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Abstract

Variational integrators are derived for structure-preserving simulation of stochastic Hamil-
tonian systems with a certain type of multiplicative noise arising in geometric mechanics. The
derivation is based on a stochastic discrete Hamiltonian which approximates a type-II stochastic
generating function for the stochastic flow of the Hamiltonian system. The generating function
is obtained by introducing an appropriate stochastic action functional and its corresponding
variational principle. The discrete Hamiltonian is then constructed using this stochastic varia-
tional principle, in combination with a Galerkin type of discretization based on a certain space
of polynomials for approximating the paths of the system, together with quadrature rules to
approximate the relevant integrals in the action functional. The resulting integrators are sym-
plectic; they preserve integrals of motion related to Lie group symmetries; and they include
stochastic symplectic Runge-Kutta methods as a special case. Several new low-stage stochastic
symplectic methods of strong order 1.0 derived using this approach are presented and tested
numerically to demonstrate their superior long-time stability and energy behavior compared to
nonsymplectic methods.

1 Introduction

Stochastic differential equations (SDEs) play an important role in modeling dynamical systems
subject to internal or external random fluctuations. Standard references include [4], [20], [21], [22],
[33], [40]. Within this class of problems, we are interested in stochastic Hamiltonian systems, which
take the form (see [5], [23], [34])

dq = ∂H

∂p
dt + ∂h

∂p
○ dW (t),

dp = −∂H
∂q

dt − ∂h
∂q

○ dW (t), (1.1)

where H = H(q, p) is the Hamiltonian function, h = h(q, p) is the stochastic Hamiltonian, W (t) is
the standard one-dimensional Wiener process, and ○ denotes Stratonovich integration. The system
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(1.1) can be formally regarded as a classical Hamiltonian system with the randomized Hamiltonian
given by Ĥ(q, p) =H(q, p)+h(q, p)○Ẇ , where H(q, p) is the deterministic Hamiltonian and h(q, p)
is another Hamiltonian, to be specified, which multiplies (in the Stratonovich sense, denoted as ○)
a one-dimensional Gaussian white noise, Ẇ . Such systems can be used to model, e.g., mechanical
systems with uncertainty, or error, assumed to arise from random forcing, limited precision of ex-
perimental measurements, or unresolved physical processes on which the deterministic Hamiltonian
might otherwise depend. Particular examples include modeling synchrotron oscillations of parti-
cles in particle storage rings (see [43], [13]) and stochastic dynamics of the interactions of singular
solutions of the EPDiff basic fluids equation (see [19]).

As occurs for other SDEs, most Hamiltonian SDEs cannot be solved analytically and one must
resort to numerical simulations to obtain approximate solutions. In principle, general purpose
stochastic numerical schemes for SDEs can be applied to stochastic Hamiltonian systems. However,
as for their deterministic counterparts, stochastic Hamiltonian systems possess several important
geometric features. In particular, their phase space flows preserve the symplectic structure. When
simulating these systems numerically, it is therefore advisable that the numerical scheme also pre-
serves such geometric features. Geometric integration of deterministic Hamiltonian systems has
been thoroughly studied (see [14], [32], [42] and the references therein) and symplectic integrators
have been shown to demonstrate superior performance in long-time simulations of Hamiltonian
systems, compared to non-symplectic methods; so it is natural to pursue a similar approach for
stochastic Hamiltonian systems. This is a relatively recent pursuit. Stochastic symplectic inte-
grators were first proposed in [34] and [35]. Stochastic generalizations of symplectic partitioned
Runge-Kutta methods were analyzed in [27] and [28]. A stochastic generating function approach
to constructing stochastic symplectic methods, based on approximately solving a corresponding
stochastic Hamilton-Jacobi equation satisfied by the generating function, was proposed in [49] and
[50], and this idea was further pursued in [1], [3], [12]. Stochastic symplectic integrators constructed
via composition methods were proposed and analyzed in [36]. A first order weak symplectic numer-
ical scheme and an extrapolation method were proposed and their global error was analyzed in [2].
More recently, an approach based on Padé approximations has been used to construct stochastic
symplectic methods for linear stochastic Hamiltonian systems (see [45]).

An important class of geometric integrators are variational integrators. This type of numerical
schemes is based on discrete variational principles and provides a natural framework for the dis-
cretization of Lagrangian systems, including forced, dissipative, or constrained ones. These methods
have the advantage that they are symplectic, and in the presence of a symmetry, satisfy a discrete
version of Noether’s theorem. For an overview of variational integration for deterministic systems
see [31]; see also [17], [24], [25], [37], [38], [41], [47], [48]. Variational integrators were introduced in
the context of finite-dimensional mechanical systems, but were later generalized to Lagrangian field
theories (see [30]) and applied in many computations, for example in elasticity, electrodynamics, or
fluid dynamics; see [26], [39], [44], [46].

Stochastic variational integrators were first introduced in [7] and further studied in [6]. However,
those integrators were restricted to the special case when the stochastic Hamiltonian h = h(q)
was independent of p, and only low-order Runge-Kutta types of discretization were considered.
In the present work we extend the idea of stochastic variational integration to general stochastic
Hamiltonian systems by generalizing the variational principle introduced in [25] and applying a
Galerkin type of discretization (see [31], [24], [25], [38], [37]), which leads to a more general class
of stochastic symplectic integrators than those presented in [6], [7], [27], and [28]. Our approach
consists in approximating a generating function for the stochastic flow of the Hamiltonian system,

2



but unlike in [49] and [50], we do make this discrete approximation by exploiting its variational
characterization, rather than solving the corresponding Hamilton-Jacobi equation.

Main content The main content of the remainder of this paper is, as follows.

In Section 2 we introduce a stochastic variational principle and a stochastic generating function
suitable for considering stochastic Hamiltonian systems, and we discuss their properties.

In Section 3 we present a general framework for constructing stochastic Galerkin variational in-
tegrators, prove the symplecticity and conservation properties of such integrators, show they
contain the stochastic symplectic Runge-Kutta methods of [27], [28] as a special case, and fi-
nally present several particularly interesting examples of new low-stage stochastic symplectic
integrators of strong order 1.0 derived with our general methodology.

In Section 4 we present the results of our numerical tests, which verify the theoretical convergence
rates and the excellent long-time performance of our integrators compared to some popular
non-symplectic methods.

Section 5 contains the summary of our work.

2 Variational principle for stochastic Hamiltonian systems

The stochastic variational integrators proposed in [7] and [6] were formulated for dynamical systems
which are described by a Lagrangian and which are subject to noise whose magnitude depends only
on the position q. Therefore, these integrators are applicable to (1.1) only when the stochastic
Hamiltonian h = h(q) is independent of p and the Hamiltonian H is non-degenerate (i.e., the asso-
ciated Legendre transform is invertible). However, in the case of general h = h(q, p) the paths q(t)
of the system become almost surely nowhere differentiable, which poses a difficulty in interpreting
the meaning of the corresponding Lagrangian. Therefore, we need a different sort of action func-
tional and variational principle to construct stochastic symplectic integrators for (1.1). To this end,
we will generalize the approach taken in [25]. To begin, in the next section, we will introduce an
appropriate stochastic action functional and show that it can be used to define a type-II generating
function for the stochastic flow of the system (1.1).

2.1 Stochastic variational principle

Let the Hamiltonian H ∶ T ∗Q Ð→ R and the stochastic Hamiltonian h ∶ T ∗Q Ð→ R be defined
on the cotangent bundle T ∗Q of the configuration manifold Q, and let (q, p) denote the canonical
coordinates on T ∗Q. For simplicity, in this work we assume that the configuration manifold has a
vector space structure, Q ≅ RN , so that T ∗Q = Q×Q∗ ≅ RN ×RN and TQ = Q×Q ≅ RN ×RN . In this
case, the natural pairing between one-forms and vectors can be identified with the scalar product
on RN , that is, ⟨(q, p), (q, q̇)⟩ = p ⋅ q̇, where (q, q̇) denotes the coordinates on TQ . Let (Ω,F ,P) be
the probability space with the filtration {Ft}t≥0, and let W (t) denote a standard one-dimensional
Wiener process on that probability space (such that W (t) is Ft-measurable). For a given time
interval [ta, tb] with tb > ta ≥ 0, define the space
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C([ta, tb]) = {(q, p) ∶ Ω×[ta, tb]Ð→ T ∗Q ∣ q, p are almost surely continuous Ft-adapted semimartingales}.
(2.1)

Since we assume T ∗Q ≅ RN ×RN , the space C([ta, tb]) is a vector space (see [40]). Therefore, we can
identify the tangent space TC([ta, tb]) ≅ C([ta, tb]) ×C([ta, tb]). We can now define the following
stochastic action functional, B ∶ Ω ×C([ta, tb])Ð→ R,

B[q(⋅), p(⋅)] = p(tb)q(tb) − ∫
tb

ta
[p ○ dq −H(q(t), p(t))dt − h(q(t), p(t)) ○ dW (t)], (2.2)

where ○ denotes Stratonovich integration, and we have omitted writing the elementary events ω ∈ Ω
as arguments of functions, following the standard convention in stochastic analysis.

Theorem 2.1 (Stochastic Variational Principle in Phase Space). Suppose that H(q, p)
and h(q, p) are C2 functions of their arguments with globally Lipschitz derivatives. If the curve
(q(t), p(t)) in T ∗Q satisfies the stochastic Hamiltonian system (1.1) for t ∈ [ta, tb], where tb ≥ ta > 0,
then the pair (q(⋅), p(⋅)) is a critical point of the stochastic action functional (2.2), that is,

δB[q(⋅), p(⋅)] ≡ d

dε
∣
ε=0

B[q(⋅) + εδq(⋅), p(⋅) + εδp(⋅)] = 0 , (2.3)

almost surely for all variations (δq(⋅), δp(⋅)) ∈ C([ta, tb]) such that almost surely δq(ta) = 0 and
δp(tb) = 0.

