THE APPLICATION OF THE BOUNDARY

 INTEGRAL EQUATION METHOD TO FOUNDATION DYNAMICSby

FESTUS OLATUNDE DAMISAH
B.Sc., M.Sc., D.I.C.
Thesis submitted for the degree of Doctor of Philosophy
in the Faculty of Engineering of the University of London

Department of Mechanical Engineering, Imperial College of Science and Technology, London SW7 2BX, England.

May 1981

in

Sweet Memory of my Grandmother

and to my
Parents and Teachers

ABSTRACT

A new approach is developed for analysing the dynamics of a foundation on an elastic half space. It is the Boundary Integral Equation (BIE) method derived from the on-going development in the field of elastostatics. The formulation of the method is based on the fundamental singular solution of the equations of linear elastodynamics in an infinite domain subjected to a point force - tne Stoke's problem togetner with the dynamic counterpart of the classical reciprocal theorem of Betti-Rayleigh in elastostatics. Combining these two well-known results yields the BIE, a vector integral identity that corresponds to Somigliana's identity in elastostatics and Green's third identity in potential theory.

As its name sounds, the BIE is an integral equation that establishes a relation between the physical data at the boundary of an elastic body. The use of the method to meet the requirements of the dynamics of foundations, as well as details of its numerical implementation, is presented. The method is formulated for foundations of arbitrary shape, but results are presented for the pure modes of vibration of a rectangular infinite strip foundation, as well as the coupled modes. Results are also presented for vertical and horizontal vibrations of finite rectangular foundation. The well known problems of vertical
and torsional vibrations of a circular foundation are revisited to highlight the accuracy of the method.

To underline the versatility of the BIE method some new aspects of foundation dynamics are investigated. Results are presented for the three degrees-of-freedom (i.e., coupled vertical-horizontal-rocking) vibration of the rectangular infinite strip. The results justify the intrinsic assumption that the vertical mode is not coupled to any of the other modes, which fact is probably responsible for absence of reference to such coupling in the literature. The vertical vibration is also analysed for a rectangular foundation with length/width ratio of up to 16. As a natural follow-up, the question is investigated of the errors involved in the often used approximation whereby a "long" rectangular foundation is treated as a rectangular infinite strip in the prediction of resonance frequency.

Finally an indication is given of how the method can be more easily applied to the analysis of interaction of foundations on the elastic half space than previous methods. An outline is also given of the application to the combined problem of a flexible foundation on an elastic half space.

ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor, Professor P. Grootenhuis for his invaluable guidance, advice and encouragement throughout the entire period of this research.

I am very grateful also to my supervisor's secretary, Miss A.N. Berthoud, for making her IBM golfball typewriter available together with the golfball for Scientific Symbols. Thanks to the staff at Imperial College Computer Center, especially Tony Davison, for their patience and help on the Diablo printer.

Thanks are also due to my colleagues in the Dynamics Section of this Department, especially Dare Afolabi and Jerry Antonio, for discussions, arguments and suggestions on academic matters and on the layout of this thesis.

Finally I deeply appreciate the financial support of the University of Lagos during this research.

London,
May, 1981
F.O. Damisah

CONTENTS

Page
no.
ABSTRACT iii
ACKNOWLEDGEMENTS v
CONTENTS vi
GENERAL NOTATION x
CHAPTER INTRODUCTION 1
1.1 Motivation for the Present
Work 2
1.2 Review of Previous Works 7
1.3 A Statement of the Boundary
Integral Equation Method 17
CHAPTER 2 FORMULATION OF THE BOUNDARY INTEGRAL EQUATION 23
2.1 Historical Background 24
2.2 Field Equations 26
2.3 The Dynamic Betti-Rayleigh Reciprocal Theorem 28
2.4 Fundamental Singular Solution of Elastodynamics 30
2.5 The Formulation of the Integral Equations 35
CHAPTER 3 APPLICATION OF THE B.I.E. TO A SEMI-INFINITE DOMAIN 48
3.1 On the Appropriateness of the BIE to Infinite/Semi-Infinite
Domains 49
3.2 Adaptation of the BIE to Foundation Problems 53
3.3 General Approach to the Numerical Solution of the BIE 56
CHAPTER 4 VIBRATION OF A RIGID INFINITELY LONG RECTANGULAR FOUNDATION ON AN ELASTIC HALF SPACE 65
4.1 Introduction 66
4.2 Problem Definition 66
4.3 Boundary Conditions Imposed By the Modes of Vibration 72
4.4 Applying the Boundary
Integral Equation 80
4.5 Numerical Integration Scheme 86
4.6 Applying the Boundary Conditions to the Algebraic
Equations 93
4.7 Results and Discussions 98
CHAPTER 5 VIBRATION OF A FOUNDATION OF ARBITRARY SHAPE ON AN ELASTIC HALF SPACE 116
5.1 Introduction 117
5.2 Problem Definition 118
5.3 Boundary Conditions Imposed By the Modes of Vibration 120
5.4 Applying the Boundary
Integral Equation 128
5.5 Numerical Integration Scheme 138
5.6 Applying the Boundary
Conditions to the Algebraic Equations 143
5.7 Results and Discussions 149
CHAPTER 6 THE B.I.E. AND FUTURE DEVELOPMENTS IN
FOUNDATION DYNAMICS
6.1 Introduction 187
6.2 Vibrations of Elastic Solids 190
6.3 Vibration of an Elastic Foundation on an Elastic Half
Space 193
6.4 Interaction of Rigid
Foundations on an Elastic
Half Space 195
6.5 Comparison With Previous
Methods of Analysis 205
CHAPTER 7 CONCLUSION 210
7.1 Achievements of the Present
Work 211
7.2 Suggestions for Future
Research 218
APPENDIX A THE CONCEPT OF "ELASTODYNAMIC STATE" 220
A. 1 Definitions 221
A. 2 Elastodynamic State 221
APPENDIX B SOME ALGEBRAIC DETAILS 224
B. 1 Expansion of $U_{j k}$ for Two- Dinensional Problems 225
B. 2 Differentiations of $U_{j k}$ to Obtain $T_{j k}$, Two-Dimensional Problems 227
B. 3 Expansion of $U_{j k}$ for Three- Dimensional Problems 229
B. 4 Differentiations of $U_{j K}$ to Obtain $T_{j k}$, Three-Dimensional
Problems 231
REFERENCES 233

GENERAL NOTATION

$A_{1}, A_{2}, A_{3}, A_{4}$	Functions appearing in the expressions for
	the fundamental singular stress matrix T_{jk}
	(same symbols for the two- and
	three-dimensional cases)
${ }^{\text {a }}$ r	Width/length ratio of a rectangular
	foundation.
b	A characteristic length of a foundation,
	e.g., radius of circular foundation or
	semi-length of a rectangular one.
\underline{b}	Body force vector in an elastic medium.
c_{1}	Dilatation wave speed, $\sqrt{(\lambda+2 \mu) / \rho}$.
c_{2}	Shear wave speed, $\sqrt{\mu / \rho}$.
e, exp	Used for base of natural logarithms.
F	Some convenient unit of force.
$F_{j}, j=1,2,3$	Excitation forces applied to a massive
	foundation along the coordinate axes x_{1},
	$\mathrm{x}_{2}, \mathrm{x}_{3}$.
$F_{j}, j=4,5,6$	The form Υ_{j} / b of couples Υ_{j} applied to
	massive foundation about the coordinate
	axes $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$.
$\mathrm{f}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, 6$	F_{j} / F.
$H_{n}^{(1)}, H_{n}$	Hankel function of the first kind of order

	n.
Im	Imaginary part of
i	$\sqrt{-1}$
$J(\xi), J(\underline{\xi})$	Jacobian of transformation from
	coordinates $\xi(\underline{\xi})$ to x_{j} in two (three)
	dimensions.
\bar{J}_{0}	Mass moment of inertia of infinitely long
	rectangular strip about the rocking axis.
$\vec{J}_{j}, \quad j=1,2,3$	Mass moments of inertia of foundation of
	finite arbitrary shape about the
	coordinate axes.
k_{1}	ω / c_{1}, a convenient definition.
	ω is frequency in radians/sec, see below.
k_{2}	ω / c_{2}, a convenient difinition.
	ω is frequency in radians/sec, see below.
$M_{j}, \quad j=1,2,3$	Reaction moments of the supporting medium
	on the foundation.
m	The mass per unit length of an infinitely
	long rectangular strip. Same symbol is
	used for the mass of a foundation of
	finite arbitrary shape.
$\mathrm{m}_{\mathrm{j} j}, \quad j=1,2,3$	$=\mathrm{m}$, a convenient notation. Translational
	inertia properties in the directions of
	motion.
$\mathrm{m}_{j j}, \quad j=4,5,6$	$=\bar{J}_{j-3} / b^{2}$, a convenient notation.
	Rotational inertia properties about the

	axes of ratation.
$\bar{m}^{\text {j }}$	$m_{j j} / \rho b^{3}$, mass ratio.
$\hat{\mathrm{n}}$	Outward pointing unit normal vector at a
	given point on the surface of a body.
$\mathrm{P}(\underline{y})$	A point P (in or on an elastic domain)
	whose Cartesian coordinates are y_{1}, y_{2},
	y_{3}.
$Q(\underline{x})$	A point Q (on an elastic domain) whose
	Cartesian coordinates are $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$.
$Q_{j}, \quad j=1,2,3$	Reaction forces of the supporting medium
	on a foundation in the coordinate axes.
$Q_{j}, \quad j=4,5,6$	M_{j-3} / b, a convenient definition indicating
	reaction moments.
$R(P, Q)$	Magnitude of the position vector of Q
	relative to P, i.e., $\|\underline{x}-\underline{y}\|$
$\overline{\mathrm{R}}$	R/b
Re	Real part of
S	Boundary of an elastic domain.
S_{t}	Portion of S on which stress values are
	prescribed.
S_{u}	Portion of S on which displacement values
	are prescribed.
T_{jk}	The fundamental singular stress matrix
	(corresponding to Stoke's problem). Same
	symbol used for two- and three-dimensional
	cases.

t	Time coordinate.
t, t_{k}	Traction vector (components of) on a given
	surface.
$\left(t_{k}\right)_{0}$	Prescribed values of t_{k} on some portion S_{t} of boundary S .
U_{jk}	The fundamental singular displacement
	matrix, the Stoke's tensor. Same symbol
	used for the two- and three-dimensional
	cases.
\underline{u}, u_{k}	Displacement vector (components of) of
	points in an elastic material.
$\left(u_{k}\right)$	Prescribed values of u_{k} on some portion S_{u}
	of boundary S.
$v_{j}, j=1,2, \ldots, 6$	Translations and rotations of a massless
	rigid body in the coordinate directions.
$W_{j}, \quad j=1,2, \ldots, 6$	Translations and rotations of a massive
	rigid body in the coordinate directions.
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$	Cartesian coordinates
\bar{x}_{j}	$\mathrm{x}_{\mathrm{j}} / \mathrm{b}$
\underline{x}	The point ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$)
\underline{y}	The point ($\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}$)

λ, μ	Lamé constants, μ is shear modulus.
ρ	Mass density.
$\delta^{j k}$	Kroenecker delta.
$\sigma_{j k}$	The stress tensor.
γ	c_{2} / c_{1}
Φ, χ, Ψ	Functions appearing in the expressions for
	the fundamental singular matrices $U_{j k}$ and
	$\mathrm{T}_{j k}$. Same symbols for two- and
	three-dimensional cases.
$\theta_{j}, \quad j=1,2,3$	Rotations of a massless rigid foundation
	about the respective coordinate axes.
$\Theta_{j}, \quad j=1,2,3$	Rotations of a massive rigid foundation
	about the respective coordinate axes.
$\Upsilon_{j}, \quad j=1,2,3$	Excitation moments applied to massive
	foundation about the respective coordinate
	axes.
ω	Frequency of harmonic motion in
	radians/sec.
η_{1}	$b \omega / c_{1}$
η_{2}	$b \omega / c_{2}$, frequency factor.
∇	Del vector operator
∇^{2}	Laplacian operator
ξ_{j}, ζ_{j}	Local coordinates defined over a boundary
	element.

The usual Cartesian tensor notation is employed: repeated suffixes imply summation and partial differentiation with respect to the coordinate directions is indicated by the comma-suffix notation. Occasionally it is convenient to indicate a vector quantity by underscoring the appropriate symbol, e.g., the displacement vector $\underline{\underline{u}}$.

1.1 MOTIVATION FOR THE PRESENT WORK

The subject of the dynamies of a rigid body on an elastic soil has received much attention over a number of decades, and many a great researcher has contributed to the fundamental concepts. The subject is important because it is often necessary at the design stage to estimate the dynamic response of a foundation which is supported by an elastic soil. The disturbance may arise either from within the machinery to be supported on the foundation or from adjacent plant and railways, or due to an earthquake. An understanding of foundation dynamics is essential in designs supporting such delicate structures as nuclear reactors, tall buildings and dams. A worldwide interest on the dynamic behaviour of dams is manifested at such meetings as the International Commission on Large Dams (1979). A complete analysis of the response of dams should include the dynamics of the foundation, and will provide a good theoretical basis to those engaged in actual tests on existing dams, such as Severn, Jeary and Ellis (1980). In seeking to understand the dynamic behaviour of ground-borne structures, it is generally accepted as a first step to regard the foundation as a rigid body resting on the soil modelled as a homogeneous isotropic elastic half space. The dynamic response of such a foundation is then sought as a function of input frequency for a harmonic force in different directions.

Attention was first brought to this problem by the works of Lamb (1904) on the dynamics of the earth due to application of an idealised point force. The amount of work involved in this relatively straightforward problem of Lamb gave a foretaste of the tremendous mathematical difficulties that awaited any attempt on analysing the dynamic response of foundations on the earth surface. Ever since then researchers have sought various ways of solving the problem. The major contributions made so far may be grouped under four categories depending on the method of approach, namely (a) Finite Model of the Semi-Infinite Half Space, (b) Analytical Methods of Dual Integral Equations, (c) Numerical methods based on the Green Function approach, and (d) Conformal Mapping of the Half Space. Detailed discussion of these is deferred to section (1.2) below. But one important observation that can be made straightaway about all these attempts is that the motion of the foundation has been constrained within the limits that the particular method of analysis can cope with. For example, considering just the vertical vibration, we find that on the one hand users of the conventional dual integral equation approach such as Awojobi and Grootenhuis (1965) prescribe zero shear stress (i.e. frictionless contact) at the contact between the foundation and the soil in order to avoid writing a third integral equation for the unknown stress, while on the other hand the conformal mapping technique by Alabi (1979)
requires zero horizontal displacement (i.e. perfect bonding) between the foundation and the soil in order to avoid numerical transformation of the unknown displacement. Attempts such as those of Luco and Westman (1972) based on Green function (or influence function) approach made to correct some of these defects introduced some other integral equations which either present considerable difficulties from the numerical point of view, according to Luco and Westman (1972), or require considerable amount of computer time to handle, according to Wong and Luco (1975).

However, more important is the question of how much the various attempts have been able to address themselves to questions of, say, partial bonding between soil and foundations, interaction between many foundations, and above all, allowing for the elasticity of the foundation itself rather than assuming it to be a rigid body. The question of allowing for the flexibility of the foundation is thi\% particularly intriguing. The foundation has always been assumed rigid because there is no known strightforward method of analysing the elastodynamics of a finite body. The assumption of rigidity may be considered good enough for small machine foundations, but is questionable for the case of long bodies such as dams and buildings. By the way, the thought of the flexibility of foundations would be very useful to geophysicists who may be interested in the effect of topography on seismic waves - what happens to

Rayleigh surface waves upon striking a mountain? Perhaps we may ponder on the less mathematically formidable aspects of foundation dynamics for the moment. It is usual in the literature to approximate a "long" rectangular foundation as an infinite rectangular strip in order to simplify analysis, but no quantitative evidence has been supplied to determine how long the rectangle should be to justify the approximation. As far as the author is aware there is no analysis in the literature of rectangular foundations with length/width ratios going up to 10 or 16 , probably because of numerical difficulties, and this is responsible for the absence of quantitative justification mentioned above. Also there has been no mention of the unconstrained motion of the rigid foundation such as the three degrees-of-freedom (coupled vertical-horizontal-rocking) vibration of the infinite rectangular strip, probably because of the analytical difficulty or because of an intuitive assertion that the vertical vibration is never coupled to either of the horizontal and rocking.

Closed-form analytical solutions of foundation dynamics are almost impossible even for simple foundation shapes as the infinite rectangular strip or circular base, with the exception of torsional vibration of circular base. Efforts are therefore concentrated on seeking numerical solutions to be made available in form of computer software. It is desirable to find a method that will impose minimum
analytical constraint on the motion of the foundation, that is cheaper and more efficient in terms of computer resources, and that promises more potentials for coping with future developments in foundation dynamics. With these requirements in mind the motivation for the present work arises from the on-going developments in the field of elastostatics. The traditional methods of solving the elastic deformation of a finite body have been the finite difference and finite element methods, see Zienkiewicz and Cheung (1967). But recently the so-called Boundary Integral Equation (BIE) method was developed. Notable pioneers in this new approach include Rizzo (1967) and Cruse (1967), (1969), (1973).

Tremendous success and advantages have been recorded with the use of this method by, among others, Rizzo (1967) in two- and three-dimensional elastostatics, Cruse and Rizzo (1968) in transient elastodynamics, Rizzo and Shippy (1968) in elastic inclusion problems, and by Tan and Fenner (1979) in crack analysis. The relative ease with which this class of elasticity problems have been successfully handled by the BIE method leads one to explore the possibility of extending the solution capabilities to steady-state elastodynamics with particular reference to the vibration of foundations, an investigation that has not yet been undertaken before now. The present work is addressed to this investigation. The integral equation is formulated
following the developments in transient elastodynamics, the parallel between the static, transient and steady-state phenomena being underlined. It is found that all the powerful advantages of the BIE method in elastostatics become available for exploitation in elastodynamics.

We begin in the next section by outlining the various important contributions to the analysis of the dynamics of foundation so far, and then, from the mere statement of the Boundary Integral Equation formulation that follows, we begin to appreciate immediately the advantages the method offers over and above any of the previous approaches, and the potentials it promises for some of the yet unattempted problems of foundation dynamics.

1.2 REVIEW OF PREVIOUS WORKS

The analysis of the dynamics of rigid foundation is basically the solution of the elastic deformation of the soil modelled as a homogeneous isotropic elastic half space. For our purpose we classify as follows the major contributions made so far on the subject in accordance with the method of approach.
(a) Finite Model of the Semi-Infinite Half Space

This approach, which involves replacing the entire half space by a finite arrangement of masses, springs and damping elements, dates back to the work of Ang and Harper (1964) on a lumped parameter model for the treatment of plane strain problems. Agabein, Parmelee and Lee (1968), and Lysmer and Kunlemeyer (1969), among others, introduced finite boundaries into the Ang and Harper model with damping elements introduced at the boundaries to account for geometric damping. Not surprisingly they found the reliability of the model to be dependent on its size.

Many variations of this modelling exist. They include confining the computation to a restricted near-field volume of the half space, Lysmer and Wass (1972), and introduction of boundaries designed to transmit D'Alembert forces, Ang and Newmark (1971). Gupta, Permelee and Krizek (1973) used lumped parameter model to analyse coupled sliding and rocking vibration of an infinitely long rigid strip and found agreement with the analytical results of Karasudhi, Keer and Lee (1968) who only estimated the coupled motion by superposition of the pure modes. Representing the half space by a finite number of masses results in a stiff system, or the model itself may have to approach the size of the half space to obtain good results.
(b) Analytical Method of Dual Integral Equations

This method is based on Fourier transformation of the equations of elastodynamics. After taking the inverse transform the resulting pair of integral equations become formidable to solve. The first approach was the search for an expression for the contact stress distribution to insert under the integrals. Reissner (1936), and later Miller and Pursey (1954) considered uniform pressure distribution under a rigid plate in vertical translation. Quinlan (1953) tried uniform, parabolic and an approximate rigid-base pressure distribution. Arnold, Bycroft and Warburton (1955) presented four modes of response of rigid circular plate based on assumption of contact pressure distribuicion proportional to the static case. Their results agree fairly well with their test values. These results were extended by Richardson, Webster and Warburton (1971) to the determination of the response on the surface of the half space at distances away from a single mass, and then by some averaging technique over this surface response, Warburton, Richardson and Webster (1971) proceeded to predict the response of a nearby second mass. The first attempt to solve the problem free of any pre-assumption of stress distribution was made by Awojobi and Grootenhuis (1965) using some iterative procedure, and obtained results which agreed better with the experimental results of Arnold, Bycroft and Warburton (1955). Awojobi (1971) proceeded to give approximate results for
high frequencies for some pure modes of circular plate and a long rectangular body.

It is observed that this dual integral equation approach presents considerable mathematical difficulty, except in simple cases like torsional vibration of rigid circular plate Reissner and Sagoci (1944), Sagoci (1944), Awojobi and Grootenhuis (1965), Thomas (1968), and the pure modes of long rectangular bodies, Awojobi (1966), Karasudhi, Keer and Lee (1968). We quote for our reference the pair of integral equations that has to be solved for, say, the vertical translation of infinitely long rigid rectangular body, see Awojobi and Grootenhuis (1965) for details.

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\alpha_{1}}{\phi(n)} F(n) J_{-\frac{1}{2}}(n \bar{x}) d \eta=c_{b} / \sqrt{\bar{x}}, \quad 0<\bar{x}<1 \\
& \int_{0}^{\infty} F(n) J_{-\frac{1}{2}}(n \bar{x}) d n=0, \quad \bar{x}>1 \tag{1.2.1}\\
& C_{b}=\left(-\frac{\mu V_{0}}{\sqrt{b}} \sqrt{2 \pi}\right) / \eta_{2}^{2}
\end{align*}
$$

Integration is with respect to the dimensionless form n, of the Fourier transform parameter, $\phi(\eta)$ is the usual Rayleigh function, $F(\eta)$ the desired normal stress distribution function, α_{1} a function of η, and V_{0} the harmonic vertical displacement of the body.

This approach has limited use, if any, in the analysis of foundations of arbitrary shape whose area of contact with the half space cannot be described by any simple algebraic expression. Also coupled pairs of integral equations would be required for solving coupled modes of vibration. Moreover given the approach, it would be necessary, as observed in previous section, to assume frictionless contact in order to avoid writing another set of equations for the unknown shear stresses.
(c) Green Function Approach

This consists of summing up the influence at a point of all the other points on the contact area between the body and the half space. Basically the influence function is sought from the solution to the problem of Lamb (1904) the dynamic response of the half space to concentrated point force. The contact area is divided into a number of rectangular sub-regions, figs.(1.1) below.

Two approaches may be distinguished. Elorduy, Nieto and Szekely (1967) obtained their influence function by applying Duhamel's integral to the transient response of the half space to vertical loading obtained by Pekeris (1955). For the vertical vibration they applied an unknown vertical force at the centre of an element Q, fig.(1.1a), and considered its influence at the left corner of every element P (including Q itself).

(a) Rectangular Contact Area

(b) Circular Contact Area

Fig 1.1 ModeI of Contact Area

Hamidzadeh (1978) obtained his influence function by a numerical attempt directly on Lamb's problem, and then followed Elorduy's approach with many more points on element P - all the four corners of the element - and obtained different results. To follow the approaches of the two works mentioned above for coupled modes of vibrations would require writing numerous pieces of equations before forming the overall system of algebraic equations since forces and/or couples applied in various directions are considered separately.

It is obvious that all the reactions of the supporting medium to any motion of the foundation come from the three components of traction at the contact surface. Therefore the approach of Wong and Luco (1976) looks tidier. They used boundary mesh as in fig.(1.1) above but expressed the displacement at a given point P as a sum of contributions from all the stress components $\sigma_{k 3}$ at point Q in the integral form

$$
\begin{equation*}
u_{j}(P)=\int_{S} G_{j k}(P, Q) \sigma_{k 3}(Q) d s(Q) \tag{1.2.2}
\end{equation*}
$$

so that coupled modes can be easily handled by prescribing on the left side of the equation the displacements imparted on the half space by the chosen mode of vibration. The difficulty with the Wong and Luco's equation above lies in
the influence function $G_{j k}$, which is the (j)th displacement component at P generated by a unit load acting at point Q in the negative direction of the (k)th axis - which takes us back to the unsolved problem of Lamb. Wong and Luco however used functions from the works of Thomson and Kobori (1963) based on constant stress distribution. These complicated functions for $G_{j k}$ involve infinite integrals of oscillatory functions which they found expensive to compute numerically or otherwise. We point out for our reference that the integrations involved in $G_{j k}$ are with respect to Fourier transform parameter.

However, given this approach a better modelling of the contact area than those in fig.(1.1) can be achieved by following the boundary element modelling process commonly used in the application of Boundary Integral Equation to problems of elastostatics, see for example Lachat (1975), and the modelling used in the present study in chapter 3. The edge singularities of the contact stress distribution could then be clearly shown, see results of this study in chapter 5, and shapes like circles, fig(1.1b), or arbitrary shapes could be more adequately represented.
(d) Conformal Mapping of the Half Space

In analysing the vertical motion of a rigid infinite strip foundation, fig.(1.2a) below, Alabi (1979) transformed the Cartesian set of coordinates x_{j} / b to an orthogonal
curvilinear set X_{j} so that the half space is effectively
mapped into the rectangular region of fig. (1.2b) with X_{1}
varying from zero to one and X_{2} from zero to π. An
array of mesh nodes was superposed on the rectangle over
which the elastodynamic equations were integrated by finite
difference method. A large system of equations resulted. It
is a conceivable idea to map the whole volume of the half
space in the three dimensional problem of a foundation of
arbitrary shape. The resulting mapped region would be a
parallelopiped and the three dimensional array of nodes
required over this volume would result into an awefully
massive set of equations to solve. It is observed that a
lot of computing efforts are spent in this approach in
calculating unwanted quantities in the interior of the half
space. Excellent results have been obtained however by use
of this method to static and transient problems involving
the half space in plane strain, Berger and Alabi (1978).
We proceed in the next section to briefly examine the
salient points of the Boundary Integral Equation method
proposed in this study.

(a) Cross-section of Half Space

(b) Mapped Space

Fig 1.2 Mapping of the Half Space

1.3 A STATEMENT OF THE BOUNDARY INTEGRAL EQUATION METHOD

The Boundary Integral Equation method utilises the numerical solution of integral equations analogous to Green's boundary formula in Potential Theory, Symm (1963), Kellogg (1953). We give here with only brief details a statement of the BIE formulation. Simply put, the displacement vector u_{j} at a given point P anywhere in or on an elastic body is related to only the boundary values of the displacement vector u_{k} and stress vector t_{k} by the integral equation

$$
\begin{align*}
c_{j k} u_{k}(P) & +\int_{S} T_{j k}(P, Q) u_{k}(Q) d s(Q) \\
& =\int_{S} U_{j k}(P, Q) t_{k}(Q) d s(Q) \tag{1.3.1}
\end{align*}
$$

which is derivable from the equations of linear (or non-linear) elasticity. In this equation Q is the dummy integration point over the boundary of the elastic medium, $T_{j k}(P, Q)$ and $U_{j k}(P, Q)$ are second order tensors of position Q relative to P which have different expressions for elastostatics, transient elastodynamics and steady-state elastodynamics. They are functions of Poisson ratio, frequency and the space coordinates (the details start in chapter 2). S denotes the boundary of the medium. Advantageous use is made of the equation by specifying P to be on the boundary also so that attention is paid only to the boundary. $c_{j k}$ is a tensor that depends only on the
geometry surrounding the point P. We then seek a numerical solution of this vector integral equation for displacements and/or stresses subject to given boundary conditions.

Let us examine the advantages that are immediately apparent of this equation over the categories of previous efforts listed above.
(a) The Physics of the Problem is Directly Addressed:-

One of the most important advantages of the BIE equation is that all the quantities involved are physical displacements, stresses and space coordinates. In particular the variable of integration is the element of area of the boundary of the elastic body. Thus the physics of the problem is directly addressed. This is unlike the dual integral equation approach or Wong and Luco's Green functions in which integration is over all values of the mathematical concept of Fourier transform parameter from zero to infinity. The advantage of using only physical quantities is that if any mathematical difficulty should arise one can resort to the physics of the problem to make shrewd approximations. For example one might be tempted to argue that the BIE requires integration over the infinite area of the half space. But it can be seen firstly that the integral involving stress is only restricted to the loaded region, the stress-free surface contributing nothing to it. Secondly it can be judged physically that the displacement on the surface of the half space becomes vanishingly small
as one moves farther away from the loaded region. Hence the contribution of distant points to the displacement integral becomes insignificant. Moreover, as will be seen later, chapter 2, the tensor $T_{j k}$ multiplying the displacement under the integral sign diminishes as the inverse of the distance from the point P under consideration. Thus the integral is actually a sort of summation technique significantly involving only the displacements in the near field. This point is examined in details in chapter 3. This cannot be said of dual integral equation (1.2.1) in which nothing is known before hand about the behavour of the integral with respect to the Fourier transform parameter. So if any analytical efforts are to be spent, it would probably pay better to focus attention on the BIE than on the dual integral equations. (b) One Step Closer to Accuracy:-

The boundary integral equation is an exact statement of the problem. Thus we have moved with exact accuracy from the interior of the elastic body to its boundary. Any approximation to the equation occurs only on the boundary. This is a step closer to exactness than the lumped parameter modelling and the conformal mapping methods where approximation starts right from the interior of the medium. This question of accuracy is particularly important in steady-state wave propagation because of the discretisation error common to all numerical analysis, namely, representing
a medium which naturally has an infinite number of degrees-of-freedom with one with a finite number results in a stiffer system. This is the most serious defects of the finite modelling methods.
(c) Reduced Problem Size:-

The BIE method reduces the dimensionality of the problem by one. The two-dimensional problem of the rigid infinite strip foundation is reduced to numerical integration over the straight line that now forms the boundary of the half space in plane strain. The three- dimensional problem of foundations of arbitrary shape reduces to integration over the two-dimensional plane boundary of the half space. This reduced problem size results in much smaller set of equations to solve after discretising the integral equation. This contrasts sharply with the conformal mapping technique which requires large system of equations.
(d) Better Use of Computing Resources:-

Much of the computing resources expended in the finite modelling methods in discretising the entire half space are used in computing unwanted results - the displacements and stresses in the interior of the half space. The foundation problem is concerned only with boundary values, and these are what the BIE formulation involves. After the boundary values are computed the interior values, if and when required, are computed by direct quadrature over the boundary by placing the point P as desired.

The advantages of the BIE over other methods in elastostatics of finite bodies (particularly the benefit of reduced problem size) may be carried over to the steady-state analysis of finite bodies. Thus talking of allowing for the flexibility of foundations, the computing effort in time and storage requirements spent on calculating the interior values of the half space or in computing the Green's functions of wong and Luco may be spent in solving for the flexibility of the non-rigid foundation over its boundary by the same BIE equation. This is discussed in chapter 6.

