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ABSTRACT 

In this thesis a two-dimensional, time-dependent, two-

temperature fluid model of a partially ionized plasma in an electro-

magnetic field is developed and used to study the physical phenomena in 

a closed cycle MHD generator, which utilizes as a working gas an inert 

(buffer) gas slightly seeded with an alkali metal. A number of 

assumptions, the most important being a small seeding fraction and 

negligibly small indirect interaction between the buffer gas and the 

electromagnetic field, allow the governing equations to be decoupled 

and two independent systems of equations obtained: the gas-dynamic 

equations, which govern the gas density, heavy particle temperature and 

plasma flow velocity; and the plasma-current equations, which govern 

the electron and neutral seed atom densities, the electron temperature and 

the current stream function. The latter equations contain terms 

relating to finite ion and neutral diffusion, arising from both particle 

transport and turbulent fluctuations, and a term describing turbulent 

transport of electron energy. 

The gas-dynamic equations are solved numerically to describe 

the steady-state two-dimensional compressible turbulent boundary layer flow 

on each side wall of a generator channel, assuming quasi three-dimensional 

flow in the channel. Computed pressure distributions are in close 

agreement with experiment when finite leakage of gas through the 

electrode walls is allowed. 

Neglecting inlet relaxation effects and assuming quasi-periodic 

boundary conditions in the flow direction,the plasma-current equations 

are solved numerically in a single segment of the generator for fixed 

gas dynamic profiles. The electrode wall boundary conditions are derived 
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from a collisionless sheath model of the plasma-wall interaction, 

including the effects of seed particle adsorption and desorption as well 

as electron emission by the electrodes. Whilst the continuity equations 

are time dependent, the electron energy equation, like the current stream-

function equation, has a steady-state form in accordance with the 

assumption of instantaneous electron-temperature relaxation. Numerical 

results showing the temporal development of local plasma and current 

properties and global generator parameters are presented, thus allowing 

the effects of the electrothermal instability, plasma-electrode wall 

interactions and gas-dynamic boundary layers to be studied. 
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CHAPTER 1 

INTRODUCTION 

1.1 MHD ELECTRICAL POWER GENERATION 

In magneto hydrodynamic (MHD) power generation a heated electric-

ally conducting fluid is accelerated to a high velocity £ in a nozzle 

and passed through a channel located in a magnetic field £ (see fig. 1.1). 

Forces acting on the charged particles in the fluid cause charge 

separation, and an induced electric field £ a £ is produced which can 

drive a current through an external load connected across the channel. 

Denoting the current density in the fluid by £ , the resultant magnetomotive 

force £ A £ retards the motion of the fluid. Electrical energy is 

therefore produced at the expense of directed energy of motion of the 

fluid. 

These are, of course, the working principles of conventional 

generators,nearly all of which utilize a solid conductor which is 

caused to rotate between the poles of a magnet. However, the use of 

fluid, rather than solid conductors, allows the elimination of large 

rotating components thereby reducing mechanical strength requirements. 

This, together with the necessity to employ high temperatures to achieve 

acceptable levels of ionization in the fluid, means that the optimum 

operating temperatures for MHD generators are appreciably higher than 

for conventional power generator systems. As a consequence, MHD 

generator systems may be capable of operating at higher thermal 

efficiencies, leading to improved conservation of natural resources, 

reduced thermal pollution and lower fuel costs. 
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MHD generators can be divided into three main types, 

classification being according to the working fluid and anticipated 

heat source. Open cycle MHD generators utilize fossil or synthetic 

liquid or gaseous fuels, burned with oxygen or preheated air to provide 

combustion products at a high temperature (-2500 to 3000°K). The 

combustion products are seeded with a small amount (about one atomic 

percent) of an alkali metal, or a compound of an alkali metal, to give 

a high electrical conductivity. After passage through the generator 

channel the gas is either exhausted to the atmosphere or passed through 

a conventional steam raising plant. 

Closed cycle inert gas MHD generators utilize an inert gas 

coolant of an envisaged high temperature (1500 to 2000 °K) nuclear 

reactor as the working fluid. The inert gas is seeded with an alkali 

metal to give a high plasma conductivity and after passing through the 

generator, and possibly also a steam raising or gas turbine plant, is 

recycled to the reactor. The equilibrium conductivity of the plasma 

at a temperature of 1500°K is not sufficiently high, but by the use of 

pure monatomic gases the electrical conductivity may be significantly 

enhanced as a result of non-equilibrium ionization. This effect will 

be considered later in this chapter. 

The third type of MHD generator, the closed cycle liquid metal 

MHD generator, lies outside the scope of this thesis. 

Of the two types of MHD generator described above, open 

cycle MHD generators are closest to practical realization. As long ago 

as 1965, operation of a 32 MW alcohol-fueled generator with run times up 

to three minutes was achieved in the United S t a t e s ^ ' . In the Soviet 

Union tests on a 75 MW (25 MW from MHD and 50 MW from steam) pilot plant 

burning natural gas, the U-25 experiment, began in 1971. 
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There are several advantages to closed cycle MHD power 

generation over open cycle. First, a very pure gas system can be used 

thereby ensuring that the erosion of channel materials by chemical action 

is kept to a minimum. Second, the operating gas temperature can be 

comparatively low (1500 to 2000 °K), an acceptable level of electrical 

conductivity being achieved by non-equilibrium ionization due to elevation 

of the electron temperature above the gas temperature (see section 1.3). 

However, in contrast to open cycle MHD power generation, much 

experimental and theoretical research remains to be done before practical 

realization of closed cycle MHD power generation can be achieved. This 

(2),(3) 

is because of the technological problems involved in the continuous 

operation of a closed cycle MHD power generator, and the difficulties of 

real ization of a high temperature gas cooled reactor with a coolant 

temperature of at least 1500°K. Also, numerical modelling of closed cycle 

MHD generators has yet to reach the degree of sophistication achieved 

in the case of open cycle MHD power g e n e r a t o r s ^ . 

Whilst much progress has been made in solving the aforementioned 

(3) s ( 4 ) 

technological problems 5 relatively little progress have been made 

in the development of numerical models of the degree of sophistication 

required for the unique interpretation and accurate prediction of results 

of experiments performed on closed cycle MHD power generators. The 

main objective of this thesis is to develop a numerical model of closed 

cycle MHD generators that incorporates much of the relevant physics 

previously considered only for open cycle generators, and that can 

be used to interpret and predict results obtained in experiments performed 

under certain conditions. 



where the flow velocity is taken to be uniform and in the x-direction; 

i.e., u - s (tyjfy so that, E x - 3 and 

The electrodes in fig. 1.1 are taken to be parallel and attention is 

restricted to two-dimensional current distributions for which 0 - d ^ 

and _ i 

I j /v e 

T*/ 0. t 

so that the current density is inclined to the total electric field J f ' 

at the Hall angle tan . 

The electrodes shown in fig. 1.1 are segmented, separate 

loads being connected between opposed electrode pairs. If, instead, 

the electrodes are continuous, 0 and eqns. (1.3a) and (1.3b) 

yi el d 

T - - &> i j (1.4a) 
J * - o J 

and 

and the maximum power delivered to the external load per unit volume of 

the generator is given by 

P 
Unix z , / . „ M (1- 5) 

It is clear from eqns. (1.4) and (1.5) that the Hall effect reduces the 

magnitude of J j and fyn^y by a factor of 
( h N ) 

and results in 

the appearance of a Hall current which flows downstream in the gas 

and returns upstream through the electrodes. However, if the electrodes 

are infinitely finely segmented there can be no x-component of current 

either in the electrodes or in the gas so that J y - 0 • Fro™ e q n » (1.3a) 
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1.2 SIMPLE THEORY OF MHD POWER GENERATORS 

The basic theory of operation of a closed cycle MHD generator 

is very simple. We consider an Ohm's law for a uniform plasma in the 

form 

0c E 7 - JA_(3<> J//Jl) (1.1) 

where , the electric field in the rest frame of the flowing gas, is 

given in terms of the electric field_£ in the laboratory frame by the 

equation 

+ & (1-2) 

The quantities crG and g e are the electron conductivity and electron 

Hall parameter, respectively (often referred to here as simply the 

conductivity and Hall parameter). As we shall see in chapter 2, 

eqn. (1.1) assumes a negligible ion Hall parameter and ion current,and 

that thermal diffusion effects can be neglected. The second term on 

the right-hand side of eqn. (1.1) represents the Hall effect, which 

is usually important, since, for typical generator operating conditions, 

fie I • Taking the magnetic field to be uniform and in the z-

direction, the components of eqn. (1.1) are 

(1.3a) 

(1.3b) 

(1.3c) 

Jx = QtffiCt*- 7 

and 

J j ( J f f ) 

ftV, 



it can be seen that this configuration leads to the build up of an 

electric field in the x-direction, the so-called Hall field 

fr-feEy (1.6) 

and eqn. (1.3b) gives 

J ^ i f j 7 d - 7 ) 

which is identical to the y-component of eqn. (1.1) in the absence of 

the Hall effect. Also P*uy has the value assumed in the absence of 

the Hall effect: 

(1.8) J+V1AX " /j-

The generator configuration described above is called a 

segmented Faraday generator. However, the action of the Hall effect i 

building up an axial electric field (see eqn. (1.6)) makes possible 

another generator configuration, called a Hall generator, in which 

the axial field is used to drive a current through a load connected 

between the upstream and downstream electrodes. In this generator 

configuration opposed electrodes are shorted; i.e.j F y =r o , so 

t h a t , as can be seen from eqn. (1.3a), the voltage developed across 

a given load is a maximum. The open circuit electric field for the 

Hall generator is obtained from eqn. (1.3a) as 

and the maximum power density is, in this case, given by 

w - V foal) 

which approaches that of a segmented Faraday generator for large 

Hall parameters. 
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Descriptions of other possible generator configurations can 

be found in reference (1). In this thesis attention will be confined 

to segmented Faraday generators. 

1.3 SIMPLIFIED DESCRIPTION OF THE PLASMA STATE 

In this thesis the working fluid of the MHD generator is assumed 

to consist of helium gas (buffer gas), slightly seeded with caesium. 

For conditions characteristic of MHD generators, the plasma can be 

assumed to consist of four components: electrons, singly charged seed 

ions, seed atoms and buffer gas atoms. A simplified model of the 

plasma is presented in this section; a more complete model will be 

formulated in chapter 2. 

electrons are accelerated by an induced electric field, and the energy so 

gained dissipated in elastic collisions with monatomic heavy particles. 

However, because of the inefficiency of energy exchange in elastic 

collisions between particles of disparate mass, an appreciable elevation 

of the electron temperature If above the heavy particle temperature I 

is possible. This electron temperature elevation is described by 

the electron energy equation (see section 2.5), which, in its simplest 

form,expresses a balance between the volumetric rate of gain of energy 

by the electron gas from the electromagnetic field, the Ohmic 

dissipation y and the volumetric rate of loss of energy of 

electrons in elastic collisions with heavy particles, denoted b y Z e . 

Thus we write 

In the flowing plasma of a closed cycle MHD power generator, 

£'• J , l e 

or, using eqn. (1.1), 

(1.9) 
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As will be shown in chapter 2 (see eqn. (2.31)), l e is given by 

, me 
Ire - h e h ( T e - I J m L

V e l c (1.10) 

where is the electron-buffer gas atom momentum transfer collision 

frequency given by 

I k = Ce Qel, ̂  O - " ) 

where c e is the root mean square speed of electrons ( % ksle/liyvie) y
Z$elv> 

is the electron-buffer gas atom momentum transfer cross-section, and n 

is the buffer gas atom number density. The electron conductivity O e 

and electron Hall parameter ^ are shown in chapter 2 (see eqns. (2.209) 

and (2.111)) to be given by 

C& = v \ e < z
L / W v ^ l v (1.12) 

and 

fe = / W v > a (1.13) 

In general, the electron energy equation in the form of 

eqn. (1.9) is valid only if the plasma is in a uniform and steady state 

As will be seen in chapter 2 ; t h e free electron density is in this case 

given by the Saha equation; that is, 

* ( x -

W / r s T i f 4 elk 

" ^ J ^ r S l d . 1 4 ) 

the validity of which will be discussed further in chapter 2 (see 

section 2.5). In eqn. (1.14) the seed atom density V n is written 

in the form 



where 7>„0 is the seed atom density of the unionized gas, it being 

assumed that the plasma is quasi-neutral. The density is a 

free parameter, the value of which is specified by giving the seeding 

fraction X , where 

'Amo Hv, -f H e 

X - - — — - (1.15) 

The seeding fraction is generally small for closed cycle MHD generators. 

The reason for this is the relatively large electron-seed atom cross-

section for momentum transfer, which results in a decrease of with 

increasing % for quite small values of f X , the electron-seed atom 

momentum transfer collision frequency being added to V ^ l v in eqn. (1.12). 

This decrease of with increasing X is due to the increase of total 

electron collision frequency dominating the increase of electron density 

in eqn. (1.12). For a given heavy particle temperature T and 

pressure p , and a given le , there exists a maximum in OeCx) at 

a small value of p( . Typical seeding fractions used in experiments, 

and therefore used in this thesis, are small enough for the effects of 

electron-seed atom collisions to be completely negligible. However, 

there remains the possibility that electron-electron or electron-ion 

(Coulomb) collisions can be important. This will be considered in 

detail in chapter 2, where it will be shown that the assumption that 

electron-buffer gas atom collisions dominate Coulomb collisions, 

which is made here, is justified only for sufficiently low electron 

temperatures. 

Using eqns. (1.10) - (1.15) one can calculate the parameters 

f e ^ e j ^ y y } (T^ and ^ , so that the plasma state is fully defined for 

a given , p, * T a n d O ( . We consider as an example the current 
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density in a segmented electrode generator flowing under short 

circuit conditions: 

Jj— - Ue U^ji 

which is obtained from eqn. (1.7) by setting S ^ - Q . Eqn. (1.9) 

yields a quadratic for ( l k / T ) whose physically significant root is 

given by 

£ - - 2 1 i + . / ' + : 

T 2- , j 

> 2 

j 
1 + #eX j (i.i6) 

Taking 8-0JT, 14* « nWw&T1 f= VLX)V% ooZ,a*A W 1SQO% 

eqn. (1.16) yields T g = 1783°K and, from eqns. (1.12) and (1.14), we 

19 - 3 f 
find that r\e-3- % X)0 ™ a n c l ^ - Htf y^kovT. The equilibrium values 

of and C^ , obtained by setting in eqns. (1.12) and 

17 -3 _i 

(1.14), are found to be 3.1 x 10 m and 0.1 mho m respectively. 

It is clear that non-equilibrium ionization can result in ionization 

and conductivity levels considerably higher than those achieved if the 

plasma were in equilibrium. 

1.4 EFFECTS IN CLOSED CYCLE MHD GENERATORS 

In general, the ideal behaviour of a non-equilibrium MHD 

generator predicted by the simple theory presented in sections 1.2 and 

1.3 is not in accord with experiment. In particular, the appreciable 

enhancement of conductivity as a result of non-equilibrium ionization 

is difficult to observe experimentally. In reality, the theoretical 

description is greatly complicated by the existence of a large number of 

interacting physical mechanisms, which have important effects on the 

plasma and electrical behaviour, and, consequently, the overall generator 

characteristies. 

The extent of departure from the ideal generator behaviour as a 

result of these effects can be stated quantitatively in terms of the 

effective conductivity o e f f and the effective Hall parameter 3 e f f 

defined as follows: 



_ i _H_ 
a
e f f " (V + H<Uy>B) WL 

and 

V x H 

e
e f f

 =
 X v y + H<Uy>B) V 

,H 
where I = - WL<Jy> is the load current, Vy = - J0Eydy is the Faraday 

I H 
voltage, V x = - jr"Exdy is the Hall voltage, and < u y > = JQ u y d y . The 

lengths W , H and L are the generator width, height and segmentation length 

respectively. 

For a uniform plasma 

carrying a uniform current, it can be shown from eqns. (1.3) that 

and • However, as a result of non-uniformities 

in plasma properties and the current distribution the ratios ^kjj^/Cop 

and fitj-f/^p) a r e n°t equal to unity. 

The physical mechanisms that will be considered in this thesis 

are discussed in the following subsections. Descriptions of other 

effects, not considered here, can be found in reference (24), for 

example. 

(a) Non-uniform Current Distribution 

The simple theory of segmented electrode generators,formulated 

in sections 1.2 and 1.3, in which Cy- constant and assumes 

the ideal case of infinitely segmented electrodes and a uniform plasma. 

In practice, the electrodes have finite dimensions and the Hall effect 

leads to a non-uniform current distribution. 

In an open cycle generator the effect of this non-uniformity 

on the plasma parameters is small and the current distribution can 

often be taken to be governed by the equation for a uniform plasma; that 

is, Laplace's equation. This problem can be solved a n a l y t i c a l l y ^ . 

The main feature of the obtained solutions is the prediction of large 

current concentrations occurring on the downstream edge of the cathode, 

and the upstream edge of the anode of a given electrode pair. This 



non-uniformity of current distribution results in an increased 

internal impedance compared with the ideal theory; i.e., Oejf/<o-} (f. 

In a closed cycle generator the non-uniform current flow 

causes non-uniformities in the plasma parameters, and the equations 

governing the current distribution and the plasma parameters are 

strongly coupled. In this case,the current distribution and the 

distributions of plasma parameters must be obtained simultaneously, 

and, because of the non-linearity and complexity of the problems, 

numerical methods of solution must be employed. Further complication 

is introduced by the existence of the electrothermal instability, 

discussed in the next subsection, which makes the problem time dependent 

in the unstable regime. 

(b) The Electrothermal Instability 

Fluctuations of the electron density and electron temperature 

about the uniform steady plasma state considered in section 1.3 propagate 

as waves called electrothermal waves. These waves consist of two modes: 

the fast thermal mode, which is always heavily damped, and is of little 

physical interest; and the ionization mode, which is unstable under 

certain conditions. A detailed linear analysis of these waves has been 

carried out by Nelson and H a i n e s ^ . It is found that the ionization 

mode is unstable for fie greater than about 2, and that the growth 

rate depends on the orientation of the wave v e c t o r k , defined by the 



having a maximum at rt This instability is referred to as the 

electrothermal instability. 

In a closed cycle MHD generator, non-uniformities in the 

current distribution and ohmic heating, described in the previous 

subsection, cause non-uniformities in the plasma parameters. As a 

result, the electrothermal instability can occur if the Hall parameter 

exceeds the critical value. With a growth time of 10 8 sec, which is 

typically much less than the time spent by the gas in an electrode 

segment, the instability can grow into the non-linear phase. This 

means that the full equations governing the plasma and current 

distributions in a segmented electrode channel must be solved in order 

to determine accurately the effects of the instability on generator 

performance. As mentioned in the preceding subsection, the complexity of 

this problem necessitates the employment of numerical methods of 

solution. A number of authors have considered this problem, but the 

most complete work to date is the two-dime rcional time dependent 

numerical model by U n c l e s ^ . The most important result of the 

latter work is the prediction of current flow along high conductivity 

streamers transverse to the gas flow at times long enough for the 

non-linear phase of the instability to become fully developed. In 

the presence of these streamers the effective conductivity is increased 

by a factor of two over a uniform plasma case ofthe same geometry with 

conductivity and Hail parameter equal to the average values for the 

non-uniform case. 

By virtue of the collisional coupling between the electron 

properties and heavy particle properties fluctuations in the electron 

properties are coupled to fluctuations in the heavy particle properties. 
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(9) 
The latter fluctuations, called magnetosonic waves v ', are sonic 

waves distorted by the fluctuating £ a JB force and Ohmic heating and 

can be unstable under certain conditions. However, the characteristic 

-3 

time for this instability is about 10 sec, which is typically much 

larger than the time spent by the gas in an electrode segment, so that 

the magnetosonic instability is of no importance in the case of non-

equilibrium generators. 

When the energy coupling between electrons and heavy particles 

is strong, so that T ^ s - ' f (over much of the gas flow), only magneto-

sonic waves exist. This means that the operation of equilibrium (open 

cycle) generators is usually stable, magnetosonic waves causing relatively 

insignificant fluctuations in the fields and plasma properties. 

Consequently, the local behaviour in such devices can usually be 

considered as independent of time. 

(c) Turbulent Boundary Layers and Turbulent Transport Processes 

For flow conditions characteristic of MHD power generators, the 

gas flow in an MHD channel is of a compressible turbulent boundary layer 

character over much of the channel l e n g t h ' ^ ^ » . i n other words, 

the overall properties of the gas; namely, the total mass density p , 

the total pressure p , the flow velocity u and the heavy particle 

temperature T , are governed by equations describing the development of 

turbulent boundary layers on the electrode walls and insulator side 

walls of an MHD channel. These equations are derived from the overall 

conservation equations for the partially ionized plasma by making the 

(21) (22) (24) 

well known boundary layer assumptions v fallowing for turbulent 

transport processes. The latter assumptions are not usually invalidated 

by the presence of a highly non-uniform current distribution, because 



the £ A £ force and Ohmic heating can cause only slight streamwise 

variations of the overall plasma parameters in one segment of the 

generator. In other words, interaction lengths are typically much 

larger than the segmentation length. An exception to this is boundary 

layer separation caused by a strongly retarding £ A £ f o r c e ^ 3 ^ 9 ' . 

In the wall boundary layer regions, significant elevation of 

the electron temperature and the electron number density above the gas 

temperature and corresponding equilibrium number density is nearly always 

present, even in the case of equilibrium generators. This is due to 

the fact that, for a given current density, the electron temperature 

elevation is inversely proportional to the square of the electron 

density, which is relatively small in the cold boundary layers close 

to the walls. Therefore, even in the case of equilibrium generators, 

the boundary layer equations must be supplemented by an electron 

continuity equation and an electron energy equation, as well as any 

other species continuity equations required to define the composition 

of the plasma. These equations, like the overall conservation equations, 

are time averaged over turbulent fluctuations. Terms then appear which 

depend on correlations between velocity fluctuations and species number 

densities in the case of the species continuity equations, and 

correlations between velocity fluctuations and electron enthalpy 

fluctuations in the case of the electron energy equation (see 

references (25), (26) and 0 7 ) ) . These terms represent transport 

of particles and electron enthalpy by turbulent fluctuations and are 

subjected to the boundary layer approximations. As in the case of 

the overall conservation equations,a method of relating turbulent 

correlations to mean flow quantities must be specified. 



In the case of open cycle MHD generators, a sufficiently 

high degree of accuracy can usually be achieved by taking as the 

equations governing the local plasma behaviour in the channel the 

steady state forms of the turbulent boundary layer equations, and the 

continuity and electron energy equations, the latter being similarly 

(25),(26),(17) H l 

subjected to the boundary layer approximations . Also, as 

shown in reference (40), sufficiently accurate results can in many 

cases be obtained by employing some simplifications when solving for 

the electric and current fields; for example, the assumption of 

infinitely fine segmentation or the use of Laplace's equation for 

the current field, as mentioned in subsection (a). 

However, as indicated in the preceding subsection, the full 

time dependent equations governing the current and plasma property 

distributions must be considered in the case of closed cycle MHD 

generators. The problem is further complicated by the necessity of 

having to consider a time dependent system of turbulent boundary layer 

equations. The complete problem in this case has not been considered. 

In particular, turbulent boundary layers are not considered in the 

work of U n c l e s ^ ' . 

(d) Plasma-Wall Interactions, Electron Emission, Seed Deposition 

and Sheath Effects 

The accuracy with which the behaviour of the plasma and 

electrical fields in an MHD generator can be described, and overall 

generator characteristics thereby predicted, can depend to a large 

extent on the accuracy with which the interactions between the plasma 

and the containing walls can be modelled. At the present time there 

exists no exact theory of these interactions applicable to either open 

or closed cycle MHD generators. 



Simplified theoretical models of plasma-wall interactions 

have been developed and the derived wall boundary conditions used for 

the numerical modeling of MHD generators by a number of authors (see 

references (16), (17) and (25), for example). Most of these studies 

assume the existence of collisionless sheaths in contact with 

non-emitting electrode surfaces. The effects of electron emission 

are considered in reference (25). Also considered in reference (25) 

are the effects of finite ion diffusion currents, which can be 

significant in the boundary layer regions where temperature gradients 

are large. 

In the case of closed cycle MHD generators an important effect 

is the interaction between an electrode surface and seed particles. 

The essential feature of these interactions is the large affinity 

between the alkali metal and the surface. Practically all incident 

seed particles (ions and neutrals) are adsorbed to the surface and 

desorption takes place after a certain residence time. The adsorbed 

atoms strongly influence the rate at which electrons are emitted from 

the surface as well as the rate at which ions or atoms are desorbed. 

Boundary conditions for the continuity equations, incorporating 

(29) 

electrode-seed interaction effects, were first formulated by Sajben v 

assuming a collision dominated sheath. These were later used by 

Koester et a l . ' 3 ^ ' to solve numerically the continuity equations, 

restricting application to a tungsten cathode in a laminar stagnation 

flow geometry. An important result of this work is that, as a result of 

the plasma-surface interaction, electrode currents can be passed, 

at moderate voltage drops, which are greatly in excess of the electron 

current emitted from the surface under conditions of thermal equilibrium. 



In all the above studies, the plasma is assumed to be in 

a steady-state, and plasma-wall interactions have not so far been 

considered in time dependent numerical models of closed cycle MHD 

generators. 

1.5 DESCRIPTION OF PRESENT WORK 

Theoretical and numerical models of open cycle MHD generators 

have reached the degree of sophistication needed for quite accurate 

quantitative agreement between theory and experiment to be o b t a i n e d ^ ^ ^ ' . 

However, the modelling of closed cycle MHD generators is a considerably 

more difficult problem, and studies in the past have neglected a 

number of important physical effects. Much work remains to be done 

before accurate numerical predictions of the performance characteristics 

of closed cycle MHD generators can be made. At the time of writing 

this thesis, the most advanced work appeared to be that of Uncles 

mentioned in subsection (b) (see section 1.4). In this work, effects 

of turbulent boundary layers, finite ion and neutral diffusion, and 

plasma-wall interactions are neglected. 

In this thesis a time dependent theoretical and numerical 

model of a closed cycle MHD generator is developed incorporating physical 

effects previously considered only in steady-state theories of open 

cycle MHD generators. The present theory is an initial step towards 

the development of a theory having the ability to give accurate 

predictions of the performance characteristics of closed cycle MHD 

generators. It may also be regarded as an extension of the work of 

U n c l e s ^ to include the effects of turbulent boundary layers and 

turbulent transport processes, finite seed ion and seed atom diffusion, 

and plasma-wall interactions. 
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The basic theoretical model is developed in chapter 2 in 

which a number of assumptions are made that allow the governing 

equations to be decoupled into two independent systems of equations: 

the turbulent boundary layer equations; and the equations governing 

the plasma and current distributions. A simplified description of the 

flow in a MHD generator channel of rectangular cross-section is then 

developed by assuming a steady-state two-dimensional flow on each of 

the side walls of the channel. This is followed by the development of 

a two-dimensional time-dependent description of the behaviour of the 

plasma and current fields in a single segment of a linear segmented 

electrode MHD generator operated in the Faraday mode. Inlet 

relaxation effects are neglected and, in the derivation of the relevant 

wall boundary conditions, the existence of col 1isionless sheaths on the 

electrodes is assumed. This sheath analysis incorporates seed-electrode 

interaction effects. 

In chapter 3 the numerical method of solution of the turbulent 

boundary layer equations is developed and applied to a real experimental 

MHD generator system, the IRD test facility. Comparison between a 

computed and an experimentally measured pressure distribution is 

attempted. 

In chapter 4 , the numerical method of solution of the two-

dimensional, time-dependent model of the plasma and current behaviour 

in a single segment of an MHD generator is developed. Numerical 

solutions of this problem are finally presented and analyzed in 

chapter 5. 

Emphasis in the present work is placed more on the formulation 

of the physical model and the development and testing of appropriate 

numerical methods of solution, rather than the analysis of results 
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obtained for various generator operating conditions in terms of the 

various acting physical processes, which is left for future studies. 

Thus, the boundary layer solutions presented and discussed in 

chapter 3, and the solution of the plasma and electrical problem in 

chapter 5 are for only one set of generator operating conditions. 
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O^B 

Fig. 1.1: Segmented Electrode Faraday Generator 
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2.1 IMTRODUCTION 

In this chapter a two-temperature fluid model of a partially 
ionized plasma in an electromagnetic field is formulated in order to 
describe the local behaviour in a closed cycle MHD generator, which 
utilizes as a working gas an inert gas (helium) slightly seeded with 
an alkali metal (caesium). The governing equations of this model can 
be obtained by multiplying the Boltzmann equation for each component 
particle species of the plasma (seed ions, seed atoms, buffer gas 
atoms and electrons) by the particle mass, momentum and energy, and 
then integrating over velocity space. The equations so obtained are 
the species conservation equations for mass, momentum and energy, and 
in a fluid description they are assumed to be sufficient to describe 
the evolution of the instantaneous local macroscopic state of the 
plasma; the state of the plasma is then defined by specifying the 
number density of each species and its characteristic temperature» and 
the mean mass velocity of the plasma. For a fluid description of the 
plasma each species is thus regarded as a separate fluid coexisting 
with and interacting with the fluids of the other species. A necessary-
condition for the applicability of such a description is that the plasma 
be collision dominated; that is, the mean free path for particle 
collisions for all species be much smaller than the characteristic 
length scale for macroscopic change, and that the particle collision 
intervals be much smaller than the characteristic time scale for macro-
scopic change. When these criteria are satisfied the distribution^function 
of each heavy particle component of the plasma differs little from a 
Maxwellian distribution at a temperature T. For the electron distri-
bution function to differ little from a Maxwellian distribution at a 
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temperature Tc it is necessary, in addition, that the electron density-
he large enough for electron-electron collisions to be sufficiently-
frequent for the electron energy distribution to be little affected 
by collisions of electrons with heavy particles, and that the energy 
gained by an electron from any external electric field be typically 
smaller than the mean electron thermal energy. Because of the ineffic-
iency of energy exchange in elastic collisions between particles of 
disparate mass (when the heavy particles are monatomic), Te may differ 
appreciably from T (heavy monatomic particles of different species have 
comparable masses so that energy exchange in elastic collisions between 
them is efficient and they may all be taken to be at the same temper-
ature T). The aforementioned conditions are satisfied for conditions 
characteristic of closed cycle MHD power generators. 

The species conservation equations contain terms depending on the 
particle diffusion velocities Vs , the viscous stress tensors ̂  and the 
heat flux vectors c^, which relate to the transport of particles, 
momentum and energy, respectively, in the local frame of reference moving 
with the mean mass velocity of the plasma. In addition, these equations 
contain velocity moments of collision integrals, representing rates of 
change due to elastic collisions; terms representing rates of change due 
to inelastic collisions, and terms representing rates of change due to 
interactions between particles and the external electromagnetic field. 
All these terms can be calculated using approximations for the distribution 
functions which enable the transport quantities Uj , and to be 
calculated in terms of transport coefficients. The conservation equations 
then form a closed system when taken together with Maxwell's equations 
for the electromagnetic field. 

A considerable amount of work has'been devoted to the development 
of methods of approximation of the particle distribution functions and 
the calculation of transport coefficients^^ . Two methods have been 
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developea for two-tpmperature ( T ^ T ) partially ionized plasmas. One 

method, described in reference (1), utilizes the classical chapman-

Enskog method of approximation to calculate the transport coefficients 

appearing in the expressions for , <£s and t s to arbitrary levels of 

approximation by expansions in terms of Sonine polynomials; the order 

of the approximation is equal to the number of terms used in the Sonine 

polynomial expansion. Whilst this method allows transport coefficients 

to be calculated to any order of approximation, expressions of general 

validity are not obtained for orders of approximation higher than the 

first in the case of partially ionized plasmas. 

The second method is based on the application of Grad's 13-
moment approximation and is discussed in reference (10) and the 
references cited therein. It has been shown to result in closed forms 
of the distribution functions, which include explicitly the transport 
quantitiesV5 , ̂  and . The expressions obtained for the transport 
coefficients are consistent with the results obtained in the second 
approximation of the first method. Unlike the first method, ..however, 
these expressions can be obtained in general forms applicable to partially 
ionized plasmas of arbitrary composition. 

The second method will be used in this chapter to derive general 
expressions for the transport properties of a partially ionized plasma 
consisting of four components: buffer gas atoms, seed atoms, seed ions 
and electrons, seeding being assumed slight. When seeding is slight, the 
transport properties of interest are the species diffusion velocities, 
the electron heat flux vector and the transport properties of the neutral 
buffer gas. The expressions for the diffusion velocities so derived 
should be sufficiently accurate for many engineering applications; in 
particular, closed cycle KHD power generation, the application of interest 
in this thesis. 

Although the assumption of slight seeding results in considerable 

simplification of the transport properties and the governing fluid 

equations, further simplifications have been found to be necessary 
because of the large demands made on computer resources (storage and 
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time) by the numerical models of chapters 3 and 4. Thus, electron-
buffer gas atom collisions are assumed to dominate coulomb • collisions, 
and approximate expressions for the transport properties, which are 
consistent with the lowest order approximations of the Chapman-
Enskog approach are used. In addition, thermal diffusion is neglected, and 
the ion Hall parameter is assumed to be much less than unity. 

