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ABSTRACT

In this thesis a two-dimensional, time-dependent, two-
temperature fluid model of a partially ionized plasma in an electro-
magnetic field is developed and used to study the physical phenomena in
a closed cycle MHD generator, which utilizes as a working gas an inert
(buffer) gas slightly seeded with an alkali metal. A number of
assumptions, the most important being a small seeding fraction and
negligibly small indirect interaction between the buffer gas and the
electromagnetic field, allow the governing equations to be decoupled
and two independent systems of equations obtained: the gas-dynamic
equations, which govern the gas density, heavy particle temperature and
plasma flow velocity; and the plasma-current equations, which govern
the electron and neutral seed atom densities, the electron temperature and
the current stream function. The latter equations contain terms
relating to finite ion and neutral diffusion, arising from both particle
transport and turbulent fluctuations, and a term describing turbulent
transport of electron energy.

The gas—dynamic equations are solved numerically to describe
the steady-state two-dimensional compressible turbulent boundary layer flow
on each side wall of a generator channel, assuming quasi three-dimensional
flow in the channel. Computed pressure distributions are in close
~agreement with experiment when finite leakage of gas through the
electrode walls is allowed.

Neglecting inlet relaxation effects and assuming quasi-periodic
boundary conditions in the flow direction,the plasma-current equations
are solved numerically in a single segment of the generator for fixed

gas dynamic profiles. The electrode wall boundary conditions are derived



from a collisionless sheath model of the plasma-wall interaction,
including the effects of seed particle adsorption and desorption as well
as electron emission by the electrodes. Whilst the continuity equations
are time dependent, the electron energy equation, 1like the current stream-
function equation, has a steady-state form in accordance with the
assumption of instantaneous electron-temperature relaxation. Numerical
results showing the temporal development of local plasma and current
properties and global generator parameters are presented, thus allowing
the effects of the electrothermal instability, plasma-electrode wall

interactions and gas-dynamic boundary layers to be studied.
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CHAPTER 1

INTRODUCTION

1.1 MHD ELECTRICAL POVIER GENERATION

In magneto hydrodynamic (MHD) power generation a heated electric-
ally conducting fluid is accelerated to a high velocity u in a nozzle
and passed through a channel Tocated in a magnetic field B (see fig. 1.1).
Forces acting on the charged particles in the fluid cause charge
separation, and an induced electric field u A B 1is produced which can
drive a current through an external load connected across the channel.
Denoting the current density in the fluid by J, the resultant magnetomotive
force J A B retards the motion of the fluid. Electrical energy is
therefore produced at the expense of directed energy of motion of the
fluid.

These are, of course, the working principles of conventional
generators,nearly all of which utilize a solid conductor which is
caused to rotate between the poles of a magnet. However, the use of
fluid, rather than solid conductors, allows the elimination of large
rotating components thereby reducing mechanical strength requirements.
This, together with the necessity to employ high temperatures to achieve
acceptable levels of ionization in the fluid, means that the optimum
operating temperatures for MHD generators are appreciably higher than
for conventional power generator systems. As a consequence, MHD
generator systems may be capable of operating at higher thermal
efficiencies, leading to improved conservation of natural .resources,

reduced thermal pollution and lTower fuel costs.



MHD generators can be divided into three main types,
classification being according to the working fluid and anticipated
heat source. Open cycle MHD generators utilize fossil or synthetic
liquid or gaseous fuels, burned with oxygen or preheated air to provide
combustion products at a high temperature (~2500 to 3ODO°K). The
combustion products are seeded with a small amount (about one atomic
percent) of an alkali metal, or a compound of an alkali metal, to give
a high electrical conductivity. After passage through the generator
channel the gas is either exhausted to the atmosphere or passed through
a conventional steam raising plant.

Closed cycle inert gas MHD generators utilize an inert gas
coolant of an envisaged high temperature (1500 to 2000 0K) nuclear
reactor as the working fluid. The inert gas is seeded with an alkali
metal to give a high plasma ;onductivity and after nassing through the
generator, and possibly also a steam raising or gas turbine plant, is
recycled to the reactor. The equilibrium conductivity of the plasma
at a temperature of 1500%K s not sufficiently high, but by the use of
pure monatomic gases the electrical conductivity may be significantly
enhanced as a result of non-equilibrium ionization. This effect will
be considered later in this chapter.

The third type of MHD generator, the closed cycle Tiquid metal
MHD generator, lies outside the scope of this thesis.

Of the two types of MHD generator described above, open
cycle MHD generators are closest to practical realization. As long ago
as 1965, operation of a 32 MU alcohol-fueled generator with run times up
to three minutes was achieved in the United States(]). In the Soviet
Union tests on a 75 MW (25 MW from MHD and 50 MW from steam) pilot plant

burning natural gas, the U-25 experiment, began in 1971.



There are several advantages to closed cycle MHD power
generation over open cycle. First, a very pure gas system can be used
thereby ensuring that the erosion of channel materials by chemical action
is kept to a minimum. Second, the operating gas temperature can be
comparatively Tow (1500 to 2000 OK), an acceptable level of electrical
conductivity being achieved by non-equilibrium ionization due to elevation
of the electron temperature above the gas temperature (see section 1.3).

However, in contrast to open cycle MHD power generation, much
experimental and theoretical research remains to be done before practical
realization of closed cycle MHD power generation can be achieved. This
is because of the technological probleméz)’(BZinvo1ved in the continuous
operation of a closed cycie MHD power generator, and the difficulties of
realization of a high temperature gas cooled reactor with a coolant
temperature of at least 1500%K. Also, numerica]lmodelling of closed cycle
MHD generators has yet to reach the degree of sophistication achieved
in the case of open cycle MHD power generators(5).

Whilst much progress has been made in solving the aforementioned
technological prob]emé3)’(4) relatively Tittle progress have been made
in the development of numerical models of the degree of sophistication
required for the unique interpretation and accurate prediction of results
of experiments performed on closed cycle MHD power generators. The
main objective of this thesis is to develop a numerical model of closed
cycle MHD generators that incorporates much of the relevant physics
previously considered only for open cycie generators, and that can

be used to interpret and predict results obtained in experiments performed

under certain conditions.



where the flow velocity is taken to be uniform and in the x-direction;
/ ./ _/

i.ey wus= (ux}o, 0)) so that, Eyx-= Ex) lij"' EJ‘UxB and L’L =£Eq.

The electrodes in fig. 1.1 are taken to be parallel and attention is

restricted to two-dimensional current distributions for which J;:o-—fz/

Taf
e = !;g/}

so that the current density is inclined to the total electric field E/

and

at the Hall angle tan_]pe .

The electrodes shown in fig. 1.1 are segmented, separate
loads being connected between opposed electrode pairs. If, instead,
the electrodes are continuous, f,/: Ex=0 and egns. (1.3a) and (1.3b)

yield

— be /
Ty = —()-fpf) (36 ;_:j (1.4a)

and

— Jo

and the maximum power delivered to the external load per unit volume of

/ | (1.4b)

the generator P”""/“ is given by
2,2
0 ux B

’?vmx = 5‘(""%6;)

It is clear from eqns. (1.4) and (1.5) that the Hall effect reduces the

(1.5)

magnitude of Jj and P,m)‘ by a factor of (Hpez)-, and results in
the appearance of a Hall current which flows downstream in the gas

and returns upstream through the electrodes. However, if the electrodes
are infinitely finely segmented there can be no x-component of current

either in the electrodes or in the gas so that Jy=¢ . Fromeqn. (1.3a)



1.2 SIMPLE THEORY OF MHD POWER GENERATORS

The basic theory of operation of a closed cycle MHD generator
is very simple. We consider an Ohm's law for a uniform plasma in the

form

/

T =E'- TABe (éa-(Be_B/LBI) (1.1)

/ e . . )
where E° , the electric field in the rest frame of the flowing gas, is
given in terms of the electric fie]dlg in the laboratory frame by the
equation

E£'= F+uaB (1.2)

The quantities ¢, and (3e are the electron conductivity and electron
Hall parameter, respectively (often referred to here as simply the
conductivity and Hall parameter). As we shall see in chapter 2,

eqn. (1.1) assumes a negligible ion Hall parameter and ion current,and
that thermal diffusion effects can be neglected. The second term on

the right-hand side of eqn. (1.1) represents the Hall effect, which

is usually important, since, for typical generator operating conditions,
e 2 1 . Taking the magnetic field to be uniform and in the z-

direction, the components of eqn. (1.1) are

]

% o
Jx = Utfe”) (fx‘ﬂefj/), (1.3a)

4

%
Ty = (ivgd) (Ey +pe EX), (1.35)

and

o= 0 b/, (1.3¢)



it can be seen that this configuration leads to the build up of an

electric field in the x-direction, the so-called Hall field

Ex= (36 Ej/ (1.6)

and eqn. (1.3b) gives

:{5 =le Ezﬁ/ (1.7)
which is identical to the y-component of eqn. (1.1) in the absence of
the Hall effect. Also fLux has the value assumed in the absence of
the Hall effect:

z}’uxg
ﬁLAY = %# (1.8)
The generator configuration described above is called a

segmented Faraday generator. However, the action of the Hall effect in
building up an axial electric field (see eqn. (1.6)) makes possible
another generator configuration, called a Hall generator, in which
the axial field is used to drive a current through a load connected
between the upstream and downstream electrodes. In this generator
configuration opposed electrodes are shorted; i.e., Eb =0 , SO
that, as can be seen from eqn. (1.3a), the voltage developed across
a given load is a maximum. The open circuit electric field for the

Hall generator is obtained from eqn. (1.3a) as

fx = —Peﬂxg
and the maximum power density is, in this case, given by
32 z

me = (;{;:)

which approaches that of a segmented Faraday generator for large

Hall parameters.
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Descriptions of other possible generator configurations can
be found in reference (1). In this thesis attention will be confined

to segmented Faraday generators.

1.3 SIMPLIFIED DESCRIPTION OF THE PLASMA STATE

In this thesis the working fluid of the MHD generator is assumed
to consist of helium gas (buffer gas), slightly seeded with caesium.

For conditions characteristic of MHD generators, the plasma can be
assumed to consist of four components: electrons, singly charged seed
ions, seed atoms and buffer gas atoms. A simplified model of the
plasma is presented in this section; a more complete model will be
formulated in chapter 2.

In the flowing plasma of a closed cycle MHD power generator,
electrons are accelerated by an induced electric field, and the energy so
gained dissipated in elastic collisions with monatomic heavy particles.
However, because of the inefficiency of energy exchange in elastic
collisions between particles of disparate mass, an appreciable elevation
of the electron temperature T, above the heavy particle temperature T
is possible. This electron temperature elevation is described by
the electron energy equation (see section 2.5), which, in its simplest
form,expreéses a balance between the volumetric rate of gain of energy
by the electron gas from the electromagnetic field, the Ohmic
dissipation jf(if-, and the volumetric rate of loss of energy of

electrons in elastic collisions with heavy particles, denoted byle .

Thus we write

E'T=le

or, using eqgn. (1.1),

e
v /@:L‘ ' (1.9)
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As will be shown in chapter 2 (see egn. (2.31)), Zf? is given by
.y e
Le = Sekg (TeT m, ek (1.10)

where V) 1is the electron-buffer gas atom momentum transfer collision

frequency given by
Vel = Ce (el M), (1.11)

where ¢, is the root mean square speed of electrons (r?ky’ﬂi/ﬁjwe):ha%A/
is the electron-buffer gas atom momentum transfer cross-section, and nj
is the buffer gas atom number density. The electron conductivity Je

and electron Hall parameter ﬁQL are shown in chapter 2 (see egns. (2.209)

and (2.111)) to be given by

Oe = ”eez/mevek (1.12)

and

fe = B /’Wle\?ck (1.13)

In general, the electron energy equation in the form of
eqn. (1.9) is valid only if the plasma is in a uniform and steady state.
As will be seen in chapter 2,the free electron density is in this case

given by the Saha equation; that is,

QTMeA’; ]J
s (e &l’[ k,,u (1.14)

the validity of which will be discussed further in chapter 2 (see

section 2.5). In eqn. (1.14)’the seed atom density 7, is written

in the form

’}7‘7:”‘10 - ”e
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where My, is the seed atom density of the unionized gas, it being
assumed that the plasma is quasi-neutral. The density Mu, is a

free parameter, the value of which is specified by giving the seeding
fraction X , where

WWO MH+”€

A= Ny, N

(1.15)

The seeding fraction is generally small for closed cycle MHD generators.
The reason for this is the relatively large electron-seed atom cross-
section for momentum transfer, which results in a decrease of ¢ with
increasing X for quite small values of‘}( , the electron-seed atom
momentum transfer collision frequency being added to Veh in eqn. (1.12).
This decrease of dp with increasing X 1is due to the increase of total
electron collision frequency dominating the increase of electron density
in egn. (1.12). For a given heavy particle temperature T and
pressure p , and a given Te , there exists a maximum in 02()g) at
a small value of X . Typical seeding fractions used in experiments,
and therefore used in this thesis, are small enough for the effects of
electron-seed atom collisions to be completely negligible. However,
there remains the possibility that electron-electron or electron-ion
(Coulomb) collisions can be important. This will be considered in
detail in chapter 2, where it will be shown that the assumption that
electron-buffer gas atom collisions dominate Coulomb collisions,
which is made here, is justified only for sufficiently low electron
temperatures.

Using eqns. (1.10) - (1.15) one can calculate the parameters
Te,Me,M , 0e and fpe » SO that the plasma state is fully defined for

a given [T]| , F,T’and’X . We consider as an example the current
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density in a segmented electrode generator flowing under short

circuit conditions:
J,= - Teld
v J Q)(B
which is obtained from egn. (1.7) by settling Eajz o . Egn. (1.9)
yields a quadratic for (7%/1) whose physically significant root is

given by

™ | / AU, BT wi,
e ! I
p— QL'{" + /1 GpFme Kok (1.16)

. -2
Taking B=0.) T, Ux= 1200 M,dec"' p= 9. 32XWL7LV) My X =0 002, and T= 1500 %k,
ean. (1.16) yields T, = 1783%K and, from eqns. (1.12) and (1.14), we

4

find that me =3.8x)p' w3 and 0% = H® mhow  The equilibrium values

of Me and O , obtained by setting Te=T=1600% in eqns. (1.12) and
(1.14), are found to be 3.1 x 10]7 m_3 and 0.1 mho m-] respectively.
It is clear that non-equilibrium ionization can result in ionization
and conductivity levels considerably higher than those achieved if the

plasma were in equilibrium.

1.4 EFFECTS IN CLOSED CYCLE MHD GENERATORS

In general, the ideal behaviour of a non-equilibrium MHD
generator predicted by the simple theory presented in sections 1.2 and
1.3 is not in accord with experiment. In particular, the appreciable
enhancement of conductivity as a result of non-equilibrium ionization
is difficult to observe experimentally. In reality, the theoretical
description is greatly complicated by the existence of a large number of
interacting physical mechanisms, which have important effects on the
plasma and electrical behaviour, and, consequently, the overall generator
characteristics.

The extent of departure from the ideal generator behaviour as a
result of these effects can be stated quantitatively in terms of the

effective conductivity ooff and the effective Hall parameter Beff

defined as follows:



"'Zf'“

IO EIULPD SR SRV PE S Y

I " H

Teff = (V, + H<uy>B) WL

and

=

Baff = x (T)
eff —('Vy ¥ H<uy>B$
H .

where I = - WL<Jy> is the load current, Vy = - fﬁEqu 1sche Faraday
voltage, Vy= - {fExdx is the Ha]]:yo]tage, and <uy> = L) quy. The
lengths W, H and L are the generator width, height and segmentation length
respectively. "

: ' For a uniform plasma

carrying a uniform current, it can be shown from egns. (1.3) that

ﬁé}{—' o and FQHFF . However, as a result of non-uniformities
in plasma properties and the current distribution the ratios Qﬁﬁ/?@)
and @e+}/ZP) are not equal to unity.
The physical mechanisms that will be considered in this thesis
are discussed in the following subsections. Descriptions of other

effects, not considered here, can be found in reference (24), for

example.

(a) Non-uniform Current Distribution

The simple theory of segmented electrode generators,formulated
in sections 1.2 and 1.3, in which J%= . constant and Cﬂk:ro assumes
the ideal case of infinitely segmented electrodes and a uniform plasma.
In practice, the electrodes have finite dimensions and the Hall effect
leads to a non-uniform current distribution.

In an open cycle generator the effect of this non-uniformity
on the plasma parameters is small and the current distribution can
often be taken to be governed by the equation for a uniform plasma; that
is, Laplace's equation. This problem can be solved ana]ytica]]y(6).

The main feature of the obtained solutions is the prediction of large
current concentrations occurring on the downstream edge of the cathode,

and the upstream edge of the anode of a given electrode pair. This
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non-uniformity of current distribution results in an increased
internal impedance compared with the ideal theory; i.e., @gf/Q0> (1
In a closed cycle generator the non-uniform current flow
causes non-uniformities in the plasma parameters, and the equations
governing the current distribution and the plasma parameters are
strongly coupled. In this case,the current distribution and the
distributions of plasma parameters must be obtained simultaneously,
and, because of the non-linearity and complexity of the problems,
numerical methods of solution must be employed. Further complication
is introduced by the existence of the electrothermal instability,
discussed in the next subsection, which makes the problem time dependent

in the unstable regime.

(b) The Electrothermal Instability

Fluctuations of the electron density and electron temperature
about the uniform steady plasma state considered in section 1.3 propagate
as waves called electrothermal waves. These waves consist of two modes:
the fast thermal mode, which is always heavily damped, and is of little
physical interest; and the ionization mode, which is unstable under
certain conditions. A detailed linear analysis of these waves has been
carried out by Nelson and Haines(7). It is found that the ionization
mode is unstable for be greater than about 2, and that the growth

rate depends on the orientation of the wave vectorﬁ' , defined by the

angle J: k B
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having a maximum at & ﬁanq-. This instability is referred to as the
electrothermal instability.

In a closed cycle MHD generator, non-uniformities in the
current distribution and ohmic heating, described in the previous
subsection, cause non-uniformities in the plasma parameters. As a
result, the electrothermal instability can occur if the Hall parameter
exceeds the critical value. With a growth time of 10-6 sec, which is
typically much less than the time spent by the gas in an electrode
segment, the instability can grow into the non-linear phase. This
means that the full equations governing the plasma and current
distributions in a segmented electrode channel must be solved in order
to determine accurately the effects of the instability on generator
performance. As mentioned in the preceding subsection, the complexity of
this problem necessitates the employment of numerical methods of
solution. A number of authors have considered this problem, but the
most complete work to date is the two-dime sional time dependent
numerical model by Unc]es(8). The most important result of the
latter work is the prediction of current flow along high conductivity
streamers transverse to the gas flow at times long enough for the
non-linear phase of the instability to become fully developed. In
the presence of these streamers the effective conductivity is increased
by a factor of two over a uniform plasma case ofthe same geometry with
conductivity and Hall parameter equal to the average values for the
non-uniform case.

By virtue of the collisional coupling between the electron

properties and heavy particle properties sfluctuations in the electron

properties are coupled to fluctuations in the heavy particle properties.
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The latter fluctuations, called magnetosonic waves(g), are sonic

waves distorted by the fluctuating J a B force and Ohmic heating and
can be unstable under certain conditions. However, the characteristic
time for this instability is about 10_3 sec, which is typically much
larger than the time spent by the gas in an electrode segment, so that
the magnetosonic instability is of no importance in the case of non-
equilibrium generators.

When the energy coupling between electrons and heavy particles
is strong, so that Te=7 (over much of the gas flow), only magneto-
sonic waves exist. This means that the operation of equilibrium (open
cycle) generators is usually stable, magnetosonic waves causing relatively
insignificant fluctuations in the fields and plasma properties.
Consequently, the local behaviour in such devices can usually be

considered as independent of time.

(c) Turbulent Boundary Layers and Turbulent Transport Processes

For flow conditions characteristic of MHD power generators, the
gas flow in an MHD channel is of a compressible turbulent boundary layer
character over much of the channel 1ength(2])’(22)’(23)’(24)-In other words,
the overall properties of the gas; namely, the total mass density L
the total pressure p , the flow velocity u and the heavy particle
temperature T, are governed by equations describing the development of
turbulent boundary layers on the electrode walls and insulator side
walls of an MHD channel. These equations are derived from the overall
conservation equations for the partially ionized plasma by making the

(21),(22),(24)

well known boundary layer assumptions ,allowing for turbulent

transport processes. The latter assumptions are not usually invalidated

by the presence of a highly non-uniform current distribution, because
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the J A B force and Ohmic heating can cause only slight streamwise
variations of the overall plasma parameters in one segment of the
generator. In other words, interaction lengths are typically much
larger than the segmentation length. An exception to this is boundary
layer separation caused by a strongly retarding J A g_force(23heg).

In the wall boundary layer regions, significant elevation of
the electron temperature and the electron number density above the gas
temperature and corresponding equilibrium number density is nearly always
present, even in the case of equilibrium generators. This is due to
the fact that, for a given current density, the electron temperature
elevation is inversely proportional to the square of the electron
density, which is relatively small in the cold boundary layers close
to the walls. Therefore, even in the case of equilibrium generators,
the boundary layer equations must be supplemented by an electron
continuity equation and an electron energy equation, as well as any
other sbecies continuity equations required to define the composition
of the plasma. These equations, like the overall conservation equations,
are time averaged over turbulent fluctuations. Terms then appear which
depend on correlations between velocity fluctuations and species number
densities in the case of the species continuity equations, and
correlations between velocity fluctuations and electron enthalpy
fluctuations in the case of the electron energy equation (see
references (25), (26) and (17)). These terms represent transport
of particles and electron enthalpy by turbulent fluctuations and are
subjected to the boundary layer approximations. As in the case of
the overall conservation equations,a method of relating turbulent

correlations to mean flow quantities must be specified.
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In the case of open cycle MHD generators, a sufficiently
high degree of accuracy can usually be achieved by taking as the
equations governing the Tocal plasma behaviour in the channel the
steady state forms of the turbulent boundary layer equations, and the
continuity and electron energy equations, the Tatter being similarly
subjected to the boundary layer approximations(zs)’(26)’(]7). Also, as
shown in reference (40), sufficiently accurate results can in many
cases be obtained by employing some simplifications when solving for
the electric and current fields; for example, the assumption of
infinitely fine segmentation or the use of Laplace's equation for
the current field, as mentioned in subsection (a).

However, as indicated in the preceding subsection, the full
time dependent equations governing the current and plasma property
distributions must be considered in the case of closed cycle MHD
generators. The problem is further complicated by the necessity of
having to consider a time dependent system of turbulent boundary layer
equations. The complete problem in this case has not been considered.
In particular, turbulent boundary layers are not considered in the

(8)

work of Uncles .

(d) Plasma-Wall Interactions, Electron Emission, Seed Deposition

and Sheath Effects

The accuracy with which the behaviour of the plasma and
electrical fields in an MHD generator can be described, and overall
generator characteristics thereby predicted, can depend to a large
extent on the accuracy with which the interactions between the plasma
and the containing walls can be modelled. At the present time there
exists no exact theory of these interactions applicable to either open

or closed cycle MHD generators.
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Simplified theoretical models of plasma-wall interactions
have been developed and the derived wall boundary conditions used for
the numerical modeling of MHD generators by a number of authors (see
references (16), (17) and (25), for example). Most of these studies
assume the existence of collisionless sheaths in contact with
non-emitting electrode surfaces. The effects of electron emission
are considered in reference (25). Also considered in reference (25)
are the effects of finite ion diffusion currents, which can be
significant in the boundary layer regions where temperature gradients
are large.

In the case of closed cycle MHD generators an important effect
is the interaction between an electrode surface and seed particles.
The essential feature of these interactions is the large affinity
between the alkali metal and the surface. Practically all incident
seed particles (ions and neutrals) are adsorbed to the surface and
desorption takes place after a certain residence time. The adsorbed
atoms strongly influence the rate at which electrons are emitted from
the surface as well as the rate at which ions or atoms are desorbed.

Boundary conditions for the continuity equations, incorporating
electrode-seed interaction effects, were -first formulated by Sajben(zg),
assuming a collision dominated sheath. These were later used by

(30) to solve numerically the continuity equations,

Koester et al.
restricting application to a tungsten cathode in a laminar stagnation
flow geometry. An important result of this work is that, as a result of
the  plasma-surface interaction, electrode currents can be passed,

at moderate voltage drops, which are greatly in excess of the electron

current emitted from the surface under conditions of thermal equilibrium.
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In all the above studies, the plasma is assumed to be in
a steady-state, and plasma-wall interactions have not so far been
considered in time dependent numerical models of closed cycle MHD

generators.

1.5 DESCRIPTION OF PRESENT WORK

Theoretical and numerical models of open cycle MHD generators
have reached the degree of sophistication needed for quite accurate
quantitative agreement between theory and experiment to be obtained(zqugs).
However, the modelling of closed cycle MHD generators is a considerably
more difficult problem, and studies in the past have neglected a
number of important physical effects. Much work remains to be done
before accurate numerical predictions of the performance characteristics
of closed cycle MHD generators can be made. At the‘time of writing
this thesis, the most advanced work appeared to be that of Unc]es(&xS),
mentioned in subsection (b) (see section 1.4). In this work, effects
of turbulent boundary layers, finite ion and neutral diffusion, and |
plasma-wall interactions are neglected.

In this thesis a time dependent theofetica] and numerical
model of a closed cycle MHD generator is developed incorporating physical
effects previously considered only in steady-state theories of open
cycle MHD generators. The present theory is an initial step towards
the development of a theory having the ability to give accurate
predictions of the performance characteristics of closed cycle MHD
generators. It may also be regarded as an extension of the work of
Unc1es(8) to include the effects of turbulent boundary layers and

turbulent transport processes, finite seed ion and seed atom diffusion,

and plasma-wall interactions.
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The basic theoretical model is developed in chapter 2 in
which a number of assumptions are made that allow the governing
equations to be decoupled into two independent systems of equations:
the turbulent boundary layer equations; and the equations governing
the plasma and current distributions. A simplified description of the
flow in a MHD generator channel of rectangular cross-section is then
developed by assuming a steady-state two-dimensional flow on each of
the side walls of the channel. This is followed by the development of
a two-dimensional time-dependent description of the behaviour of the
plasma and current fields in a single segment of a linear segmented
electrode MHD generator operated in the Faraday mode. Inlet
relaxation effects are neglected and, in the derivation of the relevant
wall boundary conditions, the existence of collisionless sheaths on the
electrodes is assumed. This sheath analysis incorporates seed-electrode
interaction effects.

In chapter 3 the numerical method of solution of the turbulent
boundary layer equations is developed and applied to a real experimental
MHD generator system, the IRD test facility. Comparison between a
computed and an experimentally measured pressure distribution is
attempted.

In chapter 4, the numerical method of solution of the two-
dimensional, time-dependent model of the plasma and current behaviour
in a single segment of an MHD generator is developed. Numerical
solutions of this problem are finally presented and analyzed in
chapter 5.

Emphasis in the present work is placed more on the formulation
of the physical model and the development and testing of appropriate

numerical methods of solution, rather than the analysis of results



~23-

obtained for various generator operating conditions in terms of the
various acting physical processes, which is left for future studies.
Thus, the boundary layer solutions presented and discussed in

chapter 3, and the solution of the plasma and electrical problem in

chapter 5 are for only one set of generator operating conditions.
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Fig. 1.1: Segmented Electrode Faraday Generator
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2.1 IVTRODUCTION

In this chapter a two-temperature fluid nodel of a partially
ionized plasma in an electromagnetic field is formulated in order to
describe the local behaviour in a closed cycle MHD generator, which
utilizes as a working gas an inert gas (helium) slightly seeded with
an alkali metal (caesium). The governing equations of this model can
be obtained by multiplying the Boltzmann equation for each component
particle species of the plasma (seed ions, seed atoms, buffer gas
atoms and electrons) by the particle mass, momentum and eneréy, and
then integrating over velocity space. The equations so obtained are
the species conservation eipations for mass, momentum and energy, and
in a fluid description they are assumed to be sufficient to describe
the evoiﬁtion of the instantaneous local macroscopic state of the
plasma; the state of the plasma is then defined by specifying the
number density of each species and its characteristic temperature,'and
the mean mass velocity of the plasma. For a fluid description of the
plasma each species is thus regarded as a separate fluid coexisting
with and interacting with the fluids of the other species. A necessary
condition for the appiicability of such a description is that the plasma
be collision dominated; that is, the mean free path for particle
collisions for all species be much smaller than the characteristic
length scale for macroscopic change, and that the particle collision
intervals be much smaller than the characteristic time scale for macro-
scopic change. When these criteria are satisfied the distribution- function
of each heavy particle component of the plasma differs little from a
Maxwellian distribution at a temperature T. For the electron distri-

bution function to differ little from a Maxwellian distribution at a
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temperature Tg it is necessary, in addition, that the electron density
be large enough for electron-electron collisions to be sufficiently
frequent for the electron energy distribution to be little affected
by collisions of electrons with heavy particles, and that the energy
gained by an electron from any external electric field be typically
smaller than the mean electron thermal energy. Because of the ineffic-
iency of energy exchange in elastic collisions between particles of
disparate mass (when the heavy particles are monatomic), T, may differ
appreciably from T (heavy monatomic particles of different species have
comparable masses so that energy exchange in elastic collisions betwéen
them is efficient and they may all be taken to be at the same temper-
ature T). The aforewmentioned conditions are satisfied for conditions
characteristic of closed cycle MHD power generators.

The species conservation equations contain terms depending on the
particle diffusion velocities U; , the viscous stress tensors g, and the
heat flux vectors a4 which relate to the transport of particles,
momentum and energy, respectively, in the local frame of referehce moving
with the mean mass velocity of the plasma. In addition, these equations
contain velocity moments of collision integrals, représenting rates of
change due to elastic collisions; terms representing rates of change due
to inelastic collisions, and terms representing rates of change due to
interactions between particles and the external electromagnetic field.

All these terms can be calculated using approximations for the distribution
functions which enable the transport quantities U, Ts and &sto be
calculated in terms of transport coefficients., The conservation equations
then form a closed system when taken together with Maxwell's equations

for the electromagnetic field.

A considerable amount of work has®been devoted to the development
of methods of approximation of the particle distribution functions and
(0, (o)

the calculation of transport coefficients Two methods have been
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developed for fwo—tr“perature (T.#T ) rartially ionized placmas. Cne
rethod, describod in reference (1), utilizes the classical chapman-

Fnekog method of approximation to calculate the transport coefficients
appearing in the expressions for Y , q¢ and Ts to arbitrary levels of
approximation by expansions in terms of Sonine polynomials; the order
of the approximation is equal to the number of terms used in the Sonine
polynomial expansion. Vhilst this method allows transport coefficients
to be calculated to any order of approximation, expressions of general
validity are not obtained for orders of approximation higher than the
Tirst in th= case of partially ionized plasmas.

The second method is based on the application of Grad's 13-
monent approximation and is discussed in reference (10) and the
references cited therein. It has been shown to result in closed forms
of the distribution functions, which include explicitly the transport
quantities]& v Qs and ¥ . The expressions obtained for the itransport
coefficients are consistént with the results obtained in the second
approximation of the first method. Unlike the first method, hcwever,
these expressions can be obtained in general forms applicable to partially
ionized plasmas of arbitrary composition.

The second method will be used in this chapter to derive general
expressions for the trarsport properties of a partially ionized plasma
consisting of four components: buffer gas atoms, seed atoms, seed ions
and electrons, seeding being assumed slight. Wwhen seeding is slight, the
transport properties of interest are the species diffusion velocities,
the electron heat flux vector and the transport properties of the neutral
buffer gas. Thevexpressions for the diffusion velocities so derived
should be sufficiently accurate for many engineering applications; in
particular,closed cycle MHD power generation, the application of interest
in this thesis.

Although the assumption of slight seeding results in considerable

simplification of the transport properties and the governing fluid

equations, further simplifications have been found to be necessary
because of the large demands made on computer resources (storage and
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time) by the numerical models of chapters 3 and 4. Thus, electron-
buffér gas atom collisions are assumed to dominate coulerbk. collisions,
and approximate expressio.s for the transport properties, which are
consistent with the lowest order approximations of the Chapman-
Enskog approach are used. In addition, thermal diffusion is neglected, and
the ion " Hall parameter is assumed to be much less than unity.‘
Finally, the overall conservation equations

are decoupled from the equations governing the other species by
neglecting the ILorentz force terms in the overall momentum equation
and the term representing energy loss of heavy particles due to slastic
collisions with electrons in the overall heavy particle energy
conservation equation. Because of the assumption of slight seeding,
the overall momentum and he;tQ:i;ergy conservation equations are then
approximately the seme as for a gas consisting of buffer gas atoms
only; these equations are referred to here as the 'gas dynamic'
equations. The plasma equations consist of the electron and seed atom
continuity equations and the electron energy equation.

It is well known that the flow behaviour in an MHD generator
channel is typically of a turbulent boundary layer character. The
.gas dynamic equations are thus considered in simplified form in
accordance with the boundary layer approximation,and steady state flow
equations are obtained by averaging over turbulent fluctuations,
assuming that the flow is steady on the average. Terms representing
the transport of mean flow momentum and energy by turbulent fluctuations
appear in the time averaged equations, and these are related to mean
flow quantities and their gradients by means of eddy transport
coefficients as in reference (11). A two-dimensional description
of the flow in an MHD generator is then formulated by considering the
flow in terms of two~dimensional boundary layers on each of the

channel side walls.
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The aforementioned plasma and gas-dynamic equations must be
supplemented by equations for the electromagnetic field. These are
obtained in this chapter from Maxwell's equations assuming that the plasma
is quasi-neutral, and that any induced magnetic field can be neglected
in comparision with the applied magnetic field, which is assumed to
be uniform and constant. Taken together with the generaiized Chn's
law, these cquations are referred to here as the 'electrical’ equations

A description of the behaviour of the plasma and current fields
in a single segment of a linear segmented electrode MID channel, using
the derived plasma and electrical equations is finally considered.
Current flow along the magnetic field is neglected and all quantities
are assumed to vary only in a plane perpendicular to the magnetic
field. 1In addition, the gas dynamic parameters, which are obtained by
solution of the boundary layer equations are assumed to be functions
only of the cross-stream coordinate, variations along the flow being
neglected.

Finally, the boundary conditions for the plasma and electrical
equations are derived, assuming the existence of collisionless sheaths
on the electrodes. This sheath analysis incorporates seed-electrode
interactions.

Whilst the governing equations obtained by making the aforementioned
simplifications are 1imited in accuracy, they should never~the-less
form the basis of a fairly accurate description of the main features
of many physical phenomena occuring in closed cycle MHD power generators
operated under certain conditions. Moreover, comparision with the
work of other authors can be more easily made and the numerical
techniques used to solve the equations more easily developed and

tested.
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2.2 CONSERVATION FOUATIONS

The plasma formed by addition of a small amount of alkali metal
to an inert gas, is assumed to consist of four components: electrons,
singly charged seed ions, neutral seed atoms, and neutral buffer
gas atoms.

