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ABSTRACT 

In this thesis we discuss two distinct classes 

of defects in glasses, which affect the low temperature 

thermodynamics and high temperature relaxation 

properties. The first class, the intrinsic * defects, 

arise from the constraints of the underlying network 

and are, therefore, present even in perfect glasses. 

The second. class, the topological excitations, 

take the form of Z^ line defects. The temperature 

dependence of the equilibrium density of topological 

defects is such that they lead to a universal 

explanation of the Vogel Fulcher Law for the viscosity 

of supercooled liquids. 

Further insight into the nature of the defects 

is gained by studying a field theory in which the 

overall homogeneity of glass is formulated as a 

local invariance of the free energy. Here the 

topological line defects are analogous to vortices 

of type II superconductors. Intrinsic defects, 

in the form of lines of curvature, act as sources 

of the field and introduce energy density fluctuations. 

Each such defect is associated with two equal energy 

solutions of the Euler Lagrange equations, related 

(i) 



by a nontrivial gauge transformation, 

level systems could be responsible for the 

low temperature properties of glasses. 

Such two 

anomalous 

An alternative field theory is discussed in which 

the continuum spin glass model is derived from 

the Edwards Anderson Hamiltonian, with intrinsic 

defects (frustration lines) included as lines of 

finite curvature. The topological excitations are 

vortices of the spin field. It was necessary to 

approach the continuum model for an atomic glass 

from a macroscopic point of view. The model is 

that of an isotropic elastic continuum with torsion 

and curvature included to describe the ring closure 

constraints of the underlying network. Here the 

topological defects are 2n disclinations. In both 

spin glass and atomic glass the reversal of the 

orientation of an intrinsic defect line constitutes 

a specific model for the two level system. 

(ii) 



ACKNOWLEDGEMENTS 

I am deeply grateful to Dr. N. Rivier for suggesting 

the topic of this thesis and for his invaluable 

supervision during the course of the work. I would 

like to thank the other members of the Solid State 

Theory Group for many enlightening discussions. 

I would also like to thank Janet Browning for typing 

the manuscript and, finally, my husband for all 

his help and encouragement during the preparation 

of this thesis. Financial support for this work 

was provided by the Science Research Council. 

(iii) 



CONTENTS 

Page 

Abstract i 

Acknowledgement ii 

Contents • iii 

CHAPTER 

1 GENERAL INTRODUCTION 

1.1 Introduction 1 

1.2 Review of Some Significant 3 

Properties of Glasses 

1.3 The Identification of Defects in 16 

Glasses 

2 LINE DEFECTS AND THE GLASS TRANSITION 

2.1 Introduction 24 

2.2 The Classification of Defects in 24 

Ordered Media 

2.3 The Classification of Defects in 27 

Amorphous Media 

2.4 Relaxation in Supercooled Liquids 31 

2.5 Equilibrium Density of Defects 33 

2.6 The Kauzmann Paradox 43 

2.7 Conclusions 45 

3 A GAUGE INVARIANT FIELD THEORY OF GLASS 

3.1 Introduction 48 

3.2 The Gauge Invariant Free Energy 49 

(iii) 



CONTENTS Continued 

CHAPTER Page 

3.3 Classification of Ground State 57 

Configurations 

3.4 Excitations from the Ground State 64 

3.5 Conclusions 69 

4 A CONTINUOUS FIELD THEORY OF SPIN GLASS 

4.1 Introduction 71 

4.2 The Discrete Model 71 

4.3 Defects and Constraints 77 

4.4 A Continuum Model 79 

4.5 The x-y Model 80 

4.6 The Two Level System 85 

4.7 Frustration Lines in the Heisenberg 86 

Model 

4.8 Topological Excitations 91 

4.9 Conclusions 92 

5 A DISCRETE MODEL OF COVALENT GLASS 

5.1 Introduction 96 

5.2 The Gauge Invariant Keating Model 96 

5.3 Defects and Constraints 103 

5.4 The Keating Model and the Gauge 107 

Field 

5.5 Conclusions 110 

(iv) 



CONTENTS Continued 

CHAPTER Page 

6 A CONTINUOUS FIELD THEORY OF GLASS 

6.1 Introduction 113 

6.2 Field Theory of an Elastic Continuum 115 

with Torsion and Curvature 

6.3 Field Theory of Glass • 122 

6.4 The Two Level System 134 

6.5 Topological Excitations 137 

6.6 Conclusions 141 

7 GENERAL DISCUSSION AND CONCLUSIONS 146 

Appendix 1 157 

References 159 

(v) 



CHAPTER 1 

GENERAL INTRODUCTION 

Introduction 

At first sight the task of identifying defects in glasses 

might appear rather futile since glasses, unlike crystals, 

do not have any long range order or, indeed, any unique 

ideal configuration. Many of the properties of glasses 

are, however, strongly suggestive of the presence 

of defects, although the precise nature of these objects 

is not apparent. Metallic glass exhibits a mode of 

plastic deformation which closely resembles that mediated 

by dislocations .in crystals. Magnetostriction experiments 

(Grimm and Kronmuller 1980) have revealed dislocation 

like sources of strain in ferromagnetic glasses. 

Indeed, any rapidly quenched glass relaxes to a lower 

energy configuration on annealing below the glass 

transition temperature and such a process could be 

due to the annihilation of defects. An almost universal 

feature of the glassy state is the anomalous low 

temperature thermodynamic and acoustic behaviour. 

It is possible that defects exclusive to glasses are 

responsible for such behaviour. 

In the first chapter of this thesis we summarize some 

of the universal properties of glasses and review 

the various methods which have been used to identify 

defects in these materials. In chapter 2 we discuss 
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one such method which predicts the existence of topo-

logically stable line defects in amorphous materials, 

and show how they can be used to explain the observed 

relaxation behaviour of supercooled liquids. In chapter 

3 we develop a phenomenological gauge invariant field 

theory of glasses in which the topological defects 

resemble vortices in superconductors. They are present 

in the glass, in thermal equilibrium, at finite temperature 

and diffuse freely in the medium. Other defects, in 

the form of quenched lines of finite curvature, are 

present at all temperatures and these have the effect 

of introducing a number (two per defect) of distinct 

ground state configurations, related to each other 

by non trivial gauge transformations. A continuum 

version of the Edwards Anderson Model of a spin glass 

is derived in chapter 4, with frustration included 

as lines of finite curvature. These introduce low 

energy excitations which are equivalent to the reversal 

of the orientation of a frustration line. Here the 

topological defects are vortices of the spin field. 

In chapter 5 we express the Keating Model of covalent 

materials in a representation which resembles the 

Edwards Anderson model of spin glass and include the 

ring closure constraints as torsion and curvature. 

The random bond directions inhibit the passage to 

the continuum limit in this model. In chapter 6 a 

glass is considered, from a macroscopic point of view, 
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1.2 

1.2.1 

as an isotropic elastic continuum with torsion and 

curvature. Again the presence of these defects introduces 

low energy excitations which correspond to reversing 

the orientation of a line. In this case the topological 

defects are disclinations with the distortion field 

screened by dislocations. We conclude, in chapter 

7, with a general discussion and a comparison of the 

three continuum models. Although the models vary 

significantly in detail, the general features are 

very similar. In particular, each has two distinct 

types of defect, one type affecting the low temperature 

properties and the other, the topological defects, 

dominating the relaxation processes in supercooled 

liquids. 

The general trend of this thesis goes from a pheno-

menological (chapter 2 and 3) to a more microscopic 

description of glasses (chapter 4 and 5), and finally 

(chapter 6) back to a macroscopic description where 

the defects introduced earlier, and specific to glasses, 

appear naturally in the framework of continuum elasticity 

theory. 

Review of Some Significant Properties of Glasses 

The Glass Transition 

Unlike the transition from the liquid to the crystalline 

state, the glass transition is not a true thermodynamic 

phase transition. It is, in fact, a kinetic transition 
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in that it corresponds to the situation where the 

timescale required for structural changes to occur 

becomes longer than the experimental timescale. For 

a given cooling rate the glass transition temperature 

(Tg) is the temperature at which the structural relaxation 

time of the supercooled liquid becomes too long for 

the liquid to remain in (internal) equilibrium, and 

it corresponds to a viscosity of the order of 1 0
1 3 

poises. Even above Tg a supercooled liquid is not 

in the true equilibrium state (the crystal always 

has lower energy) but it is in a metastable or internal 

equilibrium configuration. 

Thus the glass transition temperature is not unique 

for a given liquid, but it is a function of the cooling 

rate. The range of variation is, however, very small 

because the structural relaxation time has a very 

strong temperature dependence in this region. The 

glass transition is accompanied by a very rapid, but 

continuous, change in the slope of the temperature 

dependence of thermodynamic variables such as the 

volume, entropy and enthalpy (Figure 1.1). The volume 

of a supercooled liquid decreases more rapidly with 

temperature than the volume of the corresponding crystal, 

but the rate of decrease in the glass and crystal 

are approximately equal. Kauzmann (1948) noted that 

both the volume and the entropy of a supercooled liquid 

fall below the volume and entropy of the corresponding 
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crystal at a finite temperature (To), although this 

situation (which has become known as the "Kauzmann 

Paradox") cannot, in fact, be reached because the 

glass transition always intervenes. Gibbs and DiMarzio 

(1958) noted that the Kauzmann Paradox is resolved 

if a true (but inaccessible) second order phase transition 

involving a discontinuity in the temperature derivative 

of the entropy, occurs at To. The mechanism which 

they have suggested for the transition, based on counting 

polymer like configurations, has been criticized by 

Gujrati and Goldstein (1980, 1981). 

A second striking feature of supercooled liquids is 

the temperature dependence of the transport properties, 

which follow a universal law known as the Vogel Fulcher 

Law (Vogel 1921, Fulcher 1925): 

n
- 1

 = no"
1

 exp - A 

T-To 1.1 

Here represents the inverse viscosity but the self 

diffusion rate, nuclear spin relaxation rate and all 

other relaxation rates follow the same law with the 

same value for the constants (A,To) in a given material. 

Here To is the same temperature where Kauzmann's paradox 

occurs. The law has been observed in materials as 

different as polymers (Kovacs 1973) organic liquids 

(Barlow et al 1967), ionic liquids (Angell et al 1967) 

and metallic liquids (Chen and Goldstein 1972). Recently 
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Toulence (1980) measured the frequency dependence 

of the susceptibility cusp of a spin glass and found 

evidence that the spin relaxation time follows a similar 

law. 

The oldest explanation of this behaviour is the free 

volume theory of Cohen and Turnbull (1959, 1961). 

The theory has recently been extended (Cohen and Grest 

1979) in such a way that it can be used to explain 

the thermodynamics of the transition. The argument 

is based on tfre assumption that flow, or relaxation, 

can only occur at a given site when a large enough 

hole (volume Vo) opens up next to the site. Thus if 

the fractional excess volume per site (with the close 

packed state taken as reference) is Vp = V-Vo then 

the probability of finding a hole of size Vo is 

proportional to exp ( - V O / V F ) and n~' a exp - Vo 1.2 

V-Vo 

The assumption that (V-Vo) is proportional to T-To 

leads to the observed behaviour. There has, however, 

been a number of objections to this explanation and 

Anderson (1980) mentions a few. In particular there 

seems to be no physical justification for the assumption 

that the excess voume falls linearly to zero at a 

finite temperature (To). In fact fitting the experimental 

data to equation 1.2 (the Doolittle law, Doolittle 

1951) has not been as successful as equation 1.1. 

In addition it is difficult to justify the free volume 
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approach for anything other than a hard sphere model 

of a liquid and this does not seem appropriate for 

many of the complicated systems in which this behaviour 

is observed. 

A somewhat similar line of approach, involving 

configurational entropy instead of volume, was taken 

by Adams and Gibbs (1965). Here a small region of 

the liquid cannot undergo a change in configuration 

unless the entropy exceeds a critical value (So) therefore 

as before, n~
l

 a exp - S£ 1.3 
Sc 

where Sc is the total configurational entropy. However, 

in the presence of a second order phase transition 

at To (Gibbs, DiMarzio 1958) we might expect S
c
 cr(T-To) 

and the Fulcher law is again recovered. It is this 

expression for Sc which has been criticized by Gujrati 

and Goldstein (1981). 

There has been a number of more recent attempts to 

derive the Vogel-Fulcher law for the viscosity of 

supercooled liquids. J.C. Phillips (1981) introduced 

a model in which the temperature dependence of the 

size of molecular clusters is responsible for the 

observed behaviour, but again it is difficult to envisage 

how such a specific model could explain its occurrence 

in a wide variety of materials. Cyrot (1981) considered 

energy fluctuations in supercooled liquid to play 
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a dominant role. Here it is the life time of an infinite 

amorphous cluster which follows a Vogel Fulcher law. 

Shtrikman and Wohlfarth (1981) have explained the 

observation of the Vogel Fulcher law in spin glass 

in terms of the interaction between magnetic clusters. 

In this thesis (chapter 2) we follow a suggestion 

by Anderson (1980) that the presence of topological 

defects may be responsible for the universal behaviour 

of the relaxation time in supercooled liquids, and 

show that the density of line defects follows equation 

1.1 and yields the Vogel Fulcher law for the relaxation 

time of supercooled liquids. 

1.2.2 Low Temperature Properties of Glasses 

On a microscopic level a glass looks very different 

from a crystal however, macroscopically, both systems 

can be considered to be elastic continua. In other 

words, when we observe properties which do not depend 

on the details of the atomic structure we expect a 

glass to behave in a similar way to a crystal. One 

such property is the excitation spectrum. of long 

wavelength phonons because the microscopic disorder 

should be irrelevant when the wavelength is much longer 

than the interatomic distance. The low temperature 

specific heat of crystals is dominated by such long 

wavelength phonons and it tends to zero as the cube 
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o£ the temperature. Similar behaviour would be expected 

in a glass if the dominant low energy excitations 

were phonons, however Zeller and Pohl (1971) measured 

the low temperature specific heat of v.i.treous silica, 

germania and selenium and found a linear temperature 

variation which dominates the phonon contribution 

below 1°K. In addition the thermal conductivity was 

found to vary as the square of the temperature, rather 

than the cube as in crystals. Similar effects have 

since been found in polymers (Stephens 1973) and metallic 

glasses (Graebner et al 1977) and in all other inorganic 

glasses which have been measured except, it seems, 

amorphous arsenic. A linear term in the specific heat 

of dilute magnetic alloys (now known as spin glass) 

was discovered earlier by Zimmerman and Hoare(1958 ,1960) . 

Such behaviour implies that, in addition to long wave-

length phonons, glasses have other low energy excitations 

which affect the thermodynamic properties. Anderson, 

Halperin and Varma (1972) and W.A. Phillips (1972) 

independently discussed a model which successfully 

explained the low temperature anomalies and made 

predictions which have since been verified (Black 

1981). The potential energy surface of a glass in 

configuration space is very complicated with a number 

of roughly equivalent "ground states". Most of these 

are inaccessible to a glass in a particular configuration, 
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however a small fraction of the local minima may be 

accessible in experimental timescales and these will, 

therefore, contribute to the specific heat. The magnitude 

of the linear term of the specific heat (Stephens 

1973, 1976) suggests that the probability of finding 

one such nearby minimum is extremely small, thus it 

is reasonable to neglect the possibility - of a third 

accessible minimum. Anderson et al and Phillips introduced 

the concept of the "two level system" which considers 

part of the potential energy surface containing two 

minima, separated by a distance d and a- barrier of 

height V (Figure 2.2). At low temperatures, transitions 

between the two configurations can occur via quantum 

mechanical tunelling. If and are the wavefunctions 

corresponding to the left and right well respectively 

then the Hamiltonian, in terms of these basis states, 

is 

" =
 + (

o V * 

with A
0
 = hu>

o:
exp (-X) 1.5 

and X = dh"
1

 /2mV 1.6 

M is the effective mass of the rearranging atoms, 

e is the strain field and 2 6 = d A. The second term 

d e 

originates in the dependence of the shape of the potential 

energy surface on the local strain field. In terms 

of the spin operators (Sa - \ aa and a<x (a = 1, 2, 3) 

are the Pauli Matrices). 
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H = AS
Z
 - A

0
 S

x
 + 25e S

z
 1.7 

Diagonalizing the first term of equation 1.4 (rewriting 

it in terms of the basis states = YRCOS AO + Sin Ao) 
2A " 2A 

the Hamiltonian becomes 

H = E S
z
 + (M S

x
 + DS

Z
) e 1.8 

with E
2

 = A
2

+ Ao
2 

M = 2Ao 5 
E 

D = 2A 5 
E 

The unperturbed (e = o) states now have an energy 

splitting E which is necessarily greater than (or 

equal to £or infinite barriers) the original splitting 

(A). The presence of the off diagonal coupling (Me S
x
) 

implies that perturbations of the strain field can 

lead to transitions between the two diagonal states 

(*+» o . 

The contribution of tunnelling states of this kind 

to the specific heat depends on the distribution of 

the parameters A and A o . The usual assumption (Black 

1978) is that the distribution function is independ'ent 

of A and depends on A o only through the uniform 

distribution of barrier heights (V). 

i.e P(A,\) = P(0,\) = P 1.9 

therefore defining r = Ao^, P(E,r) = P 1.10 
E

2 
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The specific heal: (Cv) is relaLed to the d i s I: r ibu t i on 

of eigen states of" (1.8) through Che expression (Phil lips 

19 72 ) 

C
v
 - 1<R 7 f

X

 dr P(F.,r) ( M )
2

 Sech
 2

 (RE) 
°

 l

'° 2 2 1.13 

r

-- H
 k

li
3 T

P f/
1

 1 1 (1 - r) ~ * ] 1.12 

6 r 

and is indeed linear in the temperature. Here ro is 

a function of the maximum barrier height: consistent, 

with observations in experimental timescales. The 

magnitude of the linear term in the specific heat 

implies a density of states of around 1 0
1 9

 l O
2 0 

eV c m
- 3

 arid this is consistent with a concentration 

of two level systems of between 1 and 10 per million 

atoms (Black 1981). 

The strain dependent off diagonal term in equation 

1.8 represents the interaction of the two level system 

with phonons. A phonon of frequency (h "
l

 E) can be 

r e s o na ntly absorbed by a two level system with energy 

splitting E, or it can stimulate the. emission from 

an excited two level system of the same energy. Such 

processes lead to a phonon mean free path ( & ) given 

by (Anderson Halperin and Varma 1972) 

= ? 5
2 t a n h

 H w 
pV

3

 1.9 

Here p is the mass density and V is the sound velocity. 

The dominant frequency of the thermal phonons is 

hw ~ k gT therefore the mean free path ( £ ) of thermal 
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phonons is proportional to the inverse of Che temperature 

and the thermal conductivity, (K. = C
y
v . S,, with Cv 

representing the phonon specific heat) is proportional 

to the square of the temperature, as observed by Zeller 

and Pohl (1971) and Stephens (1973). 

One of the most successful features of the tunnelling 

model is its ability to explain the saturation of 

ultrasonic attenuation at high power levels (Hunklinger 

et al 1972, Golding et al 1973). At low power levels 

the mean free path of the phonons is dominated by 

resonant absorption (equation 1.9) but as the power 

increases the population of the two states equalize 

and the absorption and emission processes completely 

cancel, with no net absorption. Hole burning and spin 

echo experiments have also been carried out successfully 

in insulating glasses (Hunklinger and Arnold 1976, 

Golding and Graebner 1976) and these, lead to accurate 

estimates of the relaxation times of the two level 

system. 

The search for similar effects in metallic glass was 

hindered by the presence of conduction electrons which 

contribute a large linear term to the specific heat. 

However this contribution is negligible in experiments 

carried out below the superconducting transition 

temperature therefore the linear term in the specific 

heat observed for Zr Pd in this regime (Graebner et 
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is indeed due to the two level system. A 

in the thermal conductivity was observed in 

system. The current state of the observation 

level systems in metallic glass is reviewed 

(1981). 

There have been a number of attempts to identify the 

microscopic origin of the two level system in glasses. 

Several possibilities for oxide glasses are presented 

by Jackie et al (1976). J.C. Phillips (1980) suggests 

they may be due to hydrogen atoms tunnelling between 

two equivalent positions in surface defects of over 

constrained glasses. W.A. Phillips (1981) discusses 

a specific model in which an OH"" ion rotates about 

a SiO bond of amorphous Silica. Villain ,(1977) showed 

that the spins on a frustration line in the x-y model 

of a spin glass have two equivalent ground state 

configurations (chiralities). As yet, however, no 

universal explanation has been offered for the effects 

in such a wide variety of materials. In chapter 3 

of this thesis we present a model in which the two 

level system is a natural consequence of the coexistence 

of gauge invariance and defects. An alternative 

explanation is discussed in chapters 4 and 6 where 

the tunnelling excitations correspond to the reversal 

of the orientation of defect lines. 

al 1977) 

T
2

 term 

the same 

of two 

by Black 
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1.2.3 Plastic Flow in Metallic Glasses 

Metallic glasses exhibit an exciting combination of 

physical properties for potential technological 

applications, such as a very high fracture strength, 

fracture toughness and stiffness. Under high stresses 

they show some degree of plastic deformation, with 

two distinct deformation modes:-

(i) Homogeneous deformation at high temperatures and 

low strain rates. 

(ii) Inhomogeneous deformation, concentrated in very 

narrow shear bands along the direction of maximum 

shear stress, at low temperatures and high strain 

rates (Masumoto and Maddin 1971). 

Inhomogeneous deformation is mediated by hetrogeneous 

nucleation of slip, followed by localized spreading. 

It is a common mode of deformation in crystals where 

it is nucleated by a dislocation and confined to the 

slip plane of the dislocation. The appearance of localized 

slip bands in glasses lead to the suggestion (Gilman 

1972) that dislocations (with fluctuating Burger's 

vector) also exist in amorphous materials. The idea 

that dislocations can be defined in a medium without 

order has not been generally accepted therefore several 

alternative explanations have been discussed. Leamy 

et al (1972) suggested that plastic flow occurs via 

the motion of localized strain concentrations. Polk 
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and Turnbull (1972) explained slip localization in 

terms of strain softening due to structural disordering 

of the slipped area. Spaepen and Turnbull (1974) assumed 

that hetrogeneous slip nucleation occurs at a surface 

defect and the viscosity decrease due to dilation 

ahead of the crack leads to localized spreading. Li 

(1976) demonstrated how density fluctuations can cause 

hetrogeneous nucleation of slip. 

In chapter 6 of this thesis we discuss how dislocation 

like sources of stress and strain are present in glasses 

at all temperatures. The "dislocations" must obey 

conservation laws and as such they cause hetrogeneous 

nucleation and localized spreading of slip. They are 

the sources of strain and density fluctuations discussed 

by Leamy (1972) and Li (1976). 

