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A B S T R A C T 

A new approach is developed for analysing the dynamics of 
a foundation on an elastic half space. It is the Boundary 
Integral Equation (BIE) method derived from the on-going 
development in the field of elastostatics. The formulation 
of the method is based on the fundamental singular solution 
of the equations of linear elastodynamics in an infinite 
domain subjected to a point force - tne Stoke's problem 
together with the dynamic counterpart of tne classical 
reciprocal theorem of Betti-Rayleigh in elastostatics. 
Combining these two well-known results yields the BIE, a 
vector integral identity that corresponds to Somigliana's 
identity in elastostatics and Green's third identity in 
potential theory. 

As its name sounds, the BIE is an integral equation that 
establishes a relation between the physical data at the 
boundary of an elastic body. The use of the method to 
meet the requirements of the dynamics of foundations, as 
well as details of its numerical implementation, is 
presented. The method is formulated for foundations of 
arbitrary shape, but results are presented for the pure 
modes of vibration of a rectangular infinite strip 
foundation, as well as the coupled modes. Results are also 
presented for vertical and horizontal vibrations of finite 
rectangular foundation. The well known problems of vertical 
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and torsional vibrations of a circular foundation are 
revisited to highlight the accuracy of the method. 

To underline the versatility of the BIE method some new 
aspects of foundation dynamics are investigated. Results are 
presented for the three degrees-of-freedom (i.e., coupled 
vertical-horizontal-rocking) vibration of the rectangular 
infinite strip. The results justify the intrinsic assumption 
that the vertical mode is not coupled to any of the other 
modes, which fact is probably responsible for absence of 
reference to such coupling in the literature. The vertical 
vibration is also analysed for a rectangular foundation with 
length/width ratio of up to 16. As a natural follow-up, 
the question is investigated of the errors involved in the 
often used approximation whereby a "long" rectangular 
foundation is treated as a rectangular infinite strip in 
the prediction of resonance frequency. 

Finally an indication is given of how the method can be 
more easily applied to the analysis of interaction of 
foundations on the elastic half space than previous methods. 
An outline is also given of the application to the 
combined problem of a flexible foundation on an elastic 
half space. 
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GENERAL NOTATION 

A^, A^, A^, A^ Functions appearing in the expressions for 

the fundamental singular stress matrix 

(same symbols for the two- and 

three-dimensional cases) 

a^ Width/length ratio of a rectangular 

foundation. 

b A characteristic length of a foundation, 

e.g., radius of circular foundation or 

semi-length of a rectangular one. 

b Body force vector in an elastic medium, 

c^ Dilatation wave speed, \/(\ + 2y)/p. 

c2 Shear wave speed, VuTp. 

e, exp Used for base of natural logarithms. 

F Some convenient unit of force. 

F_., j=l,2,3 Excitation forces applied to a massive 

foundation along the coordinate axes x^, 

y X^• 

F , j=4,5,6 The form T\/b of couples 1\ applied to 

massive foundation about the coordinate 

3.X6S X^ y X2 j X^ • 

f y j=l,2,...,6 F /F. 

H ^ , H Hankel function of the first kind of order n n 
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Im Imaginary part of 

i vCT 

J(£)> J(£) Jacobian of transformation from 

coordinates £ (£) to x^ in two (three) 

dimensions. 

J q Mass moment of inertia of infinitely long 

rectangular strip about the rocking axis. 

Jj, j=l,2,3 Mass moments of inertia of foundation of 

finite arbitrary shape about the 

coordinate axes. 

k^ w/c-p a convenient definition. 

ix is frequency in radians/sec, see below. 

k^ a c o n v e n^- e n t difinition. 

is frequency in radians/sec, see below. 

Mj, j=l,2,3 Reaction moments of the supporting medium 

on the foundation. 

m The mass per unit length of an infinitely 

long rectangular strip. Same symbol is 

used for the mass of a foundation of 

finite arbitrary shape. 

mjj> j=l,2,3 = m, a convenient notation. Translational 

inertia properties in the directions of 

motion. 

— 2 
mjj> j=4-,5,6 = Jj_3/b , a convenient notation. 

Rotational inertia properties about the 
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axes of ratation. 

m.. m../pb3 mass ratio. 
33 33 

ri Outward pointing unit normal vector at a 

given point on the surface of a body. 

P(y) A point P (in or on an elastic domain) 

whose Cartesian coordinates are y^, y^, 

y 3. 

Q(x) A point Q (on an elastic domain) whose 

Cartesian coordinates are x^, x^, x^. 

Q_., j=l,2,3 Reaction forces of the supporting medium 

on a foundation in the coordinate axes. 

Qj, j=4,5,6 M_._3/b, a convenient definition indicating 

reaction moments. 

R(P,Q) Magnitude of the position vector of Q 

relative to P, i.e., |x - y| 

R R/b 

Re Real part of 

S Boundary of an elastic domain. 

S^ Portion of S on which stress values are 

prescribed. 

S^ Portion of S on which displacement values 

are prescribed. 

T^k The fundamental singular stress matrix 

(corresponding to Stoke's problem). Same 

symbol used for two- and three-dimensional 

cases. 
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Time coordinate. 

Traction vector (components of) on a given 

surface. 

Prescribed values of t^ on some portion St 

of boundary S. 

The fundamental singular displacement 

matrix, the Stoke's tensor. Same symbol 

used for the two- and three-dimensional 

cases. 

Displacement vector (components of) of 

points in an elastic material. 

Prescribed values of u^ on some portion S^ 

of boundary S. 

Translations and rotations of a massless 

rigid body in the coordinate directions. 

Translations and rotations of a massive 

rigid body in the coordinate directions. 

Cartesian coordinates 

x./b 
J 

The point (x^,x2,x3) 

The point (y ,y9,y~) 
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GREEK SYMBOLS 

X, U Lame constants, JJ is shear modulus. 

p Mass density. 

5., Kroenecker delta. Jk 
a., The stress tensor. 
Jk 

Y c2/c1 

X, ^ Functions appearing in the expressions for 

the fundamental singular matrices U ^ and 

T.. . Same symbols for two- and 

three-dimensional cases. 

G_., j=l,2,3 Rotations of a massless rigid foundation 

about the respective coordinate axes. 

3=1,2,3 Rotations of a massive rigid foundation 

about the respective coordinate axes. 

Tj, j=l,2,3 Excitation moments applied to massive 

foundation about the respective coordinate 

axes. 

o) Frequency of harmonic motion in 

radians/sec. 

U1 bco/c1 

n 2 bo;/c2, frequency factor. 
V Del vector operator 
2 

^ Laplacian operator 

Cj Local coordinates defined over a boundary 

element. 



The usual Cartesian tensor notation is employed: repeated suffixes 

imply summation and partial differentiation with respect to the 

coordinate directions is indicated by the comma-suffix notation. 

Occasionally it is convenient to indicate a vector quantity by 

underscoring the appropriate symbol, e.g., the displacement vector 

u. 
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chapter 1 

I N T R O D U C T ION 

section 

1.1 Motivation for the Present 
Work 

1.2 Review of Previous Works 

1.3 A Statement of the Boundary-
Integral Equation Method 
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1.1 MOTIVATION FOR THE PRESENT WORK 

The subject of the dynamics of a rigid body on an elastic 
soil has received much attention over a number of decades, 
and many a great researcher has contributed to the 
fundamental concepts. The subject is important because it is 
often necessary at the design stage to estimate the dynamic 
response of a foundation which is supported by an elastic 
soil. The disturbance may arise either from within the 
machinery to be supported on the foundation or from 
adjacent plant and railways, or due to an earthquake. An 
understanding of foundation dynamics is essential in designs 
supporting such delicate structures as nuclear reactors, tall 
buildings and dams. A worldwide interest on the dynamic 
behaviour of dams is manifested at such meetings as the 
International Commission on Large Dams (1979). A complete 
analysis of the response of dams should include the 
dynamics of the foundation, and will provide a good 
theoretical basis to those engaged in actual tests on 
existing dams, such as Severn, Jeary and Ellis (1980). In 
seeking to understand the dynamic behaviour of ground-borne 
structures, it is generally accepted as a first step to 
regard the foundation as a rigid body resting on the soil 
modelled as a homogeneous isotropic elastic half space. The 
dynamic response of such a foundation is then sought as a 
function of input frequency for a harmonic force in 
different directions. 
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Attention was first brought to this problem by the works 
of Lamb (1904) on the dynamics of the earth due to 
application of an idealised point force. The amount of work 
involved in this relatively straightforward problem of Lamb 
gave a foretaste of the tremendous mathematical difficulties 
that awaited any attempt on analysing the dynamic response 
of foundations on the earth surface. Ever since then 
researchers have sought various ways of solving the problem. 
The major contributions made so far may be grouped under 
four categories depending on the method of approach, namely 
(a) Finite Model of the Semi-Infinite Half Space, (b) 
Analytical Methods of Dual Integral Equations, (c) Numerical 
methods based on the Green Function approach, and (d) 
Conformal Mapping of the Half Space. Detailed discussion of 
these is deferred to section (1.2) below. But one important 
observation that can be made straightaway about all these 
attempts is that the motion of the foundation has been 
constrained within the limits that the particular method of 
analysis can cope with. For example, considering just the 
vertical vibration, we find that on the one hand users of 
the conventional dual integral equation approach such as 
Awojobi and Grootenhuis (1965) prescribe zero shear stress 
(i.e. frictionless contact) at the contact between the 
foundation and the soil in order to avoid writing a third 
integral equation for the unknown stress, while on the 
other hand the conformal mapping technique by Alabi (1979) 
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requires zero horizontal displacement (i.e. perfect bonding) 
between the foundation and the soil in order to avoid 
numerical transformation of the unknown displacement. Attempts 
such as those of Luco and Westman (1972) based on Green 
function (or influence function) approach made to correct 
some of these defects introduced some other integral 
equations which either present considerable difficulties from 
the numerical point of view, according to Luco and Westman 
(1972), or require considerable amount of computer time to 
handle, according to Wong and Luco (1975). 

However, more important is the question of how much the 
various attempts have been able to address themselves to 
questions of, say, partial bonding between soil and 
foundations, interaction between many foundations, and above 
all, allowing for the elasticity of the foundation itself 
rather than assuming it to be a rigid body. The question 
of allowing for the flexibility of the foundation is 
particularly intriguing. The foundation has always been 
assumed rigid because there is no known strightforward 
method of analysing the elastodynamics of a finite body. 
The assumption of rigidity may be considered good enough 
for small machine foundations, but is questionable for the 
case of long bodies such as dams and buildings. By the 
way, the thought of the flexibility of foundations would be 
very useful to geophysicists who may be interested in the 
effect of topography on seismic waves - what happens to 
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Rayleigh surface waves upon striking a mountain? Perhaps we 
may ponder on the less mathematically formidable aspects of 
foundation dynamics for the moment. It is usual in the 
literature to approximate a "long" rectangular foundation as 
an infinite rectangular strip in order to simplify analysis, 
but no quantitative evidence has been supplied to determine 
how long the rectangle should be to justify the 
approximation. As far as the author is aware there is no 
analysis in the literature of rectangular foundations with 
length/width ratios going up to 10 or 16, probably because 
of numerical difficulties, and this is responsible for the 
absence of quantitative justification mentioned above. Also 
there has been no mention of the unconstrained motion of 
the rigid foundation such as the three degrees-of-freedom 
(coupled vertical-horizontal-rocking) vibration of the infinite 
rectangular strip, probably because of the analytical 
difficulty or because of an intuitive assertion that the 
vertical vibration is never coupled to either of the 
horizontal and rocking. 

Closed-form analytical solutions of foundation dynamics are 
almost impossible even for simple foundation shapes as the 
infinite rectangular strip or circular base, with the 
exception of torsional vibration of circular base. Efforts 
are therefore concentrated on seeking numerical solutions to 
be made available in form of computer software. It is 
desirable to find a method that will impose minimum 
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analytical constraint on the motion of the foundation, that 
is cheaper and more efficient in terms of computer 
resources, and that promises more potentials for coping with 
future developments in foundation dynamics. With these 
requirements in mind the motivation for the present work 
arises from the on-going developments in the field of 
elastostatics. The traditional methods of solving the elastic 
deformation of a finite body have been the finite 
difference and finite element methods, see Zienkiewicz and 
Cheung (1967). But recently the so-called Boundary Integral 
Equation (BIE) method was developed. Notable pioneers in 
this new approach include Rizzo (1967) and Cruse (1967), 
(1969), (1973). 

Tremendous success and advantages have been recorded with 
the use of this method by, among others, Rizzo (1967) in 
two- and three-dimensional elastostatics, Cruse and Rizzo 
(1968) in transient elastodynamics, Rizzo and Shippy (1968) 
in elastic inclusion problems, and by Tan and Fenner (1979) 
in crack analysis. The relative ease with which this class 
of elasticity problems have been successfully handled by the 
BIE method leads one to explore the possibility of 
extending the solution capabilities to steady-state 
elastodynamics with particular reference to the vibration of 
foundations, an investigation that has not yet been 
undertaken before now. The present work is addressed to 
this investigation. The integral equation is formulated 
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following the developments in transient elastodynamics, the 
parallel between the static, transient and steady-state 
phenomena being underlined. It is found that all the 
powerful advantages of the BIE method in elastostatics 
become available for exploitation in elastodynamics. 

We begin in the next section by outlining the various 
important contributions to the analysis of the dynamics of 
foundation so far, and then, from the mere statement of 
the Boundary Integral Equation formulation that follows, we 
begin to appreciate immediately the advantages the method 
offers over and above any of the previous approaches, and 
the potentials it promises for some of the yet unattempted 
problems of foundation dynamics. 

1.2 REVIEW OF PREVIOUS WORKS 

The analysis of the dynamics of rigid foundation is 
basically the solution of the elastic deformation of the 
soil modelled as a homogeneous isotropic elastic half space. 
For our purpose we classify as follows the major 
contributions made so far on the subject in accordance with 
the method of approach. 
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(a) Finite Model of the Semi-Infinite Half Space 
This approach, which involves replacing the entire half space 
by a finite arrangement of masses, springs and damping 
elements, dates back to the work of Ang and Harper (1964) 
on a lumped parameter model for the treatment of plane 
strain problems. Agabein, Parmelee and Lee (1968), and 
Lysmer and Kuhlemeyer (1969), among others, introduced finite 
boundaries into the Ang and Harper model with damping 
elements introduced at the boundaries to account for 
geometric damping. Not surprisingly they found the 
reliability of the model to be dependent on its size. 

Many variations of this modelling exist. They include 
confining the computation to a restricted near-field volume 
of the half space, Lysmer and Wass (1972), and introduction 
of boundaries designed to transmit D'Alembert forces, Ang 
and Newmark (1971). Gupta, Permelee and Krizek (1973) used 
lumped parameter model to analyse coupled sliding and 
rocking vibration of an infinitely long rigid strip and 
found agreement with the analytical results of Karasudhi, 
Keer and Lee (1968) who only estimated the coupled motion 
by superposition of the pure modes. Representing the half 
space by a finite number of masses results in a stiff 
system, or the model itself may have to approach the size 
of the half space to obtain good results. 
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(b) Analytical Method of Dual Integral Equations 
This method is based on Fourier transformation of the 
equations of elastodynamics. After taking the inverse 
transform the resulting pair of integral equations become 
formidable to solve. The first approach was the search for 
an expression for the contact stress distribution to insert 
under the integrals. Reissner (1936), and later Miller and 
Pursey (1954) considered uniform pressure distribution under 
a rigid plate in vertical translation. Quinlan (1953) tried 
uniform, parabolic and an approximate rigid-base pressure 
distribution. Arnold, Bycroft and Warburton (1955) presented 
four modes of response of rigid circular plate based on 
assumption of contact pressure distribution proportional to 
the static case. Their results agree fairly well with their 
test values. These results were extended by Richardson, 
Webster and Warburton (1971) to the determination of the 
response on the surface of the half space at distances 
away from a single mass, and then by some averaging 
technique over this surface response, Warburton, Richardson 
and Webster (1971) proceeded to predict the response of a 
nearby second mass. The first attempt to solve the problem 
free of any pre-assumption of stress distribution was made 
by Awojobi and Grootenhuis (1965) using some iterative 
procedure, and obtained results which agreed better with the 
experimental results of Arnold, Bycroft and Warburton (1955). 
Awojobi (1971) proceeded to give approximate results for 
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high frequencies for some pure modes of circular plate and 
a long rectangular body. 

It is observed that this dual integral equation approach 
presents considerable mathematical difficulty, except in 
simple cases like torsional vibration of rigid circular 
plate Reissner and Sagoci (1944), Sagoci (1944), Awojobi and 
Grootenhuis (1965), Thomas (1968), and the pure modes of 
long rectangular bodies, Awojobi (1966), Karasudhi, Keer and 
Lee (1968). We quote for our reference the pair of 
integral equations that has to be solved for, say, the 
vertical translation of infinitely long rigid rectangular 
body, see Awojobi and Grootenhuis (1965) for details. 

CO 

C ai / — — F(n) j_ 1 (nx) dri = c^// X , O < X < 1 
0 <f>(n) 2 

00 
/ 

(1.2.1) 

F(n) J i(nx) dp = 0 , x > 1 

yv 2 
c^ = ( - )/n2

2 

Integration is with respect to the dimensionless form h, 
of the Fourier transform parameter, <|>(q) is the usual 
Rayleigh function, F(p ) the desired normal stress 
distribution function, a function of p, and V the 

' 1 ' o 
harmonic vertical displacement of the body. 
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This approach has limited use, if any, in the analysis of 
foundations of arbitrary shape whose area of contact with 
the half space cannot be described by any simple algebraic 
expression. Also coupled pairs of integral equations would 
be required for solving coupled modes of vibration. Moreover 
given the approach, it would be necessary, as observed in 
previous section, to assume frictionless contact in order to 
avoid writing another set of equations for the unknown 
shear stresses. 

(c) Green Function Approach 
This consists of summing up the influence at a point of 
all the other points on the contact area between the body 
and the half space. Basically the influence function is 
sought from the solution to the problem of Lamb (1904) 
the dynamic response of the half space to concentrated 
point force. The contact area is divided into a number of 
rectangular sub-regions, figs.(1.1) below. 

Two approaches may be distinguished. Elorduy, Nieto and 
Szekely (1967) obtained their influence function by applying 
Duhamel's integral to the transient response of the half 
space to vertical loading obtained by Pekeris (1955). For 
the vertical vibration they applied an unknown vertical 
force at the centre of an element Q, fig.(1.1a), and 
considered its influence at the left corner of every 
element P (including Q itself). 
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/ 

Q • 

P 

element of 

area dS 

(a) Rectangular Contact Area 

\ Q • \ 
P 

j 

\ J 
(b) Circular Contact Area 

Fig 1.1 Model of Contact Area 
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Hamidzadeh (1978) obtained his influence function by a 
numerical attempt directly on Lamb's problem, and then 
followed Elorduy's approach with many more points on element 
P - all the four corners of the element - and obtained 
different results. To follow the approaches of the two 
works mentioned above for coupled modes of vibrations would 
require writing numerous pieces of equations before forming 
the overall system of algebraic equations since forces 
and/or couples applied in various directions are considered 
separately. 

It is obvious that all the reactions of the supporting 
medium to any motion of the foundation come from the three 
components of traction at the contact surface. Therefore the 
approach of Wong and Luco (1976) looks tidier. They used 
boundary mesh as in fig.(1.1) above but expressed the 
displacement at a given point P as a sum of contributions 
from all the stress components at point Q in the 
integral form 

Uj(P) = JGjk(P»Q) ak3(Q)ds(Q) (1.2.2) 
S 

so that coupled modes can be easily handled by prescribing 
on the left side of the equation the displacements imparted 
on the half space by the chosen mode of vibration. The 
difficulty with the Wong and Luco's equation above lies in 
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the influence function G w h i c h is the (j)th displacement 
component at P generated by a unit load acting at point Q 
in the negative direction of the (k)th axis - which takes 
us back to the unsolved problem of Lamb. Wong and Luco 
however used functions from the works of Thomson and Kobori 
(1963) based on constant stress distribution. These 

complicated functions for G.. involve infinite integrals of 
JR 

oscillatory functions which they found expensive to compute 
numerically or otherwise. We point out for our reference 
that the integrations involved in are with respect to 
Fourier transform parameter. 

However, given this approach a better modelling of the 
contact area than those in fig.(1.1) can be achieved by 
following the boundary element modelling process commonly 
used in the application of Boundary Integral Equation to 
problems of elastostatics, see for example Lachat (1975), 
and the modelling used in the present study in chapter 3* 
The edge singularities of the contact stress distribution 
could then be clearly shown, see results of this study in 
chapter 5, and shapes like circles, fig(1.1b), or arbitrary 
shapes could be more adequately represented. 

(d) Conformal Mapping of the Half Space 
In analysing the vertical motion of a rigid infinite strip 
foundation, fig.(1.2a) below, Alabi (1979) transformed the 
Cartesian set of coordinates x ./b to an orthogonal 



- 15 -

curvilinear set X. so that the half space is effectively 
mapped into the rectangular region of fig.(1.2b) with X̂  
varying from zero to one and X^ from zero to ir. An 
array of mesh nodes was superposed on the rectangle over 
which the elastodynamic equations were integrated by finite 
difference method. A large system of equations resulted. It 
is a conceivable idea to map the whole volume of the half 
space in the three dimensional problem of a foundation of 
arbitrary shape. The resulting mapped region would be a 
parallelopiped and the three dimensional array of nodes 
required over this volume would result into an awefully 
massive set of equations to solve. It is observed that a 
lot of computing efforts are spent in this approach in 
calculating unwanted quantities in the interior of the half 
space. Excellent results have been obtained however by use 
of this method to static and transient problems involving 
the half space in plane strain, Berger and Alabi (1978). 

We proceed in the next section to briefly examine the 
salient points of the Boundary Integral Equation method 
proposed in this study. 
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(a) Cross-section of Half Spaoe 

(b) Mapped Space 

Fig 1.2 Mapping of the Half Space 
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1.3 A STATEMENT OF THE BOUNDARY INTEGRAL EQUATION METHOD 

The Boundary Integral Equation method utilises the numerical 
solution of integral equations analogous to Green's boundary 
formula in Potential Theory, Symm (1963), Kellogg (1953). We 
give here with only brief details a statement of the BIE 
formulation. Simply put, the displacement vector u. at a 

J 

given point P anywhere in or on an elastic body is 
related to only the boundary values of the displacement 
vector u, and stress vector t, by the integral equation 

which is derivable from the equations of linear (or 
non-linear) elasticity. In this equation Q is the dummy 
integration point over the boundary of the elastic medium, 
T^r(P,Q) and are second order tensors of position 
Q relative to P which have different expressions for 
elastostatics, transient elastodynamics and steady-state 
elastodynamics. They are functions of Poisson ratio, 
frequency and the space coordinates (the details start in 
chapter 2). S denotes the boundary of the medium. 
Advantageous use is made of the equation by specifying P 
to be on the boundary also so that attention is paid only 
to the boundary, c.. is a tensor that depends only on the 

S 

(1.3.1) 
s 
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geometry surrounding the point P. We then seek a numerical 
solution of this vector integral equation for displacements 
and/or stresses subject to given boundary conditions. 