The species conservation equations for mass, momentum and energy
are obtained by multiplying the Boltzmann equation for each of the
components of the plasma by the particle mass, momentum and energy,
and then integrating over velocity space. The resulting equations are
(see reference (1)), for species o particles (d =e,1,n, h),

‘g% TV (a1 “'%A-&p[ﬂhﬂ 'f‘é&-’é« (2.2)

D(p
ﬁ;(lk) (2.2)

Vg~ Maeu (E/4 U AB) +€d%%

o[ Vn + (L-V)u] =g7 Ao €]+ My

and

D(

p‘E@‘&'LrV_z.( Myt W EN 4 MJ,,-%% (2.3)

2 >
+ 0« € V.4 + px: Vuy :(;sz"(‘ [l,_m.(c]{—m

wher D ©° R0
e 5075t (0.0) (2.4)
and (2.5)

E = £+unb

are the time rate of change and electric field, respectively, in the
frame of reference moving with mean mass velocityu of the plasma.

In equations (2.1) - (2.3),(:4=Md_n,( , N Uyand & are the average
speciesed mass density, number density, dAffusion velocity and
kinetic energy per unit mass respectively. In general, the average

of any velocity dependent function @ (€) ~ for species « is given by

0.~ j 804 (0)d% @8
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vwhere thel 't ~tLinnis over the whole of velocity space and _’f,,( (_C_)
is the species o« velocity distribution function, which is assumed

to satisfy the normalization condition

j }x (QMgg =| (2.7)

The quantities (0,,( ) Mol Ur and E;( are obtained from equation (2.6)
when __@( is set equal to myny, Mx, C andi'gz respectively. The
average species « kinetic energy per unit mass can be written in
terms of the species « +temperature:
€x = .{(Z:).e—“fzé_;%_’: (2.8)

The average energy per unit mass & ) should include a contribution
due to particles being in various internal energy states. In the case
of interest here this contribution should be included for the
neutral seed atoms. However, it can be shown (see section 2.5) that
the population densities of the various excited energy levels can be
neglected relative to the population density of theground state, which
can therefore be taken to be equal to the total neutral seed atom
density, and the internal energy of a neutral seed atom taken to be
constant, this constant is set equal to zero in £‘n.

In equation (2.6), the velocity C is the so called peculiar
particle velocity; it is the velocity of a particle with respect to
the frame of reference moving with the mean mass velocity of the

plasmaj that is,
C <c-ulnb (2.9)

where ¢ is the particle veloc4ty in the laboratory frame of reference,

and u is the mean mass velocity of the plasma, given by

Z oz Wt
U = -—Zf?; ) (2.10)

where Uy is the average velocity of species of particles obtained from
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i ) _ . Sc _— 4%c
equation (2.6) by setting @/9 , noting that A'C =a&'C .
By definition of Uy ,

Uu = -2 (14) (2.11)

and it follows from (2.10) that

Z()A_Lso (2.12)

The species of heat flux vector 9y and momentum flux or pressure
tensor_g( » which appear in equations (2.2) and (2.3), and give the
fluxes of translational energy and momentum transported by speciecel
particles in the frame of reference moving with the plasma are defined

by the following integrals over velocity space:

9= ;’/L@x (EQ_E)« (2.13)

and

ﬁ‘ = (Z‘_g_)d (2.1%)

The scalar partial pressure B( is defined as

- ! z
P =3 FQE() = 3 (&) (2.15)
and)using (2.8), can be written in temms of-]; as follows:
P’( = M kﬁﬁ (2.16)
which is the equation of state for the species o component. The species

viscous-stress tensor ;Cd is defined as
L=~ (.E" i) - (2.17)
wherel is the unit tensor.
2
In equations (2.2) and (2.3), 2 A, [m,(gand ZA‘( B_'m,(CJ
pre P g <P

are the mean rates of change per unit volume of momentum and trans-
1xtional energy of speciesaparticles due to exchange of momentum and

energy in elastic collisions with particles of different species.

These quantities are given by the equations
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24

PZ#;(A‘(@["&Q:[;W% ij,((c C))( (C)f(s(\{ 350[50!601?60!3\/\/ (2.18)

ZA@['WCJ Z’le"l(; ”/md (¢~ c?)EAo) )((,(ijbdedcdw(z -19)

—od “a
where.g and g are the velocities of a species « particle beiore

and after a collision with a species(z particle which is initially
moving with a velocity W; g is the relative speedlg-—yy’ of the
particles; b is the impact parameter for collisions between sp=cieseof
and species ¢ particles, and E is the angle of scatter of species«
particles; that is, the angle between the relative velocities of the
particles before and after a collision.

The quantities fL , hd and AL’, are the net rates of increase
per unit volume of the mass, momentum and energy, respectively, of speciesd
particles as a result of inelastic collisions. For the particular
plasma conditions of interest here, excited states of ions and buffer
gas atoms can be neglected and the relevant inelastic collisions are
between electrons and seed atoms in various levels of electronic
excitation that communicate energetically only with the free electrons
and by emission and absorption of radiation. Of the quantities ki ’

)V'l,( and !‘}p( , only‘é( (0(=e,l:,n)and /\78 are significant, the other
quantities being negligible. Expressions for the significant inelastic
collision terms will be presented in section 2.5 .

The overall conservation equations for the plasma as a whole can
be obtained by summation of equations (2.1) - (2.3) over all species
in the plasma. The overall conservation equations for mass and momentum
are obtained in this way, but the overall heavy species energy conser-

vation equation, obtained by summation of equations (2.3) over the

heavy species in the plasma is of greater interest here. The
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resulting conservation equations are

g% T V'Fﬁfo (2.20)
D!_/ <y
Poe="VP+ VT +pPpE +T48 (2.21)

Du
% (Ze{”“cu) t ()Zf& £ ﬁZFx)V&&E' Dt

= -V. (Z_@,() t ;Q:Vg +g;-_§’ “"{;ZA:,HBWC?] (2.22)

where p= Z(Q is the total mass density, and (OC=- Zea( N = € Cw‘:’ne)
=

and T=ZmegWe=Ti 4 Je= e(nli-melk),

where e is the maynitude of the electronic charge, are the total charge

and conduction current densities respectively. In equation (2.21)

use has been made of the definitions

= 2T
z o =X (2.23)

and
P= Z k (2.2)

of the viscous stress tensor and scalar pressure for the plasma as a
whole. In deriving equations (2.20) - (2.22), use has also been made of
the relations Z().J_Lso and
o
| 2
D, 2 Mx C ] =D
o
< 6 A‘((’ [:.z p)

the latter allowing us to write

7. 2, Ag [Ine] ”/;Ae@ [Am.c*]

in equation (2.22)
The absence of terms in equations (2.20) «l(2.2!) representing
the effects of inelastic collisions results from the conservation of

particle mass and, as mentioned above, the smallness of the inelastic
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collicion terms in equations (2.21).

It is assumed here that the conditions for applicability of a
two-temperature collision dominated description of the partially
ionized plasma, discussed in section 2.1, are satisfied so that the
distribution functions are close to Maxwellians at a tempzrature T
for the heavy particles and at a temperature Te for the electrons.

This allows us to write, using equations (2.8 and 2.16),

?=hT77u + ke Te e (2.25)

where use has been made of the definition (2.24) of p, andNy is the

total h=avy species number density; and

3, —
[ @E=FhTm, (2.26)
KFe .
In the next section, expressions for 1& (R/-f €L VL)) Ze

and the elastic collision terms in equations (2.2) and (2.22) as functions
of the varisbles fi (=e ,6m) ;T Te and their gradients,
and the fieldgfé/and !% s are determined by making use of thz cloced

forms of distribution functions that result from the application of
Grad's 12-moment approximation, which enables algebraic systems of

transport equations for Uy and x to be obtained.
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2.3 EXPRESSIONS FOR DIFFUSION VEIOCITIES, ELECTRON HZTAT FIUX VECTOR

AND ELASTTIC COLLISTON TERMS TN MOMENTUM AND FNTRGY KOUAT IONS

In order to clarify the method used to derive the expressions for
Uy ("(=e)‘.""> > 9o  and the elastic collision terms in the mcientum and
energy equations, the basic theory of reference (10) will be first
described below.
Using Grads 13-moment approximation, the distribution function
f,( for each caumponent of the partially iconized plasma can be

derived in the closed form(see reference (10)).

o £+ v C- (4 /3 s cC
L) (= Sha e |

()
where j‘o( the Maxwellian distribution given by

fy = (L/X‘ﬂ’)g/i;,) ('%.Ya( C’z) (2.28)

In these expressions, Yd=me(/l(517 whereha;eﬁ T, and _l_\o( is the

relative thermal flux vector of component & , defined by

he=g. - 2 U (2.29)
If the above close@7 lf“?orms for the distribution functions are used in
equations (2.18;:(;;21. ;uadratic terms inlk, Tx« ,and_h,( are neglected, the
following expres’sions are found for the collisional rates of change of
momentum and energy:

. o[ e he
(;Ad(, [me ] (}ZM/, [1_{,-11( + Y A (;{;ﬁ, - g}d)] (2.30)

and , 3 m
ZAGPEWC]’-W 2k (B-T) 5, %

where Ya(Y _ l
Y«xp = Yzﬂ}) = /{D[,Md s (2.32)
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and Vep iz defined below (siec cguations (2.50) and (2.41))

@)
The coefficients a,((y and A,((, appearing in the expressions (2.730)

are defined by

Gup = 5 mams map Q5 (D) (2.33)
and o
Ag - %[(T‘Lg} I (2.9)
vhere
M = @5%%& y (2.35)

. g
and the collision parameters ‘Q"‘(‘(P) are defined by

(r) T'ILJJ‘Q exla(—gz)ﬂ,((, (I-——m.s L,({;)Edbdg (2.%6)

vwhere S 5«(5(LX4(!) and 7(‘,(‘9 is the angle of scattering in the centre
of mass system of the colliding particles.

The coefficient Axp can be written in a form which more clearly
shows its physical meaning by introducing the momentum transfer collision
cross-section defined by

@(n o f (- cos Xus) bd b (2.37)

and the energy weighted average of the momentum transfer collision

1]

frequency V’(P Np j,,((, Q,( defined by

:qaﬂx(s Z 6) ,
V"‘“=£ ( T/ ) f( (MWM A9 5 (2.38)

where T must be taken to be T, if either cpecies £ or species[&

©) : )
particles are electrons. In equation (2.38), JLo((s denotes a Maxwellian
distribution for a hypothetical particle having the reduced mass m(,}

1,€,,

>z
o ( ”,'“i‘(’) o M 94 /(2KT)

kT (2.39)

It may be readily shown that equation (2.38) can be written in the form

Vop = M g Ol (2.40)
where — ( E&s_"_’)%'
3)((‘ N 'K:M.((; ?

and the average momentum transfer cross-section C\Z(/s is defined as
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Q"‘PE 0 L o 62«(4 d$
(s L
= f‘;lff J}Z- (1- cos Xqp )bk bt S (24)

It follows from the defining equations (2.32), (2.33), (2.35), (2.36),

(2.40) and (2.41), that

(] y 2—
Qi ()= 16 9 Qo (2.42)

and

a«f, = N 'Wlo([;\/qp (2.43)
It should be noted that the relations (2.42) and (2.43) hold true only
when,as is assumed in the present work, all heavy particle species are
at the same common temperature T, which may differ from the electron

temperature T ; then

g
_ M o (2.88)

where, if «=€ or ﬁ:e, Mag = Me and T must be replaced
by T, .

When equations (2.30) are used to eliminate the terms ZA“Y’ [M.(Q

Bre

in the species conservation equations of momentum, and a number of
simplifying assumptioné, to be described below, are made, an algebraic
system of equations for the diffusion velocities Ux is obtained. Tt is
first necessary, however, to obtain a system of transport equations for
the relative heat flux vectors ba( . The latter equations are obtained
by multiplying the Boltzmann equation for each component &« by the quan-
tity (;L’MO(C )C and integrating over velocity space. The
resulting transport equations can then be reduced to algebraic equations
by use of the aforementioned simplifying assumptions. The algebraic

equations for the _l:zo( are found to have the form

Pet —~FlT, E B
7—;—?/« W..E_— wy ‘\/ B ZA.{,;[ C 5T)l 45)

+
Pioy
=

Lo
); I
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Using the closed form for the distribution function, equations (2.27),

the collision term on the right hand side of (2.45) can be determined

in the following form:

ZA,Y,X m - 24 TS c] ; : a«{,[Ai;’ :{f’ép (2.16)

+£% AR (U-Tp) + 5%, U]

1(&(*)
In this expression, use has been made of the deflnltlons
-1
Sz [1- (/) (we/mx)] (2.47)
&) o) 2.2
Ax(; = = Gup /4%’@ (2.42)

The coefficients E;Y, are given in reference (10); they are all
linearly dependent on.'H441P-
Eliminating the collision term in equation (2.45), using equation

(2.46),the following algebraic system of eguations foerH is obtained:

L (s% A"(’é”[’ =7 Q"LE’ t —A"‘ A L . (2.49)
where
2Ty 2 e m
L=VL+ 5 VL - 5 kepe 5 B Ty n,tz%[(mx,) (U U (250
+ zs,?,u,,]
1 5] ("
W)E (AL + AL ) v + Z(’m(-fmf) o5 W (2.51)
5‘&[&1:* _ S‘ié
3‘(’ 7 my YT Wi (2.52)
L = "M_'IL A(‘) fl/ G 4
£ Mutt s o Py Vs T (2.53)
The relative thermal flux vectors__ha( (a(:f_/ z'/ n, /L) can

be determined from the closed algebraic system of equations (2.L9).
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However, the equation for the electronic flux vector_be becomes uncoupled
from the heavy particle species thermal fluxes LU<(kﬁ9after neglecting |
terms of order'me/vuk, the coefficients bg, being less than or of order

ﬂeWk/MK'"k<<( . Thus, the equation for.be takes the form

he = -Ae fo + he Awet) (2.5%)

In addition to this uncoupling, further simplification in the
equation foz‘_bg is possible because ‘ {ek{(Zl . Thus equations (2.50)

for A=€ reduces to

2 T 2e ,
p—-VE'f‘;,,VQ'f S-kPTgE + kneZaek (}(U ’u‘)(255)

while from the equations for the quantities (;ﬂ‘ 1t is shown in

reference (10) that:

s_2 [5720) - Ren (0]

A(‘" " 2
tk v 2§ _QJ"(') (2.56)
and
(7) G—)
el © (2.57)

It can be shown that

,i( o AL <) iﬂé‘,, ')) (2.58)

It also follows from the smallness of the electron mass that the

largest contribution to equation (2.30) is made by the electronic flux

vector.be . It follows that equations (2.20) have the form
: he (z)
AmeCl= 2 Aeic Ue-Ue)-=—) aec A 2,
k% ek[ eC] p ( ) Pe Z ek Alex (2.592)
and

Zz he
PZAk(s ["Mzgj’-' Zak(s (]J(; - y;() + aekAél:f jk‘-;ée (2. 59b)
¢

The flux vector he is given by equation (2.5%4), which can be solved
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for bt.to give ,
(z)(— ¥ 2

‘ e ﬁe |
_tle ="/)e [Pe - O:ﬁ?)'@/\k 0 (‘—__t_—(;g?') (_Ee /\_‘z)akj (2.60)

el 7;2"

where

(5*
Substituting equatlon (2.60) in equation (2.59) it is such that the
quantities %;flddﬁ [:Wm* é;:} can be exprecsed in the form

?(;A,z[,[mg} pZ%(pg—I_ﬂ) ~by. P (2.61)

where the operator_b* is defined through the relation

be B= bi'l 8 RAB + 4 (BaB)AB (2.62)

(2) 1?(3)

and the scalars b o+ are given by the following expressions |

for electrons,

Q)
bé: = - S—LB 1;*- (i3 '*/kf/YH7Q?%7 (2.63a)
l’e ) k #e ﬁe* / (’ 'f“ﬂe*z)

vwhile, for a heavy component k,

L)
1| < 5 ra, fD | A 8
L3 2 M /)22*:/(’+‘8€*z) (2.63b)

The system of differential equations for the diffusion velocities,
obtained by using the expression (2.61) for the collisional momentum
transfer in the species conservation of momentum equations, can be
considerably simplified by assuming that, first, the viscous parts of
the species pressure tensors can be neglected; and, second, the macro-
scopic parameters of the plasma change only slightly within distances

of the order of the mean free path and during times of the order of
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the collision times in the plasma. The first assumption can be shown
to be generally valid (see reference (10)). The second assumption is
satisfied in all but cases of extreme nonuniformities such as the
case of a gasdynamic shock in the plasma or a very strong electric
field. When the second assumption is satisfied, it is possible to
neglect the derivatives of 1;1, replacing derivatives of Uux with
derivatives of W (see reference (10)). This assumption is used to
derive the equations (2.49) for the relative thermal fluxes LL(-

The above assumptions lead to species conservation of momentum

equations

s L+ V0= 4 (' 1En B )f@;Adﬂ[wag’] (2.64)

where D/pE = f}@Df"fld.;7 . The inelastic collision terms in
equation (2.64) have been neglected just as the effects of inelastic
collisions are neglected in the derivation of the transport equations
for the quantitiesfu . This follows from the fact that for the cal-
culation of transport quantities, terms representing inelastic coliisions
in the Boltzmann equations can be neglected because the excitation and
ionization cross-sections for most particles are much smaller than

the cross-sections for elastic collisions and effects of inelastic
collisions on the distribution functions are consequently small (1)'(12X

Using the overall momentum equation, as obtained by summation

of equations (2.64) over all components, namely

P D +VP=1025’+_\_715 (2.65)

to eliminate bg/b{ from equations (2.64), we obtain the following

algebraic system for the diffusion velocities:

Za«/;( )+ct.,<U.243— —;-TAB T ”/’ £ V- P@VP (2.66)
Zo([/-f- b P
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where use has been made of equation (2.61).

Comparing terms arising froméx._g with the other terms of egquation
(2.66), it is apparent that only the first and last terms offe , which
is given by equation (2-55). can make significant contributions.

Retaining only these tems; we have

ZMA (-U; Uk (2.67)

k# e

So far, in this section, the work presented has been little more

me‘(ﬂ)

than a summary of the work of reference (10), and no use has bzen made
of the fact that the plasma is an inert noble gas, slightly seeded with
alkali metal; that is, the particle species are ncutral noble gas

atoms (o(:’\), neutral seed atoms (¥=h), singly charged seed ions (W=L ),
and electrons (of=€). It is assumed that seeding is sufficlently slight

that

—?f«z, ;im e (2.6
This assumption of slight seeding makes possible great simplifications
of the expressions for the diffusion velocitiesy:( and the electron

heat flux vector_be y» as will be shown in the remainder of this section.
Simplificiations can immediately be made if those terms of equation
(2.66) which contain ﬁ(/f (J%‘A) as a multiplicative factor are
compared with appropriate other terms. Thus, ford-e or i, if we assume
that (4. Ux|~ 1T ,/ix/ﬂf/(oc/and /Vp,<{>> ]{gi/ .
the terms ﬂ?ﬂlﬁé ,lé’f/;f/and é’ W) can be neglected in
equations (2.66). The same terms can be neglected in equation (2.66)
foro«=n if we assume, that, in addition to (Vfu,/ o2 /?,é Vf’[ ,
equation (2.65) implies that V/o % /ﬂiE +Ja15 . The simplified

forms of equations (2.66) are, for &#h ,

ch«p (U )+ 4 WerB = Ve =9 £ 1 b o | (2.69)
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where ge=—Mp€, awnd 9= ne
Tt is sufficient to consider the three (ocrf; L;YL) equations (2.69),

since 1]i can be ellmlnated using the relation (2.12) in the form

(x;-’z\ IOXUY /P (2:70)

Equations (2.69) then constitute three algebraic equations for the
three unknowns Ue, Uy and _1__].‘ . Further simplifications following
from the slight seeding assumption (2.68) greatly simplify  the solution
of equations (2.69).

The three equations (2.69) withUj, eliminated using equation

(2.70) can be written in the forms
Co Ui+ Gl — Cee Ve + e b AB= Vpo—qe E4 be B (2.712)
Cee ¥ +ConlUn ~Ci Ue 4+ UinB = Vor~60E + 6 B (2.710)
CreUe +Cai Ui = G Un = ' Vpu + bn B (2.71c)

vwhere

: (’«
Coi = ey — “ek C'en = Qen ~ Q‘Zaeh)Ce‘,;zaex:vaewo,ek.(z.?a)
¥re

én

(4 . . . .
Cie =Uje - ﬁ—-,, aj *aj,, Gin=aim— 7L Ok, Ceo ‘rg“‘ yEach (2.72v)

Che = Gne _{{{ bk tne 5 Gni= oy — ‘02 Cnh , (an= ZQnY-"—‘ Gal (2.72¢)
/o Y#n

The approximationsmade in equations (2.72) follow from the
assumption of slight seeding and the smallness of the electron mass.
It should be noted that d¢/ is not neglected i11c;e so as to allow for
the possibility that electron-ion collisionscominate electron-buffer
gas atom collisions; i.e., (g >des. The assumption of slight seeding
and the smallness of electron mass allow further approximations to be

made in equations (2.71), which finally reduce to the following system:

~ Cee Ue +Cl¢u/18 V/)Q—ZQE+J‘VIQ+A€ {&ﬂ—-za&( (7) 2.732)

x¥re



-45-

-GV + i UinB = V- £+ bi VI (2.73b)
"'Cnnl):\ = ny\ (2.730)
where ()

bed Ael'> Qi AC) + Gen Aot
Tt should be noted that the disappearance of the term Bn Vie from

the right handside of (2.73c) follows from its smallness compared to
the term Vf’.\ when slight seeding is assumed.
From equation (2.73c) we immediately have an expression for 'l_I‘ :
J
-U'; = Con Vr"’

AT
n Ot Vr,‘,
or | V
:U; = T M n.Valh rn (2.74)
From equation (2.73b) an expression for 1_]: can be found in
the form

’_U'L': - %(VF»"Q;E ’+_136-772) t;nofﬁ‘z.)(vla‘ th'i’é VTe) lz

Ce &
s u;}}){(VF:-‘ciEwﬁ__@-%)Aé} ab (2.75)

where

b=58/lel,

(3,; is the ion Hall parameter defined as

@} efiﬁ enB eB

- = 4 a ‘ (2.76)
(5" - C«Ii Cii f,l\, V"LLVA D
and &7 is ‘Ehe ion conductivity defined as
2 e 2,
gf  wfe”  wfet wet
- = ~ = -4 — 5 —
0 = Cee Cye ash  MhVih (2.77)

Equation (2. 7,a.) can be written in the form

) 7) # be
[Cee zaa Ae U:+[zes Yr g,*‘)/r Z“e“/“ (2 2.73)

k?, l,k)
e etk
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from which

G- - oo (Vre ~E +‘@‘”‘e)

— fg (i _Jd ){(VF —4eE +,‘e VT> L}Ab (2.79)

where

= ?f/[cee +/§, 2 e Amj 5 (2.30)

o¥e

= ‘lez/[th () e *Z) Jb(f) ZaedA J (2.81)

ALe

[Qeg‘l‘(lf_ﬂn) /gne J/Ge (2.82)
<'+@f‘>ks xZ«A‘ﬂ

Cee L G + Qely (2.83)

The quantity O, defined by equation (2.80) is the electron conductivity.
Finally, an expression forlze is obtained from equation (2.60;

in the form
* xZ

Ee O
o5 U0 [Be oary Btk ypr Cabdd]

where
_ S k R ¥
de = 3 %{'7’; (2.85)
2= %%* 124 (2.86)

and P_ is given by equation (2.67), which, if seeding is slight, has

the épproximate form
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—

J’ (—7) ' : (.7, .
Vi ‘\*ksne[aeﬂ L-(LL—LI) t del A"LQ‘J (2.87)

The coefficients of equations (2.74), (2.75), (2.79) and (2.84)
for the diffusion velocities 15;, 15:, 1&; and electron heat flux
vector 19 depend on certain collision parameters Q(:;(f) defined by
equation (2.36), which in turn depend on the laws of interaction between
the various particles. The interactions of interest here are electron-
electron, electron-neutral buffer gas atom, electron-seed ion, neutral
seed atom - buffer gas atom, and seed ion - buffer gas atom interactions.
For all applications considered here, the alkali metal seed and inert
buffer gas are caesium and helium respectively. For interactions
between heavy particles, only the parametensIZ%:(ﬂ) y Or equivalently,
the cross-section (pr need te be known. The caesium atom « helium
atom cross-section Gghk 1s assumed to be independent of the heavy
particle temperature and its value is taken to be that given in reference

(13) for a temperature of 1160°K:

th’\ = ‘62 X](}’gmz

A value for the ion-buffer gas atom cross-section éQ;A can-

not be found; its value is assumed here to be equal toé&k, i.e.,

évﬂ\z CQ“A

For interactions involving electrons, it is necessary to determine,
in addition to JZ:Zt”), the collision parameters l?e;kl),
SlskZ), _CLQQB), and fzi%Z), where the subscript k
refers to ions and buffer gas atoms; thls can be seen from cquations
(2.34), (2.56) and (2.58). Two cases of interactions can be distinguished:
(a) For electron-buffer gas atom collisions, use is made of the
fact that the momentum transfer cross-section for electron-helium atom
collisions (), varies very little over a wide range of clectron temp-

eratures, unlike, for example, electron-argon atom collisions, the cross-
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section for which has a very strong dependence on el-ctron temperature.
Argyropoulos: and Casteel (24) give values of the elcctron-helium atom
cross-section in the range

237 X102 & Rele & 271 %1073 mZ

for

looo’k § To 3000°%k
The cross-cection is assumed here to be constant and equal to the value
3.1 x107% m? | i.e.,

Keh= .69 %1073 m?
The weak dependence of the cross-section @el‘on eiectron temperature
means that the electron-helium interactions may be regarded as inter-
actions between rigid elastic spheres of diameters {7 and 05
The collision parameter ﬂe(f,)(r) for such interactions is found from
equation (2.36) to have the form

1 ' ZkBT' l/
) Eoa o o lie 0] (F) e,

(2.82)

)
(el

where /5 = o’”.é From equations (2.3), (2.56), (2.57) and (2.88)
L) (s (7)
the coefficients ACA, el, and AL’L can be determined:

(a2 ,_1
Ael. = Ael.'= 5 (2.89a)
a
= A(S’) _ LE
e ~ jo (2.89b)

!
These values of the coefficients Aé:,’ /_\iznd /_Ld\are in close agreement

L
with the values tabulated in Argyropoulos and Casteel (1) for
1800 %k & T 3000k

(b) For electron-electron and electron-seed ion collisions, which

) )

are coulomb interactions, the collision paramcters -Qe,z(l) (0(5 e, g)
and hence the cross-sections @‘ s Can be evaluated by cutting off the

integration in equation (2.36) with respect to the impact parameter b
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at the Debye lensth g}) y which is given by the relation (10)

-2 eZ ;: |
+
[ ( T) (2.90)

. v
The collision parameters _Qee(l) and _Qe-)(l) so obtained are given by

U)‘ 87“ !_;W“ knT] Jee ‘/Lee (2.91a)

and

l A - .
e&%')‘-‘ ?W[4rﬁ¥513] Jev b Ae, (2.91b)

where

\

é_ee _ ( lék; Ie) (2.92a)

TTme

— LhkgTe
ﬂec = e (2.92b)

and | Aee -A.e ’A

From equations (2.91a) and (2.91b), the cross-sections&eand Q“ can

IZvreo k,TZ (2.920)

be obtained using equation (2.42):

z
Ve = Rei= 7T 117[4%\%:9] ""-A& (2.93)

Evaluating the parameters ﬂe, (2) and Q‘,‘ (3) in the same way

it is found that

" (l
Qe (2) = (1) (2.9%a)

and

QY 3y =29 (1) (2.0)

<

(2 & (7)
Using equations (2.9%a), the coefficientsAé‘_',A,iand e, can be found

from equations (234),(256) and (2.57):
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@_ -2 -
Aei'= T2 (2.95%)
_ 13
g'- 0 (2.95b)
and
@ 2
el = /el (2.95¢)

@
Finally, the collision parameter S:L‘(Z) can be evaluated and used

in equation (2.58) to obtain

7’1(425'7“ Ae(f))f-f- [lv(Z/kA%)-)]  (298)

The condition for validity of the Debye cut off method used to evaluate
the above collision parameters, is that there be many charged particles
in a sphere of radius CE)(Debye sphere). This conditionvis generally
satisfied for plasmas used as working fluids of MHD power generators
and means that the quantity'jxeés large; that is, the quantity in
brackets on the right hand side of equation (2.96) is close to unity.
Making use of equations (2.89), (2.95) and (2.96), one obtains,

from the defining equations (2.51), (2.63), (2.80), (2.81), (2.82) and
(2.87), P

(—L-ef)":é [l — (2/n A—ec)-,] Vee t 75 (Vet°+ VeL)

(2.97)
U i | N
v
@ g _B¥ A2
bi‘;} = —i k/weffve(; ]ge/(lfpg ) (2.98)
" Y CTy
: /]

r b(e,) ,- I _’ ‘
"y X
E ~-3—1<5mef2‘(—vea+g,m) /) (2.99)

L o 5 2/( I+ [/39”7‘/
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Yoo &

) -
% = me [vemveu ¥ %e ( I+ AY VeAﬂ (2.100)

J;X» - 7?997'
me[vf,ﬁve[‘ +C’+Pe ) ( gl Vi Hﬁ\ ,JJ (2.101)

#* ]
( eB _ fﬁi be (j (7) (7’ _}
Me (gl ke ec Vei + fei Vel

@h - | N
)
PM+%L+(W$?EE@&%+ UQ](&NQ

Me )
l% = V1. + E—[Vei Aed (_c'-!-]p tVel, AkaJ (2.103)

where, in equations (2.100), . (2.101) and (2.102),

B (i A )= T (Ao i Ak )
= '51;" (i + Si%A)Z (2.104)

In the case where the magnetic field is zero, equation (2.79) can

be written in the form
'U; f ([ ‘—B) /é V’e

where the thermal diffusion coefficient 9é? is given by

G == (g)éfw (2.105)
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Some idea of the accuracy of equation (2.79), with the coefficients
given by equations (2.100) - (2.102), can be gained by evaluating the
clectron conductivity 0f and the thermal diffusion coefficient &%

in the two limits whefe electron buffer gas atom and coulomb collisions
are dominant. In the limit where electron-buffer gas atom collisions

are dominant, equation (2.100) gives
ya
A 14
12 Vig€ | e

— .
0& = I~ mevelf\/—_ OEWC\]el\, (2.106&.)

and from equation (2.105) we have

'neelf?
e Vel

fée == 047

(2.106b)

The exact values of é@tandgéé in this limit are calculated, for rigid

sphere interactions, to be (2)

- Mee” 113 et ”
¢ 9T MeVeh~ T meVel,
and
Neek
% = "_lf_ (y’fek&*&_aq_zL’_ %l
3T weVel, WieVelk,

which differ from the values given by equations (2.106a) and (2.106b)
by about 5% and 2% respectively.
Tn the opposite 1imit of coulomb collisions dominant, equations

(2.100) and (2.105) give

” Whrez
e = 1.97 .
L7 meve (2.107a)
Ye€ IV:
and - A _ (2.107b)
=1L
fe=1see S

respectively. Spitzer and Hoarm have computed the exact values of 0Opg

(1),

and 51% in this limit by numecrical integration

”eez
0, = |. -
€ I q75’mcvetc
and
'neekg
B <1389 G
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which differ from the values given by equations (2.107a) and (2.107b)
by about 0.3% and 13% respectively, Whilst, in this limit, the electron
conductivity is very éccurately represented, the accuracy of the thermal
diffusion terms in equation (2.79), though acceptable, is evidently

not so good.

The above comparisons indicate that the accuracy of the conduc-
tivity of and electron thermal diffusion coefficient @, , obtained by
application of Grads 13-moment method, should be adequate for :v.ciioal
purposes, at least in the case where the dependence of the electron-
buffer gas atom momentum transfer crocs-section on electron temperature
is weak. 1In fact, as indicated in reference (10), the conductivity
given by equation (2.100) is identical with the second approximation of
the Chapman-Enskog approach when T = Te and comparisons show that succe-
essive Chapman-Enskog approximations for the electron conductivity
converge very rapidly after the first temm (10). However, the expression
(2.84) for g, With‘AQ)(%f and:g given by equations (2.85) -~ (2.86)
and equation (2.103) coiresponds to the second approximation of the
Chapman-Enskog approach of reference (15), which yields the first non-
vanishing, and therefore the lowest order approximation for he . The
error incurred by the use of equations (2.84), (2.85), (2.75) =n3 (2.103)
is for this reason larger than in the case of diffusion velocities.

This is clear if use is made of equation (2.85) to calculate De in
the coulomb collision dominated limit. From equation (2.97) the formula

so obtained is

~—

24
5k o
Je - Z—o;nzj (JEH,H)%;

which coincides exactly with the formula obtained from the second approx

imation of the Chapman-Enskog approach of reference (15) and yields

Jezl.gtf fsPe

me \'é‘:

(2.108)
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The exact formula obtained numerically by Spitzer and Hirm is

R = 31 P

e Vo
which differs fror that given by equation (2.108) by a factor of

(15)

more than 2. The expressions (2.84)) and (2.85) for ge (withp:=0 )

have been used in references (16) and (17), which are representative
of the more sophisticated numerical studies of steady state flowing
partially ionized plasmas in MHD generator channels.

The above considerations concerning the accuracy of the electron
conductivity,and the thermal diffusion terms in equation (2.79), support
the conclusion that the expressions derived here for the diffusion
velocities should be regarded as completely adequate for partially
ionized plasmas when Seeding is slight. Such plasmas are utilized as
working fluids of closed cycle MHD generators, and the aforementioned
expressions should enable accurate quantitative predictions of the
performance characteristics of such generators to be made. The
expression for the electron heat flux vector, however, should be replaced
with one of . greater accuracy. The author has been unable to find
such an expression in the literature, and in the present work makes
use of a simplified form of the expression derived here, which is
consistent with simplifications of the expressions for the diffusion
velocities discussed below.

The expressions for the diffusion velocities, whilst much simpli-
fied by the assumption of slight seeding are too complex to be employed
in the numerical model developed here because of the great demands
made on computer resources. This has necessitated the use of simplified
forms of the expressions. Thus the present work is restricted to the
limit where electron-buffer gas atom collisions are dominant. From
equations (2.97) and (2.104) it is clear that we can then, without
significant loss of accurac&, neglect quantities proportional to

é’%’; (A Vei + Ael, VL)
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in equations (2.100) - (2.102), which reduce to

Me?z
0= wevel. (2.109)
* =
"= (2.110)
eB
and éez ool (2.111)

From equation (2.79) the simplified expression for b is

A
[(Vﬁ.—qe_f%e-vr)a_é] L (2.112)

where go=-1g¢. The expressions (2.109) - (2.111) are identical with
those obtained form the first approximation of the Chapman-Enskog

approach of reference (1).