The Identification of Defects in Glasses 

In general, the concept of a defect implies the existence 

of a perfect, defect free state as a reference, with 

defects being defined as deviations from the reference 

state. In a crystal, or other ordered medium, the 

structure of the reference state is known and the 

identification of defects is almost trivial. In a 

glass there is no unique reference configuration therefore 

the above definition of a defect is not very useful, 

however some glasses are more "perfect" than others 
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because annealing a rapidly quenched glass just below 

the glass transition temperature causes relaxation 

towards a lower energy configuration. The perfect 

or ideal glass is one which has been cooled infinitely 

slowly from the melt but, of course, this situation 

can never be achieved in practice. 

Although there is no long range order glasses have, 

in general, a strong degree of short range order which 

acts as a local reference configuration. For example, 

each atom of a covalent glass has a similar environment 

(co-ordination number) to the atoms of the corresponding 

crystal and deviations from this ideal environment 

(in the form of dangling bonds) are easily identified 

as defects. In a metal-metalloid glass (such as PdSi) 

the ideal surroundings of a metalloid ion is a trigonal 

prism of metal ions (Gaskell 1979) and deviations 

from this configuration could be corresponding defect 

in metal-metalloid glasses. 

An alternative definition of a defect which is applicable 

to glass is that of a source (line or point) of distortion 

in the medium. A transparent example of such a defect 

is a frustration line of a spin glass. A simple model 

of a spin glass is one where the spins reside on a 

lattice with random ferromagnetic and ant iferromagnetic 

interactions. On any plaquette (elementary face of 
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the lattice) with an odd number of negative bonds, 

it is impossible to minimize the energy of the spins 

across all bonds simultaneously (Toulouse 1977) and 

in three dimensions such frustrated plaquettes are 

threaded through by lines (frustration lines) which 

cannot end within the medium. In an Ising model the 

unsatisfied bonds lie on a plane bounded by the 

frustration loop therefore the energy is proportional 

to the area of the loop, but in an x-y model the 

distortion is shared between all the bonds and the 

spins relax to a vortex like configuration with an 

energy of the form L in L (L is the length of the 

loop) (Fradkin et al 1978). Thus frustration lines 

act as sources of distortion to continuous spins in 

a spin glass model. 

Rivier (1979) noted that, like the lines threading 

frustrated plaquettes, the lines threading rings with 

an odd number of bonds, in a continuous random network 

model of a covalent glass, cannot end within the medium. 

They must form closed loops or end on the surface. 

Such odd rings (3-fold excepted) are incompatible 

with any combination of rotational and translational 

symmetry and are not, therefore, found in crystals, 

except at the cores of disclination lines. They can 

thus be considered to be analogous to frustration 

lines of spin glass. Similar lines can also be identified 

in a dense random packing model by considering the 
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(dual) network formed by Che edges and vertices of 

the Voronoi polyhedra of the spheres. 

On a somewhat different line of approach Kleman and 

Sadoc (1979) suggested that glasses could be visualized 

as ordered lattices in spaces of finite curvature, 

projected in ordinary Euclidean space. The idea arises 

from the fact that the fundamental unit of the dense 

random packing model (the configuration which maximizes 

the local density) is the regular tetrahedron and 

this does not fill a 3 dimensional Euclidean space, 

but it does fill a 3 dimensional sphere (a space with 

constant positive curvature). Mapping a regular structure 

from the sphere on to Euclidean space not only introduces 

distortions, but also cut surfaces (wall defects). 

In a similar way the mapping of a regular structure 

from a space with constant negative curvature introduces 

singular lines (disclinations). 

The physical parameters of a glass (density, stress, 

entropy) fluctuate throughout the medium (for direct 

evidence see Grimm and Kronmiiller (1980)) and the 

extremes of the distribution of the fluctuations 

can, in some respects, be considered to be defects. 

An extensive study of the statistical fluctuations 

in the stress (dilational and shear) field of a computer 
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model of amorphous iron has been carried out by Srolovitz 

et al (1981) who found that the width of the distribution 

decreased during relaxation. This can be interpreted 

to mean that the defects (extremes of the distribution) 

annihilate each other during this process. Free Volume 

also falls into this category because it is really 

the extreme of a continuous distribution of hole size. 

Toulouse and Kleman (1976) introduced a scheme in 

which the topologically stable defects of ordered 

media can be classified by the behaviour of a field 

on a surface surrounding the defect (Homotopy theory). 

It has been suggested (Toulouse 1979, Rivier 1979) 

that this procedure can also be applied to amorphous 

media, with the result that the only topologically 

stable defects in glasses are line defects which are 

their own antidefects. Homotopy theory, and its 

application to glasses, are discussed in more detail 

in chapter 2 of this thesis. 

The defects discussed in this section fall naturally 

into two classes, those which can be eliminated by 

relaxation (and would not, therefore, be present in 

a perfect glass) and those which form an intrinsic 

part of the structure of the glass (at T = 0) and 

cannot be completely removed by relaxation. Frustration 
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lines in a spin glass are a good example of Che laccer 

(intrinsic) defects because their number cannot be 

reduced by relaxation or cooling at a slower rate 

through the glass transition temperature. Also in 

this category are the lines threading odd rings of 

a continuous random network because, unless a conscious 

effect is made to avoid them (Connell, Temkin 1974) 

the average density of odd rings is independent of 

the model (Weaire 1979). Similarly, the line and surface 

defects discussed by Sadoc and Kleman are a necessary 

consequence of the mapping from a curved space Co 

a Euclidean space and cannoC, therefore, be eliminated 

by relaxation. 

On the other hand one would not expect to find dangling 

bonds in a perfect glass and the free volume should 

also disappear at a finite temperature. Statistical 

fluctuations cannot be completely eliminated by relaxation 

but the width of the distribution is decreased. 

Topological defects are excitations from the "ground 

state" and would not be present in a fully relaxed 

glass. We shall see (chapter 2) that they are only 

present in thermal equilibrium above a finite temperature. 

Thus we see that there are a number of alternative 

approaches to the problem of identifying defects in 

glasses, but it is important to distinguish between 

intrinsic defects (which have no crystalline counterpart) 
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and excitations from the "perfect" glassy state. The 

latter are more in keeping with the usual concept 

of a defect. We feel that both classes of defect have 

important consequences in the properties of glasses, 

with intrinsic defects (in the form of sources of 

distortion) being responsible for the unusual low 

temperature properties and topologically stable defects 

(2n disclinations) dominating the relaxation at high 

temperatures. Such features are common to all models 

of glass discussed in this thesis. 

The random orientation of the local environment of 

the atoms of a glass (or conversely, the macroscopic 

homogeneity) is expressed mathematically as a local 

invariance (gauge symmetry) of the free energy. Like 

defects, gauge invariance is a feature of all models 

of a glass discussed in this thesis and it has important 

consequences in the low temperature behaviour of the 

phenomenological model (chapter 3). 
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Tm is the Melting temperature 

Tgij T g
2
, glass transition temperature for two different 

cooling rates, (R
x
, R

2
) . Here R

2
 > Ri . 

To is the temperature at which the entropy of a super-

cooled liquid becomes equal to that of a crystal. 

Part of the potential energy surface of a glass, producing 

a tunnelling state with barrier V, asymmetry energy 

A and generalized distance d. 
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CHAPTER 2 

LINE DEFECTS AND THE GLASS TRANSITION 

Introduction 

One of the striking features of glass forming liquids 

is the functional form of the temperature dependence 

of a number of transport properties, in the supercooled 

regime. The viscosity, diffusion rate, nuclear spin 

relaxation rate all follow an empirical law (known 

as the Vogel-Fulcher law) which diverges as exp 

A 

Y J Z
 a t a

 finite temperature (To). The universality 

of this behaviour, which is found in a wide variety 

of materials, implies that all relaxation properties 

of supercooled liquids are dominated by a common 

mechanism. 

The work in this chapter is based on a suggestion 

by Anderson (1979) that such behaviour might be explained 

in terms of a defect dominated relaxation process. 

Using homotopy theory we demonstrate that line defects, 

characterized by the group of integers modulo two 

(Z
2
)

5
 are the only stable excitations in amorphous 

media. From the general properties of such defects 

the temperature! dependence of the density of defects 

is calculated, and this can be directly related to 

the average relaxation time of the medium. Such a 

procedure leads directly to a derivation of the Vogel 
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Fulcher law for the relaxation time of supercooled 

1iquids. 

2.2 The Classification of Defects in Ordered Media 

In 1976 Toulouse and Kleman introduced a scheme in 

which a branch of algebraic topology, known as homotopy 

theory, is used to classify the topologically stable 

defects in ordered media. The starting .point is a 

field, or order parameter, ( <j)(_x )) which is a function 

of the spacial co-ordinates of the medium ( j O • In 

mathematical language the field defines a mapping 

from the real space, of the medium ( Z) to the manifold 

of internal states (M). 

i.e. <t> : 2 + M 

If G is the symmetry group of the Lagrangian and H 

is the subgroup of G which leaves the ground state 

invariant, then M is the coset space G/H and it 

characterizes all possible ground states. In general 

the points of M have a one to one correspondence with 

the minima of the potential energy surface. The mapping 

is such that we expect the order parameter at every 

point to reside in the potential energy minimum, but 

spacial variations may increase the global energy. 

Topological defects are singularities which can be 

detected from the configuration of the field on a 

surface surrounding the defect. The field maps closed 

n-dimensional surfaces (n-spheres) of the medium onto 
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closed surfaces in the Manifold of Internal States 

and these n-surfaces fall naturally into equivalence 

classes which make up the n-th homotopy group of M, 

Iln(M). Surfaces are equivalent if they can be continuously 

deformed into each other within the Manifold and the 

set of all equivalent n-surfaces constitutes one element 

of the n-th Homotopy group. The identity element of 

the group is the set of all surfaces which can be 

continuously shrunk to zero. 

To see how this relates to defects we consider the 

specific example of the mapping of a closed path (one 

dimensional surface) onto a closed path in the Manifold 

of internal states. If the latter contour cannot be 

shrunk continuously (it belongs to a nontrivial element 

of the first homotopy group) whereas the real space 

contour can, then on shrinking the real space contour 

a situation is reached where an infinitesimal path 

in 2 maps onto a finite path in M. Such a contour 

must enclose a singularity of the field, that is a 

point where the mapping is not defined. The locus 

of the singularity in a medium (of dimensionality 

greater than two) is an uninterrupted line because 

any procedure for shrinking the contour must encounter 

it. 
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In general, defects of dimensionality r are classified 

by the nth Homotopy group in d spacial dimensions 

where 

n = d- r- 1 

Thus any defect can be characterized by the homotopy 

class of the mapping of a surface surrounding it and, 

by definition, a defect cannot be continuously deformed 

from one class to another. Defects combine according 

to the addition law of the corresponding Homotopy 

group. 

2.3 Classification of Defects in Amorphous Media 

The generalization of the above approach to disordered 

media is straight forward (Toulouse 1979, Rivier 1979) 

but a careful interpretation of the results is required. 

The "ground state" of a glass has no constructive 

symmetry thus H is trivial (H = fl ) and M = G/H = G 

the Euclidean group. The following points must, however, 

be considered:-

(i) Is it reasonable to define an order parameter 

in a medium without order? 

(ii) The potential energy surface of glasses is 

complicated and it would be futile to attempt to 

construct a manifold of internal states representing 

the minima of this surface. 

In the method outlined below we define an order parameter 

by choosing a particular low energy ("ideal") con-
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figuration as a reference state for the actual 

configuration. Thus the manifold of internal states, 

for a particular reference configuration, is relevant 

to a restricted part of the potential energy surface. 

Homotopy theory is a valid method for classifying 

the stable singularities of any field theory and thus 

the problem is really that of finding a suitable field 

to represent the glassy state. By analogy -with ordered 

media the "ground state" configuration should be 

represented by a uniform field, free from singularities. 

The ground state of a glass is not unique, but there 

are a number of deep minima in the potential energy 

surface which are separated from each other by large 

energy barriers. Thus for any glass at a reasonable 

temperature the corresponding minimum energy configuration 

is well defined and this configuration is considered 

to be the reference state in which the field maps 

every element of space into the identity of the manifold 

of internal states. Each element contains a macroscopic 

number of atoms and has no internal symmetry so the 

relevant group of transformations is the full rotation 

group (S0(3)). A continuous field theory can now be 

developed by considering the operation which transforms 

each group of atoms in an excited (or actual) state 

of the system to their configuration in the corresponding 

relaxed (reference) state. Small deviations in the 

detailed structure within a group of atoms are neglected. 
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The topologically stable singularities of this field 

theory are classified by the homotopy groups of the 

Rotation group:-

U
x
 (S0(3)) = Z

2 

n2 (so(3)) = H 

n3 (so(3)) = z 

The third Homotopy group does not label localized 

singularities, but rather nontrivial, nonsingular 

configurations of the whole system. They play an important 

role in high energy physics where they are singularities 

(called instantons) in four dimensional space-time. 

The second homotopy group is trivial, hence point 

defects are not topologically stable excitations in 

glasses. The first homotopy group is the group of 

integers modulo two ( Z
2
) thus one type of line defect 

is stable in glasses and the combination of any two 

defects will annihilate both (1+1=0). 

The stability of line defects in these systems is 

due to the fact that the rotation group is not simply 

connected. A rotation of 2n cannot be continuously 

deformed to the identity, whereas a rotation of 4ft 

can. The manifold of internal states can be represented 

by a solid, 3 dimensional sphere of radius II, with 

the opposite points identified (Pollard 1976). The 

direction of the vector joining the centre of the 

sphere to a point of the manifold represents the axis 
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of rotation (n) and the magnitude of the vector represents 

the rotation angle (9). For rotations of n (represented 

by points on the surface of the sphere) rotations 

about an axis (n) are equivalent to rotations about 

the opposite axis (-n) thus opposite points on the 

surface must be identified. Any closed contour crossing 

the surface of this manifold an even (odd) number 

of times can (cannot) be shrunk continuously to zero 

(Fig. 2.1). 

Thus we see that the only topologically stable defects 

in amorphous materials are Zj line defects, associated 

with a rotation of the field by 2II (about any axis) 

along a contour surrounding the line. Topological 

stability is not, however, equivalent to energetic 

stability. Defects belonging to the trivial element 

of the homotopy group may be prevented from decaying 

instantaneously by the presence of small energy barriers. 

Such a situation would account for the fact that dis-

locations like configurations appear to be stable 

against local perturbations in some models of amorphous 

metals (Chaudari, Levi and Steinhart 1979). A 

topologically stable defect can either decay by 

combination with another defect or by tunnelling through 

(or activation over) large energy barriers associated 

with the departure of the field from the manifold 

of internal states (and from the potential energy 
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minimum). A closed line defect can be eliminated by 

inducing a singularity of the field on a plane bounded 

by the defect (see, for example, figure 2.2) in the 

intermediate state. Thus, in general, the energy barriers 

and average life time associated with topologically 

stable defects are much longer than those of topologically 

trivial "defects". 

Relaxation in Supercooled Liquids 

As the glass transition of a supercooled liquid is 

approached, it is generally found that the relaxation 

times associated with all the relaxation properties 

(viscosity, self diffusion, nuclear spin relaxation 

rate) increase very rapidly with a universal law known 

as the Vogel-Fulcher law: 

t = to exp A 2.1 
T-To 

The constants A and To are the same for all properties 

of a given material. The functional form of this law 

is unusual in that it has an essential singularity 

at a finite temperature (To) which is of the order 

of 10-100°K below the glass transition temperature 

(Tg). It cannot be derived from the more usual . Arthenius 

behaviour (corresponding to To = 0) by invoking any 

reasonable distribution of energy barriers. The universal 

form of the' law suggests that all relaxation processes 

in supercooled liquids are dominated by a single 

mechanism. The transport properties of crystals are, 
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in general, dominated by the presence of defects (plastic 

flow occurs via dislocations and diffusion via vacancies). 

Here we consider the possibility that the line defects 

discussed in the previous section might explain the 

unusual temperature dependence of the relaxation time 

in supercooled liquids. 

The argument is based on the Glarum model for. relaxation 

in liquids (Glarum 1960, Phillips, Barlow and Lamb 

1972). .The basic assumption of the model is that 

structural relaxation of a group of atoms or molecules 

cannot occur until a defect has succeeded in diffusing 

to the site of that group. The presence of a defect 

core distorts the structure to such a degree that the 

transition to the lower energy configuration is easily 

achieved. The defects must be stable entities, with 

average lifetimes longer than the timescales under 

consideration, thus the arguments are not applicable 

to defects which are not topologically stable (for 

example free volume). Assuming that diffusion occurs 

via a random walk process, the average time necessary 

for a defect to diffuse to a given site is proportional 

to the square of the distance between them. Dimensional 

analysis suggests that the average distance between 

a site and the nearest defect is inversely proportional 

to the square root of the density of defects P (the 

total length of defect line per unit volume). Thus 
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the average relaxation time t is inversely proportional 

to the density of defects in Che medium 

- t 2 x 2 . 2 
i.e t a d

z

 a p -
1 

2.5 Equilibrium Density of Line Defects 

The density of defects in equilibrium (p eq) at a given 

temperature is found by minimizing the free energy 

with respect of p. 

F(p) = E(p) - TS(p) 2.3 

8 F ( P ) 

3 P 

= 0 2.4 

peq 

Here S( p ) is the contribution to the entropy by a 

defect density p and E( p) is the corresponding energy 

contribution. 

2.5.1 Entropy of Line Defects 

The configurational entropy of line defects is, in 

general, a difficult problem but by introducing a 

number of approximations we can obtain an expression 

which is valid for low defect concentrations. We 

consider a network of F. faces which can be occupied 

by closed defect lines (threading through the defective 

faces) of total length Na, where a is the step length 

of the order of the interatomic distance. Then 

P = Na 

YFa
3

 ^ 

Y is a numerical factor relating the number of faces 

to the volume. The total number of configurations 

( ft n) i-
n

 such a situation (assuming 1 < < N < < F) is given 

by:-
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km ax / ' F \ N N N 

>: i P, ) 7. Z 2 

n,-n
0
 n

2
= n

0 

C(ni )_ C( n^2 • • • C C n O 6( T. n i -n) 
11, n, n 

I 
1 

2.6 

Here the combinational factor counts the possible 

starting positions of the & loops. The second summation 

partitions the I loops with N total steps into n i , 

n
2
 ...n steps respectively. A loop with n^ steps has 

C(n^) configurations, the number of self avoiding 

closed walks of n i steps. The factor 1 is included 
ni 

because of the n ^ equivalent starting points. For 

N<< F the exclusion of faces already occupied by previous 

loops yields a negligible correction. The precise 

form of C(n) is unknown but, by analogy with a well 

tested scaling law for self avoiding walks (Domb 1969) 

we can write:-

= K n-3 C
n

 2.7 

n 

Here c is of the order of the connectivity of the 

network (Z-l), 3 ~ 1_1_ and K ~ This expression is 

strictly valid for large n but, as we shall see, for 

small n the precise form of C(n) is unimportant. 

Defining a generating 

CO 
f(x) = 2 xP 

p-Hq pB 

function for a single loop. 

2.3 
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where n
0
 is (.he number of steps in the small esl. possible 

loop, then 

N N 
E • • •

 X
 S ^ n ^ 1_ . .

 =
 1_ [ £ (

x
) ] ^

 o 2 

ni-n
0
 n =n

0
 n

x
B n

2
B n 6 N! Dx' 

X/ 36 

and 

»T „ Umax 
i l j(L-)

N

 7
 -I.! K

£

| f ( " M ~ ] 

X/— X X-O 2.10 

The lowest order term of [f(x) j is x^'
no

 thus for 

Z > Umax (the integral part o f N ) 

3x 
= 0 and terms with &

 >

'^niax do not 

contribute to the sum. We can replace kmax by infinity 

without affecting the result. The sum is then a binomial 

r u • /. Kf(x)
 N

F expansion of the expression (1+ ) 

and n
N
 = C^ {(fr)

 K C ( x )

)
F

- i ] } 
N! x-o 

2.11 

— r,a ^Nr FKf(x) , , 
L

e

 -1J 1 x=o 
2.12 

Using fcim 
S-'- CO ' s" 

Expanding the exponential we have 

N r « 
C { J-< 
—-

 1

y-1 r ! 
N ! 

(FK) 
i 

3 N 

dX 
(x) j 2.13 

Pan 



But f
r

 (x) 
3x " 3x p8 ' 

x=o P=
n

o x=o 

•
 +

 °<*
n

°
r + 1

» Oo x=o 

and the highest power of r to survive in this expression is 

I 
max 

= F *
m a x

 (C^ ^
m a x

 N! + 0 (F-
1

)). 2.14 
N! n

o
0lmax &max! 

But 2. = N (1 + 0(Ho)) max — 
n

n
 N 

so for N » n
0
 we can neglect the non-integral part 

and set = N_ 

Then 

n

o 

, N 

2.15 

N N 
and In flw = N In ? - ( — In — ) + — (In K + In F) lN

 « no n
0
 n, 

- — N I n n , 
n

n

 1 2.16 

= N_ (n
0
 In c+ 1 + In K - (0-1) In n

0
)-N_ In N 2.17 

n

o n
0
 F 

The entropy per unit volume (S) is given by 

S = k
R
 1 In ft 
" va3 F 

or S = — (Dp - Cp In pa
2

) 
a 

2 .18 

where 
N_ 
yFa

; p = — _
2
 as above 

C = 1 
n. 

_ . 1 . yno 
D = In ? - — In ^ — n

o
 K e 

2.19 

2.20 
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The number of unknown parameters makes a numerical 

estimate of these constants unobtainable, however 

D is logarithmic in the geometrical parameters (K, 

Y, c) and so it depends only weakly on the detailed 

structure of the medium. In any case we are particularly 

interested in the functional form of the expression. 

The physical interpretation of the above result is 

that when a given total length of defect is free to 

distribute among loops of any size, the entropy is 

dominated by the mixing entropy of the smallest possible 

loops, (which is of the order of InN! ^ NlnN) . Here 

we have considered only the configurational entropy 

of the defects, however .their presence will affect 

the vibrational modes of the medium and so they must 

also contribute to the vibrational entropy. For free, 

defects this effect should be small and we can absorb 

it into the linear term (D) irr equation 2.18 (see 

for example Nabarro p.689). 

2.5.2 Energy of Line Defects 

The energy of line defects is calculated for a specific 

field theory of glass in chapter 3 of this thesis 

but in this chapter we approach the problem by analogy 

with the properties of^ defects in ordered media. In 

fact the results are equivalent for a particular range 

of defect concentration (the semi dilute regime). 
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In general, topological line defects in ordered media 

are associated with a distortion field which decreases 

as the inverse of the distance from the 1ine.A transparent 

example is that of vortices in superfluid liquid Helium 

in which the order parameter is a complex wavefunction 

¥ = 1 ¥ | e • In the equilibrium the modulus of the 

wavefunction 1 ¥ 1 assumes a constant value, minimizing 

the potential energy, but the phase is arbitrary. 