Let us examine the advantages that are immediately apparent 
of this equation over the categories of previous efforts 
listed above. 
(a) The Physics of the Problem is Directly Addressed:-
One of the most important advantages of the BIE equation 
is that all the quantities involved are physical 
displacements, stresses and space coordinates. In particular 
the variable of integration is the element of area of the 
boundary of the elastic body. Thus the physics of the 
problem is directly addressed. This is unlike the dual 
integral equation approach or Wong and Luco's Green 
functions in which integration is over all values of the 
mathematical concept of Fourier transform parameter from zero 

» to infinity. The advantage of using only physical quantities 

is that if any mathematical difficulty should arise one can 
resort to the physics of the problem to make shrewd 
approximations. For example one might be tempted to argue 
that the BIE requires integration over the infinite area of 
the half space. But it can be seen firstly that the 
integral involving stress is only restricted to the loaded 
region, the stress-free surface contributing nothing to it. 
Secondly it can be judged physically that the displacement 
on the surface of the half space becomes vanishingly small 
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as one moves farther away from the loaded region. Hence 
the contribution of distant points to the displacement 
integral becomes insignificant. Moreover, as will be seen 
later, chapter 2, the tensor T ^ multiplying the 
displacement under the integral sign diminishes as the 
inverse of the distance from the point P under 
consideration. Thus the integral is actually a sort of 
summation technique significantly involving only the 
displacements in the near field. This point is examined in 
details in chapter 3. This cannot be said of dual integral 
equation (1.2.1) in which nothing is known before hand 
about the behavour of the integral with respect to the 
Fourier transform parameter. So if any analytical efforts 
are to be spent, it would probably pay better to focus 
attention on the BIE than on the dual integral equations, 
(b) One Step Closer to Accuracy:-

The boundary integral equation is an exact statement of the 
problem. Thus we have moved with exact accuracy from the 
interior of the elastic body to its boundary. Any 
approximation to the equation occurs only on the boundary. 
This is a step closer to exactness than the lumped 
parameter modelling and the conformal mapping methods where 
approximation starts right from the interior of the medium. 
This question of accuracy is particularly important in 
steady-state wave propagation because of the discretisation 
error common to all numerical analysis, namely, representing 
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a medium which naturally has an infinite number of 
degrees-of-freedom with one with a finite number results in 
a stiffer system. This is the most serious defects of the 
finite modelling methods. 
(c) Reduced Problem Size:-
The BIE method reduces the dimensionality of the problem by 
one. The two-dimensional problem of the rigid infinite strip 
foundation is reduced to numerical integration over the 
straight line that now forms the boundary of the half 
space in plane strain. The three- dimensional problem of 
foundations of arbitrary shape reduces to integration over 
the two-dimensional plane boundary of the half space. This 
reduced problem size results in much smaller set of 
equations to solve after discretising the integral equation. 
This contrasts sharply with the conformal mapping technique 
which requires large system of equations. 

(d) Better Use of Computing Resources:-
Much of the computing resources expended in the finite 
modelling methods in discretising the entire half space are 
used in computing unwanted results - the displacements and 
stresses in the interior of the half space. The foundation 
problem is concerned only with boundary values, and these 
are what the BIE formulation involves. After the boundary 
values are computed the interior values, if and when 
required, are computed by direct quadrature over the 
boundary by placing the point P as desired. 
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The advantages of the BIE over other methods in 
elastostatics of finite bodies (particularly the benefit of 
reduced problem size) may be carried over to tne 
steady-state analysis of finite bodies. Thus talking of 
allowing for the flexibility of foundations, tne computing 
effort in time and storage requirements spent on calculating 
tne interior values of the half space or in computing the 
Green's functions of Wong and Luco may be spent in solving 
for the flexibility of the non-rigid foundation over its 
boundary by the same BIE equation. This is discussed in 
chapter 6. 

The Boundary Integral Equation is formulated in chapter 2. 

In tnis study tne equation is being applied to the half 
space as an elastic body loaded at the contact area with 
the foundation. The question of how much the distant points 
contribute to tne integral occurring in tne BIE is examined 
in chapter 3 by exploiting the radiation conditions of 
elastodynamics establisned by Doyle (1965). Chapter 4 is 
devoted to tne analysis of the pure and coupled modes of 
vibration of a rigid infinite rectangular strip, and chapter 
5 to foundations of arbitrary shape. The flexibility and 
ease of the BIE method permits us to analyse the three 
degrees-of-freedom vibration of a rigid infinite rectangular 
strip also in chapter 4 in order to check whether or not 
the vertical mode is coupled to the horizontal and/or 
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rocking. Also in chapter 5 we are able to compute the 
resonance frequencies of rectangular foundations of 
length/width ratio up to 16, so that some quantitative 
examination is given to the question of approximating long 
rectangular foundation as infinite rectangular strip. 

In chapter 6 an indication is given on the potentials of 
the BIE method as a tool for solving the general 
elastodynamic problem and for dealing with some of the yet 
unsolved problems of foundation dynamics. There the details 
are given of tne formulation of the combined problem of 
elastic foundation on an elastic half space, and also of a 
more complete formulation than is usually given in the 
literature of the problem of interaction of rigid 
foundations on an elastic naif space. 
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2.1 HISTORICAL BACKGROUND 

The solutions of the general linear elasticity problems do admit a 
variety of integral representations. Here we shall be concerned with 
the representation employing the influence function technique based on 
the reciprocal work theorem of Betti (1872). The first usage of 
influence functions (or singular solutions) was in the field of 
elastostatics in the last quarter of the 19th century, employing as 
the singular solutions the particular solutions of the field equations 
for a concentrated load in an infinite elastic space attributed to 
Lord Kelvin (1848). These first efforts were by, among others, Betti 
(1872-73), Cerutti (1879), Somigliana (1892), Tedone (1879), and 
Fredhoim (1905). Actual solutions were difficult to achieve then 
because of absence of fast computing aid. The advent of fast modern 
digital computers revived interest in this approach, and the first 
numerical treatment was formulated by Jaswon (1963) and Symm (1963) in 
the potential theory. Then Rizzo (1967) presented numerical solutions 
of the Boundary Integral Equation (BIE, as it is now commonly called) 
for plane boundary value problems in elastostatics. The method has 
since developed so tremendously it now handles with relative ease the 
problems of three dimensional elastostatics, Cruse (1969,1972,1973), 
and elastic fracture mechanics, Tan and Fenner (1979). A good survey 
can be found in the paper by Tan and Fenner (1978) of the use of the 
BIE method to many other applications including rock mechanics and 
elastoplastic analysis. 

The BIE development has not progressed as rapidly in the field of 
transient elastodynamics. The general problem has been attempted by 
Doyle (1966) who used the singular solution for the 
Laplace-transformed field equations to obtain representations for the 
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displacement vector, dilatation and rotation vector. However he did 
not attack the general boundary value problem in terms of boundary 
data and did not attempt a solution and inversion to complete the 
problem. The treatment by Nowacki (1964) requires finding a Green's 
function before attempting the Laplace inversion. Numerical results 
have been presented by Cruse (1967), and Cruse and Rizzo (1968) I, II, 
for the two dimensional problem of the elastic half-space under 
transient load. 

The boundary integral representation has also found tremendous 
application in problems of steady acoustic waves in which the Green's 
boundary formula in the theory of potentials is used to solve the 
governing Helmholtz equation, see Banaugh (1963), Chertock (1964) and 
Meyer, Bell, Zinn and Stallybrass (1978). 

It is in the field of steady-state elastodynamics that the application 
of the BIE has been least developed. The problem of diffraction of 
steady elastic waves by an inclusion in an infinite elastic medium has 
been considered by, among others, Banaugh and Goldsmith (1963), Sharma 
(1967) and Shaw (1968). Their treatment was via the Lame's 
displacement potentials which satisfy Helmholtz equations and which, 
therefore, can be treated by Green's formula. Using again Lame's 
potentials, Banaugh (1964) formulated integral representaions for 
displacements for the general boundary value problems of 
elastodynamics. This type of formulation in terms of displacement 
potentials involve a lot of algebra, and Banaugh ended up with eight 
simultaneous integral equations to solve. This situation normally 
arises with displacement potentials because the Green's boundary 
formula requires the values of the potentials as well as their normal 
derivatives at the boundary. Papadopoulis (1963) used the same 
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approach to the problem of point source in a semi-infinite medium. 

A formulation of the BIE in steady-state elastodynamics directly in 
terms of physical quantities of displacements and stresses may be 
found in the text by Eringen (1975) and also in Kupradze (1963). 
Applying an extension of Fredholm theory to the BIE, Kupradze 
formulated a number of problems ranging from linear homogeneous 
isotropic elastostatics to the vibrations of piecewise homogeneous 
bodies. He did not take advantage of the use of boundary data 
directly involved in the integral equation and was therefore forced to 
look for surface potentials to obtain solutions. His method may thus 
be termed an indirect approach. A direct approach (to use the 
terminology in elastostatics) shall be followed in this study in the 
sense that the BIE shall be treated directly in terms of the physical 
quantities it embodies - stresses, displacement and space coordinates. 

The formulation of the boundary integral equation in elastodynamics is 
possible due to the existence of fundamental singular solution of the 
equations of elastodynamics in an infinite region subjected to a 
concentrated body force acting at a point. This is the Stoke's (1849) 
problem. These fundamental solutions, the well-known Stoke's tensor, 
in conjunction with Betti's reciprocal theorem yields a vector 
identity which corresponds to Somigliana's identity in elastostatics 
and Green's third identity in potential theory. 

2.2 FIELD EQUATIONS 

Let D denote a regular region described in a two- or three-dimensional 
Euclidean space, and S tne boundary of the region.whd^xwy^^NS^^ 
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^^^^Jf^ss^ The boundary S is a plane curve if D is two-dimensional 
and a surface if D is three-dimensional. Associated with each 
differential surface element is an outward pointing unit normal vector 
A n. 

The celebrated Navier's equations of motion of an isotropic 
homogeneous elastic body, represented by region D, are, in vector 
notation, 

(c2 - c2) VV-u + c2 V2u = — Z (2.2.1) 
1 ^ * Btr 

In the case of time-harmonic motion this equation reduces to, omitting 
the time harmonic factor 

(c2-c2)VV-u + c2 V2u +<d2u = 0 (2.2.2) 

* If the special differential operator V is introduced as 

V* = (c2 - c2) VV- + c 2V 2 (2.2.3) 

the equation of motion takes the form 

( V* + w2)u = 0 (2.2.4) 

The constitutive equation for the linear, isotropic and homogeneous 
solid relates the stress tensor to the displacement gradients by 
Hook e' s law 

a, = A6, u + (u, + u , ) y (2.2.5) ks ks r,r k,s s,k 

Corresponding to the displacement field u the traction vector t on a 

differential element of surface with unit normal n is 
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du 
t = 2y — + An(div.u) + y(nX curl.u) (2.2.6) — on — — 

or in indicial notation 

t, = a, n k ks s 

fck = Xur,r\ + y(uk,s + us,k)ns (2-2"7) 

The stresses and displacements are assumed to satisfy certain boundary 
conditions 

lk = aksns = (tk}0 on st (2'2'8> 

uk = (uk)0 on Su (2.2.9) 

2.3 THE DYNAMIC BETTI-RAYLEIGH RECIPROCAL THEOREM 

We refer back to the equation of steady state motion (2.2.4), namely 

( V* + o?)u = 0 (2.3.1) 

The corresponding equation in elastostatics is 

V*u = 0 (2.3.2) 

and in transient motion 

( V* - a2)u = 0 (2.3.3) 

where a is the Laplace transform parameter. For details of this see 
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Cruse (1967). Eqs.(2.5.1) and (2.3.2) are of similar form to the 
Helmholtz and Laplace equations, respectively, frequently encountered 
in the harmonic potential theory as 

( V2 + k2) cj> = 0 (2.3.1a) 

V2cJ) = 0 (2.3.2a) 

where k is a constant and an unknown variable, see for example 
Morse and Feshback (1953), Baker and Copson (1950). Indeed in the 

* special case of A=-1, y=1 the operator V defined in eq.(2.2.3) 
2 reduces to the Laplace operator V and equation pairs (2.3.1), 

* (2.3.2) and (2.3.1a), (2.3.2a) become identical. The operator y 
plays in the theory of elasticity a similar role as the Laplace 

2 
operator V plays in the theory of harmonic potentials. 

Fundamental to the formulation of the boundary integral equation is 
the dynamic extension of the classical reciprocal theorem of 
Betti-Rayleigh in elastostatics. The dynamic Betti-Rayleigh 
reciprocal theorem between a pair of elastodynamic states has been 
established and proved by Eringen and Suhubi (1975), and Kupradze 

(1) 
(1963). Let V be a displacement vector field in an elastic domain. 

(1) The corresponding traction vector t on a surface element with 
normal n can be found from eq. (2.2.6). These may be regarded as 

t 
vector quantities in an elastodynamic state (1). Another pair of 

(2 ) (2) 
vectors V and t may be chosen belonging to state (2). In domain 
D whose boundary is S, Betti's third identity is, Kupradze (1963), 

t The concept of ,rElastodynamic State" is expounded in Appendix A. 
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v<2> • V* V ( 1 ) ) dD 

V ( 2 ) • t ( 1 )) dS 

(2.3.4) 

where vector dot products is indicated. All the vectors involved are 
required to be regular in D and on S. 

In above equation one of the elastodynamic states is usually taken to 
correspond to the fundamental singular solutions of the elasticity 
equations in an infinite region due to a concentrated body force 
acting at a point P(y) in a fixed direction, but with harmonic 
time-variation for steady-state problems. These fundamental 
solutions, the Stokefs tensor, are discussed next. 

2.4 FUNDAMENTAL SINGULAR SOLUTION OF ELASTQDYNAMICS 

This is the well known solution of the problem of Stoke (1849) of an 
infinite elastic region subjected to a unit concentrated body force 
acting at a point P(y) in a fixed direction e_ , but with some 
(harmonic) time-variation. A detailed review of this problem is found 
in Eringen (1975), page 390 for time-harmonic as well as arbitrary 
time-varing force. 

The displacement component in the j-direction at point Q(x), due to a 

D 
(1) . V* V ( 2 ) 

f.U (1) . t (2) 
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unit concentrated force acting at the point P(y) in the k-direction is 
denoted by the Stoke's tensor U(P,Q) which is a function of the 

Jk 
positions P and Q. In the three-dimensional infinite domain LL^ is 
given by, see Eringen (1975), page 435, 

L k 2 R 2 / L kl R L k 2 R 

V ' Q ) = I^P K — 6ik + % — — " — 
3 k w { cl R D k a> dx^dxk\ R R 

( 2 . 4 . 1 ) 

= 1,2,3 

where R = R(P,Q) = I x - y; | is the distance between P and Q. The 
expression for U ^ shows that it is a symmetric tensor. It is regular 
everywhere in the infinite domain except at the point P(y) of 
application of the load. The traction vector for the concentrated 
load may be obtained by performing the differentiations indicated in 
eq.(2.2.7) on the row vectors of U... If all the j rows are thus 

Jk 
operated on the result is a matrix T.. (P,Q) obtainable from the 
differentiation 

T., = Xu. n, + U(U., + U . ,)n ( 2 . 4 . 2 ) jk jr,r k ^ jk,s js,k' s 

The matrix Tgives, on a surface element at Q(x) with unit normal n, 
the traction component in the k-direction due to a unit concentrated 
force at the point P(y) in the j-direction in an infinite domain. It 
is also regular everywhere except point P(y) but it is not symmetric. 

One may consider an infinite elastic domain in which the field 
quantities and body force vectors depend only on two independent space 
coordinates x., j=1,2, and not on the third coordinate This J 3 
becomes a two-dimensional problem and the concentrated body force must 



- 32 -

be thought of as being uniformly distributed along the line 
perpendicular to the infinite x^-plane, say the plane x, = 0. We then 
have the two dimensional form of the Stoke's tensor, which we may 
represent by the same symbol U^, given by 

j ,k = 1,2 (2.4.3) 

where we now have 

R(P,Q) = i x - y I = (xT- Yt)(xt- yT) 
(1) H is the Hankel's function of the first kind of order zero. This . o 

tensor too is symmetric. The traction vector corresponding to this 
two-dimensional case may be computed by eq.(2.4.2) above to obtain a 
corresponding matrix which we may also denote by T^. It will be 
convenient to adopt the following notation. With the concentrated 
force applied in the j-direction the resulting displacement and 
traction vectors, namely the j-rows of and are (û )̂  and (t^)^ 
respectively. It may be verified that the displacement vector (u.). , 

J X 

for all j's satisfies the equation of motion (2.3.1), see Kupradze 

(1963). 

For computational purposes the expressions for and shall be 
f 

expanded. The differentiations are carried out for U as indicated 
in eqs.(2.4.1) and (2.4.3). The respective results are then 
substituted into eq.(2.4.2) for T 

In two dimensions 

t Some algebraic details are given in Appendix B. 
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V
P

'
Q ) =

 M * V
 +

 *
R

, j
R

, k ) 

Tjk(P,Q) = i A L f 6 j k + A2 § Rf j R f ] 

+ A 3 R / k n j + A 4 R r j n k 

Wtlere SR SR 
f = H g

 n s ' o n S' 

is derivative of R along normal n, 

* " Ho ( k2 R ) " k ^ ( Y H l ( k l R ) ' Hl ( k2 R ) 

X = Y2H2(k1R) - H2(k2R) 

Ax = - k2H2 (k2R) + 

= 2 ̂ Y 2 R
1H 3(k 1R) - k2H3(k2R)^ 

A 3 " A 1 

A = - (1 - 2 Y2 ) k ^ O ^ R ) " ^ 

Y = c2/Cl 

( 2 . 4 . 4 ) 

( 2 . 4 . 5 ) 
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R = magnitude of vector from point P(y) to point Q(x) 

* (
( x

i
- y

i
) 2 +

 ^
2
- D

2

)
1 / 2

 " 

H = Hankel function of first kind of order n. n 

In three dimensions 

Ujk(P,Q) 4iry R \ 'jk + (3$ + x) R 
( 2 . 4 . 6 ) 

Tjk(P,Q) = 
_1 _ll , 9R ^ 
4ir R2l 1 3n jk 

9R 
3 ,k 

+ A 3 R k n . + A 4 R j n k (2.4.7) 

where 

1 / ik2R i . / tk2R i k^R 

* = " e ) ¥ l e " e 

t k 2R 
X = e - $ 

Y 
2 i k^R 
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i k 2R 
A ± = ( (k2R - 1) e + 6$ + 2X 

2 ik^R ik2R 
^ = 2 ik2R I y e - e + 30$ + 12X 

A 3 ~ A 1 

2 
A 4 = (l - 2 y ) ( i k±R - 1) e + 6$ + 2X 

( ( X l - y i ) 2 + ( ^ - y , ) 2 + ( X 3 - Y 3 ) 2 ) 2 \ 1 / 2 

2.5 THE FORMULATION OF THE INTEGRAL EQUATIONS 

Returning to Betti's third identity eq.{2.3-k) we let the 
elastodynamic state (1) correspond to the solution for the 
concentrated force in the infinite space, namely displacement and 
traction vectors (u.), and (t.), for force in the i-direction. State 

J k j k J 

(2) is taken to correspond to the set of displacements and stresses 
uk, tk which are regular in D and on S, containing the load point 
P(y), and which consists of the unknown in the problem to be solved. 
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But now the vectors (in state (1)) are no longer regular everywhere in 
D. So to make the Betti's identity valid we enclose the singularity 
point P(y) by a small region D' of radius e and surface Sf, apply the 
identity to the regular portion D-D', fig.2.1, and then take the 
limits of the integrals as the region D' is allowed to shrink towards 
P. 

surface S 

Fig 2.1 Regular Region D-D' For Application of 

Betti rs Equation 
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Then Betti's equation becomes 

* * ) 
(2.5.1) 

p / p V 7 "k - \ • 7 (uj'k J 
D-D' 

J (<*)>* ' <k * "k • (tj}k) d S 

3+S' 

If body force vector bR is to be considered in the present problem, 
namely state (2), then uR is taken to satisfy the equation of motion 
with the body force b introduced, ie 

v \ = ~ i b k -

However in the region D-D' where body force is absent for the 
concentrated load problem, state (1), (u.), satisfies the homogeneous J K 
eq .(2.3*1)> ie 

V* ( uj }k = " u2^uj)k 

Using the last two equations above, eq.(2.5.1) reduces to 
> 

/ *>
 =

 / ( v V k -
 (

« j
)

k
t

k )
 d S 

D-D' S+S' 

(2.5.2) 

Considering the set of fundamental singular solutions corresponding to 
the concentrated load applied in all j-directions we replace (u.), by 

J ^ 
Ujk and (tj)k by 1 in eq.(2.5.2) 

/ U j A ^ = / ( " ujk<* } (2.5.3) 
D-D' s+S' 
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If the body force b, is ignored in the problem we have 

S+S' 
Tjk(P,Q)uk(Q) - Ujk(P,Q)tk(Q) 1 dS(Q) 0 

(2.5.4) 

This form of the dynamic Betti's theorem is the basis for the 
formulation of boundary integral equation in elasticity. The integral 
is taken round the boundary S+S' which encloses the domain D-D'. The 
integration point Q is, of course, a boundary point, and and 

t^(Q) are boundary values of the displacement and stress vectors 
respectively. Unit normal n points outwards at Q. 

To allow the domain of exclusion D' to shrink towards point P we take 
the limit of the integrals as e—>0. The equation is first written in 
the form to separate the integrals over S and S' 

/ ( T
j k \ ~ V k ) * + s - o / ( T

j k \ - V k ) = 0 ( 2- 5- 5 ) 
s s 

The integral over S' is in turn written in two parts 

I 1 I, 2 
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where 

h = / - o / V k 
S' 

T = 2 e - o / V * * 

The integral may be written 

= e ' - o f T j k ( V
Q )

 - V
p )

) < * « » 

+ e ^ o V P ) / Tjk (2-5'6) 
S' 

Since u, is a regular vector, u, (P) tends to u, ,, . , ot k & ' k k(Q) as the boundary S' 
shrinks towards P. So the first integral on the right hand side of 
eq.(2.5.6) vanishes and we have 

Ii = s'iTo V p > / Tjk(p,Q) <*«» (2-5-7) 
S' 

Since vector t^ is also regular throughout region D, similar reasoning 
may be applied to the integral to show that 

x

2 = V
p )

/ V
P

'
Q ) ( 2

-
5 - 8 ) 

s ' 
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These limit integrals and are evaluated next after appropriate 
expressions for U ^ and T ^ are inserted. 