Proof. Let the curve (q(t), p(t)) in T ∗Q satisfy (1.1) for t ∈ [ta, tb]. It then follows that the
stochastic processes q(t) and p(t) are almost surely continuous, Ft-adapted semimartingales, that
is, (q(⋅), p(⋅)) ∈ C([ta, tb]) (see [4], [40]). We calculate the variation (2.3) as

δB[q(⋅), p(⋅)] = p(tb)δq(tb) − ∫
tb

ta
p(t) ○ dδq(t) − ∫

tb

ta
δp(t) ○ dq(t)

+ ∫
tb

ta
[∂H
∂q

(q(t), p(t)) δq(t) + ∂H
∂p

(q(t), p(t)) δp(t)]dt

+ ∫
tb

ta
[∂h
∂q

(q(t), p(t)) δq(t) + ∂h
∂p

(q(t), p(t)) δp(t)] ○ dW (t), (2.4)

where we have used the end point condition, δp(tb) = 0. Since the Hamiltonians are C2 and the
processes q(t), p(t) are almost surely continuous, in the last two lines we have used a dominated
convergence argument to interchange differentiation with respect to ε and integration with respect
to t and W (t). Upon applying the integration by parts formula for semimartingales (see [40]), we
find

∫
tb

ta
p(t) ○ dδq(t) = p(tb)δq(tb) − p(ta)δq(ta) − ∫

tb

ta
δq(t) ○ dp(t). (2.5)

Substituting and rearranging terms produces,
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δB[q(⋅), p(⋅)] = ∫
tb

ta
δq(t)[ ○ dp(t) + ∂H

∂q
(q(t), p(t))dt + ∂h

∂q
(q(t), p(t)) ○ dW (t)]

− ∫
tb

ta
δp(t)[ ○ dq(t) − ∂H

∂p
(q(t), p(t))dt − ∂h

∂p
(q(t), p(t)) ○ dW (t)], (2.6)

where we have used δq(ta) = 0. The terms in the brackets vanish almost surely, since (q(t), p(t))
satisfy (1.1). Therefore, δB = 0, almost surely.

Remark: The converse theorem, that is, if (q(⋅), p(⋅)) is a critical point of the stochastic action
functional (2.2), then the curve (q(t), p(t)) satisfies (1.1), was proved (for Lagrangian systems) by
Bou-Rabee & Owhadi [7] in the special case when h = h(q) is independent of p. In that case,
one can assume that q(t) is continuously differentiable. In the general case, however, q(t) is not
differentiable, and the ideas of [7] cannot be applied directly. In fact, the converse theorem may not
hold, at least not without more stringent assumptions; see the discussion in [23]. We leave this as
an open question. Here, we will use the action functional (2.2) and the variational principle (2.3)
to construct numerical schemes, and we will directly verify that these numerical schemes converge
to solutions of (1.1).

2.2 Stochastic type-II generating function

When the Hamiltonian functions H(q, p) and h(q, p) satisfy standard measurability and regularity
conditions (e.g., as in Theorem 2.1), then the system (1.1) possesses a pathwise unique stochastic flow
Ft,t0 ∶ Ω × T ∗QÐ→ T ∗Q. It can be proved that for fixed t, t0 this flow is mean-square differentiable
with respect to the q, p arguments, and is also almost surely a diffeomorphism (see [4], [20], [21],
[22]). Moreover, Ft,t0 almost surely preserves the canonical symplectic form ΩT ∗Q = ∑Ni=1 dq

i ∧ dpi
(see [35], [5], [23]), that is,

F ∗
t,t0ΩT ∗Q = ΩT ∗Q, (2.7)

where F ∗
t,t0 denotes the pull-back by the flow Ft,t0 . We will show below that the action functional

(2.2) can be used to construct a type II generating function for Ft,t0 . Let (q̄(t), p̄(t)) be a particular
solution of (1.1) on [ta, tb]. Suppose that for almost all ω ∈ Ω there is an open neighborhood
U(ω) ⊂ Q of q̄(ω, ta), an open neighborhood V(ω) ⊂ Q∗ of p̄(ω, tb), and an open neighborhood
W(ω) ⊂ T ∗Q of the curve (q̄(ω, t), p̄(ω, t)) such that for all qa ∈ U(ω) and pb ∈ V(ω) there exists
a pathwise unique solution (q̄(ω, t; qa, pb), p̄(ω, t; qa, pb)) of (1.1) which satisfies q̄(ω, ta; qa, pb) = qa,
p̄(ω, tb; qa, pb) = pb, and (q̄(ω, t; qa, pb), p̄(ω, t; qa, pb)) ∈W(ω) for ta ≤ t ≤ tb. (As in the deterministic
case, for tb sufficiently close to ta one can argue that such neighborhoods exist; see [29].) Define the
function S ∶ Y Ð→ R as

S(qa, pb) = B[q̄(⋅; qa, pb), p̄(⋅; qa, pb)], (2.8)

where the domain Y ⊂ Ω × T ∗Q is given by Y = ⋃
ω∈Ω

{ω} × U(ω) × V(ω).
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Theorem 2.2. The function S(qa, pb) is a type-II stochastic generating function for the stochastic
mapping Ftb,ta, that is, Ftb,ta ∶ (qa, pa)Ð→ (qb, pb) is implicitly given by the equations

qb =D2S(qa, pb), pa =D1S(qa, pb), (2.9)

where the derivatives are understood in the mean-square sense.

Proof. Under appropriate regularity assumptions on the Hamiltonians, the solutions q̄(t; qa, pb) and
p̄(t; qa, pb) are mean-square differentiable with respect to the parameters qa and pb, and the partial
derivatives are semimartingales (see [4]). We calculate the derivative of S as

∂S

∂qa
(qa, pb) = pb

∂q̄(tb)
∂qa

− ∫
tb

ta

∂p̄(t)
∂qa

○ dq̄(t) − ∫
tb

ta
p̄(t) ○ d∂q̄(t)

∂qa

+ ∫
tb

ta
[∂q̄(t)
∂qa

∂H

∂q
(q̄(t), p̄(t)) + ∂p̄(t)

∂qa

∂H

∂p
(q̄(t), p̄(t))]dt

+ ∫
tb

ta
[∂q̄(t)
∂qa

∂h

∂q
(q̄(t), p̄(t)) + ∂p̄(t)

∂qa

∂h

∂p
(q̄(t), p̄(t))] ○ dW (t), (2.10)

where for notational convenience we have omitted writing qa and pb explicitly as arguments of q̄(t)
and p̄(t). Applying the integration by parts formula for semimartingales (see [40]), we find

∫
tb

ta
p̄(t) ○ d∂q̄(t)

∂qa
= pb

∂q̄(tb)
∂qa

− p̄(ta) − ∫
tb

ta

∂q̄(t)
∂qa

○ dp̄(t). (2.11)

Substituting and rearranging terms, we obtain the result,

∂S

∂qa
(qa, pb) = p̄(ta) + ∫

tb

ta

∂q̄(t)
∂qa

[ ○ dp̄ + ∂H
∂q

(q̄(t), p̄(t))dt + ∂h
∂q

(q̄(t), p̄(t)) ○ dW (t)]

+ ∫
tb

ta

∂p̄(t)
∂qa

[ ○ dq̄ − ∂H
∂p

(q̄(t), p̄(t))dt − ∂h
∂p

(q̄(t), p̄(t)) ○ dW (t)]

= p̄(ta), (2.12)

since (q̄(t), p̄(t)) is a solution of (1.1). Similarly we show ∂S/∂pb(qa, pb) = q̄(tb). By definition of
the flow, then Ftb,ta(qa, p̄(ta)) = (q̄(tb), pb).

We can consider S(qa, pb) as a function of time if we let tb vary. Let us denote this function as
St(qa, p). Below we show that St(qa, p) satisfies a certain stochastic partial differential equation,
which is a stochastic generalization of the Hamilton-Jacobi equation considered in [25].

Proposition 2.3 (Type II Stochastic Hamilton-Jacobi Equation). Let the time-dependent
type-II generating function be defined as

S2(qa, p, t) ≡ St(qa, p) = pq̄(t)−∫
t

ta
[p̄(τ)○dq̄(τ)−H(q̄(τ), p̄(τ))dτ −h(q̄(τ), p̄(τ))○dW (τ)], (2.13)
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where q̄(τ) ≡ q̄(τ ; qa, p) and p̄(τ) ≡ p̄(τ ; qa, p) as before. Then the function S2(qa, p, t) satisfies the
following stochastic partial differential equation

dS2 =H(∂S2

∂p
, p)dt + h(∂S2

∂p
, p) ○ dW (t), (2.14)

where dS2 denotes the stochastic differential of S2 with respect to the t variable.

Proof. Choose an arbitrary pair (qa, pa) ∈ T ∗Q and define the particular solution (q̄(τ), p̄(τ)) =
Fτ,ta(qa, pa). Form the function S2(qa, p̄(t), t) and consider its total stochastic differential d̄S2(qa, p̄(t), t)
with respect to time. On one hand, the rules of Stratonovich calculus imply

d̄S2(qa, p̄(t), t) = dS2(qa, p̄(t), t) +
∂S2

∂p
(qa, p̄(t), t) ○ dp̄(t), (2.15)

where dS2 denotes the partial stochastic differential of S2 with respect to the t argument. On the
other hand, integration by parts in (2.13) implies

d̄S2(qa, p̄(t), t) = q̄(t) ○ dp̄(t) +H(q̄(t), p̄(t))dt + h(q̄(t), p̄(t)) ○ dW (t). (2.16)

Comparing (2.15) and (2.16), and using (2.9), we obtain

dS2(qa, p̄(t), t) =H(∂S2

∂p
(qa, p̄(t), t), p̄(t))dt + h(

∂S2

∂p
(qa, p̄(t), t), p̄(t)) ○ dW (t). (2.17)

This equation is satisfied along a particular path p̄(t), however, as in the discussion preceding
Theorem 2.2, we can argue, slightly informally, that for almost all ω ∈ Ω, and for t sufficiently close
to ta, one can find open neighborhoods U(ω) ⊂ Q and V(ω) ⊂ Q∗ which can be connected by the flow
Ft,ta , i.e., given qa ∈ U(ω) and p ∈ V(ω), there exists a pathwise unique solution (q̄(ω, τ), p̄(ω, τ))
such that q̄(ω, ta) = qa and p̄(ω, t) = p. With this assumption, (2.17) can be reformulated as the
full-blown stochastic PDE (2.14).

