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Abstract 34 
The European Air Traffic Network (ATN), comprising of a set of airports and Area 35 

Control Centres (ACCs), is highly complex. The current indicator of its performance, air 36 
traffic flow management (ATFM) delays, is insufficient for planning and management 37 
purposes. Topological analysis of air traffic networks of this kind has highlighted Betweeness 38 
Centrality (BC) as an indicator of network robustness, although such an indicator assumes no 39 
knowledge of actual traffic flows and the network’s operational characteristics. This paper 40 
conducts topological and operational analyses of the European ATN in order to derive a more 41 
relevant and appropriate indicator of robustness. By applying a flow maximisation model to 42 
the network influenced by a range of capacity reductions at the local level, we propose a new 43 
index called the Relative Area Index (RAI). The RAI quantifies the importance of an 44 
individual node to the performance of the entire network when it suffers from capacity 45 
reduction at a local scale. Air traffic data from three typical busy days in Europe are utilised 46 
to shown that the RAI is more flexible and capable than BC in capturing the network impact 47 
of local capacity degradation. This index can be used to assess network robustness and 48 
provide a valuable tool for airspace managers and planners. 49 

Keywords 50 
Air traffic network; robustness; capacity; linear programming 51 
  52 



3 
 

1. Introduction 53 
High air traffic demand in Europe in recent decades has resulted in the severe 54 

congestion experienced at both busy airports and en-route airspace. The latter is controlled by 55 
Area Control Centres (ACCs). Such congestion has not only caused severe delays and 56 
detrimental environmental impacts, but also posed threats to the safety of air travel. 57 
Furthermore, with annual air traffic demand in Europe forecast to increase by 2.5 % between 58 
2015 and 2021(EUROCONTROL, 2015), it is expected that the current capacity of the 59 
European air transport network will be simply insufficient to cope with this increase. The 60 
capacities of ACCs and airports can be defined in terms of maximum number of flights that 61 
can be handled in a given period of time. 62 

Compounding this problem of a shortage of capacity on the network is the uneven 63 
distribution of air traffic in Europe. According to the Network Operations Report 2013, the 64 
top twenty busy airports and congested ACCs were responsible for 67% of all Air Traffic 65 
Flow Management (ATFM) delays in 2013 (EUROCONTROL, 2014).  66 

In order to ameliorate these negative effects and to improve airspace capacity, the 67 
Single European Sky (SES) Air Traffic Management (ATM) Research (SESAR) program 68 
was launched and one of its features is to change the ATM of Europe from a local to a 69 
network level. SESAR envisages that European airspace will be managed as a continuum and 70 
as a consequence, network capacity becomes one of the most important Key Performance 71 
Areas (KPA). This move to a network level operation and management means that it is 72 
essential to understand the fundamental characteristics of the Air Traffic Network (ATN), 73 
especially the connections (i.e. the “connectivity”) between elements of the network. The 74 
mathematical science of topology, which is concerned with network characteristics, provides 75 
a viable method for assessing the characteristics of the European ATN. In addition to the 76 
topological characteristics, the importance of each constituent node relative to the operation 77 
of the entire ATN, in terms of capacity, flow, and bottleneck, needs to be investigated in 78 
order to understand their roles and impact in the events of network deterioration or 79 
expansion. This paper applies complex network theory, robustness analysis, and network 80 
optimization to offer insights on the topological and operational characteristics of the 81 
European ATN and provide a quantifiable measure of the importance of its constituent nodes 82 
when the network suffers from local distress.  83 

An ATN can be represented by a set of nodes and links. Conventionally, these nodes 84 
can be waypoints, en-route airspace or airports, and the links are the flight routes, between 85 
these nodes, e.g. airways in en-route airspace. The European ATN is a nonlinear, dynamic 86 
and complex system that comprises of numerous heterogeneous components and stakeholders 87 
such as airports, Air Traffic Control (ATC) and airspace users. In addition to the 88 
heterogeneity of the components, the operational concepts and interactions between different 89 
components make ATNs difficult to analyse. Initial studies on the ATNs tend to focus on 90 
their topological characteristics, through complex network theory (Holmes, 2004). 91 
Comprehensive reviews of existing studies on the application of complex network theory to 92 
air transport networks are provided by Sun et al. (2014) and Sun and Wandelt (2014); they 93 
found that these studies focus on airports and cities but failed to consider en-route airspace 94 
(Lordan et al., 2014; Wei et al., 2014; Zhao et al., 2014). Therefore, Sun et al. (2014) 95 
conducted topological analysis on the ATNs in 15 countries, including the USA and major 96 
European nations, in which the constituent nodes are both airports and en-route waypoints 97 
and the links are flight routes between the nodes. Five topological indices namely: degree, 98 
distance strength, Weighted Betweenness Centrality (hereafter referred to as betweenness 99 
centrality or BC), weighted closeness centrality and edge length distribution were calculated. 100 
The authors suggest that BC, originally proposed by Freeman (1979), can serve as an index 101 
of network robustness and indicates the number of shortest paths passing through a given 102 
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node. A node with high BC is used by more flights and the capacity of it is consequently 103 
saturated earlier. Therefore, a network is considered more robust against capacity-reduction 104 
at nodes when the network contains nodes with a smaller BC compared to other nodes. 105 
However, this conclusion is solely based on topological characteristics and is not validated by 106 
using the relevant data of air traffic.  107 

In response to the lack of a suitable robustness index that captures the operational 108 
aspect of an ATN, this paper proposes a new index, namely the Relative Area Index (RAI), to 109 
assess network robustness based on the actual flight data from three of Europe’s busiest days 110 
and the published capacity of airports and ACCs. The RAI is developed based on the change 111 
in the maximum network flows, calculated through a linear programming (LP) approach, 112 
caused by a range of capacity reductions at a given node. Such capacity degradation may be 113 
due to local disruptions such as meteorological influence and industrial action. The LP 114 
approach is significant in that it provides a theoretical upper bound on the network flow, 115 
while taking into account the capacity reduction that occurs at its constituent nodes. 116 
Moreover, the estimated maximum flow on each node is significantly correlated with the 117 
empirical maximum flow on congested days. Therefore, the LP-based maximum network 118 
flows can reasonably reflect the network capacity of the European ATN. 119 

This LP approach, along with the European ATN data that it relies on, are developed 120 
using flight profile data provided by the European Organisation for the Safety of Air 121 
Navigation (EUROCONTROL). The data were collected on a typical busy day in 2012. This 122 
paper extends the analyses of Sun et al. (2014) and Pien et al. (2014) by comparing BC with 123 
the new network robustness index (RAI) for the European ATN. The latter index takes into 124 
account a range of capacity reduction and its impact on the network operation, rather than 125 
simply removing the node, and thus is more realistic in characterizing the robustness of the 126 
ATN. 127 

This paper not only calculates the topological index (betweenness) of the entire 128 
European ATN for the first time in the literature, but also provides a validated tool (RAI) for 129 
Europe’s airspace managers and planners to assess network robustness in the event of any 130 
local deterioration of nodal capacity. The RAI is compared with the actual traffic demand and 131 
published capacity at each node and shown to have the potential to identify the important 132 
nodes in the network. 133 

The rest of this paper is organised as follows. Section 2 introduces an overview of 134 
robustness analysis in transport networks and relevant literature.  The development of the 135 
RAI is also introduced. The European ATN flight profiles, capacity constraints, and network 136 
structures are described in detail in Section 3. Section 4 presents the linear programming 137 
approach for traffic flow maximisation. Section 5 presents the results and analysis on the 138 
European ATN. The findings are discussed in Section 6 prior to the conclusions in Section 7.  139 

2. Robustness Analysis 140 
Since the definition of robustness varies in different fields, it is pertinent to review the 141 

definitions and their context in the literature to define the robustness of an ATN. 142 
Furthermore, the current Key Performance Indicator (KPI) of network capacity in the 143 
European ATN is introduced. Based on previous research, the conventional index of BC is 144 
described. Finally, we develop a new index, the RAI, to assess the robustness of the European 145 
ATN. 146 