The Boundary Integral Equation is formulated in chapter 2. In this study the equation is being applied to the half space as an elastic body loaded at the contact area with the foundation. The question of how much the distant points contribute to the integral occurring in the BIE is examined in chapter 3 by exploiting the radiation conditions of elastodynamics established by Doyle (1905). Chapter 4 is devoted to tne analysis of the pure and coupled modes of vibration of a rigid infinite rectangular strip, and chapter 5 to foundations of arbitrary shape. The flexibility and ease of the BIE metnod permits us to analyse the three degrees-of-freedom vibration of a rigid infinite rectangular strip also in chapter 4 in order to check whether or not the vertical mode is coupled to the horizontal and/or
rocking. Also in chapter 5 we are able to compute the resonance frequencies of rectangular foundations of length/width ratio up to 16 , so that some quantitative examination is given to the question of approximating long rectangular foundation as infinite rectangular strip.

In chapter 6 an indication is given on the potentials of the BIE method as a tool for solving the general elastodynamic problem and for dealing with some of the yet unsolved problems of foundation dynamics. There the details are given of the formulation of the combined problem of elastic foundation on an elastic half space, and also of a more complete formulation than is usually given in the literature of the problem of interaction of rigid foundations on an elastic half space.

The solutions of the general linear elasticity problems do admit a variety of integral representations. Here we shall be concerned with the representation employing the influence function technique based on the reciprocal work theorem of Betti (1872). The first usage of influence functions (or singular solutions) was in the field of elastostatics in the last quarter of the l9th century, employing as the singular solutions the particular solutions of the field equations for a concentrated load in an infinite elastic space attributed to Lord Kelvin (1848). These first efforts were by, among others, Betti (1872-73), Cerutti (1879), Somigliana (1892), Tedone (1879), and Fredholm (1905). Actual solutions were difficult to achieve then because of absence of fast computing aid. The advent of fast modern digital computers revived interest in this approach, and the first numerical treatment was formulated by Jaswon (1963) and Symm (1963) in the potential theory. Then Rizzo (1967) presented numerical solutions of the Boundary Integral Equation (BIE, as it is now commonly called) for plane boundary value problems in elastostatics. The method has since developed so tremendously it now handles with relative ease the problems of three dimensional elastostatics, Cruse (1969,1972,1973), and elastic fracture mechanics, Tan and Fenner (1979). A good survey can be found in the paper by Tan and Fenner (1978) of the use of the BIE method to many other applications including rock mechanics and elastoplastic analysis.

The BIE development has not progressed as rapidly in the field of transient elastodynamics. The general problem has been attempted by Doyle (1966) who used the singular solution for the Laplace-transformed field equations to obtain representations for the
displacement vector, dilatation and rotation vector. However he did not attack the general boundary value problem in terms of boundary data and did not attempt a solution and inversion to complete the problem. The treatment by Nowacki (1964) requires finding a Green's function before attempting the Laplace inversion. Numerical results have been presented by Cruse (1967), and Cruse and Rizzo (1968) I, II, for the two dimensional problem of the elastic half-space under transient load.

The boundary integral representation has also found tremendous application in problems of steady acoustic waves in which the Green's boundary formula in the theory of potentials is used to solve the governing Helmholtz equation, see Banaugh (1963), Chertock (1964) and Meyer, Bell, Zinn and Stallybrass (1978).

It is in the field of steady-state elastodynamics that the application of the BIE has been least developed. The problem of diffraction of steady elastic waves by an inclusion in an infinite elastic medium has been considered by, among others, Banaugh and Goldsmith (1963), Sharma (1967) and Shaw (1968). Their treatment was via the Lame's displacement potentials which satisfy Helmholtz equations and which, therefore, can be treated by Green's formula. Using again Lame's potentials, Banaugh (1964) formulated integral representaions for displacements for the general boundary value problems of elastodynamics. This type of formulation in terms of displacement potentials involve a lot of algebra, and Banaugh ended up with eight simultaneous integral equations to solve. This situation normally arises with displacement potentials because the Green's boundary formula requires the values of the potentials as well as their normal derivatives at the boundary. Papadopoulis (1963) used the same
approach to the problem of point source in a semi-infinite medium.

A formulation of the BIE in steady-state elastodynamics directly in terms of physical quantities of displacements and stresses may be found in the text by Eringen (1975) and also in Kupradze (1963). Applying an extension of Fredholm theory to the BIE, Kupradze formulated a number of problems ranging from linear homogeneous isotropic elastostatics to the vibrations of piecewise homogeneous bodies. He did not take advantage of the use of boundary data directly involved in the integral equation and was therefore forced to look for surface potentials to obtain solutions. His method may thus be termed an indirect approach. A direct approach (to use the terminology in elastostatics) shall be followed in this study in the sense that the BIE shall be treated directly in terms of the physical quantities it embodies - stresses, displacement and space coordinates. The formulation of the boundary integral equation in elastodynamios is possible due to the existence of fundamental singular solution of the equations of elastodynamics in an infinite region subjected to a concentrated body force acting at a point. This is the Stoke's (1849) problem. These fundamental solutions, the well-known Stoke's tensor, in conjunction with Betti's reciprocal theorem yields a vector identity which corresponds to Somigliana's identity in elastostatics and Green's third identity in potential theory.

2.2 FIELD EQUATIONS

Let D denote a regular region described in a two- or three-dimensional Euclidean space, and S the boundary of the region.

The boundary S is a plane curve if D is two-dimensional and a surface if D is three-dimensional. Associated with each differential surface element is an outward pointing unit normal vector \hat{n}.

The celebrated Navier's equations of motion of an isotropic homogeneous elastic body, represented by region D, are, in vector notation,

$$
\begin{equation*}
\left(c_{1}^{2}-c_{2}^{2}\right) \nabla \nabla \cdot \underline{u}+c_{2}^{2} \nabla^{2} \underline{u}=\frac{\partial^{2} \underline{u}}{\partial t^{2}} \tag{2.2.1}
\end{equation*}
$$

In the case of time-harmonic motion this equation reduces to, omitting the time harmonic factor $e^{i \omega t}$,

$$
\begin{equation*}
\left(c_{1}^{2}-c_{2}^{2}\right) \nabla \nabla \cdot \underline{u}+c_{2}^{2} \nabla^{2} \underline{u}+\omega^{2} \underline{u}=0 \tag{2.2.2}
\end{equation*}
$$

If the special differential operator ∇^{*} is introduced as

$$
\begin{equation*}
\nabla^{*} \equiv\left(c_{1}^{2}-c_{2}^{2}\right) \nabla \nabla \cdot+c_{2}^{2} \nabla^{2} \tag{2.2.3}
\end{equation*}
$$

the equation of motion takes the form

$$
\begin{equation*}
\left(\nabla^{*}+\omega^{2}\right) \underline{u}=0 \tag{2.2.4}
\end{equation*}
$$

The constitutive equation for the linear, isotropic and homogeneous solid relates the stress tensor $\sigma_{j k}$ to the displacement gradients by Hooke's law

$$
\begin{equation*}
\sigma_{k s}=\lambda \delta_{k s} u_{r, r}+\left(u_{k, s}+u_{s, k}\right) \mu \tag{2.2.5}
\end{equation*}
$$

Corresponding to the displacement field \underline{u} the traction vector \underline{t} on a differential element of surface with unit normal \hat{n} is

$$
\begin{equation*}
\underline{t}=2 \mu \frac{\partial \underline{u}}{\partial n}+\lambda n(\operatorname{div} . \underline{u})+\mu(n \times \operatorname{curl} . \underline{u}) \tag{2.2.6}
\end{equation*}
$$

or in indicial notation

$$
\begin{align*}
t_{k} & =\sigma_{k s} n_{s} \\
t_{k} & =\lambda u_{r, r} n_{k}+\mu\left(u_{k, s}+u_{s, k}\right) n_{s} \tag{2.2.7}
\end{align*}
$$

The stresses and displacements are assumed to satisfy certain boundary conditions

$$
\begin{array}{ll}
t_{k}=\sigma_{k s} n_{s}=\left(t_{k}\right)_{0} & \text { on } S_{t} \\
u_{k}=\left(u_{k}\right)_{0} & \text { on } s_{u} \tag{2.2.9}
\end{array}
$$

2.3 THE DYNAMIC BETTI-RAYLEIGH RECIPROCAL THEOREM

We refer back to the equation of steady state motion (2.2.4), namely

$$
\left(\nabla^{*}+\omega^{2}\right) \underline{u}=0
$$

'The corresponding equation in elastostatics is

$$
\begin{equation*}
\nabla^{*} \underline{\underline{u}}=0 \tag{2.3.2}
\end{equation*}
$$

and in transient motion

$$
\begin{equation*}
\left(\nabla^{*}-\alpha^{2}\right) \underline{\underline{u}}=0 \tag{2.3.3}
\end{equation*}
$$

where α is the Laplace transform parameter. For details of this see

Cruse (1967). Eqs.(2.3.1) and (2.3.2) are of similar form to the Helmholtz and Laplace equations, respectively, frequently encountered in the harmonic potential theory as

$$
\begin{align*}
& \left(\nabla^{2}+k^{2}\right) \phi=0 \tag{2.3.1a}\\
& \nabla^{2} \phi=0 \tag{2.3.2a}
\end{align*}
$$

where k is a constant and ϕ an unknown variable, see for example Morse and Feshback (1953), Baker and Copson (1950). Indeed in the special case of $\lambda=-1, \mu=1$ the operator ∇^{*} defined in eq.(2.2.3) reduces to the Laplace operator ∇^{2} and equation pairs (2.3.1), (2.3.2) and (2.3.1a), (2.3.2a) become identical. The operator ∇^{*} plays in the theory of elasticity a similar role as the Laplace operator ∇^{2} plays in the theory of harmonic potentials.

Fundamental to the formulation of the boundary integral equation is the dynamic extension of the classical reciprocal theorem of Betti-Rayleigh in elastostatics. The dynamic Betti-Rayleigh reciprocal theorem between a pair of elastodynamic states has been established and proved by Eringen and Suhubi (1975), and Kupradze (1963). Let $\underline{Y}^{(1)}$ be a displacement vector field in an elastic domain. The corresponding traction vector $t^{(1)}$ on a surface element with normal \hat{n} can be found from eq.(2.2.6). These may be regarded as vector quantities in an elastodynamic state (1). ${ }^{\dagger}$ Another pair of vectors $\underline{V}^{(2)}$ and $\underline{t}^{(2)}$ may be chosen belonging to state (2). In domain D whose boundary is S, Betti's third identity is, Kupradze (1963),

[^0]\[

$$
\begin{align*}
\rho & \int_{D}\left(\underline{V}^{(1)} \cdot \nabla^{*} \underline{V}^{(2)}-\underline{V}^{(2)} \cdot \nabla^{*} \underline{V}^{(1)}\right) d D \\
= & \int_{S}\left(\underline{V}^{(1)} \cdot \underline{t}^{(2)}-\underline{V}^{(2)} \cdot \underline{t}^{(1)}\right) d S \tag{2.3.4}
\end{align*}
$$
\]

where vector dot products is indicated. All the vectors involved are required to be regular in D and on S.

In above equation one of the elastodynamic states is usually taken to correspond to the fundamental singular solutions of the elasticity equations in an infinite region due to a concentrated body force acting at a point $P(\underline{y})$ in a fixed direction, but with harmonic time-variation for steady-state problems. These fundamental solutions, the Stoke's tensor, are discussed next.

2.4 FUNDAMENTAL SINGULAR SOLUTION OF ELASTODYNAMICS

This is the well known solution of the problem of Stoke (1849) of an infinite elastic region subjected to a unit concentrated body force acting at a point $P(\underline{y})$ in a fixed direction \hat{e}, but with some (harmonic) time-variation. A detailed review of this problem is found in Eringen (1975), page 390 for time-harmonic as well as arbitrary time-varing force.

The displacement component in the j-direction at point $Q(x)$, due to a
unit concentrated force acting at the point $\mathrm{P}(\underline{\mathrm{y}})$ in the k -direction is denoted by the Stoke's tensor $U_{j k}(P, Q)$ which is a function of the positions P and Q. In the three-dimensional infinite domain $U_{j k}$ is given by, see Eringen (1975), page 435,

$$
\begin{equation*}
U_{j k}(P, Q)=\frac{1}{4 \pi \rho}\left\{\frac{1}{c_{2}^{2}} \frac{e^{i k_{2} R}}{R} \delta_{j k}+\frac{1}{\omega^{2}} \frac{\partial^{2}}{\partial x_{j} \partial x_{k}}\left(\frac{e^{i k_{1} R}}{R}-\frac{e^{i k_{2} R}}{R}\right)\right\} \tag{2.4.1}
\end{equation*}
$$

$$
j, k=1,2,3
$$

where $R=R(P, Q)=|\underline{x}-\underline{y}|$ is the distance between P and Q. The expression for $U_{j k}$ shows that it is a symmetric tensor. It is regular everywhere in the infinite domain except at the point $P(\underline{y})$ of application of the load. The traction vector for the concentrated load may be obtained by performing the differentiations indicated in eq.(2.2.7) on the row vectors of $U_{j k}$. If all the j rows are thus operated on the result is a matrix $T_{j k}(P, Q)$ obtainable from the differentiation

$$
\begin{equation*}
T_{j k}=\lambda U_{j r, r} n_{k}+\mu\left(U_{j k, s}+U_{j s, k}\right) n_{s} \tag{2.4.2}
\end{equation*}
$$

The matrix $T_{j k}$ gives, on a surface element at $Q(\underline{x})$ with unit normal \hat{n}, the traction component in the k-direction due to a unit concentrated force at the point $P(\underline{y})$ in the j-direction in an infinite domain. It is also regular everywhere except point $P(\underline{y})$ but it is not symmetric.

One may consider an infinite elastic domain in which the field quantities and body force vectors depend only on two independent space coordinates $x_{j}, j=1,2$, and not on the third coordinate x_{3}. This becomes a two-dimensional problem and the concentrated body force must
be thought of as being uniformly distributed along the line perpendicular to the infinite x_{3}-plane, say the plane $x_{j}=0$. We then have the two dimensional form of the Stoke's tensor, which we may represent by the same symbol U_{jk}, given by

$$
U_{j k}(P, Q)=\frac{i}{4 \rho}\left\{\frac{1}{C_{2}^{2}} H_{O}^{(1)}\left\{k_{2} R\right\} \delta_{j k}+\frac{1}{\omega^{2}} \frac{\partial^{2}}{\partial x_{j} \partial x_{k}}\left(H_{O}^{(1)}\left\{k_{2} R\right\}-H_{O}^{(1)}\left\{k_{l} R\right\}\right)\right\}
$$

$$
\begin{equation*}
j, k=1,2 \tag{2.4.3}
\end{equation*}
$$

where we now have

$$
R(P, Q)=|\underline{x}-\underline{y}|=\left(x_{\tau}-y_{\tau}\right)\left(x_{\tau}-y_{\tau}\right)
$$

$H_{o}^{(1)}$ is the Hankel's function of the first kind of order zero. This tensor too is symmetric. The traction vector corresponding to this two-dimensional case may be computed by eq.(2.4.2) above to obtain a corresponding matrix which we may also denote by $T_{j k}$. It will be convenient to adopt the following notaiion. With the concentrated force applied in the j-direction the resulting displacement and traction vectors, namely the j-rows of $U_{j k}$ and $T_{j k}$ are $\left(u_{j}\right)_{k}$ and $\left(t_{j}\right)_{k}$ respectively. It may be verified that the displacement vector ($\left.u_{j}\right)_{k}$, for all j's satisfies the equation of motion (2.3.1), see Kupradze (1963).

For computational purposes the expressions for $U_{j k}$ and $T_{j k}$ shall be expanded. The differentiations \dagger are carried out for $U_{j k}$ as indicated in eqs.(2.4.1) and (2.4.3). The respective results are then substituted into eq.(2.4.2) for $\mathrm{T}_{j k}$.

In two dimensions

$$
\begin{align*}
&-3 j- \\
& U_{j k}(P, Q)= \frac{i}{4 \mu}\left(\Psi \delta_{j k}+\chi R_{, j} R_{, k}\right) \tag{2.4.4}\\
& T_{j k}(P, Q)= \frac{i}{4}\left(A_{1} \frac{\partial R}{\partial n} \delta_{j k}+A_{2} \frac{\partial R}{\partial n^{2}} R_{, j} R_{, k}\right. \\
&\left.+A_{3} R_{, k} n_{j}+A_{4} R_{, j} n_{k}\right) \tag{2.4.5}
\end{align*}
$$

where

$$
\frac{\partial R}{\partial n}=\frac{\partial R}{\partial x_{s}} n_{s}, \quad \text { sum on } s \text {, }
$$

is derivative of R along normal \hat{n},

$$
\begin{aligned}
& \Psi=H_{o}\left(\mathrm{k}_{2} \mathrm{R}\right)-\frac{1}{\mathrm{~K}_{2} \mathrm{R}}\left(\gamma \mathrm{H}_{1}\left(\mathrm{k}_{1} \mathrm{R}\right)-\mathrm{H}_{1}\left(\mathrm{k}_{2} \mathrm{R}\right)\right) \\
& \chi=\gamma^{2} \mathrm{H}_{2}\left(\mathrm{k}_{1} \mathrm{R}\right)-\mathrm{H}_{2}\left(\mathrm{k}_{2} \mathrm{R}\right) \\
& \mathrm{A}_{1}=-\mathrm{k}_{2} \mathrm{H}_{2}\left(\mathrm{k}_{2} \mathrm{R}\right)+\frac{2 \chi}{\mathrm{R}} \\
& A_{2}=2\left(\gamma^{2} \mathrm{k}_{1} \mathrm{H}_{3}\left(\mathrm{k}_{1} \mathrm{R}\right)-\mathrm{k}_{2} \mathrm{H}_{3}\left(\mathrm{k}_{2} \mathrm{R}\right)\right) \\
& \mathrm{A}_{3}=\mathrm{A}_{1} \\
& A_{4}=-\left(1-2 \gamma^{2}\right) \mathrm{k}_{1} \mathrm{H}_{1}\left(\mathrm{k}_{1} \mathrm{R}\right)-\frac{2 \chi}{\mathrm{R}} \\
& \gamma=\mathrm{C}_{2} / \mathrm{C}_{1}
\end{aligned}
$$

$R=$ magnitude of vector from point $P(\underline{y})$ to point $Q(\underline{x})$

$$
=\left(\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right)^{1 / 2}
$$

$H_{n}=$ Hanker function of first kind of order n.

In three dimensions

$$
\left.\begin{array}{rl}
U_{j k}(P, Q)= & \frac{1}{4 \pi \mu} \frac{1}{R}\left(\Psi \delta_{j k}+(3 \Phi+x) R, j R, k\right.
\end{array}\right)
$$

where

$$
\begin{aligned}
& \Phi=\frac{1}{k_{2}^{2} R^{2}}\left(e^{i k_{2} R}-e^{i k_{1} R}\right)+\frac{i}{k_{2} R}\left(e^{i k_{2} R}-e^{i k_{1} R}\right) \\
& \chi=e^{i k_{2} R}-\Phi \\
& \Psi=\gamma^{2} e^{i k_{1} R}-\Phi
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}=\left(i k_{2} R-1\right) e^{i k_{2} R}+6 \Phi+2 X \\
& A_{2}=2 i k_{2} R\left(\gamma^{2} e^{i k_{1} R}-e^{i k_{2} R}\right)+30 \Phi+12 x \\
& A_{3}=A_{1} \\
& A_{4}=\left(1-2 \gamma^{2}\right)\left(i k_{1} R-1\right) e^{i k_{1} R}+6 \Phi+2 x \\
& R=\left(\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}\right){ }^{1 / 2}
\end{aligned}
$$

2.5 THE FORMULATION OF THE INTEGRAL EQUATIONS

Returning to Betti's third identity eq.(2.3.4) we let the elastodynamic state (1) correspond to the solution for the concentrated force in the infinite space, namely displacement and traction vectors $\left(u_{j}\right)_{k}$ and $\left(t_{j}\right)_{k}$ for force in the j-direction. State (2) is taken to correspond to the set of displacements and stresses u_{k}, t_{k} which are regular in D and on S, containing the load point $P(\underline{y})$, and which consists of the unknown in the problem to be solved.

But now the vectors (in state (1)) are no longer regular everywhere in D. So to make the Betti's identity valid we enclose the singularity point $P(\underline{y})$ by a small region D^{\prime} of radius ε and surface S^{\prime}, apply the identity to the regular portion $D-D^{\prime}, \quad f i g .2 .1$, and then take the limits of the integrals as the region D^{\prime} is allowed to shrink towards P.

Fig 2.1 Regular Region $D-D^{\prime}$ For Application of Betti's Equation

Then Betti's equation becomes

$$
\begin{align*}
& \rho \int_{D-D^{\prime}}\left(\left(u_{j}\right)_{k} \cdot \nabla^{*} u_{k}-u_{k} \cdot \nabla^{*}\left(u_{j}\right)_{k}\right) d D \tag{2.5.1}\\
= & \int_{S+S^{\prime}}\left(\left(u_{j}\right)_{k} \cdot t_{k}-u_{k} \cdot\left(t_{j}\right)_{k}\right) d S
\end{align*}
$$

If body force vector b_{k} is to be considered in the present problem, namely state (2), then u_{k} is taken to satisfy the equation of motion with the body force $\quad \underline{b}$ introduced, ie

$$
\nabla^{*} u_{k}=-\frac{1}{\rho} b_{k}-\omega^{2} u_{k}
$$

However in the region $D-D^{\prime}$ where body force is absent for the concentrated load problem, state (1), $\left(u_{j}\right)_{k}$ satisfies the homogeneous eq.(2.3.1), ie

$$
\nabla^{*}\left(u_{j}\right)_{k}=-\omega^{2}\left(u_{j}\right)_{k}
$$

Using the last two equations above, eq.(2.5.1) reduces to

$$
\begin{equation*}
\int_{D-D^{\prime}}\left(u_{j}\right)_{k} b_{k} d D=\int_{S+S^{\prime}}\left(u_{k}\left(t_{j}\right)_{k}-\left(u_{j}\right)_{k} t_{k}\right) d S \tag{2.5.2}
\end{equation*}
$$

Considering the set of fundamental singular solutions corresponding to the concentrated load applied in all j-directions we replace $\left(u_{j}\right)_{k}$ by $U_{j k}$ and $\left(t_{j}\right)_{k}$ by $T_{j k}$ in eq.(2.5.2)

$$
\begin{equation*}
\int_{D-D^{\prime}} U_{j k} b_{k} d D=\int_{S+S^{\prime}}\left(T_{j k} u_{k}-U_{j k} t_{k}\right) d S \tag{2.5.3}
\end{equation*}
$$

If the body force b_{k} is ignored in the problem we have

$$
\int_{S+S^{\prime}}\left(T_{j k}(P, Q) u_{k}(Q)-U_{j k}(P, Q) t_{k}(Q)\right) d S(Q)=0
$$

This form of the dynamic Betti's theorem is the basis for the formulation of boundary integral equation in elasticity. The integral is taken round the boundary $\mathrm{S}+\mathrm{S}^{\prime}$ which encloses the domain $\mathrm{D}-\mathrm{D}^{\prime}$. The integration point Q is, of course, a boundary point, and $u_{k}(Q)$ and $t_{k}(Q)$ are boundary values of the displacement and stress vectors respectively. Unit normal \hat{n} points outwards at Q.

To allow the domain of exclusion D^{\prime} to shrink towards point P we take the limit of the integrals as $\varepsilon \rightarrow 0$. The equation is first written in the form to separate the integrals over S and S^{\prime}

$$
\begin{equation*}
\int_{S}\left(T_{j k} u_{k}-u_{j k} t_{k}\right) d S+\lim _{\varepsilon \rightarrow 0} \int_{S}\left(T_{j k} u_{k}-u_{j k} t_{k}\right) d S=0 \tag{2.5.5}
\end{equation*}
$$

The integral over S^{\prime} is in turn written in two parts

$$
\lim _{\varepsilon \rightarrow 0} \int_{S^{\prime}}\left(T_{j k}^{u}{ }_{k}^{u}-U_{j k} t_{k}\right) d S=I_{1}-I_{2}
$$

where

$$
\begin{aligned}
& I_{1}=\lim _{\varepsilon \rightarrow 0} \int_{S^{\prime}} T_{j k} u_{k} d S \\
& I_{2}=\lim _{\varepsilon \rightarrow 0} \int_{S^{\prime}} U_{j k} t_{k} d S
\end{aligned}
$$

The integral I_{1} may be written

$$
\begin{align*}
I_{I} & =\varepsilon_{\varepsilon \rightarrow 0}^{\lim } \int_{S^{\prime}} T_{j k}\left(u_{k}(Q)-u_{k^{\prime}}(P)\right) d S(Q) \\
& +\underset{\varepsilon \rightarrow 0}{\lim } u_{k}(P) \int_{S^{\prime}} T_{j k} d S(Q) \tag{2.5.6}
\end{align*}
$$

Since u_{k} is a regular vector, $u_{k}(P)$ tends to $u_{k(Q)}$ as the boundary S^{\prime} shrinks towards P. So the first integral on the right hand side of eq. (2.5.6) vanishes and we have

$$
\begin{equation*}
I_{1}=\lim _{\varepsilon \rightarrow 0} u_{k}(P) \int_{S^{\prime}} T_{j k}(P, Q) d S(Q) \tag{2.5.7}
\end{equation*}
$$

Since vector t_{k} is also regular throughout region D, similar reasoning may be applied to the I_{2} integral to show that

$$
\begin{equation*}
I_{2}=\lim _{\varepsilon \rightarrow 0} t_{k}(P) \int_{S^{\prime}} U_{j k}(P, Q) d S(Q) \tag{2.5.8}
\end{equation*}
$$

These limit integrals I_{1} and I_{2} are evaluated next after appropriate expressions for $U_{j k}$ and $T_{j k}$ are inserted.

The Boundary Integral Equation in Two Dimensions

It has been noted in the previous section that the two-dimensional Stoke's tensor $U_{j k}$ corresponds to application of a concentrated load considered uniformly distributed along the line perpendicular to the x_{3}-plane. The loaded point $P(\underline{y})$ on the $x_{1}-x_{2}$ plane is thus the intersection of the line with the plane. The domain D is two-dimensional and boundary S a plane curve. The region D^{\prime} enclosing $\mathrm{P}(\underline{\mathrm{y}})$ in fig. 2.1 is a cylinder of radius ε with axis parallel to x_{3}-axis.

The expressions for $U_{j k}$ and $T_{j k}$ are given by eqs.(2.4.4), (2.4.5). To evaluate the limit integrals I_{1} and I_{2} in eqs.(2.5.7) and (2.5.8) it is necessary to determine the expressions for $U_{j k}$ and $T_{j k}$ on the circle S', fig.2.2

Fig 2.2 The Circle S^{\prime}

On S^{\prime} the following are true

$$
\begin{aligned}
& R=\varepsilon \\
& d S=-\varepsilon d \theta, \quad d n=-d R \\
& \frac{\partial R}{\partial x_{1}}=\cos \theta, \quad \frac{\partial R}{\partial x_{2}}=\sin \theta \\
& n_{1}=-\cos \theta, \quad n_{2}=-\sin \theta
\end{aligned}
$$

We take the limits, as ε tends to zero, of the following functions which have been defined for eqs. (2.4.4), (2.4.5)

$$
\begin{aligned}
& \Psi \quad-\quad \frac{2 i}{\pi} \ln \left(\mathrm{k}_{2} \varepsilon\right) \\
& x \quad 0 \\
& \mathrm{~A}_{1} \longrightarrow \frac{2 i}{\pi \varepsilon} \\
& \mathrm{~A}_{2} \longrightarrow \mathrm{O} \\
& \mathrm{~A}_{3}=\frac{2 i}{\pi \varepsilon} \\
& \mathrm{~A}_{4}=\left(1-2 \gamma^{2}\right) \frac{2 i}{\pi \varepsilon}
\end{aligned}
$$

Thus on circle $S^{\prime}, U_{j k}$ and $T_{j k}$ assume the expressions

$$
U_{j k}=\frac{i}{4 \mu} \frac{2 i}{\pi} \ln \left(k_{2} \varepsilon\right)
$$

$$
\mathrm{T}_{j \mathrm{k}}=\frac{i}{4}\left\{-\frac{2 i}{\pi \varepsilon}\left(\delta_{j \mathrm{k}}+\cos \theta \sin \theta+\left(1-2 \gamma^{2}\right) \cos \theta \sin \theta\right)\right\}
$$

The integrals I_{1} and I_{2} simplify to

$$
\begin{equation*}
I_{1}=\delta_{j k} u_{k}(P), \quad I_{2}=0 \tag{2.5.9}
\end{equation*}
$$

It is possible, instead of locating the load point $P(\underline{y})$ inside the domain D, to place it at a point on boundary S, distinct from Q, where the boundary is "smooth", i.e. where the boundary has a continuously turning tangent. In this case the enclosing curve S^{\prime} is a semi-circle in the limit, fig.2.3, giving the final results of $\frac{1}{2} u_{k}(P) \delta_{j k}$ and zero respectively for I_{1} and I_{2}

Fig $2.3 P$ on Boundary S

Putting the results for I_{1} and I_{2} back into eq.(2.5.5) we have the integral equation

$$
\begin{align*}
c_{j k} u_{k}(P) & +\int_{S} T_{j k}(P, Q) u_{k}(Q) d s(Q) \\
& =\int_{S} U_{j k}(P, Q) t_{k}(Q) d s(Q) \tag{2.5.10}
\end{align*}
$$

where
$c_{j k}=\delta_{j k}$ for P inside region D,
$c_{j k}=\frac{1}{2} \delta_{j k}$ for P on smooth boundary S
At a point on S where the boundary is not smooth the value of $c_{j k}$ must be adjusted. Explicit evaluation of this value is not usually necessary as it can be obtained using the concept of rigid body motion of D as explained by Brebbia (1978) for elastostatics problems.

As R tends to zero the tensors $U_{j k}$ and $T_{j k}$ have singularities of orders $\ln (R)$ and $1 / R$ respectively. Thus as the integration point Q approaches the load point P along the boundary S the first integral in eq. (2.5.10) has meaning only in the sense of Cauchy Principal Value, see Mikhlin (1957).

The Boundary Integral Equation in Three-dimensions

The region D^{\prime} enclosing the point $P(\underline{y})$ in fig.2.1 is a sphere of radius ε and surface S^{\prime}. To evaluate the limit integrals I_{1}, I_{2} in eqs.(2.5.7) and (2.5.8), it is necessary to determine the expressions for $U_{j k}$ and $T_{j k}$ on the sphere S^{\prime}, see fig. 2.4 in which a spherical system of coordinates is indicated.