Remark: Similar stochastic Hamilton-Jacobi equations were introduced in [49], [50], where they
were used for constructing stochastic symplectic integrators by considering series expansions of
generating functions in terms of multiple Stratonovich integrals. This was a direct generalization
of a similar technique for deterministic Hamiltonian systems (see [14]). In this work we explore the
generalized Galerkin framework for constructing approximations of the generating function S(qa, pb)
in (2.9) by using its variational characterization (2.8). Our approach is a stochastic generalization
of the techniques proposed in [25] and [38] for deterministic Hamiltonian and Lagrangian systems.

2.3 Stochastic Noether’s theorem

Let a Lie group G act on Q by the left action Φ ∶ G ×Q Ð→ Q. The Lie group G then acts on TQ
and T ∗Q by the tangent ΦTQ ∶ G×TQÐ→ TQ and cotangent ΦT ∗Q ∶ G×T ∗QÐ→ T ∗Q lift actions,
respectively, given in coordinates by the formulas (see [18], [29])
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ΦTQ
g (q, q̇) ≡ ΦTQ(g, (q, q̇)) = (Φi

g(q),
∂Φi

g

∂qj
(q)q̇j),

ΦT ∗Q
g (q, p) ≡ ΦT ∗Q(g, (q, p)) = (Φi

g(q), pj
∂Φj

g−1

∂qi
(Φg(q))), (2.18)

where i, j = 1, . . . ,N and summation is implied over repeated indices. Let g denote the Lie algebra of
G and exp ∶ gÐ→ G the exponential map (see [18], [29]). Each element ξ ∈ g defines the infinitesimal
generators ξQ, ξTQ, and ξT ∗Q, which are vector fields on Q, TQ, and T ∗Q, respectively, given by

ξQ(q) =
d

dλ
∣
λ=0

Φexpλξ(q), ξTQ(q, q̇) =
d

dλ
∣
λ=0

ΦTQ
expλξ(q, q̇), ξT ∗Q(q, p) =

d

dλ
∣
λ=0

ΦT ∗Q
expλξ(q, p).

(2.19)

The momentum map J ∶ T ∗Q Ð→ g∗ associated with the action ΦT ∗Q is defined as the mapping
such that for all ξ ∈ g the function Jξ ∶ T ∗Q ∋ (q, p) Ð→ ⟨J(q, p), ξ⟩ ∈ R is the Hamiltonian for the
infinitesimal generator ξT ∗Q, i.e.,

ξqT ∗Q = ∂Jξ
∂p

, ξpT ∗Q = −∂Jξ
∂q

, (2.20)

where ξT ∗Q(q, p) = (q, p, ξqT ∗Q(q, p), ξ
p
T ∗Q(q, p)). The momentum map J can be explicitly expressed

as (see [18], [29])

Jξ(q, p) = p ⋅ ξQ(q). (2.21)

Noether’s theorem for deterministic Hamiltonian systems relates symmetries of the Hamiltonian
to quantities preserved by the flow of the system. It turns out that this result carries over to the
stochastic case, as well. A stochastic version of Noether’s theorem was proved in [5] and [23]. For
completeness, and for the benefit of the reader, below we state and provide a less involved proof of
Noether’s theorem for stochastic Hamiltonian systems.

Theorem 2.4 (Stochastic Noether’s theorem). Suppose that the Hamiltonians H ∶ T ∗QÐ→ R
and h ∶ T ∗Q Ð→ R are invariant with respect to the cotangent lift action ΦT ∗Q ∶ G × T ∗Q Ð→ T ∗Q
of the Lie group G, that is,

H ○ΦT ∗Q
g =H, h ○ΦT ∗Q

g = h, (2.22)

for all g ∈ G. Then the cotangent lift momentum map J ∶ T ∗QÐ→ g∗ associated with ΦT ∗Q is almost
surely preserved along the solutions of the stochastic Hamiltonian system (1.1).
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Proof. Equation (2.22) implies that the Hamiltonians are infinitesimally invariant with respect to
the action of G, that is, for all ξ ∈ g we have

dH ⋅ ξT ∗Q = 0, dh ⋅ ξT ∗Q = 0, (2.23)

where dH and dh denote differentials with respect to the variables q and p. Let (q(t), p(t)) be a
solution of (1.1) and consider the stochastic process Jξ(q(t), p(t)), where ξ ∈ g is arbitrary. Using
the rules of Stratonovich calculus we can calculate the stochastic differential

dJξ(q(t), p(t)) =
∂Jξ

∂q
(q(t), p(t)) ○ dq + ∂Jξ

∂p
(q(t), p(t)) ○ dp

= −(∂H
∂q

ξqT ∗Q +
∂H

∂p
ξpT ∗Q)dt − (∂h

∂q
ξqT ∗Q +

∂h

∂p
ξpT ∗Q) ○ dW

= −(dH ⋅ ξT ∗Q)dt − (dh ⋅ ξT ∗Q) ○ dW = 0, (2.24)

where we used (1.1), (2.20), and (2.23). Therefore, Jξ(q(t), p(t)) = const almost surely for all ξ ∈ g,
which completes the proof.

3 Stochastic Galerkin Hamiltonian Variational Integrators

If the converse to Theorem 2.1 holds, then the generating function S(qa, pb) defined in (2.8) could
be equivalently characterized by

S(qa, pb) = ext
(q,p)∈C([ta,tb])
q(ta)=qa, p(tb)=pb

B[q(⋅), p(⋅)], (3.1)

where the extremum is taken pointwise in the probability space Ω. This characterization allows us
to construct stochastic Galerkin variational integrators by choosing a finite dimensional subspace
of C([ta, tb]) and a quadrature rule for approximating the integrals in the action functional B.
Galerkin variational integrators for deterministic systems were first introduced in [31], and further
developed in [17], [24], [25], [37], and [38]. In the remainder of the paper, we will generalize these
ideas to the stochastic case.

3.1 Construction of the integrator

Suppose we would like to solve (1.1) on the interval [0, T ] with the initial conditions (q0, p0) ∈ T ∗Q.
Consider the discrete set of times tk = k ⋅∆t for k = 0,1, . . . ,K, where ∆t = T /K is the time step.
In order to determine the discrete curve {(qk, pk)}k=0,...,K that approximates the exact solution of
(1.1) at times tk we need to construct an approximation of the exact stochastic flow Ftk+1,tk on each
interval [tk, tk+1], so that (qk+1, pk+1) ≈ Ftk+1,tk(qk, pk). Let us consider the space Cs([tk, tk+1]) ⊂
C([tk, tk+1]) defined as

Cs([tk, tk+1]) = {(q, p) ∈ C([tk, tk+1]) ∣ q is a polynomial of degree s}. (3.2)

9



For convenience, we will express q(t) in terms of Lagrange polynomials. Consider the control points
0 = d0 < d1 < . . . < ds = 1 and let the corresponding Lagrange polynomials of degree s be denoted by
lµ,s(τ), that is, lµ,s(dν) = δµν . A polynomial trajectory qd(t; qµ) can then be expressed as

qd(tk + τ∆t; qµ) =
s

∑
µ=0

qµlµ,s(τ), q̇d(tk + τ∆t; qµ) = 1

∆t

s

∑
µ=0

qµ l̇µ,s(τ), (3.3)

where qν = qd(tk + dν∆t; qµ) for ν = 0, . . . , s are the control values, q̇d denotes the time derivative
of qd, and l̇µ,s denotes the derivative of the Lagrange polynomial lµ,s with respect to its argument.
The restriction of the action functional (2.2) to the space Cs([tk, tk+1]) takes the form

Bs[qd(⋅; qµ), p(⋅)] = p(tk+1)qs − ∫
tk+1

tk
[p(t)q̇d(t) −H(qd(t), p(t))]dt + ∫

tk+1

tk
h(qd(t), p(t)) ○ dW (t),

(3.4)
since for differentiable functions dqd(t) = q̇d(t)dt, where for brevity qd(t) ≡ qd(t; qµ). Next we
approximate the integrals in (3.4) using numerical quadrature rules (αi, ci)ri=1 and (βi, ci)ri=1, where
0 ≤ c1 < . . . < cr ≤ 1 are the quadrature points, and αi, βi are the corresponding weights. At this
point we only make a general assumption that for each i we have αi /= 0 or βi /= 0. More specific
examples will be presented in Section 3.4. The approximate action functional takes the form

B̄s[qd(⋅; qµ), p(⋅)] = p(tk+1)qs −∆t
r

∑
i=1

αi[p(tk + ci∆t)q̇d(tk + ci∆t) −H(qd(tk + ci∆t), p(tk + ci∆t))]

+∆W
r

∑
i=1

βih(qd(tk + ci∆t), p(tk + ci∆t)), (3.5)

where ∆W =W (tk+1)−W (tk) is the increment of the Wiener process over the considered time inter-
val and is a Gaussian random variable with zero mean and variance ∆t. The way of approximating
the Stratonovich integral above was inspired by the ideas presented in [7], [11], [28], [34], and [35].
Note that since we only used ∆W = ∫ tk+1tk

dW (t) in the above approximation, we can in general
expect strong convergence of order 1.0 only. To obtain strong convergence of higher order we would
also need to include higher-order multiple Stratonovich integrals, e.g., to achieve convergence of
order 1.5 we would need to include terms involving ∆Z = ∫ tk+1tk ∫ ttk dW (ξ)dt (see [11], [34], [35]). We
can now approximate the generating function S(qk, pk+1) with the discrete Hamiltonian function
H+
d (qk, pk+1) defined as

H+
d (qk, pk+1) = ext

q1,...,qs∈Q
P1,...,Pr∈Q∗

q0=qk

{pk+1q
s −∆t

r

∑
i=1

αi[Piq̇d(tk + ci∆t) −H(qd(tk + ci∆t), Pi)]

+∆W
r

∑
i=1

βih(qd(tk + ci∆t), Pi)}, (3.6)

where we denoted Pi ≡ p(tk+ci∆t). The numerical scheme (qk, pk)Ð→ (qk+1, pk+1) is now implicitly
generated by H+

d (qk, pk+1) as in (2.9):
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qk+1 =D2H
+
d (qk, pk+1), pk =D1H

+
d (qk, pk+1). (3.7)

Equations (3.6) and (3.7) can be written together as the following system:

−pk =
r

∑
i=1

αi[Pi l̇0,s(ci) −∆t
∂H

∂q
(tk + ci∆t)l0,s(ci)] −∆W

r

∑
i=1

βi
∂h

∂q
(tk + ci∆t)l0,s(ci), (3.8a)

0 =
r

∑
i=1

αi[Pi l̇µ,s(ci) −∆t
∂H

∂q
(tk + ci∆t)lµ,s(ci)] −∆W

r

∑
i=1

βi
∂h

∂q
(tk + ci∆t)lµ,s(ci), (3.8b)

pk+1 =
r

∑
i=1

αi[Pi l̇s,s(ci) −∆t
∂H

∂q
(tk + ci∆t)ls,s(ci)] −∆W

r

∑
i=1

βi
∂h

∂q
(tk + ci∆t)ls,s(ci), (3.8c)

αiq̇d(tk + ci∆t) = αi
∂H

∂p
(tk + ci∆t) + βi

∆W

∆t

∂h

∂p
(tk + ci∆t), (3.8d)

qk+1 = qs, (3.8e)

where µ = 1, . . . , s−1 in (3.8b), i = 1, . . . , r in (3.8d), and for brevity we have introduced the notation

H(tk + ci∆t) ≡H(qd(tk + ci∆t), p(tk + ci∆t)) (similarly for h).