Consistent with the above simplifications, we replace equation$

(2.103), (2.84) and (2. 85) with
=Vle,

Qe= v,ere ’AC[VFQ Z)V'ZA b (2.113)
Teak)ak
o (H-ﬂv ) ( Yie )A ]
 Shkp (2.114)

e" 2 We Vel

since, from equations (2.86) and (2.111) we set

el
(;e W\/e‘\ (2.115)
Whilst the accuracy of equations (2.113) and (2.114) is difficult to
assess, because of the initial inaccuracy of equation (2.74), these

equations do have the advantage of being relatively simple. Also,

n
these equations are consistent with those usedAmost previous analytical
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and numerical studies (7)’(8)’(19), and theref-re allow comparisons
of the results of the present work with those obtained by other authors
to be more easily made.

The neglection of coulomb collisions imposes restrictions on the
ranges of plasma conditions that can be considercd in applications of
the present theory, as can be seen,for example,from figure (2.1), in
which the ratio (Wi/ﬂi) is plotted as a function of T for a seeding
fraction of 0.002 using equations (1.9) and (1.14); it is appar-nt from
figure (2.1) that the present theory is inaccurate at high electron
temperatures. As we shall see in chapter 5, high electron temperatures
can be obtained in regions of current concentration near electrode
corners in an MHD generator, and some inaccuracy may be introduced as
a result.

lost previous analytical and numerical studies of closed cycle MHD
power generators have used equations (2.109) - (2.114) even when
coulomb collisions are important, these collisions being accounted for
by simply replacing Veh with ( Veh +Wy ). It is clear from the earlier
considerations of accuracy that conclusions made in these studies regard-
ing the effects of coulomb collisions may be quite inaccurate.

The expressions f.r the electron and ion diffusion velocities
have been further simplified in the present work by neglecting the
thermal diffusion terms; that is, the terns dependent on be Vi
and .é[.Vﬁ; . The importance of these terms can be determined by
estimating the dimensionless quantities (Q'szQ% ) and (LPH;/?? )3
from equations (2.97) - (2.99), ":—f- (- Ve[-f-;“’vel\)

be'le b 3 ’f_xé-_f__!yd‘): - 3
R i e ROl NIV PRy (R L0

and
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a 3\)9‘ (:f)(ﬁ{”c_)
—'E ) kgﬂgrr—g Te*%[ ( )( ) { [l (HM J¥e B(\h +%A)}(2 .117)

In the 1imit where electron-buffer gas atom collisions dominate coulomb

collisions Wl D>Ve, and from equations (2.116) and (2.117),

¢ 5
Pe (2.112)
and
;('”Te_ _ 15 Yo ’?fj_;
7 T s\ T 19

From the limiting values (2.118) and (2.119) it follows that, whilst
the ion thermal diffusion is negligibly small, electron thermal diffusion

can be significant unless

I~V7Z

/ E;Efl (2.120)

The inequality (2.120) is difficult to justify a priori unless the
electron density is given by Saha's equation, equation (1.14), according
to which it is satisfied. It is concluded that electron thermal diff-
usion cannot in general be neglected even when vQA,>>’\%[, though

its omission should not result in large errors since the magnitude of the
quantity ( &;”Ig//f% ) is less than unity. WNeglecting the thermal

diffusion terms, equations(2.75) and (2.112) reduce to

U= VF‘ cl,E/) q? (H-ﬂ)(VP‘ Q,f) ab (2.121)
2 (/W){ Vi€ )k 1k

and

U= ”o‘;é‘ V}’e Zef)"" Z(”’ﬁz) (V}k CleE)A(v (2.122)
% (zﬁez){w‘ “fet') b [k

respectively,
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Finally, it is assumed in the present work that

ﬁ”' «l (2.123)

which can be satisfied when ﬁ‘>( since

The condition (2.123), which imposes a limitation on the magnetic
field for given plasma conditions, allows us to neglect the second and
third terms of the right hand side of equation (2.121), which thus

reduces to

=g, J
U= Q?(Vfa—‘lié ) (2.124)
From equations (2.122) and (2.124) the electron and ion current
densities
Je = Ze‘L£’= — ehe E{;
and -
= U =en U

are given by

or’

and

(E/—— j—‘) (2.126)
- ~€H¢

respectively. From equations (2.125b) and (2.126) a relation can be
derived between J;. and J:

0i( ,‘ Phe
J + @;%(Jf k)= 2 EEJ (2.127)

(Ozw. w)

Now



% o fe o "“i“)'/zm |
O o (e o (T (2.128)
o & Me
and, in equation (2.127),
0. . Ne
o= R

where use has been made of the assumption (2.123). Using the result
(2.129), the second term in the left hand side of equation (2.127) can
be neglected and the following relation obtained:
Ce Oe OV V v Ve
Jenr — T + ;_’E‘ + R (2.130)
T ()T (o)L N e

By making use of the inequality (2.128), further approximations can

“~

be made in equations (2.130), which can be thus reduced to

v, Y
JeaJ + Ui [;V%."f' ‘ESJ ‘ (2.131)

CMQ

The relation (2.131) ié of great importance in the formulation of the
final form of the electron continuity equation in section 2.5 .

Using equations (2.125) and (2.126) a relation between E’ and
d, called the generalized Ohm's law, can be derived. Because of the
limited amount of compiterresources that could be made available to the
author for the computational work reported in this thesis, a simplified
form of generalized Ohm's law had to be used. This results from the
assumption that either I_J_E‘ D IQ:{ or, lf [_J_;f«.( ’_\?:{ , both
1Je! and [I] are negligibly small. Then the generalized

Ohm's law is obtained by simply replacing J with J in equation (2.125b):
;Y
% (E'+ ;f):l+ﬁ,(g”4_é) (2.132)

The condition for validity of equation (2.132) is restrictive.

For eiample, situations where _E/'V - Vf’e/”eve which implies from

Ve, T

equations (2.125a) and (2.126) that [ Te [~o0 and [J}]~ of {e,,e en,‘,!‘
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:tm&fﬂw ( 2 ‘31)

‘PUSt be excluded from consideration if 121 is significantly lerge.
!

Another example of violation of the condition for validity of equation
(2.133) is the phenomenon of ambipolar diffusion. In the absence of a

magnetic field, if J=0 , equations (2.125) and (2.126) yield
Vf’c' vfe
L L, r

(Jp e ene

en;

F'-

=

and

-
-

._:ET_ QEEE— (Tgﬂﬁiﬁ_.gﬂg
- Gfe-HT;) en;  €he

&

(2.133)

This phenomenon, which might occur if an electrically isolated electrode
were in contact with the plasma, can invalidate the present thezory if

lj;‘ is significantly large.
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2.4 Tr GAS=DYEAMIC EQUATIONS AND QOMPRLSSIRIL TUFHITTIT RAINDAPY

LAYTRS. BASTC CACTVNAYTA TOUATTONS

Consistent with the assumption of slight seceding, as expressed
by the incqualities (2.68),
A N
2P, pEp, , and € 2 p &
f f P F jé;pk oL f1, h
and the overall conservation equations for mass, momentum and heavy

species energy, equations (2.20) - (2.22) have the approximate forms

o + Vf/.e:-=o)

ot (2.132)

(2.135)
and

S+ (par V=Vt Tivur £y, ()
+We£h(t7?ﬁi%k;

4

where use has been made of equation (2.31). The term —(@Iﬁ-‘S?
on the left hand side of equation (2.136) has becn nzglected as small
because of the smallness of electron mass and the assumption of slight
seeding. Fquations (2.1¥) - (2.136) must be supplemented by the

equations of state
ﬂ‘(’/-&—” and 1L =C,T (2.137)

where ﬁlﬁ is the gas c&nstant and (,, is the specific heat at constant
volune (CV:},Z' pk)

By virtue of the assumption of small ion Hall parameter (ﬁk((l )
the magnetic field has 1little effect on the total heavy particle heat
flux vector 9y and the total viscous stressz;, the el=ctron contri=~
bution to which is negligibly small. It can be shown, using the theory
presented in reference (1) that, when seeding is slight, the heavy

particle transport properties are then approximately the same as those
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for a gas consisting of buffer gas atoms only; that is, T 20, and

\!

U 3‘jA . The classical Chapman-Enskog theory shows that, for

such a gas T3  and QA. are given by the LYPTCCSIOHS

Ol Du Vu Sd{;]

(Tlu(; ’U\[”p 2 3 (2.138)

and

?,L = - Ak yr ’

= (2.129)
where'qh and AL are the buffer gas viscosity coefficient and thermal
conductivity coefficient respectively. These coefficients can be
calculated with the use of the Chapmaﬁ-Enskog approach of expansion in
Sonine polynowmials. As in the case ofﬁe{n section 2.3 , the second
approximation of the Chapman-Enskog method yields the first nonvanishing,
and therefore the lowest order approximations to 7%, and A . Tt is
found that the lowest order approximations t&>zg andAAA are proportionafrﬂ

so that the dimensionless Prandtl number

pﬁc_”_’ﬂ‘
T :3(

is equal to a constant in this approximation. This constant is iw-

(2.140)

dependent of the law of interaction between the particles and has a value
of 2/3. The observed Prandtl number for monatomic gases varies little
with T and is close to the predicted value: the value derived from
experimental data for helium presented in Sears (20) is close to 0.68.

It is assumed here that the Prandtl number is constant and egqual to

the latter value.

(3)

The expression for q%'used in this work is
~7—aes
na= S1x0° T (2.141)
which is consistent with the power law dependence of %/ on the

temperature predicted in the second approximation of the Chapman-Enzkog

method (19).
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Th= work presented in this thecis is concerned, in part, with the
description of the flow behaviour of the buffer gas in a closed cycle
MHD power generator channel using equations (2.13!) - (2.126). Limit-
ations on the computef resources available to the éuthor riecessitated
the introduction of a number of simplifying assumptions, made below ,
which effectively result in a decoupling of equations (2.12%) - (2.136)
from the equations governing the plasma and electromagnetic field prop-
erties. Whilst these assumptions impose great restrictions on the range
of generator conditions that can be studied, as well as suppression of
some relevant physical processes, they do enable a clearer understand’ng
of the remaining important physical processes to be obtained. In
addition, the numerical techniques used to solve equations (2.13%) -
(2.136) are quite different from those used to solve the other eguations
(see chapters 3 and 4), and these assumptions therefore facilitate the
developnment and understanding of the numerical techniques employed, most
of which can probably be extended without basic change to situations
where some of the assumptions are not satisfied. It should be ﬁoted
that the restrictions imposed on the range of generator conditions
that can be considered because of these assumptions are consistent with
those imposed because of the assumptions of negligible coulomb collisions
and small ion Hall parameter made in section 2.3 .

Denoting the characteristic value of any quantity by the subscript

c one obtains from the generalizedOhm's law, equation (2.132), for ﬂpSl

£e= webe (2.141)

and

Jo = 0ec ke (2.112)
for the characteristic values of the electric field and current density
respectively. Equation (2.141) assumes the electric field to be

produced primarily by fluid motion in the magnetic field as is usually
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the case in the bulk of the flow in an MHD generator channel.

Poisson's cquation
¢
V.E =(J/Eo (2.143)

yields a characteristic value for the charge density(oc'given by

c QLE; ’
= L(_ (2.1I~JJ)

where the characteristic length scalel{<¢,for the MHD gencrator considered
here, taken to be equal to the length of a single segment of
the generator, i.e., the segmentation length.

It follows from the equations (2.141), (2.142) and (2.1/%!) that

{’%l ~ (%C)(é:—;‘) ) (%f)(%) «l (2.145)

CIEI! éDEC uCBC - Ue -_é_o_
EX] ~ (—L:)(OéLECBC (L,_) aec> &l (2.06)

where it is assumed that

and

lc éo
_— ) —
U, ? %, ’

that is, that the time scale éo/éﬁc is much smaller than the time
taken for the fluid to flow a distance equal to thc segmentation length.
Taking as typical values, L, = 2.5% x10” Fm 3 MW= 1200 p/sec, and
Oec = 3 mho/m , we find that
Ue €o -7
(22 ) (=)~ 10
s0 that the inequalities (2.145) and (2.126) are satisfied for the
conditions of interest here. The inequality (2.146) shows that we can
neglect the force acting on the fluid because of its net charge compared
to the force resulting from currents (see equation (2.135)).
Using equations (2.141) and (2.142) the ratio of the I Az force

to the inertial force can bé estinated:
- 2
1 !‘Afé { o lc e &: -

—_———

Iﬂl{ﬂ-??ﬂ'} (he U, ]

(2.147)
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The parameter S is called the magnetic interaction parameter and the
present theory is restricted to generator conditions for which
5¢<) (2.148)

This allows us to neglect the JAB force in equation (2.135). The
characteristic length L¢ in (2.147) is to be taken to bz equal to the
generator length. Taking as typical values, L, = 0. 6m, U=1200 n/sec,
o*eCdmko/m/ {Dl\c: 0.026 lﬁw /'M 3’ and B =147 , we find
that S% 0. , S0 that the condition (2.148) is satisfied for the
conditions of interest in this work.

From the electron energy equation, the form of which is considered
in detail in section ‘2.5 (see equation (2.21%4)), the term in equation
(2.136) representing the transfer of energy to buffer gas atoms in
elastic collisions with electrons is estimated to be of order the electron
ohmic heating; i.e., the energy gained by the electrons from the

electromagnetic field:

3 AMe /
'ne':z Lg (—ré-'T) -7"_‘»\}8‘\ N.g 'J;)

so that, in equation (2.1736),
Im,
3 , (4
ElT + Yoy (Te-T) Ty, Ve
~ Elg +ElTe =£'T

The latter quantity, which is the total ’hmic heating, is compared to

the rate of change of buffer gas energy due to convection:
=/ - 22
lE/T] e U B, Lc)

o Vpaen)|

( (0}., E;,,)c Ue

| 7L
T (Z)al’

L
",;f LT (2.149)

if

where
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2pl
Joc. Uc lgc

- ——

T = s
~ PLEL),

The time zcale Tdefined by equation (2.150) is a characteristic time

(2.150)

for changes in heavy particle temperature due t» collisional enecrgy
exchange between the buffer gas atoms and electrons, and the inequality
(2.149) states that these temperature changes can be neglected if the
time s?ent by the fluid in the region of interest is much less than T .
If the inequality (2.149) is valid for L. equal to the length of the
generator, the last two terms of the right handside of equation (2.136)

can be neglected. Taking as representative values Oéc =32 W'W/W ’
U, = 1200 mfsec Be = loT , p= %32 xpoq'n/m" and Le = 0.6m | it
is found that  (!/Tw) (Lc/uc ) Ao ® , so that the
inequality (2.1%9) is satisfied for the conditions of interest in this
work, and the aforementioned simplification of equation (2.136) can be
made.

Whilst the inequality (2.146), which allows one to neglect the
electrostatic force compared to the JaB force in equation (2.135),
is valid for a wide range of placma conditions, the assumptions that
the JaB force in equation (2.135), and the ion Ohmic heating and
elastic collisional energy exchange terms in equation (2.136) be
neglected are much more restrictive,and are justified only for conditions
characteristic of some experimental generator systems. For conditions
characteristic of MHD power generators designed for appreciable prod-
uction of electrical power, these assumptions are generally not valid,
in particular, S21  for such generators.

The equatiéns obtained from equations (2.13%) - (2.136) after
making approximations consistent with the above acsumptions, when taken
together with equations (2.137) - (2.121), constitute a closed system of

partial differential equations‘for'what will be called the gas dynamic

variables f, f, U ancl T, where the subscript h has been
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dropped for convenience. These equations are completely decoupled from
the equations governing the plasma and electromagnetic field variables;
thic allows ore to consider a steady flow of the buffer gas in the MHD

generator, described by the following equations:

Vﬁ'b‘{zo g (2.151)
p(uv)u+ Vo= VIn s
" ()(E‘VN’A - (H-V)F-’ -Vg4 +Th V4 (2.153)

where equation (2.153) is derived from equation (2.136) using equation

(2.134) and the definition of the enthalpy hj +

l‘)l\ = Eh + P /f/l (2.154)

which can be written in the form hk =GT , where Cp is the

specific heat at constant pressure.

Boundary layer Approximations

The complex problem of solving the system of equations (2.151) -
(2.153) for the case of flow in an MHD generator chamnel is greatly
simplified by making use of the well known fact that the flow is of a
boundary layer character. That is, considering the velocity distrib-
ution in the channel, the retardingeffecte of the viscous forces are
confined to layers in contact with the channel walls, called boundary
layers ( see figure 2.2 ). Consideringone of the channel walls, the flow
velocity increases rapidly from zero (in the absence of slip) at the
wall to approximately the velocity along the channel centre-line at the
boundary layer edge, which is at a distance £ , called the boundary
layer thickness, from the wall in question. %hereas in the boundary
layers velocity gradients are large and viscous forces predominate,
in the region external to the boundary layers, called the core of the

flow, velocity gradients are small and inertial forces predominate.
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Similar rermarks apply to the temperature distribution; within the
boundary layers, temperature gradients are large and viscous
heating and thermal conduction are important, whereas in the core
of the flow these effects are negligible and the temperature is
approximately uniform and equal to the value at the channel centrec-
line.

As. shown in reference (21), for example, the equations governing
the boundary layer flow, the boundary layer equations, can be obtained
from the full equations (2.151) - (2.153), which are thereby greatly
simplified, by making approximations consistent with the well known
boundary layer assumption

gL, (2.155)
which can be shown to imply that

™M1,
where RL = uycL‘()c /"Z,.‘ is the Reynolds' number of the flow, the
subscript ¢ denotes channel centre-line value ( Uy, is the component
of velocity along the centre-line),and L, is the characteristic length
scale of variations of the gas~dynamic parameters along the channel.

Whilst the boundary layer equations are much simpler in form than
equations (2.151) - (2.153) they still constitute a system of nonlinear
partial differential equations which must be solved numerically. If no
further approximations are made, the numerical solution of these
equations imposes great demands on computer time because of the three
dimensions involved. In the present work, the problem has been
considerably simplified by reducing it to the solution of two mathemat-
ically identical systems of ognations, each system involving two
rather than three coordinates. This simplification follows from the
fact that, as can be seen in figure 2.2, the boundary layers on each
of the side walls are approximately two-dimensional with the exception

of the corner regions. It is clear that an accurate description of

the flow behaviour is possible by considering two-dimensional boundary

layers on each of the side walls, provided corner effects can be neglected,

which is the case for sufficiently small boundary layer thicknesses. This
simplified model of the flow has been used for the
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numzrical work reported in this thesis even though the lattcr condition
tends to be violated for the flous and generator conditions of interest
here (see chapter 3).

Concidering, thsn, two-dimcenctional boundary laycrs on each of the
channel side walls,the boundary layer equations for one of the channel
side walls, obtained from equations (2.151) - (2.153) by application of

the condition (2. 155), are as follows:
x (()ux) t o 2 ((’“g) o, (2.156)
Qux aux _ z
PUx 5% *(ﬂ/ j + [(ﬁe J (2.157)

2_3 =0 (2.158)

and

ol 27_‘ j%f
Crpux 3¢ T %f% 5y 79 ~ "X o

{3

where Uyand @] are the x and y components of velocity (the x-axis is

(2-159)

taken to be parallel to the channel centre-line and the y-avis is
perpendicular to the wall with the origin at the midpoint of the wall),
and use has been made of equations (2.140) and (2.15¢). Tquations
(2.156) - '(2.159) are to be supplemented by the equation of state,
equation (2.137). Equation (2.158), which is derived from the y-component
of the momentum equation (2.152), shows that the pressure is uniform
over the channel cross-section and can only vary with x. The quantities
& arﬂ.a}appearing in equations (2.157) and (2.159) represent the
effects of hydrodynamic turbulence, which is briefly discussed below.

The steady state form of equation (2.156) means that one can

define a fluid stream function Y(xY) such that

n
x =0 (2.160a)



-70-

and

A

2y (x (2.160b)
Using equations (2.160) and (2.137), the variables Wy r thy andfy can
be eéliminated from equations (2.157) and (2.159), which then assume

e forms %f azﬁ .
3:’ [(7+£)aj( aj) g;g f’zyax( f) 3X9[ ;}2161)

and
( ( ) azm' O%IT_KTopdp
9) e B ?]J [’Lfr 'Ui[;j(Tr Fyax Yy /’Cyjdx (2.262)

It is clear from the symmetry of the problem that equations (2.136) -
(2.159) or (2.161) and (2.162) need only be applied between each of two
ad jacent walls and the centre-line. For each wall, separate consider-
ation of two different regions, one for the boundary layer and one for
the inviscid core of the flow has been avoided, the boundary layer
equations being applied in the wholé region between the wall and centre-
line.

One restriction the present theory is subject to is that the angle
of divergence of the walls must be small. This is because in the
employed cartesian coordinates the x-axis is parallel to the centre-line
and not to the walls of the channel. In MHD channels, the angle of

divergence is generally small.

Effects of Turbulence

The two dimensional boundary layer equations obtained from equations
(2.151) - (2.153) by making approximations consistent with the boundary
layer assumption (2.155) are equations (2.136) - (2.159) with £=0
These equations describe laminar boundary layers and apﬁly only in an

entrance region of the channel vhere QL is everywhere less than a
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certain critical value chf . Sufficiently downstream of the channel
entrance RL usually exceedc (%ﬂf and the flow becomes turbulent due to
hydrodynamic instability. The turbulent flow is characterized by small
irregular fluctuations of the gac-dynamic paramsters, cuperimposed on

the mean flow paramcters, where the mean is defined as a time average
taken over a time interval long compared to the time scale of the
fluctuations. It is shown in reference (22), for evample, that the
boundary layer equations (2.156) - (2.159) are satisfied by the mean
flow paramsters provided that an additional turbulent stress ¢~ and a
turbulent heat flux'q - are introduced into eguations (2.157) and (2.159).
Physically, these quantities represent transport of mean flow moncntum
and energy by the turbulent fluctuations. It can be shown (21),(22

that the turbulent stress and heat flux are given by

= <?—“j/ u){> (2.163)

and $=-6P<(7‘4J/r'>5 _ <(5{'fj/h'> (2.164)
respectively, where the time average of any fluctuating parameter 4
is denoted by <§> or 'E', and the prime denotes fluctuations; for
example,
Uy = Ue= {6

In writing down equation (2.164), use has been made of the definition
of enthalpy h given by equation (2.15:). In addition to transport
of momentum and energy, there is a transport of mass by the turbulent
fluctuations, which can be represented by an additional turbulent
diffusion term in the mass continuity equation for each species of the
plasma. In section ‘2.5, these terms will be derived for electrons
and ncutral seed atoms.

The turbulent fluxes in the y direction, namely the stress — (fzf7iQCh
and the heat conduction component  Cp (FMJ,TI>(see equations (2.163)

and (2.164)) are additional unknowns that need to be eithsr expressed

algcbraically in terms of the mean flow fields, or solved for by
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cxtending the system of equations (2.156) - (2.159) to include
equations for these additional unknowns. The first»approach is uced
in the present work, where the well known assumption ic made that, in
analogy to fluxes in laminar flow, the turbulent fluxes can be related
to the gradicnts of the corresponding flow quantities in terms of eddy-
viscosity and eddy-conductivity coefficients. As indicated in reference
(23) there is no a priori physical justification for this assumption
and one has to employ phenomenoclogical theories, such as that formnulated
in reference (11), for expressing the dependence of the eddy transport
coefficients on the flow field. 1In contrast, the second approach, which
is formulated in reference (23), uses additional transport equations to
actually calculate the turbulent fluxes and thus avoids any a priori
need to endow the fluid with fictitious eddy transport properties.
This approach must, in general, be used for an accurate description of
the effects of turbulent fluctuations on the mean flow fields, partic-
ularly when the interaction betwesn the flow and the electromagnetic
field cannot be neglected. The equations for the turbulent fluxes
derived in reference (23) account for electromagnetic effects and have
been used by the authors to obtain very accurate numerical przdictions
of open cycle VMHD power generator performance characteristicé%ﬂ
Tt is shown in reference (23) that the equations derived using the second
approach reduce to the equations of the eddy transport coefficicent
approach used here when convection and diffusion of turbulent fluxes,
as well as electromagnetic effects, are omitted from the equations.

Assuming then that the turbulent stress and heat flux can be related
to the gradients of the corresponding flow quantities in terms of
eddy-viscosity and eddy-conductivity coefficients, £ and €, + we can
write

T= - (P“J”‘Q = gaux/aj (2.165)
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and
JT
-’ —
g = ((;ujh>=—-£hgj (2.166)
where Uyand T on the right hand c¢ides of (2.165) and (2.1€6) are mean

values. Defining, 4n analogy to laminar flow, the turbulent Prandtl

number P, by the eguation

G
Pve = ’g; ’ (2.167)

equation (2.166) can be written in the form

G
[

Fquations (2.157) and (2.159) follow from averaging the laminar boundary

(2.168)

layer equations and using equations (2.165) and (2.168) (22) to eliminate
the averages (Fuju,{) and (Fvi;h.l> , if it is assuned

that all other statistical correlations, in particular <€lu; , are
negligible.

Th= eddy transport coefficient theory employed in this work is
that formulated by Cebeci (11), which is applicable to compressible
flows with heat and mass transfer and is quite accurate for a wide
range of flow conditions. Mass transfer is found to be an important
factor in the applications considered here (see section 35 . The
formulas of reference (11) are presented and briefly discussed below.

In the theory of reference (11), the turbulent boundary layer is
regarded as a composite layer characterized by inner and outer regions.
The existence of these two regions is due to the different response of
the fluid to sheaETEZd pressure gradient in eech region. In the inner
region, an eddy viécosityEi based on Prandtl's mixing length theory (22)

¢i= P (0-‘@)2[' - exp (‘ﬂ/AUz(a“x/f)j', (2.169)

vhere the distance O.4y is the mixing length, and the damping factor

[l ~ exp (—j/A/]Z
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accounts for the fact that the vanishing of the turbulent strecc at a
wall causes damping of turbulence near the wall. In fact, in a thin
layer next to the wall, called the lanminar sublayer, the turbulent
ctress is negligible compared with the viscous stress and the flow Is
nearly laminar. The damping length A is derived in refefence (11)’where

it 1s chown to be given by
26 1
A= (‘f >/z, (2.170a)

where

Tw= (%(X)w 4 (2.170b)

and N is given by

- {- gt [or (e s £

/ VZ 5 19
, ’»Zw ‘(’w /2. (4.1?uc)
+LXP (ll-?-;z- ('f;)@”) )

the subscript w denoting a wall value,

The eddy viscosity in the outer rcgion is given by

£ =o0.0l68 l]:(“xe-“x)djl Y (2.171a)

vherc the " subscript € denotes the value of a quantity at the boundary
layer edge, and Y is the Klebanoff intermittancy factor given by the

formula
Y- [z+sr(§)6]" (2.171v)

The boundary layer edge velocity Uxe in equation (2.1712) is here
taken to be the value at the channel centre-line and the formula (z.171a)
is applied up to the centre-line. From (2.171b),the eddy viscosity
rapidly decreases with N for 5)8‘

The turbulent Prandfl number defined by equation (2.167) is taken to

be constant and equal to 0.9.
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Vith the cddy viscosity and turbulcnt Frandtl nunber specified,the
formulation of thc gas—-dynamic problem isc completed for a given pressure
distribution by specifying the boundary conditions to be zatisfied by
the boundary layer equations, and the initial rsas-dyrn:mic profiles.

The initial gas-dynamic profilec will be discucsed in section 2.3
ac part of the numerical procedure used to solve the boundary layer
equations; the boundary conditions are discusced below.

Boundary Conditions

The boundary conditions consist of conditions to be satisfied at
the walls and at the centre-line, since equations (2.156)~ (2-159): (2.161) and
(2.162), are to be applied in the region between a wall and the centre-
line. For a given wall, the boundary conditions at the wa11(5=C?
are

(a) No slip:
X -
Uy (%,0)= P79 (x,0) =0 (2.172)
(b) Specified mass transfer rate:

Py 0,0 = = (32609 = (puy), (2.173)

The quantity (/7qy)w could be a function of the pressure’ which is
-calculated simultaneously with the solution of the equations (see below).
In such cases, the functional dependence of (f“y)w on the pressure
must be prescribed. This is discussed further below.

(c) Specified Wall temperature or heat flux rate:

T()‘; O) = Tu—w (2.270a)

or ST
1y ()(/o) s - [2 55](»0) = @/ﬂ (2.174b)

the latter condition being of the mixed type, since qy=qy (T}9T7%j).

The boundary conditions at the centre-line (j:’jc) are the symmetry

conditions
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oT | '
55(’05&)‘0, (2.1753)
and

u
-Q-f(x,jb)w. (2.175%)

Calculation of Pressure Distribution

Finally, we note that the boundary conditions expressed by
equations (2.172) - (2.175), together with the initial gas-dynamic
profiles, are sufficient to solve the boundary layer equations only if
the pressure distribution P(X) is prescribed. However, the pressure
distribution within an MHD channel is strongly influenced by the way
in which the boundary layers develop along the walls, so that it cannot
be specified a prioyi. The pressure distribution can be determined from
the requirement that mass be conserved. Neglecting three-dimensional
corner effects, the mass flow rate in the channel is given by

w/z /
m = (L‘DAuﬂﬂ Ay L‘;ﬂ:ux,dja [((:’%x—);l

- [%a (v ¥)-% (x,oﬂ[’t{—b(x,g)—% (X,o):l {@%;{ , (2.176)

where the subscripts A and B refer to two adjacent walls of lengths H
and ¥ respectively, the integrations ave taken along the lines
connecting the midpoints of the walls and the centre-line (for a given
cross-section), and the subscript ¢ refers to the centre-line value. To
express ™ in terms of the values of ¥ at the extremities of thz two
intervals use has been made of equation (2.160b). As a result of the

assumed mass flow through the walls,ﬁv is not constant, its rate of change

being given by

dw |
= 2 (U + 20 (B ) (2.177)
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If thc macs transfer rates (f)puﬂ Jw and ((73 uﬂ)w were
specified functions of x, equation (2.177) could be integrated and the
value of m at each X determined, provided that the value of m at
some initial x-station is prescribed. The pressure could then be
obtainad from equation (2.176). However, as mentioned above, the mass
transfer ratcs are in some cases functions of the pressure and the mass
flow rateJh'must be treated,like the pressure, as an unknown parameter
governed by equation (2.177). In fact, this is the case for the
application of the theory to the actual experimental MHD channel

considercd in chapter 3.
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2.5 THv PLACMA AND ELRCTRICAT, F'I 7D EQUATION

To complete the formulation of the two-temperature fluid moldel of
the partilally ionized plasma in znel-ctromagnetic field, equations
governing the se=d atom density, the electron density, the elcctron
temperature and the electromagnetic fields must be specified, ascuning
the plasma to be guasi-neutral. These equations, which will be presented
in this section, will later be solved num=rically to obtain a description
of the local plasma and electrical behaviour as a function of tirme in a
single segment of a closed cycle MHD generator. A number of cirplifying
assumptions have been introduced in order to simplify the theoretical
and ndmericél models. These assumptions include: (i) neglect of all
variations parallel to a uniform constant magn~tic field, whicha is
applied in the z-direction, porpeniicular to the insulator side alls of
the MHD channel (the effects of boundary layers on the insulator side
walls are neglected); (ii) neglect of variations of the gas-dynamic
parameters in the stream-wise x~direction, and neglect of the crosc-
stream velocity component Uy . In other words, the gaz~dynanic
paraneters are considered as given functions of y obtained from the
solution of the boundary layer equations for the electrode side walls.
These assumptions will be further discussed in section 2.6 .

(a) Electron and Neutral Se-d Atom Continuity Eauations

The electron, neutral seed atom and ion number densities are

governed by the continuity equations

a”e/aé -t—V-Weﬁ.‘f‘V.nelL =’;'1e, (2-178)
Mafot + Un,u + Vil =M (2.179)
and oMb+ Vwgw + VU= g (2.1%0)

which follow from the general species mass conservation equation,
equation (2.1). The quantities ﬁe, Ny and n, are the net volumetric

rates of production of electrons, neutral seed atoms and ions respectively.

Because charge is conserved
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Ne = Vi (2.181)

and it follows from equations (2.178) and (2.180) that

op¢ _
_é_(;: + V‘fcﬂ_*_V.:,;o. (2.182)

It has been shown in section 2.4 that thc coavection currcnt density
()Cl,é can be neglected in comparison with the conduction current density
J (cee the inequality (2.145)), so that J may be identified with the

total current density and equation (2.182) written in the form

‘%K’—;W,;r:o , (2.183)

The charge density and the current density in the fluid act as sources
for the electromagnetic field quantitieséand &, which are governed by

the Ampere-Maxwell and Faraday relations

oF
\Z¥-. =/Mo (I‘]’ €o é@) (2.184)
and
ot
VAE == 5 - (2.185)

equaton
Equation (2.183) can be derived by taking the divergence ofA(2~1":'L‘f) and

using Possent
VL= [)c/é" - (2.136)
™n equation (12.184),%_
Ié" ot ( ek _ &
AR

where the subscript ¢ denotes the characteristic value of a quantity,

(2.187)

and use has been made of the simplifizd form of Phm's law \_7'= Oéf-

If the restriction

£ —o—;; (2.188)
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is imposed on the time scale ‘Lc,equation (2.187) shows that the dicplace-

ment current . €o9£/0t can be neglected compared with J° and equation

(2.181") reduces to

Vab = i T, (2.189)

from which

VI=0. (2.190)

The condition (2.188) may be written as

v
toy Lh (2.191)
&

f 3/2

vhere Wp is the plasma frequency (')'1(,_.5’?‘/5(,vvlc ) If this is taken

together with the restriction

|
{;C 5 \zk , (2.192)

required for validity of the generalized Ohm's law in the form of

equation (2.132) (1) one has the requirement that

tEYw!, | (2.193)
vhich ie the well known condition that charge neutrality be maintained
in the plasma at least for characteristic length scales of variation
larger than the Debye length (1) Typical values of ‘L'c, 5 é‘,/(/;c and

I/vd‘ are 3XIO"+J¢C) 3‘Xlo"zsec and IO—HJ(C respectively (the
time scale f, 1is taken to be the growth time of the electrothcrmal
instability),so that the conditions (2.1€8), (2.192) and, therefore,
(2.193) are well satisfied. It follows that equations (2.189) and
(2.190) are valid and that the plasma may be assumed quasineutral;
i.e., Name

Assuming, as is ‘vsually the case for partially ionized gaces. in
MHD channels, that flow occurs in a constant uniform externally apzlied

magnetic field, the derivative 9B /ot can be finite only because of

fluctuating plasma paramcters which produce an induced magnetic field.
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f the relevant time depundent phenomenon is the electrothersal instab-
ility estimates based on the linear theory of the instability show thatl
the induced magnetic field can usually be neslected (7)’(8). Equation
(2.185) then becomes
Y+E=o0. - (2.194)

Returning to the continuity eguations(2.172)-(2.120), since the
plasma ir asswisd quasineutral, the ion continuity equation (2.180) is
not required. Using equations (2.74) and (2.131) the electron ard ncutral

seed atom diffusion fluxes can be written as

S S PO
Ne Le= ~ —gf = "E*I —n:czV(Fi'fPe) (2.195)
and
o
Nl = = muhv,\uw’"; (2.195)

since Metn(,
Eliminating the diffusion fluxes from equations (2.178) and (2.179)

using equations (2.195) and (2.196), one obtains the equations

> .
%yg + Urted = V. ez Vet pi) = ve (2.197)
and,
N A y
_a_él + V‘”“L‘. — V. (m.k\/nk) VPM: 'nn’ (2193)

where use has been made of equation (2.190).

