly in what follows is that

the set of homomorphisms Λv ∩ σ → k×, where σ is a maximal dimensional cone, does not

depend on the choice of maximal cone σ.

Definition 3.4.6. A collection of open gluing data is a set

s = {se ∈ PM (τ) | e : ω → τ}

such that if e : ω → τ , f : τ → σ then sf .se = sf◦e on the maximal cells where these are

defined. We also insist that sid = 1.

The conditions in Definition 3.4.6 are precisely those required to ensure that V is a functor.

Definition 3.4.7. Collections of open gluing data se, s
′
e are cohomologous if there is a

collection {tω ∈ PM (ω) : ω ∈P} such that2 s′e = tτ t
−1
ω se whenever e : ω → τ .

Remark 3.4.8. In [59] it is proved that the schemes one obtains via (3.4.1) using coho-

mologous gluing data are isomorphic.

Proposition 3.4.9. Let (B,P) be of polygon type. Then all choices of open gluing data

are cohomologous.

Proof. Fix a polygon Q and label the various strata of P:

2Here we use the fact that tω ∈ PM (ω) determines a unique element in PM (τ), which we also denote by tω.
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We need to show that, given any open gluing data s for (BQ,P), we can find a set {tω ∈ PM (ω) : ω ∈P}
such that se = tτ t

−1
ω for every e : ω → τ . By Remark 3.4.5 we have that PM (ηj) ∼= PM (σj)

and PM (ωi) ∼= PM (τi) for all i and j. Open gluing data s are specified by the following five

families of piecewise-multiplicative functions:

(1) e1
i : ρ→ τi

(2) e2
i : τi → σi, e

2
i
′ : τi → σi−1

(3) e3
i : ωi → τi

(4) e4
i : ω → ηi, e

4
i
′ : ω → ηi−1

(5) e5
i : ηi → σi

We first define open gluing data s1 cohomologous to s by setting tτ = s−1
e1i

. Thus s1
e1i

= 1.

Next we observe that s1
e2i

= s1
e′2i+1

, since we have insisted that s1
e1i
s1
e2i

= s1
e1i+1

s1
e′2i+1

. Therefore we

may define open gluing data s2 cohomologous to s1 by setting tσi = (s1
e2i

)−1. By construction,

s2 associates the trivial element of PM to any morphism between any of ρ, τi and σj . We now

define open gluing data s3 cohomologous to s2 using tωi = (s2
e3i

)−1 and tηi = (s2
e4i

)−1.
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We claim that the open gluing data s3 are trivial. First we check s3
e5i

. We have:

s3
e5i

= s3
e4i
s3
e5i

= s3
e3i
s3
e2i

= 1

where the first equality is the statement that s3
e4i

= 1 together with Remark 3.4.5. Finally we

need to check that s3
e′4i

= 1. But s3
e′4i+1

.s3
e5i

= s3
e4i
.s3
e5i

, so this follows. Thus any open gluing

data for (B,P) are cohomologous to the trivial gluing data. �

Proposition 3.4.9 and Remark 3.4.8 together show that the scheme obtained from V by

gluing (as in equation 3.4.1) is independent of the choice of open gluing data. Thus we will

suppress the dependence on this choice in what follows, assuming that V is constructed using

trivial gluing data.

In fact given an affine manifold (B,P) of polygon type, obtained by smoothing the corners

of a polygon Q, there is a well known family over C whose fiber over zero is X0(B,P, s) and

every other fiber is isomorphic to the toric variety defined by the normal fan of Q.

Definition 3.4.10. Fix an affine manifold B of polygon type and its polyhedral decom-

position P. Also choose a piecewise linear convex function φ whose maximal domains of

linearity are precisely the maximal cells of the decomposition P. Define a polyhedron Q̃ by

setting

Q̃ := {(m, k) ∈ Q× R : k > φ(m)}.

The Mumford degeneration of (B,P, φ) is the toric variety defined by the normal fan of Q̃.

Remark 3.4.11. We noramlly suppress the dependence on φ, since it is fixed by the data

defining a structure in Section 3.5.

3.4.2. A Description Of The Log Structure. In this section we describe, follow-

ing [59], how one may attach a space of log structures to a triple (B,P, s). We begin by

describing a sheaf, of which log structures will be (certain) sections.

Definition 3.4.12. Let ρ ∈P be a 1-cell and let Vρ be the associated toric variety. Let

k be the total number of singularities of the affine structure on ρ, counted with multiplicity3.

Let v1, v2 be the vertices of ρ, and cover Vρ with two charts Ui = V (vi)∩ Vρ. We shall define

a sheaf Nρ on Vρ by setting Nρ (Ui) = OVρ |Ui and using the change of vertex formula

fρ,v1 = zkm
ρ
v1,v2fρ,v2

where mρ
v1,v2 is the primitive vector along ρ from v1 to v2.

This defines an invertible sheaf. If the vertices of ρ are integral then Vρ is canonically

isomorphic to P1 and the sheaf Nρ is the line bundle OP1 (k). In particular the number of

zeroes of a generic section of Nρ is equal to the number of singular points of the affine manifold

supported on this stratum, counted with multiplicity. When the vertices vi are not integral

3This is the lattice length of what Gross–Siebert call the monodromy polytope, which here is a line segment.
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the 1-strata are canonically identified with the weighted projective line P(a, b), where a and b

are the indices of the respective vertices, and the sheaf Nρ is the line bundle O (k lcm(a, b)).

Remark 3.4.13. The orbifold structure here depends on the polarization of the central

fiber. In any given example, one can repolarize the central fiber by scaling all the polygons

until every vertex is integral; this induces a Veronese embedding on the 1-strata P(a, b) con-

sidered above. However this rescaling increases the number of interior integral points we need

to consider, and in general leads to much more complicated embeddings.

Definition 3.4.14. The sheaf of pre-log structures LS+
pre,X is defined to be ⊕ρNρ where

Nρ is the extension by zero of the sheaf in Definition 3.4.12.

Log structures will be sections of the sheaf LS+
pre,X that satisfy a consistency condition

that we now describe [59]. Given a vertex v ∈P fix:

• A cyclic ordering of the 1-cells ρi containing v;

• Sections fi of Nρi ; and

• Dual vectors d̆ρi annihilating the tangent spaces of ρi, and chosen compatibly with

the cyclic ordering of ρi.

The consistency condition that we require is:∏
d̆ρi ⊗Z fi

∣∣
Vv

= 0⊗ 1

Remark 3.4.15. In [59] a further condition, local rigidity, is imposed on X0(B,P, s)

which, roughly speaking, is that the sections fi associated to the 1-strata by the log structure

do not factorize. This is not a condition that we shall impose in our context.

Remark 3.4.16. Given a lattice polygon Q, we have constructed a family of affine man-

ifolds BQ,k → R≥0. One could also consider the affine manifold of polygon type (B,P)

constructed from Q, and place a log structure on the scheme X0(B,P, s). The choices in-

volved in these two constructions are very closely related, as we now explain.

Definition 3.4.17. Given any one parameter degeneration of affine manifolds π : B → R≥0

observe that any fiber B of π gives the same variety X0(B,P, s). A one parameter family of

log structures s(x) ∈ Γ(LS+
pre,X0

), over C is said to be compatible with B if for each interior

1-cell τ and for each x ∈ C the following two subsets of B coincide and have the same

multiplicities:

(1) The image of the zero set of the section s(x) under the moment map sending Vρ → ρ.

(2) The singular set ∆ ⊂ B, counted with multiplicity by singularity type.

Any one-parameter degeneration of affine manifolds π : B → R≥0 gives rise to a compatible

one-parameter family of log structures.
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3.5. Structures on Affine Manifolds

In this section we define a structure on (B,P, φ). This is a purely combinatorial con-

struction, which will encode the various functions used to reconstruct the formal deformation

of the maximally degenerate variety X0(B,P, s). This section is largely an exegesis of [53],

Chapter 6.

3.5.1. Exponents and orders. Throughout this section we shall fix a triple (B,P, φ)

where:

(1) B is an affine manifold with singularities and corners.

(2) P is a polygonal decomposition of B into rational, convex polyhedra.

(3) φ is a multi-valued piecewise linear function which is linear when restricted to full-

dimensional cells.

Remark 3.5.1. The multi-valued nature of φ reflects the fact that B has singularities: φ

may be defined as an affine function on the universal cover of B \∆ but in general this will

not take the same value on each point covering a given point p ∈ B \∆. Picking a sheet of

the covering around p is equivalent to making a choice of local representative for φ.

In view of this remark we shall define a sheaf twisted so as to ensure φ is a global section.

Formally, we shall define a sheaf of abelian groups on B an extension by Z of Λ, the covariant

lattice in the tangent space of B:

0→ Z→ Pφ → Λ→ 0

To fix this sheaf we first choose a covering of B0 by simply connected open sets Ui and a

representative φi of φ for each Ui:

Definition 3.5.2. The sheaf P is defined by taking Pφ = Λ|Ui ⊕ Z on restriction to each

Ui. On the intersection Ui ∩ Uj we identify sections via

(r,m) ∼ (r + d(φj − φi)(m),m)

noting that φj − φi is a linear function and so has a well defined slope which we evaluate in

the direction m.

Definition 3.5.3. An exponent at x ∈ B0 is an element of the stalk Pφ,x.

Definition 3.5.4. There is a canonical projection Pφ,x → Λx for every x ∈ B0. Given an

exponent m ∈ Pφ,x we denote the image of m under this projection by m̄.

In the case where B has no singularities, the deformations of the central fiber described

in this section arise from a toric construction, which we now sketch (see [53] for details). The

input data for this construction are an affine manifold B ⊂ R2, a decomposition P of B into

integral polygons and a convex function φ : B → R which is piecewise linear and linear on the

elements of P. The set B′ = {(p, x) : x ≥ φ(p)} is a polyhedron, with a well defined normal
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fan. The toric variety associated to this normal fan has a projection to C and the fiber over

zero is equal to a reducible collection of toric varieties corresponding to the full-dimensional

cells of P.

Example 3.5.5. We consider a degeneration of P1: Let B be the union of the intervals

[−1, 0], [0, 1] and consider:

φ(x) =

0 x < 0

x x > 0

The toric variety associated to B′ is the blow up of C×P1 at (0,∞). The projection onto the

first factor has general fiber P1 and central fiber equal to the union of 2 copies of P1 identified

at a toric zero stratum.

Remark 3.5.6. Observe that in this construction each cell of P not contained in the

boundary of B defines a cone via its tangent wedge in B′ which is dual to a cone in the

normal fan of B′. A chart of this degeneration is then given by taking the algebra over the

monoid defined by the integral points of this tangent wedge.

We now localize this toric construction, so that it applies to (B,P, φ) such that B has

singularities. In particular we shall define the analogue of the monoid above the graph from

Remark 3.5.6. To state this definition we need two more locally defined objects:

(1) Σx: The fan in TxB0 induced by P.

(2) φi,x: the piecewise linear function induced by φi on TxB0. One may define this by

defining its slope in each cell of Σx to be the slope of φi in the cell of P that cone

corresponds to; see [53] for more details.

Definition 3.5.7. Fix an x ∈ Ui. We define a monoid Pφ,x ⊆ Pφ,x given by:

Pφ,x = {(r,m) : m ∈ |Σx|, r ≥ φi,x (m)}

The fact that Pφ,x is independent of the chart used to define it is proven in [53], and a corollary

of that calculation is the following observation.

Proposition 3.5.8. The order of an exponent with respect to a maximal dimensional cell

σ ∈P given by the formula ordσ (p) = r − φi,σ is independent of the chart used to define it.

In words this definition is simply: ‘The order of m is its height above the hyperplane in Pφ,x
defined by σ’. Thus we may extend the definition slightly:

Definition 3.5.9. For τ ∈ P and m ∈ |Σ|, ordτ (m) = maxτ⊆σ ordσ (m) and ord (m) =

maxσ ordσ (m).

3.5.2. Slabs and rays on B. Structures on B consist of a collection of slabs and rays.

We shall now define rays; these carry the instanton corrections analogous to gradient flow

lines in [79]. We recall this definition from [53].
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Definition 3.5.10. A naked ray (Definition 6.16 of [53]) is an immersion d : [0, Ld]→ B

such that:

• whenever d(x) is non-singular, Ddx maps the integral tangent vectors to x to Λd(x);

• the image of d only intersects singular points in their monodromy invariant direction;

• if Ld is finite then d (Ld) is in ∂B.

A ray is a pair (d, fd) where d is a naked ray, fd = 1 + cmz
m, and m ∈ Γ

(
Id, d

−1Pφ
)

is such

that every germ mx of m lies in Pφ,d(x)

A crucial property of rays is that the order of an exponent increases as one moves from

one cell of P to another; this follows from the strict convexity of the piecewise linear function

φ:

Lemma 3.5.11. Consider a ray (d, fd) and the section m giving the exponent of the ray

function fd. If mx ∈ Pφ,x then for x′ > x,m′x ∈ Pφ,x′.

Proof. This is an immediate consequence of Lemma 6.19 in [53]. �

Remark 3.5.12. This Lemma implies that given an integer k, the set

{x ∈ [0, Ld] : ordx (m) ≤ k}

is an interval of the form
[
0, Nk

d

]
; this defines the numbers Nk

d for each pair (d, k). In particular

we can define the truncation of a ray at a given order:

Definition 3.5.13. A k-truncated ray is a ray (d, fd) restricted to the domain [0, Nk
d ].

We now encode the log structure in the structure on B. To do this we use a simplified

version of the definition of a slab from [59]. We shall require the following preliminary

observation:

Lemma 3.5.14. Given a codimension one cell ρ in P and a section fρ ∈ Γ (Vρ,O (k))

defining the log structure along this stratum there is a canonical lift, which we also denote fρ,

to a section of k [Pφ,v] for any vertex v ∈ ρ.

Proof. The function fρ|V (v) is a polynomial function in zm where m is the primitive

generator of the tangent space to ρ. Therefore fρ|V (v) is canonically an element of the ring

k [Λv]. We take fρ,v to be the canonical lift to Pφ,v, obtained from the observation that φ

gives a section of the projection Pφ,v → Λv. Notice that with respect to ρ the order of the

slab function is always zero. �

Definition 3.5.15. A slab consists of a codimension one cell ρ together with, for each

non-singular point x ∈ ρ, a germ

fρ,x =
∑

m∈Px,m̄∈Λρ

cmz
m ∈ k [Px]

such that the following two conditions hold:
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(1) Change of vertex formula: Take x and x′ and denote the corresponding connected

components of ρ\∆ by Cx and Cx′ respectively. Let k be the number of singularities

(counted with multiplicity) between x and x′, and define mρ
x,x′ ∈ Λx to be the k-fold

dilate of the primitive generator of the ray from x to x′. Now we generalise the

change of vertex formula of [59] to give the relation between the slab functions in

different connected components:

fρ,x′ = z
mρ
x,x′fρ,x

(2) Agreement with log structure: If x ∈ Cv for some vertex v ∈ ρ, we have at v a function

from the log structure: fρ|V (v). There is a canonical parallel transport map to the

point x and we demand that, after parallel transport, we have fρ,x = fρ|V (v).

Remark 3.5.16. This definition of slab function relies on Proposition 3.4.9. Indeed the

change of component formula in [59] is considerably more complicated and it is not clear what

the correct general definition is in cases which are not locally rigid.

Remark 3.5.17. In [59] the authors ask only that the order zero part of the slab function

agrees with the log structure; in [53] however all the corrections are carried by rays. Interpo-

lating between these two, we shall regard slabs simply as placeholders for the log structure.

3.5.3. Defining a structure on (B,P, φ).

Definition 3.5.18. A structure S = S s ∪ S r is a finite collection S s of slabs and a

possibly infinite collection S r of rays such that:

(1) The order of any exponent on any ray is strictly positive.

(2) The set

S r
k =

{
k-truncated rays (d, fd) : Nk

d > 0
}

is finite for each k.

Given a structure S and a non-negative integer k, we fix a polyhedral refinement Pk of

P such that:

(1) The cells of Pk are rational convex polyhedra.

(2) For each d ∈ S r
k , the set d

([
0, Nk

d

])
is a union of cells in Pk.

We now define a category Glue(S , k) and a functor to the category of commutative rings

which will record each of the local pieces of the smoothing. This allows the problem of recon-

structing the smoothing to be broken into two distinct problems: establishing functoriality,

and then showing that the colimit of this functor produces a smoothing.

3.5.3.1. The objects. Let (ω, τ, u) be a triple such that:

(1) ω, τ ∈P and a maximal cell u of Pk

(2) ω ⊆ τ
(3) ω ∩ u 6= ∅
(4) τ ⊆ σu, where σu is the maximal cell of P containing u
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Remark 3.5.19. Each of these will be used to define a small subscheme of the formally

degenerating family by considering a certain thickening of the stratum corresponding to τ

inside a formal smoothing of Star(ω).

3.5.3.2. The morphisms. The space of morphisms between any two objects (ω, τ, u) , (ω′, τ ′, u′)

has at most one element. It has one element precisely when ω ⊆ ω′, τ ′ ⊆ τ . We shall use the

following basic observation about the morphisms of this category:

Lemma 3.5.20. Any morphism may be factored into morphisms of one of two types:

(1) ω ⊆ ω′, τ ′ ⊆ τ , u = u′.

(2) ω = ω′, τ ′ = τ , u ∩ u′ is a one dimensional set containing ω.

Note that this factorisation is generally non-unique.

3.5.4. The gluing functor. We now define the functor Fk from Glue (S , k) to Rings

from which we shall construct the kth-order formal degeneration. The definition of this functor

is virtually identical to that of [53].

Having fixed an object (ω, τ, u) of Glue (S , k), we shall use the notation σ for the maximal

cell in P containing u. We shall denote the ring Fk(ω, τ, u) byRkω,τ,u; SpecRkω,τ,u is a thickening

of the toric stratum corresponding to τ . We give the definition of these rings in three stages.

3.5.4.1. Defining Pφ,ω. Recall the monoid Pφ,x for x ∈ Int (ω). If we pick a y ∈ σ then

since the interior of a cell in Pmax is simply connected there is a well-defined inclusion

j : Pφ,x ↪→ Pφ,y via parallel transport.

Definition 3.5.21. Pφ,ω = j (Pφ,x) ⊆ Pφ,y.

3.5.4.2. Defining the ideal Ikω,τ,σ. The thickening of the stratum is defined by an ideal,

Ikω,τ,σ = {m ∈ Pφ,ω : ordτ (m) > k}. We set Rkωτσ = k [Pφ,ω] /Ikωτσ.

3.5.4.3. Localisation. This is not yet a good enough definition of Fk(ω, τ, σ) however. The

change of vertex formula in the definition of slab demands that certain functions (which have

zeroes on the toric 1-strata) should be invertible in these rings, therefore we need to localise

with respect to these functions. This is broken into cases, depending on the strata ω, τ .

First assume that τ is an edge with non-trivial intersection with ∆. In this case we have

a slab function attached to each smooth point of τ , and we form the localisation:

Definition 3.5.22. Rkωτu =
(
Rkωτσ

)
fτ

Precisely, we need to specify what fτ means here. If ω = τ it is irrelevant, the slab

function is a polynomial in a single variable which is invertible in this ring. If ω is a vertex

we simply take the germ of the slab function at this point.

In all other cases, namely τ ∩∆ = ∅, we define:

Definition 3.5.23. Rkωτu = Rkωτσ
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We are now able to define the functor Fk on objects:

Fk (ω, τ, u) = Rkω,τ,u

Remark 3.5.24. We observe there are some canonical maps between various of these

rings. If τ ′ ⊆ τ and ω ⊆ ω′ there is a canonical inclusion Ikω,τ,σ ↪→ Ikω,τ ′,σ and thus a

surjection Rkω,τ,σ → Rkω,τ ′,σ. There is also an inclusion of monoids Pφ,ω,σ ↪→ Pφ,ω′,σ and thus

an injection Rkω,τ,σ ↪→ Rkω′,τ,σ. One may check that these maps survive the localisations at the

slab functions.

Now we have defined the functor on objects we define the functor on morphisms. This is

done case by case, recalling that any morphism may be factored into those of change of strata

type and those of change of chamber type.

3.5.4.4. Change of strata. We specify a map:

Rkω,τ,σ ↪→ Rkω′,τ ′,σ

by composing the canonical maps we identified in the previous section, precisely, we define

the change of strata map:

ψ(ω,τ),(ω′,τ ′) : Rkω,τ,u → Rkω,τ ′,u ↪→ Rkω′,τ ′,u

to be the composition of the two maps above. See [53] for the verification that these are

defined in the localised rings.

3.5.4.5. Change of chamber maps. Now we fix two chambers u, u′ with one dimensional

intersection and such that ω ∩ u ∩ u′ 6= ∅. We also fix a point y ∈ Int (u ∩ u′) such that the

connected component of B0 ∩ u ∩ u′ (recalling B0 := B\∆) containing y intersects ω. Note

that either ω is a vertex, in which case there is a unique such component, or ω is an edge,

in which case any connected component will do. We shall now define the change of chamber

map θu,u′ : R
k
ω,τ,u → Rkω,τ,u′ .

We consider two further cases, depending on whether or not σu ∩ σu′ ∩∆ = ∅. If this is

the case we define:

θu,u′,y (zm) = zm
∏

f
〈n,m̄〉
(d,x)

Note that this is always an isomorphism – all the functions f(d,x) are invertible. As rays

propagate in the direction of m̄ this is manifestly independent of the point y. If σu∩σu′∩∆ = ∅,

we shall define the map as follows:

θu,u′,y (zm) = zmf 〈n,m̄〉ρ,y

∏
f
〈n,m̄〉
(d,x)

Remark 3.5.25. Notice that zm in the left hand side is an element of Rkω,τ,u whereas on

the right it appears as an element of Rkω,τ,u′ . The identification of these two rings is made via

parallel transport along a ‘short path’ from u to u′ which is contained in the union of these

two chambers and which intersects the 1-cell between them only once.
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Since Rkω,τ,u is localised at the slab functions we see that all functions appearing in the product

are invertible, and so this map is an automorphism. However, the above definition is not

manifestly independent of y.

Proposition 3.5.26. θu,u′,y is independent of the choice of y.

Proof. Since this is proven in [53] we only provide a sketch of this proof. The key

observation is that if we change from y to y′ in a different component of u∩ u∩B0 we change

the slab function by the transition function given in Definition 3.5.15. However we also change

the identification of this stalk with Rkω,τ,u′ by parallel transport, which may be interpreted as

precomposing this map with the isomorphism induced by a simple loop around the singular

point. The factors in these two isomorphisms are the same, but occur with different signs,

ensuring that the change of path does not alter the change of chamber map. �

3.5.4.6. Functoriality. We have now defined a map on objects and on ‘elementary’ mor-

phisms; however we need to show both that this is well defined and that this is a functor.

We first define a joint which will be used to formulate a necessary and sufficient condition for

functoriality:

Definition 3.5.27. A vertex of Pk not contained in the boundary of B is called a joint.

The collection of joints of Pk is denoted Joints (S , k).

Indeed, fixing a j ∈ Joints (S , k) and a cyclic ordering u1, · · · , uk of the chambers around this

vertex one has a necessary condition for Fk to be a functor:

(3.5.1) θu1,u2 ◦ · · · ◦ θuk,u1 = Id

The content of Theorem 6.28 of [53] is that it is sufficent to check this identity at every joint.

Given what have said already, this is a purely formal exercise and the reader is referred to [53]

for the proof of this result.

Definition 3.5.28. Given a structure S and a joint j we say S is consistent at j to order

k if and only if Equation 3.5.1 holds at j to order k. S is called compatible to order k if it is

consistent to order k at every joint.

By Theorem 6.28 of [53] compatibility of the structure S implies the existence of a well

defined functor from the category Glue (S , k) to Rings.

3.6. Consistency and Scattering

We saw in the last section that in order for the gluing functor to be well defined we need

to guarantee a consistency condition on the structure. In this section we shall describe an

inductive algorithm for ensuring this is the case at each order. Theorem 6.28 of [53] has

reduced this to a local computation at each joint. Indeed, fixing a joint j we shall construct a

scattering diagram Dj which will encode this local data. We begin by outlining the necessary

theory associated with scattering diagrams.
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3.6.1. Scattering diagrams at joints. This section is based on Section 6.3.3 of [53]

and on [57]. This section is also largely independent of the rest of the chapter; we can make

these definitions independently of a structure S or an affine manifold B.

We shall fix the following data:

(1) A lattice M ∼= Z2, and denote N = HomZ (M,Z).

(2) P a monoid, and a map r : P →M . We shall denote m := P\P×.

The scattering diagram itself will consist of a number of rays and lines:

Definition 3.6.1. A ray (resp. line) is a pair (d, fd). Here d = m′0 − R≥0m0 for a ray

(resp. d = m′0−Rm0 for a line). Viewing d as a set gives the support of the ray (line). If d is

a ray we call m′0 the initial point. The function fd is an element of k̂ [P ], with the completion

taken with respect to m, such that:

• fd is congruent to one modulo the maximal ideal, i.e. fd ∈ 1 mod m

• fd may be written fd = 1 +
∑
cmz

m such that if cm 6= 0, r(m) = Cm0 for a positive

rational number C.

Definition 3.6.2. A scattering diagram D over k[P ]/I is a finite collection of rays and

lines such that fd ∈ k[P ].

Given a ray or a line (d, fd) we define an automorphism of k[P ]/I as follows:

Fix a path γ that intersects d transversely and a primitive element n ∈ N annihilating

the support of the ray such that the direction n is compatible with the orientation of the γ.

Given these choices, set θγ,d (zm) = zmf
〈n,r(m)〉
d . Composing these in sequence we can

describe automorphisms arising from longer paths, or indeed loops, forming the path ordered

product associated with these paths. Specifically, given a path γ we may define θγ,D =

θγ,d1 · · · θγ,dn so long as γ intersects each of the di transversely at time ti, with ti > ti+1, and

avoids the intersection points of any rays or lines.

Remark 3.6.3. One may equivalently define the wall crossing automorphism θγ,d by con-

sidering the element fd∂n of the Lie algebra of log derivations. The element θγ,d of Aut (k[P ]/I)

is obtained by exponentiation from this Lie algebra. For more details the reader is referred

to [57].

There is a natural notion of consistency for a scattering diagram:

Definition 3.6.4. A scattering diagram D is consistent if and only if the path ordered

product around any loop for which this product is defined is the identity in Aut (k[P ]/I).

One fundamental property of scattering diagrams is that one may add rays in an essentially

unique fashion to achieve consistency. This is the content of the following result of Kontsevich–

Soibelman:

Theorem 3.6.5. Given a scattering diagram D, then there is a scattering diagram SI (D)

such that SI (D) \D is entirely rays, and is consistent over the ring k[P ]/I.
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Proof. The proof is a calculation in the Lie algebra of log derivations and the subalgebra

which exponentiates to the tropical vertex group. This is discussed in much more detail

in [57]. �

We now have a framework in which we can introduce corrections to order k, inductively

making a scattering diagram consistent. Recalling that we have fixed a joint j in S on

(B,P, φ) we fix the data required to define a scattering diagram:

Definition 3.6.6. Let the lattice be M = Λj, the monoid P = Pφ,σj,σ and the map

r : P →M be given by m 7→ m̄. Noting that in general we have a maximal ideal m = P\P×

we fix an m-primary ideal, I = Ikσj ,σj ,σ.

We construct the scattering diagram Dj in two steps.

(1) If j ⊂ ρ where ρ is a slab, that is ρ∩∆ 6= ∅, then we factorize fρ,x for x ∈ ρ, writing

fρ,x =
∏
j 1 + cρ,jz

ljmρ,x . For each j we add the following line to the scattering

diagram: (
Rm, 1 + cρ,jz

ljmρ,x
)

where m is the primitive vector in the direction of Txρ.

(2) For each ray d in Sk−1 such that there exists x ∈
[
0, Nk

d

]
with d(x) ∈ j we add either

a ray or a line. If x = 0 we add a ray:(
R≥0d

′ (x) , 1 + cdz
md,x

)
otherwise we add the line with the same function.

Section 6.3.3 of [53] establishes that if dimσj ∈ {0, 2} then in fact Dj satisfies all the

requirements of a scattering diagram and so one may apply the Kontsevich–Soibelman al-

gorithm and obtain a consistent scattering diagram SI (Dj). The rays of SI (Dj) are then

‘exponentiated’ to give rays locally in the structure S which then propagate in B.

Of course we have not dealt with the case that dimσj = 1. This is harder because the

candidate scattering diagram does not satisfy the requirement that fd ∈ 1 mod m for those

lines coming from the slabs. Indeed, those functions always have order zero in the interior of

ρ. A solution would be to try and prove an analogue of the Kontsevich–Soibelman Lemma

over the localised ring (k[P ]/I)fρ,x . However, the approach taken in [53] is to work in an even

larger ring, define a ‘universal’ scattering diagram and view the localised ring as a subring.

Since we impose slightly weaker assumptions on the singular locus ∆ than appear in [53] we

require a slightly stronger result, which is the topic of the next section.

3.6.2. Localising scattering diagrams. This section details the required modest amend-

ments to Proposition 6.47 of [53] needed in order to extend that result to ‘non-simple’ settings.

Roughly, by replacing coefficients with formal variables one may embed the localised ring in

a completion of the original ring with respect to a sequence of ideals Ie. Once one can show

that the scattering diagrams SIe (D) stabilize we may form the scattering diagram over this

completed ring.
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Before stating the proposition we require some results from [53] relating scattering dia-

grams and enumerative geometry. To state these we first consider a scattering digram of the

following form:

(3.6.1) D =

Rmi,

 pi∏
j=1

lij∏
k=1

(
1 + tijkz

−jmi
) : 1 ≤ i ≤ p


Starting with this scattering diagram we shall study S (D), over the ring k[M ][[{tijk}]]. Note

that we can always reduce by an m-primary ideal I, to form SI (D). We further assume that

no two rays have the same support and fix a ray (d, fd) ∈ S (D) \D. Reducing mod I we can

assume that fd is a polynomial. We now construct a toric variety corresponding to d:

Definition 3.6.7. Let Xd be the non-singular toric surface associated to the complete

fan Σd which includes the rays: R≥0mi and d for each mi in the definition of the scattering

diagram above. Let Di denote the toric divisor corresponding to mi and let Dout denote the

toric divisor corresponding to d.

We also need some auxiliary combinatorial definitions to state an enumerative formula for

fd:

Definition 3.6.8. A graded partition G is a finite sequence G = (P1, · · · , Pd) of ordered

partitions Pi = (pi1, · · · , pili), where i | pij for each i and j. We call pij the parts of Pi and

define |Pi| =
∑

j pij and |G| =
∑
|Pi|.

Now let G = (G1, · · ·Gp) be a tuple of graded partitions, where we denote by Pij the jth

piece of Gi and write Pij =
(
pij1, · · · , pijlij

)
.

As in [53] restrict to those G such that

(3.6.2) −
∑
|Gi|mi = kGmd

for some kG ∈ Z>0. Now fix the class β ∈ H2 (Xd,Z) such that:

(1) If D /∈ {D1, · · ·Dp, Dout} then β.D = 0

(2) β.Di = |Gi|
(3) β.Dout = kG

If Dout = Di for some i replace the above prescription of β.Di with β.Di = |Gi| + kG. Next

pick general points xijk on Di and recall the notion of an orbifold blowup from [57]:

Definition 3.6.9. Let p ∈ D be a point in a non-singular divisor in a surface S. There

is a unique length j subscheme supported at p. Let Sj → Sj → S be the composition of the

blowup map in this ideal sheaf and the coarse moduli map from the unique orbifold structure

on the singular variety Sj .

Remark 3.6.10. The exceptional divisor E in the blown-up space has self intersection

[E]2 = −1/j
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We now define a space by making the orbifold blow-ups designated by G.

Definition 3.6.11. Let ν : X [G] → X be the length j orbifold blow-up of X in each of

the points xijk.