Equation (3.8a) corresponds to the second equation in (3.7), equations (3.8b), (3.8c) and (3.8d)
correspond to extremizing (3.6) with respect to q1, . . . , qs, and P1, . . . , Pr, respectively, and finally
(3.8e) is the first equation in (3.7). Knowing (qk, pk), the system (3.8) allows us to solve for
(qk+1, pk+1): we first simultaneously solve (3.8a), (3.8b) and (3.8d) ((s+r)N equations) for q1, . . . , qs

and P1, . . . , Pr ((s + r)N unknowns); then qk+1 = qs and (3.8c) is an explicit update rule for pk+1.
When h ≡ 0, then (3.8) reduces to the deterministic Galerkin variational integrator discussed in [38].

3.2 Properties of stochastic Galerkin variational integrators

The key features of variational integrators are their symplecticity and exact preservation of the
discrete counterparts of conserved quantities (momentum maps) related to the symmetries of the
Lagrangian or Hamiltonian (see [31]). These properties carry over to the stochastic case, as was
first demonstrated in [7] for Lagrangian systems. In what follows, we will show that the stochastic
Galerkin Hamiltonian variational integrators constructed in Section 3.1 also possess these properties.

Theorem 3.1 (Symplecticity of the discrete flow). Let F+
tk+1,tk

∶ Ω × T ∗Q Ð→ T ∗Q be the
dicrete stochastic flow implicitly defined by the discrete Hamiltonian H+

d as in (3.7). Then F +
tk+1,tk

is almost surely symplectic, that is,

(F +
tk+1,tk

)∗ΩT ∗Q = ΩT ∗Q, (3.9)

where ΩT ∗Q = ∑Ni=1 dq
i ∧ dpi is the canonical symplectic form on T ∗Q.

Proof. The proof follows immediately by observing that (see [25])

0 = ddH+(qk, pk+1) =
N

∑
i=1

dqik+1 ∧ dpik+1 −
N

∑
i=1

dqik ∧ dpik = (F+
tk+1,tk

)∗ΩT ∗Q −ΩT ∗Q, (3.10)
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where d in the above formula denotes the differential operator with respect to the variables q and p
and is understood in the mean-square sense. The result holds almost surely, because equation (3.7)
holds almost surely.

The discrete counterpart of stochastic Noether’s theorem readily generalizes from the corre-
sponding theorem in the deterministic case.

Theorem 3.2 (Discrete stochastic Noether’s theorem). Let ΦT ∗Q be the cotangent lift action
of the action Φ of the Lie group G on the configuration space Q. If the generalized discrete stochastic
Lagrangian Rd(qk, pk+1) = pk+1qk+1 −H+

d (qk, pk+1), where qk+1 =D2H
+
d (qk, pk+1), is invariant under

the action of G, that is,

Rd(Φg(qk), πQ∗ ○ΦT ∗Q
g (qk+1, pk+1)) = Rd(qk, pk+1), for all g ∈ G, (3.11)

where πQ∗ ∶ Q × Q∗ Ð→ Q∗ is the projection onto Q∗, then the cotangent lift momentum map J
associated with ΦT ∗Q is almost surely preserved, i.e., a.s. J(qk+1, pk+1) = J(qk, pk).

Proof. See the proof of Theorem 4 in [25]. In our case the result holds almost surely, because
equation (3.7) holds almost surely.

For applications, it is useful to know under what conditions the discrete Hamiltonian (3.6) inherits
the symmetry properties of the Hamiltonians H and h. Not unexpectedly, this depends on the
behavior of the interpolating polynomial (3.3) under the group action. We say that the polynomial
qd(t; qµ) is equivariant with respect to G if for all g ∈ G we have

ΦTQ
g (qd(t; qµ), q̇d(t; qµ)) = (qd(t; Φg(qµ)), q̇d(t; Φg(qµ))). (3.12)

Theorem 3.3. Suppose that the Hamiltonians H ∶ T ∗Q Ð→ R and h ∶ T ∗Q Ð→ R are invariant
with respect to the cotangent lift action ΦT ∗Q ∶ G × T ∗QÐ→ T ∗Q of the Lie group G, that is,

H ○ΦT ∗Q
g =H, h ○ΦT ∗Q

g = h, (3.13)

for all g ∈ G, and suppose the interpolating polynomial qd(t; qµ) is equivariant with respect to G.
Then the generalized discrete stochastic Lagrangian Rd(qk, pk+1) = pk+1qk+1 − H+

d (qk, pk+1) corre-
sponding to the discrete Hamiltonian (3.6), where qk+1 = D2H

+
d (qk, pk+1), is invariant with respect

to the action of G.

Proof. The proof is similar to the proofs of Lemma 3 in [25] and Theorem 3 in [38]. Let us,
however, carefully examine the actions of G on Q, TQ, and T ∗Q. Let qk ∈ Q and pk+1 ∈ Q∗, and let
qk+1 =D2H

+
d (qk, pk+1). First, note that for the stochastic discrete Hamiltonian (3.6), we have
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R(qk, pk+1) = ext
q1,...,qs∈Q
P1,...,Pr∈Q∗

q0=qk

{∆t
r

∑
i=1

αi[Piq̇d(tk + ci∆t; qµ) −H(qd(tk + ci∆t; qµ), Pi)]

−∆W
r

∑
i=1

βih(qd(tk + ci∆t; qµ), Pi)}, (3.14)

where we used (3.8e). Consider q̃k = Φg(qk) and (q̃k+1, p̃k+1) = ΦT ∗Q
g (qk+1, pk+1) for g ∈ G, and

calculate (3.14) for the transformed values q̃k and p̃k+1:

R(q̃k, p̃k+1) = ext
q̃1,...,q̃s∈Q
P̃1,...,P̃r∈Q∗

q̃0=q̃k

{∆t
r

∑
i=1

αi[P̃iq̇d(tk + ci∆t; q̃µ) −H(qd(tk + ci∆t; q̃µ), P̃i)]

−∆W
r

∑
i=1

βih(qd(tk + ci∆t; q̃µ), P̃i)}. (3.15)

Let us perform a change of variables with respect to which we extremize. First, define qµ = Φg−1(q̃µ),
so that q̃µ = Φg(qµ) for µ = 0, . . . , s. From (3.12) we have qd(tk + ci∆t; q̃µ) = Φg(qd(tk + ci∆t; qµ)),
which we use to define Pi by (qd(tk+ci∆t; q̃µ), P̃i) = ΦT∗Q

g (qd(tk+ci∆t; qµ), Pi) for i = 1, . . . , r. Since
Φg and ΦT∗Q

g are bijective, extremization with respect to qµ and Pi is equivalent to extremization
with respect to q̃µ and P̃i, and q̃0 = q̃k implies q0 = qk. Moreover, from (3.12) and (2.18) we have
that P̃iq̇d(tk + ci∆t; q̃µ) = Piq̇d(tk + ci∆t; qµ). Finally, the invariance of the Hamiltonians implies

R(q̃k, p̃k+1) = ext
q1,...,qs∈Q
P1,...,Pr∈Q∗

q0=qk

{∆t
r

∑
i=1

αi[Piq̇d(tk + ci∆t; qµ) −H(qd(tk + ci∆t; qµ), Pi)]

−∆W
r

∑
i=1

βih(qd(tk + ci∆t; qµ), Pi)} = R(qk, pk+1), (3.16)

which completes the proof.

Remark: One can easily verify that the interpolating polynomial (3.3) is in particular equivariant
with respect to linear actions (translations, rotations, etc.), therefore the stochastic Galerkin varia-
tional integrator (3.8) preserves quadratic momentum maps (such as linear and angular momentum)
related to linear symmetries of the Hamiltonians H and h.

3.3 Stochastic symplectic partitioned Runge-Kutta methods

A general class of stochastic Runge-Kutta methods for Stratonovich ordinary differential equations
was introduced and analyzed in [9], [10], and [11]. These ideas were later used by Ma & Ding & Ding
[27] and Ma & Ding [28] to construct symplectic Runge-Kutta methods for stochastic Hamiltonian
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systems. An s-stage stochastic symplectic partitioned Runge-Kutta method for (1.1) is defined in
[28] by the following system:

Qi = qk +∆t
s

∑
j=1

aij
∂H

∂p
(Qj , Pj) +∆W

s

∑
j=1

bij
∂h

∂p
(Qj , Pj), i = 1, . . . , s, (3.17a)

Pi = pk −∆t
s

∑
j=1

āij
∂H

∂q
(Qj , Pj) −∆W

s

∑
j=1

b̄ij
∂h

∂q
(Qj , Pj), i = 1, . . . , s, (3.17b)

qk+1 = qk +∆t
s

∑
i=1

αi
∂H

∂p
(Qi, Pi) +∆W

s

∑
i=1

βi
∂h

∂p
(Qi, Pi), (3.17c)

pk+1 = pk −∆t
s

∑
i=1

αi
∂H

∂q
(Qi, Pi) −∆W

s

∑
i=1

βi
∂h

∂q
(Qi, Pi), (3.17d)

where Qi and Pi for i = 1, . . . , s are the position and momentum internal stages, respectively, and
the coefficients of the method aij , āij , bij , b̄ij , αi, βi satisfy the symplectic conditions

αiāij + αjaji = αiαj , (3.18a)
βiāij + αjbji = βiαj , (3.18b)
αib̄ij + βjaji = αiβj , (3.18c)
βib̄ij + βjbji = βiβj , (3.18d)

for i, j = 1, . . . , s. We now prove that in the special case when r = s, the stochastic Galerkin vari-
ational integrator (3.8) is equivalent to the stochastic symplectic partitioned Runge-Kutta method
(3.17).