As mentioned in section 2.43, one has, in addition to laminar
diffusion represented by the quantities ”€!k and nhlﬁ, given by
equations (2.195) and (2.196), transport of particles of various species
by the turbulent fluctuations which can be represented by an additional
term in the continuity equation(averaged over turbulent fluctuations)
for each species. To determine the turbulent diffusion terms in
equations (2.197) ahd (2.198) the general species & conservation of

mass equation is considered; that is, the equation

o< /
=t Vs + V.plk = (2.199)
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Averaging equation (2.199) over turbulent fluctuations and neglecting

all correlations between fluctuating quantities with the excenticnof

4@/M;> » an equation for {.ﬂ:( of the form
_{1+V/KM+}j({ku7> +Vﬂ‘U ﬂ" (2.200)
is obtained, where the laminar diffusion term V), @( and the

cource term (00( are to be evaluatod with the mean values of fluctuating
guantities. Transport of species « particles by turbulent fluctuations

is represent=d by the term

— <€ 7/ , (2.201)
of equation (2.200), the quantity (ﬂ:{ M>’> being
the twbulert diffusion flux of species « particles. Assuming that
this flux can be related to the gradient of the average of the mass
fraction pp(/‘a in terms of the eddy-diffusion coefficient 5,,‘,

we can write

7’4
<€"uj>- ‘E“aj< > - &5, (‘0) (2.202)
{o
In addition, we assume that a constant turbulent Schmidt number 51- can

be defined such that
= = (2.203)
fi= 5

vhere € is the eddy viscosity. Using equations (2.202) and (2.203),

equation (2.200) can be written in the form

ﬁlﬂo(

Al @S-aj( )+Vﬂu (& (2.20)
where bars denoting averages have been omitted for convenience.
Dividing equation (2.204) throughout by My, and noting that for

the small seeding fractions considered here P’\_—fl\, , the

species & continuity equation is obtained in the form

o a 8‘(3 v
E,E,Jr Uyt - 8[ (mkfsr>?j (mT)]Jr VingUe = My (2.206)
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From equation (2.206), it follows that the electron and neoutral seced

atom continuity cjvations averaged over turbulent T1vctuations can be

written as

ane+ iﬁ" 5 (mpf‘ér)f/jpbj '(wr: )V(P'f*ﬁ):';\s (2.207)

?fﬁ' + L{x?ﬁ" _2 (L>€&r oy ( v (2 208)
ot X ?j ™y pST 9] ' 'mwh) Bu= n
where in (207) the condition %, 2 n, has becn used to write fgne T2 p.
The representation-of turbulent diffusion defined by equations (2.202)
and (2.203) is in agreement with that used in references (25), (17) and
(26). The value of S is taken to be 0.9 as in the latter referencés.
The importance of turbulent diffusion in equations (2.207) and

(2.208) is measured by the ratios

- () /()
8- (aps) /(i) 2

From the numerical solutions of the boundary layer equation$

and

chapter 3,the ratio Q( » which (for slight seeding) is a function only of

the gas-dynamic variables, can be calculated as a function of distence
from the electrode wall at any particular x-location aleng the channel.
For the v-location considered in the numerical solution of the plasma
and electrical equations in chapter 5, to be specified in chapter 3,
it is found that,like the eddy viscosity, 21 is close to zero near the
wall and the electrode wall boundary layer edge, but has a maximum value
of %% due to the eddy viscosity having a maximum at a distance of
about 8/32 l.bmm from the wall. Clearly, turbulent diffusion
is an important effect.

in equations (2.207) and (2.208), the convection terms have been

approximated in accordance with the assumptions made at the beginning of

this section, which mean that W, = Uy (j) and Uy = O
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The formulation of the electron and neutral seed atom continuity
equations is completed once the rate terms %e, and ﬁn have been
specified. Tt is clear that

SA—
so that only the form ofv;e need be considered. For the ranges of
electron tenperatures and electrén dencities concidered here, the
relevant atomic interaction processes in the partially ionized zas are
the processes of ionization and excitation of bound electronic 1. vels
of seed atoms and thelr inverses, resulting from either noncla *'c
collisions of the secxd atoms with free electrons or from the emission
and absorption of radiation (1). Furthermore, electron denczities are
sufficiently large for the collisional processes to cdominate raliative

processes and Ne can be written in the form (1)

. 2 Z
)L
Ne = xcr‘e)[(m ) —'"cj (2.209)
where . y
('ﬂem Ne .
2z m v 1 9 —_
C”’e*) - Y )ezuit - frrn) el (2.210)
and 0(61;) is the three-body recombination cosfficicnt. The
z 2 -
quantity (ne //”H)c%uft is the ratio Vk//hh vhen local thermo=-

dynamic equilibrium prevails (ne :’0) and is given by S2ha’'s equation

( Z’;) fme ir;?’) " o I
, €
nLul.l Az

where Vﬁ is the ionization potential of the ground state. For caesium

(2.211)

atoms,

Viz 3.89.V

Combining equations (2.209), (2.210) and (2.211) one obtains the =xpress-

2 e/rT
'ne ,((7—) [nn (T"M 8 €V/k»sle Mez

ion

(2.212)
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An approximate formula for « (T;) has been derived by Hinnov and
Hirschberg. They found that & C'ﬁé) is given by the well known

approximate formula (1>
- 20 _9a
ATe) 2 109 %10 **me To~ Y 2an¥/cec, (2.213)
which is valid for Té,\( 2000°k

(b) Electron Energy Tyuation

The electron temperature is governed by the electron energy

equation, which is obtained from equation (2.3) in the form

D 3 5 |
s bTe) + e 2 BT Vo + Ve To. e melka r—re);;‘\’ea (2.24)

+Ne .
where the term ~(» % Jo. Du / Mt in equation (2.214) has been

neglected as small and the electron viscous stress :_?e has = been
neglected in comparison with Pe . In deriving equation (2.214)
from equation (2.3) use has been made of the expression (2.31) in
which only collisions between electrons and buffer gas atoms are
considered,seeding being assumed to be slight.

As in the case of the continuity equations, when the electron
energy equation is averaged over turbulent fluctuations, terms appear
representing transport by turbulent fluctuations. To derive these

terms equation (2.214) is written in the form

°of 3, )\, 5k
;é(nez*kale)-fz;i V(o -u. ]Zoe +V2e _—_ E (2.215)

s

=mg/\;(7“ 72 ) A o Bkt Ne

Time averaging equation (2.215) over turbulent fluctuatlons, the second

ferm of the left hand side of the resulting equation can be written as

5/‘6V<fee >__ 5'/n3 V4 <(ﬂ-+f’e)(T+/e)(“+“ >
gfiv?“*ig‘*(/’e ugy)+ 5” “{4;9)

(2‘216)_

I
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where all correlations between fluctuating quantities have becen
/
neglected with the exception of the correlations < Te Uy’  and

(Felnyl> . Making use of the relations (2.166), (2.167), (2.202)

and (2.203), these correlations can be written in the' forms

/ I> _é— aTé
<]_6 uj ) {EEQ, g_lj

and £ i (P’e
< ()elb(jl> = " Sr gj ?)
and equation (2.216) can be written as
Sl —— = 5}("——[7&28,?‘]
’_V<(¢E“>— /j.t’_(l- me?j Pfg?j
5k o E 0 p:)
Meaj[ 579 (/, J

5_&} -_——_ﬂf&a pi £ 3‘7‘ 5—(—&&[ _E'_ .:DPL
e e B Te 23“ ) m By 74 2 T‘:’”’»I’Srﬁj (2.217)

where use has been made of the approximations 'Vle An, and fl'f‘u-
Using equation (2.217), the time average of equation (2.215) over

turbulent fluctuations can be written as

2 (e2hm)- o[ B a_ve]_;_/r,e,[ le€ 2P
pEl 2% Z 2y w,/,,fP 2y 2 LmpSr 2y

V40~ de. [ ne—[(,, (r:/;) 2__ W+ Ne (2.218)

where bars denoting averages have been omitted for convenience.
The term Mg ;fk, To V.u has been neglected in equation (2.215)
in accordance with the assumptions made at the beginning of this
section, which imply that Ux L py (j) and that ayg o - It
also follows that

ﬁ( 2kl 6(»»el/q‘T)quX (»ellrﬂ")

The second and third terms on the left hahd side of eguation
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(2.218) ropresent turbulent electron thermal coniuctiom (transport of
electron enthalpy by turbulent fluctuations of Te ) and transport
of electron enthalpy due to turbulent diffusion; i.e., due to transport
of electrons by turbulent fluctuations of 1{3- . The ferms of these
terms are in agreement with those used in reference (}7); the second
term on the lefthand side of equation (2.218) is omitted in references
(25) and (26).

For the formulation of the present physical model the simplified
expression (2.113) is used for the electron heat flux. This expression

can be written in the form

Fkgle

4e = 2 ._e (/flge [v e'l.l_’.] (2'219)

Since, as stated at the beginning of this section, all variations
paraillel to the magnetic field are neglected so that Ve is

perpendicular to b_ . Also,

— -
——

% L
r‘db = ?j) ax? )

so that, from equation (2.219), since ve Z M.

Vie=-V. { b/me[ V(/wp;)]} Vl(//ze)ﬁ?’e ﬁVZAb]}
-V {Sk:/e[jiwpefﬁ)]} —2%{0%;3[;? - z—j@ } (2.220)

? )| oyt (%Xﬁ

whers the relation between Ja and J‘ given by equation (2.231) has
been used to eliminate-g; from eguation (2.219).

The ohmic heating term J. Ej in equation (2.215) may, using the
relation between g; and E: expressed by equation (2.125b), be

written in the form

X
L.de = o = ene (2.221)

—
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The assumptions made in order to derive the simplified generalized
Chnls law given by equation (2.132) allow Jo to be replaced by the
total current density g? in equation (2.221), which then reads
, ;T ,
E-/_J; =z -7 gf‘ (2.224)
€
Finally, the term ALL » 8iving the net volutmetric rate of gain
of energy by free electrons due to inelastic collisions must be speci-
fied. Assuming, that the relevart inelastic collisions are with seed
atoms in various levels of electronic excitation that communicate
energetically only with the free electrons and by emission and absorption
of radiation, K@ can be obtained by considering an energy balance

for the excited atoms. It can be shown that (1)
e = ~R -1 € (2.225)

where é, is the local net rate per unit volume of radiant energy loss
from the plasma and €; is the ionization energy of ths ground state of
a seed atom. It can be shown in the same way that the total seed atom
number density and average seed atom energy per unit mass are approx-
imately equal to the contmibutions to these quantities from seed atoms
in the ground state. This was assumed earlier in section 2.2 .
Replacing the quantities V%,) x. _L_"/ and }}e in equation (2.218) by
their expressions given by equations (2.220), (2.224) and (2.225),

the electron enorgy equation assumes the form
T 21 [ Shy O[T Op
Dt( 2"‘ )"z ‘fy[”’“f&"j Zr?j[mfsr}j'
{Ekr[ V( {2' VLAl
pew)]|- v e MJ}

_TJt \/3
7 td éé: e = k (7:’7;) L Wk fﬁ - ’%?é

(2.226)

&

Elininating the derivative Dwe /3¢ from equation (2.226) with the help
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of equation (2. 207), the electron energy equation can be written as

2 { kaSr D'j&} —5_2&73{ (w’,’:pn&)%ﬁ

-Shy e op : .
q () ]+ 2 v ()7

v (bkgle )V(Pd'(’) \2 {Clﬁk)[v ~feViea Lj}
-y By 40

‘&E = Z 5
5T }; 'I-We k, (T——{c) \/ek ( kaT"f’f) Ve
_ g)

where the electron thermal conduction term expressed in terms of the

(2.227)

given cartesian coordinates is given by equation (2.220). The term

b ksne DTe /Bt~ on the left hand side of equation (2.227) has
been neglected as small; it being assumed that _Z; instantaneously
relaxes to changes in the plasma and electrical field parameters.
This is referel to as the "temperature relaxation approximation",
and is made here in order to eliminate the heavily damped fast thermal
mode of electrothermal waves (27), which is of little physical signifi=-
cance here and imposes severe restrictions on the choice of time step
used in the explicit numerical integration of the continuity equations
(see section 4.6 and appendix C). The fast thermal mode can also
be eliminated if, instead of the temperature relaxation approximation,
Saha equilibrium (ﬁt==0) is assumed (27). This is the approach used
by Uncles (8) and requires restriction of conditions to those for which
the electron temperature is very large. 1In addition, the cross-strean
diffusion terms in the electron and seed atom continuity equations must
be assumed negligible so that the effects of the plasma wall interach:ns

discussed in section 2.7 on the bulk behaviour of the plasma in

an MHD generator cannot be considered. In addition to the inclusion
of thé effeéts of turbulent velocity and temperature boundary layers

(velocity and temperature variations and turbulent transport phenomena),
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finite ion and seed atom diffusion fluxes, and plasra-wall inter-
actions (see section 2.7 ), it is in the use of the temperature
relaxation approximation, rather than the acsunption of Saha
equilibrium, that the present work differs from that of Uncles (8>.

As is shown in appendi# D, the radiative loss term on the right
hand side of equation (2.227) cannot in general be evactly expressed in
terms of local plasma properties and their gradients. However, an
approximate expression for the radiative loss is derived in anp:erdix
D, where, using this expression, it is shown to be negligible compared
with electron thermal conduction. Therefore, radiative energy loss has
been neglected in this work.

The importance of the first, second and third terms on the left
hand side of equation (2.227), which represent turbulent.transport
processes can be estimated in the same way as in sub-section (a), in
which the importance of turbulent diffusion processes in the continuity
~ equations was estimated. Since the first term comes from the electron
continuity equation, and the third term is of the same order as the
first term, the first and third terms need not be considered here,
their order of magnitude relative to the laminar diffusion term having
already been estimated in sub-section (a). The second term represents
turbulent thermal conduction and its importance relative to the

laminar electron thermal conduction is measured by the ratio
S'kg P‘. e 22
Z miphy L (14457)

As in sub-cection (a), the latter ratio is estimated by considering

the gas~dynamic profiles used in the numerical solution of the plasma

and electrical equations. Taking o= 2000% and

B=077 it is found that the maximum value of the ratio it 0.1,

and that the ratio is close to zero near the wall and near the centre-

line. Turbulent thermal conduction is therefore of much less importance
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in the electron energy equation than is turbulent diffusion in the

continuity equations.

(c¢) Electrical Field Pguations

The equations governing the electrical fields, that is the current
and electric fields, are the charge conservation equation and Faraday's
law, which, for the plasma and electromagnetic field conditions
considered in this work, have the approximate forms of equations (2.190)
and (2.194). Since, in accordance with the assumptions made at the
beginning of this section, the current flow is perpendicular to a
uniform magnetic field, - taken to be in the z-direction, equation
(2.190) implies that a current stream function ¥ can be introduced

such that
J=-Va (1/:‘3-)) (2.228)

from which the components of J can be written as

Tt 24
Ixi’z‘ﬁ ) 27— X

The generalized Ohms' law (2.132), Faraday's law (2.190) and

-
-

equation (2.228) are cast into a single scalar differential equation

for Qf :

2 0
V#"ﬁf’g}f“Q%:K (2.229)

where the coefficients B&and R are given by

= rve [}f} (é) - 2_3 (é:):\ (2.230a)

R= o ;?(;lr‘e) + 2% <’§£) (2.230b)

and

Oék; ( 8ﬂ§ 91; Me DZE

K: —{E 9:! Q’; B ?/X_ (Ej (2.2300)
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2.6 BOUNDARY CONDTITIONS FNR THE PTASMA AND RILOTRICAT, EQUATTONS

For given gas-dynamic fields, equations (2.207), {2.202), (2.227)
and (2.229) constitute a closed system of equations for the wnknown
fields ﬂe,VLndTZamiif . These equations are of mixed elliptic-parabolic
type, requiring specification of initial conditions for he and m, ,
together with boundary constraints forne my , Te ~nd 1f . The initial
conditions will be discussed later in section 4.5, attention in the
present section being confined to the boundary constraints.

The present work is concerned with the study of plasma and elect-
rical behaviour in the main part of a linear segmented electrode
channel. The main part of the channel is the region where inlet
relaxation effects have subsided so that the plasma and electrical
fields are nzarly periodic functions of the streamwise coordinate X,
with period the length L of one electrode segment. VWhen the main part
of the channel is considered, the geometry of the problem is that of
one electrode segment. Within this region, the gas-éynamic fi=lds
7} p and w do not vary appreciably in the x-direction and may be
considered given functions of y determined from the solutions of the
boundary layer cquations of section 2.4 .

An individual segment of the segmented electrode channel is shown
in figure (2.3). The segment has height H, width W, and length L,
and occupies the region ol xdL, O@SLYLH and OCZSW-

It is assumed that each electrode pair is connected externally to a
resistive load RL . The boundary conditions for the electrical

quantities are

(1) Ex =-dﬂfﬂbcon the electrodes BC, FG

(i1) J;=o on the insulators AB, CD, EF, GH,
(111) ¥ = R //gdzdx =TK.

Bt o
(iv) Periodicity ofJ;i.e., ;l_(x’ﬁ): -I/()H'L/j)



-93-

I is the total current throush an electrode pair, and the voltage drop
across the plasma between the electrodes, the Faraday voliage V;}is

given by

.
\/F =—-£‘EJ Jj - A;AC + A¢o\, (2.231)

vhere Afbw and A%& are the anode and cathode sheath voliage
drops respectively (see section 2.7 ). Using the generalized Ohn's
law (2.132) and equation (2.223), equation (2.231) and condition (i)

can be written in the forms

#
S A

and

oy _, A 2% R

Sy =% e x f—(ze 9)( (2.233)

respectively, vhere A¢_—: Asédl. oY JSJC

For the insulator walls aty=o anrgj_:H , cmdition (ii) requires
that ;&;.:—0$Lyﬁax’=76> , yielding ¥ = constant. Assuming that the
electrode pairs are electrically separate, there can be no net current
flow in the x-direction. This is ensured by setting #(AB):Z{—(EF):'?D)
and %(C«b) zf’(G—H) Z,L, , where ?—0-’:0 arbitrarily. From

equation (2.223) and conditions (iii) and (iv), it follows that
e, + T /W (2.234)

(2.235)

and

Ylny)= O+, ) +T/W

In this work it is assumed that T is a fixed prescribed quantity; i.e.,

a conctant current is considered to be applied to the plasma as might be

the case in practice if the section of generator considerel were a preionizer
Finite interaction between the external load circuits and the plasma

8
is included in the work of Uncles ', but is neglected in the present work.
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The periodicity condition (iv) is also imposed oa the plasna

fields. Thus,

e (X, 9)= Me (X+L,v) (2.236a)
M (X)) = Mx+L4) (2.236b)
and (2.2%c)

Te Wy = Te(x+L,4)

The boundary constraints on the plasma fields at the insulator
and electrode walls are obtained from an analysis of the plazma sheaths
near the walls and plasma-wall interactions. This analysis is presented

in section 2.7 .
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2.7 EIECTROSTATIC SHTATHS AMD RLECTRODP-PIASMA INTZRACTTONT

In order to obtain the wall boundary conditions to be satisfied
by the continuity equations (2.207) and (2.208), and the electron
energy equation (2.227), interactions between ths walls and the
plasma,and the dchripﬁion of plasma behaviour in regions adjacent to
the walls, must be considered. HMuch of this section is concerned with
the interactions between electroles and the plasma which are dependent
on the presence of electrostatic sheaths adjacent to the electrode
surfaces, and on the processes of emission, deorpiion and absorption
of electrons and seed particles by these surfaces. Interactions
between insulatorsurfaces and the plasma are much less complex and
will be considered after a detailed model of the plasma-electrode
interactions has been formulated.

Three regions are assumed to exist near an electrode surface.

The region nearest the wall is a region of significant departure from
charge neutrality; that is, the electrostatic sheath. The sheath is
assumed to be collisionless; that is, ion and electron collision
effects are assumed to be negligible in the sheath. The extent of

this region is the sheath thickness Qs , where, from Poisson's equation,

% ~ (18gle Jenc)™ (2.2

1z
which can be written in terms of the Debye length gd = (eo 1’57&/1”: 67’)

. )~ (e e l/kT)" X (2:22)

For ion and elcctron collision effects to be negligible in the sheath
it ié necessary that the sheath thickness 35 be smaller than the
smallest mean free path, which, in the case of electron-buffer gas
atom collisions dominant, is the ion mean free path. In general, the
mean free path of species X particles, when collisions between

species & particles and buffer gas atoms are dominant, is given by
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l a7 |
L = Ny, Quh, (WMMA) (2.22D

where Glxh,is the momentum transfer cross-section for collisions
between species & particles and buffer gas atoms. The condition
for electron and ion collision effects to be nezligible in the sheath

can be written in the form

f)s by (2.24=n)

. . . — - A
Taking as typical values, le =2000°k 5 Ne= 10 qM);'nh: l/-XlO Lkm ;and

using equation (2.237), the condition (2.240a) can be satisfied only

if eNe L'L"— oty
-/ 1. L m
[AF] < g, b = ? (2.24000 )

/
e /] \
— | { o.03
&;Ie
The values of the lengths :Lb L[ and Lt,for the above values of plasms

parameters are

-7 -6
Ad =10 m 5 L;=2X10 'm , and le = 2x10 M. (2.24)

It is apparent from condition (2.240b) that (2.2040a) can be
satisfied only for small sheath voltage drops. For larger sheath
voltage drops such as might occur in regions of the cathode surface
as current saturation is approached, the condition will not be satisfie
unless the electron density is larger in those regions. It should be
noted, however, that the value of electron density used in ma ing the
above estimates is the Saha equilibrium value at the given electron
temperature. In reality, depletion of electrons and reduction of
electron density below the Saha value can be caused by diffusion in

regions of large electron density gradients. As a result, the restric-

tion on the size of‘l¥ﬁ may be more severe than condition (2.240b)
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suggests. It is clear that, in order to obtain accurate rezults,
application of the present theory must be restricted to cases in which
the magnitudes of the sheath voltage drops are small,

The second region is the transition region, which acts as a
buffer region betweeﬂ'the collizionless shecath and the collision
dominated region. This region extends from g; to a distance equal to
several times the maximum mean free path. The maximum mean free path is
the electron mean free path; a typical value of which was given as
one of the estimates (2.241).

The third region is the continuum region; this is the outer collision
dominated region where the particle distribution functions are close to
Maxwellians and the behaviour of the plasma can be described by the
continuum continuity and electron energy equations derivea in section

2.6 .

The following assumptions are introduced to simplify the model:
(i) In the transition region the velocity distributionsof partieles
moving towards an electrode wall are half Maxwellian3 z* tenp-
eratures lw (wall temperature) for the ions and neutrals, and
hﬁ;o for the electrons; the variations of these temperatures
across the transition region are negligible.
(ii) Ionization, recombination and convection effects are negligible
in the sheath and transition regions.
(iii) The sheath and transition regions are locally one-dimensional.
(iv) The magnetic field has no effect on the particle motion in the
sheath.
(v) The electron heat flux, the electron density and the seed atom
density are approximately constant across the transition region.
Since the continuum region is collision dominated for all particles,
the particles entering the transition region have half Maxwellian

velocity distributions, and it is assumed in (1) that the perturbations
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of theose distributions due to the relatively few collisions in the
transition region can be neglected,

As.umplion (ii) is taken to imply that, as in the case of a
stationary collision dominated plasma in a steady state, particle
fluxes are constant acrocs the transition region. The continuity of
fluxes followe from an asrure’ smallness of the characteristic diffusion
tie compared with the time ccales of variation of the plasma properties

Eal

in the regions of plasma far removed from the electrode surfaces.
This allows one to formulate relaxation free boundary conditions for
the continuity equations, without detailed consideration of the
transition region.

For assumption (ii) to be valid it is necéssary that the cxtent
of the sheath-transition region, which is about equal to lg , be
smaller than the average distance | traversed by an ion before it
recombines, convection effects being negligible because of the zmall
flow velocity near the wall and the small sheath thickness. Ttatistical
considerations based on the random walk concept suggest that L™ ve

written as (1)

72
Lfa [ 28)7, 1
-~ —— L
>R i (2.20:2)
)
vhere »ge is the collision frequency for three body reccombination,

which is obtained from equations (2.209) and (2.213) in the form

Ve L (e = 10905208 T 72 (2.2:3)

Taking as typical voalues, NMe = lolqm'i 725 2000°k, 7= /500°%K  and
ny = §LX/02#'7n"3 , it is found from equations (2.242) and
! A 1 Lﬁ 1/ " ’l(— m 3 03 3= o
(2.243) that 4xi0 . Comparison with estimates
K )
(2.241) show that, since L" 3 Le , the condition for validity
of assumption (ii) is satisfied.

pssumption (i11) is justified by the fact that [, is much less than
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the electrode dimenslons.

For assumption (iv) to be valid it is necessary that

As L e (2.244)

vhere -HCL is the electronlarmo» radius, g'ven by

Me
D= o C (2.245)
where Ce is the root mean square speed of el-ctrons, given by (2.206)

G = (8keTe /itme)’
For the typical values of pe and Tg given above, the condition (2.2/¥)

is satisfied for B{4ST , assuming that A}éﬁf Ol mV y SO
that qs’_‘;[w

Assumption (v) and, to a lesser extent, assumption (i), cannot
be Justified without attempting to extract more information from
the Boltzmann equations for the particle distribution functions in
the transition region where departures from equilibrium are large for
electrons and ions. It is csuspected that some error is involved in
maxing assumption (v), but it is only by making this assumption that
one can exclude details of the particle motion in the transition
region which are difficult, if not impossible, to determine with
accuracy from the Boltzmann equations of the particles. It chould be
noted that no such problem exists in the case of a collision dominated

sheath ( As {<L{ ) for which a transition region is not defined.

Effects of Seed Deposit on Electrodes

The theoretical model of electrode-plasma interactions developed
here incorporates electrode-seed interactions. The essential feature
of these interactions is the large affinity between the alkali metal
and the surface. Practically all incident seed particles (ions and
neutrals) are ad-orbed to the surface and desorption takes place only
after a certain residence time. The most important parameter character-

izing the coated surface is the degree of coverage (e ), defined as
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the ratio of the number of ad-orbed atoms per unit area to the number
of adsorption sites available per unit area. The value of @ strongly
influences tbe rate at vhich electrons are emitted from the surface as
well as the rates at which ions or atoms are desrnin?, Eypressions
for the rate of emission of electrons \74, , the rate of deccithion:

of ions V,,' and the rate of desorption of neutrals Vn have been given
by Levine and qyftopoulos (28). In general thece have the forms,

neglecting the Schotiky effect,

Ve = 4T Me (\(’37;) h’acxp (—C Qb;/’(a 7;) (2.247)

Vg = 7()}3,‘2/-[9) ex p (—ef,‘/ka—l; R (2.248)
and

Yo s VagpguHO) exp (-ed/ ko) (2.269)

where, by application of the formulae presented in reference (27) to a
caesium-tantalum combination, the following expressions have been

fouwmd for the quantities appearing in equations (2.247) - (2.249):
18,2 J < 'iolzd' -1 DL
3\4‘ 2,5,‘-’1, ‘J-JL = 4.2X10°°m Ve e (2.250a)

(2 (#)= 6 (l—ﬁ)"(! - i"i) ;:,’v/a {[P/(/«&) ,,.0'/’/(,,9 '/3]/2};(2.25013)

and . 02590 }J
L= tr2 - 2-54[1, (35269 1 - [+ 1-00kp%]

&, = 209 + 4. 950+ 2.638 6% 14431 6’1 12,0936 L 2.9696°

S (2.250
f:2‘+Ié~“+?26’*14290+s’lun—/oswe + 41326, (2.250¢)

where the expressions for —é;t' and _@:L are least square polynomial
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fits to the exact exprescsions, which are rather complex.

Thz cxpresgions for Ve , V' and Va , given by equations
(2.247), (2.248) and (2.2“93 are based on the assumption that all
rarticles are emitte& and desorbed in half Maxwellian distributions
at the wall tempesrature 7; .

The variations of Ve , ¥y anl ¥, with ¢ are chown in figure
2:4 for a wall temperature of 1316°K, which is the wall temperature at
the particular x-location at which the gas-dynamic profiles used to
obtain the numerical solutions of the plasma and electrical cquations
in chapter 5 are taken. It can be seen from figure 2./ that sez=d
deposition on electrode curfaces results in a considerzble enhancement
of electron emicsion duec to the large reduction of electron work functicn
@ (9) below the value far <0 , which is 4.19; the emlssion
rate appears tc saturatec at a maximum value, which is of order 1010 times
the value for 6= 0 . It can also be séen that the relative magnitudes
of Ve , Wy and ), strongly depend on the value of @ ; the
desorption rates ¥ and V,‘ are zero at #-p , but tend to infinity as €2 /.
Also, V3 >Ve over the entire range of € ;V,)V; for all but small values
of & (£0.05); and v, (Ve for A2X0L0.9 .

Before the general wall boundery conditions are presented, it is
useful to consider th; values of & and the corresponding values of
Ve , V¢ and )A in the equilibrium case, where all plasma properties
are constant and the net fluxes of all particles are zero. This case
has been considered in detail in reference (29) for a caesium-tungsten
system, but is reconsidered here for a caesium-tantalum system, in which
cace the formulag (2.250) are somewhat different. In the equilibrium

cace the seed atom continuity conditions derived below in (c) yield,since

the nct seed atom flux is zero everywhere (see equation (2.272)).
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Hj = 2V, - ’,/QYMC’":O
or
Vo () = G«/Lf
vhere (,, is the root mean square speed of seed atoms. For a given
gas temperature and seeding fraction, and assuming Szha equilibrium
at the gas temperaturs, the latter equation yields the equilibrium
value of € , and the corresponding values of Ve, V. and % can be
found from equations (2.250). Tt is found that for a gas temperature
equal to the wall temperature given above, i.e., 1316OK, and a seeding
fraction of 0.002, the equilibrium value of 6 is 0.35. It can be seen
in figure 2.4 that, for this value of © , V, (Ve (V) and
Ve & 2x{ozzm'2gec'l , ylelding a current density of about 3 x 107 A/mz.
Under near equilibrium conditions, the maximum obtainadle current
density is about equal to the latter value ( see sub-zection (t)).
However, the work of Xoester et al (30) has shown that as a result of
the complex interactions between a non~equilibrium plasma and a seed
covered electrode the maximum attainable current density can be groatly
increased. It is one of the aims of the present work to investigate
the effects of this phenomenon on the behaviour of the plasma in a

closed cycle MHD generator.

Tlectrode Wall Boundary Conditions

Boundary conditions incorporating electrode-sezd interaction
effects ware first considerad by Sajben (29) who formulated boundary
conditions for the continuity equations, but not for the electren
energy equation, assuming a collision dominated sheath,and steady
state plasma. These boundary conditions were used by Koester et al (20)
to solve numerically the continuity equations and Poisson's equation.
Again, the electron energy equation was not considered, and only stecady

plasma states were considered. In addition, the theory of reference (30)

was restricted in application to a laminar stagnation flow geometry. The
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present formulation of boundary conditions is based instead on the
assumption of a collisionless sheath and includes a bouniary condition
for the electron ensrgy equation with an zllowance for finite surface
coverage relazation rates. Tn addition, bouniary conditions incorp-
orating electrode-se=d intrraction:.effects are applied for the first
time to a IHD generator. The boundary conditions are derived below
Tor each of the two elect~des (separated by a distance H) of a single
segment of a segmented electrode i'HD generator. To be specific, an
electrode at Y=o is first considered and the boundary conditions

then presented in a form applicable to either electrode.

In formulating the wall boundary conditions, two cascs nust be
considered, according to the sign of the sheath voltage drep 1@6 ,
which is defined as the voltase of the sheath edge relative to the
electrode in question. The physical distinction betieen these cases
is discussed in sub-section (b) below, in which the continuity of
the component of current density normal to an electrode across the
transition region 1s considered.

(a) Ton continuity conditions

The boundary conditions for the electron continuity equation can
be obtained in a convenient form by considering the ion motion. The
behaviour of the ions in the sheath depends on the sign of the sheath
voltage drop A¢ , S0 that the two cases A¢}0 and Afg\(D must be
considered separately.

AgY0

In the case of a positive sheath voltage drop, one has in the
sheath region an acceleration of ions moving towards the wall, and a
deceleration of ions moving away from the wall. The velocity distribution
function in the sheath as a function of the local potential p (relative
to the elzctrode) can be derived by utilizing assumption (i) and the

fact that ions are desorbed in half Maxwelllan distributions.
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Integration over velocity epacz then yields the following exprescion

for the local ion density in the sheath:

" (g)= *—[ vi{e<f/w¢>f’]e‘/%
e(4-2) (5.00)

il | ewb-d)}’/z W
s ky 1o

where the subscript s denotes a value at the outer sheath edge,
(S’k,T—/uTmi )1/7' is theroot mesn square spced of ions

with a NMaxwellian velocity distribution at temperature T and/u:; denotes

the flux of ions moving towards the wall at the chcath edge. In

equation (2.251), we have, in accordance with assumption (i),

Sk,ﬂf)'/t-

setive (o
[4

From equation (2.251) the ion density at the outer edge of the

sheath, where ¢_—_- 47! , is obtained:
2V, 2uis
'n"_s = "l A‘. + "/;("
CL.LJ Ca's
2 (2.252
= = (vibotpis)
Clw
vhere the retardation factor h; is given by
eAf
h = e M (2.2:9)

Since charge neutrality prevails at the outer edge of ths sheath,
'new = 4795 =g

and equation (2.252) can be written in the form
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2 _ .
Vew = -~ (Vil‘\i +/“i> >, (2.25%)

(1]

Since ions are desorbed in a half Maxwellian velocity distribution
at the temperature.7; , the net ion flux in the y-direction at the

outer eige of the sheath can be written as

f&:ﬂﬁi—ﬂg (2.255)

or

l
HJ = Vihi - 2 Mo Co,

where /Af; has been eliminated from ejuation (2.255) using eguation

(2.294).

According to equation (2.131), the macroscopic ion flux in the

(2.256)

y-direction at the outer edge of the transition rzgion is given by

0ok O
L (7, s ] =2 = e Te
'e/CJj‘Ij) ezn,?jw(n/ )t

which is equated to the net microscopic flux given by equation
(2.256), in accordance with assumption (ii), to obtain the required

boundary condition for the electron continuity equation:

— mk& & — . ]
% ?;e ?’j e (’ 1"Te>}w= ,?V{l'u "E Yew Ciu? s (2.257)

vhere,in accordance with assumptions (i) and (v), we have set

Tet =Tow, Te = Ty and Me = Moy,
The corresponding boundary condition for the wall at y = H is

given by equation (2.257) with the sign of the right hand side reversed.

