
 

1 | P a g e  
 

 

 

 

 

 

Harmonised ambient air pollution and road 

traffic noise exposures linked to 

cardiovascular outcomes in European 

cohorts 

Thesis submitted for Doctor of Philosophy degree in Epidemiology 

Yutong Cai 

 

 

 

 

 

Department of Epidemiology and Biostatistics 

School of Public Health 

Imperial College London 

 



 

2 | P a g e  
 

Declaration of Originality  

I, Yutong Cai, declare that this thesis is my own work and is based on the research that I 

conducted during 2012-2016. It has not been submitted in any form for another degree or 

diploma at any university. Information derived from the published and unpublished work of 

others has been fully acknowledged in the text and references is listed in the bibliography.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 | P a g e  
 

Copyright Declaration  

The copyright of this thesis rests with the author and is made available under a Creative 

Commons Attribution-Non Commercial-No Derivatives licence. Researchers are free to copy, 

distribute or transmit the thesis on the condition that they attribute it, that they do not use it 

for commercial purposes and that they do not alter, transform or build upon it. For any reuse 

or distribution, researchers must make clear to others the license terms of this work.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 | P a g e  
 

Abstract 

Ambient air pollution and traffic-related noise are the two leading environmental risk factors for 

health in Europe. Associations between long-term exposure to air pollution or noise and 

cardiovascular diseases (CVD) were not entirely consistent across previous studies in adults. 

Moreover, noise may confound the relationship between air pollution and CVD, and vice versa.   

This PhD project was conducted to study the separate and joint effects of both air pollution and noise 

on 1) CVD blood biochemistry including C-reactive protein, blood lipids and glucose and on 2) incident 

CVD outcomes.  Health and exposures data were harmonised across four European cohorts (EPIC-

Oxford, HUNT, LifeLines, UK Biobank), as part of the EU-funded BioSHaRE project. All harmonised data 

were virtually pooled for individual-level analyses in DataSHIELD, a novel statistical tool to perform a 

‘compute to data’ statistical approach.  

The cross-sectional analyses on biochemistry data generally suggested that both air pollution and 

noise were significantly associated with adverse changes in markers of systemic inflammation, blood 

lipids and glucose. The significant association between road traffic noise and C-reactive protein or 

triglycerides was confounded by air pollution whilst both air pollution and noise were significantly and 

independently associated with elevated blood glucose levels.   

Incident analyses suggested a possible increased risk for both particulate matter (PM) and gaseous air 

pollution on incident cerebrovascular disease but a null association for ischaemic heart disease (IHD). 

Daytime noise was associated with a non-significantly increased risk for incident IHD but evidence for 

cerebrovascular disease was inconclusive. Both air pollution and noise effects on CVD outcomes were 

independent from each other.   

This PhD study provides some novel evidence of both air pollution and noise on CVD biochemistry and 

incident CVD outcomes, and is a substantial addition to the current knowledge of cardiovascular 

health effects of both ambient air pollution and traffic noise.  
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Introduction  

Ambient air pollution is the leading environmental risk factor for health in Europe, followed by traffic-

related noise(Hanninen et al., 2014). Associations between long-term exposure to ambient air 

pollution or traffic-related noise and cardiovascular outcomes in adults have been investigated in 

various cohorts around the world. However, results are not entirely consistent across these studies, 

likely due to, different study designs and exposure assessment approaches, quality of the exposure 

assessment as well as the health outcomes assessment, adjustments made for different sets of 

covariates. Compared to studies on the effects of air pollution on cardiovascular outcomes, fewer 

investigated the noise effects. Importantly, as road traffic is the common source of both ambient air 

pollution and noise, these exposures may confound effects of each other. Increasing numbers of 

studies have looked at this potential confounding issue in recent years, with most current evidence 

suggesting an independent effect of each. This however needs further investigation as this issue may 

depend on the health outcomes studied as well as the specific areas or urban structures where the 

study is conducted.  In Chapter 1, most of the key literature have been critically reviewed to give 

readers an up-to-date knowledge on current air pollution/noise and cardiovascular research.       

To address some of the research gaps and limitations identified in the literature review, I proposed to 

study the separate and joint effects of both long-term air pollution and road traffic noise on 

cardiovascular health in four European cohorts (EPIC-Oxford, HUNT, LifeLines, UK Biobank) using a 

harmonised approach, as funded by the European Union Seventh Framework Programme BioSHaRE 

(Biobank Standardisation and Harmonisation for Research Excellence in the European Union) project 

(2012-2015).   

BioSHaRE was established to develop novel tools and computing infrastructures, with an ambitious 

aim to facilitate data sharing and pooling across multiple biobanks and cohorts in Europe. This PhD, as 

one of the cores of BioSHaRE project, was among the first to test and validate these novel tools in a 

real-life epidemiological project.  
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Harmonised approach was the spotlight of this PhD project. Questionnaire and health outcome data 

were harmonised retrospectively across cohorts by the candidate (Chapter2), following a validated 

protocol. These data were harmonised according to standard definitions, using computerised scripts 

being applied to all cohorts. With strong inputs from the exposure assessment teams within the MRC-

PHE Centre for Environment and Health at Imperial College London, common Europe-wide air 

pollution and noise exposure models were applied across the four cohorts (Chapter 3). These common 

models were used to minimise the differences between cohorts that would otherwise be introduced 

by having different assessment methods.  

A huge amount of efforts were made to harmonise both questionnaire and exposures data across 

cohorts, allowing an effective pooling of individual-level data for analyses. Yet, a physical sharing of 

data has always been associated with complex ethico-legal issues, which undermines research 

potentials and collaborations. To this regard, I conducted the pooled individual-level analyses using a 

new novel tool, DataSHIELD, as developed by BioSHaRE. In brief, individual-level harmonised data 

from various cohorts were deposited onto their local secure servers in the respective research centres, 

and then DataSHIELD was able to link up all these local servers to virtually pool these data to form an 

integrated database for analyses in DataSHIELD. Therefore, by using this DataSHIELD ‘compute-to-

data’ approach, data are not physically shared and data owner retains governance of their data. The 

successful applications of DataSHIELD in this PhD project will have useful implications for future 

epidemiological studies. An introduction of DataSHIELD and statistical methods used in this PhD 

project is in Chapter 4.  

Two epidemiological analyses were conducted in this PhD project using DataSHIELD. Results from 

DataSHIELD were further validated against cohort-specific meta-analyses and analyses on physically 

pooled data in Stata.     

Cross-sectional associations between air pollution or noise and blood biochemistry markers for 

cardiovascular diseases (CVD) were first examined, pooling data from HUNT3 and LifeLines (Chapter 
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5). Results generally suggested that both exposures were significantly associated with adverse 

changes in blood biochemistry markers of systemic inflammation, blood lipids and blood glucose, 

providing some mechanistic insights into links between air pollution/noise and cardiovascular disease. 

I then explored the direct links between long-term air pollution, noise and incident cardiovascular 

diseases in Chapter 6, pooling data from EPIC-Oxford, HUNT2 and UK Biobank. In view of comparisons 

with other European studies, I further conducted meta-analyses on estimates from all published 

European studies, including the results from this PhD, to give updated pooled effect estimates on the 

associations between long-term air pollution and incident CVD.  

In the last chapter (Chapter 7), an overall summary of findings in this PhD project was given. I also 

highlighted some important issues which were not addressed in this work and will require careful 

investigations in future studies.  In additions, some implications from this work for environmental 

health policy making were also noted.   

Hypothesis and research objectives  

The general hypothesis is that long-term exposure to both ambient air pollution and road traffic noise 

increase the risks for cardiovascular diseases in adult populations.  It is speculated that adverse CVD 

risk profiles may underlie these associations.  

This PhD project has several objectives.  

1. To critically review the current literatures on long-term air pollution and traffic noise on 

cardiovascular health;    

2. To retrospectively harmonise data across cohorts to ensure an effective data pooling for analyses;  

3. To quantify the separate and joint effects of both long-term ambient air pollution and road traffic 

noise exposures on blood biochemistry markers for cardiovascular diseases, including C-reactive 

protein, blood lipids and blood glucose;  
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4. To quantify the separate and joint effects of both exposures on incidence of cardiovascular 

diseases, including the total cardiovascular diseases, ischaemic heart disease and cerebrovascular 

disease;  

5. To conduct an updated meta-analysis which includes the results from this PhD and other 

European studies on air pollution effects on incident cardiovascular disease;  

6.  To validate the effective use of DataSHIELD, using two methods: cohort-specific meta-analysis 

and directly analysing data which were physically pooled.     
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Chapter 1 Ambient air pollution, noise and cardiovascular health 

Air pollution was probably first recognised as a public health problem in England in the 17th century. 

In one of the pamphlets published by John Evelyn in 1661(Mark Jenner, 1995), he described that the 

then Londoners ‘breathe nothing but an impure and thick mist…and filthy vapour’. He attributed the 

‘clouds of smoke’ to the immoderate use of coal by the inhabitants and even developed some 

ambitious plans to improve the quality of London’s air. Yet unfortunately his advice was not heeded 

until the famous episodes of severe air pollution that occurred in London nearly three hundred years 

later in December 1952 (known as London Great Smog 1952)(Bell, Davis & Fletcher, 2004). This smog 

directly or indirectly killed thousands of people and made several thousands of citizens ill over the 

course of only a few days because of the polluted air. This “wake-up call” then led to the Clean Air Act 

1956, the first time air pollution was to be regulated systematically by law in the United Kingdom (UK). 

Today, in the 21st century, although air pollution levels have been substantially lowered from those 

experienced in earlier centuries, in many parts of the west, including the UK and Europe, poor air 

quality still poses a significant adverse effect on our health. In 2010, it was estimated that 3.1 million 

out of 52.8 million deaths worldwide were attributed to air pollution(Newby et al., 2015). Outdoor air 

pollution was ranked ninth among the modifiable risk factors for disease worldwide(Newby et al., 

2015). According to another report published by World Health Organisation (WHO), about 7 million 

people die from exposure to both indoor and outdoor air pollution each year(Kuehn, 2014). Evidence 

about the deleterious effects of air pollution on human’s health is growing. It is now widely accepted 

that air pollution increases risk for heart diseases and respiratory diseases, although the pollutants 

and mechanisms underlying these associations are still under debate.  

Environmental noise exposure is also ubiquitous but has been the focus of far fewer studies than air 

pollution. In modern societies, most people live with environmental noise on a daily basis and are 

likely to treat it as part of their daily life. A comprehensive report published by WHO in 2010 estimated 

that 61,000 healthy years were lost from ischaemic heart disease alone as a result of exposure to road 
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traffic noise in western Europe(European Office WHO, 2011). Indeed, it was not until the last two 

decades that scientific research has linked environmental noise exposure to various health effects 

including cardiovascular diseases in adults(Babisch, 2006). In 2002, a European Union (EU)-wide 

legislation, known as “Environmental Noise Directive (END)-2002/49/EC”, was adopted by each 

member state to assess and regulate the environmental noise(Directive 2002/49/EC, 2002). This was 

treated as a significant step towards controlling excessive environmental noise and assessing its health 

effects across Europe. In fact, with reliable and rigorous assessments of environmental noise now 

available, more research is currently being conducted in Europe and North America, including on less 

studied health outcomes such as metabolic disorders. 

In this first chapter, I present a critical review of existing epidemiological studies to date (assessed up 

to 30 Nov 2015) linking long-term ambient air pollution and environmental road traffic noise 

exposures to specific cardiovascular outcomes in adult populations.   

1.1. Ambient air pollution 

What is ambient air pollution? 

Air pollution is defined as “contamination of the indoor or outdoor environment by any chemical, 

physical or biological agent that modifies the natural characteristics of the atmosphere” by WHO 

(http://www.who.int/topics/air_pollution/en/, accessed March 2015). In today’s world, common 

sources of air pollution include traffic, industrial facilities and household combustion activities. 

Sometimes, natural source of pollution such as ashes from volcanic eruptions, dust storm from deserts 

and forest fires can also cause local episodes of severe air pollution (WHO). In general, air pollution in 

modern societies comprises a mixture of pollutants with various complex physical and chemical 

characteristics. It is nearly impossible to study these mixtures of pollutants. Given the design and 

scope of this project and based on the previous accumulated evidence, I chose to focus on particulate 

matter (PM) and gaseous pollutants such as Nitrogen Oxides as general indicators of ambient 

(outdoor) air pollution.  

http://www.who.int/topics/air_pollution/en/
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Particulate matter comprises a mixture of particles of different sizes and with various chemical 

constituents attached to it. PM can be generated from diverse sources, including natural (dust, 

volcanic ash, pollens etc.) and man-made activities (fossil fuel combustion, biomass burning, cigarette 

smoking etc.)(Kelly & Fussell, 2012a). In urban areas, diesel exhaust from motor vehicles is the main 

source of PM, with industrial factories and power plants also contributing(Riedl & Diaz-Sanchez, 2005). 

PM is emitted into the atmosphere directly from sources (primary particles) or indirectly via secondary 

chemical reactions (secondary particles)(Kelly & Fussell, 2012a).  

In most scientific literatures, PM is broadly categorised by aerodynamic diameter: particles ≤10µm 

(PM10); particles ≤2.5µm (PM2.5, usually be referred to as ‘fine particle’); coarse particles 2.5~10 µm 

(PM coarse)(Brook et al., 2010). These particle fractions are typically measured in their mass per 

volume of air (µg/m3). It is generally believed that particles with diameter 10 µm or less can deposit 

along the airway, and the smaller the size of PM, the more easily it penetrates deep into the lung and 

passes the air-blood barrier(Kelly & Fussell, 2012a). Most studies linking PM exposures with specific 

health outcomes have focused on particle mass as a crude indicator of air pollution; but the toxic 

components that exert the most harmful effects are still unclear.  

Unlike fine particle (PM2.5) which can travel long-distances and distribute homogeneously at regional 

level(Kunzli, 2014), nitrogen oxides (NOx) are gases directly emitted from motor vehicles and are often 

used as a proxy for near-road traffic-related air pollution(Katsouyanni, 2003). Nitrogen oxides are 

usually measured in µg/m3 or parts per billion(ppb). Nitrogen dioxide (NO2) is one of the most studied 

gaseous pollutants with regards to its health effects. However, whether it has direct health effects or 

merely acts an indicator for other health relevant pollutants remains debatable given that correlations 

between NO2 and other pollutants, for example particulate matter, are usually high(Faustini, Rapp & 

Forastiere, 2014).   
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1.1.1. Long-term ambient air pollution and cardiovascular effects 

There is growing evidence regarding the adverse cardiovascular effects of ambient air pollution. These 

effects include both mortality and morbidity due to not only short-term exposure to peaks of pollution 

but also long-term, low level exposures to ambient air pollution. In 2010, an updated scientific 

statement from the American Heart Association (AHA) had concluded that long-term exposure to 

PM2.5 increases risks for cardiovascular deaths, and overall evidence is supportive that PM2.5 exposure 

is a causal modifiable risk factor for cardiovascular morbidity and mortality(Brook et al., 2010). The 

REVIHAAP (Review of evidence on health aspects of air pollution) report coordinated by WHO has also 

documented detailed up-to-date scientific evidence of the health effects of exposure to different air 

pollutants. In this report, it was concluded that life expectancy was reduced by an average of 9 months 

in Europe as a result of particulate air pollution(World Health Organisation Europe, 2013).  

In the following sessions, current epidemiological evidence of long-term air pollution exposures (i.e., 

exposures of a year or more) with respect to specific cardiovascular health outcomes were critically 

reviewed. 

Mortality studies: all-cause and cardiovascular cause 

The associations between air pollution and all-cause or specific-cause mortality have been 

investigated worldwide, although most evidence to date has come from populations in North America 

and Western Europe.   

Studies in North America 

Two early studies in America in the 1990s, the Harvard Six Cities study(Dockery et al., 1993) and the 

American Cancer Society (ACS)(Pope et al., 1995) study, were among the first to investigate air 

pollution effects in prospective cohorts. After the follow-up period (14 to 16 years for Six Cities study 

and 7 years for ACS study), the researchers compared the mortality rates among recruited adults in 

different cities with different levels of air pollution based on city-specific central monitoring, after 

controlling for major individual risk factors including tobacco smoking, occupational exposures and 
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individual socioeconomic status. Both studies found an increased risk in all-cause mortality in relation 

to long-term PM exposures in those living in the most polluted cities. In the six cities study, based on 

the fine particle (PM2.5) levels, compared with the least polluted city, the adjusted all-cause mortality 

rate ratio was 26% higher (95%CI: 8 to 47%) in the most polluted city, while for cardiorespiratory 

mortality, the rate ratio was 37% higher (95%CI: 11 to 68%). In the ACS study, every 10 µg/m3 increase 

in PM2.5 was associated with a 17% increase (95%CI: 9 to 26%) in all-cause mortality in the most 

polluted cities. Unlike the six cities study, the ACS study found a less strong association with deaths 

due to a cardiopulmonary cause, with a 6% increase in deaths for every 10 µg/m3 increase in PM2.5.  

Extended re-analyses of both studies have replicated these findings and concluded that mortality due 

to air pollution was much higher for cardiovascular causes rather than respiratory causes(Lepeule et 

al., 2012; Laden et al., 2006; Pope et al., 2004a). Laden et al(Laden et al., 2006) followed the mortality 

rates of the Six Cities study participants for an additional eight years (to the end of 1998), collected 

historic (pre-1987) PM2.5 data from city-specific monitoring sites for all six cities, and developed a 

crude regression model built on routinely collected PM10 data (1988-1998) and humidity-corrected 

visibility data from local airports to estimate city-specific annual mean PM2.5 for years 1987-1998. 

During the entire follow-up period, each 10 µg/m3 increase in PM2.5 was associated with 16% (95%CI: 

7 to 26%) increase in all-cause mortality, a 28% increased risk (95%CI: 13 to 44%) for cardiovascular 

mortality, and a 8% increase risk (95%CI: 0.8 to 49%) for respiratory mortality. Moreover, during this 

extended follow-up period, there was a general reduction of air pollution levels in US cities, and the 

authors demonstrated that this reduction of PM2.5 levels was significantly associated with reduced 

overall mortality and cardiovascular mortality.  

One of the limitations in this study, is that only baseline data on key covariates (e.g. smoking, Body 

Mass Index) collected decades previously were used in the analysis. These confounding factors and 

their associations with air pollution would have also likely changed during a long period of follow-up. 

The same research group carried out a further follow-up up to 2009. They obtained city-specific PM2.5 
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data for the period 1999 to 2009 directly from the air quality monitors (which started in 1999 in the 

US). Again, similar results for all-cause and cardiovascular deaths were replicated(Lepeule et al., 2012). 

In the follow-up ACS study, Pope CA 3rd et al(Pope et al., 2004a)  also found an increased risk for various 

causes of cardiovascular deaths of between 8% and 18% with a 10 µg/m3 increase in PM2.5.  

Although these studies were influential in demonstrating a clear link between air pollution and health, 

one drawback of both these earlier studies is that they used city-specific ambient air pollution monitor 

data as a proxy for an individual’s mean air pollution exposure, which will likely have introduced 

exposure errors resulting in uncertainty in the size of studied associations with health.  

Subsequent studies have attempted to improve on this assessment of exposure. Jerrett et al assigned 

individual estimates of PM2.5 and NO2 from a Land Use Regression (LUR) model to 73,711 participants 

of California in the ACS Cancer Prevention II Study(Jerrett et al., 2013). It was found that both LUR-

derived PM2.5 and NO2 was positively associated with all-cause and ischaemic heart disease mortality. 

This study, with a more advanced exposure assessment method, was able to demonstrate the 

associations among individuals with various exposure levels within cities. The LUR model in this study 

used the government’s routine monitoring sites to estimate exposure. These monitoring sites usually 

represent background sites, and therefore the near-road environment is not well represented. It was 

likely that the model will not therefore capture local scale spatial variations, including near-road 

elevated air pollution levels. 

In the three cities of Ontario in Canada, Chen et al found that for each 5ppb increase in NO2, mortality 

from cardiovascular diseases increased by 12% (95%CI: 7 to 17%) in a random sample of 205,440 

adults drawn from an income tax database(Chen et al., 2013). In this study, air pollution exposure 

estimates were assigned to each participant using a LUR model based on individual residential 

histories. However this study did not directly adjust for individual smoking data as such data were not 

available. Another study in Vancouver using the same exposure assessment technique, reported that 

black carbon, but not PM2.5 or NO2, was associated with increased deaths from coronary heart 
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disease(Gan et al., 2011). In the ten largest Canadian cities within the Canadian Census Health and 

Environment Cohort (CanCHEC), Crouse et al assigned within-city individual NO2 exposures to over 

700,000 residents using city-specific LUR models and calculated city-wide annual mean NO2 for each 

resident (between-city NO2) using fixed monitoring sites in each city(Crouse et al., 2015). This study, 

after adjusting for both personal and contextual confounders, reported that within-city NO2 contrasts, 

but not between-city contrasts, were significantly associated with increased mortality from all-cause 

and ischaemic heart disease during the 16 years of follow-up. This study was one of the first to study, 

simultaneously, the differential effects of both within and between-city NO2 exposure contrasts for 

individuals. Results suggested that associations were mainly driven by the residential, within-city NO2 

air pollution variations, which may represent a more toxic mixture of air pollution at the local level. 

While the association between individual NO2 exposure and ischaemic heart disease mortality was 

strong in this study (5% risk increase per 5ppb NO2, 95%CI: 2 to 8%), the authors did not observe a 

significant association with mortality from cerebrovascular disease. 

The previous six cities study and ACS study did not study the within-city PM2.5 effects but reported 

significant associations with between-city PM2.5 exposure contrast. Unlike PM2.5 which has different 

sources other than traffic, the main source for NO2 air pollution, particularly in urban areas, is mainly 

traffic-related. It is therefore expected that within-city NO2 exposure contrasts is larger than those of 

between-city.  

Studies in Europe    

In Europe, extensive studies were also conducted in recent years in many countries either at a national 

or regional level.  

An ecological study at local authority level in England found that higher levels of PM10 were associated 

with higher all-cause mortality rates(Janke, Propper & Henderson, 2009). Air pollution data obtained 

for each local authority was from the local air quality monitoring network. In another study, using a 
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national database involving 830,000 English patients registered at their General Practice (GP), 

reported that increased risk of all-cause but not cardiovascular mortality was associated with a range 

of pollutants including PM10, PM2.5 and NO2(Carey et al., 2013). This study used an emission-based air 

dispersion model at a 1km x 1km resolution to assign the individual air pollution estimates at the 

nearest postcode. This 1km resolution model, which would not capture potentially important local 

variations in PM10 concentrations, may explain in part the weak or null associations found for 

cardiovascular mortality. Interestingly, in contrast to the findings in North America, this study reported 

larger effects on respiratory mortality rather than cardiovascular mortality.  

Historical black smoke exposure was associated with all-cause and cardiovascular mortality in a 

Scottish study(Yap et al., 2012) and in an ecological small-area study in Great Britain(Elliott et al., 

2007), both of these studies also reported that effects for respiratory mortality were stronger than for 

cardiovascular mortality.  

There are mixed reports in the Netherlands. In a study of approximately 120,000 participants of the 

Netherlands Cohort Study (NLCS) on diet and cancer, a 10 µg/m3 increase in PM2.5 was associated with 

6% higher risk for natural-cause mortality, although it was not statistically significant (95%CI: -0.3 to 

16%)(Beelen et al., 2008). Associations between NO2 and black smoke with natural-cause mortality 

were borderline statistically significant (Rate ratio (RR): 1.08, 95%CI: 1.00 to 1.16; RR: 1.05, 95%CI: 

1.00 to 1.11 respectively). No associations were found for cardiovascular mortality with any of these 

pollutants. In the same cohort, but with a much smaller random sample of 5000 participants, Hoek et 

al reported no association between all-cause mortality and NO2 exposure(Hoek et al., 2002). 

Conversely, in the same study, the authors found cardiopulmonary mortality was significantly 

associated with traffic indicators, such as living near a major road. Another study in the Netherlands 

also reported a significant positive association between traffic intensity on the nearest road and 

deaths from ischaemic heart disease(Beelen et al., 2009).  
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A study in Rome involving over a million Italian adults reported a small increase in all-cause mortality 

with LUR modelled NO2 exposure (Hazard ratio (HR): 1.03, 95%CI: 1.02 to 1.03) and dispersion 

modelled PM2.5 exposure (HR: 1.04, 95%CI: 1.03 to 1.05) per 10 µg/m3 increase(Cesaroni et al., 2013). 

Both exposures were also associated with cardiovascular deaths with similar effect sizes. Associations 

with NO2 persisted after co-adjustment for PM2.5. Although individual risk factor data such as obesity, 

smoking habits and diet were not directly available for the full cohort, the approach to exposure 

assessment (a dedicated measurement campaign for NO2 LUR model and a dispersion model for PM2.5) 

was an advantage for this study.  

Significant associations between NO2 and all-cause and cardiovascular mortality among 52,061 

participants were reported in a Danish cohort study(Raaschou-Nielsen et al., 2012). A Norwegian 

cohort study of 16,209 men living in Oslo found that each 10 µg/m3 increase in NOx was associated 

with 8% (95%CI: 6 to 11) and 8% (95%CI: 3 to 12) higher risk of deaths from all-cause and ischaemic 

heart diseases respectively(Nafstad et al., 2004). No clear associations were found for SO2(Sulphur 

dioxide). Neither the Danish nor Oslo study found associations with cerebrovascular mortality. 

Participants in both studies were followed for years and risk estimates obtained were adjusted for 

very detailed individual risk factors. It should be noted that exposure assessment methods were not 

comparable in these two studies. While the Danish study deployed a sophisticated dispersion model 

with detailed inputs, the Oslo study had calculated annual concentration (1974-1998) for each 

participant based on historical air pollution data, emissions and meteorological and topographical 

data.  

Research in Germany(Heinrich et al., 2013), France(Filleul et al., 2005) and Spain(Boldo et al., 2011) 

also reported harmful effects of long-term air pollution exposure on mortality. Few cohort studies 

have been published outside North America and Europe. Emerging research is seen in Asian-Pacific 

countries, for example in China(Zhang et al., 2014; Zhou et al., 2014), Japan(Ueda et al., 2012; Yorifuji 

et al., 2010), Australia(Wang, Hu & Tong, 2009) and New Zealand(Hales, Blakely & Woodward, 2012). 
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Results in these settings have been inconsistent with some studies reporting an association, while 

others did not.   

The ESCAPE findings  

The recently concluded European Study of Cohorts for Air Pollution Effects (ESCAPE) project, using 

standardised individual exposures modelled at home addresses and harmonised health variables for 

a number of cohorts across Europe, also studied associations between air pollution exposure and 

various mortality outcomes. Beelen et al observed that for each 5 µg/m3 increase in PM2.5, risk for 

natural-cause mortality increased by 7% (95%CI: 2 to 13%) in a meta-analysis from 22 European 

cohorts including over 360,000 participants (average follow-up 13.9 years), with no evidence of 

heterogeneity in effect estimates between individual cohorts(Beelen et al., 2014a). Association 

remained even at levels of PM2.5 exposure less than 25 µg/m3, the current annual European limit. In 

contrast, in the same cohorts, using the same exposure and statistical methods, the authors did not 

find any significant associations for overall cardiovascular mortality; but there was some suggestive 

evidence for an increased risk for cerebrovascular disease mortality(Beelen et al., 2014b). The authors 

speculated that the risk profiles for cardiovascular diseases have changed over time, resulting in lower 

fatality rates. For non-malignant respiratory mortality, no associations were found for either PM or 

NO2 in the 16 cohort studies included in the ESCAPE analysis(Dimakopoulou et al., 2014). 

The quantitative reviews on current evidence 

An overview of current evidence was updated by two recent review papers on particulate matter and 

NO2 respectively. One, conducted by Hoek et al, reported that most, but not all, studies found 

significant associations between particulate air pollution and all-cause mortality(Hoek et al., 2013). An 

overall excess risk of cardiovascular mortality of 11% (95%CI: 5 to 16%) and all-cause mortality of 6% 

(95%CI: 4 to 8%) for a 10 µg/m3 increase in PM2.5 was reported, although heterogeneity existed across 

effect estimates from different studies. The authors concluded that the excess mortality was more 
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associated with cardiovascular diseases (particularly ischaemic heart disease) than with respiratory 

diseases. Several issues were discussed in the review. First, effect modifications by sex, smoking, 

education, obesity and diabetes would usually require a larger statistical power to detect differences 

within a single study. Second, exposure assessment varied across studies, in terms of the methods 

used to assign exposure estimates (estimates from city-wide or regional monitoring sites, LUR model, 

air dispersion model etc.), and  the period of exposure (some studies secured exposures estimates 

before/during follow-up, while others could only obtain estimates years after the end of follow-up). 

Third, particle mass (PM2.5 or PM10) is only a crude indicator of regional air pollution, which may have 

many chemical compositions and contributing sources. As such, it was recommended that future 

research should establish which toxic component of the particle contributes most to mortality and 

identify the sources of these most harmful particles.  

Another review paper concluded that the long-term effect of NO2 on mortality is of a similar 

magnitude to PM2.5(Faustini, Rapp & Forastiere, 2014). The authors found that the pooled effect on 

all-cause, cardiovascular and respiratory mortality for NO2 and PM2.5 were all consistently positive and 

statistically significant, with strongest associations seen for cardiovascular mortality. Based on only 

four eligible bi-pollutants analyses at the time of the review, effects of NO2 seem to be independent 

from that of fine particle, highlighting the importance of considering the likely causal role of NO2 

independently to PM in future research.  

Incident cardiovascular events 

Coronary heart disease (also known as ischaemic heart disease) and cerebrovascular disease are the 

two major types of cardiovascular diseases. It was recently revealed in 2010 that ischaemic heart 

disease (IHD) ranked at the top of 291 diseases in terms of global disease burden expressed by 

disability-adjusted life years (DALYs), and had increased by 29% from 1990(Murray et al., 2012). The 

American Heart Association statement based on a comprehensive review of scientific papers 

published between 2004 and 2009, concluded that particulate air pollution may have a role on 
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IHD(Brook et al., 2010). Few studies have focused on incident cardiovascular disease rather than 

mortality in association with ambient air pollution.   

Studies in America: findings from three women cohorts  

The main suggested evidence of long-term air pollution effects on incident cardiovascular disease in 

America was based on three women cohort studies.  

The Women’s Health Initiative (WHI) was one of those which first reported long-term effects of 

ambient air pollution on incident cardiovascular events(Miller et al., 2007). In this WHI study, 

conducted by Miller et al, 65,893 postmenopausal women aged 50-79 years from 36 metropolitan 

areas in America were enrolled during 1994-1998 and followed through to August 2003. It was 

observed that, for each 10 µg/m3 increase in PM2.5, risks for the first cardiovascular event increased 

by 24% (95%CI: 9 to 41%), first coronary heart disease event by 21% (4 to 42%), first cerebrovascular 

disease event by 35% (95%CI: 8 to 68%) and first stroke by 28% (95%CI: 2 to 61%). There was no 

statistically significant association between PM2.5 and first myocardial infarction (MI) event alone. The 

authors also concluded that within-city effect estimates were larger than between-city effects for 

PM2.5. This finding, in line with a previous report for NO2 in Canada(Crouse et al., 2015), suggested that 

within-city exposure contrast may be more important to detect an association if any.  

This important study had several strengths, including considering many potential confounders and the 

robust ascertainment of outcomes through medical records. Although annual mean PM2.5 was 

assigned to each women based on levels recorded at the nearest monitoring site based on their 

postcode, and is likely therefore to introduce exposure error, the study nonetheless provides 

compelling evidence that long-term exposure to fine particle is associated with incident cardiovascular 

events in this subpopulation.  

Unlike the WHI study, which used a single year average estimate of air pollution, the California 

Teachers Study (CTS) Cohort estimated monthly average PM10 and PM2.5 concentrations via inverse 
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distance-weighting from nearest monitoring sites during 1996-2005 and then linked the cumulative 

exposure to incident cardiorespiratory diseases(Lipsett et al., 2011). None of PM2.5, PM10 or NO2 was 

associated with MI incidence among over 120,000 female teachers; PM10 but not PM2.5 was associated 

with stroke incidence (HR: 1.06, 95%CI: 1.00 to 1.13). This study did not find any associations between 

all-cause mortality, cardiovascular mortality, cerebrovascular mortality and any of the exposures. The 

simple inverse distance-weighted interpolation method used in this study may in part explain the 

observed weak associations, particularly for NO2 which is mainly driven by local traffic volumes and 

may vary considerably across a short distance, variability not likely to be captured by the distance-

weighted interpolation approach.  

Another USA study of 66,250 female nurses, using model-derived individual air pollution estimates, 

observed no significant association between PM10 and incident non-fatal coronary heart disease 

events during a 10-year follow-up(Puett et al., 2008). However, fatal CHD was significantly associated 

with increased PM10. One limitation of this study is that it did not adjust for individual-level 

socioeconomic status, although the authors did include two indicators of area-level socioeconomic 

status. Also, some of the outcomes were derived from self-reported information, which may have 

introduced bias, such as underreporting. Both this study, and the WHI study, reported stronger 

associations between PM exposure and cardiovascular incidence with increasing levels of obesity and 

in those who were never-smokers. Future studies are needed to replicate these findings.  

All the above studies in America were conducted in specific populations (postmenopausal women, 

female teachers and female nurses), therefore results were not generalisable to other group. One 

study of general populations has reported that higher traffic density near home, as a proxy of ambient 

traffic-related air pollution, was associated with higher incidence of CHD(Kan et al., 2008). Stronger 

associations were found in men and current/ex-smokers, but no effect modification was observed for 

BMI.  

Studies in Europe 
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In Europe, only a few studies were conducted, with some focusing on either NO2 or particulate matter 

only and others focusing on both exposures.  

In Greece, in a small study of 2752 participants, it was estimated that risk of an incident cardiovascular 

event was increased by 50% (95%CI: 5% to 116%) per each 10 µg/m3 increase in PM10 but not NO2 

(Katsoulis et al., 2014). The study also found that both PM10 and NO2 were positively associated with 

incident IHD among women but not men, with the association with NO2 being statistically significant 

(HR: 1.54, 95%CI: 1.01 to 2.37).  

A meta-analysis of three large cross-sectional health surveys in England indicated a positive although 

not statistically significant association between elevated PM10 and increased prevalence of self-

reported doctor-diagnosed cardiovascular diseases in men and women (2.9% (95%CI: -0.6 to 6.5%) 

and 1.6% (95%CI: -2.1 to 5.5%) respectively)(Forbes et al., 2009a). In an English cohort of over 830,000 

patients drawn from general practice databases, Atkinson et al did not find any significant associations 

with PM10 or NO2 and incident MI or stroke except for heart failure(Atkinson et al., 2013). One of the 

reasons to explain the inconsistencies with previous studies in North America might be due to the fact 

that modelled within study variations in levels of particulate air pollutants were much lower in the UK, 

making it difficult to observe an effect.   

Weak associations between NO2 and incident cardiovascular events were reported in two studies. In 

a study of all residents in Rome, Rosenlund et al found a small increase of 3% (95%CI: 0 to 7%) in risk 

for incident coronary event per 10 µg/m3 increase in NO2(Rosenlund et al., 2008). In a Danish cohort 

of 52,215 participants, a weak association was found between NO2 and incident stroke (HR: 1.05, 

95%CI: 0.99 to 1.11); and it was reported (for the first time) that associations were stronger for 

ischaemic stroke than haemorrhagic stroke(Andersen et al., 2012a). However, a case-control study in 

the Stockholm County did not report associations between NO2, PM10 and first-time MI 

cases(Rosenlund et al., 2006).  
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The ESCAPE findings 

The most recent evidence of long-term air pollution effects on cardiovascular morbidity is from the 

ESCAPE project. In an analysis involving 99,446 participants from 11 European cohorts, Stafoggia et al 

found that PM2.5 was not associated with  increased risk for incident stroke (HR: 1.05, 95%CI: 0.88 to 

1.62)(Stafoggia et al., 2014). No significant association was found for NO2 either. However, it is of note 

that in this study, the authors found stronger significant effects in older people (aged>60 years) and 

never-smokers, indicating some modification effects exist. Another ESCAPE analysis showed that a 10 

µg/m3 increase in PM10 was associated with 12% (95%CI: 1 to 25%) increase in risk for incident acute 

coronary events (MI and unstable angina)(Cesaroni et al., 2014). A similar association for PM2.5 was 

also observed but it was not significant (HR: 1.13, 95%CI: 0.98 to 1.30). Importantly, both ESCAPE 

analyses also reported positive significant associations at levels of air pollution below the current 

annual European limits (25µg/m3 for PM2.5 40 µg/m3 for PM10)(European Union, ), indicating an urgent 

need to review the current standards of air quality in Europe.  

Summary 

In summary, while it is well documented that long-term ambient air pollution (both particulate matter 

and NO2) increased the overall mortality risk and specifically mortality from cardiovascular causes, its 

effects on cardiovascular morbidity are less certain, partly due to a smaller number of available 

studies. The current evidence is suggestive of an air pollution effect on incident stroke and incident 

MI, but to understand which pollutants drive these effects and in which susceptible groups, needs 

further investigations.  

It should be noted that it is difficult to compare results across previous studies covering a span of 20 

or more years, due to changes in air pollution sources and improvements in approaches to exposure 

assessment. For example, in the 1990s, air pollution estimates based on nearest or central fixed-site 

regional-level monitoring stations assigned to each participant based on their home addresses or 

postcode. In more recent years dispersion model or land use regression model derived estimates at a 
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finer spatial scale were assigned to individual home address. Also, adjustment for confounding factors, 

methods of outcome ascertainment, and study populations differed across different countries and 

studies, which may contribute to the heterogeneity across findings.     

1.1.2 Long-term ambient air pollution and biochemistry markers  

Although air pollution has been linked to cardiovascular diseases in various populations as reviewed 

in the last section, the underlying mechanisms behind these associations are not fully understood. 

Proposed mechanisms include, but are not limited to, systemic inflammation, systemic oxidative 

stress, vascular dysfunction, atherosclerosis, epigenetic modifications and promotion of traditional 

risk factors such as high blood lipids and diabetes(Brook et al., 2010). In the following sections, 

experimental and epidemiological evidence with regards to associations between air pollution and 

some common biochemistry markers of cardiovascular diseases, as well as the possible underlying 

mechanisms for each association, are reviewed.         

C-reactive protein (CRP) 

According to Brown et al, fine particle (PM2.5) can travel deep into respiratory tract and initiate a local 

immune reaction(Brown et al., 2001), inducing the release of pro-inflammatory cytokines from lung 

cells. Also, because of the tiny size of these particles, they are able to enter the circulation system by 

crossing cell membranes, where the same inflammation reactions occur in different tissues 

throughout the body.  

C-reactive protein (CRP) is a protein which has been used, as one of many possible markers, to reflect 

the presence and intensity of systemic inflammation(Pope, 2001). It is widely measured in clinical 

settings and levels of CRP are a predictor of both manifested cardiovascular diseases (e.g. MI, 

stroke)(Ridker, 2003) and sub-clinical markers for CVD such as atherosclerosis(Libby, 2002). It is 

therefore hypothesised that effects of air pollution on cardiovascular diseases may act partially via the 

pathway of systemic inflammation, as reflected by elevated CRP level.  
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Serum CRP concentration increases rapidly from low, normal levels in response to stimuli such as 

inflammation(Li et al., 2012). Animal studies provided compelling evidence that air pollution, 

particularly PM-related air pollution, increases systemic inflammation(Rohr et al., 2010; Upadhyay et 

al., 2010; Niwa et al., 2008). It should be made clear that the exposure routes, doses and reactions 

against exposure differ between these animal experiments and typical human exposure scenarios. 

Therefore it is difficult to judge the potential effects on humans from experiments on animals, 

although these studies do provide hints for further epidemiological investigations in humans. 

Stronger and more consistent evidence of harmful effects of ambient air pollution on CRP level are 

seen in children compared to adults(Li et al., 2012). In adult populations, findings were inconsistent 

across a number of cross-sectional and panel studies(Li et al., 2012). Short-term effect of PM-related 

air pollution on CRP level has been investigated in panel studies of various populations(Ruckerl et al., 

2014; Khafaie et al., 2013; Tsai et al., 2012; Huttunen et al., 2012; Rudez et al., 2009; Panasevich et al., 

2009; Steinvil et al., 2008; Sullivan et al., 2007; Chuang et al., 2007; Ruckerl et al., 2007; Ruckerl et al., 

2006; Pope et al., 2004b), with sample sizes ranging from less than 10 individuals to several dozen. 

Among these, some reported an association between increased levels of air pollution and elevated 

levels of serum CRP(Ruckerl et al., 2014; Huttunen et al., 2012; Chuang et al., 2007; Ruckerl et al., 

2006; Pope et al., 2004b), though associations depended on what time lag was chosen in the analysis 

and which air pollutant was assessed. For example, one study observed associations with PM10 but 

not PM2.5(Ruckerl et al., 2006). Other studies did not observe a statistically significant association, 

although results were suggestive of an effect of air pollution on systemic inflammation, as indicated 

by markers other than CRP(Khafaie et al., 2013; Tsai et al., 2012; Rudez et al., 2009; Panasevich et al., 

2009; Steinvil et al., 2008; Sullivan et al., 2007; Ruckerl et al., 2007). One should be aware that most 

research has focused on short-term effects (i.e. within days of air pollution exposure) on levels of CRP, 

though this is likely appropriate as elevated CRP levels represent an acute response to air pollution or 

other stimuli. However, it is also likely that longer-term exposure to air pollution may induce a chronic 
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low-grade systemic inflammation, which has been suggested a role in the pathogenesis of heart 

diseases(Kaptoge et al., 2014).    

Medium-term (weeks to months) and long-term (years) average outdoor air pollution levels in relation 

to levels of CRP have been assessed in only a few studies, and results are less clear. Zeka et al found a 

positive, though not significant, association between CRP levels and a 4-week averaged PM2.5(Zeka et 

al., 2006). Diez-Roux et al also reported weak, non-significant associations between CRP 

concentrations and 30-day mean (1.03, 95%CI: 0.98 to 1.10) or 60-day mean (1.04, 95%CI: 0.97 to 

1.11) PM2.5 level prior to blood extraction(Diez Roux et al., 2006).  

In a German cross-sectional study which included nearly 5,000 individuals it was reported that every 

3.9 µg/m3 increase of annual PM2.5 was associated with a 24% (95%CI: 4 to 47%) increase of CRP level 

in men but not in women(Hoffmann et al., 2009). However, this association was sensitive to 

adjustment for short-term PM10 exposure. A longitudinal analysis with repeated measurements of CRP 

was conducted later in the same cohort(Viehmann et al., 2015). It was found that a 2.4µg/m3 increase 

of annual mean PM2.5 was associated with 5.4% (95%CI: 0.6% to 10.5%) increase of CRP, independent 

of short-term air pollution. An extended analysis of the same study populations has confirmed that 

PM2.5 from traffic sources was strongly associated with CRP levels. PM2.5 from industry sources was 

not associated with CRP(Hennig et al., 2014). In an analysis of 1923 mid-life women in USA, Ostro et 

al observed that prior-year PM2.5 exposure was strongly associated with increased CRP levels, 

particularly in older diabetics, smokers and unmarried persons(Ostro et al., 2014).  

Relatively fewer studies have investigated the role of NO2 on CRP levels in adults. No statistically 

significant associations were found between long-term exposure to NO2, PM10 and CRP in two cross-

sectional surveys conducted in general populations in England, which led the investigators to conclude 

that systemic inflammation might not play a role in the link between air pollution and cardiovascular 

diseases(Forbes et al., 2009b). In a study in Stockholm, long-term exposure (assessed over by 1, 5 or 

30 years) to traffic-related NO2 was not associated with CRP levels(Panasevich et al., 2009).   
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The two largest studies so far are the ESCAPE and MESA (Multi-Ethnic Study of Atherosclerosis) 

studies. In the ESCAPE cross-sectional analysis, which involved 22,561 participants from six European 

cohorts (all from central and Northern Europe), annual exposure to particulate air pollution was not 

associated with increased levels of CRP, but high traffic intensity on the nearest road was(Lanki et al., 

2015). Higher NOx was associated with increased CRP in the main model, but significance was lost 

after further adjustments for area-level socioeconomic status. The authors argued that exposure to 

locally emitted near-road traffic exhausts may have contained more toxic substances, which might 

explain why associations were only seen for traffic indicators such as traffic intensity or NOx, the latter 

which may serve as an indicator of vehicle exhausts. In the MESA study of 11,190 participants in 

America, while the authors found some positive significant associations between other inflammation 

markers and annual averaged PM2.5, association was not found for CRP(Hajat et al., 2015). Only the 

PM2.5 level measured on the day of blood extraction was associated with CRP levels.          

Studies on chronic effects of air pollution on serum CRP are still relatively rare and current results are 

mixed. Overall, in the extensive review in 2010 carried out by Brook et al, the epidemiological evidence 

of long-term effects of air pollution on systemic inflammation biomarkers was marked as “limited or 

weak”(Brook et al., 2010). Further research is warranted regarding the effects of chronic exposure to 

particulate air pollution or NO2 on levels of serum CRP, particularly with a focus on effects in different 

susceptible groups of the general populations.    

Blood lipids 

Emerging studies have suggested an association between air pollution and atherosclerosis, assessed 

by intima-medial thickness (IMT)(Adar et al., 2013; Kunzli et al., 2010), yet few studies have 

investigated directly the link between air pollution and blood lipids level, which is also a risk predictor 

for atherosclerosis and the subsequent development of cardiovascular diseases.   

Experimental studies in animals have suggested that exposure to air pollution might change the blood 

lipid profiles adversely. A novel study carried out by Suwa et al in 2002 reported that exposure to PM10 



 

34 | P a g e  
 

was associated with increases not only in extracellular lipid pools but also in the total amount of lipids 

in aortic lesions in rabbits(Suwa et al., 2002). In a mouse model study conducted by Sun et al a 1.5 fold 

increase in lipid content in the aortic arch was observed in mice that were high-fat fed and exposed 

to PM2.5 for a total period of six months, compared with those which were also high-fat fed but 

exposed to filtered air(Sun et al., 2005). These studies, among others(Soares et al., 2009; Araujo et al., 

2008; Nonogaki et al., 1995), suggested that air pollution-induced systemic inflammation can alter 

lipid metabolism, lipid oxidation and accelerate hepatic secretion of triglycerides.  

Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high blood pressure were 

identified as risk factors for cardiovascular diseases in the Framingham Heart Study(Wilson et al., 

1998). However, there is a paucity of data linking long-term air pollution to blood lipids in humans. A 

few studies have examined the role of short-term air pollution on blood lipids levels.  

A study conducted in Taiwan with nearly 7,600 participants (70% non-smokers) reported that every 

interquartile increase (34 µg/m3) of 1-day averaged PM10 was associated with a reduction in high-

density lipoprotein cholesterol (HDL-C) by 0.90 mg/dL (95%CI: 0.34 to 1.46)(Chuang, Yan & Cheng, 

2010). However, no statistically significant findings were reported for either LDL-C or triglycerides 

(TG). This is one of the first studies of its kind conducted in a relatively large population. Two earlier 

studies reported similar results in different research settings. One, a case-control study, compared 

blood lipid levels of 118 traffic police personnel and 118 office personnel in Italy(Tomao et al., 2002). 

Case and controls were matched by age and time in service. Increased levels of HDL-C and TG were 

observed in the traffic police personnel group, leading the investigators to conclude that those 

frequently exposed to traffic-related air pollution might suffer from dyslipidaemia. The other, a panel 

study, involved only 12 adult asthmatics in North Carolina followed for a 12-week period(Yeatts et al., 

2007). It was found that every 1 µg/m3 increase of PM coarse was associated with small increases in 

LDL-C (1.2%, 95%CI: 0.3 to 2.0%) and TG (4.8%, 95%CI: 0.8 to 8.7%) respectively. There were no 

statistically significant associations found for PM2.5. The authors suspected that coarse PM contained 
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rich biologic materials such as endotoxin and therefore may play a greater role in changing the lipids 

profile(Poursafa et al., 2014a). More research is needed to replicate this finding, particularly in a large 

general population.    

More recently, results from two large population-based studies were published. A study of nearly 

40,000 adults in Copenhagen aged 50-64 years reported statistically significant associations between 

non-fasting total cholesterol and both ESCAPE-LUR modelled PM2.5 (0.101 mmol/L, 95%CI: 0.028 to 

0.173, per 5 µg/m3) and dispersion modelled NO2 (0.026mmol/L, 95%CI: 0.008 to 0.045, per 10 

µg/m3)(Sorensen et al., 2015). However, data on other lipid measures were not available.  

In the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994) in America, it 

was found that among 11,623 adults (median age: 41 years) long-term inter-quartile higher PM10 air 

pollution was significantly associated with greater total cholesterol levels (1.43%, 95%CI: 1.21% to 

1.66%) and triglycerides levels(2.42%, 95%CI: 1.09% to 3.76%)(Shanley et al., 2016). Air pollution 

exposure in the NHANES III study was assigned from monitoring networks based on the centroid of 

resident census blocks of the participants, which was likely to introduce more exposure errors 

compared to the model-based approaches at individual address level used in the Copenhagen study. 

In additions, estimates for other PM size fractions and NO2 were not available for the NHANES III study.  

For both studies in Copenhagen and America, albeit of a cross-sectional design, it was suggested that 

a possible dose-response relationship exists between long-term air pollution and total cholesterol 

level.  

Blood glucose 

Glucose intolerance is another established risk factor for cardiovascular diseases, as noted in the 

Framingham Study(Kannel, 1990). A meta-analysis of randomised controlled trials on the effects of 

glucose control on cardiovascular outcomes concluded that intensive glycaemic control significantly 

reduces coronary events(Ray et al., 2009). However, it remains uncertain whether glucose impairment 
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mediates the association between exposure to long-term ambient air pollution and development of 

cardiovascular diseases.   

Sun and colleagues carried out an experiment investigating the link between air pollution and insulin 

resistance in mice(Sun et al., 2009). It was demonstrated that whole-body insulin resistance was linked 

with exposure to PM2.5. In population studies, the link between air pollution and blood glucose 

remains obscure, partly because there are not many epidemiological studies addressing this link.  

A study of 363 women in the SALIA cohort in Germany reported some suggestive evidence that 

exposure to NO2 may contributed to impaired glucose metabolism(Teichert et al., 2013). However, as 

the authors acknowledged, results from this cross-sectional study were limited as it was conducted in 

a small sample of elderly women, which may be subject to survivor bias. This association certainly 

needs to be confirmed in future studies with a much larger sample drawn from wider population 

groups. Another study, among 9,102 newly diagnosed diabetes patients, found that in both sexes 

adjusted HbA1c (Haemoglobin A1c) was significantly lower in those exposed to the lowest quartile of 

PM10(Tamayo et al., 2014). HbA1c is often used as a marker of glucose control and is associated with 

risks for developing hard arterial plaques(Jorgensen et al., 2004). To date, only one study was 

conducted in the general population to access the association between long-term air pollution and 

HbA1c(Liu et al., 2016). This particular cross-sectional study in China reported that among 11,847 

adults, each inter-quartile (41.1 µg/m3) higher annual mean PM2.5 was significantly associated with 

elevated levels of HbA1c (0.08%, 95%CI: 0.06% to 0.10%). PM2.5 levels were estimated at home address 

level using a satellite-based spatial statistical model. Within-study exposure contrast for PM2.5 was 

large in this study, contributing to the observed significant association.  

Increasing numbers of studies have suggested an association between long-term air pollution and 

development of type 2 diabetes in humans. For example, a study conducted by Brook et al in Canada, 

examined cross-sectional associations between air pollution and prevalence of diabetes among 7,600 

patients from two respiratory clinics(Brook et al., 2008). Significantly increased prevalence of diabetes 
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(OR: 1.04, 95%CI: 1.00 to 1.08) was found in women but not in men for each 1ppb increase of NO2 

exposure. A Danish prospective cohort also found a small increase in risk for incident diabetes cases 

in association with NO2 exposure; with effects stronger in people with relatively healthy lifestyles such 

as non-smokers and physically active people(Andersen et al., 2012b). A study in America reported that 

diabetes prevalence increased with PM2.5 levels(Pearson et al., 2010). This finding was further 

supported by some mechanistic investigations, which found exposures to PM2.5 could reduce insulin 

sensitivity among healthy adults(Brook et al., 2013; Xu et al., 2011). A German study reported that 

diabetes incidence increased by 15-42% per interquartile higher of NO2 and several traffic-related PM 

exposures; most associations were statistically significant(Kramer et al., 2010). However, a study in 

the Netherlands did not observe an association between air pollution and diabetes(Dijkema et al., 

2011).  

A recent meta-analysis including studies conducted in Europe and North America concluded that both 

PM2.5 (based on three eligible studies) and NO2 (based on four eligible studies) were associated with 

increased risk of type 2 diabetes(Eze et al., 2015). However, the authors acknowledged the high 

diversity among the included studies with unclear and high risk of bias. The authors also highlighted 

the importance for future studies to apply comparable models in assigning exposures to participants 

and to report the scales of exposure assessment.      

Summary  

In summary, data on the effects of long-term ambient air pollution on some CVD intermediate 

biochemistry markers are still limited in population studies. Studies investigating direct associations 

between long-term air pollution and serum CRP levels are far from conclusive and needs more 

investigations. In the last few years, evidence is starting to emerge regarding the long-term air 

pollution effects on blood lipid and blood glucose levels, which all suggested a positive relationship. 

More research, especially in large-scale population studies, is warranted to provide more robust 

evidence and to explain the likely biological mechanisms underlying associations between air pollution 

and CVD outcomes.   
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1.2. Environmental noise pollution 

Environmental noise is defined by the EU Environmental Noise Directive (END)-2002/49/EC as 

“unwanted or harmful outdoor sound created by human activities, including noise emitted by means 

of transport, road traffic, rail traffic, air traffic and from sites of industrial activity”(Directive 

2002/49/EC, 2002). Noise was regarded to be a major problem by more than half of city dwellers in 

many European cities surveyed about quality of life (with the figure ranging by city from 51% in 

Rotterdam to 95% in Athens)(European Commission, 2009). A recent survey conducted by the 

European Commission in 2010 showed that 44% of Europeans believed that noise affects their health 

to “a large extent”, an increase of 3% since the last survey in 2006(European Commission, 2010). 

Transport is still the main source of noise in urban areas(European Environment Agency, 2013), and 

noise from road traffic may potentially affect a large part of the population. In fact, a report published 

by European Environment Agency (EEA), has revealed that around 70 million people in the largest 

European cities were exposed to long-term road traffic noise above 55 decibels (dB) (the EU 

threshold)(European Environment Agency, 2012).   

Environmental noise is commonly measured in A-weighted decibel (dB(A)) level. dB is a logarithmic 

scale to measure sound pressure level and A-weighted is a frequency-weighting of sound pressure 

levels that simulates the subjective response of the human ears(Basner et al., 2014).  Different noise 

metrics have been used for different purposes(Passchier-Vermeer & Passchier, 2000). The maximum 

A-weighted sound level, Lmax, measures the highest level of noise in a single event (e.g. a single 

aircraft noise) to reflect how intrusive the noise is. However, Lmax does not take into account the 

duration of a noise event. Another noise metric for a single event is sound exposure level (SEL), which 

measures both duration and magnitude of an entire noise event. In epidemiological studies, the 

equivalent sound level (Leq), is usually used to represent the average sound level over a given period 

of time. Leq can be calculated for any time period. For example, Ldn measures day-night average 

sound level, with a 10dB penalty added for 22:00-07:00 because of the heightened sensitivity to night-
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time noise. The common noise metric proposed in the Environmental Noise Directive (END)-

2002/49/EC is Lden (day-evening-night 24-hour average sound level,  with a penalty of 5 dB added for 

the evening hours or 19:00 to 22:00, and a penalty of 10 dB added for the night-time hours of 22:00 

to 07:00).  

Environmental noise is usually not associated with any significant auditory effects because hearing 

damage will require a higher sound level of noise exposure (i.e. >70 dB) for significant periods of 

time(Murphy M, 2014). As a result, research on environmental noise has mainly focused on the 

detrimental effects on non-auditory health. According to the WHO (2011) Burden of Disease from 

Environmental Noise study, it was estimated that each year at least 1 million healthy life years were 

lost due to environmental noise in the western part of Europe(European Office WHO, 2011). Sleep 

disturbance and annoyance are the two main outcomes which contribute to the burden of diseases 

from environmental noise. In addition, other outcomes such as cognitive impairment in children and 

cardiovascular diseases in adults are of increasing concern. Within the scope of this project, evidence 

on effects of road traffic noise on adult cardiovascular outcomes (ischaemic heart disease and stroke) 

is presented.   

1.2.1. Long-term road traffic noise and cardiovascular diseases  

Ischaemic heart disease (IHD) and hypertension are the two most frequently examined cardiovascular 

outcomes in relation to road traffic noise exposure in epidemiological studies(European Office WHO, 

2011). There have been fewer studies on other outcomes (e.g. stroke) but increasing evidence is 

starting to emerge. In general, there is increasing evidence in support of an effect of road traffic noise 

on the risk for IHD, hypertension and possibly stroke.  

One of the underlying biological mechanisms for the associations between noise and cardiovascular 

diseases is that noise acts as a general environmental stressor, activating the autonomous nervous 

system and the endocrine system(Maschke, Rupp & Hecht, 2000; Lercher, 1996). Long-term exposure 

to noise might persistently activate these systems and lead to metabolic dysfunction (e.g. increased 
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blood pressure and blood glucose) and subsequent cardiovascular diseases may occur. Direct and 

indirect pathways linking noise exposure and cardiovascular endpoints are shown in Figure 

1.1(Babisch, 2014).    

 

Figure 1.1 Possible biological mechanisms between noise exposure and cardiovascular diseases as 
published by Babisch(Babisch, 2014).  



 

41 | P a g e  
 

Ischaemic heart disease 

Most studies published before the year 2008 used a comparable daytime (16hour) noise indicator. But 

since 2008, increasing numbers of noise studies have been published using other noise indicators. 

Therefore, I grouped the reviewed literatures into two sections: published before and after year 2008.   

Studies published up to year 2008 

There were two landmark studies of the associations between road traffic noise and cardiovascular 

health in the late 1980s and early 1990s: the Berlin study(Babisch et al., 1994) and the Caerphilly-

Speedwell study(Babisch et al., 1990).  

The Berlin study was a prospective case-control study which recruited over 4,000 male participants 

(aged 31-70 years) from the former West Berlin area to investigate the association between long-term 

exposure to road traffic noise and incidence of MI. Compared to the lowest noise exposure group 

(<=60 dB(A), Leq, 6-22 h), the odds ratios (OR) of MI incidence in the highest noise exposure category 

(71-80 dB(A), Leq, 6-22 h) was 1.2 (95%CI:0.8 to 1.7), although this was not statistically significant. 

Restricting the sample to those who had lived at the same address for 15 years to reduce exposure 

error, the OR slightly increased to 1.3 (95%CI: 0.9 to 2.0) in the same highest noise exposure category. 

This study was limited by several factors, e.g. a men-only sample and crude assessment of noise 

exposure (the nearest street to home address was assigned a noise exposure based on a city-wide 

noise map). The same research team retested their hypothesis in a sample which also included female 

participants and used more refined noise assessment methods. Traffic noise levels were calculated for 

the most affected facades of each participant’s home address for day and night using a noise map. 

This later study, known as The Noise and Risk of Myocardial Infarction (NaRoMI) study, found a 

positive dose-response relationship in MI incidence with increasing noise level in men but not in 

women(Babisch et al., 2005). Those men exposed to the highest noise level (>70dB (A), Leq, 6-22 h) 

had a very similar OR to the previous study of 1.3 (95%CI: 0.9 to 1.8) when compared with the lowest 

noise exposure group (<=60 dB (A), Leq, 6-22 h). Statistical significance was only reached in those who 

remained at the same address for at least 10 years and were exposed to the highest noise level (OR: 
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1.81, 95%CI: 1.02 to 3.21). This study has several strengths compared to the previous study. Results 

were adjusted for many potential confounders and/or effect modifiers, noise from rail and air traffic, 

occupational noise exposure assessed by interviews and noise sensitivity scores. Residence time was 

considered as a means of limiting the impact of exposure error in this study as stronger associations 

were seen among participants who remained in the current address for a longer period (e.g. >10 

years). In these participants noise exposure is less likely to be misclassified, compared to those who 

had lived elsewhere in the previous decade. However, this study did not report any effects in women, 

possibly due to a lack of statistical power.  