Theorem 3.4. Let r = s and let l̄i,s−1(τ) for i = 1, . . . , s denote the Lagrange polynomials of degree
s− 1 associated with the quadrature points 0 ≤ c1 < . . . < cs ≤ 1. Moreover, let the weights αi be given
by

αi = ∫
1

0
l̄i,s−1(τ)dτ, (3.19)

and assume αi /= 0 for i = 1, . . . , s. Then the stochastic Galerkin Hamiltonian variational integrator
(3.8) is equivalent to the stochastic partitioned Runge-Kutta method (3.17) with the coefficients

aij = ∫
ci

0
l̄j,s−1(τ)dτ, (3.20a)

āij =
αj(αi − aji)

αi
, (3.20b)

bij =
βjaij

αj
, (3.20c)

b̄ij =
βj(αi − aji)

αi
, (3.20d)

for i, j = 1, . . . , s.
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Proof. The proof follows the main steps of the proof of Theorem 2.6.2 in [31]. The time derivative
q̇d is a polynomial of degree s− 1. Therefore, it can be uniquely expressed in terms of the Lagrange
polynomials l̄j,s−1(τ) as

q̇d(tk + τ∆t) =
s

∑
j=1

q̇d(tk + cj∆t)l̄j,s−1(τ). (3.21)

Upon integrating with respect to time, we find

qd(tk + τ∆t) = qk +∆t
s

∑
j=1

q̇d(tk + cj∆t)∫
τ

0
l̄j,s−1(ξ)dξ, (3.22)

where we have used q0 = qk. For τ = 1 this gives

qk+1 = qk +∆t
s

∑
j=1

αj q̇d(tk + cj∆t), (3.23)

where we have used qs = qk+1 and (3.19). Define the internal stages Qj ≡ qd(tk + cj∆t). Then, upon
using (3.8d), equation (3.23) becomes (3.17c). For τ = ci equation (3.22) gives

Qi = qk +∆t
s

∑
j=1

aij q̇d(tk + cj∆t), (3.24)

where aij is defined by (3.20a). Upon substituting (3.8d), equation (3.24) becomes (3.17a), where bij
is defined by (3.20c). Next, sum equations (3.8a), (3.8b), and (3.8c). Noting that ∑sµ=0 lµ,s(τ) = 1,
this gives equation (3.17d). Finally, we note that for each i = 1, . . . , s we have a unique decomposition

∫
τ

0
l̄i,s−1(ξ)dξ − αi =

s

∑
µ=0

miµlµ,s(τ), (3.25)

since the left-hand side is a polynomial of degree s, and therefore it can be uniquely expressed as
a linear combination of the Lagrange polynomials lµ,s(τ) with the coefficients miµ. Evaluating this
identity at τ = d0 = 0, τ = ds = 1, and differentiating it with respect to τ yield the following three
equations, respectively,

−αi =
s

∑
µ=0

miµlµ,s(0) =mi0,

0 =
s

∑
µ=0

miµlµ,s(1) =mis,

l̄i,s−1(τ) =
s

∑
µ=0

miµ l̇µ,s(τ). (3.26)

We form a linear combination of equations (3.8a), (3.8b), and (3.8c) with the coefficients mj0, mjµ,
and mjs, respectively. By using the identities (3.26) and rearranging the terms, we obtain (3.17d),
where āij and b̄ij are defined by (3.20b) and (3.20d), respectively. One can easily verify that the
coefficients (3.20) satisfy the conditions (3.18).
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3.4 Examples

In the construction of the integrator (3.8) we may choose the degree s of the approximating poly-
nomials and the quadrature rules (αi, ci)ri=1 and (βi, ci)ri=1. In the deterministic case, the higher
the degree of the polynomials and the higher the order of the quadrature rule, then the higher the
order of convergence of the resulting integrator (see [38]). In our case, however, as explained in
Section 3.1, we cannot in general achieve strong order of convergence higher than 1.0, because we
only used ∆W in (3.5). Since the system (3.8) requires solving (s + r)N equations for (s + r)N
variables, from the computational point of view it makes sense to only consider methods with low
values of s and r. In this work we focus on the following classical numerical integration formulas
(see [14], [15], [16]):

• Gauss-Legendre quadratures (Gau): midpoint rule (r = 1), etc.

• Lobatto quadratures (Lob): trapezoidal rule (r = 2), Simpson’s rule (r = 3), etc.

• Open trapezoidal rule (Otr; r = 2)

• Milne’s rule (Mil; r = 3)

• Rectangle rule (Rec; r = 1)—only in the case when h = h(q).

In [38] notation PsNrQu was proposed to denote a Galerkin variational integrator based on
polynomials of degree s and a quadrature rule of order u with r quadrature points. We adopt a
similar notation, keeping in mind that u denotes the classical order of the used quadrature rule—
when the rule is applied to a stochastic integral, as in (3.5), its classical order is not attained
in general. We also use a three-letter code to identify which integration formula is used. For
example, P2N2Q4Gau denotes the integrator defined by (3.8) using polynomials of degree 2 and
the Gauss-Legendre quadrature formula of classical order 4 with 2 quadrature points for both the
Lebesgue and Stratonovich integrals in (3.5). If two different quadrature rules are used, we first
write the rule applied to the Lebesgue integral, followed by the rule applied to the Stratonovich
integral, e.g., P1N1Q2GauN2Q2Lob. Below we give several examples of integrators obtained by
using polynomials of degree s = 1,2 and the quadrature rules listed above.

3.4.1 General stochastic Hamiltonian

For a general stochastic potential h = h(q, p), equation (3.8d), which represents the discretization of
the Legendre transform, needs to contain both ∂H/∂p and ∂h/∂p terms to correctly approximate
the continuous system. Therefore, we only consider methods with αi = βi /= 0 for all i = 1, . . . , r. A
few examples of interest are listed below.

1. P1N1Q2Gau (Stochastic midpoint method)
Using the midpoint rule (r = 1, c1 = 1/2, α1 = β1 = 1) together with polynomials of degree
s = 1 gives a stochastic Runge-Kutta method (3.17) with a11 = ā11 = b11 = b̄11 = 1/2. Noting
that Q1 = (qk + qk+1)/2 and P1 = (pk + pk+1)/2, this method can be written as
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qk+1 = qk +
∂H

∂p
(qk + qk+1

2
,
pk + pk+1

2
)∆t + ∂h

∂p
(qk + qk+1

2
,
pk + pk+1

2
)∆W,

pk+1 = pk −
∂H

∂q
(qk + qk+1

2
,
pk + pk+1

2
)∆t − ∂h

∂q
(qk + qk+1

2
,
pk + pk+1

2
)∆W. (3.27)

The stochastic midpoint method was considered in [28] and [35].

2. P2N2Q2Lob (Stochastic Störmer-Verlet method)
If the trapezoidal rule (r = 2, c1 = 0, c2 = 1, α1 = β1 = 1/2, α2 = β2 = 1/2) is used with
polynomials of degree s = 2, we obtain another partitioned Runge-Kutta method (3.17) with
a11 = a12 = 0, a21 = a22 = 1/2, ā11 = ā21 = 1/2, ā12 = ā22 = 0, (bij) = (aij), (b̄ij) = (āij). Noting
that Q1 = qk, Q2 = qk+1, and P1 = P2, this method can be more efficiently written as

P1 = pk −
1

2

∂H

∂q
(qk, P1)∆t − 1

2

∂h

∂q
(qk, P1)∆W,

qk+1 = qk +
1

2

∂H

∂p
(qk, P1)∆t + 1

2

∂H

∂p
(qk+1, P1)∆t + 1

2

∂h

∂p
(qk, P1)∆W + 1

2

∂h

∂p
(qk+1, P1)∆W,

pk+1 = P1 −
1

2

∂H

∂q
(qk+1, P1)∆t − 1

2

∂h

∂q
(qk+1, P1)∆W. (3.28)

This method is a stochastic generalization of the Störmer-Verlet method (see [14]) and was
considered in [28]. This method is particularly efficient, because the first equation can be
solved separately from the second one, and the last equation is an explicit update.

3. P1N2Q2Lob (Stochastic trapezoidal method)
This integrator is based on polynomials of degree s = 1 with control points d0 = 0, d1 = 1, and
the trapezoidal rule. Equations (3.8) take the form

pk =
1

2
(P1 + P2) +

1

2

∂H

∂q
(qk, P1)∆t + 1

2

∂h

∂q
(qk, P1)∆W,

pk+1 =
1

2
(P1 + P2) −

1

2

∂H

∂q
(qk+1, P2)∆t − 1

2

∂h

∂q
(qk+1, P2)∆W,

qk+1 = qk +
∂H

∂p
(qk, P1)∆t + ∂h

∂p
(qk, P1)∆W,

qk+1 = qk +
∂H

∂p
(qk+1, P2)∆t + ∂h

∂p
(qk+1, P2)∆W. (3.29)

This integrator is a stochastic generalization of the trapezoidal method for deterministic
systems (see [31]). One may easily verify that if the Hamiltonians are separable, that is,
H(q, p) = T0(p) + U0(q) and h(q, p) = T1(p) + U1(q), then P1 = P2 and (3.29) is equivalent to
the Störmer-Verlet method (3.28).
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4. P1N3Q4Lob
If we use Simpson’s rule (r = 3, c1 = 0, c2 = 1/2, c3 = 1, α1 = 1/6, α2 = 2/3, α3 = 1/6, βi = αi),
the resulting integrator (3.8) requires solving simultaneously 4N nonlinear equations, so it is
computationally expensive in general. However, if the Hamiltonians H and h are separable,
then (3.8d) implies P1 = P2 = P3, and the integrator can be rewritten as

qk+1 = qk +
∂T0

∂p
(P1)∆t + ∂T1

∂p
(P1)∆W,

pk+1 = P1 −
1

3

∂U0

∂q
(qk + qk+1

2
)∆t − 1

6

∂U0

∂q
(qk+1)∆t − 1

3

∂U1

∂q
(qk + qk+1

2
)∆W − 1

6

∂U1

∂q
(qk+1)∆W,

(3.30)

where

P1 = pk −
1

6

∂U0

∂q
(qk)∆t − 1

3

∂U0

∂q
(qk + qk+1

2
)∆t − 1

6

∂U1

∂q
(qk)∆W − 1

3

∂U1

∂q
(qk + qk+1

2
)∆W,

(3.31)

and H(q, p) = T0(p) + U0(q) and h(q, p) = T1(p) + U1(q). In this case only the first equation
needs to be solved for qk+1, and then the second equation is an explicit update.