The boundary condition for either wall can be written in the form

—= 2 - e ]
e(—nc?jﬂe_(,rfle)’({ = é(.z\lli'n ——i "ewct'w 3

w

(2.258)
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where { -4 for the electrode atyso , and €=—| for the elcctrode at
y= K.

Ag {o.

Tn the case of a negative sheath voltage drop, one has in the
sheath region a deceleration of ions moving towards the wall and an
acceleration of ions moving away from the wall. Deriving the velocity
distribution function in the sheath as a function of the local potential
and integrating over velocity space, as in the case whcre ‘A95>.0 '

the local ion density in the sheath is obtained in the form
w2y (LN 2
* = ——— - er -_.
' Cw } ksTia €

+ 2uis _ed g:( e(4¢-p) (2.25

8l

s |V et El e &l

where, in accordance with assumption (i),

G Sk T "2
S T Niw = TM‘.

From equation (2.259) the ion density at the outer edge of the cheath,
where 9{: A/d sy 1s obtained:

2v, - €Az % _ééé
o= T, | — er- 437\
N's C. J’ A—AT; e w

tw
+ 3/45 ) QM VA (2.260)

Cuu ;A
and, since charge neutrality prevails at the outer edge of the csheath,
Nis = Neg = Vew (2.261)

Since particles entering the sheath region from the transition region
have a half Maxwellian velocity distribution at the wall temperature-Z;

(assumption (i)), the net ion flux in the y-direction at the outer
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edge of the sheath can be written as

FB=Vr—p&h; (2.262)

vhere the retarlation factor by is given by

/h': exp (c Afé /k&’/:)

Eliminating /(,; from equation (2.262) using equations (2.260) ani

(2.261) we can write

. _eld V2 fﬁé
hi {imucm*\’i [l-CV)L ( ";TJ) e Al

_(A?‘ ’/z_
[l—fevj— ( A—';—K:)

nj:\/,—-

(2.263)

Bquating the macroscopic ion flux in the y-direction at the outer edge
of the transition layer, which is obtained from eguation (2.121), to

the net microscopic ion flux given by equation (2.263), in accordance
with assumption (ii) the required boundary condition for the electron

continuity equation is obtained; this is written in the grneral form

I @
” —
R L . e s e(f'(m ¢ 52

R
I%C' @mfﬁ

where € = +| for the electrode at y = 0, and ¢=—| for the

w

fact

eloctrode at j—’ H.
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(b) Total turrcat Cond inmily Conditions

The aznalysis of (2) can be carricel out for electrons and cipressions

derivel for the net microscopic flures of eleclrons in the y-direction.

For 57920,

o ebF
o Ve”lve{%w— Qé[,_cvf(%’;_)je ,(67;}.

Cj _ = o
és (l+ev2L (Z%) ) e

vhere

fe=e

e 8¢ [ksTes (?"47;)”‘ (3L5E
Cew =

) Are [, les = TTme /2

while, for A¢\( 0)

. v
{Z = & I+ C—;})Vel"[—é“ﬁ’w(ﬂ
J w/ (2.266)
where | e 8d/kg T,

b = e

The factor € is +( for the electrode atj:o, and —] for the
electrole at j—' H |

The sheath voltage drop A/zﬁ is detgrmined from the requirement
that the y-component of the total current density be constant acroszs

the transition region, =so that

j‘ = e[[,j ey (2.267)

vhere ﬂj is given by equation (2.256) when 4f > o , and ejuation
(2.263) when A;é {0 (the signs of the right hand sides of equztions

(2.256) and (2.263) nust be changed when the clectrode at y= H is

——— ———
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conzidere?). The -leotron fluv ’ej is given by equation (2.265)
when A¢}O , and equation (2.266) vhen AP0 . TFor a eiven currqnt |

jj , equation (Z2.267) is to be consid-red an cquation f-r A}/.

In ovder to detrrnine how Jé varizc vith A}i , the valuce of \Zj_ in

the 1394 ’A;é}-ooand, A%;ﬁo, and in the intormediat- cace, tthors
A%z—o , are considered. The valus of @ is taken tc be 0.3%, hich
as mention'd earlier, is the equilibrium value of @ for a cecling
fraction of 0.002 and a wall temperature of 13160}(- the ccrresponding

values of ¥ and ¥ are, from figure 2.4, 2.3° x 1022 -2 sec"1 and

L.22 x 1017 m_2 sec re.spectively. The electron temperature at the
sheath edge TJeg is taken to be 2000°K.’
Thus, we consider the following cases for an electrode at y =0:

(i) A;S > -0,

Fquations (2.263) and (2.266) yield, in the linit Ag> -0

% (2.26%a)

and IZJ -3 L ey Ces (2.26%b)

respectively, and, using equation (2.267),

:’3:6 (W"f‘;{new&s) (2.263c)
(i1) Ag=o.
Setting A¢:o in equations (2.263) and (2.266) we obtain
Ty =2% = 3 View Cio (2.260a)
and (|+ - L) Ve - 7 Vew Ces (2.269b)

so that

- ) Ces
e[zv, “g Vewlio ~ (I+E;)Ve + %n«w&i‘( (2.269c)
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(113) B koo

Zouations (2.256) and (2.263) yield, in the limit A >0,

I .

ﬁ-j == 7 NewCiw (2.270a)
and ch = Ve (2.270b)
so that

JE: -e (V-e + Zlhew C}w) (2.2702)

Since Vy (Ve for ©=0.32§, ard Go (¢ Ces , equztion

(2.269c) can be approximately written as
Ces ]
Jg.".e [— (I+ E)Ve +§V)ew(es]

from which is follows that the sign of JB for Ag=0 is dopendent

on the value of Mew ; :’;)0 for A;é =0 if

Z Ce} I7 -3
MM) C—:s (l-f— E;,)Vei 3.83%x10 M , (2.271)

where use has been made of the values of"(,;, 7;SandV< given above.
If the latter value of Vg, is compared with the value ‘V)e*& l-7éX/DIqm;
obtainad by assuming Saha equilibrium at the electron temperazture
7:5 = ZOOOOK, we cee that, near Saha equilibrium, the condition
(2.271) is satisfied and 33 {0 only for sufficiently large Ayf ;
for Me=MX , equations (2.268c), (2.269¢c) and (2.270c) yield the

- 2 -
5 2 , 3.72 x 105A m? and —4+.16 x 10°A m 2,

values 3.91 x 107A m
respectively, for Jj . As A):S is increased from A;zﬁ:—.a) j;
remains practically constant, for A;f {0 , at a value about equal to
Vo, &;/2, because of the relatively minoxr contribution of the
emittedl electrons to jj . But, for d¢ >0 , :)—9 rapidly decreases

with increasing A/é due to the increasing reduction of the flux of

electrons reaching the elcctrode surface from the plasma. Finally,
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—

for =ufficiently large A% , Jj approaches the emitted current
density -eV
However, a= a rezult of diffucsion, the electron density can be
considerably reduced below its Saha value; the numerical results
prezented in chapter 5 show that the electron density can be of the
order of 1017mm3 with 721'; ZOOOO?( and % 0.25. Taking, for evample,
Ne = 1017m'3, equations (2.268¢c), (2.269c) and (2.270c) yield the

2 and =3.92 x 10°Am"2.  In this

- e -
values 2.23 x 10° Anm 2, -6.29 » 10-Am
case, Jj rapidly decreases from a value of order€he, Ces/Z, as A;ﬁ

is increased from Aff = —od s, due mainly to the increasing

contribution of emitted electrons to “Tj , and eventually remains
relatively constant at a value of order the emitted current eVe in the
interval © (A?” { o2
It must be remembered that, in the above examples, €@ is taken to

be close to its equilibrium value of 0.35, at which Vi{{Ve . Fisure
2.4 shows that ¥; cc;m exceed Vo for é(0.20or 6>07. In the case where

V.')_f‘,_ (H' Cc%,) Ve ) equations (2.268c) and (2.269c) show
that I;)o in -o { APL 0  independent of Mew , since

Ciw (( Ces ; one then has  Jy {0 only for sufficiently

large positive values of A¢.

(c) Seed Atom Continuity Conditions

Tn the case of the neutral seed atoms, the transition is consicdered
as extending from the inner edge of the collision dominated region to
the outer edge of an electrode adjacent layer of thickness about equalto l,,
welled the ¥nudsen 1Ayer, within which collisions of seed atoms with
buffer gas atoms can be ncglected. Since bn & l«,,',the Knuiren layer
must necessarily be thicker than the shzath if the sheath is collision-

less. Considering again the electrode at y = 0, the net flux of neutral
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seed atoms in the y-dircction, which is constant across the transition

region, in accordance with acsumption (ii), is given by

4 - -
ﬂj = /w —/“vS = Vn'/“ué‘ (2.272)
whore /Ajg and /%;} are the fluxcs of ceed atoms moving awvay and
towvards the wall, recpectively, and the subscript é refers to the

outer edge of the Ynudsen layer. Equation (2.272) gives
+
ns = Va (2.273)

Tt follows from equation (2.273) and assumption (i) that the sexd
atom density at the outer edge of the Knudsen leyer is given by
2V, 2 Mg

Y

Cawo Cned

W" =

w =

(2.274)

3
. —_ z - s s R
vhere Cosy = (,2k5|”//1(¢ﬂ“)/ . In accordance with assunption (v)
M, is taken to be constant across the transition region and given by

equation (2.274). From equation (2.27t) we obtain

/ .
P& = 5 Mo Gaw = Yo (2.275)

Eliminating /u;g from equation (2.272) using equation (2.275)
an expression 1s obtained for the net flux at the outer edge of the
¥nudsen layer:

P-:j = AV — ‘2" N> G (2.276)

The flux given by equation (2.276) is equated to the macroscopic flux
in the y~dirsction, given by equation (2.796). ., at the outer cdge of
the transition layer in accordance with assumption (ii) and the reguirel

boundary condition is obtained; this is written in the gencral form

- . ;r 7 w: £ (21),, - zn,w C’ha) (2.277)

where €=+¢| for the electrods at y = Q,and €=—| for the rl.ctrode

at j: H.
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(d) Electron Inersyv Contimuity Conditions

Thz bounlary condition for the elsctron energy ecquaticn is obtalined
by ecquating the mlicroscopic electron energy flux at the oulter edge
of the shcath to the macroscopic electron energy flux, the electron
hcat flux, at the outer edge of the trancsition region in accordance
with assumption (v). Th: forms»f the bounlary conditions depand on the
cign of A¢> , and two caszes muzt thersfore be con-idered.

4¢ >0

In the case of a positive sheath voltage drop the microscopic

electron energy flux in the y-3irection at the outer sheath edge is

given by

[y = Ve (26T + ehp) = pés (34 Tew, +e8g ) he

vhere el
hee o %
€

= €

(2.273)

The net flux of electrons in the y-direction at the outer cheath edge

can be written as
Dj = V- /Mélae (2.279)

Eliminating /4;; from (2.278) using equation (2.279) we can write

equation (2.277) in the form
ey =% (2075 4+ e89) = (v 12y) (2 Tows € 428) (2.2%0)

vhere E%f is given by the expression for the macroscopic electron

flux

|~ 1 f—, Gkl .
[oy- To ey = 'Z{Jj + 'e‘lzj[;j’”f ('*’Jj (2.201)

obtained from equation (2.131).

The macroscopic elcctron heat flux in the y-direction at the
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outer edge of trancition region is obtained from equation (2.219) in

the form

( R ¥ikg o (T N e %E (2.282)
gk = e Ity - (@05 ),

where, consistent with acsumptions (iv) and (v), the ilall component

of thc electron heat flux has becn omitied from equation (2.282). 1In

accordance with assumptions (3) and (v),

g

!e}—— 74€f-—-‘”fu9, -7;;”_—
and the macroscopic energy flux given by equation (2.282) is equated
to the microscopic energy flux given by equation (2.280) to give the
required boundary condition for the slectron energy equation; this

is written in a form applicable to the electrode at y =

De e

ng ,ew[ '—wc (T+ 'c) Cri 8k v
j eme ’*ﬁe)?j w
=t [\)C (BT s e4¢)_ (Vem € f(’j)(’gkxj;ﬂlwﬂ (2.283)

where € =+| for the electrode at y = 0, and €= -1 Tfor the electroce

at y = H.

Ap< o
in the case of a negative sheath voltage drop the microscopic

electren energy flux in the y-direction at the outer sheath edge is

given by

@ej = Ve (2"97:;”![ “21%7;/455) (2.28)

where

exp {fdfé//‘um)

By determining, as in the case of the ions, the velocity distribution
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function of thc eleoctrons in the sheath as a function of the local

potential and integrating over velocity space, it can be chown that

ZVeL‘ e
Mew= e Mt o (2.225)

Elininating //Le; from equation (2.22%) using equation (2.285) and
eguating the reculting expression for [—E'ej to the mecroscopic electron
heat fluv, as was done for the case of a positive sheath voltage drop,
the desired boundary condition for the electron encrgy equation is

obtaincd; this is written in a form applicable to the clectrodie at y = H:

- Sko lew e
[j -f-/er ;}"‘ e (T‘Fre)] CH»/};') ?j
(2.236)

= ¢ Ve (TS hi - 2 Tew 3700 G- %Vehaﬂ

where €= 4| for the electrode at y = 0, and €= -] for the

electrode at y =

(c) Surface Coverage Fouations

Equations for the surface coverage @ are obtained by equating
the rate of increase of the number of ad sorbed atoms per unit surface
arsa to the net flux of seed particlzs (jonsand secd atoms) to the

vall, Thus,
o0
0 — _ _ i’ 17
4 or = € (I”j * Ij) (2.287)

where €=4| for the electrode at y = 0, and €=~ for the electrode
at y = H. In deriving equation (2.287) use has been made of the defini-
tion of 04 as the number of adsorption sﬂc:ava lzble mper unit
surface area. The seed atom flux ’.Zv is given by equation (2.276)

and P‘b is given by equation (2.256) for A/é 20, and eguation
(2.262) for Af{ ) . Pquations (2.272), (2.256) and (2.263)

assumc that the clectrode is at y = 0; the expressions for the other
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clectrode a1l at y = H are obtained by changing the sicns of the
right hand sides of equations (2.276), (2.258) and (2.263). iouever,
since the factor € Iis alrcady present in cquation (2.277), gon _ral
cguations for § applicable tc both el-ctrole walls azre cblained by
omitting € from equation (2.2°7) and frem cquations (2.276), (2.236)

ani (2.2672).

Insulator "all Boundary Conditions

Finally the boundary corditions for the continuity and elcctron
energy eoguations are consider~d in the case of an insulator wall.
These boundary conditions are obtained by assuming that the insulator
wallsreflect all particles incident to them, the clectrons being
reflected clastically. The boundary condition at the insulator walls
are then obtained by eguating the macroscopic particle and electron

energy fluxes to zero. e thus obtain the conditions

{ e (T+Te } -0,
j ” (2.282

é’j o (2.2%9)

and

=0 2.250
o 7 (2.290)

74
yhere mquations (2.288) and (2.2°9), obtained from equatiors (2.121)
and (2.196), express the conditicns that the ion and seed atom fluxes to
an insulator wall be equal to zeroj} and equation (2.290), obtained
from equation (2.219), expresses the conditlon that the clectron energy
flux to an insulator wall be equal to zero. In expressing the latter
condition in the form of equation (2.290), the Hall component of

electron heat flux has been neglected as in the case of the electrode

boundary conditions.
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(1) Fig. 2.1: Vel /Veh against T for x= 0.002 and
T = 1519%

(2) Fig. 2.2: A cross-section of the MHD channel
showing approximately two-dimensional

boundary layers on the side walls, with
the exception of corner regions..
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Fig. 2.4: The emission and desorption rates Ve , V;
and VY, as functions of the surface coverage €.
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CHAPTER 3

NUMERICAL SOLUTION OF THE GAS-DYNAMIC EQUATIONS

3.1 Introduction

The assumptions made in section 2.4 1led to a closed system of
differential equations for the gas-dynamic variables P, s Uand T,
completely decoupled from the equations for the plasma and electrical
quantities presented in section 2.5. It was then indicated that the
complex problem of solving the gas-dynamic equations for the flow in
an MHD generator channel could be simplified by making approximations
consistent with the boundary layer assumption expressed by the inequality
(2.155).  Further simplifications of the gas-dynamic problem were then
made by neglecting three-dimensional corner effects so as to allow the
flow behaviour in the channel to be described in terms of two-dimensional
boundary layers on each of the four side walls of the channel. By
symmetry, it is sufficient to determine the flow distributions between
each of two adjacent side walls of the channel and the channel centre-
line. Finally, it was mentioned that for flow conditions characteristic
of most generator systems the boundary layer flows tend to be of a
turbulent nature over much of the channel length. It was indicated that
the flow could only be considered steady in the mean, the effects of
turbulent fluctuations on the mean flow properties being described by
effective eddy viscosity and eddy thermal conduction coefficients in the
x-momentum and energy equations; the eddy viscosity formulation due
to Cebeci an) was used to relate the turbulent transport coefficients

to mean flow parameters and their gradients.
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In this chapter, the numerical procedure used to solve the
boundary layer eguations for the two-dimensional flow on each side wall
of a MHD channel of rectangular cross-section is formulated.

This numerical procedure is based on a finite difference scheme devised
by Ke]]er(3]) for the solution of parabolic partial differential
equétions such as the turbulent boundary layer equations (2.156)-(2.159).
It is an extension to compressible channel flow of the procedure used

by Keller and Cebeci(32) to solve incompressible flow problems. Unlike

the method of reference (32), cartesian coordinates with the y-axis

normal to the wall and the x-axis parallel to the centre-line are used

(the angle of divergence of the channel is assumed small, as is usually

the case in MHD channels). Furthermore, instead of applying the outer
boundary conditions at the boundary layer edge, as in reference (32),

the boundary layer equations are applied to the whole domain from wall

to centre-line along which the symmetry conditions expressed by equations
(2.175a) and (2.175b) are taken as the outer boundary conditions. The
need to introduce a separate system of inviscid equations for the core

of the flow to be solved simultaneously with the boundary layer equations
by iteration between solutions obtained in the two regions is thus avoided.
The core of the flow is thus treated as two-dimensional in the present
method. By introducing appropriate additional source terms in the
boundary layer equations it should be possible to relax some of the
assumptions made in section 2.4; that is, to allow,at least approximately,
for finite enefgy exchange with the electron gas, and finite Lorentz
forces, provided steady state conditions prevai].' This is done in
reference (26) using a different numerical scheme where it is shown that,

as a result of the y-component of the Lorentz force, the pressure is

a function of y as well as of x and important flow asymmetries can occur.
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As stated earlier, this kind of problem is not considered here.

Having formulated the numerical procedure for the solution
of the boundary layer equations, applications to a real experimental
MHD generator system, the IRD test facility, will be considered, and
a computed pressure distribution in the channel will be compared

with that obtained experimentally.

3.2 Finite Difference Solution of Equations

The first step in the numerical procedure is to reformulate
the problem in terms of a system of first order partial differential
equations. The new independent variables u, v and f are introduced
which are so defined that equations (2.161) and (2.162) can be written

as the first order system

[
Yew (3.1a)
/
=V (3.1b)
—1
1= f (3.1¢)
/
ol
[Q(fu-(—”ﬁrﬂ :——2—3—;{ +Fu§' -g) - j;f(fwﬂr) (3.1d)

/ aT 3;‘ R, 7 Ky Ze 2
(ezf):w———- Posning —j—wﬁ’ (“)“"‘ (][M-}'TV) (3.-Te)
X T Ix pep ax P/ G
where the prime denotes differentiation with respect to y, and

the coefficients

6’:7+£ (3.2&)

and

£ 1
e,z o+
27t g (3.2b)
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have been introduced 1in equations (3.1c) and (3.1d).

In terms of the new variables, the boundary conditions, given

by equations (2.172) - (2.175), are

nlx 0)=0, (3.3a)
oY T

370”) Ry’ (3.3b)

T ="w (3.3¢)

£ (¥ 3070 5 (3.3d)

vlx, ye)=0, (3.3e)

where equation (2.137) has been used to eliminate (Aw in equation (3.3b),
and the wall temperature is assumed given. The wall and channel
centre-Tine are taken to be at y =0 and at y = Ye respectively.

The region between the wall and the centre-line is replaced

with a two-dimensional mesh of points defined by the equations

X"s X" MY =z, A (3.4a)
4 =0, (3.4b)
(3.4c¢)

¥ Yam >
where mesh columns are labelled by the superscript n, and mesh rows
are labelled by the subscript j.

The mesh spacings zﬁv" and Z%bﬂ in equations (3.4) are
completely arbitrary and may have large variations. This is important
for turbulent boundary layer calculations where steep gradients near
a wall necessitate the use of small mesh spacing, whilst relatively
large spacing can be used away from the wall. The definition of the

mesh openings ﬁwn and Z&u“ is discussed in detail in appendix A.
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The variables (%, u«, T jﬁu’) are approximated at points
(x” ) of the mesh by mesh functions denoted by{ N T
1 Jj %5 %) J;J:,',IG)-
The points and variables midway between mesh points are given by the

following averages:

)( -t _ (/‘fX ) yd_,/l ljJ+5J) (3.5a)

n—'/z. n-l N nooon (3.5b)
J (J t 9 ); Ja® 7 (ﬂa’“il-l)
The averages given by equations (3.5b) are correct to second order
accuracy in the x and y steps. The finite difference equations, which
are to approximate equations (3.1), are formulated by considering one
mesh cell, such as shown in figure 3.1. Equations (3.1a), (3.1b) and
(3.1c) are approximated using centered difference quotients and averages
about the midpoint (x", :13,%) of the segment FFf,  (see figure 3.1).
Similarly, equations (3.1d) and (3.1e) are approximated by centering
about the point (X"“VZ, 9, Z ) Thus, the finite difference

approximations to equations (3.1) are:

hnoon
Y~y
R N A S 3.6
190, 5 (14"4— “u—')., (3.6a)
n
Uy -4
N Y B R (3.6b)
ﬂj:"‘ 2 {0‘3 + (5"‘))
N
LNt _ L n (3.6¢)
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sl oL B
" et (b B ()
JIZW’ (If;" ) fu (T) -z,z ux'*‘zf"i (’LMTV)“%
et (e,
where
" _”l . RJP - (le:—;l) ” "t .{[ﬂ (Jlu-mf) ) 1[9, jwﬁf)]" /}
24"- (“T 4 Jn'.tL’L,e,nx - (DLMTV)"[L)

~and

l
2y’ { [« ) (‘fzjt)o‘} ) n!ud ’/LT"/z Mx"'h“'
Jin L

1

(3.6e)



-126-

where

I ner, ot Ml J n/ n-
H = 2y nf (03_0/"2!:_{ —E'i“:" > ’u]jJ— l (’ef ('92 2{”'}

L

gl B

Equations (3.6) are imposed for j = 2,3..., dJ. Consistent with the
condition that the angle of divergence of the wall be small, we take
"=t N -] h o, .
=Y. and - = . 1in equations (3.6).
d A% /‘11( ; (3:6)
The finite difference approximations to the boundary conditions,

equations (3.3) are:

w0, (3.7a)
’ n-} '
n n- (P“}’w) (Pud“’)

A)(""' ( ‘6‘ )‘ .?KJ{ —'Tn« "’1—:-574-1 s (3.7b)
T"=Ts , (3.7¢)
fr=o0, (3.7d)

n (3.7e)
r=0

—"‘" At _n-l .

Assuming (‘fj ,“J PR N ) for 1€ J I . and the
pressure f"’ to be known, equations (3.6) and (3. 7)c0nst1tute a system
of 5J non-linear equations for the 5J unknowns (15 ) 7r’ fj, ),
J=1,2, ..., Jd. This non-linear system is solved by means of Newton's

L’ U) ” (1 (” . .
method. The iterates ) J) ?;l J‘) J ) are introduced, with

the initial values



o r _-‘iin—! (U__w)n (Pujw)n-l
e T g M

3 " ©! L
a0, TOT T, £ H7T, viT=00

] n-f (o) W e, T e Al @ et
U5y, W C e e G=vE, adssTs

(ol (<

Y Gy, U= e e s =0, Ur=0

(3.8)

. . v) i ) (v 1
For convenience, the new variables (54_-,) Su; & TJ) J‘,)')SU.(S)) are

defined by
4+§‘+”= q 87+ Ly '+ oul, T-(”') T*" 3T
te1) () ) (+1) ) _u') . :
JEL g o e A i< T (3.9)

These expressions are inserked into equations (3.6) in place of
(’1,43") uJ-”, 73", J-'; UJx) and only those terms linear in {(W" JMU'JJZ'J‘_.[‘”.{J")
are retained. This procedure yields the following

linear system:

443, |

S5 - 8% = @ (O Sujn) = 7 (3.102)
Ay,

Sy = oy = 2 (I 8] = 7 (3.10b)
A

T C R I

95 Y5 + 92,5 O%; + 935 Oy + 94, uj-1 +9s,; 805 (3.104)
t 9015 OV + 97,5 O 19858t G5 5+ 9y Byt =i
S,J- 8% -r&m’#-- +$3,J'5“' + S ‘9‘11"« *«%J 5

forj =2, 3, ..., J. For s1mp11c1ty of notat1on, the superscripts i

(3.10e)
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have been dropped. The coefficients 7. (k =1, cves9), Yk,;

(k =1,...,10) and S5 (k =1, ...,10) are listed in appendix B.
The boundary conditions, equations (3.7), can be satisfied

exactly with no iterations. The initial values ('4, “m Tu‘c:) :(:1 (f_;-ft,?

are set equal to the boundary values, as in equations (3.8), and to

maintain these values in all iterations we take

Yo, dui'=0, I T Suy's , 84y=0 (3.11)

The Tlinear system , equations (3.10) and (3.11), has a block
tri-diagonal structure and can be solved in an extremely efficient
manner using a block elimination method. A detailed description
of one such method can be found in reference (32).

Having solved the linear system, equations(3.10) and (3.11),

+1) ;) l'f .
j(“" re formed as in

1+:) t
the higher order iterates (tfd“) o T1
equations (3.9). The iterations are repeated until the following

convergence condition is satisfied:

‘é‘,;'(d
I 2’1@‘,’"#(&"_’] (fr (3.12)

where £y is a prescribed value, say 0.01.

3.3 Initial Conditions

The initial distributions ('71‘-0) Ui, 1, 3{_,/ )for 1ol T
at a given initial station (X—’x) must be specified to initiate the
numerical solution. In fact, only MJ" and T‘j' for 14 «J  need
be specified. Then 11‘:,', :f_‘; and VJ" can be calculated by - integration
and differentiation from equations (3.1a) - (3.1c). A1l numerical
results reported in this thesis were obtained by assuming that the flow
was initially laminar (2:0) ,» transition to turbulent flow occurring

at an x-station downstream of the initial x-station (see section 3.5).
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Initial profiles which are approximations to the laminar boundary layer -
equations are therefore of interest here. A convenient rough
approximation is obtained by representing the initial velocity profile

(21)

in a boundary layer by a polynomial of the 4th degree ; that is,

%;; ( ) ( )+c( )+d (—) (3.13)
where
42+ A6, b= = Aja, cz-2+ /2 d= |- A/ (3.14)

and the subscript e denotes a boundary layer edge value. The so-called

shape parameter A in equation (3.13) is given by

3% 4
A= "/A;;/e‘;f (3.15)

Since the pressure gradient at the initial station is not
known a priori a value of A must be chosen such that the corresponding
value of the pressure gradient is approximately equal to the computed
value CF¢ - f)'/Ax'.

The velocity outside the boundary layer is assumed to be

constant; that is,

'l(x: Uye = “XC/' Cy‘(ﬂ\(ﬂc (3-16)

The temperature profile is formed by assuming a Crocco

re]ationship(Z]) between the velocity and temperature profiles;

that is:
2
(¢¢x (_\ Uxe Uxe
= — - lo-Te = 2 T o
T=To “Xe) w=le ?Cr) 26 (3.17)

for oy Yc
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3.4 Calculation of Pressure Distribution

The pressure distribution in an MHD channel is determined from
the requirement that mass be conserved; that is, the pressure
distribution must be such that equation (2.176) is satisfied at
every x-station, where the mass flow rate m is obtained by integration of
equation (2.177), given the initial value of the mass flow rate.

However, since the mass transfer rates {fAlLyp)u and (fchys)a, in

equation (2.177) can be functions of the pressure, it is necessary, in

general, to treat both the pressure and the mass flow rate as unknown
functions of x governed by equations (2.176) and (2.177), respectively,

| both of which are to be solved simultaneously with the solution of the

boundary layer equations. The numerical procedure used to calculate both

the pressure and the mass flow rate distributions is described below.

The finite difference form of equation (2.177) at x =X
can be written as

' n-l

"~ m n-z

Y [RH((’A“M)w‘f‘ W ( pg “ys)uo:]

n-{

2 [ Hpatymdo t W (g uﬁ),\,]ﬂ[H (panya)t W{(Buﬂ)w}

)

which yields

w0 e 6 {4y e (el el (o], 010

from which the mass flow rate at every x )XJ could be found if the

initial mass flow rate and the mass transfer rates qu@yp)u> and

(fﬂujs)w were given.
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The value of the pressure at any x-station must be such
that the mass flow rate given by equation (2.176), which is calculated
using the solutions of the finite difference equations for the boundary
layers, equals the mass flow rate obtained from equation (3.18). An
iteration procedure devised by Doss et a1.(26) for the case of a constant
mass flow rate is used here to calculate the pressure.

The pressure at any x-station is first estimated by linear
extrapolation of the values of the pressure at the two previous x-stations,
and the finite difference equations are solved. The mass flow rate
corresponding * to the obtained solution is obtained from equation (2.176)
and compared with the value obtained from equation (3.18). If the two
mass flow rates so obtained happen to be sufficiently close, no adjustment
of the estimated value of the pressure is needed. However, if the
difference between the mass flow rates is large, the estimated value of
the pressure is adjusted in proportion to the ratio of the two different
mass flow rates, and the computation proceeds oncé more for a new iteration -

cycle. The iteration algorithm is of the form

i o[ fad ) (3.19)
P B

where hi<{p«°9} is the mass flow rate calculated from equation (2.176),

and h;‘{PﬂW} is the mass flow rate calculated from equation (3.18).
Numerical experiments have shown that the rate of convergence

of the above procedure is often considerably increased by replacing

’ (4
PU’ with the value fUJ given by

: y ar=1) )
l’“'/-’ P +‘§Pr )¢ (3.20)
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where r = 1,2,3,... The value of r to be used in equation (3.20) has

been found to depend on the flow conditions and the values of the mesh
parameters. For any particular case there is an optimum value, or range

of values, of r for which the convergence rate is a maximum. By

applying the adjustment of rd’ defined by equation (2.20), it has been
found possible to increase the convergence rate to such an extent that only
one or two iterations are sufficient to obtain convergence to 0.01% at

all x-stations, with the exception of those where transition from laminar
to turbulent flow occurs and wall mass transfer is suddenly switched

on or off. In some cases convergence can only be obtained if equation (3.20)
is used, the use of the algorithm (3.19) alone giving iterates which

oscillate about the correct value with increasing amplitude.

3.5 Application to IRD Experimental MHD Facility

The numerical method for computing the development of the gas-
dynamic flow along MHD generator channels, described in the preceding
sections, has been applied to the MHD closed cyc]erfacility of the
International Research and Development Co. Ltd. (IRD), Newcastle upon Tyne.
By using flow conditions of actual experiments recently performed on the
facility (October 1977), comparisons could be made between computed
and experimental results.

Detailed description of the IRD closed loop facility is given
e]sewhere(B); only details relevant to the computation of gas-dynamic
flow in the MHD channel section are given here. In the facility,
helium gas is circulated steadily around a closed loop at a mass flow
rate of about 5 to 7 gm/sec, and heated in a three stage heater to
about 1700°K. The helium gas is slightly seeded with caesium vapour,
accelerated through a nozzle to a velocity of about 900 to 1500 m/s,

and allowed to interact with a magnetic field in a slightly diverging



-133-

channel of rectangular cross-section, which contains 15 tantalum electrode
pairs at a constant pitch of 25.4 mm (1 inch). The channel has a length
of 56.4 cms, an internal area of 195 mm2 at the nozzle throat, and

an aspect ratio of about 2:1; that is, the internal height is about twice
the internal width. Each electrode has a circular cross-section of
diameter 0.95 cm (3/8 ins) and is mounted flush with the inside wall on a
tantalum stem whose point of fixture is some distance from the inside
wall. Cavities thus exist behind all electrodes preventing direct
contact of the electrode surfaces with the channel walls, there being
small annular gaps of width 1.59mm (1/16 ins) between the electrode faces
and the channel walils. A pair of electrodes of diameter 18 mm are mounted
so as to enable a preionizing current to be passed parallel to the
magnetic field; the upstream edge of each of these electrodes is at a
distance of 57.6 mm from the nozzle throat, while the upstream edges of
the electrodes of the first electrode pair are at a distance of 96.8 mm
from the nozzle throat. Stagnation pressure in the nozzle inlet is
determined from Pitot tube readings and static pressure readings, whilst
the static pressure profile in the channel is measured at four tappings
at electrode pair numbers 2, 5, 8 and 11. The static temperature is
measﬁred in the nozzle inlet and at electrode pair numbers 2, 5, 8, 11
and 14,

As mentioned earlier, the numerical method described in the
‘preceding sections has been applied to the IRD facility for conditions of
experiments performed on the facility in October 1977.  Apart from a
few exceptions the mass flow rates of these experimental runs of the
facility were 5.37 gm/sec and 7.08 gm/sec. For the development of the
numerical method, the experimental conditions of a representative run
at the mass flow rate of 5.37 gm/sec were used. Run number 7 was

selected as the representative run because the conditions of this run
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appeared to be closest to the average flow conditions for runs at the
common mass flow rate of 5.37 gm/sec. The numerical results presented
are discussed below and for conditions of run number 7 unless otherwise
stated; the conditions of this run are given in figure 3.2.

The gas-dynamic flow in the channel for conditions of run
number 7 is determined by computing the two-dimensional boundary layer
profiles on each wall simultaneously using the method
of the preceding sections. In order that errors due to using approximate
gas-dynamic profiles to initiate calculations of a confined flow
be as small as possible, the initial station should be taken as close to
the nozzle throat as possible without the number of cross-stream mesh
points for each wall being too large. Results of numerical experiments
show that a suitable initial distance from the nozzle throat in the
present case is¢X254 m.

The centre-line stagnation pressure and centre-line stagnation
temperature at the initial station, which, for a given static pressure,
define the initial centre-line values of the streamwise velocity
component and static temperature, are taken to be the nozzle inlet values.
The stagnation temperature is founslfrom the formula

To- T(pe/p)
which follows from the heavy particle energy and overall momentum
equations in which viscous effects, thermal conduction and the cross-
stream velocity component are neglected.