Finally, the overall conservation equations 
are decoupled from the equations governing the other species by 
neglecting the Lorentz force terms in the overall momentum equation 
and the term representing energy loss of heavy particles due to elastic 
collisions with electrons in the overall heavy particle energy 
conservation equation. Because of the assumption of slight seeding, 

ie 
the overall momentum and heavŷ energy conservation equations are then 
approximately the ;ane as for a gas consisting of buffer gas atoms 
only; these equations are referred to here as the 'gas dynamic' 
equations. The plasma equations consist of the electron and seed atom 
continuity equations and the electron energy equation. 

It is well known that the flow behaviour in an MHD generator 
channel is typically of a turbulent boundary layer character. The 
gas dynamic equations are thus considered in simplified form in 
accordance with the boundary layer approximation,and steady state flow 
equations axe obtained by averaging over turbulent fluctuations, 
assuming that the flow is steady on the average. Terms representing 
the transport of mean flow momentum and energy by turbulent fluctuations 
appear in the time averaged equations, and these are related to mean 
flow quantities and their gradients by means of eddy transport 
coefficients as in reference (ll)• A two-dimensional description 
of the flow in an MHD generator is then formulated by considering the 
flow in terms of two-dimensional boundary layers on each of the 
channel side walls. 
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Th e aforementioned plasma and gas-dynamic equations must be 
supplemented by equations for the electromagnetic field. These are 
obtained in this chapter from Maxwell's equations assuming that the plasma 
is quasi-neutral, and that any induced magnetic field can be neglected 
in comparision with the applied magnetic field, which is assumed to 
be uniform and constant. Taken together with the generalized Ohm's 
law, these equations are referred to here as the 'electrical1 equations . 

A description of the behaviour of the plasma and current fields 
in a single segment of a linear segmented electrode MHD channel, using 
the derived plasma and electrical equations is finally considered. 
Current flow along the magnetic field is neglected and all quantities 
are assumed to vary only in a plane perpendicular to the magnetic 
field. In addition, the gas dynamic parameters, which are obtained by 
solution of the boundary layer equations are assumed to be functions 
only of the cross-stream coordinate, variations along the flow being 
neglected. 

Finally, the boundary conditions for the plasma and electrical 
equations are derived, assuming the existence of collisionless sheaths 
on the electrodes. This sheath analysis incorporates seed-electrode 
interactions. 

Whilst the governing equations obtained by making the aforementioned 
simplifications are limited in accuracy, they should never-the-less 
form the basis of a fairly accurate description of the main features 
of many physical phenomena occuring in closed cycle MHD power generators 
operated under certain conditions. Moreover, comparision with the 
work of other authors can be more easily made and the numerical 
techniques used to solve the equations more easily developed and 
tested. 



-30-

2.2 CONSERVATION FOLIATIONS 

The plasma formed by addition of a small amount of alkali metal 
to an inert gas, is assumed to consist of four components: electrons, 
singly charged seed ions, neutral seed atoms, and neutral buffer 
gas atoms. 

The species conservation equations for mass, momentum and energy 
are obtained by multiplying the Boltzmann equation for each of the 
components of the plasma by the particle mass, momentum and energy, 
and then integrating over velocity space. The resulting equations are 
(see reference (l)), for species oi particles (cC-if h), 

+ 7-(u(n+VN « z . -t(k ( 2 - l ) 

V . u + - X A ^ K ^ C J 1 

and 

where T> 5 . (2.^) 

are the time rate of change and electric field, respectively, in the 
frame of reference moving with mean mass velocityR of the plasma. 

In equations (2.l) - (2.3), , 04tfg)*Û and £<_are the average 
species«( mass density, number density, diffusion velocity and 
|<inetic energy per unit mass respectively. In general, the average 
of any velocity dependent function for species is given by 

\ W f ( C ) d X (2.6) 
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where the i 1 , t ion is over the whole of velocity space and 
is the species o( velocity distribution function, which is assumed 
to satisfy the normalization condition 

The quantities fe , ̂ oZ, U* awl are obtained from equation (2.6) 
-T- j 2 

when ^ is set equal tor>l*»V,>V, Q and^C respectively. The 
average species kinetic energy per unit mass can be written in 
terms of the species oC temperature: 

k ( ^ h - t i ^ t * (2.8) 

The average energy per unit mass should include a contribution 
due to particles being in various internal energy states. In the case 
of interest here this contribution should be included for the 
neutral seed atoms. However, it can be shown (see section 2.5) that 
the population densities of the various excited energy levels can be 
neglected relative to the population density of the ground state, which 
can therefore be taken to be equal to the total neutral seed atom 
density, and the internal energy of a neutral seed atom taken to be 
constant, this constant is set equal to zero in£^. 

In equation (2.6), the velocity C is the so called peculiar 
particle velocity; it is the velocity of a particle with respect to 
the frame of reference moving with the mean mass velocity of the 
plasma; that iŝ  

C - C-Ur(rt) (2.9) 

where £ is the particle velocity in the laboratory frame of reference, 

and u is the mean mass velocity of the plasma, given by 
Z f f c & t 

z f < > ( 2 " 1 0 ) 

where is the average velocity of species particles obtained from 
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equation (2.6) by setting (j}̂ ^ £ f noting that =r d . 
By definition of , 

V o ( 2 . 1 1 ) 
and it follows from (2.10) that 

Z f r f U ^ O (2.12) 

The species cL heat flux vector ̂ ^ and momentum flux or pressure 
tensor^ , which appear in equations (2.2)" and (2.3), and give the 
fluxes of translational energy and momentum transported by species®̂  
particles in the frame of reference moving with the plasma are defined 
by the following integrals over velocity space: 

( c c t k (2.13) 

and 

£ = f k ( c c l ( z . i D 

The scalar partial pressure jfo is defined as 

jk = | K ( f f = ^ (2.15) 

and,using (2.8), can be written in terms oft as follows: 

which is the equation of state for the species oi component. The species 
viscous-stress tensor T^ is defined as 

(2.17) 

where \ is the unit tensor. 
In equations (2.2) and (2.3), 2T A,a IWcland TLAe/&Hnff(CZ 1 

are the mean rates of change per unit volume of momentum and trans-
national energy of specieŝ particles due to exchange of momentum and 
energy in elastic collisions with particles of different species. 
These quantities are given by the equations 
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cO oO / f 

and 

0 A ^ K c J - I f W i J J ^ f c ' - c ) 5 U U e f c f w ( 2 a 3 ) 

"0 oO f 

where C and C are the velocities of a species ©C particle before 

and after a collision with a species p, particle which is initially-

moving with a velocity W; g is the relative speed JC-Vn/J of the 

particles; b is the impact parameter for collisions between speciesc( 

and species (f particles, and E is the angle of scatter of species** 

particles; that is, the angle between the relative velocities of the 

particles before and after a collision. 
i • • 

The quantities ^ , ^ and , are the net rates of increase 

per unit volume of the mass, momentum and energy, respectively, of specie 

particles as a result of inelastic collisions. For the ̂ particular 

plasma conditions of interest here, excited states of ions and buffer 

gas atoms can be neglected and the relevant inelastic collisions are 

between electrons and seed atoms in various levels of electronic 

excitation that communicate energetically only with the free electrons 
* 

and by emission and absorption of radiation. Of the quantities , 

M* and Nol , only jk (̂ -ê rtjand are significant, the other 

quantities being negligible. Expressions for the significant inelastic 

collision terms will be presented in section 2.5 • 

The overall conservation equations for the plasma as a whole can 

be obtained by summation of equations (2.1) - (2.3) over all species 

in the plasma. The overall conservation equations for mass and momentum 

are obtained in this way, but the overall heavy species energy conser-

vation equation, obtained by summation of equations (2.3) over the 

heavy species in the plasma is of greater interest here. The 
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resulting conservation equations are 

+ = 0 (2.20) 

P St = + V-i + P V + / 4 (2.21) 

D t C P ^ + J 

where i s the total mass density; and|0C=- V)^ =• (ffY)t^eJ 

and J ^ Z ^ o l W = J l ' t J i - c f v i ^ t - H e U - ) 

where e is the magnitude of the electronic charge, are the total charge 

and conduction current densities respectively. In equation (2.21) 

use has been made of the definitions 

- - (2.23) 

and 

r-Zt-^ (2.2ft) 

of the viscous stress tensor and scalar pressure for the plasma as a 

whole. In deriving equations (2.20) - (2.22), use has also been made of 

the relations ^L^^trt 0 and 

the latter allowing us to write 

£ £ ^ M * - J a , M 

in equation (2.22) 

The absence of terms in equations (2.20) <<*i(2.2') representing 

the effects of inelastic collisions results from the conservation of 

particle mass and, as mentioned above, the smallness of the inelastic 
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collision terms in equations (2.21). 

It is assumed here that the conditions for applicability of a 

two-temperature collision dominated description of the partially 

ionized plasma, discussed in section 2.1, are satisfied so that the 

distribution functions are close to Maxwellians at a temperature T 

for the heavy particles and at a temperature T e for the electrons. 

This allows us to write, using equations (2.8 and 2.16), 

j> = fcTtf/j ir b l ^ y i f (2.25) 

where use has been made of the definition (2.2'+) of p, and?7^ is the 

total heavy species number density; and 

Z f ^ l ^ ( 2 - 2 6 ) 

In the next section, expressions for [ofs- ij.VlJj 

and the elastic collision terms in equations (2.2) and (2.22) as functions 

of the variables j?̂  [ol-Q., ^ T ^ !e and their gradients, 

and the fieldsE^and J? , are determined by making use of the closed 

forms of distribution functions that result from the application of 

Grad's 13-moment approximation, which enables algebraic systems of 

transport equations forl^ and to be obtained. 
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2 . 3 expressions for diffusion velocities, electron heat flux vector 

and elastic collision terns in momentum and energy equations 

In order to clarify the method used to derive the expressions for 

Ik face, i,*) a e and the elastic collision terms in the momentum and 

energy equations, the basic theory of reference (lO) will be first 

described below. 

Using Grads 13-moment approximation, the distribution function 

for each component of the partially ionized plasma can be 

derived in the closed for«(see reference (10)). 

£ £Ji + X , • c - ( X / f y ) j t ; c c 
, , w ... . (2-27) 

~r c ] 

where j,©< the Maxwellian distribution given by 

~ ( & A ^ J ( " i ^ * C Z ) (2.23) 

In these expressions, ~ where"5/e= ^ 9 a n d 4 s 

relative thermal flux vector of component o( , defined by 

If the above closed forms for the distribution functions are used in 
and U-It) 

equations (2.18)^ and quadratic terms in"Ut, T* and fy are neglected, the 

following expressions are found for the collisional rates of change of 

momentum and energy: 

I M ] - f l f - l i + ^ ( ^ - ^ J j (3.30) 

and ^ ^ j ^ 

where y y 

(2 .32 ) 
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and ^ is defined below (nee equation:- (?.J>0) and (2.4-1)) 

.(m 
The coefficients a ^ and appearing in the expressions (2.30) 

are defined by 
(2.33) 

and 
0/ 

.<zI z r 2 > ) ] 

where 

and the collision parameters (Yj are defined by 

a % ( r ) - j ^ ' ^ - f y * ( l - m ^ l m s > (2.36) 
0 0 

'/z. 

where ^ =• fafili'fy^ a n d ^he angle of scattering in the centre 

of mass system of the colliding particles. 

The coefficient can be written in a form which more clearly 

shows its physical meaning by introducing the momentum transfer collision 

cross-section defined by 
= -k I ( l - ^ X f Ml (2.37) 

and the energy weighted average of the momentum transfer collision 

frequency "vjjj = Tip Qjg defined by 

v [(wfrj^M^ hf • < 2' 3 8 ) 

where t must be taken to be te if either species oL or species 

particles are electrons. In equation (2.38), denotes a Maxwellian 

distribution for a hypothetical particle having the reduced mass THx^ / 

i»ef, svs 
(2.39) 

It may be readily shown that equation (2.38) can be written in the form 

y f a f a c , (zMo) 

where - / J j f 2 -
i x i ^ / > 

and the average momentum transfer cross-section is defined as 
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co t " 
s a 0 
z 
0) 

sir 
3 jo 

OO _ 4 ) 

It follows from the defining equations (2.12), (2-33), (2-35), (2-36), 

(2.40) and (2.4l), that 

& P (2.42) 

and 

= ^ W o i ^ p (2.43) 

It should be noted that the relations (2.42) and (2.43) hold true only 

when^as is assumed in the present work, all heavy particle species are 

at the same common temperature T, which may differ from the electron 

temperature ; then 

£ 

where, if =• -m^ and T must be replaced 

by Te . 

When equations (2.30) are used to eliminate the terms A^p L ^ C j 

in the species conservation equations of momentum, and a number of 

simplifying assumptions, to be described below, are made, an algebraic 

system of equations for the diffusion velocities is obtained. It is 

first necessary, however, to obtain a system of transport equations for 

the relative heat flux vectors . The latter equations are obtained 

by multiplying the Boltzmann equation for each component by the quan-

tity T^^jC and integrating over velocity space. The 

resulting transport equations can then be reduced to algebraic equations 

by use of the aforementioned simplifying assumptions. The algebraic 

equations for the h^ are found to have the form 

<2 A5) 
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Using the closed form for the distribution function, equations (2.27), 

the collision term on the right hand side of (2.A5) can be determined 

in the following form: 

f ^ ^ ^ H ^ K F * Af'j* <*«> 
In this expression, use has been made of the definitions 

[ ' - ( f i t ) ] i ^ / ^ V (2A7) 

/ c d .cd / (ZkZ) 

The coefficients G ^ * are given in reference (lO); they are all 

linearly dependent on 

Eliminating the collision term in equation (2A5)t using equation 

(2.%6),the following algebraic system of equations for_A-^ is obtained: 

iy + ^ ^ l p - ~ ^ 3 a (2.f9) 

where 

0 z x 2 e* ; v r j(7/f a 

5 * V.J, - (2.50) 

* ~ x * j ^ (2.52) 

The relative thermal flux vectors = b ^ ) c a n 

be determined from the closed algebraic system of equations (2.^9)-
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However, the equation for the electronic flux vector h^ becomes uncoupled 

from the heavy particle species thermal fluxes (kfijafter neglecting 

terms of order w^wt^ , the coefficients being less than or of order 

Y U M ^ / W ^k <<l . Thus, the equation for Ue takes the form 

- - % jf he A t ( 2 . 5 4 ) 

In addition to this uncoupling, further simplification in the 

equation for U* possible because j KeU-f&l • T h u s equations (2.50) 

for reduces to 

2 1 
3 + P f v . r , + ^ j ^ . f ' - H ^ I ^ / t e u l U - U } 

it is shown in 

reference (10) that7 

r _ I [SJl£(z)- I j j f o ] 
r SUt,' (1) ( z 5 6 ) 

(2.55) 

and 
a*' 

ntlc ^ /delc 

It can be shown that 

(2.57) 

It also follows from the smallness of the electron mass that the 

largest contribution to equation (2.30) is made by the electronic flux 

vector he . It follows that equations (2.30) have the form 

7L Aek[We CJ = 2 *tlc (Vk At* (2-59a) >— t-ic — , — — v — — j ou, 

and 

The flux vector he is given by equation (2.§4), which can be solved 
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for to give 

tz i \ / 

(2.60) 

where 

ov)e 
Substituting equation (2.60) in equation ••(2.59) it is such that the 

quantities XL A ^ G J can be expressed in the form 

X Ay c j - Z ^ v ( i f - i f ) & <2-6i> 

where the operator b^ is defined through the relation 

C P * + £ ' f « a£ + C ( J a U - s ( 2 . 6 2 ) 

and the scalars f , {Ĵ  are given by the following expressions ! 

for electrons, 

(Z) 
k 

( i f / o t ^ 2 ) 

while, for a heavy component k, 

I (?) * * 

k 

bk 
2 

C2-) 

€k 

p y o * * * ) 

(2.63a) 

(2.63b) 

The system of differential equations for the diffusion velocities, 

obtained by using the expression (2.6l) for the collisional momentum 

transfer in the species conservation of momentum equations, can be 

considerably simplified by assuming that, first, the viscous parts of 

the species pressure tensors can be neglected; and, second, the macro-

scopic parameters of the plasma change only slightly within distances 

of the order of the mean free path and during times of the order of 
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the collision times in the plasma. The first assumption can be shown 

to be generally valid (see reference (lO)). The second assumption is 

satisfied in all but cases of extreme nonuniform!ties such as the 

case of a gasdynamic shock in the plasma or a very strong electric 

field. When the second assumption is satisfied, it is possible to 

neglect the derivatives of "IX/ * replacing derivatives of Vf* with 

derivatives of U (see reference (lO)). This assumption is used to 

derive the equations (2.49) for the relative thermal fluxes . 

The above assumptions lead to species conservation of momentum 

equations 

(2.64) 

where Y . The inelastic collision terms in 

equation (2.64) have been neglected just as the effects of inelastic 

collisions are neglected in the derivation of the transport equations 

for the quantities^ . This follows from the fact that for the cal-

culation of transport quantities, terms representing inelastic collisions 

in the Boltzmann equations can be neglected because the excitation and 

ionization cross-sections for most particles are much smaller than 

the cross-sections for elastic collisions and effects of inelastic 

collisions on the distribution functions are consequently small 

Using the overall momentum equation, as obtained by summation 

of equations (2.64) overtvll components, namely 

r f t + v ' t ^ + m (2.65) 

to eliminate from equations (2.64), we obtain the following 

algebraic system for the diffusion velocities: 

(If - 1 5 ) + v m - - J T k + j f - f r f y (2.66) 
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where use has been made of equation (2.6l). 

Comparing terms arising fromkcie with the other terms of equation 

(2.66), it is apparent that only the first and last terms of Ye , which 

is given by equation (2-55)» c a n make significant contributions. 

Retaining only these terms, we have 

J i v r ; + ^ ^ d Z ' ( V ? - v A (2.67) 

So far, in this section, the work presented has been little more 

than a summary of the work of reference (10), and no use has been made 

of the fact that the plasma is an inert noble gas, slightly seeded with 

alkali metal; that is, the particle species are neutral noble gas 

atoms (^-k'j t neutral seed atoms (af-fl), singly charged seed ions (f-L ), 

and electrons ( o / = e ) . It is assumed that seeding is sufficiently slight 

that 

£ « l ; 1 L « I (2.68) 

t 7 t 7 c 

This assumption of slight seeding makes possible great simplifications 

of the expressions for the diffusion velocities"!^ and the electron 

heat flux vector he , as will be shown in the remainder of this section. 

Simplificiations can immediately be made if those terms of equation 

(2.66) which contain jU/^ a s a multiplicative factor are 

compared with appropriate other terms. Thus, for^e or i, if we assume 

that .ll*l~lfl and I Vf* / » P f / , 

the terms ^pf^3,11(1 ^ ty c a n neglected in 

equations (2 .66). The same terms can be neglected in equation (2.66) 

for^h- if we assume, that, in addition to ^J [ , 

equation (2.65) implies that ^p^E J~4 A • The simplified 

forms of equations (2.66) are, for , 

(if - " £ ) + - V f i c , (
2
'

6
9 ) 
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where -V\ ee } 

It is sufficient to consider the three ^af^rC, H-) equations (2.69), 

since U^ can he eliminated using the relation (2.12) in the form 

Equations (2.69) then constitute three algebraic equations for the 

three unknovms Ue } 1 7 a n d U H . Further simplifications following 

from the slight seeding assumption (2.68) greatly simplify the solution 

of equations (2.69). 

The three equations (2.69) withl^ eliminated using equation 

(2.70) can be written in the forms 

Cei y i ' + - Ceclfe-h^lEaS= V f ^ - l ^ w b e , J (2.71a) 

ct*e u + Cm V* - C11V; w^'Via g - Vpc- id (2.71b) 

Cyle ~Vg -hCnlTfi — -
(2.71c) 

where 

C*iC - Uei - Kvj Cevx =7 aen - ^ a e ^ C ^ X ^ - ^ l ^ v C 2 . 7 2 a ) 
tpe 

Qe - £ a , CiK = a £ n - C c i = T m r ± ack (2.72b) 

C*€ = a*€ c^u-a** , C m ^ c ^ c - ^ ^ i L ^ Y ^ U n L (2.72c) 

The approximations made in equations (2.72) follow from the 

assumption of slight seeding and the smallness of the electron mass. 

It should be noted that Cl̂ ^ is not neglected in Ce s 0 a s a ^ o w 

the possibility that electron-ion collisions dominate electron-buffer 

gas atom collisions; i.e., assumption of slight seeding 

and the smallness of electron mass allow further approximations to be 

made in equations (2.7l)» which finally reduce to the following system: 

- c « V f + - V f h - W ^ 2 . 7 3 a ) 
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- CdVi " (2.73b) 

(2.73c) 

vhere fy) ^ 
^ Aeu - aecAzt' -f CKtk Aek 

It should be rioted that the disappearance of the term from 

the right handside of (2.73c) follows from its smallness compared to 

the term Vfe when slight seeding is assumed. 

From equation (2.73c) we immediately have an expression for IX : 

"dLfy 
or l 

"U, * W n k ^ V n U (2.74) 

From equation (2.73b) an expression for "Uj can be found in 

the form 

u;- - - ( ( ( v p - h i 

where 

k ' 1 / l l U 
fe is the ion Hall parameter defined as 

lib tAib eriib ^ 

fc £ CU ' C;i - CLik " yxLUVcU > 

and cf{ is the ion conductivity defined as 
2. 2. l. z 7 

l l <*ie 01 ie^ 

Cu ' Ca ~ l^k 3 i^wk (2-77) 

Equation (2.73s-) can be written in the form, 

(2-76) 
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from which 

+ t - ( V p e - M ^ - ^ A i 

79) 

where 

tfe = [Ces + A e J , (2.30) 

|3e = (2-82) 

C t e ^ a e l f - Q e k (2.83) 

The quantity defined by equation (2.80) is the electron conductivity. 

Finally, an expression for ^ is obtained from equation (2.60^ 

in the form 
* O*Z 

r A p / 1 
& - [J? ~ + ( 1 ^ ) i / ( 2. S l ) 

where 

^ e (2.85) 

A ^ T<2 (2.86) 

and Pg is given by equation (2.67), which, if seeding is slight, has 

the approximate form 
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£ * v t e + fcjciei + ^ (2.87) 

The coefficients of equations (2.74), (2.75), (2.79) and (2.84) 

for the diffusion velocities } "H", "Ve and electron heat flux 

vector ^ depend on certain collision parameters ALatpv) defined by-

equation (2.36), which in turn depend on the laws of interaction between 

the various particles. The interactions of interest here are electron-

electron, electron-neutral buffer gas atom, electron-seed ion, neutral 

seed atom - buffer gas atom, and seed ion - buffer gas atom interactions. 

For all applications considered here, the alkali metal seed and inert 

buffer gas are caesium and helium respectively. For interactions 

between heavy particles, only the parameters fl^p, 0 ) , or equivalently, 

the cross-section need t© be known. The caesium atom helium 

atom cross-section is assumed to be independent of the heavy 

particle temperature and its value is taken to be that given in reference 

(13) for a temperature of ll60°K: 

A value for the ion-buffer gas atom cross-section can-

not be foundj its value is assumed here to be equal to/^, i.e., 

5 

For interactions involving electrons, it is necessary to determine, 
to 0) 

in addition to JZ«.fc (J) , the collision parameters 

A/vk(2), {Cek(3), and 14e(2)» where the subscript k 

refers to ions and buffer gas atoms; this can be seen from equations 

(2.34)i (2.56) and (2.58). Two cases of interactions can be distinguished: 

(a) For electron-buffer gas atom collisions, use is made of the 

fact that the momentum transfer cross-section for electron-helium atom 

collisions (y^ varj es very little over a wide range of electron temp-

eratures, unlike, for example, electron-argon atom collisions, the cross-
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section for which has a very strong dependence on electron temperature. 
(14) 

Argj'ropoulos: and Casteel x give values of the electron-helium atom 

cross-section in the range 

for 

\ooo°K £ 

The cross-section is assumed here to be constant and equal to the value 

y.Cl X lO"Zv VH7" ; i.e., 

a io'^y^ 

The weak dependence of the cross-section(J^on electron temperature 

means that the electron-helium interactions may be regarded as inter-

actions between rigid elastic spheres of diameters and Cf^ • 
niPb 

The collision parameter 4ie^(>)for such interactions is found from 

equation (2-36) to have the form 

where <^2.- j- • From equations (2.34), (2-56), (2-57) and (2.88) 
At) a{~7) 

the coefficients /f€l , Arek and /\el\ c a n b e d©"termined: 

aOkL 
AeL = Aek - s (2.89a) 

and * 
A w - — 
/-UL ) O (2.89b) 

These values of the coefficients Agf' l n c l o s e agreement 

•dth the values tabul 
!660°k V<"E\< 

(lU) with the values tabulated in Argvropoulos and Casteel v ' for 

(b) For electron-electron and electron-seed ion collisions, which 

are coulomb interactions, the collision parameters ( ' ~ t j Q 

and hence the cross-sections can be evaluated by cutting off the 

integration in equation (2.36) with respect to the impact parameter b 
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at the Lebye length ̂ ^ , which is given by the relation ^ ^ 

T / 

The collision parameters and so obtained are given by 

r ^ I , A 

fee l^-Xee 

(2.90) 

4tt6d l r e 5'e.j (2.91a) 

and 

I f t yc U A e ; (2.91b) 

where 

and 

_ _ /ifeuev/z. _ / ibtfje \ 
~ i tj^g j 

cT . - ( ^ " T e A 

% " i ifwf? J 

A e e = A , ' = 4 

7 t w e 

(2.92a) 

(2.92b) 

(2.92c) 

From equations (2.91a) and (2.91b), the cross-sections (Q^ and can 

be obtained using equation (2.4-2): 
e4-

(2.93) 

n
L l )

 r ?
0 ) 

Evaluating the parameters (2) and 3) i n "the same way, 

it is found that 

a; A (2.94a) 

and 

(2.94b) 

(2) ,(77 
Using equations (2.94a), the coefficients/]^, A-and f\el can be found 

from equations (2.34), (2.56) and (2.57): 
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-

I 

and 

a / G i i 

e - an' 

(2.95a) 

(2.95b) 

(2.95c) 

Finally, the collision parameter A Z (2) can be evaluated and used 

in equation (2.58) to obtain 

1 
(2.96) 

The condition for validity of the Debye cut off method used to evaluate 

the above collision parameters, is that there be many charged particles 

in a sphere of radius ̂  (Debye sphere). This condition is generally 

satisfied for plasmas used as working fluids of MHD power generators 

and means that the quantity tV^-S large; that is, the quantity in 

brackets on the right hand side of equation (2.96) is close to unity. 

Making use of equations (2.89), (2.95) and (2.96), one obtains, 

from the defining equations (2.51), (2.63), (2.80), (2.8l), (2.82) and 

(2.87), 

T/r - I [l - Vie + To + (2.97) 

lW 
a 

z eo 
- f } / 0 t f ! ' ) 

/ w - i 

(2.98) 
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Tlee 

tre = 

9 

L7) 
e: n f allvek)] (2.100) 

n?e 

w. 
+ f j { A % V e ; (2.101) 

[ eg fi ^ 
tf 

(2.102) 

,9 
i - \7t, + (2.103) 

where, in equations (2.100^ , (2.101) and (2.102), 

g (A + 42V).-{^(A^/Lf^g 
_<? jf / j i 2 

= ^ J ^ ) ( 2 . i d ) 

In the case where the magnetic field is zero, equation (2.79) c an 

be written in the form jy 

v.' i u- i ) ' i A. K 
where the thermal diffusion coefficient (j>e is given by 

* • - (2.105) 
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Some idea of the accuracy of equation (2.79)» with the coefficients 

given by equations (2.100) - (2.102), can be gained by evaluating the 

electron conductivity and the thermal diffusion coefficient ^ 

in the two limits where electron buffer gas atom and coulomb collisions 

are dominant. In the limit where electron-buffer gas atom collisions 

are dominant, equation (2.100) gives 

I? vfe/ , rsif" 
t 1 n J? 

|3U WWVfeiv" ' ( 2 . 1 0 6 a ) 

and from equation (2.105) we have 

, n,elfs 

The exact values of andCp^ in this limit are calculated, for rigid 

sphere interactions, to be ^ ^ 
32 Vee2- „ Vie* 

ry - . — — a, i/2 
97t We^ek" fh-evelv 

and 

e ~ SK Y ^ C 

which differ from the values given by equations (2.106a) and (2.106b) 

by about 5% and 2% respectively. 

In the opposite limit of coulomb collisions dominant, equations 

(2.100) and (2.105) give 

a * 1.17 

and (2.107b) 

(2.107a) 

respectively. Spitzer and Harm have computed the exact values of CT̂  

and (j>e in this limit by numerical integration 

€ * nWeJ 
and 

A * 
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which differ from the values given by equations (2.107a) and (2.107b) 

by about 0.Jfo and 1 Jfo respectively, Whilst, in this limit, the electron 

conductivity is very accurately represented, the accuracy of the thermal 

Effusion terms in equation (2.79)» though acceptable, is evidently 

not so good. 

The above comparisons indicate that the accuracy of the conduc-

tivity and electron thermal diffusion coefficient <j)e , obt'ained by 

applicati on of Grads 13—moment method, should be adequate for jf ...e ileal 

purposes, at least in the case where the dependence of the electron-

buffer gas atom momentum transfer cross-section on electron temperature 

is weak, in fact, as indicated in reference (10), the conductivity 

given by equation (2.100) is identical with the second approximation of 

the Chapman-Enskog approach when T = and comparisons show that succ-

essive Chapman-Enskog approximations for the electron conductivity 

converge very rapidly after the first term . However, the -expression 

(2.#i) for qg , and % given by equations (2.85) - (2.86) 

and equation (2.103) corresponds to the second approximation of the 

Chapman-Enskog approach oP reference (15)1 which yields the first non-

vanishing, and therefore the lowest order approximation for he . The 

error incurred by the use of equations (2.8A),(2.85), (2.86) (2.103) 

is for this reason larger than in the case of diffusion velocities. 

This is clear if use is made of equation (2.85) to calculate 'Ae in 

the coulomb collision dominated limit. From equation (2.97) the formula 

so obtained is 

q — 1 
which coincides exactly with the formula obtained from the second approx-

imation of the Chapman-Enskog approach of reference (15) a nd yields 
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Th e exact formula obtained numerically by Spitzer and Harm is 

which differs from that given by equation (2.1Q8) by a factor of 

more than 2. The expressions (2.84)i and (2.85) for fr (withpj=0 ) 

have been used in references (l6) and (17)» which are representative 

of the more sophisticated numerical studies of steady state flowing 

partially ionized plasmas in MHD generator channels. 

The above considerations concerning the accuracy of the electron 

conductivity, and the thermal diffusion terms in equation (2.79)» support 

the conclusion that the expressions derived here for the diffusion 

velocities should be regarded as completely adequate for partially 

ionized plasmas when Seeding is slight. Such plasmas are utilized as 

working fluids of closed cycle MHD generators, and the aforementioned 

expressions should enable accurate quantitative predictions of the 

performance characteristics of such generators to be made. The 

expression for the electron heat flux vector, however, should be replaced 

with one of greater accuracy. The author has been unable to find 

such an expression in the literature, and in the present work makes 

use of a simplified form of the expression derived here, which is 

consistent with simplifications of the expressions for the diffusion 

velocities discussed below. 

The expressions for the diffusion velocities, whilst much simpli-

fied by the assumption of slight seeding are too complex to be employed 

in the numerical model developed here because of the great demands 

made on computer resources. This has necessitated the use of simplified 

forms of the expressions. Thus the present work is restricted to the 

limit where electron-buffer gas atom collisions are dominant. From 

equations (2.97) and (2.104) it is clear that we can then, without 

significant loss of accuracy, neglect quantities proportional to 
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in equations (2.100) - (2.102), which reduce to 

^ r^eveu (2.109) 

e (2.110) 

a n d ^ e ^ ^ k ( 2 ' m ) 

From equation (2.79) the simplified expression for is 

f L jf ( v ^ - p t ' + k - V t ) * * ] * ! : (2.112) 

where fe^-fye. The expressions (2.IO9) - (2.111) are identical with 

those obtained form the first approximation of the Chapman-Enskog 

approach of reference (l). 

Consistent with the above simplifications, we replace equations 

(2.103), (2.84) and (2.85) with 

and 

(2.113) 

since, from equations (2.86) and (2.111) we set 

Whilst the accuracy of equations (2.113) and (2.114) is difficult to 

assess, because of the initial inaccuracy of equation (2.54), these 

(2.115) 

equations do have the advantage of being relatively simple. Also, 

these equations are consistent with those used most previous analytical 
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and numerical studies (?)»(8),(19)^ and therefore allow comparisons 

of the results of the present work with those obtained by other authors 

to be more easily made. 