5. P1N2Q2Otr
Like the method (3.29), this integrator is based on polynomials of degree s = 1 with control
points d0 = 0, d1 = 1, but uses the open trapezoidal rule (r = 2, c1 = 1/3, c2 = 2/3, α1 = 1/2,
α2 = 1/2, βi = αi). Equations (3.8) take the form

pk =
1

2
(P1 + P2) +

1

3

∂H

∂q
(qk+1 + 2qk

3
, P1)∆t + 1

6

∂H

∂q
(2qk+1 + qk

3
, P2)∆t

+ 1

3

∂h

∂q
(qk+1 + 2qk

3
, P1)∆W + 1

6

∂h

∂q
(2qk+1 + qk

3
, P2)∆W,

pk+1 =
1

2
(P1 + P2) −

1

6

∂H

∂q
(qk+1 + 2qk

3
, P1)∆t − 1

3

∂H

∂q
(2qk+1 + qk

3
, P2)∆t

− 1

6

∂h

∂q
(qk+1 + 2qk

3
, P1)∆W − 1

3

∂h

∂q
(2qk+1 + qk

3
, P2)∆W,

qk+1 = qk +
∂H

∂p
(qk+1 + 2qk

3
, P1)∆t + ∂h

∂p
(qk+1 + 2qk

3
, P1)∆W,

qk+1 = qk +
∂H

∂p
(2qk+1 + qk

3
, P2)∆t + ∂h

∂p
(2qk+1 + qk

3
, P2)∆W. (3.32)

In general one has to solve the first, third, and fourth equation simultaneously (3N equations
for 3N variables). In case of separable Hamiltonians we have P1 = P2 and one only needs
to solve N nonlinear equations: P1 can be explicitly calculated from the third equation and
substituted into the first one, and the resulting nonlinear equation then has to be solved for
qk+1.
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6. P2N2Q2Otr
If the open trapezoidal rule is used with polynomials of degree s = 2, we obtain yet another
partitioned Runge-Kutta method (3.17) with a11 = ā22 = 1/2, a12 = ā12 = −1/6, a21 = ā21 = 2/3,
a22 = ā11 = 0, (bij) = (aij), (b̄ij) = (āij). Inspecting equations (3.17) we see that, for example,
Q2 is explicitly given in terms of Q1 and P1, therefore one only needs to solve 3N equations for
the 3N variables Q1, P1, P2, and the remaining equations are explicit updates. This method
further simplifies for separable Hamiltonians H and h.

7. P1N3Q4Mil
A method similar to 4.3 is obtained if we use Milne’s rule (r = 3, c1 = 1/4, c2 = 1/2, c3 = 3/4,
α1 = 2/3, α2 = −1/3, α3 = 2/3, βi = αi) instead of Simpson’s rule. The resulting integrator
is also computationally expensive in general, but if the Hamiltonians H and h are separable,
then (3.8d) implies P1 = P2 = P3, and the integrator can be rewritten as

qk+1 = qk +
∂T0

∂p
(P1)∆t + ∂T1

∂p
(P1)∆W,

pk+1 = pk −
2

3

∂U0

∂q
(3qk + qk+1

4
)∆t + 1

3

∂U0

∂q
(qk + qk+1

2
)∆t − 2

3

∂U0

∂q
(qk + 3qk+1

4
)∆t

− 2

3

∂U1

∂q
(3qk + qk+1

4
)∆W + 1

3

∂U1

∂q
(qk + qk+1

2
)∆W − 2

3

∂U1

∂q
(qk + 3qk+1

4
)∆W, (3.33)

where

P1 = pk −
1

2

∂U0

∂q
(3qk + qk+1

4
)∆t + 1

6

∂U0

∂q
(qk + qk+1

2
)∆t − 1

6

∂U0

∂q
(qk + 3qk+1

4
)∆t

− 1

2

∂U1

∂q
(3qk + qk+1

4
)∆W + 1

6

∂U1

∂q
(qk + qk+1

2
)∆W − 1

6

∂U1

∂q
(qk + 3qk+1

4
)∆W, (3.34)

and H(q, p) = T0(p) + U0(q) and h(q, p) = T1(p) + U1(q). In this case only the first equation
needs to be solved for qk+1, and then the second equation is an explicit update.

3.4.2 Stochastic Hamiltonian independent of momentum

In case the stochastic Hamiltonian h = h(q) is independent of the momentum variable p, the term
∂h/∂p does not enter equation (3.8d), and therefore we can allow a choice of quadrature rules such
that αi = 0 or βi = 0 for some i. If αi = 0, however, the system (3.8) becomes underdetermined,
but at the same time the corresponding Pi does not enter any of the remaining equations, therefore
we can simply ignore it. To simplify the notation, let i1 < . . . < ir̄ be the set of indices such that
αim /= 0, and denote ᾱm ≡ αim , c̄m ≡ cim for m = 1, . . . , r̄. Similarly, let j1 < . . . < jr̃ be the set of
indices such that βjm /= 0, and denote β̃m ≡ βim , c̃m ≡ cjm for m = 1, . . . , r̃. In (3.8) leave out the
terms and equations corresponding to αi = 0 or βi = 0, and replace αi, βi, ci and r by ᾱi, β̃i, c̄i, c̃i,
r̄ and r̃, accordingly. In other words, this is equivalent to using the quadrature rules (ᾱi, c̄i)r̄i=1 and
(β̃i, c̃i)r̃i=1 in (3.6). We then simultaneously solve (3.8a), (3.8b) and (3.8d) ((s + r̄)N equations) for
q1, . . . , qs and P1, . . . , Pr̄ ((s+ r̄)N unknowns). A few examples of such integrators are listed below.
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1. P1N1Q1Rec (Stochastic symplectic Euler method)
The rectangle rule (r̄ = 1, c̄1 = 1, ᾱ1 = 1) does not yield a convergent numerical scheme in the
general case, but when h = h(q), the Itô and Stratonovich interpretations of (1.1) are equiv-
alent, and the rectangle rule can be used to construct efficient integrators. In fact, applying
the rectangle rule to both the Lebesgue and Stratonovich integrals and using polynomials of
degree s = 1 yield a method which can be written as

qk+1 = qk +
∂H

∂p
(qk+1, pk)∆t,

pk+1 = pk −
∂H

∂q
(qk+1, pk)∆t − ∂h

∂q
(qk+1)∆W. (3.35)

This method is a straightforward generalization of the symplectic Euler scheme (see [14], [31])
and is particularly computationally efficient, as only the first equation needs to be solved for
qk+1, and then the second equation is an explicit update. Moreover, in case the Hamiltonian
H is separable, the method becomes explicit.

2. P1N1Q1RecN2Q2Lob
The accuracy of the stochastic symplectic Euler scheme above can be improved by applying
the trapezoidal rule to the Stratonovich integral instead of the rectangle rule. The resulting
integrator takes the form

qk+1 = qk +
∂H

∂p
(qk+1, P1)∆t,

pk+1 = pk −
∂H

∂q
(qk+1, P1)∆t − 1

2

∂h

∂q
(qk)∆W − 1

2

∂h

∂q
(qk+1)∆W, (3.36)

where

P1 = pk −
1

2

∂h

∂q
(qk)∆W. (3.37)

While having a similar computational cost, this method yields a more accurate solution than
(3.35) (see Section 4 for numerical tests).

3. P1N1Q1RecN1Q2Gau
Similarly, if we apply the midpoint rule instead of the trapezoidal rule, we obtain the following
modification of the stochastic symplectic Euler method:

qk+1 = qk +
∂H

∂p
(qk+1, P1)∆t,

pk+1 = pk −
∂H

∂q
(qk+1, P1)∆t − ∂h

∂q
(qk + qk+1

2
)∆W, (3.38)

where
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P1 = pk −
1

2

∂h

∂q
(qk + qk+1

2
)∆W. (3.39)

This method demonstrates a similar performance as (3.36) (see Section 4 for numerical tests).

4. P2N2Q2LobN1Q1Rec
A modification of the stochastic Störmer-Verlet method (3.28) is obtained if we use the rect-
angle rule to approximate the Stratonovich integral:

P1 = pk −
1

2

∂H

∂q
(qk, P1)∆t,

qk+1 = qk +
1

2

∂H

∂p
(qk, P1)∆t + 1

2

∂H

∂p
(qk+1, P1)∆t,

pk+1 = P1 −
1

2

∂H

∂q
(qk+1, P1)∆t − ∂h

∂q
(qk+1)∆W. (3.40)

This integrator has a similar computational cost as the stochastic Störmer-Verlet method (see
Section 4), but it yields a slightly less accurate solution (see Section 4).