The wall temperatures at all poinﬁs are determined by linearly
interpolating and extrapolating the values measured at the locations
of electrode pair numbers 2, 5, 8, 11 and 14. Insulator and electrode

side walls are assumed to be at the same temperature at each x-station.
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It can be seen from figure 3.3 that agreement between the
computed and experimental pressure distributions is good at all points
except the last, where the measured value is about 1% larger than the
computed value. Of course agreement between theory and experiment
is necessarily good for electrode pairs 2 and 5, because of the way
in which the initial boundary layer thickness and mass transfer factor
are chosen. It is thought that the slight discrepancy between theory
and experiment at the Tast point in figure 3.3 is due to attempting to
describe the flow with a quasi-three-dimensional model in a region of
the channel where boundary layers are thick and three-dimensional effects,
i.e., corner effects, are important. This is to some extent confirmed by
the plots of figure 3.5, from which it can be seen that, whilst the
electrode wall boundary layer continues to grow in thickness, the
insulator side wall boundary layer thickness tends towards a constant
value as the boundary layer edge approaches the channel centre-line.

Figures 3.3, 3.4 and 3.6 clearly show the effects of
transition from laminar to turbulent flow. Due to the slight divergence
of the channel walls and the subsonic character of the flow, the
initially negative pressure gradient reverses sign at a point upstream
of the large preionizer electrodes. The resultant adverse positive
(26)

pressure gradient has a destabilizing effect on the flow and allows

one to assume that the initially laminar flow becomes turbulent at the
upstream edges of the preionizer electrodes. At the transition station,
the sudden decrease in the dispiacing effect of the boundary layers on
the core flow causes a sudden increase of centre-line temperature and
a decrease of centre-line velocity (see figures 3.4 and 3.6). However,

a short distance downstream of the transition station, where the



~136-

turbulent flow is more fully established, the rate of growth of
boundary layer thickness increases (see figure 3.5), causing a
decrease of pressure and temperature gradient, and an increase of
velocity gradient.

Although transition to turbulent flow causes a decrease of
pressure gradient downstream of the transition station, the pressure
gradient remains positive and the pressure would continue to increase
steadily after the first electrode pair in the absence of wall mass
transfer (see figure 3.3). However, the increase in mass flow rate due
to wall mass transfer causes the flow to accelerate, the pressure and
temperature gradients decreasing and the velocity gradient increasing
(see figures 3.3, 3.4 and 3.6).

The calculated temperature and velocity boundary layer profiles
on the electrode wall at the location of the center of one of the
electrodes of electrode pair 2 are shown in figure 3.7. It can be seen
that both the profiles exhibit smé]] oscillations near the boundary
layer edge, which are manifestations of numerical error. A method of
removing these oscillations has not been found, but the amplitudes are
so small that they may be safely neglected.

Attempts to compute the channel flow for conditions of an
experimental run at the higher mass flow rate of 7.08 gm/sec have
failed, because of the necessity of having to initiate the computation
with a much smaller boundary layer thickness than for runs at a mass
flow rate of 5.37 gm/sec. This means that, unless an unacceptably
large number of mesh points in the cross-stream direction is employed,
the mesh at large distances from a wall is too coarse to resolve the

boundary layer profiles downstream of the initial station.
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The initial laminar profiles of section 3.5 are used to
initiate computations, the boundary layer thickness being treated
as a parameter, so chosen as to obtain a pressure distribution
in aslc]ose an agreément with experiment as possible. The initial
pressure is determined iteratively using the method of section 3.4,
that is, the iteration algorithm (3.19) is used with‘ﬁteﬁua1 to the
prescribed mass flow rate of 5.37 gm/sec.

In order to obtain a pressure distribution in close agreement
with experiment,it is necessary to allow for a slight transfer of
gas through the electrode walls. It is thought that this transfer
of gas occurred from a helium blanket between the channel and outer
casing which was maintained at a pressure greater than that in the
channel, and that gas could enter the channel through the annular
spaces between the electrode surfaces and the channel walls. Further
experimental evidence that transfer of gas occurred into the channel
was the necessity to supply gas continuously to the helium blanket
to keep the pressure at a fixed level. The ana]yticaT description
of this mass transfer process is formulated below.

Denoting the measured pressure in the helium blanket by P >

Bernoulli's equation gives for the y-component of velocity in the

region between an electrode surface and the wall,

ey =[2(fa-;>)/(0w]'/7' (3.21)

It is found that equation (3.21) gives an overestimate of the mass
transfer flux f%,qyw through the wall and must be reduced by a
factor fo whose value is so chosen as to obtain results in as close
an agreement with experiment as possible. Equation (2.176), and

therefore equation (3.18), cannot be used to calculate the mass flow
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rate at each x-station because the mass transfer flux is not uniform
in a region of electrode wall defined by a step in the x-direction.
Denoted by #A the element of area in this region through which gas

flows, equation (2.177) must be replaced with

o A
ax = Lax (=" (3.22)

where it is assumed that no mass transfer occurs through the insulator
side wall. The derivative ziﬁfdv( depends on the annular geometry

of the region between an electrode surface and channel wall; and. it

is non-zero only in this region. In the entrance region of the channel,
before the first electrode pafr, the mass flow rate is constant. In
place of equation (3.18) for the mass flow rate at the x-1ocat10n,X=)("

we have the finite difference form of equation (3.22):

n-

. _ (48" AN
m" = m o Ax" l{(;&)fﬁuj&‘l’ (dx )/7,.," vij;f(a.w)

It should be noted that the variation of the Tocal value of
F” ijirlthe z-direction at each x-station necessarily requires a
three-dimensional treatment of the flow if a detailed description of the
effects of the mass transfer is to be obtained. This is avoided here
by use of a two-dimensional treatment with the mass transfer flux at

each x-station given by an average value <{k’673>’ where

| dA
< wWe ) = = — 0, U (3.24)
(“3> W/txfwj“’
the mass transfer flux on the right hand side being given by equation

(3.21), multiplied by the factor Jﬁ_. Equation (3.24) is used in

the boundary condition given by equation (2.173) or (3.3b).
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The initial boundary layer thickness and the mass transfer
factor j; are chosen so that the best possible agreement between
the computed and experimental pressure distributions is obtained.

It is found that the best way of choosing these quantities is such
that the computed values of pressure at the locations of the first
two measurement stations (electrode pair numbers 2 and 5) are almost
equal to the measured values. For the conditions of run number 7,

these quantities are found to have the values

8 197wy s for 147XIG

The flow in the channel is <~ assumed to be initially laminar,
with €«o0 1in equations (3.1d) and (3.7e), up to a certain x-station
where transition to turbulent flow is allowed. The point of transition
is taken to be at the upstream edge of the preionizer electrode pair
mentioned above, where the flow is expected to become turbulent due
to the destabilizing effects of a positive pressure gradient and finite
projection of the electrodes into the flow (see reference (21)).

For a given wall, the non-uniform mesh in the cross-stream
y-direction is determined, for a given number of steps, at the initial
station by choosing the product °(|ffc‘ in the equation for A:j:

(see appendix A) to be such that

Aj.'( £ 8 (3.25)

where fi is a specified fraction of the initial boundary Tlayer thickness.
In practice, the quantity c(' is taken to be an integer which is

increased until the condition (3.25) is satisfied. The choice of the
factor fz is governed by the requirement that Z\jl be, at every station
downstream of the transition station, small compared with the thickness

of the laminar sublayer (see section (2.4)) in which there are steep

velocity and temperature gradients. At the same time the number of
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mesh points in the y-direction must be Targe enough for the accurate
description of the growth of a boundary layer, from its initially
small thickness to a thickness of half the channel height. This
requires that there be a large enough number of points outside the
boundary layer region at the initial station. The numerical results
presented here are obtained with a mesh of J=41 points in the y-
direction. The value of the factor j‘z is taken to be 0.0025, which
gives, for an electrode wall, & e 322m"a,ncba(i\j,,’- é-CTwhere y=1. 029X/0’f»1/
at the initial station. Using the latter value of o<'yJ , the
distribution of mesh points in the y-direction can be obtained at
each x-station using the formula (see appendix A)
J-J
, \ {ﬂwll'lo(nyon (:}:—:)
Yi =Y | 1= bunh &Y. , (3.26)

At x:x’ the mesh step Ayd'l increases from Aj,’: 4.9 X/OVéM at‘ the
wall to Ajjjl,, =/'lf/X10’3”v at the centre-Tine.

The step size in the x-direction 1is chosen to be a certain
f‘Y’éC’tion{»‘ of the local boundary layer thickness (see appendix A); that

is,
Ax"= L &" (3.27)

The value of j[| is taken to be constant and equal to 0.1 at altl
x-stations except near the transition station and the edges of the
intervals of x where mass transfer through the walls occurs, where,
to resolve accurately the effects of sudden changes in the flow behaviour,

smaller values of f, must be used. In practice, a check is made at
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each x-station to determine whether the transition station or an

edge of a mass transfer region has been passed. If it has, the
calculation is taken.from the station before using a smaller value of

}\ until the transition or edge of mass transfer region is passed;

f, is then increased to its larger value. From numerical experiments
it is found that a suitable factor for reducing jﬂ in the present

case is V/Q for both the transition station and an edge of a mass
transfer region. The numerical results obtained for the conditions
of run number 7 are now discussed.

The computed pressure distribution is shown in figure 3.3,

in which experimentally measured values are shown for comparison; for
convenience, pressure and distance are measured in psia and inches
respectively. The computed distributions of centre-line temperature,
electrode and insulator side wall boundary layer thicknesses and centre-
line velocity are shown in figures 3.4, 3.5 and 3.6. The electrode
wall temperature and velocity boundary layer profiles near the centre
of electrode pair 2 are shown in figure 3.7; these are used as data
for the numerical solution of the plasma and current equations (see
chapter 5). It should be noted that the discontinuous decrease in
boundary layer thickness from the assumed initial value after a single
step in the x-direction is due to the method used to determine the
boundary layer thickness. The initial boundary layer thickness is
prescribed and the velocity and temperature are assumed constant
between the boundary Tayer edge and the centre-line, but at all x-stations
downstream of the initial station, the boundary layer thickness is taken
to be the distance from the wall in question of the point at which the

velocity is 0.99 of the centre-line value.
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Gas-dynamic Conditions of Run 7

Mass flow rate

Centre-line stagnation pressure in nozzle inlet

Centre-line stagnation temperature in nozzle throat

Pressure in helium blanket

5.37 gm/sec

15.0 psia
1687°K

14.95 psia

Static Pressure and Wall Temperature in Channel

Electrode Pair Pressure
Number (psia)
2 12.07
5 -12.04
8 11.92
11 11.87
14

Wall Temperature
(°K)

1295
1358
1391
1365
1362

Fig. 3.1: Cell of two-dimensional mesh used for finite
differencing of boundary layer equations

Fig. 3.2: Table of gas-dynamic conditions of Run 7 of
the October 1977 sequence of runs of the IRD

facility
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_ No wall mass bronsfer
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12.02
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(1) Fig. 3.3:

(2) Fig. 3.4:

Computed pressure against distance from nozzle throat.

Experimental values are shown for comparison.

Computed centreline temperature against distance from

nozzle throat.
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(1) Fig. 3.5: Thicknesses of velocity boundary layers on electrode (§,)
and insulator (31) side walls against distance from

nozzle throat.

(2) Fig. 3.6: Computed centerline gas velocity against distance from

nozzle throat.
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T
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4
Fig. 3.7: Computed gas temperature and x-component

of velocity electrode wall boundary layer
profiles at the x-station nearest the '
centreline of electrode pair 2.
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- CHAPTER 4

NUMERICAL SOLUTION OF THE PLASMA AND ELECTRICAL FIELD EQUATIONS

41 Introduction

The equations governing the plasma and electrical fields,
namely, the seed atom density, the electron density, the electron
temperature, and the current stream function, and the appronriate
boundary conditions for the case of a flowing partially ionized plasma
in a linear segmented electrode MHD generator channel, were derived
in sections 2.5, 2.6 and 2.7 on the basis of a number of simplifying
assumptions. Thus the main part of the channel is considered so that
the geometry of the problem is that of one electrode segment, and the
gas-dynamic fields T, p and u are assumed given functions of y, the
coordinate normal to the electrode side walls, determined from the
solution of the boundary layer equations using the numerical procedure
described in chapter 3. All variations in the z direction, which is
the direction of application of a uniform constant magnetic field, and
therefore the effects of insulator side wall boundary layers, are
neglected.

In this chapter a numerical method of solution of the plasma
and electrical equations, consistent with the aforementioned boundary
conditions and simplifying assumptions, will be developed and used in
chapter 5.to studyseme physical phenomena occurring in a closed cycle
MHD general channel for conditions typical of those of a series of
experiments recently performed on the IRD generator facility, thus

allowing comparisons of theory and experiment to be made wherever possible.
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Similar numerical studies have been reported by a number of
authors in the past, who demonstrated some qualitative agreement
between theory and experiment(8), but time dependent numerical models
have so far not reached the degree of sophistication needed for
accurate quantitative agreement between theory and experiment to be
obtained. The present work may be regarded as an initial step towards
achieving this degree of sophistication,by including a number of effects
previously considered only in steady-state numerical models of open cycle
MHD generators, which have the ability to give accurate predictioné of

(26)’(24).These effects include finite turbulent

generator characteristics
velocity and temperature boundary layers, finite ion and seed atom
diffusion, collisionless sheaths, turbulent diffusion and turbulent energy
transport. It should be noted that no model of electrode-plasma
interactions, incorporating seed-electrode interactions, has ever been
used for the formulation of boundary conditions for an MHD generator,
despite the importance of seed-electrode interaction effects(zg)’(30).

The inclusion of the aforementioned effects, together with
the assumption of instantaneous electron temperature relaxation, previously
only considered by Ko]b(]8), meant that a complex numerical method,
incorporating a number of novel features, had to be developed for the
solution of the plasma and electrical equations consistent with the
boundary conditions. This method will be described in detail in this
chapter. It should be noted that, whilst the collisionless sheath
model of section 2.7 is rather Timited in applicability because of the
restriction imposed by the condition (2.240b) the same basic numerical
method should be applicable without much modification to the case of a
collision dominated sheath, in which an ion continuity equation must be

considered,Poisson's equation for the electrostatic potential then

replacing the current stream function equation.
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4.2 Space-Differencing

For the numerical solution of the plasma and electrical
equations, both the space and time coordinates must be discretized so
that the governing equations and their boundary conditions can be
replaced by finite difference representations. Thus the domain of the
calculation, shown in Fig.2.3, is replaced by - a two-dimensional
mesh. Whilst the step size in the x-direction can be taken to be
constant, the large velocity and gas temperature gradients near the
walls necessitate the use of a variable step size in the y-direction.
A step size distribution in the y-direction, which is symmetric with

respect to the centre-line, is obtained from equation (A.3) in appendix A.

e Lanh af; (I~ 27-15)

H -
tamh *2 > (4.1)

-—

Y= 2

where, with J-1 steps in the y-direction,

J-1 |
t_,‘-'H T , ROREPE (4.2)

The quantity ,(H/z in equation (4.1) is treated as a constant
determined, as shown in appendix A, from the velocity profile used to
initiate the numerical solution of the boundary layer equations for
the wall at y = 0.

Equation (4.1) defines the mesh to be symmetric with respect
to the centre-line. This is in accordance with the assumed symmetry
of the gas-dynamic fields, which allows us to define, for example, the
gas temperature for g <ﬂ { H by the symmetry condition

TJ._J. =T, > 1O {7,

so that the profiles for g(j { H are obtained from the solution of

the boundary layer equations for O\ y\( ”/2



-149-

Unlike the boundary layer equations, finite difference forms
of the plasma and electrical equations, as well as of the wall boundary
conditions, accurate to second order in the space step, cannot be
derived when the step size is variable, as it is above. To obtain second
order accurate finite difference forms it is necessary to transform
the y-coordinate to the variable & defined by equation (4.1), the mesh
then being transformed into a rectangular mesh. This transformation

is effected by replacing the differential operator a/aj with § %S s

where (’iﬂ
s bk U5) pen(,_ 2y
T ody T () 2 H/2

4.3)

in the plasma and electrical equations, and the wall boundary conditions.
A1l plasma and electrical quantities are then considered as functions

of the coordinates (x,3 ).
The points of the finite difference mesh in,(x:,§ ) space are
defined by the equations
X =0 5 Ty =X, +Bx; ts1,2,..., 1
S, =0 > gff-l: IJ + 885, u=l2,.0, I (4-4)
and the value of the function ¢(>(,3) at the mesh point (X,'/ SJ) is

denoted by Ségd .  Thus,

¢6,J' = ;5 (Xilyd) (4.5)

The fim'.te difference forms of the plasma and electrical
equations, equations (2.207), (2.208), (2.227) and (2.229), at a
mesh point (X") SJ) can be obtained by employing the following
second order accurate finite difference representations of the

spatial derivatives:
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(%)'- . P B (4.62)

2 L7 QAX

(?f). - Pign = Pin (4.6)
o5 243

[;-)__X (x %)] = Bhgrheyg) foagg =4 (R kg ) 05
" (Kot 3kiny;) B
K Ox* (4.6c)
[;% (k ;?)] L= (Zk;)‘,',,, thiga) $uin-4 (g +lcig) s
vy + (kc',_j+| +3kh._')¢‘;‘._’ (4.6d)
LAY

where k and 76 are any two functions. For the wall boundary conditions,

the finite difference representations

(?—¢) B -3t -das
23 i,y 243 (4.7a)

and

2f\ _ 3+ Piza —# P
(95)' ) 2405 (4.7b)

must be used 1in place of equations (4.6b) at j =1 and j =J
respectively, so that values of 95 at mesh points outside the physical
domain are avoided. Since both the current stream function equation
(2.229) and, assuming instantaneous electron temperature relaxation

(see section 2.5), the dlectron energy equation (2.227) are steady-state
equations their finite difference forms at any instant of time can

be easily obtained by using the finite difference representations
defined by equations (4.6) and (4.7). The resultant finite difference

equations will be considered in detail in section 4.4.
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4.3 Numerical Solution of Continuity Equations

The electron and seed atom continuity equations, equations

(2.207) and (2.208), have the general form

2F _ _,. 2

IE = —Ux 5, +D+ D¢ +S (4.8)

wherej: Ne OrN,; Dy and Dy represent the terms describing
diffusion in the x and % directions respectively, and S represents
the source terms. The integration scheme for equation (4.8) is

formulated by considering the Taylor expression

4= 4 AL—( )+— ez( )+’06At2) (4.9)

where n is the time level, and A& is the time step. Equation (4.9)

may be regarded as the sum of two equations:
n-) az n-

244
j_n)‘—f'”: At (;;) +’%At7—( 2~'—£'z).f. Ofﬁtﬁ (4.10a)

d 2t
an (o JC"* " (afz)_* 4? (i-%)“wt’) _—
where
;l? = TWx iﬁ + et S (4.11a)
and

of - D (4.11b)
ot 5

The advancement of f in time can therefore be regarded as composed of two
operations, a first, in which the convective, x-diffusion and source terms
are advanced; and a second, in which the y-diffusion terms are advanced.

An explicit second order accurate integration scheme for the convective,
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x-diffusion and source terms can be formulated by replacing the
second derivative in equation (4.10a) by the backward difference

approximation
(5= (G ()] /o

so that, to second order accuracy,

o34\
el (4 2]
j— _f _ 5[2 (ak 57 (4.12)

This is commonly called the Adams-Bashforth scheme. The finite
difference forms of afn/9é' at a point (ékj) of the mesh are

oF1) _ _ g
(55 157 "z (meins ~eizy)
2AX J J

¥ AL (Z?) {ne(wT)] [he(T—fT] +[m(r+7e)]_,J}
+ 1éeﬁj (‘f=f”€)

(4.13)

and

P} .
(i’) ='gf“[n;. P )+ kT (n I )
¢ . n M ———
2t L,J JAX +"‘ “l'.".’ AK‘L mhl\vnl\ HL.H’J ”DJ + n"_ ’Ll
s nx n¥

The updated densities 7,  and 7N, at each interior (non-boundary)
mesh point are obtained from equations (4.12), (4.13) and (4.14).
Owing to the periodicity boundary conditions (2.236a) and (2.236b),
equations (4.12), (4.13) and (4.14) are also used for mesh points on
the boundary AE (see Fig. 2.3), excluding the corner points. Updated
values at mesh points on the boundary DH are obtained by equating with

the values on the boundary AE.
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The % -diffusion terms are advanced by application of the
Crank-Nicholson method of differencing(33). The second derivative in

equation (4.10b) is replaced by the forward difference approximation

92}2 n-i sz)n__ (afz
( 52@) i [(5? ) J /4 (4.15)
so that, to second order accuracy,
s AN (%‘L ”j
y_ £ 2+ [ Z
J(n‘ J(n S [(at) v (4.16)

The finite difference forms of df2/0b at a point (¥,j) of the mesh

are

A ke §
(), g () () Jomcmil,
-~ L}[ o'::,:f) ( ¥iky ¥ ) :}[’k(ﬂ—n)l',d-
i [ (%f) o ’ (%i) ][ne (TH;)]”J*'

+ (El)[g (Ei)d-ﬂ + (Ei)j-,] (”er)c'dw
= (2] (et (0] e

( (52 Aead +3(££2”] ("QT)'J !} (+- he)

(4.17)
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an 2 kg $
d ( i ) 4“482{ [-3 (”:iiuk) J+f+ (mnkak)J_.J (n"T)'./d"”
~ { (’i’%&%’:k) 3+ 1 (m’.ﬁ%t)};,] ("nT)v)J
[ ”’nLUnL J” (mnw..;.) ](”nT 61

( )3(£§2,+, + (e9,] (vl
( )[@gd*' 1 (f’;)a'-lj (aT)e

)[ (e8)e + 3(s5); ] (na7) L,J}(au,,)

(4.18)

Using equations (4.17) and (4.18) the finite difference forms

of equation (4.16) can be written in the forms
Accings i 4 BepiMes + Cocyneo, = Do 4+
e ey gy el ey ev,y nea,J+l‘ ey ”‘24.]9)
and
Boc: . o Barom o G
th hl’-j‘,-’. Vll.J ’l;;J-f' n;,j "L,J,-[ Dy“ (J( H..) 4 20

where 2 < J- \< J-|.
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The coefficients Ae , Be and Ce depend on the updated
electron temperature E:S , and the wall values of ¥ and 1,
are obtained from the finite difference forms of the wall boundary
conditions for the continuity equations, which are coupled to the
other wall boundary conditions (see section 4.5). Therefore,
equations (4.19) and (4.20) must be solved simultaneously with the
solution of the electron energy and current stream function equations
(see section 4.4), equations (2.227) and (2.229). For given Tezc?_,' ’
and wall values of Y); and i‘),,,.t » equations (4.19) and (4.20) are two
linear tridiagonal systems of equations for the updated densities

'Vl;:-u- and n,::;]- (2 \( d.\( J—ll) » Wwhich can be solved for every
mesh column excluding the boundary DH (Fig. 2.3), along which the
updated densities can be obtained by application of the periodicity
| conditions, equations (2.236a) and (2.236b).

Application of equation (4.12) requires the use of a constant
time step; to perform the first time advance, and to revise AF where
necessary, a form of second order accurate Runge-Kutta method is
used. Omitting the second derivative in equation (4.10a), and
eliminating the second derivative in equation (4.10b) using equation (4.15),

equations (4.10a) and (4.10b) can be written in the approximate

forms . 9_—}(; n-)
n¥ -t —_
:{' - JL il (”') (4.20a)

and ) 93‘7. W 9)‘1 "l
JU‘"JU* = A’Z}[(;E) i (97) 5 (4.20b)
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respectively. Equations (4.20a) and (4.20b) determine the updated
f, denoted by 3‘-", to first order accuracy. Using f’Tand ‘-f'i,

the second derivative in equation (4.10a) can be approximated. Thus,
A - -
24\ o\ 7 93‘:"’
_— A D B
76¢ " by Vil (4.21)

Inserting equation (4.21) into equation (4.10a) and eliminating the
second derivative in equation (4.10b) using equation (4.15), equations

(4.10a) and (4.10b) can be written in the approximate forms

JLM "L % [(93[’ (;?) MJ (4.22a)

and

f”- JLw/:_ 4;[ (af’) (;—f mj (4.22b)

respectively. Equations (4.22a) and (4.22b) determine the updated
f, denoted by j’" ,» to second order accuracy.

The procedure used to update the electron and seed atom
densities, is defined by equations (4.12) and (4.16) for a constant
time step, and equations (4.20a), (4.20b), (4.22a) and (4.22b) for
variable time step. In this procedure the x-diffusion, source and
convection terms are treated by an explicit second order accurate
integration scheme, while the cross-stream‘diffusion terms aze treated
by the implicit second order accurate Crank-Nicholson scheme. A
procedure of this kind appears to have been first used by 011ver(34),
but in a form less accurate than that formulated here. The procedure

used here reduces to that used by Unc1e5(8) in the absence of the ¢ -

diffusion terms in the continuity equations.
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The accuracy of the one time step explicit integration
scheme defined by equations (4.20a) , (4:20b), (4.22a) and (4.22b)
when § -diffusion is present has been checked by performing numerical
experiments in which both this scheme and that defined by equations (4.12)
and (4.16) were used to update quantities, keeping the time step fixed.
The two sets of results so obtained were found to differ by negligible
amounts.

The choice of the time step is governed by considerations of
numerical stability, which is discussed in detail in section 4.6. The
explicit part of the calculation is stable only if the time step is
sufficiently smaller than the minimum characteristic time scale of
the physical processes involved in the evolution of the densities
(excluding g -diffusion). There remains, however, a weak instability
due to convection which has necessitated the introduction of artificial
diffusion (see section 4.6). On the other hand, the implicit part of
the calculation is unconditionally stable, which-is desirable since
strong  _diffusion near the walls would impose severe restrictions

on the size of time step used if an explicit integration scheme were

used.
4.4 Numerical Solution of Electron Energy and Current Stream
Function Equations
The current stream equation, equation (2.229), can be written
in the form

2 %Y 2% dfy, %
bj_y +§ ;§—2+P sy QT 0{3]3 i =Kk, (4.23)

a.x?. 0)(

where the y—coordinaté has been transformed to the coordinate S .

The finite difference form of equation (4.23) at an interior (non-boundary)
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point (1,j) can be written in the form

- . !
RigS G (S5 y’c’—',j)* 2 Gy M B ( Wiry; -2, J)
. . Ax \2 .
t Cz“ Zh;i+' t (33 ZPL‘;J.*I + i C‘J §J- (A-—);)Agaéd (%u’%‘-z)
=y -Gy X*Kj=0  (s.24a)

where

|
Ciy = T1+ (%)";‘ﬂ (4.24b)
. | 43
Cay = EJ'Z (j%)z [“’Ag,zb—. o(KﬂCn,jzl.Mc)

J
2 5
Gs; = §; (j_g)z['" Agf’?j(aT‘Z'

N

\

S.

]GJ’ (4.24d)

and P':J s Qv’.j and Qg’_\' are the finite difference approximations
to equations (2.230a)-(2.230c).
The finite difference form of the electron energy equation

at an interior (non-boundary) mesh point (¥,3) is written as
Fac;=0. (4.25)

. n n — | " n
For given M¢,; » WQ"QJ and wall values of le;and 4],
equations (4.24) and (4.25) are two coupled systems of non-linear
n n
algebraic equations for the unknowns 1%1& and T;hj at all mesh
points excluding the walls. The system of equations is solved
iteratively using an extension of the non-Tinear relaxation method

originally developed by Lieberstein(35) for the solution of a system
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of non-linear algebraic equations obtained by finite differencing a

single non-linear elliptic equation.

Equations (4.24a) and (4.25) are linearized by introducing the

jterates '2/—;& and Ie;U' (k is the iteration level) and replacing
. .. +’) (kt1)
FJ'L,J' and F;;,J' by expansions of F) Ly 24y about
k) &) . . .
i, and E,‘,J . The algorithm of the non-linear relaxation

method is obtained by ignoring variations of Te and ? at mesh
points in the immediate neighbourhood of the point (L',J') in these

expansions. Thus, we obtain the expansions

& o )(k) (fett) — &) (ahu (k1) , (k)
Fu'u (ane (T ’eu.J) %y ('{‘ 'u) 0 (4.26a)

and IF. - k)
k) __zi") ( @‘“) TG‘))
Elm t 0Tei; e hy ’ (4.26b)

k)
the latter equation following from the fact that ﬁ;’,_,’ is not

explicitly dependent on 2/*?3

Introducing a relaxation parameter w and setting
(aﬁuu/a%ﬂ,dj-~l (see equation (4.24a)), the following equations are
obtained from equations (4.26a) and (4.26b}):

(k+1) ) th
ToJ = Teiy — W 2R )(k) ! (4.27a)
a’)—é"lj
(Kfl) (k) th ) — (k¢ ) (k)
by T "J hc.d 9 lessy 'ed_)‘ ) (4.27b)

A single iteration is performed by scanning the mesh

. T’U‘) (K)
replacing the values of lei) and zll’i,j at each point by the right-hand
sides of equations (4.27a) and (4.27b) respectively, where h;’,j , F},"J'
ok l,d /frﬁi,i and 3'2‘;5 /QE;‘,J' are evaluated using
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corrected results immediately upon becoming available. The iterations
are stopped when a convergent solution is obtained satisfying
IE&%HL eif?l(ﬁw for all mesh points (i,j), where & 1is a
prescribed value, say 1°K.

Owing to the periodicity assumption, equations (4.27a) and
(4.27b) also apply at mesh points on the boundary AE of the domain

@HJ) Tq,k*')

(see Fig. 2.3). The values of 72 i along the boundary DH

are obtained by application of the periodicity condition (2.236c¢) and
equation (2.235).
For mesh points lying on the insulators CD and GH of Fig. 2.3,

equation (2.234) gives

kf[) ??‘ T

lz,J

Gk)

where
(k)
]:@<)‘= \/ //ﬁ;. 5

the voltage drop \/a<)being obtained from equation (2.232) using
Simpson's rule and the Te and 1{—'distributions at the kth iteration
level. For applications considered here this is not necessary since
fixed applied currents are assumed so that ]:k is constant and

the insulator wall values of qfﬁd are fixed.

The values of 1#3?42t mesh points lying on the electrodes BC
and FG of Fig. 2.3 are obtained from the finite difference forms of
equation (2.233), the values of ‘%f outside the physical domain
being eliminated using equation (4.24a). To ensure that the boundary
conditioﬁ j = is satisfied at all insulator wall points, the
values of Qfau at electrode corner points are set equal to the

values on the adjacent insulator walls.
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For stability of the non—]inear‘relaxation method the
parameter w must lie in the range 0¢w<{2 (see reference (33),
the method being one‘of over-relaxation if | <@ <2,and under-
relaxation if o{w{!l . For given values of Tk:;j , QOJ}”§ and
boundary vaiues of 7}:j one can optimize the convergence rate by
suifab]y adjusting the relaxation parameter «w at every iteration.
However, as indicated in reference (33), the amount of computational
work involved in doing this is too great for there to be any useful
gains in computational efficiency. Instead, an optimum value of w can
be found for a sequence of iterations defined by equations (4.27), by
testing a number of values of «w and comparing the numbers of
iterations required for convergence. The optimum value of W  so
obtained could be adjusted occasionally in the course of advancement
of the solution in time. This approach, used by Unc]es(s), has not
been followed in the present work because of the large number of
cé]cu]ations performed in advancing the solution a single time step.
Instead, an optimum value of @ 1is found by computing the initial
state using several values of w and finding the value of W for
which the number of iterations required for convergence is a minimum.
For an applied current of 0.5A, a seeding fraction of 10—3, a magnetic
field of 0.5T, and a mesh of 15 columns and 49 rows, the optimum value
of @ is found to be 1.5. This value of W has been used for all
computations reported in chapter 5. Numerical experiments have
shown that instability can occur if the difference between the value
of W used and the optimum value is large. In particular, the scheme
can be unstable if the relaxation parameter is taken to be equal to
the optimum value for solution of Laplace's equation on a mesh of

(33)

constant step size in the x- and y-directions, which is given by
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l I '
Wopt % 2 [lﬁ-n{ﬁ-z"'ﬁfz}] LT >

This formula yields an optimum value of 1.98 for w0 , where 1 =15
and J = 49,

Numerical calculations based on the assumption of instantaneous
electron temperature relaxation, have been reported by Ko]b(]g), who
applied the non-linear relaxation method of solution to the electron
energy equation alone, following the original method due to
Lieberstein(35). This meant that a sequecnce of iterations had to be
performed between the solution of the elliptic equation for the electro-
static potential , obtained by means of the method of linear relaxation

and the solution of the electron energy equation. This has been avoided

here by extension of the method of non-linear relaxation.

4.5 Numerical Solution Consistent with Wall Boundary Conditions

The wall boundary conditions for the continuity and electron
energy equations were derived in section 2.7 from a study of interactions
between the plasma and electrode walls. The spatial finite difference
forms of these boundary conditions are obtained by replacing the
derivatives with respect to g by the finite difference representations
given by equations (4.7). For given @sz(including electrode wall
values) and interior values of E":i , “”e?‘.i and 1’):,\& , one then
has a system of equations at each wall mesh point for the unknown wall
values of 7}33 , 773:‘“,& and 'Hp:'u'

Considering an electrode wall, the ion and seed atom continuity
conditions can be used to eliminate the wall values of Wﬂélj and
: W?;:; from the electron energy, total current continuity and

surface coverage equations; these equations can then be written in

the forms
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" .
Cii; (T, 49 6)=0, (4.28)
Goee (Te, Ad 8)=0 (4.29)

2l-d e} /} 2 .
o6\ n
5_{-)‘.0,'-' Gaj (Te, Bp,9) (4.30)
)
where j =1 or J and the forms of Gy 62 and G3 depend on the sign
of Af . The equation for the surface coverage, equation (4.30 ), is
n-%2 Wt
time differenced by replacing (99/&{7),-,“- with (8"~ 9 )/Ab',
nh-t2 n n-{
and 6:3,,,J with the average (6'31;14'+ 63,;,J)/2. Thus, to

second order accuracy, equation (4.30 ) can be written in the form

n n o on Abf 1y
G#»’,J{E, 480)= 0, 6ij - 3 (GM t+ G345 )=0  (4.31)
Equations (4.28), (4.29) and (4.31) constitute a non-Tinear

—n " "
system of equations for the unknowns [ei; , A‘{Z’.J and eou

These equations can be solved iteratively by means of Newton's method.