The Boundary Integral Equation in Two Dimensions 
It has been noted in the previous section that the two-dimensional 
Stoke's tensor U ^ corresponds to application of a concentrated load 
considered uniformly distributed along the line perpendicular to the 
x^-plane. The loaded point P(y) on the x^-x^ plane is thus the 
intersection of the line with the plane. The domain D is 
two-dimensional and boundary S a plane curve. The region Df enclosing 
P(y) in fig.2.1 is a cylinder of radius £ with axis parallel to 
x^-axis. 

The expressions for U., and T.. are given by eqs. (2.4.4), (2.4.5). To 
Jk jx 

evaluate the limit integrals and in eqs.(2.5.7) and (2.5.8) it 
is necessary to determine the expressions for U ^ and T ^ on the 
circle S', fig.2.2 

Fig 2.2 The Circle Sr 



- 41 -

On S1 the following are true 

R = e 

dS = - e d0 , dn = -dR 

^ = cose , | | = si*6 

n^ = cos0 , n2 = - sinQ 

We take the limits, as e tends to zero, of the following functions 
which have been defined for eqs.(2.4.4), (2.4.5) 

V % ln(k9e) TT ^ 

0 

A _ ^ 
ire 

0 

A 3 us 

A 4 - (1 - 2 y ) — 

Thus on circle S1, U a n d Tassume the expressions 

U-v = J^ ln(k9e) jk 4|i ti 2 
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Tjk = ij-iE (6jk + cos0 sine + (1 " cose sinejj 

The integrals and simplify to 

J1 = 6jk uk(P) ' T2 = 0 (2.5.9) 

It is possible, instead of locating the load point P(y) inside the 
domain D, to place it at a point on boundary S, distinct from Q, where 
the boundary is "smooth", i.e. where the boundary has a continuously 
turning tangent. In this case the enclosing curve S' is a semi-circle 
in the limit, fig.2.3, giving the final results of — u, (P) 6 .. and 

2 K JK 
zero respectively for I. and I0 

Fig 2.3 P on Boundary S 
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Putting the results for and back into eq.(2.5.5) we have the 
integral equation 

cJkuk(P) + jTjk(P,Q)uk(Q) ds(Q) 

~'fUjk(P,Q)tk(Q) d S ( Q ) (2.5.10) 
s 

where 

°jk = djk Por P inside region D, 
c =-L 5 for P on smooth boundary S JK 2 JK 

At a point on S where the boundary is not smooth the value of c^k must 
be adjusted. Explicit evaluation of this value is not usually 
necessary as it can be obtained using the concept of rigid body motion 
of D as explained by Brebbia (1978) for elastostatics problems. 

As R tends to zero the tensors U^k and T^k have singularities of 
orders ln(R) and 1/R respectively. Thus as the integration point Q 
approaches the load point P along the boundary S the first integral in 
eq.(2.5.10) has meaning only in the sense of Cauchy Principal Value, 
see Mikhlin (1957). 

The Boundary Integral Equation in Three-dimensions 
The region D' enclosing the point P(y) in fig.2.1 is a sphere of 
radius e and surface Sf. To evaluate the limit integrals in 

eqs.(2.5.7) and (2.5.8), it is necessary to determine the expressions 
for tLk and T^k on the sphere S', see fig.2.4 in which a spherical 
system of coordinates is indicated. 
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Fig 2.4 Spherical Surface ST 

The following are true on S' 

2 
R = e , dS = e sine dGdg 

dn = - dR , nn = - sin6 cos3 

n~ = - sinQ sin3 , ru = - cos6 



5R = £ sine cos3 9R _ £ sin9 sing 
e ' 9x2 £ 

3R _ £ cosg 
£ 

The limits of the following functions, which have been defined for 

eqs.(2.4. 6 ) and (2.4.7 ), are taken as e=R tends to zero 

1 - Y 2 

¥ Y 2 

2 -i X Y " 1 

Ax 3 - 4y2 

A2 18(Y2 " 1) 

A3 "" A 1 

A 4 — - 3 - 2 Y 2 

Thus on sphere S' , U ^ and assume the expressions 

V = - k + 2 ( 1 " y 2 ) fjk ( 6 , B )) 
(2.5.11) 
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T., = ^ i2((4Y2-3)6jk + 12(l-Y2)gjk(6,3) (2.5.12) 

where f e, 3) and g^k( q, 3) are 3x3 matrices whose elements are 
functions of 9 and 3 only 

f3k sin2 6 cos2 3 - sin2 9 sin23 
2 

± sin29 sin23 2 2 sin 9 sin I 

- sin29 cos3 - sin29 sin3 
2 2 

— sin29 cos3 
2 

— sin29 sin3 
2 

cos 

Sjk = fjk 
The integrals and are now 

~ 2ir k 

= e ^ o V P ) / / Tik(P'Q) e 2 s i n 8 d6de 
Jq Jo 

/

27T Tr 

/ Ujk(P,Q) e2sin9 d9d3 
u -D 

Substituting for U^k(P,Q) from eq.(2.5.11) it is easy to show that 

i 2 = 0 

Substituting for T^k(P,Q) from eq.(2.5.12) into the I1 integral above, 
we perform the integration with respect to 8 first and then with 
respect to e to obtain the final result 

s

 V
u

k
( p ) 
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If P was at a smooth part of the boundary S distinct from Q, surface 
S' would be a hemisphere and the value of the integral would be 

h - r V
u

k
( p ) 

Putting these results back into eq.(2.5.5) we find 

cjkuk(P) +jTjk(P,Q)uk(Q) ds(Q) 

-f Ujk(P,Q)tk(Q) ds(Q) (2.5.13) 

where 
c .,= 6., for P inside region D 
jx jx 
c = _L 5.. for P on smooth boundary S 
JK 2 JK 

For non-smooth boundary point the value of c^k must be modified. As 
seen from eqs.(2.5.11) and (2.5.12) the singularities of U^k and T^k, 

2 

as R tends to zero, are of order 1/R and 1/R respectively. As the 
integration point Q approaches P the Cauchy Principal Value of the 
first integral in eq.(2.5.13) is taken. 

Eq.(2.5.13) is similar in form to the boundary integral equation 
obtained for the two-dimensional problems, see eq.(2.5.10). In fact 
it has the same form as those for transient motion, Cruse (1967), and 
elastostatics, Rizzo (1967), for both two- and three-dimensional 
cases. Thus it may be regarded as the governing boundary integral 
equation for all elasticity problems. It is the dynamic equivalence 
of Somigliana's identity in elastostatics. 
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c h a p t e r 3 

APPLICATION OF THE B. I.E. T O 

A SEMI-INFINITE D O M A I N 

section page 
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Domains 49 

3.2 Adaptation of the BIE to 
Foundation Problems 53 

3.3 General Approach to the 
Numerical Solution of the BIE 56 
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3-1 ON THE APPROPRIATENESS OF THE BIE TO INFINITE/SEMI-INFINITE 
DOMAINS 

In the formulation of the boundary integral equation for the 

elastic domain D in chapter 2, the domain was always 

considered as finite. When a boundary value problem of 

mathematical physics refers to a region containing a point at 

infinity (such as the elastic half space we shall deal with 

in this study), it is necessary to consider the behaviour at 

infinity carefully, i.e., to consider the asymptotic behaviour 

of the solution as a function of the spatial coordinates. 

There is usually no indication of this behaviour from the 

pure mathematical formulation of the problem, and it must be 

determined from indirect reasoning in agreement with physical 

conditions of the problem. The most important of these 

considerations is that the behaviour at infinity should ensure 

a unique solution. But it is clear that the- conditions which 

guarantee uniqueness are, in general, by no means uniquely 

determined, and the problem consists in choosing these 

conditions in the most useful way and, especially, in such a 

manner that solutions with assigned character at infinity 

exist. Green's formulae and similar other formulae in the 

theory of elasticity, in particular Betti's formula, serve as 

a means to make this choice. The choice of the asymptotic 

character of the solution of boundary value problems for the 

Helmholtz (wave) equation 

( V 2 + k 2)u = 0 (3.1.1) 
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which is based on the application of Green's formulae, was 

first derived by Sommerfeld, and has been known as the 

Sommerfeld radiation conditions in the theory of waves. They 

stipulate that the vector u assume the following asymptotic 

relation as the distance r from the point of observation 

becomes very large 

lim , r( — + iku ) = 0 
r — oo dr 

(3.1.2) 

( u ) = 0 
r — co 

For convenient reference the boundary integral equation is 

reproduced here. 

cJkuk(P) +J* Tjk(P,Q)uk(Q) ds(Q) 

•/Ujk(P,Q)tk(Q) ds(Q) (3.1.3) 
S 

Applying this to the half space requires integration over the 

boundary S of the domain, fig.3.1, which is either a 

semi-circle of infinite radius or a hemisphere of infinite 

radius according as the problem is two- or three-dimensional. 
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Fig 3.1 The Half Space Boundary 

One way to deduce the asymptotic behaviour of vectors u^ and 

t^ is immediately obvious from the integral equation. We 

shall require that the integration over the infinitely distant 

parts of the boundary be zero for any chosen accessible 

point of observation located on the plane portion of the 

boundary. In particular if Z is the infinitely distant 

portion of a sphere (or hemisphere) centered at the point of 

observation, we require the following integral to be zero 
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R2^Tjk(p,Q)uk(Q) - Ujk(P'Q)tk(Q)) = 0 (3.1.4) 
r 

where dft is the solid angle at the observation point that 

subtends the surface element of E , and R is the distance r' 
between the element and the observation point P. From this 

requirement we arrive at the following so-called radiation 

conditions of elastodynamics, see Doyle (1965), Eringen (1975), 

Kupradze (1963) 

t(P> - i p t o c ^ } = 0 

(3.1.5) 
t(s> - zpo)C2 u ( s )} = O 

R 

lim r 
—>oo J 

in which superscripts ( p) and ( s) refer respectively to the 

irrotational and equivoluminal components of the vectors. 

It is interesting to observe that the requirement (3.1.4) and 

its consequencies (3.1.5) are not new. Indeed Eringen (1975) 

and Kupradze (1963) have shown, by decomposing the 

displacement vector u into its irrotational part u ^ and 
(s) 

equivoluminal part u ', that these requirements result 

directly from the Sommerfeld radiation conditions (3.1.2) of 

ordinary wave equations. This link between the wave theory 

and elastodynamic equations is not surprising since we have 

observed in section 2.3, chapter 2, that the special 
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elastodynamic operator V* defined in eq.(2.2.3) plays in the 

theory of elasticity a similar role as the Laplace operator 
2 V plays in the theory of harmonic potentials. 

Having chosen an asymptotic character of the solution based 

on indications resulting from the boundary integral formula, 

it is necessary to be sure that such a solution actually 

exists and that it is unique. The uniqueness of solutions 

based on these radiation conditions has been proved by 

Kupradze (1963) and Doyle (1965), and Doyle showed that these 

conditions do admit to a physical interpretation - they rule 

out the possibility of energy sources being located at 

inf inity. 

3-2 ADAPTATION OF THE BIE TO FOUNDATION DYNAMICS 

It is now established that the integration of the BIE is 

restricted to the plane boundary of the half space, the 

contribution from the infinitely distant part of the boundary 

being zero. But the plane boundary itself is of infinite 

extent, and numerical solution of the integral equation over 

an infinite domain is impossible. To solve the problem we 

expbit the radiation conditions discussed in the previous 

section in the form of eq.(3«1.4). 

This equation indicates that points distant from a given 
observation point P contribute the less to the integrals in 
the BIE formulation the more distant they are from P. The 
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formal implementation of the BIE scheme is indicated in 

fig.3-2 below. The shaded area in the figure is that portion 

of the surface of the half space on which some stress 

distribution is applied. 0 is the' origin of coordinates, and 

P a chosen observation point C is a circle of some radius 

Rc centered at 0 and completely enclosing the stressed 

region. The BIE eq.(3•1•3) gives the displacement at P in 

terms of integrals of displacements and stresses (multiplied 

by the kernel functions and Ujk respectively) taken over 

the entire surface. Q is the integration point and ds(Q) the 

element of area at Q. Now since the contribution from Q to 

the integrals (i.e., to the value of displacement at P) 

becomes less the more distant it is from the loaded area, 

one may wish to know the value of radius R of circle C 

beyond which one can begin to ignore contributions to the 

integrals, as well as the errors involved in such truncation. 

ds(Q) 

Fig 3.2 Implementation of the BIE Formulation 



It is observed that the integral involving stress t^ is 

naturally restricted to the loaded region since it is zero 

on the stress-free surface. Thus the truncation applies only 

to the integral involving displacement, namely, 

Iu = J ds(Q) (3.2.1) 

As a rough indication of the errors involved in the 

truncation we compare the contribution to the integral of a 

portion of the surface of area A near P and of another 

portion having equal area far from P. We use the inequality 

L - I !Tjkl.!uki.ids| 

and note that at distances from P greater than unity the 

dominant part of |T k̂| is proportional to 1/R. Also the 

displacement !ukJ decreases with distance away from P, as may 
( 1 ) be concluded from the works of Lamb (1904). If I is the 

(2) 

value of the integral near P and I the value far from P, 
a rough estimate of the error may be indicated by the 
ratio, ignoring the variation of !uk!, 

I ^ / P « (1/H 2)/(1/V - y a . 

This ratio merely compares the contribution of the area A 

to the displacement at P for near and distant positions of 

A . This error analysis, even though very approximate, does 

point to the fact that if a second foundation was placed 

near the one at the shaded area of fig.3.2, the interaction 



would be greater when the bodies are closer together than 

when they are farther apart. Warburton, Richardson and Webster 

(1971) found that the disturbance of the second (circular) 

foundation caused by the first increased by from 50 to 100 

per cent as the bodies were brought closer together from a 

distance apart of 30 cylinder radii to 10. 

The foregoing is true for the two-dimensional problem as it 

is for the three-dimensional, the only alterations required 

being formal mathematical adjustments. In that case the region 

of integration is simply the solid straight line portion of 

the semi-circle shown in fig.3.1 (strictly speaking the region 

of integration is a rectangular infinite strip of unit width 

into the paper). The circle C of fig.3.2 to which we have 

truncated our integration will in this case be a straight 

line of length Rq on both sides of the origin. 

It is expected that accuracy will improve with increasing 

values of . By solving the given foundation problem for 

various values of R , one can observe when results have 

converged to a suitable accuracy compared to published works. 

GENERAL APPROACH TO THE NUMERICAL SOLUTION OF THE BIE 

After establishing the governing boundary integral equation, 

eq.(2.5.10) or (2.5.13), for steady state elastodynamics the 

numerical solution may now follow very much the same approach 

as for elastostatics, see Brebbia (1978), Latchat and Watson 
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(1975). In this section we outline the general numerical 

method of solution of the boundary integral equation for two-

and three-dimensional problems. The solutions to problems 

described in the next chapters are based on the descriptions 

in this section. 

Typically solutions are required for the displacements or 

stresses at points on the surface S of an elastic body D, 

given the stresses or displacements at portions of the 

boundary. The boundary integral equation(3.1.3) reduces to an 

algebraic system of equations by discretising the boundary 

data. In this way the boundary is assumed to be divided 

into finite elements. If there are L such elements then the 

discretised form of the integral equation is 

Th<=> i rihpcrr'a 1 si cm ui hh <51 ih<=jr>m' nh Q 

characterised principally by the manner in which the boundary 

S is represented, and by what assumptions are made about the 

variation of displacements u^(Q) and stresses over each 

element. 

ds(Q) 
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Two-Dimensional Problems:-

The boundary in this case is a plane curve and the L 

elements are line segments. On the line element we introduce 

local coordinate £ which varies from —1 to +1 over the 

element, fig.3•3• 

S 'S = +1 

Q 

5 = -1 

node 

element 

Fig 3.3 Boundary Element For Two-Dimensional Problem 

The variation of uk and tk over the element is selected in 

some suitable way. We use quadratic variation in this study, 

i.e., the values of uk(Q), and tk(Q) at some point Q on 

the element are interpolated from the values at the element 

nodes (three nodes for quadratic variation) as 
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u k{Q(C)} = V * ) ( V n 
n=l 

( 3 . 3 . 2 ) 

t k ( Q ( D > = J ] « a ( « , ( V n 
n=l 

where (u
k)n, and (tk)n, n=1,2,3 are the values of uk and tk 

at the three nodes of the element, and M (£), n=1,2,3 are 
the quadratic shape functions given by 

M 1 ( D = - (6 " D C 

M 2 ( 5 ) = 1 - C2 ( 3 . 3 . 3 ) 

M . m = 3- (c + D 6 

J 2 

The element of area ds(Q) is also expressed in terms of 6 

through the Jacobian of transformation from 6 to x̂  
ds(Q) = J(6)d6 

dx-
J(C) = 

1 
d6 ( 3 . 3 . 4 ) 

Let the L elements of the boundary have a total of N 

nodes. For ease of computer coding a global numbering scheme 

for the nodes is constructed whereby the number of the (c)th 

node of element & is denoted by d(£,c). Introducing the 
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functional variations (3.3.2) into the discretised equation 

(3.3.1) we have the following algebraic equation for the 

(a)th node at which point P is located 

L 3 v 
— U . ( P ) + 2 D 

1=1 c=l 
S £ 

L 3 

= X ) t k { d { ! L ' c ) } • / u j k ( p a ' Q ( a ) M c ( ^ 

1 = 1 c=l 

j,k = 1,2 (3.3.5) 

where we have made use of the fact that on the smooth 

boundary involved in our problem c., = JL<$ # if the equation 
jx 2 jk 

is written for every position of point P along the boundary 

nodes, the resulting system of equations may be written in 

the form 

M W = W W ( 3 - 3 - 6 ) 

in which the unknowns are the nodal values of u^ and t^. 

There are 2N equations for the 4N nodal point values of 

displacements and tractions, half of which are known in a 

well posed problem. 

Since R(P,Q) is measured from P, when P coincides with one 

of the nodes of the integration element I the integrals 

become singular at P. The appropriate steps taken to treat 

the singularities (similar to those in elastostatics problems) 
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are discussed in the chapters (4 and 5) where the foundation 

problems are analysed. 

Three-dimensional Problems:-

The boundary is a surface and the L elements are area 

elements. We shall use quadrilateral elements which we may 

allow to have curved boundaries. On each element we introduce 

local coordinates and » each varying from -1 to +1, 

fig.3.4 

Fig 3.4 Boundary Element For Three-Dimensional Froblem 

Quadratic shape functions shall be used here also to 

interpolate variables at any given point Q on the element. 

In this two-dimensional element, eight nodes are required. 

Thus the coordinates x. of point Q are determined in terms 

of the local coordinates £ , £ by 
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(3.3.7) 
n=l 

where (xj)n> n=1,2,...,8? are the coordinates of the eight 

nodes of the elements, M
n(£)> n=1,2,...,8 are the shape 

functions given below. By experience from the elastostatics 

problems, Lachat (1975), these interpolation scheme adequately 

models the curved boundaries of the element. The displacements 

and stresses are similarly interpolated 

u k|Q(6 1,C 2)f = V * l ' * 2 ) ( V n 
n=l 

(3.3.8) 

t k { Q ( C r C 2 ) [ = ^ M n ^ r C 2 ) ( t k ) n 

n=l 

The shape functions are 

M 1 ( 6 1 , 6 2 ) = ± (C-l + D ( C 2 + D ( C X + 6 2 - 1) 

M 2 ( C 1 , C 2 ) = 7 (l - (C2 + 1)(C 2 - - 1) 

M 4 ( 6 1 , C 2 ) = 3- (l + 6-^(1 - C 2 ) ( C X - 6 2 - 1) 

M 5 ( 6 1 , C 2 ) = - (l + q ) (l - C2> (3.3.9) 
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V ^ , ^ ) = 7
 + 1 ) ( 1

 - ^ 

M 7 ( C 1 , C 2 ) = - (1 - (1 -

M q ( C 1 ^ 2 ) = - (1 - (1 - C 2) 

The element of area ds(Q) is expressed in terms of g , 

through the Jacobian of transformation from £ to x 

ds(Q) = J U r £ 2 ) d ^ d ^ * 

where J(g) is the Jacobian given by the modulus of the 

vector product 

3x. 3M n 
S .. = -r-pi = -r-p— (x.) , sum on n 

(j C (1,2,3)} , k C (1,2) 

Introducing the functional variation (3.3-8) into the 

discretised boundary integral equation (3,3,1) gives the result 

L 8 

ju j (P a) + 2 Z ) ujd(*,c)}. j Tjk(pa,Q(^^2))Mc(C1,C2)J(C1,?2)dC1d?: 
£=1 c=l 

L 8 

S £ 

= X X ^ i ^ h ' Ju j k(p a,Q(C 1,C 2))M c(C 1,C 2)J(^ 1,? 2)d^ 2 

1=1 c=l 
S £ 

(3.3.10) 
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Writing the equation for every position of the point P along 

the boundary nodes gives the algebraic system of equations 

in which the unknowns are the nodal values of u^ and t^. 

There are 3N equations for the 6N nodal point values of 

displacements and tractions, half of which are known for a 

well posed problem. 

Once the system of equations (3.3-6) or (3.3-11) is set up 

the boundary conditions of the problem are applied by 

rearranging the elements of the two matrices in order to 

have the unknowns on the left and the known on the right 

hand side. In the next chapter the vibrations of a rigid 

infinite strip is analysed. The following chapter is devoted 

to the vibration of foundations of finite arbitrary shape. 

(3-3.11) 
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4.1 INTRODUCTION 

In this chapter we apply the two-dimensional f orm of the 

boundary integral equation (2.5.10) to analyse the vibration 

of a rigid rectangular strip of infinite length on the 

elastic half space. Some of the already known results are 

reproduced but the emphasis is on the flexibility and 

convenience of the method in handling different types of 

boundary conditions - frictionless and welded contact - as 

well as coupled modes of vibration. Of particular interest is 

the solution for the unrestricted (three degrees-of-freedom) 

motion of the infinite strip, namely coupled vertical, 

horizontal and rocking vibration, which has not been mentioned 

in the literature before now. 

4.2 PROBLEM DEFINITION 

Fig.4.1 below depicts the coordinate system x^, x2, x^, and 

significant dimensions. The infinite length of the body runs 

along the x^-axis, and the isotropic elastic half space 

occupies the region x2 ̂  0. Since the strip is assumed rigid 

the displacements are assumed not to vary along the x^-axis, 

so we have plane strain elasticity problem. It is therefore 

sufficient to consider a unit length of the body along the 

x-j-axis. The height is taken infinitesimally small. 
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Fig. 4.1 The Coordinate Axes 

For the contact between the rigid body and the half space, 

we define two sets of conditions 

Relaxed Contact Conditions:-

in the literature the following conditions are at times 

prescribed at the contact surface in order to relax the 

completely mixed boundary—value problem for convenience, as 
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observed in section 1.1, chapter 1. These conditions 

effectively decouple the modes of vibration, 

(i) Vertical Vibration:- Zero shear stress t̂  

(11) Horizontal Vibration:- Zero normal stress t2 

(iii) Rocking Vibration:- Zero shear stress t̂  

Welded Contact Conditions:-
By this we mean the attachment in which there is complete 

continuity between the displacements and stresses of the 

footing and underlying half space in the area of contact. 