Under these conditions, the only remaining term in 

the free energy is F„ , = / (V«&)
2

dV. The wavefunction 
° Grad — 

must be single valued thus 

for any closed contour and the integer n is the topo-

logical invariant of the singular line enclosed by 

the contour. For a straight defect a circular contour 

of radius r, centred on the line has a length 2H r 

thus, from axial symmetry, - V <t = 2lln = n. The Euler 

where i labels the defect lines. The two dimensional 

6fn is included because V3> is not defined on the core 

of the defect. The solution of this differential equation 

(with the. boundary condition $ = 0 at infinity) is 

jt « d_l - = 2lln 

2JIr r 

Lagrange Equation is V
2

 $ = Z S
2

(_x- JLi) 2.19 
i 

$> (x) = 2/ X. <S(x
1

-M) d
3

x* 2.20 

Integrating ^Q
r a (

j ^y parts and once again setting 

= 0 at infinity leads to:-

F 
Grad 

- ; $ v
2

 $ dV 

2.21 
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An expression of this form is found for the interaction 

energy of many types of defect, vortices in liquids 

(Lamb 1932) and x-y ferromagnets, disclination lines 

in liquid crystals (De Gennes 1974) and, in a more 

complicated form, dislocations in crystals (Nabarro 

1967). It is easily recognized as the Biot-Savart 

law for the interaction energy of current loops. 

The above discussion is only strictly valid for defects 

labelled by the full group of integers (Z)(Dzyaloshinskii 

1980), however Equation 2.21 is an upper limit for 

Che interaction energy and it is correct for straight 

parallel defects. In the next chapter we demonstrate 

that the non abelian field theory necessary to describe 

such non algebraic defects reduces to an abelian (linear) 

theory in a particular concentration regime and the 

interaction energy is again described by equation 

2.21. 

The energy of a single straight defect line is logarithmic 

in the size of the system but the presence of a second 

(antiparallel) line screens the distortion field of 

the first and the size of the system is replaced by 

the distance between the defects. In fact for all 

loop geometries the interaction energy can be written, 

approximately as 

E M = Xa ? In — + N E 2.22 lN

 Z a core 
i=l 
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Here the line is split into N segments of length a 

and r^ is the distance between the ith segment and 

the nearest antiparallel one, the direction bein| 

determined by the orientation of the distortion field 

around the line. E
c o r e

 is the core energy and x is 

a measure of the energy scale of the distortion (of 

the order of |ia
 2

/4 H where u is the shear modulus). 

For a random configuration of defect loops, equation 

2.20 should be averaged over a probability distribution 

P(r) of the distance r. We are interested in the 

regime in which the defect concentration is high 

enough to introduce interaction between the defect 

loops, but low enough for the mutually avoiding potential 

in the entropy calculation (equation 2.6) to be neglected 

In this (semi-dilute) regime the only length scale 

(? ) in the problem is the average distance between 

the defect lines and is related to the density of 

defects (p) by 

_ i 

C =P
 T

 2.23 

Thus the distribution function P(r) depends only 

on the distribution function (P(y)) of the dimensionless 

parameter (y = r) 

P(r) dr = P(-) d (-)
 2

'
2 4 

5 C 
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N r
i
 ,<=» 

and < Z In — > = / P(r) In - , 
i=l

 3 d r 

/ P(y) (In y + In -) dy 
o

 a 

= N < In y > -h N lnpa
2

 2.25 

where / P(r) dr = / P(y) dy = N 
o o 

and < l n y > = ^ I , —, , . J

 N dy P(y) lny 

Equation 2.22 becomes 

E
N
 = Xa N(<lny > -h lnpa

2

) + N E
c o r e

 2.26 

Na 
and the energy per unit volume of a defect density ( p = — ) 

is E(p) = - p - - p lnpa
2

 2.27 
a a 

Xa 
with A = —

 2 < 2 8 

B = a X < lny > + E
c o r e

 2.29 

and the expression for the energy density has a similar 

form to that of the entropy density (2.18) in the 

semi dilute regime. Misushima (1960) used a similar 

expression for the energy of a large number of dis-

location lines in a crystalline medium. 

2.5.3 Equilibrium Density of Defects 

Substituting equations 2.18 and 2.27 into the expression 

for the free energy density (2.3) we obtain: 
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F(p) = - (Ck.s T-A)p lnpa
2

 + - (B-DkgT)p 2.30 
cl cl 

a n d

 ^ T ^ ~ a
 ( C k

B
T

"
A ) l n p a 2 +

 \ (CkgT-A+B-DkgT) 2.31 

e
 1 B-A+(C-D)kBT 2.32 

therefore peq = —
2
 exp -

 D 

Si 
CkgT-A 

= a exp - g 

T-To 
2.33 

with a = exp (§ - 1) 2.34 

=
 -L- (B - — ) 2.35 

k
B
C C 

rp A 
" k

B
C 2.36 

Thus the equilibrium density of defects falls con-

tinuously, but rapidly, to zero at a finite temperature 

To. The defect diffusion model for relaxation implies 

that the relaxation time associated with the transport 

properties is inversely proportional to the density 

of defects hence this timescale diverges at To and 

follows the observed Vogel-Fulcher law. 

t a peq - a exp
 T

_
T q 

The expression for the equilibrium density is only 

valid in the semi dilute regime as, when the defect 

concentration is very dilute, the small defect loops 

screen their own energy and do not interact with 

surrounding loops. In the concentrated limit the 

entropy expression becomes inaccurate because the 

defects were not considered to be mutually avoiding. 
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Experimentally the Vogel-Fulcher law is observed 

over a limited temperature range. At high temperature 

an Arrhennius behaviour is observed which suggests 

that structural relaxation occurs via an activation 

process in this regime, so clearly the molecules 

do not wait for defects to diffuse to them. Close 

to To the relaxation time becomes so long that measure-

ments are difficult to obtain. The theory does imply, 

however, that the Fulcher law may break down before 

the infinite relaxation time is reached, thus the 

interpretation of To as the true glass transition 

temperature is suspect. 

The Kauzmann Paradox 

The temperature dependence of the entropy of a super-

cooled liquid is such that, were it possible to maintain 

the system in internal equilibrium (by avoiding the 

glass transition) the entropy of the liquid would, 

at a finite temperature (To), become equal to the 

entropy of the corresponding crystal (Fig. 1.1). 

This paradoxical situation was first noted by Kauzmann 

(1948). It lead to the suggestion (Gibbs, DiMarzio 

1958) that a supercooled liquid would undergo a true 

second order phase transition, associated with a 

discontinuity in the temperature derivative of the 

entropy, at To. Adams and Gibbs (1965)' used the 
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assumption that the excess entropy increases linearly 

above To (S
 e x
 = A(T-To)) to explain the functional 

form of the Vogel-Fulcher law. 

Here, by attributing the excess entropy of the liquid 

to the topological defects, we show that this entropy 

tends to zero smoothly at a finite temperature To, 

without the discontinuity of the slope which would 

be present in a second order phase transition. Sub-

stituting the expression for the equilibrium density 

of defects (2.33) into the entropy equation (2.18) 

we find: 

S(T) = (Dp
e q
(T)-Cp

e
q(T) lnp

e q
(T)) 2.37 

= ^B" (a exp - tIt̂ KD - C(lnaa
2

 - 2.38 
a 

= ^ a (exp - — £ - ) < C
 +
 Jj^r-) 2.39 

a T-To 

Thus aim S(T) = a,im Cksa _1 exp - ,_8 x 
T+To T+To I T-To T-To 

= 0 

and Him 9S(T) = a,im Ck
B
 8a

 (
 • 1 + 8 ) exp 

T+To 8T T-*-To a (T-To)
2

 (T-To)
3 

T-To 
= 0 

In fact all higher temperature derivatives also tend 

to zero as T approaches To and thus the phase transition 

at To must be infinite order. However, close to To 
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equation 2.33 is not valid (the defects are too few 

to interact as in equation 2.21) and therefore it 

is unlikely that any transition would occur at To, 

even in a liquid cooled slowly enough for internal 

equilibrium to be maintained down to this temperature. 

2.7 Conclusions 

In this chapter we discussed the application of homotopy 

theory to amorphous materials and showed that line 

defects, which are their own antidefects, are the 

only topologically stable singularities in these 

systems. The temperature dependence of the equilibrium 

density of such defects was calculated, and found 

to follow a Vogel-Fulcher law in the semi dilute 

regime. The assumption that structural relaxation 

occurs at a site only when a defect has succeeded 

in diffusing to that site leads directly to an 

explanation of the temperature dependence of the 

relaxation time observed in supercooled liquids. 

The entropy of the defects (and all the temperature 

derivatives of the entropy) tend to zero at a finite 

temperature, thus resolving the Kauzmann Paradox. 
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(a) 

( b ) 

Figure 2.1 

(a) Path in the manifold of internal states representing 
A 

a rotation by 2n about the Z axis. 

* 

(b) Path representing a 4n rotation. The rotation 

of one half of the contour leads to a situation 

which can be shrunk continuously to zero. 
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Figure 2.2 

Excitation of a vortex loop in an x-y ferro-magnet 

(a) Initial configuration. 

(b) An Intermediate configuration with singular plane. 

(c) 211 vortex loop (cross section). 
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CHAPTER 3 

A GAUGE INVARIANT FIELD THEORY OF GLASS 

Introduction 

In the previous chapter we discussed how one might 

expect to find topologically stable line defects, 

characterized by the group of integers modulo two; 

in all amorphous materials. In order to calculate 

the energy of such defects, and examine the low 

temperature properties of glass, we introduce a field 

theory in which the macroscopic homogeneity of the 

glassy state is formulated as a local invariance 

of the free energy. The line defects are singularities 

of the matter field which are, in some respects, 

analogous to vortices in type II superconductors. 

The intrinsic defects of the discrete network underlying 

the continuum are included as punctures in an otherwise 

continuous space and the boundary conditions on these 

punctures are such that they act as sources of distortion. 

Associated with each defect are two distinct ground 

state configurations and the tunnelling rate between 

them is related to the size of the defect. Such 

tunnelling modes, or two level systems, lead directly 

to a distribution of split pairs of gauge invariant 

states which could be responsible for the linear 

specific heat and other low temperature anomalies 

of glasses. 
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3.2 The Gauge Invariant Free Energy 

The concept of gauge invariance in a glass arises 

from the combination of the absence of symmetry and 

the overall homogeneity. There is no unique reference 

frame for the system as a whole, thus at every point 

the local reference frame is arbitrary and the physics 

cannot depend on which frame we choose. In other 

words the local orientation (phase) of the matter 

field (the local structure) is not an observable 

quantity, but the magnitude (the local density) is. 

Such a situation occurs in superconductivity where 

the local phase of the wavefunction is arbitrary 

but the amplitude is observable. However, in both 

cases, the relative orientation of the matter field 

at two difference points in space (phase difference) 

is, in principle, observable and this necessitates 

the introduction of a gauge field to counteract the 

effect of making an arbitrary change in the local 

reference frame at any point. Thus the physics (hence 

the energy) remains invariant under such a local 

transformation. The derivative in the expression 

for the free energy is replaced by a covariant derivative 

which is a combination of the ordinary derivative 

and the gauge field. In fact the gauge field plays 

the part of the connection in differential geometry 

and it compares the minimum energy configuration 

of the matter field at one point with that of a neigh-

bouring point. Such a connection is always required 
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in disordered systems because of the noncollinear 

nature of the ground state. Local invariance also 

implies that states of the system related to each 

other by a continuous gauge transformation are not 

distinct physical states, however those related by 

a nontrivial (discontinuous) gauge transformation 

are distinct, and the transition between two such 

states is mediated by tunnelling. 

The idea of representing a disordered system by a 

gauge field theory in continuous space is not new. 

It has been introduced for spin glass but the problem 

of representing the quenched disorder has not been 

satisfactorily solved, either by quenching the gauge 

field (Hertz 1978) or by keeping it as a dynamical 

variable and assigning it, somewhat arbitrarily, 

a mass (Dzyaloskinskii and Volovik (1978)). Rivier 

(1980) and D
a
 Silva (1980) also considered the gauge 

field to be a dynamical variable but quenched the 

frustration lines and expressed them as sources of 

curvature. Here we use a similar approach for glasses, 

but consider a nonabelian model in which the intrinsic 

defects are included as lines of quenched curvature. 

From the above discussion it is evident that the 

free energy density describing a field theory of 

a glass must be invariant under local rotations. 
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The absence of symmetry impLies that the group of 

A 

transformations of the matter field (0(x)) is the 
A 

full rotation group (S0(3)) and as such 0 (x) can 

be represented by a 3 dimensional rank 2 tensor. 
A 

A covariant derivative Dpi defined by 

Du = 3\i£ + g [Ay, 3.1 

A ~ 
or explicitly (D|a0)ij = 3p0ij + g ( A

i
j

<
0

k
j ^ ^ k j ) 3.2 

A 
is introduced and the gauge fields An transform in 

A
 A 

such a way as to ensure that Dvtjfr is covariant under 
A A A 

local rotations (U(x) e S0(3), U
+

 = U"
1

) 

ie Dy0(x)
 1

 = 3
l
a0

1

(x)
+

 g [A*(.x), 5
l

(xj] = 

U(x) (Dy0(x)) U
_ 1

 (x) 3.3 

where 0
x

( x ) = U(x) 0(x) U~
l

(x) 3.4 

We distinguish formally between directions in real 

space ( \x = 1,2,3) and directions in isospin space 

(i,j = 1,2,3). Summation over repeated indices is 

implied. 

From equation 3.4 we see that 

A A A 

3pi0
1

 (x) = U( 3^0)U~
i

 + ( 3]iU)0U
-1

 + U0( 3viU
_1

) 3.5 

A A A A A 

= U(3y0)U"
1

 - [U3pU-\ 0
1

] 3.6 

A A A A 

using the property U^U""
1

 = -(ayU)U""
1

 3 . 7 

Now equation 3.3 becomes 
A A A A A A A A 

u(ap0)u-
1

- [uayir
1

, 0 »] +
 g
 [A*, 0

1

] 

A A A A A A A 

= U(3y0)U-
1

 + g[UA l O , 0
1

1 
P 

A A A A A A 

therefore A
1

 = UA^U
- 1

 + g"
1

 U ( 3
U
U

_ 1

) 3.8 
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A gauge invariant: free energy dons i ty (f (>:)), wi th 

the coupling between the matter field and the gauge 

field being effected solely through the covariant 

derivative (minimal coupling), can now be constructed. 
/N /\ 

f (x ) y H V G K x ) )
1

 .HDij0(x))
i

.i-HF
I

 JF
i

iiU(0(x)) 3.9 — — |H1 Hi) -
A 

The potential U(/0 is a linear combination of the 

invariants of the matter field, up to order 0
1

' . 
A 

U(0) a0
i

-j0
i

j-«-3x(0
i

j0
i

^)
2

 4 B
2
(0

i

J0il0
k

J0^1) 3.10 

= aTr(00
T

) + £
x
( T r 0 0

T

)
2

 + 3
2
T r ( 0 0

T

0 0
T

) 3.11 

Y . P ] 3 ? ( > O ) and a(<o) are constants. 

The curvature tensor Fyu is the lowest order function 

of the gauge fields which is covariant under local-

rotations. It is, in fact, the nonabelian generalization 

of the magnetic induction of electromagnetism. 
A A A A A 

Fyu = 3yAu - 3u Ay + g [Ay,Au] 3.12 

~ x ^i 
Fyu - 3yAu - 3 uAy + g [Ap, AuJ 

AA A A A A A A A 

= SvifUAuU-^.-g-^SuU-1 j-apfUA^U'^+g-^S^U-1 ] 
A A A A A A AA A A A 

+ g {[ UAy U"
1

 + g~
1

U3 y U~ *][ UAoU"
1

 +g-
1

 U I T
1

 ] • 
AA A A A AA A A A 

-- [ UAuU"~
1

 -f g~
1

 U3\j U~
1

 ] [UAyU~
1

 +g~
1

 U3y U~
1

 ]} • 
A A A A A A 

= U ( 3y Au —3uAy +g[Ay. Au]) U
_ 1 

A A A 

= U Fyu U-
1

 . ' 3.13 
/s 

The gauge fields A^ can be written as linear combinations 

of the generators of the rotation group (antisymmetric 

tensors) therefore 

Aji = -A jj 3.14 

YJe can define the dual (isospin) vectors ( A y ) ) by 

Ay - n J.lJ 
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and the covariant: derivative in terms of these vectors 

becomes [DyS]
1

! = 3y0iJ + g ( e
i l k

 0
l j

 -
 e

l j k

 Aky0iL ) 

3.16 

The Euler Lagrange Equations for the free energy 

(F = / f(x) dx) obtained by minimizing with respect 

to 0j[j and A^ respectively are: 
A A A 

Y ['Dy Dy 0 ] ^ = 3li(0) 3.17 

3 0
i j 

and e
l j k

{ [ D y F y u ]
l j

 - yg[Du 0, 0
T

]
l j

} = 0 3.18 

In the remainder of this chapter we confine our attention 

to field configurations {0 } which lie in the minimum 

of the potential energy surface everywhere, except 

close to defect cores. 

3tf 
i . e —7 

30. . ij 
= 0

i j

 ( 4 ( 0
k i

 0
k l

) S
1 +
2 a ) 

+ 40. 0
i k

 0
l k

 0
l j

 = 0 3.19 

This condition can be satisfied by choosing 0 to 
A A A r 

T 
be proportional to a real rotation matrix ft (ft ft = 1 ) 

A 

0 = Xft 3.20 

and X is a scalar measure of the "size" of the matter 

field. Equation 3.19 becomes (a + 60! X
2

 + 28
2
 X

2

)ft
1 J

 = 0 

o r

 ** = " a = X
 2

 3.21 *
 0 

28 2+60 i 

and Umin = 3
 a
 \ 2

 +
 95 \ -

 +
 30 \ -o 1 o * o 

3.22 
= " « 2 

4(381+82) 
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We now redefine Che zero of the energy scale such 
a 

that U + U + a
2

 and U(X£i) = Umin = 0 
4(30

 x
+0

 2
) 

Thus we consider the situation where the matter field 

has zero potential energy everywhere in the space 

Z. We must exclude from this space all regions for 

which the matter field is not well defined, such 

as the cores of defects. Hence the space £ is punctured 

and boundary conditions must be imposed on the surface 

of these punctures which reflect the character of 

the defect within them. In Z, however, the field 

can be represented everywhere by a rotation matrix 
A A 

ft and an infinitesimal phase operation i>\L, representing 

the difference in the orientation of the matter field 

at the two points (x and x + dx y) , is defined as 

follows: 
A A A 

3yft(x) = O y , fl(x)] 3.23 

with the solution, x

o 
£l(x) = (Ps exp j dx^. ^ ( x ) ) n

0
( P s exp-7dx^(x)) 3.24 

X 

Ps is the path ordering operator, ordering the integral 

along the path from xo (the point at which the matter 

field is n
Q
) to x. Ps orders the integral along the 

reversed path. The matter field (x) is path independent 

/N 

if and only if there exists an operator W(x)
 e
 S0(3) 

for all x, such that 
A A A 

= W(x)] W
- 1

( x ) 3.25 
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then ft(x) = W(x) n o W~l(x) 3.26 

and W(x) = Ps exp j dxy 4> (x) 3.27 

W(x) is the rotation of the matter field at a point 

x with respect to the orientation at some reference 

point xo. The existence of a single valued function 

(W(x)) defined by equation 3.25, implies that the 
/S A 

curvature (Gnu ) associated with i> vanishes everywhere. 
A A A A A 

Gyu(x) = 3y^u(x) - (x) + [i\x, fa] = 0 3.28 

The matter field is related to the state of the system 

and as such it must be uniquely defined at every 

point in the space £ (it must be single valued) therefore 
A 

equation 3.28 must ~hold everywhere, and W(x) is also 

uniquely defined at every point of space. For closed 

contours A 

Ps exp dxy ^ = & 3.29 

because the matter field must return to its initial 

configuration on completing a closed contour. 

It is convenient to work in the rotated local reference 

frame in which any operator.. A(x) becomes 
A A A 

A(x) = W - 1(x) A(x) W(x) 3.30 
A A A A 

and Du A(x) = W-1(x) Du A(x) W(x) 

= 3u(W-1AW)-(3yW-l)AW-i5-1A(3yW) 
> A A A 

^ A W - W~ » 
A A A A A A A 

+g ( W -
1

A
U
 a W - W '

1

 A A
U
W ) 
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= 3yA + A - A ^ + g(A^A-A A) 

= 3yA + g[A
u
+ g - ^

u
, A ] 3.31 

We define a new field 

2

M = \
 +

 S"' h
 3

-
3 2 

which is, in effect, a combination of the gauge field 

and the phase gradient of the matter field. Such 

a combination is invariant under local, rotations 

A 

(U(x)) because the matter field rotation is cancelled 

by the gauge field rotation:-
A A A 

W*(x) = U(x) W(x) 3.33 
AA A A AA 

therefore = W-MJ"
1

 (3y (UW) W
_ 1

U "
l

) U W 
A A A 

= W7
l

jj-
l

(*]iU) W + W
1 - 1

 (3yW)W""
l

W 
A A A A 

= y + W
_ l

 (U-
1

3
U
U)W 3.34 

A A AA A A A AA 

and A
1

 = W ~
1

U ~ K UAy U ~
1

 + g"
1

 U 3 y U ~
l

) U W 

= W
_ 1

A y W + g
 1

W ~
1

( 3 y u -
1

) J Q 

= Ay - g-'w-
1

(u-
l

3uu) W 3.35 

therefore C* = C
u
 • 3.36 

The curvature of this field (Fyu ) is due to the gauge 

field curvature alone, since the matter field curvature 

is zero. Thus 

Fyu = 3yCu -3uCy + g[2y, Cu] 3.37 

=
 1

Fyu W 3.38 

The free energy density, itself gauge invariant, 

can be written in terms of the gauge invariant Cy 

fields. 
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f(x) = X0
rYTr[5^(Dyn)W)(W-l(Dun)W)T] 

+ Tr[W~lFyuW) (W~1FjjuW)^] 3.39 

=X0
2Yg2Tr{[Cu,n0][en,S0]T} + Tr{Fyu F W 3.40 

and the corresponding Euler Lagrange equations are 

e i j k {[By FUu]ij -YXJ g2 [[C»;,S0],S0-l]ij> = 0 3.41 

(Using 2 = -e T) 

The classical ground or metastable states of the 

glass are given by the solutions of 3.41, subject 

to the boundary conditions on the punctures of 2. 

Each configuration iCy} corresponds to a continuous 

of configurations of the gauge field and the matter 

field {Xy, ft}, however, as we shall see in the next 

section, only those configurations which cannot be 

transformed into each other by continuous gauge trans-

formations, are different physical ground states 

of the system. 