2.1. Literature review    147 
The robustness of transport networks has been a central focus of network planning 148 

and management. It is often investigated in different performance areas such as stability, 149 
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resilience and permanence to assess the capability of handling worsened or perturbed 150 
conditions of the network.  151 

Since there are numerous categories of networks, there is no universal definition of 152 
network robustness, though the following three are highly relevant for this paper: 153 
• “The degree to which a system or component can function correctly in the presence of 154 

invalid inputs or stressful environmental conditions” (Geraci et al., 1991). 155 
• ‘’The degree to which a system is capable of functioning according to its design 156 

specifications in the case of serious disruptions’’ (Immers et al., 2004). 157 
• The robustness of an electrical network is defined as the capability of maintaining its 158 

structure and function when the network is exposed to perturbations (Holmgren, 2007)   159 
Given these definitions, the robustness of a given system or component is therefore 160 

the capability of maintaining its function or performance in order to cope with disruptions, 161 
perturbations and stressful conditions. Whilst useful, these studies focus on either an 162 
individual system or a component. In order to cope with the robustness at network level, it is 163 
illustrative to consider the experience of research on transport networks as outlined below. 164 
• Sakakibara et al. (2004) proposed a topological index to evaluate the depressiveness and 165 

concentration of road networks in the presence of disasters. They suggested that a 166 
network is considered robust when it is able to minimize the isolation of districts when 167 
catastrophic disasters occur.  168 

• Scott et al. (2005) proposed the Network Robust Index (NRI) to identify the critical links 169 
of a highway network. This index was calculated by comparing the changes in travel time 170 
cost of the network when a given highway segment (i.e., network link) is removed from 171 
it. Compared to the conventional method of using the ratio of volume to capacity which 172 
can only reflect the congestion at local level, the NRI provides better planning solutions 173 
to enable the identification of critical links at the network level. 174 

• Nagurney and Qiang (2007a) proposed a network efficiency measure to assess the 175 
efficiency of congested networks. Their approach is used to rank the importance of a 176 
given link by comparing the change of total travelling costs when the link is removed 177 
from the network. In their later work Nagurney and Qiang (2007b) use the relative change 178 
of network efficiency as an index to assess network performance when the capacities of 179 
all links are reduced by the same percentage. The authors therefore developed the 180 
Relative Total Cost Index (RTCI) to assess the robustness of networks against a global 181 
decrease of link capacities (Nagurney and Qiang, 2009). Compared to removing links 182 
from the network, this approach provides a more realistic method of assessing network 183 
robustness when disturbance occurs on any of its constituent components. 184 

Based on these studies, the robustness of a network can be defined as the capability of 185 
maintaining network performance while its functioning components, namely nodes and links, 186 
are under stress. With this definition in mind, we conduct robustness analysis by taking into 187 
account the topological and operational characteristics of the European ATN, and treating 188 
network capacity as the main key performance area (KPA). In particular, we consider the 189 
maximum network flow, which is obtained through an optimization procedure, as the key 190 
indicator of network capacity. Accordingly, the robustness of the European ATN in this paper 191 
is related to the capability of delivering the maximum traffic flows against degradation of 192 
nodal capacities. In the following sections, the current KPIs of network capacity and the 193 
conventional index of network robustness are reviewed. 194 

2.2. KPI of network capacity: ATFM delays  195 
 Currently, ATFM delays are used as the KPI to monitor network capacity 196 

(EUROCONTROL, 2007). This is the duration between the last take-off times requested by 197 
the aircraft operator and the take-off slots allocated by the central flow management unit 198 
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namely the Network Manager Operations Centre. This duration follows an air traffic flow 199 
regulation, which is subsequently communicated by the flow management positions to an 200 
airport or en-route centre.  201 

However, there is a major deficiency with this measure since ATFM delay is not a 202 
direct measure of capacity but rather is a proxy that reflects the extra time caused by capacity 203 
shortages, which are in turn caused by various factors at airports and in en-route airspace. 204 
Since it is an indirect measure, there is an inherent inaccuracy in identifying the important 205 
nodes in a network. For instance, Maastricht ACC highlights the limitation of ATFM delays 206 
as an indicator. Although the air traffic demand in Maastricht ACC is amongst the highest in 207 
Europe, the ATFM delays are relatively low. However, since the nodes with high ATFM 208 
delays are considered as bottlenecks in the European ATN, we use them to conduct an 209 
intuitive verification of the other indices. 210 

2.3. Topological Index: Betweenness Centrality (BC) 211 
In complex network theory, nodes within a network may be ranked by using different 212 

centrality measures (Wasserman, 1994). The rank of a given node reflects the measurement 213 
of some particular structural property in the network. Several centrality measures, such as 214 
degree, betweenness, and closeness, can be used to rank the importance of nodes, among 215 
which betweenness is the most widely used as an index of network resilience and robustness 216 
(Holme et al., 2002; Newman, 2001). The betweenness centrality (BC) of a node is defined as 217 
the probability that it lies in the shortest path(s) between all origin-destination (OD) pairs 218 
(Dehmer, 2011; Di Paolo et al., 2011). Mathematically, the conventional formulation of BC 219 
can be presented as: 220 

  221 

𝐵𝐶𝑖 = ∑
𝑆𝑚𝑛

𝑖

𝑆𝑚𝑛
𝑚,𝑛∈𝒗

 (1) 

 222 
where 𝐵𝐶𝑖 is the betweenness of the node i. 𝑆𝑚𝑛 is the total number of shortest paths between 223 

any pair of nodes (m, n) and 𝑆𝑚𝑛
𝑖 is the number of shortest paths passing through the node i.  224 

Newman (2001) states that the higher the BC, the more influential is the node. The 225 
largest increase in the travel distance among nodes occurs when the node with the highest BC 226 
is removed. This explains intuitively the importance of high-BC nodes relevant to the overall 227 
performance of the network. In addition, a network with many low-BC nodes is more robust 228 
than that with many high-BC nodes. Brandes (2001) notes that BC is the most frequently 229 
employed centrality index in the analysis of social networks; and it is mostly based on 230 
shortest paths. Barrat et al. (2004) claim that nodes in the inner network are more likely to be 231 
used by shortest paths than those in the outer network. Therefore, in an ATN, it can be 232 
intuitively assumed that the airspace nodes are more likely to be passed by the shortest paths 233 
and the nodes with high BC are more likely to handle more traffic, when the traffic demands 234 
are uniformly distributed. Travellers within a network tend to choose the shortest paths and as 235 
a result, the nodes with high BC tend to be used by more travellers.  236 

However, in the ‘real world’ of transport operations, nodes with high BC are not 237 
necessarily busy (or heavily loaded) due to the fact that the traffic network flows are jointly 238 
determined by a number of factors such as travel demand distribution, complex decision 239 
factors, and route choice patterns that are not based on shortest paths (i.e., not all-or-nothing 240 
assignment). For example, Cats and Jenelius (2014) developed a dynamic-stochastic model to 241 
evaluate the impacts of disruptions, and demonstrated that BC may not be a good indicator of 242 
link importance in a road network. Guimera and Amaral (2004) modelled a world-wide 243 
airport network and showed that the airports with high BC are not necessarily hubs. They 244 
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argued that geo-political constraints play an important role in the growth of airport networks 245 
and other critical infrastructure. In addition, although both are modelled as nodes in an ATN, 246 
the roles of airports and ACCs are different. An airport not only acts as an origin/destination 247 
but also as a transfer node (hub), which means that it serves as the en-route node of a 248 
complete trip from the origin to the destination. However, the conventional formulation 249 
shown in (1) treats the airports and ACCs equally without considering their heterogeneity. 250 
Therefore, this conventional BC needs to be tailored and improved to accommodate the 251 
unique characteristics of the ATN. All these aforementioned factors contribute to the 252 
consensus that BC may no longer be sufficient to assess the robustness of a complex network 253 
such as the ATN. This paper contributes to this line of research by proposing the relative area 254 
index (RAI), which serves as an alternative robustness index that captures the ATN’s flow 255 
capacity and certain aspects of its operational features. 256 