5. P1N1Q2GauN2Q2Lob
This integrator is a modification of the stochastic midpoint method (3.27). We apply the
midpoint rule (r̄ = 1, c̄1 = 1/2, ᾱ1 = 1) to the Lebesgue integral in (3.4), and the trapezoidal
rule (r̃ = 2, c̃1 = 0, c̃2 = 1, β̃1 = 1/2, β̃2 = 1/2) to the Stratonovich integral. The resulting
numerical scheme can be written as

qk+1 = qk +
∂H

∂p
(qk + qk+1

2
, P1)∆t,

pk+1 = pk −
∂H

∂q
(qk + qk+1

2
, P1)∆t − 1

2

∂h

∂q
(qk)∆W − 1

2

∂h

∂q
(qk+1)∆W, (3.41)

where

P1 =
pk + pk+1

2
+ 1

4
∆W[∂h

∂q
(qk+1) −

∂h

∂q
(qk)]. (3.42)

6. P1N2Q2LobN1Q2Gau
If instead we apply the trapezoidal rule to the Lebesgue integral and the midpoint rule to
the Stratonovich integral in (3.4), we obtain a modification of the stochastic trapezoidal rule
(3.29):
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pk =
1

2
(P1 + P2) +

1

2

∂H

∂q
(qk, P1)∆t + 1

2

∂h

∂q
(qk + qk+1

2
)∆W,

pk+1 =
1

2
(P1 + P2) −

1

2

∂H

∂q
(qk+1, P2)∆t − 1

2

∂h

∂q
(qk + qk+1

2
)∆W,

qk+1 = qk +
∂H

∂p
(qk, P1)∆t,

qk+1 = qk +
∂H

∂p
(qk+1, P2)∆t. (3.43)

3.5 Convergence

There are two ways of measuring accuracy of a stochastic numerical integrator like (3.8), namely
strong convergence and weak convergence (see [21], [33]). Let z̄(t) = (q̄(t), p̄(t)) be the exact
solution to (1.1) with the initial conditions q0 and p0, and let zk = (qk, pk) denote the numerical
solution at time tk obtained by applying (3.8) iteratively k times with the constant time step ∆t.
The numerical solution is said to converge strongly with strong global order r if there exist δ > 0
and a constant C > 0 such that for all ∆t ∈ (0, δ) we have

E(∥zK − z̄(T )∥) ≤ C∆tr, (3.44)

where T =K∆t, as defined before, and E denotes the expected value. On the contrary, the numerical
solution is said to converge weakly with weak global order r if there exist δ > 0 and a constant C > 0
such that for all ∆t ∈ (0, δ) and f from a sufficiently large class of functions (usually polynomials)
we have

∥E(f(zK)) −E(f(z̄(T )))∥ ≤ C∆tr. (3.45)

We are here primarily interested in strong convergence. In principle, in order to determine the
strong order of convergence of the Galerkin variational integrator (3.8) we need to calculate the
power series expansions of qk+1 and pk+1 in terms of the powers of ∆t and ∆W , and compare
them to the Stratonovich-Taylor expansions for the exact solution q̄(tk + ∆t) and p̄(tk + ∆t) (see
[11], [21], [33]). It is quite a tedious task to do in the general case, therefore we only discuss the
examples presented in Section 3.4. For instance, in case of the stochastic trapezoidal method (3.29)
we plug in series expansions for P1, P2, qk+1 and pk+1, and determine their coefficients by expanding
the derivatives of the Hamiltonians into Taylor series around (qk, pk) and comparing the terms
corresponding to the like powers of ∆t and ∆W . We find that

qk+1 = qk +
∂H

∂p
∆t + ∂h

∂p
∆W + 1

2
(∂h
∂p

∂2h

∂p∂q
− ∂h
∂q

∂2h

∂p2
)∆W 2 + . . . ,

pk+1 = pk −
∂H

∂q
∆t − ∂h

∂q
∆W − 1

2
(∂h
∂p

∂2h

∂q2
− ∂h
∂q

∂2h

∂p∂q
)∆W 2 + . . . , (3.46)

where the derivatives of the Hamiltonians are evaluated at (qk, pk). Let q̄(t; qk, pk) and p̄(t; qk, pk)
denote the exact solution of (1.1) such that q̄(tk; qk, pk) = qk and p̄(tk; qk, pk) = pk. Using (1.1) we
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calculate the Stratonovich-Taylor expansions for q̄(tk+1; qk, pk) and p̄(tk+1; qk, pk), and comparing
them to (3.46) we find that

E(qk+1 − q̄(tk+1; qk, pk)) = O(∆t2),
√
E(∥qk+1 − q̄(tk+1; qk, pk)∥2) = O(∆t

3
2 ),

E(pk+1 − p̄(tk+1; qk, pk)) = O(∆t2),
√
E(∥pk+1 − p̄(tk+1; qk, pk)∥2) = O(∆t

3
2 ). (3.47)

Using Theorem 1.1 from [33], we conclude that the stochastic trapezoidal method (3.29) has strong
order of convergence r = 1. In a similar fashion we prove that all methods presented in Section 3.4 are
strongly convergent with strong order 1. We further verify these results numerically in Section 4.1.

3.6 Methods of order 3/2
In order to construct stochastic Galerkin variational integrators of higher order one needs to include
higher order terms in the discretization of the Stratonovich integral in (3.5). For example, a method
of strong order 3/2 must include terms involving ∆Z = ∫ tk+1tk ∫ ttk dW (ξ)dt (see [11], [34], [35]).
Inspired by the theory presented in [11], we can add extra terms to the discrete Hamiltonian (3.6)
and write it as

H+
d (qk, pk+1) = ext

q1,...,qs∈Q
P1,...,Pr∈Q∗

q0=qk

{pk+1q
s −∆t

r

∑
i=1

αi[Piq̇d(tk + ci∆t) −H(qd(tk + ci∆t), Pi)]

+∆W
r

∑
i=1

βih(qd(tk + ci∆t), Pi) +
∆Z

∆t

r

∑
i=1

γih(qd(tk + ci∆t), Pi)}. (3.48)

The random variables ∆W and ∆Z have a Gaussian joint distribution (see [21], [35]), and at each
time step they can be simulated by two independent N (0,1)-distributed random variables χ and η
as

∆W = χ
√

∆t, ∆Z = 1

2
∆t

3
2 (χ + 1√

3
η). (3.49)

In order to achieve strong convergence of order 3/2 one needs to determine appropriate values for
the parameters s, r, αi, βi, γi, and ci. However, we will not attempt to achieve this in the present
work. Instead, we will show that some known stochastic symplectic integrators can be derived as
stochastic Galerkin variational integrators.

Suppose the Hamiltonian is separable, i.e., H(q, p) = T (p)+U(q), and the stochastic Hamiltonian
h = h(q) does not depend on momentum. Consider the discrete Hamiltonian

H+
d (qk, pk+1) = ext

q1,...,qs∈Q
P1,...,Pr∈Q∗

q0=qk

{pk+1q
s −∆t

r

∑
i=1

[ᾱiPiq̇d(tk + ci∆t) − ᾱiU(qd(tk + ci∆t)) − αiT(Pi)]

+∆W
r

∑
i=1

β̄ih(qd(tk + ci∆t)) +
∆Z

∆t

r

∑
i=1

γ̄ih(qd(tk + ci∆t))}, (3.50)
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where different weights ᾱi and αi were applied to the potential U(q) and kinetic T (p) terms,
respectively. Similar to (3.8), the corresponding stochastic variational integrator takes the form

−pk =
r

∑
i=1

ᾱi[Pi l̇0,s(ci) −∆t
∂U

∂q
(tk + ci∆t)l0,s(ci)] −

r

∑
i=1

(β̄i∆W + γ̄i
∆Z

∆t
)∂h
∂q

(tk + ci∆t)l0,s(ci),

0 =
r

∑
i=1

ᾱi[Pi l̇µ,s(ci) −∆t
∂U

∂q
(tk + ci∆t)lµ,s(ci)] −

r

∑
i=1

(β̄i∆W + γ̄i
∆Z

∆t
)∂h
∂q

(tk + ci∆t)lµ,s(ci),

pk+1 =
r

∑
i=1

ᾱi[Pi l̇s,s(ci) −∆t
∂U

∂q
(tk + ci∆t)ls,s(ci)] −

r

∑
i=1

(β̄i∆W + γ̄i
∆Z

∆t
)∂h
∂q

(tk + ci∆t)ls,s(ci),

ᾱiq̇d(tk + ci∆t) = αi
∂T

∂p
(Pi), (3.51)

qk+1 = qs,

where µ = 1, . . . , s − 1 in the second equation, and i = 1, . . . , r in the fourth equation. In the special
case when r = s and

ᾱi = ∫
1

0
l̄i,s−1(τ)dτ, i = 1, . . . , s, (3.52)

we can show, similar to Theorem 3.4, that the stochastic Galerkin variational integrator (3.51) is
equivalent to the stochastic partitioned Runge-Kutta method

Qi = qk +∆t
s

∑
j=1

aij
∂T

∂p
(Pj), i = 1, . . . , s,

Pi = pk −∆t
s

∑
j=1

āij
∂U

∂q
(Qj) −

s

∑
j=1

(b̄ij∆W + λ̄ij
∆Z

∆t
)∂h
∂q

(Qj), i = 1, . . . , s,

qk+1 = qk +∆t
s

∑
i=1

αi
∂T

∂p
(Pi), (3.53)

pk+1 = pk −∆t
s

∑
i=1

ᾱi
∂U

∂q
(Qi) −

s

∑
i=1

(β̄i∆W + γ̄i
∆Z

∆t
)∂h
∂q

(Qi),

with the coefficients

aij =
αj

ᾱj
∫

ci

0
l̄j,s−1(τ)dτ, āij =

ᾱj(αi − aji)
αi

,

b̄ij =
β̄j(αi − aji)

αi
, λ̄ij =

γ̄j(αi − aji)
αi

, i, j = 1, . . . , s, (3.54)

where we assume αi /= 0 and ᾱi /= 0 for all i. Partitioned Runge-Kutta methods of type (3.53) were
considered in [35]. In particular, it was shown that for s = 2 the choice of the coefficients
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α1 = 2/3, α2 = 1/3, ᾱ1 = 1/4, ᾱ2 = 3/4, β̄1 = −1/2, β̄2 = 3/2, γ̄1 = 3/2 γ̄2 = −3/2,
a11 = 0, a12 = 0, ā11 = 1/4, ā12 = 0, b̄11 = −1/2, b̄12 = 0, λ̄11 = 3/2, λ̄12 = 0,

a21 = 2/3, a22 = 0, ā21 = 1/4, ā22 = 3/4, b̄21 = −1/2, b̄22 = 3/2, λ̄21 = 3/2, λ̄22 = −3/2,
(3.55)

gives a method of strong order 3/2 (see Theorem 4.3 in [35]).

4 Numerical experiments

In this section we present the results of our numerical experiments. We verify numerically the
convergence results from Section 3.5 and investigate the conservation properties of our integrators.
In particular, we show that our stochastic variational integrators demonstrate superior behavior in
long-time simulations compared to some popular general purpose non-symplectic stochastic algo-
rithms.