We shall use a Gromov-Witten invariant associated to the strict transform:

βG = ν∗ (β)−
∑
ijk

pijk [Eijk]

Colloquially this is the virtual number of rational curves with tangency order kG along Dout

at exactly one point, and pijk/j branches tangent to Di with order j at xijk. The precise

definition is an integral over a moduli space of stable relative maps with orbifold target space

Xo
d ; see [57]. Here, conforming to the notation of [57], Xo

d is the space obtained by removing

the toric zero-strata from Xd. We call the result of the blow-up ν, X̃o
d .

Theorem 6.44 of [53] describes log (fd) in terms of these Gromov-Witten invariants:

Theorem 3.6.12.

log (fd) =
∑
G

kGNGt
Gz−kGmd

where tG =
∏
t
pijk/j
ijk and the sum is over graded partitions G satisfying Equation 3.6.2.

We also recall Remarks 6.45 and 6.46 of [53]:

Remark 3.6.13. The definition of relative stable maps includes the possibility of maps

f : C → X̂o
d to a reducible scheme, but X̂o

d comes with a map to X̃o
d and thus fits into a

diagram:

C
f
//

f̃

""

f̄
''

X̂o
d

// X̃o
d

ν

��
Xo

d

Results cited in [53] imply that f̃ (C) ∩ D̃o
i = ∅. We can now make statement about the

intersection properties of f̄∗[C]. In particular as this represents βG the intersection multiplicity

at each of the points xijk must be exactly pijk. Futher there is a point q ∈ Dout such that

f̄∗ [C]∩ ∂Xd = {xijk}∪ {q}, and this point is constrained to lie on one of finitely many points

of Dout. The full argument is in [53], but in short one can describe the restriction of f̄∗ [C]

to ∂Xd in terms of q, but this is in the linear equivalence class given by β|∂Xd , so only those

values of q which will land in this equivalence class are permitted.

We now relate general scattering diagrams to the apparently special type we described

above.
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Remark 3.6.14. A general scattering diagram consisting solely of lines is equivalent to

one of the form:

D =


Rm̄i,

∏
j,k

(
1 + cijkz

−mijk
) : 1 ≤ i ≤ p


such that r (mijk) is proportional to m̄i with index j. We now define a scattering diagram of

the form considered in 3.6.1:

D′ =


Rm̄i,

∏
j,k

(
1 + tijkz

−r(mijk)
) : 1 ≤ i ≤ p


This is now a scattering diagram over k[M ]J{tijk}K. Thus we have an enumerative interpre-

tation for the rays of S(D′). We shall refer to this as a ‘universal scattering diagram’. Rather

than defining D′ over all k[M ]J{tijk}K we can consider the monoid Q ⊆ M ⊕ Nl where the

second factor corresponds to the tijk variables and l =
∑

i,j lij . There is a ring homomorphism

φ : tijkz
−r(mijk) 7→ cijkz

−mijk and we can define D′ over k[Q]/φ−1(I) for an m-primary ideal

I. Following [53] we observe that there is a scattering diagram φ (SI′ (D
′)) which is equivalent

to SI(D).

Remark 3.6.15. Given a joint j supported on the interior of a 1-cell τ we may write down

a collection of rays and lines as for a scattering diagram; we refer to this collection of rays

and lines as Dj and write:

Dj = {d ∈ Dj : d is a line}

By rewriting and factorising the functions attached to the slab and rays intersecting this joint

we may assume Dj is of the form:

Dj =

Rm̄i,
∏
j,k

(
1 + cijkz

−mijk
)

Deviating from [53], there may be several factors (not just one) which are not in the maximal

ideal m.

Definition 3.6.16. Notice that we have factorized the slab function at j; consequently

we may define a set J of triples (i, j, k) such that:

fτ,j =
∏
J

(
1 + cijkz

−mijk
)

Recall that i here indexes the direction vectors of rays, and that any ‘bad factor’ (that is, any

factor not of the form 1 + x with x ∈ m) is associated to the (one-dimensional) slab τ . Thus

if (i, j, k) ∈ J then i must be one of at most two possibilities. If there are two distinct values

of i denote them i+, i− and note that m̄i− = −m̄i+ . Conversely, if all the elements of J have

a unique value of i then we shall refer to this as i+ and shall not define i−.

We shall define an inverse system of ideals Ie ⊆ k[M ]⊗k k[{tijk}] such that Dj is a genuine

scattering diagram with respect to each Ie and use the enumerative interpretation of these
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scattering diagrams to show these stabilise as e → ∞. This will imply that we can define a

scattering diagram over the completion with respect to the inverse system Ie; the required

localisation is then a subring of this completion.

Proposition 3.6.17. Consider J a monomial ideal in the ring

R = k [tijk : (i, j, k) /∈ J ]

with R/J artinian. For a non-negative integer e, let

Ie =
∑

(i,j,k)∈J

(
teijk
)

+ J

in k[M ] ⊗k k [{tijk}]. Now apply the Kontsevich–Soibelman algorithm to obtain SIe (D) and

remove all (d, fd) equal to 1 modulo Ie. The sequence of scattering diagrams D1,D2, · · ·
stabilizes.

Proof. Take Γ to be the set of collections of graded partitions G = (G1, · · · , Gp) such

that: ∏
(i,j,k)/∈J

t
pijk/j
ijk /∈ J

and such that pijk > 0 for some (i, j, k) /∈ J . Now R/J Artinian implies that having fixed the

values of {pijk : (i, j, k) ∈ J } there are finitely many choices of G, but these are themselves

unconstrained. We proceed in two steps, following Proposition 6.47 in [53]. First we show

that there are only a finite number with NG 6= 0, then we bound the number of terms of any

log fd independently of e.

Suppose G ∈ Γ and NG 6= 0. Then there is a primitive integral vector md such that:

−
∑
i

|Gi|mi = kGmd

and such a ray (d, fd) must appear in the scattering diagram De with support R≥0md. Let

Σd be as above; recall this fan is only determined up to arbitrary fan refinements so we may

assume that both R≥0mi+ and R≤0mi+ appear in this fan, noting that the latter is equal to

R≥0mi− if i− is defined. Hence there exists a toric morphism:

π : Xd → P1

defined by these two rays. There are two toric sections of this morphism, which we shall

refer to as D+ and D− corresponding to R≥0mi+ and R≤0mi+ respectively. Now NG 6= 0

implies there is a map f̄ : C → Xd such that f̄∗ (C) has intersection multiplicity pijk at xijk

for (i, j, k) ∈ J . Without loss of generality we assume that for any t 6= 0, ∞ the fiber π−1(t)

contains at most one of the points xijk.

We wish to eliminate the possibility that the image of f̄ contains π−1 (π (xijk)) for any

(i, j, k) ∈ J . Observe that π−1 (π (xijk)) meets ∂Xd at a point other than any xijk; call this

point q′. We also know that the divisor class
∑
pijkxijk + kGq is of the class β|∂Xd which is
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determined by G. Indeed, the set f̄(C) ∩ ∂Xd is the collection xijk and one additional point

q. If we assume that f̄(C) contains this fibre π−1π(xijk), then we must have that q = q′.

However we have assumed that there is at least one xijk such that (i, j, k) /∈ J and pijk > 0,

moving this point alone we obtain a contradiction.

As remarked, f̄∗ (C) represents the class β and f̃∗ (C) represents βG, the strict transform

defined above. The total transform of π−1 (π (xijk)) contains the irreducible component Eijk,

and we know that Eijk.βG = pijk. Thus if F is the class of the fiber of π, β.F ≥ pijk.

Now assume π−1(0) does not contain Dout, indeed, swap it with π−1 (∞) if it does. The

proper transform of π−1(0) is disjoint from f̃(C) but β.π−1 (0) is determined by the Gi for

i 6= i+, i−. Thus pijk is bounded and this bound is independent of d, so there are a finite

number of possiblities for G ∈ Γ.

The rest of the proof of Proposition 6.47 in [53] goes through as stated, expect that now

we need to observe that {(
Rmi, 1 + tijkz

−mi
)

: (i, j, k) ∈ J
}

contains no rays, meaning that the formula for any ray must have a coefficent tijk for some

(i, j, k) /∈ J , and so the number of terms appearing in the formula for log(fd) is finite, and

with bound determined by J , that is independent of e. One can now apply a factorization

process and generate rays with functions fd all of the form 1 + czm.

�

As remarked in [53] the purpose of this result to form S (D) = ∪SIe (D), which is a scat-

tering diagram over the completion of A = C[M ]⊗ k [{tijk}] with respect to
∑

(i,j,k)∈J (ti,j,k);

this completion contains the subring given by localising A at the various factors 1+tijkz
−mijk .

We can now generate rays in the structure S from the rays of this scattering diagram,

yielding a compatible structure:

Theorem 3.6.18. Sk is compatible to order k.

Proof. The proof of Theorem 6.49 in [53] now goes through exactly, replacing Proposi-

tion 6.47 there with Proposition 3.6.17 above. �

3.7. Constructing the formal degeneration

We outline how the construction of the inverse system of rings in the last two sections

allows one to construct a flat deformation by deforming each ring in turn. This section is a

variation on Section 6.2.6 in [53].

3.7.1. Notation. We define an open set Ukω for each stratum ω, as follows. The sets Ukω
together cover the kth-order smoothing, and Ukω defines a smoothing of the chart V (ω) on the

central fiber defined in Section 3.4.

Definition 3.7.1. Let

Rkω := lim←−ω⊆τR
k
ω,τ,uτ
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and set Ukω := SpecRkω.

Since the change of chamber maps are isomorphisms, a different choice of uτ will yield an

isomorphic inverse system – as proved in 6.2.6 of [53]. The main result of this section is:

Proposition 3.7.2. Ukω is a flat deformation of U0
ω over Sk := Spec k[t]/

(
tk+1

)
.

We first compute the central fibre of this degeneration:

Lemma 3.7.3. U0
ω is Spec k [Pφ,x] /(t) for x ∈ Int(ω) ∩B0.

Proof. We give a brief outline of the proof from Lemma 6.30 of [53]:

(1) As all scattering diagrams are trivial we assume that chambers coincide with maximal

cells of P.

(2) There are no non-trivial change of chamber maps since the only non-zero elements

of R0
ω,τ,σ for one-dimensional τ are parallel to τ .

(3) Thus the inverse system is just the one made up of all the canonical change of strata

maps, and so we recover the toric picture as if there were no scattering.

�

The proof of flatness of Ukω over Sk is divided into three parts of increasing complexity,

depending on the dimension of the stratum ω.

3.7.2. Codimension 0. For Ukω with ω two-dimensional we necessarily have that σuω =

ω. Thus Pφ,ω,σ = Λx × N and Ukω = U0
k × Sk, i.e. a trivial deformation.

3.7.3. Codimension 1. For Ukω with ω one-dimensional we compute an explicit fiber

product and show that this is flat. Following [53,59,60] we fix a one-dimensional ω and let

σ± be the maximal cells containing ω. We assume that the piecewise linear function φ has

slope zero on σ− and slope ld̆ω on σ+; here d̆ω is primitive.

There are three rings over which we shall compute the fiber product: R± = Rkω,σ±,uσ± and

R∩ = Rkωωuσ+
- observe the choice of σ+ made in defining R∩. We now define:

fω := fω,x
∏
(d,x)

fd,x

and regard this as lying in k[Λω][t]. Lemma 6.33 of [53] then implies that:

Lemma 3.7.4. The fiber product R− ×R∩ R+ is isomorphic to the ring

R∪ = k [Λω] [U, V, t]/
(
UV − fωtl, tk+1

)
Proof. The reader is referred to the proof of Lemma 6.33 of [53] �

Example 3.7.5. Consider the local models obtained by the above procedure when ∆ ∩ ρ
is:

(1) one point with length 2 monodromy polytope;
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(2) two distinct points, each with simple monodromy.

Applying Lemma 3.7.4 the two cases give the following rings:

(1) C[U, V,W, t]/
(
UV − t(W − a)2, tk

)
(2) C[U, V,W, t]/

(
UV − t(W − b)(W − c), tk

)
where a, b, c are parameters.

We now consider the singularities of the generic fiber of each of these families. The first

of these exhibits an ordinary double point at (0, 0, a, t) ∈ A3
U,V,W ×{t}, while the second ring

gives a smooth affine variety. We then see the connection between a family of affine varieties

defined by varying the parameters b, c and sliding two singularites of an affine structure until

they coalesce. This is precisely the behavour prohibited in [53,59] by demanding the affine

manifold be locally rigid.

3.7.4. Codimension 2 strata. In [53, 59] this is by far the most difficult step. How-

ever working with a more complicated singular locus than used in [53] does not change this

argument and so details of the proof are not recalled here.

As usual, the rings corresponding to the local patch at the zero-cell ω are given by the

inverse limit:

Rkω = lim←−R
k
ω,τ,uτ

The inverse limit is over strata τ ⊇ ω, with a choice of chamber uτ for each stratum. In [53] it

is shown that the choice of this chamber does not change the isomorphism class of the inverse

limit.

3.8. Local models at vertices

We wish to lift the operation of exchanging corners for singularities described in Section 3.2

to a deformation of the rings we have attached to these corners in Sections 3.5, 3.6. To define

this deformation we will use an explicit description of the rings at the corners of B. In

fact we give two descriptions; the first based on gluing the rings Rkω,τ,u, the second on the

canonical cover construction for surface singularities. The equivalence of these formulations

makes evident that we are constructing Q-Gorenstein deformations.

3.8.1. Local description of the affine manifold. Fix a vertex ω of P contained in

∂B and a chart U ⊆ B containing ω which intersects a minimal number of strata of P. We

shall assume for the rest of this section that:

(1) P divides U into two regions, described by intersecting U with a pair of 2-cells σ1, σ2

which meet along a 1-cell τ .

(2) we have fixed a structure S on B. Let Sω be the set of rays in S intersecting ω.

(3) If d ∈ Sω then d|U is supported on τ .

Remark 3.8.1. These assumptions are automatically satisfied if B is of polygon type.

Also, point 2 implies that there are two distinguished chambers independent of k whose
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boundary contains τ∩U . We refer to these as u1 and u2 respectively, where we have suppressed

the dependence on k.

For ease of exposition we will assume without loss of generality that φ vanishes on the left-hand

cone, i.e. on u1.

Notation 3.8.2.

(1) Each σi for i = 1, 2 contains a 1-cell in ∂B intersecting ω. We denote these 1-cells

τ1, τ2 respectively.

(2) Let n0 be the unique primitive vector in Λ?ω which annihilates the subspace defined

by τ and evaluates postively on u1.

(3) Denote by n1, n2 the unique primitive vectors in Λ?ω annihilating τ1, τ2 respectively

and evaluating non-negatively along τ .

(4) Let f := fτ .
∏

d fd where fτ is the slab function on τ and the product is over rays d

supported on τ .

Now we have fixed this notation we describe the rings Rkω,ρ,ui for different choices of ρ

and i. Recalling that any such ring is a quotient of k [Pω,φ] we fix a generating set for the

monoid Pω,φ. After taking the projection m 7→ m̄ the generators are distributed in some

fashion across the two subcones:

We will name the generators depending on the cone they project to. C [Pω,φ] is generated

as a C[t]-module by three collections of monomials:

(1) xi correspond to generators of the left-hand cone (not supported on τ). x0 corre-

sponds to a vector m0 such that m0 ∈ τ1.

(2) yj correspond to generators of the right-hand cone (not supported on τ). y0 corre-

sponds to a vector m0 such that m0 ∈ τ2.

(3) w is the primitive generator of τ .

We recall the standard result in toric geometry that describes the corresponding ideal.
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Lemma 3.8.3. If C is a cone in a lattice M with generating set m1, · · · ,ms there is a

natural short exact sequence:

0→ L→ Zs →M → 0

Writing l ∈ L via the injective map into Zs we can write l =
∑
liei; now one may form the

ideal I =
〈∏

li>0 x
li
i −

∏
li<0 x

−li
i

〉
, and k[x1, . . . , xs]/I is the affine toric variety Spec k[C].

Proof. See [28], chapter 1. �

The 2-cells σ1, σ2 define a pair of cones with their origin at the vertex ω. Let C1, C2 be

the semigroups defined by the integral points of these cones respectively. Using Lemma 3.8.3

the relations between the generators specified for the monoid Pω,φ are generated by those of

the form:

wγ
∏

xαii
∏

y
βj
j − w

δ
∏

xγii
∏

y
δj
j

Recall that in general we have:

Rkω,σ1,u1
= k [Pω,φ] /Iω,σ1,σ1

Now we observe that the order of a monomial M = tγ
∏
y
βj
j w

α in this monoid is given by:

ordτ (M) =
∑

βjφω (m̄j) + γ

This formula, together with the observation that over σ1 ordτ is just the t-degree fixes an

explicit description of the ideal:

Iω,σ1,σ1 = 〈M : ordτ (M) > k〉

Remark 3.8.4. We may view the ring Rkω,σ1,u1
as a module over Sk[w]; letting Sk[C1],

respectively Sk[C2] be the submodule of k [Pω,φ] generated by the xi (respectively by the yj)

Rkω,σ1,u1
may be expressed as a pushout:

Sk[w] //

��

S2

��
S1

// Rkω,σ1,u1

in which S1 = Sk[C1]/(tk+1) and

S2 = Sk[C2]/
〈∏

tγy
βj
j :

∑
βjφω (m̄j) + γ > k

〉
Definition 3.8.5. For each cone Ci, i = 1, 2, let C◦i be the cone generated by x0, · · · , xN ,

y0, · · · , yM respectively.

Lemma 3.8.6. The Sk[w]-module

R̃k := Sk[C1\〈w〉]⊕ Sk[C2\〈w〉]⊕ Sk[w]

is a finitely generated Sk[w]-module and there is a surjective homomorphism R̃k → Rkω,σ1,u1
.
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Proof. Observe that the rings Sk[Ci\〈w〉] are finitely generated Sk[w]-modules since

there are canonical surjective homomorphisms: Sk[w][C◦i ] → Sk[Ci\〈w〉] for i = 1, 2. Each

factor of R̃k has a canonical map to a term of the push-out diagram above, together defining

a map to Rkω,σ1,u1
. Using this push-out and fixing an element of Rkω,σ1,u1

it may be expressed

as a pair (u1, u2); in which ui is a sum of monomials from σi for i = 1, 2. After removing

terms involving only the variable w from each ui we may express any element of Rkω,σ1,u1
as a

triple of the form required. �

We remark that analogous observations may be made about the rings Rkω,σ2,u2
and Rkω,τ,u1

.

Using this notation we now describe the co-ordinate ring of the affine patch containing the

given vertex, that is the inverse limit of the following system.

RkΠ

zz $$

�� ����

��

Rkω,σ1,u1

zz $$

Rkω,σ2,u2

zz $$
Rkω,τ1,u1

**

Rkω,τ,u1

��

Rkω,τ2,u2

tt
Rkω,ω,u1

Remark 3.8.7. The inverse limit described above is manifestly isomorphic to the fiber

product:

RkΠ
//

��

Rkω,σ1,u1

��
Rkω,σ2,u2

// Rkω,τ,u1

If u ∈ RkΠ, u = (u1, u2) and the restrictions of ui to Rkω,τ,ui for i = 1, 2 respectively are

related by the change of chamber map. Formally, we take the change of strata maps and

compose the second with the change of chamber map:

Rkω,σ1,u1

��

Rkω,σ2,u2

��
Rkω,τ,u1

Rkω,τ,u2θu2,u1

oo

Recall the following facts:

(1) Applying the change of chamber isomorphism θu2,u1 to variables xi, we have that:

θu2,u1 (xi) = f 〈n0,m̄〉xi.
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(2) There is a similar formula for the θu2,u1(yj) and w is always mapped to itself, as n0

annihilates the tangent space to τ .

(3) The rings Rkω,τ,ui , i = 1, 2 have been localised at the slab function, ensuring that

change of chamber map is an isomorphism.

We are now in a position to give an elementary description of the formal smoothing of the

affine chart at a boundary vertex obtained from the Gross–Siebert reconstruction algorithm.

Definition 3.8.8. Rk∪ = Sk[Xi, Yj ,W, t : 0 ≤ i ≤ N, 0 ≤ j ≤ M ]/I∪. To define I∪

consider each binomial relation

wη1
∏
i,j

xαii y
βj
j = tχwη2

∏
k,l

xγkk y
δl
l

in the usual monoid over φ on C1 ∪ C2. We define an element of I∪ which may take one of

two forms; if the monomials correspond to a lattice vector in C1 consider the polynomial

f−
∑
l δl〈n0,ml〉W η1

∏
i,j

Xαi
i Y

βj
j − f

−
∑
j βj〈n0,mj〉tχW η2

∏
k,l

Xγk
k Y δl

l

otherwise, if it is over C2, consider the polynomial

f
∑
k γk〈n0,mk〉W η1

∏
i,j

Xαi
i Y

βj
j − f

∑
i αi〈n0,mi〉tχW η2

∏
k,l

Xγk
k Y δl

l

Here f is considered as an element of Sk [W ] (rather than Sk [w]). Divide out the given

polynomial by as many factors of f as possible and append it to the generating set of I∪. For

clarity we shall suppress the W ηi in these relations from now on.

Proposition 3.8.9. There is a ring isomorphism Φ: Rk∪ → RkΠ given on generators by:

Xi 7→
(
xi, f

〈n0,mi〉xi

)
Yj 7→

(
f 〈n0,mj〉yj , yj

)
W 7→ (w,w)

t 7→ (t, t)

Remark 3.8.10. Compare with the description around an interior 1-cell given in [53].

These rings are more complicated but the change of chamber map in the fiber product is

essentially the same.
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Proof. To show this map is well-defined we consider the images under Φ of the generators
of I∪. Indeed, we may simply compute Φ:

Φ

(
f
∑

k γk〈n0,mk〉
∏
i,j

Xαi
i Y

βj
j

)
=

=f
∑

k γk〈n0,mk〉

(
f−

∑
βj〈n0,mj〉∏

i,j

xαi
i y

βj
j , f

∑
αi〈n0,mi〉

∏
i,j

xαi
i y

βj
j

)

=f
∑

k γk〈n0,mk〉+
∑

i αi〈n0,mi〉

(
f−

∑
βj〈n0,mj〉−∑

αi〈n0,mi〉
∏
i,j

xαi
i y

βj
j ,
∏
i,j

xαi
i y

βj
j

)

=f
∑

k γk〈n0,mk〉+
∑

i αi〈n0,mi〉

f−∑
δl〈n0,ml〉−

∑
γk〈n0,mk〉

∏
k,l

x
γk
k y

δl
l ,
∏
k,l

x
γk
k y

δl
l


=f

∑
i αi〈n0,mi〉

f−∑
δl〈n0,ml〉

∏
k,l

x
γk
k y

δl
l , f

∑
k γk〈n0,mk〉

∏
k,l

x
γk
k y

δl
l


=Φ

f∑
i αi〈n0,mi〉

∏
k,l

X
γk
k Y

δl
l


To show Φ is surjective we use Lemma 3.8.6, which gives a generating set for the algebras

Rkω,σi,ui as Sk [w] modules. Fix an element (u1, u2) ∈ RkΠ, without loss of generality we

assume that there are no terms in ui, i = 1, 2 involving only w as any polynomial g(w) may

be accounted for by taking Φ(g(W )). Now we (non-uniquely) write u1 =
∑

k ck
∏
i x

αi,k
i +

h1 (yj : 0 ≤ j ≤M) where the coefficents cm lie in the ring Sk[w]. Similarly we write u2 =∑
l cl
∏
j y

βj,l
j + h2 (xi : 0 ≤ i ≤ N) using the same coefficent ring.

We claim that the pair (u1, u2) is in RkΠ if and only if it is equal to:

Φ

∑
k

ck
∏
i

x
αi,k
i +

∑
l

cl
∏
j

y
βj,l
j


By the previous calculation this is certainly in the fiber product; furthermore this element

agrees with all the xi terms in f1 and the yj terms in f2 by definition. All that remains is

to check that this uniquely determines the h1 and h2. However the change of strata map is

the identity on h1 and h2 and so we may express these in terms of previously determined

quantities, for example:

h1 = θu2,u1ψ(ω,σ2),(ω,τ)

∑
l

cl
∏
j

y
βj,l
j


We next show that this map is injective. Assume we have a element u ∈ Rk∪ that is mapped

to a pair (u1, u2) such that u1 ∈ Ikω,σ1,u1
and u2 ∈ Ikω,σ2,u2

. Observe that we may rewrite any

monomial
∏
i,j x

αi
i y

βj
j , using the toric relations, in one of the following two forms:

(1)
∏
i,j x

αi
i y

βj
j −

∏
k x

γk
k

(2)
∏
i,j x

αi
i y

βj
j −

∏
l y
δl
l
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From Definition 3.8.8 we have a relations in I∪ of the form:

(1)
∏
i,j X

αi
i Y

βj
j − f

∑
αi〈n0,mi〉∏

kX
γk
k

(2)
∏
i,j X

αi
i Y

βj
j − f−

∑
βj〈n0,mj〉∏

l Y
δl
l

Thus we can assume that there are no terms involving both the Xi and the Yj appearing in

a representative of Rk∪, but by Proposition 3.8.9 Φ is the identity onto one of the two factors.

Since the image onto this factor is in Ikω,σi,ui for some i we may infer that the original element

is in I∪. �

3.8.2. The canonical cover. We conclude this section by exhibiting a construction

of the canonical cover for these rings; this will be used in the next section to construct a

Q-Gorenstein deformation.

Given a vertex v ∈ B fix a chart of B containing v and let C denote the tangent cone at

v. We shall assume for the remainder of this section that

(1) P splits C into two cones Ci ,i = 1, 2, divided by a ray L.

(2) Denoting the primitive generators of C by v1, v2 respectively we have that v1+v2 ∈ L.

Lemma 3.8.11. Given a Fano polygon P fix a vertex v, its tangent wedge C and the ray

L of the spanning fan of Q meeting v. The pair (C,L) satisfies the two conditions above.

Proof. The first condition is obvious, the spanning fan introduces precisely one new ray

intersecting v. For the second condition note that an edge of P may be put into the following

standard form:

with the vertices of P at (0, 1), (n,−q). Taking the dual cone:
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We see the (rational) generators of this cone are (1, 0), (q, n), the ray L defined by the normal

to the edge of P is generated by (q + 1, n) and satisfies the second condition. �

We recall the canonical cover construction for the singularity X = 1
n(1, q), for which we

use the following notation:

Notation 3.8.12.

(1) Define p := q + 1.

(2) Let w := hcf(n, p) and define a, r by requiring that n = wr, p = wa, so in particular

q = wa− 1.

(3) Define m, w0 by w = mr + w0 with 0 ≤ w0 < r.

Remark 3.8.13. The singularity content of the singularity X = 1
n(1, q) is precisely m.

Having fixed this notation the canonical cover of X is:

Construction 3.8.14. Letting X = 1
n(1, q) there is an embedding X ↪→ 1

r (1, q, a) which

takes X onto the hypersurface {xy = zw}/µr. The Q-Gorenstein deformations of X are

determined by considering the space Cm+1 of degree-m polynomials fm and forming the

family of hypersurfaces

{xy = zw0fm(zr)}/µr
We shall show that our local model R∪ is always of this form and thus that the space of

polynomials defined by the log-structure on this line segment may be identified with the

parameter space of Q-Gorenstein deformations.

In order to prove this relation, we compare the cones constructed in the proof of Lemma 3.8.11

to Construction 3.8.14.

Construction 3.8.15. Given X = 1
n(1, q), the fan of X is given by

Cone((0, 1), (n,−q))

as in the proof of Lemma 3.8.11. This is isomorphic to the cone Cone ((1, 0), (0, 1)) in the lat-

tice: Z2 + 1
n(1, q). Similarly Y = 1

r (1, q, a) is determined by Cone ((1, 0, 0), (0, 1, 0), (0, 0, 1)) in

the lattice: Z3 + 1
r (1, q, a). Following Construction 3.8.14 we should consider the hypersurface
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{xy = zw}. This is the image of the embedding X ↪→ Y . This embedding is induced by a

map ι : Z2 + 1
n(1, q)→ Z3 + 1

r (1, q, a) between the respective lattices which may be expressed

as the following matrix, which we also call ι.

ι =

w 0

0 w

1 1


In particular ι( 1

n(1, q)) = 1
n(w, qw, 1 + q) = 1

wr (w, qw,wa) = 1
r (1, q, a). We wish to compute

the map between the dual lattices induced by ι. Observe that (Z2 + 1
n(1, q))∨ is the sublattice{

α ∈ Z2∨ : α((1, q)) ∈ nZ
}

of the dual lattice Z2∨. There is an analogous expression for the lattice dual to Z3 + 1
r (1, q, a).

From the matrix ι we may easily compute ι?, in particular ι?(xr) = xn, ι?(yr) = yn and

ι?(zr) = xryr.

Remark 3.8.16. Recall that the image of ι? is a sublattice of Z2∨. The lattice elements

corresponding to xn, xryr, yn are all primitive in this lattice, for example xryr is the generator

of the cone previously called W .

Using these constructions we shall define a ring R′k∪ and prove that it is isomorphic to Rk∪.

Definition 3.8.17. Given a zero stratum v of P contained in ∂B we may form the pair

(C,L) as above. Note that C need not be strictly convex. In particular we may define the

integers n, q, w for this cone.

R′k∪ = Sk[x, y, z]
µr/
(
xy = tlzw0fτ (zr)

)
where the µr action has weights (1, q, a) and l is the slope of the piecewise linear function φ.

Proposition 3.8.18. R′k∪ is isomorphic to Rk∪.

Proof. There is an obvious spanning set of R′k∪ as an Sk-module; namely monomials with

exponents in the sublattice of Z3∨ dual to (Z3 + 1
r (1, q, a)). Consider the submodule generated

by the monomials xazb and yczd; these give a basis for R′k∪ as a Sk-module. Making the

analogous statement for Rk∪ we observe that Rk∪ is generated as an Sk-module by monomials

with exponents projecting to integral points in the cone C. There is an obvious identification

of these two bases, which extends linearly to a map of Sk-modules; we now show this is an

isomorphism of algebras. As a preliminary step we replace fτ in the definition of R′k∪ with

f = fτ
∏
fd where the product is over the rays d of the scattering diagram supported on τ .

Note each fd is invertible in R′k∪, so an automorphism of Sk[x, y, z]
µr sending xy 7→ xy

∏
fd

induces an isomorphism of R′k∪ with Sk[x, y, z]
µr/
(
xy = tlzw0f(zr)

)
.

Fix U, V ∈ Rk∪ and write U = Ū tl1 and V = V̄ tl2 where Ū ∈ C1 and V̄ ∈ C2. Now take

the corresponding elements in R′k∪: ι?(xazbtl1), ι?(yczdtl2). Suppose we have that UV projects
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to an element in C1 and write −〈n0, V̄ 〉 = γ so that UV =
∏
Xai
i W

btl1+l2+γlfγ where the Xi

correspond to elements of the Hilbert basis of C1. Writing

ι?(xazbtl1).ι?(yczdtl2) = ι?(xayczb+dtl1+l2)

UV in C1 means that c < a so using the relations in R′k∪,

ι?(xayczb+dtl1+l2) = ι?
(
xa−czb+d+c.w0tl1+l2+clf(zr)c

)
Our Sk-module isomorphism identifies

ι?
(
xa−czb+d+c.w0tl1+l2+cl (f(zr))c

)
with

∏
Xai
i W

btl1+l2+clf c; thus we only need to show that γ = c. Recall we have identifed C

with the quadrant in a sublattice of Z2∨. Therefore we can compute 〈n0, (v1, v2)〉 directly. The

primitive generator of L in this sublattice of Z2∨ is (r, r); the obvious element annihilating

(r, r) is (1,−1), but this has index w ((1, 1) = wr 1
n(1, q)−wa(0, 1)), so in fact 〈n0, (v1, v2)〉 =

(v1 − v2)/w. Now consider an element ι?yczd = xwc+dyd, evaluating γ = 〈n0, (v1, v2)〉 for this

lattice point we find that indeed γ = c. �

3.9. Smoothing quotient singularities of del Pezzo surfaces

Consider an affine manifold of polygon type, BQ. In the previous sections we have:

(1) Defined the notion of a one-parameter degeneration of such affine manifolds

(2) Defined a family of log structures on the variety X0(BQ,P, s)

(3) Outlined the Gross–Siebert algorithm for constructing a formal smoothing of this

using the log-structure

(4) Explicitly computed the various rings and the family in the case of an isolated bound-

ary singularity.