 257 

2.4. Relative Area Index (RAI) 258 
Built upon the definition of robustness, the RAI assesses and quantifies the impact on 259 

the maximum network flow of a wide range of capacity reductions that occur at a local 260 
(nodal) level. Its derivation is outlined below. 261 

The potential reduction of nodal capacity in the ATN is parameterised with 𝑢, which 262 
is termed the degradation parameter (DP). We employ the notation 𝐹𝑚𝑎𝑥

𝑖 (𝑢) to represent the 263 
maximum network flow when a capacity reduction expressed by 𝑢 is applied to node 𝑖. The 264 
procedure of finding the maximum network flow with a given degradation parameter 265 
amounts to a linear program, as we describe in detail later in Section 4.  266 

In this study, two types of DPs are considered: (1) percentage based DP; and (2) 267 
absolute value based DPs. The Percentage-DP (𝑢𝑃) ranges from 0% to 100%, and represents 268 
the reduction of the subject node’s capacity in percentage. The Absolute-DP (𝑢𝐴) ranges 269 
from 0 to 50 (in flights per hour). The value 50 is chosen since it is about half of the capacity 270 
of the node with the smallest capacity (LA PALMA airport). Anything significantly larger 271 
than 50 may cause the reduced capacity at some nodes to be negative, which is clearly 272 
infeasible. In order to distinguish these two methods of capacity reduction, we denote the RAI 273 
based on Percentage-DPs by 𝑅𝐴𝐼𝑃, and the RAI based on Absolute-DPs by 𝑅𝐴𝐼𝐴. 274 

 275 
Since the network maximum flow problem is formulated as an optimization problem 276 

constrained by nodal capacities, we deduce that 𝐹𝑚𝑎𝑥
𝑖 (𝑢) is a monotonically decreasing 277 

function of 𝑢, where a larger 𝑢 represents greater capacity degradation at the relevant node. 278 
Error! Reference source not found. illustrates the rationale behind RAI. As shown in 279 

Error! Reference source not found.(a), two functions, 𝐹𝑚𝑎𝑥
𝑖 (𝑢) and 𝐹𝑚𝑎𝑥

𝑗
(𝑢) corresponding 280 

to nodes 𝑖 and 𝑗 respectively, indicate that node 𝑖 is the more important one as far as 281 
maximum network flow is concerned. This is because the same level of degradation yields a 282 
smaller network flow when applied to node 𝑖 than node 𝑗. In general, the lower the function 283 
𝐹𝑚𝑎𝑥

𝑖 (𝑢), the more detrimental it is to reduce the capacity at node 𝑖. In order to further 284 
quantify such an observation, we consider the area formed by the graph of 𝐹𝑚𝑎𝑥

𝑖 (𝑢), the 285 
vertical line passing through 𝑢𝑇, and the horizontal line passing through 𝐹𝑚𝑎𝑥

𝑖 (𝑢0). Such an 286 
area is illustrated as the shaded part in Error! Reference source not found.(b). It is 287 
understood that the large the area, the more critical is the node. For an ATN, the more critical 288 
nodes there are, the less robust is the network against capacity reductions. Finally, we note 289 
that two distinct functions may yield the same area, as shown in Error! Reference source 290 
not found.(c). Thus, in order to distinguish such circumstances, we introduce the weighting 291 
parameters (WP) 𝑤(𝑢). The WPs assigns different priorities to different range of capacity 292 
reductions, and may depend on the node of interest, type and nature of capacity reduction, 293 
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and application scenarios. For example, if the main cause of capacity reduction is scheduled 294 
maintenance, which has a mild effect on airport capacity, then lower values of 𝑢 will be 295 
assigned higher weights. Therefore, in Error! Reference source not found.(c) the node 𝑖 296 
(solid line) corresponds to larger weighted area than node 𝑗 (dashed line), and thus is more 297 
critical. 298 

 299 

 300 
Figure 1. Illustration of the relative area index. 301 

 302 
In this study, we select three types of WPs. The first type assumes equal weights for 303 

all values of the degradation parameter 𝑢 ∈  [𝑢0, 𝑢𝑇]. The second type of WP assigns higher 304 
weights to small values of 𝑢, in contrast to the third type, which assigns lower weights to the 305 
small values. By using these three sets of WPs, it is possible to gain insights into the (global) 306 
influence of the local capacity-reductions. With this in mind, we formulate the relative area 307 
index (RAI) for a given node i as: 308 

 309 

𝑅𝐴𝐼𝑖 =
∫ 𝑤(𝑢)(𝐹𝑚𝑎𝑥

𝑖 (𝑢0) − 𝐹𝑚𝑎𝑥
𝑖 (𝑢))𝑑𝑢

𝑢𝑇

𝑢0

∫ 𝑤(𝑢)𝐹𝑚𝑎𝑥
𝑖 (𝑢0)𝑑𝑢

𝑢𝑇

𝑢0

 (2) 

   310 
We note that a normalisation factor (denominator) is applied to the aforementioned weighted 311 
area (numerator). As we previously mentioned, percentage-based and absolute-value-based 312 
degradation parameters (𝑢𝑃 and 𝑢𝐴) are considered; namely, 𝑢𝑃 ∈ [0, 1] and 𝑢𝐴 ∈ [0, 50].  313 

In general, the RAI defined for a given node encapsulates the global impacts of 314 
capacity reductions at this node, which depend not only on the network topology, but also on 315 
the configuration of OD pairs, flight routes, and nodal capacities. The RAI is defined in terms 316 
of a flow maximisation problem, and is not available in a closed form. Thus, it is difficult to 317 
predict the distribution of RAIs using simple topological indicators such as BC. There are, 318 
however, a few simple interpretations of the RAI. In particular, it is reasonable to expect that 319 
nodes with higher capacities should in general have larger (percentage-based) RAIP values 320 
than those with lower capacities based on the following observation: the percentage-based 321 
capacity reduction at a high-capacity node results in greater absolute reductions. However, as 322 
we subsequently show in Section 5.2, some nodes in the European ATN possess 𝑅𝐴𝐼𝑃 that 323 
are quite counter-intuitive, as suggested by their size, capacity, and significance to the 324 
network. 325 

u0 uT 

u 

Maximum 
Flow 

u0 uT 

u 

Maximum 
Flow 

u0 uT 

u 

Maximum 
Flow 

Fmax

j (u)

Fmax

i (u)

Fmax

i (u0 )

Fmax

i (uT )

(a) (b) (c) 

Fmax

i (u)

Fmax

j (u)
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3. The European Air Traffic Network  326 
The key elements required to conduct the robustness analysis are the weighted 327 

adjacency matrix and the maximum network flow estimation method. The former is used to 328 
calculate betweenness, while the latter is used to calculate the RAIs for the network against 329 
the capacity reductions at every node. This section introduces the European ATN and the 330 
required data for calculating BC and the maximum network flows.  331 

3.1. Data processing 332 
According to the latest European Network Operations Plan (EUROCONTROL, 333 

2014), the European ATN comprises of 41 countries, and the en-route airspace of Europe is 334 
controlled by 64 ACCs. In order to monitor the air traffic at the network level, 335 
EUROCONTROL records detailed daily profiles of all flights in Europe at the levels of the 336 
ACCs, en-route sectors and waypoints – the latter of which are often associated with 337 
navigation aids, in particular radars. Each flight profile represents a flight route that uses a 338 
sequence of nodes. This dataset provides the information on the times and coordinates of 339 
each flight at every node. In order to investigate the robustness at the network level, airports 340 
and ACCs are employed as the constituent nodes of the European ATN. 341 