Fig 2.4 Spherical Surface S^{\prime}

The following are true on S^{\prime}

$$
\begin{aligned}
& \mathrm{R}=\varepsilon, \quad \mathrm{ds}=\varepsilon^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \beta \\
& \mathrm{dn}=-\mathrm{dR}, \quad \mathrm{n}_{1}=-\sin \theta \cos \beta \\
& \mathrm{n}_{2}=-\sin \theta \sin \beta, \quad \mathrm{n}_{3}=-\cos \theta
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial R}{\partial x_{1}} & =\frac{\varepsilon \sin \theta \cos \beta}{\varepsilon}, \quad \frac{\partial R}{\partial x_{2}}=\frac{\varepsilon \sin \theta \sin \beta}{\varepsilon} \\
\frac{\partial R}{\partial x_{3}} & =\frac{\varepsilon \cos \beta}{\varepsilon}
\end{aligned}
$$

The limits of the following functions, which have been defined for eqs.(2.4.6) and (2.4.7), are taken as $\varepsilon=R$ tends to zero

$$
\begin{aligned}
& \Phi=1-\gamma^{2} \\
& \Psi=\gamma^{2} \\
& x — \gamma^{2}-1 \\
& A_{1}=3-4 \gamma^{2} \\
& A_{2}=18\left(\gamma^{2}-1\right) \\
& A_{3} \longrightarrow A_{1} \\
& A_{4}-3-2 \gamma^{2}
\end{aligned}
$$

Thus on sphere $S^{\prime}, U_{j k}$ and $T_{j k}$ assume the expressions

$$
\begin{equation*}
U_{j k}=\frac{1}{4 \pi \mu} \frac{1}{\varepsilon}\left(\gamma^{2} \delta_{j k}+2\left(1-\gamma^{2}\right) f_{j k}(\theta, \beta)\right) \tag{2.5.11}
\end{equation*}
$$

$$
\begin{equation*}
T_{j k}=\frac{1}{4 \pi} \frac{1}{\varepsilon^{2}}\left(\left(4 \gamma^{2}-3\right) \delta_{j k}+12\left(1-\gamma^{2}\right) g_{j k}(\theta, \beta)\right) \tag{2.5.12}
\end{equation*}
$$

where $f_{j k}(\theta, \beta)$ and $g_{j k}(\theta, \beta)$ are 3×3 matrices whose elements are functions of θ and B only

$$
f_{j k}=\left[\begin{array}{ccc}
\sin ^{2} \theta \cos ^{2} \beta & \frac{1}{2} \sin ^{2} \theta \sin 2 \beta & \frac{1}{2} \sin 2 \theta \cos \beta \\
\frac{1}{2} \sin ^{2} \theta \sin 2 \beta & \sin ^{2} \theta \sin ^{2} \beta & \frac{1}{2} \sin 2 \theta \sin \beta \\
\frac{1}{2} \sin 2 \theta \cos \beta & \frac{1}{2} \sin 2 \theta \sin \beta & \cos ^{2} \theta
\end{array}\right]
$$

$$
g_{j k}=f_{j k}
$$

The integrals I_{1} and I_{2} are now

$$
\begin{aligned}
& I_{1}=\lim _{\varepsilon \rightarrow 0} u_{k}(P) \int_{0}^{2 \pi} \int_{0}^{\pi} T_{j k}(P, Q) \varepsilon^{2} \sin \theta d \theta d B \\
& I_{2}=\lim _{\varepsilon \rightarrow 0} t_{k}(P) \int_{0}^{2 \pi} \int_{0}^{\pi} U_{j k}(P, Q) \varepsilon^{2} \sin \theta d \theta d \beta
\end{aligned}
$$

Substituting for $U_{j k}(P, Q)$ from eq.(2.5.11) it is easy to show that

$$
I_{2}=0
$$

Substituting for $T_{j k}(P, Q)$ from eq.(2.5.12) into the I_{1} integral above, we perform the integration with respect to β first and then with respect to θ to obtain the final result

$$
I_{1}=\delta_{j k} u_{k}(P)
$$

If P was at a smooth part of the boundary S distinct from Q, surface S' would be a hemisphere and the value of the integral would be

$$
I_{1}=\frac{1}{2} \delta_{j k} u_{k}(P)
$$

Putting these results back into eq.(2.5.5) we find

$$
\begin{align*}
c_{j k} u_{k}(P) & +\int_{S} T_{j k}(P, Q) u_{k}(Q) d s(Q) \\
& =\int_{S} U_{j k}(P, Q) t_{k}(Q) \operatorname{ds}(Q)
\end{align*}
$$

where
$c_{j k}=\delta_{j k}$ for P inside region D
$c_{j k}=\frac{1}{2} \delta_{j k}$ for P on smooth boundary S
For non-smooth boundary point the value of $c_{j k}$ must be modified. As seen from eqs. 2.5 .11) and (2.5.12) the singularities of $U_{j k}$ and $T_{j k}$, as R tends to zero, are of order $1 / R$ and $1 / R^{2}$ respectively. As the integration point Q approaches P the Cauchy Principal Value of the first integral in eq.(2.5.13) is taken.

Eq. (2.5.13) is similar in form to the boundary integral equation obtained for the two-dimensional problems, see eq.(2.5.10). In fact it has the same form as those for transient motion, Cruse (1967), and elastostatics, Rizzo (1967), for both two- and three-dimensional cases. Thus it may be regarded as the governing boundary integral equation for all elasticity problems. It is the dynamic equivalence of Somigliana's identity in elastostatics.

chapter 3

APPLICATION OF THE B.I.E. TO

A SEMI-INFINITE DOMAIN
section pase
3.1 On the Appropriateness of theBIE to Infinite/Semi-InfiniteDomains 49
3.2 Adaptation of the BIE to Foundation Problems 53
3.3 General Approach to the Numerical Solution of the BIE 56

3.1 ON THE APPROPRIATENESS OF THE BIE TO INFINITE/SEMI-INFINITE

 DOMAINSIn the formulation of the boundary integral equation for the elastic domain D in chapter 2, the domain was always considered as finite. When a boundary value problem of mathematical physics refers to a region containing a point at infinity (such as the elastic half space we shall deal with in this study), it is necessary to consider the behaviour at infinity carefully, i.e., to consider the asymptotic behaviour of the solution as a function of the spatial coordinates. There is usually no indication of this behaviour from the pure mathematical formulation of the problem, and it must be determined from indirect reasoning in agreement with physical conditions of the problem. The most important of these considerations is that the behaviour at infinity should ensure a unique solution. But it is clear that the conditions which guarantee uniqueness are, in general, by no means uniquely determined, and the problem consists in choosing these conditions in the most useful way and, especially, in such a manner that solutions with assigned character at infinity exist. Green's formulae and similar other formulae in the theory of elasticity, in particular Betti's formula, serve as a means to make this choice. The choice of the asymptotic character of the solution of boundary value problems for the Helmholtz (wave) equation

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \underline{u}=0 \tag{3.1.1}
\end{equation*}
$$

which is based on the application of Green's formulae, was first derived by Sommerfeld, and has been known as the Sommerfeld radiation conditions in the theory of waves. They stipulate that the vector \underline{u} assume the following asymptotic relation as the distance r from the point of observation becomes very large

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r\left(\frac{\partial \underline{u}}{\partial r}+i k \underline{u}\right)=0 \tag{3.1.2}
\end{equation*}
$$

$$
\lim _{r \rightarrow \infty}
$$

For convenient reference the boundary integral equation is reproduced here.

$$
c_{j k} u_{k}(P)+\int_{S} T_{j k}(P, Q) u_{k}(Q) d s(Q)
$$

$$
\begin{equation*}
=\int_{S} U_{j k}(P, Q) t_{k}(Q) d s(Q) \tag{3.1.3}
\end{equation*}
$$

Applying this to the half space requires integration over the boundary S of the domain, fig.3.1, which is either a semi-circle of infinite radius or a hemisphere of infinite radius according as the problem is two- or three-dimensional.

Fig 3.1 The Half Space Boundary

One way to deduce the asymptotic behaviour of vectors u_{k} and t_{k} is immediately obvious from the integral equation. We shall require that the integration over the infinitely distant parts of the boundary be zero for any chosen accessible point of observation located on the plane portion of the boundary. In particular if Σ_{r} is the infinitely distant portion of a sphere (or hemisphere) centered at the point of observation, we require the following integral to be zero
$\lim _{R \rightarrow \infty} \int_{\Sigma_{r}} R^{2}\left(T_{j k}(P, Q) u_{k}(Q)-U_{j k}(P, Q) t_{k}(Q)\right) d \Omega=0$
where $d \Omega$ is the solid angle at the observation point that subtends the surface element of Σ_{r}, and R is the distance between the element and the observation point P. From this requirement we arrive at the following so-called radiation conditions of elastodynamics, see Doyle (1965), Eringen (1975), Kupradze (1963)

$$
\begin{align*}
& \lim _{R \rightarrow \infty} R\left\{\underline{t}^{(p)}-i \rho \omega c_{1} \underline{u}^{(p)}\right\}=0 \\
& \lim _{R \rightarrow \infty} R\left\{\underline{t}^{(s)}-i \rho \omega c_{2} \underline{u}^{(s)}\right\}=0 \tag{3.1.5}
\end{align*}
$$

in which superscripts (p) and (s) refer respectively to the irrotational and equivoluminal components of the vectors.

It is interesting to observe that the requirement (3.1.4) and its consequencies (3.1.5) are not new. Indeed Eringen (1975) and Kupradze (1963) have shown, by decomposing the displacement vector \underline{u} into its irrotational part $\underline{u}^{(p)}$ and equivoluminal part $\underline{u}^{(s)}$, that these requirements result directly from the Sommerfeld radiation conditions (3.1.2) of ordinary wave equations. This link between the wave theory and elastodynamic equations is not surprising since we have observed in section 2.3, chapter 2, that the special
elastodynamic operator ∇^{*} defined in eq. (2.2.3) plays in the theory of elasticity a similar role as the Laplace operator ∇^{2} plays in the theory of harmonic potentials.

Having chosen an asymptotic character of the solution based on indications resulting from the boundary integral formula, it is necessary to be sure that such a solution actually exists and that it is unique. The uniqueness of solutions based on these radiation conditions has been proved by Kupradze (1963) and Doyle (1965), and Doyle showed that these conditions do admit to a physical interpretation - they rule out the possibility of energy sources being located at infinity.

3.2 ADAPTATION OF THE BIE TO FOUNDATION DYNAMICS

It is now established that the integration of the BIE is restricted to the plane boundary of the half space, the contribution from the infinitely distant part of the boundary being zero. But the plane boundary itself is of infinite extent, and numerical solution of the integral equation over an infinite domain is impossible. To solve the problem we expbit the radiation conditions discussed in the previous section in the form of eq.(3.1.4).

This equation indicates that points distant from a given observation point P contribute the less to the integrals in the BIE formulation the more distant they are from P. The
formal implementation of the BIE scheme is indicated in fig.3.2 below. The shaded area in the figure is that portion of the surface of the half space on which some stress distribution is applied. 0 is the origin of coordinates, and P a chosen observation point. C is a circle of some radius R_{c} centered at 0 and completely enclosing the stressed region. The BIE eq.(3.1.3) gives the displacement at P in terms of integrals of displacements and stresses (multiplied by the kernel functions $T_{j k}$ and $U_{j k}$ respectively) taken over the entire surface. Q is the integration point and $d s(Q)$ the element of area at Q. Now since the contribution from Q to the integrals (i.e., to the value of displacement at P) becomes less the more distant it is from the loaded area, . ors may wish to know the value of radius R_{c} of circle C beyond which one can begin to ignore contributions to the integrals, as well as the errors involved in such truncation.

Fig 3.2 Implementation of the BIE Formulation

It is observed that the integral involving stress t_{k} is naturally restricted to the loaded region since it is zero on the stress-free surface. Thus the truncation applies only to the integral involving displacement, namely,

$$
\begin{equation*}
I_{u}=\int T_{j k}(P, Q) u_{k}(Q) d s(Q) \tag{3.2.1}
\end{equation*}
$$

As a rough indication of the errors involved in the truncation we compare the contribution to the integral of a portion of the surface of area Λ near P and of another portion having equal area far from P. We use the inequality

$$
I_{u} \leq \int_{\Lambda}\left|T_{j k}\right| \cdot\left|u_{k}\right| \cdot|d s|
$$

and note that at distances from P greater than unity the dominant part of $\left|T_{j k}\right|$ is proportional to $1 / R$. Also the displacement $\left|u_{k}\right|$ decreases with distance away from P, as may be concluded from the works of Lamb (1904). If $I_{u}^{(1)}$ is the value of the integral near P and $I_{u}^{(2)}$ the value far from P, a rough estimate of the error may be indicated by the ratio, ignoring the variation of $\left|u_{k}\right|$,

$$
I_{u}^{(2)} / I_{u}^{(I)} \simeq\left(1 / R_{2}\right) /\left(1 / R_{1}\right)=R_{1} / R_{2}
$$

This ratio merely compares the contribution of the area Λ to the displacement at P for near and distant positions of A. This error analysis, even though very approximate, does point to the fact that if a second foundation was placed near the one at the shaded area of fig.3.2, the interaction
would be greater when the bodies are closer together than when they are farther apart. Warburton, Richardson and Webster (1971) found that the disturbance of the second (circular) foundation caused by the first increased by from 50 to 100 per cent as the bodies were brought closer together from a distance apart of 30 cylinder radii to 10 .

The foregoing is true for the two-dimensional problem as it is for the three-dimensional, the only alterations required being formal mathematical adjustments. In that case the region of integration is simply the solid straight line portion of the semi-circle shown in fig.3.1 (strictly speaking the region of integration is a rectangular infinite strip of unit width into the paper). The circle C of fig.3.2 to which we have truncated our integration will in this case be a straight line of length R_{c} on both sides of the origin.

It is expected that accuracy will improve with increasing values of R_{c}. By solving the given foundation problem for various values of R_{c}, one can observe when results have converged to a suitable accuracy compared to published works.

3.3 GENERAL APPROACH TO THE NUMERICAL SOLUTION OF THE BIE

After establishing the governing boundary integral equation, eq.(2.5.10) or (2.5.13), for steady state elastodynamics the numerical solution may now follow very much the same approach as for elastostatics, see Brebbia (1978), Latchat and Watson
(1975). In this section we outline the general numerical method of solution of the boundary integral equation for twoand three-dimensional problems. The solutions to problems described in the next chapters are based on the descriptions in this section.

Typically solutions are required for the displacements or stresses at points on the surface S of an elastic body D, given the stresses or displacements at portions of the boundary. The boundary integral equation(3.1.3) reduces to an algebraic system of equations by discretising the boundary data. In this way the boundary is assumed to be divided into finite elements. If there are L such elements then the discretised form of the integral equation is

$$
\begin{align*}
c_{j k} u_{k}(P) & +\sum_{\ell=1}^{L} \int_{S_{\ell}} T_{j k}(P, Q) u_{k}(Q) d s(Q) \\
& =\sum_{\ell=1}^{L} \int_{S_{\ell}} U_{j k}(P, Q) t_{k}(Q) d s(Q) \tag{3.3.1}
\end{align*}
$$

The integral sign with subscript S_{ℓ} indicates integration over a given element $\boldsymbol{\ell}$. The numerical implementation is characterised principally by the manner in which the boundary S is represented, and by what assumptions are made about the variation of displacements $u_{k}(Q)$ and stresses $t_{k}(Q)$ over each element.

Two-Dimensional Problems:-

The boundary in this case is a plane curve and the L elements are line segments. On the line element we introduce local coordinate ξ which varies from -1 to +1 over the element, fig.3.3.

Fig 3.3 Boundary Element Eor Two-Dimensional Problem

The variation of u_{k} and t_{k} over the element is selected in some suitable way. We use quadratic variation in this study, i.e., the values of $u_{k}(Q)$, and $t_{k}(Q)$ at some point Q on the element are interpolated from the values at the element nodes (three nodes for quadratic variation) as

$$
\begin{equation*}
u_{k}\{Q(\xi)\}=\sum_{n=1}^{3} m_{n}(\xi)\left(u_{k}\right)_{n} \tag{3.3.2}
\end{equation*}
$$

$$
t_{k}\{Q(\xi)\}=\sum_{n=1}^{3} M_{n}(\xi)\left(t_{k}\right)_{n}
$$

where $\left(u_{k}\right)_{n}$, and $\left(t_{k}\right)_{n}, n=1,2,3$ are the values of u_{k} and t_{k} at the three nodes of the element, and $M_{n}(\xi), n=1,2,3$ are the quadratic shape functions given by

$$
\begin{align*}
& M_{1}(\xi)=\frac{1}{2}(\xi-1) \xi \\
& M_{2}(\xi)=1-\xi^{2} \tag{3.3.3}\\
& M_{3}(\xi)=\frac{1}{2}(\xi+1) \xi
\end{align*}
$$

The element of area $d s(Q)$ is also expressed in terms of ξ through the Jacobian of transformation from ξ to x_{1}

$$
\begin{align*}
\mathrm{ds}(Q) & =J(\xi) \mathrm{d} \xi \\
J(\xi) & =\left|\frac{\mathrm{d} \mathrm{x}_{1}}{\mathrm{~d} \mathrm{\xi}}\right| \tag{3.3.4}
\end{align*}
$$

Let the L elements of the boundary have a total of N nodes. For ease of computer coding a global numbering scheme for the nodes is constructed whereby the number of the (c) th node of element ℓ is denoted by $d(\ell, c)$. Introducing the
functional variations (3.3.2) into the discretised equation (3.3.1) we have the following algebraic equation for the (a)th node at which point P is located

$$
\begin{align*}
& \frac{1}{2} u_{j}\left(P^{a}\right)+\sum_{\ell=1}^{L} \sum_{c=1}^{3} u_{k}\{d(\ell, c)\} \cdot \int_{S_{\ell}} T_{j k}\left(P^{a}, Q(\xi)\right) M_{c}(\xi) J(\xi) d \xi \\
& \quad=\sum_{\ell=1}^{L} \sum_{c=1}^{3} t_{k}\{d(\ell, c)\} \cdot \int_{S_{\ell}} U_{j k}\left(P^{a}, Q(\xi)\right) M_{c}(\xi) J(\xi) d \xi \\
& j, k=1,2 \tag{3.3.5}
\end{align*}
$$

where we have made use of the fact that on the smooth boundary involved in our problem $c_{j k}=\frac{1}{2} \delta_{j k}$. If the equation is written for every position of point P along the boundary nodes, the resulting system of equations may be written in the form

$$
\begin{equation*}
\left[A_{1}\right]\{u\}=\left[A_{2}\right]\{t\} \tag{3.3.6}
\end{equation*}
$$

in which the unknowns are the nodal values of u_{k} and t_{k}. There are 2 N equations for the 4 N nodal point values of displacements and tractions, half of which are known in a well posed problem.

Since $R(P, Q)$ is measured from P, when P coincides with one of the nodes of the integration element l the integrals become singular at P. The appropriate steps taken to treat the singularities (similar to those in elastostatics problems)
are discussed in the chapters (4 and 5) where the foundation problems are analysed.

Three-dimensional Problems:-
The boundary is a surface and the L elements are area elements. We shall use quadrilateral elements which we may allow to have curved boundaries. On each element we introduce local coordinates ξ_{1}, and ξ_{2}, each varying from -1 to +1 , fig. 3.4

Fig 3.4 Boundary Element For Three-Dimensional Problem

Quadratic shape functions shall be used here also to interpolate variables at any given point Q on the element. In this two-dimensional element, eight nodes are required. Thus the coordinates x_{j} of point Q are determined in terms of the local coordinates $\xi_{1}, \quad \xi_{2}$ by

$$
\begin{equation*}
x_{j}\left\{Q\left(\xi_{1}, \xi_{2}\right)\right\}=\sum_{n=1}^{8} m_{n}\left(\xi_{1}, \xi_{2}\right)\left(x_{j}\right)_{n} \tag{3.3.7}
\end{equation*}
$$

where $\left(x_{j}\right)_{n}, n=1,2, \ldots, 8$, are the coordinates of the eight nodes of the elements, $M_{n}(\xi), n=1,2, \ldots, 8$ are the shape functions given below. By experience from the elastostatics problems, Lachat (1975), these interpolation scheme adequately models the curved boundaries of the element. The displacements and stresses are similarly interpolated

$$
\begin{align*}
& u_{k}\left\{Q\left(\xi_{1}, \xi_{2}\right)\right\}=\sum_{n=1}^{8} M_{n}\left(\xi_{1}, \xi_{2}\right)\left(u_{k}\right)_{n} \tag{3.3.8}\\
& t_{k}\left\{Q\left(\xi_{1}, \xi_{2}\right)\right\}=\sum_{n=1}^{8} m_{n}\left(\xi_{1}, \xi_{2}\right)\left(t_{k}\right)_{n}
\end{align*}
$$

The shape functions are

$$
\begin{align*}
& M_{1}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{4}\left(\xi_{1}+1\right)\left(\xi_{2}+1\right)\left(\xi_{1}+\xi_{2}-1\right) \\
& M_{2}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{4}\left(1-\xi_{1}\right)\left(\xi_{2}+1\right)\left(\xi_{2}-\xi_{1}-1\right) \\
& M_{3}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{4}\left(1-\xi_{1}\right)\left(1-\xi_{2}\right)\left(-\xi_{1}-\xi_{2}-1\right) \\
& M_{4}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{4}\left(1+\xi_{1}\right)\left(1-\xi_{2}\right)\left(\xi_{1}-\xi_{2}-1\right) \\
& M_{5}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{2}\left(1+\xi_{1}\right)\left(1-\xi_{2}^{2}\right) \tag{3.3.9}
\end{align*}
$$

$$
\begin{aligned}
& M_{6}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{2}\left(\xi_{2}+1\right)\left(1-\xi_{1}^{2}\right) \\
& M_{7}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{2}\left(1-\xi_{1}\right)\left(1-\xi_{2}^{2}\right) \\
& M_{8}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{2}\left(1-\xi_{2}\right)\left(1-\xi_{1}^{2}\right)
\end{aligned}
$$

The element of area $\mathrm{ds}(Q)$ is expressed in terms of ξ_{1}, ξ_{2} through the Jacobian of transformation from $\underline{\xi}$ to \underline{x}

$$
\mathrm{ds}(Q)=J\left(\xi_{1}, \xi_{2}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2}
$$

where $J(\underline{\xi})$ is the Jacobian given by the modulus of the vector product

$$
\begin{aligned}
& S_{j k}=\frac{\partial x_{j}}{\partial \xi_{k}}=\frac{\partial M_{n}}{\partial \xi_{k}}\left(x_{j}\right)_{n}, \quad \text { sum on } n \\
& \quad\{j \in(1,2,3)\}, k \in(1,2)
\end{aligned}
$$

Introducing the functional variation (3.3.8) into the discretised boundary integral equation $(3,3,1)$ gives the result

$$
\begin{array}{r}
\frac{1}{2} u_{j}\left(P^{a}\right)+\sum_{\ell=1}^{L} \sum_{c=1}^{8} u_{k}\{d(\ell, c)\} \cdot \int_{S_{\ell}} T_{j k}\left(P^{a}, Q\left(\xi_{1}, \xi_{2}\right)\right) M_{C}\left(\xi_{1}, \xi_{2}\right) J\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2} \\
=\sum_{\ell=1}^{L} \sum_{l=1}^{8} t_{k}\{d(\ell, c)\} \cdot \int U_{j k}\left(P^{a}, Q\left(\xi_{1}, \xi_{2}\right)\right) M_{C}\left(\xi_{1}, \xi_{2}\right) J\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2} \\
S_{\ell}
\end{array}
$$

Writing the equation for every position of the point P along the boundary nodes gives the algebraic system of equations

$$
\begin{equation*}
\left[B_{1}\right]\{u\}=\left[B_{2}\right]\{t\} \tag{3.3.11}
\end{equation*}
$$

in which the unknowns are the nodal values of u_{k} and t_{k}. There are 3 N equations for the 6 N nodal point values of displacements and tractions, half of which are known for a well posed problem.

Once the system of equations (3.3.6) or (3.3.11) is set up the boundary conditions of the problem are applied by rearranging the elements of the two matrices in order to have the unknowns on the left and the known on the right hand side. In the next chapter the vibrations of a rigid infinite strip is analysed. The following chapter is devoted to the vibration of foundations of finite arbitrary shape.

In this chapter we apply the two-dimensional form of the boundary integral equation (2.5.10) to analyse the vibration of a rigid rectangular strip of infinite length on the elastic half space. Some of the already known results are reproduced but the emphasis is on the flexibility and convenience of the method in handling different types of boundary conditions - frictionless and welded contact - as well as coupled modes of vibration. Of particular interest is the solution for the unrestricted (three degrees-of-freedom) motion of the infinite strip, namely coupled vertical, horizontal and rocking vibration, which has not been mentioned in the literature before now.

Fig.4.1 below depicts the coordinate system x_{1}, x_{2}, x_{3}, and significant dimensions. The infinite length of the body runs along the x_{3}-axis, and the isotropic elastic half space occupies the region $x_{2} \geq 0$. Since the strip is assumed rigid the displacements are assumed not to vary along the x_{3}-axis, so we have plane strain elasticity problem. It is therefore sufficient to consider a unit length of the body along the x_{3}-axis. The height is taken infinitesimally small.

Fig.4.1 The Coordinate Axes

For the contact between the rigid body and the half space, we define two sets of conditions

Relaxed Contact Conditions:-
In the literature the following conditions are at times prescribed at the contact surface in order to relax the completely mixed boundary-value problem for convenience, as
observed in section 1.1, chapter 1. These conditions effectively decouple the modes of vibration.
(i) Vertical Vibration:- Zero shear stress t_{1}
(11) Horizontal Vibration:- Zero normal stress t_{2}
(iii) Rocking Vibration:- Zero shear stress t_{1}

Welded Contact Conditions:-
By this we mean the attachment in which there is complete continuity between the displacements and stresses of the footing and underlying half space in the area of contact. These conditions ensure no slip between the foundation and the half space and leave the modes coupled.

In practice it is reasonable to expect the actual conditions to be somewhere between these two extremes. However for the coupled modes of vibration the welded contact conditions prevail.

In order to apply the boundary integral method to solve this problem it will be necessary to first identify all the displacements and stresses (as knowns or as unknowns) induced on the surface of the half space by the various modes of vibration of the rigid body. For each mode the effective dynamic stiffness of the supporting medium is computed as for a massless foundation, from which the response of a foundation of a given mass is obtained.

First the following notation shall be adopted.

For a Massless Body,
the motion:-

$$
\begin{array}{ll}
V_{1} & \text { is translation in } x_{1} \text {-direction } \\
V_{2}, & \text { translation in } x_{2} \text {-direction } \\
\theta_{3}, & \text { rocking about } x_{3} \text {-axis } \\
V_{3} \equiv b \theta_{3}, & \text { our definition, }
\end{array}
$$

The applied forces per unit length of body:-
Q_{1} is force applied in x_{1}-direction
Q_{2}, force applied in x_{2}-direction
M_{3}, couple applied about x_{3}-axis
$Q_{3} \equiv M_{3} / b$, our definition.
It is noted that since above definitions are for a massless body, the forces $Q_{j}, j=1,2,3$, may be taken to correspond to the reactions of the supporting medium on the body.

Now For a Massive Body,
the motions and applied forces are modified by the inertia properties of the body.

The motion:-
W_{1} is translation in x_{1}-direction
W_{2}, translation in x_{2}-direction,
$\boldsymbol{\theta}_{3}$, rocking about x_{3}-axis,
$w_{3} \equiv b \Theta_{3}$, our difinition.

The exciting forces per unit length of body:-

$$
\begin{aligned}
& \mathrm{F}_{1} \text { is force applied in } \mathrm{x}_{1} \text {-direction, } \\
& \mathrm{F}_{2}, \quad \text { force applied in } \mathrm{x}_{2} \text {-direction, } \\
& r_{3}, \quad \text { couple applied about the } \mathrm{x}_{3} \text {-axis, } \\
& \mathrm{F}_{3} \equiv r_{3} / b \text {, our difinition. }
\end{aligned}
$$

These quantities are generally complex. Where the modulus is implied it will be convenient to use the same symbols. With these difinitions we have, for example, the equation of vertical motion of a body of mass m_{22} per unit length supported on the half space is, see fig.4.1a below

$$
-\omega^{2} m_{22} W_{2}+Q_{2}=F_{2}
$$

Fig 4.1a Forces on Massive Foundation

To determine, say, the vertical stiffness of the supporting medium, it is sufficient to consider a massless body, give it a known displacement V_{2}, compute the force (stress integral) Q_{2}, fig.4.1b below, and find the ratio K_{2} of Q_{2} to V_{2}. The "compliance" is defined as the inverse of the stiffness.

Fig 4.1b Forces on Massless Foundation

Once K_{2} is determined the equation of motion of the massive body in fig.4.1a becomes

$$
-\omega^{2} m_{22} W_{2}+K_{2} W_{2}=F_{2}
$$

This is actually the so-called "impedance matching" technique.
4.3 BOUNDARY CONDITIONS IMPOSED BY THE MODES OF VIBRATION.

(i) The General Three Degrees-Of-Freedom

V_{1}, V_{2} represent the translation of the massless rigid body in the x_{1}, x_{2} directions while θ_{3} represent the rotation (in radian measure) about x_{3}-axis. $V_{3}=b \theta_{3}$. Thus the three degrees-of-freedom are described by $V_{1}, \quad V_{2}$, and V_{3}. Considering that the body remains rigid during motion, the displacements induced on the contact area are, assuming smail quantities,

$$
\begin{align*}
& u_{1}=v_{1} \\
& u_{2}=v_{2}+x_{1} \theta_{3} \tag{4.3.1}
\end{align*}
$$

The stresses on the other hand are unknown

$$
\begin{array}{ll}
t_{1}=\text { unknown, } & \left|\mathrm{x}_{1}\right| \leq \mathrm{b} \\
\mathrm{t}_{2}=\text { unknown, } & \left|\mathrm{x}_{1}\right| \leq \mathrm{b} \tag{4.3.1b}
\end{array}
$$

The stresses and displacements are taken positive in the positive directions of the respective axes. The following stress integrals are defined

$$
\begin{align*}
& Q_{1}=\int_{-b}^{+b} t_{1} d s \\
& Q_{2}=\int_{-b}^{+b} t_{2} d s \tag{4.3.2}
\end{align*}
$$

- 73 -

$$
Q_{3}=\int_{-b}^{+b}\left(x_{I} t_{2} / b\right) d s
$$

$M_{3}=b Q_{3}$ is actually a couple about x_{3}-axis due to the stress distribution t_{2} in the contact surface. Since a unit length of body is being considered,

$$
\mathrm{ds}=\mathrm{dx}
$$

The harmonic time factor $e^{i \omega t}$ is being omitted in the foregoing development.