In this section we combine these to construct a flat family X → SpecC[α]JtK which will

satisfy the conditions of Theorem 1.3.1, namely:

• Fixing a nonzero α the restriction of X over SpecCJtK is the flat formal family

produced by the Gross–Siebert algorithm.

• Fixing α = 0 the restriction of X over SpecCJtK is precisely the restriction of the

Mumford degeneration of the pair (Q,P).

• Fixing t = 0, the restriction of X is X0(Q,P, s)× SpecC[α].

• For each boundary zero-stratum p of X0(Q,P, s) there is neighbourhood Up in X
isomorphic to a family Y → SpecC[α] obtained by first taking a one-parameter Q-

Gorenstein smoothing of the singularity of XQ at v, taking a simultaneous maximal

degeneration of every fiber and restricting to a formal neighbourhood of the central

fiber.

So far we have shown how the techniques developed in [53,59] can be used to pass from

an affine manifold with log structure data to a toric degeneration, but we have no explained
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how to produce (algebraic) families of degenerations (varying α). Indeed, that we can form

this family is peculiar to our ‘polygon type’ setting since singularities must not meet rays

transverse to the monodromy invariant line. The prinicipal obstacle to simply applying the

Gross–Siebert algorithm to the family fiberwise is the jump in the log-structure at the central

fiber; sections defining the log-structure are not permitted to vanish on any zero stratum.

In fact we wish to choose log-structures from a different bundle at the central fiber, as the

singular locus has changed. Therefore we have no a priori reason to suppose these glue to a

family. However, we shall prove that our explicit construction at boundary zero-strata enables

one to extend the obvious family over C? to one over C.

Remark 3.9.1. Methods in deformation theory shwo that the Q-Gorenstein deformation

families of a toric del Pezzo surface with cyclic quotient singularities are unobstructed, and

thus our result is not unexpected. There is, of course, no clear connection between these

families and the mutations of polygons or affine structures seen by these methods.

Recall we have a family of affine manifolds πQ : BQ → R defined by smoothing the corners,

as described in Section 3.2. Fix a one parameter family of log-structures compatible with the

family of affine manifolds in the sense of Definition 3.4.17.

Remark 3.9.2. Consider the scattering diagram Dω at the central vertex; this is equivalent

to a scattering diagram of the following form:

D =


Rm̄i,

∏
j,k

(
1 + cijkz

−mijk
) : 1 ≤ i ≤ p


Assuming cijk ∈ C[α] the assumptions on a family of log structures imply that cijk ∈ α.C[α].

Definition 3.9.3. For this section a family of scattering diagrams (with parameter α) is

a scattering diagram defined via a map r : P → M and an m-primary ideal I, but now for

d ∈ D, fd ∈ C[α][P ]/I. Further, write D(α) for the scattering diagram where all the functions

have been evaluated at α.

Lemma 3.9.4. Given a family of scattering diagrams D there is another one SI
(
D
)

such

that:

SI
(
D
)
(α) = SI

(
D(α)

)
for all α ∈ C.

Proof. We use the notion of a universal scattering diagram, indeed, writing:

D =


Rm̄i,

∏
j,k

(
1 + cijkz

−mijk
) : 1 ≤ i ≤ p


we can form:

D′ =


Rm̄i,

∏
j,k

(
1 + tijkz

−r(mijk)
) : 1 ≤ i ≤ p
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Where in the first scattering diagram is cijk is polynomial in α and the second scattering

diagram is defined over the ring C[M ]J{tijk}K. In fact, following [53], this scattering diagram is

defined over C[Q] where Q ⊆M⊕Nl is the monoid freely generated by pairs (−r (mijk) , eijk),

where eijk corresponds to tijk. Thus given an ideal I of P we obtain a scattering diagram

SI′ (D
′) by reduction modulo I ′ = φ−1(I) where:

φ : C[Q]→ C[α][P ]

via tijkz
−r(mijk) 7→ cijkz

−mijk . Composing this with the evaluation map ψα : C[α][P ]→ C[P ]

we obtain a scattering diagram: ψα ◦ φ
(
SI′(D′)

)
, which must be equivalent to SI (D (α)) by

uniqueness. Thus we set SI (D) = φ (SI′ (D
′)). �

Proposition 3.9.5. Varying α gives an algebraic family π : Spec R̃kω → SpecC [α].

Proof. We construct C[α]-algebras R̃kω the fibers of which are the rings Rkω defined using

the various log structures.

First let ω be a vertex contained in ∂B. From Section 3.8 we have a description of these

rings via the isomorphism with the ring Rk∪. We denote by R̃k∪ the C[α]-algebra:

C[α] [Xi, Yj ,W ] /I∪

Let ω be the central vertex of P. The ring Rkω is a fiber product of rings of the form Rkωτu
which is a quotient of the algebra C [Pω,φ]. We form the trivial algebra C[α] [Pω,φ] and so form

the analogous rings R̃kω,τ,u. Firstly setting

R̃kω,τ,σu = Rkω,τ,σu ⊗C C[α]

and then defining:

R̃kω,τ,u =
(
R̃kω,τ,σu

)
fτ

noting again that fτ has non-trivial dependance on α. The change of chamber maps now give

morphisms:

θu,u′ : R̃
k
ω,τ,u → R̃kω,τ,u′

via the natural extension of the original definition:

θu,u′ (z
m) =

(∏
fd

)〈n0,m〉
zm

These are isomorphisms of the rings R̃kω,τ,u, giving R̃kω the structure of a C[α]-algebra by taking

the inverse limit of the rings R̃kω,τ,u. Finally we need to check that varying α the functions on

rays of the scattering diagram are polynomial in α, but this we know from Lemma 3.9.4. �

Definition 3.9.6. We define the scheme XQ → SpecC[α]JtK via the inverse limit over the

system R̃kω, each of which is a C[α]JtK-algebra.

Remark 3.9.7. In Theorem 1.3.1 we demand that XQ is flat over SpecC[α]JtK. Since

flatness is local, we can consider C[α]JtK-algebras R̃kω for each zero-dimensional stratum ω.

We break these into two cases:
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• If ω is a boundary zero-stratum flatness is an immediate consequence of Proposi-

tion 3.8.18 which gives an explicit description of this algebra.

• If ω is the central vertex we observe that by Lemma 3.9.4 the functions fd on each

ray of the scattering diagram at order k is an element of C[α, t]/(tk+1). We can

now follow the proof of the case dimω = 0 in Theorem 6.32 of [53] over the ring

C[α, t]/(tk+1).

We now prove that this satisfies the various conditions of Theorem 1.3.1, first identifying

the restriction to α = 0.

Proposition 3.9.8. The restriction of XQ → SpecC[α]JtK to α = 0 is a thickening of the

central fiber of the Mumford degeneration.

Proof. Firstly we address the local model Rkω for ω the vertex of P in the interior of

B. However the fiber α = 0 is trivial, in the sense that all the slab functions are equal to

1, therefore the scattering diagram is trivial and there is a bijection between chambers and

2-cells of P. Therefore the inverse limit simply reconstructed a local piece of the Mumford

degeneration, as claimed.

Of greater interest are the local models at the vertices. As we remarked we cannot use

the inverse limit, but rather we use the Rk∪ model constructed above. Using the notation

from Section 3.8 we recall that the non-trivial relations were between generators projecting

to different cones, for example:(∏
fd

)∑
k γk〈n0,mk〉∏

i,j

Xαi
i Y

βj
j =

(∏
fd

)∑
i αi〈n0,mi〉∏

k,l

Xγk
k Y δl

l

Observe that
∏
fd = fτ

∏
d ray fd where fτ is the slab function associated to τ , and in particular

that the our assumptions on the one-parameter family of log-structures imply that fτ |α=0 =

wdeg fτ . Observe also that
∏

d ray fd|α=0 = 1. This is a consequence of the fact that S
(
D
)
(α) =

S
(
D(α)

)
: for the scattering diagram at the central vertex, setting α = 0 the scattering

diagram is trivial – every line has function fd = 1. Therefore this is already consistent to all

orders. The rays of this scattering diagram propagate until they intersect ∂B and indeed give

all the rays in this structure. Combining these two observations we see that the fiber over

zero has co-ordinate ring with relation:(
wl
)∑

k γk〈n0,mk〉∏
i,j

Xαi
i Y

βj
j =

(
wl
)∑

i αi〈n0,mi〉∏
k,l

Xγk
k Y δl

l

Here l = deg(fτ ), which is also the lattice length of the monodromy polytope of the discrim-

inant locus on τ . Thus the local models near the boundary vertices, when α is set equal to

zero, recover the local models for the Mumford degeneration. �

To conclude the proof of Theorem 1.3.1 we need to show that near the boundary vertices

the family XQ is induced by a Q-Gorenstein smoothing of the singularities of Q.
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Proposition 3.9.9. The family obtained in Proposition 3.9.5 in each of the charts con-

taining a vertex of Q is isomorphic to a one parameter Q-Gorenstein smoothing.

Proof. This is immediate from Proposition 3.8.18, as we may rewrite the families using

the canonical cover. Indeed, by Proposition 3.8.18 deforming the log-structure simply deforms

the equation in this cover, so in particular R′k∪ is defined for any fiber, not just away from the

special fiber. �

We remark that for each k, f = fτ
∏

d fd is a polynomial in α, but as k → ∞ the degree

of this polynomial will, in general, tend to infinity. However there are local co-ordinates near

boundary vertices with respect to which the family XQ is algebraic to all orders.

3.10. Ilten families

We have studied Fano polygons P and smoothings of the associated toric varieties XP .

From the perspective of mirror symmetry [4,21] Fano polygons have a different interpretation

– as Newton polygons of a Laurent polynomial W referred to as the mirror superpotential.

Indeed, information pertaining to the enumerative geometry of a smoothing of XP is encoded

in the periods of W . However, there are potentially infinitely many Laurent polynomials

(with different Newton polygons) that encode this enumerative information. These Laurent

polynomials are related by certain birational transformations, referred to as mutations [4], or

symplectomorphisms of cluster type [72]. Mutation of W defines an operation on the Newton

polygon P of W and, by duality, an operation on Q = P∨. This dual action is the restriction

of a piecewise linear transformation on the lattice M , where Q ⊂ MR. The following easy

proposition gives a hint to why mutations are related to deformations.

Proposition 3.10.1. The piecewise linear transformation given by a mutation is pre-

cisely the transition function between the two charts defining the affine manifold obtained by

exchanging a corner of Q for an interior singular point.

One may then consider a family of affine manifolds in which the singularity is introduced,

traverses its monodromy invariant line, and creates a corner in the opposing edge. This is

made precise in the following way:

Proposition 3.10.2. Given a mutation between polygons Q,Q′ ⊂ MR there is family of

affine manifolds π : B → [0, 1] for which:

(1) Q = π−1(0), Q′ = π−1(1).

(2) The generic fiber contains a single type-1 singularity.

This will be referred to as the tropical Ilten family.

Proof. Take π : B → [0, 1] to be the trivial family with fiber Q. Construct a line segment

l contained in the interior of Q as follows; The mutation is defined as a piecewise linear

transformation on Q and Q′, there is a distinguished line dividing M into two chambers;
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intersecting this line with Q defines l. We shall refer to the two chambers contained in Q as

Q1, Q2 and Q′1, Q
′
2 in Q′. Take a parameterization of l, writing now l : [0, 1]→ Q.

We define the affine structure on the total space by covering it with two charts:

(1) Let B be the topological space Q× [0, 1].

(2) Take U1 ⊂ B to be

U1 = B\{(l(t), u) : u, t ∈ [0, 1], t ≤ u and u 6= 0}

(3) Similarly take U2 ⊂ B to be

U2 = B\{(l(t), u) : u, t ∈ [0, 1], t > u and u 6= 1}

(4) Take the transition function such that the fiber π−1(1) becomes Q′ in the chart U2

and in every π−1(x), x ∈ (0, 1) exhibits a simple singularity in its interior.

Note that these two sets are not open, but the affine structure extends over the two corners. �

Observe that this family provides us both with an affine manifold B – a general fiber of

π – and a polyhedral decomposition P of B, which subdivides B along l. We also require

a family of log-structures compatible with the family of affine manifolds. The line segment l

determines a one-dimensional projective toric stack P(a, b), with the log-structure a section of

O(lcm(a, b)). The line segment l is the only interior 1-cell so there is no consistency condition

to check. Sections of the bundle O(lcm(a, b)) are parameterized, up to scale, by P1 and we

pick a family of sections such that the image of the zero set follows the singular locus of the

affine structure. After choosing a piecewise linear φ on B we can apply the Gross–Siebert

algorithm.

Applying the Gross–Siebert algorithm fiberwise, as in Theorem 1.3.1, and using the lo-

cal models 3.8.8 to understand the central fiber as in Proposition 3.9.8, we obtain families

πi : Xi → SpecC[α, t] for i = 1, 2. We now describe these families; as there is no scattering

these families are in fact polynomial in t. Relating the πi to [1, 64], denote the Ilten family

for Q, Q′ as π′ : Y → P1. The construction in [1,64] also defines a family over the affine cone

C2 of P1, we shall recover this family by gluing together the families πi and contracting the

resulting exceptional curve.

Proposition 3.10.3. There is a family π : X → Bl0(C2) from which we obtain each πi as

follows.

(1) Cover the base with the standard toric charts U1, U2.

(2) Restricting π|Ui to a formal neighbourhood of the exceptional divisor recovers πi.

(3) The family over the exceptional divisor is trivial, and after restricting to the strict

transform of a line in C2 the family becomes a toric degeneration endowing the re-

striction of π to the exceptional divisor with a family of divisorial log-structures.

Remark 3.10.4. It would be entirely legitimate at this point to embark on a description

of this smoothing via the usual local model and inverse limit construction. For example these



3.10. ILTEN FAMILIES 77

Figure 3.10.1. An example of Q, Q′, Q1 and Q2

must contain the local model:

Rττu ∼= Sk[x, y, w
±]/(xy − (α+ w)t)

Indeed, all the families discussed in this section are compactifications of this affine local model.

There are no non-trivial scattering diagrams around any joint of the structure so the family is

obtained by taking a colimit over a finite system of algebras. However, we shall take a different

approach, following [60], which projectivises this construction. This will greatly reduce the

number of rings we need to keep track of and also produce an embedded family with the log

structure encoded in the equations defining this family. We shall prove the equivalence with

the original construction in Lemma 3.10.11.

Recall that the polygon P∨ = Q ⊂ MR defines a toric variety via XP = Proj(C[C(Q)])

where C(Q) is the semigroup defined by the integral points of the cone in MR⊕R with height

one slice equal to Q. As the vertices of Q are rational this graded ring need not be generated

in degree one.

The prototypical example we shall refer to is the pair of polygons Q,Q′ for P2 and P (1, 1, 4)

respectively, they are shown below with the embedding from O (i) , i = 1, 2 as shown below.
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Take a generating set for C(Q) and refer to a general element of the generating set as ui.

The generating set naturally subdivides into three disjoint sets:

(1) Any generators lying in the cone over Q1 and outside Q2 are denoted Xi.

(2) Any generators lying in the cone over Q2 and outside Q1 are denoted Yj .

(3) Any generators lying over both Q1 and Q2 are denoted Wk. We observe that (0, 1) ∈
C(Q) is always in the generating set.

Indeed we write C(Q1), C(Q2), C(Q1 ∩ Q2) for the three sub-cones respectively. We shall

insist that the union {Xi} ∪ {Wk} generates C(Q1), {Yj} ∪ {Wk} generates C(Q2) and {Wk}
generate C(Q1 ∩Q2). We denote the height of a generator ui as κ(ui).

Remark 3.10.5. In the example above we can take a generating set with four elements,

which we shall call {s0, s1, s2, u} with heights 1, 1, 1, 2 respectively. Thus we see P2 embedded

as s1s2 = u and P (1, 1, 4) embedded as s1s2 = s2
0 in P(1, 1, 1, 2).

Recalling that the affine manifold is equipped with a piecewise-linear function φ, we assume

this has slope zero on Q2 and slope k on Q1, i.e. φ(Xi) is k 〈n0, m̃i〉 where n0 is the primitive

vector in N annihilating the tangent space to l, and m̃i is the rational point of Q defined

by the exponent mi of Xi. We shall assume k is chosen such that φ is integral on each

generator. We can now write out the Proj of this algebra explicitly: we can construct an

ambient weighted projective space P(~a), where ~a ∈ ZN>0 and N is the size of the generating

set, given by ~a =
∑

i κ(ui)ei, the vector of heights.

The toric variety is then cut out in this space by the binomial equations given by the

relations between these generators. We call the ideal generated IQ. The toric degeneration

corresponding to P is given by the following ideal, denoted IP (t):

Definition 3.10.6. For each binomial relation M1 −M2 ∈ IP such that d = ordl(M1)−
ordl(M2) ≥ 0 define a new binomial relation M1− tdM2. Take IP (t) to be the ideal generated

by these new relations.

Remark 3.10.7. If F ∈ IP is an element of C[{Xi}∪{Wk}], then ordl(M1)−ordl(M2) = 0

and the binomial relation remains unchanged in IP (t). The same is true of those relations in

C [{Yj} ∪ {Wk}]

Note this has recovered the Mumford degeneration for the pair (Q,P). We have thus

completed the first step, this family will be the family over the strict transform of a line

through the origin in C2.

Remark 3.10.8. One can apply exactly the same procedure to Q′ and obtain a toric

degeneration of the second toric variety, the family over the fiber at ∞. In fact one may take

exactly the same generating set, and get a different set of binomial relations. As in Section 3.9

we now describe a family ‘interpolating’ between them.

To construct such a family first consider that in the construction in Section 3.9 we used

a variable that corresponded to a primitive vector along the monodromy invariant direction.
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In this construction we find such a variable by looking at the part of C(Q)gp generated by

the exponents of the variables Wk. This is a rank 2 free abelian subgroup of C(Q)gp, that

contains (0, 1). There is another canonical monomial W, determined up to sign by requiring

it to lie at height zero and lie in the monodromy invariant direction. In C [C(Q)gp] this has

the form W =
∏
kW

αk
k∏

lW
βl
l

. Note there may be many choices for the representation of W via the

relations between the Wk.

Remark 3.10.9. In the example of P2 ⊂ P (1, 1, 1, 2) we may take W = u/s2
0.

The interpolating family is then given by replacing elements in IQ(t) analogously to the

procedure in Section 3.8:

Definition 3.10.10. The ideal IQ(t, α) is the ideal generated by relations defined in

Definition 3.8.8, where we replace Ci by Qi and f by (1 + αW).

In the example we have been considering, for P2 ⊂ P (1, 1, 1, 2), we replace the relation

s1s2 = u with s1s2 = ut(1 + αs2
0/u) i.e. with s1s2 = t(u + αs2

0). Observe that the fibers

of this family are isomorphic to P2. The other family, that deforming P (1, 1, 4), is given by

s1s2 = t(s2
0 + αu). This gives a smoothing of P (1, 1, 4) to P2.

To complete a proof of Proposition 3.10.3 we glue this pair of families in the obvious

fashion. Define X → Bl0(C2) =: E by taking X ↪→ P(~a) × E. Giving E homogenous co-

ordinates, α, β of weight one and t the weight −1 co-ordinate, elements of IP (t, α) may be

homogenized to obtain: M1 = td(β + αW)dM2 homogenous of weight zero. These generate a

homogeneous ideal, the equations of which define X .

Given the family produced by Proposition 3.10.3 we can establish a family over C2 by

contracting the exceptional curve, so that α and β become the coordinates on the plane

and the new family is defined by equations M1 = (β + αW)dM2. Thus we have established

Theorem 1.3.2.

In the running example the homogeneous equation is:

{s1s2 = (βs2
0 + αu)} ⊂ P(1, 1, 1, 2)× P2

(t:α:β)

Lemma 3.10.11. Restricting to the ideal of C[α]JtK generated by (α − α0, t
k+1) for fixed

α0 6= 0 denote the restriction of X by Xα0,k, this scheme is isomorphic to the scheme obtained

in Sections 3.6, 3.7 from (B,P) with log-structure fixed by the parameter α.

Proof. Considering this (B,P), there is no scattering, so we have S r = ∅, and the set

of slabs S s = {l}. The category Glue(S , k) consists of objects (ω, τ, u) where:

(1) ω is an end-point of l, τ = l and u is either of the two maximal cells of P.

(2) In any other case the chamber is fixed by the choice of ω, τ . In particular τ is a

boundary edge of B and contained in precisely one two-cell of P.

Firstly Rkω is recovered by localizing Xα,k with respect to the variable Wk corresponding to

the vertex ω in C(Q). This is immediate from the usual Proj construction and performing
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this localisation we recover Rk∪ for this vertex, by construction. Indeed the same argument

applies for any vertex of Q. The final check is that the gluing of these rings according to

Section 3.7 coincides with that of Proj. �

Corollary 3.10.12. The family given by Theorem 1.3.2 is Q-Gorenstein.

Proof. We can cover the family by neighbourhoods around each boundary vertex. By

Lemma 3.10.11 each of these is equal to the local model described in Section 3.8 and is

therefore Q-Gorenstein. �

We remark the analogous families in both [64] and [1] are independently known to be

Q-Gorenstein, making this an expected outcome.

3.11. Examples

3.11.1. A single smoothing direction. Consider the hypersurface:

X6 ⊂ P(1, 3, 3, 1)

This exhibits a toric degeneration in this ambient space to a toric variety with fan shown

in Figure 3.11.1. The fan exhibits 2 residual singularities which persist after the smoothing

and an A5 singularity, 1
6(1, 5) which is a T -singularity. Constructing the dual polygon one

observes that the one-parameter family of affine manifolds obtained by smoothing all possible

corners has a general fiber B with all six singularities ranged along a single edge. Therefore

there is no scattering diagram to construct so one can construct a family (the multi-parameter

analogue of the family appearing in Section 3.10) for which all the mutation equivalent toric

varieties are special fibers.

To write down the family constructed in Section 3.10 for this polygon we consider the

dual polygon Q∨ shown in Figure 3.11.1. Now form the monoid of integral points of the

cone for which Q∨ is the height one slice. However, note that the polygon is that obtained

from the polarisation O(2); using the more economical polarisation O(1) (embedding Q∨

at height 2) the associated relation is a binomial in P(1, 1, 3, 3). Indeed the vertices of the

polygon at height one are now (0, 1), (0, 0), (−1/3, 0), (1/3, 0) after a translation, naming the

corresponding variables X0, X1, Y, Z respectively gives: Y Z = X6
1 . Applying the method of
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Section 3.10, we find the Ilten family:

{tY Z = (αX6
1 + βX5

1X0)}

Of course we can consider a general homogenous degree six polynomial in X0, X1 and so find

a family over P5 which has 6 toric zero strata, each of which corresponds to a particular toric

variety. There is redundancy in this description, since for example Y Z = X6
0 manifestly gives

the same variety as Y Z = X6
1 .

3.11.2. The cubic surface. In this example we place Example 4.4 of [60] in this context.

The toric cubic surface {X0X1X2 = X3
3} ⊂ P3 exhibits 3 × A2 singularities which may all

be smoothed. However this situation is much more chaotic than the previous examples – the

mutation graph is necessarily infinite and we cannot expect to capture all degenerations in

a single algebraic family. However following [60] we may ask an easier question; rather than

smoothing the corners completely we can simply introduce three type 1 singularities. This

should produce a family of cubic surfaces which all exhibit at least ordinary double points.

In [60] this scattering diagram is explicitly computed, in particular it is shown to be finite,

producing a toric degeneration embedded in P3.

Having produced the scattering diagram one can construct a toric degeneration as ex-

plained above. The equation from [60] is:

{XY Z = t((1 + t)U3 + (X + Y + Z)U2)} ⊂ P3 × Ct

To recover the family partially smoothing these A2 singularities we simply repeat the deriva-

tion of this, but place general coefficents in the sections defining the log-structure. We know

from Section 3.8 that this will give the correct family as these sections degenerate.
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This calculation gives a family over C3
α,β,γ :

{XY Z = t((1 + αβγt)U3 + (αX + βY + γZ)U2)}

For completeness we also compute an Ilten family for the cubic surface:

Subdividing using the x-axis, we have zero strata:

(1, 0), (0, 1), (−1,−1), (0, 0), (−1/2, 0)

Naming the corresponding variables X,Y, Z, U,W respectively we obtain the toric degenera-

tion:

{XY Z = tU3, Y Z = tW} ⊂ P(1, 1, 1, 1, 2)

Performing the construction of Section 3.10 we obtain the family:

{XY Z = tU2(αU + βX), Y Z = t(αW + βU2)} ⊂ P(1, 1, 1, 1, 2)× C2
α,β

3.12. Conclusion

An intuitive picture begins to emerge: If we fix a del Pezzo surface X which is a smooth-

ing of a toric variety XP we have various mutation equivalent toric varieties, namely those

associated to the polygons obtained by mutating P . Rather than directly analysing the de-

formation theory of these varieties we studied the moduli space of log structures after taking

a toric degeneration of X. This produced a ‘tropical analogue’ of the deformation theory,

in which one mimics the Q-Gorenstein deformations of XP by introducing singularities into

the affine manifold P . As well as recovering the entire theory of combinatorial mutations we

have shown how to recover, order by order, an algebraic family with general fiber X via the

Gross–Siebert algorithm.

Moving singularities defines a ‘moduli problem’ of its own, a topological orbifold (with

isotropy due to automorphisms of the polygons) which carries an affine structure, first men-

tioned in [79]. There is also a stratification of this space: The zero strata being the polygons

themselves, one strata the tropical Ilten families and so on. To relate this space to the study

of Q-Gorenstein degenerations one must understand how to lift these families to algebraic

ones. From this perspective we have described this lift for the 1-skeleton of this space in this

chapter.



CHAPTER 4

The Tropical Superpotential

4.1. A Tropical Superpotential

Given a smooth genus one curve in P2 we may form an affine manifold BP2 with a smooth

boundary as depicted in Figure 4.1.1. Recall we obtained this affine manifold in Chapter 3 by

‘smoothing the corners’ of the moment polytope Q for (P2, D) where D is the toric boundary

of P2. Indeed, we recall that the family

{xy = t} ⊂ C2
x,y × Ct

carries a family of special Lagrangian torus fibrations, and the family of affine structures on

the base recovers the family of affine structures introduced in Chapter 3 smoothing the corner

of the polytope. If we attempt to smooth all the vertices of Q simultaneously, we lose a simple

geometric model, but, in its place we may apply the techniques of Gross–Siebert [53,59], as

we explained in Chapter 3. This example is also discussed in [6].

As in the closed case, there is a notion of Legendre duality for affine structures with

boundary, allowing us to consider the ‘fan picture’ or ‘B-model’ affine structure B∨P2 for the

pair (P2, E). Building on work of Mikhalkin [88,89] and Nishinou–Siebert [91], it is expected

that holomorphic curves in the total space of a special Lagrangian torus fibration (or more

generally, a non-zero fiber of a toric degeneration) are in correspondence with tropical curves

in this affine base.

Figure 4.1.1. Intersection complex for a toric degeneration of (P2, E)

83
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Recall from Chapter 2 that given a pair (X,D) for X a Fano manifold and D ∈ |−KX |,
the mirror superpotential is conjecturally defined by the m0 obstruction, by definition a sum

over Maslov index two discs,

m0(L,∇) =
∑
β

nβ(L)e−
∫
β ω hol∇(∂β)

Combining these two observations, it is expected that there is an enumerative interpreta-

tion of the superpotential mirror-dual to (X,D) in terms of counts of tropical discs in B∨P2 .

This idea is pursued by Carl–Pumperla–Siebert in [18], where they prove many important

technical results and provide several fundamental examples.

Focusing on the easiest case, (P2, E), we extend their calculation of the tropical super-

potential by computing the wall-and-chamber decomposition for the entire structure S on

a larger domain of the affine manifold U ⊂ B∨P2 . In doing so we shall identify a canonical

bijection between the chambers u of S contained in U and the toric degenerations of P2.

Moreover the Laurent polynomials defined by the count of tropical discs, or broken lines, are

precisely the maximally mutable Laurent polynomials considered in Chapter 2. This is the

first non-trivial example in which we can establish an interpretation of mirror-dual Laurent

polynomials as disc counts.

Recall we have the following classification result for toric degenerations of P2, see [61].

Theorem 4.1.1. The set of toric varieties to which P2 admits a toric degeneration is in

canonical bijection with the integral solutions of the Markov equation a2 + b2 + c2 = 3abc.

Consequently all toric degenerations of P2 are related by mutation.

The Markov equation here also appears in many different areas of mathematics. Its

solutions are completely described by the following lemma.

Lemma 4.1.2. Given a solution (a, b, c) of x2 + y2 + z2 = 3xyz another solution is given

by
(
b, c, 3bc−a2

a

)
. Given the initial solution (1, 1, 1) this process generates all integral solutions

to the Markov equation.

Thus the solutions of the Markov equation may be encoded in a trivalent graph G, in which

each node is a triple (a, b, c) solving the Markov equation. Starting from the initial solution

(1, 1, 1) one may inductively define a distance dist(v), v ∈ V(G), of a node from (1, 1, 1) via

successive mutations.
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(1, 1, 1)

(1, 1, 2)

(1, 2, 5)

(2, 5, 29)

(5, 29, 433) (2, 29, 169)

(1, 5, 13)

(5, 13, 194) (1, 13, 34)

We shall show that the Markov equation can also be recovered from the wall-and-chamber

decomposition given by the natural structure S on B∨P2 .

Having performed this detailed study of S we show, following [18], that the maximally

mutable Laurent polynomials f with

πf (t) =
∑
m≥0

(3m)!

(m!)3
t3m

that is, those mirror-dual to P2, can be expressed via counts of tropical discs (or broken lines)

in this affine manifold.

In this chapter we prove Theorem 1.3.3 and Theorem 1.3.4. Theorem 1.3.3 is a computa-

tion of the chambers defined by all the scattering diagrams in B∨P2 . In particular we observe

that B∨P2 contains a region densely covered with rays and the complement of this region has a

wall and chamber structure. The dual cell complex to these walls and chambers is a trivalent

tree and each chamber is a triangle similar to the Fano triangle defined by the corresponding

degeneration of the projective plane.

The second result, Theorem 1.3.4, is obtained by combining Theorem 1.3.3 with the

results of [18]. These results determine the set of broken lines in each chamber and from

this a candidate Laurent polynomial mirror. We check that these Laurent polynomials are

precisely those whose period sequence is the quantum period sequence of P2.

4.2. A Normal Form for Fano Polygons

In this section we study the special class of polygons associated to the Q-Gorenstein

degenerations of P2 and the combinatorial mutations between them in considerable detail. In

particular we present a standard form for a pair (P, v) of a Fano polygon P with singularity

content (3,∅) and a vertex v ∈ V(P ). Later, this will allow us to compare the polygons

obtained by mutation with a standard scattering diagram.

The class of Fano polygons of Q-Gorenstein toric degenerations of P2 is well-understood.

Indeed, combining the results of [61] and [2] we have the following theorem.

Theorem 4.2.1. Given a Fano polygon P the following are equivalent:

(1) P is the polygon of a degeneration of P2.
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Figure 4.2.1. Normal vectors changing under a mutation

(2) The singularity content of P is (3,∅).

(3) P is mutation equivalent to the polygon P0 := Conv{(1, 0), (0, 1), (−1,−1)}.

Remark 4.2.2. Theorem 4.2.1 implies that the polygon P of a toric surface XP which

admits a Q-Gorenstein smoothing to P2 is a triangle. Performing any mutation out of P

completely removes an edge and a new edge appears at the opposite vertex.

The effect of the M -side mutation on the triple of dual vectors defining the edges of P

is similarly straightforward. As shown in Figure 4.2.1, the inward-pointing normal w3 to the

mutating edge changes sign, and the remaining pair undergo a piecewise linear map in which

one is fixed and the other undergoes a shear with invariant direction spanned by w3.