Flight profiles recorded on 1st July 2012 were used to extract the required information. 342 
On this day, a total of 28,904 flights were scheduled, among which 28,885 flight profiles 343 
were recorded by the radars. In total, 28,753 flight profiles are used for this study, with the 344 
remainder excluded since they either used unrecognized airports or passed through 345 
unrecognized airspace.   346 

The average ATFM delays per flight on this particular day were among the highest in 347 
2012. This date also falls within the European summer, which is the season with the highest 348 
traffic demand throughout a year. The advantage of using the flight profiles for this day is 349 
that the high ATFM delays enable us to capture the spatial configuration of traffic 350 
congestion, while the high traffic demands (flight routes) provide sufficient information on 351 
the connectivity between nodes. The ATFM delay data are provided by EUROCONTROL.   352 

3.2. Network topology  353 
The European ATN can be represented as a directed graph, in which the nodes 354 

represent airports and ACCs. A critical notion is connectivity, which can be defined as a 355 
binary state that exists between any two nodes in the network, taking a value one if the two 356 
nodes are connected by a link and zero otherwise. Unlike many traditional transport 357 
networks, the capacity constraints in an ATN are imposed at the nodes (airports and ACCs) 358 
rather than on the links.  The declared capacities at airports and en-route airspace are applied 359 
to prevent the relevant node from overload through the mechanism of air traffic flow 360 
management (ATFM), which includes re-routing and the imposition of flow regulation. Air 361 
traffic at European airports and in en-route airspace is required to comply with the declared 362 
capacities. Based on these characteristics, the European ATN can be regarded as a 363 
capacitated transport network and, consequently the traffic flows within it cannot exceed the 364 
theoretical maximum. The fundamental components of a capacitated transport network are 365 
the constituent nodes and links, as detailed below. These components can be updated and re-366 
selected by using different techniques with the latest operational reports when they are 367 
available.  368 

3.2.1. Constituent nodes  369 
Based on the flight profiles, this network consists of 850 nodes, which include 784 370 

airports, 64 ACCs and two external nodes. The external nodes are used to represent airports 371 
and airspaces that are external to the European region. According to Pien et al. (2014), the 372 
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airports can be categorized as ‘busy airports’ and ‘less busy airports’. A total of 67 busy 373 
airports were selected based on the top airports listed in EUROCONTROL (2013c) and 374 
EUROCONTROL/FAA (2009). These busy airports carry about 60% of the overall flights in 375 
Europe, while the less busy airports carry the remaining 40%.  376 

The capacity data at less busy airports are not publically available. In order to 377 
overcome this difficulty, we treat the less busy airports collectively as one or several 378 
aggregate nodes. Figure 2 shows the method of creating an aggregate node that represents a 379 
group of less busy airports that are of interest to a particular ACC. The connectivity among 380 
these less busy airports and relevant ACC is identified through the flight profile data. It is 381 
worth noting that some less busy airports may be adjacent to more than one ACC. In this 382 
case, we assign this airport to the ACC that contains the most number of flights originating 383 
from it. Following this rule, we are able to assign each less busy airport to a unique ACC; and 384 
less busy airports assigned to the same ACC are aggregated to form an aggregate node. By 385 
using the aggregate nodes, the issue of unknown capacities of the less busy airports is 386 
circumvented since active bottlenecks can occur only at the level of ACCs that watch over 387 
the less busy airports, rather than at these airports themselves; in other words, the capacities 388 
of individual less busy airports are not explicitly needed for the flow maximization problem. 389 
Applying the aggregate nodes also reduces the network size while maintaining the 390 
connectivity between the less busy airports and their adjacent ACCs. The reduced network 391 
contains 197 nodes, including 67 busy airports, 64 aggregate airports, 64 ACCs and 2 392 
external nodes.  393 

 394 
Figure 2. Illustration of the aggregate airports. 395 

The flow maximization problem we shall consider later employs a static flow 396 
modelling approach; that is, we consider the stationary flows in the network on a daily basis, 397 
without explicitly considering the within-day dynamics of various variables. Thus, the 398 
capacities of the airports and ACCs (in flights per day) as we consider in this paper are 399 
calculated from the declared capacity (in flights per hour) by a multiplication factor of 16 and 400 
24, respectively, meaning that the operational hours at the airports and ACCs are 16 hours 401 
and 24 hours per day. Although the air traffic demand and traffic intensity are unevenly 402 
distributed over the duration of operational hours, the static modelling approach for ACCs 403 
and airports enables the calculation of the theoretical maximum network flows, which can 404 
serve as a theoretical upper bound of network capacity. 405 

3.2.2. Constituent links 406 
A directional link in the network is defined as the connectivity between an ordered 407 

pair of nodes. The link between any pair of nodes is established if the flight profile data 408 
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suggests the consecutive passing of the two nodes by at least one flight. The weight of the 409 
link is defined to be the average flying distance from its tail node to its head node, which is 410 
obtained using the actual flight data.  411 

Issues arise from the different spatial characteristics of airports and ACCs. In 412 
particular, an airport can be regarded as a single point with negligible size while an ACC 413 
usually covers a significantly larger area. The distance between an airport (or an aggregated 414 
airport) to its adjacent ACC can be calculated by averaging the distance between the airport 415 
and the entry point to its adjacent ACC, and such entry points are recorded in the dataset of 416 
flight profiles.  417 

However, the flying distance between two ACCs cannot be directly calculated by 418 
using the distance between their centres, due to their relatively large areas and irregular 419 
shapes (ACC boundaries in Europe follow national borders). Assuming that N flights are 420 
flying through node i and j, the flying distances of these N flights between the node i and j are 421 
𝐷(𝑖,𝑗)

𝑁 . The weight of the link between ACCi and its adjacent ACCj (𝐿(𝑖,𝑗)) can be formulated 422 

as:  423 
 424 

𝐿(i,j) =
1

2N
∑ 𝐷(𝑖,𝑗)

𝑁

𝑁

𝑁=1

 (3) 

3.2.3. Validity of the network data 425 
As mentioned earlier, the network topology and the flow maximization problem are 426 

based on the flight data on 1st July 2012. Datasets collected on two additional busy days, 427 
namely 28th and 29th July 2012, are used to validate the network data. More specifically, we 428 
use correlation coefficients to assess the similarity of the network adjacency matrices 429 
calculated from the data on these three days. On the other hand, the Mean Absolute 430 
Percentage Error (MAPE) and correlation coefficients are used to compare the maximum 431 
flows (details to follow in Section 4) calculated by using data on these three days. 432 

The correlation coefficients for the network adjacency matrices on the three days are 433 
above 0.85. In addition, the correlation coefficients among the maximum flows on these three 434 
days are above 0.99 and the MAPEs are less than 0.5%.  This shows consistency of our data-435 
processing method and the validity of the resulting network topological information and 436 
maximum flow data. 437 

4. Traffic Flow Maximization 438 
The problem of finding the theoretical maximum network flow subject to the network 439 

topology and capacity constraints is formulated as a linear program. In this section, we first 440 
recap the LP approach for maximising network flows originally proposed by Pien et al. 441 
(2014). This is followed by an interpretation of the RAI in relation to the Lagrange 442 
Multipliers (LM), which is relevant to the linear program and the marginal costs of local 443 
capacity reduction.  444 