Let F be some reference force in units of force/length, m the mass per unit length of the rigid body, and \bar{J}_{0} the mass polar inertia per unit length about the axis of rocking. These inertia properties of the body in the directions of motion will be denoted by $m_{j j}$ where

$$
\begin{aligned}
& m_{j j}=m, \quad j=1,2 \\
& m_{33}=\bar{J}_{o} / b^{2}
\end{aligned}
$$

It is convenient to introduce the following dimensionless forms

$$
\begin{aligned}
& \bar{u}_{k}=\pi \mu u_{k} / F \\
& \overline{\mathrm{t}}_{\mathrm{k}}=\pi b{t_{k}} / \mathrm{F} \\
& \overline{\mathrm{v}}_{\mathrm{k}}=\pi \mu \mathrm{V}_{\mathrm{k}} / \mathrm{F}
\end{aligned}
$$

$$
\begin{align*}
\bar{Q}_{\mathrm{k}} & =Q_{k} / F \\
\bar{x}_{k} & =x_{k} / b \\
\bar{s} & =s / b \\
\bar{m}_{j j} & =m_{j j} / \rho b^{2}, \quad j=1,2,3 \\
\bar{w}_{k} & =\pi \mu W_{k} / F \tag{4.3.3}\\
\eta_{1} & =b \omega / c_{1} \\
\eta_{2} & =b \omega / c_{2}
\end{align*}
$$

$$
\bar{Q}_{3}=\frac{1}{\pi} \int_{-1}^{+1} \bar{x}_{1} \bar{E}_{2} \mathrm{~d} \bar{s}
$$

The equivalent dynamic stiffness (direct and coupled) of the supporting elastic half space are defined by

$$
\begin{equation*}
k_{j k}=\frac{Q_{j}}{\pi \mu \bar{V}_{k}}=\frac{\bar{Q}_{j}}{\overline{\mathrm{~V}}_{k}} \tag{4.3.5}
\end{equation*}
$$

$K_{j k}$ is the force in j-direction per unit displacement in k-direction. We have the force-displacement relation

$$
\left[\begin{array}{lll}
\mathrm{K}_{11} & \mathrm{~K}_{12} & \mathrm{~K}_{13} \tag{4.3.6}\\
\mathrm{~K}_{21} & \mathrm{~K}_{22} & \mathrm{~K}_{23} \\
\mathrm{~K}_{31} & \mathrm{~K}_{32} & \mathrm{~K}_{33}
\end{array}\right]\left\{\begin{array}{l}
\overline{\mathrm{v}}_{1} \\
\overline{\mathrm{v}}_{2} \\
\overline{\mathrm{v}}_{3}
\end{array}\right\}=\left\{\begin{array}{l}
\overline{\mathrm{a}}_{1} \\
\overline{\mathrm{Q}}_{2} \\
\overline{\mathrm{Q}}_{3}
\end{array}\right\}
$$

To analyse the vibration problem it is necessary to first solve for the dynamic stiffnesses $K_{j k}$. It is observed that $K_{j k}$ is a property of the supporting elastic medium and a function only of frequency and geometry of the loaded surface. Therefore to compute $K_{j k}$ it is sufficient to prescribe any convenient values for motions $\bar{V}_{n}(n=1,2,3)$ of the body, compute the stress integral, and solve eq.(4.3.6) above for $K_{j k}$. However, having done this, we end up with three equations for the six unknown values $K_{j k}$. Therefore it is necessary to take three different sets of values for \bar{V}_{n}, namely $\overline{\mathrm{V}}_{\mathrm{n}}^{(\mathrm{m})} \quad(\mathrm{m}, \mathrm{n}=1,2,3)$, compute the stress integrals ${\underset{\mathrm{Q}}{\mathrm{n}}}_{(\mathrm{m})}^{(}$ in each case and then solve the following system of equations

$$
\left[\begin{array}{ccc}
\bar{v}_{1}^{1} & \bar{v}_{2}^{1} & \bar{v}_{3}^{1} \tag{4.3.7}\\
\bar{v}_{1}^{2} & \bar{v}_{2}^{2} & \bar{v}_{3}^{2} \\
\overline{\mathrm{v}}_{1}^{3} & \overline{\mathrm{v}}_{2}^{3} & \overline{\mathrm{v}}_{3}^{3}
\end{array}\right]\left\{\begin{array}{l}
K_{j 1} \\
\mathrm{~K}_{j^{2}} \\
K_{j^{3}}
\end{array}\right\}=\left\{\begin{array}{l}
Q_{j}^{1} \\
Q_{j}^{2} \\
Q_{j}^{3}
\end{array}\right\}
$$

$j=1,2,3$

It is wise to select $\overline{\mathrm{V}}_{\mathrm{n}}^{(\mathrm{m})}$ such that the left matrix is not singular. Given an infinite strip with inertia properties $m_{j j}$ (see eqs.(4.3.3)) the three degrees-of-freedom vibration of the body defined by \bar{W}_{1}, \bar{W}_{2}, and \bar{W}_{3} are obtained by the usual matrix method of analysis
$\left(-\frac{1}{\pi} r_{2}^{2}\left[\begin{array}{ccc}\bar{m}_{11} & 0 & 0 \\ 0 & \bar{m}_{22} & 0 \\ 0 & 0 & \bar{m}_{33}\end{array}\right]+\left[\begin{array}{lll}\mathrm{K}_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33}\end{array}\right]\left\{\begin{array}{l}\bar{w}_{1} \\ \bar{W}_{2} \\ \bar{w}_{3}\end{array}\right\}=\left\{\begin{array}{c}f_{1} \\ f_{2} \\ f_{3}\end{array}\right\}\right.$
where F_{j} is the force (or moment) applied in the j-direction of motion. In indicial notation

$$
\begin{equation*}
\left\{-\frac{1}{\pi} n_{2}^{2} \bar{m}_{j k}+k_{j k}\right\} \bar{w}_{k}=f_{j} \tag{4.3.9}
\end{equation*}
$$

where $f_{j}=F_{j} / F$
(ii) Coupled Horizontal and Rocking Modes

The motion of the body is described by \bar{V}_{1} and \bar{V}_{3}. The rigidness of the body requires that

$$
\begin{array}{ll}
\bar{u}_{1}=\bar{v}_{1}, & \left|\bar{x}_{1}\right| \leq 1 \\
\bar{u}_{2}=\bar{x}_{1} \bar{v}_{3}, \quad\left|\bar{x}_{1}\right| \leq 1 \tag{4.3.10b}
\end{array}
$$

$\bar{t}_{1}=$ unknown, $\quad\left|\bar{x}_{1}\right| \leq 1$
$\bar{E}_{2}=$ unknown, $\quad\left|\bar{x}_{1}\right| \leq 1$

The force-displacement relations are

$$
\left[\begin{array}{ll}
\mathrm{K}_{11} & \mathrm{~K}_{13} \tag{4.3.11}\\
\mathrm{~K}_{31} & \mathrm{~K}_{33}
\end{array}\right]\left\{\begin{array}{l}
\overline{\mathrm{v}}_{1} \\
\overline{\mathrm{~V}}_{3}
\end{array}\right\}=\left\{\begin{array}{c}
\overline{\mathrm{Q}}_{1} \\
\overrightarrow{\mathrm{Q}}_{3}
\end{array}\right\}
$$

Using two sets of displacements $\overline{\mathrm{V}}_{\mathrm{n}}^{(\mathrm{m})}$ we solve the following system for $K_{j k}$

$$
\begin{align*}
& {\left[\begin{array}{cc}
\overline{\bar{v}}_{1}^{1} & \overline{\mathrm{v}}_{3}^{1} \\
\overline{\mathrm{~V}}_{1}^{2} & \overline{\mathrm{v}}_{3}^{2}
\end{array}\right]\left\{\begin{array}{l}
\mathrm{K}_{\mathrm{j} 1} \\
\mathrm{~K}_{\mathrm{j} 3}
\end{array}\right\}=\left\{\begin{array}{c}
\bar{Q}_{j}^{1} \\
\bar{Q}_{\mathrm{j}}^{2}
\end{array}\right\}} \tag{4.3.12}\\
& \mathrm{j}=1,3 \tag{4.3.12}
\end{align*}
$$

The motions \bar{W}_{1} and \bar{W}_{3} of a body with inertia properties $\bar{m}_{11}, \quad \bar{m}_{33}$ are determined by

$$
\left(-\frac{1}{\pi} n_{2}^{2}\left[\begin{array}{cc}
\bar{m}_{11} & 0 \tag{4.3.13}\\
0 & \bar{m}_{33}
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{K}_{11} & \mathrm{~K}_{13} \\
\mathrm{~K}_{31} & \mathrm{~K}_{33}
\end{array}\right]\right)\left\{\begin{array}{l}
\bar{w}_{1} \\
\bar{w}_{3}
\end{array}\right\}=\left\{\begin{array}{c}
\mathrm{f}_{1} \\
\mathrm{f}_{3}
\end{array}\right\}
$$

(iii) Uncoupled Horizontal Vibration

The only motion of the body is $\overrightarrow{\mathrm{V}}_{1}$
Relaxed Contact Conditions:-
At the contact area $\left|\bar{x}_{1}\right| \leq 1$

$$
\begin{align*}
& \bar{u}_{1}=\bar{v}_{1} \\
& \bar{u}_{2}=\text { unknown } \tag{4.3.14}
\end{align*}
$$

$\bar{E}_{1}=$ unknown
$\tilde{t}_{2}=0$
$\overline{\mathrm{V}}_{1}=1$ is prescribed, and the dynamic stiffness is simply $K_{11}=\bar{Q}_{1}$, see eq.(3.3.4). The response \bar{W}_{1} of a body of given mass ratio \bar{m}_{11} is obtained from

$$
\begin{equation*}
\left(-\frac{1}{\pi} \eta_{2}^{2} \bar{m}_{11}+K_{11}\right)=f_{1} \tag{4.3.16}
\end{equation*}
$$

and \vec{W}_{1} may be plotted against frequency factor η_{2} for excitation $f_{1}=1$ and various mass ratios \bar{m}_{11}
(iv) Uncoupled Vertical Vibration:-
\bar{V}_{2} is the only motion of the body and the contact conditions are

Relaxed Contact Conditions:-
For $\left|\bar{x}_{1}\right| \leq 1$

$$
\begin{aligned}
& \bar{u}_{1}=\text { unknown } \\
& \bar{u}_{2}=\bar{v}_{2}
\end{aligned}
$$

$\bar{t}_{1}=0$
$\bar{t}_{2}=$ unknown
Welded Contact Conditions:-

$$
\begin{align*}
& \bar{u}_{1}=0 \\
& \bar{u}_{2}=\bar{v}_{2} \tag{4.3.18}
\end{align*}
$$

$\bar{E}_{1}=$ unknown
$E_{2}=$ unknown
$\bar{V}_{2}=1$ is prescribed, and the dynamic stiffness is
$K_{22}=\bar{Q}_{2}$. The response \bar{W}_{2} of a given body of mass ratio
$\overline{\mathrm{m}}_{22}$ is obtained from
$\left(-\frac{1}{\pi} \eta_{2}^{2} \bar{m}_{22}+K_{22}\right) \bar{W}_{2}=f_{2}$
for any desired excitation f_{2}
(v) Uncoupled Rocking Vibration
\bar{V}_{3} is the only motion of the body
Relaxed Contact Conditions:-
For $\left|\bar{x}_{1}\right| \leq 1$
$\bar{u}_{1}=$ unknown
$\bar{u}_{2}=\bar{x}_{1} \bar{v}_{3}$
$\bar{t}_{1}=0$
$\bar{E}_{2}=$ unknown
$\bar{V}_{3}=1$ is prescribed, and the dynamic stiffness is $K_{33}=\bar{Q}_{3}$. The (rocking) response \bar{W}_{3} of a given body of inertia ratio $\overline{\mathrm{m}}_{33}$ is obtained from

$$
\begin{equation*}
\left(-\frac{1}{\pi} \eta_{2}^{2} \bar{m}_{33}+K_{33}\right) \bar{W}_{3}=f \tag{4.3.22}
\end{equation*}
$$

In addition to the displacements and stresses mentioned above we note that on the free surface of the half space

$$
\begin{equation*}
\bar{u}_{j}=\text { unknown, } \quad \bar{t}_{j}=0, \quad j=1,2 \tag{4.3.23}
\end{equation*}
$$

4.4 APPLYING THE BOUNDARY INTEGRAL EQUATION

In the previous section the displacements and stresses have been identified, either as knowns or as unknowns, at various points on the boundary of the elastic half space for the various modes of vibration of the rigid body. Now we recall the boundary integral equation (2.5.10) which establishes the constraint relation between these variables. The boundary S of the half space in this two-dimensional problem is the straight line

$$
\bar{x}_{2}=0, \quad-\infty<\overline{\mathrm{x}}_{1}<\infty
$$

in the dimensionless coordinate system \bar{x}_{k}. The integral equation is written in the dimensionless form

$$
c_{j k} \bar{u}_{k}(P)+\int_{\bar{S}} \bar{T}_{j k}(P, Q) \bar{u}_{k}(Q) \quad d \bar{s}(Q)
$$

$$
\begin{equation*}
=\int_{\overline{\mathrm{S}}} \overline{\mathrm{U}}_{j k}(P, Q) \overline{\mathrm{t}}_{\mathrm{k}}(Q) \mathrm{d} \overline{\mathrm{~s}}(Q) \tag{4.4.1}
\end{equation*}
$$

in which we have introduced

$$
\begin{equation*}
\overline{\mathrm{T}}_{j k}=b T_{j k}, \quad \bar{U}_{j k}=U_{j k} \tag{4.4.2}
\end{equation*}
$$

Expressions for $U_{j k}$ and $T_{j k}$ on the Half Space Boundary On the boundary of the half space, fig.(4.2), the expressions for the fundamental tensors $U_{j k}$ and $T_{j k}$, eqs.(2.4.4) and (2.4.5) take simpler forms.

Fig.4.2 Half Space Boundary

The outward unit normal \hat{n} has, at any point on the boundary, the components

$$
n_{1}=0 \quad n_{2}=-1
$$

The distance $\overline{\mathrm{R}}(\mathrm{P}, \mathrm{Q})$ between two points $P\left(\overline{\mathrm{y}}_{1}, \overline{\mathrm{y}}_{2}\right)$ and $Q\left(\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2}\right)$ on the boundary is

$$
\overline{\mathrm{R}}=\left(\left(\bar{x}_{1}-\overline{\mathrm{y}}_{1}\right)^{2}+\left(\bar{x}_{2}-\overline{\mathrm{y}}_{2}\right)^{2}\right)^{1 / 2}
$$

Since $\bar{x}_{2}=0$ on the boundary we have

$$
\begin{aligned}
& \frac{\partial \bar{R}}{\partial \bar{x}_{2}}=0 \\
& \frac{\partial \bar{R}^{\prime}}{\partial \bar{x}_{1}}=\frac{\bar{x}_{1}-\overline{\mathrm{y}}_{1}}{\left|\bar{x}_{1}-\overline{\mathrm{y}}_{1}\right|} \equiv \text { (sign) }
\end{aligned}
$$

Also $\frac{\partial \bar{R}}{\partial n}=0$

We substitute these results into expressions for $U_{j k}$ and $T_{j k}$, eqs.(2.4.4) and (2.4.5) and introduce the barred forms of $U_{j k}$ and $T_{j k}$ given by eqs.(4.4.2). Writing out the elements constituting the two tensors we obtain

$$
\overline{\mathrm{U}}_{j \mathrm{k}}=\left[\begin{array}{cc}
\overline{\mathrm{U}}_{11} & 0 \\
0 & \overline{\mathrm{U}}_{22}
\end{array}\right]
$$

$$
\overline{\mathrm{T}}_{j \mathrm{k}}=\left[\begin{array}{cc}
0 & \overline{\mathrm{~T}}_{12} \tag{4.4.3}\\
\overline{\mathrm{~T}}_{21} & 0
\end{array}\right]
$$

where

$$
\begin{align*}
& \overline{\mathrm{U}}_{11}=\frac{i}{4}(\Psi+\chi) \\
& \overline{\mathrm{U}}_{22}=\frac{i}{4} \Psi \tag{4.4.4}
\end{align*}
$$

$$
\overline{\mathrm{T}}_{12}=-\frac{i}{4}(\text { sign }) \overline{\mathrm{A}}_{4}
$$

$$
\overline{\mathrm{T}}_{21}=-\frac{i}{4}(\operatorname{sign}) \overline{\mathrm{A}}_{3}
$$

The functions $\Psi, \quad \chi, A_{3}$ and A_{4} have been defined for eqs.(2.4.4) and (2.4.5).

$$
\begin{align*}
& \Psi=H_{0}\left(\eta_{2} \overline{\mathrm{R}}\right)+\frac{1}{\eta_{2} \overline{\mathrm{R}}}\left\{\frac{\mathrm{c}_{2}}{\mathrm{C}_{1}} \mathrm{H}_{1}\left(\eta_{1} \overline{\mathrm{R}}\right)-\mathrm{H}_{1}\left(\eta_{2} \overline{\mathrm{R}}\right)\right\} \\
& X=\frac{c_{2}^{2}}{\mathrm{c}_{1}^{2}} \mathrm{H}_{2}\left(\eta_{1} \overline{\mathrm{R}}\right)-\mathrm{H}_{2}\left(\eta_{2} \overline{\mathrm{R}}\right) \\
& \overline{\mathrm{A}}_{3}=-\eta_{2} \mathrm{H}_{1}\left(\eta_{2} \overline{\mathrm{R}}\right)+2 \frac{\chi}{\overline{\mathrm{R}}} \tag{4.4.5}\\
& \overline{\mathrm{~A}}_{4}=-\left(1-2 \frac{c_{2}^{2}}{c_{1}^{2}}\right) \eta_{1} H_{1}\left(\eta_{1} \overline{\mathrm{R}}\right)-2 \frac{\chi}{\overline{\mathrm{R}}}
\end{align*}
$$

The following notations have been introduced in the above equations

$$
\begin{aligned}
\bar{A}_{j} & =b A_{j} \\
\bar{R} & =\mathrm{R} / \mathrm{b} \\
\eta_{1} & =b k_{1}=b \omega / c_{1} \\
\eta_{2} & =b k_{2}=b \omega / c_{2}, \quad \text { frequency factor } \\
k_{j} R & =b k_{j} R / b=\eta_{j} \bar{R}
\end{aligned}
$$

$$
-84-
$$

The Boundary Elements

The half space boundary is represented by a finite number of straight line elements to cover the region to which the BIE integrals have been truncated, fig.(4.3)

Fig.4.3 The Boundary Elements

Small elements are concentrated in and near the loaded region where functions are expected to vary more rapidly. Still smaller elements are located near the ends of the loaded region where variation is most rapid.

Quadratic variation of \bar{u}_{k} and \bar{t}_{k} is assumed over a given element ℓ, as discussed in chapter 3. The three nodes of the element are labelled A_{ℓ}, B_{ℓ} and C_{ℓ}, see fig.(4.3). The discretised boundary equation (3.3.5) may be written in the expanded form, employing the dimensionless quantities of eq.(4.4.2)

$$
\begin{align*}
& \frac{1}{2} \bar{u}_{j}\left(P^{a}\right)+\sum_{\ell=1}^{L}\left(\bar{u}_{k}\left(A_{l}\right) \int_{\bar{S}_{\ell}} \bar{T}_{j k}\left\{P^{a}, Q(\xi)\right\} M_{A}(\xi) J(\xi) d \xi\right. \\
& +\quad \bar{u}_{k}\left(B_{\ell}\right) \int_{\bar{S}_{l}} \overline{\mathrm{~T}}_{j \mathrm{k}}\left\{P^{\mathrm{a}}, Q(\xi)\right\} M_{B}(\xi) J(\xi) \quad \mathrm{d} \xi \\
& \left.+\quad \bar{u}_{k}\left(C_{\ell}\right) \int_{\bar{S}_{\ell}} \bar{T}_{j k}\left\{P^{a}, Q(\xi)\right\} M_{C}(\xi) J(\xi) d \xi\right\} \\
& =\sum_{\ell=1}^{L}\left(\bar{E}_{k}\left(A_{\ell}\right) \int_{\bar{S}_{\ell}} \bar{U}_{j k}\left\{P^{a}, Q(\xi)\right\} M_{A}(\xi) J(\xi) d \xi\right. \\
& +\quad \bar{t}_{k}\left(B_{\ell}\right) \int_{\bar{S}_{\ell}} \bar{U}_{j k}\left\{\mathrm{P}^{a}, Q(\xi)\right\} M_{B}(\xi) J(\xi) \quad d \xi \\
& \left.+\quad E_{k}\left(C_{\ell}\right) \int \bar{U}_{j k}\left\{P^{a}, Q(\xi)\right\} M_{C}(\xi) J(\xi) d \xi\right) \\
& \bar{s} \\
& j, k=1,2 \tag{4.4.6}
\end{align*}
$$

In this case $J(\xi)=h_{\ell}$ where h_{ℓ} is half the length of
element ℓ. Writing this equation for every nodal position of P gives the system of algebraic equations mentioned in eq.(3.3.6). We observe that the coefficients of the nodal values of \bar{u}_{k} and \bar{t}_{k} are integrals of the kernel-shape functions over the element ℓ. We now give details of the integration scheme with attention to the singularity at P when it occurs in the element.

4.5 NUMERICAL INTEGRATION SCHEME

The numerical integration scheme employed is the Gauss-Legendre n-point quadrature whereby the integral of a function $f(\xi)$ is approximated by

$$
\begin{equation*}
\int_{-1}^{+1} f(\xi) d \xi \simeq \sum_{j=1}^{n} f\left(\xi_{j}\right) w_{j} \tag{4.5.1}
\end{equation*}
$$

where w_{j} are the weights and ξ_{j} the abscissae for the n-point formula. The following cases which may arise during integration over a chosen element ℓ are considered one by one

$$
-87-
$$

(i) Point P Not in Element

Fig 4.4 Point P Outside Integration Element ℓ

The coordinate at a point Q is

$$
\begin{equation*}
\bar{x}_{1 Q}=\bar{x}_{1}\left(B_{\ell}\right)+\xi_{Q} h_{\ell} \tag{4.5.2}
\end{equation*}
$$

and $\quad \bar{R}(P, Q)=\mid \bar{x}_{1 Q}-\bar{x}_{1 P}{ }^{i}$
There is no singularity of the integrands on the element. So all the integrands appearing in eq.(4.4.6) are evaluated easily, thus allowing the integration to proceed smoothly using the Gauss-Legendre scheme (4.5.1) above.
(ii) Point P at Node A

Fig 4.5 Point P at Node A
$\bar{x}_{1 Q}$ and $\bar{R}(P, Q)$ are evaluated as in eqs.(4.5.2). As the integration point Q ranges over the element from A_{ℓ} to C_{l} it coincides with P at A_{ℓ}, where $\bar{R}(P, Q)=0$ and the kernel tensors $\overline{\mathrm{T}}_{\mathrm{jk}}(\mathrm{P}, \mathrm{Q})$ and $\overline{\mathrm{J}}_{\mathrm{jk}}(\mathrm{P}, \mathrm{Q})$ become singular. As observed in section 2.5 chapter 2 , the singularities of $\overline{\mathrm{T}}_{j k}$ and $\overline{\mathrm{J}}_{j k}$ are of order $O(1 / R)$ and $O(\operatorname{lnR})$ respectively. But from the shape functions $M_{r}(\xi)$ in eq.(3.3.3) we observe that $M_{B}(\xi)$ and $M_{C}(\xi)$ behave as $O(R)$ as node A_{l} is approached. Hence the products to be integrated for nodes B and C, namely $\bar{T}_{j k} M_{r}(\xi) J(\xi)$ and $\bar{U}_{j k} M_{r}(\xi) J(\xi), \quad r=B, C$, tend to a finite limit at A_{l}, and so may reasonably be approximated by a polynomial over the element. The quadrature scheme eq.(4.5.1) thus applies for the coefficients at nodes B_{ℓ} and C_{ℓ}.

As for node A_{ℓ} the shape function $M_{A}(\xi)$ tends to unity at P and the integrands $\overline{\mathrm{T}}_{j k} M_{A}(\xi) J(\xi)$, and $\bar{U}_{j k} M_{A}(\xi) J(\xi)$ remain singular. Since the singularity of $\overline{\mathrm{J}}_{j k}$ is only logarithmic, its integral exists and can be evaluated with a quadrature scheme with logarithmic weight function. On a closer observation of the functions that make up $\bar{U}_{j k}$, see eqs.(4.4.4) and (4.4.5), the only quantity that gives rise to the logarithmic singularity is the Bessel function of the second kind $Y_{0}\left(\eta_{2} R\right)$. So in our numerical scheme we treat all the other functions by the Gauss-Legendre scheme described above and use the following scheme

$$
\begin{equation*}
\int_{0}^{1} f(\xi) \ln (\xi) d \xi=\sum_{j=1}^{n} f\left(\xi_{j}\right) b_{j} \tag{4.5.2}
\end{equation*}
$$

for the function $Y_{0}\left(\eta_{2} \bar{R}\right)$ in the form

$$
\begin{align*}
& \int_{0}^{1}\left(\left\{Y_{0}\left\{\eta_{2} \bar{R}(\zeta)\right\} M_{A}\{\xi(\zeta)\} J\{\xi(\zeta)\} H(\zeta) \ln (\zeta)\right\} / \ln (\zeta)\right) d \zeta \\
& \qquad \simeq \sum_{j=1}^{n}\{\cdot\}_{\zeta} \cdot b_{j} \tag{4.5.3}\\
& \text { To this end we introduce another set of coordinates } \zeta \text { as } \\
& \text { in following sketch }
\end{align*}
$$

Fig 4.6 New Coordinates ζ
in which
$\xi=-1+2 \zeta$
In the scheme (4.5.3) $H(\zeta)$ is the Jacobian of transformation
from ξ to ζ

$$
H(\zeta)=\left|\frac{\partial \xi}{\partial \zeta}\right|
$$

and the special weights b_{j} may be obtained from Abramowitz
and Stegun (1972).

The integral containing $\bar{T}_{j k} M_{A}(\xi) J(\xi)$ over element ℓ alone does not exist but its principal value over the two elements on the two sides of node A exists. Since $\overline{\mathrm{T}}_{j k}$ is anti-symmetric with respect to node A and the shape functions at A (namely M_{A} for element ℓ and M_{C} for previous element \&-1) are symmetric with respect to node A, the principal value is zero if the elements on both sides of A are of equal length. We shall generally ignore this value in our scheme since adjacent elements are nearly of equal length.
(iii) Point P at node C

Fig 4.7 Point P at Node C

The integration is very similar to that described in above paragraph. In this case, however, the singularities are at node C. The integral coefficients for nodes A and B are evaluated ordinarily using the Gauss-Legendre scheme. The Bessel function $Y_{0}\left(\eta_{2} \bar{R}\right)$ is evaluated using the scheme (4.5.3)
for node C, with the adjustment that the ζ-coordinate is defined thus

$$
\xi=1-2 \zeta
$$

Fig 4.8 New Coordinates ζ
(iv) Point P at Middle Node B

In this case it will be useful to subdivide the element into two subelements.

subelement (1)
sube lement (2)

Fig 4.9 Element Subdivision

Over the j th subelement local coordinates ζ_{j} are introduced. The relationship between ζ_{j} and ξ are shown in the diagram and the Jacobian of transformation from ξ to ζ_{j} is introduced into the integrals. Thus, for example, over the first subelement,

$$
\begin{equation*}
\int_{-1}^{0} f(\xi) d \xi=\int_{-1}^{+1} f\left\{\xi\left(\zeta_{1}\right)\right\}\left|\frac{\partial \xi}{\partial \zeta_{1}}\right| d \zeta_{1} \tag{4.5.4}
\end{equation*}
$$

The integration over each subelement becomes similar to the cases of P coinciding with an end node, paragraphs (ii) and (iii) above.

It is useful to observe that since the integrands are oscillatory, more particularly at higher frequencies, greater number of integration points (n) will be required over an element than is commonly used in elastostatics where the integrands vary less rapidly. However this does not constitute any setback here because variation over small elements can be adequately handled with few integration points for the range of interest of the frequency factor $\eta_{2}-u p$ to 4. $n=4$ is found to be good for small elements and $n=8,12$ for the larger ones.

4.6 APPLYING THE BOUNDARY CONDITIONS TO THE ALGEBRAIC EQUATİONS

After the integration described in the previous section the resulting 2 N algebraic equations are of the form

$$
\begin{equation*}
\left[A_{1}\right]\{u\}=\left[A_{2}\right]\{t\} \tag{4.6.1}
\end{equation*}
$$

The matrices written in expanded form are

The coefficient matrices A_{1} and A_{2} have been partitioned into $2 x 2$ submatrices $a_{m n}^{(1)}$ and $a_{m n}^{(2)}$ respectively. $a_{m n}^{(1)}$ result from positioning P at node number m and calculating the integrals of the products of $\overline{\mathrm{T}}_{j \mathrm{k}}$ and the shape functions appropriate to node number $n . a_{m n}^{(2)}$ is a similar submatrix involving $\breve{U}_{j k}$ and nodes m and n. Once the system of equations (4.6.2) is set up it can be used to solve many steady state dynamic problems involving the half space in plane strain. As outlined in chapter 3, it is only necessary, after setting $u p$ the system of equations for a suitably designed boundary mesh, to shuffle or swap the elements of matrices A_{1} and A_{2} in order to have all known terms on the right and the unknowns on the left hand side of the system. The final system, now of the form

$$
\begin{equation*}
[A]\{z\}=\{B\} \tag{4.6.3}
\end{equation*}
$$

is then solved by routine methods for the set of unknowns $\{z\}$, which may consist entirely of displacements, or stresses or of both, according to boundary data available.

The system of equations (4.6.2) is applicable to all modes of vibration by simply applying the boundary conditions appropriate to the mode detailed in section 4.3. To follow the procedure we let S_{1} denote the loaded region of the half space boundary, and S_{0} the stress-free region. The algebraic equations (4.6.2) are rewritten to indicate the elements of the matrices A_{1} and A_{2} which pertain to
nodes in the various regions, as follows

$$
\begin{equation*}
\left[A_{1}\right]\{u\}=\left[A_{2}\right]\{\mathrm{t}\} \tag{4.6.4}
\end{equation*}
$$

${ }^{u}$ So denotes displacements at nodes in the stress-free region S_{0}, etc. The odd-numbered columns of matrix A_{1} are coefficients of the nodal displacement component \bar{u}_{1} while the even-numbered columns are those of \bar{u}_{2}. The columns of A_{2} refer similarly to the coefficients of nodal stresses \bar{E}_{1} and \bar{t}_{2}. First it is noted that stresses $\bar{E}_{\text {SO }}=0$ are already known while displacements $\bar{u}_{\text {So }}$ are unknown on the stress-free region S_{0}. Therefore the sorting concerns only the S_{1}-columns of matrices A_{1} and A_{2}. We use the cases of vertical and the three degrees-of-freedom vibration to illustrate the procedure. The other modes are similarly treated. It is observed that when a coefficient is taken across the equality sign, its sign changes, of course.
(i) Vertical Vibration:-

Refer to eqs.(4.3.17) and (4.3.18)
$\overline{\mathrm{V}}_{2}$ is unity. so the even-numbered columns (S_{1}-columns) of
matrix A_{1}, are summed up and transferred to the right to the known column vector B. The even-numbered columns of matrix A_{2} (coefficients of vertical stress \bar{E}_{2}) are transferred to the left to replace the even-numbered columns of A_{1}.

Relaxed Contact Conditions - eq.(4.3.17)
No further shuffling as the coefficients of unknown \bar{u}_{1} are already on the left.

Welded Contact Conditions - eqs.(4.3.18)
The odd-numbered columns of A_{2} (coefficients of unknown \bar{t}_{1}) are transferred to replace the odd-numbered columns of A_{1}. Three Degrees-of-freedom:-

Refer to eqs.(4.3.1)a,b
The three sets of trial values $\overline{\mathrm{V}}_{\mathrm{n}}^{(\mathrm{m})}$ used are, see eq.(4.3.7) and subsequent discussion,

$$
\left[\begin{array}{ccc}
\overline{\mathrm{v}}_{1}^{1} & \overline{\mathrm{v}}_{2}^{1} & \overline{\mathrm{v}}_{3}^{1} \\
\overline{\mathrm{v}}_{1}^{2} & \overline{\mathrm{v}}_{2}^{2} & \overline{\mathrm{v}}_{3}^{2} \\
\overline{\mathrm{v}}_{1}^{3} & \overline{\mathrm{v}}_{2}^{3} & \overline{\mathrm{v}}_{3}^{3}
\end{array}\right]=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 3 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

The values of the elements were found not to matter, as expected, as long as the array is not singular.