Thus:

Lemma 4.2.3. Given a Fano polygon P with singularity content (3,∅) a mutation of P is

exactly (i.e. not only up to GL(2,Z)) determined by a mutating edge E and fixed edge E′.

Given a triangle P with singularity content (3,∅) and a vertex v ∈ V(P ), we describe a

‘normal form’ for P making these edges orthogonal, at the expense of embedding P into a

finer lattice.

Definition 4.2.4. Given a pair (P, v), v ∈ V(P ) let E1, E2 be the edges incident to v

and let w1, w2 ∈M be their normal vectors respectively. Consider the map

ρ : Z2 →M ρ : ei 7→ wi, for i = 1, 2
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Figure 4.2.2. A triangle in normal form

where ei are elements of the standard basis. The dual map ρ? : N ↪→ Z2 embeds N into the

lattice Z2∨, consequently P is embeded in the new lattice Z2∨ with fixed coordinate directions.

We refer to the embedding ρ? as the normal form for (P, v).

The prototypical example of a triangle in standard form is shown in Figure 4.2.2

Remark 4.2.5. This construction is intimately related to the construction of a cluster

algebra associated to P , [70] c.f. [54]. There one defines seed data by fixing the lattice Zm

with its standard basis, and define a skew-symmetric bilinear form on Zm. The mutation of

seed data then involves making a choice of basis vector, for example ek, and transforming this

basis to:

e′i =

−ek if i = k

ei + max (ek ∧ ei, 0).ek otherwise

Given any Fano polygon P with singularity contentmP =
∑

EmE , wheremE is the singularity

content of Cone(E) and the sum is over the edges of P , we can define a map ρ̂ : ZmP → M

sending mE basis vectors to the inward-pointing normal vector to the edge E. We can then

form a skew-symmetric matrix (u1, u2) := ρ̂(u1) ∧ ρ̂(u2). Restricting this definition to a pair

of basis vectors we recover our previous definition of ρ. We return to this point in detail in

Chapter 5.

Notation 4.2.6. We fix notation for the local index of various cones that appear in P

and its mutations in E1, E2 respectively.

• Let `i be the local index of the cone over the edge Ei.

• Let `′ibe the local index of the cone over the edge E′i. Where E′i is the new edge

formed by mutating the edge Ei.
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• Let Li = `i + `′i.

Putting P in normal form embeds the edges Ei of P into affine coordinate lines. This

means we have a very simple description of the result of the pair of mutations in Ei for i = 1, 2.

To make this precise we need to define what it means for a polygon to mutate with respect to

a sublattice.

Definition 4.2.7. Given a sublattice ρ? : N ↪→ Z2 and P a polygon in N , a vector w ∈ Z2?

and a polygon F = ρ?(F ′) for a polygon F ′ ⊂ w⊥ of ρ?(P ) we define the mutation with respect

to N

mut(w,ρ?)(ρ
?(P ), F ) := ρ?(mutρ(w)(P, F ))

We prove two lemmas which will simplify our future calculations considerably.

Lemma 4.2.8. Given a Fano polygon P with singularity content (3,∅) put P in normal

form with respect to v ∈ V(P ), incident to the edges E1, E2. The two corresponding mutations

of ρ?(P ) with respect to N have factors

F1 = Conv{(0, 0), (s, 0)} F2 = Conv{(0, 0), (0, s)}

respectively, where s is the index [Z2 : N ].

Proof. The factors Fi are, by definition, line segments, with one vertex at the origin.

Since Fi lies in w⊥i ,

F1 = Conv{(0, 0), (k1, 0)} F2 = Conv{(0, 0), (0, k2)}

for some ki. To see that ki = s for i = 1, 2 we observe that

k1 = 〈(1, 0), ρ?(v1)〉 = ρ?(v1)(1, 0) = v1(ρ(1, 0)) = 〈w2, v1〉

where vi ∈ V(P ) is incident to Ei and not equal to v. Using the non-degenerate pairing the

functional 〈−, v1〉 : M → Z is equal to the functional w1∧−. But w1∧w2 = s by the definition

of the map ρ. �

Lemma 4.2.9. Given a Fano polygon P with singularity content (3,∅) fix a pair of edges

E1, E2, then L1/`2 = L2/`1 = s.

Proof. Since the cones over the distinguished edges E1 and E2 are primitive T-cones, the

mutation in these edges completely removes the edge. Consequently the mutation of ρ?(P )

with respect to N also removes an entire edge. Thus, while the local index of the cones over

ρ?(Ei) remains unchanged, the width L1 = w = rs, where the second equality follows from

Lemma 4.2.8. However, for example, for the cone over E1, w = L1 and r = `2. Applying the

same consideration for E2 completes the proof. �

4.3. Scattering Diagrams from Combinatorial Mutations

We now turn to a construction of the support of a scattering diagram in terms of combi-

natorial mutations. We shall build a collection of triangles using successive mutations and use
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the edges of these polygons to define a sequence of rays. In the next section we shall directly

compare this with the rays of a certain simple scattering diagram. The collection of triangles

we consider in this section fit together into an embedded simplicial complex which we refer

to as a diagram.

Definition 4.3.1. Given a triple (P, v, k) where P is a Fano polygon P with singularity

content (3,∅), v ∈ V(P ) and k ∈ Z≥0. Let E1, E2 denote the edges of P adjacent to v and

let E denote the opposite edge to v, and allow this labelling to persist after mutation. We

define a diagram Diagk(P, v) := (Pk(P, v), ιP,v,k), where

• Pk(P, v) is a two-dimensional simplicial complex with 2k + 1 maximal cells and;

• ιP,v,k : |Pk(P, v)| → R2 is a continuous map from a geometric realisation of Pk(P, v)

to R2.

Denote the chambers of Pk(P, v) by uk,0, uik,j for i ∈ {1, 2} and 1 ≤ j ≤ k (suppressing the

dependence on P and v). We fix Pk(P, v) by requiring that:

• The following intersections each consist of exactly one edge of the respective cham-

bers,

◦ τi,j := uik,j ∩ uik,j−1 for 1 ≤ j ≤ k
◦ τi,0 := uik,1 ∩ uk,0

• Every chamber uik,j contains the distiguished vertex v.

We fix the map ιP,v,k by requiring that,

• ιP,v,k : uk,0 → P isomorphically.

• Up to scale and translation ιP,v,k(u
i
k,1) is equal to the mutation of P with mutating

edge Ei and fixed edge E2−i.

• For 1 ≤ j ≤ k, up to scale and translation ιP,v,k(u
i
k,j) is equal to the mutation of

the Fano polygon corresponding to uik,j−1 with mutaing edge Eai,j and fixed edge E.

Here ai,j is defined by the requirement that ai,j+1 = 2− ai,j and ai,0 = i.

In Figure 4.3.1 we give a schematic example of Diag3(P, v) (for P in normal form with

respect to v). The remainder of this section is devoted to showing that for any P , v and k,

ιP,v,k is an embedding.

To describe the slopes of the rays in TvR2 induced by Diagk(P, v) we use the description

of M -side mutation to describe the normal vectors of the region uik,j .

Definition 4.3.2. Define ui,1j , ui,2j ∈ M to be the normal vectors to the edges E1, E2 of

uik,j (for any k > j) respectively.
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Figure 4.3.1. A schematic picture of Diag3(P, v)

The first few terms of u1,1
j , u1,2

j ∈ Z2 are:

(−1, 0)

##

(−i, 1)

$$

(1− i2, i)

''

(2i− i3, i2 − 1)

%%

· · ·

��

u1,1
j

(0, 1)

;;

(1, 0)

::

(i,−1)

77

(i2 − 1,−i)

99

· · ·

??

u1,2
j

There is an analogous sequence for the sequence u2,l
j . From the piecewise linear map in M it

is easy to determine that

u1,1
k = (−ak+1, ak), u

1,2
k = (ak,−ak−1)
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where the ak satisfy the recursive relationship:

ak+1 = sak − ak−1

Lemma 4.3.3. These normal vectors define lines in R2 which converge to a line with slope
−s+

√
s2−4

2

Proof. Straightforward calculation. �

Remark 4.3.4. Making this calculation for the sequence u2,l
k , the sequence of slopes of

the induced lines converges to −s−
√
s2−4

2 .

We now put P in normal form, with respect to the edges incident to v. Combining this

with the formula for the normal vectors we will compute the slopes of these rays in TvR2

generated by the edges E1 E2 for the chambers uik,j .

Definition 4.3.5. Let vij be the set of vectors generating a sequence of ray dij defined

recursively as follows.

• v1
1 := (−1, 0), v1

2 := (0, 1)

• v2
1 := (0,−1), v2

2 := (1, 0)

• vij−1 + vij+1 = svij , recalling that s = det(ρ).

We record the following easy comparision result,

Lemma 4.3.6. The set of rays generated by vi,lj in TvR2 is equal to that induced on TvR2

by the chambers uik,j for i = 1, 2, for all j ≥ 1, k ≥ j.

Proof. This follows immediately from our considerations of the normal vectors after

taking the orthogonal directions using the volume form (− ∧−). �

In particular these rays converge to a pair of asymptotes:

Lemma 4.3.7. The sequence of rays dij converge to the ray di∞ with slope

mi
∞ :=

s±
√
s2 − 4

2

where i = 1 corresponds to the asymptote with positive sign.

Proof. These are the orthogonal directions to the rays in MR obtained in Lemma 4.3.3.

�

Next consider the union of the fixed edges E of uij,k. This defines a pair of rays in R2

which we denote by ei. In order to prove ιP,v,k is an embedding we require a bound on the

gradient of ei. This bound makes use of the fact that P has singularity content (3,∅) and

thus is of the form P(a2, b2, c2). Our first step is to relate the triple of weights (a, b, c) for

defined by P to the numbers `1, `2, s.
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Lemma 4.3.8. Given a triangle mutation equivalent to P2 in standard form with respect

to the vertex corresponding to a, let the other two vertices in clockwise order correspond to b

and c then `1 = b, `2 = c and s = 3a.

Proof. That s = 3a is clear from the definition, since fixing the two edges adjacent to

the distinguished vertex as E1, E2, s = det(ρ) = ρ(E1) ∧ ρ(E2). To prove `1 = b and `2 = c

recall that `i is the height (or local index) of the edges E1, E2 respectively and observe that

for a Fano polygon P such that XP = P(a2, b2, c2) such that a2 + b2 + c2 = 3abc, the triple of

local indices is given by (a, b, c). �

The main technical result of this section tells us that once the rays ei enter the region

defined by the pair of asymptotes of the two sequences of rays vi∞ they never emerge again.

Proposition 4.3.9. For i = 1, 2 denote the slope of the ray ei by mi, then:

m1
∞ ≥ mi ≥ m2

∞

Proof. First we need to compute the gradient of the rays ei. Considering the initial

chamber uk,0 the edge e opposite v has normal vector (`1, `2). Consequently the normal

directions to E in the chambers uik,1 are (`1, `2− s`1) and (`1− s`2, `2) for i = 1, 2 and k ≥ 1.

Thus the orthogonal lines in N have slopes `1
s`1−`2 and s − `1

`2
. As we can interchange b and

c this situation is symmetric and we need only consider the second case, i.e. we only need to

prove that
s−
√
s2 − 4

2
≤ s− `1

`2
≤ s+

√
s2 − 4

2
By Lemma 4.3.8 these are equivalent to the inequality√

(3a)2 − 4 ≥
∣∣∣∣3a− 2b

c

∣∣∣∣
But squaring both sides and rearranging we may reduce this inequality to a tautology:

(3a)2 − 4 > (3a)2 − 4.3
ab

c
+ 4

b2

c2
⇔

b

c

(
3ac− b

c

)
> 1⇔

1 +
a2

c2
> 1

�

Corollary 4.3.10. The map ιP,v,k is an embedding for every triple (P, v, k).

In the proof of Theorem 1.3.3 we will make use of a gluing construction, whereby Diag(P, v, k)

is created from iterated embeddings of Diag(Pi, vi, 1) where Pi and vi form a sequences of em-

bedded polygons and vertices.
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Figure 4.3.2. Gluing copies of Diag(Pi, vi, 1) to form Diag(P, v, k)

Construction 4.3.11. Given a diagram, Diag(P, v, k) define P 1
k := u1

k,k and P 2
k := u2

k,k.

Further, let v1
k and v2

k denote the vertices of P 1
k and P 2

k respectively such that vik /∈ V
(
uia,b

)
for any (a, b) 6= (k, k). There are Fano polygons P̄ ik associated with P ik for i = 1, 2 such that

the normal directions of P̄ ik coincide with those of P ik. Forming the diagram Diag(P̄ ik, v
i
k, 1)

and composing the embedding ιP ik,v
i
k

with a scale and translation, we can ensure that

ιP̄ ik,v
i
k
(P̄ ik) = P ik

The simplical complex underlying Diag(P ik, v
i
k, 1) has two other chambers which extend the

simplicial complex Diag(P, v, k). In fact, extending Diag(P, v, k) by the chambers u2−i
1,1 of

Diag(P ik, v
i
k, 1) we obtain the embedded complex Diag(P, v, k+ 1). An example of the process

is shown in Figure 4.3.11

Eventually we shall want to mutate not just E1 and E2 but the third edge as well, to

do this we shall need to recursively apply the construction we have just described to various

triangular regions. However, before we describe this construction we will give a different

interpretion of the set of rays we have defined, in a somewhat ad-hoc fashion, in this section.

That is, we shall describe this set of rays as a subset of the rays of a scattering diagram.

4.4. Broken Lines in Affine Manifolds

Recall the definition of scattering diagrams from Chapter 3, following [53,59]. The only

examples of scattering diagrams we shall use are the most basic examples, studied, for example

in [56,57].
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Figure 4.4.1. Rays of a scattering diagram Dk(s).

D(k) = {(R(1, 0), 1 + txk), (R(0, 1), 1 + tyk)}

The rays added by the scattering process admit a periodicity, resulting in a recursive

formula identical to 4.3.6. As we have seen, the gradients of these rays converge to values

which are, in general, different. In the region between these asymptotes there are non-zero

functions supported on rays of any rational slope.

There is an obvious parallel to be drawn with the collection of rays we considered from

the mutating family of triangles in Section 4.2. In particular outside the region defined by the

two asymptotes the recursive formulae for generating the support of the rays are identical.

Proposition 4.4.1. Fix a triangle P and put it in standard form with respect to a ver-

tex v. The collection of rays
{
dij : i ∈ {1, 2}, 1 ≤ j

}
formed in the construction described in

Section 4.2 is equal to:{
(d, fd) ∈ D(s) : md >

s+
√
s2 − 4

2
or md <

s−
√
s2 − 4

2

}
where s is the determinant of the map ρ and md is the slope of d.

Proof. Both collections of rays are generated by the same recursive formula, and have

the same initial configuration. �

Remark 4.4.2. While the association of this set of rays with the triangles of the previous

section seems mysterious, it is in fact tautological given the connection that both concepts

have with cluster algebras. See Chapter 5 for details of this connection, and [56] for the

connection to scattering diagrams.
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As well as the notion of a scattering diagram we will utilize the notion of a broken line

from [18, 52]. These will provide an enumerative interpretation of the Laurent polynomials

mirror to P2 as described in Theorem 4.1.1. The notion of broken line is very close to that

of a tropical disc: broken lines can bend on the walls of a scattering diagram and one can

canonically complete these bends so that the resulting object is a tropical curve with stops

(following the terminology of [90]). For more details see Lemma 5.4 of [18].

The idea of calculating a superpotential tropically, utilising broken lines in the affine

manifold, was first explored in [18]. In Section 4.6 we show that there is a domain U in

the dual intersection complex B∨ for a toric degeneration of (P2, E) such that the tropically

defined superpotential is equal to the family of Laurent polynomials described in [2].

In an ideal setting tropical curves should be the ‘spines’ of images of holomorphic curves

under a special Lagrangian torus fibration. Tropical discs are similar, but now the curve

has boundary so there is a ‘stop’ where the tropical disc terminates. For a more detailed

discussion of this point see [18,52,90]. There are many technical results in [18] showing that

the tropical superpotential behaves well which we do not include here, but rather present a

summary of those definitions and results required for the proof of Theorem 1.3.3. The results

are presented for an affine manifold B satisfying the imposed by [18], any such conditions

will be satisifed by the affine manifold B∨P2 .

Definition 4.4.3. A broken line is a proper continuous map

β : (−∞, 0]→ B

with ‘bends’ at a sequence of points −∞ = t0 < t1 < · · · < tr = 0 such that β|(tj ,tj+1) is an

affine map with image disjoint from the rays of S .

Additionally a broken line carries a sequence of monomials ajz
mj such that β′(t) = m̄j

which are naturally transported as sections of β−1Pφ. At a point β(ti) ∈ τ for τ a one cell in

Pk the monomial ajz
mj defines a unique element in Rkτ,τ,u where β(ti − ε) ∈ u for sufficently

small ε > 0. The wall-crossing formula θu,u′ defines a collection of monomials with order ≤ k;

these are the results of transport of ajz
mj .

For the broken line β we require that u′ 6= u and that the monomial attached to β is a

result of transport. We also insist that a1 = 1 and there is an unbounded 1-cell of P parallel

to m̄1 for which m1 has order zero.

This records all the important aspects of the definition, for a systematic treatment of broken

lines the reader is referred to [18].

Given a general1 point p ∈ B, denote the set of broken lines β with β(0) = p by B(p).

For a given structure Sk on B, the ring Rkω,τ,u and a general p ∈ u we can produce the

1This is a generic condition, see Proposition 4.4 and Definition 4.6 of [18] for details.
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superpotential at order k as an element of Rkω,τ,u, taking

W k
ω,τ,u(p) =

∑
β∈B(p)

aβz
mβ

In [18] the authors obtain various results for W k
ω,τ,u(p), two of which we shall utilize in

Section 4.6:

• The superpotential W k
ω,τ,u(p) is independent of the choice of p ∈ u (Lemma 4.7

of [18]).

• The superpotentials are compatible with changing strata and chambers (Lemma 4.9

of [18]).

The content of the second point here is that, applying a change of chamber map to the

superpotential, one obtains

θu,u′(W
k
ω,τ,u) = W k

ω,τ,u′

where we have suppressed the dependence of W k
ω,τ,u(p) on p using the first point. This formula

is intimately connected to the mutations we discussed in Chapter 2. To see this, we need to

compare the rings Rkω,τ,u and k[M ] of which the respective superpotentials are elements. In

Section 4.6 we shall find that the superpotentialW k
ω,τ,u is, in the terminology of [18], manifestly

algebraic in a domain U we shall specify. The main conseqence of this is that the limit

W = lim
←
W k

is a finite sum. Recall that Rkω,τ,u is a localisation of

k[Pφ,ω]/Ikω,τ,σu

So for sufficiently large k the obvious lift of W k
ω,τ,u to k[Pφ,ω] is independent of k. In fact, to

make this precise, we will also show that Pk can be chosen so that u is not further subdivided

as k →∞. Taking the projection k[Pφ,ω]→ k[M ] induced by setting t = 1, we can represent

W as a single Laurent polynomial. To summarise, we have

Lemma 4.4.4. Let S be structure on an affine manifold B, and U ⊂ B a domain such

that Pk is eventually constant in U and such that for any ray (d, fd) in U , the sequence of

functions fd is eventually constant in k. In this setting we may define the ring

R̂ω,τ,u := lim
←
Rkω,τ,u

which contains a subring of manifestly algebraic elements Rω,τ,u, that is, the localisation of

k[Pφ,ω] by the function fd appearing in the definition of Rkω,τ,u; see Chapter 3. This subring
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projects by taking t = 1:

Rω,τ,u
ι //

(t=1)
��

R̂ω,τ,u

Ralgω,τ,u

where Ralgω,τ,u := k[M ], unless τ is one dimensional and intersects ∆ ⊂ B, in which case

Ralgω,τ,u := (k[M ])(1+cmzm̄)

where (1 + cmz
m) = fd, the same localising function.

Remark 4.4.5. In Section 4.6 we shall see that for our example there is a domain U

for which any general point p is contained in a chamber u satisfying the hypotheses of

Lemma 4.4.4. Thus the superpotential W k
ω,τ,u(p) may be identified with a Laurent polynomial.

Lemma 4.4.6. The wall crossing formulae

θku,u′(z
m) = zm

∏
f
〈n,m̄〉
d

define birational maps θku,u′ : k(M)→ k(M) for all sufficently large k. If there is only a single

ray supported on d and fd = 1 + cmz
m for some exponent m then the birational map θku,u′ is

an algebraic mutation, in the sense of Chapter 2, with factor polynomial (1 + cmz
m̄).

Thus the result of crossing a wall is that the function recorded at the base point, viewed

simply as a Laurent polynomial, undergoes a birational change of variables which is precisely

the mutation with factor given by the line segment in the direction of the wall. This will be

an essential ingredient in the proof of Theorem 1.3.3, since it will allow us to compute the

superpotential in every chamber from a calculation of broken lines in a single chamber.

4.5. The Affine Manifold B∨P2

We now consider the affine structure on the dual intersection complex for a toric degen-

eration of P2. This is described in Example 2.4 of [18]. In [18], the authors consider the

affine structure on the intersection complex and dual intersection complex of a so-called dis-

tinguished toric degeneration (X → T,D). Given the pair (P2, E) for a smooth genus one

curve E, a distinguished toric degeneration will give an intersection complex as shown in

Figure 4.1.1, as shown in the proof of Theorem 6.4 in [18].

Remark 4.5.1. While we only know how to construct such a degeneration formally, a close

approximation to a globally defined toric degeneration is easily obtained. Indeed, consider

the family
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{x0x1x2 = t(y + g3)} // X //

π

��

P(1, 1, 1, 3)× Ct

xx
Ct

(4.5.1)

The variables x0, x1, x2, y correspond to coordinates on the weighted projective space

P(1, 1, 1, 3) := ProjC[x0, x1, x2, y]

with the grading determined by assigning the degrees 1,1,1,3 to the variables respectively, and

g3 ∈ C[x0, x1, x2] is a general degree three polynomial. Observe that all of the fibres, except

the fibre over t = 0, are isomorphic to P2 while the zero fibre of π is given by the equation

{x0x1x2 = 0} ⊂ P(1, 1, 1, 3) and is made up of three copies of P(1, 1, 3). However this is not

a suitable toric degeneration as it inherits the 1
3(1, 1, 1) singularity from the ambient space at

t = x0 = x1 = x2 = 0.

For a precise definition of the discrete Legendre duality between BP2 and B∨P2 see [53,59].

Rather than provide this definition here we will describe B∨P2 as an affine manifold. The

manifold B∨P2 was described in [18], and is shown in Figure 4.5.1. The affine manifold BP2

associated to the intersection complex is shown in Figure 4.1.1. The affine structure on B∨P2

is such that the three ‘outgoing’ unbounded 1-cells of P are parallel to each other, the dual

condition to the requirement that BP2 have smooth (flat) boundary. Charts may be formed as

usual, by cutting along the invariant lines of each focus-focus singularity. Note that each such

charts will in general be disconnected, so we replace each chart with its connected component

containing the unique closed 2-cell of P.

Remark 4.5.2. Following the work of Gross–Hacking–Keel for log Calabi–Yau manifolds

[54, 55] one might attempt to consider the affine manifold obtained by regarding all the

singularities of B∨P2 as lying at the origin, which would be the ‘U trop’ in those papers, for a log

Calabi–Yau U . However in this case we do not have maximal boundary : the resulting affine

manifold is a single ray and does not fit easily into that framework.

Following the philosophy of the Gross–Siebert programme [59], we endow the 1-cells τ of

B supporting ∆ with functions fτ , or more precisely sections of Pφ restricted to τ , defining a

log-structure on a union of toric varieties. We shall make the standard choices of normalisation

here so that fτ is (1 + zm) where m is an exponent such that m̄, a section of Λ|τ , is primitive

and lies in the direction in τ toward the focus-focus singularity.

The data of (B,P) together with the log-structure defines an initial structure, S0. Fol-

lowing the Gross–Siebert algorithm we shall consider various scattering diagrams in order to

construct Sk for each k. In fact in Section 4.6 we shall compute a collection of regions using

mutation of polygons and argue by our comparison result, Proposition 4.4.1, that this is the

support of the union of scattering diagrams, away from a region densely filled with rays.
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Figure 4.5.1. Affine structure on the dual intersection complex B∨P2

Figure 4.5.2. Broken lines in the central region

To compute the superpotential, we will use Corollary 6.8 of [18], which states that, for a

base point in the interior of the bounded cell of P, the superpotential for this structure is

given by the usual Givental/Hori–Vafa superpotential:

W = x+ y +
1

xy

Each term here coming from a different broken line as shown in Figure 4.5.2. Using Lemma

4.9 of [18] this calculation determines the superpotential in every other chamber, using the

wall-crossing formula θu,u′ to change chambers.
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4.6. The Proof of Theorem 1.3

In this section we shall prove Theorem 1.3.3. To do this we will inductively build regions

Un ⊃ Un−1, covered by the triangles corresponding to vertices of G with distance ≤ n from

(1, 1, 1), by considering new complexes Diag(P, v, k) at each stage. Defining U := limn≥0 Un,

we show that U is covered by (infinitely many) triangular regions and that the set of rays

determined by the edges of these triangles is identical to the set of support of rays d of the

structure S intersected with U .

Proof of Theorem 1.3.3. We only sketch this here as the notation quickly becomes

dense, but we hope that the general methodology is clear.

We shall define the domains Uk together with a polyhedral decomoposition by induction.

Indeed, define U0 = P the bounded 2-cell in B∨P2 and consider Diag(P, v, 1) for each vertex

v ∈ V(P ). While the affine structure on B∨P2 is not trivial we can compose ιP,v,k with a chart

on B∨P2 which contains v. Thus we define U1 as the union of chambers ui1,1 for each vertex

v ∈ V(P ) (this gluing is shown in Figure 1(a)). Observe that pairs of these chambers are

identified by the transition functions on B∨P2 ; there is only one additional chamber in U1 for

each edge of P . Also note that each u = ui1,1 has a distinguished vertex vu which is disjoint

from U0.

Given k > 0 we consider the set

Ak = {u ∈ Chambers(Uk)\Chambers(Uk−1)}

where Chambers(Uk) is the set of maximal cells of the underlying complex of Uk. We form

Uk+1 as follows:

• By induction, there is a vertex vu ∈ V(u) for each u ∈ A such that vu is not contained

in Uk−1.

• For every u ∈ Ak form the diagram Diag(u, vu, 1).

• Embed Diag(u, vu, 1) into B∨P2 by composing ιu,vu,1 with a chart of B∨P2 , thus identi-

fying u with the corresponding chamber in Uk.

• Identifying those chambers with the same image in B∨P2 we form a collection Uk+1 of

chambers each of which has a unique vertex vu disjoint from Uk.

Examples of this gluing process are shown in Figure 4.6.1. Observe that, using Construc-

tion 4.3.11, given a pair (u, vu), as k → ∞, this process generates all of Diag(u, vu, l) for any

l > 0.

By the comparison result Proposition 4.4.1, every line segment appearing from this con-

struction is a segment of a ray generating by a scattering diagram at a joint. This process

also prolongs each of these segments of rays of the scattering diagram until they leave the

domain U . The bound from Proposition 4.3.9 on their slope ensures they never enter U again.

Combining these observations the proof is then reduced to a series of exercises.
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(a) Gluing in a diagram (b) Gluing a second Diag(P, v, 1)

(c) Gluing a third Diag(P, v, 1)

Figure 4.6.1. Building up Chambers(S , k) using polygon mutation

(1) Each new edge produced by the chambers ui1,1 of Diag(P, v, k) is a segment of a ray

of the scattering diagram induced by the segments appearing in Uk at the other two

vertices of P .

(2) Every ray is prolonged until it enters the region between the two asymptotes in a

unique diagram Diag(u, v, k).

(3) An initial segment of every ray in the structure S intersected with U is produced

for some k.

Once we have concluded that the chambers in Uk are stable (that is, they undergo no

further subdivision as k increases), we combine this with the discussion in Section 4.4 to

conclude that, since the superpotential is manifestly algebraic in the central chamber P of U ,

and since the functions attached to each rays are of the form 1 + zm, the effect of the wall

crossing formula is to produce another, algebraic superpotential – which we have observed is

precisely the result of mutating the original superpotential.

�
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Figure 4.6.2. Part of U2, defined by scattering diagrams in S



CHAPTER 5

The Cluster Algebra Structure

5.1. Cluster Algebras and Mutations

In Chapter 2 we saw that, regarding Mirror Symmetry as the identification of a certain

pair of variations of Hodge structure, there are potentially infinitely many Laurent polyno-

mials mirror dual to a Fano variety. We saw in Chapter 2 a notion of mutation for Laurent

polynomials, which preserves the period sequence, and it is natural to ask whether there is

an algebraic structure controlling all of these mutations. Indeed, if we restrict to the surface

case there is already a striking resemblence to the notion of a cluster algebra. Very roughly,

a cluster algebra is an algebra generated by a recursively defined set of cluster variables asso-

ciated to seeds. In particular, from one seed one can move to others via a process, also called

mutation. Just as for Laurent polynomials in two variables, the number of possible mutations

remains (in a suitable sense) constant, and performing the same mutation twice returns one

to the original ‘seed’.

In this chapter we will make this analogy precise, use it to produce a powerful mutation

invariant of polygons and apply this to certain classification problems. Our first goal will be

to reformulate the factors and weight vectors used to define polygon mutation as suitable seed

data. The next goal will be to rigorously define a global object (a cluster variety) mirror to

a Fano variety on which the various Laurent polynomials exist as the restriction of a single

regular function to various torus charts. Recall that by rough analogy, the variety obtained by

forgetting the superpotential is mirror–dual to the complement of a divisor D ∈ |−KX |, so we

expect to see the same cluster varieties that appear in the work of Gross–Hacking–Keel on log

Calabi–Yau surfaces. This is indeed the case and we describe this connection in Section 5.6.

We shall use these constructions to establish, or help establish, classification results. Perhaps

most strikingly, using foundational results in cluster algebra theory (finite type and finite

mutation type classification) we can classify those Fano polygons with finite mutation class,

a result which would have been highly mysterious without this connection.

5.2. Background on Cluster Algebras

The definition of a cluster algebra is somewhat involved, so we devote this section to fixing

the various conventions and notation, as well as recalling the basic definitions. We recall

the definition of cluster algebra, and in order to address both geometric and combinatorial

103
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applications we shall adapt our treatment from the work of Fomin–Zelevinsky [35] and Gross–

Hacking–Keel [54], which follows the treatment of Fock–Goncharov in [33]. We first fix the

following data:

• N , a fixed rank n lattice with skew-symmetric form {·, ·} : N ×N → Z.

• A saturated sublattice Nuf ⊆ N , the unfrozen sublattice.

• An index set I, |I| = rk(N) together with a subset Iuf ⊆ I such that |Iuf | = rk(Nuf ).

For later convenience we shall define m := |Iuf |.

Remark 5.2.1. The requirement that the form is integral is not necessary, but is sufficently

general for our applications and simplifies the exposition considerably.

Remark 5.2.2. We use the notation standard in the cluster algebra literature, in particular

N in this section is more closely related to the lattice M used in previous sections. This

unfortunate exchange is directly related to the fact the cluster variety describes the the mirror-

dual of the original log del Pezzo surface. We return to this point in Section 5.3.

Definition 5.2.3. A (labelled) seed is a pair s = (E , C), where:

• E is a basis of N indexed by I, such that E|Iuf is a basis for Nuf .

• C is a transcendence basis of F , the field of rational functions in n independent

variables over Q(xi|i ∈ I\Iuf ), referred to as a cluster.

Remark 5.2.4. The basis E is what the authors of [33, 54] refer to as seed data. Since

we have fixed the lattice N and skew-symmetric form {·, ·} the variables xi can be identified

with coordinate functions on the seed torus TN .

