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ABSTRACT
Heterogeneous architectures that combine multi-core CPUs with
many-core GPGPUs have the potential to improve the performance
of data-intensive stream processing applications. Yet, a stream pro-
cessing engine must execute streaming SQL queries with sufficient
data-parallelism to fully utilise the available heterogeneous proces-
sors, and decide how to use each processor in the most effective
way. Addressing these challenges, we demonstrate SABER, a hybrid

high-performance relational stream processing engine for CPUs and
GPGPUs. SABER executes window-based streaming SQL queries in
a data-parallel fashion and employs an adaptive scheduling strategy
to balance the load on the different types of processors. To hide
data movement costs, SABER pipelines the transfer of stream data
between CPU and GPGPU memory. In this paper, we review the
design principles of SABER in terms of its hybrid stream processing
model and its architecture for query execution. We also present a
web front-end that monitors processing throughput.
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1. INTRODUCTION
Stream processing systems found wide-spread application in do-

mains such as credit fraud detection [11], urban traffic manage-
ment [6], and click stream analytics [3]. These systems process
continuous streams of input data in an online manner, aiming at
maximising processing throughput while staying within acceptable
latency bounds. Stream processing is often based on a streaming
relational model [4]: a stream is a potentially infinite sequence of
relational tuples. Streaming SQL queries define windows (finite sub-
sequences of a stream) and operators, such as projection, selection,
aggregation and join, that are executed per window.

Heterogeneous architectures that combine multi-core CPUs with
many-core GPGPUs have the potential to improve the performance
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of stream processing engines. In particular, GPGPUs implement
a throughput-oriented architecture that, unlike traditional CPUs,
targets embarrassingly parallel workloads. GPGPUs feature thou-
sands of simple cores, following the single-instruction, multiple-
data (SIMD) model: in each cycle, a GPGPU core executes the
same operation on different data. The potential of GPGPUs for ac-
celerating query processing has been shown for traditional relational
database engines [14] and for specific streaming algorithms, e.g.,
joins [17] and sorting [12]. Yet, the design of a general-purpose

relational stream processing engine that can transparently take ad-
vantage of GPGPUs has been an open challenge.

This demonstration presents SABER [16], a hybrid relational
stream processing engine in Java that executes streaming SQL
queries on both a multi-core CPU and a many-core GPGPU. SABER
adopts a hybrid execution model in which query operators can utilise
CPU cores and the GPGPU interchangeably. Specifically, SABER
incorporates the following innovations:
Hybrid stream processing model. SABER translates a streaming
SQL query to an operator graph, which is then bundled with a
batch of stream data to form a query task. SABER’s hybrid stream
processing model features two levels of data parallelism: (i) tasks
run in parallel across multiple CPU cores and the GPGPU, and (ii) a
task running on the GPGPU is further parallelised across its many
cores. Instead of relying on offline performance models to select
the processor on which to run a query operator, SABER employs an
adaptive heterogeneous lookahead scheduling strategy to balance
the load on the different types of processors.
Window-aware task processing. SABER executes query tasks
while supporting sliding window semantics. A dispatcher splits
the stream into fixed-sized batches that include multiple fragments
of windows processed jointly by a task. SABER preserves the order
of the result stream after the parallel, out-of-order processing of
tasks by first storing the results in local buffers and then releasing
them incrementally in the correct order as tasks finish execution.
Pipelined stream data movement. The speed-up achieved by
GPGPUs may be bound by the data movement cost over the PCI
express (PCIe) bus. Against this background, SABER introduces a
five-stage pipelining mechanism that interleaves data movement and
task execution on the GPGPU: it maintains high utilisation of the
PCIe bandwidth by pipelining the transfers of batches to and from
the GPGPU with task execution. It also hides the memory latency
originating from copying batches to/from Java heap memory.