These conditions ensure no slip between the foundation and 

the half space and leave the modes coupled. 

In practice it is reasonable to expect the actual conditions 

to be somewhere between these two extremes. However for the 

coupled modes of vibration the welded contact conditions 

prevail. 

In order to apply the boundary integral method to solve this 

problem it will be necessary to first identify all the 

displacements and stresses (as knowns or as unknowns) induced 

on the surface of the half space by the various modes of 

vibration of the rigid body. For each mode the effective 

dynamic stiffness of the supporting medium is computed as for 

a massless foundation, from which the response of a 

foundation of a given mass is obtained. 
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First the following notation shall be adopted. 

For a Massless Body, 

the motion:-

V is translation in x..-direction 

V. translation in x~-direction 

, rocking about x^-axis 

V,, E b0Q, our definition, 

The applied forces per unit length of body:-

Q- is force applied in x--direction 
force applied in x^-direction 

couple applied about xQ-axis 

Q^ = M^/b, our definition. 

It is noted that since above definitions are for a massless 

body, the forces Q., j= 1,2,3, niay be taken to correspond to 

the reactions of the supporting medium on the body. 

Now For a Massive Body, 

the motions and applied forces are modified by the inertia 

properties of the body. 

The motion:-

Ŵ  is translation in x̂  - direction 

Wgt translation in x^-direction, 

Oy rocking about x^-axis, 

W-- =b&~., our difinition. 
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The exciting forces per unit length of body:-

F̂  is force applied in x^-direction, 

F^, force applied in x^-direction, 

T^, couple applied about the x^-axis, 

F^ = T^/b, our (Jifinition. 

These quantities are generally complex. Where the modulus is 

implied it will be convenient to use the same symbols. With 

these difinitions we have, for example, the equation of 

vertical motion of a body of mass m ^ unit length 

supported on the half space is, see fig.4.1a below 

2 - o> m00W0 + Q0 = F0 

r 

Fig 4.la Forces on Massive Foundation 
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To determine, say, the vertical stiffness of the supporting 

medium, it is sufficient to consider a massless body, give 

it a known displacement V^, compute the force (stress 

integral) Q^, fig.4.1b below, and find tne ratio K^ of Q2 

to V2- The "compliance" is defined as the inverse of the 

stiffness. 

Fig 4.1b Forces on Massless Foundation 

Once K^ is determined the equation of motion of the massive 

body in fig.4.1a becomes 

2 - co + = P 2 

This is actually the so-called "impedance matching" technique. 
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BOUNDARY CONDITIONS IMPOSED BY THE MODES OF VIBRATION. 

(i) The General Three Degrees-Qf-Freedom 

V^, V2 represent the translation of the raassless rigid body-

in the x^, x^ directions wnile 0^ represent the rotdion (in 
radian measure) about x^-axis. V^ = b0^. Thus tne three 

degrees-of-freedom are described by V^, V2, and V^. 

Considering that the body remains rigid during motion, the 

displacements induced on the contact area are, assuming small 

quantities, 

U 1 = V 1 

u2 = V2 + x103 (4.3.1) 

The stresses on the other hand are unknown 

t̂  - unknown, !x̂ | < b 
t2 = unknown, Ix^^b (4.3.1b) 

The stresses and displacements are taken positive in the 

positive directions of the respective axes. The following 

stress integrals are defined 

+b 
Q1 = f t , ds 

-b 

+b 
Q2 = f 12 d s (4.3.2) 

-b 
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+b 
Q3 = J (x1 t2/b) ds 

-b 

M^ = bQ^ is actually a couple about x^-axis due to the 

stress distribution t2 in the contact surface. Since a unit 

length of body is being considered, 

ds = dx̂  

The harmonic time factor is being omitted in the 

foregoing development. 

Let F be some reference force in units of force/length, m 

the mass per unit length of the rigid body, and JQ the 

mass polar inertia per unit length about the axis of 

rocking. These inertia properties of the body in the 

directions of motion will be denoted by m.. where 
mjj = m- j = i- 2 

moo = 
33 0 

It is convenient to introduce . the following dimensionless 
forms 

Uĵ  = Tryuk/F 

t k = *bt k/F 

v k = TT yv k/F 
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Q k = Qk/F 

x k = x k / b 

s/b 

= mjj/PbS j = 1/2,3 

W k = iryWk/F 

ri = baj/c 1 I 

n = bco/c 
2 2 

The stress integrals in eqs.(4.3.2) become 

+ 

Q1 = j I t1 ds 
-1 

q2 = ^ 

- 1 
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The equivalent dynamic stiffness (direct and coupled) of the 

supporting elastic half space are defined by 

K j k _ 2 i IRYV, 
Q. 
V, ( 4 . 3 . 5 ) 

is the force in j-direction per unit displacement in 

k-direction. We have the force-displacement relation 

r \ r \ 
K 11 K12 K13 \ \ 
K 21 K22 K23 < \ > - < 

f 0 - 3 - 6 ) 

K 31 K32 K33 S _ K J 

To analyse the vibration problem it is necessary to first 

solve for the dynamic stiffnesses K... It is observed that 
jx 

is a property of the supporting elastic medium and a 

function only of frequency and geometry of the loaded 

surface. Therefore to compute it is sufficient to 

prescribe any convenient values for motions Vn (n=1,2,3) of 

the body, compute the stress integral, and solve eq.(4.3-6) 

above for Kjk- However, having done this, we end up with 

three equations for the six unknown values K... Therefore it 
jx is necessary to take three different sets of values for V , 

namely V ^ (m,n=1,2,3), compute the stress integrals Q ^ n n 
in each case and then solve the following system of 

equations 
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_1 
v , 

-1 
V2 

-1 
V3 

r A 
K 
J1 

4
2 

' I 
C 
V 

> 

r a 
1 

Q . J 

J 

Q3. 
. J ) 

> ( 4 . 3 . 7 ) 

j = 1,2,3 

It is wise to select V such that the left matrix is 

not singular. Given an infinite strip with inertia properties 

m,. (see eqs.(4.3.3)) the three degrees-of-freedom vibration of 
«J J 
the body defined by W., and W-, .. . , . J J 1' 29 3 are obtained by the 
usual matrix method of analysis 

/ 
/ 

1 
IT 

\ L 

in 11 

0 in 

0 0 

0 
22 

0 0 m 
33 

+ 
K11 K12 K13 

K21 K22 K23 

K 31 K32 K33 

\ ( - ^ 
wi 

\ > 
w 3 v. 

f f. 

— < 

3 J 
( 4 . 3 . 8 ) 

where F. is the force (or moment) applied in the j-direction 
vJ 

of motion. In indicial notation 

{ - 4 
+ K j k } " k (4.3.9) 

where f, = F./F 
\J yJ 
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(ii) Coupled Horizontal and Rocking Modes 

The motion of the body is described by V̂  and V3. The 

rigidness of the body requires that 

u1 = V1, ixn i < 1 

u2 = x ^ , |x11 < 1 (4.3.10b) 

t.j = unknown, < 1 

t2 = unknown, |x̂ | < 1 (4.3.10b) 

The force-displacement relations are 

K11 K13 

K 31 K33 

V. 

Vj 

Qi 

Q-
(4 .3 .11 ) 

Using two sets of displacements V ^ we solve 

system for 

% 1 
- 2 - 2 
V1 V3 

Kil 

K J3 

3 

the following 

(4 .3 .12) 

•i = 1,3 (4.3.12) 

The motions W1 and W3 of a body with 

m^, S33 are determined by 

- k + 
TT 2 

mil ° 

0 m 
33 

+ 
K11 K13 

K 31 K33 

\ 

/ 
w. 

inertia properties 

(4 .3 .13 ) 
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(iii) Uncoupled Horizontal Vibration 

The only motion of the body is V-j 

Relaxed Contact Conditions:-
At the contact area ! x̂  i < 1 

U1 = V, 

u^ = unknown 

t̂  = unknown 

t 2 = 0 

(4.3.14) 

V = 1 is prescribed, and the dynamic stiffness is simply 
K - — 
11 = Q.j, see eq. (3.3.4). The response W-j of a body of 

given mass ratio m^ ̂  is obtained from 

m-j 1 + K n ) = f1 (4.3.16) 

and Ŵ  may be plotted against frequency factor for 

excitation f ̂ = 1 and various mass ratios m̂  -j 

(iv) Uncoupled Vertical Vibration 

V^ is the only motion of the body and the contact 

conditions are 

Relaxed Contact Conditions:-

For ix^^l 

u1 = unknown 
u2 = V2 

(4.3.17) 
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t1 = 0 

t^ = unknown 

Welded Contact Conditions:-

u1 = 0 

u 2 = V2 

(4 .3 .18) 

t̂  = unknown 

t2 = unknown 

V2 = 1 is prescribed, and the dynamic stiffness is 

K22 = Q,. The response W2 of a given body of mass ratio 

m22 is obtained from 

( - Wn2 S22 + K 2 2 } ^ 2 = f 2 (4 .3 .19) 

for any desired excitation f2 

(v) Uncoupled Rocking Vibration 

V^ is the only motion of the body 

Relaxed Contact Conditions:-

For |x1|< 1 

u1 = unknown 
u 2 = X1V3 

(4 .3 .20) 

t1 = 0 

t2 = unknown 

Y^ = 1 is prescribed, and the dynamic stiffness is 

K33 = Q^. The (rocking) response W3 of a given body of 

inertia ratio m ^ is obtained from 
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(4 .3 .22) 

In addition to the displacements and stresses mentioned above 

we note that on the free surface of the half space 

APPLYING THE BOUNDARY INTEGRAL EQUATION 

In the previous section the displacements and stresses have 

been identified, either as knowns or as unknowns, at various 

points on the boundary of the elastic half space for the 

various modes of vibration of the rigid body. Now we recall 

the boundary integral equation (2.5.10) which establishes the 

constraint relation between these variables. The boundary S of 

the half space in this two-dimensional problem is the 

straight line 

X 2 = 0, - oo <X^< oo 

in the dimensionless coordinate system x^. The integral 

equation is written in the dimensionless form 

u. = unknown, j=1,2 (4 .3 .23 ) 

s 

(4 .4 .1 ) 
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in which we have introduced 

Expressions for U.. and T., on the Half Space Boundary 
jk 

On the boundary of the half space, fig.(4.2), the expressions 

for the fundamental tensors U a n d T.., eqs.(2.4.4) and 
Jk JK 

(2.4. 5) take simpler forms. 

outward unit normal n 

boundary 
\ \ S N M \ \ S \ \ 

Fig.4.2 Half Space Boundary 

The outward unit normal n has, at any point on the 

boundary, the components 

n^ = 0 n 2 = -1 

The distance R(P,Q) between two points f^y-py^) Q(x^,x2) 

on the boundary is 

R = ((x, - y / • (x 2 - y / ) 1 / 2 

Since x2 = 0 on the boundary we have 
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3R 
3x, 

3R 
3x 1 

Also 3n = 0 

x-, - y-

- y-
(sign) 

We substitute these results into expressions for and Tjk, 

eqs.(2.4.4 ) and (2.4.5 ) and introduce the barred forms of 

Uj k and T j k given by eqs.(4.4.2). Writing out the elements 

constituting the two tensors we obtain 

U 11 

22 _ 

T -T jk 

21 

12 

where 

U 11 { (V + X) 

12 = - i (sign) A 

(4 .4 .3 ) 

U 22 
(4.4.4 
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T 2 1 = ~ J (sign) A 3 

The functions ¥, x» A^ and A^ have been defined for 
eqs.(2.4. 4) and (2.4. 5). 

1 ) °2 
h

o
(ti

2
r) + - m — h

1
( n

1
r ) - h 1(n 2

r ) 
n 2R( l 

2 
c 2 

x = — h 2 (ti 1r ) - h 2 (ti 2r ) 
ci 

_ X 
A^ = n Hn (n 9 R) + 2 -. 1 2 -

2 
- c2 _ X 
a

4 = " (1 - 2-^) n 1 H 1 ( r ) R) - 2 -
C^ R 

( 4 . 4 . 5 ) 

The following notations have been introduced in the above 
equations 

aj = b A j 

R = R / b 

U-j_ = bk 1 = bw/c1 

= tk y = bo)/c9, frequency factor 

k . R = bk . R / b = n R J 0 j 



- 84. -

The Boundary Elements 

The half space boundary is represented by a finite number of 

straight line elements to cover the region to which the BIE 

integrals have been truncated, fig.(4.3) 

Fig.4. 3 The Boundary Elements 

Small elements are concentrated in and near the loaded region 

where functions are expected to vary more rapidly. Still 

smaller elements are located near the ends of the loaded 

region where variation is most rapid. 

Quadratic variation of u^ and tk is assumed over a given 

element &, as discussed in chapter 3 • The three nodes of 

the element are labelled A^, B^ and C^, see fig.(4.3)- The 

discretised boundary equation (3.3.5) may be written in the 

expanded form, employing the dimensionless quantities of 

eq.(4.4.2) 
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? v p S ) + Z ( w f Mp a , Q ( 5 )} (5 ) j (5 ) 
4=1 \ J 

dS 

s £ 

uk (B£) f Tjk|p
a,Q(?)|-MB(C)j(S) dS 

S £ 

V C t ) J Tjk{pa,Q(5)} MC ( 5 ) J ( 5 ) d5 

S £ 

= 2 ( w J°jk{ p a , Q ( 5 )} MA ( 5 ) J ( 5 ) d 5 

S £ 

fck 

bk 

(Ba) fUjk|pa,Q(5)| MB(I)J(5) d? 

4 

(Ca) jUjk|pa,Q(S)} Mc(C)j(5) d5 

h 

j,k : 1,2 (4.4.6) 

In this case J(£) = h where h^ is half the length of 
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element Z . Writing this equation for every nodal position of 

P gives the system of algebraic equations mentioned in 

eq.(3-3.6). We observe that the coefficients of the nodal 

values of u^ and t^ are integrals of the kernel-shape 

functions over the element Z . We now give details of the 

integration scheme with attention to the singularity at P 

when it occurs in the element. 

4.5 NUMERICAL INTEGRATION SCHEME 

The numerical integration scheme employed is the Gauss-Legendre 

n-point quadrature whereby the integral of a function f(£) is 

approximated by 

where w. are the weights and the abscissae for the 
\J \J 

n-point formula. The following cases which may arise during 

integration over a chosen element z are considered one by 

one 

-l 
(4.5.1) 



(i) Point P Not in Element 

g = -1 

h, 

£ = +1 

h, 

B, Q 

Fig 4.4 Point P Outside Integration Element £ 

The coordinate at a point Q is 

x1Q = x1(BA)+gQhJl (4.5.2) 

and R(P,Q) = jx1Q - x1p| 

There is no singularity of the integrands on the element. So 

all the integrands appearing in eq.(4.4.6) are evaluated 

easily, thus allowing the integration to proceed smoothly 

using the Gauss-Legendre scheme (4.5.1) above. 

(ii) Point P at Node A 

£ = -1 £ £ = +l 

p h £ 
T 

A £ B £ 
Q 

Fig 4.5 Point P at Node A 
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x^g and R(P,Q) are evaluated as in eqs. (4.5.2). As the 

integration point Q ranges over the element from A^ to C^ 

it coincides with P at A , where R(P,Q) = 0 and the kernel 
X/ 

tensors T.. (P,Q) and U.,(P,Q) become singular. As observed in 
JK JK 

section 2.5 chapter 2, the singularities of T ^ and tL^ are 

of order 0(1/R) and O(lnR) respectively. But from the shape 

functions M (r) in eq.(3.3-3) we observe that MD(6) and NL(6) 
r d o 

behave as 0(R) as node A is approached. Hence the products 
A/ 

to be integrated for nodes B and C, namely T M (6)J(6) and 
JK r 

UjkMr(£)J(£), r=B,C, tend to a finite limit at A^, and so 

may reasonably be approximated by a polynomial over the 

element. The quadrature scheme eq.(4.5.1) thus applies for the 

coefficients at nodes B^ and C^. 

As for node A^ the shape function M^(6) tends to unity at P 

and the integrands l\kMA( 6)J( 6), and U^kMA(6)J(C) remain 

singular. Since the singularity of U.. is only logarithmic, 
Jk 

its integral exists and can be evaluated with a quadrature 

scheme with logarithmic weight function. On a closer 

observation of the functions that make up IL^, see 

eqs.(4.4.4) and (4.4.5), the only quantity that gives rise to 

the logarithmic singularity is the Bessel function of the 

second kind YQ(r^R). So in our numerical scheme we treat all 

the other functions by the Gauss-Legendre scheme described 

above and use the following scheme 

/ f(6)ln(6)d6 = E f(6Jb. (4.5.2) 
j=l 3 3 

* 
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for the function Y (n2R) in the form 

J o ({ Yo { r |2 R ( 4 ) } V
5 ( 5 ) }

 H(C) ln(C) j. / ln(C))dC 

/ 3 (4.5.3) 

To this end we introduce another set of coordinates C as 
in f ollowing sketch 

€ 

p 
1 

= - 1 .5 5 

A t 

c 

B t 
Q 

CJ 

c = o c = 1 

Fig 4.6 New Coordinates £ 

in which 

S = - 1 

In the scheme (4.5.3) H(£) is 
from ? to C 

H(c) = 

and the special weights b, may 

+ 2 C 

the Jacobian of transformation 

. d£i 
' a T 
be obtained from Abramowitz 
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and Stegun (1972). 

The integral containing over element £ alone 

does not exist but its principal value over the two elements 

on the two sides of node A exists. Since Tl^ is 

anti-symmetric with respect to node A and the shape functions 

at A (namely M^ for element £ and Mq for previous element 

£-1) are symmetric with respect to node A, the principal 

value is zero if the elements on both sides of A are of 

equal length. We shall generally ignore this value in our 

scheme since adjacent elements are nearly of equal length. 

(Hi) Point P at node C 

£ = -1 

h, h. 
£ = +1 

p 

B, 

Fig 4.7 Point P at Node C 

The integration is very similar to that described in above 

paragraph. In this case, however, the singularities are at 

node C. The integral coefficients for nodes A and B are 

evaluated ordinarily using the Gauss-Legendre scheme. The 

Bessel function Y^r^R) is evaluated using the scheme (4.5.3) 
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for node C, with the adjustment that the g -coordinate is 
defined thus 

= -1 
5 £ = +1 

h £ P 

B Q1 
£ 

I 

= +1 £ -
£ = 0 

£ = 1 - 2c 

Fig 4.8 New Coordinates £ 

(iv) Point P at Middle Node B 

In this case it will be useful to subdivide the element 
into two subelements. 

£ = -1 £ = +1 

h, 

v£ 

£ = -1 l 

£ = - + - £ 
2 2 1 

P 

L • 

h, 

c r +i ? 2 = - 1 = + i 

5 -
2 2 2 

subelement (1) subelement (2) 

Fig 4.9 Element Subdivision 
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Over the jth subelement local coordinates C. are introduced. 
O 

The relationship between C • and K are shown in the diagram 

and the Jacobian of transformation from £ to is 

introduced into the integrals. Thus, for example, over the 

first subelement, 

• f r 1 

/ f U ) d £ = / f U ( c ) } dt (4 .5 .4 ) 
<L v^i 1 d £ i 

The integration over each subelement becomes similar to the 

cases of P coinciding with an end node, paragraphs (ii) and 

(iii) above. 

It is useful to observe that since the integrands are 

oscillatory, more particularly at higher frequencies, greater 

number of integration points (n) will be required over an 

element than is commonly ' used in elastostatics where the 

integrands vary less rapidly. However this does not constitute 

any setback here because variation over small elements can be 

adequately handled with few integration points for the range 

of interest of the frequency factor ^ - up to 4. n=4 is 

found to be good for small elements and n=8,12 for the 

larger ones. 
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4.6 APPLYING THE BOUNDARY CONDITIONS TO THE ALGEBRAIC EQUATIONS 

After the integration described in the previous section the 

resulting 2N algebraic equations are of the form 

MM - MM (4.6.1) 

The matrices written in expanded form are 

'11 1 2 

(1) a. 

m n 

(1) i N1 a (1) a 
N 2 

a H 3 

'1 N 

a 
NN 

L J 

A A 

L 2 Jm 

u„ 

a (2) a ( 2 ) 

1 2 
a (2) 
1 3 

a 
(2) 
mn 

a (2) 
N 1 

(2) 

1 N 

(2) (2 ) (2 ) a a a 
N 2 N 3 NN 

_ 

A A 

Lb2 J1 

(4.6.2) 

vy 
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The coefficient matrices A1 and k^ have been partitioned 

into 2x2 submatrices a ^ and a ^ respectively. a ^ 
mn mn mn 

result from positioning P at node number m and calculating 

the integrals of the products of T._ a n d t h e shaPe Actions 
(2) J appropriate to node number n. av ' is a similar submatrix mn 

involving Ujk and nodes m and n. Once the system of 

equations (4.6.2) is set up it can be used to solve many 

steady state dynamic problems involving the half space in 

plane strain. As outlined in chapter 3, it is only 

necessary, after setting up the system of equations for a 

suitably designed boundary mesh, to shuffle or swap the 

elements of matrices Â  and A2 in order to have all 

known terms on the right and the unknowns on the left hand 

side of the system. The final system, now of the form 

[A]{z| = |B| (4.6.3) 

is then solved by routine methods for the set of unknowns 

jzf, which may consist entirely of displacements, or stresses 

or of both, according to boundary data available. 

The system of equations (4.6.2) is applicable to all modes 

of vibration by simply applying the boundary conditions 
rj 

appropriate to the mode detailed in section 4.3. To follow 

the procedure we let Ŝ  denote the loaded region of the 

half space boundary, and SQ the stress-free region. The 

algebraic equations (4.6.2) are rewritten to indicate the 

elements of the matrices Â  and A2 which pertain to 
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nodes in the various regions, as follows 

-i / \ 

< u, '1 
So 

V J 

( \ 
tr 

M M • M H 

So 

(4.6.4) 

uSo d e n o t e s displacements at nodes in the stress-free region 

s0' etc. The odd-numbered columns of matrix A. are 

L

1 
and A2 . We use the cases of vertical and 

coefficients of the nodal displacement component û  while the 

even-numbered columns are those of u2. The columns of A2 

refer similarly to the coefficients of nodal stresses t̂  and 

t2. First it is noted that stresses t ^ = 0 are already 

known while displacements are unknown on the stress-free 

region S . Therefore the sorting concerns only the S^-columns 

of matrices A 

the three degrees-of-freedom vibration to illustrate the 

procedure. The other modes are similarly treated. It is 

observed that when a coefficient is taken across the equality 

sign, its sign changes, of course. 

(i) Vertical Vibration:-

Refer to eqs.(4.3.17) and (4.3.18) 

V2 is unity, so the even-numbered columns (S^-columns) of 
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matrix A^, are summed up and transferred to the right to 

the known column vector B. The even-numbered columns of 

matrix A2 (coefficients of vertical stress t2) are transferred 

to the left to replace the even-numbered columns of A^. 