The second phase of Caerphilly and Speedwell study, comprising a total of 2,512 and 2,348 middle-

aged men from south Wales and Bristol respectively, examined the impact of environmental noise on 

health. Men in the highest noise exposure group (=66-70 dB (A),Leq, 6-22 h) had slightly higher 

prevalence of IHD compared with those in the lowest noise exposure group of 51-55 dB(A) but an 

association was not seen with regards to incidence of IHD(Babisch et al., 1993a). In the third phase, 

after a 10-year follow-up from the recruitment (first phase), increased incidence of IHD was seen in 

the Caerphilly sample (OR: 1.07 95%CI: 0.60 to 1.91) but not in the Speedwell sample (OR: 0.92, 95%CI: 

0.61 to 1.41), comparing those in the higher noise exposure group of 66-70 dB (A) with the lowest 

noise exposure group of 51-55 dB(A)(Babisch et al., 1999). However, when the two samples were 

combined and restricted to only those followed from phase two to phase three (follow-up period of 6 

years), increased risks were seen in those who provided information on room orientation and window 

opening habits (OR: 1.31, 95%CI: 0.78 to 2.21) and in those who had a residency at the same address 

of over 15 years (OR: 1.59, 95%CI: 0.85 to 2.97). This may indicate that room location, window 

insulation and restricted mobility are possible effect modifiers of the noise effects.  

Based on these earlier findings, Babisch conducted several epidemiological reviews of the associations 

between road traffic noise and cardiovascular outcomes since year 2000. The evidence of road traffic 

noise on IHD prevalence and incidence is increasing, being marked as “limited/sufficient” in an earlier 
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review in year 2000(Babisch, 2000) to “sufficient” in an updated paper in 2006(Babisch, 2006). The 

WHO report based on data from these review papers reported that there was a clear dose-response 

relationship between risk of MI and road traffic noise level above 60 dB (A)(European Office WHO, 

2011). In a meta-analysis of five studies in 2008, Babisch reported a pooled estimate for incident IHD 

in men of 1.17 (95%CI: 0.87 to 1.57) per 10 dB(A) increase of the day noise (Leq 16h)  level  at the most 

exposed façade(Babisch, 2008).    

Studies published after year 2008 

Two prospective cohort studies from Scandinavian countries, using a 24-hour weighted noise indicator 

as calculated by the common Nordic prediction methods in Scandinavia, investigated the association 

between long-term road traffic noise and incidence of MI.  

In Stockholm county, Selander et al reported a non-significant positive association for MI incidence in 

those exposed to a noise level of ≥50 dB (A), LAeq (A-weighted equivalent sound level) 24h (OR: 1.12 

95%CI: 0.95 to 1.33) and a significant association (OR: 1.38, 95%CI: 1.11 to 1.71) after excluding 

participants with hearing loss and with other sources of noise exposure (e.g. noise from air traffic, rail 

traffic, neighbourhood) rather than road-traffic noise(Selander et al., 2009). In Denmark, Sorensen et 

al reported a clear dose-response relationship based on a cohort of over 50,000 participants(Sorensen 

et al., 2012a). For each 10 dB increase in road traffic noise (Lden), risk of incident MI increased by 12% 

(OR: 1.12, 95%CI: 1.02 to 1.22). Association remained when using the accumulated Lden covering the 

5-years preceding the diagnosis.  

Unlike previous studies, both studies used modelled noise exposures with detailed inputs accounting 

for residential locations and co-adjusted for NO2 or NOX in the statistical models. However, results 

from these two studies were somewhat inconsistent. For example, Sorensen et al reported stronger 

associations in men, and elderly people (aged 65 years or more)(Sorensen et al., 2012a), whereas 

Selander et al reported no differences in the effects by sex or age(Selander et al., 2009).  



 

44 | P a g e  
 

These two studies, together with a few others published after year 2008, were included in an updated 

meta-analysis conducted by Babisch in 2014(Babisch, 2014). In this updated analysis, including 14 

studies of men and women, a significant pooled estimate of the risk for IHD (OR: 1.08, 95%CI: 1.04 to 

1.13) per 10 dB(A) increase of weighted day-night road noise level within the range of 52-77 dB(A) was 

reported. Babisch drew up two major points to consider in future studies related to sex and age.  

First, sex may be an effect modifier. Indeed associations with ischaemic heart disease were previously 

reported in men only, but this is likely to be partly due to the limitation of initial study design (e.g. the 

Caerphilly-Speedwell study recruited men only) or the fact that cardiovascular diseases are more 

common in middle-aged men(Babisch, 2008) increasing the statistical power for analyses in men. 

Babisch suggested that, at this stage, at least we can reasonably assume that the risk of noise on 

cardiovascular health in men and women should be similar, providing that all related confounding or 

modifying variables are considered in the analyses(Babisch, 2008). For example, in the analyses of 

women only, it worth considering the hormonal or menopausal status as a confounding factor along 

with other usual factors.  

Second, age may be potential effect modifier. Sleep disturbance may explain this in part. Elderly 

people are more susceptible to sleep disturbance at night as sleep structure become more unstable 

with age(Sateia et al., 2000). Sleep disturbance could also contribute to adverse cardiovascular 

health(Jackson, Redline & Emmons, 2015a). To this end, it is possible that noise-induced sleep 

disturbance at night may have effects on cardiovascular health in elderly populations. It is still unclear 

whether sleep disturbance modifies the association between night-time noise and cardiovascular 

diseases and, if so, among which population groups. Few studies specifically investigated the effects 

of night-time noise alone on cardiovascular disease and information about participant’s sleep quality 

is sparse.     

Vienneau et al further updated Babisch’s 2014 review by including studies on aircraft noise(Vienneau 

et al., 2015). In this review, a pooled relative risk for IHD was 1.06 (95%CI: 1.03 to 1.09) per 10 dB 
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increase in noise exposures (both road and air traffic noise). The review reported that a possible 

threshold of 50dB, above which a linear dose-response was seen. Again, men and those over 65 years 

of age possibly had a higher risk, but the review was based on a limited number of studies.  

A series of review papers were published regarding the cardiovascular effects of traffic noise in several 

European countries(Argalasova-Sobotova et al., 2013; Belojevic et al., 2011; Bluhm & Eriksson, 2011; 

Lercher et al., 2011; Kempen, 2011; Stansfeld & Crombie, 2011; Maschke, 2011). Whereas in some 

countries or regions studies only assessed hypertension in relation to noise(Argalasova-Sobotova et 

al., 2013; Belojevic et al., 2011; Bluhm & Eriksson, 2011), others also investigated ischaemic heart 

diseases although inconsistent associations were found across these countries(Lercher et al., 2011; 

Kempen, 2011; Stansfeld & Crombie, 2011; Maschke, 2011).  

Stroke 

Few studies have examined the association between long-term road traffic noise exposure and stroke.  

In a Dutch cohort, road traffic noise was not associated with cerebrovascular mortality, regardless of 

adjustment for air pollution(Beelen et al., 2009). Self-reported heart disease and stroke (as a 

combined outcome) was associated with 24-hour average road traffic noise exposure (OR: 1.19, 

95%CI: 1.00 to 1.41) in the Hypertension and Environmental Noise near Airports (HYENA) study(Floud 

et al., 2013), but an association was not seen in a subsample analysis in which further adjustments 

were made for air pollution exposures.  In the GLOBE study in the Netherlands, no associations were 

reported between Lden and ‘IHD or cerebrovascular disease’(de Kluizenaar et al., 2013). 

A prospective cohort study of 57,053 participants (1881 incident stroke cases in 13 years of follow-up) 

reported the first evidence for a specific effect of road traffic noise on stroke: the incident rate 

ratio(IRR) for stroke was 1.14 (95%CI: 1.03 to 1.25) per 10 dB(A) increase of road traffic noise (Lden), 

independent of NOx exposures and railway and aircraft noise exposures(Sorensen et al., 2011). This 

study also found that the risk was even higher (IRR: 1.27, 95%CI: 1.13 to 1.43) among those above 

aged 64.5 years, possibly again because elderly people were more susceptible to noise-induced sleep 



 

46 | P a g e  
 

disturbance which could contribute to stroke risk. The same research team re-analysed the data by 

investigating subtypes of stroke in a separate study(Sorensen et al., 2014). Ischaemic stroke was 

significantly associated with Lden (IRR: 1.16, 95%CI: 1.07 to 1.24), possibly because most stroke cases 

were of the ischaemic type rather than haemorrhage type. This association was independent from air 

pollution indicated as NO2 or NOX level. 

 In a small-area level study in Greater London of 8.6 million residents, daytime road traffic noise 

increased the risk of hospital admission for stroke in both adults (≥25 years) and elderly (≥75 years) 

groups, with a relative risk of 1.05 (95%CI: 1.02 to 1.09) and of 1.09 (95%CI: 1.04 to 1.14) respectively, 

comparing areas exposed to a noise level of >60 dB with those exposed to <55 dB(Halonen et al., 

2015). Night-time road traffic noise exposure was associated with hospital admissions for stroke only 

among the elderly. This study, albeit the largest to date, is ecological study in design, and residual 

confounding at the individual level may remain.  

Recently, two studies have linked aircraft noise with hospital admissions for stroke. In the UK, hospital 

admission rates for various cardiovascular diseases, including stroke, with regards to exposure to 

aircraft noise in different boroughs and districts near London Heathrow airport were 

compared(Hansell et al., 2013). The authors found that in comparison with those experiencing the 

lowest level of daytime aircraft noise (<51 dB), those in the highest noise exposure group (>63 dB) had 

an increased risk of hospital admissions for stroke (RR: 1.24, 95%CI: 1.08 to 1.43). Results were robust 

to adjustments of road traffic noise. In America, a study involving only elderly people (aged ≥65 years) 

who lived near one of the 89 airports across the country, also found a positive association between 

aircraft noise and hospital admission for stroke(Correia et al., 2013).  Results were also adjusted for 

road traffic noise and zip-code level air pollution. For both studies, road traffic noise effects were not 

specifically assessed. Hypertension is one of the most common risk factors for stroke and has been 

associated with exposure to road traffic noise(van Kempen & Babisch, 2012). Some studies also 

documented effects of aircraft noise on hypertension. In the HYENA study, a 10-dB increase in night-
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time noise was associated with a 14% increase (95%CI: 1 to 29%) of prevalent hypertension among 

4,861 residents living near one of the six major European airports(Jarup et al., 2008). A similar finding 

from France was also reported recently, in which a 10-dB increase in night-time noise was associated 

with increased risk for hypertension (OR: 1.34, 95%CI: 1.00 to 1.97) in men but not in women(Evrard 

et al., 2016). A longitudinal study in Sweden reported that for those exposed to a level of aircraft noise 

greater than 50 dB(A), risk of incident hypertension increased by 19% (95%CI: 3 to 37%), compared to 

those exposed to a level less than 50 dB(A)(Eriksson et al., 2007).   

It should be noted though aircraft and road traffic noise are qualitatively different and therefore may 

have different health impacts on certain outcomes, e.g. children’s reading ability, cognitive 

performance(Clark et al., 2006). Compared with road traffic noise, aircraft noise is transient, more 

intense in a short period and usually causes a higher arousal level for areas which are directly under 

the flight paths. The exposure assessment approaches may be different for both types of traffic noise, 

for example, data about traffic flow and fleet are usually required for road traffic noise modelling. In 

addition to that, road noise propagation routes will also need to be considered. Nevertheless, given 

that aircraft noise is relatively independent from air pollution, more aircraft noise studies are 

warranted to investigate the independent effect of traffic noise on cardiovascular outcomes.    

Summary and future research gaps 

In summary, there is accumulating evidence to link road traffic noise exposure to cardiovascular 

diseases, but evidence remains inconclusive especially regarding, for example, effect modification by 

certain factors (e.g. room orientation, sex, age), and effects in some vulnerable groups (e.g. elderly 

people, people with long-term ill-health). Additional issues include dealing with different noise 

sources and characteristics (e.g. noise from road, rail, aircraft, neighbourhood and occupation) and 

using different noise indicators (daytime noise, night-time noise, 24-hour weighted noise, etc.).  

The ENNAH (European Network on Noise and Health) project brought together researchers from 33 

research centres in Europe to carry out comprehensive reviews of noise and health and to draw future 
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research directions in this field(European Commission, 2013). Certain gaps in current research on 

cardiovascular effects have been identified, as described below.  

1.  More evidence is needed to strengthen the previously presented dose-response curves 

between road traffic noise and cardiovascular endpoints. Prospective cohort studies are 

needed to provide robust effect estimates.  

2. It is still unclear if effect estimates differ by sex, daytime versus night-time noise, in chronically 

ill participants, and the elderly, and more evidence is needed about potentially important 

exposure modifiers, including window opening habits and shielding effects. A dedicated study 

design and a large sample size will be needed to investigate these effects.  

3. Studies of combined noise sources other than road traffic noise alone are still very few. Also, 

noise acoustic characteristics (e.g. sound level, frequency spectrum, time course) need to be 

specified in future studies(Basner et al., 2014).  

4. The role of noise sensitivity or noise annoyance needs to be addressed. Questions about 

whether noise sensitivity/annoyance serves as an effect modifier or a predictor of CVD 

morbidity and mortality by itself requires further investigations. In a UK-wide cross-sectional 

survey, higher noise sensitivity was seen among older participants (middle-aged and above), 

females, people with a home mortgage and in a higher social class(Van de Ker Ckhove, 2016). 

In future studies it may worth investigating associations between noise and cardiovascular 

diseases in these subgroups. In the Whitehall study of British civil servants, noise sensitivity as 

assessed by a single question in the baseline survey at 1985-1988 was not associated with 

incident coronary heart diseases during the follow-up period up to 2008-2009(Stansfeld & 

Shipley, 2015). As this study did not have objective noise estimates, the role of noise sensitivity 

on the association between road noise and incident coronary diseases could not be assessed. 

In the HYENA study, where data on both measured noise and noise annoyance were available, 

association between aircraft noise and hypertension was stronger in more annoyed persons, 

suggesting effect modification by annoyance(Babisch et al., 2013).  
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5. More evidence is needed for the associations between road traffic noise and stroke. It would 

be worthwhile to also examine the specific subtypes of stroke, for example haemorrhage and 

ischaemic stroke.  

6. Co-exposure of road traffic noise and air pollution and their impacts on cardiovascular health 

has not been extensively explored and inconsistent results were reported across studies.  

The emphasis of current research in this field should be placed on finding the potential threshold 

above which an increase in cardiovascular risk is observed, the magnitude of such an effect, and 

the susceptible groups(Babisch, 2014).     

1.3. Joint cardiovascular effects of ambient air pollution and road traffic 

noise 

Road traffic is the main common source of air pollution and noise. Both exposures have been linked 

to similar cardiovascular endpoints, as detailed in the aforementioned epidemiological studies. It 

remains unclear though whether these two exposures contribute to cardiovascular effects 

independently or act as a confounder for each other in the causal link with cardiovascular 

endpoints(Foraster, 2013). 

Studies on cardiovascular mortality and ischaemic heart disease   

There are increasing numbers of studies, mainly in Europe, that have investigated both exposures with 

respect to cardiovascular diseases in the same study.  

Beelen et al studied the joint effect of air pollution and noise on cardiovascular mortality in a Dutch 

cohort (N=117,528) during a 9-year follow-up period(Beelen et al., 2009). Both air pollution and noise 

exposure estimates were model-derived and assigned to participant’s home address at baseline. Air 

pollution indicators, namely background black smoke and traffic intensity on the nearest road, and 

traffic noise (Lden) were assessed separately and jointly in the statistical models. Correlations between 

noise and air pollution measures were moderate (r=0.24 for black smoke, r=0.30 for traffic intensity 
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on the nearest road). Both traffic intensity and the highest traffic noise exposure group (>65 dB (A)) 

were positively associated with increased mortality from total cardiovascular diseases and heart 

failure, and significance was reached for those with the highest noise exposure. However, when 

mutually adjusted, risk ratios for traffic intensity remained similar while significance for highest noise 

exposure was lost, indicating a confounding effect by air pollution.  

Mortality from overall cardiovascular diseases in association with air and noise pollution was studied 

in a Danish cohort(Raaschou-Nielsen et al., 2012). The study followed over 50,000 participants aged 

50-64 years for up to 16 years and traced participant’s residential address since 1971. Model-derived 

NO2 concentration at all addresses since 1971 was time-weighted and road traffic noise (Lden) was 

calculated for baseline residence based on the Nordic prediction method. It was reported that, in the 

full model which was adjusted for several personal and lifestyle characteristics, mortality from 

cardiovascular diseases increased by 33% (95% CI: 16 to 54%) per doubling of NO2 concentration. 

Following further adjustment for road traffic noise, although the point effect estimate decreased 

slightly, the significant association with NO2 remained (26%, 95%CI: 6 to 51%), suggesting effects of 

NO2 on cardiovascular mortality were independent of road traffic noise.  

In Stockholm, incidence of myocardial infarction increased with increased long-term exposure to road 

traffic noise above 50 dB (A) (OR: 1.12, 95%CI: 0.95-1.13) after accounting for NO2 exposure(Selander 

et al., 2009). In the Netherlands, de Kluizenaar et al found that either road traffic noise or air pollution 

was associated with hospital admissions for IHD, after mutual adjustment(de Kluizenaar et al., 2013). 

The series of ESCAPE studies also reported that associations between long-term traffic-related air 

pollution and different cardiovascular endpoints were independent of environmental noise, although 

the latter exposure was defined locally in each individual cohort(Dimakopoulou et al., 2014; Cesaroni 

et al., 2014; Stafoggia et al., 2014).   

A population-based cohort (N=445,868) was linked to a health insurance database covering nearly all 

residents in the metropolitan area of Vancouver(Gan et al., 2012). After eight years of follow-up, a 10 
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dB(A) increase of noise was associated with 9% increase (95%CI: 1 to 18%) in mortality from coronary 

heart disease (CHD), adjusting for covariates and several air pollutants (PM2.5, NO2, black carbon). 

When assessed as a categorical variable, those exposed to the highest level of noise (>70 dB (A)) had 

consistently increased mortality in a sequence of nested models, compared to those in the lowest 

noise level group (≤ 58 dB (A)). In the fully adjusted model including air pollutants, a 22% increase of 

deaths (95% CI: 4 to 43%) was observed in those exposed to noise level of above 70 dB (A). Black 

carbon was found to be independently associated with CHD mortality as well. Although confounders 

such as smoking and individual socioeconomic status were not available for analysis, and there were 

some limitations in exposure assessment (e.g. noise exposure was estimated at community-level), the 

authors concluded that both exposures (noise and black carbon) were likely contributing to the CHD 

mortality independently.  

Studies on other cardiovascular outcomes 

Other than studies on cardiovascular mortality and ischaemic heart disease, some studies have 

investigated associations between other cardiovascular outcomes and both air and noise pollution.  

As discussed in section 2.1.2, Floud et al reported that the association between self-reported heart 

disease and stroke (as a combined outcome) and 24-hour average road traffic noise exposure may 

have been confounded by air pollution(Floud et al., 2013). In contrast, Sorensen et al found a 

14%~16% increase in stroke incidence for each 10 dB increase in road traffic noise, after adjusting for 

noise from railway and air traffic and also NO2 or NOx(Sorensen et al., 2011).   

Fuks et al reported that increased mean systolic and diastolic blood pressure was associated with long 

term exposure to PM-related air pollution in a German population-based sample, independent from 

road traffic noise(Fuks et al., 2011). After additionally adjusting for neighbourhood noise exposures 

(<70 dB (A) vs. ≥ 70 dB (A)), Coogan et al found increased level of NOx was significantly associated with 

incident hypertension (RR: 1.14, 95%CI: 1.03 to 1.25, per interquartile change) among black women 
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living in Los Angeles(Coogan et al., 2012). In a population-based cohort in Spain, a 10 µg/m3 increase 

in annual averaged NO2 was associated with 1.34mmHg (95%CI: 0.14 to 2.55) higher SBP, adjusting for 

noise from road, rail and air traffic(Foraster et al., 2014). Sorensen et al found that long term exposure 

to NOx was inversely associated with self-reported hypertension in a study after adjusting for road 

traffic noise(Sorensen et al., 2012b).  

A more recent study of 4238 adults in Germany showed that both long-term exposures to PM2.5 and 

night-time noise were significantly associated with subclinical atherosclerosis, measured by thoracic 

aortic calcification (TAC)(Kalsch et al., 2014). This study suggested an independent effect of each 

exposure on atherosclerosis. 

In summary, most the above studies have suggested an independent effect of both traffic-related air 

pollution and noise on cardiovascular outcomes, with only two(Floud et al., 2013; Beelen et al., 2009) 

of the reviewed studies suggesting a confounding effect.  

Current knowledge and research gaps  

A systematic review based on only nine publications up to 2013 has inconclusively suggested that 

confounding effect is likely minimal, but it should also be noted that the review reported 

heterogeneity not only across studies but also across areas within a study(Tetreault, Perron & 

Smargiassi, 2013).  Nevertheless, the review has raised several issues which need to be explored 

further in future studies.  

1. It was found that correlations between noise and air pollution exposure do not necessarily 

influence the confounding effects in the reviewed studies. The authors argued that the wide 

range of correlations observed in the reviewed studies partly reflects different urban 

structures across the study areas and therefore any confounding effect is perhaps a study-

specific issue.  
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2. To better account for the confounding effect by road traffic noise, it was suggested that traffic-

related indicators of air pollution (e.g. NO2, NOx) should be used.  

3. More studies are needed to investigate the potential confounding or independent effect in 

different types of cardiovascular diseases (IHD, stroke, hypertension etc.).  

4. Compared to outdoor air pollution, noise is generally considered as a nuisance for many 

people and could be modified by personal efforts such as wearing ear plug to mitigate 

excessive noise(Foraster, 2013). In addition, perception of noise is also affected by hearing 

impairment. These differences could potentially influence the confounding effect and should 

be better addressed in future studies.    
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Chapter 2 Cohort descriptions and data harmonisation 

2.1. Cohort profiles 
Four European population-based cohorts contributed to this project. Two were from the United 

Kingdom, namely EPIC-Oxford(Davey et al., 2003) and UK Biobank(Allen et al., 2014); one was from 

the Netherlands, the LifeLines cohort(Scholtens et al., 2015); one was from Norway, the HUNT 

study(Krokstad et al., 2013). These four cohorts were all partners in the BioSHaRE (Biobank 

Standardisation and Harmonisation for Research Excellence in the European Union) consortium. They 

were selected for this PhD project for several reasons: i) they are the largest and most recently 

established population-based cohorts in their countries; epidemiological analyses on air pollution or 

noise are still limited in these cohorts; ii) data for exposure modelling already exist or are able to be 

obtained within the timeframe of this project; iii) together, they increase the environmental exposure 

contrasts that are usually limited within specific geographical regions and landscapes. Detailed 

descriptions of each cohort profiles have been published elsewhere(Scholtens et al., 2015; Allen et al., 

2014; Krokstad et al., 2013; Davey et al., 2003), herein a brief description of each cohort with respect 

to baseline recruitment and follow-up is summarised.   

EPIC-Oxford: The EPIC-Oxford cohort is one of the components of the European Prospective 

Investigation into Cancer and Nutrition (EPIC) study(Riboli & Kaaks, 1997), which recruited over half a 

million people across 10 European countries. During 1993-1999, 57,446 participants aged>=20 years 

living throughout the United Kingdom were recruited into the study and completed baseline 

assessments. The study population of the EPIC-Oxford cohort consist of two groups based on their 

source of recruitment. 7,421 participants were successfully recruited from general populations 

(“general population” group). Men and women aged ≥ 35 years on the list of collaborating General 

Practices (GPs) in Oxfordshire, Buckinghamshire and Greater Manchester were invited to participate 

in the study. Consenting participants were examined and interviewed by trained nurses in the GP 

surgeries. The nurses also conducted anthropometric measurements, took a 30ml blood sample and 
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checked the completed questionnaire. The remaining 50,025 participants of EPIC-Oxford cohort were 

recruited by post, in a campaign that aimed to recruit as many vegetarians as possible from across the 

country (“health-conscious” group). Men and women aged 20 years and above were eligible to 

participate. The main questionnaire was sent to all members of the Vegetarian Society of the UK. 

Relatives and friends of these members were also encouraged to participate through a “snowballing” 

method. Members of The Vegan Society who expressed an interest in the study were also mailed the 

main questionnaire to complete. Participants recruited by post who were willing to provide a blood 

sample were contacted by their GPs and samples were collected in the GP surgeries. About one third 

of this cohort were vegetarians and vegans. A subset of 19,500 participants also provided blood 

samples for analysis.   

HUNT:  The HUNT (Helseundersøkelsen i Nord-Trøndelag) study is mainly based in the Nord-Trøndelag 

County in the central part of Norway.  Nord-Trøndelag County is one of the 19 counties in Norway, 

consisting of 24 municipalities located in both inland and coastal areas. To date, three surveys have 

been conducted in the HUNT study, HUNT1 (1984-1986), HUNT2 (1995-1997) and HUNT3 (2006-2008). 

In each survey, data were collected via questionnaires, interviews and measurements by teams of 

trained staff located in health examination sites within each of the 24 municipalities. Every citizen 

living in the county aged 20 years or older at the time of each survey was invited to participate. The 

original aims of the HUNT study, as designed in HUNT1, were to investigate hypertension, diabetes 

and quality of life. Over time, the aims of the HUNT study have expanded to include more health-

related lifestyles and outcomes in accordance with national health priorities. For example, CVD-

related items were extensively examined in HUNT2 and HUNT3, hence data from both surveys were 

analysed with regards to specific research aims in this PhD project. 93,898 citizens were invited to 

HUNT2 survey, 65,232 of them (70%) participated (as defined by completing the main Questionnaire 

1) and 65,007 of these had physical measurements and blood/serum samples collected. In HUNT3, 

93,860 citizens were invited, 50,805 of them (54%) participated and 50,666 of these had physical 
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measurements and blood/serum samples collected. A total of 37,070 participants took part in both 

HUNT2 and HUNT3 surveys.   

LifeLines: The LifeLines cohort study was piloted in 2006 and started in 2007, and is now the largest 

population-based study in the Netherlands. The main focus of this study is to investigate universal risk 

factors (genetic, environmental, biomedical and psychosocial factors) and their modifiers in relation 

to a range of multifactorial diseases and healthy ageing, using its three-generation design. The cohort 

recruited from the three provinces (Groningen, Friesland, Drenthe) in the north of the Netherlands. 

This part of the country has a highly homogeneous population and low migration rates. Participants 

(index persons, or probands) aged 25 to 50 years who were registered in general practitioners’ (GP) 

practices in one of the three provinces were randomly invited to participate.  After expressing interest 

in participating and signing a consent form, participants were sent a baseline questionnaire (part one) 

and an invitation to attend one of the 12 LifeLines research sites where they underwent for health 

assessment, and completed the second part of questionnaire. In addition, participants were asked if 

their family members including partners, parents, parents-in-law and children were willing to 

participate. The same recruitment procedures were followed for these family members, thus the 

LifeLines cohort consists of a representative population-based cohort across three generations. The 

recruitment was completed in December 2013, by which time a total of 167,729 participants had been 

recruited.  

Information on demography, socioeconomic position, lifestyle, general health, depression and 

medication use were collected via questionnaires at baseline. Completeness and correctness of data 

were checked by staff at the research sites. In addition, each participant underwent a physical 

examination, and had blood and urine samples collected.  

Given the timeframe of this PhD project, only 93,277 out of the 167,729 LifeLines participants were 

able to be included, as data quality for these 93,277 participants had been checked. Record linkages 
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were still being processed at the time this thesis was written and therefore hospitalisation for incident 

CVD data were not available for this cohort.   

Due to its three-generation study design, it is possible that some of the 93,277 LifeLines participants 

included in this project are indeed from the same family/household, which implies some clustering 

effects (e.g. shared genetic and environmental factors within the same family/household) may exist 

and therefore potentially influence the statistical estimates. However, I was not able to investigate 

specifically this clustering effect in the LifeLines cohort in the proposed pooled analysis in this PhD 

study. Hence, participants in the LifeLines cohort was treated as independent individuals in statistical 

analyses (Chapter 4) and limitations of doing so are acknowledged in section 6.2.4 of Chapter 6.         

UK Biobank: UK Biobank is one of the largest population-based prospective cohorts in the world, with 

over 500,000 participants recruited from all over the UK. It was set up to study the genetic, 

environmental and lifestyle determinants of common diseases in middle-aged and older populations. 

Baseline assessment was conducted in 2006-2010. During this period, targeted participants aged 40-

69 years were invited to visit one of 22 assessment centres throughout the country. At the assessment 

centre, participants signed a consent form and completed a touch-screen questionnaire. This 

computerised questionnaire allowed direct data entry to facilitate checks for completeness and 

consistency. A rich array of data of public health and research importance were collected. For data 

which were inconvenient to collect via touch-screen questionnaires (e.g. names of any specific 

medications taken), participants were interviewed briefly by trained staff at the centre to record these 

information. Participants also underwent physical and functional measurements, and collections of 

blood, urine and saliva samples for biobanking.  By the end of the recruitment period, a total of 

502,656 participants had provided data for this project initially, after seven participants withdrew in 

2014, a sample size of 502,649 was available for analysis.  

An overview of the participating cohorts is provided in Table 2.1. As stated in the “research objective” 

section in Introduction, this PhD study aims to investigate two specific outcomes - CVD and blood 
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biochemistry markers for CVD - in association with exposure to both ambient air pollution and road 

traffic noise. Blood biochemistry data were only available for LifeLines and HUNT3 within the 

timeframe of this project. EPIC-Oxford, HUNT2 and UK Biobank had data available to contribute to the 

incident CVD analyses.     

 



 

59 | P a g e  
 

Table 2.1 Overview of participating cohorts in this project  

 EPIC-Oxford LifeLines HUNT UK Biobank 

Recruitment 
regions 

Throughout the 
UK 

North of the 
Netherlands 

Nord-Trøndelag, 
Norway 

Throughout the 
UK 

Baseline periods 1993-1999 2006-2013 1995-1997 
(HUNT2) 
2006-2008 
(HUNT3) 

2006-2010 

Targeted 
populations 

General and 
vegetarian  
populations 

General 
populations 

General 
populations 

General 
populations 

Targeted age 
groups 

≥20 years 25-50 years; 
children and 
older family 
members of the 
participant were 
also invited 

≥20 years 40-69 years 

Sample size 
available for this 
project 

57,446 93,277 65,232 (HUNT2) 
50,805 (HUNT3) 

502,649 

Contributed to 
analyses in this 
PhD 

Incident CVD  CVD blood 
biochemistry  

CVD blood 
biochemistry 
(HUNT3)  
Incident CVD 
(HUNT2) 

Incident  CVD  
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2.2. Cohort data harmonisation  
There have been debates in recent years over the issue of whether to merge the existing established 

biobanks/cohort studies into a large consortium (e.g. the ESCAPE project) or to establish a new large-

scale purpose-designed cohort to enable the study of the effects of genes and the environment on 

population health(Collins & Manolio, 2007; Willett et al., 2007). Indeed, both approaches have pros 

and cons. Clearly, combining data from several existing cohorts could quickly and efficiently produce 

the large sample sizes needed to study subtle but important environmental effects. This method 

requires only modest investments, making it particularly attractive in today’s research funding 

climate. However, there are several challenges that need to be addressed when merging different 

studies as pointed out by Collins and Manolio(Collins & Manolio, 2007). The first concerns, the 

standardisation of collected data or measures, for instance, how valid is it to merge measures which 

were not uniformly collected? The second concern is that, existing studies may not represent the 

general populations from which they are drawn, and are more likely to underrepresent the younger 

age groups, as most cohorts are established to study disease-onset from mid-life. Third, ethical-legal 

issues (e.g. control of data, consent limitation) may block collaboration across various cohort studies. 

Collins and Manolio acknowledged that while huge resources may need to be invested in establishing 

a new large-scale cohort and that the first major results for certain diseases (e.g. cancers) will not 

emerge until years, if not decades, after recruitment, they propose that these two approaches should 

not necessarily be mutually exclusive. Merging data from various cohorts should be treated as an 

interim and effective way to study the gene-environment effects on some common diseases (e.g. CVD, 

diabetes), but in the long run, a rigorously-designed cohort equipped with new tools to capture a rich 

array of data is needed for future generations.   

Combining data from various cohorts could be achieved in two ways: i) combining the results 

generated from various cohorts in which variables were standardised within the cohort using meta-

analysis methods, also known as study-level meta-analysis; ii) combining the individual-level data from 
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each cohort to form a pooled individual-level database, providing that variables were already 

standardised across the cohorts. Examples are given below for these two approaches.  

The Pooling Project of Prospective Studies of Diet and Cancer(Smith-Warner et al., 2006) in North 

America and the ESCAPE project in Europe are two good examples of study-level meta-analyses. Both 

projects involved many cohorts drawn from different regions and countries. Both exposures and 

confounding variables were standardised within each cohort, then uniform statistical models were 

applied to each cohort separately, and cohort-specific results were pooled using meta-analysis 

techniques to obtain the overall effect estimate. In both projects, findings from each cohort were 

largely consistent and heterogeneity across cohorts was not reported for most of the examined health 

outcomes.  

Pooling individual-level data across studies has not been extensively attempted due to the foreseeable 

technical, ethical and legal issues that need to be considered thoroughly. The dedicated EPIC 

consortium is one of the few examples in pooling individual-level data across many EPIC component 

cohorts of which EPIC-Oxford is part. Data from EPIC cohorts were collected based on centre-specific 

questionnaires but all shared some major components. Standardised variables with universal 

definitions were derived from each local cohort based on a joint protocol, enabling pooled analyses 

(either individual-level pooled analysis or study-level pooled analysis) using these standardised 

variables. By doing this, the EPIC investigators hoped to resolve two major problems: statistical power 

and study size(Riboli & Kaaks, 1997).     

Sample size and statistical power remain critical in epidemiological research, and are particularly 

important when studying effect modifications by several factors, or gene-environment interactions. 

Clearly, both methods of combining data across cohorts can achieve a large sample size and/or 

statistical power. Yet, most attempts to date are still targeted at the study-level meta-analysis, despite 

the fact that pooled individual-level analysis usually offers greater flexibility and statistical 

power(Roetzheim et al., 2012).    



 

62 | P a g e  
 

In response to the aforementioned debates, the EU-funded BioSHaRE consortium, in which this PhD 

project sits, was commissioned to give new insights into the effective pooling of individual-level data 

from various cohorts to study common complex diseases. Investigators from the BioSHaRE consortium 

aim to provide solutions to some of the concerns noted earlier by Collins and Manolio(Collins & 

Manolio, 2007). For example, new computational infrastructures have been developed by BioSHaRE 

for retrospectively harmonising key measures of lifestyle, social circumstance and environment across 

cohorts. In addition, novel statistical tools have been developed to enable virtual individual-level data 

pooling from various cohorts, allowing data custodians retain control over their data. This PhD project 

was designed to use and test these new tools and to demonstrate the value of pooled individual-level 

analysis.   

Data Harmonisation Platforms in BioSHaRE 

Fortier and colleagues from the BioSHaRE consortium have successfully streamlined and tested the 

data harmonisation methodology in a pilot study of 53 individual cohorts around the world, using their 

DataSHaPER (DataSchema and Harmonization Platform for Epidemiological Research) 

approaches(Fortier et al., 2011). This method, as its name suggests, is structured by two components, 

a dataschema platform and a harmonisation platform. First, a dataschema was developed with 

standard annotations attached to each variable requiring harmonisation. Second, based on the 

defined harmonised variable, data from each original cohort were examined and harmonised to 

achieve this defined harmonised variable, using computer-generated scripts. The DataSHaPER aims to 

provide a certain degree of flexibility with regards to harmonisation while also allowing meaningful 

research with a set of comprehensive data.   

As a crucial first step, data compatibility across the participating cohorts in this PhD project were 

assessed, based on the DataSHaPER protocol, to inform whether these data could be retrospectively 

harmonised meaningfully such that they could be pooled validly for analyses to address my research 

objectives.    
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Dataschema Platform overview 

Using the DataSHaPER format, I developed an online dataschema for this PhD project. A core set of 

variables were identified for priority harmonisation across all cohorts (referred as “Core harmonised 

variables” hereafter). The strategy in choosing these core harmonised variables was based on my 

knowledge of the required analyses derived from current scientific literature, advice  from senior 

colleagues, and general criteria as described in the DataSHaPER conceptual paper(Fortier et al., 2010). 

Briefly, variables were selected to capture information about demography, social circumstance, 

lifestyle and general health. These variables are either key components in epidemiological research, 

straightforward and reliable to measure, or are potentially important effect modifiers. Some data 

variables were not able to be harmonised in each cohort, partly because the original cohort did not 

collect the relevant data, or only collected partial information. Nevertheless, these data variables were 

still added to the dataschema for future research (referred as “Other harmonised variables” 

hereafter). Other data, for example, on physical activity, diet habits and area-level contextual variables 

(e.g. area deprivation index, income by neighbourhood) may be important confounders and/or effect 

modifiers, but were too heterogeneous to enable a valid synthesis within this project. Therefore, these 

data were not added to the dataschema. Figure 2.1 displays a screenshot of the working version of 

the online dataschema, using smoking status (“SMK_STATUS”) as an example. Basically, for each 

harmonised variable, in this case “SMK_STATUS”, the harmonised name, standard definition, scripts 

used to derive the variable from each cohort, label of each category (1=never-smoker; 2=ex-

smoker;3=current-smoker), and harmonisation working progress (completed/pending/impossible) 

are shown on the screen, which allows researchers to follow the working status closely.   

Figure 2.1 A screenshot of online working version of dataschema-“smoking status” as an example 
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In the following sections, procedures to derive harmonised variables (both core and other) from each 

of the four cohorts are described in detail.     

Harmonisation Platform for core variables 

These core variables were harmonised across all cohorts and were used in the main analyses as 

important confounders and/or effect modifiers. Most variables were straightforward to define with 

some following a universal definition (e.g. smoking pack years) or international standard classification 

(e.g. highest education level). Some degree of flexibility was allowed in the harmonisation process. 

Harmonisation of core variables from each cohort are described as below.   

 Participant’s characteristics variables 

All cohorts had information about age at recruitment (“AGE_YRS”), sex (“GENDER”) and year of 

interview (“ADM_YRINT”). For age at recruitment, data were directly recorded for HUNT and EPIC-

Oxford, while for UK Biobank and LifeLines this variable needs to be derived using date of birth and 

date of completion of the questionnaire form or date of attendance at the assessment centre.  
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Height (“PM_HEIGHT”), weight (“PM_WEIGHT”), waist (“PM_WAIST_SIZE”) and hip circumference 

(“PM_HIP_SIZE”) were all objectively measured in HUNT, LifeLines and UK Biobank, although 

measurement protocols differed. These measurement differences were permitted in the 

harmonisation process and as such data were harmonised in line with definitions set out in the Table 

2.2.  

Only a small proportion (7,388 out of 57,446, 13%) of EPIC-Oxford participants had height, weight, 

waist and hip circumference measured through attendance at a General Practice.  Most other EPIC-

Oxford participants self-reported their measures in the questionnaire by post (N=49,065). 

Approximately 7,000 participants had both anthropometry measured at a GP visit and also self-

reported these data in the questionnaire. In these participants, there was a high correlation between 

self-reported and measured height(r=0.97) and weight(r=0.99)(Spencer et al., 2002). For self-reported 

and measured waist or hip circumference, the correlation was 0.91(Spencer, Roddam & Key, 2004).  

Based on both measured and self-reported data, colleagues in EPIC-Oxford had previously developed 

sex-specific prediction equations(Spencer, Roddam & Key, 2004; Spencer et al., 2002). It was found 

that using these predictive equivalents for height and weight, misclassification of BMI reduced from 

22% to 15% in men and 18% to 14% in women, compared with using self-reported height and 

weight(Spencer et al., 2002). Therefore, the EPIC consortium recommended that these predicted 

values derived from the sex-specific equations should be used in my analyses where anthropometry 

measures are included as confounding variables, instead of the self-reported values derived from the 

questionnaire. In this PhD project, as anthropometry data were mainly used to adjust for confounding 

effects, predicted anthropometry values based on the sex-specific prediction equations were 

therefore used for all participants in EPIC-Oxford and were harmonised as if they were objectively 

measured values.   

Waist-Hip ratio (WHR, “PM_WHR”), Body Mass Index (BMI, “PM_BMI_CONTINUOUS”) were 

subsequently computed for all cohorts based on the relevant measures, as defined in Table 2.2.  
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Table 2.2 Harmonisation of core variables: participants’ basic characteristics 

Harmonised name Harmonised definition Unit (continuous variables) 

Categories (categorical variables) 

AGE_YRS Age of the participant in years 

(continuous) at recruitment  

Years 

AGE_YRS_CATEGORICAL Age of the participant in years 

(categorical) at recruitment  

1: 18-30 years;  

2: 30-40 years,  

3: 40-50 years;  

4: 50-60 years;  

5: 60-70 years; 

6:70 years and over  

GENDER Sex of the participant 0: Male;  1:Female 

ADM_YRINT Calendar Year of the interview calendar year 

PM_HEIGHT measured or self-reported height  cm 

PM_WEIGHT measured or self-reported weight  kg 

PM_HIP_SIZE measured or self-reported distance 

around the hips    

cm 

PM_WAIST_SIZE measured or self-reported distance 

around the waist  

cm 

PM_WHR Waist-Hip ratio (WHR): calculated 

from waist and hip size in each 

cohort (waist/hip)  

% 

PM_BMI_CONTINUOUS Body Mass Index: calculated using 

measured or self-reported  weight 

and height  (kg/m2) 

kg/m2 

PM_BMI_CATEGORIAL Body Mass Index calculated using 

measured or self-reported weight 

1: less 25 kg/m2;                                 

2: 25 to 30 kg/m2;    

 3: over 30 kg/m2 
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and height (Mass in Kg / (Height in 

metre)2). 

 

 Participant’s lifestyle variables 

 

Smoking  

Smoking data including an indicator of current smoking status (“SMK_STATUS”) and a quantitative 

marker of cigarette consumption measured across life, smoking pack-years (“SMK_PACKYRS”), were 

defined as with most epidemiological studies (see Table 2.3).  

Smoking status was directly recorded for EPIC-Oxford, HUNT and UK Biobank in three categories 

(never, ex, and current smoker) and were subsequently harmonised for these three cohorts. For 

LifeLines, additional work was needed to secure this crucial variable. Three original variables in 

LifeLines were used to derive “SMK_STATUS”, namely “SMK11” (Have you ever smoked for a full year? 

Yes/no), “SMK31” (Do you smoke now, or have you smoked in the past month? Yes/No) and “SMK51” 

(Have you stopped smoking? Yes/No).  Never-smokers were defined as those who answered “No” to 

both SMK11 and SMK31 while current-smokers were defined as those who answered “Yes” to SMK31 

and “No” to SMK51. Ex-smokers were defined as those who answered “No” to SMK31, “Yes” to SMK11 

and “Yes” to SMK51.   

The smoking pack-years (“SMK_PACKYRS”) is a unit for measuring the amount a person has smoked 

over the life course. It is calculated by multiplying the numbers of packs of cigarettes smoked per day 

by the number of years the person has smoked. For example, 1 pack-year is equal to smoking 20 

cigarettes (1 pack) per day for 1 year.  

Equation 1: Calculation of smoking pack-years 

Number of pack-years= (number of cigarettes smoked per day x number of years smoked)/20 

As shown in the above Equation 1, information about daily number of cigarettes smoked and number 

of years of smoking are needed to derive the variable smoking pack-years for each cohort.  Smoking 
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pack-years was readily available for EPIC-Oxford; the harmonisation was conducted in other three 

cohorts as follows.  

Regarding the daily number of cigarettes smoked, UK Biobank asked separately in two questions for 

different time periods, now (if they still smoke) and before they quit. Answers to these questions were 

then applied to the calculations of smoking pack-years for current-smokers and ex-smokers 

respectively.  

In HUNT, participants were asked-“How many cigarettes do/did you usually smoke daily? (if now or 

earlier daily smoking)”-but exactly the same information was obtained as those in UK Biobank.  

For LifeLines, daily number of cigarettes smoked was recorded in current-smokers only. No specific 

data were recorded for ex-smokers regarding numbers of cigarettes they previously smoked daily. 

Instead, total number of cigarettes, roll-up cigarettes, cigarillos, cigars and pipe tobacco per day were 

recorded.  It was assumed that most participants in LifeLines with a habit of smoking mainly smoked 

cigarettes rather than other types of tobacco. Therefore, this information was used as a proxy of 

number of daily cigarettes smoked previously for ex-smokers in LifeLines.  

All three cohorts (HUNT, LifeLines, UK Biobank) had recorded “age started smoking” and “age quitted 

smoking” (applicable to smoking quitters). Number of years of smoking was therefore calculated 

separately for current-smokers and ex-smokers. For the current smokers, it was calculated as age at 

recruitment minus age started smoking while for ex-smokers, it was calculated as age quit smoking 

minus age started smoking.   

For all known never-smokers, pack-years was set to zero.  

Alcohol consumption  

Current alcohol consumption at recruitment (“ALC_CURRENT_QTY_TOTAL”) was quantified as 

average grams of total alcohol (beers, wines, spirits) consumed per week (see Table 2.3). Serving size 
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(grams of alcohol per drink) of alcoholic drinks usually differs from country to country and different 

serving size standards were reported in previous publications for each cohort. The harmonisation for 

these alcohol consumption variables is in line with these reported serving size standards for each 

cohort.   

In EPIC-Oxford, beer, wines, spirits and total alcohol consumption (grams) at recruitment per day was 

respectively recorded for each participant.  To derive the defined harmonised variable, the ‘total 

alcohol consumption’ in grams was multiplied by seven to represent averaged consumption per week. 

In HUNT, average alcohol consumption was collected via three questions (“How many glasses of beer 

(wine/spirits) do you usually drink in the course of two weeks?”). Information about the serving size 

(e.g. how many grams of beer in a serving glass) was not directly mentioned in the questionnaire.  

However, in line with a previous HUNT publication(Rasouli et al., 2013), the average serving of beer is 

equivalent to 16 grams of alcohol, the average serving of wine is equivalent to 12 grams of alcohol and 

the average serving of spirits is equivalent to 12 grams of alcohol. Thus, reported glasses of each 

beverage consumed were multiplied by the above alcohol contents respectively in grams. These 

numbers were then summed up to give a total average consumption of alcohol over a two-week 

period.  To derive the defined harmonised variable, this total average consumption of alcohol was 

therefore divided by two to represent average consumption of total alcohol per week.  

In LifeLines, general alcohol consumption questions (regardless of alcoholic beverage types) were 

asked in the questionnaires. Participants were asked “How often did you drink alcoholic beverages in 

the past month, also think of non-alcoholic beer?” There were seven categories to choose from for this 

question: not this month (non-drinker); 1 day per month (equivalent to 1/4 day per week); 2-3 days 

per month (equivalent to 2.5/4 per week); 1 day per week; 2-3 days per week; 4-5 days per week; 6-7 

days per week.  For the latter three categories, drinking was averaged to 2.5days per week, 4.5 days 

per week and 6.5 days per week respectively. Participants were then asked “On days that you drank 

alcoholic beverages, how many glasses did you drink on average?”. In the Netherlands, one standard 
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serving size of an alcoholic drink is equivalent to 9.9 grams of alcohol, regardless of beverage 

type(Slagter et al., 2014).  As a result, total average consumption of alcohol per week was derived by 

multiplying the number of drinking days per week by number of glasses of alcoholic beverages drank 

on these drinking days by a standard serving unit of 9.9 grams of alcohol.   

In UK Biobank, participants were asked about the number of drinks of each alcoholic beverage 

consumed weekly. For beer consumption, participants were asked “how many pints of beer or cider 

would you drink in an average week?”; for both red wine and white wine (including champagne), 

participants were asked “how many glasses would you drink in an average week (typically there are 

six glasses per bottle)?”; for spirits, participants were asked “how many measures of spirits or liqueurs 

would you drink in an average week (there are 25 standard measures in a normal sized bottle)?”. In 

the UK, a unit of alcohol is used as a measure to quantify alcohol consumption and one unit is equal 

to eight grams of alcohol, as defined in a guideline published by the House of Commons Science and 

Technology committee in 2012 

(http://www.publications.parliament.uk/pa/cm201012/cmselect/cmsctech/1536/1536.pdf, 

accessed in March 2015). As with a previous UK Biobank publication(Dawes et al., 2014), one pint of 

beer or cider is equal to 2.5 units of alcohol, one medium-sized glass of wine or champagne is equal 

to 2.3 units of alcohol and 1 measure of spirits or liqueurs is equal to 1 unit alcohol. As such, actual 

alcohol content of one serving size for each beverage was calculated by multiplying the units of alcohol 

by eight, which is 20 grams of alcohol per pint of beer or cider, 18.4 grams of alcohol per one medium-

sized glass of wine or champagne, and 8 grams of alcohol per one measure of spirits or liqueurs. To 

derive the harmonised variable, the number of drinks per week for each beverage was multiplied by 

the above mentioned grams of alcohol content per drink for each beverage. Then these numbers were 

summed up to give an average consumption of total alcohol per week for each participant.    

It should be noted that for all non-alcohol drinkers in each cohort, a value of zero was assigned to this 

harmonised variable.  

http://www.publications.parliament.uk/pa/cm201012/cmselect/cmsctech/1536/1536.pdf
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Table 2.3 Harmonisation of core variables: participants’ lifestyle variables 

Harmonised name Harmonised definition Unit (continuous variables) 

Categories (categorical variables) 

SMK_STATUS Indicator of the participant's 

current and past smoking status, 

which includes use of cigarettes, 

cigars, pipes and other tobacco 

products. 

0: Never-smoker;         

1: Ex-smoker;          

2: Current-smoker  

SMK_PACKYRS The pack-years is a unit for 

measuring the amount a person 

has smoked over a long period of 

time. It is calculated by multiplying 

the number of packs of cigarettes 

smoked per day by the number of 

years the person has smoked.  

Pack-years 

ALC_CURRENT_QTY_TOTAL Current quantity (grams) of total 

alcohol consumed on average in 

beer, wine and spirits per week. 

Current grams of total alcohol 

taken = (current quantity of beer 

taken*Average grams of alcohol in 

a bottle/glass/pint of beer) + 

(current grams of wine taken* 

Average grams of alcohol in a 

serving of wine) + (current grams 

of spirits taken *Average grams of 

alcohol in a serving of spirits). 

grams/week 
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 Participants’ socioeconomic position variables 

Two common indicators of individual socioeconomic position, current work status 

(“WORK_STATUS_CURRENT”) and highest education attainment (“EDU_HIGHEST_1”), were 

identified and harmonised (see Table 2.4).  

For “WORK_STATUS_CURRENT”, both employees (either full-time or part-time) and self-employed 

persons were classified as “currently at work”.  An indicator of whether the participant was retired 

(“WORK_RETIRED”) at the time of recruitment was harmonised in all cohorts except for HUNT.   

Education systems are not directly comparable in the three countries (UK, the Netherlands, and 

Norway) from where the four cohorts originate. As expected, answers to the question about education 

attainment varied across cohorts. To simplify the harmonisation work, a harmonised variable 

(“EDU_HIGHEST_1”) with three broad categories (no education or primary education; secondary 

education; post-secondary/vocational/college/university education) was created, adapting from the 

UNESCO Revision of the International Standard Classification of Education, 2011 

(http://www.uis.unesco.org/Education/Documents/isced-2011-en.pdf, accessed in Dec 2015).  

In EPIC-Oxford, there is a standardised EPIC variable “l_school” which recorded the highest school 

level the participant attained. This variable has six categories: none; Primary school completed; 

Technical/professional school; secondary school; Longer education (incl. University degree); Not 

specified. In EPIC-Oxford, no participants identified themselves in the groups of ‘none’ or ‘primary 

school completed’. 19% of participants (N=10,791) did not specify their highest education level and 

therefore these participants were treated as having missing information. After liaising with the EPIC-

Oxford data team, those who finished technical or professional school were grouped as having 

secondary education for this harmonisation. It should be noted that the then technical school or 

professional school in UK that EPIC-Oxford participants (mostly born in 1920s-50s) attended may not 

be the same level as those that later generations attended. Indeed, the mean age of leaving school for 

those who reported attaining technical or professional education in EPIC-Oxford was 16.8 years, which 

http://www.uis.unesco.org/Education/Documents/isced-2011-en.pdf
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justified grouping these participants in the secondary education group.  Obviously, those with longer 

education were grouped as having post-secondary/vocational/college/university education.    

In HUNT2, participants were asked about their highest level of education. There were 5 options 

(translated from Norwegian to English) and participants were asked to select the most suitable one: 

1) primary school 7-10 years, continuation school, folk high school; 2) high school, intermediate school, 

vocational school, 1-2 years high school; 3) university qualifying examination, junior college, A levels; 

4) University or other post-secondary education, less than four years; 5) university/college, 4 years or 

more. To derive the harmonised variable, participants who selected option 1 were classified as having 

primary school education only; participants who selected options 2 and 3 were all considered as 

having secondary education; participants who selected options 4 and 5 were those who had post-

secondary/vocational/college/university education.    

In LifeLines, participants were asked about their highest education level. Participants were asked to 

select one of the eight options (translated from Dutch to English): 1) No education (primary education 

not completed); 2) Primary education; 3) Lower or preparatory vocational education; 4) Lower general 

secondary education; 5) Intermediate vocational education or apprenticeship; 6) Higher general 

secondary education or pre-university secondary education; 7) Higher vocational education; 8) 

University. To derive the harmonised variable, participants who selected options 1 and 2 were 

classified as having no education or primary school only; those selected options 3 to 6 were classified 

as having secondary education; participants who selected options 7 and 8 were classified as having 

post-secondary/vocational/college/university education.  

In UK Biobank, participants were asked about all educational qualifications obtained, by selecting 

more than one of the following eight options: college or university degree; A-level/AS levels or 

equivalent; O-level/GCSEs or equivalent; CSEs or equivalent; NVQ or HND or HNC or equivalent; other 

professional qualifications (e.g. nursing); none of the above; prefer not to answer. If the participant 

had selected more than one option, the highest level of qualification was then chosen for that 
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participant. To derive the harmonised variable, procedures were adopted as follow: i) if participants 

selected “none of above” only then they were classified as having no education or had only finished 

primary school; ii)O-level, GCSEs and CSEs are all qualifications of secondary education (usually 

obtained at age 16 years) in different generations in the UK whilst A-level/AS levels is a pre-university 

secondary education qualification (usually obtained at age 18 years), if participants had selected one 

of these as the highest qualification attained, then they were classified as having secondary education; 

iii) NVQ/HND/HNC/Professional are all vocational training qualifications. Participants who selected 

one of these as the highest qualification as well as participants who had a university degree were 

classified as having post-secondary/vocational/college/university education. Those who preferred not 

to answer this question were classified as having missing information.     

Table 2.4 Harmonisation of core variables: participants’ socioeconomic position   

Harmonised name Harmonised definition Unit (continuous variables) 

Categories (categorical variables) 

WORK_STATUS_CURRENT Indicator of whether the 

participant is currently in paid 

employment or is self-employed. 

0: No paid employment or not self-

employed;          

1: Paid employment or self-

employed 

EDU_HIGHEST_1 Highest level of education 

completed by the participant. 

Categories are adapted from the 

UNESCO Revision of the 

International Standard 

Classification of Education, 2011 

0: No education or primary 

education        

1: Secondary education;                                    

2:Vocational/college/university 

(post-secondary education) 

 

Harmonisation Platform for other variables  

Other variables were also identified for harmonisation across cohorts to enable additional sensitivity 

or stratified analyses. However, not all variables were collected by each cohort or were collected only 
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in a subgroup of each study population. A summary of these harmonised variables is listed in Table 

2.5.   

Length of current residency (“RES_LENGTH”) at the time of recruitment was obtained from the 

questionnaire in UK Biobank by asking participants how many years they had lived at their current (at 

baseline recruitment) address. For HUNT and LifeLines participants, multiple residential addresses 

were obtained, and the date of moving to last address was confirmed.  Date at recruitment minus date 

of moving to last address was then used to calculate how many years the participant had lived in their 

current address. History of residential addresses or length at current residence was not obtained for 

EPIC-Oxford.   

Information about environmental exposure to tobacco smoking at home (“ETS_HOME”) was only 

available in LifeLines and UK Biobank, but only for non-smokers. In LifeLines, an open question was 

asked in the questionnaire: “How many people smoke regularly in your household”, if participants 

indicated no such persons, then they were classified as not having exposure to ETS; if participants 

indicated one or more than one persons smoke, then they were classified as having exposure to ETS. 

A similar question was asked in UK Biobank, “Does anyone in your household smoke”, participants 

indicated yes or no.  

Information about the number of people in the household (“HOUSEHOLD_NUM_PPL”) was only 

recorded for LifeLines and UK Biobank. In UK Biobank, participants were asked “how many people 

were living together in your household (including yourself)”. If participants only answered one, then it 

was assumed that they were living alone (“LIVING_ALONE”). Exactly the same question regarding 

number of people in the household was asked in LifeLines, and the same procedure was followed to 

derive the “LIVING_ALONE” variable in LifeLines. The HUNT cohort had information on living alone, 

but not on the number of people in the household. EPIC-Oxford asked no questions that would enable 

either harmonised variable to be derived.    
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Data on measured systolic blood pressure (SBP, “PM_SYSTOLIC_MEASURE”) and diastolic blood 

pressure (DBP, “PM_DIASTOLIC_MEASURE”) were available in all cohorts, although in EPIC-Oxford 

these data were available for only 19,500 participants (33% of the total 57,446). Measurement 

protocols varied by cohort. In EPIC-Oxford, measurement of blood pressure was undertaken by trained 

health professionals at general practice. Two measurements of SBP and DBP were planned for each 

participant, although some only had one measurement recorded. If two measurements of SBP and 

DBP were recorded, then an averaged value of these two measurements was adopted.  For HUNT, 

three measurements of SBP and DBP were undertaken for each participant. In line with a previous 

publication(Fagernaes et al., 2015), the mean of the second and third measurement of SBP and DBP 

was adopted as the final value. In LifeLines, 10 measurements of SBP and DBP were conducted, but 

only the final two measurements were averaged as the final values according to the LifeLines protocol. 

In UK Biobank, two measurements of SBP and DBP were undertaken and an averaged value was used 

for the harmonised variable.  

History of ever-had specific diseases was reported in questionnaires by participants from all cohorts. 

Four main diseases were identified for harmonisation: diabetes (type 1 or type 2, “DIS_DIAB”), stroke 

(“DIS_CVA”), myocardial infarction (“DIS_AMI”) and hypertension (“DIS_HBP”). For both EPIC-Oxford 

and UK Biobank, similar questions were asked: “have you been told by a doctor/Has your doctor told 

you that you have the [disease]? Yes/no.” But for LifeLines and HUNT, the question was worded as 

“have you had or do you have the following [disease]? Yes/no.” Data were harmonised assuming these 

are equivalent questions. Information about history of the hypertensive conditions was not available 

in HUNT. Here data on current medication use for hypertension was used as an indicator of whether 

the participant had hypertension. Those who were currently using anti-hypertensive medication were 

grouped as “has had hypertension” of for the “DIS_HBP” variable. There have been some debates 

about the validity of these self-reported data to identify prevalent cases(Woodfield et al., 2015; 

Huerta et al., 2009). In general, the accuracy of self-reported diabetes is usually higher, compared with 

that of, for instance, self-reported hypertension or stroke, because participants may misinterpret the 
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diagnosis with other similar cardiovascular diseases. Nevertheless, in combining with other data 

sources such as medical records, these data are useful for case ascertainment.       