In the remainder of this paper, §2 introduces the hybrid stream
processing model of SABER before §3 describes its architecture. We
then give an overview of the demonstration (§4), and finish with
related work (§5) and conclusions (§6).
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2. THE HYBRID STREAM PROCESSING
MODEL OF SABER

Exploiting heterogeneous architectures for stream processing
raises the question of when to use GPGPUs for streaming SQL

queries and how to use GPGPUs with streaming window seman-

tics. The speed-up achieved by GPGPUs depends on the type of
computation: executing an operator over a batch of data in paral-
lel can greatly benefit from the higher degree of parallelism of a
GPGPU, but this is only the case when the data accesses fit well
with a GPGPU’s memory model. Furthermore, a GPGPU processes
a discrete amount of data in parallel, so physical batches of stream
data need to be constructed for efficient processing.

SABER sidesteps the problem of “when” to offload query opera-
tors to a heterogeneous processor with a hybrid stream processing

model. In this model, the stream processing engine always tries to
utilise all available heterogeneous processors for query execution
opportunistically, thus achieving the aggregate throughput. In return,
the engine does not have to make an early decision regarding which
type of query to execute on a given heterogeneous processor.
Query tasks. To achieve that each query can be scheduled on
any heterogeneous processor, queries are executed as a set of data-
parallel query tasks that are runnable on either a CPU core or the
GPGPU. For a query with n input streams, a query task consists
of (i) an n-ary operator function and (ii) a sequence of n stream

batches, i.e. n finite sequences of tuples, one per input stream. The
query task size is defined as the sum of the data volumes of stream
batches. It is a system parameter that specifies how much stream
data a query task must process, thus determining the computational
cost of executing a task. In practice, the query task size is chosen
independently of the query workload, simply based on the properties
of the engine implementation and its underlying hardware.
Window handling. An important invariant under our hybrid model
is that a stream batch and, thus, a query task are independent of the
definition of windows over the input streams. This makes window
handling in the hybrid model fundamentally different from existing
approaches to data-parallel stream processing, such as Spark Stream-
ing [19]. By decoupling the parallelisation level (i.e. the query task)
from the specifics of the query (i.e. the window definition), SABER
can support queries over fine-grained windows (i.e. windows with
small slides) with full data-parallelism.
Operators. A stream batch can contain complete windows or only
window fragments. Hence, the result of the stream query for a par-
ticular sequence of windows (one per input stream) is assembled
from the results of multiple query tasks. This has consequences for
the realisation of the operator function of a query task: it must be
decomposed into a fragment function that is applied per fragment
and an assembly function that assembles the window result from
window fragment results. This decomposition is operator-specific,
but, for many associative and commutative functions (e.g. aggrega-
tion functions for count or max), both functions correspond to the
original operator function.
Incremental computation. When processing a query task with a
sliding window, it is more efficient to use incremental computation:
the computation for a window fragment should exploit the results
already obtained for preceding window fragments in the same batch.
SABER’s hybrid model captures this optimisation through a batch

function. It is applied to a query task as a whole, i.e., sequences of
window fragments. Applied to a query task, it yields a sequence
of window fragment results, which correspond to applying the re-
spective fragment function to each fragment in the task. Again, the
implementation of the batch function is operator-specific.
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Figure 1: Overview of the SABER architecture

3. SABER ARCHITECTURE
SABER realises the above hybrid stream processing model with

the architecture illustrated in Fig. 1. It consists of four stages that
represent the lifecycle of a query task: from its creation, over to
scheduling and execution, to the processing of the respective task
results. The complete lifecycle of a query task is handled by a
worker thread, a CPU thread that is bound to a physical core—one
of them using the GPGPU for task execution. Below, we summarise
the four stages of query processing in SABER.
Dispatching stage. Dispatching involves two steps: the storage of
the incoming stream data and the creation of query tasks. Query
tasks are inserted into a system-wide queue to be scheduled for
execution on the heterogeneous processors. To store incoming
tuples, SABER uses a circular buffer per input stream and per query.
By maintaining a buffer per query, processing does not need to be
synchronised among the queries. Data can be removed from the
buffer as soon as it is no longer required for query task execution.
The data inserted into the buffer is added to the current stream batch
and, as soon as the sum of stream batch sizes in all query input
streams exceeds the query task size, a query task is created.
Scheduling stage. Scheduling decides on the next task each pro-
cessor should execute. SABER uses a heterogeneous lookahead