Relaxed Contact Conditions - eq.(4.3•17) 

No further shuffling as the coefficients of unknown û  are 

already on the left. 

Welded Contact Conditions - eqs.(4.3.18) 

The odd-numbered columns of A2 (coefficients of unknown t-j) 

are transferred to replace the odd-numbered columns of A^. 

Three Degrees-of-freedom:-

Refer to eqs.(4.3-1)a,b 

The three sets of trial values V ^ used are, see eq. (4.3.7) 
n 

and subsequent discussion, 

3 2 1 

2 3 1 

1 1 3 V; 

V 2 
2 

V3 2 

V1 
3 

v 2 
3 

v3 
3 

The values of the elements 

expected, as long as the array 

To effect eqs.(4.3.1a), multiply 
A. by the even-numbered 1 J n 
x- is the x * —coordinate of the 

were found not to matter, as 

is not singular. 

the odd-numbered columns of 

columns by V ^ + x , V ^ where n 1 n 
appropriate node, sum up the 
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result and transfer to the mth column of B (the right hand 

side array B of the final assembly is now required to have 

three columns). The operation can be represented by 

B -A. u(m) - A !v(m) + x v(m) I bj,m " j,2n-1 1 j»2n\ 2 + X1nv
3 f 

where n is the appropriate node number in the loaded region 

s r 

To effect eqs.(4.3-1b) all the S,-columns of Â  are 

transferred to replace the similar columns of A2 as the 

coefficients of the unknown t,, t2. 

Some Programming Hints. 

These operations can be very neatly coded into a computer 

subprogram. It is wasteful to bother to compute the 

S0-columns of matrix A^ as they are never used - the Ŝ  

surface has zero stresses. So only the Ŝ  -columns need be 

computed for A^, i.e., integration of the functions involving 

is done only for elements in the loaded region. Also it 

is not necessary to have all the rows of S, -columns of A2 
in storage simultaneously. Space for only two rows need be 

allocated. For a nodal position of the point P, eq.(4.4.6) 

only two equations for j=1,2 are computed simultaneously. The 

boundary conditions may be applied immediately so that the 

space allocated for the two rows of array A2 is released 

for computation of the next pair of equations. Of course, 

allocation has to be made for the entire matrices Â  and B 

simultaneously unless disc-based method of solution is employed 
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for the equations. The problem size is small enough to need 

only in-core handling of the matrices. After solving the 

final assembly (4.6.3) one has to remember which elements of 

the solution vector represents stress or displacement according 

to the sorting done for the various modes. We have not 

bothered yet to consider symmetry of the problem (if any) 

because it will be informative to let the solutions verify 

this. After that one may then use symmetry to further reduce 

the problem size. The values of the computed nodal variables 

for the three degree-of-freedom vibration showed no symmetry, 

however. 

Having solved the final assembled equations and computed the 

stiffnesses as outlined in section 4.3 for the various modes 

of vibration, the results are presented next. 

4.7 RESULTS AND DISCUSSIONS 

(a) Effects of Truncating the Integrals in the BIE Equation 

In section 3.2 of chapter 3 it is indicated that the 

integrals in the BIE equation are truncated to within some 

region a distance of RQ from the loaded area, see fig.4.10 

below 

R ^ 0 

/ / / / , I I I I . r 

R 0 

/ / / / , I I I I . r 

- 1 

1
 1 1 1 1 > 

, *2 

L 

Fig 4.10 Limits of Integration 
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We now investigate the effect of various values of Rq on 

the results of the analysis of the foundation vibration. 

Vertical vibration is used, with Poisson ratio 1/4. 

The real and imaginary parts of the dynamic stiffness for 

vertical vibration are plotted in fig.4.13 for values of 

RQ=0,3,7. A value of RQ indicates the width of the 

stress-free surface that is assumed to have contributed 

significantly to the integration, the width being measured as 

a number of half-widths of the rigid strip. The convergence 

of the dynamic stiffness to a definite limit may be observed 

in fig.4.13 as RQ increases. The convergence is rather more 

rapid that predicted by the approximate error analysis in 

section 3*2. 

The results for Rq=3 and RQ=7 are almost identical. It is 

sufficient to use the smaller value RQ=3 which gives smaller 

area to integrate on and therefore less expensive numerical 

integration. The rest of the results in this chapter are 

based on the integration over the region indicated by RQ=3. 

(b) Vertical Vibration 

The equivalent dynamic stiffness is compared with the 

analytical results of Karasudhi, Keer and Lee (1968) in 

fig.4.14 where excellent agreement is observed. This is for 

the relaxed contact conditions. For the welded contact 

conditions, we compute the dynamic compliance (inverse of 

stiffness) in order to be able to compare directly with the 

works of Luco and Westman (1972) where such results are 
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available. This comparison is shown in fig.4.15 to be 

excellent. 

The difference between the relaxed and welded contact 

conditions are also shown in the figure, and it is observed 

to be small. In plain words, the figure indicates that when 

the rigid infinite strip is considered to be executing pure 

vertical vibration, it makes little difference whether we 

assume zero shear stress between the strip and the supporting 

medium (relaxed contact conditions) or perfect no-slip bonding 

between them (welded contact conditions). 

The results presented in fig.4.15 are for Poisson ratio 1/4. 

Luco and Westman (1972) observed that the difference between 

the two types of contact conditions is smaller at higher 

Poisson ratio but slightly larger at lower Poisson ratio. 

The normal stress distribution under the rigid foundation is 
plotted in fig.4.16 for some values of the frequency factor 
n . The , stress is symmetrical about the longitudinal axis of 
7 
the body and increases with . The usual edge singularity 

can be observed. The shear stress was found to be 

anti-symmetric and to change sign very rapidly under the 

rigid body. 

In fig. 4.17 is shown the nondimensional response 7ryW2/F 

computed from eq.(4.3.19) and plotted against frequency factor 

ti for some values of mass ratio. 7 
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(c) Horizontal Vibration 

The horizontal compliance is plotted in fig.4.18 for the 

relaxed problem. Agreement with Luco and Westman is again 

excellent. It is remembered that relaxed condition here 

indicates the prescription of zero normal stress at the 

contact between the foundation and the earth in order to 

preclude coupling with rocking or vertical vibration. The 

welded contact condition is discussed in paragraph (e) below 

under coupled mation. 

(d) Rocking Vibration 

The compliance for the relaxed condition (zero shear stress) 

is plotted in fig.4.19 and compared with Luco and Westmann's 

results. The latter results show over-estimation probably due 

to mathematical difficulties which forced the authors to use 

only the "dominant parts" of the integrals they encountered 

to evaluate stress distribution. The welded contact condition 

is discussed below under coupled horizontal-rocking vibration. 

(e) Coupled Horizontal-Rocking Vibration 

In this mode four compliances are involved, and are obtained 

from the inverse of the stiffness matrix in eq.(4.3-5). We 

have 

C^ - direct horizontal-horizontal compliance 

- coupling horizontal-rocking compliance 

C^ - coupling rocking-horizontal compliance 

C^^ - direct rocking-rocking compliance 

Ciq is plotted in fig.4.18 and is found to coincide exactly 
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with the compliance resulting from pure horizontal mode. C ^ 

is plotted in fig.4.20 which again shows the results of Lugo 

and Westmann to be overestimates. In fig. 4.21 the direct 

rocking compliance C ^ is compared with the rocking compliance 

resulting from pure rocking mode. Appreciable difference 

exists, unlike the horizontal compliance in fig.4.18. The 

coupling compliance is shown in fig.4.22. Theoretically the 

coupling compliances C ^ and C^ should be equal by law of 

reciprocity. But due to numerical inaccuracies, differences did 

exist between the computed values. What is shown in fig.4.22 

are the averages of the real and imaginary parts of C ^ and 

Ĉ i compared with similar averages taken from Luco and 

Westmann. 

(f) The Three Degrees-of-Freedom Vibration 

There are nine components of compliance involved, namely 

j,k=1,2,3 obtained from the inverse of the stiffness matrix 

in eq.(4.3.6). 

The Direct Compliances C • •, j= 1,2,3: — 
\J sj 

The direct vertical compliance C22 coincides exactly with the 

vertical compliance resulting from pure vertical mode with 

welded contact conditions. This is indicated in fig.4.15. The 

direct horizontal compliance C^ coincides exactly with the 

horizontal compliance resulting from the pure horizontal mode 

as well as the coupled horizontal-rocking modes. This is 

indicated in fig.4.18. The direct rocking compliance C ^ 

coincides exactly with the rocking compliance resulting from 

the coupled horizontal-rocking modes, as indicated fig.4.20 but 
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different from the results of the pure rocking mode in 

fig.4.19. 

The Coupling Compliances C j ^ k : -
Jk 

The horizontal-rocking, rocking-horizontal compliances are 

exactly the same as those for the coupled horizontal-rocking 

motion, and are indicated in fig.4.22. The vertical-horizontal 

coupling compliance and the vertical-rocking coupling compliance 

are found to be negligible, their maximum values being less 

than 2 per cent of the peaks of the horizontal-rocking 

compliances shown fig.4.22. Allowing for numerical inaccuracies, 

it may be concluded that there is no coupling between the 

vertical and horizontal modes, and the vertical and rocking 

modes. 

The question of no coupling between the vertical and any 

other mode may be examined from the physical situation as 

follows. When the foundation is undergoing vertical motion, 

see fig.4.11 below, the normal stress is symmetric about the 

centre line of the rigid strip and so nq rocking is 

induced. 
motion 

Fig 4.11 Vertical Vibration 
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Also the snear stress is an odd function of x^. The 

resultant horizontal force on tne foundation is zero and so 

no horizontal pull is experienced. 

In the real situation it is intuitively clear that the 

horizontal excitation of a foundation results in rocking 

vibration as well. This is because the center of mass of 

the foundation is at a finite heignt above the soil surface 

and the horizontal reaction force of tne soil which acts at 

the base of the foundation results in a rocking couple about 

a horizontal line through the center of mass. 

(g) Concluding Remarks 

A lot of results have been computed in tnis chapter. This 

is possible because they ail result from one equation, the 

boundary integral equation. This is a demonstration of the 

power of the BIE method as well as its versatility. We did 

not nave to formulate or write a different equation for a 

different mode of vibration or contact condition. Yet we have 

very simply reproduced most of the previously known results 

wnich were computed from series of formidable integrals. Above 

all a numerical verification has been presented for the 

results of the three degrees-of-freedom vibration whicn have 

always been assumed but not computed. 

It will be relevant to mention here the cost of these 

computations. A hint was given in section 4.6 on tne 

computer programming for tnis problem. The main body of the 

program is the setting up of the system of equations (4.6.2) 
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which then becomes applicable to any mode of vibration and 

contact conditions. The coding for all the modes and contact 

conditions is included in one program. Because of the small 

region of integration involved only a small system of 

thirty-one equations in complex variables had to be solved. 

As a result the program requires only 21,500 words of 

computer memory in the CDC Cyber 174 machine at Imperial 

College, and takes only 8 seconds to compute the dynamic 

stiffness at a particular frequency. 

More demonstrations of the powers of the BIE are shown in 

the next chapter where the three-dimensional version is 

employed. 

I 
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FIG.4.13 EFFECT OF TRUNCATION OF THE BIE INTEGRALS ON THE 

DYNAMIC STIFFNESS FOR RIGID INFINITE STRIP IN 
VERTICAL VIBRATION. POISSON RATIO 1/4 

Frequency Factor r\ 
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FIG.4.14 DYNAMIC STIFFNESS FOR RIGID INFINITE STRIP IN 

VERTICAL VIBRATION. POISSON RATIO 1/4 

.2 .4 .6 .8 1.0 1.2 1.4 1.6 

Frequency Factor r\ 

« 
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FIG. 4.15 VERTICAL COMPLIANCE FOR RIGID INFINITE STRIP 

RESULTING FROM:-

(a) pure vertical mode 
welded contact, 

(b) the three degrees-
of-freedom mode 

equivalent results 
from Luco and 
Westmann (1972) 

pure vertical mode 

relaxed contact. 

Frequency Factor r\ 
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FIG.4.16 NORMAL STRESS DISTRIBUTION UNDER RIGID INFINITE STRIP IN 

VERTICAL VIBRATION, (a) IN QUADRATURE WITH DISPLACEMENT 

(b) IN PHASE WITH DISPLACEMENT 

POISSON RATIO 1/4 
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FIG. 4.17 NON-DIMENSIONAL AMPLITUDE OF RIGID INFINITE STRIP 

IN VERTICAL VIBRATION. POISSON RATIO 1/4 
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Frequency Factor n2 
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FIG.4.18 RIGID INFINITE STRIP:-

DIRECT HORIZONTAL COMPLIANCE C RESULTING FROM 

(a) pure horizontal mode (relaxed conditions) 

(b) coupled horizontaI-rocking mode 

(c) coupled verticaI-horizontaI-rocking 

coupled horizontaI-rocking from Luco and 

Westmann (1972) 

Frequency Factor r\ 
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FIG.4.19 RIGID INFINITE STRIP:-

ROCKING COMPLIANCE RESULTING FROM PURE ROCKING MODE 

POISSON RATIO 1/4 

Results from Luco and Westmann (1972) 

Present Study 

Frequency Factor q 
2 
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FIG.4.20 RIGID INFINITE STRIP:-

DIRECT ROCKING COMPLIANCE C ^ RESULTING FROM 

(a) coupled horizontaI-rocking modes 

(b) coupled verticaI-norizontaI-rocking 

coupled horizontaI-rocking from Luco 

and Westmann (1972) 

Poisson ratio 1/4 

Frequency Factor n2 
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FIG.4.21 RIGID INFINITE STRIP:-

DIRECT ROCKING COMPLIANCE C 3 3 RESULTING FROM 

pure rocking mode 

coupled horizontaI-rocking modes 

1.8-1 Poisson ratio 1/4 

1.2 1.4 1 .6 

Frequency Factor T2 
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FIG.4.22 RIGID INFINITE STRIP:-

COUPLING HORIZONTAL-ROCKING COMPLIANCE RESULTING FROM 
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5.1 INTRODUCTION 

The analysis of vibration of rigid foundation of arbitrary 

snape on the elastic half space is presented using the 

boundary integral equation (2.5.13). The good performance of 

the BIE method for the two-dimensional case in the previous 

chapter provides sufficient stimulus for one to proceed to 

this three-dimensional case. The formulation is presented for 

a foundation of arbitrary shape, but in order to be able to 

compare results with those from existing works, numerical 

results are presented for circular and rectangular foundations. 

More detailed attention is focused on rectangular foundations. 

The well-known circular case is mentioned in passing only to 

demonstrate the accuracy of the BIE formulation. Results are 

presented for the vertical and horizontal vibrations of 

rectangular foundation, and tne vertical and torsional 

vibrations of circular foundation. Results are also presented 

for the vertical mode of rectangular foundations with 

length/width ratios of up to 16, and then compared with 

results obtained by idealising such "long" rectangles as 

infinite rectangular strip. We pay attention again to the 

ease of applying boundary conditions and of coping with 

various modes of vibration. 

The development here is very much similar to that in the 

previous chapter, so that in this chapter we shall be able 

to omit much of the explanations of the steps without losing 

meaning. 
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5.2 PROBLEM DEFINITION 

In fig.(5.1) is shown the contact region between the 

foundation and the half space, as well as the coordinate 

axes. b is a characteristic length of the loaded area. For 

example b is identified with the radius of a circular 

foundation or half the length of a rectangular foundation. We 

define the two sets of contact conditions: 

Relaxed Contact Conditions:-

These decouple the motion into pure modes of vibration. 

(i) Vertical Vibration - Zero shear stresses t^, t2 

(ii) Horizontal Vibration in X2-direction, say -

Zero shear stress t̂  and normal stress t^ 

(iii) Rocking about x^-axis - zero shear stresses t^, t2 

(iv) Torsion Vibration - zero normal stress t^ 

Welded Contact Conditions:-

The foundation is perfectly bonded to the half space. There 

is no interfacial slip, and the modes of vibration remain 

coupled. All components of contact stress are unspecified. 

We now identify the boundary conditions imposed on the 

surface by the various modes of vibration. 
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Fig 5.1 The- Coordinate Axes 
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5-3 BOUNDARY CONDITIONS IMPOSED BY THE MODES OF VIBRATIONS 

(i) The General Six Degrees-of-freedom. 

Notations similar to those in chapter 4 are adopted for the 

general motion of and the forces on the massless rigid body. 

V^, V2, V^ represent the translation of the body in the 

coordinate directions x^, x2, and x^ respectively. G-|, 82* 

and 8^ represent the rotations in the respective coordinate 

axes. The motions of and the forces on a massive body are 

similarly defined as in chapter 4, using same symbols. 

V4 = b0r V5 = b82, V6 = b83 
The displacement components induced on the contact area are 

U1 = V1 — x^O^ -: V1 " X2V6 
U2 = V2 + x^e^ = = V 2 + X 1 V 6 
u3 = V3 + X28^ -- x^e2 = v3 + x2v4 -x]v5 

(5.3.1) 
The stresses in the loaded region are 

t̂  = unknown 

t2 = unknown (5.3.2) 

t^ = unknown 

uk and t^ are taken positive in the positive directions of 

the coordinate axes 

The following stress integrals are defined 

- I 
t^ds 
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- I 
ds 

2 t^ ds 

Q6 d s 

4 

The harmonic time factor etw* is being omitted. The stress 
integrals Q^, Q^, and Q^ are couples opposing the rotation 
of the body about the x-|, x2, and x^ axes respectively. 

Let F be some reference unit of force and m the mass, J ̂, 

J2, and J^ the moments of inertia about x^, x2, and x^ 

axes respectively. We use the symbols m ^ = m, j=1,2,3 

2 2 2 = J^b , m55 = J2/b , m66 = J^b 

The following dimensionless quantities are introduced 
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m. . = 
33 

m li , j = 1,2,...,6 
pb" 

uT = pbuT 

b2t, 

_ MbV. 

Qt. 

b 

bco 



- 1 2 3 -

The stress integrals become 

= / t^ds 
A 

Q2 = / t 2 ds 

- i 
Q3 = J t 3 ds 

S~1 

= J x2t3 ds 
S1 

Q5 = / y ds 
5

1 

The equivalent dynamic stiffness (direct and coupled) 

defined by 
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K.. Jk A 
MbVt Si 

\ 
(5.3.5a) 

resulting in the following force-displacement relation 

\ 
K12 K13 ^ 4 K15 \ 

K21 K22 K23 K24 K25 K26 \ 

K31 K32 K33 K34 K35 K36 
h 

K4l K42 \3 K44 \5 k46 \ ' 

K5i K52 K53 K54 K55 K56 

K6l K62 K63 k64 K65 K66 \ 

>= 

Q 2 

h 

% 

^ J 

(5.3.5b) 

Applying the same reasoning as for the two-dimensional problem 

in the previous chapter, the stiffnesses K ̂ are computed by 

using six sets of values for the motions Vn of the body, 

namely n,m = 1,2,...,6, and obtaining the stiffnesses 

from the following set of equations similar to the set 

(4.3.7) 

k jk 
m,j ,k = 1,2,...,6 

(5.3.6) 
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Summation over k is implied on the left hand side of 

(5.3.6) 

The motions W^, k=1,2,...,6 of a given body with inertia 

properties m a r e given by, refer to eq.(4.3-9) 

t - ^ J k + Kjk)"k = f j ( 5- 3" 7 ) 

(ii) Uncoupled Vertical Vibration 
V3 is the only motion of the body considered in this case 

and the contact conditions are 

Relaxed Contact Condi tions:-

= unknown 

"2 = unknown 

S3 = v3 (5.3.8) 

_t1 = 0 

b2 = 0 

_t3 = unknown 
Welded Contact Conditions:-

u1 = 0 

= 0 

a3 = (5.3.9) 
t = : unknown 

€2 = unknown 

b3 = unknown 

V 1 is used and the dynamic stiffness is K33 = Q3. The 
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response W^ of a foundation with mass ratio m ^ is obtained 
from 

C-r72m33 + K33)W3 = f (5.3.9) 
for excitation f3. 

(iii) Uncoupled Horizontal Vibration in Xp-direction 

Only motion V2 is considered. The contact conditions are 
Relaxed Contact Conditions:-

u1 = unknown 
u 2 = V 2 

u3 = unknown (5.3-10) 

t1 = 0 
t2 = unknown 
t 3 = 0 

V2 = 1 is prescribed. The dynamic stiffness is K22 = Q2 

and the response W2 of a body of mass ratio m ^ to 
excitation f2 is 

( - ^ 2 2 + ̂ 2)^2 = f2 (5.3.12) 

(iv) Uncoupled Rocking about x^—axis 

Motion V^ is considered. The contact conditions are 

Relaxed Contact Conditions:-

u1 = unknown 

u2 = unknown 

a3 = (5.3.13) 
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t2 = 0 

t^ = unknown 

Using V4 = 1 the dynamic stiffness is K44 = Q4, and the 

response of a body with inertia ratio m44 is W4 given by 

( - i ? ^ + K44)W = f4 (5.3.15) 

(v) Uncoupled Torsional Vibration 

The motion of the body is Vg, and we have the contact 

conditions 

Relaxed Contact Conditions 

U 1 = - X 2 V 6 

u 2 = x ^ 6 

u3 = unknown (5.3-16) 

t̂  = unknown 

t2 = unknown 

t 3 = 0 

Using V^ = 1 the dynamic stiffness is K ^ = Qg, and the 

response W^ of a body with inertia ratio m^^ is given by 

(-"Ae + *66)ff6 = f
6
 (5-3-l8) 

The boundary conditions on the unloaded portion of the 

surface are, unmistakably, 

u- = unknown, t, = 0, j=1,2,3 (5.3-19) 
vj sJ 
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5.4 APPLYING THE BOUNDARY INTEGRAL EQUATION 

We recall the boundary integral equation (2.5.13) and put it 
in the dimensionless form 

cJkuk(P) + JTjk(P,Q)uk(Q) ds(Q) § 

= ysjk(P,Q)tk(Q) ds(Q) (5.4.1) 
S 

where Tjk = b2Tjk
 5jk = ̂ bUjk 

U^k and Tjk are given by eqs.(2.4.7) and (2.4.6) 

Expressions for and Tjk on the Half Space Boundary 

The unit normal n to the half space boundary, has components 

n^ = 0 = n2, n^ = -1 

see fig.(5.1) for choice of coordinates. The distance between 

P(y) and Q(x) is given by 

R(P,Q) = {(% - Yi)2 + (x2 - y 2 ) 2 p 

Note that 

SS . fi _ " y.i . aa _ 0 _ 
3x R R a; Sn 

3 j 

R. is the j-component of the position vector from P to Q. 
sj 
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Substituting these results into eqs.(2.4. 6-) and (2.4.7) we 

find 

U jk 

jk 

U11 U12 

U21 U22 

0 0 u 33 

"13 

23 

'31 32 33 

(5.4.2) 

where 

U 11 

'12 

* + (3* + 
R 1 R 

U21 " U12 

'22 = ( 3 4 > + x)J2 
R 1 R 

2 f 
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"13 

•23 

, A 4 R 1 
T71" U~ 

R R 

R2 R 

"31 
R0 att—2. 