Additional variables describing current medication use against hypertension (“MEDI_HBP”) or 

diabetes (“MEDI_DIAB”) were available for LifeLines and UK Biobank, collected via questionnaire or 

interviews. ATC codes (Anatomical Therapeutic Chemical (ATC) Classification System) were used in 

LifeLines to identify the exact medication that the participant has taken.  Medication data was not 

available in EPIC-Oxford.  

Table 2.5 Harmonisation of other variables 

Harmonised name Harmonised definition Unit(continuous 

variables); Categories 

(categorical variables) 

Not available in 

RES_LENGTH Length of current 

residency 

years EPIC-Oxford 

LIVING_ALONE Indicator of whether the 

participant was living 

alone 

0: Not live alone 

1: live alone 

EPIC-Oxford 

HOUSEHOLD_NUM_PPL Number of people who 

live with the participant 

in the same household 

(including the 

participant) 

- EPIC-Oxford, HUNT 

ETS_HOME Indicator of whether the 

participant (not current-

smokers) was regularly 

exposed to someone's 

0: No  

1: Yes 

EPIC-Oxford, HUNT 
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smoking at home or 

was living with someone 

who were a regular 

smoker. 

PM_SYSTOLIC_MEASUR

E 

Measured systolic blood 

pressure.  

mmHg - 

PM_DIASTOLIC_MEASU

RE 

Measured diastolic 

blood pressure.  

mmHg - 

DIS_DIAB Occurrence of diabetes 

at any point during the 

life of the participant 

(not including 

gestational). Can be 

collected using an 

assessment item asking 

about the history of 

diabetes specifically, or 

from a list of disease 

history using ICD-10 

Codes E10-E16 

0: Never had diabetes  

1: Has had diabetes 

- 

DIS_HBP Occurrence of high 

blood pressure at any 

point during the life of 

the participant. Can be 

collected using an 

assessment item asking 

0: Never had high  blood 

pressure  

1: Has had high blood 

pressure  

Not directly available in 

HUNT, but use the 

current medication of 

hypertensive 

(MEDI_HBP) as a proxy  
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about the history of 

hypertension 

specifically, or from a list 

of disease history using 

ICD-10 Codes I10-I15 

DIS_AMI Occurrence of 

myocardial infarction at 

any point during the life 

of the participant. Can 

be collected using an 

assessment item asking 

about myocardial 

infarction or heart attack 

or from a list of disease 

history using ICD-10 

Codes I20-I22 

0: Never had myocardial 

infarction 

1: Has had myocardial 

infarction 

 

- 

DIS_CVA Occurrence of stroke at 

any point during the life 

of the participant. Can 

be collected using an 

assessment item asking 

about the history of 

stroke or from a list of 

disease history using 

ICD-10 Codes I60-I69 

0: Never had stroke 

1: Has had stroke 

- 
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MEDI_HBP Indicator of whether the 

participant currently 

uses antihypertensive 

medication. Self-

reported by a question 

targeting the use of 

antihypertensive 

medication or extracted 

from a list of medication 

using the following ATC 

Codes or equivalent in 

other classifications: 

C02, C03, C04, C07, C08, 

C09 

 0: Not currently using 

antihypertensive 

medication  

1: Currently using 

antihypertensive 

medication 

EPIC-Oxford 

MEDI_DIAB Indicator of whether the 

participant currently 

uses blood glucose 

lowering medication. 

Self-reported by a 

question targeting the 

use of glucose lowering 

medication or 

medication to treat 

diabetes or extracted 

from a list of medication 

using the following ATC 

Codes or equivalent in 

0: Not currently using 

glucose lowering 

medication 

1: Currently using 

glucose lowering 

medication 

EPIC-Oxford 

HUNT 
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other classifications: 

A10. 

WORK_RETIRED Indicator of whether the 

participant is currently 

retired. 

0: Not retired 

1: Retired  

HUNT 

 

Harmonisation platform for outcome variables 

Outcome variables in this project were identified and harmonised across the cohorts to enable me to 

meet the two research objectives.    

Blood biochemistry data  

Very little blood biochemistry data was available in EPIC-Oxford and data from UK Biobank were not 

released in the timeframe of this PhD project (data due to be released mid-2016). Therefore, 

laboratory measurements for blood biochemistry markers were obtained from HUNT3 and LifeLines 

only (Table 2.6).  Both cohorts have measured a range of different blood biochemistry markers. After 

searching through the measured biomarkers in each cohort, five blood biochemistry markers for 

cardiovascular diseases were found to have been measured in both cohorts for the whole population. 

These include: total serum cholesterol (“LAB_TSC”), triglycerides (“LAB_TRIG”), high-density 

lipoprotein (HDL) cholesterol (“LAB_HDL”), High-sensitivity C-reactive protein (“LAB_HsCRP”) and 

blood glucose. The procedures for collection, storage, transport and analysis of blood samples in the 

two cohorts are described in full elsewhere(Scholtens et al., 2015; Hveem, 2011). Both cohorts 

followed the highest standards in processing these blood samples. However, regarding the blood 

sample itself, non-fasting blood samples were collected in HUNT3 whilst fasting blood samples were 

collected in LifeLines. In the process of harmonisation, such differences were allowed for all other four 

biochemistry makers, but not for blood glucose, as it is known that fasting versus non-fasting blood 

samples may differentially affect the levels of measured blood glucose. In this PhD project, to assess 
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the effects of air pollution or noise, I used data on fasting blood glucose from LifeLines cohort only 

(see details in Chapter 4).    

Incident CVD outcomes  

Record linkages to incident cardiovascular outcomes from hospital admission records and/or mortality 

registers were made in EPIC-Oxford, HUNT2 and UK Biobank. Ascertainment of incident CVD outcomes 

in each cohort is described below, and a summary displayed in Table 2.6.     

EPIC-Oxford: Each participant was followed for first CVD admission to hospital following recruitment 

using the unique National Health Service (NHS) number. In England, information on hospital 

admissions for each patient are available from 1 April 1997 from the Hospital Episode Statistics (HES) 

database. In Scotland, the equivalent database is called the Scottish Morbidity Records (SMR) which 

started in 1 January 1981. Hospital admission data for each participant from England (from 1 April 

1997 to 31 December 2012) and Scotland (from 1 January 1981 to 31 December 2008) were obtained 

via linkages to the respective database and provided by EPIC-Oxford(Crowe et al., 2013). The diagnosis 

codes used WHO 9th version of International Classification of Diseases (ICD9) before 1 April 1996, and 

since then the 10th version (ICD10). The respective ICD codes used to identify incident cardiovascular 

diseases were ICD9 390-459 and ICD10 I00-I99.  For participants dying during follow-up, cause of death 

up to 30 December 2009 was obtained from the NHS central register. Incident CVD death were 

ascertained when CVD (ICD9 390-459; ICD10 I00-I99) was either a primary or a secondary cause of 

death, providing that the participant had never had CVD diagnosed/reported prior to the death.  

Following internal ‘standard exclusions’ in EPIC-Oxford, linkages were not possible for 12,342 of the 

recruited 57,446 participants (Email correspondence from EPIC-Oxford team). In addition, participants 

whose nations of residence was Wales or Northern Ireland as well as those  participants who had pre-

existing self-reported CVD-related history (heart attack, angina, stroke, hypertension and 

hyperlipidaemia) were excluded (N=4720), making linkages possible for a total of 40,384 participants.   
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HUNT: The HUNT cohort has been further enhanced by linkage to registers covering all participants in 

all three surveys. Information from national or local registers is linked to each HUNT participant using 

the unique Norwegian Personal Identification Number (PIN). In this PhD project, after recruitment to 

HUNT2, participants were followed for first CVD admission to hospital up to 31 March 2015. Incident 

CVD cases were identified by linkages with medical records at the only two local hospitals serving the 

population of the county of Nord-Trøndelag. Before 1 January 1999, ICD9 codes were used as diagnosis 

codes in the medical records, and since then ICD10 codes were used. The respective ICD codes used 

to identify incident cardiovascular diseases are ICD9 390-459 and ICD10 I00-I99. Mortality data until 

31 December 2013 were obtained from the National Cause of Death Registry. Participants were 

ascertained as incident deaths if CVD (ICD9 390-459; ICD10 I00-I99) was one of the causes of death 

and participants had never had CVD diagnosed/reported before.  Participants who reported at the 

time of HUNT2 recruitment that they had ever had heart attack, angina pectoris, stroke, previously 

taken medication for hypertension as well as those who were currently taking medication for 

hypertension were excluded (N=12,037), making linkages possible for a total of 66,844 participants.    

UK Biobank: The follow-up for disease occurrence in UK Biobank was made possible through linkages 

to various national registers. As for EPIC-Oxford, data on any hospital admission for each participant 

are available from HES in England and SMR in Scotland. Hospital data were not yet available for Wales 

to be included in this PhD project. As for the EPIC-Oxford and HUNT studies, participants were 

followed for first CVD admission to hospital or CVD death following recruitment. ICD10-coded hospital 

data were available for UK Biobank from 1996-1997 to March 2010 in England and to December 2012 

in Scotland. In this PhD project, the censored date for hospital CVD admission was defined as 31 March 

2010 for UK Biobank. Cause of death up to 30 December 2013 was obtained from the Health & Social 

Care Information Centre (HSCIC) for each participant in England and Wales; while for Scotland, 

mortality data up to 30 November 2012 were obtained from Information Services Department (ISD). 

The respective ICD codes used to identify incident cardiovascular diseases from all registers are ICD10 

I00-I99.  After excluding those who had CVD diagnosed in their medical records before recruitment to 
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UK Biobank and those who reported in recruitment that they had ever had heart attack, stroke, 

hypertension and angina (N=165,426), record linkages were possible for a total of 337,223 

participants.   

Table 2.6 Descriptions of studied outcomes in each cohort  

 EPIC-Oxford LifeLines HUNT UK Biobank 

Blood biochemistry 
data for this 
project  

n/a High sensitivity C-
reactive protein, 
cholesterol, 
triglycerides, High-
density lipoprotein, 
fasting blood 
glucose and HbA1c 
Available for up to 
93,277 participants 

High sensitivity C-
reactive protein, 
cholesterol, 
triglycerides, High-
density lipoprotein, 
non- fasting blood 
glucose 
Available for up to 
50,666 participants 
from HUNT3 

n/a 

Follow-up of 
incident CVD 

    

Data source Hospital Episode 
Statistics (HES); 
Scottish Morbidity 
Records (SMR); 
NHS central register 
for death; 

n/a Two local hospitals 
in the Nord-
Trøndelag county; 
National Cause of 
Death Registry; 

Hospital Episode 
Statistics (HES); 
Scottish Morbidity 
Records (SMR); 
NHS central register 
for death; 

Start date of 
medical records 

01-Apr-1997 
(England HES) 
01-Jan-1981 
(Scotland SMR) 

n/a 01-Jan-1995 01-Apr-1997 
(England HES) 
01-Jan-1981 
(Scotland SMR) 

Censored date for 
first hospital CVD 
admission  

31-Dec-2012 
(England HES) 
31-Dec-2008 
(Scotland SMR) 

n/a 31-Mar-2015 31-Mar-2010 
(England and 
Scotland) 

Censored date for 
death  

30-Dec-2009 n/a 30-Dec-2013 30-Dec-2013 

Pre-existing CVD 
cases before 
recruitment 

4,720 n/a 12,037 165,426 

Linkages possible to 
confirm incident  
CVD cases  

40,384  n/a 66,844 (includes 
participants from 
HUNT1, 2, and 3.  
 

337,223 

 

Three harmonised outcomes including incident total cardiovascular events (“FAILURE_CVD”), incident 

ischaemic heart diseases (“FAILURE_MI”) and incident cerebrovascular diseases (“FAILURE_STROKE”) 

and one harmonised variable describing the  follow-up period (i.e. the person-years of follow-up) 

(“ENDTIME”) were then defined (Table 2.7). All three harmonised CVD-related outcomes are binary 
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variables (yes vs. no), indicating if the participant had developed CVD or not during the follow-up 

period. Calculations of follow-up period (person-years) varied across the three cohorts as each had 

different censor dates for the record linkages (Table 2.6). In general, in each cohort, person-years were 

calculated from the date of recruitment until the date of first incident CVD hospital admission, death 

from an incident CVD cause (either underlying or contributing), death from non-CVD causes, 

emigration abroad or the end of follow-up (censored date), whichever came first. Some EPIC-Oxford 

participants (n=5,220, 13% of the record linkages) in England were recruited before the beginning of 

HES medical records on 1-April-1997, therefore person-years for these participants were calculated 

from 1-April-1997.    

Table 2.7 Harmonisation of outcome variables 

Harmonised name Harmonised definition Unit(continuous variables); 

Categories (categorical variables) 

LAB_TSC Laboratory measurement of total 

serum cholesterol 

mmol/L 

LAB_HsCRP Laboratory measurement of High-

sensitivity C-reactive protein 

(hsCRP) 

mg/L 

LAB_TRIG Laboratory measurement of 

triglycerides 

mmol/L 

LAB_HDL Laboratory measurement of high-

density lipoprotein (HDL) 

cholesterol.  

mmol/L 
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FAILURE_CVD indicator of incident total CVD 

event (ICD10:I00-I99) during the 

follow-up periods 

0: No  

1: Yes 

FAILURE_MI indicator of incident ischaemic 

heart diseases event (ICD10:I20-

I25) during the follow-up periods 

0: No  

1: yes 

FAILURE_STROKE indicator of incident 

cerebrovascular diseases event 

(ICD10: I60-I69) during the follow-

up periods 

0: No  

1: yes 

ENDTIME persons-years of follow-up Person-years 
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Chapter 3 Exposures modelling  
Environmental exposure modelling is now increasingly used in health studies to estimate exposure to 

environmental hazards including ambient air pollution and traffic noise. Indeed, these techniques are 

practical in the case of large population-based studies, where personal measurement is almost 

impossible. An exposure model can be defined as “a conceptual or mathematical representation of 

the exposure process”(WHO, 2005). Generally there are two kinds of exposure assessment 

model(WHO, 2005). One is a mechanistic model which uses real physiochemical characteristics to 

simulate the exposure’s behaviour in the environment and its key exposure pathways. This model is a 

mathematical construct and results can be calculated without any measurements. The other is an 

empirical model which is a mathematical representation of the relationship between input and output 

variables. This model is based on measurements and both input and output variables should be known 

before developing the model. Many models are currently being used in the rapidly evolving discipline 

of exposure science for applications in different fields. For example, various models have been 

described and used for ambient air pollution assessments as well as for traffic noise. Modelling 

techniques for ambient air pollution and road traffic noise were not reviewed in detail for each model 

type, as this was considered beyond the scope of this PhD project. Herein, I focused on the two specific 

models used in this project to assign individual ambient air pollution and traffic noise exposure to each 

cohort participants. Particular attention was paid to issues which may potentially affect the 

subsequent health impact assessments.  

3.1. Land Use Regression model for ambient air pollution assessment 
In air pollution epidemiological studies undertaken in the earlier 1990s(Pope et al., 1995; Dockery et 

al., 1993), exposure estimates for study participants were usually characterised by using average 

estimates over the study period from nearby fixed-site air pollution monitoring stations. While these 

exposure estimates were convenient to use in health studies, they did not adequately capture 

exposure variability at the individual level due to, for example, the outdoor-indoor air pollution level 

relationship, time activity patterns and in particular the small-scale spatial variations in intra-urban 
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areas(Ryan & LeMasters, 2007). As a result, this crude approach to air pollution assessment 

contributed to uncertainty in effect estimates in epidemiological analyses.  As new exposure 

assessment methodology emerges, there are now new models available which address some of these 

limitations. These new models are able to generate more refined estimates for ambient air pollutants 

at the individual address level(Baxter et al., 2013). Intra-urban traffic-related air pollution has high 

spatial variability, particularly for gaseous pollutants (e.g. NO2) at a small-scale(Kunzli, 2014). It was 

reported that concentrations of emitted pollutants from vehicles reduced by up to 90% within 50-

500m of a busy road(Zhu et al., 2002). Even within 50m of a busy road, concentrations may 

substantially differ(Nicholas Hewitt, 1991). There is clearly a need to capture these spatial differences 

in air pollution levels using models capable of delivering output at finer geographic resolutions.  

Briggs et al first reported that these variations over small distances can be predicted using regression-

based methods, now referred to as Land Use Regression (LUR)(Briggs DJ, Collins S, Elliott P, Fischer P, 

Kingham S, Lebert E, et al, 1997). 

LUR models are a form of empirical model and are being increasingly applied in air pollution 

epidemiological studies around the world. By definition, LUR predicts exposure to a specific pollutant 

at unmeasured locations (i.e. home addresses of cohort participants) using parameters derived from 

a multivariate regression model(Ryan & LeMasters, 2007). More specifically, in the model, measured 

level of the specific pollutant at certain locations forms the dependent variable, and a range of 

location-specific variables obtained from a geographic information system (GIS) are included as 

independent variables. These location-specific variables usually consist of variables such as road 

networks (e.g. traffic type, traffic load, road length), the surrounding environments of the 

measurement site (e.g. population density, area-level socioeconomic status), altitude and the land use 

(e.g. industrial land use, open space). The best performing model, defined as the one with the highest 

% variation (R2) explained, is subsequently applied to predict levels of that specific air pollutant at the 

unmeasured sites.    
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This LUR method was first proposed as “regression mapping” in the SAVIAH (Small Area Variations in 

Air Quality and Health) project in the mid-1990s(Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, 

Lebert E, et al, 1997). In that study, Briggs et al conducted four 2-week measurement surveys of NO2 

across 80 sites in Amsterdam, Huddersfield and Prague. They then used these measured estimates, 

along with local variables derived from a GIS, to develop a separate regression model in each of the 

three cities. By validation against measured concentrations at eight to ten ‘reference’ sites, these 

models had a good performance in predicting annual mean concentration of NO2 (R2 ranged from 0.79 

to 0.87). Two key findings were suggested for future studies to replicate: first, estimates based on a 

short measurement campaign in each of the study areas could be used for modelling long-term (e.g. 

annual) air pollution concentrations; second, spatial patterns of NO2 likely remained broadly stable 

year to year in urban areas.    

 It is still debatable though whether LUR model developed in a specific location is transferable to other 

areas, as the relationships between model parameters may differ between different geographic and 

traffic settings. Briggs et al found that the model developed for NO2 in Huddersfield in England could 

also be applied to other areas in the same country (Northampton, Sheffield, Hammersmith and Ealing 

of Greater London), with R2 ranging from 0.60 to 0.76(Briggs et al., 2000). However, the authors did 

point out that without local calibrations, estimates from the model for these areas could be either 

underestimated or overestimated. Following the successful SAVIAH project, Brauer et al conducted 

the first LUR model for PM2.5 and PM2.5 absorbance in three European areas (the Netherlands, Munich and 

Stockholm County) in the TRAPCA project(Brauer et al., 2003). They measured both air pollutants 

across 40-42 sites in each area during four separate 2-week campaigns in one year. The R2 for the 

models were 0.73, 0.56 and 0.50 for PM2.5 in the Netherlands, Munich and Stockholm County 

respectively. For PM2.5absorbance, the models performed slightly better with R2 of 0.81, 0.67 and 0.66 

respectively, likely due to the fact that PM2.5 absorbance is more related to local traffic whilst PM2.5 could 

also be generated by sources other than local traffic and is generally seen as an indicator of regional 

air pollution(Kelly & Fussell, 2012b).   
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After these two pioneering works, LUR methods have been increasingly adopted in other parts of the 

world, although mostly in North America and Europe. In the Montreal city areas of Canada, Gilbert et 

al developed a LUR model for NO2 concentrations(Gilbert et al., 2005). They monitored NO2 in a single 

consecutive two-week period in May 2003 and the model was developed based on these measured 

values and variables from GIS. The R2 for the resultant model was 0.54. Another three Canadian studies 

in Hamilton(Sahsuvaroglu et al., 2006), Vancouver(Henderson et al., 2007) and Toronto(Jerrett et al., 

2007) measured NO2 at over 90 sites in also a one two-week period in 2002-2003, and their LUR model 

achieved R2 of 0.76, 0.56 and 0.69 respectively. In the APMOSPHERE project in Europe, in which 

routine air pollution data were obtained from monitoring networks to develop the LUR model at a 

1km resolution in 15 countries, the LUR yielded a R2 of 0.61(Hoek et al., 2008). LUR techniques were 

applied in the pan-European ESCAPE project in 2008-2011, in which air pollution estimates from the 

models were used in epidemiological studies across cohorts in Europe. The LUR methodology for the 

ESCAPE project was also applied in this PhD project and was described later in Section 2 of this 

Chapter.  

A review in 2008 listed some key issues with regards to measurement sites, measurement campaigns, 

applying LUR modelled estimates to earlier established cohort studies and model development of the 

LUR methodology(Hoek et al., 2008). I briefly summarised each of these below.     

1. Selection and distribution of measurement sites   

The first issue is the strategy of selecting measurement sites in purpose-designed measurement 

campaigns for LUR. One should question how many sites are required to develop a model and how 

these sites should be distributed across the study area. Current published LUR studies have most often 

included up to 100 sites, however more measurement sites do not necessarily guarantee better model 

performance(Clougherty et al., 2008; Henderson et al., 2007). Hoek et al suggested that 40-80 sites 

are ideal, but also noted that the number depends on the sizes of specific study areas(Hoek et al., 

2008). Basagana et al tested the effect of the number of measurement sites on LUR model 
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performance in the urban area of Girona, Spain(Basagaña et al., 2012). Their analyses were based on 

data from 148 measurement sites across the city area, in which they held 28 sites as a validation 

dataset while the other 120 sites were randomly selected for model development. The authors 

concluded that models developed from a small number of measurement sites (e.g. 20 sites or so) 

resulted in an inflated R2. In a compact urban area such as Girona, it was suggested that more 

measurement sites (80 sites in the Girona study) should be deployed to improve the model 

performance. Interestingly, the authors also suggested that this should be done in line with restricting 

the number of predictor variables in the regression model. The distribution of the measurement sites 

is also crucially important. It is desirable that the measurement sites reflect the variations of air 

pollution across the study areas(Hoek et al., 2008). In most previous LUR studies, the distribution of 

these sites was based on investigators’ own judgements on the study areas (e.g. population size, traffic 

flows), with sites usually located at busy traffic locations, urban residential locations and regional 

background locations. It was reported that model performance could be enhanced if site type was 

included in the model when other data (e.g. traffic data) were not available(Gulliver et al., 2011).   

2. Temporal issues related to dedicated measurement campaigns 

A second key issue concerns the temporal dimension of measurement campaigns- how long should 

they last and/or how frequently should they be repeated?  After first work on LUR methods from 

Briggs and co-investigators was published, many studies have adopted the similar strategies, usually 

including several rounds of 1-week or 2-weeks air pollution measurements during a specific study 

period (i.e. 1 calendar year). Preferably these measurement periods should fall into each season to 

account for seasonal variations of air pollution. Ideally, in each measurement period, air pollution data 

should be collected simultaneously at all measurement sites(Hoek et al., 2008). There have been 

concerns that, given the short time-frame of measurements, these measured values will not represent 

the annual mean values of the year of measurement. Results from a study in Canada by Henderson et 

al provided some insights into this(Henderson et al., 2007). They suggested that the average 
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concentration from two rounds of 14-day measurement campaigns were similar to the annual mean 

obtained from regulatory monitors. This however is rather study-specific, and Hoek et al 

recommended that up to four rounds (each of two weeks) of such campaigns would be preferable to 

generate reliable information about long-term averages(Hoek et al., 2008).  

3. Applying LUR modelled estimates to earlier established cohort studies  

In established cohort studies, it is common that baseline data collections and/or health outcome 

ascertainment occurred prior to the air pollution monitoring campaign and accompanying LUR 

modelling. This raises the issue of how to assign exposures modelled years after the baseline years. 

This is especially important for certain types of epidemiological study, for example, birth outcome 

studies. An example of “temporal transferability” was reported by MÖlter et al(Mölter et al., 2010).  

LUR models for NO2 and PM10 for the year 2005 in the Greater Manchester area were developed. The 

authors then recalibrated these models using interpolated NO2 and PM10 as dependent variables for 

each year between 1996 and 2008. To validate results from these LUR models for each year, the 

authors compared them with the measured values from monitoring stations. Their results showed the 

mean prediction errors (MPE) were consistently low for both NO2 and PM10 models each year except 

for the year 1996 when data from monitoring stations were very limited (only one or two stations). 

This study demonstrated that temporal variation in air pollution can be modelled by LUR as long as 

there are some reliable historical air pollution data to allow recalibration. However, it is not always 

feasible to obtain such historical data and there are research questions about how far back a LUR 

model could be applied. Gulliver et al reported that LUR model for NO2 developed in 2009 for Great 

Britain could be back-extrapolated to 1991, and reported mean-squared-error-based R2 from hold-out 

validation of 0.52-0.55(Gulliver et al., 2013). In the Netherlands, Eeftens et al developed two LUR 

models, one in 1999-2000 and the other in 2007(Eeftens et al., 2011). NO2 measurements were 

collected in 35 sites on both occasions. They found that the 2007 model predicted 77% of the spatial 

variability of the 1999-2000 NO2 measurements while the 1999-2000 model predicted 81% of the 
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spatial variability for the 2007 measurements. LUR, in this particular setting, and over this 8-year gap, 

predicted NO2 variations well both backward and forward in time. A similar outcome was reported in 

Oslo, Norway where two LUR NOx models developed for the year 2005 and 2008 predicted well each 

other’s spatial variation(Madsen et al., 2011). 

4. Model development  

The fourth issue is the strategy of selecting predictor variables for the regression model. Clearly quality 

as well as availability of the GIS-derived predictor variables will affect LUR model performance. These 

data are usually collected by local authorities for regulatory purposes and are sometimes collected 

prior to the period of the measurement campaign(Hoek et al., 2008). The numbers and types of 

predictor variables that have been included in previous studies have differed substantially. Some 

variables which have a plausible relationship with air pollution are nearly always included, for 

example, traffic intensity on major roads. In the absence of traffic intensity data, some LURs have used 

length of main roads or distance to main roads as a surrogate(Morgenstern et al., 2007; Briggs DJ, 

Collins S, Elliott P, Fischer P, Kingham S, Lebert E, et al, 1997). In fact these three indicators of traffic 

were the top three most significant traffic-related predictors in most previous LUR studies as seen in 

Hoek’s 2008 review(Hoek et al., 2008). Other variables, such as land cover and population density are 

usually, but not always, included in LUR models. It should be noted that, as Hoek et al pointed out, 

inclusion of certain variables (e.g. population density) in the LUR model may confound the relationship 

between air pollution exposure and health outcome. For example, population density may be related 

to area socioeconomic status, which may in turn have an effect on disease status. To minimise this 

potential confounding effect, it is therefore usual to adjust for area-level socioeconomic status in LUR-

based epidemiological studies.  

As mentioned before, the number of predictors included in the final model should also be considered 

carefully to avoid the model being over-specified(Basagaña et al., 2012; Wang et al., 2012). Another 

key problem here is how to decide the buffer size to generate a meaningful measure of each predictor 
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variable in GIS.  In practice, researchers need to think carefully about the decay patterns of traffic-

related air pollution in the study area. Hoek et al suggested that using buffer sizes which are more 

than 100-200m for traffic intensity may be meaningless in most European compact urban areas, as 

exposure beyond 100m of a major urban road may be rather homogeneous(Hoek et al., 2008).  An 

exception are the so-called “street canyons”(Vardoulakis et al., 2003), where air pollutants are 

trapped by adjacent buildings resulting in a higher level of pollution at one side of the road than the 

other. To deal with this, Eeftens et al developed a GIS-based method to derive quantitative ‘canyon 

indicators’ which could be added to the LUR to capture this pollution trapping effect in street 

canyons(Eeftens et al., 2013).  

As with any approach to exposure assessment, there are strengths and limitations in applying LUR 

modelling techniques for exposure assessment in epidemiological studies. In terms of strengths, the 

dedicated measurement campaign can be conducted at selected or preferred locations with rigorous 

algorithms in site selection and distribution. Secondly, LUR makes use of GIS techniques to extract 

location-specific information at each location and as such it captures local spatial variations well, 

especially in urban areas where GIS data are usually available in some detail. In fact, a recent study 

across most of Europe found that LUR model performs well, as does the conventional dispersion 

model, at least for NO2 (r=0.76)(de Hoogh et al., 2014). Correlation was moderate (r=0.58) for PM 

estimates from both models. In terms of the limitations, LUR models usually provide long-term annual 

estimates rather than short-term estimates, as they usually do not take into account meteorology in 

the modelling. Also, as with other models, for instance, dispersion models, LUR do not reflect time-

activity patterns or personal exposures, which may confound the associations explored in the 

epidemiological studies.   

3.2. Land Use Regression models applied in this project 
LUR modelling techniques were applied in this PhD project to estimate address-level exposure to 

ambient air pollution for the four participating cohorts. Air pollution estimates from this LUR 

modelling work were provided by Dr Kees de Hoogh from the MRC-PHE Centre for Environment and 
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Health at Imperial College London who led this environmental exposure modelling work for BioSHaRE 

and for ESCAPE. Details regarding the process of developing these LUR models have been published 

elsewhere(Beelen et al., 2013; Vienneau et al., 2013; Eeftens et al., 2012a), herein an overview 

summary of the specific LUR models developments for this project are briefly presented.   

LUR modelling methods from the ESCAPE project (ESCAPE-LUR) were applied to participants of EPIC-

Oxford, LifeLines and UK Biobank. Both the UK and the Netherlands were actively involved in the 

ESCAPE project at a national scale, and LUR models developed from the ESCAPE project were therefore 

applicable country-wide for both these countries. The study areas of the HUNT cohort were not part 

of the dedicated ESCAPE LUR modelling campaign in 2008-11, therefore the ESCAPE-LUR models were 

not able to be applied to participants in HUNT.   

ESCAPE-LUR models for EPIC-Oxford and UK Biobank    

The ESCAPE air pollution measurement campaign was conducted in the London/Oxfordshire area 

during 26 January 2010 and 18 January 2011(Eeftens et al., 2012b; Cyrys et al., 2012).  The 

London/Oxfordshire area, one of the 36 study areas across Europe for measuring NO2, NOx, PM during 

the ESCAPE measurement campaigns, is mainly along the river Thames, which stretches east to the 

Greater London area and west to Oxfordshire (Figure 3.1). Overall, 41 sites were selected in this area, 

27 of which were located in Greater London (11 street sites, 15 residential background sites and one 

reference site), 13 (5 street sites, 8 residential background sites) in the small-to-medium-sized towns 

west of London, and one regional background reference site in the countryside of Oxfordshire(Eeftens 

et al., 2012b; Cyrys et al., 2012). Measured air pollution levels and accompanying variables extracted 

from GIS (ArcGIS10) at each measurement site (see below tables) were used to develop the LUR 

models for this study area. This LUR model was then applied to the EPIC-Oxford/UK Biobank cohort 

addresses to obtain annual air pollution estimates for the year 2010.  
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Figure 3.1 London/Oxford study area in the ESCAPE-LUR air pollution measurement campaign, as 
published by the ESCAPE project(Eeftens et al., 2012b; Cyrys et al., 2012) (grey-square: street site; 
black-dot: residential background; triangle: reference site) 

NO2 and NOx were measured using the Ogawa diffusion badge. At each monitoring site, NO2 and NOx 

were measured for a consecutive two week period for each of the three seasons (cold, warm and 

intermediate)(Beelen et al., 2013).  All badges were sent to the central laboratory of the ESCAPE 

project - the Institute for Risk Assessment Sciences (IRAS) in the Netherlands- for analysis, using 

ESCAPE standard operating procedures (SOPs). To adjust for temporal variation of air pollution, all 

measured estimates were adjusted using values from reference sites (either the urban site in London 

or rural background site in Oxfordshire) which operated continuously through the year.   

Particulate matter (PM) was measured using Harvard impactors. As for NO2 and NOx, PM was collected 

during three two-week periods in different seasons of the year(Eeftens et al., 2012a). In this 

London/Oxfordshire study area, NO2, NOx and PM were all measured simultaneously. Sampling 
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volumes were calculated at the central laboratory at IRAS, following the established weighing and 

reflectance protocols developed for ESCAPE.   

It should be noted that the ESCAPE estimates for particulate matter were considered valid up to 

400km from the Greater London/Oxfordshire areas(Eeftens et al, 2012), but it is unclear how good the 

estimates are outside this area. All EPIC-Oxford/UK Biobank addresses which are more than 400km 

away from this Greater London/Oxfordshire area were therefore not assigned ESCAPE estimates for 

particulate matter. 

Table 3.1 lists the GIS variables included in the final ESCAPE-LUR models in the London/Oxfordshire 

area for NO2 and NOx. These variables were obtained from three main sources. The central road 

network consists of high resolution road data (mainly length and road classification) and were 

obtained from the Eurostreets V3.1 for the year 2008. Also centrally available was the CORINE 

(Coordination and Information on the Environmental programme) land use data, which was overseen 

by the European Commission. The local road network data (spatial resolution of 100m) were specified 

for each study area. For the London/Oxfordshire study area, traffic intensity data (vehicles/24hrs) for 

the year 2009 were obtained from the Road Traffic Statistics Branch at the Department for Transport 

in the UK.   

Model performance (R2 representing the percent of exposure variation that could be explained by the 

LUR model) was assessed by the leave-one-out cross-validation method. Briefly, the model was 

developed based on N-1 measurement sites, and this model used to predict measurements at the left-

out site and this predicted value compared to the actual measured value. The procedure was repeated 

N times to calculate the overall R2 across all measurement sites.   

The model performance in the London/Oxfordshire areas (indicated by R2) was 87% for the NO2 model 

and 88% for the NOx model, which meant 87% and 88% of the exposure variations could be explained 
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by the variables included in the LUR models respectively. The exact LUR equations are listed in the 

reference paper(Beelen et al., 2013).   

Table 3.1 GIS variables included in the final ESCAPE-LUR models for NO2 and NOx for EPIC-Oxford 
and UK Biobank 

GIS variable name Sources Description 

NO2 

TRAFMAJORLOAD_500 Local road network Total traffic load of major roads Ϯ in 

a buffer of 500 metre (sum of 

(traffic intensity*length of all 

segments)) 

ROADLENGTH-500 Central Road Network Road length of all roads in a buffer 

of 500 metre.  

HLDRES_5000 CORINE Sum of high density and low density 

residential land in a buffer of 5000 

metre 

NOx 

TRAFLOAD_50 Local road network Total traffic load of all roads in a 

buffer of 50 metre (sum of (traffic 

intensity*length of all segments)). 

ROADLENGTH_300 Central Road Network Road length of all roads in a buffer 

of 300 metre. 

HLDRES_5000 CORINE Sum of high density and low density 

residential land in a buffer of 5000 

metre 

Ϯ Definition of major roads in local road network: road with traffic intensity of >5000 motor vehicles (mvh)/24 



 

99 | P a g e  
 

 

Similarly, GIS variables included in the final ESCAPE-LUR models in the London/Oxfordshire area for 

each PM indicator are listed in Table 3.2. Model performance was particularly good for PM2.5 

absorbance, PM10 and PM2.5, with R2 of 92%, 88% and 77% respectively. The LUR model for PM coarse 

only contained local traffic variables for the London/Oxfordshire area, with a R2 of 57%. The exact LUR 

equations are listed in the reference paper(Eeftens et al., 2012a). 

Table 3.2 GIS variables included in the final ESCAPE-LUR models for Particulate Matter for EPIC-
Oxford and UK Biobank 

GIS variable name Sources Description 

PM2.5 

INTMAJORINVDIST Local road network Product of traffic intensity (per 

24 hour) on the nearest major 

roadϮ (INTMAJOR) and inverse of 

distance to the nearest major 

road (INVDIST). 

ROADLENGTH_500 Central Road Network Road length of all roads in a 

buffer of 500 metre. 

PM2.5  Absorbance 

HEAVYTRAFLOAD_500 Local road network Total heavy-duty traffic load of all 

roads in a buffer of 500 metre 

(sum of (heavy-duty traffic 

intensity*length of all 

segments)).  
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HLDRES_5000 CORINE Sum of high density and low 

density residential land in a 

buffer of 5000 metre 

DISTINVMAJORC2 Central Road Network Distance to the nearest major 

road# 

PM coarse (as PM10 minus PM2.5) 

DISTINVMAJOR1 Local road network Distance to the nearest major 

road Ϯ 

HEAVYTRAFMAJOR Local road network Heavy-duty traffic intensity on 

nearest major road Ϯ 

PM10 

HEAVYTRAFMAJOR Local road network Heavy-duty traffic intensity on 

nearest major road Ϯ 

HLDRES_300 CORINE Sum of high density and low 

density residential land in a 

buffer of 300 metre 

DISTINVMAJORC1 Central Road Network Distance to the nearest major 

road# 

Ϯ Definition of major roads in local road network: road with traffic intensity of >5000 motor vehicles (mvh)/24 
hours. # Definition of major roads in central road network: classes 0, 1, and 2.  

 

ESCAPE-LUR models for LifeLines  

Eight major cities (larger cities: Amsterdam, Rotterdam, Utrecht and Antwerp; smaller cities: 

Amersfoort, Groningen, Doetinchem and Maastricht) in the Netherlands and Belgium comprised one 

large study area (Dutch-Belgian study area) in the ESCAPE project (Figure 3.2). This study area as a 



 

101 | P a g e  
 

whole is a flat area with a high population density. In this study area, twenty regional background 

monitoring sites were selected in small villages and the countryside; ten sites (both urban background 

and street sites) were selected in each of the larger cities; in smaller cities, only six or four sites were 

selected per city(Eeftens et al., 2012b; Cyrys et al., 2012).  

The ESCAPE air pollution measurement campaign was conducted in the Dutch-Belgian area during 17 

February 2009 and 19 February 2010. The procedures for measurement and laboratory analysis of 

NO2, NOx and PM were exactly the same as those for the London/Oxfordshire area as described 

earlier.    

Measured estimates and variables extracted from GIS at each site were used to develop the LUR 

models for this study area. This LUR model was then applied to the LifeLines cohort addresses (mainly 

in the north of the Netherlands) to obtain annual air pollution estimates for the year 2009.   
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Figure 3.2 Dutch-Belgian study area in the ESCAPE-LUR air pollution measurement campaign, as 
published by the ESCAPE project(Eeftens et al., 2012b; Cyrys et al., 2012) (grey-square: street site; 
black-dot: residential background; triangle: reference site) 

 

Table 3.3 displays the GIS variables included in the final ESCAPE-LUR models for NO2 and NOx for the 

LifeLines cohort. Compared to the LUR models for the London/Oxfordshire area (Table 3.1), the final 

LUR models for NO2 and NOx in the Netherlands included more local road network and population 

density GIS-derived variables. In the Netherlands, local road network traffic intensities data (mvh/24h) 

were obtained from PBL Netherlands Environmental Assessment Agency (PlanBureau voor de 

Leefomgeving) for the year of 2008. This extensive local road network data covers all roads across the 

Netherlands. Local population density data were obtained from the same source but for the year of 

2009. As for the model for London/Oxfordshire area, the central road network data were obtained 

from Eurostreets V3.1 for the year 2008. 
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Model performance, as assessed using the leave-one-out cross validation method, was generally good 

for both models (81% for the NO2 model and 82% for the NOx model). The exact LUR equations are 

displayed in the reference paper(Beelen et al., 2013). 

Table 3.3 GIS variables included in the final ESCAPE-LUR models for NO2 and NOx for LifeLines  

GIS variable name Sources Description 

NO2 

REGIONALESTIMATE Regional background monitoring 

sites 

A regional background 

concentration estimate for each 

site location, based on inverse 

distance weighted interpolation of 

regional background sites. 

POP_5000 Local population density data  Number of inhabitants within a 

buffer of 5000 metre.  

TRAFLOAD_50 Local road network Total traffic load of all roads in a 

buffer of 50 metre. 

ROADLENGTH_1000 Central road network Road length of all roads in a buffer 

of 1000 metre.  

HEAVYTRAFLOAD_25 Local road network Total heavy-duty traffic load of all 

roads in a buffer of 25 metre.  

DISTINVNEARC1 Central road network Distance to the nearest road 

HEAVYTRAFLOAD_25_500 Local road network Total heavy-duty traffic load of all 

roads within a buffer of 25-500 

metre. 
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NOx 

REGIONALESTIMATE  Regional background monitoring 

sites 

A regional background 

concentration estimate for each 

site location, based on inverse 

distance weighted interpolation of 

regional background sites. 

TRAFLOAD_50 Local road network Total traffic load of all roads in a 

buffer of 50 metre. 

POP_1000 Local population density data Number of inhabitants within a 

buffer of 1000 metre. 

HEAVYTRAFLOAD_500 Local road network Total heavy-duty traffic load of all 

roads in a buffer of 500 metre. 

DISTINVMAJOR1 Local road network Distance to the nearest major road 

Ϯ 

MAJORROADLENGTH_25 Central road network Road length of major roads in a 

buffer of 25 metre. 

Ϯ: Definition of major roads in local road network: roads with traffic intensity of >5000 motor vehicles (mvh)/24 
hours. 

Table 3.4 lists the GIS variables included in the final ESCAPE-LUR model for each PM indicator for the 

LifeLines cohort. Model performance was particularly good for PM2.5 absorbance with a R2 of 89%, 

followed by PM10 and PM2.5, with R2 of 60% and 61% respectively. As in the London/Oxfordshire area, 

the LUR model for PM coarse contained only local traffic variables and additionally the percent surface 

area of the local port in the Dutch-Belgian study area, with a relatively poor R2 at 38%. The exact LUR 

equations are listed in the reference paper(Eeftens et al., 2012a).   
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Table 3.4 GIS variables included in the final ESCAPE-LUR models for Particulate Matter for LifeLines 

GIS variable name Sources Description 

PM2.5 

REGIONALESTIMATE Regional background monitoring 

sites 

A regional background 

concentration estimate for each 

site location, based on inverse 

distance weighted interpolation of 

regional background sites. 

MAJORROADLENGTH_50 Central Road Network Road length of major roads in a 

buffer of 50 metre. # 

TRAFMAJORLOAD_1000 Local road network Total traffic load of major roads in a 

buffer of 1000 metre. Ϯ 

PM2.5 Absorbance 

TRAFLOAD_500 Local road network Total traffic load of all roads in a 

buffer of 500 metre. 

HLDRES_5000 CORINE Sum of high density and low density 

residential land in a buffer of 5000 

metre 

MAJORROADLENGTH_50 Central Road Network Road length of major roads in a 

buffer of 50 metre. # 

REGIONALESTIMATE Regional background monitoring 

sites 

A regional background 

concentration estimate for each 

site location, based on inverse 
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distance weighted interpolation of 

regional background sites. 

HEAVYTRAFLOAD_50 Local road network Total heavy-duty traffic load of all 

roads in a buffer of 50 metre. 

PM coarse (as PM10 minus PM2.5) 

TRAFLOAD_1000 Local road network Total traffic load of all roads in a 

buffer of 1000 metre. 

PORT_5000 CORINE Surface area (m2) of port within 

5000 metre 

TRAFNEAR Local road network Traffic intensity (per 24 h) on the 

nearest road 

PM10 

TRAFMAJORLOAD_500 Local road network Total traffic load of major roads in a 

buffer of 500 metre. Ϯ 

POP_5000 Local population density data Number of inhabitants within a 

buffer of 5000 metre. 

MAJORROADLENGTH_50 Central Road Network Road length of major roads in a 

buffer of 50 metre. # 

Ϯ: Definition of major roads in local road network: road with traffic intensity of >5000 motor vehicles (mvh)/24 
hours. # Definition of major roads in central road network: classes 0, 1, and 2.  

Pan-European LUR models for all four cohorts  

For the HUNT cohort as well as for EPIC-Oxford, LifeLines and UK Biobank, a pan-European LUR model, 

using additional satellite-derived ground-level air pollution data, was developed by Dr. de Hoogh, and 

the resultant NO2 and PM10 estimates for 2005 to 2007 were also used in this PhD project.  
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This pan-European LUR model was enhanced by including satellite-based ground-level concentration 

of NO2 and PM2.5 (available on a 10km grid) as independent variables(Vienneau et al., 2013). The 

authors used satellite-derived PM2.5 data in the PM10 LUR model partly because the availability of data 

but also because that it was reported that PM2.5 comprises up to 80% of PM10 in Europe(Eeftens et al., 

2012b). This LUR model was developed mainly for western European countries on a resolution of 

100x100m. In brief, annual mean NO2 and PM10 data during 2005-2007 were obtained from over 1500 

monitoring sites across Europe, which were centrally regulated and reported by EuroAirnet. Only 

those monitoring sites which captured over 75% of the total hours for NO2 and over 75% of the days 

for PM10 were included. These data served as dependent variables in the LUR modelling. An overview 

of the independent GIS-derived variables and satellite-derived air pollution data included in the final 

LUR models is presented below. Both NO2 and PM10 estimates were derived from these LUR models 

for year 2007 which were then applied to cohort participants in all four participating cohorts. 

Participant addresses were intersected with the modelled 100mx100m resolution exposure surface in 

GIS to obtain an exposure estimate.  

Table 3.5 lists variables included in the final LUR model for NO2 for the year 2007. GIS-derived variables 

included in the final LUR models for NO2 in 2005, 2006 and 2007 across countries were highly 

consistent. In Great Britain, the model performance (assessed using the independent subset (20% of 

monitoring sites) reserved for this, indicated by R2) for NO2 for the year 2005 across all monitoring 

sites was 64%. In the Netherlands, this  figure was 53%.   

Table 3.5 GIS variables included in the final satellite-enhanced LUR model for NO2 for year 2007  

GIS variable name Sources Description 

NO2  (year 2007)   

Minor roads 1500m Central Road Network: EuroStreets  

V3.1 

Lengths  (metre) of all minor 

roads within 1500 metre 
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Major roads 100m Central Road Network: EuroStreets 

V3.1 

Lengths (metre) of all major roads 

within 100 metre 

Semi-natural land 600m CORINE Semi-natural land (% of area) 

within a 600 metre buffer 

Minor roads 1500-10000m  Central Road Network: EuroStreets  

V3.1 

Lengths  (metre) of all minor 

roads within 1500-10,000 metre 

Total built up land 300m CORINE Total built up, % of area 

(residential, industrial, port, 

airports, mines, dumps and 

construction sites) 

Satellite-derived surface NO2 2007 OMI (Ozone Monitoring 

Instrument)derived from the Aura 

Satellite 

Surface NO2 concentration: OMI 

derived NO2 (ppb) ~10km grid 

resolution 

  

Table 3.6 list variables included in the final LUR model for PM10 for the year 2007. In general, final LUR 

model for PM10 across all regions for the year 2007 yielded the best performance (R2: 50%), compared 

with those in 2005 (R2: 35%) and 2006 (R2: 37%). In Great Britain, the model performance (R2) for PM10 

of the year 2007 across all monitoring sites was 57%. In the Netherlands, this figure was 32%.   

Table 3.6 GIS variables included in the final satellite-enhanced LUR model for PM10 for year 2007  

GIS variable name Sources Description 

PM10  (year 2007)   

Minor roads 200-2500m Central Road Network: EuroStreets  

V3.1 

Lengths  (metre) of all minor 

roads from 200-2500 metre 
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Minor roads 200m Central Road Network: EuroStreets 

V3.1 

Lengths (metre) of all minor roads 

within 200 metre 

Major roads* Central Road Network: EuroStreets 

V3.1 

Lengths (metre) of all major roads 

Altitude SRTM Digital Elevation Database 

V4.1 

Altitude of the geocoded address 

Tree canopy 100m  Coarser Global land cover  % of area of tree canopy within 

100 metre 

Y coordinate GIS database-ArcGIS10 Y coordinates for 100m cell 

centroids  

Satellite-derived surface PM2.5  

2001-2006 

Terra Satellite Surface PM2.5 concentration: 

Terra- derived and humidity-

corrected PM2.5 aggregated from 

2001-2006 ~10km grid resolution 

*Buffer not stated in the reference paper  

It should be noted that very few monitoring sites were available in Norway for the years 2005-2007 

for model building/validation. In order to secure a harmonised air pollution dataset for all cohorts 

including HUNT, it was decided also to directly apply this pan-European LUR models for NO2 and PM10 

to the addresses of HUNT participants at a 100mx100m resolution. This decision was justified because 

of the reasonable performance of the models in other Northern European countries including Sweden, 

Finland, Denmark and Latvia (personal communications from Dr Kees de Hoogh). As a result, there is 

no direct measure of performance of this pan-European LUR model in Norway as no Norwegian air 

pollution measurements were used in the model building. It is therefore likely that the models are less 

accurate in Norway.  
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Air pollution estimates used in this project  

As described above, two sets of air pollution data from each LUR model (ESCAPE-LUR and pan-

European LUR) were developed for EPIC-Oxford, LifeLines and UK Biobank. While for the HUNT cohort, 

only estimates obtained from pan-European LUR model were available.  

Each LUR model has its strengths and limitations. The ESCAPE-LUR was developed in many study areas 

across Europe,  following standardised procedures in each study area in terms of site selection (e.g. 

street sites over-represented), model developments (e.g. forward stepwise) and validations (e.g. 

leave-one out cross-validation). Predictive variables included in the ESCAPE-LUR models came from 

both European-wide centrally available GIS-derived data as well as local GIS-derived data in each study 

area, as can be seen in Table 3.1 to 3.4. However, quantity and quality of local GIS-derived data differ 

across countries, e.g. data were not directly comparable in the UK and the Netherlands, and this will 

affect the model performance. These differences however were allowed in the data harmonisation 

process for this PhD project. Nevertheless, compared to earlier cross-country LUR studies such as 

SAVIAH, the ESCAPE-LUR had fine-scale GIS-derived data to model the spatial variations of air pollution 

across more study areas.   

Given the fact that LUR models are in general spatially confined, Vienneau et al provided another 

approach in the developments of LUR over a very large area (e.g. at the continental level), using the 

centrally available GIS variables across the study areas and satellite-derived ground-level air pollution 

data(Vienneau et al., 2013). One advance of this pan-European LUR model is that it built on a very 

dense monitoring network across Western Europe to develop the LUR model at a fine spatial scale of 

a 100m grid. However, this was not necessarily reflected in terms of the model performance as 

measured by R2 (30%-60% for both NO2 and PM10). Nevertheless, this pan-European LUR model in this 

specific context enables the assignments of harmonised air pollution exposures to participants of all 

four cohorts included in this PhD project. 
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Performance was generally better for ESCAPE-LUR than the pan-European LUR models, partly because 

more local GIS-derived data (e.g. traffic load) were included in the ESCAPE-LUR model to capture the 

local traffic effect. Whilst for the pan-European standardised LUR models, some lower resolution 

inputs were used, and no region specific modification of the model permitted by this approach. 

Table 3.7 lists the standardised air pollution variables from both LUR models. These variables were 

then used in the health impact assessments (Chapter 5 & 6) in this PhD project. Averaged annual air 

pollution estimates from the ESCAPE-LUR model were for the year 2010 for EPIC-Oxford and UK 

Biobank, and for the year 2009 for LifeLines cohort.  

Table 3.7 Standardised air pollution variables used in this project  

Harmonised name Description 

NO2_ESCAPE Nitrogen dioxide; ESCAPE-LUR annual average estimate (μg/m3)  

NOx_ESCAPE Nitrogen oxides; ESCAPE-LUR annual average estimate (μg/m3)  

PM10_ESCAPE PM10 (particulate matter with diameter ≤10μm); ESCAPE-LUR annual average 

estimate (μg/m3) 

PM25_ESCAPE PM2.5 (particulate matter with diameter ≤2.5μm); ESCAPE-LUR annual average 

estimate (μg/m3)  

PM25abs_ESCAPE PM2.5 absorbance (measurement of the blackness of PM2.5 filters; a proxy for 

elemental carbon, which is the dominant light absorbing substance); ESCAPE-LUR 

annual average estimate (m-1)  

PMcoarse_ESCAPE PM coarse (particulate matter 2.5-10μm); ESCAPE-LUR annual average estimate 

(μg/m3) 

NO2_05  Nitrogen dioxide; Satellite-enhanced LUR annual average estimate of the year 2005 

(μg/m3)  
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NO2_06  Nitrogen dioxide; Satellite-enhanced LUR annual average estimate of the year 2006 

(μg/m3)  

NO2_07  Nitrogen dioxide; Satellite-enhanced LUR annual average estimate of the year 2007 

(μg/m3)  

PM10_07  PM10 (particulate matter with diameter ≤10m); Satellite-enhanced LUR annual 

average estimate of the year 2007 (μg/m3)  

 

3.3. Road traffic noise model applied in this project  
The other exposure for this PhD project is the address-level road traffic noise. Various road traffic 

noise models have been proposed or updated in recent years and now are being employed in different 

research settings around the world. As a result of technological advancements, new models based on 

numerical methods are preferable to earlier non-numeric models, as highlighted in an article which 

critically reviewed various “classical” models from the late 1990s until more recent 

developments(Garg & Maji, 2014). The review commented that noise source and noise propagation 

ideally should be treated as two independent parts in the model which also allows subsequent 

separate updates. More importantly, the authors suggested that a harmonised approach for the noise 

propagation modelling is critical in future developments.  

The Common Noise Assessment Methods in Europe (CNOSSOS-EU)(Kephalopoulos et al., 2014), 

initiated by European Commission, is working towards such a harmonised approach to noise mapping 

across the EU member states. CNOSSOS-EU aims to provide EU stakeholders in noise policy making 

with a set of consistent, comparable and reliable noise estimates within each and across the member 

states.   

This PhD project is among the first to use an adaptation of the CNOSSOS-EU model to estimate 

standardised noise estimates across several countries, and subsequently to apply these noise 

estimates in health impact assessments (Chapter 5 & 6). Dr John Gulliver, of the MRC-PHE Centre for 
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Environment and Health at Imperial College, led the road traffic noise modelling work for BioSHaRE. I 

briefly summarise the general aspects of this modelling work below.  

The CNOSSOS-EU model for road traffic noise assessment is an extremely detailed method (Figure 

3.3), which generally assumes that high-resolution data inputs (e.g. traffic flow, land cover) are 

available for modelling. While such high-resolution data may be available for city-wide noise 

modelling, at a national or a wider geographical scale, such detailed data are not always available. In 

order to predict and harmonise noise estimates over a broader geographical area (e.g. across several 

countries as for this PhD project), Gulliver and colleagues made a simplification of this CNOSSOS-EU 

model, using some lower resolution data inputs(Morley et al., 2015). They tested the feasibility of this 

simplified version of the CNOSSOS-EU model, by comparing its performance with that of the model 

which had high-resolution data inputs, in the southwest part of the city of Leicester, UK. They 

concluded that, in epidemiological contexts, this simplified CNOSSOS-EU model is able to provide good 

performance for exposure ranking (Spearman rank: 0.75). However, the authors did acknowledge 

that, its ability to predict noise estimate may be relatively poor, indicated by a large RMSE (root mean 

square error) of 4.5 dB(A).     

 

Figure 3.3 Working flows of the CNOSSOS-EU noise model, as published by Morley et al(Morley et al., 
2015) 
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Based on this simplified version of the CNOSSOS-EU model, Gulliver and colleagues assigned road 

traffic noise estimates at address level to participants of all the four cohorts participating in this 

project.  In brief, noise sound pressure level was estimated from all roads within 500 meters of home 

address at recruitment. Noise propagation due to refraction and diffraction, absorption from 

buildings, distance and angle of view were considered in the modelling. Road network geography, 

hourly vehicle flows, building heights, land cover and meteorological data were obtained for the 

respective study areas in the UK, the Netherlands and Norway (Table 3.8). To account for participants 

living on minor roads that were not captured in the national level traffic datasets, a fixed low-level 

baseline flow was assigned. Traffic data were for the year 2009 and land cover data were for the year 

2006.  

Five A-weighted noise indicators were estimated for each cohort participant:  

 Lday (day-time noise sound level from 07:00-19:00),  

 Lnight (night-time noise sound level from 23:00-7:00), 

  Leve (evening noise sound level from 19:00-23:00),  

 Laeq16h (noise sound level from 07:00-23:00)  

  Lden (noise sound level over a 24h period, with a penalty of 5dB added for the evening hours 

and a penalty of 10dB added for night-time hours).  

Since any two of these noise indicators are highly correlated (r=0.99), I only used two noise indicators, 

Lday and Lnight, in the main analyses, with an aim to investigate whether there exists a differential 

effect of each on the studied outcomes in this project.     

 Table 3.8 Input variables for road traffic noise model in each participating cohort  

EPIC-Oxford and UK Biobank, UK 

Variable Source 

Road network geography ESCAPE project 

Hourly vehicle flows ESCAPE project modelled light and heavy vehicle flows in 2009 

Land cover Corine  land cover 2006 (v16) at 100m resolution 

Building heights Landmap (major urban areas available only) 
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Air temperature UK Met office (annual average 2001-2010) 

Prevailing wind direction UK Met office (annual average 2001-2010) 

LifeLines, the Netherlands 

Variable Source 

Road network geography ESCAPE project 

Hourly vehicle flows ESCAPE project modelled light and heavy vehicle flows in 2009 

Land cover CORINE  land cover 2006 (v16) at 100m resolution 

Building heights Based on CORINE urban areas with constant height of 9.5m* 

Air temperature Wikipedia (annual average 2001-2010) 

Prevailing wind direction Wikipedia (annual average 2001-2010) 

HUNT, Norway 

Variable Source 

Road network geography Speed limits and 1-week average traffic counts were provided 
by road authority and polygons are provided by local 
municipality for spatial accuracy.  

Hourly vehicle flows Daily traffic flow data from road authority divided by 24 

Land cover CORINE  land cover 2006 (v16) at 100m resolution 

Building heights Based on CORINE urban areas with constant height of 9.5m* 

Air temperature Wikipedia (annual average 2001-2010) 

Prevailing wind direction Wikipedia (annual average 2001-2010) 
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Chapter 4 Statistical methods 
Statistical analyses in this project were supported by the novel tools developed by BioSHaRE. These 

new novel tools enable virtual individual-level data pooling from various sources located in different 

centres, permitting the formation of a large and integrated database for research. In this PhD project, 

I applied one of these novel tools to the epidemiological analyses, demonstrating its effective use in 

data sharing and data analyses across cohorts, with data from these cohorts hosted in different 

countries. In this Chapter, I first introduce this new novel tool, DataSHIELD, and then detailed 

statistical methods are described with respects to each research aim.       

4.1. DataSHIELD 
As discussed in Chapter 2, there are generally two ways in combining research data from several 

studies. One is the study-level meta-analysis, in which summary statistics were provided by each study 

to contribute to the meta-analyses. This method is convenient, effective and usually used as a 

preferable option in international research consortia (e.g. the ESCAPE project), as data owners retain 

governance control over their data, allowing them to meet their binding ethical and/or legal 

guidelines. However, this method of combining data may not be as statistically flexible as combining 

individual-level data across studies. For example, in the study-level meta-analyses, all analyses 

conducted by participating studies must strictly follow the pre-defined analysis protocol before the 

effective pooling of the study-specific estimates. Any additional/post hoc analyses (subgroup or 

interactions) need to be requested at each participating study, which could be time-consuming and 

requires coordination of efforts across studies. Combining individual-level data also has some 

challenges for researchers. The major concern is the ethico-legal issues associated with physical 

sharing of data across studies nationally or internationally(Wolfson et al., 2010). The actual research 

work cannot even be started without sorting out those legally binding guidelines first, for instance, to 

get participants re-consent about this physical sharing of data with external partners.   

To overcome this ethico-legal issues of combining individual-level data, DataSHIELD (Data Aggregation 

Through Anonymous Summary-statistics from Harmonised Individual levEL Databases) was developed 
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as a novel and practical tool to pool harmonised data from various cohorts for individual-level 

analyses(Gaye et al., 2014). One prerequisite for using DataSHIELD, is that data must have been 

harmonised across cohorts. I have described in Chapter 2 how the data harmonisation work across 

the four participating cohorts was conducted in this PhD project.    