The neglection of coulomb collisions imposes restrictions on the 

ranges of plasma conditions that can be considered in applications of 

the present theory, as can be seen, for example,from figure (2.l), in 

which the ratio is plotted as a function of for a seeding 

fraction of 0.002 using equations (1-9) and (l.l4); it is apparent from 

figure (2.l) that the present theory is inaccurate at high electron 

temperatures. As we shall see in chapter 5* high electron temperatures 

can be obtained in regions of current concentration near electrode 

corners in an MHD generator, and some inaccuracy may be introduced as 

a result. 

Most previous analytical and numerical studies of closed cycle MHD 

power generators have used equations (2.109) - (2.114) even when 

coulomb collisions are important, these collisions being accounted for 

by simply replacing V̂ A with ( VeA -f- )• It is clear from the earlier 

considerations of accuracy that conclusions made in these studies regard-

ing the effects of coulomb collisions may be quite inaccurate. 

The expressions ff,r the electron and ion diffusion velocities 

have been further simplified in the present work by neglecting the 

thermal diffusion terms; that is, the terms dependent o.n besVlE 

and J>'r . The importance of these terms can be determined by 

estimating the dimensionless quantities (^e't/^fe ) anc^ ( i/ J ft )j 

from equations (2.97) - (2-99); 
/ <-v ,0) n - , 

- 1 Vet + j Mk ) 

and 
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je 
r 

|fl - A e t y e f f a m ) j ( 2 • 117) Pi k«iT A 

In the limit where electron-buffer gas atom collisions dominate coulomb 

collisions and from equations (2.116) and (2.117), 
i c"77 
be —^ 13 (2.11c) 

and 

jv ^ 13 Vek [ 
(2.119) 

From the limiting values (2.118) and (2.119) it follows that, whilst 

the ion thermal diffusion is negligibly small, electron thermal diffusion 

can be significant unless 

•tft. 

T i 
« 

I pe 
(2.120) 

The inequality (2.120) is difficult to justify a priori unless the 

electron density is given by Saha's equation, equation (l.lA), according 

to which it is satisfied. It is concluded that electron thermal diff-

usion cannot in general be neglected even when , though 

its omission should not result in large errors since the magnitude of the 

quantity ( j^e ) l s ^ e s s than unity. Neglecting the thermal 

diffusion terms, equations(2.75) (2.112) reduce to 

(2-121) 

and 

- f ( v f - l n * 1 ( 7 / ? ) ( » - - t ^ ' h 

respectively. 
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Finally, it is assumed in the present work that 

(2.123) 

which can be satisfied when j since 

£ ~ f - f > > ! /?.• I w e / ' 

The condition (2.123), which imposes a limitation on the magnetic 

field for given plasma conditions, allows us to neglect the second and 

third terms of the right hand side of equation (2.121), which thus 

reduces to 

T R - ('vp - v i f ) (2.124) 

From equations (2.122) and (2.124) the electron and ion current 

densities 
je - <?e ve - - eh e V"e and 

are given by 

(2.125b) 

or 

ehe / 
and 

respectively. From equations (2.125b) and (2.126) a relation can be 

derived between Ĵ . and J: 

I - ¥ 1 ) 

0?($e a^Crp 
f y s -p j^XL. + I 
5 + = fe+C-,) L J ( 2 > 1 2 7 ) 

Now 



- 59-

( 2 . 1 2 8 ) 

f , { We / 

and, in equation (2.127), 

fit * . (2.129) 

where use has been made of the assumption (2.123). Using the result 

(2.129), the second term in the left hand side of equation 
(2.127) can 

be neglected and the following relation obtained: 

Jo ̂  , x J + + (2.130) 

By making use of the inequality (2.128), further approximations can 

be made in equations (2.130), which can be thus reduced to 

X i J t- n (2.131) 

The relation (2.131) is of great importance in the formulation of the 

final form of the electron continuity equation in section 2.5 < 

Using equations (2.125) and (2.126) a relation between Jj/ and 

J, called the generalized Ohm*s law, can be derived. Because of the 

limited amount of computer resources that could be made available to the 

author for the computational work reported in this thesis, a simplified 

form of generalized Ohm's law had to be used. This results from the 

assumption that either I Je I » / T; I OT} if /Jel^ I J/f , both 

jfDQ/ and / / are negligibly small. Then the generalized 

Ohm's law is obtained by simply replacing If with j" in equation 
(2.125b)i 

The condition for validity of equation (2.I32) is restrictive. 

For example, situations where J f ^ — Tfe/fee which implies from 

equations (2.125a) and (2.126) that / $ / ~ 0 and/J?/^ fl£* | * 
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<J IXcX 

must be excluded from consideration if irl is significantly large. A 
Another example of violation of the condition for validity of equation 

(2.133) is 
the phenomenon of ambipolar diffusion. In the absence of a 

magnetic field, if J>0 , equations (2.125) and (2.126) yield 
i eWL ev^.) 

A 

- r oik f vpc , pfe \ 
r — : ( J-t -h -tr ) (2.133) 
fen-a') v en j j v 

This phenomenon, which might occur if an electrically isolated electrode 

were in contact with the plasma, can invalidate the present theory if 

I is significantly large. 
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2 .4 TIK G.Ac:-DYNAMIC EQUATION^ AND COMPRESSIBLE- TU"?UT-rNT ^oTWTFApy 

I/'YI B5 . BASIC EQUATIONS 

Consistent with the assumption of slight seeding, as expressed 

by the inequalities (2.68), 

f i ft > f L ^ 

and the overall conservation equations for mass, momentum and heavy 

species energy, equations (2.20) - (2.22) have the approximate forms 

air + (2.13p 

n. X7o 4 - V T I •+ - - (2.135) 

where use has been made of equation (2.3l)» The term —feV*']^ 

on the left hand side of equation (2.136) has been neglected as small 

because of the smallness of electron mass and the assumption of slight 

seeding. Equations (2.134) - (2.I36) must be supplemented by the 

equations of state 

ftfir Sl - Cr (2.137) 

where ^ ^he gas constant and Cy/ is the specific heat at constant 

volume J if). 

By virtue of the assumption of small ion Hall parameter I ) 

the magnetic field has little effect on the total heavy particle heat 

flux vector ^ and the total viscous stress!", the electron contri-

bution to which is negligibly small. It can be shown, using the theory 

presented in reference (l) that, when seeding is slight, the heavy 

particle transport properties are then approximately the same as those 
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for a gas consisting of "buffer gas atoms only; that is, T J^ and 

lH - lis • The classical Chapman-Snskog theory shows that, for 

such a gas and ^ are given by the expressions ^ ^ 

V BUcc * / - , cn 

(2.138) 

and 

where and 
are the buffer gas v/scosity coefficient and thermal 

conductivity coefficient respectively. These coefficients can be 

calculatcd with the use of the Chapman-Enskog approach of expansion in 

Sonine polynomials. As in the case ofh em section 2.3 , the second 

approximation of the Chapman-Enskog method yields the first nonvanishing, 

and therefore the lowest order approximations to ̂  and . It is 
a ofl found that the lowest order approximations to and are proportional^ 

so that the dimensionless Prandtl number 

is equal to a constant in this approximation. This constant is in-

dependent of the law of interaction between the particles and has a value 

of 2/3. 

The observed Prandtl number for monatomic gases varies little 

with T and is close to the predicted value: the value derived from 

experimental data for helium presented in Sears is close to 0.68. 

It is assumed here that the Prandtl number is constant and equal to 

the latter value. 
(3) The expression for *^used in this work is 

i t u / ^ o ' v ^ (2.111) 

which is consistent with the power law dependence of on the 

temperature predicted in the second approximation of the Chapman-Enskog 

method . 
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The work presented in this thesis is concerned, in part, with the 

description of the flow "behaviour of the "buffer gas in a closed cycle 

MHD power generator channel using equations (2.1^0 - (2.12,6). Limit-

ations on the computer resources available to the author necessitated 

the introduction of a number of simplifying assumptions, made below , 

which effectively result in a decoupling of equations (2.134) - (2.136) 

from the equations governing the plasma and electromagnetic field prop-

erties. Whilst these assumptions impose great restrictions on the range 

of generator conditions that can be studied, as well as suppression of 

some relevant physical processes, they do enable a clearer understanding 

of the remaining important physical processes to be obtained. In 

addition, the numerical techniques used to solve equations (2.134) -

(2.136) are quite different from those used to solve the other equations 

(see chapters 3 and 4), and these assumptions therefore facilitate the 

development and understanding of the numerical techniques employed, most 

of which can probably be extended without basic change to situations 

where some of the assumptions are not satisfied. It should be noted 

that the restrictions imposed on the range of generator conditions 

that can be considered because of these assumptions are consistent with 

those imposed because of the assumptions of negligible coulomb collisions 

and small ion Hall parameter made in section 2.3 • 

Denoting the characteristic value of any quantity by the subscript 

c one obtains from the general}zedOhm 's law, equation (2.132), for (it{I 

f < S * * 5 e (2.141) 

and 
Jc (2.142) 

for the characteristic values of the electric field and current density 

respectively. Equation (2.l4l) assumes the electric field to be 

produced primarily by fluid motion in the magnetic field as is usually 
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the case in the bulk of the flow in an MHD generator channel. 

Poiss^rfs equation 

V . e -- f ( t 0 (2.143) 

yields a characteristic value for the charge density £>C given by 

C E c 
t - x 

where the characteristic length scale Lc for the MHD generator considered 

here, taken to be equal to the length of a single segment of 

the generator, i.e., the segmentation length. 

It follows from the equations (2.1*41), (2.1*42) and (2.1*'*:) that 

w-fflffl-tm)'" 
and 

where it is assumed that 

UL ^ ' 

that is, that the time scale is much smaller than the time 

taken for the fluid to flow a distance equal to the segmentation length. 

Taking as typical values, L c = m/ , l Zoo m/sec, and 

<rec « 3 w*oj-wk f w e f i n d t h a t 

6» \ -7 
~ 10 urn 

so that the inequalities (2.1*45) and (2.1*46) are satisfied for the 

conditions of interest here. The inequality (2.1*46) shows that we can 

neglect the force acting on the fluid because of its net charge compared 

to the force resulting from currents (see equation (2.135))• 

Using equations (2.1*4-1) and (2.1*4-2) the ratio of the force 

to the inertial force can be estimated: 

I j A h I Lc^lcJf 
- 5 (2.1*47) 
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Th e parameter S is called the magnetic interaction parameter and the 

present theory is restricted to generator conditions for which 

5 « \ (2.148) 
This allows us to neglect the 7 A h force in equation (2.135)• The 

characteristic length Lc in (2.14-7) is to he taken to "be equal to the 

generator length. Taking as typical values, lc - 0* \} uc=\%00 m/sec, 

tf^l-tAVfil*, f pu-o.oxG ^ a n d B c ^ ^ r t w e f i n d 

that S i D-| , so that the condition (2.148) is satisfied for the 

conditions of interest in this work. 

From the electron energy equation, the form of which is considered 

in detail in section "2-5 (see equation (2.214)), the term in equation 

(2.136) representing the transfer of energy to buffer gas atoms in 

elastic collisions with electrons is estimated to be of order the electron 

ohmic heating; i.e., the energy gained by the electrons from the 

electromagnetic field! 

so that, in equation (2.136), 

/ 3 / A ^ f 

E-fC t * t e £ C t - T ) 

~ M'-Ttt •+£'>!* =£'>1 
The latter quantity, which is the total Jhmic fieating, is compared to 
the rate of change of buffer gas energy due to convection! 

t „ 2 I f A I Ac U? Be ( Lc 

if 

— st t l 
^ 4 k (2.141) 

where 
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2, n Z 
tJoc, U-c Pc 

^ - (2-150) 

The time ecalq "^defined by equation (2.150) is a characteristic time 

for changes in heavy particle temperature due to collisional energy 

exchange between the buffer gas atoms and electrons, and the inequality 

(2.14-9) states that these temperature changes can be neglccted if the 

time spent by the fluid in the region of interest is much less than T ^ • 

If the inequality (2.149) is valid for Lc equal to the length of the 

generator,the last two terms of the right handside of equation (2.136) 

can be neglected. Taking as representative values = 3 ^ Woj 

Uc- \%oo^/<lec f = lOT; p = $Z and L c = O.&w f it 

is found that O / ^ O ) ^ / c T 2 " f s 0 that the 

inequality (2.149) is satisfied for the conditions of interest in this 

work, and the aforementioned simplification of equation (2.13&) can be 

made. 

Whilst the inequality (2.146), which allows one to neglect the 

electrostatic force compared to the 3Ta J| force in equation (2.135)» 

is valid for a wide range of plasma conditions, the assumptions that 

the 33* J?? force in equation (2.135)» a^d the ion Ohmic heating and 

elastic collisional energy exchange terms in equation (2.136) be 

neglected are much more restrictive^and are justified only for conditions 

characteristic of some experimental generator systems. For conditions 

characteristic of MHD power generators designed for appreciable prod-

uction of electrical power, these assumptions are generally not valid; 

in particular, for such generators. 

The equations obtained from equations (2.134) - (2.136) after 

making approximations consistent with the above assumptions, when taken 

together with equations (2.137) ~ (2.1-!l), constitute a closed system of 

partial differential equations for what will be called the gas dynamic 

variables P, fj where the subscript h has been 
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dropped for convenience. These equations are completely decoupled from 

the equations governing the plasma and electromagnetic field variables; 

this ailoiii or.'« to consider a steady flow of the "buffer gas in the MHD 

generator, described by the following equations: 

} 

P fw.^M + Vf> - Jk 

a n d p f a r t k - ( u . V ) p = - V u +Jh'Va 

where equation (2.I53) is derived from equation (2.136) using 

(2.134) and the definition of the enthalpy A/, 

hk * £h+ Ph/fk 

which can be written in the form s- dj, 7" , where Cp 

specific heat at constant pressure. 

Boundary Layer Approximations 

The complex problem of solving the system of equations (2.151) -

(2.153) for the case of flow in an MHD generator channel is greatly 

simplified by making use of the well known fact that the flow is of a 

boundary layer character. That is, considering the velocity distrib-

ution in the channel, the retardingeffects of the viscous forces are 

confined to layers in contact with the channel walls, called boundary 

layers ( see figure 2.2 ). Considering one of the channel walls, the flow 

velocity increases rapidly from zero (in the absence of slip) at the 

wall to approximately the velocity along the channel centre-line at the 

boundary layer edge, which is at a distance £ , called the boundary 

layer thickness, from the wall in question. Whereas in the boundary 

layers velocity gradients are large and viscous forces predominate, 

in the region external to the boundary layers, called the core of the 

flow, velocity gradients are small and inertial forces predominate. 

(2.151) 

(2.152) 

(2.153) 

equation 

(2.1*0 

is the 
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Sim'. lar remarks apply to the temperature distribution; within the 

boundary layers, temperature gradients are large and viscous 

heating and thermal conduction are important, whereas in the core 

of the flow these effects are negligible and the temperature is 

approximately uniform and equal to the value at the channel centre-

line. 

As. shown in reference (21), for example, the equations governing 

the boundary layer flow, the boundary layer equations, can be obtained 

from the full equations (2.151) - (2.153), which are thereby greatly 

simplified, by making approximations consistent with the well known 

boundary layer assumption 

S/Lg<i, (2.155) 
which can be shown to imply that 

z l » 1 . 

where ^ - ̂ XcUpc / i s t h e Reynolds' number of the flow, the 

subscript c denotes channel centre-line value ( t̂ xc i-s "the component 

of velocity along the centre-line), and Lc is the characteristic length 

scale of variations of the gas-dynamic parameters along the channel. 

Whilst the boundary layer equations are much simpler in form than 

equations (2.151) - (2.153) they still constitute a system of nonlinear 

partial differential equations which must be solved numerically. If no 

further approximations are made, the numerical solution of these 

equations imposes great demands on computer time because of the three 

dimensions involved. In the present work, the problem has been 

considerably simplified by reducing it to the solution of two mathemat-

ically identical system^ of equations, each system involving two 

rather than three coordinates. This simplification follows from the 

fact that, as can be seen in figure 2.2, the boundary layers on each 

of the side walls are approximately two-dimensional with the exception 

of the corner regions. It is clear that an accurate description of 

the flow behaviour is possible by considering two-dimensional boundary 

layers on each of the side walls, provided corner effects can be neglected, 
which is the case for sufficiently small boundary layer thicknesses. This 
simplified model of the flow has been used for the 
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numerical work reported in this thesis even though the latter condition 

tends to he violated, for the flows and generator conditions of interest 

here (see chapter 3)• 

Considering, then, two-dimensional boundary layers on each of the 

channel side walls,the boundary layer equations for one of the channel 

side walls, obtained from equations (2.151) - (2.153) "by application of 

the condition (2.155), are as follows: 

i f M + 4 (2.156) 
^ o a * * 2 f / W ) — 7 

/>+ & + r / . j - * + l ( i + e j i / j (2.157) 

P-'O 
Zy (2.155) 

and 

y r ?p 

:r?u> h + cph - ax 
Crpu* rr + c,puu - «* r f <2-159> 

2. 
(Ci% 

i r> 

where t^and ((y are the x and y components of velocity (the x-axis is 

taken to be parallel to the channel centre-line and.the y-axis is 

perpendicular to the wall with the origin at the midpoint of the wall), 

and use has been made of equations (2.140) and (2.154). Equations 

(2.156) - '(2.159) are to be supplemented by the equation of state, 

equation (2.137). Equation (2.158), which is derived from the y-component 

of the momentum equation (2.152) > shows that the pressure is uniform 

over the channel cross-section and can only vary with x. The quantities 

£ and ftfcappearing in equations (2.157) and (2.159) represent the 

effects of hydrodynamic turbulence, which is briefly discussed below. 

The steady state form of equation (2.156) means that one can 

define a fluid stream function Yftd/) such that 

(2.160a) 
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and 

(2.l60b) 

Using equations (2.160) and (2.I37), the variables iî  t (l̂  and ̂  can 

be eliminated from equations (2.I57) and (2.159), which then assume 

the forms 

£ f7 o / i i l f J f z z f h 
s ) ay v dj -f + f y h i? y * y ?f2-161) 

and 

i + 

It is clear from the symmetry of the problem that equations (2.156) • 

(2.159) or (2.l6l) and (2.162) need only be applied between each of two 

adjacent walls and the centre-line. For each wall, separate consider-

ation of two different regions, one for the boundary layer and one for 

the inviscid core of the flow has been avoided, the boundary layer 

equations being applied in the whole region between the wall and centre-

line . 

One restriction the present theory is subject to is that the angle 

of divergence of the walls must be small. This is because in the 

employed cartesian coordinates the x-axis is parallel to the centre-line 

and not to the walls of the channel. In MHD channels, the angle of 

divergence is generally small. 

Effects of Turbulence 

The two dimensional boundary layer equations obtained from equations 

(2.151) - (2.153) "by making approximations consistent with the boundary 

layer assumption (2.155) are equations (2.156) - (2.159) with£«-0 

These equations describe laminar boundary layers and apply only in an 

entrance region of the channel where everywhere less than a 



certain critical value fie,It * Sufficiently downstream of the channel 

entrance usually exceeds ficnt and the flow becomes turbulent due to 

hydrodynamic instability. The turbulent flow is characterized by small 

irregular fluctuations of the gas-dynamic parameters, superimposed on 

the mean flow parameters, where the mean is defined as a time average 

taken over a time interval long compared to the time scale of the 

fluctuations. It is shown in reference (22), for example, that the 

boundary layer equations (2.156) - (2.159) are satisfied by the mean 

flow parameters provided that an additional turbulent stress T*and a 

turbulent heat flux are introduced into equations (2.157) and (2.159). 

Physically, these quantities represent transport of mean flow momentum 

and energy by the turbulent fluctuations. It can be shown 

that the turbulent stress and heat flux are given by 

T " - ( f (2.163) 

and _ ty^ptj T ' ) f ~ ( f ^ y (2.164) 

respectively, where the time average of any fluctuating parameter £ 

is denoted by or \ ^ and the prime denotes fluctuations; for 

example, 
Uy = <m x> 

In writing down equation (2.164), use has been made of the definition 

of enthalpy h given by equation (2.154). In addition to transport 

of momentum and energy, there is a transport of mass by the turbulent 

fluctuations, which can be represented by an additional turbulent 

diffusion term in the mass continuity equation for each species of the 

plasma. In section '2.5') these terms will be derived for electrons 

and neutral seed atoms. 

The turbulent fluxes in the y direction, namely the stress — 

and the heat conduction component Cp (ĵ  tij (see equations (2.163) 

and (2.164)) are additional unknowns that need to be either expressed 

algebraically in terms of the mean flow fields, or solved for by 
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extending the system of equations (2.156) - (2.159) to include 

equations for these additional unknowns. The first approach is ur«d 

in the present work, where the well known assumption is made that, in 

analogy to fluxes in laminar flow, the turbulent fluxes can "be related 

to the gradients of the corresponding flow quantities in terms of eddy-

viscosity and eddy-conductivity coefficients. As indicated in reference 

(23) there is no a priori physical justification for this assumption 

and one has to employ phenomenological theories, such as that formulated 

in reference (ll), for expressing the dependence of the eddy transport 

coefficients on the flow field. In contrast, the second approach, which 

is formulated in reference (23), uses additional transport equations to 

actually calculate the turbulent fluxes and thus avoids any a priori 

need to endow the fluid with fictitious eddy transport properties. 

This approach must, in general, be used for an accurate description of 

the effects of turbulent fluctuations on the mean flow fields, partic-

ularly when the interaction between the flow and the electromagnetic 

field cannot be neglected. The equations for the turbulent fluxes 

derived in reference (23) account for electromagnetic effects and have 

been used by the authors to obtain very accurate numerical predictions 
Ch) 

of open cycle MHD power generator performance characteristics. 

It is shown in reference (23) that the equations derived using the second 

approach reduce to the equations of the eddy transport coefficient 

approach used here when convection and diffusion of turbulent fluxes, 

as well as electromagnetic effects, are omitted from the equations. 

Assuming then that the turbulent stress and heat flux can be related 

to the gradients of the corresponding flow quantities in terms of 

eddy-viscosity and eddy-conductivity coefficients, £ and , we can 

write 
(2.165) 
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and 

/ / /' \ 
i = ( f ^ h ) ( 2 . 1 6 6 ) 

where Uy and T" on the right hand eides of (2.165") and (2.166) are mean 

values. Defining, in analogy to laminar flow, the turbulent Prandtl 

number f}-tby the equation 
ecr 

?n = \ ' (2.167) 

equation (2.166) can be written In the form 

(2.168) 

Equations (2.157) and (2.159) follow from averaging the laminar boundary 

layer equations and using equations (2.165) and (2.168) to eliminate 

the averages an(* C ^ ^ » H at is assumed 

that all other statistical correlations, in particular » a r e 

negligible. 

The eddy transport coefficient theory employed in this work is 

that formulated by Cebeci which is applicable to compressible 

flows with heat and mass transfer and is quite accurate for a wide 

range of flow conditions. Mass transfer is found to be an important 

factor in the applications considered here (see section $.5 ). The 

formulas of reference (ll) are presented and briefly discussed below. 

In the theory of reference (ll), the turbulent boundary layer is 

regarded as a composite layer characterized by inner and outer regions. 

The existence of these two regions is due to the different response of 
siWss. 

the fluid to shear and pressure gradient in each region. In the inner 
1 (22) region, an eddy viscosity£• based on Prandtl's mixing length theory-

is used: 

l - ^ P fy/^J*! W ^ l , (2.16*) 

where the distance 0.*4y is the mixing length, and the damping factor 
2, 

[ i - e x p (-y/A}] 
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accounts for the fact that the vanishing of the turbulent stress at a 

wall causes damping of turbulence near the wall. In fact, in a thin 

layer next to the wall, called the laminar sublayer, the turbulent 

stress is negligible compared with the viscous stress and the flow is 

nearly laminar. The damping length A is derived in reference (ll), where 

it is shown to be given by 
M, } 

(2.170a) A = HtyTuf1) 

where 
fin*) 

tu>r v > 

and N is given by 

(2.170b) 

+ vy 

the subscript &> denoting a wall value. 

The eddy viscosity in the outer region is given by 

£a =o.oiys 

(2.170c) 

(2.171a) 

where the ' subscript t denotes the value of a quantity at the boundary 

layer edge, and / is the Klebanoff intermittancy factor given by the 

formula 

r - r ( | ) ' ] - (2.171b) 

The boundary layer edge velocity in equation (2.171a) is here 

taken to be the value at the channel centre-line and the formula (2.171a) 

is applied up to the centre-line. From (2.171b),the eddy viscosity 

rapidly decreases with j for ij > 8 

The turbulent PrandtUnumber defined by equation (2.167) is taken to 

be constant and equal to 0.9* 
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Wi th the eddy viscosity and turbulent Prandtl number specified,the 

formulation of the gas-dynamic problem is completed for a given pressure 

distribution by specifying the boundary conditions to be satisfied by 

the boundary layer equations, and the initial gas-dyr/e-'!c profiles. 

The initial gas-dynamic profiles will be discussed in section 3*3 

as part of the numerical procedure used to solve the boundary layer 

equations; the boundary conditions are discussed below. 

Boundary Conditions 

The boundary conditions consist of conditions to be satisfied at 

the walls and at the centre-line, since equations (2.156)- (2.159)» (2.161) and 

(2.162), are to be applied in the region between a wall and the centre-

line. For a given vail, the boundary conditions at the wall (5 = °) 

are 

(a) No slip: 

c2.1?2) 

(b) Specified mass transfer rate: 

(2.173) 

The quantity could be a function of the pressure" which is 

calculated simultaneously with the solution of the equations (see below). 

In such cases, the functional dependence of 

must be prescribed. This is discussed further below, 

(c) Specified Wall temperature or hsaat flux rate: 

(2.174a) 

the latter condition being of the mixed type, since ly-fy 

The boundary conditions at the centre-line are the symmetry 

conditions 
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a ni 

(2.175a) 

(2.175b) 

Calculation of Pressure Distribution 

Finally, we note that the boundary conditions expressed by 

equations (2.172) - (2.175)» together with the initial gas-dynamic 

profiles, are sufficient to solve the boundary layer equations only if 

the pressure distribution j>(x) is prescribed. However, the pressure 

distribution within an MHD channel is strongly influenced by the way 

in which the boundary layers develop along the walls, so that it cannot 

be specified a priori. The pressure distribution can be determined from 

the requirement that mass be conserved. Neglecting three-dimensional 

corner effects, the mass flow rate in the channel is given by 

where the subscripts A and B refer to two adjacent walls of lengths H 

and W respectively, the integrations are taken along the lines 

connecting the midpoints of the walls and the centre-line (for a given 

cross-section), and the subscript c refers to the centre-line value. To 

express m, in terms of the values of y at the extremities of the two 

intervals use has been made of equation (2.160b). As a result of the 

assumed mass flow through the walls, iv is not constant, its rate of change 

being given by 
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If the mass transfer rates and u) were 

specified functions of X , equation (2.177) could "be integrated and the 

value of f l at each X determined, provided that the value of M> at 

some initial x-station is prescribed. The pressure could then be 

obtained from equation (2.176). However, as mentioned above, the mass 

transfer rates are in some cases functions of the pressure and the mass 

flow rate tA, must be treated, like the pressure, as an unknown parameter 

governed by equation (2.177). in fact, this is the case for the 

application of the theory to the actual experimental MHD channel 

considered in chapter 3« 
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2 .5 th-i; plaoma and electrical ft.'id equation" 

To complete the formulation of the two-temperature fluid model of 

the partially ionized plasma in sn electromagnetic field, equations 

governing the seed atom density, the electron density, the electron 

temperature2 and the electromagnetic fields must be specified, assuming 

the plasma to be qua.s"-neutral. These equations, which will be presented 

in this section, will later be solved numerically to obtain a description 

of the local plasma and electrical behaviour as a function of time in a 

single segment of a closed cycle MHD generator. A number of simplifying 

assumptions have been introduced in order to simplify the theoretical 

and numerical models. These assumptions include: (i) neglect of all 

variations parallel to a uniform constant magnetic field, which is 

applied in the z-direction, perpendicular to the insulator side vails of 

the MHD channel (the effects of boundary layers on the insulator side 

walls are neglected); (ii) neglect of variations of the gas-dynamic 

parameters in the stream-wise x-direction, and neglect of the cross-

stream velocity component tt»j . In other words, the gas-dynamic 

parameters are considered as given functions of y obtained from the 

solution of the boundary layer equations for the electrode side walls. 

These assumptions will be further discussed in section 2.6 . 

(a) Electron and Neutral Seed Atom Continuity Equations 

The electron, neutral seed atom and ion number densities are 

governed by the continuity equations 

dV[e/di f V'*e H+ V. VeTJe = , (2.173) 

f Vvt^U + = 9 (2.179) 

and + V.n;J£«= k 9 (2.180) 

which follow from the general species mass conservation equation, 

equation (2.1). The quantities n€f and A,[ are the net volumetric 

rates of production of electrons, neutral seed atoms and ions respectively. 

Because charge is conserved 
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ve - > (2.181) 

and it follows from equations (2.178) and (2.180) that 

^ f V,pcii t V . 2 > 0 . (2.182) 

It has been shown in section that the convection currcnt density 

p can "be neglected in comparison with the conduction current density 

X (see the inequality (2.145)), so that J may be identified with the 

total current density and equation (2.182) written in the form 

^tV.J=0. (2-183) 

The charge density and the current density in the fluid act as sources 

for the electromagnetic field quantities £ and which are governed by 

the 
Ampere-Maxwell and Faraday relations 

( i f Co dv) (2.184) 

and 

v r f ' - h " (2.185) 
ecpwitfn 

Equation (2.I83) can be derived by taking the divergence of (2.184) and 
1 using Pcfc.ssons 

v f = ^ a o . (2.186) 

"n equation 

t o e c Co 
~ = •> (2.18?) Ill Cdc 

where the subscript c denotes the characteristic value of a quantity, 

and use has been made of the simplified form of Ohm's law J V &>e E. 

If the restriction 
(2.188) 
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is imposed on the time scale ̂ equation (2.I87) shows that the displace-

ment current k/Jt can be neglected compared with J* and equation 

(2.1$') reduces to 

V/ife Z / ° I , (2.189) 

from which 

The condition (2.188) may be written as 

(2.191) 
% 

cot 
where cjp is the plasma frequency (v^e /GOW^ ) . If this is taken 

together with the restriction 

(2-192> 
required for validity of the generalized Ohm's law in the form of 

equation (2.I32) ^ ^ one has the requirement that 

(2.193) 

which is the well known condition that charge neutrality be maintained 

in the plasma at least for characteristic length scales of variation 

larger than the Debye length ^ ^ . Typical values of , and-

I/Veil are SYftT^j^c $X\o'^Sec qmA respectively (the 

time scale bc is taken to be the growth time of the electrothermal 

instability),so that the conditions (2.188), (2.I92) and, therefore, 

(2.193) are well satisfied. It follows that equations (2.I89) and 

(2.I9O) are valid and that the plasma may be assumed quasineutral; 

i.e., itii'jv 

Assuming, as is "usually the case for partially ionized gases. in 

MHD channels, that flow occurs in a constant uniform externally applied 

magnetic field, the derivative dQ/dt can be finite only because of 

fluctuating plasma parameters which produce an induced magnetic field. 
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If the relevant time dependent phenomenon is the electrothermal instab-

ility estimates based on the linear theory of the instability show that 

the induced magnetii 

(2.ic5) then become: 

(7) ( p ) the induced magnetic field can usually be neglected Equation 

(2.19*+) 

Returning to the continuity equations(2.17?)-(2.l80), since the 

plasma is assumed quasi neutral, the ion continuity equation (2.180) is 

not required. Using equations (2.7*4) and (2.131) the electron and neutral 

seed atom diffusion fluxes can be written as 

X I ̂  *v 
% 

and 

--- w K t y f ~ > (2.196) 

since 

Eliminating the diffusion fluxes from equations (2.178) and (2.179) 

using equations (2.195) and (2.196), one obtains the equations 

-f V,v1ei-V. vyiVifetpc)-*e , (2.197) 

5m / i \ 

where use has been made of equation (2.I9O). 

As mentioned in section one has, in addition to laminar 

diffusion represented by the quantities n a n d 71̂ X̂f given by 

equations (2.195) and (2.I96), transport of particles of various species 

by the turbulent fluctuations which can be represented by an additional 

term in the continuity equation(averaged over turbulent fluctuations) 

for each species. To determine the turbulent diffusion terms in 

equations 
(2.197) and (2.193) the 

general species conservation of 

mass equation is considered; that Is, the equation 
+ + (2.199) 
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Averaging equation (2.199) over turbulent fluctuations and neglecting 

all correlations between fluctuating quantities with the exception of 

^fiilAyy » a n equation for ^ of the form 

•p. + + t ( f 4 t t y ) > + = ̂  (2.200) 

is obtained, where the laminar diffusion term an(i "the 
« 

source term p^ are to be evaluated with the mean values of fluctuating 

quantities. Transport of species t( particles by turbulent fluctuations 

is represented by the term 

^ <T> (2"201) 
of equation (2.200), the quantity 4 f J ^ y P being 

the turbulent diffusion flux of species ct particles. Assuming that 

this flux can be related to the gradient of the average of the mass 

fraction fk/{> terms of the eddy-diffusion coefficient^, 

we can write 
(2.202) 

In addition, we assume that a constant turbulent Schmidt number 5-p can 

be defined such that 

s i - s r
 ( 2 - 2 0 3 ) 

where c Is the eddy viscosity. Using equations (2.202) and (2.203), 

equation (2.200) can be written in the form 

Jfrc 
^^ 1 ^ brav v o 1 ' " i /""v (2.204) 

where bars denoting averages have been omitted for convenience. 