To effect eqs.(4.3.1a), multiply the odd-numbered columns of A_{1} by $\bar{V}_{n}^{(m)}$, the even-numbered columns by $\overline{\mathrm{V}}_{\mathrm{n}}^{(\mathrm{m})}+\overline{\mathrm{X}}_{1} \overline{\mathrm{~V}}_{\mathrm{n}}^{(\mathrm{m})}$ where $\overline{\mathrm{x}}_{1}$ is the $\overline{\mathrm{x}}_{1}$-coordinate of the appropriate node, sum up the
result and transfer to the mth column of B (the right hand side array B of the final assembly is now required to have three columns). The operation can be represented by

$$
B_{j, m}=-A_{j, 2 n-1} \bar{V}_{1}^{(m)}-A_{j, 2 n}\left\{\bar{V}_{2}^{(m)}+\bar{x}_{1 n} \bar{V}_{3}^{(m)}\right\}
$$

where n is the appropriate node number in the loaded region S_{1}.

To effect eqs.(4.3.1b) all the S_{1}-columns of A_{1} are transferred to replace the similar columns of A_{2} as the coefficients of the unknown \bar{E}_{1}, \bar{t}_{2}.

Some Programming Hints.
These operations can be very neatly coded into a computer subprogram. It is wasteful to bother to compute the S_{0}-columns of matrix A_{2} as they are never used - the S_{0} surface has zero stresses. So only the S_{1}-columns need be computed for A_{2}, i.e., integration of the functions involving $\bar{U}_{j k}$ is done only for elements in the loaded region. Also it is not necessary to have all the rows of S_{1}-columns of A_{2} in storage simultaneously. Space for only two rows need be allocated. For a nodal position of the point P, eq.(4.4.6) only two equations for $j=1,2$ are computed simultaneously. The boundary conditions may be applied immediately so that the space allocated for the two rows of array A_{2} is released for computation of the next pair of equations. Of course, allocation has to be made for the entire matrices A_{1} and B simultaneously unless disc-based method of solution is employed
for the equations. The problem size is small enough to need only in-core handling of the matrices. After solving the final assembly (4.6.3) one has to remember which elements of the solution vector represents stress or displacement according to the sorting done for the various modes. We have not bothered yet to consider symmetry of the problem (if any) because it will be informative to let the solutions verify this. After that one may then use symmetry to further reduce the problem size. The values of the computed nodal variables for the three degree-of-freedom vibration showed no symmetry, however.

Having solved the final assembled equations and computed the stiffnesses as outlined in section 4.3 for the various modes of vibration, the results are presented next.

4.7 RESULTS AND DISCUSSIONS

(a) Effects of Truncating the Integrals in the BIE Equation

In section 3.2 of chapter 3 it is indicated that the integrals in the BIE equation are truncated to within some region a distance of R_{o} from the loaded area, see fig.4.10 below

Fig 4.10 Limits of Integration

We now investigate the effect of various values of R_{o} on the results of the analysis of the foundation vibration. Vertical vibration is used, with Poisson ratio 1/4.

The real and imaginary parts of the dynamic stiffness for vertical vibration are plotted in fig.4.13 for values of $R_{o}=0,3,7$. A value of R_{o} indicates the width of the stress-free surface that is assumed to have contributed significantly to the integration, the width being measured as a number of half-widths of the rigid strip. The convergence of the dynamic stiffness to a definite limit may be observed in fig.4.13 as R_{0} increases. The convergence is rather more rapid that predicted by the approximate error analysis in section 3.2.

The results for $R_{0}=3$ and $R_{0}=7$ are almost identical. It is sufficient to use the smaller value $R_{0}=3$ which gives smaller area to integrate on and therefore less expensive numerical integration. The rest of the results in this chapter are based on the integration over the region indicated by $\mathrm{R}_{0}=3$.
(b) Vertical Vibration

The equivalent dynamic stiffness is compared with the analytical results of Karasudhi, Keer and Lee (1968) in fig.4.14 where excellent agreement is observed. This is for the relaxed contact conditions. For the welded contact conditions, we compute the dynamic compliance (inverse of stiffness) in order to be able to compare directly with the works of Luco and Westman (1972) where such results are
available. This comparison is shown in fig.4.15 to be excellent.

The difference between the relaxed and welded contact conditions are also shown in the figure, and it is observed to be small. In plain words, the figure indicates that when the rigid infinite strip is considered to be executing pure vertical vibration, it makes little difference whether we assume zero shear stress between the strip and the supporting medium (relaxed contact conditions) or perfect no-slip bonding between them (welded contact conditions).

The results presented in fig.4.15 are for Poisson ratio 1/4. Luco and Westman (1972) observed that the difference between the two types of contact conditions is smaller at higher Poisson ratio but slightly larger at lower Poisson ratio.

The normal stress distribution under the rigid foundation is plotted in fig.4.16 for some values of the frequency factor η_{2}. The, stress is symmetrical about the longitudinal axis of the body and increases with . The usual edge singularity can be observed. The shear stress was found to be anti-symmetric and to change sign very rapidly under the rigid body.

In fig.4.17 is shown the nondimensional response $\bar{W}_{2}=\pi \mu W_{2} / F$ computed from eq.(4.3.19) and plotted against frequency factor η_{2} for some values of mass ratio.
(c) Horizontal Vibration

The horizontal compliance is plotted in fig.4.18 for the relaxed problem. Agreement with Luco and Westman is again excellent. It is remembered that relaxed condition here indicates the prescription of zero normal stress at the contact between the foundation and the earth in order to preclude coupling with rocking or vertical vibration. The welded contact condition is discussed in paragraph (e) below under coupled mation.
(d) Rocking Vibration

The compliance for the relaxed condition (zero shear stress) is plotted in fig.4.19 and compared with Luco and Westmann's results. The latter results show over-estimation probably due to mathematical difficulties which forced the authors to use only the "dominant parts" of the integrals they encountered to evaluate stress distribution. The welded contact condition is discussed below under coupled horizontal-rocking vibration.
(e) Coupled Horizontal-Rocking Vibration

In this mode four compliances are involved, and are obtained from the inverse of the stiffness matrix in eq.(4.3.5). We have

```
    C11 - direct horizontal-horizontal compliance
    C13 - coupling horizontal-rocking compliance
    C}31 - coupling rocking-horizontal compliance
    C}33 - direct rocking-rocking compliance
C11 is plotted in fig.4.18 and is found to coincide exactly
```

with the compliance resulting from pure horizontal mode. C_{33} is plotted in fig. 4.20 which again shows the results of Luco and Westmann to be overestimates. In fig.4.21 the direct rocking compliance C_{33} is compared with the rocking compliance resulting from pure rocking mode. Appreciable difference exists, unlike the horizontal compliance in fig.4.18. The coupling compliance is shown in fig.4.22. Theoretically the coupling compliances C_{13} and C_{31} should be equal by law of reciprocity. But due to numerical inaccuracies, differences did exist between the computed values. What is shown in fig.4.22 are the averages of the real and imaginary parts of C_{13} and C_{31} compared with similar averages taken from Luco and Westmann.

(f) The Three Degrees-of-Freedom Vibration

There are nine components of compliance involved, namely $C_{j k}$, $j, k=1,2,3$ obtained from the inverse of the stiffness matrix in eq.(4.3.6).

The Direct Compliances $C_{j j}, j=1,2,3$:-
The direct vertical compliance C_{22} coincides exactly with the vertical compliance resulting from pure vertical mode with welded contact conditions. This is indicated in fig.4.15. The direct horizontal compliance C_{11} coincides exactly with the horizontal compliance resulting from the pure horizontal mode as well as the coupled horizontal-rocking modes. This is indicated in fig.4.18. The direct rocking compliance C_{33} coincides exactly with the rocking compliance resulting from the coupled horizontal-rocking modes, as indicated fig. 4.20 but
different from the results of the pure rocking mode in fig. 4.19.

The Coupling Compliances $C_{j k}, j \neq k:-$
The horizontal-rocking, rocking-horizontal compliances are exactly the same as those for the coupled horizontal-rocking motion, and are indicated in fig.4.22. The vertical-horizontal coupling compliance and the vertical-rocking coupling compliance are found to be negligible, their maximum values being less than 2 per cent of the peaks of the horizontal-rocking compliances shown fig.4.22. Allowing for numerical inaccuracies, it may be concluded that there is no coupling between the vertical and horizontal modes, and the vertical and rocking modes.

The question of no coupling between the vertical and any other mode may be examined from the physical situation as follows. When the foundation is undergoing vertical motion, see fig. 4.11 below, the normal stress is symmetric about the centre line of the rigid strip and so no rocking is induced.

Fig 4.11 Vertical Vibration

Also the snear stress is an odd function of x_{1}. The resultant horizontal force on the foundation is zero and so no horizontal puli is experienced.

In the real situation it is intuitively ciear that the horizontal excitation of a foundation results in rocking vibration as well. This is because the center of mass of the foundation is at a finite heignt above the soil surface and the horizontal reaction force of tne soil which acts at the base of the foundation results in a rocking couple about a norizontal line tnrough the center of mass.
(g) Concluding Remarks

A lot of results have been computed in this chapter. This is possible because they ail result from one equation, the boundary integral equation. This is a demonstration of the power of the BIE metnod as well as its versatility. We did not nave to formulate or write a different equation for a different mode of vibration or contact condition. Yet we have very simply reproduced most of the previously known results which were computed from series of formidable integrals. Above all a numerical verification has been presented for the results of the three degrees-of-freedom vibration which have always been assumed but not computed.

It will be relevant to mention here the cost of these computations. A hint was given in section 4.6 on the computer programming for this problem. The main body of the program is the setting up of the system of equations (4.6.2)
which then becomes applicable to any mode of vibration and contact conditions. The coding for all the modes and contact conditions is included in one program. Because of the small region of integration involved only a small system of thirty-one equations in complex variables had to be solved. As a result the program requires only 21,500 words of computer memory in the CDC Cyber 174 machine at Imperial College, and takes only 8 seconds to compute the dynamic stiffness at a particular frequency.

More demonstrations of the powers of the BIE are shown in the next chapter where the three-dimensional version is employed.

FIG.4.13 EFFECT UF TRUNCATION OF THE BIE INTEGRALS ON THE DYNAMIC STIFFNESS FOR RIGID INFINITE STRIP IN VERTICAL VIBRATION. PUISSON RATIO $1 / 4$

FIG.4.14 DYNAMIC STIFFNESS FOR RIGID INFINITE STRIP IN VERTICAL VIBRATION. POISSON RATIO 1/4

FIG. 4.15 VERTICAL COMPLIANCE FOR RIGID INFINITE STRIP RESULTING FROM:-
 welded contact,
(b) the three degrees-of-freedom mode Westmann (1972)

FIG.4.16 NORMAL STRESS DISTRIBUTION UNDER RIGID INFINITE STRIP IN VERTICAL VIBRATION, (a) IN QUADRATURE WITH DISPLACEIMENT (b) IN PHASE WITH DISPLACEMENT

FIG. 4.17 NON-DIMENSIONAL AMPLITUDE OF RIGID INFINITE STRIP IN VERTICAL VIBRATION. POISSON RATIO $1 / 4$

FIG.4.18 RIGID INFINITE STRIP:-
DIRECT HORIZONTAL CJMPLIANCE C_{11} RESULTING FROM
(a) pure horizontal mode (relaxed conditions)
(b) coupled horizontal-rocking mode
(c) coupled vertical-horizontal-rocking
coupled horizontal-rocking from Luco and Westmann (1972)

FIG.4.19 RIGID INFINITE STRIP:ROCKING CUMPLIANCE RESULTING FROM PURE ROCKING MODE POISSON RATIU $1 / 4$

............. Results from Luco and Westmann (1972)
Present Study

FIG.4.20 RIGID INFINITE STRIP:-	
	DIRECT RUCKING COMPLIANCE C_{33} RESULTING FROM

(a) coupled horizontal-rocking modes
(b) coupled vertical-norizontal-rocking
coupled horizontal-rocking from Luco
and Westmann (1972)

Poisson ratio $1 / 4$

FIG.4.21 RIGID INFINITE STRIP:DIRECT ROCKING COMPLIANCE C_{33} RESULTING FROM —— - pure rocking mode
_-... - coupled horizontal-rocking modes

FIG.4.22 RIGID INFINITE STRIP:COUPLING HORIZONTAL-ROCKING COMPLIANCE RESULTING FROM

chapter 5

VIBRATION OF A RIGID FOUNDATION OF ARBITRARY
Shape on an elastic half space
section pace
5.1 Introduction 117
5.2 Problem Definition 118
5.3 Boundary Conditions Imposed By the Modes of Vibration 120
5.4 Applying the Boundary
Integral Equation 128
5.5 Numerical Integration Scheme 138
5.6 Applying the BoundaryConditions to the AlgebraicEquations143
5.7 Results and Discussions 149

5.1 INTRODUCTION

The analysis of vibration of rigid foundation of arbitrary shape on the elastic half space is presented using the boundary integral equation (2.5.13). The good performance of the BIE method for the two-dimensional case in the previous chapter provides sufficient stimulus for one to proceed to this three-dimensional case. The formulation is presented for a foundation of arbitrary shape, but in order to be able to compare results with those from existing works, numerical results are presented for circular and rectangular foundations. More detailed attention is focused on rectangular foundations. The well-known circular case is mentioned in passing only to demonstrate the accuracy of the BIE formulation. Results are presented for the vertical and horizontal vibrations of rectangular foundation, and the vertical and torsional vibrations of circular foundation. Results are also presented for the vertical mode of rectangular foundations with length/width ratios of up to 16 , and then compared with results obtained by idealising such "long" rectangles as infinite rectangular strip. We pay attention again to the ease of applying boundary conditions and of coping with various modes of vibration.

The development here is very much similar to that in the previous chapter, so that in this chapter we shall be able to omit much of the explanations of the steps without losing meaning.

5.2 PROBLEM DEFINITION

In fig.(5.1) is shown the contact region between the foundation and the half space, as well as the coordinate axes. b is a characteristic length of the loaded area. For example b is identified with the radius of a circular foundation or half the length of a rectangular foundation. We define the two sets of contact conditions:

Relaxed Contact Conditions:-

These decouple the motion into pure modes of vibration.
(i) Vertical Vibration - Zero shear stresses t_{1}, t_{2}
(ii) Horizontal Vibration in x_{2}-direction, say -

Zero shear stress t_{1} and normal stress t_{3}
(iii) Rocking about x_{1}-axis - zero shear stresses t_{1}, t_{2}
(iv) Torsion Vibration - zero normal stress t_{3}

Welded Contact Conditions:-
The foundation is perfectly bonded to the half space. There is no interfacial slip, and the modes of vibration remain coupled. All components of contact stress are unspecified.

We now identify the boundary conditions imposed on the surface by the various modes of vibration.

Fig 5.1 The Coordinate Axes

5.3 BOUNDARY CONDITIONS IMPOSED BY THE MODES OF VIBRATIONS

(i) The General Six Degrees-of-freedom.

Notations similar to those in chapter 4 are adopted for the general motion of and the forces on the massless rigid body. $V_{1}, \quad V_{2}, \quad V_{3}$ represent the translation of the body in the coordinate directions x_{1}, x_{2}, and x_{3} respectively. θ_{1}, θ_{2}, and θ_{3} represent the rotations in the respective coordinate axes. The motions of and the forces on a massive body are similarly defined as in chapter 4 , using same symbols.

$$
v_{4}=b \theta_{1}, \quad v_{5}=b \theta_{2}, \quad v_{6}=b \theta_{3}
$$

The displacement components induced on the contact area are

$$
\begin{align*}
& u_{1}=v_{1}-x_{2} \theta_{3}=v_{1}-x_{2} v_{6} \\
& u_{2}=v_{2}+x_{1} \theta_{3}=v_{2}+x_{1} v_{6} \\
& u_{3}=v_{3}+x_{2} \theta_{1}-x_{1} \theta_{2}=v_{3}+x_{2} v_{4}-x_{1} v_{5} \tag{5.3.1}
\end{align*}
$$

The stresses in the loaded region are
$t_{1}=$ unknown
$t_{2}=$ unknown
$t_{3}=$ unknown
u_{k} and t_{k} are taken positive in the positive directions of the coordinate axes

The following stress integrals are defined

$$
Q_{1}=\int_{S_{1}} t_{1} d s
$$

$$
\begin{aligned}
& Q_{2}=\int_{S_{1}} t_{2} d s \\
& Q_{3}=\int_{S_{1}}^{t_{3}} d s \\
& Q_{4}=\int_{S_{1}}^{\frac{x_{2}}{b} t_{3}} d s \\
& Q_{5}=\int_{S_{1}}^{b} \frac{x_{1}}{b} t_{3} d s \\
& Q_{6}=\int_{S_{1}}\left(\frac{x_{1} t_{2}}{b}-\frac{x_{2}}{b} t_{1}\right) \\
& d s
\end{aligned}
$$

The harmonic time factor $e^{i \omega t}$ is being omitted. The stress integrals Q_{4}, Q_{5}, and Q_{6} are couples opposing the rotation of the body about the x_{1}, x_{2}, and x_{3} axes respectively.

Let F be some reference unit of force and m the mass, \vec{J}_{1}, \bar{J}_{2}, and \bar{J}_{3} the moments of inertia about x_{1}, x_{2}, and x_{3} axes respectively. We use the symbols $m_{j j}=m, j=1,2,3$

$$
m_{44}=\bar{J}_{1} / b^{2}, \quad m_{55}=\bar{J}_{2} / b^{2}, \quad m_{66}=\bar{J}_{3} / b^{2}
$$

The following dimensionless quantities are introduced

$$
\begin{align*}
& \bar{m}_{j j}=\frac{m_{j i j}}{\rho b^{3}}, j=1,2, \ldots, 6 \\
& \bar{u}_{k}=\frac{\mu b u_{k}}{F} \\
& \bar{t}_{k}=\frac{b^{2} t_{k}}{F} \\
& \bar{v}_{k}=\frac{\mu b V_{k}}{F} \tag{5.3.3}\\
& \bar{Q}_{k}=\frac{Q_{k}}{F} \\
& \bar{x}_{k}=\frac{x_{k}}{b} \\
& \bar{s}^{\bar{s}_{k}}=\frac{s}{b^{2}} \\
& \bar{W}_{k}=\frac{\mu b W_{k}}{F} \\
& \eta_{2}=\frac{b \omega}{c_{2}} \\
& \eta_{1} \\
&
\end{align*}
$$

The stress integrals become

$$
\begin{aligned}
& \bar{Q}_{1}=\int_{\bar{S}_{1}} \overline{\mathrm{t}}_{1} \mathrm{~d} \bar{s} \\
& \bar{Q}_{2}=\int_{\bar{S}_{1}} \overline{\mathrm{t}}_{2} \mathrm{~d} \bar{s} \\
& \bar{Q}_{3}=\int_{\bar{S}_{1}} \overline{\mathrm{t}}_{3} \mathrm{~d} \overline{\mathrm{~s}} \\
& \bar{Q}_{4}=\int_{\bar{S}_{1}} \overline{\mathrm{x}}_{2} \overline{\mathrm{t}}_{3} \mathrm{~d} \bar{s} \\
& \bar{Q}_{5}=\int_{\bar{S}_{1}} \bar{x}_{1} \overline{\mathrm{t}}_{3} \mathrm{~d} \bar{s} \\
& \bar{Q}_{6}=\int_{\bar{S}_{1}}\left(\bar{x}_{1} \bar{t}_{2}-\bar{x}_{2} \overline{\mathrm{t}}_{1}\right) \mathrm{d} \bar{s}
\end{aligned}
$$

The equivalent dynamic stiffness (direct and coupled) is defined by

$$
\begin{equation*}
K_{j k}=\frac{Q_{j}}{\mu \mathrm{bV} V_{k}}=\frac{\bar{Q}_{j}}{\bar{V}_{\mathrm{K}}} \tag{5.3.5a}
\end{equation*}
$$

resulting in the following force-displacement relation

$$
\left[\begin{array}{llllll}
\mathrm{K}_{11} & \mathrm{~K}_{12} & \mathrm{~K}_{13} & \mathrm{~K}_{14} & \mathrm{~K}_{15} & \mathrm{~K}_{16} \tag{5.3.5b}\\
\mathrm{~K}_{21} & \mathrm{~K}_{22} & \mathrm{~K}_{23} & \mathrm{~K}_{24} & \mathrm{~K}_{25} & \mathrm{~K}_{26} \\
\mathrm{~K}_{31} & \mathrm{~K}_{32} & \mathrm{~K}_{33} & \mathrm{~K}_{34} & \mathrm{~K}_{35} & \mathrm{~K}_{36} \\
\mathrm{~K}_{41} & \mathrm{~K}_{42} & \mathrm{~K}_{43} & \mathrm{~K}_{44} & \mathrm{~K}_{45} & \mathrm{~K}_{46} \\
\mathrm{~K}_{51} & \mathrm{~K}_{52} & \mathrm{~K}_{53} & \mathrm{~K}_{54} & \mathrm{~K}_{55} & \mathrm{~K}_{56} \\
\mathrm{~K}_{61} & \mathrm{~K}_{62} & \mathrm{~K}_{63} & \mathrm{~K}_{64} & \mathrm{~K}_{65} & \mathrm{~K}_{66}
\end{array}\right\}\left\{\begin{array}{c}
\overline{\mathrm{V}}_{1} \\
\overline{\mathrm{~V}}_{2} \\
\overline{\mathrm{~V}}_{3} \\
\overline{\mathrm{~V}}_{4} \\
\overline{\mathrm{~V}}_{5} \\
\overline{\mathrm{~V}}_{6}
\end{array}\right\}=\left\{\begin{array}{c}
\overline{\mathrm{Q}}_{1} \\
\overline{\mathrm{Q}}_{2} \\
\overline{\mathrm{Q}}_{3}
\end{array}\right\}
$$

Applying the same reasoning as for the two-dimensional problem in the previous chapter, the stiffnesses $K_{j k}$ are computed by using six sets of values for the motions V_{n} of the body, namely $V_{n}^{(m)}, n, m=1,2, \ldots, 6$, and obtaining the stiffnesses from the following set of equations similar to the set (4.3.7)

$$
\begin{align*}
& V_{k}^{(m)} K_{j k}=Q_{j}^{(m)} \tag{5.3.6}\\
& m, j, k=1,2, \ldots, 6
\end{align*}
$$

Summation over k is implied on the left hand side of (5.3.6)

The motions $\bar{W}_{k}, k=1,2, \ldots, 6$ of a given body with inertia properties $\bar{m}_{j k}$ are given by, refer to eq.(4.3.9)

$$
\begin{equation*}
\left(-\eta_{2} \bar{m}_{j k}+K_{j k}\right) \bar{W}_{k}=f_{j} \tag{5.3.7}
\end{equation*}
$$

(ii) Uncoupled Vertical Vibration
$\overline{\mathrm{V}}_{3}$ is the only motion of the body considered in this case and the contact conditions are

Relaxed Contact Conditions:-
$\bar{u}_{1}=$ unknown
$\bar{u}_{2}=$ unknown
$\bar{u}_{3}=\bar{v}_{3}$
$\bar{t}_{1}=0$
$\bar{t}_{2}=0$
$\bar{t}_{3}=$ unknown
Welded Contact Conditions:-
$\bar{u}_{1}=0$
$\bar{u}_{2}=0$
$\bar{u}_{3}=\bar{v}_{3}$
$\overline{\mathrm{t}}=$ unknown
$\overline{\mathrm{t}}_{2}=$ unknown
$\bar{t}_{3}=$ unknown
$\bar{V}_{3}=1$ is used and the dynamic stiffness is $K_{33}=\bar{Q}_{3}$. The
response \bar{W}_{3} of a foundation with mass ratio \bar{m}_{33} is obtained from

$$
\begin{equation*}
\left(-\eta_{2} \bar{m}_{33}+k_{33}\right) \bar{w}_{3}=f_{3} \tag{5.3.9}
\end{equation*}
$$

for excitation f_{3}.
(iii) Uncoupled Horizontal Vibration in x_{2}-direction

Only motion $\overline{\mathrm{V}}_{2}$ is considered. The contact conditions are
Relaxed Contact Conditions:-

$$
\begin{aligned}
& \bar{u}_{1}=\text { unknown } \\
& \bar{u}_{2}=\bar{v}_{2} \\
& \bar{u}_{3}=\text { unknown } \\
& \bar{t}_{1}=0 \\
& \bar{t}_{2}=\text { unknown } \\
& \bar{t}_{3}=0
\end{aligned}
$$

$\bar{V}_{2}=1$ is prescribed. The dynamic stiffness is $K_{22}=\bar{Q}_{2}$ and the response \bar{W}_{2} of a body of mass ratio \bar{m}_{22} to excitation f_{2} is

$$
\begin{equation*}
\left(-\eta_{2} \bar{m}_{22}+K_{22}\right) \bar{w}_{2}=f_{2} \tag{5.3.12}
\end{equation*}
$$

(iv) Uncoupled Rocking about $\mathrm{x}_{\boldsymbol{q}}$-axis

Motion $\overline{\mathrm{V}}_{4}$ is considered. The contact conditions are
Relaxed Contact Conditions:-

$$
\begin{align*}
& \bar{u}_{1}=\text { unknown } \\
& \bar{u}_{2}=\text { unknown } \\
& \bar{u}_{3}=\bar{x}_{2} \bar{v}_{4} \tag{5.3.13}\\
& \bar{u}_{1}=0
\end{align*}
$$

$$
\begin{aligned}
& \bar{t}_{2}=0 \\
& \bar{t}_{3}=\text { unknown }
\end{aligned}
$$

Using $\bar{V}_{4}=1$ the dynamic stiffness is $K_{44}=\bar{Q}_{44}$, and the response of a body with inertia ratio $\overline{\mathrm{m}}_{44}$ is \bar{W}_{4} given by

$$
\begin{equation*}
\left(-\eta_{2} \bar{m}_{44}+K_{44}\right) \bar{w}=f_{4} \tag{5.3.15}
\end{equation*}
$$

(v) Uncoupled Torsional Vibration

The motion of the body is $\overline{\mathrm{V}}_{6}$, and we have the contact conditions

Relaxed Contact Conditions:-

$$
\begin{aligned}
& \bar{u}_{1}=-\bar{x}_{2} \bar{v}_{6} \\
& \bar{u}_{2}=\bar{x}_{1} \bar{v}_{6} \\
& \bar{u}_{3}=\text { unknown } \\
& \bar{t}_{1}=\text { unknown } \\
& \bar{t}_{2}=\text { unknown } \\
& \bar{t}_{3}=0
\end{aligned}
$$

Using $\overline{\mathrm{V}}_{6}=1$ the dynamic stiffness is $K_{66}=\bar{Q}_{6}$, and the response \bar{W}_{6} of a body with inertia ratio $\overline{\mathrm{m}}_{66}$ is given by

$$
\begin{equation*}
\left(-\eta_{2} \bar{m}_{66}+K_{66}\right) \bar{w}_{6}=f_{6} \tag{5.3.18}
\end{equation*}
$$

The boundary conditions on the unloaded portion of the surface are, unmistakably,

$$
\begin{equation*}
\bar{u}_{j}=\text { unknown }, \quad \overline{\mathrm{t}}_{j}=0, \quad j=1,2,3 \tag{5.3.19}
\end{equation*}
$$

5.4 APPLYING THE BOUNDARY INTEGRAL EQUATION

We recall the boundary integral equation (2.5.13) and put it in the dimensionless form

$$
c_{j k} \bar{u}_{k}(P)+\int_{\bar{s}} \overline{\mathrm{~T}}_{j k}(P, Q) \bar{u}_{k}(Q) d \bar{s}(Q)
$$

$$
\begin{equation*}
=\int_{\bar{S}} \overline{\mathrm{U}}_{j k}(P, Q) \bar{E}_{k}(Q) \mathrm{d} \overline{\mathrm{~s}}(Q) \tag{5.4.1}
\end{equation*}
$$

where $\quad \overline{\mathrm{T}}_{j k}=b^{2} T_{j k} \quad \bar{U}_{j k}=\mu b U_{j k}$ $\mathrm{U}_{j k}$ and T_{jk} are given by eqs.(2.4.7) and (2.4.6)

Expressions for $\bar{U}_{j k}$ and $\overline{\mathrm{T}}_{j k}$ on the Half Space Boundary The unit normal \hat{n} to the half space boundary, has components

$$
n_{1}=0=n_{2}, \quad n_{3}=-1
$$

see fig.(5.1) for choice of coordinates. The distance between $P(\underline{y})$ and $Q(\underline{x})$ is given by

$$
\overline{\mathrm{R}}(\mathrm{P}, \mathrm{Q})=\left\{\left(\bar{x}_{1}-\overline{\mathrm{y}}_{1}\right)^{2}+\left(\bar{x}_{2}-\overline{\mathrm{y}}_{2}\right)^{2}\right\}^{\frac{1}{2}}
$$

Note that

$$
\frac{\partial \bar{R}}{\partial \bar{x}_{j}}=\frac{\bar{R}_{j}}{\bar{R}}=\frac{\bar{x}_{j}-\bar{y}_{j}}{\bar{R}} ; \quad \frac{\partial \stackrel{\rightharpoonup}{R}}{\partial \bar{x}_{3}}=0=\frac{\partial \stackrel{\rightharpoonup}{R}}{\partial n}
$$

\bar{R}_{j} is the j-component of the position vector from P to Q.