4 - 2 -R R 

•32 4 - 2 -R R 

y — — 
7 exp(t> R) - exp(ilj) 

*72 R 
1_ | exp( tT72R)-exp(ti71R)| + ~jexp( t^2R)-7exp(t v. 

exp( t R) - <i> 

kj = -1) exp(lv^i) + + 2X 

A^ = (1 - 2 7 ' X ^ R - l)exp(t'r?1R) + 6$ + 2X 

The Boundary Elements. 

The boundary is represented by eight-node quadrilateral 

elements as described in chapter 3, see fig.3.2. The 

arrangement of the elements on the boundary will be dictated 

mostly by the shape of the contact area. Figs.5.2., 5-3, and 

5.4 show possible mesh arrangements for arbitrarily shaped 
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contact area, circular area and square area respectively. The 

mesh for a rectangular area is obtained by simply 

multiplying, say, the x2-coordinates of the mesh points by 

the desired aspect ratio. It is observed that contact areas 

bounded by curved lines (e.g., circular or arbitrary shape) 

as well as straight lines (e.g., rectangular) are adequately 

represented. 

In this problem where the nodal points are considerably more 

than those used in the two-dimensional case of previous 

chapter, we would like to take advantage of symmetry 

immediately where possible in order to reduce the computer 

storage requirements sufficiently to allow in-core matrix 

operations on the algebraic equations rather than employ 

disc-based methods. However, disc-based methods are unavoidable 

for the non-symmetric shapes as well as the coupled modes of 

vibration where the whole mesh has to be represented. Fig.5.5 

shows the square mesh arrangement used for the results 

presented in this chapter. Any required ractangular shape may 

be obtained by multiplying, say, the x2-coordinats by given 

width/length ratio. This leaves the half-length (x^-dimension) 

of the rectangle fixed at unity while the width varies. 

Taking account of symmetry, only the variables at the 

first-quadrant nodes are computed although integration still 

had to be carried out on every individual element. The 

shaded area is the area of contact with the rigid foundation. 

The dimension of the outermost rectangle is indicated by R , 
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and is the area to which the BIE integrals are truncated as 

suggested in section 3.2. A rectangle is use here, instead 

of a circle as suggested in section 3*2, to indicate region 

Rq only for convenience. A circle would do equally well. The 

discretised boundary integral equation (3.3.10) is written 

The Jacobian of transformation J(£) has been defined in 

section 3.3. The system of algebraic equations is formed by 

writing above equation for every nodal position of P ranging 

over only the first quadrant nodes if symmetry is employed. 

Fig.(5.5b) shows the mesh used for the circular foundation. 

One may choose to analyse the foundation by treating the 

base just like any arbitrary shape with the mesh arrangement 

indicated, and then proceed to solve for the variables at 

every node. But at this stage we shall simplify matter by 

introducing circular symmetry which applies to the wefeagsai 

motions that we shall analyse. Circular cylindrical coordinates 

(r,0,z) are introduced such that 

L 8 

(5.4.3) 
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x̂  = r.cosi 

x^ = r.sini 

x^ = z 

The implementation is to set up the algebraic equation 

(5.4.3) for a given position of point P by integrating over 

all elements. The variables in the equation which are with 

respect to rectangular coordinates x^, x2, x^ are converted 

to variables in cylindrical coordinates using the relations 

u- = u cose - ru sin1 1 r a 

un = u sine + ruQcos 2 r 8 

u~ = u 3 z 

and similarly for t^. 

Then we note that for the vertical and torsional vibrations 

corresponding variables at all nodes arranged on a given 

circle in the mesh are equal. 

The following notation shall be used for the vector 

components in the cylindrical coordinate system. 

t is shear stress component in radial direction, 

t , tensor component of shear stress in e -direction, 
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x = rt . physical component of shear stress 0 
9-direction, 

tz = t^, normal stress in z-direction, 

By angular motion of massive foundation about 

x^-axis, 

T^, couple appied to the massive foundation about 
x^-axis. 

The next section gives details of the integration scheme 
each element. 
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node 

e 1 eme n t 

Fig 5.2 Arbitrary Shape 

Example Mesh Node Arrangements on Various Shapes 

of Contact Surface 
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• n o d e s c o n t r i b u t i n g to t h e B I E i n t e g r a l s 

o t h e s e a n d f a r t h e r n o d e s d o n o t c o n t r i b u t e 

Fig 5.5a Mesh Node Arrangement for Square Foundation 

(not to scale) 
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OUTER CIRCLE RADIUS R, 

3b 
\3l 

121 \ri 

[10 111 12 1*13 14 

23 

15 16 

n o d e s c o n t r i b u t i n g to t h e B I E i n t e g r a l s 

° t h e s e a n d f a r t h e r n o d e s d o n o t c o n t r i b u t e 

Fig 5.5b Mesh Node Arrangement for Circular Foundation 

(not to scale) 
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NUMERICAL INTEGRATION SCHEME 

The two-dimensional form of the Gauss-Legendre n-point 

quadrature scheme is employed. The integration of a function 

f(£j , £ ) is approximated by 

n, n, 
(5.5.1) 

.1=1 k=l 

where w1^ and w2k are the weights corresponding to abscissae 
1J 

*2k' 

Cases to consider during the integrations are: 

(i) Point P not a Member of Element:-

Fig 5.6 Point P Outside Integration Element 
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The Gauss-Legendre scheme (5.5.1) above is used directly over 

the element as no singularity of the integrands in (5.4.3) 

occurs. At a given point Q selected by values of ^ and 

the coordinates are determined by interpolation over the 

nodal coordinates as described in section 3.3, see eq.(3.3.7) 

8 
x j Q = Z M c ( V ^ ) ( x j ) ( 

c=l 

(ii) Point P a Member of the Element:-

The singularities of Ujk and Tjk at P now occur within the 

integration element. The procedure to deal with this is 

exactly as described by Lachat and Watson (1975) for 

elastostatics problems. The element is subdivided into two or 

three triangular subelements according as P is a corner or 

mid-point node, fig.5.7, each triangle having a vertex at P. 

A local system of coordinates , j=1,2 is defined for each 
J 

triangle, fig.5.8, such that the element coordinates at a 
J 

point Q in a triangle are interpolated linearly from the 

values at the corners of the triangle as 

4 
= tyD = E y n ^ (5.5.2) 

m=l 

m= 1,2,3,4, are the values of ^ at the four nodes of 

the triangular subelement. 
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P 8 

Fig 5.7 Element Subdivision 

SUBELEMENT NODE 
n°des 1 &2 coincide 

P AT f . 

Fig 5.8 Subelement Coordinates 
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Lm(f) are the linear interpolating functions defined by 

I (i - r p a - y 

l3(£) 

i a - y(i * r) 

I (i + f )(i + y 
(5.5.3) 

i (1 + t)(i - r,) 

The Jacobian of transformation from to T- is 
J 3 

H(f) 

sr. 

sr. 

(5.5.4) 

in which 8 i s evaluated from representation (5.5.2). 
J x 

Thus the transformation from to the global coordinates x. 
d vJ 

is via the Jacobian J(£)H(g). A typical integral from 

eq.(5.4.3) takes the form 

I I h jk(pa,Q(5(£))]Mj£(£)) j[ § (£ )j H(£ ) dcxdc2 (5.5.5) 
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over a triangular subelement. 

It is observed that at P the singularities of and Ujk 
are of order 0(1/R2) and 0(1/R) respectively, section 2.5. It 

may be seen that since lines £ 2 = +1 = -1 converge to 

a point at P, fig.5.8, the Jacobian H(£) is 0(R). Also the 

shape function MQ(£ ) for all nodes other than that at P is 

also 0(R). Thus the integrand in (5.5.5) tends to a finite 

limit at P and the Gauss-Legendre scheme (5.5.1) can be used 

safely. Now the shape function Mp(§) at node P tends to 

unity at P. The integrands containing still tends to a 

finite limit at P since is only 0(1/R) and the Jacobian 

H(c) of 0(R) is still available. So scheme (5.5.1) is still 

good for such integrals. The integral containing T ^ for node 

P, however, does not exist over element I alone, but its 

principal value over all surrounding elements exists. Just as 

in the two-dimensional problem of previous chapter, ignoring 

this principal value does not introduce much error into our 

results. For the Gauss-Legendre quadrature scheme (5.5.1) the 

order (^ ,n2) used was (4,4) for the small elements in the 

loaded region and (8,4) and (10,, 4) for the outer elements. 
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APPLYING THE BOUNDARY CONDITIONS TO THE ALGEBRAIC EQUATIONS 

After the integration described in the previous section we 

end up with the system of equations 

O ^ u f = [B2]{t} (5.6.1) 

similar to system (4.6.1) in chapter 4. In expanded form 

(1) 
D11 

J1) 
°12 

(1) 

31B 

(1) 3 m n 

,11) 
N1 

(1) 3 
N 2 

(2) 3 
1 1 

(2) 

1 2 

(2) 3 
N1 

(2) 
3 
N 2 

(1) 3 
N3 

(2) 

>13 

(2) 
mn 

i
2 ) 

NB 

41) 
1N 

NN 

L J 

c , -\ 
u. 

J 

u. 

L U 3 J 

u. 
u. 

3 JN 

(2) 
31N 

(2) b 
NN 

A -

1 
A 
t 

L 3 

A A 

v J 
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(1) kmn a r e 3 x 3 submatrices obtained from integrations of kernel 
tensor T^k, and (2) 3x3 submatrices obtained from U. 'mn jk. As 
in the two-dimensional case we are now in a position to 
apply any boundary conditions we care to prescribe. The 
desired final system of equations is of the form 

(5.6.3) 

in which j z j- is the vector of the unknowns and {B [ is formed 

from the prescribed boundary data. 

The system (5.6.2) is partitioned to distinguish between 

variables in the loaded region S-" and those 

stress-free surface S. 
in the 

f \ 

ur 

u So 

V / 

( \ 

t s 
b1 

'So 

V / 

(5.6.4) 
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The procedure for applying the boundary conditions described 

in section 5.3 is straightforward and exactly the same as 

described in chapter 4. The shuffling of the elements of 

matrices B̂  and B2 applies only to the Ŝ  -columns. We 

describe here the procedure only for the general six 

degrees-of-freedom motion, the others being even more 

straightforward. 

The Six Degree-of-freedom Vibration 
/ \ 

As in chapter 4 a suitable choice of the array V^ is 

selected to ensure that system (5.3-6) is not singular. To 

effect eqs.(5.3.1), multiply the u,— columns of matrix B^ by 

V(m) - x.2v6(m), the u2-Columns by V2(m) + V6(m) and the ^-columns 

by V<m) + x0vfm^ - sum up the results and transfer 
J 3 2 A 1 5 

the sum to the mth column of array B, which should have up 

to six columns available. 

To effect eqs.(5.3-2), all the S^-columns of matrix B2 are 

transferred to replace those of B̂  as the coefficients of 

the unknown stresses. Again the procedure can very neatly be 

coded in a computer subprogram. 

After sorting the final system the stress integrals Q ^ are 

computed and the stiffnesses obtained as described in section 

5.3, eq.(5.3.6) 
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Some Programming Hints 

As in the problem of chapter 4 computer space does not have 

to be allocated for the entire size of array B2. In this 

case only three rows of the S^-columns are required at any 

one time because for a given position of point P, 

integration of eq.(5.4.3) yields three rows of equations 

simultaneously corresponding to j=1,2,3- The boundary conditions 

are applied immediately after the rows are computed and the 

space allocated to B2 is released for the next round of 

integrations. 

To solve the general six degrees-of-freedom motion as 

described above requires storage allocation for all the nodal 

variables in the entire mesh of figs .5.2, 5.3, 5.4 because 

no symmetry is expected. Disc-based method of solution would 

be required. The results presented in this chapter for 

vertical mode do admit symmetry, and requires only computer 

in-core handling of the matrices. 
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RESULTS AND DISCUSSIONS 

(a)i Circular Foundation 

The circular foundation is a good test case to check the 

accuracy of the BIE formulation because solutions of many 

aspects of the vibration are well known. In particular we 

shall use the vertical and torsional modes. The vertical mode 

has been well analysed by Awojobi and Grootenhuis (1965). 

Closed-form analytical solution for the torsional mode has 

been given by Reissner and Sagoci (1944), the graphical 

reproductions of which may be obtained from Eringen and 

Suhubi (1975) or Arnold, Bycroft and Warburton (1955). The 

latter reference also provides experimental results for the 

two modes of vibration. 

(a)ii Circular Foundation, Vertical Vibration 

It was found that the compliance curves converged to a 

definite limit for integration over regions indicated by 

radius Rq, fig.5.5b, greater than or equal to 5. This value 

is therefore used for all computations for the circular 

foundation. 

Fig.5.10 shows the compliance for vertical vibration under 

relaxed conditions. In the figure the approximate analysis of 

Arnold, Bycroft and Warburton (1955) compares fairly well with 

the present results. The response of the foundation is 

calculated for three mass ratios and compared with the 
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analytical solutions of Awojobi and Grootenhuis (1965) in 

fig.5.11 where remarkable agreement is observed. The 

experimental results of Arnold et al are also included in 

the figure. 

(a)iii Circular Foundation, Torsional Vibration 

The shear stress under the rigid body is computed as the 

non-dimensional quantity t = ttt /4 y©3 using the notation 

introduced in section 5.4 for the cylindrical coordinate 

system. The components of the stress in phase with and in 

quadrature with displacement are plotted in figs.5.12 and 5.13 

respectively. The in-phase component decreases with increasing 

irequency factor rî  while the quadrature component increases. 

Tne results are independent of Poisson ration. 

The torsional stiffness is plotted in fig.5.14. The 

compliance, inverse of stiffness, is plotted in fig.5.15. The 

compliance, a non-dimensional ratio of angle of rotation V^ 

and the resultant moment Q^ of surface shear stress, is 

compared in fig.5.15 with the exact results by Reissner and 

Sagoci (1944). Remarkable agreement is achieved. 

In fig.5.16 the non-dimensional torsional response amplitude 

= ybtô /F = yb ©^/T^ is computed for inertia ratios - 5 
m66 = = 5.34, 3.49. Discrepancies exist between these 

results and those of Awojobi and Grootenhuis (1965), but good 

agreement is achieved with the experimental results of Arnold, 
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Bycroft and Warburton (1955) at frequencies below resonance. 

(b)i Rectangular Foundation, Vertical Vibration 

The effect of truncation of the BIE integrals on the results 

was examined with square foundation in vertical vibration. The 

compliance is plotted in fig.5.17 for various values of R . 

Convergence is rapidly achieved, and in fact the only results 

that are out of place are those corresponding to excluding 

the whole free surface from the integration (R
q
=1). The 

results for R =5 and R =10 coincide, and indicate that no o o ' 
further increase in R q will give any difference in the 

results. The value Rq=5 is used in subsequent results. 

In fig.5.18a and 5.18b the real and imaginary parts of 

vertical compliance are compared respectively with similar 

results from Wong and Luco (1976) for Poisson ratio 1/3-

Discrepancies are observed. It may also be noted that Wong 

and Luco obtained their results from numerical integration of 

complicated infinite integrals involving oscillatory functions 

whose accuracy is always difficult to guarantee. Results from 

Hamidzadeh (1978) are also included. The present results lie 

midway between the two previous works. 

The dynamic stiffnesses for various width/length ratio a^ of 

the rectangular foundation are also computed and presented in 

figs.5.19. In figs.5.20a,b,c the vertical response is presented 

for aspect ratios a =1,8,16 respectively for various mass 

ratios 5L~. 
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The in-phase and quadrature components of the normal stress 

distribution are plotted in figs.5.21a and 5.21b respectively 

for a square foundation. The values plotted are those taken 

along one-half of the center line of the square, and are 

for Poisson ratio 1/4 of the supporting medium. The 

two-dimensional stress distribution is symmetric along the 

vertical x^-axis. It is observed that the in-phase component 

of stress decreases with increasing frequency factor, 

fig.5.21a, while the quadrature component increases, fig.5.21b. 

The results clearly indicate the characteristic edge 

singularities of the stress distribution, and demonstrate that 

this significant feature is not lost in the BIE formulation, 

unlike other numerical methods such as that of Wong and Luco 

(1976). 

A fuller picture of the stress distribution is presented in 

the three-dimensional computer graphical outputs of figs.5.22a,b 

for frequency factor 0.05, and figs.5.23a,b for frequency 

factor 0.8. The graphs show the stresses plotted as ordinates 

on one quadrant of the square base (the negative of the 

quadrature components are plotted). The edge singularities may 

be clearly observed, the peaks being sharper at the corners. 

Imagining the picture for the whole square base taken 

together presents a rather interesting image of a sporting 

arena surrounded by stepped seats with floodlight posts at 

the four corners. 
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(b)iii Rectangular Foundation, Horizontal Vibration 

The horizontal vibration is considered for a square foundation 

and Poisson ration of the supporting medium of 1/3. The real 

and imaginary parts of the shear stress t2 are plotted in 

figs.5.24 and 5.25 respectively. The stresses plotted are 

those values selected along one half of the center line of 

the square in x^-axis. The general picture for the entire 

square would be similar to the three-dimensional plots of 

figs.5.22a,b and 5.23a,b. As in the circular case, the stress 

component in phase with displacement decreases with increasing 

frequency factor while the quadrature component increases. 

The horizontal stiffness is shown in fig.5.26. The compliance 

is plotted in fig.5.27 and compared with the results of Wong 

and Luco (1976). Large differences are noticed. It is 

interesting to note that Wong and Luco found that in their 

numerical integration scneme, the finer they made their mesh 

grid, see fig.1.1 in chapter 1, the lower their compliance 

curve. A still finer mesh may be required for their results 

to converge to the results of this study in fig.5.27. 

The horizontal response of the foundation is plotted in 

fig.5.28 for mass ratios m22 = 150, 40, 10. 

Next we present some interesting results. 
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(c) On the Idealisation of a "Long" Rectangular Foundation 

as Infinite Strip 

It is informative to ivestigate the question of approximating 

a long rectangular foundation by an infinite strip. The 

accuracy of such approximation obviously depends on the length 

of the rectangle compared to its width. In this section the 

minimum length/width ratio required for a given approximation 

is examined. 

We consider a rectangular foundation with a base of 

width/length ratio ar=b/a, fig.5.9, excited in vertical 

direction (only vertical vibration is examined). 

a a 

b 

0 B j= -a 

b 

Fig 5.9 Rectangular Base 
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The mass per unit length is m'. First the analysis of 

cnapter 4 is used to compute the resonance frequency, 

considering the foundation as an infinite strip of width 2b. 

Then the analysis of this chapter is used to compute the 

same quantity taking the foundation base as a finite 

rectangle that it is. The two results are then compared for 

various values of the ratio a^. To be sure that the same 

quantities are compared in the two cases the frequency factor 

is taken as N =b OJ/C0 and a new mass ratio is defined by 
o 2 

^ 2 
mo=m/p b . These quantities preserve the definitions used in 
chapter 4 for frequency factor n and mass ratio m00 2 ^ 

respectively since the half-width was identified with the 

characteristic length "b". In the three-dimensional analysis of 

this chapter the characteristic length "b" of the body has 

been taken as the half-length of the rectangle. Thus the 

mass ratio "^33" frequency factor " n " relate to mQ and 
n respectively by i r =2a2m , n = n /a . 0 JJ r o 2 0 r 

In Table 5.1 the resonance frequency factor n computed by 
0 

the two methods are compared for various mass ratios mQ=40, 

70, 100, 150. Some of the resonance curves for the 

three-dimensional analysis are shown in figs.5.20a,b,c. The 

difference between the two results is expressed as a 

percentage error based on the three-dimensional results. In 

fig.5.29 this error is plotted against 1/a^ for the various 

mass ratios considered. Thus suppose we have a rectangular 

foundation of width/length ratio a . If we proceed to 
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simplify matter by assuming an infinitely long ractangle so 

that the analysis of chapter 4 holds, the error involved in 

the predicted resonance frequency for a given mass ratio is 

indicated in fig.5.29 as a percentage of the true result, 

the true result meaning that obtainable by employing the 

proper three-dimensional analysis. The smaller the mass ratio 

the smaller the error. For mass ratio of 40 or less the 

length of the rectangular base must be at least six times 

greater than the width to achieve an error of less than 

10$. The two-dimensional approximation under-estimates the resonance. 

The fact that the error increases with increasing mass ratio 

may be understood in terms of the role that the mass of 

the supporting half space plays in the dynamics of 

foundations. At high mass ratio the rigid foundation provides 

the greater portion of the effective vibrating mass in the 

system, while the supporting medium serves mainly to provide 

the stiffness element. Analogous to an idealised mass-spring 

system, therefore, the response of the foundation becomes 

sensitive to the way in which the array of springs is 

assembled under it, so that it becomes less appropriate to 

equate the geometry a finite rectangular base, imposes on the 

supporting medium to that imposed by an infinite strip. On 

the other hand at low mass ratio most ot the effective 

vibrating mass comes from the distributed mass in the half 

space, whicn now provides the mass as well as the stiffness 

elements. The distribution of the stiffness elements becomes 
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less important because it is followed by similar distribution 

of the mass elements. 

We note interestingly that for a given mass ratio the error 

of infinite strip idealisation reduces with increasing 

length/width ratio (1/ar) of the rectangular base. The longer 

the rectangle the less significant the edge singularity of 

the stress distribution at the ends (as far as contribution 

to the integrals of the stress is concerned), as may be 

observed from fig.5.30. In this figure the in-phase and 

quadrature components of the normal stresses are plotted along 

one half of the length-wise center line of the rectangle, 

i.e., line OB in fig.5.9. The distance along the line, 

divided by the serai-width "b", is the abscissa of fig.5.30. 

The stresses are plotted for rectangles of width/length ratio 

ar=1,1/4,1/16 and frequency factor 0.6, the aim being to show 

the effect of the edge singularity on the integrals of the 

stress which form the dynamic stiffness. It may be observed 

that the larger the value of 1/ar, i.e., the longer the 

rectangle, the smaller the proportion of the stress integral 

contained in the region of the singularity. This is in 

agreement with what is expected from physical reasoning. 

Consequently the infinite strip analysis which ignores this 

end singularity becomes less inaccurate. 
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(d) Concluding Remarks. 

The BIE method is as effective for the three-dimensional 

problem of foundation dynamics as it is for the 

two-dimensional problem. Again we observe that the same one 

equation is applicable to any shape of foundation or contact 

conditions. Many known results have been reproduced easily and 

cheaply. The agreement of the results for the circular 

foundation with experimental and exact results is remarkable, 

figs.5.11 and 5.16. The main computer program consists of 

setting up the system of equations (5.6.2). With circular 

symmetry introduced for the circular foundation we ended up 

only 32 algebraic equations. The calculation of dynamic 

stiffness for one particular frequency factor took 25 seconds 

on the average on the CDC Cyber 174 computer at Imperial 

College. For the rectangular foundation in which such 

simplification did not exist, 120 algebraic equations had to 

be solved, and the computation for one frequency factor took 

40 seconds on the average. 