4.1 Numerical convergence analysis

4.1.1 Kubo oscillator

In order to test the convergence of the numerical algorithms from Section 3.4.1 we performed
computations for the Kubo oscillator, which is defined by H(q, p) = p2/2 + q2/2 and h(q, p) =
β(p2/2 + q2/2), where β is the noise intensity (see [35]). The Kubo oscillator is used in the theory
of magnetic resonance and laser physics. The exact solution is given by

q̄(t) = p0 sin(t+βW (t))+q0 cos(t+βW (t)), p̄(t) = p0 cos(t+βW (t))−q0 sin(t+βW (t)), (4.1)

where q0 and p0 are the initial conditions. Simulations with the initial conditions q0 = 0, p0 = 1
and the noise intensity β = 0.1 were carried out until the time T = 3.2 for a number of decreasing
time steps ∆t. In each case 2000 sample paths were generated. Let z∆t(t) = (q∆t(t), p∆t(t)) denote
the numerical solution. We used the exact solution (4.1) as a reference for computing the absolute
error E(∣z∆t(T )− z̄(T )∣) and the mean error ∣E(z∆t(T ))−E(z̄(T ))∣, where z̄(t) = (q̄(t), p̄(t)). The
dependence of these errors on the time step ∆t is depicted in Figure 4.1. We verified that our
algorithms have both strong and weak order of convergence 1.0. The integrators P1N3Q4Lob,
P1N3Q4Mil, P1N2Q2Lob (stochastic trapezoidal method), and P2N2Q2Lob (stochastic Störmer-
Verlet method) turned out to be the most accurate, with the latter two having least computational
cost.

4.1.2 Synchrotron oscillations of particles in storage rings

We carried out a similar test for the numerical schemes from Section 3.4.2. We performed compu-
tations for the stochastic Hamiltonian system defined by H(q, p) = p2/2 − cos q and h(q) = β sin q,
where β is the noise intensity. Systems of this type are used for modeling synchrotron oscillations of
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Figure 4.1: The absolute (left) and mean (right) errors at the time T = 3.2 as a function of the
time step ∆t for the simulations of the Kubo oscillator with the initial conditions q0 = 0, p0 = 1 and
the noise intensity β = 0.1. In each case 2000 sample paths were generated. The tested integrators
proved to be both strongly and weakly convergent of order 1.0.

a particle in a storage ring. Due to fluctuating electromagnetic fields, a particle performs stochas-
tically perturbed oscillations with respect to a reference particle which travels with fixed energy
along the design orbit of the accelerator; in this description p corresponds to the energy deviation
of the particle from the reference particle, and q measures the longitudinal phase difference of both
particles (see [13], [43] for more details). Simulations with the initial conditions q0 = 0, p0 = 1 and
the noise intensity β = 0.1 were carried out until the time T = 3.2 for a number of decreasing time
steps ∆t. In each case 2000 sample paths were generated. The absolute and mean errors were
calculated with respect to a high-precision reference solution generated using the order 3/2 strong
Taylor scheme (see [21], Chapter 10.4) with a very fine time step ∆t = 2 ⋅ 10−6. The dependence
of these errors on the time step ∆t is depicted in Figure 4.2. We verified that our algorithms have
strong order of convergence 1.0. The simulations also suggest that the weak order of convergence
of the tested algorithms is 3/2 (perhaps except for P1N1Q2GauN2Q2Lob, as in that case the
result is not entirely conclusive). It is worth noting that the integrators P1N1Q1RecN2Q2Lob
and P1N1Q1RecN1Q2Gau turned out to be as weakly accurate as the stochastic Störmer-Verlet
method (P2N2Q2Lob), while being less computationally expensive.

4.2 Long-time energy behavior

4.2.1 Kubo oscillator

One can easily check that in the case of the Kubo oscillator the Hamiltonian H(q, p) stays constant
for almost all sample paths, i.e., H(q̄(t), p̄(t)) = H(q0, p0) almost surely. We used this example to
test the performance of the integrators from Section 3.4.1. Simulations with the initial conditions
q0 = 0, p0 = 1, the noise intensity β = 0.1, and the relatively large time step ∆t = 0.25 were
carried out until the time T = 1000 (approximately 160 periods of the oscillator in the absence
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Figure 4.2: The absolute (left) and mean (right) errors at the time T = 3.2 as a function of the
time step ∆t for the simulations of the synchrotron oscillations of a particle in a storage ring with
the initial conditions q0 = 0, p0 = 1 and the noise intensity β = 0.1. In each case 2000 sample
paths were generated. The tested integrators proved to be strongly convergent of order 1.0. The
simulations also suggest the tested integrators have weak order of convergence 3/2 (although it is not
conclusive for P1N1Q2GauN2Q2Lob). Note that the weak error plots for P1N1Q1RecN1Q2Gau,
P1N1Q1RecN2Q2Lob, P1N2Q2LobN1Q2Gau, and P2N2Q2Lob overlap very closely.
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of noise) for a single realization of the Wiener process. For comparison, similar simulations were
carried out using non-symplectic explicit methods like Milstein’s scheme and the order 3/2 strong
Taylor scheme (see [21]). The numerical value of the Hamiltonian H(q, p) as a function of time
for each of the integrators is depicted in Figure 4.3. We find that the non-symplectic schemes
do not preserve the Hamiltonian well, even if small time steps are used. For example, we find
that Milstein’s scheme does not give a satisfactory solution even with ∆t = 0.001, and though the
Taylor scheme with ∆t = 0.05 yields a result comparable to the variational integrators, the growing
trend of the numerical Hamiltonian is evident. On the other hand, the variational integrators give
numerical solutions for which the Hamiltonian oscillates around the true value (one can check via a
direct calculation that the stochastic midpoint method (3.27) in this case preserves the Hamiltonian
exactly; of course this does not necessarily hold in the general case).

4.2.2 Anharmonic oscillator

In general the Hamiltonian H(q, p) does not stay constant for stochastic Hamilton equations. To
determine how well our integrators perform in such cases we considered the anharmonic oscillator
defined by H(q, p) = p2/2 + γq4 and h(q) = βq, where β is the noise intensity and γ is a parameter.
One can calculate the expected value of the Hamiltonian analytically as

E(H(q(t), p(t))) =H(q0, p0) +
β2

2
t, (4.2)

that is, the mean value of the Hamiltonian grows linearly in time (see [43]). Simulations with the
initial conditions q0 = 0, p0 = 1, the parameter γ = 0.1, and the noise intensity β = 0.1 were carried
out until the time T = 784 (approximately 100 periods of the oscillator in the absence of noise).
In each case 10,000 sample paths were generated. The numerical value of the mean Hamiltonian
E(H) as a function of time for each of the integrators is depicted in Figure 4.4. We see that the
variational integrators accurately capture the linear growth of E(H), whereas the Taylor scheme
fails to reproduce that behavior even when a smaller time step is used. It is worth noting that
the integrators P1N1Q1RecN2Q2Lob and P1N1Q1RecN1Q2Gau yield a very accurate solution,
while being computationally efficient, as discussed in Section 3.4.2.

5 Summary

In this paper we have presented a general framework for constructing a new class of stochastic sym-
plectic integrators for stochastic Hamiltonian systems. We generalized the approach of Galerkin
variational integrators introduced in [25], [31], [38] to the stochastic case, following the ideas un-
derlying the stochastic variational integrators introduced in [7]. The solution of the stochastic
Hamiltonian system was approximated by a polynomial of degree s, and the action functional was
approximated by a quadrature formula based on r quadrature points. We showed that the result-
ing integrators are symplectic, preserve integrals of motion related to Lie group symmetries, and
include stochastic symplectic Runge-Kutta methods introduced in [27], [28], [35] as a special case
when r = s. We pointed out several new low-stage stochastic symplectic methods of strong order
1.0, both for the case of a general stochastic Hamiltonian h = h(q, p) and a stochastic Hamiltonian
h = h(q) independent of p, and demonstrated their superior long-time stability and energy behavior
via numerical experiments.
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Figure 4.3: Top: The numerical Hamiltonian for the solutions obtained with Milstein’s scheme
and the order 3/2 strong Taylor scheme. We see that the Hamiltonian tends to blow up despite
using small time steps. Bottom: The numerical Hamiltonian for the solutions obtained with the
integrators derived in Section 3.4.1. For comparison, the solution obtained with the Taylor scheme
for ∆t = 0.05 is also included. Note that for clarity the same color code is applied when the plots
for some integrators overlap very closely.
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Figure 4.4: Top: The numerical value of the mean Hamiltonian E(H) is shown for the solu-
tions computed with the order 3/2 strong Taylor scheme using the time step ∆t = 0.05 and the
variational integrators derived in Section 3.4.1 using the time step ∆t = 0.25 or ∆t = 0.5. The
variational integrators accurately capture the linear growth of E(H), whereas the Taylor scheme
fails to reproduce that behavior. Middle: The difference between the numerical value of the mean
Hamiltonian E(H) and the exact value (4.2) is shown for the integrators derived in Section 3.4.1.
Bottom: Same for the integrators derived in Section 3.4.2. The integrators P1N1Q1RecN2Q2Lob
and P1N1Q1RecN1Q2Gau prove to be particularly accurate, while having a low computational
cost.
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Our work can be extended in several ways. In Section 3.6 we indicated how higher-order stochas-
tic variational integrators can be constructed and showed that a type of stochastic symplectic parti-
tioned Runge-Kutta methods of strong order 3/2 considered in [35] can be recast in that formalism.
It would be interesting to derive new stochastic integrators of order 3/2 by choosing appropriate
values for the parameters in (3.48) or (3.50). It would also be interesting to apply the Galerkin
approach to construct stochastic variational integrators for constrained (see [6]) and dissipative (see
[8]) stochastic Hamiltonian systems, and systems defined on Lie groups (see [24]). Another impor-
tant problem would be stochastic variational error analysis. That is, rather than considering how
closely the numerical solution follows the exact trajectory of the system, one could investigate how
closely the discrete Hamiltonian matches the exact generating function. In the deterministic setting
these two notions of the order of convergence are equivalent (see [31]). It would be instructive to
know if a similar result holds in the stochastic case. Finally, it would be interesting to develop
higher-order weakly convergent stochastic variational integrators. As mentioned in Section 3.1 and
Section 3.6, higher-order strongly convergent methods require inclusion of higher-order multiple
Stratonovich integrals, which are cumbersome to simulate in practice. In many cases, though, one
is only interested in calculating the probability distribution of the solution rather than precisely
approximating each sample path. In such cases weakly convergent methods are much easier to use
(see [21], [33]).
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