Substituting these results into eqs.(2.4.6) and (2.4.7) we find

$$
\begin{align*}
\overline{\mathrm{U}}_{j \mathrm{k}} & =\left[\begin{array}{ccc}
\overline{\mathrm{U}}_{11} & \overline{\mathrm{U}}_{12} & 0 \\
\overline{\mathrm{U}}_{21} & \overline{\mathrm{U}}_{22} & 0 \\
0 & 0 & \overline{\mathrm{U}}_{33}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 0 & \overline{\mathrm{~T}}_{13} \\
0 & 0 & \overline{\mathrm{~T}}_{23} \\
\overline{\mathrm{~T}}_{31} & \overline{\mathrm{~T}}_{32} & \overline{\mathrm{~T}}_{33}
\end{array}\right] \tag{5.4.2}
\end{align*}
$$

where

$$
\begin{aligned}
& \overline{\mathrm{U}}_{11}=\frac{1}{4} \pi \frac{1}{\bar{R}}\left\{\Psi+(3 \Phi+\chi) \frac{\overline{\mathrm{R}}_{1} \overline{\mathrm{R}}_{1}}{\overline{\mathrm{R}}^{2}}\right\} \\
& \overline{\mathrm{U}}_{12}=\frac{1}{4} \pi \frac{1}{\overline{\mathrm{R}}}\left\{(3 \Phi+\chi) \frac{\overline{\mathrm{R}}_{1} \overline{\mathrm{R}}_{2}}{\overline{\mathrm{R}}^{2}}\right\} \\
& \bar{U}_{21}=\overline{\mathrm{U}}_{12} \\
& \overline{\mathrm{U}}_{22}=\frac{1}{4} \pi \frac{1}{\overline{\mathrm{R}}}\left\{\Psi+(3 \Phi+\chi) \frac{\overline{\mathrm{R}}_{2} \overline{\mathrm{R}}_{2}}{\overline{\mathrm{R}}^{2}}\right\} \\
& \overline{\mathrm{U}}_{33}=\frac{1}{4} \pi \frac{1}{\overline{\mathrm{R}}} \Psi
\end{aligned}
$$

$$
\begin{aligned}
& \bar{T}_{13}=-\frac{1}{4} \pi \frac{\overline{\mathrm{~A}}_{4}}{\overline{\mathrm{R}}^{2}} \frac{\overline{\mathrm{R}}_{7}}{\overline{\mathrm{R}}} \\
& \overline{\mathrm{~T}}_{23}=-\frac{1}{4} \pi \frac{\overline{\mathrm{~A}}_{4}}{\overline{\mathrm{R}}^{2}} \frac{\overline{\mathrm{R}}_{2}}{\overline{\mathrm{R}}} \\
& \overline{\mathrm{~T}}_{31}=-\frac{1}{4} \pi \frac{\overline{\mathrm{~A}}_{3}}{\overline{\mathrm{R}}^{2}} \frac{\overline{\mathrm{R}}_{2}}{\overline{\mathrm{R}}} \\
& \overline{\mathrm{~T}}_{32}=-\frac{1}{4} \pi \frac{\overline{\mathrm{~A}}_{3}}{\overline{\mathrm{R}}^{2}} \frac{\overline{\mathrm{R}}_{2}}{\overline{\mathrm{R}}} \\
& \Psi=\gamma^{2} \exp \left(i \eta_{1} \overline{\mathrm{R}}\right)-\exp \left(i \eta_{2} \overline{\mathrm{R}}\right) \\
& \Phi=\frac{1}{\eta_{2}^{2} \bar{R}^{2}}\left\{\exp \left(i \eta_{2} \overline{\mathrm{R}}\right)-\exp \left(i \eta_{1} \overline{\mathrm{R}}\right)\right\}+\frac{i}{\eta_{2} \overline{\mathrm{R}}}\left\{\exp \left(i \eta_{2} \overline{\mathrm{R}}\right)-\gamma \exp \left(i \eta_{1} \overline{\mathrm{R}}\right)\right\} \\
& \chi=\exp \left(i \eta_{2} \overline{\mathrm{R}}\right)-\Phi \\
& \bar{A}_{3}=\left(i \eta_{2} \bar{R}-1\right) \exp \left(i \eta_{2} \overline{\mathrm{R}}\right)+6 \Phi+2 \chi \\
& \bar{A}_{4}=\left(1-2 \gamma^{2}\right)\left(i \eta_{1} \bar{R}-1\right) \exp \left(i \eta_{1} \bar{R}\right)+6 \Phi+2 \chi
\end{aligned}
$$

The Boundary Elements.

The boundary is represented by eight-node quadrilateral elements as described in chapter 3, see fig.3.2. The arrangement of the elements on the boundary will be dictated mostly by the shape of the contact area. Figs.5.2., 5.3, and 5.4 show possible mesh arrangements for arbitrarily shaped
contact area, circular area and square area respectively. The mesh for a rectangular area is obtained by simply multiplying, say, the x_{2}-coordinates of the mesh points by the desired aspect ratio. It is observed that contact areas bounded by curved lines (e.g., circular or arbitrary shape) as well as straight lines (e.g., rectangular) are adequately represented.

In this problem where the nodal points are considerably more than those used in the two-dimensional case of previous chapter, we would like to take advantage of symmetry immediately where possible in order to reduce the computer storage requirements sufficiently to allow in-core matrix operations on the algebraic equations rather than employ disc-based methods. However, disc-based methods are unavoidable for the non-symmetric shapes as well as the coupled modes of vibration where the whole mesh has to be represented. Fig.5.5 shows the square mesh arrangement used for the results presented in this chapter. Any required ractangular shape may be obtained by multiplying, say, the x_{2}-coordinats by given width/length ratio. This leaves the half-length (x_{1}-dimension) of the rectangle fixed at unity while the width varies. Taking account of symmetry, only the variables at the first-quadrant nodes are computed although integration still had to be carried out on every individual element. The shaded area is the area of contact with the rigid foundation. The dimension of the outermost rectangle is indicated by R_{0},
and is the area to which the BIE integrals are truncated as suggested in section 3.2. A rectangle is use here, instead of a circle as suggested in section 3.2, to indicate region R_{0} only for convenience. A circle would do equally well. The discretised boundary integral equation (3.3.10) is written

$$
\begin{align*}
\frac{1}{2} \bar{u}_{j}\left(P^{a}\right)+ & \sum_{\ell=1}^{L} \sum_{c=1}^{8} \bar{u}_{k}(d(\ell, c)) \int_{\bar{S}_{\ell}} \bar{T}_{j k}\left(P^{a}, Q(\xi)\right) M_{c}(\xi) J(\xi) d \xi_{1} d \xi \\
& \tag{5.4.3}\\
& \sum_{\ell=1}^{L} \sum_{c=1}^{8} \bar{t}_{k}(d(\ell, c)) \int_{\bar{S}_{\ell}} \bar{U}_{j k}\left(P^{a}, Q(\underline{\xi})\right) M_{c}(\underline{\xi}) J(\xi) d \xi_{1} d \xi_{2}
\end{align*}
$$

The Jacobian of transformation $J(\underline{\xi})$ has been defined in section 3.3. The system of algebraic equations is formed by writing above equation for every nodal position of P ranging over only the first quadrant nodes if symmetry is employed. Fig.(5.5b) shows the mesh used for the circular foundation. One may choose to analyse the foundation by treating the base just like any arbitrary shape with the mesh arrangement indicated, and then proceed to solve for the variables at every node. But at this stage we shall simplify matter by introducing circular symmetry which applies to the motions that we shall analyse. Circular cylindrical coordinates (r, θ, z) are introduced such that

$$
\begin{aligned}
& x_{1}=r \cdot \cos \theta \\
& x_{2}=r \cdot \sin \theta \\
& x_{3}=z
\end{aligned}
$$

The implementation is to set up the algebraic equation (5.4.3) for a given position of point P by integrating over all elements. The variables in the equation which are with respect to rectangular coordinates x_{1}, x_{2}, x_{3} are converted to variables in cylindrical coordinates using the relations

$$
\begin{aligned}
& u_{1}=u_{r} \cos \theta-r u_{\theta} \sin \theta \\
& u_{2}=u_{r} \sin \theta+r u_{\theta} \cos \theta \\
& u_{3}=u_{z}
\end{aligned}
$$

and similarly for t_{k}.

Then we note that for the vertical and torsional vibrations corresponding variables at all nodes arranged on a given circle in the mesh are equal.

The following notation shall be used for the vector components in the cylindrical coordinate system.

```
tr
t}\mp@subsup{}{0}{\prime}\mathrm{ tensor component of shear stress in }0\mathrm{ -direction,
```

$\tau \equiv r t_{\theta}$, pnysical component of shear stress in θ-direction,
$t_{z} \equiv t_{3}$, normal stress in z-direction,
Θ_{3}, angular motion of massive foundation about x_{3}-axis,
Υ_{3}, couple appied to the massive foundation about x_{3}-axis.

The next section gives details of the integration scheme over each element.

Fig 5.2 Arbitrary Shape

Fig 5.4 Square Shape

Example Mesh Node Arrangements on Vamious Shapes of Contact Surface

Fig 5.5a Mesh Node Arrangement for Square Foundation (not to scale)

- nodes contributing to the BIE integrals

O these and farther nodes do not contribute

Fig 5.5b Mesh Node Arrcangement for Circular Foundation (not to scale)

5.5 NUMERICAL INTEGRATION SCHEME

The two-dimensional form of the Gauss-Legendre n-point quadrature scheme is employed. The integration of a function $\mathrm{f}\left(\xi_{1}, \xi_{2}\right)$ is approximated by

$$
\begin{equation*}
\int_{1}^{+1} \int_{-1}^{+1} f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2} \simeq \sum_{j=1}^{n_{1}} \sum_{k=1}^{n_{2}} f\left(\xi_{1 j}, \xi_{2 k}\right) w_{1 j}{ }^{w} 2 k \tag{5.5.1}
\end{equation*}
$$

where $w_{1 j}$ and $w_{2 k}$ are the weights corresponding to abscissae $\xi_{1 j}, \quad \xi_{2 k}$.

Cases to consider during the integrations are:
(i) Point P not a Member of Element:-

Fig 5.6 Point P Outside Integration Element

The Gauss-Legendre scheme (5.5.1) above is used directly over the element as no singularity of the integrands in (5.4.3) occurs. At a given point Q selected by values of ξ_{1} and ξ_{2}, the coordinates are determined by interpolation over the nodal coordinates as described in section 3.3, see eq.(3.3.7)

$$
\bar{x}_{j Q}=\sum_{c=1}^{8} M_{c}\left(\xi_{1}, \xi_{2}\right)\left(\bar{x}_{j}\right)_{c}
$$

(ii) Point P a Member of the Element:-

The singularities of $\bar{U}_{j k}$ and $\overline{\mathrm{T}}_{j k}$ at P now occur within the integration element. The procedure to deal with this is exactly as described by Lachat and Watson (1975) for elastostatics problems. The element is subdivided into two or three triangular subelements according as P is a corner or mid-point node, fig.5.7, each triangle having a vertex at P. A local system of coordinates $\zeta_{j}, j=1,2$ is defined for each triangle, fig.5.8, such that the element coordinates ξ_{j} at a point Q in a triangle are interpolated linearly from the values at the corners of the triangle as

$$
\begin{equation*}
\xi_{j}=\xi_{j}(\underline{\zeta})=\sum_{m=1}^{4} L_{m}(\underline{\zeta}) \xi_{j m} \tag{5.5.2}
\end{equation*}
$$

$\xi_{j m}, m=1,2,3,4$, are the values of ξ_{j} at the four nodes of the triangular subelement.

Fig 5.7 Element Subdivision

Fig 5.8 Subelement Coordinates ζ_{j}
$L_{m}(\underline{\zeta})$ are the linear interpolating functions defined by

$$
\begin{aligned}
& \mathrm{L}_{1}(\underline{\zeta})=\frac{1}{4}\left(1-\zeta_{1}\right)\left(1-\zeta_{2}\right) \\
& L_{2}(\underline{\zeta})=\frac{1}{4}\left(1-\zeta_{1}\right)\left(1+\zeta_{2}\right) \\
& L_{3}(\underline{\zeta})=\frac{1}{4}\left(1+\zeta_{1}\right)\left(1+\zeta_{2}\right) \\
& L_{4}(\underline{\zeta})=\frac{1}{4}\left(1+\zeta_{1}\right)\left(1-\zeta_{2}\right)
\end{aligned}
$$

The Jacobian of transformation from ξ_{j} to ζ_{j} is

$$
H(\underline{\zeta})=\left[\begin{array}{cc}
\frac{\partial \xi_{1}}{\partial \zeta_{1}} & \frac{\partial \xi_{1}}{\partial \zeta_{2}} \\
\frac{\partial \xi_{2}}{\partial \zeta_{1}} & \frac{\partial \xi_{2}}{\partial \zeta_{2}}
\end{array}\right]
$$

in which $\partial \xi_{j} / \partial \zeta_{k}$ is evaluated from representation (5.5.2). Thus the transformation from ζ_{j} to the global coordinates x_{j} is via the Jacobian $J(\underline{\xi}) H(\underline{\zeta})$. A typical integral from eq.(5.4.3) takes the form

$$
\begin{equation*}
\int_{-1}^{+1} \int_{-1}^{+1} \overline{\mathrm{~T}}_{j \mathrm{k}}\left(\mathrm{P}^{\mathrm{a}}, \mathrm{Q}(\underline{\underline{\xi}}(\underline{\zeta}))\right) M_{\mathrm{C}}(\underline{\xi}(\underline{\zeta})) J(\underline{\xi}(\underline{\zeta})) H(\underline{\zeta}) d \zeta_{1} d \zeta_{2} \tag{5.5.5}
\end{equation*}
$$

over a triangular subelement.

It is observed that at P the singularities of $\bar{T}_{j k}$ and $\bar{U}_{j k}$ are of order $O\left(1 / \bar{R}^{2}\right)$ and $O(1 / \bar{R})$ respectively, section 2.5 . It may be seen that since lines $\zeta_{2}=+1$ and $\zeta_{2}=-1$ converge to a point at P, fig. 5.8 , the Jacobian $H(\underline{\zeta})$ is $O(\bar{R})$. Also the shape function $M_{c}(\underline{\underline{\xi}})$ for all nodes other than that at P is also $O(\bar{R})$. Thus the integrand in (5.5.5) tends to a finite limit at P and the Gauss-Legendre scheme (5.5.1) can be used safely. Now the shape function $M_{P}(\underline{\xi})$ at node P tends to unity at P. The integrands containing $\bar{U}_{j k}$ still tends to a finite limit at P since $\bar{U}_{j k}$ is only $O(1 / \bar{R})$ and the Jacobian $H(\underline{\zeta})$ of $O(\bar{R})$ is still available. So scheme (5.5.1) is still good for such integrals. The integral containing $\bar{T}_{j k}$ for node P, however, does not exist over element ℓ alone, but its principal value over all surrounding elements exists. Just as in the two-dimensional problem of previous chapter, ignoring this principal value does not introduce much error into our results. For the Gauss-Legendre quadrature scheme (5.5.1) the order $\left(n_{1}, n_{2}\right)$ used was $(4,4)$ for the small elements in the loaded region and $(8,4)$ and $(10,4)$ for the outer elements.

5.6 APPLYING THE BOUNDARY CONDITIONS TO THE ALGEBRAIC EQUATIONS

After the integration described in the previous section we end up with the system of equations

$$
\begin{equation*}
\left[\mathrm{B}_{1}\right]\{\mathrm{u}\}=\left[\mathrm{B}_{2}\right]\{t\} \tag{5.6.1}
\end{equation*}
$$

similar to system (4.6.1) in chapter 4. In expanded form

$b_{m n}^{(1)}$ are 3×3 submatrices obtained from integrations of kernel tensor $\overline{\mathrm{T}}_{j k}$, and $b_{m n}^{(2)} 3 \times 3$ submatrices obtained from $\overline{\mathrm{U}}_{j k}$. As in the two-dimensional case we are now in a position to apply any boundary conditions we care to prescribe. The desired final system of equations is of the form

$$
\begin{equation*}
[A]\{Z\}=\{B\} \tag{5.6.3}
\end{equation*}
$$

in which $\{z\}$ is the vector of the unknowns and $\{B\}$ is formed from the prescribed boundary data.

The system (5.6.2) is partitioned to distinguish between variables in the loaded region $S_{1}{ }^{\circ}$ and those in the stress-free surface S_{0}

(5.6.4)

The procedure for applying the boundary conditions described in section 5.3 is straightforward and exactly the same as described in chapter 4. The shuffling of the elements of matrices B_{1} and B_{2} applies only to the S_{1}-columns. We describe here the procedure only for the general six degrees-of-freedom motion, the others being even more straightforward.

The Six Degree-of-freedom Vibration
As in chapter 4 a suitable choice of the array $\overline{\mathrm{V}}_{\mathrm{n}}^{(\mathrm{m})}$ is selected to ensure that system (5.3.6) is not singular. To effect eqs.(5.3.1), multiply the u_{1}-columns of matrix B_{1} by $\overline{\mathrm{V}}_{1}^{(\mathrm{m})}-\overline{\mathrm{x}}_{2} \overline{\mathrm{~V}}_{6}^{(\mathrm{m})}$, the u_{2}-columns by $\overline{\mathrm{V}}_{2}^{(\mathrm{m})}+\overline{\mathrm{V}}_{6}^{(\mathrm{m})}$ and the u_{3}-columns by $\bar{v}_{3}^{(m)}+\bar{x}_{2} \bar{v}_{4}^{(m)}-\bar{x}_{1} \bar{v}_{5}^{(m)}$, sum up the results and transfer the sum to the mth column of array B, which should have up to six columns available.

To effect eqs.(5.3.2), all the S_{1}-columns of matrix B_{2} are transferred to replace those of B_{1} as the coefficients of the unknown stresses. Again the procedure can very neatly be coded in a computer subprogram.

After sorting the final system the stress integrals $\bar{Q}_{n}^{(m)}$ are computed and the stiffnesses obtained as described in section 5.3, eq.(5.3.6)

As in the problem of chapter 4 computer space does not have to be allocated for the entire size of array B_{2}. In this case only three rows of the S_{1}-columns are required at any one time because for a given position of point P, integration of eq.(5.4.3) yields three rows of equations simultaneously corresponding to $j=1,2,3$. The boundary conditions are applied immediately after the rows are computed and the space allocated to B_{2} is released for the next round of integrations.

To solve the general six degrees-of-freedom motion as described above requires storage allocation for all the nodal variables in the entire mesh of figs.5.2, 5.3, 5.4 because no symmetry is expected. Disc-based method of solution would be required. The results presented in this chapter for vertical mode do admit symmetry, and requires only computer in-core handling of , the matrices.

5.7 RESULTS AND DISCUSSIONS

(a)i Circular Foundation

The circular foundation is a good test case to check the accuracy of the BIE formulation because solutions of many aspects of the vibration are well known. In particular we shall use the vertical and torsional modes. The vertical mode has been well analysed by Awojobi and Grootenhuis (1965). Closed-form analytical solution for the torsional mode has been given by Reissner and Sagoci (1944), the graphical reproductions of which may be obtained from Eringen and Sunubi (1975) or Arnold, Bycroft and Warburton (1955). The latter reference also provides experimental results for the two modes of vibration.
(a)ii Circular Foundation, Vertical Vibration

It was found that the compliance curves converged to a definite limit for integration over regions indicated by radius R_{o}, fig. 5.5 b , greater than or equal to 5 . This value is therefore used for all computations for the circular foundation.

Fig.5.10 shows the compliance for vertical vibration under relaxed conditions. In the figure the approximate analysis of Arnold, Bycroft and Warburton (1955) compares fairly well with the present results. The response of the foundation is calculated for three mass ratios and compared with the
analytical solutions of Awojobi and Grootenhuis (1965) in fig.5.11 where remarkable agreement is observed. The experimental results of Arnold et al are also included in the figure.

(a)iii Circular Foundation, Torsional Vibration

The shear stress under the rigid body is computed as the non-dimensional quantity $\bar{\tau}=\pi \tau / 4 \mu \Theta_{3}$ using the notation introduced in section 5.4 for the cylindrical coordinate system. The components of the stress in phase with and in quadrature with displacement are plotted in figs.5.12 and 5.13 respectively. The in-phase component decreases with increasing Irequency factor η_{2} while the quadrature component increases. The results are independent of Poisson ration.

The torsional stiffness is plotted in fig.5.14. The compliance, inverse of stiffness, is plotted in fig.5.15. The compliance, a non-dimensional ratio of angle of rotation V_{6} and the resultant moment Q_{6} of surface shear stress, is compared in fig.5.15 with the exact results by Reissner and Sagoci (1944). Remarkable agreement is achieved.

In fig.5.16 the non-dimensional torsional response amplitude $\bar{W}_{6}=\mu b W_{6} / F=\mu b^{3} \Theta_{3} / \Upsilon_{3}$ is computed for inertia ratios $m_{66}=\bar{J}_{3} / \rho b^{5}=5.34$, 3.49. Discrepancies exist between these results and those of Awojobi and Grootenhuis (1965), but good agreement is achieved with the experimental results of Arnold,

Bycroft and Warburton (1955) at frequencies below resonance.
(b)i Rectangular Foundation, Vertical Vibration

The effect of truncation of the BIE integrals on the results was examined with square foundation in vertical vibration. The compliance is plotted in fig. 5.17 for various values of R_{0} Convergence is rapidly achieved, and in fact the only results that are out of place are those corresponding to excluding the whole free surface from the integration $\left(R_{0}=1\right)$. The results for $R_{0}=5$ and $R_{0}=10$ coincide, and indicate that no further increase in R_{0} will give any difference in the results. The value $R_{0}=5$ is used in subsequent results.

In fig.5.18a and 5.18 b the real and imaginary parts of vertical compliance are compared respectively with similar results from Wong and Luco (1976) for Poisson ratio 1/3. Discrepancies are observed. It may also be noted that wong and Luco obtained their results from numerical integration of complicated infinite integrals involving oscillatory functions whose accuracy is always difficult to guarantee. Results from Hamidzaden (1978) are also included. The present results lie midway between the two previous works.

The dynamic stiffnesses for various width/length ratio a_{r} of the rectangular foundation are also computed and presented in figs.5.19. In figs.5.20a,b,c the vertical response is presented for aspect ratios $a_{r}=1,8,16$ respectively for various mass ratios \bar{m}_{33}

The in-phase and quadrature components of the normal stress distribution are plotted in figs.5.21a and 5.21b respectively for a square foundation. The values plotted are those taken along one-half of the center line of the square, and are for Poisson ratio $1 / 4$ of the supporting medium. The two-dimensional stress distribution is symmetric along the vertical x_{3}-axis. It is observed that the in-phase component of stress decreases with increasing frequency factor, fig.5.21a, while the quadrature component increases, fig.5.21b. The results clearly indicate the characteristic edge singularities of the stress distribution, and demonstrate that this significant feature is not lost in the BIE formulation, unlike other numerical methods such as that of Wong and Luco (1976).

A fuller picture of the stress distribution is presented in the three-dimensional computer graphical outputs of figs.5.22a,b for frequency factor 0.05 , and figs.5.23a,b for frequency factor 0.8. The graphs show the stresses plotted as ordinates on one quadrant of the square base (the negative of the quadrature components are plotted). The edge singularities may be clearly observed, the peaks being sharper at the corners. Imagining the picture for the whole square base taken together presents a rather interesting image of a sporting arena surrounded by stepped seats with floodlight posts at the four corners.

(b)iii Rectangular Foundation, Horizontal Vibration

The horizontal vibration is considered for a square foundation and Poisson ration of the supporting medium of $1 / 3$. The real and imaginary parts of the shear stress \bar{t}_{2} are plotted in figs.5.24 and 5.25 respectively. The stresses plotted are those values selected along one half of the center line of the square in x_{1}-axis. The general picture for the entire square would be similar to the three-dimensional plots of figs. $5.22 \mathrm{a}, \mathrm{b}$ and $5.23 \mathrm{a}, \mathrm{b}$. As in the circular case, the stress component in phase with displacement decreases with increasing frequency factor while the quadrature component increases.

The horizontal stiffness is shown in fig.5.26. The compliance is plotted in fig.5.27 and compared with the results of Wong and Luco (1976). Large differences are noticed. It is interesting to note that Wong and Luco found that in their numerical integration scheme, the finer they made their mesh grid, see fig.1.1 in chapter 1, the lower their compliance curve. A still finer mesh may be required for their results to converge to the results of this study in fig.5.27.

The horizontal response of the foundation is plotted in fig.5.28 for mass ratios $\bar{m}_{22}=150,40,10$.

Next we present some interesting results.
(c) On the Idealisation of a "Long" Rectangular Foundation as Infinite Strip

It is informative to ivestigate the question of approximating a long rectangular foundation by an infinite strip. The accuracy of such approximation obviously depends on the length of the rectangle compared to its width. In this section the minimum length/width ratio required for a given approximation is examined.

We consider a rectangular foundation with a base of width/length ratio $a_{r}=b / a$, fig.5.9, excited in vertical direction (only vertical vibration is examined).

Fig 5.9 Rectangular Base

The mass per unit length is m^{\prime}. First the analysis of chapter 4 is used to compute the resonance frequency, considering the foundation as an infinite strip of width $2 b$. Then the analysis of this chapter is used to compute the same quantity taking the foundation base as a finite rectangle that it is. The two results are then compared for various values of the ratio a_{r}. To be sure that the same quantities are compared in the two cases the frequency factor is taken as $\eta_{0}=b \omega / c_{2}$ and a new mass ratio is defined by $m_{0}=m^{\prime} / \rho b^{2}$. These quantities preserve the definitions used in chapter 4 for frequency factor η_{2} and mass ratio \bar{m}_{22} respectively since the half-width was identified with the characteristic length "b". In the three-dimensional analysis of this chapter the characteristic length " b " of the body has been taken as the half-length of the rectangle. Thus the mass ratio " \bar{m}_{33} " and frequency factor $" \eta_{2}$ " relate to m_{0} and η_{0} respectively by $\bar{m}_{3 j}=2 a_{r}^{2} m_{0}, \quad \eta_{2}=n_{0} / a_{r}$.
In Table 5.1 the resonance frequency factor n_{0} computed by the two methods are compared for various mass ratios $m_{0}=40$, 70, 100, 150. Some of the resonance curves for the three-dimensional analysis are shown in figs.5.20a,b,c. The difference between the two results is expressed as a percentage error based on the three-dimensional results. In fig.5.29 this error is plotted against $1 / a_{r}$ for the various mass ratios considered. Thus suppose we have a rectangular foundation of width/length ratio a_{r}. If we proceed to
simplify matter by assuming an infinitely long ractangle so that the analysis of chapter 4 holds, the error involved in the predicted resonance frequency for a given mass ratio is indicated in fig.5.29 as a percentage of the true result, the true result meaning that obtainable by employing the proper three-dimensional analysis. The smaller the mass ratio the smaller the error. For mass ratio of 40 or less the length of the rectangular base must be at least six times greater than the width to achieve an error of less than 10\%. The two-dimensional approximation under-estimates the resonance.

The fact that the error increases with increasing mass ratio may be understood in terms of the role that the mass of the supporting half space plays in the dynamics of foundations. At high mass ratio the rigid foundation provides the greater portion of the effective vibrating mass in the system, while the supporting medium serves mainly to provide the stiffness element. Analogous to an idealised mass-spring system, therefore, the response of the foundation becomes sensitive to the way in which the array of springs is assembled under it, so that it becomes less appropriate to equate the geometry a finite rectangular base imposes on the supporting medium to that imposed by an infinite strip. On the other hand at low mass ratio most ot the effective vibrating mass comes from the distributed mass in the half space, whicn now provides the mass as well as the stiffness elements. The distribution of the stiffness elements becomes
less important because it is followed by similar distribution of the mass elements.

We note interestingly that for a given mass ratio the error of infinite strip idealisation reduces with increasing length/width ratio $\left(1 / a_{r}\right)$ of the rectangular base. The longer the rectangle the less significant the edge singularity of the stress distribution at the ends (as far as contribution to the integrals of the stress is concerned), as may be observed from fig.5.30. In this figure the in-phase and quadrature components of the normal stresses are plotted along one half of the length-wise center line of the rectangle, i.e., line $O B$ in fig.5.9. The distance along the line, divided by the semi-width "b", is the abscissa of fig.5.30. The stresses are plotted for rectangles of width/length ratio $a_{r}=1,1 / 4,1 / 16$ and frequency factor 0.6 , the aim being to show the effect of the edge singularity on the integrals of the stress which form the dynamic stiffness. It may be observed that the larger the value of $1 / a_{r}$, i.e., the longer the rectangle, the smaller the proportion of the stress integral contained in the region of the singularity. This is in agreement with what is expected from physical reasoning. Consequently the infinite strip analysis which ignores this end singularity becomes less inaccurate.
(d) Concluding Remarks.

The BIE method is as effective for the three-dimensional problem of foundation dynamics as it is for the two-dimensional problem. Again we observe that the same one equation is applicable to any shape of foundation or contact conditions. Many known results have been reproduced easily and cheaply. The agreement of the results for the circular foundation with experimental and exact results is remarkable, figs.5.11 and 5.16. The main computer program consists of setting up the system of equations (5.6.2). With circular symmetry introduced for the circular foundation we ended up only 32 algebraic equations. The calculation of dynamic stiffness for one particular frequency factor took 25 seconds on the average on the CDC Cyber 174 computer at Imperial College. For the rectangular foundation in which such simplification did not exist, 120 algebraic equations had to be solved, and the computation for one frequency factor took 40 seconds on the average.

The flexibility of the BIE method has allowed us to investigate quantitatively the question of how long a rectangular foundation should be compared to its width before it can be safely approximated as an infinitely long rectangular strip. It is hoped that the method will prove to be the easiest way of investigating more of those aspects of foundation dynamics that have so far appeared formidable to
analyse. In the next chapter an indication is given on how the BIE method may be used to investigate the interaction of many foundations on the earth surface and the analysis of flexible foundations.

TABLE 5.1 RESONANCE FREQUENCIES BY TNO TYPES OF ANALYSIS

$1 / a_{r}$	RESONANCE FREDUENCY η_{0}		$\left\{\begin{array}{l} \% \tag{2}\\ \left(\begin{array}{l} \text { DIFFERENCE } \end{array}\right. \\ (3)-(2)) / C \end{array}\right.$
	INFINITE STRTP ANALYSIS	FINITE RECTANGiJAR ANALYSIS (3)	
$m_{0}=40$			
1	. 165	. 275	40
4	. 66	. 8	17.5
8	1.32	1.38	4.3
10			
16			
$m_{0}=70$			
1	. 12	. 21	42.8
4	. 48	. 63	23.8
8	. 96	1.1	12.7
10	1.2	1.35	11.1
16	1.92	1.95	1.5
$\mathrm{m}_{0}=100$			
1	$\cdot 1$. 175	42.8
4	. 4	. 54	26
8	. 8	. 95	15.8
10	1.0	1.17	14.5
16	1.6	1.70	5.9
$m_{0}=150$			
1	. 085	. 15	43.0
4	. 34	. 45	24.4
8	. 68	. 82	17.1
10	. 85	. 97	12.4
16	1.36	1.46	6.8

FIG.5.10 VERTICAL COMPLIANCE FOR CIRCULAR FOUNDATION.

POISSON RATIO $=0$.

FIG.5.11 NON-DIMENSIONAL VERTICAL AMPLITUDE OF CIRCULAR FOUNDATION. POISSON RATIO $=0$.
Present Results
—————esults from Awojobi and
Grootenhuis
(1965)

FIG 5. 12 SHEAR STRESS DISTRIBUTION UNDER A RIGID CIRCULAR FOUNDATION IN TORSION.
(stress component in phase with
displacement)

FIG 5.13 SHEAR STRESS DISTRIBUTION UNDER A RIGID CIRCULAR FOUNDATION IN TORSION.
(stress component in quadrature with
displacement)

FIG 5.14 TORSIONAL STIFFNESS FOR CIRCULAR FOUNDATION.

FIG 5. 15 TORSIONAL COMPLIANCE FOR CIRCULAR FOUNDATION.

> FIG 5. 16 NON-DIMENSIONAL TORSIONAL RESPONSE AMPLITUDE OF CIRCULAR FOUNDATION.
\(\left.\begin{array}{rl}··· \& Present Study

···-··· Awojobi and Grootenhuis (1965)

\bullet

\square\end{array}\right\}\)| Experimental Results by Arnold, |
| :--- |
| Bycroft and Warburton (1955) |

FIG.5.17 EFFECT OF R ON THE VERTICAL COMPLIANCE OF SQUARE FOUNDATION.