DataSHIELD has some important strengths(Gaye et al., 2014). First, this tool allows virtual, but not 

physical, pooling of harmonised data across studies, meaning that data are never physically shared 

between parties but rather remain in the local research sites. Data owners still retain control over 

their data and ethico-legal guidelines are therefore able to be met. This strength is further clarified by 

two papers. Wallace et al concluded that application of DataSHIELD meets the standards of sharing 

biomedical data in the UK(Wallace et al., 2014). Another paper has described how DataSHIELD could 

technically solve those general ethics-related issues with respect to data sharing, for example, the 

protection of a participant’s privacy, confidentiality and right of the data (e.g. withdrawn from 

participation) when data were being shared and after data had been shared(Wolfson et al., 2010). 

Second, pooling of these harmonised data across studies forms a large, integrated and high-quality 

individual-level database for analyses. This will not only be statistically flexible but also a cost-effective 

approach in maximising the use of existing data resources for research discovery and advancements. 

Third, DataSHIELD aims to provide most of the analysis package available within other conventional 

statistical tools (R, Stata etc.), and results generated by DataSHIELD should therefore comparable to 

those using the conventional statistical tools.      

Workflows of the virtual data pooling for this PhD project are shown in Figure 4.1. First of all, each 

obtained dataset was deposited to a local secure server called “OPAL” (http://www.p3g.org/biobank-

toolkit/opal accessed May 2016), an open-source software which could be installed inside the 

‘firewall’ within each local research site in the respective countries. Second, as described in chapter 2, 

a dataschema with a harmonised definition for each variable was administered, by running 

programming scripts, to each of the original cohorts to derive a harmonised dataset (as shown in the 

http://www.p3g.org/biobank-toolkit/opal
http://www.p3g.org/biobank-toolkit/opal
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green boxes in the figure). Each harmonised dataset could be checked and updated via the BioSHaRE 

web portal. Third, researchers could then log on to the DataSHIELD platform (equipped with Rstudio) 

from a working computer to pool harmonised datasets on each local OPAL server to form a virtual 

database for analyses. Log-on credentials for DataSHIELD are generated specifically for the named 

researchers only, neither DataSHIELD developers nor other unnamed researchers will have access to 

this designated analysis account. DataSHIELD is based on the conventional R statistical packages, with 

DataSHIELD-specific R statistical codes (e.g. codes that prevent the inadvertent disclosure of 

participant specific details, prevent any attempt to re-construct the dataset, etc.) written to run the 

required statistical analyses. These slightly revised R codes remain similar to those in the normal R 

statistical packages, making it easy for researchers easily to adapt to the DataSHIELD statistical 

environment.    

Figure 4.1 Workflows of virtual data pooling using various BioSHaRE tools for this PhD project 

 



 

119 | P a g e  
 

This PhD work was made feasible by the application of DataSHIELD for data pooling across cohorts to 

permit individual-level pooled data analyses. In fact, this project is one of the first to test the 

DataSHIELD application in a real-life epidemiological project. Earlier work conducted by DataSHIELD 

developers and BioSHaRE colleagues demonstrated its application in a project studying healthy 

obesity among European populations in 10 cohorts from seven countries(van Vliet-Ostaptchouk et al., 

2014). This PhD project, with fewer cohorts but a far larger population, required the development of 

additional statistical functionality in DataSHIELD to permit the incident analyses for cardiovascular 

disease. This project therefore provided an informative exemplar for future studies in which 

DataSHIELD will be used as a statistical tool.   

4.2. Statistical analyses: blood biochemistry markers  
At the time of conducting this PhD project, blood biochemistry data were only available in HUNT3 and 

LifeLines (Table 2.1). Serum concentrations of hsCRP (mg/L), total cholesterol (mmol/L), triglycerides 

(mmol/L), and high-density lipoprotein (HDL) cholesterol (mmol/L) were measured in both cohorts. 

Four outcomes were subsequently harmonised as, “LAB_TSC” (total serum cholesterol), “LAB_TRIG” 

(triglycerides), “LAB_HDL” (High-density lipoprotein cholesterol) and “LAB_HsCRP” (high-sensitivity C-

reactive protein). Harmonised data from both cohorts were then virtually pooled via DataSHIELD. Each 

outcome was analysed on a continuous scale. Based on the distributions, the natural logarithmic value 

of hsCRP was used to achieve an approximate normal distribution.   

In addition, for LifeLines, fasting blood glucose (mmol/L) and glycated haemoglobin (HbA1c) 

concentrations (mmol/mol) were also measured.  Analyses on these two outcomes were conducted 

in LifeLines only.  

Spearman correlations between metrics of ambient air pollution and road traffic noise were calculated 

for each cohort. Cross-sectional associations between the pan-European LUR modelled PM10, NO2 

(both for year 2007) or noise (for year 2009) and each biochemical parameter were analysed using 

multivariate linear regression. Both air pollution and noise metrics were analysed on a continuous 
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scale, assuming a linear effect. Additionally, noise was categorised for Lday (<55, 55-60, ≥60 dB(A)) 

and Lnight (<45, 45-50, ≥50 dB(A)).  

The covariates were chosen a priori based on current knowledge, and harmonised as described in 

Chapter 2. The sequence of models was as follows:  

Model 1: adjusted for cohort (in pooled analyses on hsCRP and blood lipids) or unadjusted (in analyses 

on blood glucose and HbA1c) 

Model 2: adjusted for cohort, age and sex  

Model 3: adjusted for cohort, age and sex, and further adjusted for season of blood draw, smoking 

status and pack-years, education level, paid employment and weekly alcohol consumption (main 

model)  

Based on Model 3, metrics of traffic noise (or air pollution) were additionally adjusted for in the air 

pollution (or noise) models.  

Sensitivity analyses were conducted based on model 3: a) further adjusting for BMI; b) further 

adjusting for ever-had hypertension or diabetes; c) restricting analyses to those living at the same 

address ≥10 years; d) excluding those with an hsCRP over 10 mg/ L from the analysis as levels above 

this may indicate a current infection as with a previous study(Lanki et al., 2015).    

Based on model 3, potential effect modifications by: i) sex, ii) age <60 or ≥60 years, iii) BMI <25, 25-

30, ≥30 kg/m2, iv) diabetes, and v) hypertension were examined by inclusions of respective interaction 

terms in the models.        

I also conducted study-specific analyses for hsCRP and blood lipids and then pooled estimates via 

meta-analysis in R v3.2.2. Further, I examined associations between air pollutants from the ESCAPE 

model and each biochemical parameter in the LifeLines cohort only, following the analysis steps as 

above.  
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4.3. Statistical analyses: incident CVD outcomes   
Three specific incident CVD outcomes, total incident cardiovascular disease (‘FAILURE_CVD’, ICD-10: 

I00-I99), incident ischaemic heart disease (‘FAILRUE_MI’, ICD10:I20-I25) and incident cerebrovascular 

diseases (‘FAILURE_STROKE’, ICD10: I60-I69), were analysed in relation to ambient air pollution and/or 

road traffic noise exposures. Ascertainment and harmonisation of these outcomes across the three 

participating cohorts (EPIC-Oxford, HUNT2 and UK Biobank) were described in Chapter 2 and 

summarised in Table 2.6.    

Data were analysed in parallel using three different statistical procedures. First, I physically pooled the 

harmonised data from all three cohorts and undertook a pooled individual-level analyses via Stata 

using Cox proportional hazards regression models.  

Second, I virtually pooled and analysed the harmonised data via DataSHIELD using a newly developed 

function -piecewise exponential regression- through a Poisson regression model. This new function 

permits a non-disclosive co-analysis of sensitive individual-level data. The survival time-span of an 

incident event is divided through DataSHIELD into pre-specified sub-intervals where the baseline 

hazard in each sub-interval is assumed to be constant but can vary across different sub-intervals. The 

choice of widths of sub-intervals is therefore crucial to allow baseline hazards to be approximately 

constant within each of them. Nevertheless, even a division of survival time-span to an arbitrary set 

of sub-intervals gives qualitatively similar results to Cox’s regression analysis (personal 

communications from DataSHIELD developers-Demetris Avraam and Paul Burton). 

Third, I analysed each cohort separately using Cox models and then pooled the cohort-specific 

estimates via meta-analysis methods. Effect estimates obtained from these three statistical 

approaches were then compared in this study.  

In both the pooled individual-level analyses (conducted in both Stata and DataSHIELD) and the cohort-

specific analyses (conducted in Stata), adjusted regression models were defined a priori based on 
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current knowledge from air pollution/noise-related CVD studies. Three models with increasing level 

of adjustments were specified:  

Model1: adjusted for cohort;   

Model2: adjusted for cohort, age, sex and calendar year of recruitment;   

Model3: adjusted for cohort, age, sex and calendar year of recruitment, education level, employment 

status, smoking status and weekly alcohol consumption (main model).  

As for the biochemistry analyses described above, in the main model, metrics of traffic noise (or air 

pollution) were additionally adjusted for in the air pollution (or noise) models.    

For all the analyses, the pan-European LUR modelled PM10, NO2 (both for year 2007) and Lday were 

used as the main exposure estimates in the regression models. Additionally, noise was categorised for 

Lday (<50, 50-55, ≥55 dB(A)) and Lnight (<40, 40-45, ≥45 dB(A)). 

BMI and ever-had diabetes may be on the causal pathway between air pollution/noise and CVD 

outcomes. BMI and ever-had diabetes were therefore further included in the main model in sensitivity 

analyses. To compare my findings with previous studies, in particularly those from the ESCAPE 

studies(Cesaroni et al., 2014; Stafoggia et al., 2014), I also undertook additional sensitivity analyses by 

restricting the studied outcomes to incident acute coronary events (ICD10: I20.0, I21, I23, I24),  and to 

different subtypes of cerebrovascular diseases, including ischaemic stroke (ICD10: I63), haemorrhagic 

stroke (ICD10: I60, I61, I62) and unspecified stroke (ICD10: I64).  

Effect modifications were investigated by adding an interaction term with exposure to the main 

model. Potential effect modifiers identified a priori were sex, age (<60 and ≥60 years), BMI (<25, 25-

30, ≥30 kg/m2), smoking (never-, ex- and current-), education (low, medium, high) and ever-had 

diabetes (yes, no).  
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Since air pollutants from the ESCAPE models were also available for both UK cohorts (EPIC-Oxford and 

UK Biobank), I repeated all the above analyses using the ESCAPE metrics, by physically pooling these 

two cohorts in Stata.  

All the analyses were done using DataSHIELD v4.1.2 and Stata v12.1, Texas, USA.  
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   Chapter 5 Findings and discussion:  blood biochemistry markers  

5.1. The findings   

5.1.1. Descriptive statistics  

Altogether, pooling data from both HUNT3 and LifeLines, there was a total of 144,082 participants 

who had questionnaire data as shown in Table 5.1. The mean age was 47.6 years; 56% of the total 

population were women; the mean BMI was 26.5 kg/m2, and nearly 60% of the participants were 

classified as overweight or obese (BMI≥25 kg/m2); 24% of the pooled population were current 

smokers; Approximately 90% of the participants had received at least some secondary education and 

75% of the pooled population were currently in paid employment. Prevalence of pre-existing health 

conditions was generally higher in HUNT3 than in LifeLines except for ever-had hypertension.   

Table 5.1 Baseline characteristics: pooling data from both HUNT3 and LifeLines   

 Pooled data HUNT3 LifeLines 

Total N 144,082 50,805 93,277 

Age, years, mean(SD) 47.6 (13.7) 52.7 (16.7) 44.9(12.3) 

Sex, women, [n (%)] 82,574 (56%) 27,756 (55%) 54,818 (59%) 

Waist size, cm, mean(SD) 91.5 (12.4) 93.6 (12.3) 90.3 (12.4) 

BMI, kg/m2, mean(SD) 26.5 (4.4) 27.2 (4.4) 26.1 (4.3) 

BMI categories, [n (%)]    

<25 kg/m2 58,629 (41%) 16,481 (33%) 42,148 (45%) 

25-30 kg/m2 58,982 (41%) 22,356 (44%) 36,626 (39%) 

≥30 kg/m2 26,049 (18%) 11,575 (23%) 14,474 (16%) 

Smoking status, [n (%)]    

Never-smoker 60,370 (44%) 21,053 (43%) 39,317 (45%) 

Ex-smoker 43,730 (32%) 16,114 (32%) 27,616 (32%) 

Current-smoker 32,144 (24%) 12,208 (25%) 19,936 (23%) 

Current working status, [n 
(%)] 

   

Not in paid employment 35,559 (25%) 18,096 (36%) 17,463 (19%) 

In paid employment 106,914 (75%) 32,440 (64%) 74,474 (81%) 

Education level, [n (%)]    

primary education or less 13,474(11%) 11,221 (31%) 2,252 (2%) 

Secondary education 78,565 (62%) 16,826 (47%) 61,739 (68%) 

Post-secondary school or 
above 

35,287(28%) 8,154 (22%) 27,133 (30%) 

Alcohol consumption, gram 
per week, mean(SD) 

31.6 (88.8) 28.0 (40.0) 56.9 (71.5) 

Ever-had hypertension, [n 
(%)] 

31,070 (24%) 11,099 (22%) 19,971 (25%) 

Ever-had diabetes,  
[n (%)] 

4,383 (3.0%) 2,264 (4.5%) 2,119 (2.3%) 

Ever-had stroke,  
[n (%)] 

2,035 (1.4%) 1,391 (2.7%) 644 (0.7%) 

Ever-had myocardial 
infarction, [n (%)]  

2,593 (1.8%) 1,702 (3.4%) 891 (1.0%) 
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For both total cholesterol and triglycerides, participants in HUNT3 had a higher median than 

participants in LifeLines (Table 5.2). The median hsCRP, total cholesterol, triglycerides, HDL cholesterol 

was 1.2 mg/l, 5.1 mmol/l, 1.1 mmol/l and 1.4 mmol/l respectively in the pooled dataset. In LifeLines, 

the median (IQR) for fasting blood glucose was 4.9 (0.6) mmol/L while for HbA1c it was 37.0 (4.0) 

mmol/mol.    

Table 5.2 Descriptive statistics (Median, IQR) for each blood biochemical parameter by cohort and in 
the pooled dataset   

 Pooled HUNT3  
(n=50,805) 

LifeLines  
(N=93,277) 

 N* Median 
(IQR) 

N Median 
(IQR) 

N Median 
(IQR) 

hsCRP, mg/L 104,580 1.2 (2.1) 50,059 1.2 (2.1) 54,521 1.2 (2.2) 

Total cholesterol, mmol/L 142,251 5.1 (1.5) 49,346 5.4 (1.5) 92,905 5.0 (1.4) 

Triglycerides, mmol/L 142,965 1.1 (0.8) 50,060 1.4 (1.0) 92,905 0.9 (0.7) 

HDL cholesterol, mmol/L 142,249 1.4 (0.4) 49,345 1.3 (0.4) 92,904 1.4 (0.5) 

Fasting blood glucose, mmol/L - - - - 90,260 4.9 (0.6) 

HbA1c, mmol/mol - - - - 69,970   37.0(4.0) 

*N: number of participants who had the measure of respective biochemical parameter 

 

The pooled median pan-European PM10 and NO2 exposure was 18.8 and 17.2 µg/m3, with an inter-

quartile range (IQR) of 2.0 and 7.4 µg/m3 respectively (Table 5.3). Pooled median daytime noise (Lday) 

and night-time noise (Lnight) was 51.6 and 43.4 dB(A), with an IQR of 5.1 and 4.4 dB(A) respectively.  

Spearman correlations between PM10 and Lday were r= 0.04 (HUNT3) and 0.38 (Lifelines), and 

between NO2 and Lday were r= -0.05 (HUNT3) and 0.43 (Lifelines) (Table 5.4). The correlation between 

the pan-European LUR modelled NO2 and PM10 was r=0.8 and between Lday and Lnight r=0.99 in both 

cohorts. For all analyses using continuous noise scales, Lnight effects were similar to Lday effects, and 

are therefore not reported here. 
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Table 5.3 Distributions of exposures (pan-Europe LUR modelled PM10, NO2 and road traffic noise) by cohort and in the pooled dataset 

 N 5% 10% 25% 50% 75% 90% 95% Mean(SD) IQR 

PM10,µg/m3           

HUNT3 50,567 9.7 10.0 10.4 11.2 12.0 12.6 12.9 11.3 (1.1) 1.6 

LifeLines 61,927 21.0 21.4 22.3 23.6 24.7 25.7 26.5 23.6 (1.7) 2.4 

Pooled 112,494 16.6 17.0 17.7 18.8 19.7 20.6 21.2 18.8 (1.5) 2.0 

NO2, µg/m3           

HUNT3 50,628 8.2 8.8 10.1 11.9 15.4 18.6 19.5 13.0 (3.9) 5.3 

LifeLines 62,212 13.6 14.1 16.6 20.6 25.4 28.9 31.1 21.2 (5.7) 8.8 

Pooled 112,840 11.5 12.1 14.1 17.2 21.5 24.9 26.6 18.0 (5.1) 7.4 

Daytime 

noise(Lday,dB(A)) 

          

HUNT3 45,644 39.1 39.5 43.6 47.4 50.3 52.9 54.6 47.0 (4.9) 6.7 

LifeLines 74,744 51.3 51.7 52.4 53.9 56.6 60.4 63.9 55.2 (4.0) 4.2 

Pooled 120,388 47.0 47.3 49.3 51.6 54.4 57.7 60.6 52.3 (4.3) 5.1 

Night-time noise(Lnight, 

dB(A) 

          

HUNT3 45,644 35.1 35.2 37.5 40.2 42.5 44.8 46.4 40.3 (3.7) 5.0 

LifeLines 74,744 42.5 42.8 43.6 45.1 47.8 51.6 55.1 46.4 (4.0) 4.2 

Pooled 120,388 39.8 40.1 41.5 43.4 45.9 49.2 52.0 44.2 (3.9) 4.4 
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Table 5.4 Spearman correlations between air pollutants and road traffic noise exposures  

HUNT3 (N=45,581) NO2 PM10 Lday   

NO2 -     

PM10 0.80 -    

Lday -0.05 0.04 -   

Lnight -0.04 0.06 0.99   

LifeLines (N=62,653) NO2 PM10 NO2_ESCAPE PM10_ESCAPE Lday 

NO2 -     

PM10 0.78 -    

NO2_ESCAPE 0.86 0.78 -   

PM10_ESCAPE 0.67 0.54 0.73 -  

Lday 0.43 0.38 0.56 0.57 - 

Lnight 0.46 0.40 0.61 0.64 0.99 

NO2, PM10: pan-European LUR modelled metrics for year 2007, available for both cohorts; 

NO2_ESCAPE, PM10_ESCAPE: ESCAPE LUR modelled metrics for 2010, available for LifeLines only. Lday: 

daytime (07:00-19:00) noise, Lnight: night-time (23:00-07:00) noise.  
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5.1.2. Ambient air pollution effects  

Analytical results for the main model (Model3) were presented in this section; results for Model1 and 

Model2 are available in Appendix-5.1.  

 hsCRP 

In Model3, after adjusting for age, sex, education, employment, smoking status, smoking pack-years, 

alcohol consumption, season of blood draw and cohort, increasing pan-European LUR modelled PM10 

and NO2 were both significantly associated with increased levels of hsCRP (Table 5.5). Each IQR 

increase in PM10 or NO2 was positively associated with hsCRP levels (1.4%, 95%CI: 0.1% to 2.7%) and 

(1.9%, 95%CI: 0.5% to 3.3%) respectively. Statistical significance remained for NO2 after further 

adjustment for Lday.   

 Blood lipids 

No associations were seen between any of the exposure measures and total cholesterol levels (Table 

5.5). In contrast, positive significant associations with HDL cholesterol were observed for both air 

pollutants, though the association with PM10 became null after further adjustment for Lday. Each IQR 

higher pan-European LUR modelled NO2 was significantly associated with a 0.007mmol/l higher HDL 

cholesterol level (95%CI: 0.003 to 0.011), independent of adjustment for Lday.  

For each IQR increase in pan-European LUR modelled PM10, triglycerides increased by 0.021mmol/L 

(95%CI: 0.013 to 0.028); a similar association was also seen for NO2 (Table 5.5). Both associations were 

robust to adjustment for Lday. 

 Fasting glucose and HbA1c  

Higher ambient PM10 and NO2 exposure was significantly associated with higher fasting glucose levels 

but not with HbA1c (Table 5.5). For each IQR increase in the pan-European LUR modelled PM10 and 

NO2, fasting glucose increased by 0.029 mmol/L (95%CI: 0.020 to 0.038) and 0.033 mmol/L (95%CI: 

0.022 to 0.042) respectively; significant associations remained after adjusting for Lday.  
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Table 5.5 Associations between per IQR increase of pan-European LUR modelled PM10, NO2 and each blood biochemistry marker 

 PM10, µg/m3 NO2, µg/m3 

Pooled analysis 
(HUNT3 and 
LifeLines) 

N IQR Model3 Model3+Lday N IQR Model3 Model3+Lday 

HsCRP, % diff 51,238 2 1.4% (0.1% to 2.7%) 0.9% (-0.4% to 2.3%) 51,459 7.4 1.9% (0.5% to 3.3%) 1.7% (0.2% to 3.2%) 

Total 
cholesterol, 
mmol/l        

72,551 2 -0.005 (-0.014 to 0.004)                           -0.005 (-0.015 to 0.004)  72,783 7.4 -0.001 (-0.011 to 0.009) -0.001 (-0.011 to 0.010) 

HDL cholesterol, 
mmol/l 

72,551 2 0.003 (0.0002 to 0.007) 0.002 (-0.002 to 0.005) 72,783 7.4 0.008 (0.005 to 0.012) 0.007 (0.003 to 0.011) 

Triglycerides, 
mmol/l 

72,794 2 0.021 (0.013 to 0.028) 0.020 (0.012 to 0.028) 73,026 7.4 0.021  (0.013 to 0.030) 0.021 (0.012 to 0.030) 

LifeLines only         

Fasting glucose 
mmol/l 

52,234 2.4 0.029 (0.020 to 0.038) 0.024 (0.014 to 0.034) 52,543 8.8 0.033 (0.022 to 0.042) 0.027 (0.016 to 0.038) 

HbA1c 
mmol/mol 

43,481 2.4 0.008  (-0.049 to 0.064) 0.012 (-0.051 to 0.073) 43,537 8.8 -0.020 (-0.083 to 0.044) -0.022 (-0.093 to 0.049) 

Model3: adjusted for age, sex, education, employment, smoking status, smoking pack-years, alcohol consumption, season of blood draw and study (for pooled 
analysis only).  
Lday: day-time road traffic noise (07:00-19:00).  
Bold indicates where significance level<0.05 
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 Sensitivity analyses  

Results from most sensitivity analyses were similar to the main findings presented in Table5.5, 

except the significant associations between both air pollutants and HDL cholesterol were lost after 

further adjustment for BMI.  All sensitivity analyses are shown in Appendix-5.2.  

 Subgroup analyses  

Effects of both air pollutants on hsCRP, total cholesterol, HDL cholesterol and fasting glucose were 

modified by sex (all p-values for interaction<0.05), with stronger associations consistently found 

for women (Table 5.6). For total cholesterol, increased air pollution exposure was significantly 

associated with higher levels among women but lower levels among men. No statistically 

significant effect modifications by sex were found for triglycerides and HbA1c (Appendix-5.3). 

Inconsistent patterns of effect modification by BMI were found among the three lipids markers. A 

stronger association with total cholesterol or HDL cholesterol was observed among those with a 

BMI<25 kg/m2 whilst for triglycerides a stronger association was observed among those with a 

BMI≥30 kg/m2 (Appendix-5.3). No significant effect modifications effects were found based on 

age, ever-had diabetes or hypertension.       
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Table 5.6 Associations between pan-European LUR modelled PM10, NO2 and blood biochemistry marker by sex 

  N PM10, µg/m3, per IQR  Pinteraction N NO2, µg/m3, per IQR Pinteraction 

HsCRP, %diff men 22,116 1.03% -0.84% to 2.94% 0.00 22,221 1.05% -0.93% to 3.15% 0.00 

women 29,122 1.93% 0.19% to 3.70%  29,238 2.82% 0.92% to 4.77%  

Total cholesterol, 
mmol/l 

men 31,170 -0.026 -0.040 to -0.011 0.00 31,278 -0.029 -0.045 to -0.013 0.00 

women 41,381 0.012 0.001 to 0.024  41,505 0.020 0.008 to 0.033  

HDL cholesterol, 
mmol/l 

men 31,170 -0.003 -0.007 to 0.002 0.00 31,278 -0.0002 -0.005 to 0.005 0.00 

women 41,381 0.006 0.002 to 0.011  41,505 0.013 0.008 to 0.018  

Fasting glucose, 
mmol/l 

men 21,908 0.020 0.004 to 0.036 0.04 22,009 0.020 0.002 to 0.038 0.02 

women 30,326 0.037 0.026 to 0.048  30,444 0.042 0.030 to 0.054  

Model3: adjusted for age, education, employment, smoking status, smoking pack-years, alcohol consumption, season of blood draw and study (for pooled analysis only).  
IQR for PM10 and NO2 was 2 and 7.4 µg/m3 for analyses of hsCRP and blood lipids; IQR for PM10 and NO2 was 2.4 and 8.8 µg/m3 for analyses of fasting glucose.  
BOLD indicates where significance level<0.05.  
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5.1.3. Road traffic noise effects  

As with air pollution, analytical results for the main model (Model3) are presented in this section; 

results for Model1 and Model2 are available in the Appendix-5.1.   

 hsCRP  

Each IQR increase in Lday was significantly associated with hsCRP levels (1.1%, 95%CI: 0.02% to 2.2%), 

but association became null when air pollution was further adjusted for (Table 5.7).  

 Blood lipids  

No association between Lday and total cholesterol level was seen(Table 5.7).  In contrast, each IQR 

higher Lday was significantly associated with a 0.007 mmol/l higher HDL cholesterol level (95%CI: 

0.004 to 0.010). Effect estimate was slightly reduced after adjustment for PM10 or NO2, but the 

association was still statistically significant. Higher Lday exposure was also significantly associated with 

higher triglycerides levels (0.008mmol/l per IQR higher Lday, 95%CI: 0.001 to 0.015), however, this 

association was no longer statistically significant after adjustments for air pollution effects.   

 Fasting glucose and HbA1c  

As with air pollution, a statistically significant positive association was observed between Lday and 

fasting glucose, but no association was seen with HbA1c (Table5.7).  Each IQR higher Lday exposure 

was significantly associated with a 0.013 mmol/l higher fasting glucose (95%CI: 0.006 to 0.019). This 

significant association was robust to adjustments for air pollution.   

 Sensitivity analyses and subgroup analyses  

The previously observed significant positive association between Lday and triglycerides or HDL 

became null when analyses were restricted to those living at the same address ≥10 years, but 

significance remained for fasting glucose. Other sensitivity analyses only resulted in minor changes to 

the main findings (Appendix-5.2). Stronger associations between Lday and each biochemistry marker 
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were generally seen among women or those with a BMI<25 kg/m2, although not all interactions were 

statistically significant (Appendix-5.3).     

Table 5.7 Associations between day-time (07:00-19:00) noise (Lday) and each blood biochemistry 
marker 

 Lday, dB(A) 

 N per 
IQR 

Model3 Model3+PM10 Model3+NO2 

Pooled analysis      

hsCRP, %diff 55,930 5.1 1.1%  
(0.02% to 2.2%) 

1.0%  
(-0.1% to 2.2%) 

0.9%  
(-0.3% to 2.0%) 

Total cholesterol,  
mmol/l       

81,590 5.1 0.001 
(-0.007 to 0.009) 

0.003  
(-0.006 to 0.012) 

0.002  
(-0.007 to 0.011) 

HDL cholesterol, 
mmol/l 

81,590 5.1 0.007  
(0.004 to 0.010) 

0.006  
(0.002 to 0.009) 

0.004  
(0.001 to 0.007) 

Triglycerides, 
mmol/l 

81,799 5.1 0.008  
(0.001 to 0.015) 

0.003  
(-0.005 to 0.010) 

0.003  
(-0.005 to 0.010) 

LifeLines only      

Fasting  glucose, 
mmol/l 

62,765 4.2 0.013  
(0.006 to 0.019) 

0.010  
(0.002 to 0.017) 

0.008   
(0.001 to 0.016) 

HbA1c,  
mmol/mol 

50,194 4.2 -0.010  
(-0.050 to 0.030) 

-0.007  
(-0.056 to 0.042) 

0.004   
(-0.047 to 0.055) 

Model3: adjusted for age, sex, education, employment, smoking status, smoking pack-years, alcohol consumption, season 
of blood draw and study (for pooled analysis only).  
Bold indicates where significance level<0.05 

5.1.4. Results from cohort-specific meta-analysis  

In general, cohort-specific meta-analyses for hsCRP and blood lipids yielded very similar results as 

those from the individual-level analyses on DataSHIELD (Table 5.8). However, as expected, DataSHIELD 

tend to give smaller 95% confidence intervals due to the stronger statistical power associated with the 

individual level analyses. The meta-analysis graphs of cohort-specific effect estimates for each 

biochemistry marker are shown in Appendix-5.4.   
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Table 5.8 Comparison of pooled estimates (Effect estimate, 95%CI, per IQR* higher exposure) based 
on Model3 from both cohort-specific meta-analysis and pooled analysis on DataSHIELD 

PM10, µg/m3 cohort-specific meta-analysis pooled analysis on DataSHIELD 

hsCRP, %diff 1.4% (-0.1% to 2.8%) 1.4% (0.1% to 2.7%) 

Total cholesterol        0.004 (-0.006 to 0.014) -0.005 (-0.014 to 0.004)                           

HDL cholesterol 0.004 (0.001 to 0.008) 0.003 (0.0002 to 0.007) 

Triglycerides 0.026 (0.018 to 0.035) 0.021 (0.013 to 0.028) 

   

NO2, µg/m3   

hsCRP, %diff 1.4% (-0.3% to 3.7%) 1.9% (0.5% to 3.3%) 

Total cholesterol        0.010 (-0.001 to 0.021) -0.001 (-0.011 to 0.009) 

HDL cholesterol 0.010 (0.006 to 0.013) 0.008 (0.005 to 0.012) 

Triglycerides 0.027 (0.018 to 0.036) 0.021  (0.013 to 0.030) 

   

Lday, dB(A)   

hsCRP, %diff 0.7% (-0.3% to 1.7%) 1.1% (0.02% to 2.2%) 

Total cholesterol        0.002 (-0.005 to 0.009) 0.001 (-0.007 to 0.009) 

HDL cholesterol 0.007 (0.004 to 0.010) 0.007 (0.004 to 0.010) 

Triglycerides 0.007 (0.001 to 0.013) 0.008 (0.001 to 0.015) 
Model3: adjusted for age, sex, education, employment, smoking status, smoking pack-years, alcohol consumption, season 
of blood draw and study (in the pooled analyses only). BOLD indicates where significance level<0.05.   
*IQR: for cohort-specific IQR and IQR for pooled dataset see Table5.3.  

5.1.5. ESCAPE-LUR air pollution metrics:  LifeLines only  

The analyses were repeated in LifeLines only, using the ESCAPE-LUR modelled air pollutants. In 

general, ESCAPE-LUR modelled PM10 or NO2 effects on HDL cholesterol, triglycerides and fasting 

glucose levels (Table 5.9) were comparable to those based on the pan-European LUR modelled 

exposures (presented in Table 5.5).  

No significant associations were observed between any of the ESCAPE air pollutants and hsCRP (Table 

5.9). Only PM2.5 absorbance was associated with total cholesterol level, independent of adjustment 

for noise. Sensitivity analyses based on Model3 are presented in Appendix-5.5. After further adjusting 

for BMI, the ESCAPE-LUR modelled NO2 effects on hsCRP and total cholesterol became statistically 

significant.  

A significant association was found between increased ESCAPE-LUR modelled PM2.5 and increased 

HbA1c level.     
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Table 5.9 Associations between each ESCAPE air pollutant metric (per IQR higher) and each 
biochemistry marker in LifeLines only 

  Model3 Model3+Lday 

hsCRP (N=32266), % difference 

NO2 1.0% (-1.4% to 3.4%)  0.5% (-2.6% to 3.6%) 

PM10 -1.1% (-2.8% to 0.6%) -2.7% (-4.8% to -0.5%) 

PM2.5 0.03% (-0.8% to 0.8%) -0.2% (-1.1% to 0.7%) 

PMcoarse -1.7% (-3.3% to 0%) -3.1% (-5.0% to -1.1%) 

PM2.5absorbance -0.6% (-2.6% to 1.4%) -2.2% (-4.8% to 0.4%) 

total cholesterol (N=53807), mmol/L 

NO2 0.012 (-0.004 to 0.028) 0.010 (-0.010 to 0.030) 

PM10 0.011 (-0.001 to 0.022) 0.010 (-0.004 to 0.025) 

PM2.5 0.006 (0.001 to 0.011) 0.006 (-0.0002 to 0.012) 

PMcoarse 0.005 (-0.006 to 0.017) 0.002 (-0.012 to 0.016) 

PM2.5absorbance 0.017 (0.004 to 0.030) 0.021 (0.003 to 0.039) 

HDL cholesterol (N=53807), mmol/L 

NO2 0.019 (0.013 to 0.025) 0.015 (0.007 to 0.023) 

PM10 0.019 (0.015 to 0.024) 0.021 (0.015 to 0.026) 

PM2.5 0.005 (0.003 to 0.007) 0.003 (0.0005 to 0.005) 

PMcoarse 0.021 (0.016 to 0.025) 0.021 (0.016 to 0.026) 

PM2.5absorbance 0.021 (0.016 to 0.026) 0.023 (0.016 to 0.030) 

triglycerides (N=53807), mmol/L 

NO2 0.035 (0.022 to 0.047) 0.055 (0.039 to 0.070) 

PM10 0.007 (-0.002 to 0.016) 0.013 (0.001 to 0.024) 

PM2.5 0.001 (-0.003 to 0.006) -0.001 (-0.006 to 0.003) 

PMcoarse 0.008 (-0.001 to 0.017) 0.019 (0.008 to 0.029) 

PM2.5absorbance 0.011 (0.001 to 0.022) 0.020 (0.006 to 0.033) 

fasting blood glucose (N=52453), mmol/L 

NO2 0.041 (0.028 to 0.054) 0.034 (0.017 to 0.051) 

PM10 0.023 (0.013 to 0.032) 0.014 (0.001 to 0.026) 

PM2.5 0.006 (0.001 to 0.010) 0.001(-0.004 to 0.006) 

PMcoarse 0.024 (0.015 to 0.033) 0.016 (0.005 to 0.028) 

PM2.5absorbance 0.024 (0.013 to 0.035) 0.011 (-0.004 to 0.026) 

HbA1c (N=43537), mmol/mol 

NO2 -0.060 (-0.142 to 0.021) -0.091 (-0.194 to 0.012) 

PM10 0.014 (-0.044 to 0.072) 0.029 (-0.048 to 0.105) 

PM2.5 0.028 (0.001 to 0.055) 0.037 (0.006 to 0.068) 

PMcoarse -0.027 (-0.084 to 0.031) -0.037 (-0.107 to 0.034) 

PM2.5absorbance 0.006 (-0.062 to 0.074) 0.018 (-0.075 to 0.111) 
Effect estimates (95%CI) were calculated for each IQR increase of NO2 (7.42 µg/m3), PM10 (0.95 µg/m3), PM2.5  (0.24µg/m3) 

and PMcoarse (0.63µg/m3) and PM2.5absorbance (0.22 10−5/m).  

Model 3: adjusted for age, sex, education, employment status, smoking status, smoking pack-years, alcohol consumption. 
Lday: day-time noise (07:00-19:00). BOLD indicates where significance level<0.05.  
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5.1.6. Summary of findings 

A brief summary of main findings for the effect of air pollution and noise on blood biochemistry 

markers are presented in Table 5.10.  

Table 5.10 Summary of the main findings for each biochemistry outcome   

 hsCRP Total 
Cholesterol 

HDL 
Cholesterol 

Triglycerides Fasting 
Glucose 

HbA1c 

NO2 

(pan-European LUR) 
++ - ++ ++ ++ - 

NO2 (ESCAPE LUR) 
[LifeLines only] 

- - ++ ++ ++ - 

PM10 (pan-European 
LUR) 

+ - + ++ ++ - 

PM10 (ESCAPE LUR)  
[LifeLines only] 

- - ++ ++ ++ - 

Lday + - ++ + ++ -  

++: significant positive associations in main Model 3, also robust to noise (or air pollution) adjustment;  
+: significant positive associations in main Model 3, but not robust to noise (or air pollution) adjustment; 
-: no significant associations observed.  
Model3: adjusted for age, sex, education, employment, smoking status, smoking pack-years, alcohol 
consumption, season of blood draw and study (for pooled analysis only). 

 

Joint effects of air pollution and road traffic noise  

In general, association between NO2 and each of hsCRP, HDL cholesterol, triglycerides or fasting 

glucose was not confounded by further adjustment for road traffic noise (Table 5.10). In contrast, the 

significant association observed between PM10 and hsCRP or HDL cholesterol was confounded by road 

traffic noise.   

The significant positive association between daytime road traffic noise and hsCRP was lost after 

adjustment for PM10, suggesting confounding by air pollution.  This was also seen for triglycerides. 

 



 

137 | P a g e  
 

5.2. Discussion 

5.2.1. Ambient air pollution effects 

hsCRP  

Inflammatory response to ambient air pollution has been perceived as one of the key mechanisms 

that explains the observed air pollution effects on a range of health outcomes, including 

cardiovascular diseases, diabetes, cancer and Alzheimer’s disease(Lanki et al., 2015). hsCRP is one of 

the many possible biomarkers for systemic inflammation and is usually used as a clinical indicator for 

increased CVD risks(Li et al., 2012).  

In this PhD project, pooling individual-level data from 51,459 middle-aged participants from two large 

European cohorts, I found that traffic-related air pollution, as indicated by NO2 but not PM, was 

significantly associated with higher levels of hsCRP. This analysis is one of the largest conducted to 

date with regards to its sample size and provides further evidence of air pollution effects on systemic 

inflammation among general populations.  

It was reported that a higher BMI was associated with a higher concentration of hsCRP(Visser et al., 

1999). In this PhD study, BMI was not on the causal pathway between air pollution and hsCRP as 

adjustment of BMI did not attenuate the observed association in the main model.        

Short-term air pollution effects on systemic inflammation have been well documented(Li et al., 2012), 

however only a few prior studies investigated long-term (e.g. annual or longer) air pollution effects on 

hsCRP level in general adult populations, with mixed results reported.   

A longitudinal analysis of the Heinz Nixdorf Recall Study in Germany reported that a 2.4µg/m3 increase 

of PM2.5 was associated with a 5.4% (95%CI: 0.6% to 10.5%) change of hsCRP in both sexes (i.e. a 

combined population), independent of short-term air pollution exposure(Viehmann et al., 2015). 

ESCAPE-LUR modelled PM2.5 estimates were only available for LifeLines participants in this PhD 

project. In contrast to the findings of the Heinz Nixdorf Recall Study, I did not find an association 

between PM2.5 and hsCRP. Although the sample size is much larger in LifeLines (N=32,266), the ESCAPE 
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PM2.5 exposure contrast in LifeLines was smaller by a factor of 10 (IQR: 0.24 µg/m3) compared to that 

reported in the Heinz Nixdorf Recall Study, limiting my ability to detect any association in LifeLines if 

present.   

The ESCAPE analysis of 22,561 adults from six European cohorts did not observe significant 

associations between any PM metrics or NO2 and hsCRP level(Lanki et al., 2015). However, they found 

that increased traffic intensity on the nearest road was significantly associated with higher hsCRP 

levels. In their study, each 10 µg/m3 increase in NO2 was associated with 2.1% (95%CI: -0.8% to 5.1%) 

increase in hsCRP. This is compatible with my findings from 32,266 LifeLines participants in a similar 

main model also adjusted for BMI, giving a significant association with ESCAPE-LUR modelled NO2 

(5.2%, 95%CI: 2.0% to 8.3%, per 10 µg/m3). One study in England reported no associations between 

PM10, NO2 and hsCRP in each of the three cross-sectional surveys in 1994, 1998 and 2003 

respectively(Forbes et al., 2009b) while another study in Sweden reported that 30-year average 

exposure of NO2 was not associated with hsCRP(Panasevich et al., 2009).   

As with the ESCAPE analysis, I found that the effects of NO2 on hsCRP level was more consistent, 

compared to the PM effects, in both pooled analyses using the pan-European LUR modelled estimates 

and in the LifeLines only analysis using the ESCAPE-LUR modelled estimates. PM could come from 

sources other than traffic(Kelly & Fussell, 2012b) and is generally regarded as an indicator for regional 

air pollution as it can travel over long distances(Kunzli, 2014). In contrast, NO2 is more related to local 

traffic and its concentration reduces substantially within 50-500 metre of a busy street (reduced to 

only 10-30% of the street concentration level)(Kunzli, 2014). This has resulted in a higher spatial 

contrast (indicated by IQR) for NO2 than for PM, which then increases the potential to detect effects 

for NO2.  

It is plausible that participants who had been constantly exposed to a higher level of NO2 (i.e. those 

living near a busy road) may have an increasing level of inflammatory response. Correspondingly, I 

also found that, only the ESCAPE-LUR modelled PM2.5 absorbance, also known as soot (mostly 
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associated with vehicle exhaust), was also significantly associated with hsCRP levels in the LifeLines 

participants, after further adjustment for BMI. This further suggests that near-road traffic-related air 

pollution may have more adverse effects on systemic inflammation, as measured by hsCRP level. Yet, 

whether increasing NO2 is causally related to increased hsCRP level is unclear. There are still debates 

as to whether NO2 on its own acts as an air pollutant which has direct effects on health, or merely a 

marker of traffic-related air pollution, or indeed a marker of PM metrics that were not modelled for 

this PhD project such as ultrafine particles or one of the constituents of PM10.         

It should be noted though, since both gaseous and particulate air pollution could induce an 

inflammatory response, it may be difficult to disentangle the effect of each on hsCRP level. The role 

of road traffic noise adds even more complexity to the associations between air pollution and hsCRP. 

In the pooled analyses using the pan-European LUR modelled PM10, the significant association 

between PM10 and hsCRP was attenuated to null by adjusting for road traffic day-time noise, 

suggesting a substantial confounding effect. An analysis of the Heinz Nixdorf Recall Study suggested 

that effect of PM2.5 on hsCRP was independent of adjustment for traffic noise(Hennig et al., 2014). 

More studies are needed to better clarify the role of road traffic noise on this possible PM-hsCRP link.       

Contrary to the findings of the Heinz Nixdorf Recall Study(Viehmann et al., 2015), I found stronger 

associations between air pollution and hsCRP levels in women, with sex showing a statistically 

significant effect modification. The ESCAPE study however did not suggest that the associations were 

modified by sex(Lanki et al., 2015). The biological explanations for modification of effect by sex are 

unclear, but my analyses benefited from a sufficiently large sample size to investigate such an 

interaction.  

I found a stronger association with NO2 among those aged less than 60 years, but this was not seen 

for PM10. In fact, I found a stronger association with PM10 among those aged 60 years and above. The 

Heinz Nixdorf Recall Study reported stronger associations among older participants (≥60 years) with 

PM2.5 exposures, although the interaction effects were not statistically significant(Viehmann et al., 
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2015). Noteworthy, in my study, stronger associations between air pollution and hsCRP were found 

among those who had ever had diabetes, suggesting diabetes patients are more vulnerable to the 

adverse air pollution effects.     

What this PhD project suggests is that near-road traffic-related air pollution indicated by NO2 is related 

to higher levels of hsCRP.  More studies are needed in this area, specifically to further investigate the 

roles of NO2 and PM at the individual level on hsCRP and other biomarkers of systemic inflammation 

in different populations. This PhD is one of very few to study the effects of traffic noise on the link 

between air pollution and hsCRP, suggesting a likely confounding effect on the PM but not NO2 effects. 

This needs to be confirmed in more studies.         

Blood lipids 

Growing evidence has pointed to a link between air pollution exposure and atherosclerosis(Kunzli et 

al., 2010), for which dyslipidaemia is one of the major established risk factors. But the epidemiological 

links between air pollution and blood lipid measures are rarely studied. Ambient air pollution, 

especially particulate air pollution, has the potential to alter blood lipid metabolism via activation of 

the autonomic nervous system (ANS) imbalance, elevated systemic inflammation and oxidative stress, 

impaired endothelial function and even a direct transfer of fine particle (i.e. PM2.5) from the lung to 

blood circulation(Brook et al., 2010). These possible pathways may ultimately lead to manifest CVD.   

This PhD project, in line with only two recently published studies in 2015-2016(Shanley et al., 2016; 

Sorensen et al., 2015), suggest associations between long-term ambient air pollution exposure and 

raised levels of blood lipids in general populations. I found that, higher levels of both PM10 and NO2, 

modelled by either the pan-European LUR or ESCAPE-LUR model, were consistently associated with 

higher levels of triglycerides. These associations were independent from a range of covariates 

including noise and remained in sensitivity analyses. Similar findings were also observed for HDL 

cholesterol.  
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However, I did not observe significant associations between any pan-European LUR or ESCAPE-LUR 

modelled air pollutant and total cholesterol levels in the analyses except for the ESCAPE-LUR modelled 

PM2.5 absorbance in the model adjusted for noise. For the pooled analyses using the Pan-European LUR 

modelled PM10 or NO2, the association between each air pollutant and total cholesterol level was null, 

even after adjustment for BMI; whilst for the analyses using the ESCAPE-LUR modelled PM10 or NO2 in 

LifeLines, the null associations based on Model3 became statistically significant after adjustment for 

BMI.   

A recent study consisting of nearly 40,000 adults aged 50-64 years in Copenhagen, reported a 

statistically significant association between no-fasting total cholesterol and both ESCAPE LUR-

modelled PM2.5 (0.101 mmol/L, 95%CI: 0.028 to 0.173, per 5 µg/m3) and dispersion modelled NO2 

(0.026mmol/L, 95%CI: 0.008 to 0.045, per 10 µg/m3), independent of adjustment for BMI(Sorensen et 

al., 2015). Other lipids measures were not available. My analyses of 53,807 relatively younger LifeLines 

participants (mean age: 47.6 years) showed comparable results for total cholesterol in the model also 

adjusted for BMI, using ESCAPE LUR-modelled PM2.5 (0.146 mmol/L, 95%CI: 0.021 to 0.25, per 5 µg/m3) 

and NO2 (0.023 mmol/L, 95%CI: 0.001 to 0.044, per 10 µg/m3).  

Another interesting finding is that, in LifeLines, the ESCAPE LUR-modelled PM2.5 was not associated 

with triglyceride levels in the main model adjusted for noise, but PM10 or PMcoarse was. Since this is 

the first report on a null association between PM2.5 and triglycerides, whether PM-induced effects on 

triglyceride levels were mainly related to larger particles rather than fine particle would need to be 

further investigated in more studies. A nationwide USA study of 11,623 participants (median age: 41 

years) reported significant positive associations between nearest monitor-based annual PM10 

exposure and both triglycerides and total cholesterol levels(Shanley et al., 2016). Association with HDL 

cholesterol was positive but not significant. PM2.5 data were not available for analyses in this USA 

study. 
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I found both higher pan-European and ESCAPE LUR modelled PM10 and NO2 were significantly 

associated with HDL cholesterol. Although still generally regarded as a ‘good’ cholesterol which can 

reduce CVD risk, HDL is in fact functionally diverse and the simple link between elevated HDL levels 

and reduced CVD risks was recently questioned by some clinical trials and genetic studies(Rader & 

Tall, 2012; Heinecke, 2012). In both review papers of Rader(Rader & Tall, 2012) and 

Heinecke(Heinecke, 2012), it was suggested that HDL’s ability to protect against CVD may not simply 

rely on its quantity but more importantly on its functionality.   

A recent experimental study first reported that diesel exhaust could reduce the anti-inflammatory and 

anti-oxidant effects of HDL in mice, two important pathways for HDL cholesterol to act against CVD(Yin 

et al., 2013). The authors came to an interesting conclusion that air pollution exposure may potentially 

change HDL from a ‘good’ cholesterol to just a ‘normal’ or even a ‘bad’ one by altering functionality. 

Although this is an experimental study in mice, the finding has an important implication for what I 

report here. In my analysis, air pollution exposure was associated with higher levels of HDL cholesterol. 

However, if anti-CVD properties of these raised HDL cholesterol are impaired by exposure to air 

pollution, a link between air pollution and CVD may still be plausible via an increasing level of 

‘dysfunctional’ HDL cholesterol. Future human studies on how air pollution affects anti-CVD properties 

of HDL cholesterol would provide novel insights into this possible pathway.   

It should be noted that this PhD analysis did not give a clear suggestion as to whether BMI may be on 

the causal pathway between air pollution and raised total cholesterol or HDL cholesterol - the 

significant associations between pan-European LUR air pollution metrics and total or HDL cholesterol 

became null after adjustment for BMI in main models, but not in models using alternative ESCAPE air 

pollution metrics in LifeLines only.   

Several smaller studies conducted in asthmatics(Yeatts et al., 2007), traffic police personnel(Tomao et 

al., 2002), adolescences(Poursafa et al., 2014b) and elderly participants(Chuang et al., 2011), provide 

varied results. For example, one reported positive effects of air pollution on triglycerides only(Yeatts 
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et al., 2007), and one reported such effects on both HDL and triglycerides(Tomao et al., 2002) and in 

contrast to these, the other reported positive effects of air pollution on total cholesterol only but not 

on levels of triglycerides or HDL cholesterol(Chuang et al., 2011). These results however cannot be 

generalized to other populations due to their specific study designs in the chosen populations.  

Taken together, from this PhD analysis and previous reports, it appears air pollution (either PM or 

NO2) has a role in raising blood lipids levels. Dyslipidaemia, usually associated with lifestyle factors 

such as smoking, unhealthy diet and infrequent exercise, is one of the most common risk factors for 

CVD(Kannel, 1990). If the link between air pollution and dyslipidaemia is casual related, it will not only 

help identify yet another modifiable environmental risk factor, but also help explain, in part, the links 

between air pollution and CVD outcomes. Given the current literature in this field is very limited, there 

is a need for more epidemiological studies investigating this potentially important link.    

Fasting glucose and HbA1c 

Accumulating evidence shows possible associations between long-term exposure to air pollution and 

diabetes in several European populations(Eze et al., 2015). Fasting blood glucose and HbA1c level 

(average of blood glucose levels in the previous 30-120 days prior to blood draw) are the two 

important indicators used to identify impaired glucose tolerance, which is a risk factor itself for CVD. 

However, the direct link between long-term air pollution exposure and blood glucose has not been 

studied extensively.  Biological mechanisms which may be involved in linking air pollution and blood 

glucose levels include air pollution exerting a direct effect on insulin resistance, and/or inducing 

oxidative stress and adipose tissue inflammation(Brook et al., 2013).    

Among 52,453 LifeLines participants included in the main model in this PhD study, address-level PM10 

and NO2 assigned from either the pan-European or ESCAPE LUR model, were significantly associated 

with increased fasting glucose; associations which were robust to adjustment for traffic noise. 

Additionally, ESCAPE LUR-modelled PM2.5, PM2.5absorbance and PMcoarse were all significantly associated 

with increased fasting glucose, although only the association with PMcoarse was independent of 



 

144 | P a g e  
 

traffic noise. The results from this PhD analysis are consistent with only a few prior studies which 

examined either short-term(Chen et al., 2016; Sade et al., 2015; Chuang, Yan & Cheng, 2010) or long-

term(Tamayo et al., 2014; Teichert et al., 2013; Chuang et al., 2011) air pollution effects on blood 

glucose.  

In contrast to the findings for blood glucose, I did not observe an association between any air pollutant 

and HbA1c except for the ESCAPE-LUR modelled PM2.5. This however may be a chance finding due to 

the multiple testing, and more studies are needed to replicate this association between PM2.5 and 

HbA1c.  Only two earlier studies investigated long-term air pollution effects on HbA1c levels. Annual 

average PM10 from fixed monitoring stations was significantly associated with increased HbA1c among 

elderly participants in Taiwan(Chuang et al., 2011), while in Germany higher regional PM10 levels were 

significantly associated with higher HbA1c levels among diabetics(Tamayo et al., 2014). Unlike these 

two previous studies, this PhD study was conducted in a general population with modelled air 

pollution estimates assigned at address-level, which may partly explain the inconsistent findings. 

Another German study of 363 elderly women reported that long-term exposure to NO2 may contribute 

to impaired glucose metabolism, although significance was lost after adjustment for multiple 

testing(Teichert et al., 2013).  

A recent review in 2015 suggested that no firm conclusions could be drawn on the associations 

between air pollution and diabetes-related traits at this stage due to the small number of studies 

assessing this association(Thiering & Heinrich, 2015). This PhD analysis, one of the largest to date, 

suggests a positive significant association between long-term air pollution and fasting glucose level 

but not with HbA1c. This finding may provide some mechanistic insights into the emerging link 

between air pollution and diabetes.     
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5.2.2. Road traffic noise effects  

hsCRP 

To my best knowledge, there are no other studies exploring the association between long-term road 

traffic noise exposure and hsCRP level. Chronic exposure to excess environmental noise is generally 

regarded as a psychological stressor which may lead to increased level of stress hormones and 

ultimately manifest CVD(Babisch, 2014). A recent study suggested the link between long-term 

psychological stress and CVD may operate via a chronic low-grade systemic inflammation(Rohleder, 

2014). This provides a biological rationale to explore the direct link between road traffic noise and 

hsCRP level. Results from this PhD analysis provided some initial evidence to support this hypothesis. 

Every 5.1 dB(A) increase in day-time road traffic noise was associated with a small increase of 1.1% in 

hsCRP (95%CI: 0.02 to 2.2), however this significant association was lost after adjustment for PM10 or 

NO2 exposure. This result suggested that long-term exposure to road traffic noise may have a positive 

effect on hsCRP in its own, but this effect may not be seen after air pollution was accounted for. 

Neither the ESCAPE nor Heinz Nixdorf Recall Study published the effect estimates of traffic noise on 

hsCRP in their analyses(Lanki et al., 2015; Viehmann et al., 2015). My findings need to be replicated in 

more studies before a possible conclusion could be drawn.          

Blood lipids 

With respects to noise exposure, a statistically significant association with increased HDL and a 

moderate non-significant increase in total cholesterol and triglycerides were observed after 

adjustment for air pollution, in line with only two previous population-based studies(Sorensen et al., 

2015; Babisch et al., 1993b) and one occupational study(Melamed et al., 1997). The underlying 

mechanisms, in particular for increased HDL cholesterol, are not very clear. An earlier review found 

that, among the reviewed studies, none had documented a decrease in HDL in response to 

stress(Niaura, Stoney & Herbert, 1992).  

Only one recent study conducted in Copenhagen assessed the dose-response relationship between 

continuous noise exposure estimates and blood lipid levels(Sorensen et al., 2015). They found that, 
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for every 5 dB(A) increase of Lden, total cholesterol level increased by 0.008 mmol/L (95%CI: -0.001 to 

0.017).  This is similar to what I reported here in the pooled analysis. Whilst the Copenhagen study 

assessed only total cholesterol level in relation to road traffic noise exposure, two earlier studies, 

conducted in the 1990s, assessed not only total cholesterol but also triglycerides and HDL cholesterol 

levels. Both studies reported a positive significant trend (p-value<0.05) between higher noise 

exposures and higher total cholesterol and triglycerides level(Melamed et al., 1997; Babisch et al., 

1993b); the study of blue-collar workers additionally reported that noise annoyance was positively 

correlated with increased level of HDL in both men and women(Melamed et al., 1997).   

One possible explanation may be based on the general stress model. In the Whitehall study of 199 

middle-aged men and women in the UK, it was found that after 3-year of performing moderately 

stressful behavioural tasks, both total cholesterol and HDL cholesterol had raised for all participants 

after adjusting for lifestyle factors, with individuals who had a larger stress response having a greater 

rise(Steptoe & Brydon, 2005). It has been suggested that stress may increase release of lipids into the 

circulation or reduce plasma volume which then leads to a more concentrated level of circulating 

proteins. In fact, in some but not all studies, after adjusting for plasma volume, the association 

between stress and increased serum lipids were no longer significant(Steptoe & Brydon, 2005). It is 

not possible to obtain plasma volume data for this PhD project, but this is possibly a new angle to 

explore when assessing the link between traffic noise and blood lipids further.      

Cortisol, a stress hormone, may also play a crucial role on the link between noise and lipids levels. 

Following stressful episodes, cortisol is released to restore homeostasis mainly via metabolic 

pathways: increasing the supply of energy in the forms of glucose and fatty acids(Brindley et al., 1993). 

Catecholamines is an important stimulator in this increasing supply of energy by breaking down 

triacylglycerols(Brindley et al., 1993). All these complex responses then lead to an increased hepatic 

production of the very low-density lipoprotein, which will be converted to low-density lipoprotein as 

a major carrier of cholesterol in the circulation(Brindley et al., 1993).  
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Taken together, it is biologically plausible that chronic exposure to noise, particularly if at a 

consistently high level, may lead to adverse changes in blood lipids (dyslipidaemia) long term. Since 

only two studies, including the present one, investigated this topic in an epidemiological context, more 

studies are needed, in particular studies on the underlying metabolic or molecular mechanisms to 

provide insights into this potential pathway.      

Fasting glucose and HbA1c 

In this PhD analysis, I also found that road traffic noise, independent of air pollution effects, was 

significantly associated with increased fasting glucose levels. However, I did not see a clear 

corresponding association between noise exposure and HbA1c levels. Possible mechanisms 

underlying a link between noise exposure and glucose dysregulation have been proposed, such as 

stress hormone (e.g. cortisol) secretion leading to increased supply of glucose(Brindley et al., 1993), 

as well as noise-induced sleep disturbance(Tasali, Leproult & Spiegel, 2009), but epidemiological 

evidence for the effects of traffic noise on blood glucose levels is extremely limited.  

There is some emerging evidence linking noise exposures to diabetes morbidity and mortality. In a 

study of 57,053 participants in Denmark, a 10-dB higher road traffic noise was associated with a 8% 

(95%CI: 2% to 14%) increase of risk for incident diabetes after nearly 10-years of follow-up(Sorensen 

et al., 2013). In the city of Madrid, short-term night-time noise exposure was significantly associated 

with mortality from diabetes(Tobias et al., 2015). Findings from these studies, however, would have 

been further supported if the association between noise and glucose levels was directly analysed in 

the same study.       

Only one study of 2,348 men conducted in the early 1990s investigated the link between road traffic 

noise exposure and blood glucose levels, in which it was suggested that higher day-time noise levels 

were associated with increased glucose levels (P-value for trend < 0.05)(Babisch et al., 1993b). Another 

study in Stockholm found no associations between aircraft noise exposure and impaired fasting 

glucose(Eriksson et al., 2014). The findings from this PhD analysis, which comprised a large population 
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study (N=62,765) with individual noise estimates assigned to each participant at address level, provide 

one of the first suggestive evidence of a dose-response relationship between road traffic noise and 

blood glucose level.   

5.2.3. Chapter summary    

A suggestive conclusion revealed from this analysis on CVD biochemical parameters is that long-term 

exposure to air pollution or traffic noise is significantly associated with adverse blood biochemistry 

including systemic inflammation, blood lipids (except for HDL) and blood glucose. These associations 

were observed in a large sample pooled from two general population cohorts, and were independent 

of a range of covariates. These findings are in support of a link between air pollution, road traffic noise 

exposures and CVD outcomes, the results for which I presented in the next Chapter.     
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Chapter 6 Findings and discussions: incident cardiovascular disease 

6.1. The findings  

6.1.1. Descriptive statistics  
Individual-level data from 625,327 participants, pooled from EPIC-Oxford, HUNT2 and UK Biobank, 

were available for this analysis (Table 6.1). The mean age of the pooled population was 54.8 years; 

56% were women; 63% were overweight or obese (BMI≥25 kg/m2) and 13% were current smokers. 