scheduling (HLS) algorithm that achieves full utilisation of all het-
erogeneous processors, while accounting for the different perfor-
mance characteristics of query operators. In essence, HLS tries to
assign each task to the heterogeneous processor that, based on the
past behaviour, achieves the highest throughput for that task. If that
processor is currently unavailable, the scheduler instead assigns a
task to another processor with lower throughput that still yields an
earlier completion time. Making scheduling decisions based on the
observed throughput per processor and query has two advantages:
(i) there is no need for hardware-specific performance models; and
(ii) the scheduling decisions are adaptive to changes in the query
workload (e.g. when the selectivity of a query changes, the preferred
processor for the tasks may also change).
Execution stage. A query task is executed on a processor by eval-
uating the batch function on the input window fragments. A task
executes either on one of the CPU cores or the GPGPU. To avoid
any restriction of the performance of streaming operators by their
memory accesses, SABER explicitly manages memory to avoid
unnecessary data deserialisation and dynamic object creation.

To efficiently transfer data to and from the GPGPU, SABER em-
ploys a five-stage pipelining mechanism, which interleaves I/O and
compute operations to reduce idle periods and yield higher through-
put. Pipelining is achieved by having dedicated threads execute data
movement operations in parallel to task execution: two CPU threads
copy data from and to Java heap memory, and two GPGPU threads
implement the data movement from and to GPGPU memory.
Result stage. The result stage reorders query task results that may
arrive out-of-order due to their parallel execution. It also assembles
window results from window fragment results by means of the as-
sembly operator function. To reduce the synchronisation needed



-- Input: SegSpeedStr
-- long timestamp
-- int vehicle
-- float speed
-- int highway
-- int lane
-- int direction
-- int segment
select timestamp , highway , direction , segment ,

AVG(speed) as avgSpeed
from SegSpeedStr [range 300 slide 1]
group by highway , direction , segment
having avgSpeed < 40.0

Listing 1: Example streaming SQL query implemented in SABER

among the workers executing the query tasks, processing of query
task results is organised in three phases, each synchronised sepa-
rately: (i) storing the task results, i.e. the window fragment results,
in a circular buffer; (ii) executing the assembly operator function
over window fragment results to construct the window results; and
(iii) constructing the output data stream from the window results.

4. DEMONSTRATION OVERVIEW
Streaming SQL queries. SABER supports the definition of stream-
ing SQL queries with different types of windows and diverse opera-
tors. Queries may define count- or time-based windows. That is, the
amount of enclosed data per window (the window size) and the dif-
ference between subsequent windows (the window slide) are either
defined based on a fixed number of tuples or by a fixed timespan.

Furthermore, SABER supports all common relational operators,
i.e. projection, selection, aggregation, and q -join, each interpret-
ing a window as a relation over which they are evaluated. For the
aggregation operator, we also consider the use of GROUP-BY clauses.
Operators in SABER may also be specified as user-defined func-

tions (UDFs), which implement bespoke computation per window.
In Listing 1, we show one of the queries of the Linear Road

Benchmark [5] implemented in SABER. It takes as input a stream
of tuples that denote position events of vehicles on a driving on a
highway segment. The query identifies highway segments for which
the average speed of the respective vehicles in a sliding window of
5 minutes drops below a threshold.
Monitoring processing performance. SABER implements a REST-
ful API using Jetty to serve HTTP GET requests from its web front-
end, the SABER workbench. When the browser loads the SABER
workbench, it requests the dataflow graph of the query application
that is currently running. Fig. 2 shows a dataflow graph that consists
of a data source PosStreamStr and a query SegSpeedStr, the first
query of the Linear Road Benchmark [5]. A left click on a graph
node shows the SQL query statement or, in case of a data source,
the input stream schema (Fig. 2a). A right click on a query displays
the CPU, the GPGPU, or the aggregate throughput achieved by both
processors for that query (Fig. 2b).