Definition 5.2.5. Given a seed s = (E , C) with E = {e1, . . . , en} and C = {x1, . . . , xn},
the jth mutation of (E , C) is the seed (E ′, C ′), where E ′ = {e′1, . . . , e′n} and C ′ = {x′1, . . . , x′n}
are defined by:

e′k =

−ej , if k = j

ek + max(bkj , 0)ej , otherwise

where bkl = {ek, el} and is often referred to as the exchange matrix,

x′k = xk if k 6= j, and xjx
′
j =

∏
k such that
bjk>0

x
bjk
k +

∏
l such that
bjl<0

x
blj
l .(5.2.1)

Definition 5.2.6. A cluster algebra is the subalgebra of F generated by the cluster

variables appearing in the union of all clusters obtained by mutation from a given seed.

Remark 5.2.7. This is really only a special case of the definition of a cluster algebra,

a class referred to as the skew-symmetric cluster algebras of geometric type. In the general

case the form {·, ·} need only be skew-symmetrizable. One consequence of the skew-symmetry

of the form {·, ·} is the identification of each exchange matrix with a quiver Q. One may

assign this quiver in the obvious way, namely assigning a vertex to each basis element of N ,
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and bij arrows vi → vj , with sign denoting the orientation of the arrows. Having divided the

vertex set into frozen vertices and unfrozen ones one can replace the basis E with Q. There

is a well-known notion of quiver mutation, going back to Bernstein–Gelfand–Ponomarev [14],

Fomin–Zelevinsky [35], and others. Mutating a seed in a skew-symmetric cluster algebra

induces a corresponding mutation of the associated quiver.

Definition 5.2.8. Given a quiver Q and a vertex v of Q, the mutation of Q at v is the

quiver mut(Q, v) obtained from Q by:

(1) adding, for each subquiver v1 → v → v2, an arrow from v1 to v2;

(2) deleting a maximal set of disjoint two-cycles;

(3) reversing all arrows incident to v.

The resulting quiver is well-defined up to isomorphism, regardless of the choice of two-cycles

in (2).

Since we shall refer to quivers frequently we shall make the following conventions

Definition 5.2.9. Given a quiver Q, we define

• Q0 to be the set of vertices of Q.

• Arr(vi, vj) to be the set of arrows from vi ∈ Q0 to vj ∈ Q0.

• bij to be the cardinality of Arr(vi, vj), with sign indicating orientation.

We shall always assume Q has no vertex-loops or 2-cycles.

Given a seed s we shall also fix notation for the dual basis E? of M := Hom(N,Z) and

for each i ∈ I, set vi := {ei, ·} ∈M . We now define the A and X cluster varieties defined by

Fock–Goncharov [33]. Toward this, observe to a seed s we can associate a pair of tori

Xs = TM As = TN

The dual pair of bases for the respective lattices define identifications of these tori with split

tori.

Xs → Gn
m As → Gn

m

We also give birational maps

µ?kz
n = zn(1 + zek)−{n,ek} µ?kz

m = zm(1 + zvk)〈ek,m〉

Pulling these back along the identifications with the split torus given by the seed, the

birational map µk : As 99K Aµk(s) is given by the exchange relation 5.2.1. That is, this

birational map is the coordinate-free expression of the exchange relation once we identify the

standard coordinates on TN with the cluster variables xi ∈ C (including the frozen variables

xn+1 · · · , xm). We obtain schemes X and A by gluing the seed tori As and Xs along the

birational maps defined by the mutations µk.
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5.3. From Fano Polygons to Seeds

In this section we demonstrate how to associate a cluster algebra to a Fano polygon P .

We then show that the mutations (combinatorial and algebraic) are compatible with the

definitions of mutation for seed-data (and quivers) and the birational maps µk respectively.

To avoid overloading notation the Fano polygon P lies in a lattice M for the rest of this

section; this may be identified with the lattice N in previous chapters.

Definition 5.3.1. Given a Fano polygon P ⊂ MQ with singularity content (n,B) and

m := |B|+ n, we define:

• An index set I of size m, with a subset Iuf of size n and functions:

φuf : Iuf → {edges of P} φf : I\Iuf → B

Here the fiber φ−1
uf (E) has mE elements, where mE is the singularity content of

Cone(E), and φf is a bijection.

• A lattice map ρ : Zm → N sending each basis element to the primitive, inward-

pointing normal to the edge of P defined by the cone given by the specified functions

φuf and φ.

• A form {ei, ej} := ρ(ei) ∧ ρ(ej). Note that this is an integral skew-symmetric form.

Definition 5.3.2. Given a Fano polygon P by fixing the based lattice N ∼= Zm equipped

with the skew-symmetric form from Definition 5.3.1 let E be the standard basis and C be the

standard generating set. We define the cluster algebra CP associated to P to be the cluster

algebra generated by this seed. We define the unfrozen cluster algebra associated to P by

forming the same seed s = (E , C) and setting all frozen variables equal to 1.

We refer to the quiver obtained from the exchange matrix of {·, ·} in this basis as QP . Unless

we specify otherwise the ‘cluster algebra associated to P ’ shall refer to the unfrozen cluster

algebra. The importance of the ‘full’ cluster algebra will not be explored in detail, but we do

observe that we do not know of a counter-example to the following conjecture.

Conjecture 5.3.3. The cluster algebras CP for Fano polygons P together with a bijection

between the set of frozen variables and B is a complete mutation invariant Fano polygons.

Example 5.3.4. Consider the Fano polygon P for P2
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Computing the determinant of the inward-pointing normals we obtain the quiver QP

•
3

��
•

3
??

•
3

oo

The mutations of this quiver are well-known, and the triple (3a, 3b, 3c) of non-zero entries of

the exchange matrix satisfy the Markov equation a2 + b2 + c2 = 3abc. Indeed, as the polygon

P is mutated the corresponding toric surfaces are P(a2, b2, c2) for the same triples (a, b, c).

We see that in this case the mutations of the quivers exactly capture the mutations of the

polygon. In the last section we saw a bijection between the seeds of this cluster algebra and

chambers induced by scattering in a structure on an affine manifold.

Example 5.3.5. Consider the toric surface1 X5,5/3 associated with the Fano polygon

shown below.

The unfrozen quiver of this surface is simply the A2 quiver

• // •

This example is important, both in this section, because it is an example of a finite-type poly-

gon, and in later chapters, since a smoothing of this surface is given by 5 Pfaffian equations,

a fact closely connected to the A2 quiver we see here.

To prove that mutations of polygons induce the mutations of the corresponding seed, we

need only show that the associated quivers are related by the appropriate mutation.

Proposition 5.3.6 (Mutations of polygons induce mutations of quivers). Let P be a Fano

polygon, let v be a vertex of QP corresponding to a edge of P , and let P ′ be the corresponding

mutation of P . We have QP ′ = mut(QP , v).

Proof. Let E denote the edge of P corresponding to v, and let w ∈ N denote the

primitive inner normal vector to E. Mutation with respect to w acts on N as a piecewise-

linear transformation that is the identity in one half-space, and on the other half-space is

a shear transformation u 7→ u + (w ∧ u)w. Thus determinants between the pairs of normal

vectors change as follows:

1Using the notation for these surfaces appearing in [1].
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(1) The inner normal vector w to the mutating edge E becomes −w, so that all arrows

into v change direction;

(2) For a pair of normal vectors in the same half-space (as defined by w), the determinant

does not change;

(3) Consider edges with inner normal vectors in different half-spaces (as defined by w),

let the corresponding vertices of QP be v1 and v2, and let the corresponding inner

normal vectors in N be w1 and w2. Without loss of generality we may assume that

w1 ∧ w > 0 and w2 ∧ w < 0, so that there are arrows v1 → v → v2 in QP . Under

mutation, the primitive inner normal vectors change as w1 7→ w′1, w2 7→ w′2 where

w′1 = w1, w′2 = w2 + (w ∧ w2)w. Thus:

w′1 ∧ w′2 = w1 ∧ w2 + (w ∧ w2)(w1 ∧ w)

and so we add an arrow for each path v1 → v → v2. Cancelling two-cycles results in

precisely the result of calculating the signed total number of arrows from v1 to v2.

Observing finally that if v1, v2 give normal vectors in the same half-space then there are no

paths v1 → v → v2 or v2 → v → v1, we see that this description coincides with that of a

quiver mutation. �

To compare the birational maps associated to the two notions of mutations fix a basis

vector ek ∈ E for k ∈ Iuf and consider the following diagram:

(5.3.1) As
µk //

ρ

��

Aµk(s)

ρ

��
TN µ(ρ(ek),F )

// TN

where F is the factor canonically associated with the weight vector w := ρ(ek). In fact the

definition of the cluster algebra associated to a polygon was discovered by insisting that this

diagram commutes.

Proposition 5.3.7. Diagram 5.3.1 commutes

Proof. This is an exercise in writing out the definitions of the respective mutations,

see [70, Section 3]. �

We now have a geometric reformulation of the notion of a maximally-mutable Laurent

polynomial in the surface case as an element of the upper cluster algebra of CP .

Definition 5.3.8. The upper cluster algebra up(C) of a cluster algebra C is the intersection

of the Laurent polynomial rings defined by its various clusters.

Proposition 5.3.9. Given a Laurent polynomial f with support a Fano polygon P , f is

maximally mutable if and only if ρ?f ∈ up(CP ), where we identify N with the image of ρ.
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Proof. This is a tautology: by definition f is maximally mutable if it remains Laurent

under all possible mutations of P . �

Remark 5.3.10. The upper cluster algebra may be identified with the global functions on

the A cluster variety of Fock–Goncharov [33], that is, Γ(A,OA). As we shall see in Section 5.6

there is also a very close connection to the ‘X -cluster algebra’, Γ(X ,OX ).

5.4. Finite Type Classifcation

In the last section we constructed a powerful invariant of Fano polygons up to mutation

classes. As we shall see in the next section this invariant can be used to distinguish mutation

classes that have the same singularity content and basket. As well as this, quiver mutation

is a computationally very cheap way of checking if two polygons are likely to be mutation

equivalent. In this section we use this to answer the question

Which mutation classes of Fano polygons are finite?

This will utilise general classification results for skew-symmetric cluster algebras of geometric

type.

Definition 5.4.1. A polygon P is said to be of finite-type if its mutation equivalence

class is finite.

Definition 5.4.2. Given an undirected graph G we say that a quiver Q is an orientation

of G if it has the same set of vertices and for each edge of G there is precisely one arrow

between the respective vertices. For a simply-laced Dynkin diagram D we say that Q is of

type D if it is an orientation of the underlying graph of D.

Theorem 5.4.3. P is of finite type if and only if QP is mutation equivalent to one of the

following types:

• (A1)n, which we refer to as type In.

• A2, which we refer to as type II.

• A3, which we refer to as type III.

• D4 which we refer to as type IV .

Remark 5.4.4. The names of these classes are given in analogy with Kodaira’s mon-

odromy matrices. The connection with monodromy in affine manifolds and the presence of

certain broken lines is explored in great detail in [86].

Before we attempt to prove Theorem 5.4.3 we make two simple, but important, observa-

tions. First, the cluster algebra CP induces a sequence of surjections
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(5.4.1) {Clusters of CP }

��
{Polygons mutation equivalent to P}

��
{Quivers mutation equivalent to QP }

Remark 5.4.5. In fact, as a consequence of Lemma 5.3.6 if we had defined the notion of

a mutation graph in which the arrows were the various mutations in each context this would

be a surjection of graphs. However the presence of automorphisms of P and QP makes these

graphs awkward to define precisely. One can however define a graph for which the vertices

are seeds and the arrows are cluster mutations, the cluster exchange graph.

Secondly we have a famous example of a cluster algebra: the cluster algebra generated

by the seed defined by (x1, x2) and an A2 quiver consisting of 5 clusters. Given the tower of

surjections above, we have the following immediate corollary.

Corollary 5.4.6. If a Fano polygon P has singularity content (2,B) and the primitive

inward-pointing normal vectors of the two edges corresponding to the unfrozen variables of

CP form a basis of the lattice M , then the mutation-equivalence class of P has at most five

members.

Proof. The quiver associated to P is precisely an orientation of the A2 quiver. The clus-

ter algebra CP is well-known and its cluster exchange graph forms a pentagon. Note however

that the quiver mutation graph is trivial, as the A2 quiver mutates only to itself. Proposi-

tion 5.3.7 implies that the mutation class of P has at most five elements. (Proposition 5.3.6

does not give a non-trivial lower bound here, indeed the polygon considered in 5.3.5 has only

a single polygon in its mutation class, up to GL(2,Z) equivalence.) �

Definition 5.4.7. A cluster algebra C is said to be of finite type if it contains only finitely

many seeds. C is said to be of finite mutation type if the mutation equivalence class of a quiver

Q associated to a seed of C is finite.

Thus the sequence of surjections 5.4.1 give the obvious implications:

CP finite type⇒ P finite type⇒ CP finite mutation type

We need one additional Lemma before we complete the proof of Theorem 5.4.3.

Lemma 5.4.8. Given a Fano polygon P of finite type, QP does not contain a Kronecker

subquiver

Qk := v1
k // v2

where k > 1 is the number of arrows from v1 to v2.
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Figure 5.4.1. Schematic diagram of a polygon in standard form

Proof. On the level of the cluster algebra, this is obvious, as restricting to a pair of

cluster variables one can reduce to studying a ‘rank 2’ cluster algebra which is known not to

be of finite type. Given the superpotential is a combination of cluster monomials this result

is certainly expected, however we prove it directly from the combinatorics of P .

Assume there is such a subquiver of QP , with vertices v1, v2. To simplify notation, we

shall put P in normal form with respect to the two edges E1, E2 of P corresponding to v1

and v2 of QP . Recall this is the image of P under the map ρ? : M ↪→ Mred, where ρ has

been restricted to the sublattice Nred generated by e1, e2 ∈ N . The resulting polygon in

Mred := Hom(Nred,Z) has the general form shown in Figure 5.4.1.

Consider the pair of local indices (h1, h2). As P undergoes various mutations this pair

changes. For the two distinguished mutations out of P we have

(h1, h
′
2) (h1, h2)oo // (h′1, h2)

From Figure 5.4.1 we observe that:

h′1 ≥ kh2 − h1 h′2 ≥ kh1 − h2

where k = ρ(e1) ∧ ρ(e2) is the index of M in Mred. We consider two cases: first assume that

k ≥ 3, and assume without loss of generality that h2 ≥ h1. Now h′1 ≥ 3h2 − h1 ≥ 2h2 ≥ 2h1.

Thus in this case the values in the pair (h1, h2) grow exponentially with mutation.
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Next consider the case k = 2. Now the inequalities above are simply:

h′1 ≥ 2h2 − h1 h′2 ≥ 2h1 − h2

and we are again free to assume that h2 ≥ h1. Indeed if h2 ≥ h1 then h′1 ≥ 2h2 − h1 ≥ h1,

and if h2 > h1, h′1 > h1. But in this case h′1 > h2: if not simply replace (h1, h2) with

(h′1, h2) to obtain a contradiction. So assuming h1 6= h2 one can generate an infinite set of

distinct values hi. The only remaining case is if h := h1 = h2 = h′1 = h′2. To eliminate this

possibility observe that since the index k is two the edges e1, e2 must meet in a vertex with

coordinates (−h,−h). But the requirement that ρ? doubles the lattice length of e1 and e2

fixes the sublattice given by the image of ρ?. The lattice vectors (h, h) are in this sublattice

for all h ∈ Z, and so by primitivity of the vertices in P , h = 1. These special cases can then

eliminated individually. �

We now prove Theorem 5.4.3, exploiting the known classification results for finite type

and finite mutation type cluster algebras.

Proof of Theorem 5.4.3. In [36] the authors prove that a skew-symmetric cluster al-

gebra without frozen variables has a seed with Q an orientation of products of simply-laced

Dynkin diagrams. Recalling that in our construction the form {·, ·} is defined as the determi-

nant of a pair of vectors in the plane, we obtain the following useful necessary condition for

a quiver Q to be QP of a Fano polygon:

Lemma 5.4.9. Given a Fano polygon P and vertices v1, v2, v3 of QP such that there are

no arrows vi → vi+1 for i = 1, 2, there are no arrows between v1 and v3.

In particular given a Fano polygon P such that QP is not connected, QP = An1 for some

n. Similarly if QP is of type A or D then it must be one of A2, A3 or D4. We are now

reduced to showing that there are is no Fano polygon P of finite type such that CP is not of

finite-type. However CP is of finite mutation type, and there is a classification result here too,

given in [32], which we now recall.

Theorem 5.4.10. Given a quiver Q with finite mutation class, its adjacency matrix bij is

the adjacency matrix of a triangulation of a bordered surface or is mutation equivalent to one

of eleven exceptional types.

In fact from Lemma 5.4.9 none of the eleven exceptional types can occur as QP for a

Fano polygon P . To understand the class of quivers arising from triangulated surfaces we use

another classification result, from [34].

Definition 5.4.11. A quiver Q is said to admit a block decomposition if it may be as-

sembled from the 6 pieces (blocks) shown in Figure 5.4.2 by identifying the vertices of quivers

shown with unfilled circles, the outlets. Having connected two vertices in such a way the

vertex is no longer an outlet. Attaching outlets in the same block together is not permitted.
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Figure 5.4.2. the blocks of a block decomposition

For a more detailed definition, see [34].

The following theorem, from [34], gives an explicit characterisation of those quivers coming

from triangulations.

Theorem 5.4.12. A quiver Q given by the adjacency matrix of a triangulation of a surface

is mutation equivalent to a quiver which admits a block decomposition

To conclude the proof we claim that every quiver QP associated to a Fano polygon P

which admits a box decomposition is either mutation equivalent to an orientiation of a simply

laced Dynkin diagram or to a quiver which contains a subquiver Qk for k > 1. This is a

case-by-case analysis of the possible block decompositions of QP . For the rest of the proof we

assume for condtradition that QP is the quiver associated to a Fano polygon P of finite-type

which is not mutation equivalent to a simply laced Dynkin diagram.

Block V:

First observe that since only one vertex of the block V is an outlet the block is a subquiver

of any quiver which contains V in its block decomposition. However this mutates to a quiver

with a Q2 subquiver as shown in Figure 5.4.3.

Therefore block V never appears in a decomposition of a quiver QP . For later use we shall

fix the following intermediate quiver, V ′, as shown in Figure 5.4.4.

Blocks IIIa and IIIb:

If a type III block (a or b) is connected to a quiver Q′ at a vertex v, then assuming Q′

is an intermediate quiver in a block decomposition of QP , by Lemma 5.4.9 the only arrows
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Figure 5.4.3. Mutations of block V

Figure 5.4.4. Quiver V’

in QP are incident to v are those in the type III block we attached to Q′. However QP is

connected (as it has at least one arrow), giving only the A3 and D4 types.

Block IV: Consider the case of a decomposition only using type IV blocks. First consider

attaching two type IV blocks. If only one pair of outlets is attached we do not meet the

condition of Lemma 5.4.9 for this to be QP for a polygon P . In fact it is easy to see that it

is impossible to add additonal type IV blocks to meet this condition. If two pairs of outlets

are attached there are two possible quivers depending on the relative orientations of the

arrow between the outlets, one orientation produces a Q2 subquiver automatically, the other

produces a quiver contianing the quiver V ′ as a subquiver.

The only case which is not ruled out by Lemma 5.4.9 or automatically contains a Q2

subquiver, is a pair of IV blocks glued to cancel the edge between the outlets. However this

contains the quiver V ′ as a subquiver. So for a type IV block to appear in a decomposition

of QP it must include a type I or II block.

Now consider decompositions using types I and IV. First we see that there must be

exactly one type IV block, since if we use both outlets gluing type IV blocks the quiver is

disconnected, and as before only connecting a single outlet will always result in a quiver

violating the conditions of Lemma 5.4.9. Attaching a chain of type I quivers, we see the chain

is at most two arrows long, or violates Lemma 5.4.9.
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(a) Attaching I blocks to a IV
block

(b) Attaching II blocks to a
IV block

We now consider the possible cases. Attaching a type I block to cancel the arrow between

the two outlets produces a quiver mutation equivalent to D4, a simply laced Dynkin diagram.

For chains of length two, if a 3-cycle is produced, a mutation in the vertex between the type

I blocks produces the V ′ quiver. If not, the same mutation produces a Q2 subquiver.

So a decomposition of QP with a type IV block must contain a type II block. Attaching a

type II block along two outlets of the type IV block recovers the V ′ or Q2 subquiver cases we

have already seen. Attaching type II blocks to a single outlet each, attaching a single block

must violate the conditions of Lemma 5.4.9. Attaching a second to meet this condition, we

find the quiver:

This quiver mutates to one with a Q2 subquiver. Attaching further type II blocks, we are

forced to violate the conditions of Lemma 5.4.9. Attaching type I blocks between the remaining

outlets, the only case satisfying Lemma 5.4.9 is obtained by attaching a single type I block to

both outlets. This mutates in one step to a quiver with a Q2 subquiver.

Blocks I and II:

From what we have shown above, the block decomposition of QP consists only of type I

and type II blocks. For decompositions of only type I blocks it is easy to see that (A1)2n, A2,

A3 and the 4-cycle, mutation equivalent to D4, can be produced.

If connected, any such quiver is a path (with possibly changing orientations) which possibly

closes up into a cycle. The only cases not violating Lemma 5.4.9 are those we have listed.

For decompositions of QP with type I and II blocks we order by the number of type II

blocks. For a single type II block, we can attach a type I block to two outlets, we reduce to

the case of a type III block, producing the A3 and D4 types. Attaching each type I block to

a type II block in at most one outlet, the longest chain of type I blocks before returning to

a vertex of the type II block is at most two, by Lemma 5.4.9. This again reduces to simple

cases and only produces D4.

For a pair of type II blocks, we reduce to the case the type II blocks are attached together,

any case they are seperated by a type I block violates Lemma 5.4.9. If we attach along all three

outlets we produce two easy cases. If we attach along a pair of outlets, we generate either a
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(c) Chains of I blocks (d) Octahedron of II
blocks

Q2 subquiver or a 4-cycle. Considering the 4-cycle with two outlets (on non-adjacent corners)

to meet the conditions of Lemma 5.4.9 a vertex adjacent to one outlet must be adjacent to the

other. Further, if the resulting quiver features an arrow between the two outlets a mutation

at one of the block nodes gives a Q2 subquiver. Thus given a vertex v adjacent to each outlet,

if this defines a path between the outlets mutating at this node and a black node in the four

cycle produces a Q2 subquiver. Otherwise mutating at both outlets produces a Q2 subquiver.

Attaching at a single outlet, the four arrows incident to this vertex are now fixed, so any

new vertex must touch each of the other 4 outlets, by Lemma 5.4.9. Thus there is at most

one other vertex. However by the same Lemma there must be edges between the 4 remaining

outlets and so, if we are only permitted to attach type I blocks there are no cases where this

can be achieved.

Attaching more than two type II blocks together we can eliminate the case where two are

connected to form a 4-cycle as above, and so each type II block meets every other in at most

one outlet. Applying Lemma 5.4.9 repeatedly, the only possible quiver is can be represented

as an octahedron (with some orientation),

Now, if any triangle is not a cycle we can mutate to form a Q2 subquiver. However,

possibly after a mutation, taking the ‘top’ of the octahedron we see a type V block subquiver,

by the same reasoning as for the type V block case (although here the type V block is not

part of a block decomposition) these cases can be eliminated. �

5.5. Classifying Mutation Classes of Polygons

In a different direction, one may consider the following, geometrically motivated, problem:

Given a permitted set of residual singularities, B, classify all mutation classes of polygons

with those residual singularities

In other words, find the polygons corresponding to Q-Gorenstein toric degenerations of a log

del Pezzo surface with residual basket B. An algorithm to solve this problem was given in
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the joint work [70]. First one finds a finite collection of minimal polygons with the given

collection of singularities, observing that every mutation class contains such a polygon, and

then determine which of these lie in the same mutation equivalence class.

The cluster algebras associated to Fano polygons have been useful both to prove that

polygons are not mutation equivalent and as an easy way of producing a candidate mutations

between polygons, which are more subtle. These results also feed into the wider research pro-

gramme: from here we can attempt to produce new examples of locally rigid del Pezzo surfaces,

attempt to understand the moduli space of affine structures that appear and determine which

surfaces admit deformations as complete intersections or other classical constructions.

Definition 5.5.1. A Fano polygon is minimal if for every P ′ := mutw,F (P ) we have that

|∂P ∩N | ≤ |∂Q ∩N |.

The first problem considered in [70] is to identify minimal polygons with B = ∅.

Theorem 5.5.2. There are 35 minimal polygons with B = ∅, of which 16 are the well-

known reflexive polygons. These define 10 mutation equivalence classes of Fano polygons.

The singularity content n distinguishes every mutation equivalence class, except for the

classes of the reflexive polygons P1, P2 corresponding to F1 and P1 × P1 respectively.

Example 5.5.3. The quivers for polygons P1 and P2 are:

• 2 // •
2
��

• 2 // •
1
��

•
2

OO

•
2
oo •

3

OO

•
2
oo

However if every number of arrows between two vertices is divisible by k ∈ Z, this property

persists under mutation, so these quivers are not mutation equivalent.

Remark 5.5.4. A similar argument is used in the classification, up to mutation, of Fano

polygons with singularity content (n, k × 1
3(1, 1)). See [70, Example 3.19].

Remark 5.5.5. From the perspective of toric degenerations of surfaces this is compelling.

The content is that every toric degeneration of a (smooth) del Pezzo surface is related by

a sequence of mutations. Thus as well as providing a classification of smoothable toric del

Pezzo surfaces it also entails a strong statement on the boundary of the moduli stack of del

Pezzo surfaces.

The finiteness result for Fano polygons with B = ∅, extends to the case with B 6= ∅ and

the maximal local index of the cones in the residual basket, mB, is bounded. Indeed this is

the central result of [70].

Theorem 5.5.6. Given a bound for the local index of the cones in the residual basket B,

there are only finitely many minimal Fano polygons, up to the action of GL(2,Z), satisfying

this bound.
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The proof of this result is constructive, and so, having prescribed a collection of singular-

ities one can apply the algorithm to find the minimal polygons. Applying this the methods

used in the proof of Theorem 6.3 of [70] to Fano polygons with basket B = {k × 1
3(1, 1)} we

obtain the following result (Theorem 1.3 and Theorem 7.1 in [70]).

Theorem 5.5.7. Up to GL(2,Z) equivalence there are 64 minimal polygons with basket

B = {k× 1
3(1, 1)}. These identify 26 mutation equivalence classes of Fano polygons with these

singularities.

The lists of the minimal polygons and representatives in the mutation equivalence classes

can be found in [70].

Remark 5.5.8. The vast majority of the polygons appear with the minimal local index

mP = mB, and it is known that there are only finitely many Fano polygons with bounded

maximal local index. By comparison, in the case B = ∅ the polygons with maximal local

index 1 are precisely the reflexive polygons, which are 16 of the 35 minimal polygons with

empty residual basket.

5.6. Relation to the construction of Gross–Hacking–Keel

In the final section of this chapter we discuss the geometry of the cluster variety that we

have constructed in greater detail. In particular our general construction, with minor adjust-

ments, matches the construction of a cluster algebra studied in Section 5 of [54]. Consequently

the main results of [54], which concern a birational construction of the cluster variety may

be applied to give a rich geometric description of the candidate Landau–Ginzburg model

mirror-dual to a Fano variety. To avoid various technical details that appear from the slight

differences in context this treatment will be slightly informal.

A maximally mutable Laurent polynomial f determines a surface Xf , defined by gluing

two-dimensional tori along the mutations supported by f . As we will now see the surface Xf
is contained, as a fiber, in the X -type cluster variety. We first require another notion from

the theory of cluster algebras, that of a cluster algebra with principal coefficents. A detailed

treatment of this notion is given in [54], and we briefly recall it here.

Definition 5.6.1. Given the same fixed data, N, {·, ·} we define Ñ = N ⊕M with form

{(n1,m1), (n2,m2)} = {n1, n2} + 〈n1,m2〉 − 〈n2,m1〉. Given a basis E for N this defines a

basis Ẽ for Ñ , consisting of elements (e, 0), (0, e?) for e ∈ E .

There is a natural map p : A → X defined2 on seeds by the form {·, ·}. The cluster

variety X is itself a family, fibering over the torus TK? for K = ker p?. TK? is invariant under

2This is just the map ρ from Definition 5.3.1
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mutation, thus we have a commutative diagram:

A
p
//

��

X

��
{1} // TK?

(5.6.1)

The surface Xf is the fiber of X over 1 ∈ TK? . The advantage of using principal coefficents is

that the diagram 5.6.1 now extends to the commutative diagram (2.14) of [54]:

Aprin
p̄

//

π

��

X

��
TM // TK?

Restricting to the fiber over the identity of TM recovers the diagram 5.6.1. As we saw above,

a maximally mutable Laurent polynomial f supported on a Fano polygon P defines a section

p?f ∈ Γ(A,OA).

Lemma 5.6.2. If B 6= ∅, then a maximally mutable Laurent polynomial f supported on P

may be extended to a section f ∈ Γ(X ,OX ). If B = ∅, then f extends over a codimension

one subvariety of X .

Proof. Informally, this involves forming a maximally mutable Laurent polynomial with

additional parameters ti which admit the same collection of mutations after changing the

factor polynomials from (1 + zm) to (1 + tiz
m). Indeed, the ti are the (frozen) variables

zei ∈ k[N ] ↪→ k[M̃ ]; fixing the ti and consequently a point t ∈ TM defines an affine subtorus

of TÑ which fibers over a translate of TN ↪→ TM by t. That is, reparametrising the factors

F = (1 + tiz
vk) defines a collection of birational maps on the affine subtorus

t · TN ↪→ TM ∼= Xs

We now attempt to extend the section of A defined by a maximally mutable Laurent polyno-

mial f overAprin by solving the equations on the coefficents of the Laurent polynomial f which

guarantee f admits all possible mutations, now using the factor polynomials F = (1 + tiz
vk).

If B 6= ∅ then there is can be achieved for any values of the varaibles ti and a family of maxi-

mally mutable Laurent polynomials may be found over TM
3. If B = ∅, there is a consistency

condition
∏
i ti = 1. �

Example 5.6.3. Any polynomial

λ1x+ λ2y +
λ3

xy
.

3More precisely over TK? : since for t ∈ TN the translation does not move the subtorus and simply reparame-
terizes the same Laurent polynomial
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is maximally mutable with factor polynomials Fi = (1 + λi
λi+1

zi), where zi is a monomial in

x, y and 0, 1 and 2 are cyclically ordered. Setting ti = λi/λi+1, we see that t1 · t2 · t3 = 1.

Our goal now is to apply the results of Section 5 of [54] to replace the cluster variety X
with a variety defined using an explicit birational construction.

Construction 5.6.4. From the collection of vectors wi normal to the edges ei in P we

may form a toric surface Ȳ by regarding the wi as generators of rays of a fan in N . Let D̄i

be the divisor in Ȳ corresponding to wi.

With minor adjustments (replacing N with the lattice generated by the vectors wi and

encoding the previous indices in numbers νi) Construction 5.3 of [54] will generate the seed

data we have defined for the Fano polygon P . In particular we define a fan Σ by regarding

the above rays as cones in a fan in M via an embedding defined using the wedge product on

N , and hence a toric variety TV(Σ).

Writing Di for the toric divisor corresponding to wi, the authors show that blowing up

the subvarieties

Zi =
(
Di ∩ V ((1 + zei)ind divi)

)
where di := νi/ gcd(νi : 1 ≤ i ≤ n), one obtains a family Y → TK? , let D denote the strict

transform of the toric boundary.

In [54] the authors identify Y\D with the cluster variety X , away from a codimension 2

subset. This provides a much simpler construction of the mirror Landau–Ginzburg model,

supporting the same holomorphic functions.

Remark 5.6.5. In Section 6 of [54] the authors study a pair of examples arising from Fano

polygons, showing that Γ(Aprin,OAprin) and Γ(At,OAt) for very general t are non-Noetherian.

From our perspective, both of these examples come from (dual) Fano polygons which are in

fact reflexive – the polygons for the cubic surface and P2 respectively. Moreover, given any

Fano polyon P with B = ∅ one will be able to produce a cluster variety satisfying the same

non-Noetherian property: the underlying variety of the candidate mirror-dual to a (smooth)

del Pezzo surface.