More than half of the participants in both UK cohorts had received education at post-secondary or 

degree level, compared to 20% in HUNT2. Participants of both UK cohorts also had higher levels of 

alcohol consumption per week than did those of the HUNT2.          

Table 6.1 Baseline characteristics of EPIC-Oxford, HUNT2 and UK Biobank   

 Pooled data EPIC-Oxford HUNT2 UK Biobank 

Total N 625,327 57,446 65,232 502,649 

Baseline years 1993-2010 1993-1999 1995-1997 2006-2010 

Age, years, 
mean(SD) 

54.8 (10.7) 45.5 (14.2) 50.1 (17.2) 56.5 (8.1) 

Sex, women, [n 
(%)] 

352,359 (56%) 44,227 (77%) 34,665 (53%) 273,467 (54.4%) 

BMI, kg/m2, 
mean(SD) 

27.0 (4.8) 24.0 (3.9) 26.4 (4.1) 27.4 (4.8) 

BMI categories, [n 
(%)] 

    

<25 kg/m2 230,142 (37%) 39,297 (68%) 25,762 (40%) 165,083 (33%) 

25-30 kg/m2 254,232 (41%) 14,092 (25%) 27,972 (43%) 212,168 (42%) 

≥30 kg/m2 137,053 (22%) 4,039 (7%) 10,722 (17%) 122,292 (25%) 

Smoking status, 
[n (%)] 

    

Never-smoker 335,409 (54%) 34,044 (60%) 27,759 (44%) 273,606 (55%) 

Ex-smoker 207,287 (33%) 16,675 (29%) 17,510 (27%) 173,102 (35%) 

Current-smoker 78,015 (13%) 6,493 (11%) 18,533 (29%) 52,989 (10%) 

Current working 
status, [n (%)] 

    

Not in paid 
employment 

252,685 (41%) 19,000 (34%) 24,036 (37%) 209,649 (42%) 

In paid 
employment 

365,270 (59%) 37,658 (66%) 40,374 (63%) 287,238 (58%) 

Education level, 
[n (%)] 

    

primary 
education or less 

107,977 (18%) 0 22,685 (37%) 85,292 (17%) 

Secondary 
education 

158,495 (26%) 21,174 (47%) 26,770 (43%) 110,551 (23%) 
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Post-secondary 
school or above 

333,012 (56%) 24,039 (53%) 12,309 (20%) 296,664 (60%) 

Alcohol 
consumption, 
gram per week, 
mean(SD) 

150 (164) 65 (84) 22 (36) 175 (170) 

Ever-had 
hypertension, [n 
(%)] 

149,297 (24%) 6,265 (12%) 7,245 (11%) 135,787 (27%) 

Ever-had 
diabetes,  
[n (%)] 

29,219 (5%) 783 (2%) 2,028 (3%) 26,408 (5%) 

 

Table 6.2 Incident cardiovascular outcomes in each cohort and in the pooled data 

 Pooled 
data 

EPIC-Oxford HUNT2 UK Biobank 

linkages with medical records 430,728 40,384 53,121 337,223 

Percentage of the original cohort 69% 70% 81% 67% 

Averaged (SD) person-years follow-ups 4.4 (5.9) 13.2 (3.1) 14.6 (5.9) 1.4 (0.8) 

Total person-years follow-ups 1,719,692 534,192 776,110 409,390 

Incident CVD ,n  
(ICD10, I00-I99) 

30,428 6,421  
 

20,294  3,713  
 

Incident ischaemic heart disease, n 
(ICD10, I20-I25) 

5,259 807  
 

3,712  740  
 

Incident cerebrovascular disease, n 
(ICD10, I60-I69) 

2,871 423  
 

2,208  240  
 

 

After excluding prevalent CVD cases at recruitment, linkages to medical records were possible for 

430,728 (69%) participants to permit analysis of incident CVD since baseline recruitment in each 

cohort. The average person-years of follow-up for incident cardiovascular disease was 13.2, 14.6 and 

1.4 for EPIC-Oxford, HUNT2 and UK Biobank respectively (Table 6.2). In total, 1,719,692 person-years 

were recorded.  Over the follow-up period, 30,428 incident CVD (ICD10 I00-I99) cases from all three 

cohorts were registered, among these, 5,259 cases of incident ischaemic heart disease (ICD10 I20-I25) 

and 2,871 of incident cerebrovascular disease (ICD10 I60-I69).  

The length of follow-up period was similar in both EPIC-Oxford and HUNT2, however the incidence 

rate for CVD was higher in HUNT2. Participants in HUNT2 were recruited during 1995-1997, and at 

recruitment nearly 60% of them were over the age of 45 years (mean age: 50 years). After nearly 20-
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years follow-up to 31-March-2015, most of these participants were in early old age and above (mean 

age: 62 years). According to Statistics Norway (http://www.ssb.no/ accessed March 2016), the 

prevalence of CVD in the whole Trøndelag region, the northern part of which was the base for HUNT2, 

was 51% for those aged 67 years above and 22% for those aged 45-66 years in year 2012. In addition, 

a higher smoking prevalence and lower education attainment were found for HUNT2 participants than 

for EPIC-Oxford participants, which may have partly contributed to the high incidence rate of CVD. 

EPIC-Oxford had a slightly younger age structure at baseline recruitment, compared to HUNT2, but as 

described earlier in Chapter 2, most participants of EPIC-Oxford were health-conscious and were more 

likely to maintain a healthy lifestyle throughout the follow-up period, which might contribute to the 

lower incident rate in this cohort compared to HUNT2.     

The pooled median pan-European PM10 and NO2 was 21.4 and 27.3 µg/m3, with an inter-quartile range 

(IQR) of 4.1 and 13.2 µg/m3 respectively (Figure 6.1). PM10 estimates for HUNT2 participants were 

lower than those in both EPIC-Oxford and UK Biobank. Pooled median (IQR) of Lday and Lnight was 54 

(3.9) and 45 (3.8) dB(A) respectively (Figure 6.2). In each cohort, for participants living on minor roads 

that were not captured in the national level traffic datasets, a fixed low-level baseline traffic flow was 

assigned during modelling, which resulted in a high density of participants in the lower end of noise 

exposure ranges as seen from Figure 6.2.  

The Spearman correlation between pan-European PM10 and Lday was moderate (r= 0.35); a similar 

correlation was seen for NO2 (r=0.46). Correlations were almost unity between Lday and Lnight road 

traffic noise (r=0.99). For all analyses investigating noise on a continuous scale, Lnight effects were 

similar to those of the Lday effects, and therefore are not reported here. 

         

http://www.ssb.no/
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Figure 6.1 distributions of pan-European NO2 (above) and PM10 (below) and in the pooled data and in 
each cohort.  
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Figure 6.2 distributions of Lday (07:00-19:00) (above) and Lnight (23:00-07:00) (below) road traffic 
noise in the pooled data and in each cohort.  
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6.1.2. Ambient air pollution and incident CVD outcomes 

Pooled analysis 1: virtual pooling of data in DataSHIELD 

Data from all three cohorts were virtually pooled on DataSHIELD and analysed using piecewise 

regression methods. Overall, the main model (Model3), indicated no statistically significant 

associations between any of the three CVD outcomes and the pan-European LUR modelled PM10 or 

NO2 (Table 6.3). Each IQR (4.1 µg/m3) increase of PM10, incident cerebrovascular disease was 

associated with a non-significant increase in risk of 8% (RR: 1.08, 95%CI: 0.96 to 1.22). Each IQR (13.2 

µg/m3) increase of NO2, was associated with a non-significant increased risk of incident 

cerebrovascular disease of 5% (RR: 1.05, 95%CI: 0.95 to 1.17). Further adjustments for Lday did not 

change these associations except for PM10 and incident CVD where after adding Lday to the model3, 

a significant association was seen with RR: 1.04 (95%CI: 1.00 to 1.07, P-value: 0.028).     

Further adjusting for BMI or ever-had diabetes did not alter these associations in Model3 (data not 

shown). 

Table 6.3 Associations between pan-European LUR modelled PM10, NO2 and incident cardiovascular 
disease: a virtually pooled analysis from EPIC-Oxford, HUNT2 and UK Biobank 

PM10, per each IQR (4.1 µg/m3) NO2, per each IQR (13.2 µg/m3) 

Incident 
cerebrovascular 
disease 

RR 95%CI Incident 
cerebrovascular 
disease 

RR 95%CI 

Model 1 1.03 0.93 to 1.13 Model 1 0.98 0.90 to 1.07 

Model 2 1.10 0.99 to 1.21 Model 2 1.07 0.98 to 1.16 

Model 3 1.08 0.96 to 1.22 Model 3 1.05 0.95 to 1.17 

Model 3+Lday 1.07 0.94 to 1.21 Model 3+Lday 1.04 0.93 to 1.16 

  

Incident ischaemic 
heart disease 

RR 95%CI Incident ischaemic 
heart disease 

RR 95%CI 

Model 1 0.93 0.87 to 0.99 Model 1 0.88 0.83 to 0.93 

Model 2 1.00 0.93 to 1.07 Model 2 0.96 0.90 to 1.01 

Model 3 1.00 0.92 to 1.08 Model 3 0.97 0.90 to 1.04 

Model 3+Lday 1.02 0.94 to 1.11 Model 3+Lday 0.99 0.91 to 1.06 

  

Incident CVD RR 95%CI Incident CVD RR 95%CI 

Model 1 0.98 0.95 to 1.00 Model 1 0.94 0.92 to 0.96 

Model 2 1.03 1.01 to 1.06 Model 2 1.00 0.98 to 1.03 

Model 3 1.02 0.99 to 1.05 Model 3 0.99 0.97 to 1.02 

Model 3+Lday 1.04 1.00 to 1.07 Model 3+Lday 1.01 0.98 to 1.03 
Model 1: adjusted for cohort, time segments of follow-up period;  
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Model 2: further adjusted for age, sex; 
 Model 3: further adjusted for education, employment status, smoking status and alcohol consumption (main model).  
RR: Rate ratio.  
Incident cerebrovascular disease (ICD10 I60-69); Incident ischaemic heart disease (ICD10 I20-I25); Incident CVD (ICD10 I00-
I99). Lday: daytime (07:00-19:00) road traffic noise at sound level, dB(A).  
BOLD indicates where significance level<0.05.  
 

Most of the subgroup analyses were generally not statistically significant (Appendix-6.1). However, for 

total incident CVD, larger and significant associations with PM10 were seen among men (RR: 1.06, 

95%CI: 1.01 to 1.12), those aged≥60 years (RR: 1.10, 95%CI: 1.04 to 1.16) and those with a 

BMI≥30kg/m2 (RR: 1.09, 95%CI: 1.00 to 1.19). Larger associations were also seen for diabetics than for 

non-diabetics for all three CVD outcomes although none of these associations were significant.   

Both PM10 and NO2 effects on incident cerebrovascular diseases were higher in men and in those less 

educated, but opposite patterns were seen for incident ischaemic heart diseases. None of these 

associations were statistically significant.    

Pooled analysis 2: physical pooling of data in Stata     

To validate the results from DataSHIELD, subsequent analyses on Stata, using Cox regression methods, 

were applied to the physically pooled data. Overall, the main results in Table 6.4 were very similar to 

those from the piecewise regression in DataSHIELD presented in Table 6.3.    

Table 6.4 Associations between pan-European LUR modelled PM10, NO2 and incident cardiovascular 
disease: a physically pooled analysis from EPIC-Oxford, HUNT2 and UK Biobank  

PM10, per each IQR (4.1 µg/m3) NO2, per each IQR (13.2 µg/m3)  

Incident 
cerebrovascular 
diseases 

N HR 95%CI Incident 
cerebrovascular 
diseases 

N HR 95%CI 

Model 1 391,584 1.03 0.94 to 1.13 Model 1 392,517 0.99 0.91 to 1.07 

Model 2 391,584 1.08 0.98 to 1.19 Model 2 392,517 1.07 0.99 to 1.17 

Model 3 282,240 1.04 0.92 to 1.18 Model 3 282,893 1.03 0.93 to 1.15 

Model 3+Lday 278,253 1.03 0.90 to 1.17 Model 3+Lday 278,878 1.03 0.92 to 1.15 

        

Incident 
ischaemic heart 
diseases 

N HR 95%CI Incident 
ischaemic heart 
diseases 

N HR 95%CI 

Model 1 391,584 0.93 0.87 to 1.00 Model 1 392,517 0.88 0.83 to 0.93 

Model 2 391,584 0.97 0.91 to 1.04 Model 2 392,517 0.95 0.89 to 1.01 

Model 3 282,240 0.97 0.89 to 1.06 Model 3 282,893 0.97 0.90 to 1.05 

Model 3+Lday 278,253 0.99 0.91 to 1.08 Model 3+Lday 278,878 0.98 0.91 to 1.06 

        



 

156 | P a g e  
 

Incident CVD N HR 95%CI Incident CVD N HR 95%CI 

Model 1 391,584 0.98 0.95 to 1.00 Model 1 392,517 0.94 0.92 to 0.96 

Model 2 391,584 1.02 0.99 to 1.05 Model 2 392,517 1.00 0.98 to 1.03 

Model 3 282,240 1.00 0.97 to 1.04 Model 3 282,893 0.99 0.97 to 1.02 

Model 3+Lday 278,253 1.02 0.98 to 1.05 Model 3+Lday 278,878 1.00 0.97 to 1.03 
Model 1: adjusted for cohort;  
Model 2: further adjusted for age, sex, year of recruitment;  
Model 3: further adjusted for education, employment status, smoking status and alcohol consumption (main model).  
HR: hazard ratio.  
Incident cerebrovascular diseases (ICD10 I60-69); Incident ischaemic heart diseases (ICD10 I20-I25); Incident CVD (ICD10 I00-
I99).  
 

Pooled analysis 3: cohort-specific meta-analysis on Stata 

Both fixed-effect and random-effect cohort-specific meta-analyses were conducted using Stata. 

Overall, the pooled estimates obtained from the cohort-specific meta-analyses were similar to those 

obtained from the individual-level pooled analyses, either in DataSHIELD (Table 6.3) or Stata (Table 

6.4).   

In Model3, for each IQR higher PM10 and NO2, incident cerebrovascular disease increased non-

significantly by 4% (HR: 1.04, 95%CI: 0.96 to 1.12) and 3% (HR: 1.03, 95%CI: 0.96 to 1.10) (Figure 6.3) 

respectively. These estimates were similar to those obtained from the individual-level analyses either 

by virtually pooling of data in DataSHIELD (Table 6.3) or physically pooling of data in Stata (Table 6.4). 

However, as expected, the confidence intervals were slightly wider for estimates obtained from the 

cohort-specific meta-analysis, compared with those obtained from pooled individual-level analysis.   

Heterogeneity existed across the three cohorts for the associations between NO2 air pollution and 

incident cerebrovascular disease (I-square: 73%) or incident ischaemic heart disease (I-square: 70%).  

A statistically significant association between NO2 and incident cerebrovascular diseases was seen for 

UK Biobank only (Figure 6.3). Each IQR (11.3µg/m3) increase of NO2 was associated with a 23% higher 

incidence of cerebrovascular disease (HR: 1.23, 95%CI: 1.04 to 1.45) among UK Biobank participants. 

A non-significant association was observed for PM10.  

In HUNT2, statistically significant negative associations were observed for both air pollutants and 

incident ischaemic heart disease (Figure 6.4).  
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Significant positive associations between PM10, NO2 and total incident CVD were also observed in the 

UK Biobank (Appendix-6.2). Each IQR (11.3µg/m3) higher NO2 was associated with an 11% increase in 

total incident CVD (HR: 1.11, 95%CI: 1.07 to 1.16), whilst each IQR (3.4µg/m3) higher PM10 was 

associated with a 16% increase in total incident CVD (HR: 1.16, 95%CI: 1.10 to 1.22).  

Figure 6.3 Effects of pan-European LUR modelled PM10 and NO2 on incident cerebrovascular disease 
(ICD10 I60-I69): cohort-specific meta-analysis on Model3. Hazard ratio expressed as per IQR increase 
of each air pollutant: IQR of PM10 was 1.6, 3.4 and 3.4 µg/m3, IQR of NO2 was 5.1, 11.7 and 11.3 µg/m3 
for HUNT2, EPIC-Oxford and UK Biobank respectively.   

 

I-squared, variation in estimated effect attributable to heterogeneity 
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Figure 6.4 Effects of pan-European LUR modelled PM10 and NO2 on incident ischaemic heart disease 
(ICD10 I20-I25): cohort-specific meta-analysis on Model3. Hazard ratio expressed as per IQR increase 
of each air pollutant: IQR of PM10 was 1.6, 3.4 and 3.4 µg/m3, IQR of NO2 was 5.1, 11.7 and 11.3 µg/m3 
for HUNT2, EPIC-Oxford and UK Biobank respectively.   
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6.1.3. Road traffic noise and incident CVD outcomes 

Pooled analysis 1: virtual pooling of data in DataSHIELD 

In the main model (Model3), no significant associations were found between Lday and incident 

cerebrovascular disease (Table 6.5). There was a weak non-significant positive association between 

Lday and incident ischaemic heart disease (HR: 1.011, 95%CI: 0.981 to 1.041) per 3.9 dB(A) of Lday.  A 

similar finding was also observed for total incident CVD (HR: 1.006, 95%CI: 0.994 to 1.018) per 3.9 

dB(A) of Lday. Further adjusting for PM10 or NO2 did not change these associations, nor did further 

adjustment for BMI or ever-had diabetes (data not shown).   

Table 6.5 Associations between Lday (07:00-19:00) road traffic noise and incident cardiovascular 
disease: a virtually pooled analysis across EPIC-Oxford, HUNT2 and UK Biobank 

Lday, per each IQR (3.9 dB(A)) 

Incident cerebrovascular disease RR 95%CI 

Model 1 0.959 0.928 to 0.991 

Model 2 0.987 0.956 to 1.019 

Model 3 0.993 0.953 to 1.035 

Model 3+PM10 0.992 0.951 to 1.034 

Model 3+NO2 0.993 0.953 to 1.035 

   

Incident ischaemic heart disease RR 95%CI 

Model 1 0.998 0.974 to 1.022 

Model 2 1.018 0.994 to 1.042 

Model 3 1.011 0.981 to 1.041 

Model 3+PM10 1.010 0.980 to 1.041 

Model 3+NO2 1.011 0.981 to 1.041 

   

Incident CVD RR 95%CI 

Model 1 0.989 0.979 to 0.999 

Model 2 1.007 0.998 to 1.017 

Model 3 1.006 0.994 to 1.018 

Model 3+PM10 1.005 0.993 to 1.017 

Model 3+NO2 1.006 0.994 to 1.018 
Model 1: adjusted for cohort, time segments of follow-up period;  
Model 2: further adjusted for age, sex;  
Model 3: further adjusted for education, employment status, smoking status and alcohol consumption (main model).  
RR: Rate ratio.  
Incident cerebrovascular disease (ICD10 I60-69); Incident ischaemic heart disease (ICD10 I20-I25); Incident CVD (ICD10 I00-
I99). BOLD indicates where significance level<0.05.  
 

In the subgroup analyses, significant associations were seen between Lday and incident ischaemic 

heart disease (RR: 1.072, 95%CI: 1.012 to 1.135) and total incident CVD (RR: 1.037, 95%CI: 1.010 to 

1.064) among current-smokers.  A borderline significant association was also seen among women for 
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the association with incident ischaemic heart diseases (HR: 1.052, 95%CI: 0.997 to 1.109). All other 

subgroup analyses were non-significant, with overlapping confidence intervals (Appendix-6.1).   

Pooled analysis 2: physical pooling of data in Stata 

As with the air pollution analyses, the results from DataSHIELD were validated against analyses of the 

physically pooled data undertaken in Stata using Cox regression methods.  Results from these Cox 

regression analyses on the physically pooled data are presented in Table 6.6, and are similar to those 

obtained from DataSHIELD in Table 6.5.  

Table 6.6 Associations between Lday (07:00-19:00) road traffic noise and incident cardiovascular 
disease: a physically pooled analysis across EPIC-Oxford, HUNT2 and UK Biobank 

Lday, per each IQR (3.9 dB(A)) 

Incident cerebrovascular 
diseases 

N HR 95%CI 

Model 1 384,683 0.959 0.928 to 0.991 

Model 2 384,653 0.982 0.951 to 1.014 

Model 3 278,867 0.997 0.953 to 1.045 

Model 3+PM10 278,241 0.997 0.952 to 1.044 

Model 3+NO2 278,866 0.997 0.952 to 1.044 

    

Incident ischaemic heart 
diseases 

N HR 95%CI 

Model 1 384,683 0.997 0.974 to 1.022 

Model 2 384,683 1.014 0.990 to 1.038 

Model 3 278,879 1.011 0.979 to 1.044 

Model 3+PM10 278,253 1.011 0.979 to 1.044 

Model 3+NO2 278,878 1.011 0.979 to 1.045 

    

Incident CVD N HR 95%CI 

Model 1 384,683 0.986 0.976 to 0.996 

Model 2 384,683 1.001 0.991 to 1.011 

Model 3 278,879 1.002 0.989 to 1.016 

Model 3+PM10 278,253 1.002 0.989 to 1.015 

Model 3+NO2 278,878 1.002 0.989 to 1.016 
Model 1: adjusted for cohort;  
Model 2: further adjusted for age, sex, year of recruitment;  
Model 3: further adjusted for education, employment status, smoking status and alcohol consumption (main model).  
HR: hazard ratio. 
 Incident cerebrovascular diseases (ICD10 I60-69); Incident ischaemic heart diseases (ICD10 I20-I25); Incident CVD (ICD10 
I00-I99).  
BOLD indicates where significance level<0.05. 
 
 

Additional analyses were conducted in Stata to investigate the associations by noise categories (Table 

6.7). Compared to those exposed to Lday levels of less than 50 dB(A), non-significantly increased 
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hazard ratios for incident cerebrovascular disease were found for those exposed to Lday levels 

between 50-55 dB(A) (HR: 1.024, 95%CI: 0.877 to 1.196) and those exposed to a level higher than 55 

dB(A) (HR: 1.038, 95%CI: 0.843 to 1.278). However, this suggestive positive trend was not seen for 

incident ischaemic heart disease or total incident CVD.  

Table 6.7 Associations between Lday (07:00-19:00), Lnight (23:00-07:00) road traffic noise and 
incident cardiovascular disease: a pooled analysis across EPIC-Oxford, HUNT2 and UK Biobank on 
Model 3* 

 N Incident 
cerebrovascular disease 

Incident ischaemic 
heart disease 

Incident CVD 

Lday, 
dB(A) 

 HR (95%CI) HR (95%CI) HR (95%CI) 

<50 17,937 1 1 1 

50-55 160,158 1.024 0.877 to 1.196 1.038 0.929 to 1.161 1.042 0.994  to 1.092 

>=55 100,577 1.038 0.843 to 1.278 0.949 0.818 to 1.100 0.996 0.938 to 1.058 

  Incident 
cerebrovascular disease 

Incident ischaemic 
heart disease 

Incident CVD 

Lnight, 
dB(A) 

 HR (95%CI) HR (95%CI) HR (95%CI) 

<40 11,884 1 1 1 

40-45 114,841 0.989 0.860 to 1.138 1.061 0.958 to 1.174 1.022 0.979 to 1.067 

>=45 151,947 0.934 0.776 to 1.125 1.037 0.910 to 1.181 0.989 0.936 to 1.043 

*adjusted for cohort, age, sex, year of recruitment, education, employment status, smoking status and alcohol consumption 

in grams per week.  
HR: hazard ratio.  
Incident cerebrovascular disease (ICD10 I60-69); Incident ischaemic heart disease (ICD10 I20-I25); Incident CVD (ICD10 I00-
I99). 
 

Pooled analysis 3: cohort-specific meta-analysis in Stata 

Overall, the pooled estimates obtained from cohort-specific meta-analyses were similar to those 

obtained from pooled individual-level analyses. There was no heterogeneity observed across cohorts 

for any of the studied associations. Null associations were seen for incident cerebrovascular disease 

(Figure 6.5).  

From the fixed effects (I-V) model, each IQR increase Lday was non-significantly associated with an 

increased risk of incident ischaemic heart disease (HR: 1.01, 95%CI: 0.97 to 1.06) (Figure 6.6), similar 

to the findings from the pooled individual-level analyses (Table 6.5 and 6.6). A similar pooled effect 

estimate was seen for total incident CVD (Appendix-6.3).  
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Figure 6.5 Effects of day-time (07:00-19:00) road traffic noise Lday on incident cerebrovascular disease 
(ICD10 I60-I69): cohort-specific meta-analysis on model3. Hazard ratio expressed per IQR increase in 
noise: IQR of Lday was 3.6, 6.8 and 3.5 dB(A) for EPIC-Oxford, HUNT2 and UK Biobank respectively. 

 

I-squared, variation in estimated effect attributable to heterogeneity 
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Figure 6.6 Effects of day-time (07:00-19:00) road traffic noise Lday on incident ischaemic heart disease 
(ICD10 I20-I25): cohort-specific meta-analysis on model3. Hazard ratio expressed per IQR increase in 
noise: IQR of Lday was 3.6, 6.8 and 3.5 dB(A) for EPIC-Oxford,HUNT2 and UK Biobank respectively. 

 

I-squared, variation in estimated effect attributable to heterogeneity;  
 

6.1.4. ESCAPE LUR air pollutant metrics: EPIC-Oxford and UK Biobank 

only 
ESCAPE air pollution data were available for both EPIC-Oxford and UK Biobank. Additional analyses 

were conducted by physically pooling data from both cohorts, using the ESCAPE LUR modelled air 

pollutant metrics.   

ESCAPE LUR modelled NO2 and PM10 was positively but non-significantly associated with all three CVD 

outcomes (Table 6.8). The association between NO2 and total incident CVD was borderline statistically 

significant (HR: 1.03, 95%CI: 1.00 to 1.06, P-value: 0.08) per 10 µg/m3 of NO2. There was a statistically 

significant association between PM2.5 and total incident CVD (HR: 1.03, 95%CI: 1.00 to 1.07, P-value: 

0.03) per 1.3 µg/m3 of PM2.5. Further adjusting for Lday did not change these observed associations.   
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Table 6.8 Associations between each ESCAPE LUR modelled air pollutant metric (per IQR higher) and 
each CVD outcome: physical pooling data from EPIC-Oxford and UK Biobank, based on Model3. 

 N Incident 
cerebrovascular 
diseases 

Incident ischaemic 
heart diseases 

Incident CVD 

  HR 95%CI HR 95%CI HR 95%CI 

NO2 251,629 1.07 0.94 to 1.21 1.03 0.94 to 1.12 1.03 1.00 to 1.06 

PM10 233,601 1.00 0.91 to 1.10 1.01 0.95 to 1.07 1.01 0.98 to 1.03 

PM2.5 233,601 1.05 0.93 to 1.19 1.04 0.96 to 1.12 1.03 1.00 to 1.07 

PMcoarse 233,596 1.00 0.89 to 1.12 0.98 0.92 to 1.05 0.97 0.94 to 0.99 

PM2.5abs 233,601 1.04 0.91 to 1.15 0.96 0.88 to 1.04 1.01 0.98 to 1.04 

Model3: adjusted for study, age, sex, year of recruitment, education, employment, smoking status and alcohol consumption.  
Hazard ratio (95%CI) was calculated for each IQR increase of NO2 (10 µg/m3), PM10 (1.8 µg/m3), PM2.5 (1.3µg/m3), PMcoarse 

(1.4µg/m3) and PM2.5absorbance (0.3 10−5 /m).  

HR: hazard ratio.  
Incident cerebrovascular diseases (ICD10 I60-69); Incident ischaemic heart diseases (ICD10 I20-I25); Incident CVD (ICD10 I00-
I99).  
BOLD indicates where significance level<0.05.  
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6.2. Discussion   

6.2.1. Ambient air pollution effects   

Air pollution and cerebrovascular disease  

In this PhD work, pooling harmonised data from EPIC-Oxford, HUNT2 and UK Biobank, I found a 

positive but non-significant association between air pollution and incident cerebrovascular disease 

(ICD-10: I60-I69). Effect sizes were similar for an IQR higher exposure to both pan-European LUR 

modelled PM10 and NO2.These estimates were adjusted for some major risk factors and independent 

of day-time road traffic noise effects.   

To date, only a small number of European studies have investigated the long-term effects of air 

pollution on incident cerebrovascular disease. These studies were conducted in a range of 

geographical regions across Europe and in various study designs. As with the results I report here, 

most previous studies did not find a statistically significant association, although they did suggest that 

air pollution is a potential risk factor for cerebrovascular diseases.   

A study of 20,070 participants in Stockholm investigated the effects of long-term exposure to road 

traffic air pollution on stroke (ICD-10: I61-64) incidence in four local cohorts, using cohort-specific 

meta-analysis(Korek et al., 2015). They found that a 20 µg/m3 increase in nitrogen oxides (NOx) at 

recruitment address was associated with a non-significant 16% increase of incident stroke (HR: 1.16, 

95%CI: 0.83 to 1.61). A similar hazard ratio was seen per 10 µg/m3 increase in PM10. The study was 

conducted in a region with relatively lower air pollution levels than other regions across Europe and 

annual exposure estimates were modelled at home address every year for each participant from the 

study entry at 1992-2004 up to the end of follow-up at 2011, taking into account the changes of 

residence. Of note, there was no marked difference in risk estimates regarding the air pollution effects 

on either ischaemic stroke or haemorrhagic stroke. Also, the observed association between air 

pollution and stroke was not affected by the use of different exposure windows. In fact, the authors 

found that the observed associations for NOx or PM10 did not change materially when using either the 

time-weighted exposure 0-2 years or 6-10 years prior to a stroke event. Two other Scandinavian 
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studies have also investigated air pollution effects on stroke. In Oslo, a 10 µg/m3 increase in NO2 at 

recruitment address during 1974-1978 was non-significantly associated with a 4% increased risk of 

dying from cerebrovascular diseases up to 1998 (HR: 1.04, 95%CI: 0.94 to 1.15) in 16,209 middle-aged 

men(Nafstad et al., 2004). Again, the authors reported that exposure time window was not an 

important factor in modifying the observed association. In the Danish Diet, Cancer, and Health (DCH) 

Cohort, an IQR (6.2 µg/m3) increase of NO2 since 1971 to the end of follow-up in 2006 was non-

significantly associated with a 5% increase in incident stroke (HR: 1.05, 95%CI: 0.99 to 1.11) and a 22% 

increase in fatal stroke (HR: 1.22, 95%CI: 0.99 to 1.49)(Andersen et al., 2012a). Unlike the Stockholm 

study, this Danish study found the association was stronger for ischaemic stroke than for 

haemorrhagic stroke. For all three Scandinavian studies, historical modelled individual-level air 

pollution data were available years if not decades prior to the incident stroke event.    

Maheswaran and colleagues conducted several small-area studies in the UK on this topic(Maheswaran 

et al., 2012; Maheswaran et al., 2005; Maheswaran & Elliott, 2003). In a study in South London, 

incident stroke cases in a defined region were registered during 1995-2004. For each 10 µg/m3 

increase in PM10 or NO2 in 2002, the adjusted rate ratio for incident ischaemic stroke was non-

significantly increased at 1.22 (95%CI: 0.77 to 1.93) and 1.11 (95%CI: 0.93 to 1.32) respectively in all 

age groups(Maheswaran et al., 2012). Although the overall association was non-significant, they found 

a significantly increased risk of incident ischaemic stroke with PM10 exposure among those aged 65-

79 years (adjusted rate ratio: 1.86, 95%CI: 1.10 to 3.13) but not those aged 80 years and above. In 

both this PhD study and the Danish DCH cohort study(Andersen et al., 2012a), associations were not 

materially different by different age groups. No evidence was found for incident haemorrhagic stroke. 

Two earlier small-area studies were also conducted by Maheswaran and colleagues(Maheswaran et 

al., 2005; Maheswaran & Elliott, 2003). One reported that living within 200m of a main road was 

significantly associated with an excess risk (5%, 95%CI: 4% to 7%) of dying from stroke in men and 

women in England and Wales(Maheswaran & Elliott, 2003). The other, using modelled air pollutant 

exposure (NOX and PM10), further confirmed that a significant excess risk of stroke mortality was 
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observed among areas in the highest exposure group in Sheffield(Maheswaran et al., 2005). This 

Sheffield study also suggested that air pollution had stronger effects on stroke mortality (37%, 95%CI: 

19% to 57%) than morbidity (13%, 95%CI: 1% to 27%), comparing highest exposure group of NOx to 

the lowest. Later the same research group found that outdoor air pollution increased the risk of death 

after first stroke among 3,323 stroke cases in London(Maheswaran et al., 2010). It should be noted 

that although very small geographical units were used in these studies, the possibility of ecological 

bias cannot be ruled out. Further, these small-area studies did not take into account individual-level 

risk factors such as smoking or alcohol consumption, which makes it difficult to compare my results 

with theirs.  

The first report on long-term air pollution effects on incident CVD in a large UK population and taking 

into account individual risk factors was provided by Atkinson and colleagues(Atkinson et al., 2013). 

They investigated effects of annual PM10 and NO2 exposures on a range of incident CVD over a 5-year 

period (2003-2007), using data from 836,557 patients who registered in general practice across 

England. In their study, they found non-significantly increased hazard ratios for incident stroke of 1.01 

(95%CI: 0.98 to 1.04) for each IQR (3.0 µg/m3) increase of PM10 and 1.03 (95%CI: 0.99 to 1.07) per each 

IQR (10.7 µg/m3) increase of NO2 respectively. These estimates were very similar to those I found in 

this PhD work using selected cohorts, although I have included all incident cases of cerebrovascular 

disease (ICD10: I60-I69) whilst Atkinson et al only investigated stroke (ICD10: I61, I63-I64) specifically.  

There have been other studies conducted in other parts of Europe. In the Swiss National Cohort, the 

hazard ratio for stroke mortality was close to unity in relation to PM10 exposure(Huss et al., 2010).  In 

contrast, in a Dutch cohort, background NO2 and PM2.5 were significantly associated with 

cerebrovascular mortality (HR: 1.51, 95%CI: 1.07 to 2.12, per 30 µg/m3 of NO2, and HR: 1.62, 95%CI: 

1.07 to 2.44, per 10 µg/m3 of PM2.5)(Beelen et al., 2009). In the German Heinz Nixdorf Recall (HNR) 

cohort of 4,433 participants in Ruhr area, PM10 exposure was significantly associated with stroke 

incidence (HR: 2.61, 95%CI: 1.13 to 6.00)(Hoffmann et al., 2015). A slightly stronger significant 



 

168 | P a g e  
 

association was also observed for PM2.5. In the Greek component of the EPIC cohort study, where air 

pollution levels were higher than those of other studies conducted in North-west Europe, a 10 µg/m3 

PM10 was non-significantly associated with a hazard ratio of 1.17 (95%CI: 0.60 to 2.26) for incident 

stroke(Katsoulis et al., 2014). A census-based study in Rome also with a relatively higher level of air 

pollution reported that each 10 µg/m3 increase of PM2.5 was significantly associated with an excess 

risk of mortality from cerebrovascular disease (HR: 1.08, 95%CI: 1.04 to 1.13)(Cesaroni et al., 2013). 

However, an effect was not seen for NO2 (HR: 1.01, 95%CI: 0.99 to 1.03).  

Recently, two European-wide studies conducted by the ESCAPE consortium provided further 

evidence. A meta-analysis of 11 cohorts across Europe (Sweden, Finland, Denmark, Germany, Italy) 

reported no association between a 10 µg/m3 increase of PM10 and incident stroke (HR: 1.11, 95%CI: 

0.90 to 1.36)(Stafoggia et al., 2014). The hazard ratio for NO2 was close to unity. This is contrast to my 

findings in the pooled analyses across EPIC-Oxford and UK Biobank, using the same ESCAPE exposure 

metrics. I found that the hazard ratio was slightly stronger for NO2 (HR: 1.07, 95%CI: 0.94 to 1.21) but 

unity for PM10 (HR: 1.00, 95%CI: 0.91 to 1.10) per an IQR increase of 10 and 1.8 µg/m3 respectively. 

Interestingly, in the ESCAPE study the authors found significantly increased risks for incident stroke 

with PM2.5 exposure among those aged ≥60 years, never-smokers and those with an exposure level of 

PM2.5 less than 25 µg/m3.  

Another ESCAPE study of 22 European cohorts found that most hazard ratios for the associations 

between air pollution and mortality from cardiovascular diseases were close to unity, except for 

between PM10 and mortality from cerebrovascular diseases (HR: 1.22, 95%CI: 0.91 to 1.63, per 10 

µg/m3 of PM10)(Beelen et al., 2014b). EPIC-Oxford was part of this ESCAPE mortality study. In fact, the 

hazard ratio for cerebrovascular mortality found for EPIC-Oxford was similar to what I found for 

cerebrovascular incidence in EPIC-Oxford using ESCAPE metrics.  

I have summarised all the aforementioned European studies in Table 6.10. Including this PhD work, 

there have been 13 studies across Europe investigating this topic to date. These studies, most of which 
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were published in the last 3-4 years, have different study designs, follow-up periods, exposure 

assessment approaches, exposure time windows and outcome definitions. Nevertheless, the positive 

but non-significant associations with both PM10 and NO2 that I present here are fairly consistent across 

these European studies. In fact, only three studies detected a significant association(Hoffmann et al., 

2015; Cesaroni et al., 2013; Beelen et al., 2009), two of which studied cerebrovascular mortality 

specifically(Cesaroni et al., 2013; Beelen et al., 2009).   

A meta-analysis published in 2015 suggested a significantly positive association between short-term 

air pollution and stroke hospital admission or stroke mortality across different parts of the world(Shah 

et al., 2015). However, the long-term effects of air pollution on stroke or total cerebrovascular disease 

are less clear. More recently, studies on the long-term air pollution effects in Asia, North America and 

Europe were included in an analytical review published by Scheers et al in late 2015(Scheers et al., 

2015). Overall, among 20 studies investigating stroke incidence and 12 studies investigating stroke 

mortality, a 10 µg/m3 increase of PM10 was associated with a hazard ratio of 1.061 (95%CI: 1.018 to 

1.105) for incident events and a hazard ratio of 1.080 (95%CI: 0.992 to 1.177) for mortality events 

respectively. In Europe, the respective figures for incident and mortality events were 1.057 (95%CI: 

0.973 to 1.148) based on eight studies and 1.213 (95%CI: 0.955 to 1.541) based on five studies.  

Scheers et al further combined the data from Europe and North America. They observed that a 5 µg/m3 

increase of PM2.5 was associated with a hazard ratio of 1.064 (95%CI: 1.021 to 1.109) for incident 

stroke events and a hazard ratio of 1.125 (95%CI: 1.007 to 1.256) for stroke mortality events. 

Associations with PM10 were also positive but not statistically significant.   

Since most of the European studies mentioned here had already been included in Scheers’s review, I 

further complement these findings by pooling hazard ratios of NO2 effects from these European 

studies (Table 6.9). To my knowledge, there is no published analytical review of the long-term effects 

of NO2 on incident stroke or cerebrovascular disease in European studies. I excluded those five studies 

investigating stroke mortality, and focused on incident events. For incident studies, the ones in 
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Stockholm(Korek et al., 2015) and in Denmark(Andersen et al., 2012a) were already included as parts 

of the ESCAPE study(Stafoggia et al., 2014). Therefore, five estimates, including the one from this PhD 

work, were included, giving a hazard ratio of 1.031 (95%CI: 0.997 to 1.066) per 10 µg/m3 increase of 

NO2 (Figure 6.8). No heterogeneity across the studies was detected. Including the five mortality 

studies alone in the meta-analysis gave a hazard ratio of 1.02 (95%CI: 1.01 to 1.04) per 10 µg/m3 

increase of NO2.      

General issues 

Some issues need to be addressed. First, I have included all incident cerebrovascular cases (ICD10: I60-

I69) in my main analyses and did not present results specifically for different subtypes of 

cerebrovascular diseases. Only three previous long-term air pollution studies in Europe have published 

the results for ischaemic stroke and haemorrhagic stroke separately(Korek et al., 2015; Andersen et 

al., 2012a; Maheswaran et al., 2012). One found that the observed associations were not much 

different between the two subtypes(Korek et al., 2015), which was probably due to the limited number 

of haemorrhagic stroke cases in that particular study, while the other two much larger studies showed 

stronger associations for ischaemic stroke(Andersen et al., 2012a; Maheswaran et al., 2012). In 

general, most other literature also suggests that air pollution may have stronger effects on ischaemic 

stroke(Scheers et al., 2015). Among the 2,871 incident cerebrovascular disease in this PhD study, 501 

(17%) were classified as haemorrhagic stroke (ICD10: I60, I61, I62) and 1,334 (46%) were classified as 

ischaemic stroke (ICD10: I63). When I re-ran the main analyses for each subtype of stroke, I found a 

positive, but non-significant, association between PM10 and NO2 and ischaemic stroke, and null 

associations with haemorrhagic stroke (data not shown). It seems that air pollution effects may 

possibly be confined to ischaemic stroke only although more studies are warranted. This is possibly 

because haemorrhagic stroke is less common than ischaemic stroke and therefore studies usually lack 

power to detect effects if present(Scheers et al., 2015). However, and perhaps more importantly, 

ischaemic and haemorrhagic stroke have different pathogenesis(Scheers et al., 2015). For example, 

ischaemic stroke is more usually related to atherosclerosis, a general cardiovascular disease which has 
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been associated with long-term exposure to air pollution in the emerging epidemiological 

studies(Kunzli et al., 2010).  

Second, as with most other European studies, I observed positive but non-significant associations 

between NO2 and incident cerebrovascular events in the pooled analyses using both the pan-European 

and ESCAPE LUR modelled metrics. In UK Biobank only, the largest cohort of this PhD study, a 

significant association was observed. While pooling all the estimates from these European studies, I 

found a borderline significant excess risk of incident cerebrovascular event in relation to long-term 

NO2 exposure, with a pooled effect size similar to that reported by Scheers et al for long-term PM10 

exposure among the reviewed European studies. This permits speculation that long-term exposure to 

NO2 on stroke /cerebrovascular events is at least as important as that of PM.  

Cardiovascular effects of long-term exposure to NO2 are still under debate. It remains uncertain 

whether NO2 on its own acts a casual pollutant or merely an indicator of other pollutants emitted from 

the same source. Road traffic is the shared source for NO2, PM and noise, it is therefore likely that the 

effect of each pollutant on a specific CVD outcome may be confounded by these other exposures. I 

did not adjust for PM effects in the NO2 models as correlations between PM and NO2 were high (r>0.6) 

which precluded a co-pollutant analysis. According to an interim report published by the UK 

Committee on the Medical Effects of Air Pollutants (COMEAP) in December 2015, coefficients from a 

single-pollutant model of either NO2 or PM2.5 are likely to be overestimated as there may be some 

substantial overlaps between the two pollutants(UK Committee on the Medical Effects of Air 

Pollutants, December 2015). Nevertheless, the COMEAP suggested that although the possibility of NO2 

as an indicator of other pollutants cannot be entirely ruled out, increasing scientific evidence shows 

that NO2 should be sensibly treated as a possible causal air pollutant which exerts its own health 

impacts.  

This suggestion was recently supported by a meta-analysis of worldwide studies which reported a 

significant positive association between short-term NO2 exposure and stroke(Shah et al., 2015). One 
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of the key strengths of this PhD study was that road traffic noise was adjusted for in the air pollution 

models. NO2 or PM effects on incident cerebrovascular diseases did not change substantially after 

adjustment for day-time road traffic noise in my study, which suggested an independent effect of 

each. This is in line with two earlier ESCAPE studies(Beelen et al., 2014b; Stafoggia et al., 2014) and 

most other literature as reviewed in Chapter 1. However, findings from another study of the Danish 

DCH cohort suggested a possible confounding effect(Sorensen et al., 2014). In the Danish DCH cohort 

study of 57,053 participants, NO2 and road traffic noise were each significantly associated with 

incident ischaemic stroke in a single-pollutant model. However, when mutually adjusted, only the 

effect of road traffic noise remained statistically significant. These findings should be interpreted with 

caution, as a moderately high correlation (r=0.66) was found between the road traffic noise and NO2 

in this Danish study, which suggested a possible collinearity issue in the model specifications.                  

Third, results from this current PhD work and those presented in Figure 6.7, show consistently stronger 

associations between long-term PM2.5 exposure and stroke incidence than PM10. This contrast was also 

observed in a recent review on short-term air pollution effects on hospitalisation for stroke(Shah et 

al., 2015). Possible explanations include the possibility that smaller particles are likely to cause 

additional systemic cardiovascular effects, and find it easier to enter the blood-brain barrier and 

impair the neural cells(Genc et al., 2012). However, since the long-term PM2.5 effect on stroke 

incidence was only studied among a few studies to date, there is a need for more studies to confirm 

whether this pollutant is more hazardous to stroke than PMcoarse or PM10.     

Fourth, in this PhD, I observed that both PM10 and NO2 effects were stronger in men than in women 

(P-value for interaction<0.05), although most previous studies did not find significant effect 

modification by sex.  Similar to the findings of the Danish DCH cohort study(Andersen et al., 2012a), I 

also found the effects of NO2 on stroke were attenuated among those with more years of education 

(p-value for interaction<0.05). Similar findings were seen for PM10 but the effect modification was not 

significant (p-value for interaction=0.06). There were some suggestions of possible effect 
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modifications by BMI in this PhD study but the interaction terms were not statistically significant. 

Contrary to the ESCAPE study(Stafoggia et al., 2014), I observed stronger associations between PM10, 

but not NO2, on stroke incidence among ex-smokers and current-smokers, which may suggest a 

synergic effect of both air pollution and tobacco smoking on stroke incidence. Reports of effect 

modifications on the associations between long-term air pollution and stroke incidence are rather 

mixed in the current literature and it is difficult to draw a clear conclusion based on current knowledge. 

Nevertheless, this PhD study benefited from its pooled individual-level analysis design, which provided 

a large study sample within which to detect significant interaction terms, if any.      

Considering both the previous studies and this PhD work through meta-analysis, there is suggestive 

evidence for an association between long-term PM or NO2 air pollution exposure and cerebrovascular 

incidence among middle-aged adults. The results from this PhD work strengthen evidence for a 

possible dose-response relationship, by analysing harmonised data from three of the largest European 

cohorts. Also, pooled data were analysed on individual-level, with results were further validated, and 

heterogeneity explored using cohort-specific meta-analysis. Two sets of air pollution data (pan-

European and ESCAPE) were used in the analyses and results were comparable. Only a few previous 

studies have been able to adjust for noise in the analyses, with one including aircraft noise(Huss et al., 

2010), one night-time noise(Hoffmann et al., 2015) and three day-time road traffic noise(Beelen et al., 

2014b; Stafoggia et al., 2014; Sorensen et al., 2014). All of these studies, except one(Sorensen et al., 

2014), suggested that traffic noise was unlikely to have confounded the relationship between air 

pollution and stroke incidence or mortality. Results from my analyses are in support of an independent 

effect of air pollution and noise on incident cerebrovascular disease.    
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Authors Published 
year 

Region Study 
type 

Study 
entry 

Study 
end 

Incidence rate 
(cases/person-
year ) 

ICD code Endpoint Mean 
age or 
age 
range, 
years 

NO2 PM10 PM2.5 Independent 
of noise 

Korek  2015 Stockholm, 
Sweden  

cohort 1992-
2004 

2011 3.6/1000  ICD10: I61-
I64 

incidence 60 1.08  
(0.91-1.27)   

1.14  
(0.68-1.90)  

n/a n/a 

Nafstad  2004 Oslo, 
Norway 

cohort 1972-
1973 

1998 0.7/1000 ICD10:I60-
I69 

mortality 40-49 1.04  
(0.94-1.15)  

n/a n/a n/a 

Andersen  2012 Denmark cohort 1993-
1997 

2006 3.9/1000 ICD10: I60, 
I63, I64 

incidence 
/mortality 

56 1.08  
(0.98-1.18) 
for 
incidence; 
1.38  
(0.98-1.90) 
for 
mortality  

n/a n/a n/a 

Maheswaran  2012 London, UK small-
area 

1995 2004 0.97/1000 unkown incidence all 1.07  
(0.91-1.26)  

1.09 
(0.72-1.65)  

n/a n/a 

Cai  
[this PhD] 

2016 UK, Noway cohort 1993-
2010 

2012-
2015 

1.7/1000 ICD10:I60-
I69 

incidence 55 1.02  
(0.95-1.11)   

1.10  
(0.82-1.50)   

1.46  
(0.57-3.81) 

yes 

Atkinson  2013 England, UK census-
based 

2003 2007 13012 cases 
/819370 
subjects 

unknown incidence 40-89 1.03  
(0.99-1.07)  

1.03  
(0.93-1.14)  

n/a n/a 

Beelen  2009 Netherlands cohort 1986 1987-
1996 

1175 
deaths/111391 
subjects 

ICD10:I60-
I69 

mortality 55-69 1.15  
(1.02-1.28)  

n/a 1.62  
(1.07-2.44)  

n/a 

Huss  2010 Switzerland census-
based 

2000 2005 1.1/1000 ICD10: I60-
64  

mortality >=30 n/a 0.99  
(0.98-1.00)  

n/a yes (aircraft) 

Hoffmann 2015 Ruhr, 
Germany 

cohort 2000-
2003 

2008-
2011 

2.0/1000 ICD10: I61, 
I63,I64 

incidence 45-74 n/a 4.58  
(1.21-17.2)  

27.75  
(1.93-392.7)  

yes 

Cesaroni 2013 Rome, Italy census-
based 

2001 2010 0.13/1000 ICD9: 430-
438 

mortality >=30 1.01  
(0.99-1.03)  

n/a 1.08  
(1.04-1.13)  

n/a 

Katsoulis 2014 Greece cohort 1997 2011 60 cases/2752 
subjects 

ICD10:I60-
I69 

incidence 47 0.98 
(0.71-1.34)  

1.17  
(0.60-2.26)  

n/a n/a 

Stafoggia 2014 Europe 
(ESCAPE) 

cohort 1992 2010 2.7/1000 ICD10:I61-
I64 

incidence 44-74 0.99  
(0.89-1.11) 

1.11  
(0.90-1.36) 

1.42  
(0.77-2.62) 

yes 

Beelen 2014 Europe 
(ESCAPE) 

cohort 1985 2012 0.48/1000 ICD10:I60-
I69 

mortality 51 1.01  
(0.93-1.10) 

1.22  
(0.91-1.63) 

1.46  
(0.76-2.86) 

yes 
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Table 6.9 a summary of European (north to south) studies on long-term air pollution effects (scaled as per 10 µg/m3 increase) on incident cerebrovascular 
events. Bold indicates the results from this PhD work. 

 

Scheer 2015 Europe 
(Scheers's 
review) 

        1.06  
(0.97-1.15) 
for 
incidence; 
1.21  
(0.96-1.54) 
for mortality 

1.54  
(1.12-2.07) 

n/a 
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Figure 6.7 Meta-analysis of European studies on long-term effects of per 10 µg/m3 increase NO2 (or 
NOx) on incident cerebrovascular disease  

 

I-squared, variation in estimated effect attributable to heterogeneity; I-V, inverse-variance weighted 
fixed effects method; D-L, DerSimonian-Laird random effects method 
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Air pollution and Ischaemic heart disease 

Pooling data from EPIC-Oxford, HUNT2 and UK Biobank, I found null associations between the pan-

European LUR modelled PM10 or NO2 and incident ischaemic heart disease (IHD). In the cohort-specific 

analyses, statistically significant negative associations were found in HUNT2 whilst positive non-

significant associations were found in both EPIC-Oxford and UK Biobank.   

The vast majority of previous studies have focused on air pollution effects on mortality from IHD or 

cardiovascular diseases in general. Only in recent years has evidence for an effect on incident 

cardiovascular events started to emerge. Results from this PhD work are consistent with previous 

studies in Europe and North America.  

11 European cohorts (six from Scandinavian countries, two from Germany, and three from Italy) were 

included in an ESCAPE meta-analysis published in 2014 by Cesaroni et al(Cesaroni et al., 2014). In this 

ESCAPE study, annual mean PM2.5 per 5 µg/m3 was not associated with increased risk for incident 

acute coronary events (ICD10: I20.0, I21, I23, I24; HR: 1.13, 95%CI: 0.98 to 1.30). Although all incident 

cases of ischaemic heart disease (ICD10: I20-I25) were included in this PhD analysis, I observed a 

similar effect size but a wider 95% confidence interval for ESCAPE LUR modelled PM2.5 (HR: 1.14, 

95%CI: 0.84 to 1.55, per 5µg/m3 increase) among the pooled analysis of both UK cohorts. I also 

restricted the studied outcome to acute coronary events in EPIC-Oxford and UK Biobank as defined by 

Cesaroni et al in the ESCAPE study, and observed a slightly higher effect estimate (HR: 1.18, 95%CI: 

0.68 to 2.06, per 5µg/m3 increase of PM2.5).  

In the ESCAPE study, while the pooled effect estimate for PM2.5 on incident acute coronary events was 

not statistically significant, a significant pooled estimate was observed for PM10 (HR: 1.12, 95%CI: 1.01 

to 1.25, per 10µg/m3 increase)(Cesaroni et al., 2014). Additionally for subgroup analyses, the ESCAPE 

study also reported statistically significant positive associations for both PM2.5 and PM10 when 

restricting the study sample to those with an air pollution exposure level under the current European 
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annual limits (PM2.5: 25 µg/m3, PM10: 40µg/m3)(European Union, ). The association with NO2 was non-

signficant (HR: 1.03, 95%CI: 0.97 to 1.08, per 10µg/m3 increase) in this ESCAPE study.  

In contrast to these findings on incident acute coronary events, another ESCAPE study looking at CVD 

mortality involving 22 cohorts, including all 11 cohorts of Cesaroni et al’s incidence study, found no 

associations between either PM or NO2 and mortality from ischaemic heart disease (ICD10: I20-I25) 

or myocardial infarction (ICD10: I21, I22)(Beelen et al., 2014b). The authors speculated that favourable 

changes in cardiovascular risk factors may have occurred in the past few decades (quit smoking, better 

medication etc.), which would result in a lower mortality rate for cardiovascular diseases over time in 

Europe, possibly masking the association between air pollution and cardiovascular mortality.   

In Skåne county of southern Sweden, 13,512 participants of 18-80 years were followed to first incident 

myocardial infarction (ICD10: I20-I23) during 2000-2010(Bodin et al., 2016). The study reported a 

moderate non-significant association with NOx (Incidence rate ratio: 1.02, 95%CI: 0.86 to 1.21, per 10 

µg/m3 increase), which is similar to what I found for both UK cohorts. Further adjusting for road traffic 

noise in this Swedish study did not change this association. The statistical power of the Swedish study 

was in part limited by the fact that most participants were exposed to a relatively low level of NOX 

(mean annual NOx (5-95 percentile) was 13 (6-33) µg/m3 at baseline in 2000, and 9 (5-21) µg/m3 at 

the end of follow-up in 2010), compared to other parts of Europe, and lower than that in my UK 

cohorts. Another Swedish study of 7,494 men in the city of Gothenburg had a much longer follow-up 

period (1973-2007) for incident myocardial infarction (ICD10: I21). This study reported null 

associations between residential NOx exposure and incident myocardial infarction, with all hazard 

ratios close to unity(Stockfelt et al., 2015). The study did not observe substantial changes in the effect 

estimates when using different time windows (last year, last five years, since enrolment) for NOX 

exposure. However, this Gothenburg study reported a borderline significant association between per 

10 µg/m3 increase NOx since enrolment and mortality from ischaemic heart disease (HR: 1.02, 95%CI: 

0.99 to 1.05).  
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Atkinson and colleagues previously investigated this topic in a very large sample of 836,557 patients 

in England(Atkinson et al., 2013) using health data from a primary care database. To assign exposure, 

postcode of residence was intersected with a 1km grid air pollution exposure surface. A non-significant 

1% increased risk for myocardial infarction (ICD10: I21-I23) per 3 µg/m3 increase of PM10 (HR: 1.01, 

95%CI: 0.98 to 1.05) and a similar effect size per 10.7 µg/m3 increase of NO2 (HR: 1.02, 95%CI: 0.98 to 

1.07) were observed. These estimates are comparable to those I have observed for the two UK cohorts 

in this PhD work.   

In Eindhoven of the Netherlands, de Kluizenaar et al reported a higher effect estimate per 5th to 95th 

percentile interval increase for NO2 (HR: 1.12, 95%CI: 0.96 to 1.32, per 14.1µg/m3) than for PM10 (HR: 

1.04, 95%CI: 0.90 to 1.21, per 3.1 µg/m3) in relation to incident ischaemic heart disease or 

cerebrovascular disease among 18,213 participants(de Kluizenaar et al., 2013). These effect estimates 

however cannot be compared directly to others as they do not refer specifically to the incident 

ischaemic heart disease alone.   

A study in Rome found that the association was stronger between each 10 µg/m3 increase NO2 and 

fatal coronary events (Rate ratio: 1.07, 95%CI: 1.02 to 1.12) than non-fatal events (Rate ratio: 1.01, 

95%CI: 0.97 to 1.05)(Rosenlund et al., 2008). Combining data from fatal and non-fatal events, per 10 

µg/m3 increase NO2 was significantly associated with 3% increased risk for incident coronary events 

(Rate ratio: 1.03, 95%CI: 1.00 to 1.07). It should be noted that participants in this Rome study were 

enrolled and followed using population registries. As a result, Information on some individual-level 

confounders such as smoking habit were not available for adjustments in the analyses.           

Effect estimates that I observed in this PhD work fell within the range of estimates from other 

European studies, most of which did not find a statistically significant association. I summarise all the 

European studies on incident IHD including this PhD work, in Table 6.10. I did not include those 

European studies on IHD mortality because of the relatively large amount of literature available and 
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which has already been summarised in two recently published reviews(Faustini, Rapp & Forastiere, 

2014; Hoek et al., 2013).  

As with incident cerebrovascular disease, I summarised findings by pooling hazard ratios of NO2 effects 

from published European studies on incident ischaemic heart disease only (Figure 6.8). Overall, among 

the six studies included, there was a borderline significant association between per 10 µg/m3 higher 

NO2 and incident IHD (HR: 1.01, 95%CI: 1.00 to 1.03).  

There are relatively fewer studies investigating PM effects on incident IHD in Europe. The main 

evidence on this topic to date is based on three women-only cohorts in America.   

In the California Teachers Study cohort, Lipsett et al found that there was no association between 

PM10 and myocardial infarction incidence (HR: 0.98, 95%CI: 0.91 to 1.06, per  10 µg/m3 increase) but 

a positive non-significant association with NO2 (HR: 1.05, 95%CI: 0.90 to 1.24, per 10.27 µg/m3 

increase) among 100,340 women(Lipsett et al., 2011). In the Women’s Health Initiative (WHI) 

Observational Study of 65,893 postmenopausal women, Miller et al reported that a 10 µg/m3 increase 

of PM2.5 was associated with 21% (HR: 1.21, 95%CI: 1.04 to 1.42) increased risk for first coronary heart 

disease(Miller et al., 2007). However, a significant association was not seen for first myocardial 

infarction (HR: 1.06, 95%CI: 0.85 to 1.34). Both these studies assigned air pollution estimates from the 

nearest fixed monitoring sites based on participant’s residence.  

In the Nurses’ Health Study of 66,250 participants, Puett et al observed that a 10 µg/m3 increase of 

modelled PM2.5 was non-significantly associated with 11% (HR: 1.11, 95%CI: 0.79 to 1.55) increased 

risk for first coronary heart disease(Puett et al., 2008). Two recent analyses from this cohort were 

published. One suggested that moving to an area with a higher level of NO2 may increase the incident 

risk for incident myocardial infarction(Hart et al., 2013). For each 1 ppb increase of NO2, compared to 

levels at previous address, there was a 22% increased risk for incident myocardial infarction (HR: 1.22, 

95%CI: 0.99 to 1.50). The other study found that while PM10 effects on incident coronary heart disease 
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were non-significant in the whole study sample, statistically significant associations were seen among 

diabetics (HR: 1.12, 95%CI: 1.02 to 1.23, per 10 µg/m3 increase)(Hart et al., 2015).  