The flexibility of the BIE method has allowed us to 

investigate quantitatively the question of how long a 

rectangular foundation should be compared to its width before 

it can be safely approximated as an infinitely long 

rectangular strip. It is hoped that the method will prove to 

be the easiest way of investigating more of those aspects of 

foundation dynamics that have so far appeared formidable to 
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analyse. In the next chapter an indication is given on how 

the BIE method may be used to investigate the interaction of 

many foundations on the earth surface and the analysis of 

flexible foundations. 
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TABLE 5 .1 RESONANCE FREQUENCIES BY W O TYPES OF ANALYSIS 

l/a ' r 
RESONANCE FREQUENCY % % l/a ' r INFINITE STRIP FINITE RECTANGULAR DIFFERENCE 

ANALYSIS (2) ANALYSIS (3) ( (3) - (2) )/ 

m = 40 

1 .165 .275 40 
4 .66 .8 17.5 
8 1.32 1.38 4.3 
10 
16 

m = 70 
1 .12 .21 42.8 
4 .48 .63 23.8 
8 .96 1.1 12.7 
10 1.2 1.35 11.1 
16 1.92 1.95 1.5 

m 100 
1 •1 .175 42.8 
4 .4 .54 26 
8 .8 .95 15.8 
10 1.0 1.17 14.5 
16 1.6 1.70 5.9 

m 150 
1 .085 .15 43.0 
4 .34 >5 24.4 
8 .68 .82 17.1 
10 •85 .97 12.4 
16 1.36 1.46 6.8 
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F I G . 5 . 1 0 V E R T I C A L C O M P L I A N C E F O R C I R C U L A R 

F O U N D A T I O N . 

P O I S S O N R A T I O = 0 . 

P r e s e n t R e s u I t s 
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F I G . 5 . 1 1 N O N - D I M E N S I O N A L V E R T I C A L A M P L I T U D E 

OF C I R C U L A R F O U N D A T I O N . 

P O I S S O N R A T I O = 0 . 

P r e s e n t R e s u I t s 

— — — R e s u l t s f r o m A w o j o b i and 

G r o o t e n h u i s ( 1 9 6 5 ) 

Frequency Factor n2 
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FIG 5 . 1 2 SHEAR STRESS DISTRIBUTION UNDER A RIGID 

CIRCULAR FOUNDATION IN TORSION. 

( s t r e s s component in phase with 

d i splacement ) 
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FIG 5.13 SHEAR STRESS DISTRIBUTION UNDER A RIGID 

CIRCULAR FOUNDATION IN TORSION. 

( s t r e s s component in quadrature with 

d isplacement ) 
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FIG 5.14 TORSIONAL STIFFNESS FOR CIRCULAR 

FOUNDATION. 
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FIG 5 . 16 N O N - D I M E N S I O N A L T O R S I O N A L R E S P O N S E A M P L I T U D E 

OF C I R C U L A R F O U N D A T I O N . 

P r e s e n t S t u d y 

— A w o j o b i a n d G r o o t e n h u i s ( 1 9 6 5 ) 
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; B y c r o f t and W a r b u r t o n ( 1 9 5 5 ) 
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F I G . 5 . 1 7 E F F E C T OF R ON THE V E R T I C A L 
o 

C O M P L I A N C E OF S Q U A R E F O U N D A T I O N . 

P O I S S O N R A T I O 1/3 

F r e q u e n c y F a c t o r n 2 
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FIG.5.18a V E R T I C A L C O M P L I A N C E ( R E A L P A R T O F ) 

F O R R I G I D S Q U A R E F O U N D A T I O N . 

P O I S S O N R A T I O = 1/3 

P r e s e n t S t u d y 

W o n g and L u c o ( 1 9 7 6 ) 

Frequency Factor q2 
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FIG.5.18b V E R T I C A L C O M P L I A N C E ( I M A G I N A R Y P A R T O F ) 

F O R R I G I D S Q U A R E F O U N D A T I O N . 

P O I S S O N R A T I O = 1/3 

Frequency Factor n2 
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FIG.5. 20b VERTICAL RESPONSE FOR RIGID RECTANGULAR 

FOUNDATION, WIDTH/LENGTH RATIO 1/8 

POISSON RATIO 1/4 
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FIG.5.20c VERTICAL RESPONSE OF RIGID RECTANGULAR FOUNDATION, 

WIDTH/LENGTH RATIO 1/16. POISSON RATIO 1/4 

Frequency Factor q 
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FIG. 5.21a NORMAL STRESS DISTRIBUTION ALONG CENTER LINE OF 

SQUARE FOUNDATION IN VERTICAL VIBRATION. 

PutSSON RATIO = 1/4 

(Stress Component in Phase with Displacement) 
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FIG.5.21b NORMAL STRESS DISTRIBUTION ALONG CENTER LINE OF 

SQUARE FOUNDATION IN VERTICAL VIBRATION. 

POISSON RATIO = 1/4 

(Stress Component in Quadrature with Displacement) 



FIG 5. 22a NORMAL STRESS DISTRIBUTION UNDER RIGID SQUARE FOUNDATION IN VERTICAL VI3RATION. 

POISSON RATiu 1/4. FREQUENCY FACTOR 0.05. 
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NORMAL STRESS DISTRIBUTION UNDER RIGID SQUARE FOUNDATION IN VERTICAL VIBRATION 

POISSON RATIO 1/4. FREQUENCY FACTOR 0.05 

(stress component in quadrature with displacement) 



FIG 5.23a NORMAL STRESS DISTRIBUTION UNDER RIGID SQUARE FOUNDATION IN VERTICAL VIBRATION, 

polsson ratio 1/4. frequency factor 0.8 

(stress component in phase with displacement) 



FIG 5. 23b NuRMAL STRESS DISTRIBUTION UNDER RIGID SQUARE FOUNDATION IN VERTICAL VIBRATION. 

POISSON RATIO 1/4. FREQUENCY FACTOR 0.8 

—• (stress componeriT In quadrature with displacement) 
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F I G . 5 . 2 4 SHEAR STRESS DISTRIBUTION ALONG CENTER LINE 

OF RIGID SQUARE FOUNDATION IN HORIZONTAL 

VIBRATION. POISSON RATIO 1 / 3 

(stress c o m p o n e n t in p h a s e with d i s p l a c e m e n t ) 
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FIG 5.25 SHEAR STRESS DISTRIBUTION ALONG CENTER LINE 

OF RIGID SQUARE FOUNDATION IN HORIZONTAL 

VIBRATION. POISSON RATIO 1 / 3 
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F I G . 5 . 26 H O R I Z O N T A L S T I F F N E S S FOR S Q U A R E F O U N D A T I O N 

P O I S S O N R A T I O 1 / 3 . 
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FIG 5 . 2 7 H O R I Z O N T A L C O M P L I A N C E FOR R I G I D S Q U A R E 

F O U N D A T I O N . P O I S S O N R A T I O 1 / 3 . 
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^2 2 = 150 

FIG 5.28 

H O R I Z O N T A L R E S P O N S E A M P L I T U D E 

OF S Q U A R E F O U N D A T I O N . 

P O I S S O N R A T I O 1 / 3 . 

.74 

. 6 1 

54 

.4" 

3 4 

. 1 4 

1 1— 
.4 .6 

F r e q u e n c y 

1 .0 1 .2 1 .4 



FIG.5.29 % ERROR IN RESONANCE FREQUENCY PREDICTION BY THE 

INFINITE STRIP ANALYSIS. POISSON RATIO 1/4 
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F I G . 5 .30 NORMAL STRESS DISTRIBUTION ALONG LENGTH-WISE CENTER LINE OF RECTANGULAR 
FOUNDATION IN VERTICAL VIBRATION. POISSON RATIO = i / 4 , FREQUENCY FACTOR 0 . 6 

Stress component In phase with displacement 
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INTRODUCTION 

This chapter examines the BIfi metnod as a means of 
solving the general elastodynamic problem and, consequently, 
some of tne more practical aspects of foundation dynamics 
such as vibration of flexible foundations. This particular 
aspect has been difficult to analyse, and the previous 
methods of analysis of vibration of foundation mentioned in 
chapter 1 are not easy to apply to such problems 
especially when arbitrary foundation shapes are involved. 
This problem is difficult because predicting the dynamic 
response of finite-size elastic solids and structures 
subjected to time-dependent loads and/or boundary conditions 
is a very formidable problem from the point of view of 
closed-form analytical solutions. In elastodynamics this is 
the problem of elastic wave propagation tnrough solids. The 
Navier's wave equations (2.2.1) do admit to a simple 
solution in terms of trigonometric and/or Bessei functions. 
But it tnen becomes impossible in most cases to manipulate 
these functions to satisfy boundary conditions. It will be 
interesting to examine how the analytical difficulty mounts 
as we move from bodies of simpler geometry to those of 
more complicated geometry. 

Analytical solutions have been obtained by Chree (1689) to 
the problem of longitudinal wave propagation tnrough a 
cylinder of circular cross-section and infinite lengtn. It 
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was possible to satisfy the boundary conditions of zero 
stresses all over tne surface. The surface consists of the 
circular lateral face which is a single coordinate surface 
in cylindrical coordinate system. The end faces of the 
cylinder do not matter because they are far away at 
infinity. if we imagine an elastic plate of finite 
thickness in the z-direction and infinite extent in tne x-
and y-directions, fig.6.1, we also have a body whose 
boundary is describable witn one coordinate surface (in 
x-y-z system), the other part of the boundary being at 
infinity. The problem of propagation of elastic wave 
through such a plate has been solved in close-form by 
Lamb (1917), ?nd it appears only such simplified geometries 
can be analysed. A further example is the free vibrations 
of an elastic sphere, Lamb (1882). 

z 

/ 
y 

x 

Fig 6.1 Elastic Plate 
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In fig. 6.1 if we make, say, the x-dimension of tne plate 
finite, the problem of wave propagation becomes unsolvable 
in closed-form, as observed by Morse (1950). The 
zero-stress conditions can be satisfied on either the 
x-faces or the z-faces. If the plate is sufficiently wide, 
the approximation usually made is to satisfy the boundary 
conditions on tne wider z-faces while those on tne narrow 
x-faces are ignored. If both x- and z-dimensions are of 
comparable sizes we have a bar of rectangular cross-section 
whose solution is not known. One could go further and 
make the y-dimension of the plate finite and comparable to 
otner dimensions, so that we have a rectangular 
parallelopiped. This brings in one more dimension of 
intractability. 

This analytical difficulty is responsible for the dearth of 
information on some practically useful aspects of foundation 
dynamics. For example the flexibility of the foundation is 
ignored because tne elastic analysis of the half space is 
difficult enough let alone introducing that of the 
foundation. 

Tne usual numerical metnods employed in the elastic 
analysis of a finite body are the finite difference and 
the finite element methods. In elastostatics researchers 
have found that the Boundary Integral Equation (BIE) method 
has many more superior qualities. One therefore wonders if 
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tnese qualities cannot be similarly exploited in 
eiastodynamics. 

In this chapter the application of the BIE method to 
analysis of flexible foundations, as well as interaction of 
foundations, is examined qualitatively, beginning with 
analysis of a finite elastic body. Numerical results are 
not presented. 

6.2 VIBRATIONS OF ELASTIC SOLIDS 

Consider a block of elastic material of arbitrary shape. A 
rectangular block is shown in fig.6.2 for ease of drawing 
on the paper. 

q (x1,x2,x3) 

Fig 6.2 A Block of Elastic Material 
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It is subjected to a stress distribution q(x^,x2,x3) on a 
portion of the surface shown shaded. For the sake of 
argument we assume the block rests on a rigid x^-x^ 
surface. The stress q varies harmonically with time. 

The boundary conditions are such that on tne stress-free 
surfaces of the blocx, t̂ = 0, û = unknown, k = 1,2,3. On 
the surface in contact with the rigid base, t̂ = unknown, 
û = 0, and on the loaded area, t^ = known, u^ = unknown. 
These boundary data all related by the boundary integral 
equation, as before, 

From this one can determine the displacement u at some 
point of interest on the body and thus map out the mode 
shape at a given frequency, or one can determine the 
stress distribution at the contact with tne rigid base. 

Upon dicretising the boundary data we end up with the 

following system of algebraic equations 

ds(Q) 

ds(Q) (6.2.1) 
S 



- 192 -

N W • M M ( 6 - 2 - 2 ) 

the integration scheme being exactly as described for the 
foundation problem in chapter 5. 

Tne free vibrations of the block may be similarly 
examined. In this case the whole surface is stress-free, 
the integral on the right hand side of eq.(6.2.1) is zero 
and the equation reduces to the form 

cJkuk(P) + jl(P,Q)uk(Q) ds(Q) = 0 (6.2.3) 
S 

Althougn this equation has an appearance similar to 
Fredholm's second integral equation, see Mikhlin (1957), it 
is essentially not the same because of the second-order 
singularity 0( 1/R ) of the kernel T... But as shown by 

jx 
Kupradze (1963), Fredhoim's second theorem can be proved 
for tnis singular integral equation. The equation has a 
discrete spectrum of proper frequencies (eigenvalues) w at 
whicn non-trivial solutions exists for uk< Since the right 
hand side of (6.2.3) is zero, the discretised form is the 
same as eq.(6.2.2) with the right hand side zero. Also 

2 since T.. is a non-linear function of w , the problem is 
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a non-algebraic eigen-value problem in which the 
eigen-soiution of matrix A in eq.(6.2.2) is to be 
obtained by root-searching method. The free vibration of an 
elastic sphere, Lamb (1882), would be a very good test 
case for this method. It is observed that since only the 
boundary data are discretised the problem size is 
considerably reduced compared with the finite difference and 
the finite element methods in which the data in the 
entire domain occupied by the block are discretised. 

Next we shall be able to exploit this saving in problem 
size to introduce the elastic analysis of the half space 
and thus obtain an analysis of flexible foundations on the 
elastic half space. 

6.3 VIBRATION OF AN ELASTIC FOUNDATION ON AN ELASTIC HALF 
SPACE 

If the x^-x^ plane in fig.6.2 is taken as the surface of 
the elastic half space, the formulation described above 
applies to the block as the elastic foundation. The system 
of equations (6.2.2) applies except that both the stresses 
t^ and displacements u^ are unknown on the interface. The 
system of equations (5.6.1) in chapter 5 for the half 
space applies 
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MM - MM 
except also that both the contact stresses and 
displacements with the foundation are unknown. At the 
interface tne displacement compatibility conditions and 
stress equilibrium conditions are employed 

uf f) = u t o k k 

S " t k 

wnere superscripts (f) and (h) refer to foundation and the 
half space respectively. Eqs.(6.2.2), (6.3.1) and (6.3.2) 
form a linear system which can be solved for the unknown 
interfacial functions. 

The work of Krent and Schmidt (1979) on the vibration of 
elastic circular plate on an elastic half space is 
interesting, particularly the semi-numerical approach 
employed. Just as in tne initial studies on rigid 
foundations, such approaches start with simpler geometries 
like the circular shape and get stuck on more complicated 
shapes. The method of Krent and Schmidt depends on the 
availability of a closed-form expression relating the 
deformation of the elastic plate to the applied stresses. 
They used the approximate plate equations of Mindlin 
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(1951). Since such expressions are not fortncoming for 
bodies of arbitrary shapes the only choice at present is 
an efficient numerical method. The method described here 
applies to elastic bodies of arbitrary shape. 

6.4 INTERACTION OF RIGID FOUNDATIONS ON AN ELASTIC HALF SPACE 

In a survey of soil dynamics, Whitman (1969) stated that 
among important unresolved problems is the study of tne 
interaction of nearby masses on the ground. Tnis is 
another aspect of foundation dynamics in which the BIE 
appears very effective. The application of the method 
dwells on the fact that all motions of a given foundation 
are determined by the three components of stress t̂ , 
k = 1,2,3 at tne interface. The implementation is feasible 
due to the fact that the algebraic system of equations 
(5.6.1) can be set up for a stress distribution over an 
area of arbitrary shape on the half space as indicated by 
the shaded area in fig. 5.2. Then the area is partitioned 
into a number of zones e, f, g in fig. 6.3 below. Region 
h separates the zones. The outer curve C is that within 
which the BIE integrals have been truncated. The inner 
curve E is the boundary of the area on whicn we have 
some stress distribution. If after setting up the algebraic 
equations we prescribe zero stresses and unknown 
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displacements for all nodes within region n, we shall 
have the zones e, f, g representing tne contact areas of 
tnree foundations separated by region h. 

In this case tne characteristic dimension "b" of the 
region E used for the dimensionless quantities in 
eqs.(5.3.3) and (5.3.4) must be chosen so that the entire 
region E falls within a circle of some convenient radius, 
say, unity. This is to ensure that for foundations 
positioned any reasonable distance apart the region E can 
still permit numerical integration over an area that is 
not too wide. 

Fig 6.3 The Contact Areas of Three Foundations 
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The formulation of the problem is very similar to that in 
section 5.3, chapter 5, for the general six 
degrees-of-freedom single foundation system - and it must 
be remembered that each foundation in the present 
multi-foundation system is exposed to the full six 
degrees-of-freedom excitation. (Jnlike section 5.3, however, 
it will be more convenient to formulate the problem 
directly in terms of response of a given system of 
massess, excitation forces/couples, etc, instead of first 
solving for stiffness which may not be easy to define 
unambiguously in the present case. We shall assume, as 
before and witnout loss of generality, that the centers of 
mass of the foundations are very cxose to the centroids 
of the bases. m , r=e,f,g, is tne mass of foundation r 
where superscript r is used to refer to the foundation e, 
f, or g in fig.6.3« S j,k=1,2,3, are the mass moments 

jx 

of inertia. In order to employ a homogeneous set of 
notation we may use m ^ to indicate the inertia properties 
of the foundations in the six possible directions of 
motion, such that 

mr, j = k, j,k = 1,2,3 

Jjk/b2, j,k = 4,5,6 

b is a characteristic length of the system of foundations. 
We put the motions of the foundations as 

r 
mjk 

-5c 
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p , translation in x^-direction, 

p W2, translation in x^-direction, 

p W . translation in x0-direction, 

rotation about x.-axis, 

®2> rotation about x^-axis, 

rotation about x^-axis, 

and define 

^ as 4 1 

so that the complete motion of a foundation is described 
by k = 1,2,3,...,6. 

The reactions of the supporting medium to a given 
p 

foundation are indicated by the stress integrals Q , 
k = 1,2,3,...,6, where Qk are given are given by the 
stress integrals defined below eq.(5.3*2) with the 
understanding that integration pertaining to a given 
foundation is restricted to the contact area between that 
foundation and the soil. 
The excitation forces applied to a foundation are 



F , force applied in x^-direction, 

F2, force applied in x^-direction, 

F , force applied in xQ-direction, 

T, , couple applied about x^axis, 

r V couple applied about x^-axis, 

Define 

couple applied about x̂ -axis. 

f r a as Tf/b, 
4 1 4 

? r 

5 » 

6 ' 

Tg/b, 

T3r/b, 

so tnat tne forces and couples are described by F. , 
j = 1,2,3,...,6. 

The six equations of harmonic motion of a foundation are 

2 r r r w nr., W, + Q. Jk k M F r 
J (6 .4 .1) 

j,k = 1,2,...,6 

r = e,f, 

If we had taken account of the coordinate distances of 
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the centers of mass of the foundations from their 
respective centroids of base, we would only need to 

r r r redefine the motions W. and forces Q. and F. in terms of k J J 
components through the centers of mass. This omission does 
not impair the generality of the formulation of the 
elasticity problem. 

The components of displacement and stress on the surface 
of the half space are indicated by u^ and t^ as before. 

r r Under each foundation these components are u^ and t^ 
r respectively. t^ appear under the integrals involved in 
T T the quantities Q. in eq.(6.4.1) above. u, are related to J x r 

through the requirements that each foundation remains 
rigid during motion,i.e., 

u^ = W^ - x2©3 = w f -

u | = w f + xq©3 = W 2 + 

U3 3 + x201
r - x ^ = w: U 2 w 4 -x-W. 

1 D 
r)/b 

(6.4.2) 

r r as in eqs.(5.3.1). So u, are known in terms of W. under 
the foundations, while t^ remain unknown. But u^ remain 
unknown elsewhere while t. = 0. 
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All the displacements and stresses are related by the 
boundary integral equation, as before, 

The aim is to extract the stress integrals Q̂  in terms 
of from above equation using eq.(6.4.2) and then 
substitute them into the equations of motion (6.4.1). The 
implementation is to discretise the equations over a 
suitable mesh of nodes superposed over fig.6.3 and solve 
the resulting set of algebraic equations simultaneously. 

The numerical integration scheme for the boundary integral 
equation is exactly as described in chapter 5, with the 
mesh elements covering up to the circle C in fig.6.3. 
Some of the elements are arranged to have part of their 
boundaries coincide with the appropriate bondary lines in 
fig.6.3, just like the single foundation problem. It is 
noted that the quadratic variation of variables employed 
over an element is adequate for modelling curved boundary 
lines, e.g., the circular foundation problem of previous 
chapter. After the integration we arrive at the algebraic 

ds(Q) 

(6.4.3) 
S 

« 
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system of equations 

[B^ \u} = [B2J \t\ (6.4.4) 

which may be set up immediately without regard yet to any 
particular mode of vibration, contact conditions, or any 
special aspect of the system we wish to investigate. 
Equation (6.4.4) above is simply a numerical version of 
the boundary integral equation, {u} is the vector of nodal 
displacements and {t} that of the nodal stresses. The 
coefficient matrices B̂  and B2 may be partitioned to 
indicate which terms pertain to nodes in which region in 
fig.6.3. 

f O u 
f u 

fte1 
tf 

e f g h S 0 < us 

n u 
> = e f g h So < 

th 
So u I > 

So 
C ) 

SQ indicates the stress-free region between curves E and 
C. It is observed again, as in chapters 4 and 5, tnat 
it is not necessary to compute the terms of matrix B2 

belonging to SQ and h because zero stresses shall be 
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prescribed there, in this system of equations we wish to 
shuffle between the knowns and unknowns and regroup the 
unknowns to the left and the knowns to the right. 