Dividing equation (2.204) throughout by , and noting that for 

the small seeding fractions considered here pCk pl^ , the 

species <C continuity equation is obtained in the form 

2 ( ^ O i / n 

+ r j ^ V j i V . r u Y ^ ^ (2.206) 
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Fron; equation (2.206), it follows that the electron and neutral seed 

atom continuity equations averaged, over turbulent fluctuations can be 
written as £ 

J + U x Jx [ ( v i p r j j y j - V ' fe) = He (2.207) 

f - L ) — " ) , o - ^ ) 

^ f ^ I I J v-

where in (207) the condition Ve 1 Ht' has been used to write k̂ yje fZk pf. 

The representation'of turbulent diffusion defined by equations 

(2.202) 

and (2.203) is In agreement with that used in references (25), (17) and 

(26). The value of £y is taken to be 0.9 as in the latter references. 

The importance of turbulent diffusion in equations (2.207) and 

(2.208) is measured by the ratios 

£>= i / (y 
and 1 

pi * ( c p s r j / ( ^ y - pi 

From the numerical solutions of the boundary layer equation?. 

chapter 3, the ratio , which (for slight seeding) is a function only of 

the gas-dynamic variables, can be calculated as a function of distance 

from the electrode wall at any particular x-location along the channel. 

For the x-location considered in the numerical solution of the plasma 

and electrical equations in chapter 5» "to be specified in chapter 3, 

it is found that,like the eddy viscosity, ^ is close to zero near the 

wall and the electrode wall boundary layer edge, but has a maximum value 

of due to the eddy viscosity having a maximum at a distance of 

about S/S'Z l.&wnv from the wall. Clearly, turbulent diffusion 

is an important effect. 

In equations (2.207) and (2.208), the convection terms have been 

approximated in accordance with the assumptions made at the beginning of 

this section, which mean that U*# ̂  trĈ  ( y ) and cfy 2 Ot 
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Th e formulation of the electron and neutral seed atom continuity 

equations is completed once the rate terms He and have been 

specified. It is clear that 

% 

so that only the form of V)e need be considered. For the ranges of 

electron temperatures and electron densities considered here, the 

relevant atomic interaction processes in the partially ionized gas are 

the processes of ionization and excitation of bound electronic levels 

of seed atoms and their inverses, resulting from either nonela. r' c 

collisions of the seed atoms with free electrons or from the emission 

and absorption of radiation . Furthermore, electron densities are 

sufficiently large for the collisional processes to dominate radiative 

processes and can he written .in the form 
2 4 - 1 

We = -"ej (2.209) 

where 
( fy)Z 

B 1 N - J ^ i i h » (2.210) 

and is the threerbody recombination coefficient. The 

quantity ( ^ e " ^ h a I is the ratio , when local thermo-

dynamic equilibrium prevails (_ He - ty i s given by Saha's equation 

where Vi is the ionization potential of the ground state. For caesium 

atoms, 

Vi -

Combining equations (2.209), (2.210) and (2.211) one obtains the express-

ion $/2 
r fZrwitkeTk) W 

( - w j e (2.212) 
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An approximate formula for d (Te) has been derived by Hinnov and 

Hirschberg. They found that e< (_ Te) is given by the well known 

approximate formula 

o(CTe)y l.o1yio~*\ H ' ^ ^ / t o C , (2.213) 

which is valid for ^ Zooo*!c 

(b) Electron Energy Equation 

The electron temperature is governed by the electron energy 

equation, which is obtained from equation (2.3) in the form 

Pf-fal^H* fkTZV.U -iV.qe-Te.fi V^fT-T, 

where the term -( . . . J)m / i-fr i n equation (2.214) has been 

neglected as small and the electron viscous stress Te, has . been 

neglected in comparison with p ^ . In deriving equation (2.214) 

from equation (2.3) use has been made of the expression (2.3l) in 

which only collisions between electrons and buffer gas atoms are 

considered^seeding being assumed to be slight. 

As in the case of the continuity equations, when the electron 

energy equation is averaged over turbulent fluctuations, terms appear 

representing transport by turbulent fluctuations. To derive these 

terms equation (2.214) is written in the form 

+ V.^Te-U-Vfr f V.qe - J e . f ' <
2
'

2 1
5 ) 

Time averaging equation (2.215) over turbulent fluctuations, the second 

term of the lqft hand side of the resulting equation can be written as 

fp </««>• g, f- 6(f,*f!)(f<+%')(«*tt'iy 

(2.216). 
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where all correlations between fluctuating quantities have been 

neglected with the exception of the correlations ^y ^ and 

• Making use of the relations (2.166), (2.167), (2.202) 

and (2.203), these correlations can be written in the*forms 

/ 1 ^ 
( r e ' u j ° - _ p g 

and 

< f j u y ) = sT v ^ 

and equation (2.216) can be written as 

5+u , 1 5li „ _ _ _ 
h 7 v - A c T € - / - ft- l e " 

f A 3>j 

L I ( f t 

5% a 

n . a 

J s 

Y U J 

where use has been made of the approximations V]̂  ani f—Pk. 

Using equation (2.217). the time average of equation (2.215) over 

turbulent fluctuations can be written as 

l / w J i - n F - s k < ~ 
Pfrl J '"A./'Sr g ) 

-+ ̂ - 5 . * ife (r-t.j y- afe ^ (2-

where bars denoting averages have been omitted for convenience. 

The term y\e ^k\ f^V.U^ h a s "been neglected in equation (2.215) 

in accordance with the assumptions made at the beginning of this 

section, which imply that M x L L a n d "that Uy p . It 

also follows that 

The second and third terms on the left bar.d side of equation 
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(2.218) represent turbulent electron thermal conduction (transport of 

electron enthalpy by turbulent fluctuations of ) and transport 

of electron enthalpy due to turbulent diffusion; i.e., due to transport 

of electrons by turbulent fluctuations of U j . . The forms of these 

terms are in agreement with those used in reference (17); the second 

term on the left hand side of equation (2.218) is omitted in references 

(25) and (26). 

For the formulation of the present physical model the simplified 

expression (2.113) is used for the electron heat flux. This expression 

can be written in the form 

Since, as stated at the beginning of this section, all variations 

parallel to the magnetic field are neglected so that is 

perpendicular to t . Also, 

^ ( v y , 7 

so that, from equation (2.219), since »le 

— 7 - >x\ Otfi) (2.220) 

^ [ o t f f l l ^ 1 ^ d* J . ) 

where the relation between and J" given by equation (2.]31) has 

been used to eliminate {Ji from equation (2.219). 

The ohmic heating term & in equation (2.215) may, using the 

relation between and expressed by equation (2.125b), be 

written in the form 

, i f - Y t 
(2.221) 
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Th e assumptions made in order to derive the simplified generalized 

Ohm!$ law given by equation (2.132) allow Ee to be replaced by the 

total current density J in equation (2.221), which then reads 

ae el 
(2.224) 

Finally, the term , giving the net volumetric rate of gain 

of energy by free electrons due to inelastic collisions must be speci-

fied. Assuming, that the relevant, inelastic collisions are with seed 

atoms in various levels of electronic excitation that communicate 

energetically only with the free electrons and by emission and absorption 

of radiation, can be obtained by considering an energy balance 

for the excited atoms. It can be shown that ^ ^ 

where ft is the local net rate per unit volume of radiant energy loss 

from the plasma and £; Is the ionization energy of the ground state of 

a seed atom. It can be shown in the same way that the total seed atom 

number density and average seed atom energy per unit mass are approx-

imately equal to the contributions to these quantities from seed atoms 

in the ground state. This was assumed earlier in section 2.2 . 

Replacing the quantities 3r. and //e in equation (2.218) by 

their expressions given by equations (2.220), (2.224) and (2.225), 

the electron energy equation assumes the form 
f i g s j i f r i n fks * 

z> 

- I - . 

(2.226) 

Eliminating the derivative Vvte/^lA from equation (2.226) with the help 
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of equation (2.207), the electron energy equation can be written as 

„ \ „ f 4 ? r -7 7 (2.227) 

where the electron thermal conduction term expressed in terms of the 

given cartesian coordinates is given by equation (2.220). The term 

2)7e /2-fr on the left hand side of equation (2.227) has 

been neglected as small; it being assumed that /e instantaneously 

relaxes to changes in the plasma and electrical field parameters. 

This Is referred to as the "temperature relaxation approximation", 

and is made here in order to eliminate the heavily damped fast thermal 
(27) 

mode of electrothermal waves v , which is of little physical signifi-

cance here and imposes severe restrictions on the choice of time step 

used in the explicit numerical integration of the continuity equations 

(see section 4.6 and appendix C). The fast thermal mode can also 

be eliminated if, instead of the temperature relaxation approximation, 
Saha equilibrium ( ̂  - 0 ) is assumed This is the approach used 

(8) 

by Uncles x } and requires restriction of conditions to those for which 

the electron temperature is very large. In addition, the cross-stream 

diffusion terms in the electron and seed atom continuity equations must 

be assumed negligible so that the effects of the plasma wall interactions 

discussed in section 2.7 on the bulk behaviour of the plasma in 

an MHD generator cannot be considered. In addition to the inclusion 

of the effects of turbulent velocity and temperature boundary layers 

(velocity and temperature variations and turbulent transport phenomena), 

A 
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finite ion and seed atom diffusion fluxes, and plasma-wall inter-

actions (see section' 2.7 )» it is in the use of the temperature 

relaxation approximation, rather than the assumption of Saha 

equilibrium, that the present work differs from that of Uncles * . 

As is shown in appendix D, the radiative loss term on the right 

hand side of equation (2.227) cannot in general be exactly expressed in 

terms of local plasma properties and their gradients. However, an 

approximate expression for the radiative loss is derived in appendix 

D, where, using this expression, it is shown to be negligible compared 

with electron thermal conduction. Therefore, radiative energy loss has 

been neglected in this work. 

The importance of the first, second and third terms on the left 

hand side of equation (2.227), which represent turbulent.transport 

processes can be estimated in the same way as in sub-section (a), in 

which the importance of turbulent diffusion processes in the continuity 

equations was estimated. Since the first term comes from the electron 

continuity equation, and the third term is of the same order as the 

first term, the first and third terms need not be considered here, 

their order of magnitude relative to the laminar diffusion term having 

already been estimated in sub-section (a). The second term represents 

turbulent thermal conduction and its importance relative to the 

laminar electron thermal conduction is measured by the ratio 
/y£__ / J * 

As in sub-section (a), the latter ratio is estimated by considering 

the gas-dynamic profiles used in the numerical solution of the plasma 

and electrical equations. Taking 2vOO°k a n d 

% =• 0>")T it is found that the maximum value of the ratio is 0.1, 

and that the ratio is close to zero near the wall and near the centre-

line. Turbulent thermal conduction is therefore of much less importance 
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in the electron energy equation than is turbulent diffusion in the 

continuity equations. 

(c) Electrical Field Equations 

The equations governing the electrical fields, that is the current 

and electric fields, are the charge conservation, equation and Faraday's 

law, which, for the plasma and electromagnetic field conditions 

considered in this work, have the approximate forms of equations (2.190) 

and (2.194). Since, in accordance with the assumptions made at the 

beginning of this section, the current flow is perpendicular to a 

uniform magnetic field, taken to be in the z-direction, equation 

(2.190) implies that a current stream function Y can be introduced 

such that 

j > - v ^ (2.228) 

from which the components of J~can be written as 
ft 

* = ~ } 

The generalized Ohms' law (2.132), Faraday's law (2.190) and 

equation (2.228) axe cast into a single scalar differential equation 

for 

c>f 
(2.229) 

where the coefficients are given by 

I I I 
I N u U (2.230a) 

and 

fie i / I ] f - 11 
Pj \ r e j 

^ £ U j 9* n 

(2.230b) 

(2.230c) 
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2.6 bquivd.ary conditions for THE PLASM AI-IO FTECrPICAT. equations 

For given gas-dynamic fields, equations (2.207), (2.208), (2.227) 

fields Tig, ^"T^and . These equations are of mixed elliptic-parabolic 

type, requiring specification of initial conditions for 7if and vi^ , 

together with boundary constraints for Me, n* , le aryi ^ ' T h e 7-nitial 

conditions will be discussed later in section *4.5 » attention in the 

present section being confined to the boundary constraints. 

The present work is concerned with the study of plasma and elect-

rical behaviour in the main part of a linear segmented electrode 

channel. The main part of the channel is the region where inlet 

relaxation effects have subsided so that the plasma and electrical 

fields are nearly periodic functions of the streamwise coordinate X; 

with period the length L of one electrode segment. When the main part 

of the channel is considered, the geometry of the problem is that of 

one electrode segment. Within this region, the gas-dynamic fields 

T ; p and u, do not vary appreciably in the x-direction and may be 

considered given functions of y determined from the solutions of the 

boundary layer equations of section 2.*4 . 

An individual segment of the segmented electrode channel is shown 

in figure (2.3). The segment has height H, width W, and length L, 

and occupies the region p^ x.^ I- , and O ^ Z ^ W * 

It is assumed that each electrode pair is connected externally to a 

resistive load • The boundary conditions for the electrical 

quantities are 

and (2.229) constitute a closed system of equations for the unknown 

(i) 

(ii) on the insulators AB, CD, EF, GH, 

(m) vF* Rl jfj3hix*Itu y 
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I is the total current through an electrode pair, and the voltage drop 

across the plasma between the electrodes, the Faraday voltage is 

given by 

VF ^ - Af + A^ (2.231) 

v:here Aj/j^and u i ^ are the anode and cathode sheath voltage 

drops respectively (see section 2.7 ). Using the generalize! Ohm's 

law (2.132) and equation (2.223), equation (2.231) and condition (i) 

can be written in the forms 

vp = 4 * i 
and 

„ i d , a 
^ ^ d x ^ t y (2.233) 

respectively, where - d Y 

For the insulator walls atjc-p a n d y , c cndition (ii) requires 

that , yielding = constant. Assuming that the 

electrode pairs are electrically separate, there can be no net current 

fjow in the x-direction. This is ensured by setting y ^ [ A 8 > ) ^ ^ 

and ^ ( C b ) yr(Cr^) - / » w h e r e ^ o - 0 arbitrarily. From 

equation (2.223) and conditions (iii) and (iv), it follows that 

+ t / » j (2.2*1) 

= v o h - ^ + i m ( 2 ' 2 3 5 ) 

In this work it is assumed that I is a fixed prescribed quantity; i.e., 

a constant current is considered to be applied to the plasma as might be 

the case in practice if the section of generator considered were a preionizer 
Finite interaction between the external load circuits and the plasma 

(8) is included in the work of Uncles , but is neglected in the present work. 
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The periodicity condition (iv) is also imposed on the plasma 

fields. Thus, 

• U M V ^ f x + L , ! ) ) (2.236a) 
(2.236b) 

and (2.236c) 
t = iel^+L,-)) 

The boundary constraints on the plasma fields at the insulator 

and electrode walls are obtained from an analysis of the plasma sheaths 

near the walls and plasma-wall interactions. This analysis is presented 

in section 2.7 • 
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2.7 electrostatic 8heaths and eleptr0de-pia5ka interacttonc" 

In order to obtain the wall boundary conditions to be satisfied 

by the continuity equations (2.207) and (2.208), and the electron 

energy equation (2.227), interactions between the walls and the 

plasma,and the description of plasma behaviour in regions adjacent to 

the walls, must be considered. Much of this section is concerned with 

the interactions between electrodes and the plasma which aire dependent 

on the presence of electrostatic sheaths adjacent to the electrode 

surfaces, and on the processes of emission, desorption and absorption 

of electrons and seed particles by these surfaces. Interactions 

between insulatoifeurfaces and the plasma are much less complex and 

wTill be considered after a detailed model of the plasma-electrode 

interactions has been formulated. 

Three regions are assumed to exist near an electrode surface. 

The region nearest the wall is a region of significant departure from 

charge neutrality; that is, the electrostatic sheath. The sheath is 

assumed to be collisionless; that is, ion and electron collision 

effects are assumed to be negligible in the sheath. The extent of 

this region is the sheath thickness , where, from Poisson's equation, 

X <v (2.237) 

which can be written in terms of the Debye length Oid = ^ g t ^ 

( 2 - 2 3 8 ) 

For ion and electron collision effects to be negligible in the sheath 

it is necessary that the sheath thickness X smaller than the 

smallest mean free path, which, in the case of electron-buffer gas 

atom collisions dominant, is the ion mean free path. In general, the 

mean free path of species oC particles, when collisions between 

species oC particles and buffer gas atoms are dominant, is given by 



- 96-

| f mb \/2 

^ c \ + (2.2:0 

where G ^ h is the momentum transfer cross-section for collisions 

between species K. particles and buffer gas atoms. The condition 

for electron and ion collision effects to be negligible in the sheath 

can be written in the form 

|c| « % 
Taking as typical values, 1 € - 2C00\ ; Htf-IO ?vf* LXl® j and 

using equation (2.237), the condition (2.240a) can be satisfied only 

if 

\M>\ < > , , . 1 ' ^ (2.24ct>) 

— / < 0.03 
kle I 

The values of the lengths and Ll}£ot the above values of plasma 

parameters are 

/ u ^ j t f ^ and u = (2.241) 

It is apparent from condition (2.240b) that (2.240a) can be 

satisfied only for small sheath voltage drops. For larger sheath 

voltage drops such as might occur in regions of the cathode surface 

as current saturation is approached, the condition will not be satisfied 

unless the electron density is larger in those regions. It should be 

noted, hov:ever, that the value of electron density used in ma1: i ng the 

above estimates is the Saha equilibrium value at the given electron 

temperature. In reality, depletion of electrons and reduction of 

electron density below the Saha value can be caused by diffusion in 

regions of large electron density gradients. As a result, the restric-

tion oiv the size of A ^ may be more severe than condition (2.240b) 
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suggests. It 5s clear that, in order to obtain accurate results, 

application of the present theory must be restricted to cases in which 

the magnitudes of the sheath voltage drops are small. 

The second region is the transition region, which acts as a 

buffer region between the collisionless sheath and the collision 

dominated region. This region extends from to a distance equal to 

several times the maximum mean free path. The maximum mean free path is 

the electron mean free path; a typical value of which 'was given as 

one of the estimates (2.2*4l). 

The third region is the continuum region; this is the outer collision 

dominated region where the particle distribution functions are close to 

Maxwellians and the behaviour of the plasma can be described by the 

continuum continuity and electron energy equations derived in section 

2.6 . 

The following assumptions are introduced to simplify the model: 

(i) In the transition region the velocity distributionsof particles 

moving towards an electrode wall are half Maxwellianh temp-

eratures Tvo (wall temperature) for the ions and neutrals, and 

for the electrons; the variations of these temperatures 

across the transition region are negligible, 

(ii) Ionization, recombination and convection effects are negligible 

in the sheath and transition regions, 

(iii) The sheath and transition regions are locally one-dimensional, 

(iv) The magnetic field has no effect on the particle motion in the 

sheath. 

(y) The electron heat flux, the electron density and the seed atom 

density are approximately constant across the transition region. 

Since the continuum region is collision dominated for all particles, 

the particles entering the transition region have half Maxwellian 

velocity distributions, and it is assumed in (i) that the perturbations 
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of these distributions duo to the relatively few collisions in the 

transition region can be neglected. 

Assumption (ii) is taken to imply that, as in the case of a 

stationary collision dominated plasma in a steady state, particle 

fluxes are constant across the transition region. The continuity of 

fluxes follows from an assume! smallness of the characteristic diffusion 

time compared with the time scales of variation of the plasma properties 

in the regions of plasma far removed from the electrode, surfaces. 

This allows one to formulate relaxation free boundary conditions for 

the continuity equations, without detailed consideration of the 

transition region. 

For assumption (ii) to be valid it is necessary that the extent 

of the sheath-transition region, which is about equal to tp , be 

i*-

smaller than the average distance I traversed by an ion before it 

recombines, convection effects being negligible because of the small 

considerations based on the random walk concept suggest that I be 

flow velocity near the wall and the small sheath thickness, statistical 

.ons 

written as 

i (2.242) 

where V^ is the collision frequency for three body recombination, 

which is obtained from equations (2.209) and (2.213) in the form 

vA oltTe)Vc * (2.243) 

Taking as typical values, T?e - fp'^W* ~Je*ZOOOefC7 /- IS00*K and 

^ lfyiQ*^ y v f ^ , it is found from equations (2.242) and 

(2.243) that H" XlO ^ Ht . Comparison with estimates 

(2.241) show that, since I ^ fe , the condition for validity 

of assumption (ii) is satisfied. 

Assumption (iii) is justified by the fact that fe is much less than 
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the electrode dimensions. 

For assumption (iv) to "be valid it is necessary that 

« % l (2.244) 

where the electron Lcirjw radius, g' ven by 

w e — 
% l = £ (2 .245) 

where ce is the root mean square speed of electrons, given by 

For the typical values of yie a n d 'e above, the condition (2.2^4) 

is satisfied for' , assuming that 0,1 , SO 

that 

Assumption (v) and, to a lesser extent, assumption (i), cannot 

be justified without attempting to extract more information from 

the Boltzmann equations for the particle distribution functions in 

the transition region where departures -from equilibrium are large for 

electrons and ions. It is suspected that some error is involved in 

making assumption (v)» but it is only by making this assumption that 

one can exclude details of the particle motion in the transition 

region which are difficult, if not impossible, to determine with 

accuracy from the Boltzmann equations of the particles. It should be 

noted that no such problem exists in the case of a collision dominated 

sheath ( << k' ) for which a transition region is not defined. 

Effects of Seed Deposit on Electrodes 

The theoretical model of electrode-plasma interactions developed 

here incorporates electrode-seed interactions. The essential feature 

of these interactions is the large affinity between the alkali metal 

and the surface. Practically all incident seed particles (ions and 

neutrals) are adsorbed to the surface and desorption takes place only 

after a certain residence time. The most important parameter character-

izing the coated surface is the degree of coverage ( 0 ), defined as 
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tho ratio of the number of adsorbed atoms per unit area to the number 

of adsorption sites available per unit area. The value of Q strongly 

infl uences the rate at which electrons are emitted from the surface as 

well as the rates at which ions or atoms are des-orbo^. Expressions 

for the rate of emission of electrons f the rate of deeor->t;bn • 

of ions Vt' and the rate of desorption of neutrals y^ have been given 

by Levine and qyftopoulos . In general these have the forms, 

neglecting the Schot'tky effect, 

4-lPhle (tg~JZ) k~ c*p (/lectin) (2.2*47) 

and 

x , - v < r ^ f l 9 ) (2.249) 

where, by application of the formulae presented in reference (2'?) to a 

caesium-tantalum combination, the following expressions have been 

found for the quantities appearing in equations (2.2*47) - (2 . 2*49): 

vT* cTl J (2.250a) 

y > $ o - f f ' o - t y { t y o - v 

a n d r 1*7 

f€ = k.n 0-3*fit3)!1 " [1+ J 

= 7 0 1 1 + 1+. +15t&1- 2.6sg /*f. 013& t q. 

^ I - W 0 - ( 2 ' 2 - 5 0 c ) 

where the expressions for and 
£ are least square polynomial 
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fits to the exact expressions, which are rather complex. 

The expressions for V e ; and ^n , given by equations 

(2.247), (2.248) and (2.2-'i9̂  are based on the assumption that all 

particles are emitted and desorbed in half Maxwellian distributions 

at the wall temperature Xc • 

The variations of V^ and with & are shown in figure 

214 for a wall temperature of 13l6°IC, which is the wall temperature at 

the particular x-location at which the gas-dynamic profiles used to 

obtain the numerical solutions of the plasma and electrical equations 

in chapter 5 are taken. It can be seen from figure 2.4 that seed 

deposition on electrode surfaces results in a considerable enhancement 

of electron emission due to the large reduction of electron work function 

^ [9) below the value for B - 0 , which is 4.19; the emission 

rate appears tc saturate at a maximum value, which is of order lO1^ times 

the value for Q- O . It can also be seen that the relative magnitudes 

of Ve V̂ " and- Vn strongly depend on the value of 0 ; the 

desorption .rates v^*and\^ are zero at , but tend to infinity as 09 i. 

Also, over the entire range of 0 ; Yrt>Vv' for all but small values 

of 0 (<0.05); and V,-<VC for 0.ls< <} . 

Before the general wall boundary conditions are presented, it is 

useful to consider the values of 0 and the corresponding values of 

f V C anĉ - Vj, in the equilibrium case, where all plasma properties-

are constant and the net fluxes of all particles are zero. This case 

has "been considered in detail in reference (29) for a caesium-tungsten 

system, but is reconsidered here for a caesium-tantalum system, in which 

case the formulae (2.250) are somewhat different. In the equilibrium 

case the seed atom continuity conditions derived below in (c) yield,since 

the net seed atom flux Is zero everywhere (see equation (2.272)). 
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g j - - ^MM Cy^Z.0 

v j f ) ^ v v e * / ^ 

where C^ a s the root mean square speed of seed atoms. For a given 
i 

gas temperature and seeding fraction, and assuming Saha equilibrium 

at the gas temperature, the latter equation yields the equilibrium 

value of 0 , ana the corresponding values of Vfe a nq c a n q>e 

found from equations (2.2j>0). It is found that for a gas temperature 

equal to the wall temperature given above, i.e., 13l6°K, and a seeding 

fraction of 0.002, the equilibrium value of 6 is 0.35. It can be seen 

in figure 2 . 4 that, for this value of 6 , V;<<Ve<Vxt and 
3 2 

4 ZXIO yrt~Z6ec~t » yielding a current density of about 3 x TO A/m . 

Under near equilibrium conditions, the maximum obtainable current 

density is about equal to the latter value ( see sub-section (b)). 

However, the work of Koester et al has shown that as a result of 

the complex interactions between a non-equilibrium plasma and a seed 

covered electrode the maximum a/bta:inalble current density can be greatly 

increased. It is one of the aims of the present work to investigate 

the effects of this phenomenon on the behaviour of the plasma in a 

closed cycle MHD generator. 

Electrode Wall Boundary Conditions 

Boundary conditions incorporating electrode-seed interaction 
(29) 

effects were first considered by S ajben v J who formulated boundary 

conditions for the continuity equations, but not for the electron 

energy equation, assuming a collision dominated sheath,and steady 
g o ) 

state plasma. These boundary conditions were used by Koester et al w 

to solve numerically the continuity equations and Poisson's equation. 

Again, the electron energy equation was not considered, and only steady 

plasma states were considered. In addition, the theory of reference (30) 

was restricted in application to a laminar stagnation flow geometry. The 
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present formulation of boundary conditions is based instead on the 

assumption of a collisionless sheath and includes a boundary condition 

for the electron energy equation with an allowance for finite surface 

coverage relaxation rates. In addition, boundary conditions incorp-

orating electrode-seed interaction-effects are applied for the first 

time to a XHD generator. The boundary conditions are derived below 

for each of the two electrodes (separated by a distance H) of a single 

segment of a segmented electrode MHD generator. To be specific, an 

electrode at J-o is first considered and the boundary conditions 

then presented in a form applicable to either electrode. 

In formulating the wall boundary conditions, two cases must be 

considered, according to the sign of the sheath voltage drop Aft , 

which is defined as the voltage of the sheath edge relative to the 

electrode in question. The physical distinction between these cases 

is discussed in sub-section (b) below, in which the continuity of 

the component of current density normal to an electrode ac.ross the 

transition region is considered, 

(a) Ion continuity conditions 

The boundary conditions for the electron continuity equation can 

be obtained in a convenient form by considering the ion motion. The 

behaviour of the ions in the sheath depends on the sign of the sheath 

voltage drop Aft , s 0 that the two cases Aft} 0 and Aft ft 0 must be 

considered separately. 

In the case of a positive sheath voltage drop, one has in the 

sheath region an acceleration of ions moving towards the wall, and a 

deceleration of ions moving away from the wall. The velocity distribution 

function in the sheath as a function of the local potential ft (relative 

to the electrode) can be derived by utilizing assumption (i) and the 

fact that ions are desorbed in half Maxwellian distributions. 
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Integration over velocity space then yields the following expression 

for the local ion density in the sheath: 

^ (P) = 
w 

Ci CO 

. ( e i H - t ) ! " 1 

e(f) 

+ Y 

<vs Tu> J J 

where the subscript s denotes a value at the outer sheath edge, 

CC ~ ( t i k g j i s theroot mean square speed of ions 

with a I'laxwellian velocity distribution at temperature T andjwts> denotes 

the flux of ions moving towards the rail at the sheath edge. In 

equation (2.251), we have, in accordance with assumption (i), 

"Bk.lZPL 
c -c- r f e f t 
c , s ' c " " = I I r Z i ) 

From equation (2.251) the ion density at the outer edge of the 

sheath, where <f) = > is obtained: 
zv;, tytl 

LtcO h s 
7. f  ( 2 " 2 5 2 )  

where the retardation factor h£ is given by 
eAf 

hi* t ^ ( 2 - 2 5 ) 

Since charge neutrality prevails at the outer edge of the sheath, 

5 Ves - *is 

and equation (2.252) can be written in the form 
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Since ions are desorbed in a half Maxwellian velocity distribution 

at the temperature lu , the net ion flux in the y-direction at the 

outer edge of the sheath can be written as 

= W - J U U (2.255) 

or 

cj • ( 2 2 5 6 ) 

where has been eliminated from equation (2.255) using equation 

(2.254). 

According to equation (2.111), the macroscopic ion flux in the 

y-direction at the outer edge of the transition region is given by 

e 
L ( j r j < i ) a " 

J h ^ -ie | j 

which is equated to the net microscopic flux given by equation 

(2.256), in accordance with assumption (ii), to obtain the required 

boundary condition for the electron continuity equation: 

__ ) ft k} $ ( \ l _ ) 
-fie 0 = - - ^ C i u } , (2.257) 

where,in accordance with assumptions (i) and (v), we have set 

"Tefc - ? 7£ ~ X o ^ f -

The corresponding boundary condition for the wall at y = H is 

given by equation 

(2.257) with the sign of the right hand side reversed. 

The boundary condition for either wall can be written in the form J P ___ 1 . 
1 T T r- C T > I e J ( ^ / 9V. A; - - rt C • (2.258) 
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where + ( for the electrode at j-o , and | for the electrode at 

r 

a ^ o . 

In the case of a negative sheath voltage drop, one has in the 

sheath region a deceleration of ions moving towards the wall and an 

acceleration of ions moving away from the wall. Deriving the velocity 

distribution function in the sheath as a function of the local potential 

and integrating over velocity space, as in the case where , 

the local ion density in the sheath is obtained in the form 

n j f 

a s 

-ef* y/in e / 
] e ^ 

, + < n « j j 

eCJ^jf) 

e 

(2.259) 

where, in accordance with assumption (i), 

( f 
[ It WLt J 

From equation (2.259) the ion density at the outer edge of the sheath, 

where is obtained; 

= c 

, f - * u y / z 

' - « r n k N j e ks/0 

+ i z ety f z (2.260) 

and, since charge neutrality prevails at the outer edge of the sheath, 

h,5 ^ Yiely (2.261) 

Since particles entering the sheath region from the transition region 

have a half Maxwellian velocity distribution at the wall temperature 

(assumption (i)), the net ion flux in the y-direction at the outer 
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edge of the sheath can be written as 

fTj - v; — yu,"s (2.262) 

where the retarJation factor h* Is given by 

h = ex/j /ktpz^ 

Eliminating from equation (2.262) using equations (2.260) and 

(2.261) we can write 

f r A \ 
e 

l -+ ev 

(2.263) 

Equating the macroscopic ion flux in the y-direction at the outer edge 

of the transition layer, which is obtained from equation (2.131), to 

the net microscopic ion flux given by equation (2.263), in accordance 

with assumption (ii) the required boundary condition for the electron 

continuity equation Is obtained; this is written in the general form 

where € ?or the electrode at y = o, and for the 

elcctrode at M - H . 
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( b ) To'-al Co rrr.'it Con! 1 nnvLy Con 11 ti ons 

The analysis of (a) can be carried out for electrons and expressions 

derived for the net m>crosoopic fluxes of electrons in the y-direction. 

For A f ^ O , 

r = 6 Ve- f t 
n t l ' - a f r f 

e *« 

2 

<is 

(2.265) 

where 

"e - e ? Ceu> - V nv«e Xes = •JTwie J -> 

while, for 

(2.266) 

where 

A 
€ Ike 7 g /w 

The factor £ is + ( for the electrode atj^o, and -| for the 

electrode at AJ. 