For these three women-only cohorts in America, there was a consistently stronger association 

between air pollution and mortality from IHD than that seen for incident IHD.   

A study in Vancouver, using data from health insurance administrative database, reported that an IQR 

increase of black carbon was significantly associated with a 3% increased risk for coronary heart 

disease (HR: 1.03, 95%CI: 1.01 to 1.05)(Gan et al., 2011). This association was independent of 

adjustment for PM2.5 and NO2. However, neither PM2.5 nor NO2 was associated with incident coronary 

heart disease in the study.   

General issues 

Some issues which are specifically related to this PhD analysis on the link between air pollution-

incident IHD should be noted.  

First, although my findings from these three large European cohorts were consistent with those 

previously reported, these associations were all null or not statistically significant, suggesting a general 

lack of evidence on the role of long-term air pollution in incident IHD. In this PhD work, I combined 

incident data from fatal and non-fatal IHD events and did not specifically study mortality from IHD. 

Most current evidence suggests a stronger association with IHD mortality than with morbidity. Two 

recent reviews reported a significant pooled effect estimate for both PM2.5 (Hoek et al., 2013)and NO2 

(Faustini, Rapp & Forastiere, 2014) on cardiovascular mortality. This may be plausible as it was 

suggested that air pollution may not necessarily initiate the response but indeed affects the severity 

of the response(Faustini, Rapp & Forastiere, 2014; Hoek et al., 2013). For example, subjects who died 

from ischaemic heart disease may have suffered a severe response (e.g. severe ischemia) to a high 

level of air pollution exposure over a short time scale.  
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Second, in HUNT2 I found an unexpected beneficial direction of effect of long-term air pollution on 

incident IHD. I don’t have a clear reason to explain this, and suggest this finding should be interpreted 

with caution.   

Third, I found that for both PM10 and NO2, stronger suggestive (although still non-significant) 

associations were seen among women, those aged<60 years, never-smokers, diabetics, those with a 

BMI greater than 30 kg/m2 and those with a higher level of education (all p-values for 

interaction<0.05). Unlike many previous studies limited by study sample size, I was able to investigate 

effect modifications in this very large sample by including interaction terms in the models. Current 

evidence is mixed on susceptible groups in relation to air pollution effects on IHD, and it remains 

difficult to compare different susceptibility factors across different study populations.  

Perhaps more consistent with previous studies, stronger associations between air pollution and 

incident IHD were found among never-smokers and diabetics. In this PhD study, for never-smokers, 

there was a borderline significant association between PM10 and incident IHD (HR: 1.13, 95%CI: 0.99 

to 1.29, per 4.1 µg/m3 increase) compared to ex-smokers (HR: 1.00, 95%CI: 0.87 to 1.15) and current-

smokers (HR: 0.82, 95%CI: 0.68 to 0.98). It is possible that stronger associations with incident IHD were 

found as there may have been less ‘noise’ from tobacco smoking on the air pollution effects. This was 

not the case for incident cerebrovascular disease, as I found stronger associations in ex-smokers and 

current smokers in the same populations. For diabetics, it has been suggested that increased systemic 

inflammation found in diabetics may facilitate the role of air pollution on cardiovascular diseases(Hart 

et al., 2015). Indeed, I found a consistently stronger association among diabetics for both incident 

cerebrovascular and ischaemic heart disease.  

Fourth, this PhD analysis provides further evidence that long-term air pollution effects on incident IHD 

were not affected by road traffic noise.  
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Taken together, in this pooled analysis of EPIC-Oxford, HUNT2 and UK Biobank, there is weak evidence 

for an association between long-term PM or NO2 air pollution exposure and incident IHD. 

Nevertheless, effect estimates that I observed in this PhD work fell within the range of estimates from 

other European studies. Pooling hazard ratios for incident IHD and NO2 from all European studies, 

including the one from this PhD, yielded a possible 1% increased risk for incident IHD (95%CI: 0 to 3%) 

among European populations. Fewer studies in Europe have investigated PM effects on incident IHD. 

Evidence from the ESCAPE study suggested the association was statistically significant for PM10 but 

not for PM2.5, but the effect estimate was higher for PM2.5 for each 10 µg/m3
 increase. This again 

suggests that cardiovascular effects of PM2.5 to humans may be more harmful than larger particles, 

presumably as these are able to penetrate deepest into the lung and potentially into the systemic 

circulation.  

Some other general issues including possible biological mechanisms, exposure models, exposure time 

windows used in the analyses, loss-to-follow-up, covariate adjustments and statistical approaches are 

also shared by the traffic noise-CVD analyses, therefore I address these together at the end of the 

discussion (6.2.3 and 6.2.4).    
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Table 6.10 a summary of European (north to south) studies on long-term air pollution effects (scaled as per 10 µg/m3 increase) on incident ischaemic heart 
disease.  

Authors Published 
year 

Region Study type Study 
entry 

Study end Incidence 
rate 
(cases/perso
n-year ) 

ICD code Mean 
age or 
age 
range, 
years 

NO2 (or NOx) PM10 PM2.5 Independent 
of noise 

Bodin  2016 Skåne, 
Sweden 

cohort 2000 2010 4.7/1000 ICD10: 
I20-23 

49 1.02  
(0.86-1.21) 

n/a n/a yes 

Stockfelt  2015 Gothenburg
Sweden 

cohort 1973 2007 10.8/1000 ICD10:I21 53 1.00  
(0.97-1.03) 

n/a n/a n/a 

Atkinson 2013 England, UK  census-
based 

2003 2007 13,956 
cases/810,68
6 subjects 

ICD10: 
I20-23 

40-89 1.02  
(0.98-1.06) 

1.03  
(0.93-1.18) 

n/a n/a 

Cai  
[this PhD] 

2016 UK, Norway cohort  1993-
2010 

2012-
2015 

3.2/1000 ICD10: 
I20-I25 

55 0.98  
(0.92-1.04) 

0.93  
(0.75-1.15) 

1.35  
(0.73-2.39) 

yes 

Rosenlund  2008 Rome,Italy census-
based 

1998 2000 11167 cases ICD9:  
410-414 

35-84 1.03  
(1.00-1.07) 

n/a n/a n/a 

Cesaroni  2014 Europe 
(ESCAPE) 

cohort (11 
cohorts) 

1997 2007 4.5/1000 ICD10: 
I20.0, I21, 
I23, I24) 

44-74 1.03  
(0.97-1.08) 

1.12  
(1.01-1.25) 

1.28  
(0.96-1.29) 

yes 
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Figure 6.8 Meta-analysis of European studies on long-term effects of per 10 µg/m3 increase NO2 (or 
NOx) on incident ischaemic heart diseases 

 

 

I-squared, variation in estimated effect attributable to heterogeneity; I-V, inverse-variance weighted 
fixed effects method; D-L, DerSimonian-Laird random effects method 
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6.2.2. Road traffic noise effects  

Noise and Cerebrovascular disease  

In this PhD work, when assessing road traffic noise on a continuous scale, I did not observe an 

association between daytime road traffic noise and incident cerebrovascular disease in the pooled 

analysis of the three cohorts. In the cohort-specific analysis, a positive but non-significant association 

was observed in UK Biobank (HR: 1.04, 95%CI: 0.93 to 1.17, per 3.5 dB(A)) whilst null associations were 

observed in EPIC-Oxford and HUNT2.   

However, when assessing daytime road traffic noise in categories, there was suggestive evidence that 

participants who were exposed to a higher level of daytime road traffic noise had a higher risk for 

incident cerebrovascular diseases. Compared to those exposed to a level of less than 50 dB(A) daytime 

road traffic noise, there was a 2% (95%CI: -12% to 20%) and a 4% (95%CI: -16% to 29%) increased risk 

for those exposed to a level of 50-55 dB(A) and greater than 55 dB(A) respectively. No such suggestive 

positive relationship was seen for night-time noise.  

Findings from this PhD work contribute to the scant literature on this topic. To my best knowledge, 

only one prospective cohort study has investigated this association(Sorensen et al., 2011). This study, 

conducted by Sorensen et al, reported that a 10 dB(A) increase of road traffic noise (Lden) was 

significantly associated with a 14% (HR: 1.14, 95%CI: 1.03 to 1.25) increased risk for incident stroke 

among 57,053 participants from the Danish Diet, Cancer and Health (DCH) cohort study. In fact, I found 

a similar effect estimate per 10 dB(A) increase of daytime road traffic noise in the UK Biobank 

participants, although the association was not statistically significant (HR: 1.12, 95%CI: 0.81 to 1.57). 

Some important points were noted for this Danish study. First, the effect estimate for Lden in the 

study was robust to adjustments for noise from railway and aircraft, as well as road traffic air pollution 

indicated by NOx. In my PhD study, I did not adjust for railway and air traffic noise.  Second, the effect 

estimate was also independent from adjustment for hypertension, one of the most important risk 

factors for stroke. I did not adjust for blood pressure directly in my analyses, however all participants 

with previous known cardiovascular conditions including hypertension were excluded from the 
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analyses. In another analysis involving both EPIC-Oxford and HUNT conducted by BioSHaRE colleagues 

(personal communications from Wilma Zijlema), there was no overall significant association between 

road traffic noise and blood pressure. Third, the Danish study reported that more recent noise 

exposure had a stronger association with incident stroke than did noise exposure in earlier years. 

Fourth, the study also reported stronger associations among those aged 64.5 years and above. The 

authors suggested that this may be due to the noise-induced sleep disturbance in elderly people, for 

whom the sleep structure becomes more fragmented(Jackson, Redline & Emmons, 2015a). Another 

possible reason may be that exposure misclassifications for noise were reduced among older people 

as this age group is likely to have been at the current residence for years if not decades, and is likely 

to spend most of their time at home as they retired. However, in my pooled analysis, I did not observe 

a stronger association among those aged 60 years and above.  

In 2015, Halonen et al published a small-area study, which investigated long-term road traffic noise 

effects on hospital admissions and mortality from cardiovascular diseases in a population of 8.6 million 

Londoners(Halonen et al., 2015). This study, although ecological in study design, reported that 

associations between road traffic noise and hospital admissions for stroke were strongest among all 

the studied cardiovascular outcomes. Among adults (≥25 years), compared to those living in areas 

with a level of mean daytime road traffic noise <55 dB(A), a relative risk for hospital admissions for 

stroke was 1.05 (95%CI: 1.02 to 1.09) for those living in areas with a level >60 dB(A). The corresponding 

figure for the elderly (≥75 years) was 1.09 (95%CI: 1.04 to 1.14). A similar significant association was 

also found for night-time traffic noise and stroke hospital admission among the elderly. As with my 

analyses, this small-area study did not find a significant association between noise and hospital 

admissions for stroke when noise was assessed as a continuous variable.  

Nevertheless, findings from Halonen et al were consistent with those reported in the Danish study. As 

with most other ecological studies, one major limitation of this London study is that most individual-

level confounders and exposure modifiers were not available. The effect estimates from the London 
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study were adjusted for age, sex, area-level deprivation, area-level lung cancer mortality as a proxy 

for smoking, area-level ethnicity and area-level PM2.5.  

This PhD work is by far the largest cohort study with detailed individual-level information on some key 

confounders including smoking, alcohol consumption and education. As with Halonen et al, I did not 

observe associations between noise exposures and cerebrovascular disease in the linear model. 

Halonen et al suggested that this may in part be due to the fact that noise exposure misclassifications 

were greater in areas with a low noise level and in areas with minor heavily trafficked roads, as the 

noise model tended to over-estimate and underestimate exposures respectively. This would 

contribute to the uncertainty of continuous noise estimates and impact statistical power to detect a 

noise effect.   

The categorical analysis provided a way to investigate a possible non-linear relationship and also a 

chance to identify a possible effect threshold. In my analyses, using categorical daytime, but not night-

time, road traffic noise estimates, small non-significant increased risks for incident cerebrovascular 

disease was observed at a level above 50 dB(A). This is consistent with Halonen et al findings although 

we used different noise categories.  

One of the suspected reasons that I did not see a corresponding relationship for night-time noise may 

be related to the noise model used in this PhD study, which was likely to over-estimate noise 

exposures for those at low exposure levels, and this misclassification may have been amplified 

particularly for night-time noise estimates. In Halonen et al’s small-area study in London, effects of 

night-time noise on hospital admissions for stroke were not statistically significant but daytime noise 

was(Halonen et al., 2015). The Danish study however did not specifically study night-time noise 

effects(Sorensen et al., 2011).  

Different noise categories were used in previous studies. In my analyses, I used 50 dB(A) as a reference 

for daytime noise because the noise model used in this PhD study predicted relatively less well below 
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this.  More studies are needed to identify the possible effect threshold.  Respectively for night-time 

noise, 40 dB(A) was chosen as the reference level according to the WHO night-time noise guidelines 

for Europe(World Health Organisation Europe, 2009), in which 40 dB(A) is recommended as equivalent 

to the lowest observed adverse effects level for night-time noise.  

UK Biobank is the largest cohort included in my analyses. I found a positive non-significant association 

between daytime road traffic noise and incident cerebrovascular diseases in this large cohort. 

However, the average person-years of follow-up for UK Biobank was only 1.4 person-years. During the 

follow-up period, 240 incident cerebrovascular cases were identified in UK Biobank. Future studies in 

this cohort with more years of follow-up will be needed to replicate my findings in this PhD. The other 

two cohorts each with a follow-up period of nearly 20 years found null associations.  

There are two other studies investigating stroke incidence in combination with other heart diseases. 

In a small cross-sectional study involving 4,712 participants from six European countries, Floud et al 

reported that 24hr average road traffic noise was associated with ‘heart disease and stroke’ (OR: 1.19, 

95%CI: 1.00 to 1.41)(Floud et al., 2013). However, a subsample analysis suggested that this association 

may be confounded by air pollution. In the GLOBE study of 18,213 participants in the Netherlands, no 

association was found between Lden and ‘IHD or cerebrovascular disease’ either in the total sample 

or in the subgroup of those aged >65 years(de Kluizenaar et al., 2013).  

A small-area study investigated relative risks of hospital admissions for stroke in the areas around 

London Heathrow Airport(Hansell et al., 2013). In that study, the relative risk of hospital admissions 

for stroke was 1.24 (95%CI: 1.08 to 1.43) in areas with the highest daytime aircraft noise levels 

(>63dB), compared to those in the lowest levels (≤51dB). This association was robust to adjustment 

for road traffic noise and particulate air pollution. In America, a study involving only elderly people 

(aged ≥65 years) who lived near one of the 89 airports across the country, also found a positive 

association between aircraft noise and hospital admission for stroke(Correia et al., 2013). A recent 

meta-analysis found an association between aircraft noise exposure and hypertension(Huang et al., 
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2015), but heterogeneity between studies meant that definitive exposure-response relationships 

could not be established. Of note, aircraft noise is qualitatively different from road traffic noise and 

may have different associations with health outcomes. 

In this PhD work, I found a small but non-significant increased risk for incident cerebrovascular 

diseases in men (HR: 1.004, 95%CI: 0.987 to 1.020) compared to women (HR: 0.995, 95%CI: 0.978 to 

1.012), which was consistent with the findings in the Danish study(Sorensen et al., 2011). Additionally, 

I also found a stronger association among diabetics (HR: 1.010, 95%CI: 0.947 to 1.078) compared to 

non-diabetics (HR: 0.999, 95%CI: 0.987 to 1.011).    

It should be noted that, in this PhD work, the effect estimate for continuous day-time noise on incident 

cerebrovascular disease may have been underestimated as I included all the incident cases that fall 

within ICD10: I60-I69. One study found that the effect estimate for incident ischaemic stroke was 

higher than that of all incident stroke(Sorensen et al., 2014).   

I further repeated the main analyses separately for ischaemic stroke (ICD10: I63), haemorrhagic stroke 

(ICD10: I60, I61, I62) and unspecified stroke (ICD10: I64).  For each 10 dB(A) increase of daytime road 

traffic noise, slightly positive associations were found for both ischaemic stroke (HR: 1.025, 95%CI: 

0.862 to 1.219) and haemorrhagic stroke (HR: 1.060, 95%CI: 0.808 to 1.391). A null association was 

found for unspecified stroke. The higher effect estimate observed for haemorrhagic stroke was 

biologically plausible as a review published in 2012 showed that road traffic noise has been linked to 

hypertension(van Kempen & Babisch, 2012), a major risk factor for haemorrhagic stroke. In contrast 

to my findings, Sorensen et al reported a significant association between Lden and incident ischaemic 

stroke (HR: 1.16, 95%CI: 1.07 to 1.24) but not haemorrhagic stroke (HR: 0.99, 95%CI:  0.81 to 1.20) in 

the Danish DCH cohort(Sorensen et al., 2014).  

In summary, results from this PhD work contribute to the scant literature on the possible role of road 

traffic noise on incident cerebrovascular disease. There were suggestive effects in those exposed to a 
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daytime road traffic noise level greater than 50 dB(A) in the pooled analysis of the three cohorts. I did 

not find a confounding effect by air pollution in my study. Since only two cohort studies including this 

current PhD work are available, more studies in other populations are warranted to better clarify the 

role of road traffic noise on incident cerebrovascular diseases.  

Noise and Ischaemic heart disease 

In the pooled analysis of EPIC-Oxford, HUNT2 and UK Biobank, I found a weak, non-significant, 

increased risk for incident ischaemic heart disease (IHD) in relation to annual mean daytime road 

traffic noise exposure (HR: 1.01, 95%CI: 0.98 to 1.04, per 3.9 dB(A)) in the main model. Compared with 

those exposed to a level of daytime road traffic noise less than 50 dB(A), a higher non-significant risk 

for incident IHD was seen for those exposed to a level of 50-55 dB(A). Similarly for night-time noise, 

higher risks were seen for those exposed to levels of 40-45 dB(A) and greater than 45 dB(A), compared 

with those exposed to a level less than 40 dB(A).  

A large number of studies had been undertaken in the last two decades to investigate this road traffic 

noise-IHD link in different populations. Most of these studies were summarised in three important 

reviews to date. A review published by van Kempen et al in 2002 was the first to systematically 

examine epidemiological evidence of road traffic noise on IHD(van Kempen et al., 2002). Among the 

identified 43 epidemiological studies published in 1970-1999, 28 were occupational studies and 15 

were population studies. Only two of those 15 population studies had studied the outcomes of IHD: 

the Berlin case-control study and the Caerphilly-Speedwell study. A meta-analysis based on these two 

studies showed that road traffic noise was positively but not significantly associated with myocardial 

infarction prevalence. However, for total IHD, road traffic noise was significantly associated with 

prevalence (pooled estimate: 1.09, 95%CI: 1.05 to 1.13, per 5 dB(A)) but not with incidence. It should 

be noted that these earlier studies included in van Kempen’s review were mainly cross-sectional, most 

of these had limited noise exposures assessments, and some did not adjust for important confounders 

such as smoking. Evidence of noise effects on incident IHD was very limited before year 2000. Indeed, 
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in the review the authors called for more large follow-up studies with better noise exposure 

assessment approaches to investigate this important link.   

In the years after 2000, six studies from Germany, the Netherlands, Sweden, Denmark and Canada 

reported findings on the associations between road traffic noise and incident IHD. Two of these six 

studies investigated IHD mortality, three investigated incident myocardial infarction and one 

investigated self-reported CVD prevalence. All six studies, together with the Berlin and Caerphilly-

Speedwell studies were included in an updated meta-analysis in 2014, published by Babisch(Babisch, 

2014). In this meta-analysis, although different noise indicators and IHD outcomes were assessed 

across the included studies, a 10dB(A) increase of day-night noise level was associated with a 8% 

increased risk (95%CI: 4% to 13%) for IHD. One important aspect of this updated review was that this 

pooled effect estimate was based on studies with noise exposures ranging from 52-77 dB(A).  Many 

earlier studies did not assess noise effects across such a wide exposure range. In addition, studies 

emerging after the year 2000 were generally population-based, had better noise exposures 

assessments and included adjustments for established risk factors for CVD. Only four studies in this 

review had adjusted for air pollution effects. A meta-analysis based on these four studies showed a 

similar pooled estimate (1.10, 95%CI: 1.02 to 1.09) for a 10 dB(A) increase of noise on IHD, suggesting 

a possible independent effect of noise.   

Although the Babisch review in 2014 specifically focused on road traffic noise effects, it included 

studies on both prevalence and incidence. More recently in 2015, Vienneau et al published another 

review on incident studies only(Vienneau et al., 2015). This review, including 10 incident studies on 

both road and aircraft noise, reported that a 10 dB(A) increase of Lden was significantly associated 

with an increased risk for IHD (pooled estimate: 1.06, 95%CI: 1.03 to 1.09). It also suggested that this 

dose-response relationship started at 50 dB(A). The authors further considered the road traffic noise 

effects among the eight studies which measured this, and reported respective pooled estimate of 1.04 
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(95%CI: 1.00 to 1.10).  My findings from the linear model (HR: 1.03, 95%CI: 0.95 to 1.12, per 10 dB(A)) 

are consistent with their pooled estimate.   

Two additional studies have been published since Vienneau’s review was published in 2015. In 

Sweden, a prospective cohort study conducted by Bodin et al found that current or medium-term 

exposure to Lden was not associated with incident myocardial infarction during the follow-up period 

of 2000-2010 among 13,512 participants (HR:0.99, 95%CI: 0.86 to 1.14, per 10 dB(A)). However, when 

Lden was categorised in the analyses, higher effect estimates were seen among those with higher 

noise exposure levels. For example, risk for incident myocardial infarction increased by 13% (95%CI: -

13% to 47%) and 12% (95%CI: -16% to 51%) respectively for those exposed to a level of 45-55 dB(A) 

and 55-65 dB(A) Lden, compared to the reference level of less than 45 dB(A), although a null 

association was found in the highest noise exposure group (65-80 dB(A)). A small-area study in London 

generally found no associations between either daytime or night-time road traffic noise and hospital 

admissions for IHD(Halonen et al., 2015). However, small increased risks for mortality from IHD were 

found in areas with a level of daytime road traffic noise (55-60 dB(A)), compared to areas with a level 

of less than 55 dB(A), among both adults aged ≥25 years (relative risk: 1.03, 95%CI: 1.00 to 1.06) and 

elderly aged ≥75 years (relative risk: 1.04, 95%CI: 1.01 to 1.07).    

Previous studies were limited by sample size when investigating interaction effects, and the results 

were rather mixed.  In the subgroup analyses of this large study, I found that the effects of daytime 

road traffic noise on incident IHD were higher among females, those aged <60 years, those with a BMI 

greater than 30 kg/m2 and current-smokers. Although the interaction terms for these analyses were 

all statistically significant, the 95% confidence interval in each strata was overlapping.  Moreover, only 

the association among current-smokers reached significance (HR: 1.018, 95%CI: 1.003 to 1.033).  

My findings of stronger associations in females and those aged less than 60 years are somewhat 

contradictory to previous findings, but are plausible as women and those participants aged <60 years 

may be more sensitive to noise exposure. An analysis from the Whitehall II study among 3,630 civil 
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servants in the UK showed that women and those aged 50-55 years had higher noise 

sensitivity(Stansfeld & Shipley, 2015). However, in this PhD study, noise sensitivity data were not 

available to investigate this directly.  

As with my air pollution analyses, I further investigated the role of daytime road traffic noise on acute 

coronary heart events (ICD10: I20.0, I21, I23, I24). A similar finding to the main analysis was observed. 

For each 10 dB(A) increase of daytime road traffic noise, incident acute coronary heart events 

increased by 4% (HR: 1.04, 95%CI: 0.91 to 1.91).     

One finding from this PhD work is that I found an increased (although non-significant) risk for incident 

IHD or total CVD events among those exposed to the range between 50-55 dB(A) of daytime road 

traffic noise. In Europe, a large number of general populations may be exposed to a noise level within 

the range of 50-55dB(A) according to a report from European Environment Agency 

(http://www.eea.europa.eu/publications/noise-in-europe-2014, accessed April 2016). Although only 

small excess risks were found, findings suggest that exposure to road traffic noise between 50-55 

dB(A) may potentially have a substantial impact on the burden of cardiovascular disease.     

Besides the effect of day-time road traffic noise, I also found that higher night-time noise exposure 

levels were non-significantly associated with higher risks for incident IHD. However, since the 

correlation between daytime and night-time noise was close to unity, it is difficult to disentangle the 

independent effects of each. Nevertheless, night-time noise is of particular potential importance as it 

may disrupt sleep, and poor sleep quality has been associated with incident myocardial infarction and 

other cardiovascular diseases(Jackson, Redline & Emmons, 2015b).   

In summary, this PhD work provides further evidence of the role of road traffic noise on incident 

ischaemic heart disease.  Findings were based on three large European cohorts and are in line with 

previous studies mostly undertaken in Europe, and although almost all were not statistically significant 

they report similar effect sizes.      

http://www.eea.europa.eu/publications/noise-in-europe-2014
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6.2.3. Possible biological mechanisms 
Possible biological mechanisms linking air pollution and CVD outcomes have been well documented. 

Three major biological mechanisms hypothesised for air pollution effects include increased systemic 

inflammation, activation of the autonomic nervous system (ANS), and a direct transfer of fine particles 

from lung to blood circulation(Brook et al., 2010). In recent years, increasing studies also showed that 

exposure to air pollution can lead to epigenetic modifications of DNA, which results in either up-

regulation or down-regulation of certain gene expressions in relation to cardiovascular diseases(Chin, 

2015). Currently, the best-supported hypothesised mechanism is the inflammatory response in 

relation to sub-acute and chronic air pollution exposure(Chin, 2015). Many animal and human studies 

have suggested that inhaled air pollutants can provoke a local inflammatory response in lung, which 

promotes oxidative stress and the release of pro-inflammatory mediators such as cytokines from lung-

based cells. These pro-inflammatory mediators then spill over from lung into the blood circulation, 

leading to systemic oxidative stress and inflammation(Chin, 2015; Brook et al., 2010). As a result, a 

range of physiological changes in metabolism and blood circulation becomes biologically plausible. 

This includes, but is not limited to, insulin-resistance, dyslipidaemia, impaired HDL function, increased 

coagulation, thrombosis, and decreased fibrinolysis. In Chapter 5, I have demonstrated that long-term 

exposure to air pollution is significantly associated with elevated levels of hsCRP, HDL cholesterol, 

triglycerides and blood glucose, which lends further support to these proposed biological mechanisms 

and their implications for manifest CVD outcomes.   

As briefly mentioned in the first Chapter, it was proposed that environmental noise exert its adverse 

cardiovascular effects via both direct and indirect pathways as a general stressor(Babisch, 2014; 

Munzel et al., 2014). The direct pathway mainly involves noise-induced sleep disturbance, whilst the 

indirect pathways may include cognitive and emotional responses such as annoyance. To cope with 

this ‘stressful’ situation, two classic reactions will be activated, as described by Henry and Stephens in 

the 1970s in thier general psychophysiological stress reaction model(Henry, 1992).  One is the ‘fight-

flight’ reaction, in which adrenalin will be released to actively ‘fight’ against the stressor in order to 
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remove it or help the organism to ‘flee’ from this stressor. The other is the ‘defeat’ reaction, which 

means the ‘fight’ was not successful or the organism did not manage to ‘flee’, when cortisol is released 

to help organism mitigate the damages that the stressor causes.  Recently, an extended version of this 

stress model was proposed by Recio et al(Recio et al., 2016). In this updated stress model, Recio et al 

describe comprehensively the biological mechanisms of road traffic noise effects on cardiovascular 

outcomes. In their proposal, if the ‘defeat reaction’ persists, in other words, if the stress is sustained, 

then it will lead to a state that Recio et al termed as ‘emotional flight’. In general, emotional flight 

involves a change of stress processing from the psychological level to the physiological level; the latter 

is processed by the central autonomic network, for example, by hypothalamus. In response to this 

sustained stress (e.g. chronic exposure to road traffic noise), the physiological processing usually leads 

to an excess allostatic load, sometimes referred to as imbalanced homoeostasis. In return, this 

imbalanced homoeostasis will lead to a range of physiological changes including to blood pressure, 

blood glucose, blood lipids and thrombosis. In addition, according to Recio’s review, noise as a stressor 

can also cause other defensive responses, such as oxidative stress, immune system activation and 

systemic inflammation. Taken together, these physiological changes will ultimately lead to manifest 

CVD outcomes such as hypertension, ischaemic heart disease or stroke in the long term.  

In the biochemistry analyses described in Chapter 5, I observed some significant positive associations 

between daytime road traffic noise and hsCRP, triglycerides in the pooled analyses of the HUNT3 and 

LifeLines cohorts and fasting glucose in LifeLines analysis only. In particular for blood glucose, the 

association was robust to further adjustment for air pollution.  

Another important risk factor for CVD is hypertension. A quantitative review of 24 studies up to year 

2012 was published by van Kempen and Babisch, which reported a statistically significant dose-

response relationship between road traffic noise and hypertension(van Kempen & Babisch, 2012). 

These findings, from this PhD work and others, suggested positive associations between road traffic 
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noise and intermediate risk factors of CVD, which provide novel insights into the links between road 

traffic noise and CVD outcomes.   

Indeed, some mechanisms and their underlying physiological changes in relation to CVD outcomes are 

shared by both air pollution and road traffic noise independently, as I have demonstrated in Chapter 

5. More recently, in the German Heinz Nixdorf Recall study of 4238 participants, both PM2.5 and night-

time traffic noise were both independently associated with thoracic aortic calcification, a measure of 

atherosclerosis(Kalsch et al., 2014). Although the statistical evidence was not particularly robust 

(P~0.05) for traffic noise, this important study complements previous studies using a proxy of noise 

exposure (e.g. traffic intensity exposure) and provides new evidence that long-term exposure to 

traffic-related fine particles and noise may act independently in the development of CVD outcomes.  

6.2.4. Limitations  
Some limitations of this PhD work are acknowledged.  

First, modelled air pollution and noise estimates at home address will inevitably have some 

misclassification (e.g. due to time spent away from home, travel outside the house during the day, 

exposure modification via housing characteristics and window-opening etc.). Performance for the 

pan-European LUR air pollution model was moderate, compared to the ESCAPE-LUR model and the 

ESCAPE model itself was based on a limited measuring campaign. Effect estimates may have been 

underestimated when using the pan-European air pollution metrics because of the greater potential 

exposure misclassification. In addition, for the noise model, some simplified input variables were used 

to enable a harmonised approach across the cohorts investigated, and this may have resulted in non-

differential misclassification of noise exposure that would be expected to bias results toward null. 

Further, traffic flow data were not available as inputs into the model for some secondary roads, which 

may result in an underestimation of noise exposure in these areas and particular misclassifications at 

lower noise levels. Nevertheless, given the broad geographic regions that this PhD work covers, 

common LUR air pollution and noise models were developed for Europe to minimise differences 
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between cohorts that would otherwise be introduced by having different exposure assessment 

methods. In the air pollution analyses, I did not run co-pollutant models because the correlation 

between NO2 and PM10 in this PhD study was high (r>0.7).  

Second, I used air pollution and noise estimates from a single year to represent long-term annual 

average estimates in the incident CVD analyses.  Residential air pollution and noise estimates were 

modelled for the years 2007 and 2009 respectively, which may differ by up to 16 years from when 

recruitment took place across the three cohorts (1993-2010). This PhD therefore has to rely on the 

assumptions that air pollution spatial contrast has not changed substantially in the last 10-14 years in 

the respective countries and that the estimates from the LUR model for year 2007 were representative 

of the baseline spatial contrast in each cohort. The same limitation was also noted in the ESCAPE 

studies where air pollution LUR model was built for 2008-2011 and baseline recruitment in most 

European cohorts took place in the mid-1990s. In the ESCAPE studies, investigators either used back-

extrapolated air pollution estimates based on the current LUR modelled estimates or conducted 

sensitivity analyses among the most recently established cohorts only, but no differences were shown 

for the main results. Also, some Scandinavian studies with a complete residential history of modelled 

air pollution estimates demonstrated that there were no clear differences in the effects on incident 

CVD, using either estimates at baseline recruitment period or in most recent years(Korek et al., 2015; 

Nafstad et al., 2004). In fact, some recent LUR studies in Europe showed that LUR models based on 

current air pollution data can predict spatial contrast in the preceding 10 years(Gulliver et al., 2013; 

Eeftens et al., 2011; Madsen et al., 2011). Similarly, for noise exposures, the assumption had to be 

made that spatial contrasts in road traffic noise levels will have been relatively stable over the last 

decade. Another potential source of exposure misclassification may be due to participants changing 

their residential location over the follow-up periods. Restricting analyses to those who were residing 

in the same address for more than 10 years showed slightly stronger associations in some analyses, 

but overall the results were not materially different.   
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Third, although many efforts were made to harmonise key covariates across cohorts, estimates 

presented in this PhD work may include residual confounding, as information about variables such as 

environmental tobacco smoke, diet, physical activity and neighbourhood socioeconomic status was 

not able to be harmonised, and therefore were not included in the models. Nevertheless, the adjusted 

variables included in this PhD analysis have been largely comparable to those included in many 

previous studies.  

Fourth, effect estimates may also have been affected by ‘healthy survivor’ bias, particularly in the 

incident CVD analyses. Compared to those who lost to follow-up or died prematurely, those who 

remained in the study were more likely healthy individuals.   

Fifth, as I stated in section 2.1 of Chapter 2, by not taking into account of the possible clustering effects 

in LifeLines, effect estimates yielded from the analyses of CVD biochemistry markers (Chapter 5) may 

have been biased for this particular cohort. The consequence of ignoring clustering effects in the 

analyses of clustered data depends on within-cluster correlation(Galbraith, Daniel & Vissel, 2010). 

Within-cluster correlation, as the case for LifeLines cohort, may possibly be positive, and may cause 

standard errors to be underestimated when the exposure of interest is fixed for the cluster (i.e. 

members from the same family/household have same levels of air pollution exposure) and 

overestimated when the exposure varies within cluster (i.e. members from the same 

family/household have different levels of air pollution exposure)(Desai & Begg, 2008).  Either case is 

possible for the LifeLines cohort. Whilst this issue was not specifically investigated in this PhD study, 

there are some statistical approaches based on regression techniques that can address this problem. 

For example, random effects modelling approach is one of the most common methods that is used to 

incorporate a random intercept term which accounts for correlation within cluster(Desai & Begg, 

2008).  

Sixth, I did not consider other factors that may have specifically affected noise estimates in my 

analyses. Only residential noise data were available in each cohort, and therefore noise exposure in 
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other places such as at work was not available. However, this is likely to be a non-differential 

misclassification in both cases and non-cases of incident CVD and therefore bias the estimates towards 

null.  Also, data about behaviours that individuals might adopt to mitigate noise exposures, as well as 

other personal characteristics, were not available. For example, window opening habits, hearing 

impairment, noise sensitivity or bedroom location. Estimates may have been biased without 

considering these potential effect modifiers. In the present PhD analysis, I have considered noise 

effects only from road traffic, but not from aircraft or railway traffic. By not considering the total traffic 

noise exposures, estimates may have been underestimated.           

Lastly, many analyses have been conducted in this PhD work, it is therefore possible that some 

observations are simply due to chance.    

6.2.5. Chapter summary  
In summary, in line with previous European studies, my findings suggest a possible effect of both long-

term exposure to air pollution and road traffic noise on incident ischaemic heart disease and 

cerebrovascular disease. These associations were observed in a large study sample from three 

European cohorts, and were independent of adjustments for covariates. It is further suggested that 

air pollution and road traffic noise effects on CVD outcomes are likely independent from each other.   
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Chapter 7 Conclusion  

7.1. Overall summary 
Findings from this large project, involving four established cohorts in the UK, the Netherlands and 

Norway, contribute to the current literature and address some important research gaps regarding the 

contribution of air pollution and noise research to CVD epidemiology.   

Pooling data from HUNT3 and LifeLines cohorts, I found that both air pollution and road traffic noise 

was significantly associated with a marker of systemic inflammation (hsCRP). This is, to my knowledge, 

the first study to report a positive significant association between road traffic noise and systemic 

inflammation in a population-based study. This finding suggests that the link between noise and CVD 

may operate via systemic inflammation, which is also supported by a recent review on the relevant 

biological mechanisms of road traffic noise effects on CVD(Recio et al., 2016). However, statistical 

significance for this road traffic noise effect was lost after air pollution was adjusted for, suggesting 

somewhat confounding effects by air pollution for this specific association.   

Another finding from these two cohorts is that both air pollution and noise were significantly and 

independently associated with HDL cholesterol, but not associated with total cholesterol. Although I 

have mentioned the possible mechanisms explaining these findings in Chapter 5, more studies on the 

biological mechanisms are needed, particularly for increased noise and elevated HDL cholesterol 

levels. I also found that air pollution was significantly associated with triglyceride levels, and effect 

was independent from road traffic noise. In contrast, the positive effect of road traffic noise on 

triglyceride levels was confounded by air pollution.  

In the LifeLines cohort only, I found that both air pollution and noise were significantly and 

independently associated with increased fasting blood glucose. These important findings provide 

some novel evidence not only on the associations between air pollution/noise and CVD outcomes, but 

also on other chronic health outcomes such as diabetes. However, I did not observe corresponding 

associations with HbA1c.  
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Based on these cross-sectional associations between air pollution, noise and CVD biochemistry 

markers, I further investigated the direct links between air pollution, noise and incident CVD 

outcomes. Specifically, I investigated incident cerebrovascular disease, ischaemic heart disease and 

total CVD in relation to air pollution and road traffic noise, by pooling data EPIC-Oxford, HUNT2, and 

UK Biobank, which are linked to medical records to permit ascertainment of incident cases (fatal and 

non-fatal) since recruitment.  

In general, I found suggestive evidence of an association between long-term air pollution exposure 

and incident cerebrovascular disease. Only a few European studies have been conducted previously, 

and the effect estimates from this PhD fell within the range of most of these previous studies. I 

conducted a meta-analysis of all the available estimates for NO2 and incident cerebrovascular disease 

from European studies, including this current PhD, and found a borderline significant positive 

association between NO2 and incident cerebrovascular disease. A meta-analysis of PM effects was 

recently published and reported a significant positive association(Scheers et al., 2015).  

However, I found only very weak evidence of air pollution effects on incident ischaemic heart disease. 

This association may possibly be driven by the associations seen in HUNT2, as I found unexpected 

significantly negative associations in this cohort. Whilst for both EPIC-Oxford and UK Biobank, small 

but non-significant increased risks were observed, in keeping with most previous European studies.  

For the PM10 effects on total incident CVD, significant and stronger positive associations were found 

among men, those aged 60 years and over, those with a BMI greater than 30 kg/m2. The large sample 

size of this PhD study allowed investigations of these interaction effects. These findings in susceptible 

groups were consistent with some previous studies.   

Findings for road traffic noise effects on incident cerebrovascular disease were somewhat 

contradicted when continuous versus categorical noise estimates were used in the analyses. Null 

associations were reported with continuous noise estimates, however, in categorical analyses, there 
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was a tendency for higher daytime, but not night-time, noise exposure to be associated with higher 

risks for incident cerebrovascular diseases. Despite these inconclusive findings, since only one 

previous population-based cohort study has been conducted to date, results from this PhD represent 

important contributions to the current knowledge.  

I found a small but non-significantly increased risk for incident ischaemic heart disease in relation to 

either daytime or night-time noise exposures, which was in line with what previously reported 

findings.  

This PhD study has several strengths. First, this is the largest study on air pollution and noise exposure 

and cardiovascular risk factors and outcomes to date. Tremendous efforts were made to harmonise 

data across some of the largest cohorts in Europe, allowing an integrated large sample size and 

sufficient statistical power to investigate interaction effects.  

Second, analyses were conducted using DataSHIELD, a novel ‘compute to the data’ approach, which 

could help maximise the scientific potential of established cohorts by pooling personal data robustly 

yet ethically for research. Furthermore, results from DataSHIELD have been validated here by both 

cohort-specific meta-analysis and physical pooling of cohort data, which showed a consistency of the 

reported estimates.  

Third, mutual adjustments were made for modelled residential air pollution and noise data in all the 

analyses, which further clarify the possible independent and joint roles of each on the development 

of CVD outcomes.  

7.2. Future research and policy implications 
More research is needed on both air pollution and road traffic noise effects on CVD outcomes.  

My analyses on CVD biochemistry markers in Chapter 5 were cross-sectional in design, and 

longitudinal studies investigating changes of these biochemistry markers in relation to both air 

pollution and noise exposures are required to confirm these findings.  
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In terms of air pollution-incident CVD analyses, more studies in other populations (e.g. those in 

developing countries with higher levels of exposures) as well as studies on the possible independent 

effects of both PM and NO2 are needed to better clarify the current knowledge. Additionally, studies 

into the sources and components of air pollution mixtures and their associated CVD effects will be 

extremely informative for policy making.  

More attention should be focused on studying traffic noise effects on less studied CVD outcomes (e.g. 

stroke). A number of noise studies are in progress within Europe at the time of writing this thesis. The 

NORAH (Noise-Related Annoyance, Cognition, and Health) study in Germany has several manuscripts 

in preparation, detailing different sources (rail, road, aviation) of noise effects on a range of health 

outcomes including CVD, blood pressure, quality of life, sleep and children’s intellectual development 

and reading abilities (http://www.laermstudie.de/en/norah-study/overview/, accessed June 2016). 

Wilma Zijlema, one of the BioSHaRE colleagues, has submited a manuscript on road noise effects on 

blood pressure and heart rate in a study of three European cohorts. In London, a recently concluded 

study was conducted in Whitehall 2 and SABRE (the Southhall and Brent Revisited Study) cohorts 

about road noise and air pollution effects on both blood pressure and carotid intima-media 

thickness(CIMT) (personal communications from Anna Hansell). Meta-analysis of noise effects on 

different CVD outcomes will be helpful in future to update those by Vienneau(Vienneau et al., 2015) 

and Babisch(Babisch, 2014).    

Besides CVD outcomes, emerging studies in the last 2 to 3 years showed that other health outcomes 

such as cognitive performance, depression, obesity and diabetes are also related to both air pollution 

and noise exposures, which warrant further investigation.  

Ambient air pollution not only has a broad range of acute and chronic health impacts, but also has an 

impact on economic costs associated with diseases and deaths. At the time of writing this thesis, a 

new WHO study showed that in 2010 approximately 600,000 premature deaths were due to air 

pollution in the WHO Europe region, which cost the economy 1.6 trillion US dollars a year(WHO, 2015). 

http://www.laermstudie.de/en/norah-study/overview/
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More specifically, for the United Kingdom and the Netherlands, this cost accounted for 3.7% and 3.3% 

of the country’s Gross Domestic Product (GDP) in 2010. This PhD study, in line with other European 

studies on air pollution, again highlights the importance of collective efforts to control the persistent 

air pollution problem. There is indeed a need to call for health-effective and cost-efficient air pollution 

control measures for the years and decades to come. For example, future environmental policies will 

be better informed if the chemical and physical properties of the air pollution mixture are able to be 

characterised to identify the responsible components that related to certain health effects. Equally 

important is the need to further clarify different sources of air pollution and their associated health 

effects. To refine air pollution control policies in the context of a climate change era, it will increasingly 

require more and more collaborative efforts from various scientific disciplines including epidemiology, 

toxicology and atmospheric science.   

After air pollution, traffic-related noise is the second largest environmental risk factor for health in 

Europe.  As estimated in a WHO 2011 report, in the high-income Western European countries, at least 

1 million healthy life years were lost annually due to exposure to traffic noise(European Office WHO, 

2011). Among those healthy life years lost, an estimated 61,000 years were accounted for by 

ischaemic heart disease.  Findings from this PhD, in line with just a handful of other studies, provide 

further scientific evidence to refine risk estimates for policy formulation to mitigate the harmful 

effects of transport noise on certain CVD outcomes, particularly hypertension, ischaemic heart disease 

and possibly stroke. Effects of noise on annoyance and on sleep disturbance are well recognised, but 

for policy formulation special attention is also needed for other potential clinical outcomes including 

respiratory health, obesity and diabetes. Specific health effects of different sources of noise exposure 

(aviation, rail, and road) should also be better studied to inform the relevant policy making.  

Technology, such as DataSHIELD used in this PhD project, has particular usefulness to combine 

information from very large population cohorts to permit investigation of small increases in risk 
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related to environmental exposures and to better identify vulnerable groups in subgroup analyses.  

This will help set guideline exposure limits that protect the most sensitive groups in the population.   

With the rapid developments in science and technology, in together with our willingness to solve these 

problems, we really can have a tomorrow to enjoy a healthy living in a healthy environment. We can 

achieve this if all of us-governments, industries, scientists and the general public-work together to 

seek sustainable options for our environment and health, for now and for the future.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

207 | P a g e  
 

References 

Adar, S. D., Sheppard, L., Vedal, S., Polak, J. F., Sampson, P. D., Diez Roux, A. V., Budoff, M., Jacobs, D. 
R.,Jr, Barr, R. G., Watson, K. & Kaufman, J. D. (2013) Fine particulate air pollution and the progression 
of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of 
atherosclerosis and air pollution. PLoS Medicine. 10 (4), e1001430. 

Allen, N. E., Sudlow, C., Peakman, T., Collins, R. & UK Biobank. (2014) UK biobank data: come and get 
it. Science Translational Medicine. 6 (224), 224ed4. 

Andersen, Z. J., Kristiansen, L. C., Andersen, K. K., Olsen, T. S., Hvidberg, M., Jensen, S. S., Ketzel, M., 
Loft, S., Sorensen, M., Tjonneland, A., Overvad, K. & Raaschou-Nielsen, O. (2012a) Stroke and long-
term exposure to outdoor air pollution from nitrogen dioxide: a cohort study. Stroke; a Journal of 
Cerebral Circulation. 43 (2), 320-325. 

Andersen, Z. J., Raaschou-Nielsen, O., Ketzel, M., Jensen, S. S., Hvidberg, M., Loft, S., Tjonneland, A., 
Overvad, K. & Sorensen, M. (2012b) Diabetes incidence and long-term exposure to air pollution: a 
cohort study. Diabetes Care. 35 (1), 92-98. 

Araujo, J. A., Barajas, B., Kleinman, M., Wang, X., Bennett, B. J., Gong, K. W., Navab, M., Harkema, J., 
Sioutas, C., Lusis, A. J. & Nel, A. E. (2008) Ambient particulate pollutants in the ultrafine range 
promote early atherosclerosis and systemic oxidative stress. Circulation Research. 102 (5), 589-596. 

Argalasova-Sobotova, L., Lekaviciute, J., Jeram, S., Sevcikova, L. & Jurkovicova, J. (2013) 
Environmental noise and cardiovascular disease in adults: research in Central, Eastern and South-
Eastern Europe and Newly Independent States. Noise & Health. 15 (62), 22-31. 

Atkinson, R. W., Carey, I. M., Kent, A. J., van Staa, T. P., Anderson, H. R. & Cook, D. G. (2013) Long-
term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology 
(Cambridge, Mass.). 24 (1), 44-53. 

Babisch, W. (2014) Updated exposure-response relationship between road traffic noise and coronary 
heart diseases: a meta-analysis. Noise & Health. 16 (68), 1-9. 

Babisch, W. (2008) Road traffic noise and cardiovascular risk. Noise & Health. 10 (38), 27-33. 

Babisch, W. (2006) Transportation noise and cardiovascular risk: updated review and synthesis of 
epidemiological studies indicate that the evidence has increased. Noise & Health. 8 (30), 1-29. 

Babisch, W. (2000) Traffic Noise and Cardiovascular Disease: Epidemiological Review and Synthesis. 
Noise & Health. 2 (8), 9-32. 

Babisch, W., Beule, B., Schust, M., Kersten, N. & Ising, H. (2005) Traffic noise and risk of myocardial 
infarction. Epidemiology (Cambridge, Mass.). 16 (1), 33-40. 

Babisch, W., Elwood, P. C., Ising, H. & Kruppa, B. (1993a) Traffic noise as a risk factor for myocardial 
infarction. Schriftenreihe Des Vereins Fur Wasser-, Boden- Und Lufthygiene. 88135-166. 



 

208 | P a g e  
 

Babisch, W., Ising, H., Gallacher, J. E., Sharp, D. S. & Baker, I. A. (1993b) Traffic noise and 
cardiovascular risk: the Speedwell study, first phase. Outdoor noise levels and risk factors. Archives 
of Environmental Health. 48 (6), 401-405. 

Babisch, W., Ising, H., Gallacher, J. E., Sweetnam, P. M. & Elwood, P. C. (1999) Traffic noise and 
cardiovascular risk: the Caerphilly and Speedwell studies, third phase--10-year follow up. Archives of 
Environmental Health. 54 (3), 210-216. 

Babisch, W., Ising, H., Gallacher, J. E. J., Elwood, P. C., Sweetnam, P. M., Yarnell, J. W. G., Bainton, D. 
& Baker, I. A. (1990) Public Health Implications of Environmental Noise Traffic noise, work noise and 
cardiovascular risk factors: The Caerphilly and Speedwell collaborative heart disease studies. 
Environment International. 16 (4), 425-435. Available from: 
http://www.sciencedirect.com/science/article/pii/016041209090011T. Available from: doi: 
http://dx.doi.org/10.1016/0160-4120(90)90011-T.  

Babisch, W., Pershagen, G., Selander, J., Houthuijs, D., Breugelmans, O., Cadum, E., Vigna-Taglianti, 
F., Katsouyanni, K., Haralabidis, A. S., Dimakopoulou, K., Sourtzi, P., Floud, S. & Hansell, A. L. (2013) 
Noise annoyance--a modifier of the association between noise level and cardiovascular health? The 
Science of the Total Environment. 452-45350-57. 

Babisch, W., Ising, H., Kruppa, B. & Wiens, D. (1994) The incidence of myocardial infarction and its 
relation to road traffic noise— the Berlin case-control studies. Environment International. 20 (4), 
469-474. Available from: http://www.sciencedirect.com/science/article/pii/0160412094901953. 
Available from: doi: http://dx.doi.org/10.1016/0160-4120(94)90195-3.  

Basagaña, X., Rivera, M., Aguilera, I., Agis, D., Bouso, L., Elosua, R., Foraster, M., de Nazelle, A., 
Nieuwenhuijsen, M., Vila, J. & Künzli, N. (2012) Effect of the number of measurement sites on land 
use regression models in estimating local air pollution. Atmospheric Environment. 54634-642. 

Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S. & Stansfeld, S. (2014) Auditory and 
non-auditory effects of noise on health. Lancet (London, England). 383 (9925), 1325-1332. 

Baxter, L. K., Dionisio, K. L., Burke, J., Ebelt Sarnat, S., Sarnat, J. A., Hodas, N., Rich, D. Q., Turpin, B. J., 
Jones, R. R., Mannshardt, E., Kumar, N., Beevers, S. D. & Ozkaynak, H. (2013) Exposure prediction 
approaches used in air pollution epidemiology studies: key findings and future recommendations. 
Journal of Exposure Science & Environmental Epidemiology. 23 (6), 654-659. 

Beelen, R., Hoek, G., Houthuijs, D., van den Brandt, P. A., Goldbohm, R. A., Fischer, P., Schouten, L. J., 
Armstrong, B. & Brunekreef, B. (2009) The joint association of air pollution and noise from road 
traffic with cardiovascular mortality in a cohort study. Occupational and Environmental Medicine. 66 
(4), 243-250. 

Beelen, R., Hoek, G., van den Brandt, P. A., Goldbohm, R. A., Fischer, P., Schouten, L. J., Jerrett, M., 
Hughes, E., Armstrong, B. & Brunekreef, B. (2008) Long-term effects of traffic-related air pollution on 
mortality in a Dutch cohort (NLCS-AIR study). Environmental Health Perspectives. 116 (2), 196-202. 

Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z. J., Weinmayr, G., Hoffmann, B., Wolf, 
K., Samoli, E., Fischer, P., Nieuwenhuijsen, M., Vineis, P., Xun, W. W., Katsouyanni, K., Dimakopoulou, 
K., Oudin, A., Forsberg, B., Modig, L., Havulinna, A. S., Lanki, T., Turunen, A., Oftedal, B., Nystad, W., 
Nafstad, P., De Faire, U., Pedersen, N. L., Ostenson, C. G., Fratiglioni, L., Penell, J., Korek, M., 
Pershagen, G., Eriksen, K. T., Overvad, K., Ellermann, T., Eeftens, M., Peeters, P. H., Meliefste, K., 

http://www.sciencedirect.com/science/article/pii/016041209090011T
http://dx.doi.org/10.1016/0160-4120(90)90011-T
http://www.sciencedirect.com/science/article/pii/0160412094901953
http://dx.doi.org/10.1016/0160-4120(94)90195-3


 

209 | P a g e  
 

Wang, M., Bueno-de-Mesquita, B., Sugiri, D., Kramer, U., Heinrich, J., de Hoogh, K., Key, T., Peters, 
A., Hampel, R., Concin, H., Nagel, G., Ineichen, A., Schaffner, E., Probst-Hensch, N., Kunzli, N., 
Schindler, C., Schikowski, T., Adam, M., Phuleria, H., Vilier, A., Clavel-Chapelon, F., Declercq, C., 
Grioni, S., Krogh, V., Tsai, M. Y., Ricceri, F., Sacerdote, C., Galassi, C., Migliore, E., Ranzi, A., Cesaroni, 
G., Badaloni, C., Forastiere, F., Tamayo, I., Amiano, P., Dorronsoro, M., Katsoulis, M., Trichopoulou, 
A., Brunekreef, B. & Hoek, G. (2014a) Effects of long-term exposure to air pollution on natural-cause 
mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 
(London, England). 383 (9919), 785-795. 

Beelen, R., Stafoggia, M., Raaschou-Nielsen, O., Andersen, Z. J., Xun, W. W., Katsouyanni, K., 
Dimakopoulou, K., Brunekreef, B., Weinmayr, G., Hoffmann, B., Wolf, K., Samoli, E., Houthuijs, D., 
Nieuwenhuijsen, M., Oudin, A., Forsberg, B., Olsson, D., Salomaa, V., Lanki, T., Yli-Tuomi, T., Oftedal, 
B., Aamodt, G., Nafstad, P., De Faire, U., Pedersen, N. L., Ostenson, C. G., Fratiglioni, L., Penell, J., 
Korek, M., Pyko, A., Eriksen, K. T., Tjonneland, A., Becker, T., Eeftens, M., Bots, M., Meliefste, K., 
Wang, M., Bueno-de-Mesquita, B., Sugiri, D., Kramer, U., Heinrich, J., de Hoogh, K., Key, T., Peters, 
A., Cyrys, J., Concin, H., Nagel, G., Ineichen, A., Schaffner, E., Probst-Hensch, N., Dratva, J., Ducret-
Stich, R., Vilier, A., Clavel-Chapelon, F., Stempfelet, M., Grioni, S., Krogh, V., Tsai, M. Y., Marcon, A., 
Ricceri, F., Sacerdote, C., Galassi, C., Migliore, E., Ranzi, A., Cesaroni, G., Badaloni, C., Forastiere, F., 
Tamayo, I., Amiano, P., Dorronsoro, M., Katsoulis, M., Trichopoulou, A., Vineis, P. & Hoek, G. (2014b) 
Long-term exposure to air pollution and cardiovascular mortality: an analysis of 22 European 
cohorts. Epidemiology (Cambridge, Mass.). 25 (3), 368-378. 

Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M., Künzli, N., 
Schikowski, T., Marcon, A., Eriksen, K. T., Raaschou-Nielsen, O., Stephanou, E., Patelarou, E., Lanki, 
T., Yli-Tuomi, T., Declercq, C., Falq, G., Stempfelet, M., Birk, M., Cyrys, J., von Klot, S., Nádor, G., 
Varró, M. J., Dėdelė, A., Gražulevičienė, R., Mölter, A., Lindley, S., Madsen, C., Cesaroni, G., Ranzi, A., 
Badaloni, C., Hoffmann, B., Nonnemacher, M., Krämer, U., Kuhlbusch, T., Cirach, M., de Nazelle, A., 
Nieuwenhuijsen, M., Bellander, T., Korek, M., Olsson, D., Strömgren, M., Dons, E., Jerrett, M., 
Fischer, P., Wang, M., Brunekreef, B. & de Hoogh, K. (2013) Development of NO2 and NOx land use 
regression models for estimating air pollution exposure in 36 study areas in Europe – The ESCAPE 
project. Atmospheric Environment. 72 (0), 10-23. 

Bell, M. L., Davis, D. L. & Fletcher, T. (2004) A retrospective assessment of mortality from the London 
smog episode of 1952: the role of influenza and pollution. Environmental Health Perspectives. 112 
(1), 6-8. 

Belojevic, G., Paunovic, K., Jakovljevic, B., Stojanov, V., Ilic, J., Slepcevic, V. & Saric-Tanaskovic, M. 
(2011) Cardiovascular effects of environmental noise: research in Serbia. Noise & Health. 13 (52), 
217-220. 

Bluhm, G. & Eriksson, C. (2011) Cardiovascular effects of environmental noise: research in Sweden. 
Noise & Health. 13 (52), 212-216. 

Bodin, T., Bjork, J., Mattisson, K., Bottai, M., Rittner, R., Gustavsson, P., Jakobsson, K., Ostergren, P. 
O. & Albin, M. (2016) Road traffic noise, air pollution and myocardial infarction: a prospective cohort 
study. International Archives of Occupational and Environmental Health.  

Boldo, E., Linares, C., Lumbreras, J., Borge, R., Narros, A., Garcia-Perez, J., Fernandez-Navarro, P., 
Perez-Gomez, B., Aragones, N., Ramis, R., Pollan, M., Moreno, T., Karanasiou, A. & Lopez-Abente, G. 
(2011) Health impact assessment of a reduction in ambient PM(2.5) levels in Spain. Environment 
International. 37 (2), 342-348. 



 

210 | P a g e  
 

Brauer, M., Hoek, G., van Vliet, P., Meliefste, K., Fischer, P., Gehring, U., Heinrich, J., Cyrys, J., 
Bellander, T., Lewne, M. & Brunekreef, B. (2003) Estimating long-term average particulate air 
pollution concentrations: application of traffic indicators and geographic information systems. 
Epidemiology (Cambridge, Mass.). 14 (2), 228-239. 

Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebert E, et al. (1997) Mapping urban air pollution 
using GIS: a regression-based approach. International Journal of Geographical Information Science. 
11 (7), 699-718. 

Briggs, D. J., de Hoogh, C., Gulliver, J., Wills, J., Elliott, P., Kingham, S. & Smallbone, K. (2000) A 
regression-based method for mapping traffic-related air pollution: application and testing in four 
contrasting urban environments. Science of the Total Environment. 253 (1–3), 151-167. 

Brindley, D. N., McCann, B. S., Niaura, R., Stoney, C. M. & Suarez, E. C. (1993) Stress and lipoprotein 
metabolism: modulators and mechanisms. Metabolism: Clinical and Experimental. 42 (9 Suppl 1), 3-
15. 

Brook, R. D., Jerrett, M., Brook, J. R., Bard, R. L. & Finkelstein, M. M. (2008) The relationship between 
diabetes mellitus and traffic-related air pollution. Journal of Occupational and Environmental 
Medicine / American College of Occupational and Environmental Medicine. 50 (1), 32-38. 

Brook, R. D., Rajagopalan, S., Pope, C. A.,3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., 
Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C.,Jr, Whitsel, L., 
Kaufman, J. D. & American Heart Association Council on Epidemiology and Prevention, Council on 
the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. 
(2010) Particulate matter air pollution and cardiovascular disease: An update to the scientific 
statement from the American Heart Association. Circulation. 121 (21), 2331-2378. 

Brook, R. D., Xu, X., Bard, R. L., Dvonch, J. T., Morishita, M., Kaciroti, N., Sun, Q., Harkema, J. & 
Rajagopalan, S. (2013) Reduced metabolic insulin sensitivity following sub-acute exposures to low 
levels of ambient fine particulate matter air pollution. The Science of the Total Environment. 44866-
71. 

Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. & Donaldson, K. (2001) Size-dependent 
proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative 
stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology. 175 (3), 191-199. 