The vectors and {ud} are unknown. The vectors {ue}, 
{uP} and {u®} are regrouped in terms of the new variables 
e f s tW }, {W } and {We} using the discretised forms of the 

rigidity equations (6.4.2) to form 6x3=16 additional columns 
to the left hand side matrix. The positions vacated by 

e f g the coefficients of (u }, {u } and {u&} are then taken up 
e f g 

by tne coefficients of the umcnown M l , (t } and {t&} 
respectively transferred from the right hand side, which 
now becomes zero. The new system of equations has a 
rectangular coefficient matrix on the left hand side and 
zero on the right, there being 18 less equations than 
unknowns. 

e f g h So 

< 
h 
.So > 
Vf 

W 

V 

0 

(6.4.6) 
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The system is completed by bringing in the discretised 
forms of the 18 equations of motion (6.4.1) of the rigid 
foundations, i.e., 

e ̂  
te 

h 

< 
w3 6" e F 

> 

e f g (zero) (zero) / — ^ Ff 

rfS V J J 

a 3 0 } 

> 

(6.4.7) 

Eqs.(6.4.6) and (6.4.7) form a complete set of equations 
that may be solved simultaneously for the response {/*} Of 
tne foundations together with the nodal stress distributions 
it } under each foundation. Any aspect of the system may 
be investigated from this set of equations. For example, 
if only one foundation is excited in one particular 

f 
manner, the appropriate force components F̂  are made zero 
in eq.(6.4.7). The displacement transmission ratio can be 
found by computing the ratio of the appropriate values of 

or the force transmission ratio may be found by 
computing the ratio of the appropriate excitation force and 



- 2 0 5 -

stress integrals. 

It may be observed that above is the complete formulation 
of the problem. It takes care of the simultaneous presence 
of all the foundations and the inter-dependence of the 
stress distribution under them. The foundations may be of 
any shape. The only approximation is the discretisation of 
the equations. The analysis of multi-foundation systems is 
very rare in the literature. It is worthwhile to compare 
how the users of the previous methods of analysis of 
foundation vibrations approached (or might have approached) 
the problem of interaction of foundations. 

COMPARISON WITH PREVIOUS METHODS OF ANALYSIS. 

The grouping of previous methods of analysis is that used 
in section 1.2 of chapter 1. 

(a) Finite Model of the Semi-Infinite Half Space. 
As far as the author is aware no work has appeared in 
the literature employing this method to multi-foundation 
problems. The method would be difficult to implement 
because, as observed in chapter 1, the finite model would 
probably have to be ' very large before satisfactory accuracy 
can be achieved. The discretisation over the volume of a 
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domain is very expensive and less accurate than the BIE 
method which approximates only over the boundary. After 
their attempt on the two-foundation problem, discussed 
below, Warburton, Richardson and Webster (1971) suggested 
that such problems would more likely be better investigated 
using three-dimensional finite elements. Truly a numerical 
approach is best for this type of problem, and the BIE 
seems to be more attractive. 

(b) Analytical Method of Dual Integral Equations. 
This method can only be used for simple shapes as circles 
that can be described by a simple closed-form algebraic 
expression, and even then only for single-foundation 
systems. When there are more than one foundation, the 
shapes of the contact areas (even if individually circular) 
taken together cannot be so described and the method 
becomes cumbersome when it comes to applying the boundary 
conditions of non-zero surface stresses on patches of the 
surface. 

This is probably why researchers have been forced to first 
analyse a single foundation before imposing the presence of 
the second one by some approximations. Richardson, Webster 
and Warburton (1971) computed displacements on the surface 
of the half space near to a single harmonically excited 
circular foundation. Then Warburton, Richardson and Webster 
(1971) employed an averaging technique over these 
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displacements on a selected region to determine the 
response of a second foundation that would occupy that 
region. The drawback in this approach is the implied 
assumption that the presence of the second foundation would 
not nave affected those displacements that were computed in 
its absence. As the authors rightly observed, the presence 
of the second foundation can be appreciable, and no 
estimate of the amplitude of its response can be made 
solely by considering the surface displacements which would 
exist without it being present. This simplified approach 
has been employed by a number of researchers. Lee and 
Wesley (1973) determined the dynamic response to seismic 
loading of a group of flexible sbructrures which are 
bonded in close proximity to an elastic half space. They 
represented discrete values of free-surface displacements 
computed by Ricnardson et al (1971) for the 
single-foundation system by a set of continuous functions 
and integrated them over regions designated for other 
foundations. MacCalden and Mathieson (1973) gave experimental 
and theoretical results for the transmission of harmonic 
vibrations from an excited rigid circular foundation to a 
nearby unexcited one. For their theory they used the 
single-foundation solution of Bycroft (1956). Clement (1974) 
used the technique with his single-foundation theory which 
included hysteretic damping. 
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(c) Green Function Approach. 
The approach of Hamidzadeh (1978) on a system of two 
square foundations is the same averaging technique over 
displacements computed in the absence of one of the 
foundations. Probably because of some untidiness inherent in 
his single-foundation analysis, he could only allow for 
certain modes of vibration by each of the foundations 
instead of letting them execute their coupled motions. 

The Green function approach by Wong and Luco (1976) is 
worth mentioning here even though there has been no 
application of that method to the multi-foundation problem. 
By now it is clear that the integral representation of 
the single-foundation problem by Wong and Luco, see 
eq.(1.2.2) in chapter 1, is rather similar to the BIE 
formulation in that the stress is multiplied by a kernel 
function and integrated over the soil-foundation interface. 
So a formulation for the multi-foundation problem similar 
to the BIE formulation above can be made using the 
Wong-Luco equation. But the problem with that equation is 
in the kernel function which itself contains finite and 
infinite double integrals of oscillatory functions as 
discussed in section 1.2, whereas the kernels U a n d T., 

Jk jk 
in the BIE formulation are simple closed-form expressions. 

(d) Conformal Mapping of the Half Space. 
It is possible to think of applying this technique to the 
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multi-foundation problem by transforming the entire half 
space volume to a rectangular parallelopiped and then apply 
finite difference discretisation. As observed in chapter 1, 
the resulting large set of equations to solve would be 
too cumbersome to handle. Moreover, an observation similar 
to that in paragraph (a) above may be made about this 
approach, namely, the efforts spent computing quantities at 
points within the half space are wasted and irrelevant to 
the foundation problem, and the discretisation of equations 
throughout the domain leads to less accuracy. 
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7.1 ACHIEVEMENTS OF THE PRESENT WORK 

The contribution of the present study to the knowledge of 
the dynamics of foundations on the elastic half space may 
be summarised as follows. 

A new mathematical tool, the Boundary Integral Equation 
method, has been developed for analysing the dynamics of 
foundations on the elastic half - space. Addressing directly 
the physics of the problem, the BIE method is able to 
seize on the physical requirements in tne form of the 
radiation conditions of elastodynamics to make itself 
particularly suited to the problems of foundation dynamics. 
This quality of the method is further enhanced as it 
deals directly with boundary data, the only data that is 
most relevant to the foundation problem, and consequently 
achieves tremendous reduction in problem size. The 
integrands involved in the method are only simple 
closed-form expressions, and so numerical implementation is 
cheap. The BIE is a one equation that provides solutions 
to all modes of vibration, pure or coupled, as well as 
various types of contact conditions. As such it sort of 
presents itself as a universal statement of the dynamics 
of foundations in so far as it has been tested in this 
study. 

All possible motions of the rigid infinite rectangular 
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strip foundation have been analysed, including the general 
three degrees-of-freedom. The pure modes have been compared 
with existing results. The results for pure vertical mode 
shows very good agreement with analytical results by 
Karasudhi, Keer and Lee (1968) and Luco and Westmann 
(1972). The conditions of frictionless contact and those 
of fully bonded contact have been investigated. Just as 
Luco et al observed, fig.4.15 shows little difference 
between the two types of contact conditions for Poisson 
ratio of 1/4 (and higher). The compliance for the pure 
horizontal mode as computed by the BIE method shows 
equally good agreement with results by Luco et al. But 
for the pure rocking mode, the compliance by Luco et al 
shows slight over-estimation compared with that by this 
study, fig.4.19. The approximations made by Luco et al in 
evaluating their integrals were probably biginning to show. 
The compliances, direct and coupling, for the coupled 
horizontal-rocking modes also show very good agreement 
between this study and that by Luco et al, except again 
for tne direct rocking compliance and tne coupling 
compliances. The three degrees-of-freedom motion is 
mentioned later. 

To leave the accuracy of the BIE method in no doubt the 
well known problem of vibration of foundation with 
circular base has been analysed. The vertical response 
amplitude shows remarkable agreement with the well known 
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results of Awojobi and Grootenhuis (1965) and the 
experimental results of Arnold, Bycroft and Warburton 
(1955), fig.5.11. As for the torsional mode, a closed-form 
analytical solution is available from Reissner and Sagoci 
(1944) and Sagoci (1944). The agreement between these and 
the BIE results is remarkable, fig.5.15. We observe 
equally close agreement with the experimental results of 
Arnold, Bycroft and Warburton (1955) for the torsional 
response amplitude. 

The rectangular foundation is also analysed. The pure 
vertical compliance by the BIE method for a square 
foundation shows the results of Hamidzadeh (1978) to be 
underesti mations and those of Wong and Luco (1976) to be 
overesti mations, figs.5.18a,b. The same observation can be 
made about pure horizontal vibration in fig.5.27, which 
probably points to the effect of the difficulties that 
Wong et al might have had in evaluating the infinite 
integrals of oscillatory functions involved in their kernel 
function G., , see eq.(1.2.2) in chapter 1 of this thesis 
and the subsequent discussions. The vertical vibration has 
been analysed for rectangular foundations of length/width 
ratio 1, 4, 8, 10, 16. 

The stress distribution under the rigid foundation have 
also been plotted in some of the cases mentioned above -
normal stress under infinite rectangular foundation in 
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vertical vibration, the shear stress under circular 
foundation in torsion, the shear stress under square 
foundation in horizontal translation, the normal stress 
under rectangular foundation of various length/width ratios 
in vertical vibration. In all of the cases the 
characteristic edge singularity in the stress distribution 
is clearly shown even though the value of infinity at 
the edge of the loaded region was, of course, not 
obtained in the numerical implementation. The 

three-dimensional stress plots of figs.5.22a,b and 5.23a,b 
for the square foundation in vertical vibration are very 
informative. It is interesting to note that this important 
feature of foundation dynamics is not lost in the BIE 
formulation and implementation unlike some numerical methods 
such as that by Wong and Luco (1976) which only hoped 
that even though the stress singularity was not adequately 
represented, the stress integral would be accurate enough 
for engineering purposes. Knowledge of the stress 
distribution is important because in addition to 
consideration of resonance, a foundation designer would 
like to know the magnitudes and distribution of the 
stresses he is designing to withstand. 

The benefit of the advent of the modern digital computer 
is felt in most fields of research, and it is desirable 
that the field of foundation dynamics is not left out. 
The convenience of investigating most aspects of foundation 
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dynamics from the same BIE equation allows the problem 
solution to be presented in a cheap and versatile 
computer program, see concluding paragraphs of chapters 4 
and 5. For example all the results for the infinite 
rectangular strip foundation in chapter 4 are produced 
from one program, from which various aspects were 
investigated by changing a word of input data to read, 
for example, ROCKING instead of VERTICA mode of vibration, 
or RELAXED instead of WELDEDD contact conditions. The 
program requires only 21,000 words of computer memory for 
in-core handling of ail the codes and equations, and 
takes typically 8 seconds to compute the dynamic stiffness 
and stress distribution at a particular frequency (by a 
CDC Cyber 174 batch processor). The results in chapter 5 
for foundation of finite size are similarly coded into 
another program requiring 51,000 memory words and typically 
40 seconds to execute at one value of frequency factor. 
Wong and Luco (1976) reported that at one particular 
frequency, the evaluation of their influence function G., , 

jx 

see eq. (1.2.2), took 2 minutes (on an IBM 370/158 batch 
processor), presumably before proceeding to solve the 
vibration problem for the square foundation. 

It has been intended to present the BIE not only as a 
more convenient way of analysing foundation dynamics, but 
also as a means of going beyond where other methods have 
usually stopped, and looking ahead to future developments 
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in this field and in the field of elastodynamics in 
general. The three degrees-of-freedom vibration of the 
infinite rectangular strip foundation has been investigated, 
and the usually implied assumption has been verified that 
there is no coupling between the vertical and other 
modes. The vertical vibration has been analysed for 
rectangular foundations of length/width ratio of up to 16. 
It is common to approximate such "long" foundations as 
infinite strips in order to simplify analysis, without 
examining the errors involved in such approximations. The 
errors involved have been investigated quantitatively as 
far as predicting vertical resonance frequencies is 
concerned. The approximation usually results in 
underestimation of resonance frequency. For a mass ratio 
of 40 or less the length of the rectangular base must 
be at least six times greater than the width to achieve 
an error of less than 10$, see fig.5.29. As expected the 

v 
longer the rectangle the smaller the error. But for a 
given rectangle, the error increases with increasing mass 
ratio. It is expected that the same trend will hold for 
other modes. 

The BIE is not restricted to the field of foundation 
dynamics. It is, presumably, a statement of the general 
elastodynamic problem. An indication has been given of how 
it may be applied as such to the analysis of dynamic 
response of elastic solids subjected to harmonic loads. 
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This subject has been the obstacle to the study of some 
of the more practical aspects of foundation dynamics. The 
way the BIE can cope with such aspects as the combined 
problem of vibration of elastic foundation on the elastic 
half space has been outlined. Also details have been 
given of a complete formulation with the BIE of the 
problem of interaction of rigid foundations on the elastic 
half space. 

The formulation presented in this thesis is valid for 
foundations of arbitrary shape including discontinuities. 
The formulation of the necessary equations leading to the 
BIE method has been presented. The use of the method to 
meet the requirements of foundation dynamics, the necessary 
numerical manipulation of the method, and solution 
capabilities to new aspects of foundation problems have 
been demonstrated. It is felt that the way is now open 
to the investigation of much more sophisticated problems, 
with the formulation in this thesis an invaluable tool. 
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SUGGESTIONS FOR FUTURE RESEARCH 

It was mentioned in section 2.1, chapter 2, that the 
Boundary Integral Equation method has not been as 
developed in the field of elastodynamics as it is in 
elastostatics. In the latter field the method appears to 
represent a universal statement of elastostatics in that 
the same equation solves virtually all types of problems 
ranging from elastic fracture mechanics and rock mechanics 
to elastoplastic and thermo-elasticity analysis. It is 
desirable to carry over the benefits of this new-found 
tool to elastodynamics, so that hopefully the BIE method 
could also be regarded as embodying solutions to almost 
all types of elastodynamic problems. Simple problems to 
start with include elastic wave diffraction through 
circular cylinders of infinite or semi-infinite length 
whose solutions are known, as well as through cylinders 
of rectangular cross-section whose solutions are difficult 
to obtain in closed-form. Then bodies of finite shapes 
can be studied, such as the free vibration of an elastic 
sphere whose solution is known, and then the rectangular 
parallelepiped whose solution is not known. Once the 
elastodynamic deformation of finite bodies can be 
successfully analysed, the way is paved for introducing 
flexibility into foundations of arbitrary shape, and then 
for such studies as the effect of topology on surface 
waves. 
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The interaction of foundations on the elastic half space 
may now be fully studied. But this requires first a 
fuller investigation of the unconstrained (six 
degrees-of-freedom) vibration of foundation of arbitrary 
shape. 

It must be stated that there is plenty of scope for 
improvement on the implementation of this BIE scheme. This 
thesis is simply to draw the attention of researchers to 
this convenient method of analysis. As new and improved 
methods of numerical implementation of the scheme continue 
to evolve in elastostatics it is desirable that 
elastodynamics does not fall behind. 
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appendix A 

T H E C O N C E P T OF E L A S T O D Y N A M I C S T A T E 

section Pag; 

A. 1 Definitions 221 

A. 2 Elastodynamic State 221 
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A. 1 DEFINITIONS 

Following Eringen and Suhubi (1975), we may use the 

notation C m , n (D ,r ) where m and n are integers, to define 

the class of all functions that exist and are continuous 

with their spatial derivatives of order up to and 

including m and time derivatives of order up to and 

including n, on Dxr. The latter notation Dxr denotes a 

spatial region D and a time interval r. $ € C m , n ( D x r ) 

implies that the function $ belongs to class C m , n . T~ is 

-i- • 

used to denote the state of the past, and r , that of 

the present and henceforth. 

This latter classification of r is needed only for 

transient problems. In our present case of steady state 

elastodynamics, harmonic time variation is assumed. It is 

therefor sufficient to write the class Cm(D) and bear in 

mind that a function $ €Cm (D) is a function of frequency. 

A.2 THE ELASTODYNAMIC STATE 

This is a convenient reference to all the parameters and 

field variables existing in an elastic domain during a 

given (steady state) event. Let D be a spatial domain 
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with boundary S. I f and a are, respectively, a 

vector-valued and a symmetric second-order tensor-valued 

function defined on D , we call the ordered pairs 

d =[£»£] an elastodynamic state on D with the 

displacement field u and the stress field a, corresponding 

to a body force density f_, mass density p, irrotational 

wave speed c-|, and equivoluminal wave speed c^. The 

following provisions are assumed to hold. 

(a) u C C 2 ( D ) , U C C ^ D ) , A€ C° ( D ) , f c C ° ( D ) . 

The stress and body force functions are allowed to be 

discontinuous. The constants p, c-|, and c 2
 a r e subject 

to 

p > 0 , c1 > 2 / / ~ 3c 2 > 0 

(b) û , f , c-j and c 2 satisfy the Navier's elastodynamic 

equation of motion ( 2 . 2 . 2 ) with body force included, 

namely, 

(c 2 - c|) VV«u + c 2 l 2 u + u>2u + f = 0 

With this definition the notion of elastodynamic states 

(1)j and ( 2 ) , become clear as 

belonging to two different events. For example in the 

formulation of the boundary integral equation in section 
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2 . 5 , chapter 2, one of the two distinct el as todynamic 

states involved in the Betti-Rayleigh equation (2 .3 .4 ) of 

section 2 . 3 , namely ^ , is taken to correspond to the 

Stoke's problem of a concentrated time-harmonic body force 

acting in a given direction in an infinite domain. The 

other state is the problem we wish to solve. 
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appendix B 

S O M E A L G E B R A I C D E T A I L S 

section 

B.l Expansion of U.. for Two-
j

k 

Dimensional Problems 

B.2 Differentiations of to 
Obtain T.t , Two-Dimensional jk 

Problems 

B.3 Expansion of U.. for Three-
Jk Dimensional Problems 

B.4 Differentiations of IK^ to 
Obtain T .T , Three-Dimensional Jk' 

Problems 
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EXPANSION OF Uj[x FOR TWO-DIMENSIONAL PROBLEMS 

The expression for U is given by eq. (2 .4 .3) 

V
P

'
Q ) H o > 2 * f V

 +

 -

( c 2 w 3Xj3xk\ 

j,k = 1,2 (B . l . l ) 

in which 

R = (̂x-, - y ^ 2 + (x2 - y 2 ) 2 j V 2 

It will be convenient to employ the following short form 

notations. 

9 \ 
3xj I' 

where the dot within the brackets indicate any given 

expression. 

Also 

R __R _ 
,m ,n 

the Kroenecker delta 
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= directional derivative along unit normal n. 

summation is implied on repeated subscripts. 

The following identities will be useful and may be 

veri fied 

| W > !
t -

 =

 -
 k

j
 H

l<
k

o
R ) R.m 

Therefore it is easy to show that 

The second term in eq . (B . l . l ) above may then be evaluated 

and the results substituted back into the expression. 

After grouping terms, the functions ¥ and x a r e then 

introduced as defined for eqs.(2.4.4) and (2.4 .5) in 

chapter 2. The final result is obtained as in eq . (2 .4 .4 ) . 

U 
mn i l ^ m + x6mn> (B.1.2) 

Let's put a, = ' /4p to save some writing. 
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DIFFERENTIATIONS OF U j k TO OBTAIN T j k > TWO-DIMENSIONAL 

PROBLEM. » 

Recall eq . (2 . 4 . 2 ) 

Tjm " X U jr . r n
m

 + ^ j m . s + Ujs,m) ns (B-2 

By careful manipulations, the following expressions may 

simplified. 

' jr.r = al < w j r + x V . ' 

" al C . r 6 j r + X .r 6 j r + XSjr,r> 

V . S • al ( " j « ) . s + ( ^ W . s 

= al * ,s + * ,s 6jra + x ejm.s 

and similarly for U- m 

• _ m = a J m + m js,m I / js ' ,m v A js ' ,m 

• al % 6 js + X.m ejs + X 6 j s , m 
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Collecting results into expression (B . 2 . 1 ) , 

Tjm • al { ( L r 5 j r + x , r e j r + x 6jr ,r> 

+ " " s ^ . s jm + X,s Sjm + x6jm,s> 

+ ^ . m 6 js + x ,m ejs + x 6 j s , m ) } 

After a considerable amount of indicial manipulation we 

find 

Tjk(P,Q) = 6jk + A 2 f R . R k 

+ A3Rfknj + A4R(jnk\ 

which corresponds to eq . (2 . 4 . 5 ) for which the functions 

At, A 9 , Ao, and A* have been defined in chapter 2. 
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B.3 EXPANSION OF U j k FOR THREE-DIMENSIONAL PROBLEMS 

The expression for Ujk is given by eq. (2 .4 .1) 

Ujm = THTpj ^ exp(2k2R) 6 j k 

+ _ J ( exp(£k,R) - exp(/k?R) 

R w ax.dxm \ j m 

j,m = 1,2 ,3 

in which 

R = ^ - y ] ) 2 + (x2 - y 2 ) 2 + (x3 - y 3 ) 2 ^ 1 / 2 

The short form notation introduced in section B.l above 

holds except that the indices range over 1,2,3 instead of 

just 1,2 

If R. is the compnent of the vector of position from j 

P(y) to Q ( x ) > we find, after carrying out the 

differentiations indicated in expression (B.3.1) above, 



u. 
jm 

1 ) , 3 RjRm 
Trp 

'jm, 2n2 
(exp(Lk2R) - exp(ck-|R))/w R 

+ ( ~exp(6k2R) - i- exp(ck-|R) ) 

R..R 
V 1 ( V x p ^ k l R ) " "T e x p ( ^ k i R ) 
R c 

+ ^ e x p ( £ k 2 R ) 

After simplification involving long manipulation, and regrouping 

terms, 

U. = J - l t o a . . + (3<t> + x)R .R ) 
jm 4-n-p R x jk v ' ,j ,nr 

where the functions $ and x have been defined for 

eqs.(2 .4 .6) and (2 .4 .7) in chapter 2. The symbols 4> and 

x are used just for convenience and should not be 

confused with those used in section B.l 
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B .4 DIFFERENTIATION OF U-. TO OBTAIN T.. FOR THREE-DIMENSIONAL 
J+* 3"* 

PROBLEMS 

Recall again eq . (2 .4 .2 ) 

Tjm = X Ujr,rnm + ^ U j m , s + Ujs,m> ns 

It is useful to observe that 

V . r " Div-J! 

where U is the second order tensor-valued function U.. 
jm 

If the definition 

U. = — (U. ) 

q 

is recalled, the differentiations involved in eq.(B.4.1) 

above is a question of algebra. 

The notations A-j, A 2 , A^, A^ are e ployed again, but 

with definitions as given below eq . (2 .4 .6 ) and (2 .4 .7 ) in 

chapter 2. The expression for below m be 

conveniently grouped in terms of the notations to obtain 

a further simplification. 
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+ A3 R ̂  + A4 R.nA 

corresponding to eq . (2 .4 .7 ) 
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