- . . —
The equations are linearized by introducing the iterates ( Ie‘{))
&)
A¢%J R 9.,,J » where k is the iteration level, and replacing
Cl(-tl) k<1

G““o s (71;‘\] and 6—,,_,,,‘1' by expans1ons of Gl . 2,
K+1) k,;
and G_l(;u about ( Tﬂ‘d s ¢¢J, ), reta1mng only those
kat) _ G
terms linear in (TS\J - lec J) etc. Thus, equations (4.28),

(4.29) and (4.31) become &
Dby \&i o) (96, )(k) ( o6 3\ 9(5;
e+ (5 ) 518+ (aay)y $4hes + (o 2450

(4.32a)
6& 4 ( )GZ)(’ Teg) + Mz)(k} ( Zf ﬁk’ -0
g 2l 24, Y (a.30)
and (%
5. (k) 96,,
264 \&) (k! cj‘
k) 61
Gup s t ("“J&T Dty 5’425 Y-
i 2Teliy @ '€ g7 #/, ‘u (4.32)
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where

& ) U«rl) (S

k) _(ket) __ (k (N
8-r€uq IGLU - e"_)), (?Aﬁ A¢ W "A?th ’ “«"‘"" g’ LU l.d (4 33)

Having solved equations (4.32), the higher order iterates

are obtained from equations (4.33). The iterations are repeated until

(et -
‘81;3u. Te, {€ where € is, say, 10 4. It should be noted that
J i
(3 te)
the forms of G‘,)J sz G’”'d » and their derivatives, must

be changed whenever the sign of A¢L changes during the iterations.
Having determined le.,“', A¢,,J and (9,,;:' . the electrode

wall values of "V'e?.J and ’W:,'.‘j are obtained from the ion and seed

atom continuity conditions.

The insulator wall values of 'V]e;:J' s 14,::\; and -/:L;} are

much more easily obtained. For example, for an insulator wall

segment at y = 0, one has
Ter; = (4Te, - T )/3 (4.34a)

ey = {q[‘ne (T:r'l}):):i - [e (T+Tc)1?3 } /[ 3(T+7g)]:5 (4.34b)

s [y (), - (i) ] /(T (4.34)

Numerical solutions of the continuity, electron energy
and current stream function equations consistent with the wall boundary
conditions may be obtained in a number of ways. One procedure,
which has been tested, is outlined in block form in figure.4.1, :assuming
a constant time step.

A suitable alternative to the procedure outlined in figure 4.1
might seem to be one in which the wall boundary values are obtained from

equations (4.28), (4.29), (4.31) and (4.34) at every iteration of
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" —nN
2(@3 and the interior value of fe;d; that is, at every iteration

of the non-linear relaxation method. As indicated in reference (36},
such a procedure suffers from a slow instability; that is, a slow
drifting away from the true solution as the iterations are performed.
With a sufficiently stringent convergence criterion, a convergent
solution is never obtained and any result obtained by terminating the
iterations at some point bears little resemblance to the true solution.
This instability has been observed by the present author in numerical
experiments employing the aforementioned procedure.
o
To initiate calculations, the initial distributions 749%]’
[ (<] L. . o
‘Vlm’u‘ and (9,'.5 must be specified, together with guesses for E‘;J
(4
and Q+iﬂ. These are obtained by making the following assumptions:
(i) The current stream function satisfied Laplace's
equation
v
V=0,
subject to the boundary conditions given by equations
(2.233), (2.234) and (2.235); equation (2.233) is
used in the form
2%, %%
7 - ﬁe aX 2
and the current I is given,
. . . o °. .
(ii)  The seeding fraction X = ("’n + ’V)e)/’b is a
specified constant.
(ii1) The electron density is given by Saha's equation:
Vie =0
(iv)  The electron energy equation has the simplified form
m
Z, e
J/o/c = 37l k! CT,}-—T) L Vel,
(v) The surface coverage is equal to its thermal equilibrium

value (see section 2.7).
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° 14 .
The 1%&3 and 72»4 distributions, and the wall values of
0 0
‘”eJd and WQMLi s are found by solving the full electron energy
and current stream function equations consistent with the wall

boundary conditions for fixed surface coverage.

4.6 Stability Considerations

For the éxplicit part of the integration scheme for the
continuity equations, formulated in section 4.3, to be numerically
stable and accurate the time step must be sufficiently smaller than the
characteristic time scales of the physical processes described. The
implicit treatment of the § -diffusion terms requires only that the
time step be sufficiently small for accuracy, since the Crank Nicholson
scheme is unconditionally stab]e(33). This is also true of the implicit
treatment of the surface coverage equation (see equation (4.31)).

The explicit integration scheme is applied to the convection,
x-diffusion and source terms of the continuity eqﬁations. The
stability of the scheme is examined by use of the approximate approach
of reference (8), in which the stability of the scheme to source terms,

convection terms and x-diffusion terms is considered separately.

(a) Stability to source terms

In order to investigate the stability of the explicit integration
scheme to source terms, small perturbations of 7 and 71,, are
considered, and the linear theory of appendix C is applied. Consistent
with the temperature relaxation approximation, the evolution of the
perturbations 74e/ and W.{ is described by the equation

/ot = w/T (4.35)
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where U = '1e/;rV%( and T is the growth/decay time of the jonization
instability; i.e., 3*7' . The explicit integration scheme defined

by equation (4.12) yields for u at time level n,
A‘«' [ n- h-2 .
n n-i faddl I
W= o [Bn - (4.36)

By solving equations (4.35) and (4.36) and comparing the solutions,
it is shown in reference (18) that, for T> © , the numerical scheme

approximates the exact solution to second order accuracy in (Alr/ij if

Atcoygt (4.37)

For an exponentially decreasing solution, the stability condition is

ar (o570l | (‘E(D)) (4.38)

which is slightly less restrictive than condition (4.37).
The numerical results presented in chapter 5 are obtained by
considering the characteristic time scale for ionization (see

equation (2.212))
13 =,//E4,(“n*”el],

where

Q’T_”‘Ie,fgr/z—- E_
A, = L(Te) (' .z )
in place of the growth/decay time of the ionization instabi]ity in
equation (4.35). This is due to the fact that the linear theory of
appendix C is not applicable to small departures from highly
non-uniform plasma states; application of the expression for the
growth rate of the ionization instability in the temperature relaxation

approximation derived in appendix C is found to lead to unnecessarily

short time steps.
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(b) Stability to convective terms

The simple convection equation

u u
M u = (4.39)
o IX
where Uy = constant, is considered. The explicit integration

scheme defined by equation (4.12) when applied to equation (4.39)

yields

" 4+
ur=up - Mxx[ (u] _— ) (%m-%-, )J (4.40)

By considering a Fourier mode of solution of equation (4.40) it is

shown in reference (8) that, for

'%4‘1( 0.5 (a.41)
X

the numerical scheme approximates the exact solution to second order
accuracy in l/lef/llX » but possesses a weak instability in fourth

order; that is,

[9]= 1+ 0(8t%) 3

" h-|
where ¢ = ”‘i//°4i . It is shown in reference (27) that this
instability is removed if after every time step new values of the

variables are defined according to

~I n-1I n-l
=ult ( [ y = 2ug +“J (4.42)

where € ) 6#7427 . The accuracy of the solution is little
affected by the introduction of this artificial diffusion.

Unc]es(g) found that stabilization was not required in his
work because the time scale for convection 2x was much Targer than

the electrothermal time scales so that the factor {”X AL’/AX) 7was
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very small. In the present work, however, conditions are such that
the time scale for convection is comparable to the electrothermal and
ionization/recombination time scales and stabilization is necessary.

Artificial diffusion is applied to the integration scheme of
section 4.3 as follows. Assuming a constant time step, application
of the explicit integration scheme defined by equation (4.12) is

followed by an evaluation of the variable f according to equation (4.42):

oy ny L()(Al' -1 n-t
Fig = Fis * )[JL % +’l""'JJ

The value .}nyyin equation (4.16) is then replaced with the va]uehf”f

The artificial diffusion scheme, defined by equation (4.42),
is applied to the explicit one step integration scheme, defined by
. . n¥ n,\(/ . .
equations (4.20) and (4.22), by replacing ‘} and fl in equations
(4.20b) and (4.22b) with ;f;; and .fFI” respectively, where

weldhyr
f:ﬂ» it ( [JE:;’J ZJ&I '+f-,,d_-]
/ € uxdt n- n-i
7‘53‘- s & (S [hny - o fi '+ 0]

s n¥ ! :
the quantities f;d and ftd being given by equations (4.20a)

and (4.22a).

(c) Stability to diffusive terms

Application of the explicit integration scheme defined by

equation (4.12) to the simple diffusion equation

U o
—_— = D —
ot IX* (4.43)

yields

_ Aékp -
onts B )
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By considering a Fourier mode of solution of equation (4.44),it

can be shown that the condition for stability is that

At ¢ 0.5 Ax2

kp

(4.45)

The conditions (4.37) or (4.38), (4.41) and (4.45) impose
restrictions on the size of time step used for the explicit integration
scheme defined by equations (4.12) to be numerically stable and accurate.
These conditions require that the time step be sufficiently smaller
than the time scales of the physical processes concerned. Characteristic
time scalesare discussed in greater detail in appendix C.

Another form of numerical instability can occur as a result
of large truncation error when a space step mesh size exceeds the
characteristic length scale for electron thermal conduction. This
instability has been reported by Ko]b(18) and has been observed in the
present work in numerical experiments where electron temperature
gradients near fhe electrode corners are very large. In these cases
it is found that when the step size in the x-direction is too large,
large electron temperature peaks, which tend to increase with time, occur
in the higher current density regions near the electrodes. These
peaks disappear when a smaller step size is used. An expression is
derived below for the characteristic Tength scale of electron thermal
conduction, which is used to obtain upper limits on the choice of
step size in the x-direction.

A uniform plasma state described by the simplified continuity

and electron energy equations

Veo = O (4.46a)
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and

T 00y = Leo. (4.46b)

is considered, where the subscript o refers to steady-state
quantities and Leo is the volumetric rate of loss of energy of the
electron gas as a result of elastic collisions with the heavy

particles; this is given by (see equation (2.31))

Me
Leo = 51’3")2 (Te"T) —q,y‘,,;v‘)tb . (4.47)

Spatial variations are introduced such that

Ve = Y)eo+ﬁe§‘ﬁeev&f}5 Yeo + V)e/ (4.48a)

and
Te= Tetﬁe{ﬁ eil“ji Tou t Te/. (4.48b)

Linearization of the simplified system of equations, considered in
appendix C, equations (C.1)-(C.6), with respect to the perturbations

defined by equations (4.48 ) yields the equations

/
Dn /
5;‘ = aone + & T (4.49)
and
/ /
Dre DT / /
' >E + A3 .5—; = a4 Ne + Az Té/—- Aeo lFTe’,  (4.49b)

where the coefficients Qo— &g are listed in appendix C. The
additional term ),oaa-;-:_ = - Jeo sze/has been introduced on the right-hand
side of equation (4.49b) to account for electron thermal conduction.
Eliminating Dnel/bb from equation (4.49b) using equation (4.49a), we

obtain
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/
- T (“Za" —~ XY Me' = - (alaz."af"(-geakz) Te/,

from which it is clear that electron thermal conduction is important
if the wavelengths of spatial variations are sufficiently small
that
}eokz?./ (a:“z."“g) ;
from which a characteristic length scale for electron thermal

conduction can be defined as

deo 172
L)e < 2T {(a,az-ag)S

The angle & in equation (C.9f) of appendix C is taken to be w/z,

(4.50)

for which the magnitude of the coefficient as is a maximum and Ak
therefore a minimum. Using equations (C.9b), (C.9¢c) and (C.9f) we

can then write

. 2
£ [ (ZleT)
-2 9 3 —_
g - a5 = Lo Tyl kg (k,,vz,, f )+7: % (Te-T) * (4.51)

From equation (2.114) 3,, is given by

She k@ 'e,

j& = 2wieVeh ’ (4.52)

Taking as a representative set of values, for a seeding fraction of
0.002, T, = 2000°K, n_ = 1.637 x 10'%/n°, J = 4.319 x 10> A/n} and
U;==4.365 mhs/m, we obtain from equations (4.50)—(4.52),[)e= 0.56mm,
The smallness of LAe compared with a segment length of 25.4 mm, used
in all numerical experiments carried out by the author, necessitates
the use of a large number of steps in the x-direction (> 45) in

cases where electron temperature gradients are very large. In the

work of Ko]b(]sl the numerical instability occurs with a coarse mesh

in cases where the electron temperature at a wall point is set equal
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to the gas temperature leading to large electron temperdture gradients
in the regions of current concentration near the electrode edges.

In the present work,the numerical instability occurs when a coarse

mesh is employed and the initial value of the surface coverage is

taken to be much larger than the equilibrium value leading to large
electron temperature gradients. The instability does not occur in

the case considered in chapter 5,even though a coarse mesh of 17 points

in the x-direction is employed.
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Fig. 4.1: Updating Procedure for Constant Time Step
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CHAPTER 5

RESULTS OF COMPUTATIONS OF THE LOCAL BEHAVIOUR IN A CLOSED

CYCLE MHD GENERATOR

5.1 Introduction

In this chapter some results of computations of the temporal
development of the local plasma and electrical behaviour in a single
segment of a closed cycle MHD generator,using the numerical method
developed in the last chapter, are presented and discussed.

Similar computations have been reported by other authors,

24). Of these

in particu]ar,Ko]b(]8),Unc1es(8) and Argyropou]os(
studies that of Uncles appears to be the most advanced in that, as

well as including physical processes not previously considered by other
authors the temporal development of the p]aéma and electrical behaviour
is followed up to times long enough for quasi-steady state conditions
to be established. In addition, effects of varying the channel
dimensions and applied magnetic field are considered in reference (8).

In particular, generator operation in the regimes of stability and
instability of the ionization mode of electrothermal waves (see

appendix C) is investigated. An important result of the computations
performed by Uncles is the possibility that non-uniformities introduced
by the finite segmentation can grow into ‘'streamers', or high
conductivity paths, transverse to the gas flow, along which the bulk

of the current can flow. As a resd]t, the effective electrical
conductivity oéﬁf » introduced in chapter 1, is increased by a factor
of about two over the average conductivity (a}. This result is in

contrast to the linear theory of the electrothermal instability, which

predicts, for a weakly unstable plasma, the occurrence of plane-wave
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like plasma non-uniformities at an angle of about 45° to the channel
axis, leading to reduction of the ratio CE£+/4Qﬁ>(4]).

However, as mentioned earlier, the work of Uncles excludes a
number of important physical processes, which have previously been
considered only in the case of open cycle MHD generators, in which
steady-state plasma and electrical behaviour can be assumed. As
mentioned in the introduction, emphasis in the present work is more on
the development of a physical model incorporating some of these
effects, together with some effects not previously considered, and the
development of numerical methods of solution of the governing equations.
Thus detailed analysis of computational results in terms of the acting
physical mechanisms for various generator operating conditions and
dimensions is not attempted here. Instead; some computational results
obtained for one representative set of generator operating conditions
are presented and discussed in this chapter.

The 1afge demands made on computer time by the program that
solves the plasma and electrical problem necessitates restriction to
one set of generator operating conditions. For the same reason a rather
coarse space mesh of 49 points in the cross-stream g (or y-)
direction and 17 points in the x-direction is employed and the
computation not performed for a long enough time for a quasi-steady
final state to be reached. Fortunately, the numerical instability
reported by Ko1b(]8), discussed in section 4.6 is not encountered in
the computer run considered here even though the step size in the
x-direction exceeds the characteristic length scale for electron
thermal conduction. The reason for this has already been given in
section 4.6.

The generator conditions considered in this chapter are

representative of those of the experimental runs of the IRD closed Toop
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facility carried out in October 1977 (see section 3.5). Thus, as in
section 3.5, the gas~dynamic conditions of run 7 are considered, and
the channel dimensions at the Tocation of electrode pair 2 are used;
that is, L = 2.54 x 1072 m, H = 2.23 x 107° m, W =1.08 x 107 m.

With a mesh of 17 points in the x-direction the number of mesh points
allocated to each electrode is 7, yielding an effective electrode length
of 9.5 mm , which is equal to the electrode diameter. Whilst the
actual electrode cross-section is circular, application of the two-
dimensional numerical model requires that an electrode of rectangular
cross-section be considered. Thus, the electrode length in the x-
direction is taken to be 9.5 mm , while the electrode length in the
transverse z-direction is taken to be equal to the channel width; i.e.,

1.08 x ]0_2m. This gives an effective electrode area of 10.29 x 10_5 m

compared with an actual electrode area of 7.13 x 10_5 m2. This

2

difference in electrode area must be allowed for in any attempt to
compare numerical and experimental results.

The gas pressure and electrode wall gas velocity and gas
temperature profiles are obtained from the solution of the boundary
layer equations discussed in section 3.5, the appropriate x-location
being taken to be that of the centre of electrode pair 2.

Experimentally it is found that,for a seeding fraction of 0.002,
inlet ionization relaxation is completed well before electrode pair 2(4).
Therefore the latter value of seeding fraction is used to initialize
the computation. The corresponding equilibrium value of the surface
coverage (see section 2.7) is approximately 0.35; this is taken to

be the initial value of the surface coverage at all electrode mesh

points.
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The applied magnetic field is taken to be 0.7.Te51a. At
higher magnetic fields, convergence problems are encountered in the
numerical solution of the coupled current stream function and
electron energy equation using the method of section 4.4 due to
concentrations of current at the downstream edge of the cathode and
upstream edge of the anode. A satisfactory method of overcoming these
convergence problems has not been found. Of course it is only at
magnetic fields sufficiently large for the plasma to be locally
unstable that the electrothermal instability can have any effect on
the local plasma and electrical behaviour and derived generator
characteristics.

It was shown in section 2.7 that, for a surface coverage of
0.35, V{<<{Ve and the emitted electron current density is 3813 A/m2.
Numerical experiments show that convergence problems arise in calculating
the electrode wall values of A¢ and Te for . @ = 0.35 using the
method of section 4.5 when the applied current exceeds about 0.1A. The
average electrode current density for an applied current of 0.1A is
972 A/m2, which is much less than the emitted current density. However,
due to the Hall effect, large concentrations of current occur at the
downstream edge of the cathode where the current density is much
larger than the average &a]ue. As a result, saturation can occur in
the region of current concentration with the sheath voltage drop
tending to infinity, even when an applied current much Tess than the
emitted electron current is used. This problem becomes increasingly
severe as the mesh step in the x-direction is reduced due to the
enhancement of current concentration. The results presented in this
chapter are obtained with a fixed current of 0.1A, applied in the

direction of the waB emf. Whilst finite interaction between the



-179-

plasma and external load circuits is allowed in the theory of
Unc]es(8), it is not considered in the present work.

The size of the time step used in the time integration of
the equations is chosen in accordance with the considerations of
section 4.6, in order to ensure the stability and accuracy of the
obtained solutions. As mentioned in section 4.6, the characteristic
time scale for ionization ?I=]l//[4,bh—rkﬂ/is considered in place of
the growth/decay time of the electrothermal instability in obtaining
the solutions reported in the next section. Denoting the characteristic
time scales for convection and x-diffusion by T, and Ty, (see
appendix C), a minimum tihe scale Ifi?w,is first obtained from the

solutions at any given time level as follows:

W
Tm[n = ( (t_‘[) mMin )y (tu,) w9 @d/\’)mn)m‘"

If the time step is chosen as At = 0.1'Ds&h , the solutions
obtained, whilst stable, are inaccurate. This is due to the smallness
of the characteristic time scale for cross-stream diffusion, which can
be defined as follows:
Min Vin A%*

de = ;2./(&-,—' J

!

where, typically, (Ikg)mbré 0-11;34 In order to obtain accurate

solutions the time step 4+ is chosen as

A = 0.1/ (1), T,

5.2 Analysis of Results and Conclusions

(a) State at t = 0

The initial plasma and current distributions are obtained
by the method described in section 4.5. Thus, the " , %1,, % and
T, distributions are first computed using the simplified form of

electron energy equation, equation (1.9), Saha's equation,
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equation (1.14); and Laplace's equation \7¢%ﬁ: 0 , subject to the
boundary conditions 91%%{j=@0547gx on the electrodes and Y = constant
on the insulators. The seeding fraction is taken to be a specified
constant (X = 0.002). From the resultant Ve and " distributions,
the initial values of M, and Ny at all mesh points, except those

lying on the electrodes and insulators, are obtained. The initial

T; and ?f distributions as well as the electrode values ofldsf,ék,
e Ny and Te , and insulator values of M, , N, and L are then
obtained by solving the coupled electron energy and current stream
function equations consistently with the wall boundary conditions for
a fixed surface coverage ( @ = 0.35).

Figure 5.1 shows the computed anode sheath voltage drop xﬁ¢%L
and cathode sheath voltage drop Ag& distributions at t = 0. Contour
plots representing the initial 7, , %+ and "e distributions in
({,‘) space are shown in figures 5.4, 5.5 and 5.6; the relation
between § - and y-coordinates is shown in figure 5.7, in which the
distribution of Faraday voltage along the line through the electrode
centres is also shown. The initial value of the average Hall
parameter {fe) is 1.39.

It can be seen from figure 5.1 that the sheath voltage drop is
positive everywheré on the anode and cathode, the electron density
on both electrodes satisfying the condition Me.w Y é%; (I + Esi;) |73
(see (2.271)). The sheath voltage drop has a maximum value at the
downstream edge of the cathode where the current density is maximum in

magnitude.
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The initial % distribution is represented by a contour plot
in figure 5.5 in which the contour interval A% is taken to be | A/m

and the value of %4 on a contour numbered “p" is given by

wp) = (p-1)A%
The orientation and relative separation of the contours represents
the direction of current flow and magnitude of current density
respectively.

The tendency of the current to concentrate at the upstream
edge of the anode and downstream edge of the cathode as a result of
the Hall effect can clearly be seen in figure 5.5. It is also clear
that there is an asymmetry between anode and cathode conduction; this
is a result of the large asymmetries in the electron temperature
distribution,and is further discussed below.

The initial electron temperature distribution is represented
by a contour plot in figure 5.4 in which the contour interval ATe
is taken to be 150°K and the value of electron temperature on a

contour numbered "p" is given by

Te (p)= (p + Mmin= 1) ATe
where py | , and M, is the minimum integer such that Te () = My BTe > Tonsins
the minimum electron temperature is 7;”a".

In figure 5.4, a high electron temperature region can be
seen to exist in the plasma near the downstream edge of the cathode,
the electron temperature decreasing rapidly from its maximum value
of 31929K at the downstream edge to values close to the wall
temperature (1316°K) towards the upstream edge. However, a region of
relatively low electron temperature exists near the anode surface;
the electron temperature decreases rapidly from 1570%K at the

upstream edge to values close to the wall temperature towards the
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downstream edge. At some points on the anode the electron temperature

is actually less than the wall temperature; the electron temperature

has its minimum value of 1216°K at the anode mesh pbint adjacent to

the upstream edge. The temperature profile on the insulator segment
upstream of the anode has a maximum about equal to the electron temperature
at the corresponding point on the insulator segment downstream of the
cathode. However, instead of a high electron temperature region similar

to that near the downstream edge of the cathode, which extends some
distance along the adjacent insulator segment, there is a region of

high electron temperature gradient near the upstream edge of the anode,
opposite which there is a small region of high electron temperature.

This large asymmetry in the electron temperature distribution
is due to the asymmetrical effect of the electron pressure gradient
on the Ohmic heating near the anode and cathode, together with the
asymmetry of the anode and cathode wall boundary conditions on the
electron energy equation derived in section 2.7.

As we shall see later in this section, application of the
jon continuity conditions yields electron density gradients of very
large magnitude near the upstream edge of the anode and downstream edge
of the cathode (see figure 5.6). The electron pressure gradients are _
also large in magnitude at these points and, since the directions of
these gradients are almost parallel or antiparallel to the current
density, they have large effects on the Ohmic heating.

The effect of the electron pressure gradient on the Ohmic
heating is neglected in the simplified form of the electron energy
equation, equation (1.9), which is used to obtain the original electron
temperature distribution. If the effect of the electron pressure
gradient is included, the Ohmic heating term has the form (see

equation (2.224))
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f{_\_T= Jz/oé- EVPe/(e"e) : (5.1)

Near the downstream edge of the cathode, the term QfV?é/Qﬁne)
in equation (5.1) is negative and large in magnitude; this results
in 1 increased Ohmic heating,leading to values of electron temperature
larger than those obtained using the simplified form of electron
energy equation. The region of plasma near the downstream edge of
the cathode, in which the electron temperature is increased,coincides
with the region of highest electron density nearest the cathode wall,
as can be seen by comparing figures 5.4 and 5.6. The large electron
density gradients in the downstream direction in a region near the
downstream edge of the cathode (electrode side) yield values of
;[ZVﬁ%:/Yéne)that are small in magnitude; this, together with the rapid
decrease of l;fl in the upstream direction, leads to large electron
temperature gradients in the downstream direction in the same region.

Near the upstream edge of the anode, the term T-er/(t’”e) in
equation (5.1) is large and positive; this results in decreased Ohmic
heating,leading to values of electron temperature smaller than those
obtained using the simplified form of electron energy equation. This
reduction of the electron temperature occurs to a lesser extent over much
of the remainder of the region near the anode surface. With increasing
distance from the anode surface, near the upstream edge, the electron
pressure gradient rapidly decreases in magnitude and the Ohmic heating
rapidly increases; this results in a region of high electron

temperature gradient near the upstream edge of the anode.
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The sheath voltage drop at every point on the anode and cathode
surfaces is positive. The appropriate electrode wall boundary
condition on the electron energy equation in this case can be written
as an expression for the y-component of the electron heat flux

at a wall mesh point (see equation (2.282)) of the form

)
5 €w Te
(o= 26Ty = (a3,

=€ [Ve (2,‘372)1‘ eﬂyf) - (Ve-'éfzj) (2k37;w+ed¢)j) (5.2)
where £ = +1 for the cathode and £ = -1 for the anode. In

-
equation (5.2), the net y-component of electron flux Iej is given

by
{%:’éJj'f @ (5.3)
Using the expression for [:"j given by equation (2.256) we can write
equation (5.3) in the form
L, = e 'f-g(-?\"u 'new t'u)>
As in section 2.7 we have for typical values of Mgy, <V, hy 3 Ylp,.;(lw

so that

I
33 = gi"ewcv'w. (5_4)

L 1 .

IZJ v
Making use of equation (5.4) we can write equation (5.%2) in the

form

(i"j =t {Ve (sz 7;;) ( Jj £ - I"ewaw (2(' +e4é_] (5.5)

From equation (5.5) the expressions for the y-component of electron

heat flux at the cathode and anode walls are



e L

Cathode

Mesh Point 1 2 3 4 > 6 7
2vekp (T~ Tew) -17 -32 -48 -21 -359 -1043 | -921
- Ly 4x1020| 7x1020 1021 | 7x1020| -5x1021 2x10%2 | 2x1022
Tiy~ -3ng,Ciy | -4x1019[ -4x1019| -4x10%9 | -4x1019 | -5x10%9 | -7x1020 | -2x102!
Fey(2kgTeytens) -6 16 23 15 | -195 3169 | 5724
(dey )y -23 -17 -26 -7 | -554 2126 | 4802
T2kgTewley 0.6 2 | -1.9 4.8 | 0.6 0.8 | 0.4

(qeij
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- —
(1€j)w = Ve (Qky_ﬁ)' - ,?’(B—I;Q)'f ’%Jj -znﬂ\) d’w)(?kg’&gftdf)(g)j)
and

(teg)o = = e (2T 2 Tew)# (T3 + 4 s Coo YW Teot €4) (57
respectively.
Considering the cathode wall, the y-component of electron heat

flux given by equation (5.6) decreases very rapidly from positive to nega-
tive values with increasing distance from the downstream edge. This rapid
reduction is due to the rapid decrease of |Jy|, To and A, and is clearly
shown in the table on the opposite page in which cathode mesh points are
numbered from the upstream edge. The large value of (qey)w near to the
downstream edge, together with the heating effect of the electron pressure
gradient leads to the existence of the region of high electron temperature
described above. However, the rapid reduction of (qey)w with increasing
distance from the downstream edge allows the existence of the region of
relatively low electron temperature in which the Ohmic heating is
small.

The hfgh Hall paraméter'in”the low temperature region near the
cathode results in a tendency for the current to be concentrated near
the downstream edge of the cathode. This tendency is opposed by the
high conductivity in the low temperature region.

The y-component of electron heat flux at the anode wall, as
given by equation (5.6), is negative over much of the electrode surface
and rapidly decreases in magnitude with increasing distance from the
upstream edge, actually becoming positive at a point where the
direction of the current reverses (see figure 5.5). The magnitude of

(ifjh” at the upstream edge of the anode is much less than the value
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of C%gﬁ]w at the downstream edge of the cathode, due to the smaller
values of - Je and Z;f at the upstream edge of the anode. This,
together with the reduction of the Ohmic heating due to the finite
electron pressure gradient, results in the existence of the region of
low electron temperature near the anode surface.

The Tow electron temperature in the region of the plasma near
the upstream edge of the anode results in a higher conductivity and
Ha]] parameter in this }egion compared with the conductivity and Hall
parameter in the region of the plasma near the downstream edge of the
cathode. As a result, the concentration of current is greater near the
upstream edge of the anode, as can be seen in figure 5.5.

Figure 5.5 shows the existence of current stream lines that
begin and end on the same electrode; some of these stream lines are
located near the upstream edge of the anode, and some are located near
the downstream edge of the cathode. The occurrence of these stream lines
is due to the term dependent on the gradient of the electron pressure
in Ohm's law. This term is important in the high electron density
gradient regions near the upstream edge of the anode and near the
downstream edge of the cathode (see figure 5.6).

The initial electron density distribution is represented by a
contour plot in figure 5.6 in which the contour interval &7e s

3

taken to be 0.5 x 1O]8m_ , and the value of electron density on a contour

numbered "p" is given by
”e(f’)=FA'ﬂe
where F>/ | .

Regions of large electron density gradients are seen to exist

near the upstream edge of the anode and downstream edge of the cathode.



-187-

From Saha's equation, it follows that, !VWe e | DY | VTe /T-'e/ ; that
is, the fractional electron density variations are much larger than the
fractional variations of electron temperature determined from the
simplified form of electron energy equation. The very large cross-stream
varjations of electron density at the anode and cathode surfaces follow
from the application of the ion continuity condition (2.258) of section
2.7, which is the relevant condition since A?é S0 everywhere. This
results in an electron density at each point that is much less than the

Saha value at the original electron temperature. This is due to the

fact that electrons are lost to both electrodes, since vijhj << } ngy Cjy and
Fiy ~v-ed Ngy ciws  that is, iy < 0 on the cathode, and iy > 0 on the
anode.

The seed atom density distribution, which is not given here,
shows little variations in the x-direction because conditions are such
that the degree of ijonization is very small. However, the seed atom
density at each point on the electrodes is slightly larger than the
corresponding value obtained from a seeding fraction of 0.002. This
is due to the fact that the value of 6 in the equilibrium case is not
exactly equal to 0.35. It is found that ]7?9 Y0 at the cathode
and f;j< O at the anode, and there is initially a flux of seed atoms
from each point of either electrode into the plasma.

The Faraday voltage distribution at t = 0 is shown in figure 5.7.
This is obtained by integrating the y-component of electric field

along the electrode centre-line. Near y = 0, the voltage increases
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rapidly with y due to the effect of the y-component of the electron
pressure gradient, which is Targe and positive in magnitude in a narrow
region near the cathode wall in which the electron density rapidly
increases from small values at the wall. However, with increasing
distance from the cathode, the y-component of electron pressure gradient
and, therefore, the magnitude of the y-component of electric field
rapidly decrease and the voltage gradient gréatly decreases after a short
distance from the wall. Similar behaviour occurs near the anode,where
the existence of a narrow region in which the electron density decreases
rapidly towards the wall and the electron pressure gradient is large
in magnitude and negative leads to a rapid reduction of voltage gradient
to negative values near the wall.

At most points on the electrode centre-line, the voltage gradient
is positive due to the existence of an x-component of the current
density, and the Faraday voltage across the channel is positive. Therefore,
as a result of the Hall effect, the system acts aé a resistive load

rather than as a generator of electrical power.

(b) Stateat t> O

The temporal development of the plasma and current distributions

and derived generator characteristics is followed numerically up to

a time t = 8 x ]0-6 sec. This is to be compared with the minimum
cross-stream diffusion and ionization time scales, which are 8 x 10_9 sec
and 2.6 x 10_7 sec, respectively, at the initial time t = 0. While

the cross-stream diffusion time scale remains constant,the ionization

7

time scale increases slightly to 3.4 x 10°’ sec at the final time.

The minimum convection time scale is constant and equal to 1.3 x 10_6 sec.
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(1) Plasma and current distributions

Figure 5.3 shows the variation with time of the maximum,
minimum and average values of the seeding fraction; these quantities
are denoted by X, s Amin and (7(> respectively. whﬂe{x)
remains constant and equal to the initial value of 0.002, jX"mXincreases
to a maximum of 2.12, and :Xﬁun decreases to a minimum of 1.7 in a time
of about 1.5 x 10_7 sec. Both 7“%4x and :X;u; then gradually approach

steady values.
These variations of x,., and xpin are due to diffusion of electrons and

neutrals and possibly also ionization; the time scale for recombination

(initially about 3 x 10-5 sec) is too long for it to be of any importance’ in

-

the initial variations of seeding fraction.

The seeding fraction is maximum near to the downstream edge of the
cathode and minimum near to the downstream edge of the anode.

The anode and cathode distributions of surface coverage at the final time
of the computation (t = 8 x 107® sec), shown in figure 5.2, have features
similar to the distributions at times t < 1.5 x 10-7 sec.  The increase of
surface covérage above the equilibrium value near to the downstream edge of the
cathode is an important result of the theory. A similar result is found in
the work of Koester et al.(30); it means that the possibility exists of
passing currents greatly in excess of the equilibrium emitted electron current

without onset of arcing.
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The seeding fraction is maximum near the downstream edge of

the cathode and minimum near the downstream edge of the anode.

- ~ -

L. - ~

The anode and cathode sheath vo{gage d;prAfétributiohs at t = 8 x 1076
sec are compared with the distributions at time t = 0 in figure 5.1. It
can be seen that, as at t = 0, the cathode sheath voltage arop is positive
near to the downstream edge, having a maximum value at the edge; this
maximum is larger at the later time due to increased current concentration
(see below). Farther upstream the sheath voltage drop has decreased to
negative values due to the electron density having decreased to the extent
that condition (2.271) is no longer valid; this condition remains valid at

the downstream edge and the mesh point nearest this edge.
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The sheath voltage drop over the entire anode surface can be seen to ;
have decreased to negative values at t = 8 x 1076 sec.  This is due, in part,
to the electron density having decreased to the extent that condition (2.271)
is invalidated at all mesh points with the exceptions of the upstream edge

and the adjacent mesh point.

U e e n R e — —

Contour plots representing the electron temperature, current
and electron density distributions in (2,8 ) space at time t = 8 x 10'6
sec are shown in figureg 5.8, 5.9 and 5.10. Contour intervals are the
same as for t = 0. The Faraday voltage distribution at t = 8 x 1070 sec

is shown in figure 5.11.

In figure 5.10 it can be ;éen thafriﬁé high e]ectroh density gradieqt
region adjaceﬁt to the anode wall (see figure 5.6) has spread out into a -
larger region, the electron density on and near the anode decreasing in value.
This is probably due to ion diffusion and leads to an enhancement of conduc-
tivity in a region near the insulator segment upstream of the anode. resulting
in a deviation of the current streamlines towards the insulator segment,

together with a slight displacement of the current streamlines towards the

upstream edge (see figure 5.9). This, in turn,results in an increased Ohmic
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heating in the region of the plasma upstream of the anodé; 1eading féwéh‘

increase of electron temperature and, by ionization, to an increase of
electron density in that region (see figures 5.8 and 5.10). These enhance-
ments of electron temperature and density are allowed by the boundary

conditions at the insulator walls (see section 2.7).