The sheath voltage drop is determined from the requirement 

that the y-component of the total current density be constant across 

the transition region, so that 

[ l l y ley J (2.267) 

where f7^ is given by equation (2.256) when fy o , and equation 

(2.263) when &<f> £ O (the signs of the right hand sides of equations 

(2.256) and (2.263) must be changed when the electrode at H is 
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oonsldercd). The electron flux fey is given by equation (2.265) 

when Aft ̂  0 , and equation (2.266) when Aft ft 0 . For a g* ven current 

Jy , equation (2.267) is to be considered an equation f~r 

In order to determine how J^ varies v'th , the values oi J^ in 

the iliui tr: cO antL , and in the intcrmedi at' case, whcr~ 

Aft^O , are considered. The value of & is taken to be 0.35, which, 

as mention-d earlier, is the equilibrium value of 9 for a eec-d'ng 

fraction of 0.002 and a wall temperature of 13l6°K; the corresponding 
22 — 2 —1 

values of ̂  and V/are, from figure 2.4, 2.3° x 10 m" sec and 
17 —2 —1 

4.32 x 10 m sec respectively. The electron temperature at the 
~j— o 

sheath edge is taken to be 2000 K« 

Thus, we consider the following cases for an electrode at y =0: 

(i) Aft 

Equations (2.263) and (2.266) yield, in the limit Aft 
(2.263a) 

and fly = -^VeuCes (2.263b) 

respectively, and, using equation (2.267), 

j y e ^2-263c) 

(ii) !Aft = Q. 

Setting A<f>=0 i n equations (2.263) and (2.266) we obtain 

"7 I 
1 i'y " z CiU , ( 2.269a) 

— ) j and 

so that 

' " V ( , + (2.269b) 

( , + <tjv«4 i ( 2 . 2 6 9 c ) 
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(iii) -j-*0 

Equations (2.256) and (2.265) yield, in the limlt ^ 

n ^ " 1 , (2.270a) 

and rttj - (2.270b) 

so that 

- e + (2.270c) 

Since V; for and Clo f< Us. , equation 

(2.269c) can be approximately written as 

Ces 

from which is follows that the sign of Jj for A<jt>-Q is dependent 

on the value of Veu ; ̂ j^O for - 0 if 

I f C*S\ I? -S 
r- I n - ^ ) V e ± $ . n x \ D n n , (2.271) 

\ t-eu)/ 

where use has been made of the values and\^ given above. 

Tf the latter value of hg^is compared with the value ^ - 17&XJ0 ty f 

obtained by assuming Saha equilibrium at the electron temperature 

~ 2 0 0 0 w e see that, near Saha equilibrium, the condition 

(2.271) is 

satisfied and Jy ( 0 only for sufficiently large 

for W e - v i * f equations (2.268c), (2.269c) and (2.270c) yield the 

values 3.9I x 10^A rrf2 , 3.T2 x 10^A m"2 and - A M x 10^A nf2, 

respectively, for J^ . As fa^ is increased from 
remains practically constant, for Apt fo , at a value about equal to 

^eu) As/2. because of the relatively minor contribution of the 

emitted electrons to Jij . But, for , J^ rapidly decreases 

with increasing fcjj!? due to the increasing reduction of the flux of 

electrons reaching the electrode surface from the plasma. Finally, 
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for sufficiently large h<jf> , Jj approaches the emitted current 

density 

However, as a result of diffusion, the electron density can be 

considerably reduced below its Saba value; the numerical results 

presented in chapter 5 show that the electron density can be of the 

order of 1012m"^ with T e 1 2000°!< and 0.35. Taking, for example, 

We. = l o V , equations (2.268c), (2.269c) and (2.270c) yield the 

values 2.23 x 103 Am"2, -6.29 x 102Am~2, and -3.°2 x 103Am"2. In this 

case, rapidly decreases from a value of o r d C e * / ^ ? . a s 

is increased from &<j> = , due mainly to the increasing 

contribution of emitted electrons to Jj , and eventually remains 

relatively constant at a value of order the emitted current in the 

Interval 0 (Af < <*> 

It must be remembered that, in the above examples, 9 is taken to 

be close to Its equilibrium value of 0.35* at which ^ . Figure 

2.4 shows that Vj can exceed for or 9}0-7 . In the case where 

equations (2.268c) and (2.269c) show 

that Jj > 0 in - 00 / O independent of 'TW , since 

Ciu> ; one then has Jj (0 only for sufficiently 

large positive values of 
Af. 

(c) Seed Atom Continuity Conditions 

In the case of the neutral seed atoms, the transition is considered 

as extending from the inner edge of the collision dominated region to 

the outer edge of an electrode adjacent layer of thickness about equalio I, 

called the Knudsen layer, within which collisions of seed atoms with 

buffer gas atoms can be neglected. Since L^-li^ the Knurlsen layer 

must necessarily be thicker than the sheath if the sheath is collision-

less. Considering again the electrode at y = 0, the net flux of neutral 
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sc-ed atoms in the y-direction, which is constant across the transition 

region, in accordanco with assumption (ii), is given by 

= ^ i - f ^ S = V M - (2.272) 

where JtA^S anb- a r e the fluxes of seed atoms moving away and 

towards the wall, respectively, and the subscript $ refers to the 

outer edge of the Knudsen layer. Equation (2.272) gives 

^ ^ (2.273) 

It follows from equation (2.273) and assumption (i) that the seed 

atom density at the outer edge of the Knudsen layer is given by 

^ = r , (2.274) 
Cut0 v ' 

where Ck*, =• ( / T C ' I n a c c o r d a n c e v i t h ^sumption (v) 

is taken to be constant across the transition region and given by 

equation (2.274). From equation (2.274) we obtain 

~ ^ ^ G t i o - ^ (2.275) 

Eliminating from equation (2.272) using equation (2.275) 

an expression is obtained for the net flux at the outer edge of the 

Knudsen layer: 

iLj = - 2 ^ f i i u ) (2.276) 

The flux given by equation (2.276) is equated to the macroscopic flux 

in the y-direction, given by equation (2.I96). , at the outer edge of 

the transition layer in accordance with assumption (ii) and the required 

boundary condition is obtained; this is written in the general form 

K 1 / G ^ ~ (2,277) 

where £ = •/•( for the electrode at y = 0, and for the electrode 

at y H* 



-113-

(d) Electron Energy Continuity Conditions 

The "boundary condition for the electron energy equation is obtained 

by equating the microscopic electron energy flux at the outer edge 

of the sheath to the macroscopic electron energy flux, the electron 

heat flux, at the outer edge of the transition region in accordance 

with assumption (v) . The forr.S-of the boundary conditions depend on the 

sign of , and two cases must therefore be considered. 

&(/> ),0 

In the case of a positive sheath voltage drop the microscopic 

electron energy flux in the y-direction at the outer sheath edge is 

given by 

+ ehf ) i»e (2.273) 

where 
1 - fyTfLo 
he - C 

The net flux of electrons in the y-direction at the outer sheath edge 

can be written as 

rt- (2.279) 

Eliminating jLZs from (2.273) using equation (2.279) we can write 

equation (2.27-5) in the form 

h -- Vi. (ikt JZ -+ e & p ) - h e - r e ^ ) ( 2 k a h + e t f ) (2.2S0) 

vihere HLj' is given by the expression for the macroscopic electron 

flux 

„ 1 - r 1 f r n k r z , 5 7 1 

= - e j J j -f c ^ q j j ( 2 . 2 S 1 ) 

obtained from equation (2.131). 

The macroscopic electron heat flux in the y-direction at the 
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outer edge of transition region is obtained from equation (2.219) in 

the form 

n 

- £ksJ7i 

~2e 

K kg £ (2.282) 

where, consistent with assumptions (iv) and (v), the Hall component 

of the electron heat flux has been omitted from equation (2.282). In 

accordance with assumptions (i) and (v), 

fef ' fe V^t ~ , fe ^ U 

and the macroscopic energy flux given by equation (2.282) is equated 

to the microscopic energy flux given by equation (2.280) to give the 

required boundary condition for the electron energy equation; this 

is written in a form applicable to the electrode at y = H: 

£ Ju + 
Oik, 2 

' 

v?, 

(2.283) 

where € for the electrode at y = 0, and£=-/ for the electrode 

at y = H. 

A f t o 

In the case of a negative sheath voltage drop the microscopic 

electron energy flux in the y-direction at the outer sheath edge is 

given by 

where 
hi'- exp (ety/k'Lo) 

(2.234) 

By determining, as in the case of the ions, the velocity distribution 
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fu net ion of the electrons In the sheath as a function of the local 

potential and integrating over velocity space, it can "be shown that 

Wo., = hi t 7 ~ (2.285) 'eu> 

Eliminating ytfej from equation (2.284) using equation (2.2?5) and 

equating the resulting expression for to the macroscopic electron 

heat flux, as was done for the case of a positive sheath voltage drop, 

the desired boundary condition for the electron energy equation is 

obtained; this is written in a form applicable to the electrode at y = H: 

- 5 k ? ci [ A -

r —1 (2.236) te* 

.6 

Xe 

r 

J j e«e ? 
3 

= G Ve f K '» )U ~ Ik ( ' ^ Ve hi) 

where +( for the electrode at y = 0, and £ = -/ for the 

electrode at y = H. 

(c) Surface Coverage Equations 

Equations for the surface coverage Q are obtained by equating 

the rate of increase of the number of adsorbed, atoms per unit surface 

area to the net flux of seed particles (ionsand seed atoms) to the 

wall. Thus, 

(2.287) 

where + ( for the electrode at y = 0, and for the electrode 

at y = H. In deriving equation (2.287) use has been made of the defini-

tion of C a s the number of adsorption sitcsavailable per unit 

surface area. The seed atom flux is given by equation (2.276) 

and is given by equation (2.256) for , and equation 

(2.263) for h j i O . Equations (2.272), (2.256) and (2.263) 

assume that the electrode is at y = 0; the expressions for the other 
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clectrodc wall at y = H a,re obtained by changing the signs of the 

right hand sides of equations (2.276), (2.256) and (2.263). However, 

since the factor £ is already present in equation (2.2?7)» general 

equations for 6 applicable tc both electrode 'walls arc obtained by 

omitting £ from equation (2.2?7) and frcm equations (2.276), (2.256) 

and (2.263). 

Insulator Fall Boundary Conditions 

Finally the boundary conditions for the continuity and electron 

energy equations are considered in the case of an insulator wall. 

These boundary conditions are obtained by assuming that the Insulator 

wallsreflect all particles incident to them, the electrons being 

reflected elastically. The boundary condition at the insulator walls 

are then obtained by equating the macroscopic particle and electron 

energy fluxes to zero. We thus obtain the conditions 

(2.283) 

(2.239) 

and 

» ] e 0 ' ( 2 ' 2 9 0 ) 

where equations (2.288) and (2.289), obtained from equations (2.131) 

and (2.I96), express the conditions that the ion and seed atom fluxes to 

an insulator wall be equal to zero; and equation (2.290), obtained 

from equation (2.219), expresses the condition that the electron energy 

flux to an insulator wall be equal to zero. In expressing the latter 

condition in the form of equation (2.290), the Hall component of 

electron heat flux has been neglected as in the case of the electrode 

boundary conditions. 
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(1) Fig. 2.1: V«t'/Vth against Tefor X= 0.002 and 

T = 1519°K 

(2) Fig. 2.2: A cross-section of the MHD channel 

showing approximately two-dimensional 

boundary layers on the side walls, with 

the exception of corner regions. 
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©JB 

Rl 

Fig. 2.3: One segment of a segmented 

electrode channel 



-119-

Fig. 2.4 : The emission and desorption rates Ve , V; 

and X , as functions of the surface coverage©. 
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CHAPTER 3 

NUMERICAL SOLUTION OF THE GAS-DYNAMIC EQUATIONS 

3.1 Introduction 

The assumptions made in section 2.4 led to a closed system of 

differential equations for the gas-dynamic variables , jj and T , 

completely decoupled from the equations for the plasma and electrical 

quantities presented in section 2.5. It was then indicated that the 

complex problem of solving the gas-dynamic equations for the flow in 

an MHD generator channel could be simplified by making approximations 

consistent with the boundary layer assumption expressed by the inequality 

(2.155). Further simplifications of the gas-dynamic problem were then 

made by neglecting three-dimensional corner effects so as to allow the 

flow behaviour in the channel to be described in terms of two-dimensional 

boundary layers on each of the four side walls of the channel. By 

symmetry, it is sufficient to determine the flow distributions between 

each of two adjacent side walls of the channel and the channel centre-

line. Finally, it was mentioned that for flow conditions characteristic 

of most generator systems the boundary layer flows tend to be of a 

turbulent nature over much of the channel length. It was indicated that 

the flow could only be considered steady in the mean, the effects of 

turbulent fluctuations on the mean flow properties being described by 

effective eddy viscosity and eddy thermal conduction coefficients in the 

x-momentum and energy equations; the eddy viscosity formulation due 

to Cebeci ^ ^ was used to relate the turbulent transport coefficients 

to mean flow parameters and their gradients. 
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In this chapter, the numerical procedure used to solve the 

boundary layer equations for the two-dimensional flow on each side wall 

of a MHD channel of rectangular cross-section is formulated. 

This numerical procedure is based on a finite difference scheme devised 

[31) 

by Keller v ' for the solution of parabolic partial differential 

equations such as the turbulent boundary layer equations (2.156)-(2.159). 

It is an extension to compressible channel flow of the procedure used 

by Keller and C e b e c i ^ ' to solve incompressible flow problems. Unlike 

the method of reference (32), cartesian coordinates with the y-axis 

normal to the wall and the x-axis parallel to the centre-line are used 

(the angle of divergence of the channel is assumed small, as is usually 

the case in MHD channels). Furthermore, instead of applying the outer 

boundary conditions at the boundary layer edge, as in reference (32), 

the boundary layer equations are applied to the whole domain from wall 

to centre-line along which the symmetry conditions expressed by equations 

(2.175a) and (2.175b) are taken as the outer boundary conditions. The 

need to introduce a separate system of inviscid equations for the core 

of the flow to be solved simultaneously with the boundary layer equations 

by iteration between solutions obtained in the two regions is thus avoided. 

The core of the flow is thus treated as two-dimensional in the present 

method. By introducing appropriate additional source terms in the 

boundary layer equations it should be possible to relax some of the 

assumptions made in section 2.4; that is, to allow,at least approximately, 

for finite energy exchange with the electron gas, and finite Lorentz 

forces, provided steady state conditions prevail. This is done in 

reference (26) using a different numerical scheme where it is shown that, 

as a result of the y-component of the Lorentz force, the pressure is 

a function of y as well as of x and important flow asymmetries can occur. 
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As stated earlier, this kind of problem is not considered here. 

Having formulated the numerical procedure for the solution 

of the boundary layer equations, applications to a real experimental 

MHD generator system, the IRD test facility, will be considered, and 

a computed pressure distribution in the channel will be compared 

with that obtained experimentally. 

3.2 Finite Difference Solution of Equations 

The first step in the numerical procedure is to reformulate 

the problem in terms of a system of first order partial differential 

equations. The new independent variables u, v and f are introduced 

which are so defined that equations (2.161) and (2.162) can be written 

as the first order system 

V 4 ^ (3.1a) 

U. - V 
(3.1b) 

(3.1c) 

where the prime denotes differentiation with respect to y , and 

the coefficients 

and 

(3.2a) 

B t 
7 + I? (3.2b) 
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have been introduced in equations (3.1c) and (3.Id). 

In terms of the new variables, the boundary conditions, given 

by equations (2.172) - (2.175), are 

d2f f y _ P V 
n ^ ' 0 ) - (3.3b) 

(3.3c) 

f ? (3.3d) 

I = (3.3e) 
where equation (2.137) has been used to eliminate in equation (3.3b) 

and the wall temperature is assumed given. The wall and channel 

centre-line are taken to be at y = 0 and at y = y c respectively. 

The region between the wall and the centre-line is replaced 

with a two-dimensional mesh of points defined by the equations 

X*-- (3.4a) 

HS-O, (3.4b) 

K (3.4c) 

where mesh columns are labelled by the superscript n, and mesh rows 

are labelled by the subscript j . 

The mesh spacings /Ix" and djj* in equations (3.4) are 

completely arbitrary and may have large variations. This is important 

for turbulent boundary layer calculations where steep gradients near 

a wall necessitate the use of small mesh spacing, whilst relatively 

large spacing can be used away from the wall. The definition of the 

mesh openings and riy* is discussed in detail in appendix A. 



-124-

Th e variables i , J- v ) are approximated at points 

( of the mesh bv mesh functions denoted bv u r I- L ,r^ 

The points and variables midway between mesh points are given by the 

following averages: 

The averages given by equations (3.5b) are correct to second order 

accuracy in the x and y steps. The finite difference equations, which 

are to approximate equations (3.1), are formulated by considering one 

mesh cell, such as shown in figure 3.1. Equations (3.1a), (3.1b) and 

(3.1c) are approximated using centered difference quotients and averages 

about the midpoint (x*1/ of the segment ?l ?u (see figure 3.1). 

Similarly, equations (3.Id) and (3.1 e) are approximated by centering 

(3.5a) 

(3.5b) 

about the point Thus, the finite difference 

approximations to equations (3.1) are: 

(3.6a) 

(3.6b) 

(3.6c) 



-125-

Jj L 

n 

U-l u s * 1 r ' v & ' v - ^ 

\ 1 

i " - i f f 

* U S - ' =
 3 > - « ( p J H -

1-1 
A d b <i 

_ L / f 
[ 7 'J-'4 

fe-fefefefe fe', 

(r& 

(3.6d) 

where 

M 
_ i ( p f t ' l l 

A"-' MjT-

' z u 

1-/ 

- le, 6f 'it-tHr. 
J 

and 

4 
I? 3 

( r - p Y + I f * -

I k - i ^ f e trz Jj-i ' G f j 

+ fei , 

(3.6e) 
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where 

jm I ( t*-'*. \ 1 \fi / m * ' 

» k = u n j j - a - o ' ^ f m ~ M ) - < 

l ^ /p" . " ' I T ^ f i i i ( , 

Equations (3.6) are imposed for j = 2,3..., J . Consistent with the 

condition that the angle of divergence of the wall be small, we take 

ijJ and A y f i fty? in equations (3.6). 

The finite difference approximations to the boundary conditions, 

equations (3.3) are: 

to, 

'i > 

f >t ^ 
&r= ° > 

\rT =o • 

J 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(3.7e) 

Assuming ( Y ] \ T j ^ for j ft J ~ , and the 

pressure to be known, equations (3.6) and (3.7)constitute a system 

of 5J non-linear equations for the 5J unknowns ( V j j ^ J ^ T T " P j ) > 

j = 1, 2 , ..., J. This non-linear system is solved by means of Newton's 

/ (+) to -it) o) (n \ 
method. The iterates (Yj, Uj, 7j , J f j ^ j ) a r e introduced, with 

the initial values 
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v - t n • 
1 T J 

U, * 0; I, - ') ̂  'to ̂  Jl Jl , ; 

4 - Ai A * M i , 4 " 'j , Ij 4 > <5 = 4 z / j / r-1 j 

. y;-', 4 . v 1 , r ; s -r;-', 0 , - 0 
(3.8) 

For convenience, the new variables 

defined by 

v f » « tfv s v j ] . 4 K b 

These expressions are inserted into equations (3.6) in place of 

( 4 4 4 4 a n d o n l y t h o s e t e r m s linear in ( H j M ' l s T f f f M l ' ) 

are retained. This procedure yields the following 

linear system: 

4ili-' / \ 

4 - £ V - 1 s y 

< 4 - 4 - . -

4 - 4 - . - ( 4 + 4 - . ) -- r r ( 

J'J 4 + >,a 4 - 1 M s j 4 + 4 - 1 + 4 4 1 0 

4 - 1 4 ^ ^ " D - 4 +J..J 4 - : ^J 

4 4 + + % j 4 + 4 i 4 

4 4 - . + + 4 4 + 4 4 - 1 * % ( 3 J 0 e ) 

for j = 2 , 3, . J . For simplicity of notation, the superscripts i 

5 a (3.10a) 

(3.10b) 

4 ' (3.10c) 
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have been dropped. The coefficients (k = 1, ..., 5), cj^y 

(k = 1,...,10) and S^- (k = 1 , ...,10) are listed in appendix B. 

The boundary conditions, equations (3.7), can be satisfied 

(0) U» f(P> rC) ysPl) 

exactly with no iterations. The initial values [ t ^ j j r , Vj* J 

are set equal to the boundary values, as in equations (3.8), and to 

maintain these values in all iterations we take 

d-y/Ao, K ' - - « / < F t f i . (3.h) 

The linear system , equations (3.10) and (3.11), has a block 

tri-diagonal structure and can be solved in an extremely efficient 

manner using a block elimination method. A detailed description 

of one such method can be found in reference (32). 

Having solved the linear system, equations(3.10) and (3.11), 

the higher order iterates (^tj*'} Kj ^j-'^'iT}'%re formed as in 

equations (3.9). The iterations are repeated until the following 

convergence condition is satisfied: 

•So? 

(3.12) 2 
where £ t is a prescribed value, say 0.01. 

3.3 Initial Conditions 

The initial distributions 

at a given initial station ( x - x ) must be specified to initiate the 

i / . . . 

numerical solution. In fact, only Wj and lj for I \<J S \ J need 

be specified. Then H j j cfj and c/j' can be calculated by integration 

and differentiation from equations (3.1a) - (3.1c). All numerical 

results reported in this thesis were obtained by assuming that the flow 

was initially laminar ( £ - , transition to turbulent flow occurring 

at an x-station downstream of the initial x-station (see section 3.5). 
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Initial profiles which are approximations to the laminar boundary layer 

equations are therefore of interest here. A convenient rough 

approximation is obtained by representing the initial velocity profile 

[21) 
in a boundary layer by a polynomial of the 4th degree v J ; that is, 

£ A ( ? ) + ' ( I ) + c ( j ) ( j ? <3-13) 

where 

I - - A / X } c - -J2 + A / 2 j d z \ - A / 6 (3.14) 

and the subscript e denotes a boundary layer edge value. The so-called 

shape parameter A in equation (3.13) is given by 

Since the pressure gradient at the initial station is not 

known a priori a value of A must be chosen such that the corresponding 

value of the pressure gradient is approximately equal to the computed 

value i f * - - f)/Axj. 

The velocity outside the boundary layer is assumed to be 

constant; that is, 

U.^* Uxc; (3-16) 

The temperature profile is formed by assuming a Crocco 

r e l a t i o n s h i p ^ ^ between the velocity and temperature profiles; 

that is: 

Z Z 
uXe \ Uxe 

T ^ n - U y j l ' ^ ^ 2 € f ) 2Cf 

lor os<lj{$c 

(3.17) 
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3.4 Calculation of Pressure Distribution 

The pressure distribution in an MHD channel is determined from 

the requirement that mass be conserved; that is, the pressure 

distribution must be such that equation (2.176) is satisfied at 

every x-station, where the mass flow rate m is obtained by integration of 

equation (2.177), given the initial value of the mass flow rate. 

However, since the mass transfer rates f^/i W-y/i)^ and (pg^-yg^M i n 

equation (2.177) can be functions of the pressure, it is necessary, in 

general, to treat both the pressure and the mass flow rate as unknown 

functions of x governed by equations (2.176) and (2.177), respectively, 

both of which are to be solved simultaneously with the solution of the 

boundary layer equations. The numerical procedure used to calculate both 

the pressure and the mass flow rate distributions is described below. 

n -'fi 

The finite difference form of equation (2.177) at / -X 

can be written as 

n-l n 

which yields 

W - Ax"-'f[K fa + t W J J , (3.18) 

from which the mass flow rate at every x > a ' could be found if the 

initial mass flow rate and the mass transfer rates ( f / t ^ ^ L o and 

w e r e given. 
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The value of the pressure at any x-station must be such 

that the mass flow rate given by equation (2.176), which is calculated 

using the solutions of the finite difference equations for the boundary 

layers, equals the mass flow rate obtained from equation (3.18). An 

iteration procedure devised by Doss et a l . ^ 8 ) for the case of a constant 

mass flow rate is used here to calculate the pressure. 

The pressure at any x-station is first estimated by linear 

extrapolation of the values of the pressure at the two previous x-stations, 

and the finite difference equations are solved. The mass flow rate 

corresponding to the obtained solution is obtained from equation (2.176) 

and compared with the value obtained from equation (3.18). If the two 

mass flow rates so obtained happen to be sufficiently close, no adjustment 

of the estimated value of the pressure is needed. However, if the 

difference between the mass flow rates is large, the estimated value of 

the pressure is adjusted in proportion to the ratio of the two different 

mass flow rates, and the computation proceeds once more for a new iteration 

cycle. The iteration algorithm is of the form 

A'1 /-') [ fl i f ' 0 } 1 (3.19) 

I W ) J 

where m is the mass flow rate calculated from equation (2.176), 

and ^ { f ^ n j is the mass flow rate calculated from equation (3.11). 

Numerical experiments have shown that the rate of convergence 

of the above procedure is often considerably increased by replacing 

p ^ with the value ^ given by 

. fH) + o ^ f - ' ) 
f O ' V ' ;r (3.20) 
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where r = 1,2,3,... The value of r to be used in equation (3.20) has 

been found to depend on the flow conditions and the values of the mesh 

parameters. For any particular case there is an optimum value, or range 

of values, of r for which the convergence rate is a maximum. By 

applying the adjustment of defined by equation (3.20), it has been 

found possible to increase the convergence rate to such an extent that only 

one or two iterations are sufficient to obtain convergence to 0.01% at 

all x-stations, with the exception of those where transition from laminar 

to turbulent flow occurs and wall mass transfer is suddenly switched 

on or off. In some cases convergence can only be obtained if equation (3.20) 

is used, the use of the algorithm (3.19) alone giving iterates which 

oscillate about the correct value with increasing amplitude. 

3.5 Application to IRD Experimental MHD Facility 

The numerical method for computing the development of the gas-

dynamic flow along MHD generator channels, described in the preceding 

sections, has been applied to the MHD closed cycle facility of the 

International Research and Development Co. Ltd. (IRD), Newcastle upon Tyne. 

By using flow conditions of actual experiments recently performed on the 

facility (October 1977), comparisons could be made between computed 

and experimental results. 

Detailed description of the IRD closed loop facility is given 

e l s e w h e r e ^ ; only details relevant to the computation of gas-dynamic 

flow in the MHD channel section are given here. In the facility, 

helium gas is circulated steadily around a closed loop at a mass flow 

rate of about 5 to 7 gm/sec, and heated in a three stage heater to 

about 1700°K. The helium gas is slightly seeded with caesium vapour, 

accelerated through a nozzle to a velocity of about 900 to 1500 m/s, 

and allowed to interact with a magnetic field in a slightly diverging 
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channel of rectangular cross-section, which contains 15 tantalum electrode 

pairs at a constant pitch of 25.4 mm (1 inch). The channel has a length 

2 

of 56.4 cms, an internal area of 195 mm at the nozzle throat, and 

an aspect ratio of about 2:1; that is, the internal height is about twice 

the internal width. Each electrode has a circular cross-section of 

diameter 0.95 cm (3/8 ins) and is mounted flush with the inside wall on a 

tantalum stem whose point of fixture is some distance from the inside 

wall. Cavities thus exist behind all electrodes preventing direct 

contact of the electrode surfaces with the channel walls, there being 

small annular gaps of width 1.59mm (1/16 ins) between the electrode faces 

and the channel walls. A pair of electrodes of diameter 18 mm are mounted 

so as to enable a preionizing current to be passed parallel to the 

magnetic field; the upstream edge of each of these electrodes is at a 

distance of 57.6 mm from the nozzle throat, while the upstream edges of 

the electrodes of the first electrode pair are at a distance of 96.8 mm 

from the nozzle throat. Stagnation pressure in the nozzle inlet is 

determined from Pilot tube readings and static pressure readings, whilst 

the static pressure profile in the channel is measured at four tappings 

at electrode pair numbers 2, 5, 8 and 11. The static temperature is 

measured in the nozzle inlet and at electrode pair numbers 2, 5, 8 , 11 

and 14. 

As mentioned earlier, the numerical method described in the 

preceding sections has been applied to the IRD facility for conditions of 

experiments performed on the facility in October 1977. Apart from a 

few exceptions the mass flow rates of these experimental runs of the 

facility were 5.37 gm/sec and 7.08 gm/sec. For the development of the 

numerical method, the experimental conditions of a representative run 

at the mass flow rate of 5.37 gm/sec were used. Run number 7 was 

selected as the representative run because the conditions of this run 
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appeared to be closest to the average flow conditions for runs at the 

common mass flow rate of 5.37 gm/sec. The numerical results presented 

are discussed below and for conditions of run number 7 unless otherwise 

stated; the conditions of this run are given in figure 3.2. 

The gas-dynamic flow in the channel for conditions of run 

number 7 is determined by computing the two-dimensional boundary layer 

profiles on each wall simultaneously using the method 

of the preceding sections. In order that errors due to using approximate 

gas-dynamic profiles to initiate calculations o f a confined flow 

be as small as possible, the initial station should be taken as close to 

the nozzle throat as possible without the number of cross-stream mesh 

points for each wall being too large. Results of numerical experiments 

show that a suitable initial distance from the nozzle throat in the 

present case is03)254 m . 

The centre-line stagnation pressure and centre-line stagnation 

temperature at the initial station, which, for a given static pressure, 

define the initial centre-line values of the streamwise velocity 

component and static temperature, are taken to be the nozzle inlet values. 

The stagnation temperature is found from the formula 

T " r t r ° f f c 

which follows from the heavy particle energy and overall momentum 

equations in which viscous effects, thermal conduction and the cross-

stream velocity component are neglected. 

The wall temperatures at all points are determined by linearly 

interpolating and extrapolating the values measured at the locations 

of electrode pair numbers 2 , 5 , 8 , 11 and 14. Insulator and electrode 

side walls are assumed to be at the same temperature at each x-station. 
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It can be seen from figure 3.3 that agreement between the 

computed and experimental pressure distributions is good at all points 

except the last, where the measured value is about 1% larger than the 

computed value. Of course agreement between theory and experiment 

is necessarily good for electrode pairs 2 and 5, because of the way 

in which the initial boundary layer thickness and mass transfer factor 

are chosen. It is thought that the slight discrepancy between theory 

and experiment at the last point in figure 3.3 is due to attempting to 

describe the flow with a quasi-three-dimensional model in a region of 

the channel where boundary layers are thick and three-dimensional effects, 

i.e.jcorner effects, are important. This is to some extent confirmed by 

the plots of figure 3.5, from which it can be seen that, whilst the 

electrode wall boundary layer continues to grow in thickness, the 

insulator side wall boundary layer thickness tends towards a constant 

value as the boundary layer edge approaches the channel centre-line. 

Figures 3.3, 3.4 and 3.6 clearly show the effects of 

transition from laminar to turbulent flow. Due to the slight divergence 

of the channel walls and the subsonic character of the flow, the 

initially negative pressure gradient reverses sign at a point upstream 

of the large preionizer electrodes. The resultant adverse positive 

pressure gradient has a destabilizing effect on the flow^ 2*^ and allows 

one to assume that the initially laminar flow becomes turbulent at the 

upstream edges of the preionizer electrodes. At the transition station, 

the sudden decrease in the displacing effect of the boundary layers on 

the core flow causes a sudden increase of centre-line temperature and 

a decrease of centre-line velocity (see figures 3.4 and 3.6). However, 

a short distance downstream of the transition station, where the 
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turbulent flow is more fully established, the rate of growth of 

boundary layer thickness increases (see figure 3.5), causing a 

decrease of pressure and temperature gradient, and an increase of 

velocity gradient. 

Although transition to turbulent flow causes a decrease of 

pressure gradient downstream of the transition station, the pressure 

gradient remains positive and the pressure would continue to increase 

steadily after the first electrode pair in the absence of wall mass 

transfer (see figure 3.3). However, the increase in mass flow rate due 

to wall mass transfer causes the flow to accelerate, the pressure and 

temperature gradients decreasing and the velocity gradient increasing 

(see figures 3.3, 3.4 and 3.6). 

The calculated temperature and velocity boundary layer profiles 

on the electrode wall at the location of the center of one of the 

electrodes of electrode pair 2 are shown in figure 3.7. It can be seen 

that both the profiles exhibit small oscillations near the boundary 

layer edge, which are manifestations of numerical error. A method of 

removing these oscillations has not been found, but the amplitudes are 

so small that they may be safely neglected. 

Attempts to compute the channel flow for conditions of an 

experimental run at the higher mass flow rate of 7.08 gm/sec have 

failed, because of the necessity of having to initiate the computation 

with a much smaller boundary layer thickness than for runs at a mass 

flow rate of 5.37 gm/sec. This means that, unless an unacceptably 

large number of mesh points in the cross-stream direction is employed, 

the mesh at large distances from a wall is too coarse to resolve the 

boundary layer profiles downstream of the initial station. 
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The initial laminar profiles of section 3.5 are used to 

initiate computations, the boundary layer thickness being treated 

as a parameter, so chosen as to obtain a pressure distribution 

in as close an agreement with experiment as possible. The initial 

pressure is determined iteratively using the method of section 3.4; 

that is, the iteration algorithm (3.19) is used with rt equal to the 

prescribed mass flow rate of 5.37 gm/sec. 