Classification of Ground State Configurations 

We are considering the situation where the matter 

field (x ft (x)) has zero potential energy everywhere 

in s and thus we must exclude from z all regions 

of the space where this condition cannot be satisfied, 

or where n (x) is not well defined. The origin of 

such regions in a glass is the structure of the discrete 

space underlying the continuum. Consider, for example, 
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a spin glass model in which x-y or Heisenberg spins 

reside on a simple cubic lattice with random ferromag-

netic and ant iferromagnetic nearest neighbour inter-

actions. As discussed in chapter 1, this model has 

intrinsic defects (frustration lines) which are the 

lines threading the elementary squares with an odd 

number of antiferromagnetic bonds (frustrated plaquettes). 

The spins on such a plaquette are necessarily distorted, 

because it is impossible to satisfy all bonds 

simultaneously, and the spin field is not well defined 

everywhere within the plaquette. This region must 

be excluded from any continuum model and, since the 

lines threading frustrated, plaquettes in a 3 dimensional 

model must be continuous (Toulouse 1977), the holes 

are extended tubes, or punctures, which cannot end 

within the medium. 

An alternative way of describing the same effect 

is that parallel transport of the spin around a 

frustrated plaquette (effected by minimizing the 

energy across each bond in turn) does not return 

the spin to its initial configuration. In field theory, 

parallel transport of a vector around a closed contour 

resulting in a finite rotation of the vector signals 

the presence of curvature within the contour. Thus 

we can include frustration in a continuous field 
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theory by excluding the core of the line from the 

space and enclosing a source of the field (Cy ) in 

the puncture, in the form of a line of quenched curvature. 

The corresponding defect in the continuous random 

network model of glass may be the lines threading 

odd numbered rings (Rivier 1979) which again cannot 

end within the medium. Such odd rings are often present 

at the core of crystalline disclinations (rotation 

dislocations) and parallel transport around a. dis^ 

clination core results in a finite rotation of the 

lattice vectors (this is clearly illustrated in Lardner 

p.266) thus again the centre of the punctures are 

associated with lines of finite curvature. 

All glasses must, in fact, have some additional 

constraints , imposed on the equation 3.40 because 

the free energy density is, in general, spacially 

fluctuating and history dependent. We introduce these 

constraints by excluding regions of the space (punctures) 

and imposing boundary conditions on the surface of 

the punctures, which take the form of lines of quenched 

curvature within them. The curvature acts as a source 

of the distortion field (Cy ) because, for any contour 

surrounding the holes 

3.42 

Page 59" 



Hero, i is the in variant: assoc. i a !:od with a line defect, 

in a nonabelian model. When the curvature (F |j u) is 

sma 1 1 

I -- Tr exp F
1

'
0

 dSjiu 3.43 

dSjiu represents the cross section area of the puncture 

in the )iv; plane. Equation 3.42 implies that for a 

single straight defect (with axisymmetrre symmetry) 

the magnitude of Cy must decrease as Lhe inveise 

of the distance from the line. The free energy density, 

with a Lagrange multiplier included to quench the 

curvature in the hole, is 

+ U > 

with the corresponding Euler Lagrange equations 

-
Y
X * g

2

t [ e
V
, S

o
] , S

0
-

l

]
i j

 = M ^ O O ) 3.45 

The general solution of these nonlinear differential 

equations is inaccessible , however it is possible 

to ennumcrate the number of distinct ground ' state 

configurations. Suppose, for example, there is a 

unique solution of 3.45 which gives- the minimum energy 

configuration of the field {C^ (x) } . However there 

are many configurations of the matter field {Ay(x) ft (>0 } 

corresponding to {Cp (x) }, all related to each other 

by gauge transformations, 

ft 
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U(x) fi(x) II-
1

 (x) 

A
1

 (x) - U(x)Au li(x) ay U"
1

 (x) 

V M cjj(x) 
n -

In a simply connected medium nil such gauge Lrans-

f o rma t ions are equivalent and the configurations 

all correspond to the same physical state. In the 

presence of punctures this is not the ease as the 

holes introduce additional solutions which would 

be inadmissible in a continuous space. 

The matter field configuration on a contour around 

a given puncture can be parameterized by VJ(.x) which 

defines a map of S
 1

 (a circle) onto S0(3) and such 

maps can be divided into equivalent classes, corres-

ponding to the elements of the first homotopy group 

(Iii (S0( 3)) . As we saw in chapter 2, ITi(S0(3)) = 2
? 

and thus there . are two distinct classes of maps, 

corresponding to a rotation of the matter field by 

0 or 2 jt around the contour (labelled by 10> and 12n> 

respectively). The 12n> states would have been 

inadmissible as. a ground state configuration in a 

continuous space as they include a singularity of 

the matter field which, in our case, is contained 

within the puncture and does not cost any energy. 

/\ 

The gauge transformations (U(x_) eS0(3)) on this contour 
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also fall into two distinct classes, for the same 

reason, and any gauge transformation belonging to 

the nontrivial element of the homotopy group has 

the effect of changing 10> into 12n> and vice versa 

(Jackie 1980, Isham 1981). The intermediate con-

figurations of the matter field in a large (nontrivial) 

gauge transformation have a singular plane, bounded 

by the puncture under consideration (as in figure 

2.2). Thus the transition from the state 10> to 12n> 

(or 12 n> to 10> ) of any defect involves tunnelling 

through an energy barrier caused by the singular 

plane in the intermediate state, and the size of 

the barrier is related to the minimum area spanned 

by the puncture (size of the intrinsic defect). The 

initial and final configurations have the same energy 

because the Cp field is unchanged. 

Thus associated with every puncture (line defect) 

of the medium are two distinct equal energy con-

figurations, separated by an energy barrier. The 

Hamiltonian of one such two level system (energy 

E) can be written as 

« • ( I F°> O 3 ' 4 6 

A0 E 12!I> 

where AQ represents the tunnelling matrix element 

and is a measure of overlap between the states and 
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it is a function of the energy barrier (hence the 

size of the defect). This equation has eigen values 

(E t A
0
) and eigen vectors (10> t 12ll>) and thus the 

true ground states are the gauge invariant linear 

combinations of the states 10> and 12n> with an energy 

splitting (2 A
Q
 ) which depends on the height of the 

barrier alone. The two level systems contribute to 

the specific heat (as discussed in chapter 1) in 

the following way: 

Q0 
c =

 * Ap
2

 Sech .Aov n(Ao) dA
0 

° (ki T)
 2

 kT 

= k,
 2

 T /dx x
2

 Sech
2

x n(xkT) 

= n^ r(o) k;
 2

T 

12 

as long as n(jo) (the density of states with splitting 

Ao) is independent of & o for 4 0 ^ k g T . Hence the two 

configurations per defect will have a linear contribution 

to the specific heat if there is a uniform distribution 

of overlap integrals (a o) in the system, over an 

energy scale corresponding to a few degrees Kelvin. 

This differs from the usual assumption of a uniform 

distribution of energy splitting ( a in fig. 1.2) 

because here ^ is always zero. Experimentally one 

observes the distribution of the total splitting 

(P((A
2

 + A
0

2

) ^ ) ) and it is impossible to separate 
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the contribution from the splitting distribution 

(g( A )) and the overlap integral distribution 

(n(4o)). 

In summary, the coexistence of gauge invariance 

and intrinsic defects (punctures) in glasses introduces 

a number of distinct ground state configurations 

(two per defect) and the system can tunnel between 

these configurations via large (nontrivial) gauge 

transformations. A uniform distribution of tunnelling 

amplitudes will lead to a specific heat contribution 

which has a linear temperatufe dependence and a 

thermal conductivity k a T
2

, effects which are observed 

in most glasses at low temperatures. 

3.4 Excitations from the Ground State 

In the above discussion we considered the low 

temperature properties of glasses and the intrinsic 

defects of the ground state. Such defects are frozen 

in to the system and cannot move or be eliminated 

by relaxation. In addition to the frozen defects 

there are topologically stable excitations from 

the ground state, or line defects, which can move 

freely within the medium. Such excitations can 

be classified by the homotopy groups of the mapping 

W(x) : I + S0(3) 

and again, line singularities-, associated with a rotation 

of the matter field by 2n on any contour surrounding 
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Che line, are Che only scable defeccs. The energy 

of Che defecC depends on Che gauge field which tends 

Co screen Che discortion induced by the singularity. 

A similar situation arises in Type II superconductors 

which can be described by an abelian gauge theory. 

The wavefunctions (matter field) |¥|ei® must be single 

valued and the defects (vortices) are labelled by 

an integer (n) with .d£ = 2lln. The Euler Lagrange 

equations for the Abelian model can be solved explicitly, 

at least for a single vortex (Tinkham 1975) and it 

is found that the magnetic induction (curvature) 

decays as the logarithm of the distance from the 

defect (r) for small r and expodentially for large 

r (greater than the penetration depth). One possible 

solution of the equations is A = g-1 VQ (or C = g~l 

V9 - A = 0) everywhere, except on the core of the 

vortex, however such a defect would have an enormous 

core energy. The total energy is reduced by spreading 

the curvature (_v_ x A) over a large region of space 

(of the order of the penetration depth) and outside 

this region the distortion (C) is approximately zero. 

The matter field singularity cannot spread in this 

way because of the single valued nature of this field. 
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The nonlinear equations of the nonabelian model makes 

an explicit solution of the Euler Lagrange equations 

(3.45) inaccessible, however we expect a similar 

effect to occur. Topological excitations are associated 

with a matter field singularity, but the distortion 

(Cy field) is screened by the gauge field which has 

a finite curvature (*£yu ) in a region of space, the 

size of which is determined by the length scale of 

the inhomogeneity of the £y field. 

The length scale (2-) can be estimated from the Euler 

Lagrange equations (3.45), by writing them in terms 

of dimensionless variables: 

e
U l

 = a,g£
u

 3.47 

3y = I a = H3y 3.48 
3xy 

Then f ^
1

 = 3
x

UC
l

u - a ^ ^ U + 3.49 

= g*,
2

 3.50 

Equation 3.45 becomes 

<=
i j k

 {-577 [5' [[ci.aol.Sj
1

] > = o 3.5i ** o r* '"g 

o r

 *[Du - [[c,i ,S
0
] ,a-

l

]
i

j>= o 3.52 

and the length scale associated with the inhomogeneities 

of the Cy field is z = ( g)~
l

 • This is analogous 

to the penetration depth in a superconductor and 

it is a measure of the size of the region in which 
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the curvature ^u ) and Cy are finite, for a single 

defect. 

When there is a large number of defects in the system, 

which tend to screen each others distortion field, 

the spacial fluctuations (and thus the derivatives) 

scale with a different length A1 equal to the average 

distance between the defects therefore we define 

3"y = Jll3y . For a relatively high defect concentration 

(high enough for defect loops to interact with each 
j . 

other) ll = p~2 where p is the total length of defect 

per unit volume. 

Now = <-4- (3" W - 3 ^ ) + 7 3.53 g*» it *< 

and f(x) =_l [J. O " x 
g*,2 lx I 

[_1 O H . y e i u . a U u g l y ) + i [ 5 i y , c ^ ] ] i j + - ^ - [ c ^ ^ j i j 

[C1 S l i j 3.54 L

 y > 0
 1 

Thus in the regime where = &1 « I (the semi dilute 

regime) the derivative terms dominate the free energy, 

ie f(x) = 1 =(3" 3.55 
gHH'

2  

with the Euler Lagrange Equation 

3y3p C1V(x) - =Ju(x) 52 (x - ±) 3.56 

The two dimensional § function is included because 

the Euler Lagrange Equation is not satisfied on the 
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defect cores. This equation can be solved by fixing 

the gauge such that 

3u 2 U = 0 3.57 

which is consistent with equation 3.17 in the semi 

dilute regime. In terms of the field 3.17 becomes 

S0] = 0 3.58 

[DU Cu, S0] + [ c M c u , n 0 ] ] = 0 3.59 

Thus when the gradient terms dominate equation 3.57 

is a solution of 3.59. Now 3.56 becomes 

(x) =J u(x) « 2 ( x - 0 3 , 6 0 

and imposing the boundary condition = 0 at infinity 

we have 

-u a . Ju (x') 52 (x'-ft) 3.6i C = - J d x , , . — lx-x'1 

The free energy, after integrating by parts, becomes 

F = /d3x Tr (-Cu3i/au + Cya^M 3.62 

= l i L O - i k L l « 2 ( x - M ^(x'-Jl1) 

•Ix-x'l 

= .S /dii/dAj Tr [3U (A.) (ij) ] 3.63 

Ixi-xjI 

where i, j label the line defects. 

Thus, in the semi dilute regime, the interaction 

energy of vortices has the usual form for line defects, 

as discussed in chapter 2. Such defects could indeed 
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be the excitations which dominate the relaxation 

processes of supercooled liquids and lead to the 

observed Vogel Fulcher law. 

Conclusions 

In this chapter we constructed a field theory of 

glass in which the macroscopic homogeneity was formulated 

as a local invariance of the free energy. The intrinsic 

defects are included as punctures containing lines 

of quenched curvature and these act as sources of 

distortion in the mediumr. A quenched, entangled 

mass of defect lines exist in the ground state of 

all glasses. Associated with each such line are two 

distinct solutions of the Euler Lagrange equations 

(minimum energy configurations) related to each other 

by a large (nontrivial) gauge transformation. The 

gauge invariant linear combination of these states 

constitutes a doublet with an energy splitting which 

depends on the size of the defect loop. This is, 

in fact, a universal model for the two level system 

of glasses which is a direct consequence of the co-

existence of gauge invariance and line defects in 

these materials. 

In addition to the ground states, there are other, 

(metastable) solutions of the Euler Lagrange equations, 
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corresponding to topologically stable excitations 

of the matter field. These are analogous Co vortices 

in an abelian model of a type II superconductor. 

The vortices are free to move and they interact via 

the usual ^ potential, at least in the semi dilute 
r 

regime. The matter field in the vicinity of the core 

of such a defect is significantly distorted and 

structural relaxation is possible in this region. 

Thus vortices have all the properties of the line 

defects discussed in the previous section, hence 

they could be responsible for the Vogel Fulcher law 

of the relaxation properties of supercooled liquids. 
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CHAPTER 3 

A CONTINUOUS FIELD THEORY OF SPIN.GLASS 

Introduction 

In the previous chapter we introduced a phenomenological 

field theory of glasses, in which the gauge invariance 

played a significant role. It should, in principle, 

be possible to derive the continuum free energy 

from the Edwards Anderson model of spin glass, or 

from the Keating model for covalent materials, both 

models being inherently discrete. In this chapter 

we develop a continuum version of the Edwards Anderson 

model but it does not bear much resemblance to the 

previous treatment. The main reason for the discrepancy 

is that here the gauge fields are derived from the 

(quenched) interactions and as such they are not 

independent dynamical variables. This eliminates 

the possibility of tunnelling between ground states 

by means of . a gauge transformation, however the 

frustration lines remain as lines of finite curvature 

and these lines are associated with low energy 

excitations which have all the properties of the 

two level system introduced by Anderson, Halperin, 

Varma and Phillips. 

The Discrete Model 

As a starting point for our field theory we consider 

the Edwards Anderson Hamiltonian for a spin glass 
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(Edwards and Anderson 1975) in which Che spins (S_i) 

reside on a laCtice wich random nearesC neighbour 

inceraccions (Jij). The inceraccions can be random 

in sign and magnicude, or in sign alone. 

H = - Z Jij Si. Sj 4.1 
<ij> 

Here i, j label Che sices of Che laCCice and the 

sum is over all nearesC neighbour pairs of sices 

(bonds). The model displays a discrece gauge invariance 

(Toulouse 1977) as Che local Cransformacion: 

S± * - Si 

Jij > - Jij for all j nearesC neighbours Co i 

leaves Che Hamilconian unchanged. 

In face Che inCeractions are generally quenched a 

priori.r.and the system is not free to take advantage 

of the gauge invariance. However the partition function 

is also gauge invariant (Fradkin et al 1978) as 

for a particular configuration {J}'. 

Z {J>. = Z exp -0 2 Jij Si. Sj 4.2 
{si} <ij> 

For a second configuration {J11, related to the 

first by 

Jlij = Ci Jij Cj (?i,Cj = ±1) 

Z {J1} = Z exp -0 2
 J i j 5 i Si. c j Sj 

{ s i } < i j > 

Z exp -0 Z Jij S^. S
l

j 
{si} <ij> 

= Z {J} 4.3 
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The partition function is the same for all con-

figurations of J related to each other by a gauge 

transformation. All such configurations have the 

same frustration function {$pl which is defined 

for any plaquette p and by the product of the inter-

actions of the bonds on the plaquette. 

= Jij Jjk Jfcl J H 4' 4 

i 1 

P 

1 k 

$p is gauge invariant and as such it is possible 

to sum over all configurations of J which leave 

this combination unchanged: 

Z1 Z {J} 2 n Z {<&} 4.5 
U > 

and Z{$} = 2-N z\ ( s (j. j j j $ -j) 
{Jf P 

Z exp -8 Z S L J i i S^ 4.6 
IS) <ij> 

The restricted sum is over all configurations of 

J related by a gauge transformation. Thus, as far 

as the statistical mechanics are concerned, it is 

possible to consider the interactions as dynamical 

variables which must obey certain constraints. 

Equation 4.1 can be generalized to 

H = - Z SiT Ji:j Sj 4.6 
ij 
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where Jj* = =ij e S0(3) is a rotation matrix . 
J 

Equations 4.1 and 4.6 are equivalent when Che rotations 

are rescricted to angles of 0 and II and there is 

no physical justification for including any other 

angles. The generalized model is, however, invariant 

under the continuous gauge transformation:-

^ * gj SJ I « S0(3) 

SI - S^T gi T 

and J Oi Jj 4 oT = ij r^J =J 

Lattice gauge theories of this type have been exten-

sively studied by particle physicists (Wilson 1974). 

Here J plays the role of the gauge field and, when 

all rotations are small, the discrete Hamiltonian 

has a limit for infinitesimal lattice spacings which 

is the usual minimally coupled continuum Hamiltonian 

(Balian et al 1974). 

For a spin glass this continuum limit is inappropriate 

as the rotations cannot, by any stretch of the 

imagination, be considered to be infinitesimal. 

Not only are the gauge rotations finite but Che 

roCaCion of one spin with respect to its neighbour 

may also be large, hence the field gradient cannot 

be defined. However the combination of the two rotations 

is, in general, small and this variable may be a 
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good candidate for the field in a continuum model 

o f spin g 1 a s s . W e t h e l* e f o r e d e f. i n e a r o t a t i. o n ma t r i x 

(Ri. j) on the bond connecting the two spins (in a 

particular orientation) at sites i and j as follows:-

Sj = ^ji Si 4.7 

and Sj = Rij Sj 4.8 

The orientation of the bond is important and this 

is reflected in the ordering of the site labels:-

R: : = RT \ 4.9 
z l j = j i 

The ambiguity in this definition of Rij is eliminated 

by choosing the rotation axis to be perpendicular 

to the plane formed by the direction of the two 

A , 

spins. Z i j — (S_i x SJ) /1 Ŝ i x SJ | . In a similar way 

A A ° 

Jij is a rotation about Zij defined by:-

Sj - J
j £
- Si 4.10 

Sj is the minimum energy configuration of the spin 'N a 

at site j, for a particular S_i and Zi j . Now Jij 

is not quenched but the magnitude of the rotation 

is quenched (to 0 or H) and the axis of rotation 

is fixed by the configuration of "the spins at i 

and j (therefore by Rij). We see then that although 

Rij and Jij are dynamical variables they are not 

independent. The combination of the two rotations 
/s 
Jji Rij represents a small rotation of o ij about 
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about Che axis Zij (Fig. 4.1) and as such it can 

be expanded in terms of an infinitesimal antisymmetric 

matrix (ga Aij) belonging to the Lie Algebra of 

S0(3)s-
~ 2 

Jij Rji = H + ga Aij + g2a2Aij + 0(g3) 4.11 

Therefore the Hamiltonian (equation 4.6) can be 

written as:-

H = - E sj Jij Sj <ij> 

E 
<ij> 

= -J E S^ Jij Rji Si 4.12 

= -J E S? Ca+ ga Aij + g2 a2 A ij + 0(g3)) Si 
<ij> 1 " -

4.13 

T T 2 
= -J E S 2 + ga S. Aij Si + g2a2S. Aij Si 4.14 

<ij> 1 " " 

The first term is an irrelevant constant and the 

second term vanishes therefore 

H = g 2a 2J E (Aij Si)T (Aij Si) 4.15 
ij ~ ~ 

= g 2a 2J E |S|2 9 ij - 4.16 
<ij> 

= g 2a 2J E Tr (Aij ) (setting |s|= 1) 4.17 
<ij> 

The field (Aij) is gauge covariant:-

Sj - 0j Sj s[ - S^ 
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Jij Oi Jij O j and Rji •»• Oj Rji 0^ 

/\ /N rji 

therefore Jij Rji * Oi Jij Rji 0^ 

T and Aij -»• Oi Aij 

They are not, however, independent variables as 

they must obey a number of constraints (one for 

every independent cycle of the lattice) imposed 

by the nature of the lattice (the interactions) 

on which the spins reside. We have now replaced 

the site variables (the spins) with bond, variables 

(Aij) on which constraints must be imposed. 

4.3 Defects and Constraints 

The intrinsic defects of a spin glass are frustration 

lines, the lines threading the plaquettes with an 

odd number of negative bonds. On such a plaquette 

it is impossible to find an orientation of the spins 

which minimizes the energy across all bonds simul-

taneously. Alternatively parallel transport of a 

spin around the plaquette does not return the spin 

to the initial configuration (Fig. 4.2) where parallel 

transport of a spin (S_i) from site i to site j is 
A 

defined by Jji Si. Thus, on a frustrated plaquette 

P the ordered product of the interactions on the 

bonds (aep) is not equal to the identity:-
/s 

n (Jq) Si 4 Si 
aep 

A 

therefore II (Ja) ^ H 
aep 
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In lattice gauge theory the plaquette variable 

Cp = H - n Ja 4.18 
aep 

is the discrete analog of the curvature (Fyu ) in 

continuum models, and indeed they are equivalent 

in the limit of small rotations (Balian et al 1974). 

Thus frustration lines are lines of finite curvature 

in the discrete spin glass model. 

For any particular configuration the spin field 

is single valued and the actual transport of a spin 

around any plaquette (defined by the ordered product 

of R:a around P) must return it to the initial 

configuration:-

( n Ra) S = S 4.19 
aep ~~ 

However JaR~a = e§a = 1 + ga Aa + 0(g2) 

therefore Ra = e"a§4a = (fl-ga Aa) Ja + 0(g2) 4.20 

and 4.19 will be satisfied for any spin if 

n^e-gaAct j0) = n(fl-ga A* + 0(g2)) Jo = 1 4.21 

« aep t (
8 < a V • " ^ " a ^ ' C p ^ 

A A A 

= a-ga Z ( H J0) Aa ( n JB)"l
02 J o = * 4- 2 2 

aep 3<a — 8<a P 

Defining egaAa = ( n J ) ega^a ( n Jg) -1 4.23 
8<a 8<a 

or Aa = ( n Je) Aa ( II Jg)"x 4.24 
6<a ~ 8<a 

then 1 - TI egaAa = H _ n Ja = Cp 4.25 aep aep 
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All products in the above equations refer to path 

ordered products because the matrices do not, in 

general, commute. The left hand side of equation 

4.25 is the usual definition of the curvature of 

the field A thus we find that the lattice curvature 

(Op) must equal the curvature of A and this acts 

as a constraint which must be included in the 

statistical mechanics of the model. 