SABER monitors processing throughput of each query on a pro-
cessor every 1 s. Measurements are stored in a fixed-length doubly
linked list, one per query, configured to hold a snapshot of the last
measurements: when the queue is full, for every new measurement
added the oldest one is removed. If a user selects to display the
throughput of a particular query operator, the SABER workbench
sends periodic GET requests to flush the corresponding queue.

Fig. 3 shows the CPU, GPGPU, and hybrid throughput achieved
by SABER when running a selection query over a synthetic input
stream. A key feature of SABER is its ability to change the utilisation
of each processor to maximise the aggregate processing throughput.
In Fig. 3, the query workload changes such that the selectivity of the

(a) Left click shows operator information. In this case, it
shows the schema of the input stream.

(b) Right click on a query operator o↵ers the option to
monitor CPU, GPGPU, or aggregate throughput.

Figure 2: Query 1 of the Linear Road Benchmark [5], as illustrated
in the SABER workbench

query varies from 1% to 50%, making the selection predicate more
expensive to evaluate. Before the change, the CPU alone can process
stream data at approximately 6 GB/s, SABER’s peak throughput.
The GPGPU is this case is assigned approximately 1/20th of the
tasks, based on the switch threshold of the HLS algorithm. After the
change in the input data distribution, however, the CPU struggles
to handle the workload alone. At that point, HLS schedules more
tasks on the GPGPU in order to sustain the overall throughput of
the system just below 5 GB/s.

5. RELATED WORK
Stream processing engines for centralised infrastructures have

long been limited to single-core execution. Only recently, systems
such as Oracle CEP [1] and Microsoft StreamInsight [15] support
multi-core architectures. Yet, this support comes at the expense of
weakening stream ordering guarantees in the presence of window-
based queries. Research prototypes such as S-Store [9] and Trill [10]
have strong window semantics with SQL-like queries. However,
S-Store does not perform parallel window computation. Trill paral-
lelises window processing through a map/reduce model, bu t it does
not support hybrid query execution.

In recent years, many systems for data-parallel processing of
streaming queries on a cluster of nodes have been developed. How-
ever, systems such as Storm [18] and SEEP [8] do not respect win-
dow semantics by default. Millwheel [2] provides strong window
semantics, but it does not perform parallel computation on windows
and instead assumes partitioned input streams. Spark Streaming [19]
has a batched-stream model, and permits window definitions over
this model, thus creating dependencies between window semantics,
throughput and latency. Unlike Streaming Spark, SABER decouples
window semantics from system performance.

In-memory databases have explored co-processing with CPUs
and GPGPUs for accelerating database queries for both in-cache and
discrete systems. All such systems [7, 13], however, target one-off
and not streaming queries, and they therefore do not require parallel
window semantics or efficient fine-grained data movement to the ac-
celerator. GStream [20] executes streaming applications on GPGPU



Figure 3: Front-end for monitoring the performance of SABER

clusters, and provides a new API that abstracts away communica-
tion primitives. Unlike GStream, SABER supports SQL window
semantics and deployments on single-node hybrid architectures.

6. CONCLUSION
This work demonstrated SABER, a hybrid high-performance rela-

tional stream processing engine for CPUs and GPGPUs. SABER’s
major innovations are a hybrid execution model for window-based
streaming SQL queries, an adaptive scheduling strategy to balance
the load on heterogeneous processors, and pipelined data transfer
between CPU and GPGPU memory. Specifically, we demonstrated
the functionality of SABER in terms of supporting streaming SQL
queries and presented a Web front-end for monitoring the perfor-
mance of the engine.
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