In order to obtain a pressure distribution in close agreement 

with experiment.it is necessary to allow for a slight transfer of 

gas through the electrode w a l l s . It is thought that this transfer 

of gas occurred from a helium blanket between the channel and outer 

casing which was maintained at a pressure greater than that in the 

channel, and that gas could enter the channel through the annular 

spaces between the electrode surfaces and the channel walls. Further 

experimental evidence that transfer of gas occurred into the channel 

was the necessity to supply gas continuously to the helium blanket 

to keep the pressure at a fixed level. The analytical description 

of this mass transfer process is formulated below. 

Denoting the measured pressure in the helium blanket by p 0 , 

Bernoulli's equation gives for the y-component of velocity in the 

region between an electrode surface and the w a l l , 

- f > ) / ( d ] '
L
 (3.21) 

It is found that equation (3.21) gives an overestimate of the mass 

transfer flux IXyoo through the wall and must be reduced by a 

factor jfo whose value is so chosen as to obtain results in as close 

an agreement with,experiment as possible. Equation (2.176), and 

therefore equation (3.18), cannot be used to calculate the mass flow 

Uytc 9 { j ^ l h 
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rate at each x-station because the mass transfer flux is not uniform 

in a region of electrode wall defined by a step in the x-direction. 

Denoted by d/\ the element of area in this region through which gas 

flows, equation (2.177) must be replaced with 

n — 0 M 
' (3-22) 

where it is assumed that no mass transfer occurs through the insulator 

side wall. The derivative depends on the annular geometry 

of the region between an electrode surface and channel wall; and.it 

is non-zero only in this region. In the entrance region of the channel, 

before the first electrode pair, the mass flow rate is constant. In 

place of equation (3.18) for the mass flow rate at the x-location x * X n 

we have the finite difference form of equation (3.22): 

It should be noted that the variation of the local value of 

Mju in the z-direction at each x-station necessarily requires a 

three-dimensional treatment of the flow if a detailed description of the 

effects of the mass transfer is to be obtained. This is avoided here 

by use of a two-dimensional treatment with the mass transfer flux at 

each x-station given by an average value where 

( f w v > = i ^ v (3-24) 

the mass transfer flux on the right hand side being given by equation 

(3.21), multiplied by the factor . Equation (3.24) is used in 

the boundary condition given by equation (2.173) or (3.3b). 
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Th e initial boundary layer thickness and the mass transfer 

factor are chosen so that the best possible agreement between 

the computed and experimental pressure distributions is obtained. 

It is found that the best way of choosing these quantities is such 

that the computed values of pressure at the locations of the first 

two measurement stations (electrode pair numbers 2 and 5) are almost 

equal to the measured values. For the conditions of run number 7, 

these quantities are found to have the values 

6* I V M»VV > I f t x i o . 

The flow in the channel is n assumed to be initially laminar, 

with t ' O in equations (3.Id) and (3.1e), up to a certain x-station 

where transition to turbulent flow is allowed. The point of transition 

is taken to be at the upstream edge of the preionizer electrode pair 

mentioned above, where the flow is expected to become turbulent due 

to the destabilizing effects of a positive pressure gradient and finite 

projection of the electrodes into the flow (see reference (21)). 

For a given w a l l , the non-uniform mesh in the cross-stream 

y-direction is determined, for a given number of steps, at the initial 

station by choosing the product ^ ' j c
 i n

 the equation for A y * 

(see appendix A) to be such that 

Aj,' < (3-25) 

where ^ is a specified fraction of the initial boundary layer thickness. 

In practice, the quantity ' is taken to be an integer which is 

increased until the condition (3.25) is satisfied. The choice of the 

factor -fz,
 1 S

 governed by the requirement that Ajj, be, at every station 

downstream of the transition station, small compared with the thickness 

of the laminar sublayer (see section (2.4)) in which there are steep 

velocity and temperature gradients. At the same time the number of 
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mesh points in the y-direction must be large enough for the accurate 

description of the growth of a boundary layer, from its initially 

small thickness to a thickness of half the channel height. This 

requires that there be a large enough number of points outside the 

boundary layer region at the initial station. The numerical results 

presented here are obtained with a mesh of J-41 points in the y-

directi on. The value of the factor ^ 1 S t a k e n to be 0.0025, which 

gives, for an electrode wall,o{ = 322wT l ancle(\j^ (,. £^where y c=l.0Wx/0 rvu 

at the initial station. Using the latter value of s the 

distribution of mesh points in the y-direction can be obtained at 

each x-station using the formula (see appendix A) 

I -
IrMih/ ei^tfc? (3.26) 

I Jt 1 A i ^ 
At x * x the mesh step A y j increases from A y ^ i+.tj XlO w i at the 

I j 

wall to -IklXio at the centre-line. 

The step size in the x-directi on is chosen to be a certain 

f r a c t i o n ^ 0 f the local boundary layer thickness (see appendix A); that 
is 

A x * = (3.27) 

The value of is taken to be constant and equal to 0.1 at all 

x-stations except near the transition station and the edges of the 

intervals of x where mass transfer through the walls occurs, where, 

to resolve accurately the effects of sudden changes in the flow behaviour, 

smaller values of must be used. In practice, a check is made at 



each x-station to determine whether the transition station or an 

edge of a mass transfer region has been passed. If it has, the 

calculation is taken from the station before using a smaller value of 

until the transition or edge of mass transfer region is passed; 

f^ is then increased to its larger value. From numerical experiments 

it is found that a suitable factor for reducing in the present 

case is g f for both the transition station and an edge of a mass 

transfer region. The numerical results obtained for the conditions 

of run number 7 are now discussed. 

The computed pressure distribution is shown in figure 3.3, 

in which experimentally measured values are shown for comparison; for 

convenience, pressure and distance are measured in psia and inches 

respectively. The computed distributions of centre-line temperature, 

electrode and insulator side wall boundary layer thicknesses and centre-

line velocity are shown in figures 3.4, 3.5 and 3.6. The electrode 

wall temperature and velocity boundary layer profiles near the centre 

of electrode pair 2 are shown in figure 3.7; these are used as data 

for the numerical solution of the plasma and current equations (see 

chapter 5). It should be noted that the discontinuous decrease in 

boundary layer thickness from the assumed initial value after a single 

step in the x-directi on is due to the method used to determine the 

boundary layer thickness. The initial boundary layer thickness is 

prescribed and the velocity and temperature are assumed constant 

between the boundary layer edge and the centre-line, but at all x-stations 

downstream of the initial station, the boundary layer thickness is taken 

to be the distance from the wall in question of the point at which the 

velocity is 0.99 of the centre-line value. 
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Gas-dynamic Conditions of Run 7 

Mass flow rate = 5.37 gm/sec 

Centre-line stagnation pressure in nozzle inlet = 15.0 psia 

Centre-line stagnation temperature in nozzle throat = 1687°K 

Pressure in helium blanket = 14.95 psia 

Static Pressure and Wall Temperature in Channel 

Electrode Pair Pressure Wall Temperature 
Number (psia) (°K) 

2 12.07 1295 

5 12.04 1358 

8 11.92 1391 

11 11.87 1365 

14 1362 

Fig. 3.1: Cell of two-dimensional mesh used for finite 

differencing of boundary layer equations 

Fig. 3.2: Table of gas-dynamic conditions of Run 7 of 

the October 1977 sequence of runs of the IRD 

facility 
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No v ia I t ma$5 t r a n s f e r 

O Measured Pressure 

0.0 2.0 4.0 ~~ ~~8.0 10.0 12* 0 14.0 

15150 1 

rc 

1500 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 
x M 

(1) Fig. 3.3: Computed pressure against distance from nozzle throat. 

Experimental values are shown for comparison. 

(2) Fig. 3.4: Computed centreline temperature against distance from 

nozzle throat. 
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(1) Fig. 3.5: Thicknesses of velocity boundary layers on electrode (£,) 

and insulator ( ) side walls against distance from 

nozzle throat. 

(2) Fig. 3.6: Computed centerline gas velocity against distance from 

nozzle throat. 
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Fig. 3.7: Computed gas temperature and x-component 

of velocity electrode wall boundary layer 

profiles at the x-station nearest the 

centreline of electrode pair 2. 
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CHAPTER 4 

NUMERICAL SOLUTION OF THE PLASMA AND ELECTRICAL FIELD EQUATIONS 

4.1 Introduction 

The equations governing the plasma and electrical fields, 

namely, the seed atom density, the electron density, the electron 

temperature, and the current stream function, and the appropriate 

boundary conditions for the case of a flowing partially ionized plasma 

in a linear segmented electrode MHD generator channel, were derived 

in sections 2.5, 2.6 and 2.7 on the basis of a number of simplifying 

assumptions. Thus the main part of the channel is considered so that 

the geometry of the problem is that of one electrode segment, and the 

gas-dynamic fields T , p and u are assumed given functions of y , the 

eoordi;nat£ normal to the electrode side walls, determined from the 

solution of the boundary layer equations using the numerical procedure 

described in chapter 3. All variations in the z direction, which is 

the direction of application of a uniform constant magnetic field, and 

therefore the effects of insulator side wall boundary layers, are 

neglected. 

In this chapter a numerical method of solution of the plasma 

and electrical equations, consistent with the aforementioned boundary 

conditions and simplifying assumptions, will be developed and used in 

chapter 5 to studys<w^ physical phenomena occurring in a closed cycle 

MHD general channel for conditions typical of those of a series of 

experiments recently performed on the IRD generator facility, thus 

allowing comparisons of theory and experiment to be made wherever possible. 
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Similar numerical studies have been reported by a number of 

authors in the past, who demonstrated some qualitative agreement 

between theory and experiment^ 8), but time dependent numerical models 

have so far not reached the degree of sophistication needed for 

accurate quantitative agreement between theory and experiment to be 

obtained. The present work may be regarded as an initial step towards 

achieving this degree of sophistication, by including a number of effects 

previously considered only in steady-state numerical models of open cycle 

MHD generators, which have the ability to give accurate predictions of 

generator c h a r a c t e r i s t i c s ^ ) s .These effects include finite turbulent 

velocity and temperature boundary layers, finite ion and seed atom 

diffusion, collisionless sheaths, turbulent diffusion and turbulent energy 

transport. It should be noted that no model of electrode-plasma 

interactions, incorporating seed-electrode interactions, has ever been 

used for the formulation of boundary conditions for an MHD generator, 

despite the importance of seed-electrode interaction effects(29)>(30)^ 

The inclusion of the aforementioned effects, together with 

the assumption of instantaneous electron temperature relaxation, previously 

only considered by K o l b ^ 8 ) , meant that a complex numerical method, 

incorporating a number of novel features, had to be developed for the 

solution of the plasma and electrical equations consistent with the 

boundary conditions. This method will be described in detail in this 

chapter. It should be noted that, whilst the collisionless sheath 

model of section 2.7 is rather limited in applicability because of the 

restriction imposed by the condition (2.240b) the same basic numerical 

method should be applicable without much modification to the case of a 

collision dominated sheath, in which an ion continuity equation must be 

considered,Poisson's equation for the electrostatic potential then 

replacing the current stream function equation. 
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4.2 Space-Pi fferencing 

For the numerical solution of the plasma and electrical 

equations, both the space and time coordinates must be discretized so 

that the governing equations and their boundary conditions can be 

replaced by finite difference representations. Thus the domain of the 

calculation, shown in Fig.2*3, is replaced by a two-dimensional 

mesh. Whilst the step size in the x-direction can be taken to be 

constant, the large velocity and gas temperature gradients near the 

walls necessitate the use of a variable step size in the y-direction. 

A step size distribution in the y - d i r e c t i o n , which is symmetric with 

respect to the centre-line, is obtained from equation (A.3) in appendix A, 

Thus, 

JL .1 fe 
H 

y j * 2 

, M f . - i l ) 
hc4i li 2 fe H J 

I - L i <*H iruMk sr 2. > (4.1) 

w h e r e , with J-l steps in the y-direction, 

, 1 / j x < J ~ . (4.2) 

The quantity o(H/z equation (4.1) is treated as a constant 

determined, as shown in appendix A , from the velocity profile used to 

initiate the numerical solution of the boundary layer equations for 

the wall at y = 0 . 

Equation (4.1) defines the mesh to be symmetric with respect 

to the centre-line. This is in accordance with the assumed symmetry 

of the gas-dynamic fields, which allows us to define, for example, the 

gas temperature for ^ (nj K H by the symmetry condition 

Z . j - T j , 1 X j s < Z 

so that the profiles for { H
 a r e

 obtained from the solution of 

the boundary layer equations for 0\( 2 
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Unlike the boundary layer equations, finite difference forms 

of the plasma and electrical equations, as well as of the wall boundary 

conditions, accurate to second order in the space step, cannot be 

derived when the step size is variable, as it is above. To obtain second 

order accurate finite difference forms it is necessary to transform 

the y-coordinate to the variable ^ defined by equation (4.1), the mesh 

then being transformed into a rectangular mesh. This transformation 

is effected b> ' " ™ ^ ; ^ 

in the plasma and electrical equations, and the wall boundary conditions. 

All plasma and electrical quantities are then considered as functions 

of the coordinates ( x , $ ). 

where 

The points of the finite difference mesh in, ) space are 

defined by the equations 

y - n _ nr.:.. — r- a- Av • i.= 1.7 T 

(4.4) 

and the value of the function y C ^ i f ) 

denoted by ' . Thus, 

(4.5) 

The finite difference forms of the plasma and electrical 

equations, equations (2.207), (2.208), (2.227) and (2.229), at a 

mesh point i>j } can be obtained by employing the following 

second order accurate finite difference representations of the 

spatial derivatives: 
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m m f u s z f t D 

k,s a&x 

- (4.6b) 

l ( k f ^ Y j ^ foutki-^fi^ - ^ ( k M . j + w j ) nw 

' Jf-Ax2- " "(4.6c) 

' T I F ' 

where k and cj> are any two functions. For the wall boundary conditions 

the finite difference representations 

r 

z a p s 

1 4 

and 

must be used in place of equations (4.6b) at j = 1 and j = J 

respectively, so that values of (f> at mesh points outside the physical 

domain are avoided. Since both the current stream function equation 

(2.229) and, assuming instantaneous electron temperature relaxation 

(see section 2.5), the Electron energy equation (2.227) are steady-state 

equations their finite difference forms at any instant of time can 

be easily obtained by using the finite difference representations 

defined by equations (4.6) and (4.7). The resultant finite difference 

equations will be considered in detail in section 4.4. 
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4.3 Numerical Solution of Continuity Equations 

The electron and seed atom continuity equations, equations 

(2.207) and (2.208), have the general form 

| | > - ^ + 3J, •+ D r - T S (4.8) 

where y \ e or yi^ ; and J>j represent the terms describing 

diffusion in the x and 1> directions respectively, and S represents 

the source terms. The integration scheme for equation (4.8) is 

formulated by considering the Taylor expression 

r - r ' + ^ i t v i ^ i ^ y (4. 9) 

where n is the time level, and Air is the time step. Equation (4.9) 

may be regarded as the sum of two equations: 

and / S l * . ^ ' f ? ^ ^ 

(4.10a) 

(4.10b) 

where 

f t * - " * PX + S ( 4 . l l a , 

and 

dU 
— - h 
otr 3 

(4.11b) 

The advancement of f in time can therefore be regarded as composed of two 

operations, a first, in which the convective, x-diffusion and source terms 

are advanced; and a second, in which the y-diffusion terms are advanced. 

An explicit second order accurate integration scheme for the convective, 
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x-diffusion and source terms can be formulated by replacing the 

second derivative in equation (4.10a) by the backward difference 

approximation 

- , 1 * 1 " I t t ) . 

so that, to second order accuracy, 

r'r^^m-mi -
This is commonly called the Adams-Bashforth scheme. The finite 

difference forms of at a point (V,j) of the mesh are 

/ a f i ] _ _ Kxj / 
I afc J I - "W-.jj 

J y (4.13) 

and 

/ A 
' i Kxj / \ i fkr \ ( 

The updated densities 7?e and 7?^ at each interior (non-boundary) 

mesh point are obtained from equations (4.12), (4.13) and (4.14). 

Owing to the periodicity boundary conditions (2.236a) and (2.236b), 

equations (4.12), (4.13) and (4.14) are also used for mesh points on 

the boundary AE (see Fig. 2.3), excluding the corner points. Updated 

values at mesh points on the boundary DH are obtained by equating with 

the values on the boundary A E . 
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The 5 -diffusion terms are advanced by application of the 

(33) 

Crank-Nicholson method of differencing v '. The second derivative in 

equation (4.10b) is replaced by the forward difference approximation 

m-m n-ll 

'M (4.15) 

so that, to second order accuracy, 

utvm 
The finite difference forms of dj-z/dh at a point (Y,j) of the mesh 

t>. r * s 

are 

Mi* y 
i 

t 
rcknt 

J J t - t t - . l i i k 
' J-w 

5J-' 

Urf 
(4.17) 



- 1 5 4 -

(4.18) 

Using equations (4.17) and (4.18) the finite difference forms 

of equation (4.16) can be written in the forms 

v i - I + 71 J + ceiri H ^ J V , - ( + ^ 4 . 1 9 ) 

and 

K y , + I k j C . - j = A, - W - k ) (4.20) 

where 2 v< J N< . 
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Th e coefficients Ae. > fe a n d fe depend on the updated 

electron temperature , and the wall values of Y)^ and Y)^ 

are obtained from the finite difference forms of the wall boundary 

conditions for the continuity equations, which are coupled to the 

other wall boundary conditions (see section 4.5). Therefore, 

equations (4.19) and (4.20) must be solved simultaneously with the 

solution of the electron energy and current stream function equations 

-j— 1 
(see section 4.4), equations (2.227) and (2.229). For given lei,j j 

n »i 
and wall values of Yt€ and h h , equations (4.19) and (4.20) are two 

linear tridiagonal systems of equations for the updated densities 

W e i j and ( z > which can be solved for every 

mesh column excluding the boundary DH (Fig. 2.3), along which the 

updated densities can be obtained by application of the periodicity 

conditions, equations (2.236a) and (2.236b). 

Application of equation (4.12) requires the use of a constant 

time step; to perform the first time advance, and to revise Air where 

necessary, a form of second order accurate Runge-Kutta method is 

used. Omitting the second derivative in equation (4.10a), and 

eliminating the second derivative in equation (4.10b) using equation (4.1 

equations (4.10a) and (4.10b) can be written in the approximate 

forms / ^ V ^ ' 

(4'J (4.20a) 

and 

r - f (4.20b) 
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respectively. Equations (4.20a) and (4.20b) determine the updated 

f, denoted by -jp*} to first order accuracy. Using and -jf^jt 

the second derivative in equation (4.10a) can be approximated. Thus, 

1 9 % \ f ( s h ) \ f y j 

[ h q ~ i i t t ) ' [ i t ' j J (4.21) 

Inserting equation (4.21) into equation (4.10a) and eliminating the 

second derivative in equation (4.10b) using equation (4.15), equations 

(4.10a) and (4.10b) can be written in the approximate forms 

and 

respectively. Equations (4.22a) and (4.22b) determine the updated 

f, denoted by , to second order accuracy. 

The procedure used to update the electron and seed atom 

densities, is defined by equations (4.12) and (4.16) for a constant 

time step, and equations (4.20a), (4.20b), (4.22a) and (4.22b) for 

variable time step. In this procedure the x-diffusion, source and 

convection terms are treated by an explicit second order accurate 

integration scheme, while the cross-stream diffusion terms m e treated 

by the implicit second order accurate Crank-Nicholson scheme. A 

procedure of this kind appears to have been first used by O l i v e r ^ 3 4 ^ , 

but in a form less accurate than that formulated here. The procedure 

used here reduces to that used by U n c l e s ^ in the absence of the £ -

diffusion terms in the continuity equations. 
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The accuracy of the one time step explicit integration 

scheme defined by equations (4.20a) , (4.20b), (4.22a) and (4.22b) 

when ? -diffusion is present has been checked by performing numerical 

experiments in which both this scheme and that defined by equations (4.12) 

and (4.16) were used to update quantities, keeping the time step fixed. 

The two sets of results so obtained were found to differ by negligible 

amounts. 

The choice of the time step is governed by considerations of 

numerical stability, which is discussed in detail in section 4.6. The 

explicit part of the calculation is stable only if the time step is 

sufficiently smaller than the minimum characteristic time scale of 

the physical processes involved in the evolution of the densities 

(excluding 5 -diffusion). There remains, however, a weak instability 

due to convection which has necessitated the introduction of artificial 

diffusion (see section 4.6). On the other hand, the implicit part of 

the calculation is unconditionally stable, which is desirable since 

strong 5 -diffusion near the walls would impose severe restrictions 

on the size of time step used if an explicit integration scheme were 

used. 

4.4 Numerical Solution of Electron Energy and Current Stream 

Function Equations 

The current stream equation, equation (2.229), can be written 

in the form 

where the y-coordinate has been transformed to the coordinate £ . 

The finite difference form of equation (4.23) at an interior (non-boundary) 
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point (i,j) can be written in the form 

M C j ( v - u o ^ n ^ h i k ^ t 

+ + k + i k fc ( % ft ^ o (Hi<rks-

(4.24a) 

where 

I 

W ' ( M P U »•><-> 

and p^ • , a n < 1 j a r e the finite difference approximations 

to equations (2.230a)-(2.230c). 

The finite difference form of the electron energy equation 

at an interior (non-boundary) mesh point (i, j ) is written as 

F a i j - O . (4.25) 

n n — n n 
F o r g i v e n ^ e ^ j » a n d wall values of leifj*n<L , 

equations (4.24) and (4.25) are two coupled systems of non-linear 

algebraic equations for the unknowns V^'J a n d ft".j a t m e s ' 1 

points excluding the walls. The system of equations is solved 

iteratively using an extension of the non-linear relaxation method 

(351 
originally developed by Lieberstein

v
 ' for the solution of a system 
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of non-linear algebraic equations obtained by finite differencing a 

single non-linear elliptic equation. 

Equations (4.24a) and (4.25) are linearized by introducing the 

n,(k> r~ i k ) 

iterates y-ij and /e/J (k is the iteration level) and replacing 

r . r a ^ 

»"|v0 and r;^* by expansions of n Cj and r2l\j about 

n/k) -r~(kl 

Ti'tj i-ei,j • The algorithm of the non-linear relaxation 

method is obtained by ignoring variations of T e and ^ at mesh 

points in the immediate neighbourhood of the point (i\J) in these 

expansions. T h u s , we obtain the expansions 

and x D P . . \0<) 

^ ' [ v J 9 (4.26b) 

r .. UKJ 

the latter equation following from the fact that fiu'J is not 

explicitly dependent on • 

Introducing a relaxation parameter o> and setting 
/W 

siJ"""' (
s e e

 equation (A.24a)), the following equations are 

obtained from equations (4.26a) and (4.26b): 
p-fls") 

TTi.j - T i . j - W / f > ' (4.27a) 

-); 7, <•*> , — " J I Z - r (M 0 __ ((c)J 

A single iteration is performed by scanning the mesh 

replacing the values of lei\j and a t e a c ^ point by the right-hand 

sides of equations (4.27a) and (4.27b) respectively, where h#',j > 

^ h i y j / d f e i f i and / ^ l e ^ f are evaluated using 
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corrected results immediately upon becoming available. The iterations 

are stopped when a convergent solution is obtained satisfying 

I - p (Kt/) -p (W | . 

I let/'̂  - let.g | < £ " ' f o r all mesh points (i,j), where £ is a 

prescribed value, say 1°K. 

Owing to the periodicity assumption, equations (4.27a) and 

(4.27b) also apply at mesh points on the boundary AE of the domain 

(see Fig. 2.3). The values of and along the boundary DH 

are obtained by application of the periodicity condition (2.236c) and 

equation (2.235). 

For mesh points lying on the insulators CD and GH of Fig. 2.3, 

equation (2.234) gives 

V S ' X ^ + r > , 

. /(k) 

the voltage drop V being obtained from equation (2.232) using 

Simpson's rule and the 7e and ^ d i s t r i b u t i o n s at the kth iteration 

level. For applications considered here this is not necessary since 

fixed applied currents are assumed so that J. is constant and 

the insulator wall values of 'VVfj are fixed. 

The values of T ^ j at mesh points lying on the electrodes BC 

and FG of Fig. 2.3 are obtained from the finite difference forms of 

equation (2.233), the values of ^ outside the physical domain 

being eliminated using equation (4.24a). To ensure that the boundary 

condi tion 
Tu = 0 

is satisfied at all insulator wall points, the 
o <h<) 

values of T l»j a t electrode corner points are set equal to the 

values on the adjacent insulator walls. 
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For stability of the non-linear relaxation method the 

parameter co must lie in the range o { ( s e e reference (33), 

the method being one of over-relaxation if j <<+><2., and under-

relaxation if . For given values of • ,
 /

™-u,J| and 
A 

boundary values of one can optimize the convergence rate by 

suitably adjusting the relaxation parameter CO at every iteration. 

However, as indicated in reference (33), the amount of computational 

work involved in doing this is too great for there to be any useful 

gains in computational efficiency. Instead, an optimum value of can 

be found for a sequence of iterations defined by equations (4.27), by 

testing a number of values of to and comparing the numbers of 

iterations required for convergence. The optimum value of to so 

obtained could be adjusted occasionally in the course of advancement 

of the solution in time. This approach, used by Uncles^ 8), has not 

been followed in the present work because of the large number of 

calculations performed in advancing the solution a single time step. 

Instead, an optimum value of to is found by computing the initial 

state using several values of tJ and finding the value of to for 

which the number of iterations required for convergence is a minimum. 
-3 

For an applied current of 0.5A, a seeding fraction of 10 , a magnetic 

field of 0.5T, and a mesh of 15 columns and 49 rows, the optimum value 

of CO is found to be 1.5. This value of 00 has been used for all 

computations reported in chapter 5. Numerical experiments have 

shown that instability can occur if the difference between the value 

of CO used and the optimum value is large. In particular, the scheme 

can be unstable if the relaxation parameter is taken to be equal to 

the optimum value for solution of Laplace's equation on a mesh of 

(33) 
constant step size in the x- and y-directions, which is given by 
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± 1 1 + K { z 2 + i j t y> 

This formula yields an optimum value of 1.98 for GO , where I = 15 

and J = 49. 

Numerical calculations based on the assumption of instantaneous 

electron temperature relaxation, have been reported by K o l b ^ ^ , who 

applied the non-linear relaxation method of solution to the electron 

energy equation alone, following the original method due to 

L i e b e r s t e i n ^ 3 ^ . This meant that a sequence of iterations had to be 

performed between the solution of the elliptic equation for the electro-

static potential , obtained by means of the method of linear relaxation 

and the solution of the electron energy equation. This has been avoided 

here by extension of the method of non-linear relaxation. 

4.5 Numerical Solution Consistent with Wall Boundary Conditions 

The wall boundary conditions for the continuity and electron 

energy equations were derived in section 2.7 from a study of interactions 

between the plasma and electrode walls. The spatial finite difference 

forms of these boundary conditions are obtained by replacing the 

derivatives with respect to £ by the finite difference representations 

« 
given by equations (4.7). For given t V J (including electrode wall 

n M H 
values) and interior values of lei-j , o e C ^ and » one then 

has a system of equations at each wall mesh point for the unknown wall 

K * n 

values of / ^ j , j and • 

Considering an electrode wall, the ion and seed atom continuity 

conditions can be used to eliminate the wall values of rJeuj and 

• from the electron energy, total current continuity and 
'j 

surface coverage equations; these equations can then be written in 

the forms 
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C Z ( T e . 4 f } 9 ) - - 0 , (4.28) 'A 
»v 

( r e , L f ) e ) = o , (4.29) 

( r i h i ( T e f f y ) (4.30) 

where j = 1 or J and the forms of G-j, G^ and G^ depend on the sign 

of . The equation for the surface coverage, equation (4.30 ) s is 

time differenced by replacing with (e*- 5 / 7 A t , 

a n d W l t h the average (Crgp^f C^C.j)fa • Thus, to 

second order accuracy, equation (4.30 ) can be written in the form 

Q . f t m ^ C ^ - + (4.3!) 

Equations (4.28), (4.29) and (4.31) constitute a non-linear 

system of equations for the unknowns /eJ,j , 
and £V<j . 

These equations can be solved iteratively by means of Newton's method. 

/ — © V 
The equations are linearized by introducing the iterates ( lef,:, 

/V \ 
(A<pilj » Sitj / > where k is the iteration level, and replacing 

> a n d fec.j b y expansions of (rxt'J 

/>(£*<) r jt /il̂ / ) 
and about ( '-e/.j , ' / > retaining only those 

/ '/ <kf \ 

terms linear in ( - j ] etc. Thus, equations (4.28), 

(4.29) and (4.31) become 

J v
 ' 'J ° (4.32a) 
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where 

8 = lecVj - J*;,] , - ^ i j * ^ 1 • J " U"" (4.33) 

Having solved equations (4.32), the higher order iterates 

are obtained from equations (4.33). The iterations are repeated until 

' / ^ ' / i where £ is, say, 10~ 4. It should be noted that 

the forms of u i i ^ s (xzl j a n c ' ^fcj » a n c* "their derivatives, must 

. (u, 
be changed whenever the sign of changes during the iterations. 

k a / * m 

Having determined JcJ^, A ^ y a n d , the electrode 
K n 

wall values of ^ k j and '^W.j are obtained from the ion and seed 

atom continuity conditions. 
* .—. i 

The insulator wall values of » a n c ' ^ i j a r e 

much more easily obtained. For example, for an insulator wall 

segment at y = 0, one has 

^ C ^ ^ L z ~ (4.34a) 

< 1 « (T+Te)]^ j / f s ^ j " (4.34b) 

Numerical solutions of the continuity, electron energy 

and current stream function equations consistent with the wall boundary 

conditions may be obtained in a number of ways. One procedure, 

which has been tested, is outlined in block form in figure.4.1, assuming 

a constant time step. 

A suitable alternative to the procedure outlined in figure 4.1 

might seem to be one in which the wall boundary values are obtained from 

equations (4.28), (4.29), (4.31) and (4.34) at every iteration of 
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ty^j and the interior value of frf̂ j ; that is, at every iteration 

of the non-linear relaxation method. As indicated in reference (36), 

such a procedure suffers from a slow instability; that is, a slow 

drifting away from the true solution as the iterations are performed. 

With a sufficiently stringent convergence criterion, a convergent 

solution is never obtained and any result obtained by terminating the 

iterations at some point bears little resemblance to the true solution. 

This instability has been observed by the present author in numerical 

experiments employing the aforementioned procedure. 

. o 
To initiate calculations, the initial distributions 

J 
° /1 0 —r- c 

V W , : and (fr: must be specified, together with 
guesses for • 

i? ^ 
and . These are obtained by making the following assumptions: 

(i) The current stream function satisfied Laplace's 

equation 

subject to the boundary conditions given by equations 

(2.233), (2.234) and (2.235); equation (2.233) is 

used in the form 

and the current I is given. 

(ii) The seeding fraction Of - + is a 

specified constant. 

(iii) The electron density is given by Saha's equation: 

n O 

(iv) The electron energy equation has the simplified form 

(v) The surface coverage is equal to its thermal equilibrium 

value (see section 2.7). 
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i ° T 0 

The H i ^ and 'e^j distributions, and the wall values of 

o .. o 

T W . j and hmi.J > are found by solving the full electron energy 

and current stream function equations consistent with the wall 

boundary conditions for fixed surface coverage. 

4.6 Stability Considerations 

For the explicit part of the integration scheme for the 

continuity equations, formulated in section 4.3, to be numerically 

stable and accurate the time step must be sufficiently smaller than the 

characteristic time scales of the physical processes described. The 

implicit treatment of the $ -diffusion terms requires only that the 

time step be sufficiently small for accuracy, since the Crank Nicholson 

(33) 

scheme is unconditionally stable v '. This is also true of the implicit 

treatment of the surface coverage equation (see equation (4.31)). 

The explicit integration scheme is applied to the convection, 

x-diffusion and source terms of the continuity equations. The 

stability of the scheme is examined by use of the approximate approach 

of reference (8), in which the stability of the scheme to source terms, 

convection terms and x-diffusion terms is considered separately. 

(a) Stability to source terms 

In order to investigate the stability of the explicit integration 

scheme to source terms, small perturbations of and are 

considered, and the linear theory of appendix C is applied. Consistent 

with the temperature relaxation approximation, the evolution of the 
. / / 

perturbations n e and xin is described by the equation 

' ; (4.35) 
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where ii - wjor and T is the growth/decay time of the ionization 

instability; i.e., C j . The explicit integration scheme defined 

by equation (4.12) yields for u at time level n, 

(4.36) 

By solving equations (4.35) and (4.36) and comparing the solutions, 

it is shown in reference (18) that, for T > O , the numerical scheme 

approximates the exact solution to second order accuracy in (Ab/x) if 

(4.37) 

For an exponentially decreasing solution, the stability condition is 

t\r ( /T/ , ( x < 0 ) y (4-38) 

which is slightly less restrictive than condition (4.37). 