4.1. Network flow maximisation formulated as a linear program 445 
As mentioned earlier, the European ATN is considered as a capacitated transport 446 

network in which the operations at airports and in ACCs are subject to their individual 447 
capacity limits. The maximum network flows are estimated by using a LP approach. The 448 
estimated maximum flow on each node is significantly correlated to the empirical maximum 449 
flow on congested days. Therefore, the estimated maximum network flows can reasonably 450 
reflect the network capacity of the European ATN. 451 
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 Figure 3 depicts the structure of the network and the flight paths therein. The network 452 
comprises of busy airports, aggregated airports and ACCs. An aircraft departs from its origin 453 
airport and flies along its flight path in en-route airspace to its destination airport. The flights 454 
that use European airspace can be categorised into three groups: intra-Europe flights, inter-455 
continental flights, and over-flights. The flights flying along the flight paths p1 and p2 are 456 
intra-Europe flights that fly between two European airports. The flights along paths p3 and p4 457 
are inter-continental flights that fly from an European airport to an airport outside Europe or 458 
vice versa. The group of over-flights p5 represents the flights passing European airspace 459 
without using any European airports.   460 
 461 

 462 
Figure 3. Structure of the European ATN. 463 

 464 
We consider a network with given sets of paths (𝑃) and origin-destination (OD) pairs 465 

(𝑊). For any (𝑖, 𝑗) ∈ 𝑊 where 𝑖 denotes origin and 𝑗 denotes destination, let 𝑃𝑖𝑗 be the set of 466 

flight paths connecting i to j. Each flight path is represented as a set of nodes (airports and 467 
ACCs) it traverses. The relationship between paths and nodes is encapsulated by the path-468 
node incidence matrix (𝛿𝑝𝑣): 469 

𝛿𝒑𝒗 = {
1             if 𝑣 ∈ 𝑝
0        otherwise

 (4) 

where 𝑣 denotes a node, and 𝑝 denotes a path. In addition, each node 𝑣 in the network has a 470 
flow capacity 𝐶𝑣.  471 

The maximum network flow problem is formulated as follows. The objective is to 472 
maximize the path-based flows in the entire network:  473 
 474 

max ∑ 𝑓𝒑

𝑝∈𝑃

  

(5) 

where 𝑓𝑝 denotes the flow along path 𝑝. The constraints include: 475 

Flow capacity constraint: k  AN (the set of nodes) 476 

∑ 𝛿𝒑𝑘𝑓𝒑

𝑝∈𝑃

≤ 𝐶𝑘 (6) 
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Nonnegativity:  p  P(the set of flight paths)  

              𝑓𝒑 ≥ 0 (7) 

The influence of capacity reduction at a given node on the maximum network flows can be 477 
obtained by solving a family of such linear programs, each with a decreased flow capacity at 478 
a given node. This procedure is the basis for calculating the RAI. 479 

4.2. Lagrange multiplier and RAI 480 
The use of the Lagrange multiplier is a common approach to solving optimization 481 

problems (Jahn, 2007). The Lagrange multiplier is the rate of change of a quantity being 482 
optimized as a function of the constraint variable. In the case of maximizing network flows, 483 
the Lagrange multiplier is the sensitivity of the maximum network flow with respect to the 484 
change in the capacities. It can be interpreted simply as the marginal cost (gain) of the 485 
network maximum flow with respect to an infinitesimal reduction (increase) in the nodal 486 
capacity. Lagrange multipliers are zero at non-bottleneck nodes, which corresponds to the 487 
complementarity conditions arising from duality; this means that small changes in capacity at 488 
these non-bottleneck nodes have no effect on the maximum network flows. The higher the 489 
Lagrange multiplier, the more critical the node is to the overall throughput of the network.  490 

The Lagrange multiplier is related to the RAI, since the former is precisely the 491 
derivative of the function 𝐹𝑚𝑎𝑥

𝑖 (𝑢) evaluated at 0, with a negative sign. However, the RAI 492 
presents knowledge of the rest of the function for 𝑢 ∈ (0%, 100%] 𝑜𝑟 (0, 50] whereas a 493 
Lagrange multiplier only shows the initial trend of the curve when the capacity reduction is 494 
small; see Figure 4 for an example. In Figure 4(a), the initial decrease of the curve 𝐹𝑚𝑎𝑥

𝑖 (𝑢) is 495 
small, indicating a small Lagrange multiplier. However, as the capacity reduces further, the 496 
maximum network flow drops drastically. In comparison, Figure 4(b) shows a curve with 497 
steeper initial decrease, but which then stabilises for larger 𝑢. From this figure, we see that 498 
the Lagrange multiplier and the RAI may provide very different information regarding the 499 
importance of the subject node, despite their relationship illustrated above.  500 

 501 
Figure 4. Relationship between the Lagrange multiplier and the RAI 502 

 503 
We see from these simple examples that the RAI is a more comprehensive 504 

performance indicator for a node subject to capacity reductions than the Lagrange multiplier, 505 
as the former captures a whole range of capacity reductions. Moreover, the use of 506 
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appropriately defined weighting parameters, shown in Eq. (2), makes the RAI quite flexible in 507 
addressing a target range of capacity reductions, which can be user defined. 508 

5. Results and Analysis 509 
In this section, we present results related to the BC and RAI, and provide some 510 

discussions on their managerial insights in the context of air traffic management on a network 511 
level. Since the focus and the underlying assumptions of BC and RAI are different, we 512 
compare BC to traffic load and RAI to nodal capacity. The rationale behind these 513 
comparisons is that nodes with higher BC tend to carry more traffic load since most flight 514 
routes follow the shortest paths; on the other hand, nodes with higher capacity are intuitively 515 
more important to the maximum flow of the entire network. In order to simplify our analysis 516 
and to distinguish between airports and airspaces, we extract the top ten airports and 517 
airspaces in each category (BC & RAI) and highlighting nodes that are significant according 518 
to both the indicators. Since the aggregated nodes are used to maintain the network structure 519 
and do not represent solid locations, we exclude them from the ranking list. The rankings of 520 
the airports and airspaces are then compared with the empirical data on air traffic load, nodal 521 
capacities, and ATFM delays. 522 

In subsequent presentation, unless otherwise specified, we assign ID numbers 1- 67 to 523 
the 67 airport nodes, 68 - 131 to the 64 aggregate airport nodes, and 132 - 195 to the 64 ACC 524 
nodes.  525 

5.1. Betweenness centrality (BC) 526 
Figure 5 displays information of the BC in the entire network. Compared to the airport 527 

nodes (ID 1 - 131), the ACC nodes (ID 132 - 195) overall have larger BCs. An intuitive 528 
explanation is that the ACC nodes in the network can be considered as inner nodes while the 529 
airport nodes can be regarded as outer nodes (see Figure 3 for an illustration). Thus the inner 530 
nodes tend to have higher BCs, an observation consistent with the work of Barrat et al. 531 
(2004).  532 

 533 
Figure 5. BC in the European air traffic network. 534 

Figure 5b and Figure 5c show the histogram and the cumulative distribution function 535 
(CDF) of BCs, respectively. The CDF of the weighted BC can be fitted by an exponential 536 
function: 𝑃(≥ 𝑏)~𝑒−0.00054𝑏. Such a fitting is a common approach in network science to 537 
quantify the robustness of a network based on topological indices such as the BC; the reader 538 
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is referred to Sun et al. (2014) for a more elaborated discussion and more examples of such 539 
fitting for a variety of other air traffic networks. 540 
 541 

The ten airports and airspace with the highest air traffic loads and BCs are listed in 542 
Table 1. It is notable that airport nodes with high BCs do not necessarily have the highest 543 
traffic loads, and vice versa. The airports handling high traffic demands all locate on the 544 
capitals or economic centres rather than the high-BC airports. Therefore, the BC is not 545 
capable to capture the high-traffic airports and this results is consistent with Cats and Jenelius 546 
(2014) and Guimera and Amaral (2004).   547 

 548 

Rank 
Airport Airspace (ACC) 