The above equations apply to the general nonabelian 

case, appropriate for Heisenberg spins. For x-y 

spins the group of transformations is S0(2) and 

all rotations commute, therefore 

' Aoc = Act and ( II e ' S ^ 0 )( H Jot) = i 4.26 
~ aep aep 

y * 

or 11 -e§aaep^ct =' -ga 2 Aa = H Ja 4.27 
aep - aep 

The lattice curvature is, in this case, equal to 

the curvature of the actual gauge field (Aa ). The 

physical interpretation of this result is that 

the rotation of a spin around any closed contour 

must be zero (or 211) and as * such the lattice rotation 

must be cancelled (modulo 2n) by the gauge rotation. 

A Continuum Model 

The continuum limit of equation 4.17 is obtained 

by replacing the pair of site labels (i,j) by the 

position vector (x) of site i and the direction 
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label u labelling Che spacial direction of Che 

bond (ij). Here we have confined our atCenCion 

Co a simple cubic laCtice. 

H = Ja2g2 . Z ( x 2 Q Tr(Ap(x))2 4.28 
sites (x) \i = 1,2,3 = — 

Replacing Che sum over sices by an incegral this 

becomes: 

H = + - g2 ZfdV Tr (Ay(x))2 4.29 a u 

= - g2 /dV Aabu(x) Aaby(x) 4.30 cl ~ 

A a bu is antisymmetric in the indices (a and b) 

therefore we introduce a dual vector defined by: 

Acy = k e a b c A a bu 

Thus Ay is a vector in "isospin" space and 

H = j e2 /dV A A v i ( x ) 4.31 

Now the three isospin vectors (Ay(x)) are dynamical 

variables which must satisfy the constraints imposed 

by the lattice (equation 4.25) which, in the continuum 

model becomes 

H _ Pjl e S * ^ ^ = C 4.32 

Here P^ is the path ordering operator and Q is 

the total lattice curvature within the contour. 

4.5 The x-y Model 

We now confine our attention to the Abelian x-y 

model which introduces a number of simplifications. 

In particular the isospin space is restricted to 
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one dimension as the vector Ay are all parallel 

A 

(to the Z axis) and they can be parameterized by 

magnitude (Ay) alone. 

H = J g2 SdV ^ 4.33 * 

The curvature is also parallel to the axis and 

is related to the gauge field on an elementary 

surface in the yu plane by: 

Fyu = 3yAu - 8uAy 4.34 

In a ferromagnet (or tettis model) the curvature 

is zero everywhere, except on the cores of vortices 

(excitations), where it has a magnitude of 2 Hn 

(integer n). In a spin glass it is also finite 

on frustration lines where it has a magnitude 

±n . Thus the constraints are imposed by quenching 

the curvature (at least to within a vortex excitation) 

everywhere in such a way that it is only finite 

on the frustration lines. 

The partition function can be written as a functional 

integral over all configurations of A y(x) which 

satisfy the constraints on the curvature: 

7 rnA t \ -8/dxH(Ay(x)) Q 
Z = /DAy(x) e - - V ( x K 9yAu(x)-aVAy (x)) 

4.33 

This is, in some respects, the continuum analog 

of equation 4.6 for the discrete model. Introducing 

the dual vector = J2$yuri Fyu anc^ writing the 

5 function in terms of a functional integral over 
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ari auxiliary field (A(x)) this becomes 

Z r. /DA
n
(x)/I)Ap(x) exp - /dx [gJp

2

 A|i(x) A|i(x) 

a 

+ iAn(x) (Fn
Q

(x)-fniiuapAu(x) ] 4.34 

Integrating by parts we have 

Z = /DA
n
(x);DAii(x) exp - /dx [ ^ J l . Aji(x)Ap(x) -i-

a 

i^nuu3pAri A^(x) + iAn(x) Fn^(x) ] 

4.35 

The functional integral over the A field can be 

carried out by completing the square (Edwards 1958). 

/DCi(x) exp - i>/dx/d^ Cj (x) Mv^ (x,^) Cj(^) - i/dx 

X
t
( x ) Ci(x) 

-- N exp /dx /d_£ X
i
( x ) Mij(x,^) Xj(x) 4.36 

with N = /DCi(x) exp /dx /d£ C
±
 Mfj (x,_y)Cj 4.37 

Here C)i(x) = Au(x) 

Mij (x,v) = «ij«(x-y,) 23 Jg
2 

a 

Xu = ^-riyu 3}iA
n
 . 

Jo
 2

 _1 
therefore Z - N

A
/ D A

v
( x ) exp -/dx[^( ~

P

 ° ) 
ct 

e

r)Hu3MAn 6au^aA6+iA(x)F^(x) 1 • 4.38 
n -

Na = /DAu(x) exp ~ S J g ^ /dx Ay(x) A}i(x) 4.39 
a 

Rewriting equation 4.38 in q space 

Z - N a /DAu((]_) exp - (2n)
3

/dq_[v
(
.4BJg2.

)
-

1 

a 

l

'ri y u ̂  6 a u q }i qa A A +- ̂ (An(q)F
C

?n(-q) i- Ari(-q) 

fj o — 

^ (q))j 4.h0 
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with A (q) = 1 /e^S* A(x) d3x 4.41 
(2n)3 

However ^rmu ^dau quqa = -qnqa + q2 6na 

and we can set qa Aa = 0 which is, in effect, a 

continuity equation for A (_V.A = 0 in real space). 

This reflects the continuity equation for the curvature 

(V fQ = V ( 7 x A) = 0) and the fact that frustrated 

plaquettes are threaded through by continuous lines. 

Now Z = NA/DAu(q) exp - (2n)3 /dq( V lAn(q)q 2 Sn<?Aq 

(-q) +i%(A-n(a)Fy,Q(-q) + An(-q)FnQ(q)] 4.42 

= N a N a exp - ( 2 n ) 3 ( ^ ^ - ) ^/dq.F^(q) ^ FQ(-q) 

4.43 

= N.Na exp - T — r y ( ^ I ) /dx/dxM$(x)FQn(x') /dq A A (2n)3 v a 

riq>(x-xl ) 
4.44 

q2 

iq.y <» + 1 ^ 
/dq = 2n/dq q2 /a e l q Y

 f\=Cos9 
" q2 0 q2 

2n e l q y - e' i q y 

__ / dq 
o 

= 2n / d£ giqy 
iy q 

+ — 
y 

and equation 4.44 becomes 

z , N AN A exp - H f ^ 
x-x 
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3 TT 3 

with N a = /DA(q) exP""@~j^2" /dq A(q)q2A(-q) 4.46 

The free energy is F = -j. [n Z 
6 

= - (|n N a +inNA) + Fint 4.47 
8 

with Fint = J&1 /dx /dx1 F§(x) F%(x!) 4.48 
4lla . , I |x-x1| 

representing the ("antiferromagnetic") interaction 

between frustration lines. 

The curvature is confined to a "tube" of constant 

cross section area (a2 ) enclosing the frustration 

line and the continuity equation 3nF Q = 0 implies 

that F Q nn is a constant (1_ F along the line (n 

is the tangent vector of the line). Therefore we 

can write F^ = F^ n n 4.49 
n n 

and /dx Fn^(x) = /,d&/ds F^ n 

a 2 n 

= / FQdjtn 

/ds represents the integral over the cross section 

of the tube and ,/d£ represents the integral along 

the length. For a frustration line F^ = ±ji and the 

sign of fQ can be used to determine the orientation 

of the line, leading to an interaction energy between 

two frustration lines (A,B) of 

F A B = ifii n / / d j A . ^ B 4 > 5 0 

i 21 A"2£B I 

This is the continuum version of the energy of 
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frustration lines calculated in a discrete model 

by Fradkin et al (1978) . 

4.6 The Two Level System 

The curvature of the spin glass is quenched only 

to within the excitation of a vortex associated 

with a curvature of 2 Hn along a continuous line 

in the medium. The excitation of a vortex (2 II) 

on a frustration line (with F^ = -II) has the 

effect of changing F ̂  to + II, thus reversing the 

orientation of the line (Fig. 4.3). The two con-

figuration (±11 ) correspond to the two chiralities 

discussed by Villain (1977), thus changing the 

chirality of a frustration line is equivalent 

to exciting a full vortex on the line. 

For a single, isolated frustration loop the self 

energy is. given by equation 4.50 with A = B. 

Fself = Jg2n //dA.dl1 4.51 

4 Ix-x1| 

Thus the self energy is invariant under a reversal 

of the line: dj, -d& and d$,x-+--dg,x 

therefore F'self = Fself 

The interaction energy with other defects is not 

invariant, however when the defect is surrounded 

by an isotropic distribution of defects the total 
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interaction energy will be unchanged. Any anisotropy 

in the defect distribution will introduce an energy 

difference between the two line orientations. 

The energy barrier separating the configurations 

arises from the fact that the vortex is a topo-

logically nontrivial excitation. The intermediate 

configuration has a singular plane, bounded by 

the defect loop. It is this singular plane that 

is primarily responsible- for the energy barrier 

therefore the height of the barrier is related 

to the area of the plane, hence to the length 

and shape of the defect loop. 

Thus the two orientations of a frustration line 

are a good example of a two level system of the 

type introduced by Anderson et al (1972) and Phillips 

(1972) to explain the linear specific heat and 

other low temperature anomalies of glasses. Here 

a uniform distribution of energy splitting corresponds 

to a uniform distribution of anisotropy around 

the frustration lines. 

4.7 Frustration Lines in the Heisenberg Model 

For Heisenberg spins it is necessary to consider 

spin transformations belonging to the nonabelian 

rotation group (S0(3)). In this case it is the 

curvature associated with the modified gauge fields 
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(A ) that is quenched by the lattice with 

Act = ( n J8) Act ( n J8)"1 4.52 
8<ct 8<ct 

where a , 8 label the ordered links on some oriented 

path. In the presence of frustration the definition 

A is path dependent, therefore not unique. However 

the A field can be defined consistently for a 

given configuration of frustration lines by "choosing 

a particular (arbitrary) set of surfaces bounded 

by the frustration loops, and a particular reference 

point Po. The ordered product in equation 4.52 

is now defined along a path from Po to a, avoiding 

all cut surfaces. All such paths are, in fact, 

equivalent. In a similar way the curvature of 

a frustration loop is defined by the ordered product 

of J along a closed path starting (and finishing) 

at Po, and crossing the surface associated with 

that loop once, in a given (arbitrary) direction. 

The above procedure is, in fact, equivalent to 

performing a gauge transformation to a configuration 

in which J = Heverywhere, except on surfaces spanning 

the frustration lines. 

As we demonstrated in section 4.2 the statistical 

mechanics are gauge invariant therefore the static 

properties will be unchanged by this transformation. 
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Thus, as before we have gauge fields (Ak(x)) as the 

dynamical variables of a continuum model and these 

must satisfy constraints imposed by the lattice curvature 

and the partition function is given by:-

Z = /DAk(x) (exp - /d3x Ak(x) Ak(x))s(FQk - F k ) p — r a — \i — y — yu jiu 

4.53 

The curvature of a nonabelian model is a non linear 

function of the gauge field: 
~k _ ~k „ rk iik rj , a, F = 3yAxj - 3uA + ge J A AJ 4.54 
\i\) • u n u 

or F k = \ F k
u = fpiun 3v»Ak + ^ e 1 ^ Â j 4.55 

therefore: 

Z = /DA^/DAy exp - /d3x [Ak(x)Ak(x) Sisi -

S 1 ^ A ^ x ) Ikx) - iAk €uun 3yAk 

n — — n 

+ iAk F Q k] 4.56 ' n 

Integrating by parts: 

L
k

 /
D
x

k

 exD - /d
3

x rSi&l A
k

rx) A
k

 ^ ^ Z = /DA /DA exp - /d3x [ i ^ - A*(x) A,, ( x A e 
u U — L a y — u — 2 n 

fcyun Ai(x) A{l(x) + i3,Ak£tiur1 A k + iAk Fk]4.57 ^ — — u n u r\ n 

We can now, formally at least, carry out the integral 

over A(x): 

Z = N£DAk exp -1 /d3x [£Uun 3yAk M " 1 ^ e a 5 0 3a A'\ 

..k^Qk, 4.58 
+ l An F r\] 

, ..ij 2gJg
2

 5-ii <SaX ig iik - • . k ,
 c r i where M , = J - tt® e £aXu A 4.59 <r\ a 2 u 
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• A ( 6
1

' ' fi- - i.c
i j k

 c xk) A.00 

, . , , k g a k ,
 c

, 
where A ~

 L

~ and X,. ~ — - — A 4.61 
a

 u

 ?. ftJg v> 

- c1 

The inverse of M can, by inspection, be seen to have 

the following form: 

i 1 ,- . m .
 ?
 mjk nk& M J - — (6: -i- ic-J m G- X + i e r. X|i A Xy Xyn n 

4
 +

 Z ) 4.63 
XtJ n=l 

/-a bkfc 
where we write (e c

u

) to represent e e 

similarly for higher order products. 

and 

It is apparent that, since it is no longer gaussian, 

the functional integral over A cannot, in this case, 

be carried out exactly. However, when the constant 

g' --
 0

 is small (ie when k T << 2 Jg ) P̂>Jg B — 

a 

there is a natural expansion in terms of this parameter 

and M-
1

 -
 1

 +(AM)~
1

 ' 4.64 

a with H:
1

 = 1 J H . 4 . 6 5 
T

 6

 ̂  A X jj 

and (AM)"
1

 = 1 Z [ig
f

e e^A'] 4.66 
A n-1 ^

 U

 . 

Now, in q space, the partition function becomes: 
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Z = NA/DAk(q)[exp-(2n)3/d3q (1 Ak(q)£yun £avj0quqctAk(-q) 
V - - 2A n " 

+ iAk FQk)][exp-/d3ql Ak(q)£yun £a\0q uq a(AM" 1ft^-q)] 
n n ^ 2A "" ~~ 

4.67 

= NANA[exp-(2n)3(8J^)/dqF^k(q)l_ F^k(-q)][l+0(g1)] 4.68 
a q2 ~~ 

= NAN. [ exp-3Jg2 ' /dx/dx1 ' F^k(x) fflcjj1) ] [ 1+OCg1) 1 4.69 
4lla , 

Thus, at low temperatures (kgT<<2Jg) the interaction 
a 

energy between frustration lines in a Heisenberg 

model has a similar form to that of an x-y model. 

The continuity equation for the curvature in a non-

abelian model is the Bianchi Identity: 

eXyu DX 
p.k 

| iU = 0 4.70 

- k 
Dx F X* = 0 4.71 

3X F^ =-
ijk 

ge Ai H 4.72 

However the curvature (isospace vector) is carried 

along the frustration lines therefore we can decouple 

the isospace and real space vectors and write: 

X = nx 4- 7 3 

4.74 

Equation 4.72 becomes: 

ijk a i trJ 3A F = -ge Ax F J 

and the direction of the curvature (the rotation 

axis) can vary gradually along the line. The self 

interaction energy is: 
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l-Vir Jg* //dfc.dx,1 /'-73 

An'"" " l^-xM 

The mo. If energy of a frustration Ji.no. is invariant 

under the transformation -d or equ i va J en 11 y 

F(x) ->• ~F(x)) everywhere on the line. When the total 

magnitude of the rotation i.s n(as it is for frustration 

lines) such a transformation
 t
 is carried out by the 

excitation of a full vortex (rotation magnitude 

2 II ) on the line. Tn a ferromagnet such a vortex 

is not a topologically stable excitation but the 

noncol1inearity of tlie spins in a spin glass stabilizes 

vortices with 2 H rotations (see chapter 2 and the 

next section). Thus the situation in Heisenberg 

spin glass at low temperatures is directly analogous 

to that of x-y spin glass. 

A . 8 Topological Excitations 

In the x-y model of a spin glass vortex excitations, 

associated with a 2 n n rotation of the spin from 

the minimum energy configuration, are topologically 

stable defects. The single valued nature of' the 

spin field requiresthat j>AndS,y = 2lln 

(for n integer) on any contour not' surrounding a 

frustration line and ^Ayd&jj ~ 2n (n-t-l) 

when the contour surrounds a frustration line. The 

line integral can be transformed by Stoke's Theorem 

to a surface integral: 
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/dSpu(3uAu-3uAn) = 2lln 

= /Fyu dS\iv 

and the core of the vortex is associated with a 

large curvature of total magnitude 2lln. A vortex 

interacts with other vortices, and with frustration 

lines, with an energy given by equation 4.50 and 

as such the distortion field of topological defects 

is screened not only by other such de'fects, but 

also by the intrinsic defects (frustration lines) 

of the medium. 

In chapter 2 we discussed how the energy of a density 

of defects (p), interacting via a 1_ potential, has 
r 

the form (equation 2.27) 

E(p ) = B p - A p[n pa2 

a a 

This was valid when the screening length was determined 

by the average distance between defects. In the 

presence of frustration lines there are two possible 

regimes 1) P > > P F (PF is the total length of frustration 

line per unit volume). In this regime the screening 

length is the average distance between vortices 

and equation 2.27 is valid. 2) P < <^ F. Screening, 

here, will be dominated by the frustration lines 

and equation 2.27 becomes: 

E(p) = B P - A P |n P
F
a

2 

a a 

= B*p because pp is a constant for a given material 
a 
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Thus the density of vortices in a spin glass will 

follow a Vogel Fulcher Law only in a medium with 

a dilute concentration of frustration lines. 

In the Heisenberg model the constraints corresponding 

to equations 4.74 and 4.75 are 

P e§Mud2»ii = j i 4.76 

for a contour not surrounding a frustration line 

and P _ t . c 

for a contour surrounding a frustration line. Here 

<E represents a rotation of II about any axis. These 

equations are satisfied by total rotations of 2Hn 

about any axis. In a ferromagnet such a vortex is 

not stable, however in spin glass the noncollinearity 

of the spins stabilizes the vortex with n = 1 (see 

chapter 2). At low temperatures such vortices interact 

via a 1_ potential (equation 4.73) but at low temperature 
r 

the screening will always be dominated by frustration 

lines (as the density of vortices will be small) 

thus it is unlikely that the density of defects 

in a Heisenberg model will follow a Fulcher law, 

in any temperature regime. 

Conclusions 

In this chapter we discussed a continuous field 

theory of spin glass in which the field was derived 
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from the (infinitesimal) combination of the lattice 

rotation (interactions) and the actual rotation 

across a bond. The underlying lattice of interactions 

imposes constraints on the field, in the form of 

lines of finite curvature (frustration lines). In 

the x-y model the orientation of a frustration line 

is arbitrary and the self energy is invariant under 

the reversal of the line direction, effected via 

the excitation of a vortex. Such excitations represent 

a specific model for the two level system introduced 

to explain the low temperature anomalies of glasses. 

In addition to the intrinsic defects (frustration 

lines) there are topologically stable excitations 

(vortices) which (in the x-y model and at low temp-

eratures in the Heisenberg model) interact with 

other vortices and with frustration lines, via a 

1_ potential. Such vortices can move freely in the 
r 

medium and they may be absorbed by frustration lines, 

with the effect that the orientation of the frustration 

line is reversed. The equilibrium density of vortices 

in the x-y model (in a system with a dilute concen-

tration of frustration lines) follows a Vogel Fulcher 

law which might explain the observation of this 

law for the spin relaxation time in recent experiments 

on spin glass (Thoulence 1980). 
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Figure 4.1 

J 

2} Jji^l 

U + 3 

Figure 4.2 

A Frustrated Plaquette: 

Parallel transport around the plaquette has the 

effect of rotating the spin by n. 
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Figure 4.3 -

The two chiralities of a frustrated plaquette 

in the x-y model (after Villain 1977). 
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CHAPTER 5 

DISCRETE MODEL OF COVALENT GLASS 

Introduction 

In this chapter we show that covalent glass can 

be approached in a similar way to spin glass by 

writing the random Keating model in a £orm which 

makes the gauge invariance evident. Again a field 

is derived from the combination of the actual rotation 

between two neighbouring bonds and the corresponding 

minimum energy rotation. However all rings of bonds 

must close therefore constraints (in the form of 

torsion and curvature) are imposed on the field 

and these act as extended sources of distortion 

in the network. Such constraints play the role of 

intrinsic defects in covalent glasses. 

The Gauge Invariant Keating Model 

The most successful model of covalent glass is the 

continuous random network (Polk 1971, Zachariasen 

1932) in which every atom has a similar environment 

(co-ordination number, bond lengths and, approximately, 

the angles between the bonds) to that of the corres-

ponding crystal, but the structure as a whole is 

random. The energy of this structure can be described 

by the Keating Model which was originally proposed 

for diamond (Keating 1966) but has since been used 

to study the vibrational properties of covalent 

glasses (Alben et al 1975). 
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NA „ 2 A T 
U

 =
 E* [-SL. Z ( *

2

- a
2

)
2

 + A * 12a2
 1 2a2 \i ,u>u 

("tyJUu-"* C o s 2®) 2 I 5-1 

Here x ^ = x( I) - x( 2»vi ) with x(Jl) representing the 

position of atom Z and x(&y) the position of the atom 

linked to I by the bond \x . Z is the co-ordination 

number and a is the equilibrium bond length. . 

The first term is the bond stretching energy, with 

a the corresponding force constant and the second 

term is bond bending energy due to the deviation 

of the angle between bond pairs from the equilibrium 

value 0 (for a tetrahedrally co-ordinated network 

CosQ = ,9 ~109°). 

In this representation each atomic position is labelled 

in Z+l different ways (x( % ), x(£l, u )) and the 

identification of independent variables is difficult. 

We can, however, rewrite the model in terms of the 

bond vectors a^: 

a NB 6 
U = U L l ^b 2-a 2) 2

 + j t lb,b1 >^ —b' —b1 " a 2 C o s e > 2 

5.2 

Here it is necessary to assign a direction to the 

bonds consistently, preferably keeping 0 the same 

for each bond pair. This can only be achieved when 

all bonds at a given vertex have the same orientation 

with respect to that vertex. 
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Thus we have two types of vertex: 

X X 
up down 

and each up vertex must be surrounded by down vertices, 

and vice versa. The ideal configuration is possible 

only in bipartite graphs, that is networks in which 

every closed cycle has an even number of bonds. 

The presence of odd rings forces some bonds to have 

a wrong orientation with respect to its neighbours. 

The lines threading odd rings are continuous (Rivier 

1979) and the "wrong" bond pairs form walls bounded 

by these lines, as the unsatisfied bonds in an Ising 

spin glass form walls bounded by frustration lines. 