The numerical results presented in chapter 5 are obtained by 

considering the characteristic time scale for ionization (see 

equation (2.212)) 

xx - 1 /[A, 

where , e Vr 

( 2rr»ie fa U \/z 

-- ^ ( — T T ) t 

in place of the growth/decay time of the ionization instability in 

equation (4.35). This is due to the fact that the linear theory of 

appendix C is not applicable to small departures from highly 

non-uniform plasma states; application of the expression for the 

growth rate of the ionization instability in the temperature relaxation 

approximation derived in appendix C is found to lead to unnecessarily 

short time steps. 
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(b) Stability to convective terms 

The simple convection equation 

i n - - u 
" K 
« - u * I (4-39) 

where Vi* = constant, is considered. The explicit integration 

scheme defined by equation (4.12) when applied to equation (4.39) 

yields 

n v)-1 ^" * 
u ; = U ^ " [ 3 ( - - ( k k - C f ) J (4.40) 

By considering a Fourier mode of solution of equation (4.40) it is 

shown in reference (8) that, for 

' ^ A o . S (4.41) 

U x v 

the numerical scheme approximates the exact solution to second order 

accuracy in lAyAtJj^x > but possesses a weak instability in fourth 

order; that is, 

| 5 / r | + 0(M:*) ^ I 

* , n-l 

where j r u / /IA; . It is shown in reference (27) that this 

instability is removed if after every time step new values of the 

variables are defined according to 

r a t j + (4.42) 

where € ) . The accuracy of the solution is little 

affected by the introduction of this artificial diffusion. 

U n c l e s ^ found that stabilization was not required in his 

Ay 

work because the time scale for convection — was much larger than 

the electrothermal time scales so that the factor 

( 1 ^ A i r / A x N was 
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very small. In the present w o r k , however, conditions are such that 

the time scale for convection is comparable to the electrothermal and 

ionization/recombination time scales and stabilization is necessary. 

Artificial diffusion is applied to the integration scheme of 

section 4.3 as follows. Assuming a constant time step, application 

of the explicit integration scheme defined by equation (4.12) is 

followed by an evaluation of the variable f according to equation (4.42): 

j-II h i + M 2 k ] 

The value j - " * in equation (4.16) is then replaced with the v a l u e ^ * 

The artificial diffusion scheme, defined by equation (4.42), 

is applied to the exflitib one step integration scheme, defined by 

equations (4.20) and (4.22), by replacing ^*"^and j - * * in equations 

(4.20b) and (4.22b) with / a n d , respectively, where 

h r k 4 to ( i c j l h c j + k j > 
f f n*' 

the quantities J-^j and j^J being given by equations (4.20a) 

and (4.22a). 

(c) Stability to diffusive terms 

Application of the explicit integration scheme defined by 

equation (4.12) to the simple diffusion equation 

# t r S b Sx"2- (4.43) 

yields 

3 (KlV( -2ui -h U;_( J - { ^ r ^ i ^ r Uf.JJ (4.44) n n-i , 
-T Z&X 
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By considering a Fourier mode of solution of equation (4.44) }it 

can be shown that the condition for stability is that 

. 7 osAx1 
A b < - r - (4.45) 

kv 

The conditions (4.37) or (4.38), (4.41) and (4.45) impose 

restrictions on the size of time step used for the explicit integration 

scheme defined by equations (4.12) to be numerically stable and accurate. 

These conditions require that the time step be sufficiently smaller 

than the time scales of the physical processes concerned. Characteristic 

time scales are discussed in greater detail in appendix C. 

Another form of numerical instability can occur as a result 

of large truncation error when a space step mesh size exceeds the 

characteristic length scale for electron thermal conduction. This 

instability has been reported by K o l b ^ 3 ' and has been observed in the 

present work in numerical experiments where electron temperature 

gradients near the electrode corners are very large. In these cases 

it is found that when the step size in the x-direction is too large, 

large electron temperature peaks, which tend to increase with time, occur 

in the higher current density regions near the electrodes. These 

peaks disappear when a smaller step size is used. An expression is 

derived below for the characteristic length scale of electron thermal 

conduction, which is used to obtain upper limits on the choice of 

step size in the x-direction. 

A uniform plasma state described by the simplified continuity 

and electron energy equations 

^ = 0 (4.46a) 
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and 

< T 2 / V e c " L * o . (4.46b) 

is considered, where the subscript o refers to steady-state 

quantities and ^eo is the volumetric rate of loss of energy of the 

electron gas as a result of elastic collisions with the heavy 

particles; this is given by (see equation (2.31)) 

( e « = 3 M e U e - V ^ ^ H , . (4.47) 

Spatial variations are introduced such that 

y)ei> t Y)i (4.48a) 

and 

T e = Utfife t + V . <4 • 4 8 b) 

Linearization of the simplified system of equations, considered in 

appendix C, equations (C.1)-(C.6), with respect to the perturbations 

defined by equations (4.48 ) yields the equations 

J>Ve f / 
r p - O o h + rt/Te (4.49a) 
D tr 

and 

^ + WF * * A f T e / ^ (4.49b) 

where the coefficients are listed in appendix C. The 
^t-j- f 

additional term \ 0 - - X o f ^ T e has been introduced on the right-hand 

side of equation (4.49b) to account for electron thermal conduction. 

Eliminating D*e'/t)t from equation (4.49b) using equation (4.49a), we 

obtain 
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Tn~' 

from which it is clear that electron thermal conduction is important 

if the wavelengths of spatial variations are sufficiently small 

that 

from which a characteristic length scale for electron thermal 

conduction can be defined as 

G e - ) . (4.50) 

The angle 8 in equation (C.9f) of appendix C is taken to be Ti/z > 

for which the magnitude of the coefficient is a maximum and I ^ 

therefore a minimum. Using equations (C.9b), (C.9c) and (C.9f) we 

can then write 

3\t I J J (3L-T) 
a^-ay-- i.p-. Xio >to • y\eo ( ^ ' 7_j • T t t g^ . (4.51) 

From equation (2.114), is given by 
£ 

t z z l - ( 4 - 5 2 ) 

Taking as a representative set of values, for a seeding fraction of 

0.002, T e = 2000°K, n e = 1.637 x 1 0
1 9
/ m

3
, J = 4.319 x 1 0

3
 A / m

3
 and 

CT = 4.365 

mhs/m, we obtain from equations (4.50)-(4.52) 

The smallness of compared with a segment length of 25.4 m m , used 

in all numerical experiments carried out by the author, necessitates 

the use of a large number of steps in the x-direction ( > 4 5 ) in 

cases where electron temperature gradients are very large. In the 

work of K o l b ^ ^ , the numerical instability occurs with a coarse mesh 

in cases where the electron temperature at a wall point is set equal 
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to the gas temperature leading to large electron temperature gradients 

in the regions of current concentration near the electrode edges. 

In the present work,the numerical instability occurs when a coarse 

mesh is employed and the initial value of the surface coverage is 

taken to be much larger than the equilibrium value leading to large 

electron temperature gradients. The instability does not occur in 

the case considered in chapter 5,even though a coarse mesh of 17 points 

in the x-directi on is employed. 
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CHAPTER 5 

RESULTS OF COMPUTATIONS OF THE LOCAL BEHAVIOUR IN A CLOSED 

CYCLE MHD GENERATOR 

5.1 Introduction 

In this chapter some results of computations of the temporal 

development of the local plasma and electrical behaviour in a single 

segment of a closed cycle MHD generator,using the numerical method 

developed in the last chapter, are presented and discussed. 

Similar computations have been reported by other authors, 

in particular, K o l b ^ f e u n c l e s ^ and A r g y r o p o u l o s ^ 4 ' . Of these 

studies that of Uncles appears to be the most advanced in that, as 

well as including physical processes not previously considered by other 

authors the temporal development of the plasma and electrical behaviour 

is followed up to times long enough for quasi-steady state conditions 

to be established. In addition, effects of varying the channel 

dimensions and applied magnetic field are considered in reference (8). 

In particular, generator operation in the regimes of stability and 

instability of the ionization mode of electrothermal waves (see 

appendix C) is investigated. An important result of the computations 

performed by Uncles is the possibility that non-uniformities introduced 

by the finite segmentation can grow into 'streamers', or high 

conductivity paths, transverse to the gas flow, along which the bulk 

of the current can flow. As a result, the effective electrical 

conductivity Ch^p , introduced in chapter 1, is increased by a factor 

of about two over the average conductivity fer). This result is in 

contrast to the linear theory of the electrothermal instability, which 

predicts, for a weakly unstable plasma, the occurrence of plane-wave 
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like plasma non-uniformities at an angle of about 45° to the channel 

axis, leading to reduction of the ratio O e ^ / t ^ y ^ K 

However, as mentioned earlier, the work of Uncles excludes a 

number of important physical processes, which have previously been 

considered only in the case of open cycle MHD generators, in which 

steady-estate plasma and electrical behaviour can be assumed. As 

mentioned in the introduction, emphasis in the present work is more on 

the development of a physical model incorporating some of these 

effects, together with some effects not previously considered, and the 

development of numerical methods of solution of the governing equations. 

Thus detailed analysis of computational results in terms of the acting 

physical mechanisms for various generator operating conditions and 

dimensions is not attempted here. Instead, some computational results 

obtained for one representative set of generator operating conditions 

are presented and discussed in this chapter. 

The large demands made on computer time by the program that 

solves the plasma and electrical problem necessitates restriction to 

one set of generator operating conditions. For the same reason a rather 

coarse space mesh of 49 points in the cross-stream £ (or y - ) 

direction and 17 points in the x-direction is employed and the 

computation not performed for a long enough time for a quasi-steady 

final state to be reached. Fortunately, the numerical instability 

reported by K o l b ^ ^ , discussed in section 4.6 is not encountered in 

the computer run considered here even though the step size in the 

x-direction exceeds the characteristic length scale for electron 

thermal conduction. The reason for this has already been given in 

section 4.6. 

The generator conditions considered in this chapter are 

representative of those of the experimental runs of the IRD closed loop 
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facility carried out in October 1977 (see section 3.5). Thus, as in 

section 3.5, the gas-dynamic conditions of run 7 are considered, and 

the channel dimensions at the location of electrode pair 2 are used; 

that is, L = 2.54 x 10" 2 m , H = 2.23 x 1 0 - 2 m , W = 1.08 x 10" 2 m. 

With a mesh of 17 points in the x-directi on the number of mesh points 

allocated to each electrode is 7, yielding an effective electrode length 

of 9.5 mm , which is equal to the electrode diameter. Whilst the 

actual electrode cross-section is circular, application of the two-

dimensional numerical model requires that an electrode of rectangular 

cross-section be considered. Thus, the electrode length in the x-

direction is taken to be 9.5 mm , while the electrode length in the 

transverse z-direction is taken to be equal to the channel width; i.e., 

-2 -5 2 
1.08 x 10 m . This gives an effective electrode area of 10.29 x 10 m 

-5 2 

compared with an actual electrode area of 7.13 x 10 m . This 

difference in electrode area must be allowed for in any attempt to 

compare numerical and experimental results. 

The gas pressure and electrode wall gas velocity and gas 

temperature profiles are obtained from the solution of the boundary 

layer equations discussed in section 3.5, the appropriate x-location 

being taken to be that of the centre of electrode pair 2. 

Experimentally it is found that,for a seeding fraction of 0.002^ 

(4) 

inlet ionization relaxation is completed well before electrode pair 2 V '. 

Therefore the latter value of seeding fraction is used to initialize 

the computation. The corresponding equilibrium value of the surface 

coverage (see section 2.7) is approximately 0.35; this is taken to 

be the initial value of the surface coverage at all electrode mesh 

points. 
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Th e applied magnetic field is taken to be 0.7 Tesla. At 

higher magnetic fields, convergence problems are encountered in the 

numerical solution of the coupled current stream function and 

electron energy equation using the method of section 4.4 due to 

concentrations of current at the downstream edge of the cathode and 

upstream edge of the anode. A satisfactory method of overcoming these 

convergence problems has not been found. Of course it is only at 

magnetic fields sufficiently large for the plasma to be locally 

unstable that the electrothermal instability can have any effect on 

the local plasma and electrical behaviour and derived generator 

characteristics. 

It was shown in section 2.7 that, for a surface coverage of 

2 
0.35, v ; << V e and the emitted electron current density is 3813 A/m . 

Numerical experiments show that convergence problems arise in calculating 

the electrode wall values of A / and for . 0 = 0 . 3 5 using the 

method of section 4.5 when the applied current exceeds about 0.1A. The 

average electrode current density for an applied current of 0.1A is 

2 

972 A/m , which is much less than the emitted current density. However, 

due to the Hall effect, large concentrations of current occur at the 

downstream edge of the cathode where the current density is much 

larger than the average value. As a result, saturation can occur in 

the region of current concentration with the sheath voltage drop 

tending to infinity, even when an applied current much less than the 

emitted electron current is used. This problem becomes increasingly 

severe as the mesh step in the x-direction is reduced due to the 

enhancement of current concentration. The results presented in this 

chapter are obtained with a fixed current of 0.1A, applied in the 

direction of the u^aQ emf. Whilst finite interaction between the 
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plasma and external load circuits is allowed in the theory of 

U n c l e s ^ ' , it is not considered in the present work. 

The size of the time step used in the time integration of 

the equations is chosen in accordance with the considerations of 

section 4.6, in order to ensure the stability and accuracy of the 

obtained solutions. As mentioned in section 4.6, the characteristic 

time scale for ionization Tr = /1/[A, (^Vlefl^is considered in place of 

the growth/decay time of the electrothermal instability in obtaining 

the solutions reported in the next section. Denoting the characteristic 

time scales for convection and x-diffusion by T ^ a n d T t ( s e e 

O 
appendix C), a minimum time scale Tmiru first obtained from the 

solutions at any given time level as follows: 

~ty*iv\ - ( (~Cr)vw ; (."^O^-uvo G ^ W m I i h o i 
If the time step is chosen as A-t = 0 . 1 , the solutions 

obtained, whilst stable, are inaccurate. This is due to the smallness 

of the characteristic time scale for cross-stream diffusion, which can 

be defined as follows: „ . 9 

WikVik AY' 
= Y k r J 

where, typically, 0-1 vjj'j. In order to obtain accurate 

solutions the time step is chosen as 

AO 

5.2 Analysis of Results and Conclusions 

(a) State at t = 0 

The initial plasma and current distributions are obtained 

by the method described in section 4.5. Thus, the *ne > » ^ and 

1 7 distributions are first computed using the simplified form of 

electron energy equation, equation (1.9); Saha's equation, 
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equation (1.14); and Laplace's equation V y- - 0 > subject to the 

boundary conditions c ^ / ^ J - p e ^ / ^ X on the electrodes and ^ = constant 

on the insulators. The seeding fraction is taken to be a specified 

constant = 0.002). From the resultant VIe and T V distributions, 

the initial values of and at all mesh points, except those 

lying on the electrodes and insulators, are obtained. The initial 

"Q, and y- distributions as well as the electrode values of A c / , ^ - , 

/)e> a n d 'e j and insulator values of rje , Vl^ and are then 

obtained by solving the coupled electron energy and current stream 

function equations consistently with the wall boundary conditions for 

a fixed surface coverage ( 9 = 0.35). 

Figure 5.1 shows the computed anode sheath voltage drop A ^ 

and cathode sheath voltage drop A*f>c distributions at t = 0. Contour 

plots representing the initial T& 9 y and distributions in 

space are shown in figures 5.4, 5.5 and 5.6; the relation 

between 'S - and y-coordinates is shown in figure 5.7, in which the 

distribution of Faraday voltage along the line through the electrode 

centres is also shown. The initial value of the average Hall 

parameter 

is 1.39. 

It can be seen from figure 5.1 that the sheath voltage drop is 

positive everywhere on the anode and cathode, the electron density 

on both electrodes satisfying the condition V)e,*>} ^ ' + C e l ) ^ 

(see (2.271)). The sheath voltage drop has a maximum value at the 

downstream edge of the cathode where the current density is maximum in 

magnitude. 
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The initial Y distribution is represented by a contour plot 

in figure 5.5 in which the contour interval A Z f j s taken to be M / » v 

and the value of Y o n a contour numbered "p" is given by 

The orientation and relative separation of the contours represents 

the direction of current flow and magnitude of current density 

respectively. 

The tendency of the current to concentrate at the upstream 

edge of the anode and downstream edge of the cathode as a result of 

the Hall effect can clearly be seen in figure 5.5. It is also clear 

that there is an asymmetry between anode and cathode conduction; this 

is a result of the large asymmetries in the electron temperature 

distribution,and is further discussed below. 

The initial electron temperature distribution is represented 

by a contour plot in figure 5.4 in which the contour interval A Te 

is taken to be 150°K and the value of electron temperature on a 

contour numbered "p" is given by 

Ti O ) r (f .7. - 0 

where | , and is the minimum integer such that 1^0) = fy^^T^v 

the minimum electron temperature is Tfev, • 

In figure 5.4, a high electron temperature region can be 

seen to exist in the plasma near the downstream edge of the cathode, 

the electron temperature decreasing rapidly from its maximum value 

of 3192°K at the downstream edge to values close to the wall 

temperature (1316°K) towards the upstream edge. However, a region of 

relatively low electron temperature exists near the anode surface; 

the electron temperature decreases rapidly from 1570°K at the 

upstream edge to values close to the wall temperature towards the 
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downstream edge. At some points on the anode the electron temperature 

is actually less than the wall temperature; the electron temperature 

has its minimum value of 1216°K at the anode mesh point adjacent to 

the upstream edge. The temperature profile on the insulator segment 

upstream of the anode has a maximum about equal to the electron temperature 

at the corresponding point on the insulator segment downstream of the 

cathode. However, instead of a high electron temperature region similar 

to that near the downstream edge of the cathode, which extends some 

distance along the adjacent insulator segment, there is a region of 

high electron temperature gradient near the upstream edge of the anode, 

opposite which there is a small region of high electron temperature. 

This large asymmetry in the electron temperature distribution 

is due to the asymmetrical effect of the electron pressure gradient 

on the Ohmic heating near the anode and cathode, together with the 

asymmetry of the anode and cathode wall boundary conditions on the 

electron energy equation derived in section 2.7. 

As we shall see later in this section, application of the 

ion continuity conditions yields electron density gradients of very 

large magnitude near the upstream edge of the anode and downstream edge 

of the cathode (see figure 5.6). The electron pressure gradients are 

also large in magnitude at these points and, since the directions of 

these gradients are almost parallel or antiparallel to the current 

density, they have large effects on the Ohmic heating. 

The effect of the electron pressure gradient on the Ohmic 

heating is neglected in the simplified form of the electron energy 

equation, equation (1.9), which is used to obtain the original electron 

temperature distribution. If the effect of the electron pressure 

gradient is included, the Ohmic heating term has the form (see 

equation (2.224)) 
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E'.J= J2/ye - J.Vf>e/(eie) . (5.1) 

Near the downstream edge of the cathode, the term J. V p e g g n f i j 

in equation (5.1) is negative and large in magnitude; this results 

in .1 increased Ohmic heating,leading to values of electron temperature 

larger than those obtained using the simplified form of electron 

energy equation. The region of plasma near the downstream edge of 

the cathode,in which the electron temperature is increased,coincides 

with the region of highest electron density nearest the cathode w a l l , 

as can be seen by comparing figures 5.4 and 5.6. The large electron 

density gradients in the downstream direction in a region near the 

downstream edge of the cathode (electrode side) yield values of 

T.Vfe/(erie)thdit are small in magnitude; this, together with the rapid 

decrease of /Cfl in the upstream direction, leads to large electron 

temperature gradients in the downstream direction in the same region. 

equation (5.1) is large and positive; this results in decreased Ohmic 

heating^leading to values of electron temperature smaller than those 

obtained using the simplified form of electron energy equation. This 

reduction of the electron temperature occurs to a lesser extent over much 

of the remainder of the region near the anode surface. With increasing 

distance from the anode surface, near the upstream edge, the electron 

pressure gradient rapidly decreases in magnitude and the Ohmic heating 

rapidly increases; this results in a region of high electron 

temperature gradient near the upstream edge of the anode. 

Near the upstream edge of the anode, the term JT i in 
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The sheath voltage drop at every point on the anode and cathode 

surfaces is positive. The appropriate electrode wall boundary 

condition on the electron energy equation in this case can be written 

as an expression for the y-component of the electron heat flux 

at a wall mesh point (see equation (2.282)) of the form 

f t. — n __ ^ (?Je 
w 

' £f*Ve (ikgTv +- - (y-e. ~£ley) e 4A>J , (5-2) 
where £ = +1 for the cathode and £ = -1 for the anode. In 

i"7 

equation (5.2), the net y-component of electron flux ley is given 

by 

= ~ e ^ + ty ' (5.3) 

Using the expression for f}y given by equation (2.256) we can write 

equation (5.3) in the form 

K y t e I 

As in section 2.7 we have, for typical values of 7 ) ^ , ( ( ^ k v C h j 

so that 

EyeujCCoo . (5.4) 

Making use of equation (5.4) we can write equation (5.^) in the 

form 

(frjL-f R + ( - ( f f J w ^ M j 1 5 ' 5 ' 
From equation (5.5) the expressions for the y-component of electron 

heat flux at the cathode and anode walls are 



Cathode 
Mesh Point 

1 2 3 4 5 6 7 

2 v e k B ( V T e w ) -17 -32 -48 -21 -359 -1043 -921 

- I * 4 x l 0 2 0 
7xl0 2° 1 0 2 1 

7xl0 2° -5x l 0 2 1 2 x l 0 2 2 2 x l 0 2 2 

r i y T i - i n e w c i w - 4 x l 0 1 9 
- 4 x l 0 1 9 

- 4 x 1 0 1 9 - 4 x l 0 1 9 - 5 x l 0 1 9 - 7 x l 0 2 0 - 2 x l 0 2 1 

r e y(2k BT e w+eA<j)) -6 16 23 15 -195 3169 5724 

( q e y ) w 
-23 -17 -26 -7 -554 2126 4802 

5/2 kB Tew rey 

( q e y ) w 

-0.6 -2 -1.9 -4.8 0.6 0.8 0.4 
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"" - t ' t J j " i " D '*»**¥),5 6 ) 

and 

(5.7) 

respectively. 

Considering the cathode w a l l , the y-component of electron heat 

fl ux given by equation (5.6) decreases very rapidly from positive to nega-

tive values with increasing distance from the downstream edge. This rapid 

reduction is due to the rapid decrease of |J y| 9 T e and A<p, and is clearly 

shown in the table on the opposite page in which cathode mesh points are 

numbered from the upstream edge. The large value of ( q e y ) w near to the 

downstream edge, together with the heating effect of the electron pressure 

gradient leads to the existence of the region of high electron temperature 

described above. However, the rapid reduction of ( q e y ) w with increasing 

distance from the downstream edge allows the existence of the region of 

relatively low electron temperature in which the Ohmic heating is 

small. 

The high Hall parameter in the low temperature region near the 

cathode results in a tendency for the current to be concentrated near 

the downstream edge of the cathode. This tendency is opposed by the 

high conductivity in the low temperature region. 

The y-component of electron heat flux at the anode wall, as 

given by equation (5.6), is negative over much of the electrode surface 

and rapidly decreases in magnitude with increasing distance from the 

upstream edge, actually becoming positive at a point where the 

direction of the current reverses (see figure 5.5). The magnitude of 

( f e y h at the upstream edge of the anode is much less than the value 
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of ( ^ ) u o at the downstream edge of the cathode, due to the smaller 

values of- Te. and A p at the upstream edge of the anode. This, 

together with the reduction of the Ohmic heating due to the finite 

electron pressure gradient, results in the existence of the region of 

low electron temperature near the anode surface. 

The low electron temperature in the region of the plasma near 

the upstream edge of the anode results in a higher conductivity and 

Hall parameter in this region compared with the conductivity and Hall 

parameter in the region of the plasma near the downstream edge of the 

cathode. As a result, the concentration of current is greater near the 

upstream edge of the anode, as can be seen in figure 5.5. 

Figure 5.5 shows the existence of current stream lines that 

begin and end on the same electrode; some of these stream lines are 

located near the upstream edge of the a n o d e , and some are located near 

the downstream edge of the cathode. The occurrence of these stream lines 

is due to the term dependent on the gradient of the electron pressure 

in Ohm's law. This term is important in the high electron density 

gradient regions near the upstream edge of the anode and near the 

downstream edge of the cathode (see figure 5.6). 

The initial electron density distribution is represented by a 

contour plot in figure 5 . 4 in which the contour interval is 

18 -3 

taken to be 0.5 x 10 m , and the value of electron density on a contour 

numbered "p" is given by 

neffJ^pAve 

where p ^ | . 

Regions of large electron density gradients are seen to exist 

near the upstream edge of the anode and downstream edge of the cathode. 
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From Saha's equation, it follows that, J Vfk/v )e | ̂  /TeJ ; that 

is, the fractional electron density variations are much larger than the 

fractional variations of electron temperature determined from the 

simplified form of electron energy equation. The very large cross-stream 

variations of electron density at the anode and cathode surfaces follow 

from the application of the ion continuity condition (2.258) of section 

2.7, which is the relevant condition since A<f)>C everywhere. This 

results in an electron density at each point that is much less than the 

Saha value at the original electron temperature. This is due to the 

fact that electrons are lost to both electrodes, since vjhj << \ n e w cjw and 

r i y L n e w ciw» that is, r-jy < 0 on the cathode, and rjy > 0 on the 

atAode. 

The seed atom density distribution, which is not given here, 

shows little variations in the x-direction because conditions are such 

that the degree of ionization is very small. However, the seed atom 

density at each point on the electrodes is slightly larger than the 

corresponding value obtained from a seeding fraction of 0.002. This 

is due to the fact that the value of 6 in the equilibrium case is not 

exactly equal to 0.35. It is found that Hfe > 0 at the cathode 

and rjfe 0 at the anode, and there is initially a flux of seed atoms 

from each point of either electrode into the plasma. 

The Faraday voltage distribution at t = 0 is shown in figure 5.7. 

This is obtained by integrating the y-component of electric field 

along the electrode centre-line. Near y = 0 , the voltage increases 
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rapidly with y due to the effect of the y-component of the electron 

pressure gradient, which is large and positive in magnitude in a narrow 

region near the cathode wall in which the electron density rapidly 

increases from small values at the wall. However, with increasing 

distance from the cathode^the y-component of electron pressure gradient 

and, therefore, the magnitude of the y-component of electric field 

rapidly decrease and the voltage gradient greatly decreases after a short 

distance from the wall. Similar behaviour occurs near the anode,where 

the existence of a narrow region in which the electron density decreases 

rapidly towards the wall and the electron pressure gradient is large 

in magnitude and negative leads to a rapid reduction of voltage gradient 

to negative values near the wall. 

At most points on the electrode centre-line, the voltage gradient 

is positive due to the existence of an x-component of the current 

density, and the Faraday voltage across the channel is positive. Therefore, 

as a result of the Hall effect, the system acts as a resistive load 

rather than as a generator of electrical power. 

(b) State at t > 0 

The temporal development of the plasma and current distributions 

and derived generator characteristics is followed numerically up to 
_
6 

a time t = 8 x 10 sec. This is to be compared with the minimum 

-9 

cross-stream diffusion and ionization time scales, which are 8 x 10 sec 

and 2.6 x 10 7 sec, respectively, at the initial time t = 0. While 

the cross-stream diffusion time scale remains constant,the ionization 

time scale increases slightly to 3.4 x 10 7 sec at the final time. 

The minimum convection time scale is constant and equal to 1.3 x 10 ^ sec. 
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(i) Plasma and current distributions 

Figure 5.3 shows the variation with time of the maximum, 

minimum and average values of the seeding fraction; these quantities 

are denoted by , Z W * and respectively. While 

remains constant and equal to the initial value of 0.002, ^ ^ x
l n c r e a s e s 

to a maximum of 2.12, and decreases to a minimum of 1.7 in a time 

of about 1.5 x 10" 7 sec. Both ft^ and then gradually approach 

steady values. 

These variations of x m a x and xmin a r e due t o diffusion of electrons and 

neutrals and possibly also ionization; the time scale for recombination 

(initially about 3 x 10~ 5 sec) is too long for it to be of any importance" in 

the initial variations of seeding fraction. 

The seeding fraction is maximum near to the downstream edge of the 

cathode and minimum near to the downstream edge of the anode. 

The anode and cathode distributions of surface coverage at the final time 

of the computation (t = 8 x 10" 6 sec), shown in figure 5.2, have features 

similar to the distributions at times t < 1.5 x 10" 7 sec. The increase of 

surface coverage above the equilibrium value near to the downstream edge of the 

cathode is an important result of the theory. A similar result is found in 

the work of Koester et a l . ( 3 0 ) ; it means that the possibility exists of 

passing currents greatly in excess of the equilibrium emitted electron current 

without onset of arcing. 
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The seeding fraction is maximum near the downstream edge of 

the cathode and minimum near the downstream edge of the anode. 

The anode and cathode sheath voltage drop distributions at t = 8 x 10~ 6 

sec are compared with the distributions at time t = 0 in figure 5.1. It 

can be seen that, as at t = 0, the cathode sheath voltage drop is positive 

near to the downstream edge, having a maximum value at the edge; this 

maximum is larger at the later time due to increased current concentration 

(see below). Farther upstream the sheath voltage drop has decreased to 

negative values due to the electron density having decreased to the extent 

that condition (2.271) is no longer valid; this condition remains valid at 

the downstream edge and the mesh point nearest this edge. 
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The sheath voltage drop over the entire anode surface can be seen to 
have decreased to negative values at t = 8 x 10" 6 sec. This is due, in part, 
to the electron density having decreased to the extent that condition (2.271) 
is invalidated at all mesh points with the exceptions of the upstream edge 
and the adjacent mesh point. 

Contour plots representing the electron temperature, current 

and electron density distributions in ( X , $ ) space at time t = 8 x 10" 6 

sec are shown in figures 5.8, 5.9 and 5.10. Contour intervals are the 

same as for t - 0* "The Faraday voltage distribution at t = 8 x 10 sec 

is shown in figure 5.11. 

In figure 5.10 it can be seen that the high electron density gradient 

region adjacent to the anode wall (see figure 5.6) has spread out into a 

larger region, the electron density on and near the anode decreasing in value. 

This is probably due to ion diffusion and leads to an enhancement of conduc-

tivity in a region near the insulator segment upstream of the anode., resulting 

in a deviation of the current streamlines towards the insulator segment, 

together with a slight displacement of the current streamlines towards the 

upstream edge (see figure 5.9). This, in turn,results in an increased Ohmic 
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heating in the region of the plasma upstream of the anode, leading to an 

increase of electron temperature and, by ionization, to an increase of 

electron density in that region (see figures 5.8 and 5.10). These enhance-

ments of electron temperature and density are allowed by the boundary 

conditions at the insulator walls (see section 2.7). 

A similar spreading of the high electron density gradient region 
adjacent to the cathode can be seen to occur in figure 5.10, the electron 
density on and near to much of the cathode surface also decreasing in value. 
However, this leads to a slight deviation of the current lines t o

w a r d s t h e 

insulator segment downstream of the cathode compared to the deviation 
towards the insulator segment upstream of the anode (see figure 5.9). This 
is probably because of the region of high electron temperature near the 
downstream edge of the cathode, which includes part of the cathode itself; 
the electron density and conductivity at and opposite the downstream edge 
are actually enhanced. The extent of the region of high electron tempera-
ture and high electron density adjacent to the insulator segment downstream 
of the cathode is therefore less than that of the similar region adjacent 
to the insulator segment upstream of the anode (see figures 5.8 and 5.10). 
However, there is an increase in current concentration near the downstream 
edge of the cathode, probably due to the enhancement of conductivity at the 
edge itself. 

The effect of convection on the electron density and current 

distributions is quite clearly shown in figures 5.9 and 5.10. The 

high electron density and electron conductivity regions upstream of the 

anode and near the downstream edge of the cathode can be seen to be 

displaced downstream. This results in a downstream displacement of 

the current lines. However, near the wall the flow velocity is low 

and the effects of convection are negligible. In particular, the 

region of high electron density upstream of the anode is not displaced 



- 193-

by convection into the anode itself, on and near the surface of which 

the electron density can attain relatively low values. 

Figure b.10 shows the existence of a small peak in the electron 

density distribution at a point on the line joining the centres of the 

electrodes (electrode centre-line). This is a result of reduction of 

electron density near the centre of the segment due to convection, and 

upstream displacement of the high electron density region close to the 

wall, near to the downstream edge of the cathode. 