BC Traffic load BC Traffic load 

1 VALENCIA FRANKFURT GENEVA LONDON 

2 BRUSSELS PARIS CDG BREMEN MAASTRICHT 

3 GENEVE LONDON HEATHROW MUNICH KARLSRUHE 

4 WIEN SCHWECHAT SCHIPHOL AMSTERDAM ROME MUNICH 

5 MAKEDONIA MADRID BARAJAS MARSEILLE MARSEILLE 

6 ISTANBUL SABIHA MUENCHEN MALMO ROME 

7 TRONDHEIM VAEMES ISTANBUL ATATURK ZURICH LONDON TC 

8 CATANIA FONTANAROSSA ROME/FIUMICINO LANGEN PARIS 

9 NICE BARCELONA AMSTERDAM LANGEN 

10 BIRMINGHAM PALMA-DE-MALLORCA PARIS BREST 

Table 1. Top ten airports and airspaces that have the highest BCs and traffic loads. 549 

In terms of the BCs of airspace (ACC) nodes, five high-BC ACCs, namely Munich, 550 
Rome, Marsellie, Langen and Paris, also handle high air traffic. This result indicates that the 551 
BC is relatively more capable of capturing the important nodes with high traffic demands in 552 
airspace than at airports. However, the corresponding BC-rankings of the top three high-553 
traffic ACCs, namely London, Maastricht and Karlsruhe are extremely low. Therefore, BCs 554 
cannot fully capture the traffic demands in the real world of operational traffic. 555 

5.2. Relative area index (RAI) 556 
According to our discussion of the RAI, the capacity of a node may be reduced by a 557 

certain percentage or by an absolute value. The resulting RAIP and RAIA, respectively, are 558 
presented and analysed in this section to examine the influence of capacity reductions on the 559 
network capacity. We use Spearman’s rank correlation coefficient (𝑟) and p-value (𝑝) to 560 
measure the statistical dependence and the statistical significance between different sets of 561 
results. The detailed results of the RAIs and the BCs, as well as the empirical data, of a 562 
selection of nodes are presented in the Appendix.    563 
 564 
5.2.1. Relative area index with capacity reduction by percentage (RAIP) 565 

In this section, we illustrate three sets of RAIP over the entire European ATN in Figure 566 
6. These three sets of 𝑅𝐴𝐼𝑃 are calculated by using three different weighting parameters that 567 
emphasize the capacity reduction at different levels. The first weighting parameter treats the 568 
importance of capacity reductions at all levels equally, and is indicated as ‘Constant’ in Figure 569 
6. The second and third weighting parameters assign a low (high) weight to low capacity 570 
reduction and a high (low) weight to high capacity reduction; in particular, they vary the 571 
weight from 0 to 10 and 10 to 0, respectively. Therefore, the second and third weight 572 
parameters emphasize the importance of higher and lower capacity reductions at each node, 573 
respectively.  574 
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 575 
Figure 6. RAIP in the European ATN. Fig. 6b is using new node IDs based on nodes sorted by their RAIP 576 

(with constant weighting parameters). 577 

Both the correlation coefficients and Spearman’s rank correlation coefficients among 578 
these three sets of RAIP shown in Figure 6 are above 0.97 and the p-values are all close to 579 
zero, which indicate that our results attain statistical significance. Moreover, the high 580 
Spearman’s rank correlation coefficients show that the ranking of nodes based on RAIP is 581 
insensitive to the change of the weighting parameters.  582 

Figure 6a also shows that the RAIP of airports (ID 1 - 67) are generally smaller than the 583 
RAIP of aggregated nodes and ACCs (ID 68 - 195).  In view of the fact that airport nodes tend 584 
to have lower capacities, this result is in line with the anticipation that the influence of nodes 585 
with higher capacities is, in general, larger than those with lower capacities, since the 586 
capacity reduction is based on percentages.  587 

Table 2 shows that there are five airports and five ACCs with both high RAIP and high 588 
capacities, as appeared in the top ten; they are highlighted in bold. However, the RAIP and 589 
capacity of some ACCs are counterintuitive. For instance, both the traffic load and capacity 590 
of London, Maastricht, Karlsruhe and Marseille are high but their RAIP values are relatively 591 
low. In contrast, the RAIP of Bucharest, Bremen, Madrid, Ankara/Istanbul, Belgrade are high 592 
while their capacities are comparatively low. These results imply that the importance of a 593 
given node in the presence of capacity reduction is not necessarily in line with its capacity. 594 

 595 

Ranking 
Airport Airspace (ACC) 

RAIP Capacity RAIP Capacity 

1 WIEN SCHWECHAT PARIS CDG ROME LONDON 

2 ISTANBUL ATATURK 
SCHIPHOL 

AMSTERDAM 
PRESTWICK MAASTRICHT 

3 
SCHIPHOL 

AMSTERDAM 
KIEV BORISPOL PARIS KARLSRUHE 

4 MADRID BARAJAS MADRID BARAJAS LANGEN MUNICH 

5 MUENCHEN 2 FRANKFURT BUCHAREST LONDON TC 

6 
COPENHAGEN 

KASTRUP 
MUENCHEN 2 MUNICH PARIS 

7 OSLO GARDERMOEN ROME/FIUMICINO BREMEN LANGEN 

8 ANTALYA LONDON HEATHROW MADRID ROME 

9 KIEV BORISPOL STOCKHOLM ARLANDA 
ANKARA/IST

ANBUL 
MARSEILLE 

10 HELSINKI-VANTAA 
COPENHAGEN 

KASTRUP 
BELGRADE PRESTWICK 
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Table 2. Top ten airports and airspaces that have the highest RAIP and capacities. 596 

     597 
 598 

5.2.2. Relative area index with capacity reduction by absolute value (RAIA) 599 
The RAIA is calculated by applying capacity reductions to each node by a certain 600 

value (in flight per hour). We set the capacity reductions from 0 to 50 (flight per hour) to 601 
examine the influences of absolute-value capacity reductions on network capacity. Similar to 602 
the RAIP case, three sets of weighting parameters are considered. The results of the RAIA are 603 
shown in Figure 7.  A high correlation among the three sets of RAIA is observed, with all the 604 
correlation coefficients and Spearman’s rank correlation coefficients above 0.99, and the p-605 
values all close to zero. However, in contrast to RAIP, no significant difference in the RAIA 606 
exists between the airport nodes and the ACC nodes (see Figure 7a). This is partially due to 607 
the relatively small capacity reduction (by up to 50 flights per hour) such that most of the 608 
airports and ACCs are far from being bottlenecked. Thus the global effects of flow reduction 609 
induced by local degradation at airports or ACCs cannot be differentiated.  610 

 611 
Figure 7. RAIA in the European ATN. Fig. 7b is using new node IDs based on nodes sorted by their 612 

RAIA (with constant weighting parameters). 613 

An interesting result of the RAIA is shown when we sort all the nodes in an ascending 614 
order with respect to RAIA with constant weighting parameter (Figure 7b):  The nodes can be 615 
intuitively clustered into three groups according to their RAIA, namely low (ID 1 - 95), 616 
medium (ID 96 -180), and high (ID 181 - 195); see Figure 7b and Figure 7c.  617 

Table 3 shows that the correlation between 𝑅𝐴𝐼𝐴 and capacity is comparatively weak, 618 
with only a few nodes in common in the top ten. The influence of a minor absolute capacity 619 
reduction on the entire network is not in line with the magnitudes of the nodal capacities.    620 
 621 

Ranking 
Airport Airspace (ACC) 

RAIA Capacity RAIP Capacity 

1 WIEN SCHWECHAT PARIS CDG KYIV LONDON 

2 ATHINAI-E-VENIZELOS SCHIPHOL AMSTERDAM PRESTWICK MAASTRICHT 

3 ISTANBUL ATATURK KIEV BORISPOL NICOSIA KARLSRUHE 

4 ISTANBUL SABIHA MADRID BARAJAS BREMEN MUNICH 

5 MAKEDONIA FRANKFURT CANARIAS LONDON TC 

6 IZMIR ADNAN MENDERES MUENCHEN 2 BUCHAREST PARIS 

7 ANTALYA ROME/FIUMICINO ROME LANGEN 

8 ANKARA ESENBOGA LONDON HEATHROW RIGA ROME 
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9 MUENCHEN 2 STOCKHOLM ARLANDA PARIS MARSEILLE 