The unsatisfied bonds of a spin glass do, however, 

cost energy, whereas a wrong bond pair in the Keating 

model does not. It merely forces us to redefine 

Qfor that particular bond pair (Fig. 5.1) as 01 = n-Q 

(CosQ1 = - Cose) and the bond bending term in equation 

5.2 becomes: 

The energy is invariant under the discrete (Z t ) 

local transformation (a, -»• - a, ) and the position — b —b 

of the wrong bond pair can be moved around the ring 

by such a gauge transformation (Fig. 5.2). 

B_ 2 
a2 <bbl> 

(llb'lb1I" C o s 9 ) 2 5.3 
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The bond vectors (a are not independent variables 

because every ring in the network must close: 

r . 
I (-1) a, = 0 5.4 
b=l 

(here we assume that the orientation of the bonds 

alternate around the ring). The number of such con-

straints for any network (with N A atoms, Ng bonds 

and a co-ordination number Z) is the number of 

independent cycles or cyclymatic number (c) given 

by 

C = N
B
 - N

A
 + 1 

= (Z - L N a + 1 • 5.5 

therefore the total number of degrees of freedom 

is 

N = 3 x (Ng - C) 5.6 

= 3 ( | N
A
 - (f -1)N

A
 - 1) 5.7 

= 3N - 3 5.6 
A 

which is the dimensionality of the configuration 

space (3N less the co-ordinates of the centre 

of mass (3). 

The bond bending energy (equation 5.3) can also 

be written in an equivalent (at least in the harmonic 

approximation) form: 

UB = ?bb*> % i b 1 —b1 5- 7 
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where J., . e S0(3) represents a rotation of 0 (or =bb1 

II- 0) about an axis perpendicular to the bonds a b 

and a^i writing the angle between the bonds b and 

b1 as 

0,,, = 0 + s, , , (or iI-0 +e, , i ) equation 5.7 becomes bb bb bb 

= -B 2 a a. Cos (0, . t -0) 5.8 
<bb l> b b1 bb1 

= -0<bb^> ab V ( 1"^bb> + ^ b b * " . 5' 9 

Similarly equation 5.3 becomes 

UB = P" i b bi>< aba bi C o s e
b b i " a' C o s e > 2 5 - 1 0 

£ < b b 4 w C o s ( 9 + ebb l ) - a 2 C o s 0 ) 2 5' 1 1 

0 2 ((ava, ,(Cos0 - Sin0e,, , + 0(e,, ,)2) —2 b b bb bbA a2 <bb*> 

-a2Cos0)2 5.12 

= • 0 2 (a,a, ,-a2)Cos0 -a, a, ,Sin0e, , , + 
< b b * > b b b b b b 

0 ( e
2

b f
) )

2

 5.13 

In general the bond stretching force constant (a) 

is much larger than the bond bending force constant 

(0) and bond length deviations are a second order 

affect. Therefore, to a good approximation, we can 

set all bond lengths equal to a (a, = a, , = a). b b 

Then, apart from an irrelevant constant and a rescaling 

of the force constant 3 , equation 5.13 is equivalent 

to 5.9. 
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The bond bending energy written in this way (equation 

5.7) looks very similar to the generalized Edwards 

Anderson Model (equation 4.6) discussed in the previous 

chapter and it displays the same, continuous gauge 

invariance. Under a local rotation of the bond vector 

(0b eS0(3)) 

and l b b !-g bi b bi gb: 

the energy remains unchanged. However the physical' 

situation corresponds to J b bi representing a rotation 

of 9 (or II - 9) about an axis perpendicular to the 

bonds £ k a nd a^i and any realistic gauge transformation 

should preserve this property (just as the only 

physical rotations in a spin glass had magnitudes 

zero or II ). Here it is impossible to find a set 

of rotations to satisfy this constraint when the 

co-ordination number is greater than two. Thus, 

although the bond vectors a are dynamical variables, 

the J's are quenched for any particular configuration. 

Moreover the ring closure constraint is not gauge 

invariant. 

The interaction matrices (J P^aY the role of 

connections, relating the local bond direction of 

one bond to the minimum energy direction of a neigh-

bouring bond. The bond vectors are defined at sites 

on the mid points of the bonds on the original network 
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and the connections are defined on the links between 

these sites. Thus we have a new network (co-ordination 

number Z(Z-l)) which is actually the star transformation 
2 

of- the original network (Fig. 5.3). We can define 

a second rotation matrix o n t b e which 

relates the actual direction of the bonds b and 

b1 (Fig. 5.4): 

a, % = R, a, or a, = Ru, , a, x 5.14 -b1 -b b -b —b =bb* —b 

Again the rotation is defined about an axis per-

pendicular to the bonds a ̂  and ^ x . As before the 

combined rotation (J,, i R"i, ) is small and we can 
— o b — b b 

expand it in terms of an infinitesimal , antisymmetric 

matrix (ga A^b1^ 

=bbx -bb T " - 1 =bb i-e iuui K i = e g a
 = £ + g a a + 0(g2) 5.15 

Thus the variables A , can be regarded as the fields 
~ bb1 5 

in a continuous random network model of glass and 

the energy can be written in terms of this field 

(section 5.4). There are, however, constraints imposed 

on these fields, equivalent to the ring closure 

constraints on the bond variables (equation 5.4). 

No such additional constraints were needed in the 

spin glass model where the rings were naturally 

closed. 
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5.3 Defects and Constraints 

We saw in the previous chapter Chat quenching the 

interactions in a spin glass had Che effecc of imposing 

conscraincs on the field variables. The analogous 

effect occurs in a covalent glass because the ordered 

product of J around a closed contour is not, in 

general, equal to the identity. However., for any 

real configuration the ordered product of R around 

a closed contour must return the bond Co its original 

direction and once again the curvature of the modified 

gauge field (A) equals the lattice curvature: 

A „ gaA .a a „ J-, = G d 5.16 x.a 1 -n e R eS = i - n e R R 

Xq = (Ji 2^2 3 * ' * * 2^ 2 3 i-ljJ,^""1 

= (n J ) A (n j )~1 5.17 
0<a -0 ~ 0<a -0 

and represents the ordered product along the 

links (0) of the ring (R). In a covalent network 

one would expect the curvature to be small, unlike 

the spin glass in which frustration lines are associated 

with rotations of II. 

A more significant constraint in a continuous random 

network is that of ring closure, represented by 

equation 5.4. A ring of bonds in a relaxed configuration 

(with A = 0 on all links) may not, in fact, close 
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and the vector joining the initial and final points 

of the relaxed ring ("cut" on the link between the 

first bond (g1 ) and the &th bond) is given by: 

& 1 ABr = a, - J2i + J3 aia 1 ( - D ~ f̂i, ,5,-1 *' " 

J 3 2J 2 l ax = a +[Zl 1 (II1 (-J-i))] ai 
= = -1 a * = 1 B x=a1 -1 =* 

5.18 
i 

jji ^ ^ indicates the ordered product along the links 

Bl (directed from i+1 to i) from a -1 (=2, , 4-1) 

to 1 (= 2,1). We have assumed that the orientation 

of the bonds alternate around the ring, therefore 

the th bond of an odd ring will have the wrong 

orientation with respect to the first bond. From 

equation 5.4 

a, - R 2 1 ^ + R 3 j R 2 1 —1 - ....(-l)*"1 la,fi/.1--"|3 2i 

ax = 0 5.19 

therefore (fl-R,,J"}J,, + (R,,J7J) J,,J,,J7J(R,,J7) J,, 

—2 1 — 2 1 — 2 1 —3 2 — 3 2 —3 2 — 2 X—2 1 — 2 1 — 2 1 —2 1 

—i* 3 3 3 —3 2 = 2 1 — 2 1 3 2 —3 2 — 3 2 ' — 3 2 = 2 1 — 2 I (R21J7|)J21+ )a, = 05.20 
or U-(£+gaA2 l)~ tJ a+ (H+gaA32)"1J32J21J7J(^+gaA21)"1J2l 

-(1+gaA ,)~iJ J J J-i J~i (fl+gaA )~ij J J~i 6

 =
>*3

/

 =
M 3=3 2 = 2 1-2 1 = 3 2 ® = 3 2 = 3 2 — 2 1—2 1 

(Jl+ga£ 2i )" 1J 2i + = 0 5' 2 1 

Using J^j = Jt^ and (4+ gaxA2i)~* = (1 +-ga1A12) this 

becomes (i- g 2 I + J,2J21 - i.Jj.J,, +...(-l)4 ^ ^ 

T-l 

2 3 

J~1 (A +A +A ) + ...J~* . . .J-1 J"1 (A +A +... 
= 1 2 v 1 2 2 3 3 V J _ 1 S2. 3 —1 2 1 2 2 3 

))+0(g2)) a i=0 5.22 
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Substituting this value for AB in 5.18 this becomes 
K 

§a t(2i -Js)_l[f=i V 1 H 5-23 
Ot p " 

Equation 5.23 replaces 5.4 as the relevant constraints 

of the A field. Alternatively we can write equation 

5.18 as 

ABr = ga T^ ^ ^ . 5.24 
i 
:n 
8 1 =a 

T • /> I'-zi (-J81))) 5.25 where T„ = 1 (ft + , . <p 
ga 

" l U < - v > " , ( | . i v i -hi 

then equation 5.23 becomes 

5.26 

T is fixed for any particular configuration of 

J's and thus for any given network structure. 

The situation in which closed rings of bonds in 

a real configuration do not close in a relaxed con-

figuration also arises in crystals, where it is 

due to the presence of dislocations. In fact the 

density of dislocations in a crystal can be directly 

related to the torsion of a non-Euclidean space, 

the geometry of which is derived from a mapping 

between the actual configuration and the stress 

free (relaxed) configuration (Bilby et al 1955). 

A similar argument can be invoked for glasses but 

the torsion here is related to the closure failure 

of the ring ( AB) . A mapping M is defined between 
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vectors in the real configuration (r) (in which 

the ring is closed) and vectors in the relaxed con-

figuration (R). 

XeR xer 

M 

dXK = t f . - 1 dxk 5.27 — k — 

In the presence of curvature such a mapping is path 

dependent and cannot be uniquely defined everywhere. 

It can, however, always be defined along a path 

if the value (Mo) at the start of the path (xo) 

is known. The mapping is related to the connection 

(r jiP which defines parallel transport in the real 

configuration by: 

i _ i K 
rjk " K. 3k j 5.28 

The integral of dX. along an arbitrary closed contour 

in R must, by definition, be zero therefore the 

opening vector can be written in terms of the contour 

integral of the mapping as follows: 

. / dx K = 0 = J M K dxk - AB k 5.29 
inR — inr k 

and the opening vector can also be defined in the 

space r by defining the inverse mapping: 
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A
b

k

 ... M k ./' M
 1 K

 . dx. ') 5.30 K

 inr j
 J 

Using Stokes Theorem to relate the contour i.n t: egra 1 

to a surface integral, this becomes: 

1 1 
Ab - M / (3. M k. - V K i) dSIJ 5.31 

s
 1

 J 

- /(r k- - rjc) dsij ' 5.3: 5 1 Ij 

/ T
k

 . d5
i j

 5.33 
s ij 

Here is defined as the antisymmetric part of 

the connection. It is, in fact. Carton's Torsion 

of Differential geometry (Cartan 1928) and it is 

related to the closure failure of parallelograms 

in a non-Euclidean space. 

As it stands our model is inherently discrete, with 

the mapping defined only on the bonds, therefore 

Stoke's Theorem cannot be applied in Equation 5.30. 

However in a continuum model with a geometry defined 

by a mapping from a local stress free configuration 

onto the actual configuration, the ring closure 

constraints can be included by quenching the torsion 

and curvature of the geometry. This will be done 

in the next chapter. 

The Kea t j.ng Mode 1 and the Gauge Fi.e 1 d s 

In sect, ion 5.2 we showed that the bond bending r.erm 
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of the Keating model could be written as: 

T 
U

B = - ® <
b b
» > ^b =bb i

 a

bi 

Following the same procedure as for spin glass 

(equations 4.12 to 4.17) we can write this as: 

U
B
 = 0a'a>

2

 g
2

 ^
b l >

 Tr 5.34 

Here a is the bond length and a' is a length typical 

of the links on the star network (Fig. 5.3).-

Bond stretching is, geometrically, a second order 

effect because, for a » B , the bond length can be 

regarded as constant. Bond stretching may, however, 

make a significant contribution to the energy, because 

of the large force constant, and we can include 

it in the above formalism by redefining the J matrix 

to include a small scaling factor: 

i

-
e

- 'ib
l

b -b^ *
 = a 2 5 , 3 5 

is defined as before but now 

—b*b —b *b = 8
a 1

 ^
 l

b *
S n o t a

 P
u r e r o t a t

i
o n a n <

3 

X_b 

ga 
A, j, has a small diagonal component (T-tt A) 

with X, = a, 
b - i - 1 

a 

Now the bond stretching energy 

rs = _a 5.36 

= aa
2

 Z (f| -1)2 ' 5 . 3 7 
b a

2 

= aa
2

 g ( ^ 2
 +
 2x

 b
)

2

 5.38 
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= 4a a
2

 I X
 2

 + 0 ( X
u

3

) D D D 5.39 

_ 4ctg
2

a
t 2

a
2

 E 

2 

5.40 —h> * ' 

9 Z(z-l) <bb 
2 

t >
 ( T r 4bb i ) 2 

where a
1

 is a rescaled force constant, thus the Keating 

model for the potential energy of covale-nt glasses 

can be written in terms of an over complete set 

of gauge variables ( A ^ ^ ) defined on the links joining 

the bonds of the original network: 

U . g
2

a
2

a
l 2

 * [°
, ( T r

 £bb'
) 2 + 8

"
 T r (

£ b b ' > ]
 5

-
4 2 

e

 <bb
L

> 

Constraints, which take the form of quenched curvature 

and torsion, must be imposed on the fields and such 

constraints act as sources of the field (A ,, , ) and 
= Db 

increase the energy with respect to a crystal. They 

can therefore be regarded as the intrinsic defects 

of a covalent glass. 

The energy of a glass (equation 5.42) closely resembles 

that of a spin glass (equation 4.17) and we might 

attempt to derive a continuum formalism as before. 
i 

There is, however, one significant difference, in 

that the links along which the gauge variables are 

defined (b
t
 b

1

 ) are orientated in random directions 

in space and not (as in the spin glass model) along 

the well defined directions of the bonds on a simple 
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cubic lattice. This, in fact, inhibits the transition 

to the continuum as there is no unique method of 

assigning the spacial directions (u) to the connections 

(A). It is necessary, therefore, to approach the 

continuum from a macroscopic point of view, in which 

each element of space contains many atoms. We consider 

this approach in the next chapter and include the 

torsion and curvature of the underlying network 

as constraints in the continuum model. 

Conclusions 

In this chapter we considered a representation 

of the Keating model in which the gauge invariance 

was evident. The model is, in some respects, similar 

to the spin glass model considered in chapter 4 

but in addition to the curvature constraints a covalent 

glass also has ring closure constraints which can 

be included as torsion of the rings. We did not, 

however, succeed in finding the continuum limit 

for this model, because of the absence of an underlying 

lattice on which the gauge variables were defined. 
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(a) (b) (c) 

Fig. 5.1 

The bonds in (a) and (b) are correctly orientated 

with respect to each other but (c) is not. The 

equilibrium angle- in this case is Q
l

= n- 9 . 

(a) (b) 

Fig. 5.2 

The position of the "wrong" bond pairs are moved 

from vertex 1 to vertex 2 by the local transformation. 

a

 i 2 i 2 
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Fig. 5.3 

Scar crarisformacion of a riecwork 

. - VerCices of original necwork 

_ - Bonds of original network 

x - VerCices of scar cransformed necwork 

Bonds of scar Cransformed necwork 

b 

b' ~ =b» b -b 

-b« = Sbl b ^b 

Fig. 5.4 

a, * a, , , are Che accual direccions of Che bonds b and b
1 

—d —b 

a^i is Che minimum energy configuraCion of bond b
1

 wich 

respecC Co a^ ; a^x is coplanar wich a^ and a^x* 
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CHAPTER 6 

A CONTINUOUS FIELD THEORY OF GLASS 

Introduction 

On a macroscopic level, when all relevant length 

scales are much longer than the interatomic distance, 

a glass is essentially an isotropic elastic continuum 

with internal stresses. The isotropic nature arises 

from the randomness, because all spacial directions 

are equivalent, and the internal stresses are due 

to the structure of the underlying network of the 

glass in which constraints (in particular ring closure) 

are imposed on the field variables (the bond vectors) 
<p« 

and prevent them from relaxing to the minimum energy 

configuration. Thus the torsion and curvature of 

the discrete model (chapter 5) survive the averaging 

procedure and are present as sources of stress and 

strain in the isotropic elastic continuum. 

A glass, when viewed at this level, is thus in-

distinguishable from a crystalline continuum with 

a distribution of sources of internal stress (dis-

locations) but there are two important differences. 

The distant parallelism (zero curvature) constraint 

introduced by some authors (Kondo 1953, Bilby et 

al 1955) to describe crystalline dislocations must 

be absent in glasses, because there is no underlying' 
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lattice. In addition the torsion and curvature of 

a glass are present at all temperatures even in 

the "ground state". They cannot be eliminated by 

annealing because they are an intrinsic property 

of the underlying structure of the glass. This model 

is not, however, equivalent to the model of a glass 

as a heavily dislocated crystal, suggested by Cotterill 

et al (1974). Here the reference state is the stress 

free configuration and does not, on any scale, resemble 

the crystalline structure. 

In this chapter we summarize the relevant features 

of the continuum theory of dislocations and demonstrate 

how this leads naturally to an expression for the 

energy of the intrinsic defects (torsion and curvature) 

of glass. Thermally excited dislocations tend to 

screen the interaction between intrinsic defects. 

Low energy tunnelling excitations, which have the 

effect of reversing the direction of a small, intrinsic 

defect loops, play the role of the two level system 

in this model. Topologically stable defects, in 

the form of 2 j[ disclinations, are present at high 

temperatures and their interaction energy is screened 

by dislocations in such a way that they interact 

via a 1/r potential. 
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6.2 Field Theory of an Elastic Continuum with Torsion 

and Curvature 

The relationship between differential geometry and 

a crystal with dislocations was first pointed out 

by Kondo (1953) and Bilby et al (1955) and since 

then the subject has been extensively studied by 

several authors (Kroner (1955), (1960); Seeger (1961)). 

The following discussion is closely related to those 

of Kroner (1980) and Lardner (chapter 7). 

The starting point for a differential geometry des-

cription of an elastic continuum with sources of 

internal stress is a mapping (M) between the local 

stress free configuration (natural state) and the 

actual configuration. The local reference or stress 

free state is the configuration in which the stresses 

are relaxed in a small neighbourhood of the point 

under consideration. An orthonormal triad of vectors 

{U } (K = 1,2,3) is mapped from the local reference 

on to a triad in the actual configuration { e k.} by 

an operator M (Figure 6.1) defined by: 

e k = M k
K ' U K 6.1 

u
K

 = M*"
1

 e
k

 6.2 
— k — 

The metrics ( g
K L

 and g kl ) of the reference state 

and actual configuration can be written in terms 

of these basis vectors: 
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6 KL 6.3 

kfi, k I 
6.4 g = e . e 

As before, capital letters (X) label positions in 

the reference configuration and & labels positions 

in the actual configuration. The mapping can be 

defined consistently along a continuous path by 

considering points with overlapping neighbourhoods, 

and ensuring that the reference triads in such neigh-

bourhoods are parallel. However, in the presence 

of curvature, a mapping defined in this way may 

not have the same value at the start and finish 

of a closed path. Thus M is path dependent but the 

connection ('.I" ) derived from the mapping is not 

path dependent and it can be defined uniquely at 

all points of space. 

r . . = M
 v
 a. M . 6.5 

ij k a j i 

The connection defines parallel transport in the 

actual configuration as the change in the vector 

V caused by parallel transport along the actual 

path dx is 

6 . 6 
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nncJ K.
1

,., - 9. r !" - T.} i r
 1

 i' - V\ V
 n

\ 6.8 
J k ! k Jl 1 Jk mlc .11 ml jk 

The l:onsor:i T,
 n

 and R .
 1

. „ arc nn I: I s yinme t r :i.c in the 
kP, j Id J 

indices k and 5, . For metric spaces R . . - p,.,R , 1

 ilkl °jh i kl 

is also antisymmetric in i and j therefore it is 

convenient t:o define the dual tensors: 

kl 
i n 5 , w r c\ 1 -- - e 1, , 6.9 

and
 R

P
n

 , %
 £

p i j

 E

n k l

 R. ..
 1

 6

'
1 0 

i jkl 

The identities of differential geometry give us 

continuity equations for the torsion and curvature: 
(D. + 2T. ,j)Rkl =.-- 0 r 6.11 1 ij 

(D. + 2T. .j) T1. = c ... R U 6.12 i l j k ilk 

Equation 6.11 is the Bianchi Identity for a geometry 

with torsion and 6.12 is the torsion or second identity 

(Schouten 1954). Di is the usual covariant differential 

operator: 

D.Vk = 3.Vk + l \ V m ' 6.13 l i mi 

In the absence of curvature equation 6.12 is the 

conservation law for the density' of dislocations 

(T " ) . Curvat ure is generally associated with 

disclinations, thus De Witt (1970) has interpreted 

equation 6.12 to mean that dislocations .can end 

o n d i. s c 1 i r, a t i o n s . 
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The energy density (U(x_)) of an elasLic medium is 

the product: o f t;he strain tensor (K i j) and the sLress 

tensor (a j j) and these (symmetric) tensors arc related 

bv the clastic modulus tensor C,.kl: 
i .1 

U(x) a . .(x) E
l j

( x ) 6.1 4 

0

 ij -
 c :

i j
k l

 K
k
i 6.15 

Equations 6.1.4 and 6.15 are correct: on.l.y in the 

linear approximation (to first order in the strain 

field) but they are sufficient for most applications. 

The internal strain field of glass will, in general, 

be small enough for the linear equations to be valid. 

This introduces • a number of simplifications, in 

particular the metric of the actual configuration 

(g
3

J ) becomes S
1

.] because deviations from the orthogonal 

configurations are of the order of the strain field. 

There is, therefore, no distinction between covariant 

and contravariant components of tensors. For an 

isotropic medium (such as a glass) the tensor 

C. ,, , can be written in terms of two Lame constants 
ljkl 

X , y 

C. ,kl -^ij<5kl+li(<5ik 6j] + 6"ii 6jk} 6' 1 6 

We must also include the equilibrium condition for 

an clastic continuum, in the absence of body forces: 

= 0 6.17 
3 l a i j ij 
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Erjua I: ion;; 6.14 to 6.17 constitute a field theory 

oi. an cla.st.ic continuum. The parameters ( . , E. . ) 1

J
 1

 J 

are related to the differential geometry approach 

through the strain tensor, which is a measure of 

the difference between the length scales in the 

reference configuration (ds
2

 = g ^^ d x
k

 dx ) and the 

a c t u a 1 con I. i gu r a t i o n (d S
2

 g dX^ dx'' ) 
KL 

i.e. d s
-?