CHAPTER 6

Complete Intersections and the Givental/Hori–Vafa Model

Over the previous three chapters we have developed an intricate theory to study log

del Pezzo surfaces using Mirror Symmetry. Indeed, we encapsulated the notion of mutation

from [4] into a theory of affine manifolds, before showing that the deformations one obtained

by applying the Gross–Siebert algorithm to certain families exactly recovers the Q-Gorenstein

deformations of these toric surfaces. We then extended this theory in two directions, demon-

strating that:

• In an example, the mutation equivalent Laurent polynomials can be identified with

a tropical disc counts.

• The mutation classes can be related directly to the geometry of cluster varieties

and the algebraic structure that controls them leads to classification results on the

mutation classes of polyons.

Very little of this material applies directly outside of the surface case. In this chapter

we begin to explore how the theory we have been developing extends to higher dimensions,

restricting for the most part to complete intersections in toric varieties. The motivation for

the techniques developed in this section is a natural question that arose in the programme of

Coates–Corti–Galkin–Golyshev–Kasprzyk.

Given a Laurent polynomial f , conjecturally mirror-dual to a Fano variety X, how can one

construct the variety X from f?

Since X should be provably mirror-dual to f it is logical to look first among the toric

complete intersections. Indeed, this is a rare setting in which mirror-duality, on the level of

the respective local systems, may actually be proved, see [47].

To begin to answer this question we first explore a technique, the Przyjalkowski Method, for

obtaining a torus chart on the mirror-dual (Givental/Hori–Vafa) Landau–Ginzburg model for

a Fano complete intersection X in a toric variety Y . We also consider how, via degenerations

of the ambient space, this technique may be extended to complete intersections in homogenous

spaces. In the final part of the dissertation we present a simple form of an inverse algorithm,

Laurent Inversion, which in many cases allows one to reconstruct the Fano variety X directly

from f .

There is also a fascinating connection between Laurent Inversion, the toric degenerations

of the Gross–Siebert programme and the affine manifold techniques we have investigated for

surfaces. This connection entails a dictionary between the singular locus of XP , the toric

variety corresponding to a Fano polytope P , and the weight matrix of the ambient variety

121
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Y in which these singularites are expected to smooth. This dictionary goes via the singular

locus of an affine manifold. Since, via the Przyjalkowski method, the weight matrix of Y

is related to the coefficents of the mirror-dual Laurent polynomial f , this provides the first

general connection between the maximal mutability of f and the existence of a smoothing of

XP for P = Newt(f).

6.1. The Przyjalkowski Method

In this section we explain, given data specifying a complete intersection in a toric variety,

how to find a Laurent polynomial f that is mirror-dual to X. This is a slight generalization

of a technique that we learned from V. Przyjalkowski [96].

Let Y be a toric Fano manifold and fix a collection L1, . . . , Lc of nef line bundles on Y

such that −KY −Λ is nef, where Λ = c1(L1) + · · ·+ c1(Lc). We define X ⊂ Y to be a smooth

complete intersection defined by a regular section of ⊕iLi and assume that X is Fano (this is

not automatic if any of the bundles is strictly nef). The data (X;Y ;L1, . . . , Lc) is the input

for the construction of a mirror-dual Laurent polynomial f .

Recall that for any toric variety we have the following, dual pair of exact sequences,

0 // L // ZN
ρ

// Zd // 0

0 L?oo (ZN )?
Doo (Zd)?

ρ?
oo 0oo

where the map ρ is defined by the N rays of a fan Σ for Y . Next define the elements

Di ∈ L?, 1 ≤ i ≤ N to be the images of standard basis elements of (ZN )?. Also recall that

L? ∼= Pic(Y ), so that each line bundle Lm defines a class in L?. Choose disjoint subsets

E, S1,. . . ,Sc of {1, 2, . . . , N} such that:

• {Dj : j ∈ E} is a basis for L?;
• each Di is a non-negative linear combination of {Dj : j ∈ E};
•
∑

k∈Sm Dk = Lm for each m ∈ {1, 2, . . . , c};

and distinguished elements sm ∈ Sm, 1 ≤ m ≤ c. Set S◦m = Sm \ {sm}.
Writing the map D in terms of the standard basis for (ZN )? and the basis {Dj : j ∈ E}

for L? defines an (N − d)×N matrix (mji) of non-negative integers. Let (x1, . . . , xN ) denote

the standard co-ordinates on (C×)N , let r = N − d, and define q1, . . . , qr and F1, . . . , Fc by:

qj =

N∏
i=1

x
mji
i Fm =

∑
k∈Sm

xk

Givental [47] and Hori–Vafa [63] have shown that:

(6.1.1) GX =

∫
Γ
etW

∧N
i=1

dxi
xi∧c

m=1 dFm ∧
∧r
j=1

dqj
qj
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where W = x1 + · · ·+ xN and Γ is a certain cycle in the submanifold of (C×)N defined by

q1 = · · · = qr = 1 F1 = · · · = Fc = 1

Introducing new variables yi for i ∈
⋃c
m=1 S

◦
m, setting

xi =


1

1+
∑
k∈S◦m

yk
if i = sm

yi
1+

∑
k∈S◦m

yk
if i ∈ S◦m

and using the relations q1 = · · · = qr = 1 to eliminate the variables xj , j ∈ E, allows us to

write W − c as a Laurent polynomial f in the variables:

{yi : i ∈
⋃c
m=1 S

◦
m} and {xi : i 6∈ E and i 6∈

⋃c
m=1 S

◦
m}

The mirror theorem (6.1.1) then implies that ĜX = πf , or in other words that f is mirror-dual

to X.

The Laurent polynomial f produced by Przyjalkowski’s method depends on our choices

of E, S1,. . . ,Sc, and s1,. . . ,sc, but up to mutation this is not the case:

Theorem 6.1.1. Let Y be a toric Fano manifold and let L1, . . . , Lc be nef line bundles on

Y such that −KY − Λ is ample, where Λ = c1(L1) + · · · + c1(Lc). Let X ⊂ Y be a smooth

complete intersection defined by a regular section of ⊕iLi. Let f and g be Laurent polynomial

mirrors to X obtained by applying Przyjalkowski’s method to (X;Y ;L1, . . . , Lc) as above, but

with possibly-different choices for the subsets E, S1,. . . ,Sc and the elements s1,. . . ,sc. Then

we have equality πf = πg.

Proof. This follows directly from Theorem 2.24 of [30] in which the authors construct a

birational map preserving the volume form. Thus the period integral of the pull-back Laurent

polynomial is equal to the period integral of f , that is, πf = πg. �

Example 6.1.2. Let Y be the projectivization of the vector bundle O⊕2 ⊕ O(1)⊕2 over

P2. Choose a basis for the two-dimensional lattice L? such that the matrix (mji) of the map

D is: (
1 1 1 0 0 1 1

0 0 0 1 1 1 1

)
Consider the line bundle L1 → Y defined by the element (2, 1) ∈ L?, and the Fano hypersurface

X ⊂ Y defined by a regular section of L1. Applying Przyjalkowski’s method to the triple

(X;Y ;L1) with E = {3, 4}, S1 = {1, 2, 5}, and s1 = 1 yields the Laurent polynomial

f =
(1 + y2 + y5)2

y2x6x7
+

1 + y2 + y5

y5x6x7
+ x6 + x7

mirror-dual to X. Applying the method with E = {3, 4}, S1 = {1, 6}, and s1 = 1 yields:

g = x2 +
(1 + y6)2

x2y6x7
+

1 + y6

x5y6x7
+ x5 + x7
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We have that f
ϕ
99K g where the mutation ϕ : (C×)4 → (C×)4 is given by:

(y2, y5, x6, x7) =

(
x2

x5y6
,

1

y6
, x7, x2 + x5

)
Remark 6.1.3. Observe that, for a complete intersection of dimension n and codimen-

sion c, Przyjalkowski’s method requires partitioning n + c variables into c disjoint subsets.

If n+c
c < 2 then at least one of the subsets must have size one and so the corresponding

variable, xj say, is eliminated from the Laurent polynomial via the equation xj = 1. One

could therefore have obtained the resulting Laurent polynomial from a complete intersection

with smaller codimension: new Laurent polynomials are found only when n+c
c ≥ 2, that is,

when the codimension is at most the dimension. In particular, all possible mirrors to 4-

dimensional Fano toric complete intersections given by the Przyjalkowski method occur for

complete intersections in toric manifolds of dimension at most 8.

6.2. Finding Four-Dimensional Fano Toric Complete Intersections

In joint work [20] we find all four-dimensional Fano manifolds X of the form described in

Section 6.1 such that the codimension c is at most 4 and −KY −Λ is ample. In this case the

Adjunction Formula gives that

−KX =
(
−KY − Λ

)∣∣
X

so X is automatically Fano.

To place this work in context, four-dimensional Fano manifolds of higher Fano index

have been classified [38–41, 66–68, 73, 75, 102, 104]—there are 35 in total—but the most

interesting case, where the Fano variety has index 1, is completely open. In [20] we find at

least 738 examples, 717 of which have Fano index 1 and 527 of which are new.

We recall the method followed in [20]. Toric Fano manifolds are classified up to dimen-

sion 8 by Batyrev, Watanabe–Watanabe, Sato, Kreuzer–Nill, and Øbro [10,11,80,92,98,108].

For each toric Fano manifold Y of dimension d = 4 + c, in [20] we:

(1) compute the nef cone of Y ;

(2) find all Λ ∈ H2(Y ;Z) such that both Λ and −KX − Λ are nef;

(3) decompose Λ as the sum of c nef line bundles L1, . . . , Lc in all possible ways.

Each such decomposition determines a 4-dimensional Fano manifold X ⊂ Y , defined as the

zero locus of a regular section of the vector bundle ⊕iLi. To compute the nef cone in step (i),

we recall the exact sequence

0 L?oo (ZN )?
Doo (Zd)?

ρ?
oo 0oo

from §6.1. There are canonical identifications L? ∼= H2(Y ;Z) ∼= Pic(Y ), and the nef cone of

Y is the intersection of cones

NC(Y ) =
⋂
σ∈Σ

〈Di : i 6∈ σ〉
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where Di is the image under D of the ith standard basis vector in (ZN )?. The classes Λ

in step (ii) are the lattice points in the polyhedron P = NC(Y ) ∩
(
−KY − NC(Y )

)
. Since

NC(Y ) is a strictly convex cone, P is compact and the number of lattice points is finite. We

implement step (iii) by first expressing Λ as a sum of Hilbert basis elements in NC(Y ) in all

possible ways:

Λ = b1 + · · ·+ br bi an element of the Hilbert basis for NC(Y )(6.2.1)

where some of the bi may be repeated; this is a knapsack-style problem. We then, for each

decomposition (6.2.1), partition the bi into c subsets S1, . . . , Sc in all possible ways, and define

the line bundle Li to be the sum of the classes in Si.

We found 117173 distinct triples (X;Y ;L1, . . . , Lc), with a total of 17934 distinct ambient

toric varieties Y . Note that the representation of a given Fano manifold X as a toric complete

intersection is far from unique: for example, if X is a complete intersection in Y given by a

section of L1 ⊕ · · · ⊕ Lc then it is also a complete intersection in Y × P1 given by a section

of π?1L1 ⊕ · · · ⊕ π?1Lc ⊕ π?2OP1(1). Thus we have found far fewer than 117173 distinct four-

dimensional Fano manifolds. We show, in Section 3 and the electronic supplementary material

in [20], by calculating quantum periods of the Fano manifolds X, that we find at least 738

non-isomorphic Fano manifolds. Since the quantum period is a very strong invariant—indeed

no examples of distinct Fano manifolds X 6∼= X ′ with the same quantum period GX = GX′ are

known—we believe that we found precisely 738 non-isomorphic Fano manifolds. Eliminating

the quantum periods found in [25], we see that at least 527 of our examples are new.

Remark 6.2.1. There exist Fano manifolds which do not occur as complete intersections

in toric Fano manifolds. But in low dimensions, most Fano manifolds arise this way: 8 of the

10 del Pezzo surfaces, and at least 78 of the 105 smooth 3-dimensional Fano manifolds, are

complete intersections in toric Fano manifolds [22].

Remark 6.2.2. It may be the case that any d-dimensional Fano manifold which occurs as

a toric complete intersection in fact occurs as a toric complete intersection in codimension d;

we know of no counterexamples. But even if this holds in dimension 4, our search will probably

not find all 4-dimensional Fano manifolds which occur as toric complete intersections. This

is because, if one of the line bundles Li involved is strictly nef, then the Kähler cone for X

can be strictly bigger than the Kähler cone for Y . In other words, it is possible for −KX

to be ample on X even if −KY − Λ is not ample on Y . For an explicit example of this in

dimension 3, see [22, §55].
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6.3. Examples

6.3.1. The Cubic 4-fold. Let X be the cubic 4-fold. This arises in our classification

from the complete intersection data (X;Y ;L) with Y = P5 and L = OP5(3). The Przy-

jalkowski method yields [65, §2.1] a Laurent polynomial:

f =
(1 + x+ y)3

xyzw
+ z + w

mirror-dual to X, and elementary calculation gives:

πf (t) =
∞∑
d=0

(3d)!(3d)!

(d!)6
t3d

Indeed, ĜX = πf , and the corresponding regularized quantum differential operator is:

LX = D4 − 729t3(D + 1)2(D + 2)2

The local log-monodromies for the local system of solutions LXg ≡ 0 are:0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 at t = 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 at t = 1
9

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 at the roots of 81t2 + 9t+ 1 = 0

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 at t =∞

and the operator LX is extremal.

6.3.2. A (3,3) Complete Intersection in P6. Let X be a complete intersection in

Y = P6 of type (3, 3). This arises in our classification from the complete intersection data

(X;Y ;L1, L2) with L1 = L2 = OP6(3). The Przyjalkowski method yields a Laurent polyno-

mial:

f =
(1 + x+ y)3(1 + z + w)3

xyzw
− 36
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mirror-dual to X, and [22, Corollary D.5] gives:

ĜX = πf (t) =
∞∑
k=0

∞∑
l=0

(3l)!(3l)!(k + l)!

k!(l!)7
(−36)ktk+l

The corresponding regularized quantum differential operator LX is:

(36t+ 1)4(693t− 1)D4

+18t(36t+ 1)3(13860t+ 61)D3

+9t(36t+ 1)2(3492720t2 + 57672t+ 77)D2

+144t(36t+ 1)(11226600t3 + 377622t2 + 2754t+ 1)D

+15552t2(1796256t3 + 98496t2 + 1605t+ 7)

The local log-monodromies for the local system of solutions LXg ≡ 0 are:0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 at t = 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 at t = 1
693


2
3

1 0 0

0 2
3

0 0

0 0 1
3

1

0 0 0 1
3

 at t = − 1
36

and so the operator LX is extremal.

6.4. Complete Intersections in Grassmannians of Planes

Whilst the method defined in Section 6.1 is inherently toric, one may attempt to apply

it to complete intersections in more general ambient spaces via a toric degeneration of the

ambient space. In this section we apply this to obtain a Laurent polynomial mirror for a

complete intersection in a Grassmannian of planes Gr(2, 2 + k). This is achieved by first

forming the Givental/Hori–Vafa mirror model for the flat degeneration of Gr(2, 2 + k) to the

toric variety P (2, 2 + k) described in [13]. A different algorithm for achieving this was given

in the preprint [94], of which this section forms an appendix. We provide examples in this

section that show that while the Laurent polynomials obtained by the respective methods are

not the same, they are related by algebraic mutations.

Recalling the procedure for forming the Givental/Hori–Vafa mirror model, the equations

q1 = · · · = qr = 1 are imposing binomial equations determined by the toric variety Y and



128 6. COMPLETE INTERSECTIONS AND THE GIVENTAL/HORI–VAFA MODEL

independent of the line bundles Li. Applying these equations, one obtains the Laurent poly-

nomial

W =
∑

1≤i≤R
zρi

formed by passing to the subtorus of (C?)R defined by

R∏
j=1

x
mi,j
j = 1

i.e. on the subtorus T(Zd)? ↪→ T(ZN )? . Observe that the polynomial W encodes the ray gen-

erators of P (2, 2 + k) in the exponents ρi. For a certain choice of coordinates ai,j , explained

in [31,94], the Laurent polynomial has the form

fGr(2,2+k) = a1,1 +

k∑
j=2

a1,j

a1,j−1
+

k∑
j=1

a2,j

a1,j
+

k∑
j=2

a2,j

a2,j−1
+

1

a2,k
.

Remark 6.4.1. Though we effectively apply the Przyjalkowski method to complete inter-

sections in P (2, 2 + k), this is not Q-factorial. However, we recall that replacing Gr(2, 2 + k)

with P (2, 2 + k) is justified in Section 4 of [94], following the results of [13].

In order to encode all possible combinations of complete intersection in Gr(2, 2 + k) we

consider the k + 2 equations

f1 = a1,1, fj =
a1,j

a1,j−1
+

a2,j

a2,j−1
, j ∈ [2, k], fk+1 =

1

a2,k
.

Given a complete intersection of hypersurfaces of degree di, i ∈ [1, l] we fix a partition

[1, k + 1] = E0 t E1 t . . . t El

with |Ej | = dj for j > 0, and we form the Givental/Hori–Vafa mirror to the complete

intersection in Gr(2, 2 + k) by restricting to the subvarietyFj =
∑
r∈Ej

fr = 1 | j = 1, . . . , l

 .

In order to apply the Przyjalkowski method for finding a birational torus chart we apply

a change of variables

x1,1 = a1,1, x1,j =
a1,j

a1,j−1
, j ∈ [2, k],

x2,j =
a2,j

a2,j−1
, j ∈ [2, k], x2,k+1 =

1

a2,k
.

With these changes of variables, we see that 2k of the 3k terms of fGr(2,2+k) are now

simply variables xi,j and the remaining k terms are monomials

Mi =
a2,i

a1,i
=
(∏
j≤i

x1,j

∏
j≥i

x2,j

)−1
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The polynomials fj have become the following:

f1 = x1,1, fj = x1,j + x2,j , j ∈ [2, k], fk+1 = x2,k+1.

We may now apply the general procedure given above, namely we define the Em and E used

there according to the terms appearing in the polynomials Fm and
∑k

j=1Mj . Observe that

all the requirements for finding a birational torus chart in the first section are met, so we may

apply the change of coordinates above. This provides a completely explicit way of forming

(several) Laurent polynomial mirrors for a given complete intersection in Gr(2, k + 2). We

now consider some examples of this method.

Example 6.4.2. Consider a cubic intersected with the quadric Gr(2, 4). The weight matrix

D for P (2, 4) is the following: (
1 0 0 1 1 1

1 1 1 0 0 1

)
.

The Picard group is the sublattice generated by the column (1, 1)t. The Laurent polynomial

mirror may be obtained either by applying the condition D = 1 above, or by changing fGr(2,4)

to the xi,j variables, in either case there is a Laurent polynomial presentation given by the

following:

fGr(2,4) = x1,1 + x1,2 +
1

x1,1x1,2x2,3
+

1

x1,1x2,2x2,3
+ x2,2 + x2,3.

Where the first k and final k columns of D correspond to basis elements in N and to variables

x1,j , j ∈ [1, l] and x2,j , j ∈ [2, l + 1] respectively. The column (3, 3)t may be obtained by

adding the first, second, fifth, and sixth columns, giving the relation

x1,1 + x1,2 + x2,2 + x2,3 = 1.

Let E1 = {1, 2, 5, 6}, E = {3, 4}, and s1 = 1. Denoting the new variables yi,j , consistent with

the variables xi,j we have the following:

x1,1 =
1

1 + y1,2 + y2,2 + y2,3
, x1,2 =

y1,2

1 + y1,2 + y2,2 + y2,3
,

x2,2 =
y2,2

1 + y1,2 + y2,2 + y2,3
, x2,3 =

y2,3

1 + y1,2 + y2,2 + y2,3
.

The superpotential then becomes

ψ∗fGr(2,4) =
(1 + y1,2 + y2,2 + y2,3)3

y1,2y2,3
+

(1 + y1,2 + y2,2 + y2,3)3

y2,2y2,3
=

=
(y2,2 + y1,2)

y1,2y2,2y2,3
(1 + y1,2 + y2,2 + y2,3)3.

We shall now show this is equivalent to the result of the algorithm given in [94] applied to this

variety up to mutations ([21], [72]). Consider the birational map φ1, defined by the following:

φ∗1y1,2 = y1,2, φ∗1y2,2 = y2,2, φ∗1y2,3 = (y1,2 + y2,2)y2,3.
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Computing φ∗1ψ
∗fGr(2,4) we obtain

gGr(2,4) = φ∗1ψ
∗fGr(2,4) =

1

y1,2y2,2y2,3
(1 + y1,2 + y2,2 + (y1,2 + y2,2)y2,3)3.

Now, setting

y1,2 = a2,1, y2,2 =
a2

2,1

a1,1
, y2,3 = a1,2

we have that

gGr(2,4) =
a1,1

a3
2,1a1,2

(
1 +

(
a2,1 +

a2
2,1

a1,1

)
(1 + a1,2)

)3

=

=
a1,1

a1,2

(
1

a2,1
+

(
1 +

a2,1

a1,1

)
(1 + a1,2)

)3

.

Apply another birational change of coordinates φ2, sending

ai,j 7→ ai,j

(
1 +

a2,1

a1,1

)−1

for each (i, j). We obtain

hGr(2,4) = φ∗2gGr(2,4) =
a1,1

a1,2

((
1 +

1

a2,1

)(
1 +

a2,1

a1,1

)
+ a1,2

)3

=

=
a1,1

a1,2

(
a1,2 +

1 + a1,1a2,1 + a1,1 + a2,1

a1,1a2,1

)3

.

Which is the resulting polynomial in [94].

Example 6.4.3. A fourfold of index 2 given by 4 hyperplane sections of Gr(2, 6). The

matrix D for P (2, 6) is 
1 0 0 0 0 0 0 1 1 1 1 1

1 1 0 0 0 0 1 0 0 1 1 1

1 1 1 0 0 1 0 0 0 0 1 1

1 1 1 1 1 0 0 0 0 0 0 1


The four bundles Li are all equal to (1, 1, 1, 1) ∈ L∨. We fix the nef-partition by taking the

collections of basis elements Di corresponding to columns 1, 12, {2, 9}, {3, 10} of the matrix

D. Applying the notation employed in Example 6.4.2 we compute

ψ∗fGr(2,6) = x1,4 + x2,4 +
(1 + y2,2)(1 + y2,3)

y2,2y2,3x2,4
(1 + y2,2 + y2,2y2,3) +

(1 + y2,2)(1 + y2,3)

x1,4
.

Noting that columns 4, 11 are in neither E nor any of the sets Em , so the variables x1,4

and x2,4 persist. As in the previous example, this polynomial also agrees with the result

of the algorithm described in [94] up to mutations, which in particular preserve the period

sequence of the Laurent polynomial.
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6.5. The Przyjalkowski Method Revisited

The goal for the remainder of this chapter is to describe an inverse to the Przyjalkowski

method. In other words, we wish to produce a construction of a Fano variety X, expressed

as a complete intersection, from a Laurent polynomial f , such that X provably corresponds

to f under Mirror Symmetry.

We first treat the problem of finding torus charts on Landau–Ginzburg models somewhat

more generally than in Section 6.1, since it will maximise the scope of our inversion technique.

The problem of finding torus charts on Landau–Ginzburg models has been considered by many

authors [20, 30, 47, 63, 93, 96], and the construction below (in §6.9) generalises and unifies

all these perspectives below. Consider first the ambient toric variety or toric stack Y . We

consider the case where:

(6.5.1)
(1) Y is a proper toric Deligne–Mumford stack;

(2) the coarse moduli space of Y is projective;

(3) the generic isotropy group of Y is trivial, that is, Y is a toric orbifold ; and

(4) at least one torus-fixed point in Y is smooth.

Conditions (i)–(iii) here are essential; condition (iv) is less important and will be removed

in §6.9. In the original work by Borisov–Chen–Smith [16], toric Deligne–Mumford stacks are

defined in terms of stacky fans. In our context, since the generic isotropy is trivial, giving a

stacky fan that defines Y amounts to giving a triple (N ; Σ; ρ1, . . . , ρR) where N is a lattice, Σ

is a rational simplicial fan in N ⊗Q, and ρ1, . . . , ρR are elements of N that generate the rays

of Σ. It will be more convenient for our purposes, however, to represent Y as a GIT quotient[
CR//ω(C×)r

]
. Any such Y can be realised this way, as we now explain.

Definition 6.5.1. We say that (K;L;D1, . . . , DR;ω) are GIT data if K ∼= (C×)r is a

connected torus of rank r; L = Hom(C×,K) is the lattice of subgroups of K; D1, . . . , DR ∈ L∗

are characters of K that span a strictly convex full-dimensional cone in L∗⊗Q, and ω ∈ L∗⊗Q
lies in this cone.

GIT data (K;L;D1, . . . , DR;ω) determine a quotient stack
[
Vω/K

]
with Vω ⊂ CR, as

follows. The characters D1, . . . , DR define an action of K on CR. Write [R] := {1, 2, . . . , R}.
Say that a subset I ⊂ [R] covers ω if and only if ω =

∑
i∈I aiDi for some strictly positive

rational numbers ai, set Aω = {I ⊂ [R] | I covers ω}, and set

Vω =
⋃
I∈Aω

(C×)I × CĪ where (C×)I × CĪ =
{

(x1, . . . , xR) ∈ CR | xi 6= 0 if i ∈ I
}
.

The subset Vω ⊂ CR is K-invariant, and
[
Vω/K

]
is the GIT quotient (stack) given by the

action of K on CR and the stability condition ω. The convexity hypothesis in Definition 6.5.1

ensures that
[
Vω/K

]
is proper.

Remark 6.5.2. The quotient
[
Vω/K

]
here depends on ω only via the minimal cone σ of

the secondary fan such that ω ∈ σ. The secondary fan for GIT data (K;L;D1, . . . , DR;ω)
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is the fan defined by the wall-and-chamber decomposition of the cone in L∗ ⊗Q spanned by

D1, . . . , DR, where the walls are given by the cones spanned by {Di | i ∈ I} such that I ⊂ [R]

and |I| = r − 1.

Definition 6.5.3. Orbifold GIT data are those such that the quotient
[
Vω/K

]
is a toric

orbifold.

The quotient
[
Vω/K

]
is a toric Deligne–Mumford stack if and only if ω lies in the strict

interior of a maximal cone in the secondary fan. A toric orbifold Y satisfying the condi-

tions (6.5.1) above arises as the quotient
[
Vω/K

]
for GIT data (K;L;D1, . . . , DR;ω) as fol-

lows. Suppose that Y is defined, as discussed above, by the stacky fan data (N ; Σ; ρ1, . . . , ρR).

There is an exact sequence

(6.5.2) 0 // L // ZR
ρ
// N // 0

where ρ maps the ith element of the standard basis for ZR to ρi; this defines L and K = L⊗C×.

Dualizing gives

(6.5.3) 0 L∗oo (Z∗)RDoo Moo 0oo

where M := Hom(N,Z), and we set Di ∈ L∗ to be the image under D of the ith standard

basis element for (Z∗)R. The stability condition ω is taken to lie in the strict interior of

C =
⋂

maximal cones σ of Σ

Cσ

where Cσ is the cone in L∗ ⊗ Q spanned by {Di | i ∈ σ}; projectivity of the coarse moduli

space of Y implies that C is a maximal cone of the secondary fan, and in particular that C

has non-empty interior.

We can reverse this construction, defining a stacky fan (N ; Σ; ρ1, . . . , ρn) from GIT data

(K;L;D1, . . . , DR;ω) such that D1, . . . , DR span L∗, as follows. The lattice L and elements

D1, . . . , DR ∈ L∗ define the exact sequence (6.5.3), and dualising gives (6.5.2). This defines

the lattice N and ρ1, . . . , ρR. The fan Σ consists of the cones spanned by {ρi | i ∈ I} where

I ⊂ [R] satisfies [R] \ I ∈ Aω.

Remark 6.5.4. Once K, L, and D1, . . . , DR have been fixed, choosing ω such that the

GIT data (K;L;D1, . . . , DR;ω) define a toric Deligne–Mumford stack amounts to choosing a

maximal cone in the secondary fan.

Under our hypotheses there is a canonical isomorphism between L∗ and the Picard lattice

Pic(Y ). We will denote the line bundle on Y corresponding to a character χ ∈ L∗ also by χ.

Definition 6.5.5. Let Θ = (K;L;D1, . . . , DR;ω) be orbifold GIT data, and let Y de-

note the corresponding toric orbifold. A convex partition with basis for Θ is a partition

B,S1, . . . , Sk, U of [R] such that:

(1) {Db | b ∈ B} is a basis for L∗;
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(2) ω is a non-negative linear combination of {Db | b ∈ B};
(3) each Si is non-empty;

(4) for each i ∈ [k], the line bundle Li :=
∑

j∈Si Dj on Y is convex1; and

(5) for each i ∈ [k], Li is a non-negative linear combination of {Db | b ∈ B}.
We allow k = 0, and we allow U = ∅.

Remark 6.5.6. Since ω here is taken to lie in the strict interior of a maximal cone in

the secondary fan, it is in fact a positive linear combination of {Db | b ∈ B}. This positivity

guarantees that the maximal cone spanned by {ρi | i ∈ [R] \B} defines a smooth torus-fixed

point in Y .

Remark 6.5.7. It would be more natural to replace the condition that Li be convex here

with the weaker condition that Li be nef. But, since we currently lack a Mirror Theorem

that applies to toric complete intersections beyond the convex case, we will require convexity.

If the ambient space Y is a manifold, rather than an orbifold, then convexity and nef-ness

coincide.

Given:

(6.5.4)
(1) orbifold GIT data Θ = (K;L;D1, . . . , DR;ω);

(2) a convex partition with basis B,S1, . . . , Sk, U for Θ; and

(3) a choice of elements si ∈ Si for each i ∈ [k];

we define a Laurent polynomial f , as follows. Without loss of generality we may assume that

B = [r]. Writing D1, . . . , DR in terms of the basis {Db | b ∈ B} for L∗ yields an r×R matrix

M = (mi,j) of the form

(6.5.5) M =

 Ir

m1,r+1 · · · m1,R

...
...

mr,r+1 · · · mr,R


where Ir is an r × r identity matrix. Consider the function

W = x1 + x2 + · · ·+ xR − k

subject to the constraints

R∏
j=1

x
mi,j
j = 1 i ∈ [r](6.5.6)

and ∑
j∈Si

xj = 1 i ∈ [k](6.5.7)

1A line bundle L on a Deligne–Mumford stack Y is convex if and only if L is nef and is the pullback of a line
bundle on the coarse moduli space |Y | of Y along the structure map Y → |Y |. See [26].
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For each i ∈ [k], introduce new variables yj , where j ∈ Si \ {si}, and set ysi = 1. Solve the

constraints (6.5.7) by setting:

xj =
yj∑
l∈Si yl

j ∈ Si

and express the variables xb, b ∈ B, in terms of the yjs and remaining xis using (6.5.6). The

function W thus becomes a Laurent polynomial f in variables

(6.5.8)
xi, where i ∈ U,

and yj , where j ∈ (S1 ∪ · · · ∪ Sk) \ {s1, . . . , sk}.

We call the xi here the uneliminated variables.

Given data as in (6.5.4), let f be the Laurent polynomial just defined. Let Y denote

the toric orbifold determined by Θ, let L1, . . . , Lk denote the line bundles on Y from Defini-

tion 6.5.5, and let X ⊂ Y be a complete intersection defined by a regular section of the vector

bundle ⊕iLi. If X is Fano, then Mirror Theorems due to Givental [47], Hori–Vafa [63], and

Coates–Corti–Iritani–Tseng [23,24] imply that f corresponds to X under Mirror Symmetry

(c.f. [20, §5]). We say that f is a Laurent polynomial mirror for X.