10 
CATANIA 

FONTANAROSSA 
COPENHAGEN KASTRUP STOCKHOLM PRESTWICK 

Table 3. Top ten airports and airspaces that have the highest RAIA and capacities. 622 

5.3. Comparison between BC and RAI  623 
Given that the focus and the underlying assumptions of BC and RAI are different, it is 624 

difficult to conduct a direct comparison between these two robustness indices. Instead, we 625 
use relevant empirical data (ATFM delays) to examine the practical relevance of these two 626 
indices, and identify their strength and weakness.  627 

Spearman’s ranking correlation coefficient is used to reveal the relationships between 628 
the ranking of nodes based on the empirical data and the relevant robustness indices. Table 4 629 
shows the correlation coefficients (r) among the six measures: the empirical ATFM delay, 630 
capacity, traffic load, RAIP, RAIA, and BC. 631 

 632 
Measures ATFM delay Capacity Traffic load RAIP RAIA BC 

ATFM delay 
r 1.00 -0.44 0.23 -0.31 0.31 -0.12 

p 1.00 0.00 0.00 0.00 0.00 0.10 

Capacity 
r -0.44 1.00 0.47 0.72 -0.24 0.37 

p 0.00 1.00 0.00 0.00 0.00 0.00 

Traffic load 
r 0.23 0.47 1.00 0.51 0.19 0.51 

p 0.00 0.00 1.00 0.00 0.01 0.00 

RAIP 
r -0.31 0.72 0.51 1.00 0.31 0.37 

p 0.00 0.00 0.00 1.00 0.00 0.00 

RAIA 
r 0.31 -0.24 0.19 0.31 1.00 0.13 

p 0.00 0.00 0.01 0.00 1.00 0.06 

BC 
r -0.12 0.37 0.51 0.37 0.13 1.00 

p 0.10 0.00 0.00 0.00 0.06 1.00 

Table 4. Spearman's ranking correlation coefficients and the p-values among relevant indices and 633 
empirical data (ATFM delay) 634 

Spearman’s ranking correlation coefficient 𝑟 between 𝑅𝐴𝐼𝑃 and the traffic load is 635 
comparable with that between BC and the traffic load (0.51). Secondly, the ranking of the 636 
𝑅𝐴𝐼𝑃 is strongly correlated to the ranking of the nodal capacity (0.72), showing RAIP to be an 637 
index more promising than BC to capture the nodal capacity. Thirdly, RAIA has no 638 
meaningful correlation with any of the other indices. This indicates that the influence of a 639 
minor, absolute capacity reduction of a given node is not significantly related to traffic load, 640 
nodal capacity, or ATFM delays. However, we expect that when the absolute capacity 641 
reduction gets larger, say for a subset of the nodes that have large capacities, RAIA is likely to 642 
provide a more meaningful characterization of the importance of nodes.  643 

In Table 4, neither the RAI nor the BC captures the ATFM delays. This is explained by 644 
the fact that the ATFM delay is a result of a complex operational environment, involving 645 
multiple sectors and stakeholders; thus more sophisticated models are required to capture the 646 
ATFM delays in their entirety. 647 

In order to further compare RAI and BC, we select the top 25 nodes with the highest 648 
ATFM delays 1, which are subsequently referred to as bottlenecks, and conduct a similar 649 
analysis restricted to these 25 bottlenecks. The findings are presented in Table 5. Here, BC 650 
again provides a poor performance with low Spearman’s ranking correlation coefficient and 651 
high p-values. An important finding is that Spearman’s ranking correlation coefficient 652 

                                                      
1 These 25 nodes include 21 airports and 4 ACCs, with ATFM delays greater than the mean 

(3.9 minutes); see the Appendix for more information. 



19 
 

between 𝑅𝐴𝐼𝐴 and 𝑅𝐴𝐼𝑃 increases from 0.31 to 0.72, which means that the capacity 653 
reductions by percentage or absolute value have similar effects for these 25 nodes. In 654 
addition, both 𝑅𝐴𝐼𝐴 and 𝑅𝐴𝐼𝑃 better capture the ATFM delays at these bottlenecks, with 𝑟 =655 
0.44 and 𝑟 = 0.40, respectively.  656 

 657 
Measures ATFM delay Capacity Traffic load RAIP RAIA BC 

ATFM delay 
r 1.00 0.06 0.23 0.44 0.40 0.19 

p 1.00 0.78 0.28 0.03 0.05 0.36 

Capacity 
r 0.06 1.00 0.82 0.48 -0.03 0.22 

p 0.78 1.00 0.00 0.02 0.90 0.28 

Traffic load 
r 0.23 0.82 1.00 0.61 0.16 0.30 

p 0.28 0.00 1.00 0.00 0.45 0.15 

RAIP 
r 0.44 0.48 0.61 1.00 0.72 0.38 

p 0.03 0.02 0.00 1.00 0.00 0.06 

RAIA 
r 0.40 -0.03 0.16 0.72 1.00 0.23 

p 0.05 0.90 0.45 0.00 1.00 0.27 

BC 
r 0.19 0.22 0.30 0.38 0.23 1.00 

p 0.36 0.28 0.15 0.06 0.27 1.00 

Table 5. Spearman's ranking correlation coefficients and the p-values among relevant indices and 658 
empirical data (ATFM delay), among the 25 high-ATFM-delay nodes. 659 

6. Discussion  660 
The commonly employed network robustness index, namely betweenness centrality 661 

(BC), reflects only the topological characteristics of the network, without taking into account 662 
traffic demand and nodal capacities. As a result, it can only capture traffic loads rather than 663 
capacity or ATFM delays, as we show in our results for the European air traffic network. 664 
Using BC as the robustness index of an ATN is quite limited in capturing the influence of 665 
local disruption on the network level, especially when the operational characteristics are 666 
within the purview of network operators.  667 

Our finding that the BC is capable of capturing the actual traffic load at a particular 668 
node differs from that of Cats and Jenelius (2014), who found limited correlation between the 669 
passenger loads and BCs in a road network. We argue that this difference is caused by the 670 
different nature of road and air traffic. Compared to road users who are free to minimize their 671 
cost of travel by selecting alternative routes in a networks, aircrafts do not have the freedom 672 
to select alternative routes; instead, they fly along the routes in given flight plans and follow 673 
the guidance of air traffic control (ATC). In addition, the delay of air traffic often occurs at 674 
the departing airport as a result of air traffic management, while congestion and delays of 675 
road traffic take place en route. These differences imply that the BC may be an adequate 676 
indicator for air traffic volume in an ATN, since the shortest distance is an important factor in 677 
the design of flight plans.   678 

The proposed robustness index (RAI) is more capable than the BC of capturing the 679 
importance of a given node in the event of capacity reduction, by considering traffic 680 
demands, actual flight paths, and nodal capacities, in addition to the topological features. It 681 
also encapsulates a range of scenarios involving different levels of capacity reductions, 682 
instead of simply removing a node or a link, which is typical in topological analysis leading 683 
up to BC and other indices. The concept and formulation of RAI is flexible enough to 684 
accommodate a wide range of cases involving different nature and severity of the capacity 685 
reduction. We first adopt the percentage-based capacity reduction in combination with a 686 
network flow maximisation technique for assessing the theoretical network capacity. We find 687 
that the 𝑅𝐴𝐼𝑃 ranking at the aggregated nodes and ACCs are generally higher than those at 688 
the airport nodes. Although the use of three sets of weighting parameters results in different 689 
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rankings of nodes, the difference is extremely small. However, we note that the importance of 690 
the weighting parameters should be re-evaluated by introducing more sophisticated modelling 691 
elements, such as dynamic network modelling and routing and scheduling. 692 