POISSON RATIO $1 / 3$

- 167 -

FIG.5.18a VERTICAL COMPLIANCE (REAL PART OF) FOR RIGID SQUARE FUUNDATION. POISSON RATIO = $1 / 3$

FIG.5.18b VERTICAL COMPLIANCE (IMAGINARY PART OF) FOR RIGID SQUARE FOUNDATION. POISSON RATIO $=1 / 3$

FIG.5.19 VERTICAL STIFFNESS FOR RECTANGULAR FOUNDATIONS OF VARIOUS WIDTH/LENGTH RATIOS a_{r}. POISSON RATIO $1 / 3$

FIG.5.20a VERTICAL RESPONSE FOR RIGID

FIG.5. 20b VERTICAL RESPONSE FOR RIGID RECTANGULAR FOUNDATION, WIDTH/LEINGTH RATIO 1/8
PUISSON RATIO 1/4

FIG.5.20c VERTICAL RESPONSE OF RIGID RECTANGULAR FOUNDATION, WIDTH/LENGTH RATIO 1/16. POISSON RATIO 1/4

FIG. 5.21a NORMAL STRESS DISTRIBUTION ALONG CENTER LINE OF SQUARE FOUNDATION IN VERTICAL VIBRATION.
PUISSON RATIO $=1 / 4$
(Stress Component in Phase with Displacement)

FIG.5.21b NORMAL STRESS DISTRIBUTION ALONG CENTER LINE OF SQUARE FOUNDATION IN VERTICAL VIBRATION.

PUISSON RATIO = $1 / 4$
(Stress Component in Quadrature with Displacement)

FIG 5.22a NORMAL STRESS DISTRIBUTION UNDER RIGID SQUARE FOUNDATION IN VERTICAL VIBRATION. POISSON RATIO $1 / 4$. FREQUENCY FACTOR 0.05. (stress component in phase with displacement)

FIG $5.22 b$ NORIMAL STRESS DISTRIBUTIUN UNDER RIGID SQUARE FOUNDATIUN IN VERTICAL VIBRATION POISSON RATIO $1 / 4$. FREQUENCY FACTUR 0.05

- (stress component in quadrature with displacement)

FIG 5.23 a NURMAL STRESS DISTRIBUTION UNDER RIGID SQUARE FOUNDATION IN VERTICAL VIBRATION. poisson ratio 1/4. frequency factor 0.8
(stress component in phase with displacement)

FIG 5. 23b NURMAL STRESS DISTRIBUTIUN UNDER RIGID SQUARE FOUNDATION IN VERTICAL VIBRATION. POISSON RATIO 1/4. FREQUENCY FACTOR 0.8

- (stress component in quadrature with displacement)

FIG.5.24 SHEAR STRESS DISTRIBUTION ALONG CENTER LINE OF RIGID SQUARE FOUNDATION IN HORIZONTAL VIBRATION. POISSON RATIO $1 / 3$
 (stress component in phase with displacement)

FIG 5.25 SHEAR STRESS DISTRIBUTION ALONG CENTER LINE OF RIGID SQUARE FOUNDATION IN HORIZONTAL VIBRATION. POISSON RATIO $1 / 3$
(stress component in quadrature with displacement)

FIG.5. 26 HORIZONTAL STIFFNESS FOR SQUARE FOUNDATION POISSON RATIO $1 / 3$.

FIG 5. 27 HORIZONTAL COMPLIANCE FOR RIGID SQUARE FOUNDATION. POISSON RATIO $1 / 3$.

FIG.5. 29 \% ERROR IIN RESONANCE FREQUENCY PREDICTION BY THE INFINITE STRIP ANALYSIS. POISSON RATIO $1 / 4$

FIG. 5. 30 NURIAL STRESS DISTRIBUTION ALONG LENGTH-WISE CENTER LINE OF RECTANGULAR FOUNDATION IN VERTICAL VIBRATION. POISSON RATIO $=1 / 4$, FREQUENCY FACTUR 0.6

6.1 INTRODUCTION

This chapter examines the BIE metnod as a means of solving the general elastodynamic problem and, consequently, some of the more practical aspects of foundation dynamics such as vibration of flexible foundations. This particular aspect has been difficult to analyse, and the previous methods of analysis of vibration of foundation mentioned in chapter 1 are not easy to apply to such problems especially when arbitrary foundation shapes are involved. This problem is difficult because predicting the dynamic response of finite-size elastic solids and structures subjected to time-dependent loads and/or boundary conditions is a very formidable problem from the point of view of ciosed-form analytical solutions. In elastodynamics this is the problem of elastic wave propagation through solids. The Navier's wave equations (2.2.1) do admit to a simple solution in terms of trigonometric and/or Bessel functions. But it then becomes impossible in most cases to manipulate these functions to satisfy boundary conditions. It will be interesting to examine how the analytical difficulty mounts as we move from bodies of simpler geometry to those of more complicated geometry.

Analytical solutions have been obtained by Chree (1889) to the problem of longitudinal wave propagation tnrough a cylinder of circular cross-section and infinite length. It
was possible to satisfy the boundary conditions of zero stresses all over the surface. The surface consists of the circular lateral face which is a single coordinate surface in cylindrical coordinate system. The end faces of the cylinder do not matter because they are far away at infinity. If we imagine an elastic plate of finite thickness in the z-direction and infinite extent in the x and y-directions, fig.6.1, we also have a body whose boundary is describable with one coordinare surface (in $x-y-z$ system), the other part of the boundary being at infinity. The problem of propagation of elastic wave through such a plate has been solved in close-form by Lamb (1917), and it appears only such simplified geometries can be analysed. A further example is the free vibrations of an elastic sphere, Lamb (1882).

Fig 6.1 Elastic Plate

In fig.6.1 if we make, say, the x-dimension of the plate finite, the problem of wave propagation becomes unsolvable in closed-form, as observed by Morse (1950). The zero-stress conditions can be satisfied on either the x-faces or the z-faces. If the plate is sufficiently wide, the approximation usually made is to satisfy the boundary conditions on the wider z-faces while those on the narrow x-faces are ignored. If both x - and z-dimensions are of comparable sizes we have a bar of rectangular cross-section whose solution is not known. One could go further and make the y-dimension of the plate finite and comparable to other dimensions, so that we have a rectangular parallelopiped. This brings in one more dimension of intractability.

This analytical difficulty is responsible for the dearth of information on some practically useful aspects of foundation dynamics. For example the flexibility of the foundation is ignored because the elastic analysis of the half space is difficult enough let alone introducing that of the foundation.

The usual numerical methods employed in the elastic analysis of a finite body are the finite difference and the finite element methods. In elastostatics researchers have found that the Boundary Incegral Equation (BIE) method has many more superior qualities. One therefore wonders if
these qualities cannot be similarly exploited in elastodynamics.

In this chapter the application of the BIE method to analysis of flexible foundations, as well as interaction of foundations, is examined qualitatively, beginning with analysis of a finite elastic body. Numerical results are not presented.

6.2 VIBRATIONS OF ELASTIC SOLIDS

Consider a block of elastic material of arbitrary shape. A rectangular block is shown in fig.ó. 2 for ease of drawing on the paper.

Fig 6.2 A Block of Elastic Material

It is subjected to a stress distribution $q\left(x_{1}, x_{2}, x_{3}\right)$ on a portion of the surface shown shaded. For the sake of argument we assume the block rests on a rigid $x_{1}-x_{2}$ surface. The stress q varies narmonically with time.

The boundary conditions are such that on the stress-free surfaces of the block, $t_{k}=0, \quad u_{k}=$ unknown, $k=1,2,3$. On the surface in contact with the rigid base, $t_{k}=$ unknown, $u_{k}=0$, and on the loaded area, $t_{k}=$ known, $u_{k}=$ unknown. These boundary data all related by the boundary integral equation, as before,

$$
\begin{align*}
c_{j k} u_{k}(P) & +\int_{S} T_{j k}(P, Q) u_{k}(Q) d s(Q) \\
& =\int_{S} U_{j k}(P, Q) t_{k}(Q) d s(Q) \tag{6.2.1}
\end{align*}
$$

From this one can determine the displacement u at some point of interest on the body and thus map out the mode shape at a given frequency, or one can determine the stress distribution at the contact with the rigid base. Upon dicretising the boundary data we end up with the following system of algebraic equations

$$
\begin{equation*}
\left[A_{1}\right]\{u\}=\left[A_{2}\right]\{t\} \tag{6.2.2}
\end{equation*}
$$

the integration scheme being exactly as described for the foundation problem in chapter 5 .

The free vibrations of the block may be similarly examined. In this case the whole surface is stress-free, the integral on the right hand side of eq.(6.2.1) is zero and the equation reduces to the form

$$
\begin{equation*}
c_{j k} u_{k}(P)+\int_{S} T_{j k}(P, Q) u_{k}(Q) d s(Q)=0 \tag{6.2.3}
\end{equation*}
$$

Althougn this equation has an appearance similar to Fredholm's second integral equation, see Mikhlin (1957), it is essentially not the same because of the second-order singularity $0\left(1 / R^{2}\right)$ of the kernel $T_{j k}$. But as shown by Kupradze (1963), Fredholm's second theorem can be proved for tnis singular integral equation. The equation has a discrete spectrum of proper frequencies (eigenvalues) ω^{2} at whicn non-trivial solutions exists for u_{k}. Since the right hand side of (6.2.3) is zero, the discretised form is the same as eq.(6.2.2) with the right hand side zero. Also since $T_{j k}$ is a non-linear function of ω^{2}, the problem is

6.3 VIBRATION OF AN ELASTIC FOUNDATION ON AN ELASTIC HALF

 SPACEIf the $x_{1}-x_{2}$ plane in fig.6.2 is taken as the surface of the elastic nalf space, the formulation described above applies to the block as the elastic foundation. The system of equations (6.2.2) applies except that both the stresses t_{k} and displacements u_{k} are unknown on the interface. The system of equations (5.6.1) in chapter 5 for the half space applies

$$
\begin{equation*}
\left[B_{1}\right]\{u\}=\left[B_{2}\right]\{t\} \tag{6.3.1}
\end{equation*}
$$

except also that both the contact stresses and displacements with the foundation are unknown. At the interface the displacement compatibility conditions and stress equilibrium conditions are employed

$$
\begin{align*}
& u_{k}^{(f)}=u_{k}^{(h)} \\
& t_{k}^{(f)}=-t_{k}^{(h)} \tag{6.3.2}
\end{align*}
$$

where superscripts (f) and (h) refer to foundation and the half space respectively. Eqs.(6.2.2), (6.3.1) and (6.3.2) form a linear system which can be solved for the unknown interfacial functions.

The work of Krent and Schmidt (1979) on the vibration of elastic circular plate on an elastic half space is interesting, particularly the semi-numerical approach employed. Just as in the initial studies on rigid foundations, such approaches start with simpler geometries like the circular snape and get stuck on more complicated shapes. The method of Krent and Schmidt depends on the availability of a closed-form expression relating the deformation of the elastic plate to the applied stresses. They used the approximate plate equations of Mindin
(1951). Since such expressions are not fortncoming for bodies of arbitrary snapes the only choice at present is an efficient numerical method. The method described here applies to elastic bodies of arbitrary shape.

6.4 INTERACTION OF RIGID FOUNDATIONS ON AN ELASTIC HALF SPACE

In a survey of soil dynamics, whitman (1909) stated that among important unresolved problems is the study of the interaction of nearby masses on the ground. This is another aspect of foundation dynamics in which the BIE appears very effective. The application of the metnod dwells on the fact that all motions of a given foundation are determined by the three components of stress t_{k}, $k=1,2,3$ at the interface. The implementation is feasible due to the fact that the algebraic system of equations (5.6.1) can be set up for a stress distribution over an area of arbitrary shape on the half space as indicated by the shaded area in fig.5.2. Then the area is partitioned into a number of zones e, f, g in fig. 6.3 below. Region n separates the zones. The outer curve C is that within which the BIE integrals have been truncated. The inner curve E is the boundary of the area on which we have some stress distribution. If after setting up the algebraic equations we prescribe zero stresses and unknown
displacements for all nodes within region n, we shall have the zones e, f, g representing tne contact areas of three foundations separated by region h.

In this case the characteristic dimension "b" of the region E used for the dimensionless quantities in eqs.(5.3.3) and (5.3.4) must be chosen so that the entire region E falls within a circle of some convenient radius, say, unity. This is to ensure that for foundations positioned any reasonable distance apart the region E can still permit numerical integration over an area that is not too wide.

The formulation of the problem is very similar to that in section 5.3, chapter 5, for the general six degrees-of-freedom single foundation system - and it must be remembered that each foundation in the present multi-foundation system is exposed to the full six degrees-of-freedom excitation. Unlike section 5.3, however, it will be more convenient to formulate the problem directly in terms of response of a given system of massess, excitation forces/couples, etc, instead of first solving for stiffness which may not be easy to define unambiguously in the present case. We shall assume, as before and witnout loss of generality, that the centers of mass of the foundations are very ciose to the centroids of the bases. $m^{r}, r=e, f, g$, is the mass of foundation r where superscript r is used to refer to the foundation e, f, or g in fig.6.3. $\bar{J}_{j k}, j, k=1,2,3$, are the mass moments of inertia. In order to employ a homogeneous set of notation we may use $m_{j k}^{r}$ to indicate the inertia properties of the foundations in the six possible directions of motion, such that

$$
\begin{aligned}
& m_{j k}^{r}=m^{r}, \quad j=k, \quad j, k=1,2,3 \\
& m_{j k}^{r}=\bar{J}_{j k} / b^{2}, \quad j, k=4,5,6
\end{aligned}
$$

b is a characteristic length of the system of foundations. We put the motions of tne foundations as

$$
\begin{aligned}
& W_{1}^{r}, \\
& w_{2}^{r}, \\
& w_{3}^{r}, \\
& \text { translation in } x_{1} \text {-direction, } \\
& \Theta_{1}^{r}, \quad \text { rotanslation in } x_{2} \text {-direction, } \\
& \Theta_{2}^{r}, \quad \text { rotation about } x_{2} \text {-direction, } \\
& \Theta_{1}^{r} \text {-axis, } \\
& \text { rotation about } x_{3} \text {-axis, } \\
& \text { and define }
\end{aligned}
$$

$$
w_{4}^{r} \text { as } b \epsilon_{1}^{r},
$$

$$
W_{5}^{r} \quad b \epsilon_{2}^{r},
$$

$$
W_{6}^{r} \quad b e_{3}^{r},
$$

so that the complete motion of a foundation is described by $w_{k}^{r}, k=1,2,3, \ldots, 6$.

The reactions of the supporting medium to a given foundation are indicated by the stress integrals Q_{k}^{r}, $k=1,2,3, \ldots, 6$, where Q_{k} are given are given by the stress integrals defined below eq.(5.3.2) with the understanding that integration pertaining to a given foundation is restricted to the contact area between that foundation and the soil.

The excitation forces applied to a foundation are

$$
\begin{aligned}
& \mathrm{F}_{1}^{r}, \\
& \mathrm{~F}_{2}^{r}, \\
& \mathrm{~F}_{3}^{r}, \\
& \text { force applied in } \mathrm{x}_{1} \text {-direction, } \\
& \mathrm{r}_{1}^{r}, \\
& \text { force applied in } \mathrm{x}_{2} \text {-direction, } \\
& \mathrm{r}_{2}^{r}, \\
& \text { couple applied about } x_{1} \text {-axis, } \\
& r_{3}^{r}, \\
& x_{3} \text {-direction, } \\
& \text { couple applied about } x_{3} \text {-axis. }
\end{aligned}
$$

Define

$$
\begin{array}{ll}
\mathrm{F}_{4}^{r} \text { as } & \mathrm{r}_{1}^{r} / \mathrm{b}, \\
\mathrm{~F}_{5}^{r}, & \mathrm{r}_{2}^{r} / \mathrm{b}, \\
\mathrm{~F}_{6}^{r}, & \mathrm{r}_{3}^{\mathrm{r} / \mathrm{b},}
\end{array}
$$

$$
\text { so that the forces and couples are described by } F_{j}^{r} \text {, }
$$

$$
j=1,2,3, \ldots, 6 .
$$

The six equations of harmonic motion of a foundation are

$$
\begin{equation*}
-\omega^{2}{\underset{m}{j k}}_{r}^{W_{k}^{r}}+Q_{j}^{r} \quad=\quad F_{j}^{r} \tag{6.4.1}
\end{equation*}
$$

$$
\begin{aligned}
& j, k=1,2, \ldots, 6 \\
& r=e, f, g
\end{aligned}
$$

If we had taken account of the coordinate distances of
the centers of mass of the foundations from their respective centroids of base, we would only need to redefine the motions W_{k}^{r} and forces Q_{j}^{r} and F_{j}^{r} in terms of components through the centers of mass. This omission does not impair the generality of the formulation of the elasticity problem.

The components of displacement and stress on the surface of the half space are indicated by u_{k} and t_{k} as before. Under each foundation these components are u_{k}^{r} and t_{k}^{r} respectively. t_{k}^{r} appear under the integrals involved in the quantities Q_{j}^{r} in eq.(6.4.1) above. u_{k}^{r} are related to W_{k}^{r} through the requirements that each foundation remains rigid during motion,i.e.,

$$
\begin{aligned}
& u_{1}^{r}=W_{1}^{r}-x_{2} \Theta_{3}^{r}=w_{1}^{r}-x_{2} w_{6}^{r} / b \\
& u_{2}^{r}=w_{2}^{r}+x_{1} \Theta_{3}^{r}=w_{2}^{r}+x_{1} w_{6}^{r} / b \\
& u_{3}^{r}=w_{3}^{r}+x_{2} \Theta_{1}^{r}-x_{1} \Theta_{2}^{r}=w_{3}^{r}+\left(x_{2} W_{4}^{r}-x_{1} w_{5}^{r}\right) / b
\end{aligned}
$$

as in eqs.(5.3.1). So u_{k}^{r} are known in terms of W_{k}^{r} under the foundations, while t_{k} remain unknown. But u_{k} remain unknown elsewhere while $t_{k}=0$.

All the displacements and stresses are related by the boundary integral equation, as before,

$$
\begin{align*}
c_{j k} u_{k}(P) & +\int_{S} T_{j k}(P, Q) u_{k}(Q) d s(Q) \\
& =\int_{S} U_{j k}(P, Q) t_{k}(Q) d s(Q) \tag{6.4.3}
\end{align*}
$$

The aim is to extract the stress integrals Q_{j} in terms of W_{k} from above equation using eq.(6.4.2) and then substitute them into the equations of motion (6.4.1). The implementation is to discretise the equations over a suitable mesh of nodes superposed over fig.6.3 and solve the resulting set of algebraic equations simultaneously.

The numerical integration scheme for the boundary integral equation is exactly as described in chapter 5, with the mesh elements covering up to the circle C in fig.6.3. Some of the elements are arranged to have part of their boundaries coincide with the appropriate bondary lines in fig.6.3, just like the single foundation problem. It is noted that the quadratic variation of variables employed over an element is adequate for modelling curved boundary lines, e.g., the circular foundation problem of previous chapter. After the integration we arrive at the algebraic
system of equations

$$
\begin{equation*}
\left[B_{1}\right]\{u\}=\left[B_{2}\right]\{t\} \tag{6.4.4}
\end{equation*}
$$

which may be set up immediately witnout regard yet to any particular mode of vibration, contact conditions, or any special aspect of the system we wish to investigate. Equation (6.4.4) above is simply a numerical version of the boundary integral equation. $\{u\}$ is the vector of nodal displacements and \{t\} that of the nodal stresses. The coefficient matrices B_{1} and B_{2} may be partitioned to indicate which terms pertain to nodes in which region in fig.6.3.
S_{o} indicates the stress-free region between curves E and C. It is observed again, as in chapters 4 and 5, that it is not necessary to compute the terms of matrix B_{2} belonging to S_{0} and h because zero stresses shall be
prescribed there. In this system of equations we wish to shuffle between the knowns and unknowns and regroup the unknowns to the left and the knowns to the right.

The vectors $\left\{u^{S o}\right\}$ and $\left\{u^{h}\right\}$ are unknown. The vectors $\left\{u^{e}\right\}$, $\left\{u^{f}\right\}$ and $\left\{u^{g}\right\}$ are regrouped in terms of the new variables $\left\{W^{e}\right\},\left\{W^{f}\right\}$ and $\left\{W^{\mathrm{g}}\right\}$ using the discretised forms of the rigidity equations (6.4.2) to form $6 \times 3=18$ additional columns to the left hand side matrix. The positions vacated by the coefficients of $\left\{u^{e}\right\},\left\{u^{f}\right\}$ and $\left\{u^{\mathrm{g}}\right\}$ are then taken up by the coefficients of the unknown $\left\{t^{e}\right\},\left\{t^{f}\right\}$ and $\left\{t^{g}\right\}$ respectively transferred from the right hand side, which now becomes zero. The new system of equations has a rectangular coefficient matrix on the left hand side and zero on the right, there being 18 less equations than unknowns.

The system is completed by bringing in the discretised forms of the 18 equations of motion (6.4.1) of the rigid foundations, i.e.,

Eqs.(6.4.6) and (6.4.7) form a complete set of equations that may be solved simultaneously for the response $\left\{W^{r}\right\}$ of the foundations together with the nodal stress distributions $\left\{t^{r}\right\}$ under each foundation. Any aspect of the system may be investigated from this set of equations. For example, if only one foundation is excited in one particular manner, the appropriate force components $\mathrm{F}_{\mathrm{j}}^{\boldsymbol{r}}$ are made zero in eq.(6.4.7). The displacement transmission ratio can be found by computing the ratio of the appropriate values of W_{k}^{r}, or the force transmission ratio may be found by computing the ratio of the appropriate excitation force and
stress integrals.

It may be observed that above is the complete formulation of the problem. It takes care of the simultaneous presence of all the foundations and the inter-dependence of the stress distribution under them. The foundations may be of any shape. The only approximation is the discretisation of the equations. The analysis of multi-foundation systems is very rare in the literature. It is worthwhile to compare now the users of the previous methods of analysis of foundation vibrations approached (or might have approached) the problem of interaction of foundations.

6.5 COMPARISON WÏTH PREVIOUS METHODS OF ANALYSIS.

The grouping of previous methods of analysis is that used in section 1.2 of chapter 1 .
(a) Finite Model of the Semi-Infinite Half Space.

As far as the author is aware no work has appeared in the literature employing this method to multi-foundation problems. The method would be difficult to implement because, as observed in chapter 1, the finite model would probably have to be very large before satisfactory accuracy can be achieved. The discretisation over the volume of a
domain is very expensive and less accurate than the BIE method which approximates only over the boundary. After their attempt on the two-foundation problem, discussed below, Warburton, Richardson and Webster (1971) suggested that such problems would more likely be better investigated using three-dimensional finite elements. Truly a numerical approach is best for this type of problem, and the BIE seems to be more attractive.
(b) Analytical Method of Dual Integral Equations.

This method can only be used for simple shapes as circles that can be described by a simple closed-form algebraic expression, and even then only for single-foundation systems. When there are more than one foundation, the shapes of the contact areas (even if individually circular) taken together cannot be so described and the method becomes cumbersome when it comes to applying the boundary conditions of non-zero surface stresses on patches of the surface.

This is probably why researchers have been forced to first analyse a single foundation before imposing the presence of the second one by some approximations. Richardson, Webster and Warburton (1971) computed displacements on the surface of the half space near to a single harmonically excited circular foundation. Then Warburton, Richardson and Webster (1971) employed an averaging technique over these

(c) Green Function Approach.

The approach of Hamidzadeh (1978) on a system of two square foundations is the same averaging technique over displacements computed in the absence of one of the foundations. Probably because of some untidiness inherent in his single-foundation analysis, he could only allow for certain modes of vibration by each of the foundations instead of letting them execute their coupled motions.

The Green function approach by wong and Luco (1976) is worth mentioning here even though there has been no application of that method to the multi-foundation problem. By now it is clear that the integral representation of the single-foundation problem by wong and Luco, see eq.(1.2.2) in chapter 1, is rather similar to the BIE formulation in that the stress is multiplied by a kernel function and integrated over the soil-foundation interface. So a formulation for the multi-foundation problem similar to the BIE formulation above can be made using the Wong-Luco equation. But the problem with that equation is in the kernel function which itself contains finite and infinite double integrals of oscillatory functions as discussed in section 1.2, whereas the kernels $U_{j k}$ and $T_{j k}$ in the BIE formulation are simple closed-form expressions.
(d) Conformal Mapping of the Half Space.

It is possible to think of applying this technique to the
multi-foundation problem by transforming the entire half space volume to a rectangular parallelopiped and then apply finite difference discretisation. As observed in chapter 1, the resulting large set of equations to solve would be too cumbersome to handle. Moreover, an observation similar to that in paragraph (a) above may be made about this approach, namely, the efforts spent computing quantities at points within the half space are wasted and irrelevant to the foundation problem, and the discretisation of equations throughout the domain leads to less accuracy.

chapter 7

CONCLUSION

7.1 Achievements of the Present

Work211
7.2 Suggestions for Future

7.1 ACHIEVEMENTS OF THE PRESENT WORK

The contribution of the present study to the knowledge of the dynamics of foundations on the elastic half space may be summarised as follows.

A new mathematical tool, the Boundary Integral Equation method, has been developed for analysing the dynamics of foundations on the elastic half space. Addressing directly the physics of the problem, the BIE method is able to seize on the physical requirements in the form of the radiation conditions of elastodynamics to make itself particularly suited to the problems of foundation dynamics. This quality of the method is further enhanced as it deals directly with boundary data, the only data that is most relevant to the foundation problem, and consequently achieves tremendous reduction in problem size. The integrands involved in the method are only simple closed-form expressions, and so numerical implementation is cheap. The BIE is a one equation that provides solutions to all modes of vibration, pure or coupled, as well as various types of contact conditions. As such it sort of presents itself as a universal statement of the dynamics of foundations in so far as it has been tested in this study.

All possible motions of the rigid infinite rectangular
strip foundation have been analysed, including the general three degrees-of-freedom. The pure modes have been compared with existing results. The results for pure vertical mode shows very gond agreement with anaiytical results by Karasudhi, Keer and Lee (1968) and Luco and Westmann (1972). The conditions of frictionless contact and those of fully bonded contact have been investigated. Just as Luco et al observed, fig.4.15 shows little difference between the two types of contact conditions for Poisson ratio of $1 / 4$ (and higher). The compliance for the pure horizontal mode as computed by the BIE method shows equally good agreement with results by Lucn et al. But for the pure rocking mode, the compliance by Luco et al shows slight over-estimation compared with that by this study, fig.4.19. The approximations made by Luco et al in evaluating their integrals were probably biginning to show. The compliances, direct and coupling, for the coupled horizontal-rocking modes also show very good agreement between this study and that by Luco et al, except again for the direct rocking compliance and the coupling compliances. The three degrees-of-freedom motion is mentioned later.

To leave the accuracy of the BIE method in no doubt the well known problem of vibration of foundation with circular base has been analysed. The vertical response amplitude shows remarkable agreement with the well known
results of Awojobi and Grootenhuis (1965) and the experimental results of Arnold, Bycroft and Warburton (1955), fig.5.11. As for the torsional mode, a closed-form analytical solution is available from Reissner and Sagoci (1944) and Sagoci (1944). The agreement between these and the BIE results is remarkable, fig.5.15. We observe equally close agreement with the experimental results of Arnold, Bycroft and Warburton (1955) for the torsional response amplitude.

The rectangular foundation is also analysed. The pure vertical compliance by the BIE method for a square foundation shows the results of Hamidzaden (1978) to be underestimations and those of Wong and Luco (1976) to be nverestimations, figs.5.18a,b. The same observation can be made about pure horizontal vibration in fig.5.27, which probably points to the effect of the difficulties that Wong et al might have had in evaluating the infinite integrals of nscillatory functions involved in their kernel function $G_{j k}$, see eq.(1.2.2) in chapter 1 of this thesis and the subsequent discussions. The vertical vibration has been analysed for rectangular foundations of length/width ratio 1, 4, 8, 10, 16.

The stress distribution under the rigid foundation have also been plotted in some of the cases mentioned above normal stress under infinite rectangular foundation in
vertical vibration, the shear stress under circular foundation in torsion, the shear stress under square foundation in horizontal translation, the normal stress under rectangular foundation of various length/width ratios in vertical vibration. In all of the cases the characteristic edge singularity in the stress distribution is clearly shown even though the value of infinity at the edge of the loaded region was, of course, not obtained in the numerical implementation. The three-dimensional stress plots of figs.5.22a,b and 5.23a,b for the square foundation in vertical vibration are very informative. It is interesting to note that this important feature of foundation dynamics is not lost in the BIE formulation and implementation unlike some numerical methods such as that by Wong and Luco (1976) which only hoped that even though the stress singularity was not adequately represented, the stress integral would be accurate enough for engineering purposes. Knowledge of the stress distribution is important because in addition to consideration of resonance, a foundation designer would like to know the magnitudes and distribution of the stresses he is designing to withstand.

The benefit of the advent of the modern digital computer is felt in most fields of research, and it is desirable that the field of foundation dynamics is not left out. The convenience of investigating most aspects of foundation
dynamics from the same BIE equation allows the problem solution to be presented in a cheap and versatile computer program, see concluding paragraphs of chapters 4 and 5. For example all the results for the infinite rectangular strip foundation in chapter 4 are produced from one program, from which various aspects were investigated by changing a word of input data to read, for example, ROCKING instead of VERTICA mode of vibration, or RELAXED instead of WELDEDD contact conditions. The program requires only 21,000 words of computer memory for in-core handling of all the codes and equations, and takes typically 8 seconds to compute the dynamic stiffness and stress distribution at a particular frequency (by a CDC Cyber 174 batch processor). The results in chapter 5 for foundation of finite size are similarly coded into annther program requiring 51,000 memnry words and typically 40 seconds to execute at one value of frequency factor. Wong and Luco (1976) reported that at one particular frequency, the evaluation of their influence functinn $G_{j k}$, see eq.(1.2.2), took 2 minutes (on an IBM 370/158 batch processor), presumably before proceeding to solve the vibration problem for the square foundation.

It has been intended to present the BIE not only as a more convenient way of analysing foundation dynamics, but also as a means of going beyond where other methnds have usually stopped, and lonking ahead to future developments
in this field and in the field of elastodynamics in general. The three degrees-of-freedom vibration of the infinite rectangular strip foundation has been investigated, and the usually implied assumption has been verified that there is no coupling between the vertical and other modes. The vertical vibration has been analysed for rectangular foundations of length/width ratio of up to 16. It is common to approximate such "lnng" foundations as infinite strips in order to simplify analysis, without examining the errors involved in such approximations. The errors involved have been investigated quantitatively as far as predicting vertical resonance frequencies is concerned. The approximation usually results in underestimation of resonance frequency. For a mass ratio of 40 or less the length of the rectangular base must be at least six times greater than the width to achieve an error of less than 10%, see fig.5.29. As expected the longer the rectangle the smaller the error. But for a given rectangle, the error increases with increasing mass ratio. It is expected that the same trend will hold for other modes.

The BIE is not restricted to the field of foundatinn dynamics. It is, presumably, a statement of the general elastodynamic problem. An indication has been given of how it may be applied as such to the analysis of dynamic response of elastic solids subjected to harmonic loads.

This subject has been the obstacle to the study of some of the more practical aspects of foundation dynamics. The way the BIE can cope with such aspects as the combined problem of vibration of elastic foundation on the elastic half space has been outlined. Also details have been given of a complete formulation with the BIE of the problem of interaction of rigid foundations on the elastic half space.