 - dS
2

 - g
k l
 d x

k

d x
1

 - g d X
k

d X
L

 6.18 

^ k i 1 MK~~1 M1 ~1 . k ) ^ r m 
= 8

k l

 d x d x

 ~ 8
k l

 m

 k

 M

 i
 d x

 6.19 

---- 2E. . d x
k

d x
2

 6.20 
kl 

— i 
therefore E

k l
 - M g ^ - g

R L
 M ~

l K

k
 M

k

 ) 6.21 

Torsion and curvature are introduced via the strain 

incompatibility tensor rij -j defined by: 

r,.. - -£.ipr £jqs 3
P

8
q

 E
1

"
5

 6.22 

and, in the linear approximation, this is given by: 

n^j - -[Sipr T
L

\ + R^j]symmetric 6.23 

The proof of this result is outlined in Appendix 

1. 

The problem of finding the elastic energy of a medium 

in the presence of strain incompatibility has been 

n , 

solved by Kroner (1955) who introduced a symmetric 

stress function tensor -iij , defined by: 
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a,. =-2p[e . e.. 3.9, + u c ^ )] 
ij

 L

 ikm jln k 1 mn y-^- °mn pp
 J 5.39 

With U = X . , r, . \ r—rr N (Poisson's Ratio) 

2 (X+y) 

A stress tensor of this form automatically satisfies 

equation 6.17. This definition of i> in equation 

6.24 is, however, somewhat ambiguous as any tensor 

of the form 
i?. . = 3 . U. + 9.U. - 6.25 
ij 1 J J i 

can be added to the stress function without changing 

the stress. This is analogous to the ambiguity in 

the definition of the vector potential A from the 

magnetic induction (B = _7_ x A) in electromagnetism. 

The stress and strain tensors are, in fact, invariant 

under the gauge transformation: ^. . l=4>. . + 3 .U . + 8 .U. 6.26 5 & IJ. i j j I 

The equations are simplified considerably if we 

work in the "Coulomb" Gauge: 

3 . j , . . = 3 . 96. . = 0 6.27 
J 1J 1 ij 

For any symmetric tensor Sij 

e , . e . 3, 3„ S . . = (V2 S. . -3 .3. S .. ) 6 mki n$j k I ij kk j k jk mn 

+ 3 3, S , +3 3, S , - V2S - 3 3 S. . 6.28 m k nk n k mk mn m n kk 

therefore, in the Coulomb Gauge equation 6.24 becomes 

°ij = t V l \ k 3ij " * 3i 3j <kk 

+ C272 < k k3 + 2 3.3 * k k 
1—u 
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= 2p [7.#tj - (7^ k k6. . - 6.3. 6.30 

Inverting equation 6.'15 leads to 

E. . = 1 o . . - _ _ u « . . o, , 6.31 
27 lJ 2 7 0 ^ 7 1 J k k 

-»«* t J ( f V i j - ' i ' j V 

1+u J 1—u J 

6.32 

therefore E.. = V2j>.. -V2^. , 5.. + 1 3.3 ;A, 6.33 
ij ij kk ij — j. I kk 

and n.. = -[(V*E k k - E ^ . . + E k j + 3.3k E ^ 

- V2E. . - 3.3. E. . 1 6.34 ij l j kk J 

becomes (in the Coulomb gauge): 

n. . = -[ (V2V2^. 6. . - . -V2 3 . 3 . i. ) 
ij kk ij ij l j kk 

- (37
2

7
2

t6, , <5. . - V
2

V
2

 i.. . <5. . + 23.3 .V
2

^ . - V
2

V
2 

kk ij kk ij i j kk 

- 3 7 ' V j " k ^ ^ ( 7 2 7 ^ k k 6 i j - W k W i j 

+ 23.3.3.3. i -V2 3 .3 . t -3.3.3.3. I )] 6.35 l k j k p p l j p p i j k k p p J 

or r)i = v 2V 2 6.36 

Here V2V2 (orv1*) represents the biharmonic operator 

The internal energy can now be written in terms 

of the stress function: 
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U = /d3x a. .(x) E. .(x) 6.37 
i-J ~ ij ~ 

= -2n /d3x e e 3.3. (x) + u « tfnn(x)) — lkm 1 in k l mn ~ mn pp — J 1-u 

E.^(x) 6.38 

After integrating by parts and dropping surface 

terms we have: 

U = -2]i /d3x(^ (x) + u 5 i> (xh e . 3, 3.E. . - mn — mn pp - r lkm lln k 1 11 1-u r r . J 

6.39 

= 2W /d3x (x) + u 5 j> (x)) n (x) 6.40 — mn — mn pp — mn — 1-u r r 

o rj3 (x) + u 5 Tt (x)) 1 H (x) 6.41 = 2u /d3x mn — mn pp — mn — — 1-u r r 

The solution of equation 6.36 (see, for example, 

Lardner p.280), with the boundary condition that 

-̂ij = 0 at infinity, is 

7t..(x) = - _ l /d3x1 n..(xl) |x-xM 6.42 
1 J 8n 1 J 

therefore the internal energy of an elastic continuum 

with incompatibility n(x) is 

U = - /d3x/d3x1(nmn(x)+ ti (x)5 )|x-xl| 
4n l-u 

nmn(x») 6.43 

All results in this section are classical (Lardner 

ch.7, Nabarro Ch.2). 

Field Theory of Glass 

The .above discussion is valid for any isotropic 

elastic continuum with sources of internal stress, 

Page 122" 



herice we can apply it directly to glasses. The field 

variable is the symmetric tensor ( ^ ^^ ) and this 

must satisfy the constraints imposed by the incom-

patibility (equation 6.36). The structure of the 

discrete network underlying the elastic continuum 

in a glass is such that there is a finite torsion 

and curvature quenched into the system and, unlike 

the crystalline case, this cannot be eliminated 

by annealing. It is, in fact, an intrinsic property 

of the glass. The quenched torsion and curvature 

combine (as in equation 6.23) to form the quenched 

incompatibility tensor ( n Q ) and, f rom the definition 

(equation 6.22) this must satisfy the continuity 

equations: 

The continuity equations imply that the intrinsic 

end within the medium. 

We can write the partition function for a glass 

in terms of a functional integral over all con-

figurations of the field which satisfy the 

constraints imposed by n^ 

6.44 

defects ( n . . ) take the form of lines which cannot Q 

6.45 
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This equation has a similar form to equation 4.33 

for the partition function of a spin glass and, 

again, constraints are imposed on the fields by 

the intrinsic defects or, equivalently, the structure 

of the underlying network. The interaction energy 

calculated from this functional integral is that 

given by equation 6.43 (with replacing n) however 

equation 6.45 is not a realistic description of 

the thermodynamics of a glass because it excludes 

the possibility of thermal fluctuations of the incom-

patibility. Such fluctuations occur via the creation 

of small dislocation loops, a process which is possible 

in any elastic continuum, and (unlike crystalline 

dislocations) the Burger's vector of dislocations 

in a glass is not quantized because there is no 

underlying symmetry which must be respected. This 

is a manifestation of the fact that dislocations 

are not topologically stable excitations in glasses. 

The Burger's vector can be continuously decreased 

to zero without meeting any (topological) restrictions, 

although there may be energetic restrictions (barriers) 

inhibiting the creation or destruction of dislocations 

in this way. Disclinations, on the other hand, are 

quantized (as we saw in chapter 2) and any excitations 

of the curvature must be associated with 2n rotations. 

Such large rotations are unlikely to make a significant 
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cont; r ibu:. ion to 

l; empo ra t:u re s . 

thermal fluctuations of n at low 

We can include the effect: of fluctuations in n by 

introducing a random, thermal (Maxwellian) distribution 

of dislocations (torsion) as follows: 

Z = /DT/r)'Acxp-fJ/d3x[2n(^ (x)i-u 5 i (x))V','/< (x)]) 
— mn rmv pp — mn — 

i-u
 1 1 

( c x p - 0 Y / d
,

x T
m n
( x ) T

m n
( x ) ) ( 6 ( n ^ • (x) • n'J . (x ) - V .

 j
 (_x_) ) 

6.42 

with nTj = (e. k l 3 r T 3 j + E j k l 3 k T u ) 6.43 

Writing th.e 5 function as a functional integral 

over an auxiliary field A , this becomes 

Z = / D A j D T W exp - B / d M t f (x)M . , V ••/. , (x) +yT (x)T (x) 1

 — mn — mnkl kl — inn — mn — 

^ i j ^ ̂  î j (
 e

 ikl ̂ k^.lj ^
 1 C

 j k 1 "k'' If. ̂  — i j ̂  — ̂  

V ^ . ^ x ) ) 6.44 

with M , . = \i (6 . <S , +6 . 5 , ) + 2jju <S 5. , b.4:> 
mnkl ink nl mL- nk mn kl 

1-u 

In q space the partition function becomes: 

Z-/DA(q )/DT(q) q)exp —(211)
3

 3 /d
3

 q [ '/< (qjM cf/, -(-q). 
— — — — iiin. — IlillK. l — t<. l — 

+ yT (q)T (-q)l-i (A. .(q)n? . (-q)+A. . (-q)n? . (q))-i (A..l.<)) 
mn -i mn - — Lj -- ij -- lj - ij --

q , ,* i j(-q)+A i j(-qV*. j(q)) 

-|_(-A i j(q)q k(e. k l T l j ( - q ) + £ j k l T u (-q)) +A. j(- 3)q k 

( e i k l T l j ( a > - j k i T
3 i ^ > > ] 
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The last: factor can be rewritten as 

-._[(A..(a), A ,(<!»e l k l q kT 1 J(-qKA i j(-q),A J l(-< !))c l k l< l k 

T jtq)] 

therefore the integral over T can be performed, leading 

to 

Z r- N
T
/DA(q)/I^(q)cxp - ( 2n )

 3

 (3/d
 3

 q [ ̂  ( q ) M ^ , q ^ (-q ) 

+ i (A. .(q)n
Q

.(-q)'-A. . (-q ) q
Q

 . ( q ) )•-i (A. . ( q ) q V . . ( -q ) i A . . 
2 p . . i-J - J ij - ij - Jfi 1 J 1 J 1 I J 

(-q)q-^. . (q) ) + 1 ( A . . ( q ) -f A . . ( q ) ) c . q e . q 
- ij J J6p"7 1 J J 1 l k ) k n m l IT1' 

(A. (—q) 1 A .(-q))] 6.47 
jn ~ nj - ; 

= N N /D A( q) exp -( 2U)3 3/d3 q A. .(q)q4(l_ M 7 , J q " 
- - A32 1 J ~ q*4 1 J 

Afc,(-q)+ 1 A , . (q) (e . e 6 +e . e 6 +e . 
l p r J i p r J P r 

e, 6 • •» r, . e .. 6. ,)q q A. , ( - q ) .
 / A

 , . 0 ,
 N kmr Jl ipr linr ki p m kl - +1 (A. . (q )n .. (~q) 

. 2? 1 J 1 J 

+ A. .(-q)n
Q

. (q))] 6.48 
ij ij 

= Nr|,N,/DA(q)exp-(2n)
3

B/d
3

q[ 1 A . . (q) P . ( q) A , (~q ) 
i ^ T 1J ~ -̂J1^1 -- R 1 -

+ (A..(q)nQ.(-q) + A. (-q)nQ.(q))] 6.49 
2 p 1J 1J 1J -1- J 

= N TN^N Aexp -(2n) 3B/d 3q ^ ( q ) ? " ^ ( q ) ^ C-q) 6 • 5 0 

with P. ., . = q11 M, 1. . + 1 q q (e . e. <5 .. +e . e ' 8. . 
ljkl iJk-1 — p rn lpr kmr jl ipr lmr kj 

M 1 

+c . e, 6 . , + e . e , 6, , ) 6.51 
Ipr kmr ll jpr irnr ki 

Using the identity e. e, , - <5., 6 . - 6' . 6 ., 
j jk Irak i! mj lvn jl 

this becomes 

=

 «
% M

I j k i ' I v
 ( 2 6

i k « j >
 q 2 1

 * i k
q 2

 -

-
 q

l
q

l «jk -
 q

j
q

k
 fi

il -
 q

i
q

l
 6

i k
} 6

-
3 2 
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But M. .. . = p(6.16 + J. 16. 1 ) + 2yu 5 . .5. . ijkl lk jl ll jk — ij kl 

Let M~l = A (5. 5.- +6. 5, ) + B 5. .5 6.53 klpq kp lq kq lp kl pq 

therefore M. .. . M7.1 = 6. 5 . + 5. 6. 6.54 ljkl klpq lp jq lq jp 

hence A = 1 and B (2\i + 6yiu ) = -2u 6.55 
2 pi 1-u 1-u 

or B = -u 
u(l + 2u) 

Now P.... = X(6.,5 m + 6 . J . . ) + Y 6..6 m ljkl lk jl ll jk ij kl 

+ Z ( qi qk jl + qi ql 6jk + qj qk 6il + qj ql 5ik } 6' 5 6 

with X = + ^L 6- 5 7' 
2u 2y 

Y = - uq1* 6.58. 
n(l+2u) 

Z = - 6.59 
4Y 

For the inverse of this tensor, defined by 

P. ... P.",1 i (5.5. + 5 . 5 . ) 6.60 ljkl klmn • lm jn in jm 

we try P~l = D(5. 5, +5. 5. ) + E5. 5 7 klmn km In kn lm kl mn 

+F(q. q 5t + q.q 5, + q.q 5. + q.q 5, >. Mk Mm In nk nn lm nl nm kn nl nn km) 

+G(q. q.q q ) + H q, q. 5 + I q q 5.. 

6.61 

Thus we have 6 equations for the 6 unknowns: 

2XD = 1 6.62 

2XE + 2YD + 3YE + YHq2 = 0 6.63 

2XF + 2ZD + 2ZFq2 = 0 6.64 

2XG + 8ZF + 4ZGq2 + 4ZI = 0 6.65 

4YF + YG q2+ 2X1 + 3 Yl = 0 6.66 

4ZE + 2XH + 4ZHq2 = 0 6.67 
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From 6.62 D = 6.68 
2X 

equation 6.67 gives H = -2ZE 6.69 
X+2Zq2 

and substituting 6.69 into 6.63 leads to 

E = -Y(X+2Zq 2) 
X[-2ZYq2 + (2X+3Y)(X+2Zq2)]. 6.70 

and H = 2ZY 
X[-2ZYq2 + (2X+3Y)(X+2Zq2)] " 6.71 

From 6.64 F = Z 
2X(X+Zq 2) 6.72 

and 6.65 leads to 

I = -(4YF+YGq2) = -1_ (4ZGq2+8ZF+2XG) 6.73 
2X+3Y 4Z 

therefore G = 16YFZ-(2X+3Y)8ZF 
(2X+3Y)(4Zq2+2X)-4ZYq2 6.74 

In fact only the constants D and E are relevant 

for the interaction energy (equation 6.50) because 

the continuity equation for rĵ  (equation 6.44) in 

q space is 

q. n?. = q. n?. = 0 6.75 
i ij HJ ij 

therefore the terms involving F, G, H and I in 

equation 6.50 will be identically zero. 

Substituting 6.57 into 6.68 we have 

D = + c^)-1 6.76 
U Y 

and similarly E = 2uy2^ 
(1-u)(q2Y+U)(qzY+u(l + 2u )) 6.77 

1-u 
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Nov; the froe ene rgy 

equation 6.130, becomes 

i vi 'L , w i t h 7, g i. von by 

3 

V -. -1 [In M
p
 •+ In N , + In N ] i- Fint 6.78 

P 1 * ' A 

and Fint - (2.)l)
3

 / cl
3

 cj n
Q

.(q) P.
1

.,, A - q ) 6.70 — lj - 3 K.l -

is the interaction energy of the intrinsic defects, 

in the presence of fluctuations. Returning to the 

real space representation: 

F i n t -
(2 II)"3 

/d
3

x fd
 3

x
 1

n ?
i
( x ) fd

 3

 q e
- 1

^ ^ " "
1 

]

 J " 

(x) 6.80 

where fd
 3

q e ^ - - " - ' (q) = D (x-x')(6., 6.^6., 5., ) 
- ijk.1.

 1

 — — lk jl il jk 

+E(x-x1) 6..fi,. - - ij kl 

and I)(y) = /d
 3

q e ^ D ( q ) 

= fd3 q u •lq.y 

q 

Ii 
--- 2IIp / q

2

d q f dx e
 i q y X

 (X= Cose) 
0 + 1 qz(q^-H.) 
~ Y 

= z M h 1 cjq £ 
-qyi eiqy 

iy 0 q(q2 + i£) 

2nn / dq e
: 

4 0 0 Y 
iqy 

iy 
+ eo 

q ( q
 2

 -i - a
 2

 ) 

= S dq e l q y (1 -

(a
2

 = H) 

1 

6.90 

6.91 

6.92 

6.93 

6.94 

6.95 

) j 6.9 6 
iy -co q 2(q-tia) 2(q-ia) 

Closing the contour at q = ...+ico' then contour at 

co does not contribute and we pick up 2 poles at 

id and q -- 0, Thu: 

D

<
v

> - it2!lY . 6.97 
y 

or D(y) , 2rry (1 - e ^ ' ^ y ) 6.98 
y 

/ 
L 

U-

* T ^ U 
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S i in i. 1 a r 1 y 

E (y) :, 2uLL / o ~ i q , y d 3g 6.99 
1-u ( q

2

 -i-}_i. ) (q
2

 -f ji (1 i 2u ) ) 

Y Y 1 -v) 

l\ II \)|i l
0 3

 d q q G
l q y

 6 . 1 0 0 

i ( 1 --o j y -co ( q 2 + a 2 ) ( q 2 a 1 2 ) 

w i t h a2 -
y 

a ) 2 - )i( l 4 2u ) 
y 3 - u 

or E(y) =2n2Y W S -g [*} %< 1 +fL.>*y) Y Y 
y 

Therefore 

F i n t - _ Y / d
3

x / d ' x
1

 n
Q

. ( x ) _ 1 [ ( l - e ~ '
 1

 ) 
I J

 | x - x
!

|
 Y 

(6 .. 6 .. .+ 6 ., 6 .. ) + (e j11) 
x k j/ ij j k V 

^ Ix-x
1 

If y 0 (the width of the distribution tends to 

infinity) F . 0 therefore the strain field of m t 

the intrinsic defects is completely screened by 

the fluctuations and they do not interact. On the 

other hand if y co we can expand the exponential 

i, -
in terms of the small parameter -j|_t * : 

Y ' 

U r n F i n r =, | im / c P x / d ^ n ^ . ( x ) [ / u ( y ) | x - x
 1

 | ) 

(<5ik6 ' ) ' Si. ( + Jx-x 1 | ) i a j 1 j c v 1- v 2y('1-u) 

- . Q 6.103 
6

i j \ l ] \ l 
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|im YJ) / d ' x / d ' x ^ ^ M x ) i ivfi. (x)((N2x))^-l) 
Y-wo 211 M i c k - - —

u 
M 

• •111 t \' i 1 kk -

fd 3vM 3y Jfn Q (vV,. u n Q ( X ) 5 . . ) I X-X ' I T^ . ( X 1 ) 
M - M M -

6.104 

and, apart: from an (infinite) constant the interaction 

energy reduces to that without fluctuations (equation 

6.43). The screening is inoperative in this limit. 

The normalization constants (N ^ , N^ , ^ a ^ 

free energy (6.78) are given by the following 

express!ons: 

N -/DT( q ) exp - ( 211)
 3

 B Y/d
3

 q T (q) T (~q) 6.105 
i — mn - mn -

This is, in fact:, the normalization factor for 

the Maxwellian distribution. It should be set equal 

to unity if the total probability (area under the 

distribution) is normalized to 1. 

Simi. lar ly 

= exp-^ /d*q In By 6.106 

exp - \ / d
3

q |n(3q
4

 Det M) 6.108" 

exp - '2 ( I + Tr In M ) 4
n
n -i- /d

3

q In q" 6.109 

=-- exp - 2n [(|n3 + 3in(2u) + 3 ln(2p + 2yu))q 
max 

1-u 

max 6.110 
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Here q is the naLural cut: off for q and is ol 
max 

the order of 1 where a is the i n t: e ra t om i c distance, 

a 

A term of this form won 1 d also occur in a similar 

treatment for crystals (with zero quenched incom-

patibility) and has therefore no particular relevance 

t o g 1 a s s c s . 

The last normalization constant is given by: 

N
A
 --= /D A( q) exp -3/d 3 q J A..(q) P.... q) 6.111 

= exp - % /d
3

q_ in 1_ Uet P 6.112 

43 

= exp 4- 2 H q In 4 3 - fq
 2

dq ln(Det P) 6.113 
' max 

Within this description a glass differs from a 

crystalline continuum in two ways: 

1) n ^ = 0 in a crystal whereas it is finite in a glas? 

2) y crystal >> Y glass because in a crystal there are 

topological barriers inhibiting the creation 

of dislocations. In other words, fluctuations 

in n will be much stronger in a glass than 

in a crystalline continuum. 

Thus the free energy difference arises from the 

term 2. IT f q
2

 dq in Det P, where P is a function of 

3 
Y , and from the interaction energy of the intrinsic 

defects (F . ) which is zero in a crystal but given 
int. _

 fa 

by equation. 6,102 in a glass. However from 6.56 
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 J 
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r- qHlT
1

., - + 0(1) for large y 6.11A 
i 1 k 1 

T 

W r i t i n g | n (Oct: P) = Tr | n (q"M
_ 1

-t 1_ N + 0(1 ) 6.115 

Y Y? 

where N . .. . - q
 2

 ( o., 6., + 6. , 6 ., ) 
l ]k 1 -

1

— ik j 1 ll jk 
Y 

-
U r

' i
q

k
5

j l
 + q

i
q

l
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 jk
 + q

j
q

k
6

i l -
 q

j
q

l
6
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6.116 

then In (Det P) - Tr In q*
4

 M "
1

 (iL-i- M N q ~
4

) 6.117 

Y 

= Tr ( I n(q'
1

 M~
 1

) + |n(H+ 1 MNq
- 1

') 6.118 

Y 

= Tr in q" M"
1

 + Tr (1 MNq~* -i-0(l_)
2

 ) 
Y Y

 6.119 

- jnq" - Tr |n M 4 1 Tr MNq""' 6,120 

Y 

The first two terms of this expression combine 

with similar terms in |n N , therefore we are left 

with 

F =

 I J dq Tr (M .
 1

 ^ J 6.121 
&Y q 2

 ijkl klmn 

= 2 II kT / dq Tr ( q
2

( 6 . 6. + 6 . 6 . ) +2o ^juS.,6 
— — t ^ itii in m irn P i i mn 
Y q

 2

 1 — x)
 J 

-^P(2q.q 6. 4-2q q 6 . + 2q.q o, i-2q.q 6 . . 
l n jm j m in J n lm i m jnj 

— 2 itv) 5. . q q ) ' 6.122 X J in 
^ 1 -u) 

I^ge 1 3 3 



2II kT /dq ^(<S. 5. + 5 . 6 . ) [q2u(5. 5. + 6 . 6 . ) — -f lrn in in jm L n lm in in jm Y q2 J J 

+2q2uu 5..5 - \i (q.q 6 . + q . q 5 . + q . q 5 . ? r lj mn £ Mi Mn jm Mi nm jn J n lm 1-u J 2 

+q.q 5. ) -2yu 5.. q q 1 6.123 in — — in V n J J 1-u J 

= 211 kT q ; a X d£ (12q2
U + 6q2ytu - 4yq2 - 2Uu) 

y ° q2 1-u 1-u 

or F Y = 8n ji(2 - u ) q kT 6.124 ' — nmax Y 1-u 

Thus the effect of fluctuations is to increase m 

the entropy by a factor which (when Y is large) 

is inversely proportional to Y» . -

The Two Level System 

In any particular configuration the excitations 

T 

in the incompatibility ( n ) are indistinguishable 

from the intrinsic incompatibility ( r^ ) and the 

total internal energy is given by: 
U = - 1 /d3x /d3x1(nT.(x) + nQ.(x))M. .. . |x—x1 | — - ij - ij - ijkl - -

(n^Cx 1) + n^(x')") 6.125 
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The nature of the low energy excitations of n becomes 

apparent if we write the interaction energy in 

terms of an integral along the defect line, a 

procedure made possible by the continuity equations 

(6.44). 