In addition to the percentage-based capacity reductions, we also applied the absolute 693 
capacity reduction to calculate RAIA. This approach enables us to assess the influence of a 694 
certain event that causes absolute capacity reductions at given nodes. Unlike the 𝑅𝐴𝐼𝑃 695 
ranking, the result shows that the 𝑅𝐴𝐼𝐴 ranking do not favour the high-capacity nodes such as 696 
the ACCs and aggregated nodes. In addition to the ranking, the 𝑅𝐴𝐼𝐴 of the nodes in the 697 
European ATN can be intuitively categorized into three groups: High-, Medium- and Low-698 
RAIA nodes. A particular event such as sector- or runway-closure at the nodes in the High-699 
𝑅𝐴𝐼𝐴 group will cause a greater impact on network capacity than if that event happens at the 700 
nodes in the Medium- and Low-𝑅𝐴𝐼𝐴 groups. This functionality provides the network 701 
management unit with a powerful tool to group and rank the critical nodes, not solely using 702 
the empirical delay data that may contain considerable inaccuracies. Compared to the BC, 703 
using the RAI is more flexible to assess network robustness (see 𝑅𝐴𝐼𝑃  in Table 4 and 𝑅𝐴𝐼𝐴 in 704 
Figure 7). Therefore, the proposed new index has the potential to be used to reflect the ranking 705 
of the constituent nodes in an ATN and to assess network robustness. Table 5 shows the 706 
superiority of 𝑅𝐴𝐼 over BC at the 25 main bottlenecks. 707 

There are potentially four extensions of this paper for future research. First, the 708 
formulation of the conventional index, BC can be improved to accommodate the features of 709 
air traffic, including traffic demands, flight routes and the heterogeneity between the airport 710 
and airspace nodes. Second, since the European ATN is not saturated and the capacity of 711 
each node varies dynamically, there is a need to capture network flows dynamically by 712 
introducing dynamic capacity constraints and flight times. Third, both the 𝑅𝐴𝐼𝐴and 𝑅𝐴𝐼𝑃 713 
require real data on the influence of capacity fluctuation on network capacity for their 714 
validation. This validation would enable the superiority of the RAI when compared to the 715 
current KPI of ATFM delays to be evaluated. Finally, unexpected events that occur in real-716 
time, such as large-scale meteorological events and industrial action, may reduce the capacity 717 
at multiple airports and en-route airspace. Hence, any future analysis would benefit from an 718 
evaluation of the influence of capacity-reductions at multiple nodes in the network 719 
simultaneously, rather than at just a single node.  720 

7. Conclusion 721 
This paper proposes a new index, the RAI, to assess the robustness of the European 722 

ATN by calculating the influence of nodal capacity-reductions on network capacity. Using 723 
data from three of the busiest air traffic days in Europe in 2012, the RAI was assessed along 724 
topological index, the BC, as potential indicators for robustness. The results indicate that the 725 
RAI is better able to capture the importance of each node by taking into account not only the 726 
topological features, but also the traffic demands and the nodal capacities. 727 

There are several potential operational applications of the RAI to air traffic 728 
management. Compared to ATFM delay that is the current indicator of network capacity and 729 
of any bottlenecks in the network, the RAI provides a detailed ranking of the nodes in the 730 
European ATN from the standpoint of any potential local degradation of capacity and its 731 
consequent impact on the overall network. Such a consideration has not been addressed by 732 
the ATFM delay, the BC or any other existing network performance indices for air traffic 733 
networks. RAI therefore provides a potentially powerful tool for the European ATM unit to 734 
identify and categorize the critical nodes in the network. This in turn can aid in improving 735 
network management and resource allocations, by identifying nodes with higher ‘marginal 736 
benefits’. 737 
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Given the expected rise in air traffic demand in Europe in the coming years, SESAR 738 
is effectively revolutionising the nature of air traffic operations and their management in 739 
Europe. However, as EUROCONTROL noted in their “Challenges for growth 2013” 740 
(EUROCONTROL, 2013a), there is an urgent need to understand network performance in the 741 
future European air traffic network and then to have appropriate metrics for this performance, 742 
to a far greater degree of sophistication than the current ATFM delays. Given this need, we 743 
recommend the use of the RAI methodology for the development of the future of European 744 
network performance indicators. 745 
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Appendix 
 

The table below is concerned with the top 25 nodes in the European Air Traffic Network in 

terms of ATFM delays. Other performance indices of interest, including capacity, traffic load, 

RAI and BC are computed and presented for these 25 nodes, along with their rankings in each 

of the categories. 

 

Nodes Type ID 
ATFM delays Capacity Traffic RAI Betweenness 

min/flt ranking flt/day ranking flt/day ranking RAIP ranking RAIA ranking BC ranking 

1 BARCELONA Airport LEBL 18.74 1 1056 9 926 6 0.00191 6 0.00008 8 30 9 

2 MUENCHEN 2 Airport EDDM 12.32 2 1440 4 1060 4 0.00283 3 0.000092 2 0 11 

3 
PALMA-DE-

MALLORCA 
Airport LEPA 11.78 3 992 10 836 7 0.00162 8 0.00008 9 0 11 

4 
WARSZAWA 

OKECIE 
Airport EPWA 8.74 4 640 18 397 17 0.00016 24 0.000003 21 0 11 

5 ALICANTE Airport LEAL 8.48 5 480 22 228 24 0.00088 14 0.00008 10 0 11 

6 VALENCIA Airport LEVC 8.24 6 480 23 174 25 0.00088 15 0.00008 11 2226 3 

7 BARCELONA ACC LECBCTA 7.78 7 3288 2 2893 2 0.00264 4 0.000009 19 397 5 

8 NICOSIA ACC LCCCCTA 7.66 8 1200 6 976 5 0.00386 2 0.000161 1 380 6 

9 ZURICH Airport LSZH 6.51 9 1152 7 788 9 0.00211 5 0.000089 3 0 11 

10 
GENEVE 

COINTRIN 
Airport LSGG 6.35 10 640 19 524 13 0.00126 12 0.000089 4 1439 4 

11 NICE Airport LFMN 5.52 11 832 12 625 10 0.00159 9 0.000089 5 222 7 

12 HERAKLION Airport LGIR 5.52 12 352 25 261 21 0.0006 21 0.000066 17 0 11 

13 DUESSELDORF Airport EDDL 5.39 13 720 17 587 11 0.00061 20 0.000036 18 0 11 

14 PALMA ACC LECPCTA 5.17 14 2208 3 1356 3 0.00646 1 0.00008 12 3575 1 

15 BIRMINGHAM Airport EGBB 4.88 15 640 20 248 23 0.00101 13 0.000078 14 215 8 

16 
LONDON 

STANSTED 
Airport EGSS 4.68 16 800 14 411 16 0.00132 11 0.00008 13 0 11 

17 MALAGA Airport LEMG 4.59 17 560 21 416 15 0.00088 16 0.000072 15 0 11 

18 KARLSRUHE ACC EDMMCTA 4.5 18 7176 1 4301 1 0.00076 17 0 22 2782 2 

19 
PRAHA 

RUZYNE 
Airport LKPR 4.41 19 736 16 376 18 0.00163 7 0.000089 6 0 11 

20 KOELN-BONN Airport EDDK 4.3 20 1280 5 288 20 0.0002 23 0 22 0 11 

21 
MILANO 

MALPENSA 
Airport LIMC 4.27 21 1120 8 562 12 0.00068 19 0.000009 20 0 11 

22 HAMBURG Airport EDDH 4.18 22 768 15 372 19 0.00013 25 0 22 0 11 

23 
FERIHEGY 

BUDAPEST 
Airport LHBP 4.17 23 384 24 259 22 0.00074 18 0.000089 7 15 10 

24 
LONDON 

GATWICK 
Airport EGKK 4.06 24 960 11 797 8 0.00152 10 0.000072 16 0 11 

25 
TEGEL-

BERLIN 
Airport EDDT 4.04 25 832 13 427 14 0.00023 22 0 22 0 11 
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