The formulation presented in this thesis is valid for foundations of arbitrary shape including discontinuities. The formulation of the necessary equations leading to the BIE method has been presented. The use of the method to meet the requirements of foundation dynamics, the necessary numerical manipulation of the method, and solution capabilities to new aspects of foundation problems have been demonstrated. It is felt that the way is now open to the investigation of much more sophisticated problems, with the formulation in this thesis an invaluable tool.

7.2 SUGGESTIONS FOR FUTURE RESEARCH

It was mentioned in section 2.1 , chapter 2, that the Boundary Integral Equation method has not been as developed in the field of elastodynamics as it is in elastostatics. In the latter field the method appears to represent a universal statement of elastostatics in that the same equation solves virtually all types of problems ranging from elastic fracture mechanics and rock mechanics to elastoplastic and thermo-elasticity analysis. It is desirable to carry over the benefits of this new-found tool to elastodynamics, so that hopefully the BIE method could also be regarded as embodying solutions to almost all types of elastodynamic problems. Simple problems to start with include elastic wave diffraction through circular cylinders of infinite or semi-infinite length whose solutions are known, as well as through cylinders of rectangular cross-section whose solutions are difficult to nbtain in clnsed-form. Then bodies of finite snapes can be studied, such as the free vibration of an elastic sphere whose solution is known, and then the rectangular parallelnpiped whose solution is not known. Once the elastodynamic deformation of finite bodies can be successfully analysed, the way is paved for introducing flexibility into foundatinns of arbitrary shape, and then for such studies as the effect of topology on surface waves.

The interaction of foundations on the elastic half space may now be fully studied. But this requires first a fuller investigation of the unconstrained (six degrees-of-freednm) vibration of foundation of arbitrary shape.

It must be stated that there is plenty of scope for improvement on the implementatinn of this BIE scheme. This thesis is simply to draw the attention of researchers to this convenient method of analysis. As new and improved methods of numerical implementation of the scheme continue to evolve in elastostatics it is desirable that elastodynamics does not fall behind.

apperdix A				
THE	CONCEPT	OF	"elastodynamic	STATE"
section				page
A. 1	Definitions	 221
A. 2	Elastodynamic	State	e 221

A. 1 DEFINITIONS

Following Eringen and Suhubi (1975), we may use the notation $C^{m, n}(D, r)$ where m and n are integers, to define the class of all functions that exist and are continuous with their spatial derivatives of order up to and including m and time derivatives of order up to and including n, on Dxr. The latter notation Dxr denotes a spatial region D and a time interval r. $\Phi \in C^{m, n}(D \times r)$ implies that the function Φ belongs to class $c^{m, n} . \mathbf{r}^{-}$is used to denote the state of the past, and \mathbf{r}^{+}, that of the present and henceforth.

This latter classification of \mathbf{r} is needed only for transient problems. In our present case of steady state elastodynamics, harmonic time variation is assumed. It is therefor sufficient to write the class $C^{m}(D)$ and bear in mind that a function $\Phi \in C^{m}(D)$ is a function of frequency.

A. 2 THE ELASTODYNAMIC STATE

This is a convenient reference to all the parameters and field variables existing in an elastic domain during a given (steady state) event. Let D be a spatial domain
with boundary S. If \underline{u} and $\underline{\sigma}$ are, respectively, a vector-valued and a symmetric second-order tensor-valued function defined on D, we call the ordered pairs $\mathscr{A}=[\underline{u}, \underline{\sigma}]$ an elastodynamic state on D with the displacement field \underline{u} and the stress field $\underline{\sigma}$, corresponding to a body force density f, mass density ρ, irrotational wave speed c_{1}, and equivoluminal wave speed c_{2}. The following provisions are assumed to hold.
(a) $\underline{u} \in C^{2}(D), \quad \underline{u} \in C^{l}(D), \quad \underline{\sigma} \in C^{0}(D), \quad \underline{f} \in C^{0}(D)$.

The stress and body force functions are allowed to be discontinuous. The constants ρ, c_{1}, and c_{2} are subject to

$$
\rho>0, \quad c_{1}>2 / \sqrt{3} c_{2}>0
$$

(b) $\underline{u}, \quad \mathrm{f}, \mathrm{c}_{1}$ and c_{2} satisfy the Navier's elastodynamic equation of motion (2.2.2) with body force included, namely,

$$
\left(c_{1}^{2}-c_{2}^{2}\right) \nabla \nabla \cdot \underline{u}+c_{2}^{2} \nabla^{2} \underline{u}+\omega^{2} \underline{u}+\underline{f}=0
$$

With this definition the notion of elastodynamic states (1), $\mathscr{A}_{1}\left[\underline{u}, \underline{\sigma}_{1}\right]$, and (2), $\mathscr{L}_{2}\left[\underline{u}_{2}, \underline{\sigma}_{2}\right]$ become clear as belonging to two different events. For example in the formulation of the boundary integral equation in section
2.5, chapter 2, one of the two distinct elastodynamic states involved in the Betti-Rayleigh equation (2.3.4) of section 2.3, namely \mathcal{A}_{1}, is taken to correspond to the Stoke's problem of a concentrated time-harmonic body force acting in a given direction in an infinite domain. The other state \mathscr{S}_{2} is the problem we wish to solve.

appendix B

SOME ALGEBRAIC DETAILS
section page
B. 1 Expansion of $U_{j k}$ for Two- Dimensional Problems 225
B. 2 Differentiations of $U_{j k}$ to Obtain $T_{j k}$, Two-Dimensional
Problems 227
B. 3 Expansion of $U_{j k}$ for Three- Dimensional Problems 229
B. 4 Differentiations of $U_{j k}$ to
Obtain T_{jk}, Three-Dimensional
Problems 239

B. 1 EXPANSION OF $U_{j k}$ FOR TWO-DIMENSIONAL PROBLEMS

The expression for $U_{j k}$ is given by eq.(2.4.3)
$U_{j k}(P, Q)=\frac{i}{4 P}\left\{\frac{1}{c_{2}^{2}} H_{o}^{(1)}\left\{k_{2} R\right\} \delta_{j k}+\frac{1}{\omega^{2}} \frac{\partial^{2}}{\partial x_{j} \partial x_{k}}\left(H_{o}^{(1)}\left\{k_{2} R\right\}-H_{o}^{(1)}\left\{k_{1} R\right\}\right)\right\}$

$$
\begin{equation*}
j, k=1,2 \tag{B.1.1}
\end{equation*}
$$

in which

$$
R=\left(\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right)^{1 / 2}
$$

It will be convenient to employ the following short form notations.

$$
\{\cdot\}_{, j} \equiv \frac{\partial}{\partial x_{j}}\{\cdot\}
$$

where the dot within the brackets indicate any given expression.

Also

$$
\begin{aligned}
B_{m n} & \equiv R_{, m^{R}, n} \\
\delta_{m n} & \equiv \text { the Kroenecker delta }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial n} \equiv \text { directional derivative along unit normal } n . \\
& \text { summation is implied on repeated subscripts. }
\end{aligned}
$$

The following identities will be useful and may be verified

$$
\left\{H_{0}\left(k_{j} R\right)\right\}_{, m}=-k_{j} H_{p}\left(k_{j} R\right) R_{, m}
$$

Therefore it is easy to show that

$$
\left\{H_{0}\left(k_{j} R\right)\right\}_{, m, n}=k_{j}^{2} H_{2}\left(k_{j} R\right) \delta_{m n}+\frac{k_{j}}{R} H_{7}\left(k_{j} R\right) \beta_{m n}
$$

The second term in eq.(B.1.1) above may then be evaluated and the results substituted back into the expression. After grouping terms, the functions Ψ and X are then introduced as defined for eqs.(2.4.4) and (2.4.5) in chapter 2. The final result is obtained as in eq.(2.4.4).

$$
\begin{equation*}
U_{m n}=\frac{i}{4 \mu}\left(\Psi \delta_{m n}+x \beta_{m n}\right) \tag{B.1.2}
\end{equation*}
$$

Let's put $\alpha_{1}=i / 4 \mu$ to save some writing.

B. 2 DIFFERENTIATIONS OF $U_{j k}$ TO OBTAIN $T_{j k}$, TWO-DIMENSIONAL

 PROBLEM.Recall eq. (2.4.2)

$$
\begin{equation*}
T_{j m}=\lambda U_{j r, r} n_{m}+\mu\left(U_{j m, s}+U_{j s, m}\right) n_{s} \tag{B.2.1}
\end{equation*}
$$

By careful manipulations, the following expressions may be simplified.

$$
\begin{aligned}
U_{j r, r} & =\alpha_{1}\left(\Psi \delta_{j r}+\chi \beta_{j r}\right), r \\
& =\alpha_{1}\left(\Psi, r \delta_{j r}+\chi, r \beta_{j r}+\chi \beta_{j r, r}\right) \\
U_{j m, s} & =\alpha_{1}\left\{\left(\Psi \delta_{j m}\right), s+\left(\chi \beta_{j m}\right), s\right\} \\
& =\alpha_{1}\left\{\Psi, s \delta_{j m}+\chi_{, s} \beta_{j m}+\chi_{j m, s}\right\}
\end{aligned}
$$

and similarly for $U_{j s, m}$

$$
\begin{aligned}
U_{j s, m} & =\alpha_{1}\left\{\left(\Psi \delta_{j s}\right), m+\left(\chi \beta_{j s}\right), m\right\} \\
& =\alpha_{1}\left\{\Psi, m \delta_{j s}+\chi_{, m} \beta_{j s}+\chi_{j s, m}\right\}
\end{aligned}
$$

Collecting results into expression (B.2.1),

$$
\begin{aligned}
T_{j m}= & \alpha_{1}\left\{\left(\Psi, r \delta_{j r}+\chi, r \beta_{j r}+\chi \beta_{j r, r}\right)\right. \\
& +\mu n_{s}\left(\Psi, s{ }_{j m}+\chi_{, s} \beta_{j m}+\chi \beta_{j m, s}\right) \\
& \left.+\mu n_{s}\left(\Psi, m \delta_{j s}+\chi_{, m} \beta_{j s}+\chi \beta_{j s, m}\right)\right\}
\end{aligned}
$$

After a considerable amount of indicial manipulation we find

$$
\begin{aligned}
T_{j k}(P, Q)= & \frac{i}{4}\left(A_{1} \frac{\partial R}{\partial n} \delta_{j k}+A_{2} \frac{\partial R}{\partial n} R_{, j} R_{, k}\right. \\
& \left.+A_{3} R_{, k} n_{j}+A_{4} R_{, j} n_{k}\right)
\end{aligned}
$$

which corresponds to eq.(2.4.5) for which the functions A_{1}, A_{2}, A_{3}, and A_{4} have been defined in chapter 2.

B. 3 EXPANSION OF $U_{j k}$ FOR THREE-DIMENSIONAL PROBLEMS

$$
\begin{aligned}
& \text { The expression for } U_{j k} \text { is given by eq.(2.4.1) } \\
& \begin{aligned}
& U_{j m}= \frac{1}{4 \pi \rho}\left\{\frac{1}{c_{2}^{2} R} \exp \left(i k_{2} R\right) \delta_{j k}\right. \\
&\left.+\frac{\partial^{2}}{R \omega^{2} \partial x_{j} \partial x_{m}}\left(\exp \left(i k_{1} R\right)-\exp \left(i k_{2} R\right)\right)\right\} \\
& j, m=1,2,3
\end{aligned}
\end{aligned}
$$

in which

$$
R=\left(\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}\right)^{1 / 2}
$$

The short form notation introduced in section B. 1 above holds except that the indices range over 1,2,3 instead of just 1,2

If R_{j} is the compnent of the vector of position from $P(\underline{y})$ to $Q(\underline{x})$, we find, after carrying out the differentiations indicated in expression (B.3.1) above,

$$
\begin{aligned}
U_{j m}= & \frac{1}{4 \pi \rho}\left\{(\frac { 3 R _ { j } R _ { m } } { R ^ { 3 } } - \frac { \delta _ { j m } } { R }) \left[\left(\exp \left(i k_{2} R\right)-\exp \left(i k_{1} R\right)\right) / \omega^{2} R^{2}\right.\right. \\
& \left.+\left(\frac{1}{c_{2}} \exp \left(i k_{2} R\right)-\frac{1}{c_{1}} \exp \left(i k_{1} R\right)\right)\right] \\
& +\frac{R_{j} R_{m}}{R^{2}}\left(\frac{1}{c_{1}^{2}} \exp \left(i k_{1} R\right)-\frac{1}{c_{2}^{2}} \exp \left(i k_{1} R\right)\right. \\
& \left.+\frac{\delta_{j k}}{R c_{2}} \exp \left(i k_{2} R\right)\right\}
\end{aligned}
$$

After simplification involving long manipulation, and regrouping terms,

$$
U_{j m}=\frac{1}{4 \pi \rho} \frac{1}{R}\left(\Psi \delta_{j k}+(3 \Phi+\chi) R_{, j} R_{, m}\right)
$$

where the functions Ψ, Φ and χ have been defined for eqs.(2.4.6) and (2.4.7) in chapter 2. The symbols Φ and χ are used just for convenience and should not be confused with those used in section B.l

B. 4 DIFFERENTIATION OF $U_{j k}$ TO OBTAIN $T_{j k}$ FOR THREE-DIMENSIONAL PROBLEMS

Recall again eq.(2.4.2)

$$
T_{j m}=\lambda U_{j r, r} n_{m}+\mu\left(U_{j m, s}+U_{j s, m}\right) n_{s}
$$

It is useful to observe that

$$
U_{j r, r}=\text { Div. } \underline{U}
$$

where \underline{U} is the second order tensor-valued function $U_{j m}$ If the definition

$$
u_{j p, q}=\frac{\partial}{\partial x_{q}}\left(u_{j p}\right)
$$

is recalled, the differentiations involved in eq.(B.4.1) above is a question of algebra.

The notations $A_{1}, A_{2}, A_{3}, A_{4}$ are e ployed again, but with definitions as given below eq.(2.4.6) and (2.4.7) in chapter 2. The expression for $T_{j k}$ below m be conveniently grouped in terms of the notations to obtain a further simplification.

$$
\begin{aligned}
T_{j k}(P, Q)= & \frac{1}{4 \pi} \frac{1}{R^{2}}\left(A_{1} \frac{\partial R}{\partial n} \delta_{j k}+A_{2} \frac{\partial R}{\partial n} R_{, j} R_{, k}\right. \\
& \left.+A_{3} R_{, k} n_{j}+A_{4} R_{, j} n_{k}\right)
\end{aligned}
$$

corresponding to eq.(2.4.7)

references

1. ABRAMOWITZ M. and STEGUN I.A. eds. (1972)
Handbonk of Mathematical Functinns
Dover Publications, 10th Printing
2. AGABEIN M.E., PARMELEE R.A. and LEE S.L. (1968)
"A Model for the Study of Snil-Structure Interactinn"
Internatinnal Assnciation for Bridge and Structural
Engineering,
8th Cnngress. Theme VI, New York, p. 1
3. ALABI B. (1979)
"A Conformal Mapping Snlution To Elastndynamic Bnundary
Value Problems"
Ph.D Thesis, Imperial College, University of Lnndnn
4. ANG A.H.S. and HARPER G.N. (1964)
"Analysis of Contained Plastic Flow in Plane Snlids"
J. Eng. Mech. Div., ASCE Vnl. 90 p. 397
4. ANG A.H.S. and NEWMARK N.M (1971)
"Develnpment of a Transmitting Bnundary for Numerical
Wave Mntinn Calculation"
Report to the Defence Atnmic Suppnrt Agency,
Washingtnn D.C., April
5. ARNOLD R.N., BYCROFT G. N. and WARBURTON G.B. (1955)
"Fnrced Vibrations of a Bndy on an Infinite Elastic Snlid"
J. Applied Mechanics, Vol. 22 p. 391
6. AWOJOBI A. O. (1966)
"Harmonic Rncking of a Rigid Rectangular Bndy on a Semi-Infinite Elastic Medium"
J. Applied Mechanics, Vol. 88 p. 547
7. AWOJOBI A. O. (1971)
"Approximate Snlutinn of High-Frequency-Factnr Vibratinns of Rigid Bndies on Elastic Media"
J. Applied Mechanics, V $\cap 1.38$ p. 111
8. AWOJOBI A. O. and GROOTENHUIS P. (1965)
"Vibratinns of Rigid Bndies on Semi-Infinite Elastic Media"

Prnc. Rnyal Snciety of Londnn, Vnl.287A p. 27
10. BAKER B. B. and COPSON E. T. (1950)

The Mathematical Thenry of Huygen's Principle Oxford (Clarendnn), 1950, 2nd Ed.
11. BANAUGH R. P. (1963)
"Diffractinn of Steady Acnustic Waves by Surface of Arbitrary Shape"
J. Acnustical Snc. of America, Vnl. 35 p. 1590
12. BANAUGH R. P. (1964)
"Applicatinn of Integral Representations of
Displacements Pntentials in Elastndynamics"
Bulletin, Seismnlngical snc. of America, Vnl. 54 p. 1073
15. BANAUGH R. P. and GOLDSMITH W. (196s)
"Diffractinn of Steady Waves by Surfaces of Arbitrary Shape"
J. Applied Mechanics, Vol. 30 p. 589
14. BERGER B. S. and ALABI B. (1978)
"Snlution of Navier's Equation in Cylindrical
Curvilinear Conrdinates"
J. Applied Mechanics, Vnl. 45 p. 812
15. BETTI E. (1872)
"Tenria dell' Elasticita"
II Nunvn Ciementn, 7-10, 5
16. BREBBIA C. A. (1978)

> The Boundary Element Methnd For Engineers Pentech Press, Lnndnn, 1978
17. BYCROFT G.N. (1956)
"Fnrced Vibratinns of Circular Plate on a
Semi-Infinite Elastic Space and on an Elastic Stratum"
Phil. Trans. of the Rnyal Snciety, Vnl.248A, p. 327
18. CHERTOCK G. (190́4)
"Snund Radiatinn frnm Vibrating Surfaces"
J. Acnusical Snc. of America, Vnl. 36 p. 1305
19. CHREE C. (18ठ̊9)
"The Equatinns of an Isntrnpic Elastic SnLid in Polar and Cylindrical Conrdinates. Their Snlution and Applicatinn"

Trans. Cambridge Philnsnphical Snciety, Vnl. 14 p. 251
20. CLEMENT J.F. (1974)
"Dynamic Respnnse of Structures on Elastic Media"
Ph.D Thesis, Nottingham University.
21. CRUSE T. A. (1967)
"The Transient Problem in Classical Elastndynamics

Snlved by Integral Equatinns"
Ph.D Thesis, University of Washingtnn, 1967
22. CRUSE T. A. (1969)
"Numerical Snlutinns in Three Dimensinnal Elastnstatics" International Jnurnal of Snlids and Structures Vol. 5 p. 1259
23. CRUSE T. A. (1972)

The Surface Crack: Physical Prnblems and Computatinnal Snlutinns

Ed. J.L. Swedlnw
New Ynrk: ASME p. 153
24. CRUSE T. A. (1973)
"Application of the Bnundary Integral Equatinn Method tn Three Dimensinnal Stress Analysis"

Computers and Structures, Vol. 3 p. 509
25. CRUSE T. A. and RIZZO F. J. (1968)
"A Direct Fnrmulation and Numerical Snlutinn of the General Transient Elastndynamic Problem: I"
J. Math. Ananalysis and Applicatinns, Vnl. 22 p. 244
26. CRUSE T. A. and RIZZO F. J. (1968)
"A Direct Formulation and Numerical Solution of the General Transient Elastndynamic Problem: II"
J. Math. Ananalysis and Applicatinns, Vnl. 22 p. 341
27. CRUSE T. A. and RIZZO F. J. (eds.) (1975)
"Bnundary Integral Equation Methnd: Computatinnal
Applicatinns in Applied Mechanics"
ASME Prnc. AMD, Vnl. 111975
28. DOYLE J. M. (1965)
"Radiatinn Conditinns in Elasticity"
J. Applied Math. and Physics (ZAMP), Vnl. 16 p. 527
29. DOYLE J. M. (1966)
"Integratinn of the Laplace Transformed Equatinns of Classical Elastnkinetics"
J. Math. Analysis and Applicatinns, Vnl. 13 p. 118
30. ELORDUY J., NIETO J. A. and SZEKELY E. M. (1967)
"Dynamic Response of Bases of Arbitrary Shape
Subjected to Perindic Vertical Lnading"
Prnc. Intern. Symp. nn Wave Prnpagatinn and Dynamic Properties of Earth Materials

Albuquerque, University nf New Mexicn, p. 105
31. ERINGEN A. C. and SUHUBI E. S. (1975)

Elastndynamics, Vnlume II
Academy Press, 1975
32. GUPTA D.C, PARMELEE R. A. and KRIZEK R. J. (1973)
"Coupled sliding and Rncking Vibratinns of a Rigid Fnundatinn $n \mathrm{n}$ an Elastic Medium"

Symp. Earth and Earth Structures under Earthquakes and Dynamic Lnads. Vnl. 1

The Technical Institute Northwestern University, Evanstnn III U.S.A
33. HAMIDZADEH ERAGHI H. R. (1978)
"Dynamics of Rigid Fnundations n the Surface of an Elastic Half-Space"

Ph.D Thesis, Imperial College, University $\cap f$ Lnndin.
34. INTERNATIONAL COMMISSION ON LARGE DAM S (1979)
"Transaction of the 13 th International Congress n n
Large Dams, New Delhi"
Int. Commission nn Large Dams, Paris 1979)
35. JASWON M. A. and PONTER A. R. (196s)
"Integral Equation Metnods in Pntential Thenry, I"
Proc. Rnyal Snciety of Lnndnn, Series A, p. 273
36. KARASUDHI P., KEER L. M. and LEE S. L (1968)
"Vibratnry Mntinn of a Bndy on an Elastic Half
Space"

\quad| Ph.D Thesis, Northwestern University, |
| :--- |
| |
| Illnnis, 1968 |

37. KARASUDHI P., KEER L. M. and LEE S. L. (1968)
"Vibratnry Mntinn of a Bndy nn an Elastic Half Plane"
J. Applied Mechanics, Vnl. 35 p. 697
38. KELLOGG O. D. (1953)

Foundatinns of Pntential Thenry Dnver, 1953
39. KELVIN, LORD (Sir W. Thnmsnn) (1848)

Cambridge and Dublin Mathematical Jnurnal
40. KRENT S. and SCHMIDT H. (1979)
"Vibratinn of an Elastic Circular Plate nn an Elastic
Half Space. A Direct Apprnach"
The Danish Center for Applied Mathematics and Mechanics

Repnrt Nก.169, Dec. 1979
41. KUPRADZE V. D. (1963)
"Dynamical Problems in Elasticity"
in Prngress in Snlid Mechanics, Vnl.3, 1963
Eds. I.N. Sneddnn, R. Hill
Wiley and Snns
42. LACHAT J. C. and WATSON J. O. (1975)
"A Second Generatinn Bnundary Integral Equatinn Program for Three Dimensinnal Elastic Analysis
found in reference number 27
43. LAMB H. (1882)
"On the Vibrations of an Elastic Sphere"
Prnc. Lnndnn Math. Snc, Vni. 13 p. 189
44. LAMB H. (1904)
"On the Prnpagatinn of Tremnrs Over the Surface of an Elastic Snlid"

Philnsnohical Transactinns, Rnyal Snciety of Lnndnn Vnl.203A p. 1
45. LAMB H. (1917)
"On Waves in an Elastic Plate"
Prnc. Rnyal Snciety of Lnndnn, Vnl.93A p. 114
46. LEE T.H. and WESLEY D.A. (197s)
"Snil-Structure Interactinn of Nuclear Reactnr Structure Cnnsidering Through-Snil Cnupling Between Adjacent Structure"

Nuclear Engineering and Design, Vol. 24
47. LOVE A.E. H. (1944)

A Treatise on the Mathematical Thenry of Elasticity Dnver, 1944
48. LUCO J. E. and WESTMANN R. A. (1972)
"Dynamic Respnnse of a Rigid Fonting Bnnded tn an Elastic Half Space"
J. Applied Mechanics, Vnl. 39 p. 527
49. LYSMER J. and KUHLEMEYER R. L. (1969)
"Mndel for Infinite Media"
Jnurnal of Engineering Mechanics Divisinn, ASCE, Vnl. 95 p. 1381
50. LYSMER J. and WASS G. (1972)
"Shear Waves in Plane Infinite Structures"
J. Eng. Mech. Divisinn, ASCE, V $n 1.98$ p. 85
51. MacCALDEN P.B. and MATTHIESON R.B. (197ヶ)
"Coupled Respnnse of Twn Fnundations"
5th World Conference nn Eartnquake Engineering, Rnme, p. 1913
52. MEYER W.L., BELL W.A., ZINN B. T. and STALLYBRASS M. P. (1978)
"Bnundary Integral Snlutions of Three Dimensinnal Acnustic Radiatinn Problem"
J. Snund and Vibratinns, Vnl. 59 p. 245
53. MIKHLIN S. G. (1957)

Integral Equatinns
Pergamnn, 1957
54. MILLER G. F. and PURSEY H. (1954)
"The Field and Radiatinn Impedance of Mechanical Radiatnrs on the Free Surface $\cap f$ Semi-Infinite Isntrnpic Snlid"

Prnc. Rnyal Snciety of Lnndnn, Series A, p. 521
55. MINDLIN R. D. (1951)
"Influence nf Rntary Inertial and Shear n Flexural Mntinn of Isntrnpic Elastic Plates"
J. Applied Mechanics, Vnl. 18 p. 31
56. MORSE R. W. (1950)
"The Velncity of Compressinnal Waves in Rnds of Rectangular Crnss Sectinn"

The J. Acnustical Snc. of America, Vnl. 22 p. 219
57. MORSE P. M. and FESHBACK H. (195s)

Methnds of Thenretical Physics Part II
McGraw-Hill, New York, 1953
58. NOWACKI W. (1964)
"Mixed Bnundary-Value Prnblems in Elastndynamics"
Prnceedings of Vibratinn Prnblems, Warsaw Vnl. 3
59. PAPADOPOULIS M. (1963)
"The Use of Singular Integrals in Wave Prnpagatinn
Problems With Applicatinn to the Pnint Snurce in a
Semi-Infinite Medium"
Prn. Rnyal Snciety of Lnndnn, Vnl.276A P. 1365
60. PEKERIS C. L. (1955)
"The Seismic Buried Pulse"
Prnc. Natinnal Academy of Science, USA, Vnl. 41 P. 629
61. QUINLAN P. M. (1953)
"The Elastic Thenry of Snil Dynamics"

Special Technical Publicatinn 156.
American Snciety fnr Testing and Materials, P. 3
62. REISSNER E. (19う6)
"Statinnary, Axially Symmetric Oscillatinns nn a Hnmngenenus Elastic Half Space Caused by a Vibratinn Bndy"

Ingenieur Archiv. V $\cap 1.7$ p. 381
63. REISSNER E. and SAGOCI H. F. (1944)
"Fnrced Torsinnal Oscillatinns of Elastic Half-Space I" J. Applied Physics, Vnl. 15 p. 652
64. RICHARDSON J.D., WEBSTER J. J. and WARBURTON G. B. (1971) "The Respnnse $n n$ the Surface $n f$ an Elastic Half Space Near tn a Harmnnically Excited Mass"
J. Snund and Vibratinns, Vnl. 14
65. RIZZO F. J. (1967)
"An Integral Equatinn Apprnach tn Bnundary Value Problems of Classical Elastnstatics"
Q. Applied Math, Vnl. 25 p. 83
66. RIZZO F. J. and SHIPPY D. J. (1968)
"A Frmulatinn and Snlutinn Procedure for the General Nnn-hnmngenenus Elastic Inclusinn Problem"

Int. J. Snlids and Structures, Vnl. 4 p. 1161
67. SAGOCI H. F. (1944)
"Fnrced Tnrsinnal Oscillatinns nf an Elastic Half-Space II"
J. Applied Physics, Vnl. 15 p. 655
68. SHARMA D. L. (1967)
"Scattering of Steady Elastic Waves by Surfaces of Arbitrary Shape"

Bull. Seismnlngical Snc. $\cap f$ America, Vnl. 57 p. 795
69. SHAW R. P. (1968)
"Scattering of Elastic Waves by Rigid Obstacles of Arbitrary Shape"
J. Acnustical Snc. nf America, Vnl. 44 p. 745
70. SEVERN R.T., JEARY A. P. and ELLIS B. R. (1980)
"Fnrced Vibratinn Tests and Thenretical Studies nn Dams"

Prnc. Inst. Civil Engineers, Part 2, Vnl. 69 p. 605
71. SOKOLNIKOFF I. S. and REDHEFFER R. M. (1958)

Mathematics $\cap f$ Physics and Mndern Engineering
McGraw-Hill, 2nd editinn, 1958
72. STERNBERG E. and EUBANKS R. A. (1957)
"On Stress Functinns for Elastnkinetics and the Integratinn of the Repeated Wave Equatinn"
Q. Applied Math., Vnl. 15 p. 149
73. STOKE G. G. (1849)
"On the Dynamical Thenry of Diffractinn"
Trans. Cambridge Philnsnphical Snc., Vnl. 9 p. 1
74. SYMM G. T. (1963)
"Integral Equatinn Methnds in Pntential Thenry"
Prnc. Rnyal Snciety of Lnndnn, Series A, p. 275
75. TAN C. L. and FENNER R. T. (1978)
"Three-Dimensinnal Stress Analysis by the Bnundary
Integral Equatinn Methnd"
J. Strain Analysis, Vnl. 13 p.21j
76. TAN C. L. and FENNER R. T. (1979)
"Elastic Fracture Mechanics Analysis by the Bnundary
Integral Equation Methnd"
Prnc. Rnyal Snciety of Lnndnn, Vnl.369A p. 243
77. THOMAS D. P. (1968)
"Tnrsinnal Oscillatinns of an Elastic Half Space"
Quarterly J. Mech. and Applied Math., Vnl. 21 p. 51
78. THOMSON W. T. and KOBORI T. (196s)
"Dynamical Cnmpliance of Rectangular Fnundatinns in an Elastic Half Space"
J. Applied Mechanics, Vnl. 30 p. 579
79. WARBURTON G.B., RICHARDSON J. D. and WEBSTER J. J. (1971) "Forced Vibratinns of Twn Masses $n n$ an Elastic Half Space"
J. Applied Mechanics, Vnl. 38 p. 148
80. WARBURTON G.B., RICHARDSON J.D. and WEBSTER J.J. (1972)
"Harmnnic Response of Masses nn an Elastic Half Space."

Jnl. Engineering fnr Industry, ASME, Vnl.94, p. 193
81. WHITMAN R.V. (1969)
"The Current Status of Snil Dynamics"
Applied Mechanics Reviews, Vnl.22, p. 1
82. WONG H. L. and LUCO J. E. (1976)
"Dynamical Respnnse of Rigid Fnundations of Arbitrary
Shape"
Earthquake Eng. and Structural Dynamics,
Vnl. 4 p. 579
83. ZIENKIEWICZ O. C. and CHEUNG Y. K. (1967)

The Finite Element Methnd in Structural and Cnntinuum Mechanics

McGraw-Hill, Lnndnn, 1967

[^0]: + The concept of "Elastodynamic State" is expounded in Appendix A.