3i nij = o, 3j nij = 0 

Consider a defect line confined to a ".tube" of 

cross section area a2 then the integral of n over 

an elementary closed (cylindrical) surface of 

this tube vanishes because f3̂  n̂ j dV=0=Mjj ds ni 6.127 

n <-() ()-> ri 

therefore, the contribution from the top of the 

cylinder cancels that from the bottom (assuming 

no field flows out the side) and 

a2n.. n. = Constant along the tube ij i 
= b, 6.128 
. j 

or nij = ~r n-£ b^ 6.129 

Here n is the tangent vector of the line defect. 

A similar argument using the second continuity 

1 equation leads to nij nj 6.130 

and the symmetry of the field is preserved by 

writing r\. . = 1 (n.b. + n ^ ) 6.131 
1 J 2a2 3 

Using this we can transform the volume integral 

of q into a line integral: 
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fd
3

 x n. . = fd&fds n.. 6.132 
- ij ij 

= tdl h (n.bj + njbi) 6.133 

= d^i bj + 'd^b.) 6.134 

Therefore the interaction energy between two such 

lines (A,B) becomes (from (6.43): 

U A B = -U rbm Abm B /d*B |xA - xB| 
4ff [ — n n - -

+ bmAbnB /d*A /dll-B |xA - xB|+ « b Ab B /d*B — n m — — — m n m 

/d*A) |xA - x B| 6.135 n - -

i A B i _AB , . . or writing |x - x | as r this becomes 

AB IA,B ,„A , B AB , .
 P
, A ,„B ,B

 J N
A U _ _ p rb b // dA .d^ r + \SIb .d^ b . 

4n 2~~ 

R, UA ,«A , B ,.B AB, 6.136 + u J 7 b . d f c b . d _ a r J 
1 - r U 

The self energy of a defect loop is obtained by 

replacing B by A in equation 6.136. The self energy 

of any (intrinsic) defect line is, therefore, 

unchanged by the reversal of the line direction 

(dJl - djl ). The interaction energy between this 

defect and the surrounding defects is changed 

by such a transformation, however in the particular 

case when the defect is surrounded by an isotropic 

distribution of defects, the total energy of the 
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two configurations (with opposite line orientation) 

is the same. An anisotropy in the distribution 

of the defects surrounding a given defect will 

tend to split the energy of the two orientations. 

The process of reversing the direction of an intrinsic 

defect line is effected by an excitation of the 

T Q 

type: n^j(x) = - along the line, or the excit-

ation of a defect of the opposite orientation 

and twice the strength of the original one. The 

barrier associated with this excitation is energetic 

(rather than topological) and the magnitude depends 

on the detailed structure of the medium. 

Thus glasses (like spin glasses) have a distribution 

of two level systems associated with the reversal 

of the orientation of intrinsic defect lines. 

The anisotropy in the distribution of the surrounding 

defects splits the energy of the two configurations, 

but a finite density of zero energy excitations 

(corresponding to the defects with isotropic 

surroundings) remains. Coupling between the two 

level system and phonons occurs via the strain 

field of the defects. 

Topological Excitations 

In chapter 2 we saw that disclinations, associated 

with 2 n rotations, are topologically stable 
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excitations in glasses. The continuum model provides 

a natural framework for the discussion of such 

defects, in terms to the triad of vectors which 

was introduced as the field. The curvature introduced 

by the intrinsic defects implies that this field 

is not a unique function of space as parallel 

transport around a closed path does not, necessarily, 

return it to the initial configuration. This field 

is not, therefore, identical to the matter field 

of chapter 3 (which must be single valued) but 

it is similar to the combination of the matter 

field and gauge field (c) . A closed path in real 

space maps on to an open path in configuration 

space (the manifold of internal states). The open 

path does, however, represent a reference con-

figuration and fixes the starting point (i) and 

finishing point (f) for any mapping of the real 

space contour on to the Manifold of internal states. 

The presence of a topologically stable defect 

within the real space contour is signalled by 

a path in configuration space which cannot be 

continuously deformed into the reference path 

(Fig. 6.2). In fact the intrinsic curvature is 

generally small therefore any path in configuration 

space which crosses the surface of the sphere 

once signals the presence of a topological line 
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defect within the real space contour, and knowledge 

of the reference state (low energy con f igu ra t i on) 

is not required. 

Hisc1 inat ions are associated wi th a l arge curvature 

(Rij) concentrated on the core and therefore (from 

equation 6.43) they interact via a linear potential 

(|x-x
1

 |). The interaction will, however, be screened 

by dislocations and thus it becomes (equation 

6.102). 

Uint - ^;/d
3

x/d
3

x
1

(Rij(x)+Rji(x)) _ _ y [ U - e (-) 
4111 x' -x |

 Y 

(6.. 6 . , + 5 5 ..
 1 

ik j 1 11 jk y 

)*|x-x'|)s 6 ] ( R U , ) + R (:;1)) 
Y liu I J kl ki — lk — 

6.137 

= /d'x/d'x* RijCx) Y l)(6 6 
4 nI x-x (

 J 

* x x - { P ^ i x - x
1

 | ~ Hi ̂  (1 h2u )% l.x-x
1

 I . 

6. .6 ] R . ( x
1

) -6.138 
lj kl kl — 

At distances ( I x - x
1

! ) greater than
 2

 the exponential 

M < 
terms in the above expression can be neglected 

and the interaction potential V . , (x , x
 1

) defined by 
ljkl — — ' 

Uint - / d
3

x / d
3

x *R. . (x) V , .
M
( x , x

!

) R . ^ x
1

) 6.139 
- IJ " ljkl kl -
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V
l j k l

( x , x ' ) = • «
u
«

j k
) 6.140 
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for i x - x M > (ti)'
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Y 
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The length / jj\.| 2 is a measure of Che size of the 

"core" within which the distortion caused by the 

curvature is too large to be screened efficiently 

by dislocations. 

Thus, in the presence of dislocations , disciinations 

interact (at least when the cores do not - overlap) 

via a 1_ potential, therefore the total energy r J. 
of a density p of disclinations (for p 2 > iy \ 2 ) 

'u ' 

has the form (equation 2.27) E(p) = Bp - A pin pa2 

a a 

and they could be responsible for the Vogel-Fulcher 

law for the viscosity of supercooled liquids. 

The discussion of chapter 2 shows also that there 

is a finite density of ' disclination excitations 

in thermal equilibrium above the Fulcher or Kauzmann 

temperature (To). Disclinations are not observed 

in crystals because the topological stability 

of dislocations means that they are not freely 

available to screen the distortion field of dis-

clinations. The properties of disclinations in 

two dimensional crystals have been discussed by 

Halperin and Nelson (1979) who showed that they 

may be responsible for an interesting intermediate 

phase (the hexatic phase) between liquid and quasi-

crystalline order, yet to be identified experimentally. i 
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There, as above, the distortion field of the 

disclinations is screened by dislocations and 

they interact via a 1/r potential. 

Conelus ions 

In this chapter we introduced a model of a glass 

which we considered from a macroscopic point of 

view to be an isotropic elastic continuum, with 

the glassiness included as quenched torsion and 

curvature. The torsion and curvature act as extended 

sources of stress and strain which increase the 

internal energy of the glass (with respect to 

the corresponding crystal) and can thus be regarded 

as the. intrinsic defects of the model. The presence 

of intrinsic defects has the effect of introducing 

low energy excitations (in the form of reversals 

of defect line directions) which dominate the 

low temperature specific heat of glasses. Such 

two level systems couple to phonons through the 

strain field of the defect and will therefore 

affect the thermal conductivity and acoustic 

attenuation of the medium (chapter 1). 

In addition to the low energy excitations there 

are topologically stable excitations (defects) 

which take the form of 2 n disclinations. The large 
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strain field normally associated with (crystalline) 

disclinations is here screened by dislocations 

in such a way that the interaction potential is 

proportional to the inverse of the distance between 

the disclinations, at least when the cores do 

not overlap. Thus the properties (energy and entropy) 

of disclinations have a similar form to -the line 

defects discussed in chapter 2, therefore their 

equilibrium density will follow a Vogel-Fulcher 

law. 

The advantage of this continuum approach is that 

it should be applicable to any disordered medium 

which resembles an isotropic elastic continuum, 

with sources of internal stress, on a macroscopic 

scale. The nature of the bonding is, to a large 

extent, irrelevant although it will determine 

the elastic constants and the energy scale of 

the excitations and barriers. In a covalent glass 

the number of constraints (equation 5.5), and 

thus the density of intrinsic defects, increase 

with increasing co-ordination number, or in the 

language of Phillips (1979), the unsatisfied 

constraints in an overconstrained glass introduce 

intrinsic defects (in the form of quenched incom-

patibility) into the medium. 
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In general, however, the nature of the low energy 

excitations and the topological defects are common 

to all glasses, a necessary feature of any model 

which hopes to explain the occurrence of low 

temperature anomalies and the Vogel Fulcher law 

in such a wide variety of materials (metglass, 

covalent glass, polymers and oils). 
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ActuaL Configuration 

Reference Configuration 

Figure 6.1 

Schematic Representation of mapping between reference 

(relaxed) configuration and actual configuration. 

Figure 6.2 

Manifold of internal states (S0(3)) is a solid 

sphere with opposite points on the surface identified. 

The path A represents the reference path 

Alrepresents a trivial excitation which can be 

continuously deformed to the reference path. 

B represents a nontrivial, topologically 

stable excitation of the system. 

a 
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSIONS 

In this thesis we have discussed three continuous 

field theories of glasses which, on the face of 

it, look rather different. Table 7.1 summarizes 

the relevant properties of these models and from 

this it is evident that the general features are, 

in fact, very similar, although they vary considerably 

in detail. Each model has an underlying gauge invariance 

but the extent to which they are free to explore 

this invariance depends on the interpretation which 

we put on the gauge field. The phenomenological 

model of chapter 3 is invariant under the full rotation 

group and the gauge field is a free dynamical variable 

introduced solely to ensure this invariance, with 

no further physical significance. The Edward Anderson 

model of spin glass and the Keating model for covalent 

glass are also invariant under local rotations, 

however physical transformations are restricted 

to a smaller group (Za in spin glass and .LSQ12) 

in the Keating model). This restriction is irrelevant 

in practice as the gauge fields (the interactions) 

are effectively quenched during the formation of 

the glass and there is no remaining gauge invariance 
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in the system at low temperatures. In each case 

we define a new field which is a combination of 

the phase gradient of the matter field and the gauge 

field. This (Gauge invariant) field is then considered 

to be the only relevant field of the problem. The 

gauge invariance of the continuum model of glasses 

originates in the equilibrium condition on -the stress 

field (3^ a^j = 0) which is, in some respects, analogous 

to Maxwell's equation (di Bi = 0) of electromagnetism. 

In each model constraints, related to the structure 

of the underlying discrete network, are imposed 

on the fields. In a spin glass the constraints are 

imposed by quenching . the curvature of the field 

(at least to within a vortex excitation) in such 

a way that it is finite only on well defined lines 

of the medium, corresponding to frustration lines 

of the discrete network. Such lines act as sources 

of the field and contribute to the free energy through 

an interaction energy which (for x-y spin glass 

and Heisenberg spin glass at low temperatures) has 

the same form as the interaction energy of current 

loops. 

In a similar way the curvature of the field in the 

phenomenological model (chapter 3) is quenched, 

with a finite value only on well defined lines of 
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the medium. These lines correspond to the lines 

threading the odd numbered rings in the underlying 

discrete continuous random network model of covalent 

glass. They act as sources of distortion and increase 

the internal energy of the glass. 

The discrete Keating Model of a Covalent glass has 

constraints on the bond vectors, corresponding to 

the condition that all rings of bonds must close. 

Here there are two classes of constraint, one is 

the condition that the last bond must end where 

the first starts and the second is the rotational 

compatibility between the first and last bond. They 

are called torsion and curvature by analogy with 

similar effects in crystals. Rings which do not 

close in the relaxed (cut) configuration are associated 

with a finite torsion and they act as sources of 

distortion in the network. 

The continuum model of a glass is also associated 

with finite torsion and curvature in the "ground 

state", originating from the internal stresses induced 

by ring closure constraints (torsion and curvature) 

of the underlying discrete network. From a macroscopic 

point of view, a glass is indistinguishable from 

a continuum representation of a crystal with 

dislocations and disclinations except that here 
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the defects cannot be eliminated by relaxation. 

Disclinations are rare in crystals because of their 

large elastic energy but in a glass this is screened 

by dislocations which are not topological defects 

and can therefore be excited freely. 

Thus, in each model the constraints take the form 

of extended sources of distortion and introduce 

energy density fluctuations into the medium. In 

some respects they resemble defects in ordered 

media and can therefore be regarded as intrinsic 

defects in glasses, however, unlike their crystalline 

counterparts, they cannot be removed by persistent 

relaxation and they are present even in "perfect" 

glasses. 

Each of the continuum field theories discussed in 

this thesis introduces a specific model for the 

two level system, associated with the intrinsic 

defects. In the phenomenological model the two (equal 

energy) configurations are related by a nontrivial 

gauge transformation, effected by the excitation 

of a vortex of the matter field (and the gauge field) 

on an intrinsic defect loop. For such a process 

it is necessary that the gauge field is a free, 

independent variable, which is not the case in the 

spin glass model where the gauge field is related 
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to quenched physical parameters (the interactions) 

and the only relevant field is the combination of 

the gauge field and matter field. In a spin glass 

the two configurations are, again, related by a 

topological (vortex like) excitation of the spin 

field, centred on an intrinsic defect loop. The 

energy of the two configurations, in the case of 

an isolated loop, are equal but the presence of 

other defects has the effect of splitting the levels. 

In a similar way the orientation of an intrinsic 

defect in the continuum model of a glass (chapter 

6) can be reversed by the excitation of a dislocation 

loop. The dislocation is not a topological excitation 

in a glass therefore the barrier separating the 

two configurations is energetic, rather than topological, 

and again they have the same energy for an isolated 

loop, or a loop surrounded by an isotropic distribution 

of defects. Coupling between the two level system 

and phonons occurs via the strain field of the defect 

loop and this would explain the anomalous phonon 

scattering observed in low temperature acoustic 

and thermal conductivity experiments. 

In addition to the tunnelling modes, which affect 

the low temperature thermal and acoustic properties, 

there are topological excitations, present in thermal 
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equilibrium, only at high temperatures (above To 

as discussed in chapter 2). • Such excitations are, 

in each of the models, associated with a rotation 

of the order parameter by 211 around a singular line. 

The lines move freely in the medium and their 

topological stability implies that they must satisfy 

a conservation law and cannot, therefore, decay 

spontaneously. 

In the gauge invariant model of chapter 3 such defects 

are associated with singularities of the matter 

field. This induces a curvature of the gauge field 

which tends to screen the distortion field (C) of 

the singularity. In the semidilute regime (when 

the average distance between defects is less than 

the self screening length of the singularity) such 

defects interact via a 1/r potential. 

In a spin glass the excitations are vortices of 

the spin field which rotates by 2II , with respect 

to the ground state configuration, around- the singular 

line. In a Heisenberg ferromagnet such vortices 

are not topologically stable but the noncollinear 

spins of a spin glass has the effect of stabilizing 

line defects with 2n rotations. In an x-y model 

the vortices interact via a 1/r potential but in 
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a Heisenberg model, at the temperatures at which 

the number of vortices is significant, the nonlinearity 

of this model is important and the interaction is 

more complicated. 

As in a spin glass, the "order parameter" in the 

continuum model of a glass is defined with respect 

to a particular low energy configuration. Parallel 

transport of a triad of vectors around a closed 

contour in the reference (low energy) configuration 

may result in a finite rotation of the triad. 

Topological excitations are associated with additional 

2 H rotations. The strain field associated with this 

large rotation is screened by dislocations, which 

are not topologically stable and can therefore be 

created and decay spontaneously. The effect of such 

screening is to cause the strain field to decrease 

as the inverse of the distance from the line, therefore 

the disclinations interact via a 1/r potential, 

as they do in liquid crystals. 

Thus topological excitations, and their interactions, 

are identical in all the models considered in this 

thesis. The argument of chapter 2 is quite general 

and relies solely on the topological stability of 

line defects. The high temperature (T> To) properties 
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of glasses (their relaxation and the Kauzmann Paradox) 

can therefore be satisfactorily explained by a simple 

concept, valid in general. 

Although the intrinsic defects appear reasonably 

similar in the various models considered, there 

are some apparent differences in the models of the 

two level system. In the phenomenological and spin 

glass models the transition between the two con-

figurations is effected by the excitation of a 

topological defect, although in the first case it 

is a gauge transformation (therefore the two con-

figurations always have equal energy) and in the 

second case it is not. In the continuum glass model 

it appears that the transition is effected by the 

excitation of a nontopological defect (a dislocation) 

and the barrier must be energetic (rather than 

topological). This has the effect (as in the spin 

glass case) of reversing the orientation of an intrinsic 

defect line. It has been known for some time that 

the concept of the two level system has universal 

validity in glasses and a direct, overriding influence 

on the low temperature properties. In this thesis 

we suggest specific models for the two level system 

which are a natural consequence of the universal 

features of glass (homogeneity or gauge invariance) 

and intrinsic defects) although it remains to be 

shown whether such models are unique. 
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TABLE 7.1 

CHAPTER 3 4 5 6 

Field Theory 
for: All glasses Spin Glass 

Covalent glass 
(Discrete) 

All atomic and 
molecular glasses 
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TABLE 7.1 Continued 
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Field Theory 
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Covalent glass 
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All atomic and 
molecular glasses 

Gauge 
Invariance 

(3.9) is invariant 

under local rotations 

Cjj is gauge invariant 

4.17is invariant under 
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gauge invariant 
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Closure failure of 

rings of bonds in 

relaxed configuration 

Finite Torsion T ^ and 

Curvature R..: Combine ij 
to form incompatibility 

^ i j : r i i r
( e

i p r
a P

T ^ 

R. .) sym = V W . -ij iJ 



1 

•"0 
OQ 
<V 

Ui On 

CHAPTER 3 4 5 

i 

6 

Field Theory 
For: All glasses Spin glass Covalent glass 

(discrete) 
All atomic and 

molecular glasses 

Cont inuity 
Equation for 
Defects 

Bianchi Identity 

= 0 

Bianchi Identity 

DpF^U = 0 

Torsion Identity 

(Di+2T^ . )t!=-c . n R u 
ji K ilk 

Bianchi Identity 

(Di+2Tj.)Rik = 0 
J1 

and 3.n.. = 0 i iJ 

Two level 
System 

Large gauge trans-
formation centred 
on intrinsic defects 
(excitation of a 
matter field vortex) 

Reversal of orient-
ation of frustration 
line by vortex 
excitation. 

Reversal of orient-
ation of intrinsic 
defect by excitation 
of a dislocation 
loop. 

Topological 
Excitations 

Singularity of matter 
field screened by 
gauge field 

Vortex excitation 
of spin field. 

2n disclination, 
screened by dis-
location. 



APPENDIX 1 

Proof of Equation 6.23 

The strain field Ejk, given by equation 6.21, is 

Ejk = h Sjk " g K L J M- XL k 

or, in the linear approximation (gjk = 6jkJ gKL = 5Kl)» 

Ejk = M 5 j k " 5 k l M _ x K j M-iL k ] ^ A a 

therefore 3.Ejk = 5^(3 ,M~lKj )M~lLk+ M"lKj 

(3 M~lLk)] A.2 

= -%«SKL[<M"lKJL M A
J)(3.M- l Jj)M- l L

k + M-»Kj 

(M"lLJlMS'j)3iM"'lJk ] A.3 

and, using equation 6.5, this becomes 

S

i V • -*SuST]i ( H

~
l K

* M-'
L

W
+
r

k
.(M-^jM-'

L

4
)] A.4 

Keeping only first order terms in and E, this becomes 

3iEjk " "« rkjl + rjkii A" 6 

Now defining E. . ^ O . E j k + ^ i k A 8 ! ^ A.7 

then e . j k = i ( - r k j i - r j k . - r k l . - r i k . + r . j k + r . l k ) a . s 

= % ( t j i k + t i j k - t k j i ) - % r k i j a.9 

° r rkij • - 2 Eijk + ( T k i j + Tijk - v ) A - 1 0 

therefore r , . . = e, . e 3 E . - 3 .E., 
kij kiq nrq n rj j lk 

. T, + e T. - e, . T. ) A.11 
ijp kp jkp lp kip jp 

= -3 .E.. + e, . (e 3 E . -^T. ) 
j lk kiq nrq n rj jq 

+ k e., e e . T A.12 
lkq nrq njp rp 

= -3.E.. + c, . (e 3 E . - T. + \ 5 . T ) A.13 
j lk kiq nrq n rj jq jq pp 
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N o w R k u r 3 j - r k i i - r k i j A - 1 4 

and R s c = % c k i s e J A c R ^ A.15 

= * Gkis GJJLtz 9j r k U A' 1 6 

= h e. , e e. . 3 .(e 3 E -T„ + T ) kis jS/t kiq j nrq n rJL Jtq Jtq pp 

A.17 

A.18 

= e 3- 3 E . - e.nt. 3 .T . _ T nrs jut j n ril jilt j Is jst pp 
A, 

The symmetric part of this equation gives 

e 3. 3 E . = (R-r + 3. T„ ) symmetric nrs jfct j n rZ s c j&t j Jls 3 

A.19 

or n s t = - (Rst + ejj t
 3j ^ g ) symmetric A.20 
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