Carey, I. M., Atkinson, R. W., Kent, A. J., van Staa, T., Cook, D. G. & Anderson, H. R. (2013) Mortality 
associations with long-term exposure to outdoor air pollution in a national English cohort. American 
Journal of Respiratory and Critical Care Medicine. 187 (11), 1226-1233. 

Cesaroni, G., Badaloni, C., Gariazzo, C., Stafoggia, M., Sozzi, R., Davoli, M. & Forastiere, F. (2013) 
Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in 
Rome. Environmental Health Perspectives. 121 (3), 324-331. 

Cesaroni, G., Forastiere, F., Stafoggia, M., Andersen, Z. J., Badaloni, C., Beelen, R., Caracciolo, B., de 
Faire, U., Erbel, R., Eriksen, K. T., Fratiglioni, L., Galassi, C., Hampel, R., Heier, M., Hennig, F., Hilding, 
A., Hoffmann, B., Houthuijs, D., Jockel, K. H., Korek, M., Lanki, T., Leander, K., Magnusson, P. K., 
Migliore, E., Ostenson, C. G., Overvad, K., Pedersen, N. L., J, J. P., Penell, J., Pershagen, G., Pyko, A., 
Raaschou-Nielsen, O., Ranzi, A., Ricceri, F., Sacerdote, C., Salomaa, V., Swart, W., Turunen, A. W., 
Vineis, P., Weinmayr, G., Wolf, K., de Hoogh, K., Hoek, G., Brunekreef, B. & Peters, A. (2014) Long 



 

211 | P a g e  
 

term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort 
study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ (Clinical Research 
Ed.). 348f7412. 

Chen, H., Goldberg, M. S., Burnett, R. T., Jerrett, M., Wheeler, A. J. & Villeneuve, P. J. (2013) Long-
term exposure to traffic-related air pollution and cardiovascular mortality. Epidemiology (Cambridge, 
Mass.). 24 (1), 35-43. 

Chen, L., Zhou, Y., Li, S., Williams, G., Kan, H., Marks, G. B., Morawska, L., Abramson, M. J., Chen, S., 
Yao, T., Qin, T., Wu, S. & Guo, Y. (2016) Air pollution and fasting blood glucose: A longitudinal study 
in China. The Science of the Total Environment. 541750-755. 

Chin, M. T. (2015) Basic mechanisms for adverse cardiovascular events associated with air pollution. 
Heart (British Cardiac Society). 101 (4), 253-256. 

Chuang, K. J., Chan, C. C., Su, T. C., Lee, C. T. & Tang, C. S. (2007) The effect of urban air pollution on 
inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. American 
Journal of Respiratory and Critical Care Medicine. 176 (4), 370-376. 

Chuang, K. J., Yan, Y. H. & Cheng, T. J. (2010) Effect of air pollution on blood pressure, blood lipids, 
and blood sugar: a population-based approach. Journal of Occupational and Environmental Medicine 
/ American College of Occupational and Environmental Medicine. 52 (3), 258-262. 

Chuang, K. J., Yan, Y. H., Chiu, S. Y. & Cheng, T. J. (2011) Long-term air pollution exposure and risk 
factors for cardiovascular diseases among the elderly in Taiwan. Occupational and Environmental 
Medicine. 68 (1), 64-68. 

Clark, C., Martin, R., van Kempen, E., Alfred, T., Head, J., Davies, H. W., Haines, M. M., Lopez Barrio, 
I., Matheson, M. & Stansfeld, S. A. (2006) Exposure-effect relations between aircraft and road traffic 
noise exposure at school and reading comprehension: the RANCH project. American Journal of 
Epidemiology. 163 (1), 27-37. 

Clougherty, J. E., Wright, R. J., Baxter, L. K. & Levy, J. I. (2008) Land use regression modeling of intra-
urban residential variability in multiple traffic-related air pollutants. Environmental Health : A Global 
Access Science Source. 717-069X-7-17. 

Collins, F. S. & Manolio, T. A. (2007) Merging and emerging cohorts: necessary but not sufficient. 
Nature. 445 (7125), 259. 

Coogan, P. F., White, L. F., Jerrett, M., Brook, R. D., Su, J. G., Seto, E., Burnett, R., Palmer, J. R. & 
Rosenberg, L. (2012) Air pollution and incidence of hypertension and diabetes mellitus in black 
women living in Los Angeles. Circulation. 125 (6), 767-772. 

Correia, A. W., Peters, J. L., Levy, J. I., Melly, S. & Dominici, F. (2013) Residential exposure to aircraft 
noise and hospital admissions for cardiovascular diseases: multi-airport retrospective study. BMJ 
(Clinical Research Ed.). 347f5561. 

Crouse, D. L., Peters, P. A., Villeneuve, P. J., Proux, M. O., Shin, H. H., Goldberg, M. S., Johnson, M., 
Wheeler, A. J., Allen, R. W., Atari, D. O., Jerrett, M., Brauer, M., Brook, J. R., Cakmak, S. & Burnett, R. 
T. (2015) Within- and between-city contrasts in nitrogen dioxide and mortality in 10 Canadian cities; 



 

212 | P a g e  
 

a subset of the Canadian Census Health and Environment Cohort (CanCHEC). Journal of Exposure 
Science & Environmental Epidemiology. 25 (5), 482-489. 

Crowe, F. L., Appleby, P. N., Travis, R. C. & Key, T. J. (2013) Risk of hospitalization or death from 
ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford 
cohort study. The American Journal of Clinical Nutrition. 97 (3), 597-603. 

Cyrys, J., Eeftens, M., Heinrich, J., Ampe, C., Armengaud, A., Beelen, R., Bellander, T., Beregszaszi, T., 
Birk, M., Cesaroni, G., Cirach, M., de Hoogh, K., De Nazelle, A., de Vocht, F., Declercq, C., Dėdelė, A., 
Dimakopoulou, K., Eriksen, K., Galassi, C., Grąulevičienė, R., Grivas, G., Gruzieva, O., Gustafsson, A. 
H., Hoffmann, B., Iakovides, M., Ineichen, A., Krämer, U., Lanki, T., Lozano, P., Madsen, C., Meliefste, 
K., Modig, L., Mölter, A., Mosler, G., Nieuwenhuijsen, M., Nonnemacher, M., Oldenwening, M., 
Peters, A., Pontet, S., Probst-Hensch, N., Quass, U., Raaschou-Nielsen, O., Ranzi, A., Sugiri, D., 
Stephanou, E. G., Taimisto, P., Tsai, M., Vaskövi, É, Villani, S., Wang, M., Brunekreef, B. & Hoek, G. 
(2012) Variation of NO2 and NOx concentrations between and within 36 European study areas: 
Results from the ESCAPE study. Atmospheric Environment. 62374-390. 

Davey, G. K., Spencer, E. A., Appleby, P. N., Allen, N. E., Knox, K. H. & Key, T. J. (2003) EPIC-Oxford: 
lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-
eaters in the UK. Public Health Nutrition. 6 (3), 259-269. 

Dawes, P., Cruickshanks, K. J., Moore, D. R., Edmondson-Jones, M., McCormack, A., Fortnum, H. & 
Munro, K. J. (2014) Cigarette smoking, passive smoking, alcohol consumption, and hearing loss. 
Journal of the Association for Research in Otolaryngology : JARO. 15 (4), 663-674. 

de Hoogh, K., Korek, M., Vienneau, D., Keuken, M., Kukkonen, J., Nieuwenhuijsen, M. J., Badaloni, C., 
Beelen, R., Bolignano, A., Cesaroni, G., Pradas, M. C., Cyrys, J., Douros, J., Eeftens, M., Forastiere, F., 
Forsberg, B., Fuks, K., Gehring, U., Gryparis, A., Gulliver, J., Hansell, A. L., Hoffmann, B., Johansson, C., 
Jonkers, S., Kangas, L., Katsouyanni, K., Kunzli, N., Lanki, T., Memmesheimer, M., Moussiopoulos, N., 
Modig, L., Pershagen, G., Probst-Hensch, N., Schindler, C., Schikowski, T., Sugiri, D., Teixido, O., Tsai, 
M. Y., Yli-Tuomi, T., Brunekreef, B., Hoek, G. & Bellander, T. (2014) Comparing land use regression 
and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological 
studies. Environment International. 73382-392. 

de Kluizenaar, Y., van Lenthe, F. J., Visschedijk, A. J., Zandveld, P. Y., Miedema, H. M. & Mackenbach, 
J. P. (2013) Road traffic noise, air pollution components and cardiovascular events. Noise & Health. 
15 (67), 388-397. 

Desai, M. & Begg, M. D. (2008) A comparison of regression approaches for analyzing clustered data. 
American Journal of Public Health. 98 (8), 1425-1429. 

Diez Roux, A. V., Auchincloss, A. H., Astor, B., Barr, R. G., Cushman, M., Dvonch, T., Jacobs, D. R.,Jr, 
Kaufman, J., Lin, X. & Samson, P. (2006) Recent exposure to particulate matter and C-reactive 
protein concentration in the multi-ethnic study of atherosclerosis. American Journal of 
Epidemiology. 164 (5), 437-448. 

Dijkema, M. B., Mallant, S. F., Gehring, U., van den Hurk, K., Alssema, M., van Strien, R. T., Fischer, P. 
H., Nijpels, G., Stehouwer, C. D., Hoek, G., Dekker, J. M. & Brunekreef, B. (2011) Long-term exposure 
to traffic-related air pollution and type 2 diabetes prevalence in a cross-sectional screening-study in 
the Netherlands. Environmental Health : A Global Access Science Source. 1076-069X-10-76. 



 

213 | P a g e  
 

Dimakopoulou, K., Samoli, E., Beelen, R., Stafoggia, M., Andersen, Z. J., Hoffmann, B., Fischer, P., 
Nieuwenhuijsen, M., Vineis, P., Xun, W., Hoek, G., Raaschou-Nielsen, O., Oudin, A., Forsberg, B., 
Modig, L., Jousilahti, P., Lanki, T., Turunen, A., Oftedal, B., Nafstad, P., Schwarze, P. E., Penell, J., 
Fratiglioni, L., Andersson, N., Pedersen, N., Korek, M., De Faire, U., Eriksen, K. T., Tjonneland, A., 
Becker, T., Wang, M., Bueno-de-Mesquita, B., Tsai, M. Y., Eeftens, M., Peeters, P. H., Meliefste, K., 
Marcon, A., Kramer, U., Kuhlbusch, T. A., Vossoughi, M., Key, T., de Hoogh, K., Hampel, R., Peters, A., 
Heinrich, J., Weinmayr, G., Concin, H., Nagel, G., Ineichen, A., Jacquemin, B., Stempfelet, M., Vilier, 
A., Ricceri, F., Sacerdote, C., Pedeli, X., Katsoulis, M., Trichopoulou, A., Brunekreef, B. & Katsouyanni, 
K. (2014) Air pollution and nonmalignant respiratory mortality in 16 cohorts within the ESCAPE 
project. American Journal of Respiratory and Critical Care Medicine. 189 (6), 684-696. 

Directive 2002/49/EC. (2002) Directive of the European Parliament and of the Council of 25 June 
2002 relating to the assessment and management of environmental noise. Official J Eur 
Communities. L18912-25. 

Dockery, D. W., Pope, C. A.,3rd, Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G.,Jr & 
Speizer, F. E. (1993) An association between air pollution and mortality in six U.S. cities. The New 
England Journal of Medicine. 329 (24), 1753-1759. 

Eeftens, M., Beelen, R., de Hoogh, K., Bellander, T., Cesaroni, G., Cirach, M., Declercq, C., Dedele, A., 
Dons, E., de Nazelle, A., Dimakopoulou, K., Eriksen, K., Falq, G., Fischer, P., Galassi, C., Grazuleviciene, 
R., Heinrich, J., Hoffmann, B., Jerrett, M., Keidel, D., Korek, M., Lanki, T., Lindley, S., Madsen, C., 
Molter, A., Nador, G., Nieuwenhuijsen, M., Nonnemacher, M., Pedeli, X., Raaschou-Nielsen, O., 
Patelarou, E., Quass, U., Ranzi, A., Schindler, C., Stempfelet, M., Stephanou, E., Sugiri, D., Tsai, M. Y., 
Yli-Tuomi, T., Varro, M. J., Vienneau, D., Klot, S., Wolf, K., Brunekreef, B. & Hoek, G. (2012a) 
Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and 
PM(coarse) in 20 European study areas; results of the ESCAPE project. Environmental Science & 
Technology. 46 (20), 11195-11205. 

Eeftens, M., Beelen, R., Fischer, P., Brunekreef, B., Meliefste, K. & Hoek, G. (2011) Stability of 
measured and modelled spatial contrasts in NO(2) over time. Occupational and Environmental 
Medicine. 68 (10), 765-770. 

Eeftens, M., Beekhuizen, J., Beelen, R., Wang, M., Vermeulen, R., Brunekreef, B., Huss, A. & Hoek, G. 
(2013) Quantifying urban street configuration for improvements in air pollution models. 
Atmospheric Environment. 721-9. 

Eeftens, M., Tsai, M., Ampe, C., Anwander, B., Beelen, R., Bellander, T., Cesaroni, G., Cirach, M., 
Cyrys, J., de Hoogh, K., De Nazelle, A., de Vocht, F., Declercq, C., Dėdelė, A., Eriksen, K., Galassi, C., 
Gražulevičienė, R., Grivas, G., Heinrich, J., Hoffmann, B., Iakovides, M., Ineichen, A., Katsouyanni, K., 
Korek, M., Krämer, U., Kuhlbusch, T., Lanki, T., Madsen, C., Meliefste, K., Mölter, A., Mosler, G., 
Nieuwenhuijsen, M., Oldenwening, M., Pennanen, A., Probst-Hensch, N., Quass, U., Raaschou-
Nielsen, O., Ranzi, A., Stephanou, E., Sugiri, D., Udvardy, O., Vaskövi, É, Weinmayr, G., Brunekreef, B. 
& Hoek, G. (2012b) Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse 
concentrations between and within 20 European study areas and the relationship with NO2 – 
Results of the ESCAPE project. Atmospheric Environment. 62303-317. 

Elliott, P., Shaddick, G., Wakefield, J. C., de Hoogh, C. & Briggs, D. J. (2007) Long-term associations of 
outdoor air pollution with mortality in Great Britain. Thorax. 62 (12), 1088-1094. 



 

214 | P a g e  
 

Eriksson, C., Hilding, A., Pyko, A., Bluhm, G., Pershagen, G. & Ostenson, C. G. (2014) Long-term 
aircraft noise exposure and body mass index, waist circumference, and type 2 diabetes: a 
prospective study. Environmental Health Perspectives. 122 (7), 687-694. 

Eriksson, C., Rosenlund, M., Pershagen, G., Hilding, A., Ostenson, C. G. & Bluhm, G. (2007) Aircraft 
noise and incidence of hypertension. Epidemiology (Cambridge, Mass.). 18 (6), 716-721. 

European Commission. (2013) Final Report ENNAH-European Network on Noise and Health.  

European Commission. (2010) Special Eurobarometer 347 on Electromagnetic Fields .  

European Commission. (2009) Perception survey on quality of life in European cities: Analytical 
report.  

European Environment Agency. (2013) TERM 2013: transport indicators tracking progress towards 
environmental targets in Europe.  

European Environment Agency. (2012) The contribution of transport to air quality - TERM 2012: 
Transport indicators tracking progress towards environmental targets in Europe.  

European Office WHO. (2011) Burden of disease from environmental noise: quantification of healthy 
life years lost in Europe.  

European Union. Available from: http://ec.europa.eu/environment/air/quality/standards.htm . 

Evrard, A. S., Lefevre, M., Champelovier, P., Lambert, J. & Laumon, B. (2016) Does aircraft noise 
exposure increase the risk of hypertension in the population living near airports in France? 
Occupational and Environmental Medicine.  

Eze, I. C., Hemkens, L. G., Bucher, H. C., Hoffmann, B., Schindler, C., Kunzli, N., Schikowski, T. & 
Probst-Hensch, N. M. (2015) Association between ambient air pollution and diabetes mellitus in 
Europe and North America: systematic review and meta-analysis. Environmental Health Perspectives. 
123 (5), 381-389. 

Fagernaes, C. F., Heuch, I., Zwart, J. A., Winsvold, B. S., Linde, M. & Hagen, K. (2015) Blood pressure 
as a risk factor for headache and migraine: a prospective population-based study. European Journal 
of Neurology. 22 (1), 156-62, e10-1. 

Faustini, A., Rapp, R. & Forastiere, F. (2014) Nitrogen dioxide and mortality: review and meta-
analysis of long-term studies. The European Respiratory Journal.  

Filleul, L., Rondeau, V., Vandentorren, S., Le Moual, N., Cantagrel, A., Annesi-Maesano, I., Charpin, 
D., Declercq, C., Neukirch, F., Paris, C., Vervloet, D., Brochard, P., Tessier, J. F., Kauffmann, F. & Baldi, 
I. (2005) Twenty five year mortality and air pollution: results from the French PAARC survey. 
Occupational and Environmental Medicine. 62 (7), 453-460. 

Floud, S., Blangiardo, M., Clark, C., de Hoogh, K., Babisch, W., Houthuijs, D., Swart, W., Pershagen, G., 
Katsouyanni, K., Velonakis, M., Vigna-Taglianti, F., Cadum, E. & Hansell, A. L. (2013) Exposure to 
aircraft and road traffic noise and associations with heart disease and stroke in six European 
countries: a cross-sectional study. Environmental Health : A Global Access Science Source. 1289-
069X-12-89. 

http://ec.europa.eu/environment/air/quality/standards.htm


 

215 | P a g e  
 

Foraster, M. (2013) Is it traffic-related air pollution or road traffic noise, or both? Key questions not 
yet settled! International Journal of Public Health. 58 (5), 647-648. 

Foraster, M., Basagana, X., Aguilera, I., Rivera, M., Agis, D., Bouso, L., Deltell, A., Marrugat, J., Ramos, 
R., Sunyer, J., Vila, J., Elosua, R. & Kunzli, N. (2014) Association of long-term exposure to traffic-
related air pollution with blood pressure and hypertension in an adult population-based cohort in 
Spain (the REGICOR study). Environmental Health Perspectives. 122 (4), 404-411. 

Forbes, L. J., Patel, M. D., Rudnicka, A. R., Cook, D. G., Bush, T., Stedman, J. R., Whincup, P. H., 
Strachan, D. P. & Anderson, H. R. (2009a) Chronic exposure to outdoor air pollution and diagnosed 
cardiovascular disease: meta-analysis of three large cross-sectional surveys. Environmental Health : 
A Global Access Science Source. 830-069X-8-30. 

Forbes, L. J., Patel, M. D., Rudnicka, A. R., Cook, D. G., Bush, T., Stedman, J. R., Whincup, P. H., 
Strachan, D. P. & Anderson, R. H. (2009b) Chronic exposure to outdoor air pollution and markers of 
systemic inflammation. Epidemiology (Cambridge, Mass.). 20 (2), 245-253. 

Fortier, I., Burton, P. R., Robson, P. J., Ferretti, V., Little, J., L'Heureux, F., Deschenes, M., Knoppers, B. 
M., Doiron, D., Keers, J. C., Linksted, P., Harris, J. R., Lachance, G., Boileau, C., Pedersen, N. L., 
Hamilton, C. M., Hveem, K., Borugian, M. J., Gallagher, R. P., McLaughlin, J., Parker, L., Potter, J. D., 
Gallacher, J., Kaaks, R., Liu, B., Sprosen, T., Vilain, A., Atkinson, S. A., Rengifo, A., Morton, R., 
Metspalu, A., Wichmann, H. E., Tremblay, M., Chisholm, R. L., Garcia-Montero, A., Hillege, H., Litton, 
J. E., Palmer, L. J., Perola, M., Wolffenbuttel, B. H., Peltonen, L. & Hudson, T. J. (2010) Quality, 
quantity and harmony: the DataSHaPER approach to integrating data across bioclinical studies. 
International Journal of Epidemiology. 39 (5), 1383-1393. 

Fortier, I., Doiron, D., Little, J., Ferretti, V., L'Heureux, F., Stolk, R. P., Knoppers, B. M., Hudson, T. J., 
Burton, P. R. & International Harmonization Initiative. (2011) Is rigorous retrospective harmonization 
possible? Application of the DataSHaPER approach across 53 large studies. International Journal of 
Epidemiology. 40 (5), 1314-1328. 

Fuks, K., Moebus, S., Hertel, S., Viehmann, A., Nonnemacher, M., Dragano, N., Mohlenkamp, S., 
Jakobs, H., Kessler, C., Erbel, R., Hoffmann, B. & Heinz Nixdorf Recall Study Investigative Group. 
(2011) Long-term urban particulate air pollution, traffic noise, and arterial blood pressure. 
Environmental Health Perspectives. 119 (12), 1706-1711. 

Galbraith, S., Daniel, J. A. & Vissel, B. (2010) A study of clustered data and approaches to its analysis. 
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience. 30 (32), 10601-
10608. 

Gan, W. Q., Davies, H. W., Koehoorn, M. & Brauer, M. (2012) Association of long-term exposure to 
community noise and traffic-related air pollution with coronary heart disease mortality. American 
Journal of Epidemiology. 175 (9), 898-906. 

Gan, W. Q., Koehoorn, M., Davies, H. W., Demers, P. A., Tamburic, L. & Brauer, M. (2011) Long-term 
exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and 
mortality. Environmental Health Perspectives. 119 (4), 501-507. 

Garg, N. & Maji, S. (2014) A critical review of principal traffic noise models: Strategies and 
implications. Environmental Impact Assessment Review. 4668-81. 



 

216 | P a g e  
 

Gaye, A., Marcon, Y., Isaeva, J., LaFlamme, P., Turner, A., Jones, E. M., Minion, J., Boyd, A. W., 
Newby, C. J., Nuotio, M. L., Wilson, R., Butters, O., Murtagh, B., Demir, I., Doiron, D., Giepmans, L., 
Wallace, S. E., Budin-Ljosne, I., Oliver Schmidt, C., Boffetta, P., Boniol, M., Bota, M., Carter, K. W., 
deKlerk, N., Dibben, C., Francis, R. W., Hiekkalinna, T., Hveem, K., Kvaloy, K., Millar, S., Perry, I. J., 
Peters, A., Phillips, C. M., Popham, F., Raab, G., Reischl, E., Sheehan, N., Waldenberger, M., Perola, 
M., van den Heuvel, E., Macleod, J., Knoppers, B. M., Stolk, R. P., Fortier, I., Harris, J. R., 
Woffenbuttel, B. H., Murtagh, M. J., Ferretti, V. & Burton, P. R. (2014) DataSHIELD: taking the 
analysis to the data, not the data to the analysis. International Journal of Epidemiology. 43 (6), 1929-
1944. 

Genc, S., Zadeoglulari, Z., Fuss, S. H. & Genc, K. (2012) The adverse effects of air pollution on the 
nervous system. Journal of Toxicology. 2012782462. 

Gilbert, N. L., Goldberg, M. S., Beckerman, B., Brook, J. R. & Jerrett, M. (2005) Assessing spatial 
variability of ambient nitrogen dioxide in Montreal, Canada, with a land-use regression model. 
Journal of the Air & Waste Management Association (1995). 55 (8), 1059-1063. 

Gulliver, J., de Hoogh, K., Hansell, A. & Vienneau, D. (2013) Development and back-extrapolation of 
NO2 land use regression models for historic exposure assessment in Great Britain. Environmental 
Science & Technology. 47 (14), 7804-7811. 

Gulliver, J., de Hoogh, K., Fecht, D., Vienneau, D. & Briggs, D. (2011) Comparative assessment of GIS-
based methods and metrics for estimating long-term exposures to air pollution. Atmospheric 
Environment. 45 (39), 7072-7080. 

Hajat, A., Allison, M., Diez-Roux, A. V., Jenny, N. S., Jorgensen, N. W., Szpiro, A. A., Vedal, S. & 
Kaufman, J. D. (2015) Long-term exposure to air pollution and markers of inflammation, coagulation, 
and endothelial activation: a repeat-measures analysis in the Multi-Ethnic Study of Atherosclerosis 
(MESA). Epidemiology (Cambridge, Mass.). 26 (3), 310-320. 

Hales, S., Blakely, T. & Woodward, A. (2012) Air pollution and mortality in New Zealand: cohort 
study. Journal of Epidemiology and Community Health. 66 (5), 468-473. 

Halonen, J. I., Hansell, A. L., Gulliver, J., Morley, D., Blangiardo, M., Fecht, D., Toledano, M. B., 
Beevers, S. D., Anderson, H. R., Kelly, F. J. & Tonne, C. (2015) Road traffic noise is associated with 
increased cardiovascular morbidity and mortality and all-cause mortality in London. European Heart 
Journal. 36 (39), 2653-2661. 

Hanninen, O., Knol, A. B., Jantunen, M., Lim, T. A., Conrad, A., Rappolder, M., Carrer, P., Fanetti, A. 
C., Kim, R., Buekers, J., Torfs, R., Iavarone, I., Classen, T., Hornberg, C., Mekel, O. C. & EBoDE Working 
Group. (2014) Environmental burden of disease in Europe: assessing nine risk factors in six countries. 
Environmental Health Perspectives. 122 (5), 439-446. 

Hansell, A. L., Blangiardo, M., Fortunato, L., Floud, S., de Hoogh, K., Fecht, D., Ghosh, R. E., Laszlo, H. 
E., Pearson, C., Beale, L., Beevers, S., Gulliver, J., Best, N., Richardson, S. & Elliott, P. (2013) Aircraft 
noise and cardiovascular disease near Heathrow airport in London: small area study. BMJ (Clinical 
Research Ed.). 347f5432. 

Hart, J. E., Puett, R. C., Rexrode, K. M., Albert, C. M. & Laden, F. (2015) Effect Modification of Long-
Term Air Pollution Exposures and the Risk of Incident Cardiovascular Disease in US Women. Journal 
of the American Heart Association. 4 (12), 10.1161/JAHA.115.002301. 



 

217 | P a g e  
 

Hart, J. E., Rimm, E. B., Rexrode, K. M. & Laden, F. (2013) Changes in traffic exposure and the risk of 
incident myocardial infarction and all-cause mortality. Epidemiology (Cambridge, Mass.). 24 (5), 734-
742. 

Heinecke, J. W. (2012) The not-so-simple HDL story: A new era for quantifying HDL and 
cardiovascular risk? Nature Medicine. 18 (9), 1346-1347. 

Heinrich, J., Thiering, E., Rzehak, P., Kramer, U., Hochadel, M., Rauchfuss, K. M., Gehring, U. & 
Wichmann, H. E. (2013) Long-term exposure to NO2 and PM10 and all-cause and cause-specific 
mortality in a prospective cohort of women. Occupational and Environmental Medicine. 70 (3), 179-
186. 

Henderson, S. B., Beckerman, B., Jerrett, M. & Brauer, M. (2007) Application of land use regression 
to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. 
Environmental Science & Technology. 41 (7), 2422-2428. 

Hennig, F., Fuks, K., Moebus, S., Weinmayr, G., Memmesheimer, M., Jakobs, H., Brocker-Preuss, M., 
Fuhrer-Sakel, D., Mohlenkamp, S., Erbel, R., Jockel, K. H., Hoffmann, B. & Heinz Nixdorf Recall Study 
Investigative Group. (2014) Association between source-specific particulate matter air pollution and 
hs-CRP: local traffic and industrial emissions. Environmental Health Perspectives. 122 (7), 703-710. 

Henry, J. P. (1992) Biological basis of the stress response. Integrative Physiological and Behavioral 
Science : The Official Journal of the Pavlovian Society. 27 (1), 66-83. 

Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P. & van den Brandt, P. A. (2002) Association 
between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. 
Lancet (London, England). 360 (9341), 1203-1209. 

Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B. & Kaufman, J. D. (2013) 
Long-term air pollution exposure and cardio- respiratory mortality: a review. Environmental Health : 
A Global Access Science Source. 12 (1), 43-069X-12-43. 

Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P. & Briggs, D. (2008) A review 
of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric 
Environment. 42 (33), 7561-7578. 

Hoffmann, B., Moebus, S., Dragano, N., Stang, A., Mohlenkamp, S., Schmermund, A., 
Memmesheimer, M., Brocker-Preuss, M., Mann, K., Erbel, R. & Jockel, K. H. (2009) Chronic 
residential exposure to particulate matter air pollution and systemic inflammatory markers. 
Environmental Health Perspectives. 117 (8), 1302-1308. 

Hoffmann, B., Weinmayr, G., Hennig, F., Fuks, K., Moebus, S., Weimar, C., Dragano, N., Hermann, D. 
M., Kalsch, H., Mahabadi, A. A., Erbel, R. & Jockel, K. H. (2015) Air quality, stroke, and coronary 
events: results of the Heinz Nixdorf Recall Study from the Ruhr Region. Deutsches Arzteblatt 
International. 112 (12), 195-201. 

Huang, D., Song, X., Cui, Q., Tian, J., Wang, Q. & Yang, K. (2015) Is there an association between 
aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16784 participants. 
Noise & Health. 17 (75), 93-97. 



 

218 | P a g e  
 

Huerta, J. M., Tormo, M. J., Egea-Caparros, J. M., Ortola-Devesa, J. B. & Navarro, C. (2009) Accuracy 
of self-reported diabetes, hypertension and hyperlipidemia in the adult Spanish population. DINO 
study findings. Revista Espanola De Cardiologia. 62 (2), 143-152. 

Huss, A., Spoerri, A., Egger, M., Roosli, M. & Swiss National Cohort Study Group. (2010) Aircraft 
noise, air pollution, and mortality from myocardial infarction. Epidemiology (Cambridge, Mass.). 21 
(6), 829-836. 

Huttunen, K., Siponen, T., Salonen, I., Yli-Tuomi, T., Aurela, M., Dufva, H., Hillamo, R., Linkola, E., 
Pekkanen, J., Pennanen, A., Peters, A., Salonen, R. O., Schneider, A., Tiittanen, P., Hirvonen, M. R. & 
Lanki, T. (2012) Low-level exposure to ambient particulate matter is associated with systemic 
inflammation in ischemic heart disease patients. Environmental Research. 11644-51. 

Hveem, K. (2011) Creation of a new prospective research biobank: the example of HUNT3. Methods 
in Molecular Biology (Clifton, N.J.). 675231-239. 

Jackson, C. L., Redline, S. & Emmons, K. M. (2015a) Sleep as a potential fundamental contributor to 
disparities in cardiovascular health. Annual Review of Public Health. 36417-440. 

Jackson, C. L., Redline, S. & Emmons, K. M. (2015b) Sleep as a potential fundamental contributor to 
disparities in cardiovascular health. Annual Review of Public Health. 36417-440. 

Janke, K., Propper, C. & Henderson, J. (2009) Do current levels of air pollution kill? The impact of air 
pollution on population mortality in England. Health Economics. 18 (9), 1031-1055. 

Jarup, L., Babisch, W., Houthuijs, D., Pershagen, G., Katsouyanni, K., Cadum, E., Dudley, M. L., 
Savigny, P., Seiffert, I., Swart, W., Breugelmans, O., Bluhm, G., Selander, J., Haralabidis, A., 
Dimakopoulou, K., Sourtzi, P., Velonakis, M., Vigna-Taglianti, F. & HYENA study team. (2008) 
Hypertension and exposure to noise near airports: the HYENA study. Environmental Health 
Perspectives. 116 (3), 329-333. 

Jerrett, M., Arain, M. A., Kanaroglou, P., Beckerman, B., Crouse, D., Gilbert, N. L., Brook, J. R., 
Finkelstein, N. & Finkelstein, M. M. (2007) Modeling the intraurban variability of ambient traffic 
pollution in Toronto, Canada. Journal of Toxicology and Environmental Health.Part A. 70 (3-4), 200-
212. 

Jerrett, M., Burnett, R. T., Beckerman, B. S., Turner, M. C., Krewski, D., Thurston, G., Martin, R. V., 
van Donkelaar, A., Hughes, E., Shi, Y., Gapstur, S. M., Thun, M. J. & Pope, C. A.,3rd. (2013) Spatial 
analysis of air pollution and mortality in California. American Journal of Respiratory and Critical Care 
Medicine. 188 (5), 593-599. 

Jorgensen, L., Jenssen, T., Joakimsen, O., Heuch, I., Ingebretsen, O. C. & Jacobsen, B. K. (2004) 
Glycated hemoglobin level is strongly related to the prevalence of carotid artery plaques with high 
echogenicity in nondiabetic individuals: the Tromso study. Circulation. 110 (4), 466-470. 

Kalsch, H., Hennig, F., Moebus, S., Mohlenkamp, S., Dragano, N., Jakobs, H., Memmesheimer, M., 
Erbel, R., Jockel, K. H., Hoffmann, B. & Heinz Nixdorf Recall Study Investigative Group. (2014) Are air 
pollution and traffic noise independently associated with atherosclerosis: the Heinz Nixdorf Recall 
Study. European Heart Journal. 35 (13), 853-860. 



 

219 | P a g e  
 

Kan, H., Heiss, G., Rose, K. M., Whitsel, E. A., Lurmann, F. & London, S. J. (2008) Prospective analysis 
of traffic exposure as a risk factor for incident coronary heart disease: the Atherosclerosis Risk in 
Communities (ARIC) study. Environmental Health Perspectives. 116 (11), 1463-1468. 

Kannel, W. B. (1990) Bishop lecture. Contribution of the Framingham Study to preventive cardiology. 
Journal of the American College of Cardiology. 15 (1), 206-211. 

Kaptoge, S., Seshasai, S. R., Gao, P., Freitag, D. F., Butterworth, A. S., Borglykke, A., Di Angelantonio, 
E., Gudnason, V., Rumley, A., Lowe, G. D., Jorgensen, T. & Danesh, J. (2014) Inflammatory cytokines 
and risk of coronary heart disease: new prospective study and updated meta-analysis. European 
Heart Journal. 35 (9), 578-589. 

Katsoulis, M., Dimakopoulou, K., Pedeli, X., Trichopoulos, D., Gryparis, A., Trichopoulou, A. & 
Katsouyanni, K. (2014) Long-term exposure to traffic-related air pollution and cardiovascular health 
in a Greek cohort study. The Science of the Total Environment. 490934-940. 

Katsouyanni, K. (2003) Ambient air pollution and health. British Medical Bulletin. 68143-156. 

Kelly, F. J. & Fussell, J. C. (2012a) Size, source and chemical composition as determinants of toxicity 
attributable to ambient particulate matter. Atmospheric Environment. 60504-526. 

Kelly, F. J. & Fussell, J. C. (2012b) Size, source and chemical composition as determinants of toxicity 
attributable to ambient particulate matter. Atmospheric Environment. 60504-526. 

Kempen, E. (2011) Cardiovascular effects of environmental noise: research in The Netherlands. Noise 
& Health. 13 (52), 221-228. 

Kephalopoulos, S., Paviotti, M., Anfosso-Ledee, F., Van Maercke, D., Shilton, S. & Jones, N. (2014) 
Advances in the development of common noise assessment methods in Europe: The CNOSSOS-EU 
framework for strategic environmental noise mapping. The Science of the Total Environment. 482-
483400-410. 

Khafaie, M. A., Salvi, S. S., Ojha, A., Khafaie, B., Gore, S. S. & Yajnik, C. S. (2013) Systemic 
inflammation (C-reactive protein) in type 2 diabetic patients is associated with ambient air pollution 
in Pune City, India. Diabetes Care. 36 (3), 625-630. 

Korek, M. J., Bellander, T. D., Lind, T., Bottai, M., Eneroth, K. M., Caracciolo, B., de Faire, U. H., 
Fratiglioni, L., Hilding, A., Leander, K., Magnusson, P. K., Pedersen, N. L., Ostenson, C. G., Pershagen, 
G. & Penell, J. C. (2015) Traffic-related air pollution exposure and incidence of stroke in four cohorts 
from Stockholm. Journal of Exposure Science & Environmental Epidemiology. 25 (5), 517-523. 

Kramer, U., Herder, C., Sugiri, D., Strassburger, K., Schikowski, T., Ranft, U. & Rathmann, W. (2010) 
Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. 
Environmental Health Perspectives. 118 (9), 1273-1279. 

Krokstad, S., Langhammer, A., Hveem, K., Holmen, T. L., Midthjell, K., Stene, T. R., Bratberg, G., 
Heggland, J. & Holmen, J. (2013) Cohort Profile: the HUNT Study, Norway. International Journal of 
Epidemiology. 42 (4), 968-977. 

Kuehn, B. M. (2014) WHO: More than 7 million air pollution deaths each year. JAMA : The Journal of 
the American Medical Association. 311 (15), 1486. 



 

220 | P a g e  
 

Kunzli, N. (2014) Effects of near-road and regional air pollution: the challenge of separation. Thorax. 
69 (6), 503-504. 

Kunzli, N., Jerrett, M., Garcia-Esteban, R., Basagana, X., Beckermann, B., Gilliland, F., Medina, M., 
Peters, J., Hodis, H. N. & Mack, W. J. (2010) Ambient air pollution and the progression of 
atherosclerosis in adults. PloS One. 5 (2), e9096. 

Laden, F., Schwartz, J., Speizer, F. E. & Dockery, D. W. (2006) Reduction in fine particulate air 
pollution and mortality: Extended follow-up of the Harvard Six Cities study. American Journal of 
Respiratory and Critical Care Medicine. 173 (6), 667-672. 

Lanki, T., Hampel, R., Tiittanen, P., Andrich, S., Beelen, R., Brunekreef, B., Dratva, J., De Faire, U., 
Fuks, K. B., Hoffmann, B., Imboden, M., Jousilahti, P., Koenig, W., Mahabadi, A. A., Kunzli, N., 
Pedersen, N. L., Penell, J., Pershagen, G., Probst-Hensch, N. M., Schaffner, E., Schindler, C., Sugiri, D., 
Swart, W. J., Tsai, M. Y., Turunen, A. W., Weinmayr, G., Wolf, K., Yli-Tuomi, T. & Peters, A. (2015) Air 
Pollution from Road Traffic and Systemic Inflammation in Adults: A Cross-Sectional Analysis in the 
European ESCAPE Project. Environmental Health Perspectives. 123 (8), 785-791. 

Lepeule, J., Laden, F., Dockery, D. & Schwartz, J. (2012) Chronic exposure to fine particles and 
mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environmental 
Health Perspectives. 120 (7), 965-970. 

Lercher, P., Botteldooren, D., Widmann, U., Uhrner, U. & Kammeringer, E. (2011) Cardiovascular 
effects of environmental noise: research in Austria. Noise & Health. 13 (52), 234-250. 

Lercher, P. (1996) Environmental noise and health: An integrated research perspective. Environment 
International. 22 (1), 117-129. 

Li, Y., Rittenhouse-Olson, K., Scheider, W. L. & Mu, L. (2012) Effect of particulate matter air pollution 
on C-reactive protein: a review of epidemiologic studies. Reviews on Environmental Health. 27 (2-3), 
133-149. 

Libby, P. (2002) Inflammation in atherosclerosis. Nature. 420 (6917), 868-874. 

Lipsett, M. J., Ostro, B. D., Reynolds, P., Goldberg, D., Hertz, A., Jerrett, M., Smith, D. F., Garcia, C., 
Chang, E. T. & Bernstein, L. (2011) Long-term exposure to air pollution and cardiorespiratory disease 
in the California teachers study cohort. American Journal of Respiratory and Critical Care Medicine. 
184 (7), 828-835. 

Liu, C., Yang, C., Zhao, Y., Ma, Z., Bi, J., Liu, Y., Meng, X., Wang, Y., Cai, J., Kan, H. & Chen, R. (2016) 
Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes 
prevalence, blood glucose and glycosylated hemoglobin levels in China. Environment International. 
92-93416-421. 

Madsen, C., Gehring, U., Håberg, S. E., Nafstad, P., Meliefste, K., Nystad, W., Lødrup Carlsen, K. C. & 
Brunekreef, B. (2011) Comparison of land-use regression models for predicting spatial NOx contrasts 
over a three year period in Oslo, Norway. Atmospheric Environment. 45 (21), 3576-3583. 

Maheswaran, R. & Elliott, P. (2003) Stroke mortality associated with living near main roads in 
England and wales: a geographical study. Stroke; a Journal of Cerebral Circulation. 34 (12), 2776-
2780. 



 

221 | P a g e  
 

Maheswaran, R., Haining, R. P., Brindley, P., Law, J., Pearson, T., Fryers, P. R., Wise, S. & Campbell, M. 
J. (2005) Outdoor air pollution and stroke in Sheffield, United Kingdom: a small-area level 
geographical study. Stroke; a Journal of Cerebral Circulation. 36 (2), 239-243. 

Maheswaran, R., Pearson, T., Smeeton, N. C., Beevers, S. D., Campbell, M. J. & Wolfe, C. D. (2012) 
Outdoor air pollution and incidence of ischemic and hemorrhagic stroke: a small-area level 
ecological study. Stroke; a Journal of Cerebral Circulation. 43 (1), 22-27. 

Maheswaran, R., Pearson, T., Smeeton, N. C., Beevers, S. D., Campbell, M. J. & Wolfe, C. D. (2010) 
Impact of outdoor air pollution on survival after stroke: population-based cohort study. Stroke; a 
Journal of Cerebral Circulation. 41 (5), 869-877. 

Mark Jenner. (1995) The politics of London air John Evelyn's Fumifugium and the Restoration. The 
Historical Journal. 38535-551. 

Maschke, C. (2011) Cardiovascular effects of environmental noise: research in Germany. Noise & 
Health. 13 (52), 205-211. 

Maschke, C., Rupp, T. & Hecht, K. (2000) The influence of stressors on biochemical reactions--a 
review of present scientific findings with noise. International Journal of Hygiene and Environmental 
Health. 203 (1), 45-53. 

Melamed, S., Froom, P., Kristal-Boneh, E., Gofer, D. & Ribak, J. (1997) Industrial noise exposure, 
noise annoyance, and serum lipid levels in blue-collar workers--the CORDIS Study. Archives of 
Environmental Health. 52 (4), 292-298. 

Miller, K. A., Siscovick, D. S., Sheppard, L., Shepherd, K., Sullivan, J. H., Anderson, G. L. & Kaufman, J. 
D. (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. The 
New England Journal of Medicine. 356 (5), 447-458. 

Mölter, A., Lindley, S., de Vocht, F., Simpson, A. & Agius, R. (2010) Modelling air pollution for 
epidemiologic research – Part II: Predicting temporal variation through land use regression. Science 
of the Total Environment. 409 (1), 211-217. 

Morgenstern, V., Zutavern, A., Cyrys, J., Brockow, I., Gehring, U., Koletzko, S., Bauer, C. P., Reinhardt, 
D., Wichmann, H. E. & Heinrich, J. (2007) Respiratory health and individual estimated exposure to 
traffic-related air pollutants in a cohort of young children. Occupational and Environmental 
Medicine. 64 (1), 8-16. 

Morley, D. W., de Hoogh, K., Fecht, D., Fabbri, F., Bell, M., Goodman, P. S., Elliott, P., Hodgson, S., 
Hansell, A. & Gulliver, J. (2015) International scale implementation of the CNOSSOS-EU road traffic 
noise prediction model for epidemiological studies. Environmental Pollution (Barking, Essex : 1987). 
206332-341. 

Munzel, T., Gori, T., Babisch, W. & Basner, M. (2014) Cardiovascular effects of environmental noise 
exposure. European Heart Journal. 35 (13), 829-836. 

Murphy M, K. E. (2014) Environmental Noise Pollution: noise mapping, public health and policy. . , 
Elsevier. 



 

222 | P a g e  
 

Murray, C. J., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., Ezzati, M., Shibuya, K., 
Salomon, J. A., Abdalla, S., Aboyans, V., Abraham, J., Ackerman, I., Aggarwal, R., Ahn, S. Y., Ali, M. K., 
Alvarado, M., Anderson, H. R., Anderson, L. M., Andrews, K. G., Atkinson, C., Baddour, L. M., Bahalim, 
A. N., Barker-Collo, S., Barrero, L. H., Bartels, D. H., Basanez, M. G., Baxter, A., Bell, M. L., Benjamin, 
E. J., Bennett, D., Bernabe, E., Bhalla, K., Bhandari, B., Bikbov, B., Bin Abdulhak, A., Birbeck, G., Black, 
J. A., Blencowe, H., Blore, J. D., Blyth, F., Bolliger, I., Bonaventure, A., Boufous, S., Bourne, R., 
Boussinesq, M., Braithwaite, T., Brayne, C., Bridgett, L., Brooker, S., Brooks, P., Brugha, T. S., Bryan-
Hancock, C., Bucello, C., Buchbinder, R., Buckle, G., Budke, C. M., Burch, M., Burney, P., Burstein, R., 
Calabria, B., Campbell, B., Canter, C. E., Carabin, H., Carapetis, J., Carmona, L., Cella, C., Charlson, F., 
Chen, H., Cheng, A. T., Chou, D., Chugh, S. S., Coffeng, L. E., Colan, S. D., Colquhoun, S., Colson, K. E., 
Condon, J., Connor, M. D., Cooper, L. T., Corriere, M., Cortinovis, M., de Vaccaro, K. C., Couser, W., 
Cowie, B. C., Criqui, M. H., Cross, M., Dabhadkar, K. C., Dahiya, M., Dahodwala, N., Damsere-Derry, J., 
Danaei, G., Davis, A., De Leo, D., Degenhardt, L., Dellavalle, R., Delossantos, A., Denenberg, J., 
Derrett, S., Des Jarlais, D. C., Dharmaratne, S. D., Dherani, M., Diaz-Torne, C., Dolk, H., Dorsey, E. R., 
Driscoll, T., Duber, H., Ebel, B., Edmond, K., Elbaz, A., Ali, S. E., Erskine, H., Erwin, P. J., Espindola, P., 
Ewoigbokhan, S. E., Farzadfar, F., Feigin, V., Felson, D. T., Ferrari, A., Ferri, C. P., Fevre, E. M., 
Finucane, M. M., Flaxman, S., Flood, L., Foreman, K., Forouzanfar, M. H., Fowkes, F. G., Fransen, M., 
Freeman, M. K., Gabbe, B. J., Gabriel, S. E., Gakidou, E., Ganatra, H. A., Garcia, B., Gaspari, F., Gillum, 
R. F., Gmel, G., Gonzalez-Medina, D., Gosselin, R., Grainger, R., Grant, B., Groeger, J., Guillemin, F., 
Gunnell, D., Gupta, R., Haagsma, J., Hagan, H., Halasa, Y. A., Hall, W., Haring, D., Haro, J. M., Harrison, 
J. E., Havmoeller, R., Hay, R. J., Higashi, H., Hill, C., Hoen, B., Hoffman, H., Hotez, P. J., Hoy, D., Huang, 
J. J., Ibeanusi, S. E., Jacobsen, K. H., James, S. L., Jarvis, D., Jasrasaria, R., Jayaraman, S., Johns, N., 
Jonas, J. B., Karthikeyan, G., Kassebaum, N., Kawakami, N., Keren, A., Khoo, J. P., King, C. H., 
Knowlton, L. M., Kobusingye, O., Koranteng, A., Krishnamurthi, R., Laden, F., Lalloo, R., Laslett, L. L., 
Lathlean, T., Leasher, J. L., Lee, Y. Y., Leigh, J., Levinson, D., Lim, S. S., Limb, E., Lin, J. K., Lipnick, M., 
Lipshultz, S. E., Liu, W., Loane, M., Ohno, S. L., Lyons, R., Mabweijano, J., MacIntyre, M. F., 
Malekzadeh, R., Mallinger, L., Manivannan, S., Marcenes, W., March, L., Margolis, D. J., Marks, G. B., 
Marks, R., Matsumori, A., Matzopoulos, R., Mayosi, B. M., McAnulty, J. H., McDermott, M. M., 
McGill, N., McGrath, J., Medina-Mora, M. E., Meltzer, M., Mensah, G. A., Merriman, T. R., Meyer, A. 
C., Miglioli, V., Miller, M., Miller, T. R., Mitchell, P. B., Mock, C., Mocumbi, A. O., Moffitt, T. E., 
Mokdad, A. A., Monasta, L., Montico, M., Moradi-Lakeh, M., Moran, A., Morawska, L., Mori, R., 
Murdoch, M. E., Mwaniki, M. K., Naidoo, K., Nair, M. N., Naldi, L., Narayan, K. M., Nelson, P. K., 
Nelson, R. G., Nevitt, M. C., Newton, C. R., Nolte, S., Norman, P., Norman, R., O'Donnell, M., 
O'Hanlon, S., Olives, C., Omer, S. B., Ortblad, K., Osborne, R., Ozgediz, D., Page, A., Pahari, B., 
Pandian, J. D., Rivero, A. P., Patten, S. B., Pearce, N., Padilla, R. P., Perez-Ruiz, F., Perico, N., 
Pesudovs, K., Phillips, D., Phillips, M. R., Pierce, K., Pion, S., Polanczyk, G. V., Polinder, S., Pope, C. 
A.,3rd, Popova, S., Porrini, E., Pourmalek, F., Prince, M., Pullan, R. L., Ramaiah, K. D., Ranganathan, 
D., Razavi, H., Regan, M., Rehm, J. T., Rein, D. B., Remuzzi, G., Richardson, K., Rivara, F. P., Roberts, 
T., Robinson, C., De Leon, F. R., Ronfani, L., Room, R., Rosenfeld, L. C., Rushton, L., Sacco, R. L., Saha, 
S., Sampson, U., Sanchez-Riera, L., Sanman, E., Schwebel, D. C., Scott, J. G., Segui-Gomez, M., 
Shahraz, S., Shepard, D. S., Shin, H., Shivakoti, R., Singh, D., Singh, G. M., Singh, J. A., Singleton, J., 
Sleet, D. A., Sliwa, K., Smith, E., Smith, J. L., Stapelberg, N. J., Steer, A., Steiner, T., Stolk, W. A., 
Stovner, L. J., Sudfeld, C., Syed, S., Tamburlini, G., Tavakkoli, M., Taylor, H. R., Taylor, J. A., Taylor, W. 
J., Thomas, B., Thomson, W. M., Thurston, G. D., Tleyjeh, I. M., Tonelli, M., Towbin, J. A., Truelsen, T., 
Tsilimbaris, M. K., Ubeda, C., Undurraga, E. A., van der Werf, M. J., van Os, J., Vavilala, M. S., 
Venketasubramanian, N., Wang, M., Wang, W., Watt, K., Weatherall, D. J., Weinstock, M. A., 
Weintraub, R., Weisskopf, M. G., Weissman, M. M., White, R. A., Whiteford, H., Wiebe, N., Wiersma, 
S. T., Wilkinson, J. D., Williams, H. C., Williams, S. R., Witt, E., Wolfe, F., Woolf, A. D., Wulf, S., Yeh, P. 
H., Zaidi, A. K., Zheng, Z. J., Zonies, D., Lopez, A. D., AlMazroa, M. A. & Memish, Z. A. (2012) 
Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a 



 

223 | P a g e  
 

systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England). 380 
(9859), 2197-2223. 

Nafstad, P., Haheim, L. L., Wisloff, T., Gram, F., Oftedal, B., Holme, I., Hjermann, I. & Leren, P. (2004) 
Urban air pollution and mortality in a cohort of Norwegian men. Environmental Health Perspectives. 
112 (5), 610-615. 

Newby, D. E., Mannucci, P. M., Tell, G. S., Baccarelli, A. A., Brook, R. D., Donaldson, K., Forastiere, F., 
Franchini, M., Franco, O. H., Graham, I., Hoek, G., Hoffmann, B., Hoylaerts, M. F., Kunzli, N., Mills, N., 
Pekkanen, J., Peters, A., Piepoli, M. F., Rajagopalan, S., Storey, R. F., ESC Working Group on 
Thrombosis, European Association for Cardiovascular Prevention and Rehabilitation & ESC Heart 
Failure Association. (2015) Expert position paper on air pollution and cardiovascular disease. 
European Heart Journal. 36 (2), 83-93b. 

Niaura, R., Stoney, C. M. & Herbert, P. N. (1992) Lipids in psychological research: the last decade. 
Biological Psychology. 34 (1), 1-43. 

Nicholas Hewitt, C. (1991) Spatial variations in nitrogen dioxide concentrations in an urban area. 
Atmospheric Environment.Part B.Urban Atmosphere. 25 (3), 429-434. Available from: 
http://www.sciencedirect.com/science/article/pii/0957127291900146. Available from: doi: 
http://dx.doi.org/10.1016/0957-1272(91)90014-6.  

Niwa, Y., Hiura, Y., Sawamura, H. & Iwai, N. (2008) Inhalation exposure to carbon black induces 
inflammatory response in rats. Circulation Journal : Official Journal of the Japanese Circulation 
Society. 72 (1), 144-149. 

Nonogaki, K., Fuller, G. M., Fuentes, N. L., Moser, A. H., Staprans, I., Grunfeld, C. & Feingold, K. R. 
(1995) Interleukin-6 stimulates hepatic triglyceride secretion in rats. Endocrinology. 136 (5), 2143-
2149. 

Ostro, B., Malig, B., Broadwin, R., Basu, R., Gold, E. B., Bromberger, J. T., Derby, C., Feinstein, S., 
Greendale, G. A., Jackson, E. A., Kravitz, H. M., Matthews, K. A., Sternfeld, B., Tomey, K., Green, R. R. 
& Green, R. (2014) Chronic PM2.5 exposure and inflammation: determining sensitive subgroups in 
mid-life women. Environmental Research. 132168-175. 

Panasevich, S., Leander, K., Rosenlund, M., Ljungman, P., Bellander, T., de Faire, U., Pershagen, G. & 
Nyberg, F. (2009) Associations of long- and short-term air pollution exposure with markers of 
inflammation and coagulation in a population sample. Occupational and Environmental Medicine. 66 
(11), 747-753. 

Passchier-Vermeer, W. & Passchier, W. F. (2000) Noise exposure and public health. Environmental 
Health Perspectives. 108 Suppl 1123-131. 

Pearson, J. F., Bachireddy, C., Shyamprasad, S., Goldfine, A. B. & Brownstein, J. S. (2010) Association 
between fine particulate matter and diabetes prevalence in the U.S. Diabetes Care. 33 (10), 2196-
2201. 

Pope, C. A.,3rd. (2001) Particulate air pollution, C-reactive protein, and cardiac risk. European Heart 
Journal. 22 (14), 1149-1150. 

http://www.sciencedirect.com/science/article/pii/0957127291900146
http://dx.doi.org/10.1016/0957-1272(91)90014-6


 

224 | P a g e  
 

Pope, C. A.,3rd, Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D. & Godleski, J. J. 
(2004a) Cardiovascular mortality and long-term exposure to particulate air pollution: 
epidemiological evidence of general pathophysiological pathways of disease. Circulation. 109 (1), 71-
77. 

Pope, C. A.,3rd, Hansen, M. L., Long, R. W., Nielsen, K. R., Eatough, N. L., Wilson, W. E. & Eatough, D. 
J. (2004b) Ambient particulate air pollution, heart rate variability, and blood markers of 
inflammation in a panel of elderly subjects. Environmental Health Perspectives. 112 (3), 339-345. 

Pope, C. A.,3rd, Thun, M. J., Namboodiri, M. M., Dockery, D. W., Evans, J. S., Speizer, F. E. & Heath, C. 
W.,Jr. (1995) Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. 
American Journal of Respiratory and Critical Care Medicine. 151 (3 Pt 1), 669-674. 

Poursafa, P., Mansourian, M., Motlagh, M. E., Ardalan, G. & Kelishadi, R. (2014a) Is air quality index 
associated with cardiometabolic risk factors in adolescents? The CASPIAN-III Study. Environmental 
Research. 134105-109. 

Poursafa, P., Mansourian, M., Motlagh, M. E., Ardalan, G. & Kelishadi, R. (2014b) Is air quality index 
associated with cardiometabolic risk factors in adolescents? The CASPIAN-III Study. Environmental 
Research. 134105-109. 

Puett, R. C., Schwartz, J., Hart, J. E., Yanosky, J. D., Speizer, F. E., Suh, H., Paciorek, C. J., Neas, L. M. & 
Laden, F. (2008) Chronic particulate exposure, mortality, and coronary heart disease in the nurses' 
health study. American Journal of Epidemiology. 168 (10), 1161-1168. 

Raaschou-Nielsen, O., Andersen, Z. J., Jensen, S. S., Ketzel, M., Sorensen, M., Hansen, J., Loft, S., 
Tjonneland, A. & Overvad, K. (2012) Traffic air pollution and mortality from cardiovascular disease 
and all causes: a Danish cohort study. Environmental Health : A Global Access Science Source. 1160-
069X-11-60. 

Rader, D. J. & Tall, A. R. (2012) The not-so-simple HDL story: Is it time to revise the HDL cholesterol 
hypothesis? Nature Medicine. 18 (9), 1344-1346. 

Rasouli, B., Ahlbom, A., Andersson, T., Grill, V., Midthjell, K., Olsson, L. & Carlsson, S. (2013) Alcohol 
consumption is associated with reduced risk of Type 2 diabetes and autoimmune diabetes in adults: 
results from the Nord-Trondelag health study. Diabetic Medicine : A Journal of the British Diabetic 
Association. 30 (1), 56-64. 

Ray, K. K., Seshasai, S. R., Wijesuriya, S., Sivakumaran, R., Nethercott, S., Preiss, D., Erqou, S. & Sattar, 
N. (2009) Effect of intensive control of glucose on cardiovascular outcomes and death in patients 
with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet (London, England). 
373 (9677), 1765-1772. 

Recio, A., Linares, C., Banegas, J. R. & Diaz, J. (2016) Road traffic noise effects on cardiovascular, 
respiratory, and metabolic health: An integrative model of biological mechanisms. Environmental 
Research. 146359-370. 

Riboli, E. & Kaaks, R. (1997) The EPIC Project: rationale and study design. European Prospective 
Investigation into Cancer and Nutrition. International Journal of Epidemiology. 26 Suppl 1S6-14. 



 

225 | P a g e  
 

Ridker, P. M. (2003) Clinical application of C-reactive protein for cardiovascular disease detection 
and prevention. Circulation. 107 (3), 363-369. 

Riedl, M. & Diaz-Sanchez, D. (2005) Biology of diesel exhaust effects on respiratory function. The 
Journal of Allergy and Clinical Immunology. 115 (2), 221-8; quiz 229. 

Roetzheim, R. G., Freund, K. M., Corle, D. K., Murray, D. M., Snyder, F. R., Kronman, A. C., Jean-
Pierre, P., Raich, P. C., Holden, A. E., Darnell, J. S., Warren-Mears, V., Patierno, S. & PNRP Design and 
Analysis Committee for the Patient Navigation Research Program Investigators. (2012) Analysis of 
combined data from heterogeneous study designs: an applied example from the patient navigation 
research program. Clinical Trials (London, England). 9 (2), 176-187. 

Rohleder, N. (2014) Stimulation of systemic low-grade inflammation by psychosocial stress. 
Psychosomatic Medicine. 76 (3), 181-189. 

Rohr, A. C., Wagner, J. G., Morishita, M., Kamal, A., Keeler, G. J. & Harkema, J. R. (2010) 
Cardiopulmonary responses in spontaneously hypertensive and Wistar-Kyoto rats exposed to 
concentrated ambient particles from Detroit, Michigan. Inhalation Toxicology. 22 (6), 522-533. 

Rosenlund, M., Berglind, N., Pershagen, G., Hallqvist, J., Jonson, T. & Bellander, T. (2006) Long-term 
exposure to urban air pollution and myocardial infarction. Epidemiology (Cambridge, Mass.). 17 (4), 
383-390. 

Rosenlund, M., Picciotto, S., Forastiere, F., Stafoggia, M. & Perucci, C. A. (2008) Traffic-related air 
pollution in relation to incidence and prognosis of coronary heart disease. Epidemiology (Cambridge, 
Mass.). 19 (1), 121-128. 

Ruckerl, R., Greven, S., Ljungman, P., Aalto, P., Antoniades, C., Bellander, T., Berglind, N., 
Chrysohoou, C., Forastiere, F., Jacquemin, B., von Klot, S., Koenig, W., Kuchenhoff, H., Lanki, T., 
Pekkanen, J., Perucci, C. A., Schneider, A., Sunyer, J., Peters, A. & AIRGENE Study Group. (2007) Air 
pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction 
survivors. Environmental Health Perspectives. 115 (7), 1072-1080. 