Remark 6.5.8. If f is a Laurent polynomial mirror for X then the Picard–Fuchs local

system for f : (C×)n → C coincides, after translation of the base if necessary, with the Fourier–

Laplace transform of the quantum local system for X; see [21, 22]. Thus we regard f and

g := f − c, where c is a constant, as Laurent polynomial mirrors for the same manifold Y ,

since the Picard–Fuchs local systems for f and g differ only by a translation of the base (by c).

Remark 6.5.9. If f and g are Laurent polynomials that differ by an invertible monomial

change of variables then the Picard–Fuchs local systems for f and g coincide. Thus f is a

Laurent polynomial mirror for X if and only if g is a Laurent polynomial mirror for X.

Example 6.5.10. Let X be a smooth cubic surface. The ambient toric variety Y = P3

is a GIT quotient C4//C× where C× acts on C4 with weights (1, 1, 1, 1). Thus Y is given by

GIT data (K;L;D1, . . . , D4;ω) with K = C×, L = Z, D1 = D2 = D3 = D4 = 1, and ω = 1.

We consider the convex partition with basis B, S1, ∅, where B = {1} and S1 = {2, 3, 4}, and

take s1 = 4. This yields

M =
(

1 1 1 1
)

and

W = x1 + x2 + x3 + x4 − 1

subject to

x1x2x3x4 = 1 and x2 + x3 + x4 = 1.

We set:

x1 =
1

x2x3x4
x2 =

x

1 + x+ y
x3 =

y

1 + x+ y
x4 =

1

1 + x+ y
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where, in the notation above, x = y2 and y = y3. Thus

f =
(1 + x+ y)3

xy

is a Laurent polynomial mirror to Y .

Example 6.5.11. Let Y be the projective bundle P
(
O ⊕O ⊕O(−1)

)
→ P3. This arises

from the GIT data (K;L;D1, . . . , D7;ω) where K = (C×)2, L = Z2,

D1 = D4 = D6 = D7 = (1, 0) D2 = D3 = (0, 1) D5 = (−1, 1)

and ω = (1, 1). We consider the convex partition with basis B,S1, S2, U where B = {1, 2},
S1 = {3, 4}, S2 = {5, 6}, U = {7}. This yields:

M =

(
1 0 0 1 −1 1 1

0 1 1 0 1 0 0

)
Choosing s1 = 3 and s2 = 5, we find that

f =
(1 + x)

xyz
+ (1 + x)(1 + y) + z

Here, in the notation above, x = y4, y = y6, and z = x7.

6.6. Laurent Inversion

To invert the process described in §6.5, that is, to pass from a Laurent polynomial f

to orbifold GIT data Θ, a convex partition with basis B,S1, . . . , Sk, U for Θ, and elements

si ∈ Si, i ∈ [k], would amount to expressing f in the form

(6.6.1) f = f1 + · · ·+ fr +
∑
u∈U

xu

where

fa =

k∏
i=1

∏
j∈Si

(∑
l∈Si yl

yj

)ma,j
×
∏
u∈U

x
−ma,u
u .

In favourable circumstances, we can obtain from a decomposition (6.6.1) a smooth toric

orbifold Y and convex line bundles L1, . . . , Lk on Y such that the complete intersection

X ⊂ Y defined by a regular section of the vector bundle ⊕iLi is Fano and corresponds

to f under Mirror Symmetry. In general there are many such decompositions of f . Not

every decomposition gives rise to a smooth toric orbifold Y , for example because not every

decomposition gives rise to valid GIT data2. Even when the decomposition (6.6.1) gives

orbifold GIT data (K;L;D1, . . . , DR;ω), and hence an ambient toric orbifold Y , it is not

always possible to choose the stability condition ω such that Y has a smooth torus-fixed

point, or such that the line bundles L1, . . . , Lk are simultaneously convex, or such that X is

Fano. In practice, however, this technique is surprisingly effective.

2The characters D1, . . . , DR of K = (C×)r defined, via equation (6.5.5), by a decomposition (6.6.1) may not
span a strictly convex full-dimensional cone.
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Definition 6.6.1. We refer to a decomposition (6.6.1) as a scaffolding for f , and to the

Laurent polynomials fa involved as struts.

Algorithm 6.6.2. We remark – and this is a key methodological point – that scaffoldings

of f can be enumerated algorithmically. Let A = Zs denote the lattice containing Newt f . A

partition S′1, . . . , S
′
k, U

′ of the standard basis for A, where we allow k = 0 and allow U ′ = ∅,

defines a collection of standard simplices

∆(i) = Conv
(
{0} ∪ S′i

)
i ∈ [k].

We call a polytope ∆ a strut if it is a translation of a Minkowski sum of dilations of these

standard simplices. A scaffolding (6.6.1) for f determines a collection of struts ∆a and lattice

points pu, each contained in P := Newt f , where ∆a = Newt fa and pu is the standard basis

element corresponding to the uneliminated variable xu. The struts ∆a may overlap, and may

overlap with the pu. We refer to a collection {∆a | a ∈ [r]}, {pu | u ∈ U ′} of:

(1) struts {∆a | a ∈ [r]} with respect to some partition S′1, . . . , S
′
k, U

′; and

(2) standard basis elements {pu | u ∈ U ′};

all of which are contained in a polytope P , as a scaffolding for P . One can check whether

a scaffolding for Newt f arises from a scaffolding (6.6.1) for f by checking if the coefficients

from the associated struts fa and uneliminated variables xu sum to give the coefficients of f .

Since all coefficients of the struts fa are positive, only finitely many scaffoldings for Newt f

need to be checked. We are free to relax our notion of scaffolding, demanding that the left-

and right-hand sides of (6.6.1) agree only up to a constant monomial – see Remark 6.5.8.

This extra flexibility is often useful.

Remark 6.6.3. It is more meaningful, in view of Remark 6.5.9, to allow scaffoldings of

Newt f that are based on a partition S′1, . . . , S
′
k, U

′ of an arbitrary basis for A, rather than the

standard basis. For fixed f , only finitely many such generalised scaffoldings need be checked.

Example 6.6.4 (dP3). Consider now the Laurent polynomial

f =
(1 + x+ y)3

xy

from Example 6.5.10. A scaffolding for Newt f is given by a single standard 2-simplex, dilated

by a factor of three:
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Indeed f is equal to a single strut, with no uneliminated variables. From this we read off

r = 1, k = 1, B = {1}, S1 = {2, 3, 4}, U = ∅, and the exponents of the strut give:

M =
(

1 1 1 1
)

This gives GIT data Θ = (K;L;D1, . . . , D4;ω) with K = C×, L = Z, D1 = D2 = D3 = D4 =

1, and ω = 1; note that the secondary fan here has a unique maximal cone. The corresponding

toric variety is Y = P3. The line bundle L1 =
∑

j∈S1
Dj = O(3) is nef. Thus B,S1,∅ is a

convex partition with basis for Θ. That is, by scaffolding f we obtain the cubic hypersurface

as in Example 6.5.10.

Example 6.6.5 (dP6). The projective plane blown up in three points, dP6, is toric, but

it has two famous models as a complete intersection:

(1) as a hypersurface of type (1, 1, 1) in P1 × P1 × P1;

(2) as the intersection of two bilinear equations in P2 × P2.

Let us see how these arise from Laurent inversion. The Laurent polynomial mirror to dP6

that we shall use is:

f = x+ y +
1

x
+

1

y
+
x

y
+
y

x
.

We may scaffold Newt(f) in two different ways: using three triangles, and using a pair of

squares:

and

These choices correspond, respectively, to the scaffoldings

f = (1+x+y)+
(1 + x+ y)

x
+

(1 + x+ y)

y
−3 and f =

(1 + x)(1 + y)

x
+

(1 + x)(1 + y)

y
−2.

As discussed, we ignore the constant terms.

From the first scaffolding we read off r = 3, k = 1, B = {1, 2, 3}, S1 = {4, 5, 6}, U = ∅,

and the exponents of the struts give:

M =

 1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


This gives GIT data Θ = (K;L;D1, . . . , D6;ω) with K = (C×)3, L = Z3, D1 = D4 = (1, 0, 0),

D2 = D5 = (0, 1, 0), D3 = D6 = (0, 0, 1), and ω = (1, 1, 1); the secondary fan here again has a

unique maximal cone. The corresponding toric variety is Y = P1 × P1 × P1. The line bundle

L1 =
∑

j∈S1
Dj is O(1, 1, 1), so we see that f is a Laurent polynomial mirror to a hypersurface

of type (1, 1, 1) in P1 × P1 × P1.
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x

y
z

Figure 6.6.1. A scaffolding for Newt f in Example 6.6.6.

From the second scaffolding we read off r = 2, k = 2, B = {1, 2}, S1 = {3, 4}, S2 = {5, 6},
U = ∅, and the exponents of the struts give:

M =

(
1 0 0 1 1 0

0 1 1 0 0 1

)
This gives GIT data Θ = (K;L;D1, . . . , D6;ω) with K = (C×)2, L = Z2, D1 = D4 = D5 =

(1, 0), D2 = D3 = D6 = (0, 1), and ω = (1, 1); once again the secondary fan has a unique

maximal cone. The corresponding toric variety Y is P2× P2. The line bundles L1 = D3 +D4

and L2 = D5 +D6 are both equal to O(1, 1), so we see that f is a Laurent polynomial mirror

to the complete intersection of two hypersurfaces defined by bilinear equations in P2 × P2.

Example 6.6.6. Consider the rigid maximally-mutable Laurent polynomial

f = x+
y2

z
+ 2y +

3y

z
+ z +

3

z
+
z

y
+

2

y
+

1

yz
+
y2

xz
+

2y

x
+

2y

xz
+
z

x
+

2

x
+

1

xz
.

The Newton polytope of f can be scaffolded as in Figure 6.6.1, and there is a corresponding

scaffolding of f :

f = x+
(1 + y + z)2

xz
+

(1 + y + z)2

z
+

(1 + y + z)2

yz

From this we read off r = 3, k = 1, B = {1, 2, 3}, U = {4}, S1 = {5, 6, 7}, and the exponents

of the struts give:

M =

 1 0 0 1 1 0 1

0 1 0 0 1 0 1

0 0 1 0 0 1 1


This gives GIT data Θ = (K;L;D1, . . . , D6;ω) with K = (C×)3, L = Z3, D1 = D4 = (1, 0, 0),

D2 = (0, 1, 0), D3 = D6 = (0, 0, 1), D4 = (1, 1, 0), and D7 = (1, 1, 1). The secondary fan is as

shown in Figure 6.6.2. Choosing ω = (3, 2, 1) yields a weak Fano toric manifold Y such that

the line bundle L1 =
∑

j∈S1
Dj is convex. Let X denote the hypersurface in Y defined by a

regular section of L1. The class −KY − L1 is nef but not ample on Y , but it becomes ample
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(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(1, 1, 1)

(1, 1, 0)

L1

−KY

Figure 6.6.2. The secondary fan for Example 6.6.6, sliced by the plane x +
y + z = 1.

on restriction to X; thus X is Fano (cf. [22, §57]). We see that f is a Laurent polynomial

mirror to X. This example shows that our Laurent inversion technique applies in cases where

the ambient space Y is not Fano. In fact Y need not even be weak Fano.

6.7. A New Four-Dimensional Fano Manifold

Consider

f =
(1 + x)2

xyw
+
x

z
+ y + z + w

This is a rigid maximally-mutable Laurent polynomial in four variables. It is presented in

scaffolded form, and we read off r = 2, k = 1, B = {1, 2}, S1 = {3, 4}, U = {5, 6, 7}. The

exponents of the struts give:

M =

(
1 0 1 1 1 0 1

0 1 1 −1 0 1 0

)
This yields GIT data Θ = (K;L;D1, . . . , D6;ω) with K = (C×)2, L = Z2, D1 = D5 = D7 =

(1, 0), D2 = D6 = (0, 1), D3 = (1, 1), and D4 = (1,−1). We choose the stability condition

ω = (5, 2), thus obtaining a Fano toric orbifold Y such that the line bundle L1 = D3 +D4 on

Y is convex. Let X denote the four-dimensional Fano manifold defined inside Y by a regular

section of L1.

The Fano manifold X is new. To see this, we can compute the regularised quantum period

ĜX of X. Since f is a Laurent polynomial mirror to X, the regularised quantum period ĜX

coincides with the classical period of f :

πf (t) =
∞∑
d=0

cdt
d where cd = coeff1

(
fd
)
.

This is explained in detail in [21,22]. In the case at hand,

ĜX = πf (t) = 1 + 12t3 + 120t5 + 540t6 + 20160t8 + 33600t9 + · · ·

and we see that ĜX is not contained in the list of regularised quantum periods of known four-

dimensional Fano manifolds [20, 25]. Thus X is new. We did not find X in our systematic
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search for four-dimensional Fano toric complete intersections [20], because there we considered

only ambient spaces that are Fano toric manifolds whereas the ambient space Y here has non-

trivial orbifold structure. This is striking because the degree K4
X = 433 of X is not that low

– compare with Figure 5 in [20]. In dimensions 2 and 3 only Fano manifolds of low degree

fail to occur as complete intersections in toric manifolds. The space Y can be obtained as

the unique non-trivial flip of the projective bundle P
(
O(−1)⊕O⊕3 ⊕O(1)

)
over P1. As was

pointed out to us by Casagrande, the other extremal contraction of Y , which is small, exhibits

X as the blow-up of P4 in a plane conic. This suggests that restricting to smooth ambient

spaces when searching for Fano toric complete intersections may omit many Fano manifolds

with simple classical constructions.

6.8. From Laurent Inversion to Toric Degenerations

Suppose now that we have a scaffolding (6.6.1) for the Laurent polynomial f , and that

this gives rise to:

(1) orbifold GIT data Θ = (K;L;D1, . . . , DR;ω);

(2) a convex partition with basis B,S1, . . . , Sk, U for Θ; and

(3) a choice of elements si ∈ Si for each i ∈ [k].

We now explain how to pass from this data to a toric degeneration of the complete intersection

X ⊂ Y defined by a regular section of the vector bundle ⊕iLi. This degeneration was

discovered independently by Doran–Harder [30]; see §6.9 for an alternative view on their

construction. In favourable circumstances, as we will explain, the central fiber of this toric

degeneration is the Fano toric variety Xf defined by the spanning fan of Newt f . The existence

of such a degeneration is predicted by Mirror Symmetry.

By assumption we have, as in §6.5, an r ×R matrix M = (mi,j) of the form:

M =

 Ir

m1,r+1 · · · m1,R

...
...

mr,r+1 · · · mr,R


such that lb,i :=

∑
j∈Simb,j is non-negative for all b ∈ [r] and i ∈ [k]. The exact se-

quence (6.5.2) becomes

0 // Zr MT
// ZR

ρ
// N // 0

and, writing ρi ∈ N for the image under ρ of the ith standard basis vector in ZR, we find that

{ρi | r < i ≤ R} is a distinguished basis for N and that

ρi = −
R∑

j=r+1

mi,jρj for all i ∈ [r].
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Let M = Hom(N,Z) and define uj ∈M , j ∈ [k], by

uj(ρi) =

0 if r < i ≤ R and i 6∈ Sj ;

1 if r < i ≤ R and i ∈ Sj .

Let N ′ := N ∩Hu1 ∩ . . . ∩Huk be the sublattice of N given by restricting to the intersection

of the hyperplanes Hui := {v ∈ N | ui(v) = 0}. Let Σ′ denote the fan defined by intersecting

Σ with N ′Q, and let X ′ be the toric variety defined by Σ′.

Proposition 6.8.1. There is a flat degeneration X→ A1 with general fiber Xt isomorphic

to X and special fiber X0 isomorphic to X ′.

Proof. Recall that X is cut out of the toric variety Y by regular sections si of the line

bundles Li, i ∈ [k]. By deforming si to the binomial section s′i of Li given by

si =
∏
a∈[r]

x
la,i
a −

∏
j∈Si

xj

we can construct a flat degeneration with general fiber X and special fiber a toric variety

X ′. Since ui(ρa) = −la,i, we see that the fan Σ′ defining X ′ is the intersection of the fan Σ

defining Y with Hu1 ∩ · · · ∩Huk , as claimed. �

Our choice of elements si ∈ Si, i ∈ [k], gives rise to a distinguished basis for N ′, consisting

of

(6.8.1)
ρi, where i ∈ U,

and ρi − ρsj , where i ∈ Sj \ {sj} for some j ∈ [k].

Comparing (6.5.8) with (6.8.1), we see that this choice of basis also specifies an isomorphism

between N ′ and the lattice A that contains Newt f . Thus it makes sense to ask whether

the fan Σ′ coincides with the spanning fan of Newt f ; in this case we will say that Σ′ is the

spanning fan. If Σ′ is the spanning fan then the above construction gives a degeneration from

X to the (singular) toric variety Xf , as predicted by Mirror Symmetry.

Remark 6.8.2. In any given example it is easy to check whether Σ′ is the spanning fan.

This is often the case – it holds, for example, for all of the examples in this paper – but it is

certainly not the case in general. It would be interesting to find a geometrically meaningful

condition that guarantees that Σ′ is the spanning fan. This problem is challenging because,

at this level of generality, we do not have much control over what the fan Σ looks like. It

is easy to see that each ray of Σ′ passes through some vertex of a strut in the scaffolding of

Newt f , and that the cone C ′a ⊂ N ′Q over the strut ∆a = Newt fa is given by the intersection

with N ′Q of the cone Ca ⊂ N spanned by {ρa} ∪ {ρi | i ∈ S1 ∪ · · · ∪ Sk}. But typically only

some of the Ca lie in Σ (indeed typically the cones C ′a overlap with each other) and in general

it is hard to say more. Doran–Harder [30] give sufficient conditions for Σ′ to be a refinement

of the spanning fan, but for applications to Mirror Symmetry this is not enough.
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6.9. Torus Charts on Landau–Ginzburg Models

Suppose, as before, that we have:

(6.9.1)
(1) orbifold GIT data Θ = (K;L;D1, . . . , DR;ω);

(2) a convex partition with basis B,S1, . . . , Sk, U for Θ; and

(3) a choice of elements si ∈ Si for each i ∈ [k].

Let Y be the corresponding toric orbifold, and X ⊂ Y the complete intersection defined by

a regular section of the vector bundle ⊕iLi. Givental [47] and Hori–Vafa [63] have defined a

Landau–Ginzburg model that corresponds to X under Mirror Symmetry. In this section we

explain how to write down a torus chart on the Givental/Hori–Vafa mirror model on which

the superpotential restricts to a Laurent polynomial. This gives an alternative perspective on

Doran–Harder’s notion of amenable collection subordinate to a nef partition [30, §§2.2–2.3].

Definition 6.9.1. Suppose that we have fixed orbifold GIT data Θ defining Y , as in (6.9.1-

i). The Landau–Ginzburg model mirror to Y is the family of tori equipped with a superpo-

tential:

(C×)R
W //

D
��

C

TL∗

where W =
∑R

j=1 xj ; x1, . . . , xR are the standard co-ordinates on (C×)R; D is the map

from (6.5.3); and TL∗ is the torus L∗ ⊗ C×.

In our context, rather than considering the whole family over TL∗ , we restrict to the fiber

over 1. Extending the diagram defining the Landau–Ginzburg model to include this fiber we

have:

TM
ρ∨

// (C×)R
W //

D
��

C

TL∗

where TM = M ⊗ C× and ρ∨ is the dual to the fan map ρ from (6.5.2).

Definition 6.9.2. Suppose that we have fixed orbifold GIT data and a nef partition with

basis, as in (6.9.1). The Landau–Ginzburg model mirror to X is the restriction of the mirror
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model for Y to a subvariety X∨, defined by the following commutative diagram:

C

X∨
j

//

77

TM
ρ∨

//

��

(C×)R

W

gg

D

��Φ
ww

Cl TL∗

where Φ :=
(∑

i∈S1
xi, . . . ,

∑
i∈Sk xi

)
and j is the inclusion of the fiber over 1. The Landau–

Ginzburg model mirror to X is the map(
ρ∨ ◦ j

)∗
W : X∨ → C

We now present a general technique for finding torus charts on X∨ on which the restriction

of the superpotential
(
ρ∨ ◦ j

)∗
W is a Laurent polynomial. To do this we will construct a

birational map µ such that the pullback χ := (ρ∨ ◦ µ)∗Φ of Φ becomes regular, as in the

following diagram.

X∨
j

// TM

(ρ∨)∗Φ
��

TKer(χ)
θ:=ker(χ)

//

77

TM

µ
88

χ
// Cl

Remark 6.9.3. Via the bijection between monomials in the variables xi, 1 ≤ i ≤ R, with

their exponents in ZR we identify the monomials (ρ∨)∗(xi) with their exponents ρi ∈ N . In

this notation:

(ρ∨)∗Φ =
(∑
i∈S1

xρi , · · · ,
∑
i∈Sk

xρi
)

Recall that the vectors ρi generate the rays of the fan Σ that defines Y .

We construct our birational map µ from the data in (6.9.1) together with a choice of

lattice vectors wi ∈M such that:

(6.9.2)
(1) 〈wi, ρj〉 = −1 for all j ∈ Si and all i;

(2) 〈wi, ρj〉 = 0 for all j ∈ Sl such that l < i and all i;

(3) 〈wi, ρj〉 ≥ 0 for all j ∈ Sl such that l > i and all i.

This is exactly Doran–Harder’s notion of an amenable collection subordinate to a nef partition.

Definition 6.9.4. A weight vector w ∈ M and a factor F ∈ C[w⊥] together determine

a birational transformation θ : TM 99K TM called an algebraic mutation. This is given by the

automorphism xγ 7→ xγF 〈γ,w〉 of the field of fractions C(N) of C[N ].
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We define the birational map µ as the composition of a sequence of algebraic mutations

µ1, . . . , µk, where the mutation µi has weight vector wi and factor given by

Fi :=

(
µ1 ◦ · · · ◦ µi−1

)∗(∑
j∈Si x

ρj

)
xρsi

The conditions (6.9.2) guarantee that Fi is a Laurent polynomial, that Fi ∈ C[w⊥i ], and that(
µ1 ◦ · · · ◦ µi

)∗
W is a Laurent polynomial for all i ∈ [k].

We can always take the weight vectors wi in (6.9.2) to be equal to the −ui from §6.8, but

many other choices are possible. We get a toric degeneration in this more general context,

too (cf. [30]):

Lemma 6.9.5. The lattice vector wi ∈ M defines a binomial section of the line bundle

Li ∈ Pic(Y ).

Proof. The lattice M is the character lattice of the torus TN , and so wi defines a rational

function on Y . The image ρ∨(wi) ∈ (Z∗)R defines a pair of effective torus invariant divisors

by taking the positive entries and minus the negative entries of this vector, written in the

standard basis. The only negative entries are those in Si, which are equal to minus one. Both

monomials have the same image under D, and so they are both in the linear system defined

by Li. �

6.10. From Laurent Inversion to the SYZ conjecture

In this section we very briefly sketch, and provide a simple example of, an interpretation

of Laurent Inversion in terms of the toric degenerations of the Gross–Siebert programme and

affine/tropical geometry. We will return to this in detail elsewhere.

This interpretation is achieved in a number of stages:

(1) First interpret the input data for the Przyjalkowski method (or output data from Lau-

rent Inversion) as a smoothing of the variety
∏
j∈S1

xj = 0, · · · ,
∏
j∈Sk xj = 0. Thus,

given a complete intersection to which we may apply the Przyjalkowski method,

there is an embedded degeneration of the complete intersection to a (compact) ‘ver-

tex’ variety.

(2) Use the degeneration to this vertex to form a tropical version of the complete in-

tersection. As the equations defining the complete intersection change, the singular

locus of its tropicalisation varies along substrata of the intersection complex.

(3) The singularities which appear imply the existence of certain elements in H0(X,Li).

The existence of these elements impose certain relations on the weight matrix.

(4) In the Przyjalkowski method the weight matrixD encodes the exponents appearing in

the mirror-dual Laurent polynomial. Remarkably, we see an equivalence between the

condition that the Laurent polynomial f obtained via our construction is maximally

mutable and the condition that the toric variety defined by Newt(f) admits an

embedded smoothing.
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Figure 6.10.1. Affine manifolds corresponding to scaffoldings of dP3, dP4, and dP6

Example 6.10.1. Recall Example 6.6.5, in which dP6 is endowed with a scaffolding by

triangles. This gave rise to the toric variety Y = P1 × P1 × P1 with the line bundle L =

O(1, 1, 1), that is, the weight matrix for the ambient toric variety is

M =

 1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


The degeneration referred to above is obtained by deforming the section

s0 = x0x1x2 ∈ H0(Y,L)

Since each cone in the spanning fano over the reflexive polygon P considered in Example 6.6.5

is smooth, we expect each slab in the affine manifold to contain a single focus-focus singular-

ity. Indeed, taking a generic element s ∈ H0(Y,L) and a one parameter family s0 + ts the

singularities of the embedded family are contained in the lines xi = xj = 0 for 1 ≤ i, j ≤ 3

and i 6= j. In particular the family is singular when s|xi=xj=0 vanishes. This restriction is a

linear equation in one variable, thus the family is singular over three reduced points in the

base, one on each line.

There is only a short list of possible affine manifolds (after forgetting the boundary and

the monodromies, which depend on H0(X;
⊕

i Li)); the type of affine manifold which occurs

is determined by the shapes of the struts used in the scaffolding. For surfaces, the ‘maximal’

(no uneliminated variables) cases are:

• X is a hypersurface in Y , and L is the sum of three divisors Di = D(ei); and

• X is codimension 2 and L1, L2 are sums of disjoint pairs of divisors Di.

The affine manifolds corresponding to these two possibilities are shown in Figure 6.10.2. The

prototypical examples here are the cubic surface, for which each singularity has monodromy

polytope equal to an interval of length three, and the intersection of two quadrics in P4, for

which each singularity has monodromy polytope equal to an interval of length two. These

examples, together with the dP6 example where the boundary divisor is given by three curves

with zero self-intersection, are shown in Figure 6.10.1.

For the threefold case there are three maximal cases:
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Figure 6.10.2. Affine manifolds for triangle and square scaffoldings

Figure 6.10.3. Affine manifold corresponding to tetrahedral scaffoldings

• X is a hypersurface in Y , and L is the sum of four divisors Di = D(ei); or

• X is codimension 2 in Y , and L1, L2 is the sum of two and three divisors Di = D(ei)

respectively; or

• X is codimension 3 and L1, L2, L3 are sums of disjoint pairs of divisors Di.

The affine manifolds obtained from the first and third of these are shown in Figures 6.10.3, 6.10.4.
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Figure 6.10.4. Affine manifold corresponding to cuboid scaffoldings





CHAPTER 7

From Commuting Mutations to Complete Intersections

In the previous chapter we introduced a technique, Laurent Inversion, which, starting

from a Laurent Polynomial f , constructs a Fano Variety which for which f is a mirror in the

sense of Givental/Hori–Vafa. The principal difficulty with this method is that while we are

able to recover a collection of rays of a fan in general, recovering the correct fan to produce

a smoothing of the toric variety XNewt(f) requires a careful analysis in each case. In this

chapter we consider a Fano polytope P together with a collection of commuting mutations Ξ

and construct a ‘minimal’ Laurent polynomial f such that Newt(f) = P and f admits this

collection of mutations. We then run Laurent Inversion on f and construct a specific stability

condition. Thus we produce a toric variety YP,Ξ and line bundles Li such that each toric

variety Xµ(P ) for µ ∈ Ξ is the vanishing locus of a section of ⊕iLi.

Theorem 7.0.2. Given a Fano polytope P and a collection of commuting mutations Ξ

there is a toric variety YP,Ξ and line bundles Li such that for each µ ∈ Ξ there is a section

sµ ∈ H0(⊕iLi) such that sµ ∩ YP,Ξ = Xµ(P ).

Remark 7.0.3. While we do not make a general analysis of a general section in this

chapter the effect of simultaneously producing the deformations corresponding to a collection

of mutations is that we expect to often be able to smooth every singularity, and thus we

expect this construction, applied to reflexive polytopes, to yield many new Fano manifolds.

7.1. Overview

This chapter will make extensive use of the notion of combinatorial mutation in arbitrary

dimensions, which directly generalises the definition for polygons detailed in Section 2.1. We

recall the definition of mutation below, but for more details see [4].

Throughout this section N ∼= Zn is a lattice, M = Hom(N,Z) its dual lattice, P ⊂ N

is be an n-dimensional Fano polytope and Q := P ◦ its polar (dual) polytope. Given a k-

dimensional stratum s of ∂P we denote by s? its dual (n − k − 1)-dimensional stratum of

∂Q. Recall that given a Fano polygon P we denote its spanning (or face) fan by ΣP and

the toric variety corresponding to this fan by XP . Note that this is not an entirely standard

convention, which would more usually define ΣP as the normal fan to P .

A mutation of P is defined using two additional pieces of data:

• A weight vector w ∈M .

• A factor polytope, F ⊂ w⊥ ⊂ N .

149
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This data cannot be chosen arbitrarily, for a mutation to exist additional criteria must be

satisfied, see [4] for details. It is possible to directly write out the polytope µw,F (P ) which

immediately generalises Definition 2.2.2, however it is easier to write the dual operation,

which we recall in Definition 7.1.1 and refer to [4] (or Definition 2.2.2) for the direct ‘N -side’

definition.

Definition 7.1.1 (M -side mutation). If a mutation µw,F exists, it takes P to a Fano

polytope µw,F (P ), which is uniquely determined by its polar polytope. The piecewise linear

map µw,F : M →M defined by

µw,F : u 7→ u− min
v∈verts(F )

〈v, u〉

sends Q to µw,F (P )◦, and will be the definition of mutation used in this chapter. We will

assume throughout that 0 ∈ vertsF so there is a chamber on which the piecewise linear map

µw,F is the identity.

The definition for polytopes was inspired by an operation on Laurent polynomials which

we refer to as algebraic mutation. This is a birational map from the torus TM to itself. An

algebraic mutation is determined by a weight vector w ∈M and a polynomial F alg such that

Newt(F alg) ⊂ w⊥. We recall the precise definition which we gave in Section 2.1.

Definition 7.1.2. Given a Laurent polynomial f ∈ C[TN ] say f mutates to θ?
w,Falg

(f) if

the latter is also a Laurent polynomial on TM . The birational map θw,Falg is defined to by

setting

θ?w,Falg(z
n) = zn

(
F alg

)〈w,n〉
In particular if f mutates to θ?

w,Falg
(f), P = Newt(f) mutates to

µw,F (P ) = Newt(θ?w,Falg(f))

where F = Newt(F alg). Every combinatorial mutation can be expressed in terms of the

Newton polyhedra of an algebraic mutation.

Definition 7.1.3. Given a collection Ξ of mutations, denote the set of factors Factors(Ξ)

and the set of weight vectors Weights(Ξ). Given a factor F ∈ Factors(Ξ) define Weights(Ξ, F )

to be those weights of mutations in Ξ with factor F .

7.2. Commuting Mutations

In this section we classify collections of commuting mutations. We must first make precise

the sense in which we insist that two mutations commute.

Definition 7.2.1. Given two mutations µw,F , µw′,F ′ we say that these commute if the

(integral) piecewise linear transformations induced on M commute.

Remark 7.2.2. It may be that µw,F , µw′,F ′ do not commute but that still µw′,F ′ ◦µw,F (P )

is GL(n,Z) equivalent to µw,F ◦ µw′,F ′(P ) due to automorphisms of P .
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If Ξ is a collection of commuting mutations and µ ∈ Ξ, define µ(Ξ) to be the set of

mutations

µ(Ξ) := {η ∈ Ξ : Fη 6= Fµ}∪{(w,F ) : w = wη−wµ, F = Fη for all η ∈ Ξ such that Fµ = Fη}

Definition 7.2.3. A collection of commuting mutations Ξ is called a collection of com-

muting mutations of P if for all µ ∈ Ξ and all η ∈ µ(Ξ), η defines a mutation of µ(P ).

Thus a collection Ξ of commuting mutations of P can be followed under every mutation

µ ∈ Ξ. In the next section we construct a Laurent polynomial which admits all of the

mutations in Ξ. Before doing so we prove a result classifying commuting sets of mutations.