A similar spreading of the high electron density gradient region
adjacenrt to the cathode can be seen to occur in figure 5.10, the electron
density on and near to much of the cathode surface also decreasing in value.
However, this leads to a slight deviation of the current lines towards the
insulator segment downstream of the cathode compared to the deviation .
towards the insulator segment upstream of the anode (see figure 5.9). This
is probably because of the region of high electron temperature near_the
downstream edge of the cathode, which includes part of the cathode itself;
the electron density and conductivity at and opposite the downstream edge
are actually enhanced. The extent of the region of high electron tempera-
ture and high electron density adjacent to the insulator segment downstream
of the cathode is therefore less than that of the similar region adjacent
to the insulator segment upstream of the anode (see figures 5.8 and 5.10).
However, there is an increase in current concentration near the_dgwnstream
edge of the cathode, probably due to the enhancement of conductivity at the

edge itself.

' The effect of convection on the electron density and current
distributions is quite clearly shown in figures 5.9 and 5.10. The

high electron density and electron conductivity regions upstream of the
anode and near the downstream edge of the cathode can be seen to be
displaced downstream. This results in a downstream displacement of

the current lines. However, near the wall the flow velocity is low

and the effects of convection are negligible. In particular, the

region of high electron density upstream of the anode is not displaced

P e e e e .- e e e -
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by convection into the anode itself, on and near the surface of which

the electron density can attain relatively Tow values.
Figure 5.10 shows the existence of a small peak in the electron
density distribution at a point on the line joining the centres of the

electrodes (e]ectrode centre-line).  This is a result of reduction of

electron density near the centre of the segment due to convection, and
upstream displacement of the high electron density region close to the

wall, near to the downstream edge of the cathodgi”

This peak has an important effect on the Faraday voltage profile,
as can be seen in figure 5.11. It can be seen in figure 5.9 that the
current density near the cathode surface is small along the electrode
centre-line, and the y-component of electric field depends mainly on the
y-component of electron pressure gradient. The latter is large and the
voltage gradient therefore positive, near the cathode surface where the
electron density increases rapidly from small values at the wall. With
increasing distance from the wall,the y-component of electron pressure
gradient and, therefore, the voltage gradient decrease to negative values
beyond the peak in electron density. As a result, the voltage rises to
a maximum value and then decreases to negative values. The voltage
reaches a negative minimum and begins to rise again where the y-component
of e]ectron pressure gradient is small and the x-component of current
density is large, resulting in a positive voltage gradient. The latter
becomes increasingly larger as the high electron density region near the
anode is approached and the y-component ofA electron pressure gradient
increases. Near the anode surface the current density along the electrode
centre-line again decreases because of the concentration of current near
the upstream edge of the anode. This, coupled with the negative

y-component of electron pressure gradient in the region near the anode
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surface beyond the peak in electron density, results in a reduction of
the voltage gradient, the voltage profile becoming almost flat near
the anode surface.

As can be seen in figure 5.11, the voltage gradient over much
of the region near the centre of the electrode centre-line is pos1t1ve
and larger than t = 0 (see figure 5.7). This is due to the 1ncreased
concentration of current near the downstream edge of the cathode, and to the .

downstream displacement of current lines near to the anode This 1eads to

an 1ncreasedrcurrent dens1ty in a region near the centre of the e]ectrode
centre-line, and the increased x-component of current density results
in an increased voltage gradient in the same region.

As at t = 0, the voltage gradient is positive at most points
on the electrode centre-line due to the x-component of the current
density, and the Faraday voltage across the channel is positive. Again,
the system acts as a resistive load rather than as a generator of

electrical power.

(ii) Overall generator parameters .

Figure 5.12 shows the variation with time of the overall generator
parameters 0esy /{06 5 Pept-/(Bey, Beit- and [0’0 s and figure 5.13
shows the varijation in time of the Faraday voltage V&, and the cathode
and anode voltage drops &'V, and &'V, , which are defined by Tinearly

extrapolating the Faraday voltages at the boundary layer edges. Thus,
v@‘ v@) )
and ¢ are the voltages with respect to the cathode at

points on the electrode centre-line at the edges of the boundary layers

on the cathode and anode walls, respectively, &'V, and &V,  can be

written as follows:
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SV, = \/f) ’@":‘23)— + AV,
and
@ ©
5 (Vs -Vs)
2V =V -V,
Va= Yy = Vs (H-26) )

The anode and cathode sheath voltage drops, AVa andz&\é , make
only small contributions to é\Q_and QPV;,at all times, except the
instant at which <9V2 changes sign (see figure 5.13).

The averaqge Hall parameter <YS£> is approximately constant in time
decreasing continuously from 1.39 at t =0 to 1.37 at t = 8 x 10_6 sec.

It is clear from these plots that the time interval of the
numerical integration is not of sufficient length for the plasma to be
in at least a quasi-steady state by the end of the computation. For
example, the cathode voltage drop is increasing towards positive values
at the final time of the computation. |

Figure 5.12 shows a continuous increase of (0§> with time.
This is due to the continuous increase in time of the average electron
density resulting from the spreading of the high electron density
regions near the insulator segment upstream of the anode and near the
downstream edge of the cathode. Due to convective displacement of
the high electron density regions, the slope of the<QQ;>(1nwe increases
suddenly at a time of about 4.5 x 10_6 sec, which is the time taken for
the gas to travel a distance equal to half the electrode length when
the gas velocity is equal to the average gas velocity.

However, it can be seen in figure 5.12 that the effective
conductivity Gb%F. decreases at a rate greater than that at which

{Og> increases, resulting in a continuous decrease of the ratio

m%ﬁ/<0é> with time. This rapid decrease of Jgf(- results from
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the increase of the Faraday voltage V} with time, which can be seen
in figure 5.13. The positive value of \Gy implies that the system
behaves as a resistive load rather than as a generator; this has
already been mentioned in discussions of the initial and final voltage
distributions.

The increase of Y& with time is due to the simultaneous
increase in current concentration near the downstream edge of the cathode
and (to a lesser extent) near the upstream edge of the anode with
time, together with downstream displacement of the current stream lines
by the gas flow. These processes result in a decrease of effective
area and an increase of effective path length of the current flow,
and therefore an increase in internal impedance with time. The
increase of effective path length by convection is the slower process
and begins to have a large effect only after a time of about 4.5 x 10-6
sec has ellapsed; the significance of this time has already been
indicated above.

These two processes also result in a decrease in time of the
effective Hall parameter F3&f, (see figure 5.12), because of the
increase with time of the length of the region of the channel centre-line
in which the x-component of the current density is significant, together
with the increase with time of the magnitude of the x-component of
the current density in that region.

The variation with time of the anode and cathode voltage
drops is shown in figure 5.13. The continuous increase of the anode
voltage drop with time is due to the continuous decrease with time of

the conductivity in the low conductivity region near the anode
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The initial.decrease with time of the cathode voltage drop
is due to the decrease with time of the electron pressure gradient
in the region of the plasma opposite the cathode in which the magnitude
of the current density decreases as the current becomes increasingly
concentrated near the downstream end of the cathode. Eventually, the
voltage drop becomes negative and then increases with time. The time
at which the voltage gradient becomes positive is about 4.5 X 10—6 sec;
the significance of this time has been mentioned above. The increase

of the voltage drop with time is due to convection, which displaces

the electron density peak downstream.

5.3 Comparison with Numerical Results of Unc]es(8)

As stated in chapter 1, the present work may be regarded as an
extension of the work of Unc]es(g) to include the effects of turbulent
boundary layers, turbulent transport processes, finite seed ion and
seed atom diffusion and plasma-wall interactions, including seed-
electrode interactions. In addition, by making the assumption of
instantaneous electron temperature relaxation (see section 2.5), instead
of Saha equilibrium as in reference (8), the numerically inconvenient
fast thermal mode is eliminated without having to neglect the effects
of finite ionization and recombination rates. However, the effects
of Coulomb collisions, and finite interactions between external load
circuitry and the plasma, considered in reference (8), have been
neglected in the present work. These essential differences between the
present theoretical model and that of Uncles must be considered in
any detailed attempt to compare the numerical results presented in

this chapter with those obtained by Uncles.
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Comparison with results obtained by Uncles is made difficult
by the different method used here to initiate the computations. In
the present method thé distributions of plasma parameters are first
obtained by assuming a local balance between Joule heating and energy
loss by electrons in elastic collisions with heavy particles (see
equation (1.9)), together with local Saha equilibrium with a constant
seeding fraction; the current field is first taken to be governed by
Laplace's equation Vf%?czo. Having obtained the initial electron
density‘and seed atom density distributions the coupled current stream
function and electron energy equations are solved consistent with the
boundary conditions to obtain the initial electron temperature and
current stream function distributions, together with the wall boundary
values of electron density and seed atom density.

In the work of Uncles, the generator fluid is assumed to
consist of argon slightly seeded with caesium; the seeding fraction
is 0.001. The gas temperature and initial electron temperature are |
assumed to be uniform with T = 1500°K and T, = 3000°K, and the initial
electron density is obtained from the Saha equation. The plasma state
is assumed to be maintained by a uniform discharge along the channel.
At t = 0 this discharge is removed, and external voltage sources
applied to each electrode pair. The voltage sources are chosen to
provide an average current density approximately equal to that
sustaining the original non-equilibrium state.

Comparison shows there to be some similarities between the
results obtained by Uncles for initial Hall parameters 0.3 (ﬂeo’é 1.6
and the results obtained here for which the initial average Hall
parameter 4(3e> = 1.39. The average gas temperature is ]519°K, and

the average and maximum values of the electron temperature are 17159
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and 3192°K, respectively.

Both the present theory and that of Uncles predicts a
continuous decrease with time of the generator parameters déﬁf/20§>
@q££/46e> and Besg . Uncles finds that the solutions saturate and
steady-state conditions are reached after a time of about 10'4 sec.
The computation in the present work is not continued for a sufficient
length of time for the solutions to saturate.

Frobably duc to the absence of plasma non-uniformities in the initial
state, the initial values of fOegf /K0 and(quf/Q%e> predicted by
Uncles' theory are larger than those predicted by the present theory,
though thisw@yto some extentigue to conditions being such that the
initial average electron temperature is lower in the present case.

The main features of the current and electron density

distributions in the final steady-state obtained by Uncles that can

be compared with the numerical results presented here are found to be

(1) The existence of an asymmetry of the current distribution
between the anode and cathode.

(i1) A rather more uniform é]ectron density near the anode than that
near the cathode. ‘

(ii1) A higher electron temperature at the current concentration
point on the cathode than at the current concentration

point on the anode.

The features (i)-(iii) owe their existence to the asymmetrical
effect of the electron pressure gradient on the Ohmic heating. Similar
features, though greatly complicated by the additional physical processes

involved, have been discussed in this chapter.
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In reference (8), it is demonstrated that there are two regimes of
operation of the non-equilibrium segmented electrode generatory <Bg> > Bcpit

and <Be> < B where Bcpit v 2 is the critical Hall paramater of the

crite
electrothermal instability. In the work of Uncles it is found that, when
L/H ~ 1, nonuniformities introduced by finite segmentation can grow into
streamers or high conductivity paths, transverse to the gas flow, along which
the bulk of the current can flow. As a result, the ratio oeff/; o> increases
to a value of about two.

In the present work conditions have been taken to be such that generator
operation is initially stable as a whole the growth time of the electrothermal
instability having a maximum negative value of -1.3 x 1076 sec and a minimum
positive value of 2.15 x 1076 sec. Whilst the growth time for the final
state has a maximum negative value of -9.8 x 10-7 and a minimum positive value
of 3.22 x 1078 sec, the overall behaviour can be compared to that found py
Uncles in the stable regime. - As can be seen in figure 5.9, the discharge~.
near fhe midpoint of the line joining the downstream edges of the electrodes
is somewhat like a streamer. However, the growth time of the electrothermal

instability at this point is -1.875 x 1073 sec, so that this structure is not

due to the instability.

5.4 Problems remaining to be solved

The following problems remain to be solved:

(1) As mentioned on page 178, convergence prbb]ems are encountered in the
numerical solution of the coupled current stream function and electron energy
equation at high magnetic fields due to concentrations of current at the
downstream edge of the cathode and upstream edgé of the anode. A possible
approach to overcoming these problems is to allow for Coulomb collisions;
these should result in reduction of conductivity in'regions of high electron

temperature, thereby reducing the above-mentioned current concentrations.
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(ii) Also mentioned on page 178 was the problem of saturation occurring
in the region of current concentration near to the downstream edge of the
cathode. The initial value of Jy at the downstream edge of the cathode
is estimated to be-f3468A/m2; this is close to the saturation current
-e(ve *+ 3 ngy Cjy) at the same point', which has a value of -4083 A/m2.
However, for an applied current of 0.1 A, the average current density
<Jy> is about -365 A/m2, which is much less in magnitude that thé saturation
current.  Therefore, current concentration at the downstream edge of the
cathode severely limits the maximum current which can be passed, at least
for the initial state. As there is an gnhancement of the surface coverage
and, therefore, electron emission at later times,a possible approach to
solving this problem might be to start the computation with an initiaf
state calculated using a different method. Allowance for Coulomb
collisions should also help to solve the problem by reducing current
concentration. L .
(ii1) As shown on page 96, the condition for electron and ion collision
effects to be negligib]e in the sheath requires that the sheath voltage
drop be restricted to values less than about 0.1 mV. The condition is

less restrictive if the sheath is assumed collisional for the ions
alone: (|ap] < 0.9 V) or completely collision dominated (|ad|>>0.9 V).

This demands a reformulation of the electrode wall boundary conditions.
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APPENDIX A

DEFINITION OF FINITE DIFFERENCE MESH

The boundary layer equations are approximated by finite
difference representations which are solved over a mesh in the x-y

plane, the points of which are defined by the equations

XM:X“"+AX””, w=23%,..., N (A.1a)

y/'=0; (A.1b)
n_n noo. |

UJ' ‘\ﬂj-) "+ Am-, J=2,3,- "/ J_.. (A.]C)

The mesh spacings Dx" and Agd' in equations (A.1) are
completely arbitrary and may have Targe variations. This is important
for turbulent boundary layer calculations where steep gradients near
a wall necessitate the use of small mesh spacing, whilst relatively
large spacing can be used away from the wall. Moreover, variations
in the streamwise x-direction are usually rapid for small boundary
layer thicknesses and relatively slow for larger boundary layer
thicknesses, where the boundary layer thickness is defined as the
distance from the wall of the point where the velocity is 0.99 of
the centre-line value. Solutions show that boundary layers tend to
grow as one advances along the channel from the initial position. Thus,
it is desirable to employ a variable x-step which increases as the
boundary layer thickens.. The x-step is here chosen to be a certain

fraction ‘f, of the local boundary layer thickness; that is

n-({ n-/
d)( ;dLl o) , M }Z. (A.2)
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|
js the boundary layer thickness at x::a("’(

where 83
The step size in the y-direction is so defined that it is

very small close to the wall and increases gradually towards the

centre-line. The distributijon of mesh rows for a given mesh column

is defined by the formula

” n —Lmkp(“(jo"’ ;n)
3 = e [' - bamb () 17 (A.3)

where, with a mesh of J-1 steps in the y-direction,

d—]
e Yo (J{T); RS INGUN (A.4)

The quantity & appearing in equation (A.3) is chosen so that

LY = contuut, | (A.5)

where the constant in (A.5) is determined from the assumed velocity
profiles at the initial station,K::X" (see section 3.3) as follows.

From equations (A.3) and (A.4), we have

ﬂﬂ['s .72., "jl' / J—
o [-l B 1&x4xA,ﬂ(éjc (/if:jT,%)]
T bonbol'y! ]

The value of the quantity "(‘jc' is so chosen that .dj I is less

than a fraction JﬁL of the initial boundary layer thickness; that ig)

Ayl,(fboh. (A.6)

The mesh used in reference (32) is so constructed that step
sizes in the y-direction are in a geometric progression; that is,
Aji = kAjd'_”where o¢k <1, This gives

S ()
Js I (k-1

>d= 6%, I3

(A.7a)

0
or, using the definition (A.4) of the distance KJ R
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CNL(F
) A W(kd /y "l)
=D (k-1 - (A.7b)

Y
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This method of mesh construction cannot be used here because the plasma
and electrical equations must be solved on a mesh extending from the
electrode at y = 0 to the opposite electrode at y = H. By symmetry,
the gas-dynamic variables in the region UOS 3\( H are known from
the solutions of the gas-dynamic equations for the region 0\(‘5\(510 .
If the mesh in the region 0\(3\( j(, is defined by equations (A.7a),
the mesh in the region (jb!ﬂ\( H, on which the gas-dynamic variables

are known,is defined by the equations

(K*7)

113"’ h- Byl 7;'_'—)—— ) :r{d“\( MI;(A.Ba)
and
n ()H
& = ZF;_I) ’ (A.8b)

where NJ— =23 -1 is the total number of mesh point. Eliminating j

from equation (A.8a) using (A.8b), we obtain

[k(wo@-éiJ

y's H- by =) (A.9)

Considering y as a function ofg it is clear from equations (A.7b)

and (A.9) that this function is singular at ¥=y,. . It is necessary,
however, that the function defining v, be a continuous differentiable
function of ;3 because, due to their mixed elliptic-parabolic nature,

the plasma and electrical equations can only be represented to second
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order accuracy by finite difference forms on a mesh with constant
step sizes. The y-variable in the plasma and electrical equations
is therefore transformed to the g -variable defined above, derivatives
being transformed as follows:
> d5 o
9 95 ZI =
2y dj 2%
The function used to define the mesh here (see equation (A.3))

automatically defines the mesh in the regionjp <j {H and is continuous

and differentiable at J=j° .
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APPENDIX B

COEFFICIENTS IN LINEARIZED BOUNDARY LAYER EQUATIONS

The coefficients in the linearized boundary layer equations (3.i0)

can be written as:

n- 24 §
T ) hdxm M Jh X" e'-’(} MJ+T’U') 2—)_( € 51 (i)"'MJ"""T |(fd--)

Ay,
4y h-t ,"ZAx“ !
z 4LAxn ! H - X‘E]"“,, ('eljJLJ' - eij-lj:i )TZT Y, _l&’lf)-lé_%-//z
2?5 (P F ) n- !
CP ——-,7—,,—77;_7;,/ " ABx ' (o"‘//’— ¢ j’""' 1V$]J_//L

-1
12 (T’/L J // T//z_ u’d‘//z) ( zj:l iy ll: iy J(:,—l/)_)
TJBI:’: Aﬂ?\-( ML]"//;_ T ’L/j" i ]ZPJ
g = Al’]?vl V-l + Wi-y = Wy

07 Mty + T T

"l =3
'

Guy 7 (JL“*T");)-)/Q. + (fu +TV)3:I,,L

935 < At ‘eljj)t_, ‘( J’:/‘LT 1 ( w) .,,) +}J1h T
) "N, P n( :
()T () (T W
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- (%)%’}J}ﬁ (FP;.) (Tw) '/1 JLJ 1

%

LW ’.-
Jsy ¢ AE}JUE + 1 (U4 Z)"_,/L)
Lo A
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APPENDIX C

ELECTROTHERMAL WAVES AND THE TEMPERATURE RELAXATION APPROXIMATION

Simplified expressions for the growth and decay rates of
electrothermal waves are presented here,and the validity of the
assumption of instantaneous electron temperature relaxation for the
range of conditions of interest in this work is considered. A
simple expression for the growth rate of the electrothermal instability,
useful for the stability theory of section 4.5 ,is derived. The
analysis presented in this appendix is essentially that of Unc1es(27)
with simplifications made, consistent with the assumptions of slight
seeding and negligible Coulomb collisions.

The electron energy equation is considered in the simplified

form

D (WIT) T 4o 2l (T-T) s e, (CD
which is obtained from equation (2.214) by neglecting compressional
heating, thermal conduction, radiative energy loss, and the pressure
gradient term in equation (2.132); turbulent fluctuations are
neglected in the present analysis.

Neglecting the diffusion terms in equations (2.207) and (2.208),
one obtains the electron and seed atom continuity equations in the

simplified forms

(C.2a)

and

Dn
b’f“"'e . (C.2b)
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Equations(C.2) imply that the density of seed particles N, (ions

and neutrals) is constant in the rest frame of the plasma; that is,

Npy= 4N X e + M = conotant. (C.3)

Neglecting the term dependent on the electron pressure
gradient in equations (2.132) an approximate form of generalized Ohm's

law is obtained:
GE =T+ fl(Tak), (C.4)

which was used to obtain the ohmic heating term :Tf/oz in equation
(C.1).

Taken together with the change conservation equation

V.J=0, (C.5)

and Faraday's Law

VAE=0, (C.6)

equations (C.1), (C.2a), (C.3) and (C.4) form the basis of an
approximate description of a flowing plasma in an electromagnetic
field.

It is well known that equations (C.1)-(C.6),when linearized,
predict the growth and decay rates of electrothermal Waves(7)’(8)—
These waves consist of two modes: the fast thermal mode, which is always
severely damped and is of little physical interest, and the ionization
mode which is unstable under certain conditions. The properties of
these waves have been analyzed in detail by Nelson and Haines(z) who linearized
and solved numerically the complete system of equations (2.132), (2.190),

(2.194), (2.197), and (2.214), neglecting the ion current and turbulent

fluctuations. It is sufficient for the present purposes to consider
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a simple linear theory of these waves using equations (C.1)-(C.6),
in which the effects of wave motion are neglected; this is justified
in reference (8).

One-dimensional, small amplitude perturbations in e , 7e , J
and £ about a uniform state are considered, and equations (C.T)—(C.B),

which are transformed to the rest frame of the plasma, are linearized
with respect to the perturbations. The uniform state is assumed to be
iﬁ Saha equilibrium at the electron temperature, the Ohmic heating
everywhere balancing the elastic collision losses.

As shown in figure (C.1), the direction of propagation of the
small amplitude waves is assumed to be along the x-axis at an angle 8

to the unperturbed current. Writing all perturbed quantities in the

form

where X, denotes the unperturbed value of the quantity X , equations

(C.1)-(C.6) can be linearized to give

/

Dre /
PE = toe + ;e (C.7)
Dnd %’ y / (C.8)
2 2¢ TN D¢ =M Te + asTe

where the perturbed Ohmic heating has been evaluated from equations
(C.4) (C.5) and (C.6), which are then eliminated from the system. The

coefficients a,-ag are given by

ft

Dhe
U (;m), = ’~05X'0’w750— %mf (Wea‘an ) /[Nn‘neo) (C.9a)

?}"Ie £ 3\ I
— 20 =Y 3 =t 2=
a = (an)ﬁl-owv T e, (kﬁ,,,*a) Jeo  (C-99)
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Aq= '2 ‘(gT;o + £t. (C.QC)

a, = 2—@ Veg (C.9d)

h

xS

JL ;e Z- ( eo Sin2d +60s29) 3 ne {3}1‘/( (E—l}””l V.,/.;(C %e)
21
hep

;;'I-%) e,,SinQ?—f-stO-#I)
b T2 o Mg
= R'io;; Cos20 — afrg{gﬂel‘a (TE‘T) 'm;\,V""

A (3Te-T

Setting %e/ and 72/ equal to ’hel(d) &Xlo({wk) and E/M a\p/u'wtj

D
n
1

respectively, equations (C.7) and (C.8) yield a dispersion relation
for small amplitude electrothermal waves in the form of a quadratic

for (w . This has two real roots, denoted by 94 » where

+46ig (‘*l“;f-- 5‘0“5’)} J

Equations (C.10) give the growth/decay rates for the ionization mode
and the fast thermal mode, 31* and ﬂ—- » respectively. The fast
thermal mode is always severely damped, whilst the ionization mode can
become unstable under certain conditions.

The decay time for the fast thermal mode Tgy = Ig "[ is
plotted as a function of Te in figure (C.2); and the growth/decay time
for the ionization mede Tp = /3;'! is plotted in figure (C.3a)

as a function of T , and for magnetic field strengths of 0.7T and
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1.4T. The gas temperature has been taken to be equal to 15199,
which is the average value calculated from the computed gas temperature
profile presented in section 3.5, and the seeding fraction has been
taken to be 0.002. The angle © between the zero order current flow
and the direction of non-uniformity is taken to be 'TL’/?-, which is
approximately the angle for maximum growth of an unstable wave(8).

The ionization mode is stable for a magnetic field strength of 0.7T, and
unstable for a magnetic field strength of 1.4T.

It can be seen from figures (C.2) and (C.3a) that, for the
range of electron temperatures considered, Ter < Tx ; for example,
for T ~2000% , '{:F,wo'%zc and T ~ 107%sec . These values of
the electrothermal time scales are compared with typical values of the
covection time scale Ty and the x-diffusion time scale Tygx > which
appear in the conditions (4.41) and (4.45) for numerical stability and
accuracy of the explicit time integration scheme (see section 4.6).

From conditions (4.41) and (4.45), Ty, and T,  are defined as

follows:
Ax
W U
and
. mil vk Ax %
bk T

where Ax is the mesh step size in the x-direction. For a mesh of
49 columns, '[“fv/o'f”/cc and E{va:o'f'rec , again for the gas-dynamic
parameters obtained from the solution of the boundary layer equations

presented in section 3.5.



It is clear that the shortest time scale is that of the fast
thermal mode. However, the fast thermal mode, being strongly damped,
has Tittle lTong term effect on the solutions of the equations, and
therefore is of little practical importance. The short time scale of
the fast thermal mode necessitates the use of an extremely small time step
in the explicit numerical time integration of the equations if numerically
stable and accurate solutions are to be obtained (see section 4.6). It
is desirable, therefore, that removal of the fast thermal mode from the
differential system be considered. Unc]es(27) has shown that this can
be done by assuming either Saha equilibrium (ﬁe = o> or instantaneous
electron temperature relaxation; that is, D} Te/pt=0 1in the electron
energy equation (see section 2.5). The former assumption, which has been
used before(s), is valid only at high electron temperatures and if the
cross-stream diffusion terms in the continuity equations can be neglected.
The assumption of instantaneous electron temperature relaxation, or
the "temperature relaxation approximation", appears to have been used

]8). in a greatly simplified physical and numerical

(27)

previously by Ko]b(
model. In addition to having a wider range of validity , this
assumption does not require that the cross-stream diffusion terms in
the continuity equations be neglected, thus allowing the coupling between
plasma-surface interaction phenomena and plasma bulk phenomena, such as
the electrothermal instability, to be studied; this possibility has
so far not been considered.

The validity of the temperature ré1axation approximation for
the range of conditions of interest in the present work can be examined

using the analysis of reference (27). Setting PTe/2é =0 in

equation (C.8), expressions can be derived for the ratio 'ﬂcc/72/ and
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the growth rate 9+ for the ionization mode in the temperature

relaxation ‘approximation; these quantities are denoted by & ! and
kﬂf” respectively. Denoting the ratio 749//'72/ for the ionization

mode in the more general case of equations (C.1) and (C.2) by « ,

the conditions of validity of the temperature relaxation approximation

can be written as

/ " '
‘Q"l'":f{«’ (C.10a)
and y
; +
63/ = I |- g";(«’ (C.10b)

1 l/ -
The functions ﬁ*/ and qj are plotted against le for magnetic
field strengths of 0.7 Telsa and 1.4 Telsa in figure (C.3b). It can
be seen from figure (C.3b) that,for the range of conditions of interest

here,the conditions (C.10) are well satisfied, especially for 7;.{200017.
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(1) Fig. C.1: Coordinate system for one-dimensional
electrothermal wave theory.

(2) Fig. C.2: Decay time for the fast thermal mode¥ ., against T,.
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APPENDIX D

RADIATIVE ENERGY LOSS

The main contribution to the radiation Toss term R of the

electron energy equation (2.227) comes from the lowest order caesium

doublet ( 65, - GP/Z_ ; GS‘,/Z Q,P,/z ), which comprises lines of

wavelengths 89708 and 8550A A general expression for R in terms of

local values of plasma parameters and their derivatives can be derived,
which is valid only if the plasma is optically thick to the radiation
involved; that is, if L¢ > Lay , where L. is the characteristic
length scale of variation of plasma parameters, and L,y is a
characteristic Tength scale for absorption of a photon. An expression

for Lay is derived below in terms of the mean free path L, for absorption
of a photon, which, for the ith line (i = 1,2), is shown in reference (1)

to be given by

- {5 V)” B

where a = ez/(zra,mec), f" is the oscillator strength for the
transition corresponding to the ith line, and 4V, is the full width
of the 1ine at half maximum. The dominant line broadening mechanism
is shown in reference (37) to be van der Waal's broadening by neutral
atoms. Both the formula for ‘Avi and values for ‘f} “in this case
can be found in reference (38).

When the plasma is optically thick to radiation of frequency v,
photons tend to be trapped, having a small probability of escaping,
and the specific intensity IV is close to the equilibrium value given

by the Planck function
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2hv¥c? (D.2)
(eho/kn' )

It is shown in reference (19) that an approximate solution
of the equation of radiation transfer then yields the following

expression for the radiation loss term R:

; R
£=V.q", (D.3)
where q_K is given by
() _—s
gR- - (/ ' ar d" Vie | (D.4)
which can be written in the = form
fLR'_—-. - 2Ryr

where

3 Zlﬁ—( Lm Adv) (D.5)

The sums in equations (D.4) and (D.5) are taken over the two lines.
The quantity i’ﬂ may be interpreted as a radiative heat flux,

and QK as the corresponding radiation thermal conductivity. Using
equations (D.1) and (D.2) to express the integrands of the integrals
in equations (D.4) and (D.5) in terms of v and 7; » the following

expression is obtained for AR:

Av; he (V’V' &_{,ﬂv
At sz}nn[{ 7}_%7;‘“ (0.6)

The condition for validity of equations (D.3)-(D.6) is given in

reference (19). For the present case this condition can be expressed as
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T Te dB
d Bi ﬂa‘ [ OhTe] <1 .

The lengths (]V{v\T'e l) and 13'(12/&;) dfy/ATe are the characteristic
w)

length scales L(_ and av  introduced above, and the condition (D.7)

is a quantitative expression of the conditions that the plasma be

optically thick to the variation involved. For v~ v,/ s Au/k&‘l? > l,

for typical values of: TZ, and, from equation (D.2),

Te 48 , hv Ny
% a4 kn (), (0.8)

o e (M _ Q) I‘_ U(_E‘f 1 ﬁii_) [f,'i) » L(\:) .
Ley = Ly B, ATe - Ukgle
Taking N, ~ ’09‘7’%,-3 dv;~ )0"’56,;" J(u""l y‘;fv;o'{eo','equation (D.1)
/ )
yields for the mean free path of photons of frequency V=V, ,
LS ~ 10 % m
and,since for Te=2000% - “"i/kon"’fo ,» the condition (D.7)
requires that
L= (lonml) % 107 %,
Since L,_ is of the order of the boundary layer thickness, which for
the gas-dynamic data used in chapter 4 is of the order of 10_3m, the
condition (D.7) is satisfied for V-~¥," . However, it can be seen
from equation (D.1) that, since V,; )Y 4v,", the condition (D.7)
rapidly becomes invalid for vV YW +48v;/2 or V{Vi-A)y /2
This means that the plasma is not optically thick to radiation outside
the frequency ranges of the lines and the total radiative energy loss
cannot be represented by equations (D.3)-(D.6). Only the contribution
to the radiative energy loss from frequencies in the line ranges can

be represented by these equations, the integrations in equation (D.4)-
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D.6) being taken over the frequency ranges of the lines. However,

it is possible for this contribution to dominate the contribution from
radiation to which the plasma is optically thin, since, for the latter
radiation, I, <<By (see réference (19)). If this is assumed to be
the case, the radiation loss can be approximately represented by
equations (D.3)~(D.6) in which the integrations are taken over the

frequency ranges of the lines. Thus, equation (D.5) is replaced with

- d
w7 f;cf { [e]] S o
o fi M Sy

where the frequencies V, ) and Vz“ are taken to be the extremities
of the lines. Taking w! =\?‘~—a<lfv"/2 and Vf' [ Vo't oLAvi/2 , and
using the relation Wy :4,tgv /[chv) where B\/ is given by equation

(D.2), the integral I in equation (D.9) can be expressed in the form

N 2(\/ ) kJ/kz,T'
2 -V
— le\ ol If ] Y ,
.‘." A’ 3 I(ﬂ
dTC V’
Y {
31h ~hv ik 2“"‘"
: -@—'07,—'263 ; Vite 4 H_[ "0.10)
e v')

since Lv//q,Té 5> | fFor vay, (see equation (D.8)). Neglecting
the variation of the factor V'fe ~h /kﬁr in equation (D.10) we have

lz:rh 5 hV,/IqT[U){I+ [z(v ) }dv

ZTZ’\ f\; . +31 °<3) v‘H—e/"\V;‘ /kd I&
kyTe'c (D.11)




Inserting the integral I given by equation (D.11) into equation (D.9)

we obtain
gTUL\ZAV;'Z ) 3 4 .
’—_:_ D( . * —l‘v e
QR-' Z(za.fcmkue‘cz‘)( t34 )V‘ e hTe (D.12)

4
To fully define fﬁﬂs a value of £ must be specified. If we
return to the above order of magnitude analysis, we see that, for
d=3 R L\)o\'v Le at V=V; £448%W/2 . Using this value of &

equation (D.12) can be written as

(D.13)

The electron thermal conductivity is given by (see equation (2.114))

Sne ’(52];,
J€=2Me\’eh ;, N

A
bhs OcTe

Qe

(D.14)

22
1 15
Taking M,~ 10 7"-,3 AV,"\JOJ«,—',J[{NI s V"‘VIOJ-&“,’ Te = 2000°k >
(;;:Lmko/m and (!u'l , we find that
1R e

~ ~NViO

A

This result shows that, if equations (D.3)-(D.5) and equation (D.13)
accurately describe the radiative energy loss from the plasma, the

radiative lToss term in the electron energy equation can be neglected.
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It is interesting to note that the representation of radiative
energy loss by equations (D.3)-(D.5)’with /']K given by equation (D.13),
is consistent with that used by Unc]es(8) who formulated the Toss
terms by regarding each rectangular cell of a two-dimensional finite
difference mesh as a black body radiator, radiating to)and receiving
energy from,the four neighbouring cells. Taking equal steps A  1in the
x and y directions, Uncles derived an expression for :XR of the form
k. Z ?rrL:v.""A\z/:'A . hvi/ke Te
= ke
which is identical to equation (D.13) if the step size A is taken
to be given by
|6 B
A= o (D.15)

so that exact equivalence of the two formulations of the radiative
energy loss exists only for one particular line, and if the step size

is taken to have the value given by equatidn (D.15). Taking Mh~lvzfiﬁ§
Au;~;o%¢[j f;~[, equation (D.15) yie]ds.A‘VJo-%‘ . The length. scale
defined by equation (D.15) is of the order of the absorption length Lég

defined earlier.
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