This peak has an important effect on the Faraday voltage profile, 

as can be seen in figure 5.11. It can be seen in figure 5.9 that the 

current density near the cathode surface is small along the electrode 

centre-line, and the y-component of electric field depends mainly on the 

y-component of electron pressure gradient. The latter is large and the 

voltage gradient therefore positive, near the cathode surface where the 

electron density increases rapidly from small values at the wall. With 

increasing distance from the w a l ^ t h e y-component of electron pressure 

gradient and, therefore, the voltage gradient decrease to negative values 

beyond the peak in electron density. As a result, the voltage rises to 

a maximum value and then decreases to negative values. The voltage 

reaches a negative minimum and begins to rise again where the y-component 

of electron pressure gradient is small and the x-component of current 

density is large, resulting in a positive voltage gradient. The latter 

becomes increasingly larger as the high electron density region near the 

anode is approached and the y-component of electron pressure gradient 

increases. Near the anode surface the current density along the electrode 

centre-line again decreases because of the concentration of current near 

the upstream edge of the anode. This, coupled with the negative 

y-component of electron pressure gradient in the region near the anode 
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surface beyond the peak in electron density, results in a reduction of 

the voltage gradient, the voltage profile becoming almost flat near 

the anode surface. 

As can be seen in figure 5.11, the voltage gradient over much 

of the region near the centre of the electrode centre-line is positive 

and larger than t = 0 (see figure 5.7). This is due to the increased 

concentration of current near the downstream edge of the cathode, and to the 

downstream displacement of current lines near to the anode. This leads to 

an increased current density in a region near the centre of the electrode 

centre-line, and the increased x-component of current density results 

in an increased voltage gradient in the same region. 

As at t = 0, the voltage gradient is positive at most points 

on the electrode centre-line due to the x-component of the current 

density, and the Faraday voltage across the channel is positive. Again, 

the system acts as a resistive load rather than as a generator of 

electrical power. 

(ii) Overall generator parameters 

Figure 5.12 shows the variation with time of the overall generator 

parameters > and / c t y \ and figure 5.13 

shows the variation in time of the Faraday voltage Vy 5 and the cathode 

and anode voltage drops <^V C and , which are defined by linearly 

extrapolating the Faraday voltages at the boundary layer edges. Thus, 

if and V ^ are the voltages with respect to the cathode at 

points on the electrode centre-line at the edges of the boundary layers 

on the cathode and anode walls, respectively, and can be 

written as follows: 
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cc f v r - v / ' k a / 
^ ~ ( H - 2 J ) 

and 

o w y/ (v«y l . / w 

The anode and cathode sheath voltage drops, A V \ a n d A V c , make 

only small contributions to <5Vt and c f V ^ a t all times, except the 

instant at which changes sign (see figure 5.13). 

The average Hall parameter is approximately constant in ti 

c 

decreasing continuously from 1.39 at t = 0 to 1.37 at t = 8 x 10 sec. 

It is clear from these plots that the time interval of the 

numerical integration is not of sufficient length for the plasma to be 

in at least a quasi-steady state by the end of the computation. For 

example, the cathode voltage drop is increasing towards positive values 

at the final time of the computation. 

Figure 5.12 shows a continuous increase of with time. 

This is due to the continuous increase in time of the average electron 

density resulting from the spreading of the high electron density 

regions near the insulator segment upstream of the anode and near the 

downstream edge of the cathode. Due to convective displacement of 

the high electron density regions, the slope of the gfefi curve increases 
-6 

suddenly at a time of about 4.5 x 10 sec, which is the time taken for 

the gas to travel a distance equal to half the electrode length when 

the gas velocity is equal to the average gas velocity. 

However, it can be seen in figure 5.12 that the effective 

conductivity decreases at a rate greater than that at which 

increases, resulting in a continuous decrease of the ratio 

<Ytff/(°ey W l t ' 1 t i m e - This rapid decrease of results from 
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the increase of the Faraday voltage V y with time, which can be seen 

in figure 5.13. The positive value of V y implies that the system 

behaves as a resistive load rather than as a generator; this has 

already been mentioned in discussions of the initial and final voltage 

distributions. 

The increase of with time is due to the simultaneous 

increase in current concentration near the downstream edge of the cathode 

and (to a lesser extent) near the upstream edge of the anode with 

time, together with downstream displacement of the current stream lines 

by the gas flow. These processes result in a decrease of effective 

area and an increase of effective path length of the current flow, 

and therefore an increase in internal impedance with time. The 

increase of effective path length by convection is the slower process 

and begins to have a large effect only after a time of about 4.5 x 10 8 

sec has ellapsed; the significance of this time has already been 

indicated above. 

These two processes also result in a decrease in time of the 

effective Hall parameter {^Cj^ ( s e e figure 5.12), because of the 

increase with time of the length of the region of the channel centre-line 

in which the x-component of the current density is significant, together 

with the increase with time of the magnitude of the x-component of 

the current density in that region. 

The variation with time of the anode and cathode voltage 

drops is shown in figure 5.13. The continuous increase of the anode 

voltage drop with time is due to the continuous decrease with time of 

the conductivity in the low conductivity region near the anode 
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The initial decrease with time of the cathode voltage drop 

is due to the decrease with time of the electron pressure gradient 

in the region of the plasma opposite the cathode in which the magnitude 

of the current density decreases as the current becomes increasingly 

concentrated near the downstream end of the cathode. Eventually, the 

voltage drop becomes negative and then increases with time. The time 

at which the voltage gradient becomes positive is about 4.5 x 10 d sec; 

the significance of this time has been mentioned above. The increase 

of the voltage drop with time is due to convection, which displaces 

the electron density peak downstream. 

5.3 Comparison with Numerical Results of U n c l e s ^ 

As stated in chapter 1, the present work may be regarded as an 

extension of the work of U n c l e s ^ to include the effects of turbulent 

boundary layers, turbulent transport processes, finite seed ion and 

seed atom diffusion and plasma-wall interactions, including seed-

electrode interactions. In addition, by making the assumption of 

instantaneous electron temperature relaxation (see section 2.5), instead 

of Saha equilibrium as in reference (8), the numerically inconvenient 

fast thermal mode is eliminated without having to neglect the effects 

of finite ionization and recombination rates. However, the effects 

of Coulomb collisions, and finite interactions between external load 

circuitry and the plasma, considered in reference (8), have been 

neglected in the present work. These essential differences between the 

present theoretical model and that of Uncles must be considered in 

any detailed attempt to compare the numerical results presented in 

this chapter with those obtained by Uncles. 
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Comparison with results obtained by Uncles is made difficult 

by the different method used here to initiate the computations. In 

the present method the distributions of plasma parameters are first 

obtained by assuming a local balance between Joule heating and energy 

loss by electrons in elastic collisions with heavy particles (see 

equation (1.9)), together with local Saha equilibrium with a constant 

seeding fraction; the current field is first taken to be governed by 

Laplace's equation V ^ T " - 0 . Having obtained the initial electron 

density and seed atom density distributions the coupled current stream 

function and electron energy equations are solved consistent with the 

boundary conditions to obtain the initial electron temperature and 

current stream function distributions, together with the wall boundary 

values of electron density and seed atom density. 

In the work of Uncles, the generator fluid is assumed to 

consist of argon slightly seeded with caesium; the seeding fraction 

is 0.001. The gas temperature and initial electron temperature are 

assumed to be uniform with T = 1500°K and T e = 3000°K, and the initial 

electron density is obtained from the Saha equation. The plasma state 

is assumed to be maintained by a uniform discharge along the channel. 

At t = 0 this discharge is removed, and external voltage sources 

applied to each electrode pair. The voltage sources are chosen to 

provide an average current density approximately equal to that 

sustaining the original non-equilibrium state. 

Comparison shows there to be some similarities between the 

results obtained by Uncles for initial Hall parameters o<3 

and the results obtained here for which the initial average Hall 

parameter (fie) - 1.39. The average gas temperature is 1519°K, and 

the average and maximum values of the electron temperature are 1715°K 
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and 3192°K, respectively. 

Both the present theory and that of Uncles predicts a 

continuous decrease with time of the generator parameters 

a n d pefj • Uncles finds that the solutions saturate and 

-4 

steady-state conditions are reached after a time of about 10 sec. 

The computation in the present work is not continued for a sufficient 

length of time for the solutions to saturate. 

Probaiiy due to the absence of plasma non-uniformities in the initial 

state, the initial values of Oetf/tOty and fi^jf/S^ey predicted by 

Uncles' theory are larger than those predicted by the present theory, 

be 
though t h i s w ^ t o some extent^due to conditions being such that the 

initial average electron temperature is lower in the present case. 

The main features of the current and electron density 

distributions in the final steady-state obtained by Uncles that can 

be compared with the numerical results presented here are found to be 

(i) The existence of an asymmetry of the current distribution 

between the anode and cathode. 

(ii) A rather more uniform electron density near the anode than that 

near the cathode. 

(iii) A higher electron temperature at the current concentration 

point on the cathode than at the current concentration 

point on the anode. 

The features (i)-(iii) owe their existence to the asymmetrical 

effect of the electron pressure gradient on the Ohmic heating. Similar 

features, though greatly complicated by the additional physical processes 

involved, have been discussed in this chapter. 
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In reference (8), it is demonstrated that there are two regimes of 

operation of the non-equilibrium segmented electrode generator, <3 e> > $ c r j t 

and < 3 e > < ^crit* where B c r j t ^ 2 is the critical Hall paramater of the 

electrothermal instability. In the work of Uncles it is found that, when 

L/H 'v 1, nonuniformities introduced by finite segmentation can grow into 

streamers or high conductivity paths, transverse to the gas flow, along which 

the bulk of the current can flow. As a result, the ratio o e f f / < e > increases 

to a value of about two. 

In the present work conditions have been taken to be such that generator 

operation is initially stable as a whole 5the growth time of the electrothermal 

instability having a maximum negative value of -1.3 x 10~
6
 sec and a minimum 

positive value of 2.15 x 10" 6 sec. Whilst the growth time for the final 

state has a maximum negative value of -9.8 x 10~ 7 and a minimum positive value 

of 3.22 x 10~ 8 sec, the overall behaviour can be compared to that found by 

Uncles in the stable regime. As can be seen in figure 5.9, the discharge-

near the midpoint of the line joining the downstream edges of the electrodes 

is somewhat like a streamer. However, the growth time of the electrothermal 

instability at this point is -1.875 x 10~ 3 sec, so that this structure is not 

due to the instability. 

5.4 Problems remaining to be solved 

The following problems remain to be solved: 

(i) As mentioned on page 178,convergence problems are encountered in the 

numerical solution of the coupled current stream function and electron energy 

equation at high magnetic fields due to concentrations of current at the 

downstream edge of the cathode and upstream edge of the anode. A possible 

approach to overcoming these problems is to allow for Coulomb collisions; 

these should result in reduction of conductivity in regions of high electron 

temperature, thereby reducing the above-mentioned current concentrations. 



(ii) Also mentioned on page 178 was the problem of saturation occurring 

in the region of current concentration near to the downstream edge of the 

cathode. The initial value of Jy at the downstream edge of the cathode 

is estimated to b e - 3 4 6 8 A / m 2 ; this is close to the saturation current 

-e(v e + \ n e w C j w ) at the same point' , which has a value of -4083 A / m 2 . 

However, for an applied current of 0.1 A , the average current density 

<Jy> is about -365 A / m 2 , which is much less in magnitude that the saturation 

current. Therefore, current concentration at the downstream edge of the 

cathode severely limits the maximum current which can be passed, at least 

for the initial state. As there is an enhancement of the surface coverage 

and, therefore, electrmi emission at later times, a possible approach to 

solving this problem might be to start the computation with an initial 

state calculated using a different method. Allowance for Coulomb 

collisions should also" help to solve the problem by reducing current 

concentration. 

(iii) As shown on page 96, the condition for electron and ion collision 

effects to be negligible in the sheath requires that the sheath voltage 

drop be restricted to values less than about 0.1 mV. The condition is 

less restrictive if the sheath is assumed collisional for the ions 

alone (|aj6| < 0.9 V) or completely collision dominated (|a^| » 0 . 9 V). 

This demands a reformulation of the electrode wall boundary conditions. 
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Fig. 5.5 



tt IT 10 > T7,> V-5-XiO 

V (VoLb) 
(cunrveA) 

4 A 

3 J 

24 

1 J 

loV^H-s* iow 

Contour Plot of ne 
Distribution in 5-space 
at t = 0 # 
Contour Interval'&^X/Oflf* 

F . 

1 2 x 10"2m 
Distance from Cathode in S-space 

rlO 

'10 -1 

- 2 

CD 
a 
t-
o 
CD 0 <T3 01 
CO I 
>> 

<L) "O 
o ° 

icf3 £ to 

M O -4 

o u 

O) o c (0 +-> 
CO •r-Q 

10 -5 

10 
- 6 

F i g . 5 . 7 



- 2 0 5 -

Contour Plot of T e 

Distribution in 3 - s p a c e 
at t = 8 x 10~ 6 sec 
Contour Inverval = 150°K 

Fig. 5.8 

2VOOV< T, < $10 7*K 

Contour Plot of V 

Distribution in S - S p a c e 
2 at t = 8 x 10" 6 sec 

Contour Interval = 1 A/m 

Fig. 5.9 



-20'tr-

6 -

5 . 

4-1 

24 

1J 

y^lStto^ « 1 7 H 

Contour Plot of ne 

G Distribution in 3-space 

^ at t = 8 x 10" 6 sec 
1 Contour Interval i 

Fig. 5.10 

2 x 1 0 ~ 2 m 

Distance from Cathode in S -space 
Fig. 5.11 



- 207-

0.5 

8
1
 x 10~

6 sec 

Fig. 5.12 
t Gee) 

Fig. 5.13 



-20*-

APPENDIX A 

DEFINITION OF FINITE DIFFERENCE MESH 

The boundary layer equations are approximated by finite 

difference representations which are solved over a mesh in the x-y 

plane, the points of which are defined by the equations 

completely arbitrary and may have large variations. This is important 

for turbulent boundary layer calculations where steep gradients near 

a wall necessitate the use of small mesh spacing, whilst relatively 

large spacing can be used away from the wall. Moreover, variations 

in the streamwise x-direction are usually rapid for small boundary 

layer thicknesses and relatively slow for larger boundary layer 

thicknesses, where the boundary layer thickness is defined as the 

distance from the wall of the point where the velocity is 0.99 of 

the centre-line value. Solutions show that boundary layers tend to 

grow as one advances along the channel from the initial position. Thus, 

it is desirable to employ a variable x-step which increases as the 

boundary layer thickens. . The x-step is here chosen to be a certain 

fraction ^ of the local boundary layer thickness; that is 

(A.la) 

(A.lb) 

(A.lc) 

The mesh spacings a x " and in equations (A.l) are 

(A.2) 
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where S 'is the boundary layer thickness at 

The step size in the y-direction is so defined that it is 

very small close to the wall and increases gradually towards the 

centre-line. The distribution of mesh rows for a given mesh column 

is defined by the formula 

- 1 ~ u c c ^ t ) (A.3) 

where, with a mesh of J-l steps in the y-direction, 

£ ' J " ( j E ? ) > I / J 4 X (A.4) 

The quantity oL appearing in equation (A.3) is chosen so that 

/ y - ^ u r , <a-5) 

where the constant in (A.5) is determined from the assumed velocity 

profiles at the initial station J ( ~ K 1 (see section 3.3) as follows. 

From equations (A.3) and (A.4), we have 

( r _ U ^ l r f i ] 

U f i & J t j l J ' 

The value of the quantity o( is so chosen that A<j ' is less 

than a fraction j-^ of the initial boundary layer thickness', that is^ 

The mesh used in reference (32) is so constructed that step 

sizes in the y-direction are in a geometric progression; that is, 

A ^ j r k A ^ XJ J where 0<k <\ . This gives 

t -
or, using the definition (A.4) of the distance V , 
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V ( « - 0 ' (A.7b) 

This method of mesh construction cannot be used here because the plasma 

and electrical equations must be solved on a mesh extending from the 

electrode at y = 0 to the opposite electrode at y = H. By symmetry, 

the gas-dynamic variables in the region £ jj H are known from 

the solutions of the gas-dynamic equations for the region O - t y ^ f j c • 

If the mesh in the region y c is defined by equations (A.7a), 

the mesh in the region H j on which the gas-dynamic variables 

are known,is defined by the equations 

t i i 
( k " 7 • 

- H ~ ( k - i j ' <-> ^ 
(A.8a) 

and 

•a 

* -
C H H 

(Mf-I) ' (A-8b> 

where Nj- - i J ^ I is the total number of mesh point. Eliminating j 

from equation (A.8a) using (A.8b), we obtain . * ^ 

r K 
n , A *1 L —• 

^ (A.9) 

Considering y as a function of £ it is clear from equations (A.7b) 

and (A.9) that this function is singular . It is necessary, 

however, that the function defining ^ • be a continuous d i f f e r e n t i a t e 

function of S j because, due to their mixed elliptic-parabolic nature, 

the plasma and electrical equations can only be represented to second 
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order accuracy by finite difference forms on a mesh with constant 

step sizes. The y-variable in the plasma and electrical equations 

is therefore transformed to the £ -variable defined above, derivatives 

being transformed as follows: 

A * i -
dy (by 

The function used to define the mesh here (see equation (A.3)) 

automatically defines the mesh in the regionj[ < H and is continuous 

and differentiate at JJ c • 
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APPENDIX B 

COEFFICIENTS IN LINEARIZED BOUNDARY LAYER EQUATIONS 

The coefficients in the linearized boundary layer equations (3,10) 

be written as: 
1 

- hiT t 

% ; (jK+Tir)-.^ t (Ju+Tir")^ 

h r / r H ' ^ - r ^ 
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/r 

3 \ r -

J ' / pM-I \ 

+ ~ [ f j j-. - E -
»Vt ^ . 

r ij-'/i Jj-i/l 

4 c m H - h 

T , . + k i c f y r 4 T -

+ 'R* / i _ / , f 

Sr 

u-, / 2 
<- • . I f + ^ c k f ) 

j ^ J j j A T F j f w C z p r ^ 1 

^ j i - ' i i ^ . r v ^ ^ — ^ mj-̂z 
+ Z b T g f l - . / 7 _ N 

/w-ij?1 v . u , .z. i 
4 ^ V 5 ( r ' k KM.TJ:. 

J'l 

T ^ C W Cf H ^ t ' j [ f r + T r f a - I f a 

Si" " + W ( ^ ( f u ^ , ^ 



APPENDIX C 

ELECTROTHERMAL WAVES AND THE TEMPERATURE RELAXATION APPROXIMATION 

Simplified expressions for the growth and decay rates of 

electrothermal waves are presented here, and the validity of the 

assumption of instantaneous electron temperature relaxation for the 

range of conditions of interest in this work is considered. A 

simple expression for the growth rate of the electrothermal instability, 

useful for the stability theory of section 4.5 ,is derived. The 

(271 

analysis presented in this appendix is essentially that of Uncles v ' 

with simplifications made, consistent with the assumptions of slight 

seeding and negligible Coulomb collisions. 

The electron energy equation is considered in the simplified 

form 

which is obtained from equation (2.214) by neglecting compressional 

heating, thermal conduction, radiative energy loss, and the pressure 

gradient term in equation (2.132); turbulent fluctuations are 

neglected in the present analysis. 

one obtains the electron and seed atom continuity equations in the 

simplified forms 

jD 
Db 

= + (C.l) 

Neglecting the diffusion terms in equations (2.207) and (2.208), 

(C.2a) 

and 

(C.2b) 
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Equations(C.2) imply that the density of seed particles (ions 

and neutrals) is constant in the rest frame of the plasma; that is^ 

Neglecting the term dependent on the electron pressure 

gradient in equations (2.132) an approximate form of generalized Ohm's 

law is obtained: 

which was used to obtain the ohmic heating term 3 ^ / O t in equation 

( C . l ) . 

Taken together with the change conservation equation 

V . J f ^ O i (C.5) 

and Faraday's Law 

\ / a E = 0 , (C.6) 

equations (C.l), (C.2a), (C.3) and (C.4) form the basis of an 

approximate description of a flowing plasma in an electromagnetic 

field. 

It is well known that equations (C.l)-(C.6)^ when linearized, 

predict the growth and decay rates of electrothermal waves 

These waves consist of two modes: the fast thermal mode, which is always 

severely damped and is of little physical interest, and the ionization 

mode which is unstable under certain conditions. The properties of 

these waves have been analyzed in detail by Nelson and Haines ^ J who linearized 

and solved numerically the complete system of equations (2.132), (2.190), 

(2.194), (2.197), and (2.214), neglecting the ion current and turbulent 

fluctuations. It is sufficient for the present purposes to consider 
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a simple linear theory of these waves using equations (C.1)-(C.6), 

in which the effects of wave motion are neglected; this is justified 

in reference (8). 

One-dimensional, small amplitude perturbations in ^e , > j J 

and E about a uniform state are considered, and equations (C.1)-(C.6), 

which are transformed to the rest frame of the plasma, are linearized 

with respect to the perturbations. The uniform state is assumed to be 

in Saha equilibrium at the electron temperature, the Ohmic heating 

everywhere balancing the elastic collision losses. 

As shown in figure (C.l), the direction of propagation of the 

small amplitude waves is assumed to be along the x-axis at an angle 0 

to the unperturbed current. Writing all perturbed quantities in the 

form 

where *X0 denotes the unperturbed value of the quantity , equations 

(C.1)-(C.6) can be linearized to give 

Dn/ y / 
^J = CioV)9 +*,7if (C.7) 

2)le / / (C.8) 

^ M * M s ^ ^ 

where the perturbed Ohmic heating has been evaluated from equations 

(C.4) (C.5) and (C.6), which are then eliminated from the system. The 

coefficients - are given by 

/ dht,\ 

b* * ( i ' M t ' O ^ f e ^ y Z (yieo-W*) / ( f a n * * ) (C.9a) 

f?ht 
' ( 

' f n l ' / ^ ^ T e ' ^ l i ( f a + i j l l (c-9b) 
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a ha%o -f (C.9c) 

O j = ^ ^ ^ (C.9d) 

s " 4 (k„Si»20 + cos Id) - fi k ( v f i l •9e) 

1 ^ L , / . A , , ? 
% = - Pre |3Ve ka LTt ' ' L\ 

i £Z( (*Te-T)1 
-- n . - r ^ j (c-9f> 

Setting y>J and ~ t J equal to 7\J(d) (\iob) and Tefy t\f>(iu?b} 

respectively, equations (C.7) and (;C.8) yield a dispersion relation 

for small amplitude electrothermal waves in the form of a quadratic 

for ito . This has two real r o o t s , denoted by , where 

^ + aodg)) 

Equations (C.10) give the growth/decay rates for the ionization mode 

and the fast thermal m o d e , and , respectively. The fast 

thermal mode is always severely damped, whilst the ionization mode can 

become unstable under certain conditions. 

The decay time for the fast thermal mode Tpj- = / g S
1
 j is 

plotted as a function of T e in figure (C.2); and the growth/decay time 

for the ionization r>ode T j - / ^ f ' | is plotted in figure (C.3a) 

as a function of 7e > a n c ' Tor magnetic field strengths of 0.7T and 
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1.4T. The gas temperature has been taken to be equal to 1519°K, 

which is the average value calculated from the computed gas temperature 

profile presented in section 3.5, and the seeding fraction has been 

taken to be 0.002. The angle 9 between the zero order current flow 

and the direction of non-uniformity is taken to be -X/*j-, which is 

approximately the angle for maximum growth of an unstable w a v e ^ . 

The ionization mode is stable for a magnetic field strength of 0.7T, and 

unstable for a magnetic field strength of 1.4T. 

It can be seen from figures (C.2) and (C.3a) that, for the 

range of electron temperatures considered, Xf T Tj- ; for example, 

-8 LL 

for ^ ~ Zooo'k > TFt<v\0 Jtc and T z . These values of 

the electrothermal time scales are compared with typical values of the 

covection time scale and the x-diffusion time scale T ^ , which 

appear in the conditions (4.41) and (4.45) for numerical stability and 

accuracy of the explicit time integration scheme (see section 4.6). 

From conditions (4.41) and (4.45), T ^ and T ^ are defined as 

follows: 

= let, 

and 

__ Wily Vlk&X2-

i n f " 

where A y is the mesh step size in the x-direction. For a mesh of 

_ 2 
49 columns, Th~/0 and Trf^"io sec > again for the gas-dynamic 

parameters obtained from the solution of the boundary layer equations 

presented in section 3.5. 
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lt is clear that the shortest time scale is that of the fast 

thermal mode. However, the fast thermal mode, being strongly damped, 

has little long term effect on the solutions of the equations, and 

therefore is of little practical importance. The short time scale of 

the fast thermal mode necessitates the use of an extremely small time step 

in the explicit numerical time integration of the equations if numerically 

stable and accurate solutions are to be obtained (see section 4.6). It 

is desirable, therefore, that removal of the fast thermal mode from the 

(27) 

differential system be considered. Uncles v ' has shown that this can 

be done by assuming either Saha equilibrium [y\e - o ) or instantaneous 

electron temperature relaxation; that is, J>jte/pk~o in the electron 

energy equation (see section 2.5). The former assumption, which has been 

used b e f o r e ^ , is valid only at high electron temperatures and if the 

cross-stream diffusion terms in the continuity equations can be neglected. 

The assumption of instantaneous electron temperature relaxation, or 

the "temperature relaxation approximation", appears to have been used 

previously by K o l b ^ ^ . in a greatly simplified physical and numerical 

model. In addition to having a wider range of v a l i d i t y ^ 2 7 ) , this 

assumption does not require that the cross-stream diffusion terms in 

the continuity equations be neglected, thus allowing the coupling between 

plasma-surface interaction phenomena and plasma bulk phenomena, such as 

the electrothermal instability, to be studied; this possibility has 

so far not been considered. 

The validity of the temperature relaxation approximation for 

the range of conditions of interest in the present work can be examined 

using the analysis of reference (27). Setting J>T^/2>t -O in 

equation (C.8), expressions can be derived for the ratio ^ e / T e ' and 
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the growth rate (jy. for the ionization mode in the temperature 

, 1 

relaxation approximation; these quantities are denoted by <K and 

respectively. Denoting the ratio W e / X j l for the ionizatio 

mode in the more general case of equations (C.l) and (C.2) by o( , 

the conditions of validity of the temperature relaxation approximation 

can be written as 
u " 

(C.lOa) 

and 

e " - I l - 3 j t 

% ~ i 1 3+ 
(C.lOb) 

The functions and 6 j f are plotted against le for magnetic 

field strengths of 0.7 Telsa and 1.4 Telsa in figure (C.3b). It can 

be seen from figure (C.3b) that^for the range of conditions of interest 

herejthe conditions (C.10) are well satisfied, especially for Tt ^Zcoo'lf. 
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APPENDIX D 

RADIATIVE ENERGY LOSS 

The main contribution to the radiation loss term R of the 

electron energy equation (2.227) comes from the lowest order caesium 

doublet ( 6S./ 2- 61?/z > 6 S t o )> which comprises lines of 

wavelengths 89708 and 8550A. A general expression for R in terms of 

local values of plasma parameters and their derivatives can be derived, 

which is valid only if the plasma is optically thick to the radiation 

involved; that is, i , where L c is the characteristic 

length scale of variation of plasma parameters, and L A >> is a 

characteristic length scale for absorption of a photon. An expression 

for Lav is derived below in terms of the mean free path for absorption 

of a photon, which, for the ith line (i = 1,2), is shown in reference (1) 

to be given by 

I ' M j (o.D 

where e 2 / f e r r & W e C ^ * is the oscillator strength for the 

transition corresponding to the ith line, and 7)vY is the full width 

of the line at half maximum. The dominant line broadening mechanism 

is shown in reference (37) to be van der Waal's broadening by neutral 

atoms. Both the formula for 

and values for -ft in this case 

can be found in reference (38). 

When the plasma is optically thick to radiation of frequency v , 

photons tend to be trapped, having a small probability of escaping, 

and the specific intensity I is close to the equilibrium value given 

by the Planck function 
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It is shown in reference (19) that an approximate solution 

of the equation of radiation transfer then yields the following 

expression for the radiation loss term R: 

t = v y , (d.3) 

where is given by 

(D.4) 

which can be written in the form 

I * a ~ 3 * 7 7 1 

where 

i * 7 t r [(!<•'> d - d v , 
3 - T ( J / v ^ <D-5> 

i 

The sums in equations (D.4) and (D.5) are taken over the two lines. 

The quantity ^ may be interpreted as a radiative heat flux, 

and ^ as the corresponding radiation thermal conductivity. Using 

equations (D.l) and (D.2) to express the integrands of the integrals 

in equations (D.4) and (D.5) in terms of v and l e , the following 
a 

expression is obtained for 8} : 

7 v Mhc f f r z f a t f i ^ 
(D.6) 

The condition for validity of equations (D.3)-(D.6) is given in 

reference (19). For the present case this condition can be expressed as 
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g v
 1 I 

The lengths ( " j v R T e O ' a n d 

[ f i T t / g f d ^ / d L T e are the characteristic 

length scales L c and L a v introduced above, and the condition (D.7) 

is a quantitative expression of the conditions that the plasma be 

optically thick to the variation involved. For 

for typical values of 7 e , a n d , from equation (D.2), 

& ^ - ^ T e ^ 1 (9.8) 

so that 

™  W Bv die. 

u -
ra 

Taking /v / K ' " Ip'sec', equation (D.l) 

yields for the mean free path of photons of frequency 17- , 

and,since for T e^zooo°k: > ^ i / k ^ T t . ^ 1 0 » t h e condition (D.7) 

requires that 

= h u n I ) » V 

Since is of the order of the boundary layer thickness, which for 

_3 

the gas-dynamic data used in chapter 4 is of the order of 10 m , the 

condition (D.7) is satisfied for . However, it can be seen 

from equation (D.l) that, since V/ )) ilvV , the condition (D.7) 

rapidly becomes invalid for V > % V + or V V -

This means that the plasma is not optically thick to radiation outside 

the frequency ranges of the lines and the total radiative energy loss 

cannot be represented by equations (D.3)-(D.6). Only the contribution 

to the radiative energy loss from frequencies in the line ranges can 

be represented by these equations, the integrations in equation (D.4)-
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D.6) being taken over the frequency ranges of the lines. However, 

it is possible for this contribution to dominate the contribution from 

radiation to which the plasma is optically thin, since, for the latter 

radiation % (see reference (19)). If this is assumed to be 

the case, the radiation loss can be approximately represented by 

equations (D.3)-(D.6) in which the integrations are taken over the 

frequency ranges of the lines. Thus, equation (D.5) is replaced with 

i) 

, j M h c 

where the frequencies WJ ' and tff'^ are taken to be the extremities 

of the lines. Taking and V ^ ' t W + - U ^ l / l , and 

using the relation thy - ^ / T ^ , /(chv) where S y is given by equation 

(D.2), the integral I in equation (D.9) can be expressed in the form 

/ ̂  

tiik 

kyyAc 

yC i 
2* 

v* 1 >t 

V. 4> 

L 
o) 

since /vv//%/ e > > I Por v ^ V / (see equation (D.8)). Neglecting 

the variation of the factor p Y ^ ^ / V ^ T n-n equation (D.10) we have 

r ¥ 

f ^ U v V , i A mH-^V;/hi •—•—p* 
k^lc c 

(D.ll) 
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Inserting the integral I given by equation (D.ll) into equation (D.9) 

we obtain 

/ i r r i i T F * ) v * + i v i V h / u c j z 
A - ) S (D.12) 

To fully define a value of U must be specified. If we 

return to the above order of magnitude analysis, we see that, for 

5 , L v o ^ L e , at V - . Using this value of 4 

equation (D.12) can be written as 

J j m ^ L . 
4 -- 4 - Y f c ^ ^ y e ( D- l 3> 

1 

The electron thermal conductivity is given by (see equation (2.1 fi/.)) 

1 = 

5~>ie k f l e 

Z 

(D.14) 

Taking *r? -f; | , y^janci Ztoo'k > 

and fev I , we find that 

^ 
7T 

This result shows t h a t , if equations (D.3)-(D.5) and equation (D.13) 

accurately describe the radiative energy loss from the plasma, the 

radiative loss term in the electron energy equation can be neglected. 



-228-

It is interesting to note that the representation of radiative 

energy loss by equations (D.SJ-fD.S)^with given by equation (D. 13)3 

is consistent with that used by U n c l e s ^ who formulated the loss 

terms by regarding each rectangular cell of a two-dimensional finite 

difference mesh as a black body radiator, radiating to^and receiving 

energy from^the four neighbouring cells. Taking equal steps E in the 

x and y directions, Uncles derived an expression for ^ ^ of the form 

o, ̂  A r A V ^ i V 7 . -k ^'/^le 

which is identical to equation (D.13) if the step size A is taken 

to be given by 

jl, to 

so that exact equivalence of the two formulations of the radiative 

energy loss exists only for one particular line, and if the step size 

is taken to have the value given by equation (D.15). Taking y ^ ^ l v m y 

-1 _ U, 

Avfio JtC', ̂ v / , equation (D.15) yields A"\0 m . The length scale 

i (n 

defined by equation (D.15) is of the order of the absorpt ion length 

defined earlier. 
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