Proposition 7.2.4. Let P be a Fano polygon and Ξ be a collection of mutations of P .

The mutations in Ξ pairwise commute if and only if for all factors Fi and weight vectors wj

we have Fi ⊂ w⊥j .

Proof. One direction is easy, writing out the definition of the piecewise linear map in

M we see that if Fi ⊂ w⊥j for all i, j then the mutations must commute. Assume that there

is some pair of mutations µi ∈ Ξ for i = 1, 2 such that F2 is not contained in w⊥1 . Dually we

have that

w1 /∈ F⊥2 :=
⋂

v∈verts(F2)

v⊥ ⊂M

The mutation µ2 subdivides M into chambers, and assuming the origin of N is a vertex of

F2, there is a chamber on which µ2 is the identity. However this chamber is not preserved

by translation in ±w1, since the smallest subspace it contains is F⊥. We claim there is an

element u ∈ M contained in the chamber fixed by µ2 that is moved out of this chamber by

µ1. Having shown this, we see that

µ1(µ2(u)) = µ1(u)

But also,

µ2(µ1(u)) 6= µ1(u)

Observe that w1 is not in the kernel of the projection M → M/F⊥2 and the identity

chamber Cµ2 of µ2 defines a strictly convex cone in M/F⊥2 . Thus there is a wall of Cµ2 such

that for any point y on this wall y + εw1 /∈ Cµ2 for all ε > 0 and possibly replacing w1 with

−w1. Translating the factor F1 appropriately the mutation µ1 acts non-trivially on a given

point u lying in this wall, thus we can take any such element u. �

7.3. Constructing fP,Ξ

Following the procedure in Section 6.6 we construct a scaffolding of P by constructing a

Laurent polynomial fP,Ξ which admits each mutation µ ∈ Ξ, lifting the combinatorial muta-

tion µ to an algebraic mutation with the same weight vector and factor F alg :=
∑

v∈verts(F ) z
v.

Before we define fP,Ξ we define some useful auxillary polynomials.
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Definition 7.3.1. Given a function a ∈ ZFactors(Ξ)
≥0 , define the strut polynomial

Sa :=
∏

F∈Factors(Ξ)

(
F alg

)a(F )

We will refer to the entries a(F ) as dilation factors, noting that the Newton polytope of

Sa is the Minkowski sum of each F ∈ Factors(Ξ) dilated by a factor of a(F ).

Definition 7.3.2. Define the polynomial

fP,∅ :=
∑

v∈verts(P )

zv

We define the maximum weight vector for each vertex of P ; this determines the dilation

factors of the strut that appears at each vertex.

Definition 7.3.3. Fix a v ∈ verts(P ) and polytope F ∈ FΞ we define the vector wv ∈
ZFactors(Ξ)
≥0 by insisting that

wv(F ) := max
w∈Weights(Ξ,F )∪{0}

−〈w, v〉

Observe this number is always non-negative since 0 ∈ verts(F ).

Given a vertex v of P and factor F there is a vertex vF (v) of F such that

{v + wv(F )x : x ∈ (conv(F )− vF (v))} ⊂ P

That is, there is a vertex vF (v) of F such that scaling F by wv(F ) and translating it so that

vF (v) lies at v the transformed factor lies inside P (since P admits a mutation with this factor

and weight vector putting v as the height wv(F )).

Remark 7.3.4. The vertex vF (v) is not necessarily unique, but is unique if wv(F ) > 0.

If wv(F ) = 0, vF (v) is chosen arbitrarily from verts(F ).

We can then form subsets verts(P )u ⊂ verts(P ) for any given u ∈ verts(F ),

verts(P )u := {v ∈ vertsP : vF (v) can be taken to be u}

Ranging over the different F ∈ Factors(Ξ) we can refine this collection of subsets.

Definition 7.3.5. Given a function U : Factors(Ξ) → N such that U(F ) ∈ verts(F )

define

verts(P )U := {v ∈ vertsP : vF (v) = U(F ) (∀F ∈ Factors(Ξ))}

We call such a function U a vertex picking function and call v ∈ verts(P )U a U -vertex of P

if v ∈ verts(P )U .

Example 7.3.6. Let F1 = {0, (1, 0, 0)} and F2 = {0, (0, 1, 0)} where corresponding to

Newt(1 + x) and Newt(1 + y) in C[x, y, z] respectively. Assume that

Factors(Ξ) = {F1, F2}
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Figure 7.3.1. A vertex v ∈ verts(P )U

Then a strut polynomial has the general form

Sa = xaybzc(1 + x)d(1 + x)e

The polyhedra F1, F2 and a general strut Newt(Sa) is shown in Figure 7.3.2. Let U be the

vertex picking function which sends F1 7→ (1, 0, 0) and F2 7→ (0, 1, 0). Figure 7.3 shows an

example of a U -vertex v of a strut.

Remark 7.3.7. Neither verts(P )u nor verts(P )U need give partitions of verts(P ), since

factors can have height wv(F ) = 0.

Definition 7.3.8. We now define a preliminary version of fP,Ξ by writing

fpreP,Ξ :=
∑

U : Factors(Ξ)→N
U(F )∈verts(F )

∑
v∈verts(P )U

(
zv−

∑
F∈Factors Ξ wv(F )U(F ) · Swv

)

This polynomial will, by construction, admit each mutation in Ξ and we claim that

Newt(fpreP,Ξ) = P .

Lemma 7.3.9. The Newton polytope of fpreP,Ξ is P .

Proof. Given a vertex v ∈ P we have replaced the term zv in fP,∅ with the polynomial

Salgv = zv−
∑
F∈Factors Ξ wv(F )U(F ) · Swv

Where v ∈ verts(P )U , Figure 7.3 shows the Newton polytope of this polynomial and we require

that it is contained within P . However since Ξ is a collection of commuting mutations we can

mutate each factor Fi in turn using the weight vector wF which attains wv(F ). Since U(F ) was
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chosen such that a copy of wv(F )F lies within P and meets v we can argue inductively that

the Minkowski sum
∑

F wv(F )F , translated so its U -vertex meets v lies within P . Specifically,

induct on the number of terms in the Minkowski sum, apply a mutation with factor F and

weight vector wF and use that the mutations commute. �

Whilst being close to what we need, fpreP,Ξ generally contains repeated terms which we

shall trim. In particular we have a mapping from monomial terms in fP,∅ to terms in fpreP,Ξ by

sending:

φ : zv 7→
(
zv−

∑
F∈Factors Ξ wv(F )U(F ) · Swv

)
This function need not be injective, so we will trim the repeated terms. Before we do this

we recall the notion of a strut. Recall from Section REF that we can think of the Newton

polytope of fpreP,Ξ as being ‘tiled’ by polyhedra, called struts.

Definition 7.3.10. For any v ∈ verts(P ) the strut Sv is the polyhedral set

Sv := y + Newt(Swv)

Where y ∈ N is uniquely determined by requiring that Sv ⊂ P and v is a vertex of Sv, that

is, the point

y = v −
∑

F∈Factors Ξ

wv(F )U(F )

Define the set Struts(P ) = {Sv : v ∈ verts(P )}. Observe that there is a surjection, which we

also call φ : verts(P )→ Struts(P )

We can extend the notion of a U -vertex to all the vertices of a strut Sv.

Definition 7.3.11. Given a vertex picking function U we refer the element of N corre-

sponding to taking the monomial zU(F ) in each term of the sum Swv =
∏
F∈Factors(Ξ)

(
F alg

)wv(F )

as the U -vertex of Sv. Clearly if v′ ∈ verts(Sv)∩verts(P ) then the U -vertex of Sv is a U -vertex

of P , that is, v′ ∈ verts(P )U .

Definition 7.3.12. Given a strut Sv we define Root(Sv) = v −
∑

F∈Factors Ξwv(F )U(F ).

This defines an injection Root : Struts(P )→ N .

We collect several elementary observations about struts into the following Lemma.

Lemma 7.3.13. Given a strut S ∈ Struts(P,Ξ) we have,

• The lattice point Root(S) ∈ N is independent of the choice of vertex v of the strut

Sv.

• If 0 ∈ verts(F ) for each F ∈ Factors(Ξ) then Root(S) ∈ P .

• The values wv(F ) are constant over vertices v ∈ verts(S).

Remark 7.3.14. Using the third point, given a strut S ∈ Struts(P,Ξ) we will write wS in

place of wv for any v ∈ verts(S).
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Figure 7.3.2. Two factors and general strut shape

Example 7.3.15. Returning to Example 7.3.6 the strut Sv is exactly the polytope

Newt(xaybzc(1 + x)d(1 + y)e)

and the point (a, b, c) ∈ N is Root(Sv). An example of a scaffolding of a polytope P with

these factors is shown in Figure 7.3.3 in which the roots of each strut are marked with a

× symbol. From this example we see that one strut may meet many vertices of P and by

construction meets at least one.

Utilizing the terminology of struts we define the polynomial fP,Ξ.

Definition 7.3.16.

fP,Ξ :=
∑

S∈Struts(P )

zRoot(S) · SwS

Recall from Section 6.6 that we can reconstruct the rays of the Givental/Hori–Vafa mirror

to a toric variety YP,Ξ, a candidate ambient space for a complete intersection model of XP,Ξ.

Schematically, the steps in this procedure are as follows.

• Introduce k variables where k is the codimension of the complete intersection we are

attempting to construct.

• Apply a mutation with its weight vector determined by these new variables.
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Figure 7.3.3. An example of a scaffolding

• The monomials of the resulting polynomial define rays in a lattice Ñ = N⊕〈e1, · · · ek〉.
Applying this to fP,Ξ we first add new variables XF for each F ∈ Factors(Ξ).

Definition 7.3.17. Define the lattice Ñ := N ⊕ 〈eF : F ∈ Factors(Ξ)〉. The Laurent

polynomial Givental/Hori–Vafa mirror to the ambient toric variety YP,Ξ will have exponents

in this lattice. Denote the dual lattice M̃ and the dual vectors to eF ∈ Ñ by e?F .

Introducing new variables we write down an intermediate Laurent polynomial,

f
(1)
P,Ξ :=

∑
F∈Factors(Ξ)

XF +
∑

S∈Struts(P )

zRoot(P ) · SwS ·
∏

F∈Factors(Ξ)

X
−wS(F )
F

Successively apply mutations with factor F and weight vector e?F .

Definition 7.3.18. Define the polynomial

f̃P,Ξ :=
∑

F∈Factors(Ξ)

XFF
alg +

∑
S∈Struts(P )

zRoot(P ) ·
∏

F∈Factors(Ξ)

X
−wS(F )
F

The exponents of these monomials lie in the lattice Ñ and define the following set of rays.

Definition 7.3.19.

Rays(P,Ξ) ={〈eF + v〉 : ∀F ∈ Factors(Ξ), v ∈ verts(F )}∪
〈

Root(S)−
∑

F∈Factors(Ξ)

wS(F )eF

〉
: S ∈ Struts(P )
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For brevity, we will denote these rays as:

• ρF,v := 〈eF + v〉 for F ∈ Factors(Ξ), v ∈ verts(F )

• ρS := 〈Root(S)−
∑

F∈Factors ΞwS(F )eF 〉 for S ∈ Struts(P ), observing that the func-

tion U is determined by v.

Let gF,v denote the primitive integral generator of the ray ρF,v and gS denote the primitive

integral generator of the ray ρS .

7.4. The polytope Q̃P,Ξ

Now that we have the Laurent polynomial f̃P,Ξ we can write down the rays Rays(P,Ξ).

We will define a polytope Q̃P,Ξ ⊂ M̃ using these rays and define YP,Ξ as the toric variety

assoicated to the normal fan of Q̃P,Ξ.

Definition 7.4.1. The polytope Q̃P,Ξ ⊂ M̃ defined using inequalities defined by evalua-

tion in the primitive integral generators of elements of Rays(P,Ξ).

Q̃P,Ξ :=
⋂

F∈Factors(F ),
v∈verts(F )

{u ∈ M̃ : 〈u, gF,v〉 ≥ 0} ∩
⋂

S∈Struts(P,Ξ)

{u ∈ M̃ : 〈u, gS〉 ≥ −1}

The rest of this section is devoted to understanding certain important strata of this poly-

tope. To begin with we observe that each F ∈ Factors(Ξ) determines a polyhedral decompo-

sition of Q := P ◦.

Definition 7.4.2. Given an element F ∈ Factors(Ξ) we define a polyhedral decomposition

of Q by fixing a vertex v ∈ verts(F ) and defining a chamber

Cv := {x ∈ QR : min
v∈verts(F )

〈v, x〉 is attained on v}

These are closed polyhedral subsets, and define a polyhedral decomposition P(F ). Given a

vertex picking function U we define

CU := {x ∈ QR : min
U(F )∈verts(F )

〈U(F ), x〉 is attained on U(F ) for all F}

The CU are chambers of a polyhedral decomposition.

Later we will need to understand the relationship between the scaffolding of P induced

by the polynomial fP,Ξ and the decompositions of Q induced by the factors F . We collect the

observations we will need in the following Lemma.

Lemma 7.4.3. Given a vertex picking function U , the sets verts(P )U are dual to the

chambers CU in the following sense.

(1) Given a vertex v ∈ verts(P ), v ∈ verts(P )U if and only if v? ∩ CU 6= ∅.

(2) Given a vertex v′ ∈ verts(Q), v′ ∈ CU if and only if v′? contains a U -vertex.

Proof. Choose a vertex v ∈ verts(P )U and let v′? be a facet of P containing v with

v′ ∈ verts(Q). Since Sv ⊂ P , evaluating v′ on points in Sv it attains its minimum of −1
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precisely along v′?. That is, ranging over vertex picking functions, the minimum is attained

at v, a U -vertex, thus v′ ∈ CU and v′? ⊂ v? since duality is inclusion reversing. This proves

the forward implication of the first point and the opposite implication of the second.

For the other directions, if v?∩CU 6= ∅ we pick a rational point r ∈MQ in the intersection.

Given a factor F ∈ Factors(Ξ) we know that, ranging over the vertices of F , r achieves its

minimum on U(F ), since r ∈ CU . Thus, ranging over the vertices of Sv, r is minimal on

the U -vertex. But r ∈ v? so this occurs precisely at v. This proves the other implication of

the first point. Choosing a facet v? such that v′ ∈ v? then letting r = v′ proves the forward

implication of the second point. �

Figure 7.4.1. An example demonstrating Lemma 7.4.3

The function minv∈verts(F ) defines a piecewise linear function on Q linear on the chambers

of P(F ), there is an important connection between the graph of this function and the polytope

Q̃P,Ξ which we now explore.

Definition 7.4.4. Considering the graphs of the functions minv∈verts(F ) simultaneously

we define a piecewise linear function ι : MR → M̃R.

ι : x 7→ x−
∑

F∈Factors(Ξ)

min
v∈verts(F )

(〈x, v〉)e?F
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Observe that ι is a linear function on each polyhedral subset CU ⊂ QR. The main result

of this section is that each CU is a stratum of the boundary of Q̃P,Ξ.

Proposition 7.4.5. The image ι(Q) is equal to a collection of strata of Q̃P,Ξ.

Proof. We prove this in two stages, first forgetting the boundary of Q and identifying

the piecewise linear subspace of M̃ defined by extending the functions ι to all of M and

using the inequalities 〈gF,v, u〉 ≥ 0 to recover this subspace. We then show that applying the

inequalities 〈gS , u〉 ≥ −1 reproduces the image of ∂Q on this (piecewise linear) subspace of

M̃ .

Consider the polyhedral subspace defined by the inequalities {u ∈ M̃ : 〈gF,v, u〉 ≥ 0}. A

stratum of the boundary of this subspace is uniquely determined by a collection of pairs (v, F )

such that 〈gF,v, u〉 = 0. Given a vertex picking function U , there is a boundary stratum RU

given by choosing precisely the pairs (F,U(F )). Observe that the image ι(CU ) has the same

dimension as RU , and we claim that ι(CU ) is annihilated by each vector eF + U(F ), making

ι(CU ) a maximal dimensional polyhedral subset of RU . However, by definition

y ∈ ι(CU )⇔ y = y′ −
∑

F∈Factors(Ξ)

〈U(F ), y′〉eF , for some y′ ∈M

Evaulating ρ(F,v) = (eF + U(F )) at y we find

(eF + U(F ))(y′ −
∑

F∈Factors(Ξ)

〈U(F ), y′〉eF ) = 〈U(F ), y′〉 − 〈U(F ), y′〉 = 0

So the the piecewise linear subspace into which MR maps under ι is equal to the union of the

RU . We still need to check that the inequalities ρv restricted to the union R := ∪URU defines

the image ι(Q). We first show that ι(Q) ⊆ Q̃P,Ξ ∩R.

Choose a vertex v ∈ verts(P ) such that the facet v? has non-empty intersection with CU .

The subspace RU is precisely the subspace on which eF +U(F ) = 0 for each F ∈ Factors(Ξ),

so the inequality ρF,v = v −
∑

F∈Factors(Ξ)w(F )(eF + U(F )) ≥ −1 restricts to the inequality

v ≥ −1, an inequality defining Q. Observe that this argument only applies on those subsets

RU of R for which v ∈ verts(P )U (using Lemma 7.4.3).

To show the reverse inclusion Q̃P,Ξ ∩ R ⊆ ι(Q) we still need to show that the inequality

defined by ρS does not interfere with other sets RU , as illustrated in Figure 7.4.2. However

taking any gS = Root(S)−
∑

F∈Factors(Ξ)wS(F )eF and ỹ any point in the image of ι,

ỹ = y −
∑

F∈Factors(Ξ)

aF (y)e?F

where aF (y) = minu∈verts(F ) 〈u, y〉. Evaluating gS at y we find,

gS(ỹ) = Root(S)(y) +
∑

F∈Factors(Ξ)

wv(F )aF
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Figure 7.4.2. Impossible behaviour of the facets of Q̃P,Ξ by Proposition 7.4.5

Expanding out Root(S) = v −
∑

F wS(F )U(F ) for any v ∈ verts(S) where v is a U -vertex of

S we have

ρS(ỹ) = v(y) +
∑

F∈Factors(Ξ)

wS(F )(aF − U(F )(y))

Fix a vertex picking function U by requiring that U(F ) is the vertex of verts(F ) on which

〈y,−〉 attains its minimum and let v be the U -vertex of S. Now, U is a vertex picking function

such that aF (y) = U(F )(y), thus the evaluation of gS at y reduces to

gS(ỹ) = v(y) ≥ −1

This also shows that equality is attained precisely when

v ∈ verts(P ) ∩ verts(S) and y ∈ v? ⊂ ∂Q

Thus ι(Q) ⊆ Q̃P,Ξ ∩R, but from our local calculation we know that Q̃P,Ξ ∩R ⊆ ι(Q). �

7.5. Recovering toric varieties Xµ(P )

In this section we study the toric variety defined by Q̃P,Ξ in detail, and prove the main

result of this chapter, Theorem 7.0.2.

Definition 7.5.1. Define the fan ΣP,Ξ to be the normal fan of the polytope Q̃P,Ξ.



7.5. RECOVERING TORIC VARIETIES Xµ(P ) 161

Lemma 7.5.2. The set of rays ΣP,Ξ(1) is equal to the set Rays(P,Ξ), that is, there are no

redundant inequalities defining Q̃P,Ξ.

Proof. Recall that the set Rays(P,Ξ) naturally divides into two pieces

Rays(P,Ξ) := {ρF,v : F ∈ Factors(Ξ), v ∈ verts(F )} ∪ {ρS : S ∈ Struts(P,Ξ)}

and recall that these are defined by primitive integral generators which we refer to as gF,v and

gS respectively. Choose a factor F ∈ Factors(Ξ), a vertex v ∈ verts(F ) and an ε > 0 such that

for any x ∈ Bε(0), 〈gv, x〉 > −1. We will find a y ∈ M̃R such that gF ′,v′(y) = (e′F + v′)(y) > 0

if (F ′, v′) 6= (F, v) and gF,v(y) = 〈(eF + v), y〉 = 0. First let

y′ :=
∑

F ′∈Factors(Ξ)\{F}

ε

K
eF ′

For K > |Factors(Ξ)|, now gF ′,v′(y
′) > 0 for all F ′ 6= F , but gF,v′(y

′) = 0 for all v′ ∈ verts(F ).

Therefore choose an element u ∈ ι(relint(CU )). Consider points yη := ηu+ y′ for η > 0. For

sufficently small η, yη ∈ Bε(0), and the inequality gF ′,v′(yη) > 0 holds for all η > 0. Further,

gF,v′(yη) = 〈eF , yη〉+ 〈v′, yη〉 = η〈eF , u〉η〈v′, u〉

But u = u′ −
∑

F∈Factors(Ξ) minv∈verts(F )(〈u′, v〉)eF for some u′ ∈ relint(CU ), so

gF,v′(yη) = − min
v∈verts(F )

(〈u′, v〉) + 〈u′, v′〉 > 0

Since as u′ ∈ relint(CU ) minv∈verts(F )(〈u′, v〉) is achieved uniquely on v.

For rays ρS we adopt a similar approach. First choose a vertex v ∈ verts(P ) such that

Sv = S. Choose a point u′ in the relative interior of the facet v? of Q and consider u = ι(u′).

By the the proof of Proposition 7.4.5 we can choose a small ball around u so that gS′(z) > −1

for all S′ 6= Sv ∈ Struts(P,Ξ). As before we choose an element z of the subspace {x ∈ M̃ :

〈gS , x〉 = −1} such that gF,v(z) > 0 for all pairs F, v. Considering u + ηz for small η > 0

we find the required point. Figure 7.5.1 illustrates the idea of each of the two parts of this

proof. �

We are interested in cones of ΣΞ,P which have a non-trivial intersection with N , that is,

cones which will induce non-trivial cones in the fan ΣΞ,P ∩ NQ. We now classify precisely

these cones by comparing the scaffolding of P with the set Rays(P,Ξ). Indeed, let E be a

stratum of ∂P and let E? denote the dual stratum of Q. E is uniquely determined by the

following information assoicated to the scaffolding of P :

• The set S(E) ⊂ Struts(P,Ξ) of struts such that S ∈ S(E) if and only if verts(S) ∩
verts(E) 6= ∅.

• The set

U(E) = ∩v∈S(E) vertex picking U such that vertsE contains the U -vertex of Sv
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Figure 7.5.1. Illustrating the proof of Lemma 7.5.2

Observe that each Sv ∈ S(E) may be identified with a ray ρSv ∈ Rays(P,Ξ) = ΣP,Ξ(1),

in fact S(E) is in bijection with the set of rays {ρSv : v ∈ verts(E)}. Also observe that each

U ∈ U(E) may be identified with a cone:

Cone(U) := 〈ρF,v : v = U(F ) ∀F ∈ Factors(Ξ)〉

Definition 7.5.3. Define the cone

˜Cone(E) := 〈Cone(U), ρS : ∀S ∈ S(E), U ∈ U(E)〉

Proposition 7.5.4. Restricting ˜Cone(E) to N recovers Cone(E), that is, ˜Cone(E)∩N =

Cone(E).

Proof. We show that Cone(E) ⊆ ˜Cone(E) ∩ N by showing every ray generator of

Cone(E) appears in ˜Cone(E) ∩ N . By definition, the ray generators of Cone(E) are pre-

cisely the vertices of E. Writing,

gSv = v −
∑
F

wv(F )(eF + U(F ))

for U such that v ∈ verts(P )U we see that

gSv +
∑

F∈Factors Ξ

wv(F )gF,U(F ) = v ∈ N ⊕ 〈eF : F ∈ Factors(F )〉
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Figure 7.5.2. Calculating ˜Cone(E) ∩N

So we can recover v ∈ N as a sum of gSv and gF,U(F ) such that v is the U -vertex of Sv. Thus

Cone(E) ⊆ ˜Cone(E) ∩N .

Now suppose that Cone(E) is strictly contained in ˜Cone(E) ∩ N . Thus there is a ray

of ˜Cone(E) ∩ N not contained in Cone(E) and hence a cone of ˜Cone(E) whose intersection

with N is positive dimensional but meets Cone(E) only at the origin. Now take any cone

C generated by rays of ˜Cone(E). For C to meet N in a positive dimensional cone it must

contain:

• A ray ρS for some S ∈ Struts(P,Ξ).

• A ray ρF,v for any F and some v ∈ verts(F ).

But making choices of S and v ∈ verts(F ) for every F the subcone of C generated by these

rays meets N along the ray over the U -vertex of the strut S (arguing as in the first part).

But the ray over any vertex of any S ∈ Struts(P,Ξ) is contained in Cone(E), which gives a

contradiction.

�

The central result of this section is that the square shown in Diagram 7.5.1 is well-defined

and commutes. Using this it will follow that XP is a toric subvariety of YP,Ξ, corresponding

to the inclusion N ↪→ Ñ . This in turn is a significant step in proving all toric varieties XµP

are subvarieties of YP,Ξ.
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(7.5.1) Σmax
P,Ξ

−∩NR

��

// verts(Q̃P,Ξ)

Σmax
P

// verts(Q)

ι

OO

The horizontal arrows are the usual bijections between k-strata of a polytope and the codimen-

sion k cones of its normal fan, and ΣP is the spanning fan of the polytope P . The right-hand

vertical arrow is the inclusion by the piecewise linear map ι and the left-hand vertical map is

intersection with the subspace NR.

Lemma 7.5.5. Diagram 7.5.1 is well defined and commutes.

Proof. Fix a vertex ṽ = ι(v) ∈ verts(Q̃P,Ξ). The vertex ι(v) lies in CU for a collection

of vertex picking functions U . By Lemma 7.4.3 for each such U there is a vertex v′ of v? ⊂ P
which is the U -vertex of its strut Sv. Thus ι(v) is intersection of facets of Q̃P,Ξ defined by the

following rays of ΣP,Ξ:

• ρSv′ for v′ ∈ verts v?.

• ρF,U(F ) for U such that v ∈ Cu.

But by Proposition 7.5.4, if C the cone generated by these rays C ∩N = Cone(v?), thus the

square commutes as required. �

Proposition 7.5.6. The inclusion of lattices N ↪→ Ñ induces an inclusion of toric vari-

eties XP ↪→ YP,Ξ.

Proof. Consider the fan Σ′P := ΣP,Ξ ∩ NQ. To show that Σ′P = ΣP we consider the

maximal cones of Σ′P . A subset of maximal cones is determined by Lemma 7.5.5: fixing a

vertex of Q Lemma 7.5.5 produces a maximal cone in Σ′P equal to a maximal cone of ΣP .

But since ΣP is a complete fan its maximal cones cover all of N and thus Σ′P can contain no

other maximal cones. �

We conclude the proof of Theorem 7.0.2 by proving that, given any µ ∈ Ξ, Σµ(P ),µ(Ξ)

differs from ΣP,Ξ by a linear transformation which identifies the respective fans Σ̃P,Ξ in each

case.

Lemma 7.5.7. Fix an element µ ∈ Ξ. Then there is a linear equivalence Tµ : Ñ → Ñµ

such that Σµ(P ),µ(Ξ) = Tµ (ΣP,Ξ).

Proof. Given a mutation µ ∈ Ξ with weight vector wµ and factor Fµ we will first

determine a sublattice Nµ ⊂ Ñ which we will use in the definition of Ñµ and Tµ. Recalling

that N can be described as the subspace ∩F∈Factors Ξe
⊥
F define,

Nµ :=
⋂

F∈Factors Ξ
F 6=Fµ

e⊥F ∩ (eFµ + wµ)⊥
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and define Ñµ := Nµ ⊕ 〈eF : F ∈ Factors(Ξ)〉. Given an element n+
∑

F∈Factors(Ξ) aF eF ∈ Ñ
We define the map Tµ : Ñ → Ñµ as follows,

Tµ : n+
∑

F∈Factors(Ξ)

aF eF 7→ n+ wµ(n)eFµ +
∑

F∈Factors(Ξ)

aF eF

which sends eF 7→ eF for each factor F . Similarly, by Proposition 7.2.4, wµ annihilates every

vertex of every factor, so

Tµ : gF,v 7→ gF,v = 〈eF + v〉

Finally, applying Tµ to a ray ρS for S ∈ Struts(P,Ξ) we calculate that

Tµ : gS 7→ gS + wµ(v)eFµ

where v is some vertex of S. We now show an equality,

{Tµ(ρ) : ρ ∈ Rays(P,Ξ)} = {ρ ∈ Rays(µ(P ), µ(Ξ))}

To find Rays(µ(P ), µ(Ξ)) first form the following Laurent polynomial from (µ(P ), µ(Ξ)),

fµ(P ),µ(Ξ) :=
∑

S∈Struts(µ(P ),µ(Ξ))

zRoot(S)SwµS

where wµS is the maximal weight vector ranging over Weights(µ(Ξ)) for any vertex of S. We

claim that fµ(P ),µ(Ξ) = θ?w,F (fP,Ξ), where w,F are the weight vector and factor polynomial of

µ ∈ Ξ respectively. Indeed, mutating fP,Ξ we see that

θ?w,F (fP,Ξ) :=
∑

S∈Struts(P,Ξ)

zRoot(µ(S))SwµS

where µ(S) is the polytope obtained applying the mutation to S. We will show that there is

an identification Struts(P,Ξ)→ Struts(µ(P ), µ(Ξ)) which preserves the roots of the struts.

The polytope µ(S) = y+Newt(Sa) for some y,a and so has the general form of a strut and

it is easy to check it has the correct dilation factors (given by the maximal weight vector for y

defined over weights in µ(Ξ)) and is contained in µ(P ). Thus, if µ(S) contains a vertex v′ of

µ(P ) then µ(S) appears as a strut in the scaffolding of µ(P ), namely as the strut Sv′ ⊂ µ(P ).

By construction the root vertex is unchanged by the mutation.

If µ(S) does not meet a vertex of µ(P ) we can delete terms corresponding to µ(S) in

the Laurent polynomial θ?w,F (fP,Ξ) and not change the polytope µ(P ). Thus we can form a

polynomial g which mutates by θ−1
w,F to a Laurent polynomial with Newton polytope P but

without any of terms from the strut S. But this is a contradiction since S meets at least

one vertex of P disjoint from all other struts. Thus there must be a natural inclusion of

Struts(P,Ξ) into Struts(µ(P ), µ(Ξ)) arguing similarly with µ−1 we have the other inclusion.

Using fµ(P ),µ(Ξ) we can form the ray set via f̃µ(P ),µ(Ξ). However, note that the rays

ρF,v are identical in both cases, and the struts S ∈ Struts(µ(P ), µ(Ξ)) give ray generators

Root(S) +
∑

F wv(F )eF which differs from the corresponding generator for a strut S′ ∈
Struts(P,Ξ) by wµ(v)eF for any v ∈ verts(S′), thus the rays differ by the linear map Tµ.



166 7. FROM COMMUTING MUTATIONS TO COMPLETE INTERSECTIONS

We now find Q̃P,Ξ and apply T ?µ to obtain Q̃µ(P ),µ(Ξ). Note that we find the fan of

Xµ(P ),µ(Ξ) by intersecting Σ̃P,Ξ with the sublattice Nµ ⊂ Ñ .

�

Thus we conclude the proof of Theorem 7.0.2.

Proof of Theorem 7.0.2. For each µ ∈ Ξ we have the subspaceNµ defined in Lemma 7.5.7.

For each F ∈ Factors(Ξ) write

LF = O

 ∏
v∈verts(F )

XF,v


where XF,v is the Cox co-ordinate corrsponding to the ray ρF,v. Note that this defines a

complete intersection if the Li are Cartier, which we do not investigate here. Note that

N ↪→ Ñ corresponds to a complete intersection found by taking one binomial in each Li since

N :=
⋂

F∈Factors Ξ

e?F

and e?F (gF,v) = 1 for all v ∈ verts(F ) and e?F (gS) ≤ 0 for all S ∈ Struts(P,Ξ). In fact, ranging

over µ ∈ Ξ and considering the sublattice Nµ we see that the monomial in Cox co-ordinates

defined by those rays on which e?F evaulates positively is always identically
∏
v∈verts(F )XF,v.

Therefore each toric subvariety defined by Nµ ↪→ N is defined by a series of binomials in⊕
F LF . �
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