Ruckerl, R., Hampel, R., Breitner, S., Cyrys, J., Kraus, U., Carter, J., Dailey, L., Devlin, R. B., Diaz-
Sanchez, D., Koenig, W., Phipps, R., Silbajoris, R., Soentgen, J., Soukup, J., Peters, A. & Schneider, A. 
(2014) Associations between ambient air pollution and blood markers of inflammation and 
coagulation/fibrinolysis in susceptible populations. Environment International. 7032-49. 

Ruckerl, R., Ibald-Mulli, A., Koenig, W., Schneider, A., Woelke, G., Cyrys, J., Heinrich, J., Marder, V., 
Frampton, M., Wichmann, H. E. & Peters, A. (2006) Air pollution and markers of inflammation and 
coagulation in patients with coronary heart disease. American Journal of Respiratory and Critical 
Care Medicine. 173 (4), 432-441. 

Rudez, G., Janssen, N. A., Kilinc, E., Leebeek, F. W., Gerlofs-Nijland, M. E., Spronk, H. M., ten Cate, H., 
Cassee, F. R. & de Maat, M. P. (2009) Effects of ambient air pollution on hemostasis and 
inflammation. Environmental Health Perspectives. 117 (6), 995-1001. 

Ryan, P. H. & LeMasters, G. K. (2007) A review of land-use regression models for characterizing 
intraurban air pollution exposure. Inhalation Toxicology. 19 Suppl 1127-133. 



 

226 | P a g e  
 

Sade, M. Y., Kloog, I., Liberty, I. F., Katra, I., Novack, L. & Novack, V. (2015) Air Pollution and Serum 
Glucose Levels: A Population-Based Study. Medicine. 94 (27), e1093. 

Sahsuvaroglu, T., Arain, A., Kanaroglou, P., Finkelstein, N., Newbold, B., Jerrett, M., Beckerman, B., 
Brook, J., Finkelstein, M. & Gilbert, N. L. (2006) A land use regression model for predicting ambient 
concentrations of nitrogen dioxide in Hamilton, Ontario, Canada. Journal of the Air & Waste 
Management Association (1995). 56 (8), 1059-1069. 

Sateia, M. J., Doghramji, K., Hauri, P. J. & Morin, C. M. (2000) Evaluation of chronic insomnia. An 
American Academy of Sleep Medicine review. Sleep. 23 (2), 243-308. 

Scheers, H., Jacobs, L., Casas, L., Nemery, B. & Nawrot, T. S. (2015) Long-Term Exposure to 
Particulate Matter Air Pollution Is a Risk Factor for Stroke: Meta-Analytical Evidence. Stroke; a 
Journal of Cerebral Circulation. 46 (11), 3058-3066. 

Scholtens, S., Smidt, N., Swertz, M. A., Bakker, S. J., Dotinga, A., Vonk, J. M., van Dijk, F., van Zon, S. 
K., Wijmenga, C., Wolffenbuttel, B. H. & Stolk, R. P. (2015) Cohort Profile: LifeLines, a three-
generation cohort study and biobank. International Journal of Epidemiology. 44 (4), 1172-1180. 

Selander, J., Nilsson, M. E., Bluhm, G., Rosenlund, M., Lindqvist, M., Nise, G. & Pershagen, G. (2009) 
Long-term exposure to road traffic noise and myocardial infarction. Epidemiology (Cambridge, 
Mass.). 20 (2), 272-279. 

Shah, A. S., Lee, K. K., McAllister, D. A., Hunter, A., Nair, H., Whiteley, W., Langrish, J. P., Newby, D. E. 
& Mills, N. L. (2015) Short term exposure to air pollution and stroke: systematic review and meta-
analysis. BMJ (Clinical Research Ed.). 350h1295. 

Shanley, R. P., Hayes, R. B., Cromar, K. R., Ito, K., Gordon, T. & Ahn, J. (2016) Particulate Air Pollution 
and Clinical Cardiovascular Disease Risk Factors. Epidemiology (Cambridge, Mass.). 27 (2), 291-298. 

Slagter, S. N., van Vliet-Ostaptchouk, J. V., Vonk, J. M., Boezen, H. M., Dullaart, R. P., Kobold, A. C., 
Feskens, E. J., van Beek, A. P., van der Klauw, M. M. & Wolffenbuttel, B. H. (2014) Combined effects 
of smoking and alcohol on metabolic syndrome: the LifeLines cohort study. PloS One. 9 (4), e96406. 

Smith-Warner, S. A., Spiegelman, D., Ritz, J., Albanes, D., Beeson, W. L., Bernstein, L., Berrino, F., van 
den Brandt, P. A., Buring, J. E., Cho, E., Colditz, G. A., Folsom, A. R., Freudenheim, J. L., Giovannucci, 
E., Goldbohm, R. A., Graham, S., Harnack, L., Horn-Ross, P. L., Krogh, V., Leitzmann, M. F., 
McCullough, M. L., Miller, A. B., Rodriguez, C., Rohan, T. E., Schatzkin, A., Shore, R., Virtanen, M., 
Willett, W. C., Wolk, A., Zeleniuch-Jacquotte, A., Zhang, S. M. & Hunter, D. J. (2006) Methods for 
pooling results of epidemiologic studies: the Pooling Project of Prospective Studies of Diet and 
Cancer. American Journal of Epidemiology. 163 (11), 1053-1064. 

Soares, S. R., Carvalho-Oliveira, R., Ramos-Sanchez, E., Catanozi, S., da Silva, L. F., Mauad, T., Gidlund, 
M., Goto, H. & Garcia, M. L. (2009) Air pollution and antibodies against modified lipoproteins are 
associated with atherosclerosis and vascular remodeling in hyperlipemic mice. Atherosclerosis. 207 
(2), 368-373. 

Sorensen, M., Andersen, Z. J., Nordsborg, R. B., Becker, T., Tjonneland, A., Overvad, K. & Raaschou-
Nielsen, O. (2013) Long-term exposure to road traffic noise and incident diabetes: a cohort study. 
Environmental Health Perspectives. 121 (2), 217-222. 



 

227 | P a g e  
 

Sorensen, M., Andersen, Z. J., Nordsborg, R. B., Jensen, S. S., Lillelund, K. G., Beelen, R., Schmidt, E. 
B., Tjonneland, A., Overvad, K. & Raaschou-Nielsen, O. (2012a) Road traffic noise and incident 
myocardial infarction: a prospective cohort study. PloS One. 7 (6), e39283. 

Sorensen, M., Hjortebjerg, D., Eriksen, K. T., Ketzel, M., Tjonneland, A., Overvad, K. & Raaschou-
Nielsen, O. (2015) Exposure to long-term air pollution and road traffic noise in relation to 
cholesterol: A cross-sectional study. Environment International. 85238-243. 

Sorensen, M., Hoffmann, B., Hvidberg, M., Ketzel, M., Jensen, S. S., Andersen, Z. J., Tjonneland, A., 
Overvad, K. & Raaschou-Nielsen, O. (2012b) Long-term exposure to traffic-related air pollution 
associated with blood pressure and self-reported hypertension in a Danish cohort. Environmental 
Health Perspectives. 120 (3), 418-424. 

Sorensen, M., Hvidberg, M., Andersen, Z. J., Nordsborg, R. B., Lillelund, K. G., Jakobsen, J., 
Tjonneland, A., Overvad, K. & Raaschou-Nielsen, O. (2011) Road traffic noise and stroke: a 
prospective cohort study. European Heart Journal. 32 (6), 737-744. 

Sorensen, M., Luhdorf, P., Ketzel, M., Andersen, Z. J., Tjonneland, A., Overvad, K. & Raaschou-
Nielsen, O. (2014) Combined effects of road traffic noise and ambient air pollution in relation to risk 
for stroke? Environmental Research. 13349-55. 

Spencer, E. A., Appleby, P. N., Davey, G. K. & Key, T. J. (2002) Validity of self-reported height and 
weight in 4808 EPIC-Oxford participants. Public Health Nutrition. 5 (4), 561-565. 

Spencer, E. A., Roddam, A. W. & Key, T. J. (2004) Accuracy of self-reported waist and hip 
measurements in 4492 EPIC-Oxford participants. Public Health Nutrition. 7 (6), 723-727. 

Stafoggia, M., Cesaroni, G., Peters, A., Andersen, Z. J., Badaloni, C., Beelen, R., Caracciolo, B., Cyrys, 
J., de Faire, U., de Hoogh, K., Eriksen, K. T., Fratiglioni, L., Galassi, C., Gigante, B., Havulinna, A. S., 
Hennig, F., Hilding, A., Hoek, G., Hoffmann, B., Houthuijs, D., Korek, M., Lanki, T., Leander, K., 
Magnusson, P. K., Meisinger, C., Migliore, E., Overvad, K., Ostenson, C. G., Pedersen, N. L., Pekkanen, 
J., Penell, J., Pershagen, G., Pundt, N., Pyko, A., Raaschou-Nielsen, O., Ranzi, A., Ricceri, F., Sacerdote, 
C., Swart, W. J., Turunen, A. W., Vineis, P., Weimar, C., Weinmayr, G., Wolf, K., Brunekreef, B. & 
Forastiere, F. (2014) Long-term exposure to ambient air pollution and incidence of cerebrovascular 
events: results from 11 European cohorts within the ESCAPE project. Environmental Health 
Perspectives. 122 (9), 919-925. 

Stansfeld, S. & Crombie, R. (2011) Cardiovascular effects of environmental noise: research in the 
United Kingdom. Noise & Health. 13 (52), 229-233. 

Stansfeld, S. A. & Shipley, M. (2015) Noise sensitivity and future risk of illness and mortality. The 
Science of the Total Environment. 520114-119. 

Steinvil, A., Kordova-Biezuner, L., Shapira, I., Berliner, S. & Rogowski, O. (2008) Short-term exposure 
to air pollution and inflammation-sensitive biomarkers. Environmental Research. 106 (1), 51-61. 

Steptoe, A. & Brydon, L. (2005) Associations between acute lipid stress responses and fasting lipid 
levels 3 years later. Health Psychology : Official Journal of the Division of Health Psychology, 
American Psychological Association. 24 (6), 601-607. 



 

228 | P a g e  
 

Stockfelt, L., Andersson, E. M., Molnar, P., Rosengren, A., Wilhelmsen, L., Sallsten, G. & Barregard, L. 
(2015) Long term effects of residential NO(x) exposure on total and cause-specific mortality and 
incidence of myocardial infarction in a Swedish cohort. Environmental Research. 142197-206. 

Sullivan, J. H., Hubbard, R., Liu, S. L., Shepherd, K., Trenga, C. A., Koenig, J. Q., Chandler, W. L. & 
Kaufman, J. D. (2007) A community study of the effect of particulate matter on blood measures of 
inflammation and thrombosis in an elderly population. Environmental Health : A Global Access 
Science Source. 63. 

Sun, Q., Wang, A., Jin, X., Natanzon, A., Duquaine, D., Brook, R. D., Aguinaldo, J. G., Fayad, Z. A., 
Fuster, V., Lippmann, M., Chen, L. C. & Rajagopalan, S. (2005) Long-term air pollution exposure and 
acceleration of atherosclerosis and vascular inflammation in an animal model. Jama. 294 (23), 3003-
3010. 

Sun, Q., Yue, P., Deiuliis, J. A., Lumeng, C. N., Kampfrath, T., Mikolaj, M. B., Cai, Y., Ostrowski, M. C., 
Lu, B., Parthasarathy, S., Brook, R. D., Moffatt-Bruce, S. D., Chen, L. C. & Rajagopalan, S. (2009) 
Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of 
diet-induced obesity. Circulation. 119 (4), 538-546. 

Suwa, T., Hogg, J. C., Quinlan, K. B., Ohgami, A., Vincent, R. & van Eeden, S. F. (2002) Particulate air 
pollution induces progression of atherosclerosis. Journal of the American College of Cardiology. 39 
(6), 935-942. 

Tamayo, T., Rathmann, W., Kramer, U., Sugiri, D., Grabert, M. & Holl, R. W. (2014) Is particle 
pollution in outdoor air associated with metabolic control in type 2 diabetes? PloS One. 9 (3), 
e91639. 

Tasali, E., Leproult, R. & Spiegel, K. (2009) Reduced sleep duration or quality: relationships with 
insulin resistance and type 2 diabetes. Progress in Cardiovascular Diseases. 51 (5), 381-391. 

Teichert, T., Vossoughi, M., Vierkotter, A., Sugiri, D., Schikowski, T., Schulte, T., Roden, M., Luckhaus, 
C., Herder, C. & Kramer, U. (2013) Association between traffic-related air pollution, subclinical 
inflammation and impaired glucose metabolism: results from the SALIA study. PloS One. 8 (12), 
e83042. 

Tetreault, L. F., Perron, S. & Smargiassi, A. (2013) Cardiovascular health, traffic-related air pollution 
and noise: are associations mutually confounded? A systematic review. International Journal of 
Public Health. 58 (5), 649-666. 

Thiering, E. & Heinrich, J. (2015) Epidemiology of air pollution and diabetes. Trends in Endocrinology 
and Metabolism: TEM. 26 (7), 384-394. 

Tobias, A., Diaz, J., Recio, A. & Linares, C. (2015) Traffic noise and risk of mortality from diabetes. 
Acta Diabetologica. 52 (1), 187-188. 

Tomao, E., Tiziana, P. B., Rosati, V., Marcellini, L. & Tomei, F. (2002) The effects of air pollution on 
the lipid balance of traffic police personnel. Annals of Saudi Medicine. 22 (5-6), 287-290. 

Tsai, D. H., Amyai, N., Marques-Vidal, P., Wang, J. L., Riediker, M., Mooser, V., Paccaud, F., Waeber, 
G., Vollenweider, P. & Bochud, M. (2012) Effects of particulate matter on inflammatory markers in 
the general adult population. Particle and Fibre Toxicology. 924-8977-9-24. 



 

229 | P a g e  
 

Ueda, K., Nagasawa, S. Y., Nitta, H., Miura, K., Ueshima, H. & NIPPON DATA80 Research Group. 
(2012) Exposure to particulate matter and long-term risk of cardiovascular mortality in Japan: 
NIPPON DATA80. Journal of Atherosclerosis and Thrombosis. 19 (3), 246-254. 

UK Committee on the Medical Effects of Air Pollutants. (December 2015) INTERIM STATEMENT ON 
QUANTIFYING THE ASSOCIATION OF LONG-TERM AVERAGE CONCENTRATIONS OF NITROGEN 
DIOXIDE AND MORTALITY.  

Upadhyay, S., Ganguly, K., Stoeger, T., Semmler-Bhenke, M., Takenaka, S., Kreyling, W. G., Pitz, M., 
Reitmeir, P., Peters, A., Eickelberg, O., Wichmann, H. E. & Schulz, H. (2010) Cardiovascular and 
inflammatory effects of intratracheally instilled ambient dust from Augsburg, Germany, in 
spontaneously hypertensive rats (SHRs). Particle and Fibre Toxicology. 727-8977-7-27. 

Van de Ker Ckhove. (2016) What factors are associated with noise sensitivity in the UK population? 
16-19 November, . 

van Kempen, E. & Babisch, W. (2012) The quantitative relationship between road traffic noise and 
hypertension: a meta-analysis. Journal of Hypertension. 30 (6), 1075-1086. 

van Kempen, E. E., Kruize, H., Boshuizen, H. C., Ameling, C. B., Staatsen, B. A. & de Hollander, A. E. 
(2002) The association between noise exposure and blood pressure and ischemic heart disease: a 
meta-analysis. Environmental Health Perspectives. 110 (3), 307-317. 

van Vliet-Ostaptchouk, J. V., Nuotio, M. L., Slagter, S. N., Doiron, D., Fischer, K., Foco, L., Gaye, A., 
Gogele, M., Heier, M., Hiekkalinna, T., Joensuu, A., Newby, C., Pang, C., Partinen, E., Reischl, E., 
Schwienbacher, C., Tammesoo, M. L., Swertz, M. A., Burton, P., Ferretti, V., Fortier, I., Giepmans, L., 
Harris, J. R., Hillege, H. L., Holmen, J., Jula, A., Kootstra-Ros, J. E., Kvaloy, K., Holmen, T. L., Mannisto, 
S., Metspalu, A., Midthjell, K., Murtagh, M. J., Peters, A., Pramstaller, P. P., Saaristo, T., Salomaa, V., 
Stolk, R. P., Uusitupa, M., van der Harst, P., van der Klauw, M. M., Waldenberger, M., Perola, M. & 
Wolffenbuttel, B. H. (2014) The prevalence of metabolic syndrome and metabolically healthy obesity 
in Europe: a collaborative analysis of ten large cohort studies. BMC Endocrine Disorders. 149-6823-
14-9. 

Vardoulakis, S., Fisher, B. E. A., Pericleous, K. & Gonzalez-Flesca, N. (2003) Modelling air quality in 
street canyons: a review. Atmospheric Environment. 37 (2), 155-182. 

Viehmann, A., Hertel, S., Fuks, K., Eisele, L., Moebus, S., Mohlenkamp, S., Nonnemacher, M., Jakobs, 
H., Erbel, R., Jockel, K. H., Hoffmann, B. & Heinz Nixdorf Recall Investigator Group. (2015) Long-term 
residential exposure to urban air pollution, and repeated measures of systemic blood markers of 
inflammation and coagulation. Occupational and Environmental Medicine. 72 (9), 656-663. 

Vienneau, D., de Hoogh, K., Bechle, M. J., Beelen, R., van Donkelaar, A., Martin, R. V., Millet, D. B., 
Hoek, G. & Marshall, J. D. (2013) Western European land use regression incorporating satellite- and 
ground-based measurements of NO2 and PM10. Environmental Science & Technology. 47 (23), 
13555-13564. 

Vienneau, D., Schindler, C., Perez, L., Probst-Hensch, N. & Roosli, M. (2015) The relationship between 
transportation noise exposure and ischemic heart disease: a meta-analysis. Environmental Research. 
138372-380. 



 

230 | P a g e  
 

Visser, M., Bouter, L. M., McQuillan, G. M., Wener, M. H. & Harris, T. B. (1999) Elevated C-reactive 
protein levels in overweight and obese adults. Jama. 282 (22), 2131-2135. 

Wallace, S. E., Gaye, A., Shoush, O. & Burton, P. R. (2014) Protecting personal data in epidemiological 
research: DataSHIELD and UK law. Public Health Genomics. 17 (3), 149-157. 

Wang, M., Beelen, R., Eeftens, M., Meliefste, K., Hoek, G. & Brunekreef, B. (2012) Systematic 
evaluation of land use regression models for NO(2). Environmental Science & Technology. 46 (8), 
4481-4489. 

Wang, X. Y., Hu, W. & Tong, S. (2009) Long-term exposure to gaseous air pollutants and cardio-
respiratory mortality in Brisbane, Australia. Geospatial Health. 3 (2), 257-263. 

WHO. (2015) Economic cost of the health impact of air pollution in Europe: Clean air, health and 
wealth.  

WHO. (2005) Principles of characterizing and applying human exposure models.  

Willett, W. C., Blot, W. J., Colditz, G. A., Folsom, A. R., Henderson, B. E. & Stampfer, M. J. (2007) 
Merging and emerging cohorts: not worth the wait. Nature. 445 (7125), 257-258. 

Wilson, P. W., D'Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H. & Kannel, W. B. (1998) 
Prediction of coronary heart disease using risk factor categories. Circulation. 97 (18), 1837-1847. 

Wolfson, M., Wallace, S. E., Masca, N., Rowe, G., Sheehan, N. A., Ferretti, V., LaFlamme, P., Tobin, M. 
D., Macleod, J., Little, J., Fortier, I., Knoppers, B. M. & Burton, P. R. (2010) DataSHIELD: resolving a 
conflict in contemporary bioscience--performing a pooled analysis of individual-level data without 
sharing the data. International Journal of Epidemiology. 39 (5), 1372-1382. 

Woodfield, R., UK Biobank Stroke Outcomes Group, UK Biobank Follow-up and Outcomes Working 
Group & Sudlow, C. L. (2015) Accuracy of Patient Self-Report of Stroke: A Systematic Review from 
the UK Biobank Stroke Outcomes Group. PloS One. 10 (9), e0137538. 

World Health Organisation Europe. (2013) Review of evidence on health aspects of air pollution-
REVIHAAP project: final technical report.  

World Health Organisation Europe. (2009) Night-time noise guidelines for Europe.  

Xu, X., Liu, C., Xu, Z., Tzan, K., Zhong, M., Wang, A., Lippmann, M., Chen, L. C., Rajagopalan, S. & Sun, 
Q. (2011) Long-term exposure to ambient fine particulate pollution induces insulin resistance and 
mitochondrial alteration in adipose tissue. Toxicological Sciences : An Official Journal of the Society 
of Toxicology. 124 (1), 88-98. 

Yap, C., Beverland, I. J., Heal, M. R., Cohen, G. R., Robertson, C., Henderson, D. E., Ferguson, N. S., 
Hart, C. L., Morris, G. & Agius, R. M. (2012) Association between long-term exposure to air pollution 
and specific causes of mortality in Scotland. Occupational and Environmental Medicine. 69 (12), 916-
924. 

Yeatts, K., Svendsen, E., Creason, J., Alexis, N., Herbst, M., Scott, J., Kupper, L., Williams, R., Neas, L., 
Cascio, W., Devlin, R. B. & Peden, D. B. (2007) Coarse particulate matter (PM2.5-10) affects heart 



 

231 | P a g e  
 

rate variability, blood lipids, and circulating eosinophils in adults with asthma. Environmental Health 
Perspectives. 115 (5), 709-714. 

Yin, F., Lawal, A., Ricks, J., Fox, J. R., Larson, T., Navab, M., Fogelman, A. M., Rosenfeld, M. E. & 
Araujo, J. A. (2013) Diesel exhaust induces systemic lipid peroxidation and development of 
dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arteriosclerosis, 
Thrombosis, and Vascular Biology. 33 (6), 1153-1161. 

Yorifuji, T., Kashima, S., Tsuda, T., Takao, S., Suzuki, E., Doi, H., Sugiyama, M., Ishikawa-Takata, K. & 
Ohta, T. (2010) Long-term exposure to traffic-related air pollution and mortality in Shizuoka, Japan. 
Occupational and Environmental Medicine. 67 (2), 111-117. 

Zeka, A., Sullivan, J. R., Vokonas, P. S., Sparrow, D. & Schwartz, J. (2006) Inflammatory markers and 
particulate air pollution: characterizing the pathway to disease. International Journal of 
Epidemiology. 35 (5), 1347-1354. 

Zhang, L. W., Chen, X., Xue, X. D., Sun, M., Han, B., Li, C. P., Ma, J., Yu, H., Sun, Z. R., Zhao, L. J., Zhao, 
B. X., Liu, Y. M., Chen, J., Wang, P. P., Bai, Z. P. & Tang, N. J. (2014) Long-term exposure to high 
particulate matter pollution and cardiovascular mortality: a 12-year cohort study in four cities in 
northern China. Environment International. 6241-47. 

Zhou, M., Liu, Y., Wang, L., Kuang, X., Xu, X. & Kan, H. (2014) Particulate air pollution and mortality in 
a cohort of Chinese men. Environmental Pollution (Barking, Essex : 1987). 1861-6. 

Zhu, Y., Hinds, W. C., Kim, S. & Sioutas, C. (2002) Concentration and size distribution of ultrafine 
particles near a major highway. Journal of the Air & Waste Management Association (1995). 52 (9), 
1032-1042. 

 



 

232 | P a g e  
 



 

233 | P a g e  
 

Appendices 

1. Chapter 5 
  

Appendix-5.1 Main analyses by exposure and by outcome: Model1 & Model2  

  PM10 , µg/m3, per IQR 

 N Model1   N Model2   

Pooled analysis  ES 95%CI   ES 95%CI  

hsCRP 87622 1.001 0.991 1.012 87622 1.013 1.002 1.024 

Total cholesterol        110836 -0.060 -0.068 -0.052 110836 -0.021 -0.029 -0.013 

HDL cholesterol 110834 0.003 0.000 0.006 110834 0.004 0.001 0.006 

Triglycerides 111547 -0.001 -0.008 0.006 111547 0.015 0.009 0.022 

         

LifeLines only         

Fasting blood glucose 59898 -0.015 -0.024 -0.006 59898 0.029 0.020 0.037 

HbA1c 47628 -0.323 -0.380 -0.266 47628 0.018 -0.037 0.072 

  NO2, µg/m3, per IQR 

  Model1    Model2   

Pooled analysis  ES 95%CI   ES 95%CI  

hsCRP 87957 0.999 0.987 1.010 87957 1.010 0.999 1.022 

Total cholesterol        111180 -0.062 -0.071 -0.053 111180 -0.017 -0.026 -0.009 

HDL cholesterol 111178 0.008 0.004 0.011 111178 0.007 0.004 0.011 

Triglycerides 111893 -0.004 -0.012 0.003 111893 0.016 0.009 0.024 

         

LifeLines only         

Fasting blood glucose 60182 -0.021 -0.030 -0.011 60182 0.030 0.020 0.039 

HbA1c 47686 -0.398 -0.462 -0.334 47686 -0.014 -0.075 0.047 
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  LDAY, dB(A), per IQR 

  Model1    Model2   

Pooled analysis  ES 95%CI   ES 95%CI  

hsCRP 90689 1.007 0.999 1.015 90689 1.004 1.001 1.008 

Total cholesterol        118868 -0.022 -0.029 -0.015 118868 -0.004 -0.010 0.003 

HDL cholesterol 118866 0.004 0.002 0.007 118866 0.005 0.003 0.008 

Triglycerides 119464 0.004 -0.002 0.010 119464 0.027 0.015 0.039 

         

LifeLines only         

Fasting blood glucose 72401 -0.009 -0.015 -0.002 72401 0.011 0.005 0.017 

HbA1c 56026 -0.163 -0.204 -0.122 56026 -0.011 -0.050 0.028 

Model1: adjusted for study (in pooled analyses on hsCRP and blood lipids) or unadjusted (in LifeLines analyses on blood glucose and HbA1c); Model2: 

adjusted for (study), age and sex. IQR for PM10 and NO2 was 2 and 7.4 µg/m3 for analyses of hsCRP and blood lipids; IQR for PM10 and NO2 was 2.4 and 8.8 

µg/m3 for analyses of fasting glucose and HbA1c. Unit HsCRP (mg/L), total cholesterol (mmol/l), HDL cholesterol (mmol/l), triglycerides (mmol/l), fasting 

glucose (mmol/l), HbA1c (mmol/mol)  
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Appendix-5.2 Sensitivity analyses based on Model 3 (M3) by outcome and by exposure  

For hsCRP and blood lipids (pooled analyses), effect estimate expressed by per each 7.4 µg/m3 increase in NO2, per each 2.0 µg/m3 increase in PM10, per 

each 5.1 dB(A) increase in Lday,  Sensitivity analyses based on Model 3 (M3), adjusted for age, sex, education, employment, smoking status, smoking pack-

years, alcohol consumption, and study. BMI: body mass index; Chronic health conditions: self-reported ever-had diabetes and hypertension; Long 

residency: living at the same address for more than 10 years at recruitment.                             

• HsCRP 
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 Total cholesterol                                                                              Triglycerides  
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 HDL cholesterol  
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For analyses of fasting glucose and HbA1c, effect estimate expressed by per each 8.8 µg/m3 increase in NO2, per each 2.4 µg/m3 increase in PM10, per 

each 4.2 dB(A) increase in Lday.  

 

 Fasting glucose                                                                              HbA1c 
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Appendix-5.3 Subgroup analyses based on Model 3 (M3) by outcome and by exposure  

For hsCRP and blood lipids (pooled analyses), effect estimate expressed by per each 7.4 µg/m3 increase in NO2, per each 2.0 µg/m3 increase in PM10, per 

each 5.1 dB(A) increase in Lday.  

 

hsCRP NO2     PM10     Lday     
 N ES  lo95 up95 P* N ES  lo95 up95 P* N ES  lo95 up95 P* 

Men 22221 1.05% -0.93% 3.15% 0.00 22116 1.03% -0.84% 2.94% 0.00 24053 0.87% -0.67% 2.47% 0.00 
Women 29238 2.82% 0.92% 4.77%  29122 1.93% 0.19% 3.70%  31877 1.27% -0.20% 2.73%  
<60y 39623 1.78% 0.26% 3.34% 0.00 39453 0.90% -0.52% 2.56% 0.00 44184 1.14% -0.13% 2.40% 0.00 
>=60y 11836 0.59% -2.59% 3.92%  11785 1.73% -1.42% 4.90%  11746 0.54% -1.55% 2.73%  
BMI<25 20229 3.99% 1.91% 6.12% 0.48 20143 2.88% 0.97% 4.78% 0.06 21906 2.53% 0.80% 4.25% 0.95 
BMI: 25-30 21778 3.15% 1.12% 5.28%  21685 1.67% -0.26% 3.64%  23571 1.20% -0.34% 2.80%  
BMI>=30 9360 3.86% 0.59% 7.20%  9318 2.75% -0.26% 5.84%  10362 0.67% -1.48% 2.93%  

Diabetes 1679 6.50% -2.73% 16.56% 0.01 1673 8.88% 0.04% 18.44% 0.00 1757 3.33% -2.70% 9.64% 0.02 
No diabetes 49726 1.78% 0.40% 3.21%  49511 1.22% -0.06% 2.56%  54105 1.00% -0.13% 2.07%  

Hypertension 11621 6.69% 3.47% 9.93% 0.53 11574 5.90% 2.94% 8.88% 0.09 12577 0.60% -1.62% 2.93% 0.03 

no 
Hypertension 

35081 1.12% -0.66% 2.89%  34935 0.77% -0.84% 2.37%  37683 1.60% 0.27% 2.93%  

P*: p-value for interaction 
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Total 
cholesterol 

NO2     PM10     Lday     

 N ES  lo95 up95 P* N ES  lo95 up95 P* N ES  lo95 up95 P* 
Men 31278 -0.029 -0.045 -0.013 0.00 31170 -0.026 -0.040 -

0.011 
0.00 34961 -

0.009 
-0.022 0.003 0.00 

Women 41505 0.020 0.008 0.033  41381 0.012 0.001 0.024  46629 0.011 0.001 0.022  
<60y 60225 0.017 0.006 0.027 0.00 60046 0.012 0.003 0.021 0.00 68967 0.008 -0.0002 0.017 0.00 
>=60y 12558 0.013 -0.018 0.045  12505 -0.003 -0.034 0.027  12623 0.008 -0.014 0.029  
BMI<25 31197 0.019 0.006 0.032 0.00 31106 0.019 0.007 0.031 0.00 34636 0.014 0.003 0.026 0.00 
BMI: 25-30 29321 -0.007 -0.024 0.010  29225 -0.017 -0.032 -

0.001 
 32865 0.002 -0.011 0.016  

BMI>=30 12170 0.019 -0.009 0.048  12125 0.002 -0.024 0.028  13996 -
0.005 

-0.026 0.015  

Diabetes 1994 0.036 -0.040 0.111 0.00 1988 -0.004 -0.072 0.065 0.00 2151 -
0.010 

-0.064 0.043 0.19 

No diabetes 70718 0.001 -0.009 0.011  70492 -0.003 -0.012 0.006  79348 0.003 -0.005 0.011  
Hypertension 15545 0.008 -0.017 0.033 0.00 15495 -0.009 -0.031 0.014 0.00 17343 0.004 -0.015 0.023 0.00 
no 
Hypertension 

48990 0.002 -0.010 0.014  48838 0.001 -0.010 0.012  54398 0.005 -0.004 0.015  

P*: p-value for interaction 
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Triglycerides NO2     PM10     Lday     
 N ES  lo95 up95 P* N ES  lo95 up95 P* N ES  lo95 up95 P* 
Men 31373 0.019 0.003 0.035 0.28 31265 0.022 0.008 0.037 0.14 35045 0.0002 -0.013 0.013 0.63 
Women 41653 0.024 0.016 0.033  41529 0.021 0.014 0.029  46754 0.015 0.008 0.022  
<60y 60389 0.025 0.016 0.034 0.00 60210 0.023 0.015 0.032 0.00 69109 0.011 0.0035 0.018 0.00 
>=60y 12637 0.031 0.007 0.055  12584 0.038 0.015 0.061  12690 0.005 -0.011 0.021  
BMI<25 31279 0.025 0.017 0.033 0.00 31188 0.020 0.013 0.028 0.00 34704 0.011 0.004 0.018 0.00 
BMI: 25-30 29432 0.031 0.016 0.046  29336 0.024 0.011 0.038  32962 0.011 -

0.0001 
0.023  

BMI>=30 12217 0.060 0.031 0.089  12172 0.062 0.035 0.088  14036 0.010 -0.010 0.031  
Diabetes 2006 0.042 -0.043 0.128 0.60 2000 0.070 -

0.008 
0.148 0.65 2163 -0.007 -0.064 0.050 0.27 

No diabetes 70949 0.020 0.012 0.029  70723 0.019 0.011 0.026  79545 0.008 0.001 0.015  

Hypertension 15597 0.037 0.015 0.059 0.80 15547 0.041 0.021 0.062 0.89 17385 0.016 -0.001 0.033 0.22 
no 
Hypertension 

49181 0.018 0.008 0.027  49029 0.018 0.009 0.026  54565 0.009 0.001 0.016  

P*: p-value for interaction 
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HDL NO2     PM10     Lday     
 N ES  lo95 up95 P* N ES  lo95 up95 P* N ES  lo95 up95 P* 
Men 31278 -0.0002 -0.005 0.005 0.00 31170 -0.003 -0.007 0.002 0.00 34961 0.004 0.001 0.008 0.00 
Women 41505 0.013 0.008 0.018  41381 0.006 0.002 0.011  46629 0.008 0.004 0.012  
<60y 60225 0.011 0.007 0.015 0.32 60046 0.005 0.002 0.009 0.09 68967 0.009 0.0059 0.012 0.18 
>=60y 12558 0.005 -0.006 0.015  12505 0.001 -0.009 0.011  12623 0.003 -0.004 0.010  
BMI<25 31197 0.006 0.001 0.011 0.03 31106 0.003 -0.001 0.008 0.00 34636 0.008 0.004 0.013 0.03 
BMI: 25-30 29321 0.002 -0.003 0.007  29225 -

0.0002 
-0.005 0.005  32865 0.002 -

0.0018 
0.007  

BMI>=30 12170 0.003 -0.005 0.011  12125 -0.005 -0.012 0.003  13996 0.007 0.001 0.012  
Diabetes 1994 0.023 -0.002 0.047 0.35 1988 0.013 -0.009 0.035 0.03 2151 0.002 -0.015 0.020 0.04 
No diabetes 70718 0.009 0.005 0.012  70492 0.004 0.000 0.007  79348 0.008 0.005 0.011  

Hypertension 15545 0.006 -0.003 0.014 0.32 15495 -0.005 -0.012 0.003 0.12 17343 0.005 -0.002 0.011 0.42 
no 
Hypertension 

48890 0.009 0.005 0.014  48838 0.004 0.0002 0.008  54398 0.007 0.003 0.010  

P*: p-value for interaction 
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For analyses of fasting glucose and HbA1c, effect estimate expressed by per each 8.8 µg/m3 increase in NO2, per each 2.4 µg/m3 increase in PM10, per 

each 4.2 dB(A) increase in Lday.  

 

Fasting 
Glucose 

NO2     PM10     Lday     

 N ES  lo95 up95 P* N ES  lo95 up95 P* N ES  lo95 up95 P* 

Men 22009 0.020 0.002 0.038 0.02 21908 0.020 0.004 0.036 0.04 26349 0.009 -0.002 0.020 0.32 

Women 30444 0.042 0.030 0.054  30326 0.037 0.026 0.048  36416 0.015 0.008 0.023  

<60y 47744 0.034 0.024 0.044 0.03 47577 0.028 0.019 0.037 0.00 57144 0.013 0.007 0.020 0.00 

>=60y 4709 0.027 -0.019 0.073  4657 0.050 0.005 0.094  5621 0.009 -0.020 0.037  

BMI<25 25019 0.026 0.015 0.036 0.08 24935 0.021 0.011 0.031 0.09 28920 0.012 0.005 0.019 0.02 

BMI: 25-30 20056 0.043 0.027 0.059  19962 0.037 0.022 0.052  24302 0.014 0.004 0.024  

BMI>=30 7364 0.039 -0.003 0.082  7323 0.026 -0.013 0.066  9528 0.019 -0.006 0.044  

Diabetes 954 0.073 -0.199 0.345 0.05 949 0.086 -0.160 0.332 0.02 1208 0.098 -0.067 0.262 0.00 

No diabetes 51435 0.026 0.018 0.033  51221 0.024 0.017 0.031  61473 0.010 0.005 0.015  

Hypertension 10523 0.047 0.015 0.080 0.26 10474 0.033 0.003 0.063 0.84 12765 0.021 0.001 0.041 0.48 

no 
Hypertension 

33894 0.026 0.015 0.038  33754 0.026 0.015 0.036  40400 0.012 0.005 0.020  

P*: p-value for interaction 

 

 

 

 

 

 



 

244 | P a g e  
 

HbA1c NO2     PM10     Lday     
 N ES  lo95 up95 P* N ES  lo95 up95 P* N ES  lo95 up95 P* 
Men 18138 -0.072 -0.180 0.035 0.26 18115 0.020 -0.075 0.116 0.63 21204 -0.022 -0.089 0.045 0.91 
Women 25399 0.029 -0.048 0.106  25366 0.013 -0.056 0.082  29710 0.005 -0.044 0.054  
<60y 39901 -0.039 -0.104 0.026 0.59 39857 -0.0003 -0.058 0.058 0.75 46684 -0.006 -0.047 0.035 0.85 
>=60y 3636 0.107 -0.161 0.376  3624 0.017 -0.233 0.267  4230 -0.106 -0.273 0.062  
BMI<25 20767 -0.026 -0.099 0.046 0.03 20751 -0.018 -0.083 0.047 0.06 23621 0.012 -0.035 0.058 0.24 
BMI: 25-30 16561 -0.029 -0.133 0.075  16536 0.017 -0.076 0.110  19583 -0.077 -0.143 -0.011  
BMI>=30 6196 -0.012 -0.268 0.244  6181 -0.029 -0.259 0.201  7697 0.058 -0.090 0.206  
Diabetes 831 0.601 -0.725 1.927 0.00 831 0.363 -0.790 1.517 0.01 1003 0.467 -0.363 1.297 0.00 
No diabetes 42667 -0.060 -0.113 -0.007  42611 -0.016 -0.063 0.032  49862 -0.022 -0.055 0.011  
Hypertension 8698 0.136 -0.059 0.332 0.07 8685 0.092 -0.082 0.267 0.27 10290 0.004 -0.117 0.125 0.94 
no 
Hypertension 

28163 -0.045 -0.117 0.027  28130 -0.017 -0.081 0.048  32826 -0.003 -0.049 0.042  

P*: p-value for interaction 
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Appendix-5.4 cohort-specific meta-analysis by outcome and by exposure  

 hsCRP  

 

Effect estimates expressed as per IQR (Table 5.3) increase for each exposure in each cohort 
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 Total cholesterol 

 

Effect estimates expressed as per IQR (Table 5.3) increase for each exposure in each cohort 
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 HDL cholesterol 

 

Effect estimates expressed as per IQR (Table 5.3) increase for each exposure in each cohort 
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 Triglycerides 

 

Effect estimates expressed as per IQR (Table 5.3) increase for each exposure in each cohort 
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Appendix-5.5 ESCAPE LUR modelled air pollutants:  analyses in LifeLines only  

 M3 M3+LDAY M3+BMI M3+Long-term 
health conditions 

M3 (Long residency) 

hsCRP (N=32266)      

NO2 1.0%  
(-1.4% to 3.4%) 

0.5% 
(-2.6% to 3.6%) 

3.8%  
(1.5% to 6.1%) 

1.3%  
(-1.4% to 4.0%) 

3.8%  
(0.01% to 7.7%) 

PM10 -1.1%  
(-2.8% to 0.6%) 

-2.7%  
(-4.8% to -0.5%) 

1.4%  
(-0.2% to 3.1%) 

-0.9%  
(-2.8% to 1.0%) 

-0.9%  
(-3.6% to 1.9%) 

PM2.5 0.03%  
(-0.8% to 0.8%) 

-0.2%  
(-1.1% to 0.7%) 

0.4%  
(-0.4% to 1.2%) 

0.1% 
 (-0.8% to 1.0%) 

-0.8% 
 (-2.1% to 0.4%) 

PMcoarse -1.7%  
(-3.3% to 0%) 

-3.1%  
(-5.0% to -1.1%) 

1.4%  
(-0.2% to 3.0%) 

-1.5%  
(-3.3% to 0.4%) 

0.2%  
(-2.5% to 3.0%) 

PM2.5absorbance -0.6%  
(-2.6% to 1.4%) 

-2.2% 
 (-4.8% to 0.4%) 

2.3%  
(0.4% to 4.2%) 

-0.5%  
(-2.7% to 1.7%) 

-0.8%  
(-3.9% to 2.4%) 

total cholesterol (N=53807)      

NO2 0.012  
(-0.004 to 0.028) 

0.010  
(-0.010 to 0.030) 

0.017  
(0.001 to 0.033) 

0.020  
(0.003 to 0.037) 

0.027  
(0.0003 to 0.053) 

PM10 0.011  
(-0.001 to 0.022) 

0.010  
(-0.004 to 0.025) 

0.016  
(0.003 to 0.026) 

0.016  
(0.004 to 0.029) 

0.021  
(-0.0001 to 0.041) 

PM2.5 0.006  
(0.001 to 0.011) 

0.006 
 (-0.0002 to 0.012) 

0.007  
(0.001 to 0.012) 

0.006  
(0.001 to 0.012) 

0.010  
(0.001 to 0.019) 

PMcoarse 0.005  
(-0.006 to 0.017) 

0.002  
(-0.012 to 0.016) 

0.010 
 (-0.001 to 0.021) 

0.012  
(0.0001 to 0.025) 

0.010  
(-0.010 to 0.031) 

PM2.5absorbance 0.017  
(0.004 to 0.030) 

0.021  
(0.003 to 0.039) 

0.021  
(0.008 to 0.034) 

0.022  
(0.007 to 0.036) 

0.030  
(0.007 to 0.053) 

HDL cholesterol (N=53807)      

NO2 0.019  
(0.013 to 0.025) 

0.015 
(0.007 to 0.023) 

0.010 
(0.004 to 0.016) 

0.019  
(0.012 to 0.025) 

-0.001  
(-0.011 to 0.009) 

PM10 0.019  
(0.015 to 0.024) 

0.021  
(0.015 to 0.026) 

0.012  
(0.008 to 0.016) 

0.019  
(0.014 to 0.024) 

0.012  
(0.004 to 0.020) 

PM2.5 0.005  
(0.003 to 0.007) 

0.003  
(0.0005 to 0.005) 

0.004  
(0.002 to 0.006) 

0.004  
(0.002 to 0.006) 

0.003  
(0.0002 to 0.007) 
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PMcoarse 0.021  
(0.016 to 0.025) 

0.021  
(0.016 to 0.026) 

0.011  
(0.007 to 0.015) 

0.021  
(0.016 to 0.025) 

0.011  
(0.003 to 0.018) 

PM2.5absorbance 0.021  
(0.016 to 0.026) 

0.023  
(0.016 to 0.030) 

0.013  
(0.008 to 0.018) 

0.020  
(0.015 to 0.026) 

0.013  
(0.004 to 0.022) 

Triglycerides (N=53807)      

NO2 0.035  
(0.022 to 0.047) 

0.055  
(0.039 to 0.070) 

0.048  
(0.036 to 0.061) 

0.036  
(0.023 to 0.050) 

0.061  
(0.041 to 0.082) 

PM10 0.007  
(-0.002 to 0.016) 

0.013  
(0.001 to 0.024) 

0.018  
(0.010 to 0.027) 

0.012  
(0.003 to 0.022) 

0.014  
(-0.001 to 0.031) 

PM2.5 0.001  
(-0.003 to 0.006) 

-0.001  
(-0.006 to 0.003) 

0.003  
(-0.001 to 0.007) 

0.004  
(-0.001 to 0.008) 

0.00004  
(-0.007 to 0.007) 

PMcoarse 0.008  
(-0.001 to 0.017) 

0.019 
(0.008 to 0.029) 

0.023  
(0.014 to 0.031) 

0.012  
(0.002 to 0.022) 

0.021  
(0.006 to 0.037) 

PM2.5absorbance 0.011  
(0.001 to 0.022) 

0.020  
(0.006 to 0.033) 

0.024  
(0.013 to 0.034) 

0.017  
(0.005 to 0.028) 

0.018  
(0.0004 to 0.036) 

fasting blood glucose 
(N=52453) 

     

NO2 0.041  
(0.028 to 0.054) 

0.034  
(0.017 to 0.051) 

0.055  
(0.042 to 0.068) 

0.033  
(0.020 to 0.047) 

0.061  
(0.039 to 0.083) 

PM10 0.023  
(0.013 to 0.032) 

0.014  
(0.001 to 0.026) 

0.035  
(0.026 to 0.044) 

0.023  
(0.014 to 0.033) 

0.048  
(0.031 to 0.065) 

PM2.5 0.006  
(0.001 to 0.010) 

0.001 
(-0.004 to 0.006) 

0.007  
(0.003 to 0.011) 

0.007  
(0.003 to 0.011) 

0.011  
(0.004 to 0.019) 

PMcoarse 0.024  
(0.015 to 0.033) 

0.016  
(0.005 to 0.028) 

0.039  
(0.030 to 0.048) 

0.022  
(0.013 to 0.032) 

0.047  
(0.030 to 0.064) 

PM2.5absorbance 0.024  
(0.013 to 0.035) 

0.011 
(-0.004 to 0.026) 

0.037  
(0.026 to 0.047) 

0.025  
(0.014 to 0.036) 

0.048  
(0.029 to 0.067) 

HbA1c (N=43537)      

NO2 -0.060 
(-0.142 to 0.021) 

-0.091  
(-0.194 to 0.012) 

-0.002  
(-0.083 to 0.078) 

-0.078  
(-0.159 to 0.005) 

-0.077  
(-0.218 to 0.065) 

PM10 0.014  
(-0.044 to 0.072) 

0.029  
(-0.048 to 0.105) 

0.065  
(0.007 to 0.122) 

0.024  
(-0.035 to 0.083) 

-0.002  
(-0.112 to 0.109) 

PM2.5 0.028  0.037  0.034  0.032  0.032  
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(0.001 to 0.055) (0.006 to 0.068) (0.007 to 0.061) (0.005 to 0.060) (-0.015 to 0.079) 

PMcoarse -0.027  
(-0.084 to 0.031) 

-0.037  
(-0.107 to 0.034) 

0.036  
(-0.021 to 0.093) 

-0.021  
(-0.079 to 0.037) 

-0.069  
(-0.178 to 0.040) 

PM2.5absorbance 0.006 
(-0.062 to 0.074) 

0.018  
(-0.075 to 0.111) 

0.057 
 (-0.010 to 0.124) 

0.016  
(-0.053 to 0.084) 

0.004  
(-0.119 to 0.128) 

Effect estimates were calculated for each IQR increase of NO2 (7.42 µg/m3), PM10 (0.95 µg/m3), PM2.5 (0.24µg/m3) and PMcoarse (0.63µg/m3) and 

PM2.5absorbance (0.22µg/m3). M3: Model 3 adjusted for age, sex, education, employment status, smoking status, smoking pack-years, and alcohol consumption. 

Lday: day-time noise (07:00-19:00). Bold indicated where significant level<0.05 
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Appendix-5.6 Categorical noise estimates in the main analyses 

hsCRP, mg/L  M3 M3+NO2 M3+PM10 

Lday, dB(A) N ES (95%CI) ES (95%CI) ES (95%CI) 

<55 40577 1 1 1 

55-60 10972 0.1%                                
(-2.2% to 2.5%) 

-0.7%                                   
(-3.3% to 2.0%) 

-0.4%                            
(-3.0% to 2.3%) 

>=60 4381 4.2%                         
(0.6% to 7.8%) 

2.6%                                    
(-1.3% to 6.7%) 

3.4%                            
(-0.5% to 7.5%) 

 

Total cholesterol, 
mmol/L 

 M3 M3+NO2 M3+PM10 

Lday, dB(A) N ES (95%CI) ES (95%CI) ES (95%CI) 
<55 56437 1 1 1 
55-60 17976 0.001                        

(-0.015 to 0.018) 
0.005                            
(-0.014 to 0.024) 

0.007                        
(-0.012 to 0.025) 

>=60 7177 -0.004                      
(-0.028 to 0.020) 

0.001                             
(-0.026 to 0.029) 

0.005                       
(-0.022 to 0.032) 

 

HDL cholesterol, 
mmol/L 

 M3 M3+NO2 M3+PM10 

Lday, dB(A) N ES (95%CI) ES (95%CI) ES (95%CI) 

<55 56437 1 1 1 
55-60 17976 0.012                       

(0.006 to 0.018) 
0.008                          
(0.001 to 0.014) 

0.010                       
(0.004 to 0.017) 

>=60 7177 0.020                   
(0.012 to 0.029) 

0.014                             
(0.004 to 0.024) 

0.019                       
(0.009 to 0.029) 
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Triglycerides, 
mmol/L 

 M3 M3+NO2 M3+PM10 

Lday, dB(A) N ES (95%CI) ES (95%CI) ES (95%CI) 

<55 56630 1 1 1 

55-60 17990 0.004                           
(-0.010 to 0.018) 

-0.002                              
(-0.018 to 0.013) 

-0.001                             
(-0.016 to 0.014) 

>=60 7179 0.017                            
(-0.003 to 0.037) 

-0.002                              
(-0.025 to 0.021) 

0.0001                              
(-0.022 to 0.023) 

 

Fasting glucose, 
mmol/L 

 M3 M3+NO2 M3+PM10 

Lday, dB(A) N ES (95%CI) ES (95%CI) ES (95%CI) 
<55 38984 1 1 1 

55-60 16903 0.004                          
(-0.010 to 0.017) 

-0.001                               
(-0.016 to 0.015) 

0.002                                  
(-0.013 to 0.017) 

>=60 6878 0.033                          
(0.013 to 0.053) 

0.018                               
(-0.004 to 0.040) 

0.022                                
(0.0001 to 0.044) 

 

HbA1c, 
mmol/mol 

 M3 M3+NO2 M3+PM10 

Lday, dB(A) N ES (95%CI) ES (95%CI) ES (95%CI) 

<55 31464 1 1 1 

55-60 13741 -0.019                          
(-0.106 to 0.068) 

-0.005                               
(-0.101 to 0.091) 

-0.018                                
(-0.113 to 0.078) 

>=60 5709 -0.019                          
(-0.142 to 0.105) 

0.044                              
(-0.095 to 0.183) 

0.017                               
(-0.119 to 0.154) 

Bold indicated where significant level<0.05  
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2. Chapter 6  
Appendix-6.1 Subgroup analyses based on Model 2 (M2) by incident CVD outcome and by exposure 

 N Cerebrovascular disease Ischaemic heart disease Total CVD 

NO2  HR 95%ci  p-
interaction 

HR 95%ci  p-
interaction 

HR 95%ci  p-
interaction 

men 123692 1.13 0.97 1.32 0.00 0.95 0.86 1.05 0.00 1.03 0.98 1.07 0.00 

women 159186 0.99 0.85 1.15  1.02 0.90 1.15  0.98 0.94 1.02  

age<60years 194421 1.07 0.92 1.24 0.00 1.01 0.92 1.12 0.00 1.00 0.96 1.03 0.00 

age>=60 years 88457 1.07 0.92 1.25  0.97 0.86 1.09  1.04 0.99 1.10  

BMI<25kg/m2 123362 0.99 0.86 1.15 0.70 1.00 0.88 1.12 0.00 1.00 0.97 1.04 0.00 

BMI: 25-30 
kg/m2 

115157 1.12 0.93 1.35  0.95 0.85 1.07  0.98 0.93 1.02  

BMI>30 kg/m2 43295 1.27 0.94 1.72  1.08 0.90 1.29  1.08 1.00 1.17  

never-smoker 156407 1.09 0.94 1.27 0.00 1.09 0.98 1.23 0.00 1.02 0.98 1.06 0.00 

ex-smoker 91317 0.98 0.80 1.20  0.97 0.85 1.10  1.00 0.95 1.05  

current-smoker 35154 1.07 0.84 1.35  0.81 0.69 0.96  0.93 0.87 1.00  

low- education 38437 1.20 0.93 1.54 0.02 0.94 0.78 1.13 0.00 1.02 0.94 1.11 0.00 

Medium- 
education 

77357 1.06 0.88 1.28  0.92 0.80 1.06  1.01 0.96 1.05  

High- 
education 

167084 0.99 0.84 1.16  1.04 0.93 1.15  0.99 0.96 1.03  

had diabetes  5184 1.38 0.80 2.38 0.10 1.04 0.74 1.47 0.00 0.99 0.84 1.17 0.00 

not had 
diabetes 

277236 1.05 0.94 1.17  0.97 0.90 1.05  1.00 0.97 1.02  

              

PM10  HR 95%ci   HR 95%ci   HR 95%ci   

men 123425 1.12 0.93 1.34 0.00 0.99 0.89 1.11 0.00 1.06 1.01 1.12 0.00 

women 158800 1.04 0.88 1.24  1.01 0.88 1.16  0.99 0.95 1.04  

age<60years 193966 1.10 0.92 1.31 0.00 1.05 0.94 1.18 0.00 1.01 0.97 1.05 0.00 

age>=60 years 88259 1.09 0.91 1.31  0.97 0.85 1.11  1.10 1.04 1.16  
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BMI<25kg/m2 123075 1.05 0.88 1.24 0.60 1.00 0.87 1.15 0.00 1.01 0.97 1.06 0.00 

BMI: 25-30 
kg/m2 

114899 1.10 0.89 1.37  0.99 0.87 1.13  1.02 0.97 1.08  

BMI>30 kg/m2 43188 1.23 0.85 1.77  1.13 0.92 1.38  1.09 1.00 1.19  

never-smoker 156048 1.03 0.86 1.23 0.00 1.13 0.99 1.29 0.00 1.03 0.98 1.08 0.00 

ex-smoker 91095 1.09 0.87 1.37  1.00 0.87 1.15  1.03 0.97 1.09  

current-smoker 35082 1.18 0.89 1.55  0.82 0.68 0.98  0.98 0.90 1.06  

low- education 38354 1.22 0.93 1.60 0.05 0.95 0.78 1.15 0.00 1.04 0.95 1.13 0.00 

Medium- 
education 

77157 1.19 0.95 1.48  0.90 0.77 1.06  1.02 0.97 1.08  

High- 
education 

166714 0.94 0.78 1.14  1.10 0.98 1.25  1.02 0.98 1.07  

had diabetes  5173 1.44 0.72 2.90 0.15 1.10 0.73 1.66 0.00 1.06 0.87 1.29 0.00 

not had 
diabetes 

276595 1.07 0.94 1.21  0.99 0.91 1.09  1.02 0.99 1.05  

              

LDAY  HR 95%ci   HR 95%ci   HR 95%ci   

men 121783 1.01 0.95 1.08 0.00 0.99 0.95 1.03 0.00 1.01 0.99 1.03 0.00 

women 157084 0.98 0.91 1.04  1.05 1.00 1.11  1.00 0.98 1.02  

age<60years 191294 1.00 0.93 1.07 0.00 1.03 0.99 1.07 0.00 1.01 0.99 1.02 0.00 

age>=60 years 87573 0.99 0.93 1.06  0.99 0.94 1.04  1.00 0.98 1.02  

BMI<25kg/m2 121684 0.99 0.92 1.06 0.90 0.99 0.93 1.04 0.00 1.00 0.98 1.03 0.00 

BMI: 25-30 
kg/m2 

113472 0.99 0.92 1.06  1.01 0.96 1.06  1.00 0.98 1.02  

BMI>30 kg/m2 42698 1.01 0.90 1.15  1.06 0.98 1.14  1.02 0.99 1.05  

never-smoker 154687 0.99 0.92 1.06 0.00 1.00 0.95 1.05 0.00 0.99 0.97 1.01 0.00 

ex-smoker 90227 1.00 0.92 1.09  0.97 0.91 1.02  1.00 0.98 1.02  

current-smoker 33953 0.99 0.90 1.08  1.07 1.01 1.14  1.04 1.01 1.06  

low- education 37227 0.97 0.90 1.04 0.40 1.01 0.96 1.07 0.00 1.01 0.99 1.03 0.00 

Medium- 
education 

75624 0.99 0.91 1.07  1.02 0.96 1.08  1.01 0.99 1.04  
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High- 
education 

166016 1.06 0.97 1.16  1.00 0.94 1.07  0.99 0.97 1.02  

had diabetes  5103 1.03 0.80 1.34 0.50 0.99 0.84 1.17 0.00 1.04 0.96 1.13 0.00 

not had 
diabetes 

273311 0.99 0.95 1.04  1.01 0.98 1.04  1.00 0.99 1.02  

Model 2: adjusted for cohort, time segments of follow-up period, age, sex, education, employment status, smoking status and alcohol consumption (main 

model). HR: Hazard ratios. HR expressed as per 4.1 µg/m3 increase PM10, 13.2 µg/m3 increase of NO2 and 3.9 dB(A) increase of Lday. Bold indicated where 

significant level<0.05 
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Appendix-6.2 Cohort-specific meta-analysis of air pollution effects on incident total CVD  

 

 

PM10

HUNT2

EPIC-Oxford

UK Biobank

I-V Subtotal  (I-squared = 95.8%, p = 0.000)

D+L Subtotal

NO2

HUNT2

EPIC-Oxford

UK Biobank

I-V Subtotal  (I-squared = 95.3%, p = 0.000)

D+L Subtotal

ID

Study

0.95 (0.93, 0.98)

0.97 (0.93, 1.01)

1.16 (1.10, 1.22)

0.99 (0.97, 1.01)

1.02 (0.92, 1.14)

0.93 (0.92, 0.98)

0.99 (0.96, 1.02)

1.11 (1.07, 1.16)

0.99 (0.97, 1.01)

1.01 (0.92, 1.11)

ES (95% CI)

50.38

30.93

18.69

100.00

42.90

35.40

21.70

100.00

(I-V)

Weight

%

31216

28926

222098

31259

29057

222577

N

0.95 (0.93, 0.98)

0.97 (0.93, 1.01)

1.16 (1.10, 1.22)

0.99 (0.97, 1.01)

1.02 (0.92, 1.14)

0.93 (0.92, 0.98)

0.99 (0.96, 1.02)

1.11 (1.07, 1.16)

0.99 (0.97, 1.01)

1.01 (0.92, 1.11)

ES (95% CI)

50.38

30.93

18.69

100.00

42.90

35.40

21.70

100.00

(I-V)

Weight

%

decreased risk  increased risk 

1.8 1.3

hazards  ratio

Incident cardiovascular disease
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Appendix-6.3 Cohort-specific meta-analysis of daytime road traffic noise effects on incident total CVD  

 

 

Lday

HUNT2

EPIC-Oxford

UK Biobank

I-V Subtotal  (I-squared = 0.0%, p = 0.751)

D+L Subtotal

ID

Study

1.01 (0.98, 1.08)

0.99 (0.97, 1.02)

1.01 (0.98, 1.04)

1.00 (0.98, 1.02)

1.00 (0.98, 1.02)

ES (95% CI)

15.73

46.78

37.48

100.00

(I-V)

Weight

%

27245

29057

222577

N

1.01 (0.98, 1.08)

0.99 (0.97, 1.02)

1.01 (0.98, 1.04)

1.00 (0.98, 1.02)

1.00 (0.98, 1.02)

ES (95% CI)

15.73

46.78

37.48

100.00

(I-V)

Weight

%

decreased risk  increased risk 

1.8 1.2

hazards ratio

Incident cardiovascular disease
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