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ABBREVIATIONS 

DFN., THR., PR., stand for definition, theorem and proposition in an 

obvious fashion 

The quantifier "there exist" is denoted by 3 and the quantifier 

"for each" is denoted by V 

"iff" stands for "if and only if", where simple implication is denoted 

by => 

• marks the end of a proof, whenever used. 

0 is the void set and e means "belongs" 

^ stands for "such that" 

The strike / (e.g. fl, -f ) denotes the negation of a proposition 

or a property. 

The dash - over a set denotes its closure and in front of a set 

its complement . 
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ITpoAeyoyeva 

This work has actually been written during two entirely different 

and indeed separate, periods of study. PART I was completed before 

1975 and as a result we feel, we should comment on some recent 

developments, however peripheral, as well as on the foundational 

aspects of the theory of causal spaces from the vantage point of 

knowing how far the theory has developed. PART II was originally 

motivated from the idea that instead of studying singularities of a 

rather exceptional nature, such as causal anomalies, incomplete 

geodesies and in general, sets of boundary points of our manifold 

spacetime or its various tangent bundles, one should try to understand 

the nature of a rather more prosaic type of anomalies such as the 

singularities, in the context of analysis, of well defined and 

general mappings on the manifold itself, that is, their topology and 

their genericity or their stable morphologies to use a fanciful term. 

Such singularities are obviously the caustics, the singularities of 

hypersurfaces and the asymptotic behaviour of various expressions 

defined on a spacetime. 

The introductory sections of chapter 1 and chapter 2 contain 

our main motivation for their respective material and a description 

of what is being done; need only add the following remarks which are 

more of a postscript nature. 

We now know a little more about the topologies on Minkowski 

space, whose group of homeomorphisms is either the augmented Poincare' 

group (full Lorentz plus translations plus dilations) or the augmented 

orthochronous Poincare group, i.e. the group of causal automorphisms 

of the Minkowski spacetime (DFN.4 and PR.6, 1.2). First, the order 

topologies W + and W_ (PR.13, 1.2) have been proved to be superconnected 
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(i.e. every open set is connected), pathwise connected, not arcwise 

connected (i.e. no continuous map from the unit interval into the 

Minkowski space with the order topology can be one to one), but they 

are simply connected; they are not comparable to the Eud.±Iean topology 

and although they are coarse they are not minimal, in the sense that 

there exist strictly weaker topologies with the same homeomorphism 

group (S. NANDA, 4 or K. PANDA, 1). Second, there seem to be good 

reasons to include the null lines in any definition of topological 

nature, as well as to ignore them (see the remarks preceding (DFN.5, 

1.2)), as trajectories of photons, i.e. continuous images of the unit 

interval; this is because, if f is a continuous chronology preserving 

map of the unit interval I into Minkowski space with the (Zeeman) fine 

topology, then f(I) is a connected union of time-like intervals. (E. C. 

ZEEMAN, 2). This motivates the definition of the finest topology with 

respect to which the induced topology on every time-like line and 

light-like line is one-dimensional Euclidean and the induced topology 

on every space-like hyperplane is three-dimensional Euclidean; such a 

topology is strictly finer than the Euclidean topology (and hence 

Hausdorff) and its group of homeomorphisms is the augmented Poincare 

group. (S. NANDA, 6). S. Nanda has also considered some weaker 

versions of E. C. Zeeman's theorem (PR.6, 1.2) i.e. considering coarser 

topologies which still induce the Euclidean topology on time-like 

lines (t-topology) and space-like hyperplanes (s-topology) respectively 

(S. NANDA, 2,5); t- and s-topologies are neither normal, nor locally 

compact, still finer than the Euclidean topology (hence Hausdorff) 

and by definition first countable; their antispaces are therefore 

compact and non-Hausdorff but with the same group of homeomorphisms 

(S. NANDA, 3 or K. PANDA, 1); their supremum and their antitopological 

infimum do not however have as their group of homeomorphisms a causal 

group. (S. NANDA, 7). The answer to the question as to whether there 
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exist maximal and minimal elements in the set of all causal topologies 

(i.e. topologies on the Minkowski space whose group of homeomorphisms 

is a causal group) in general, is still inconclusive. 

Various topologies on Minkowski space make the full Lorentz 

group into a topological group (J. L. KELLEY, 3S) with a topology 

different from the usual Lie group topology (i.e. of a six-dimensional 

real manifold). The separating topology on the Minkowski space (i.e. 

intersection of the order (A) topology (C), 1.2) with the Zeeman fine 

topology (DFN.5, 1.2)) induces on the Lorentz group a strictly finer 

topology than the Euclidean one, makes it into a semitopological group 

and induces the same topology with the Euclidean one on every compact 

subgroup; no new representations have been found (P.G. VROEGINDEWEIT). 

E. C. Zeeman's result (PR.6, 1.2) that the group of causal 

automorphisms of a (causal) Minkowski space is isomorphic to the 

augmented orthochronous Poincare group has been taken to mean that 

the Lorentz group and hence the fundamental relativistic invariants 

in physics can be deduced from purely order-theoretic assumptions, i.e. 

causal, without any recourse to the metric and/or affine structure of 

the Minkowski space (i.e. the underlying spacetime). This idea 

originated with A. A. Robb who though that a set of events and a 

before-after ordering of them would be sufficient to describe the 

properties of spacetime. Robb's axiomatics has been largely simplified 

with the use of lattice theoretic considerations; one can define 

parallelism, orthogonality and causality (on linear geometric objects) 

on an n-dimensional affine lattice (Z. DOMOTOR, IV, Definition 4) and 

hope to extend to causal lattices the classical representational 

result that an abstract lattice is isomorphic to the lattice of all 

subgeometries of a suitable abstract geometry with finitary operations 
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if and only if it is a relatively atomic, upper continuous lattice 

(F. Maeda, "Lattice theoretic characterization of abstract geometries", 

J. Sc. Hiroshima Univ., Series A, Vol. 15 (1951) 87-96); one can 

actually prove that given an abstract causal lattice there exist a 

finite-dimensional vector space and a quadratic function on it which 

makes it into a Minkowski space whose (causal) lattice is isomorphic 

to the given one (Z. DOMOTOR, IV, Theorem 12); we still do not know 

how the causal lattice group, defined in an obvious way, is related to 

the group of causal automorphisms of the corresponding (causal) 

Minkowski space. 

The most difficult and the really new (A. D. ALEXANDROV and 

W. V. OVCHINNIKOVA) part in E. C. Zeeman's proof (E. C. ZEEMAN, 1) 

is the proof of the linearity of the map which transforms cones into 

cones; one can even dispense with continuity (A. D. ALEXANDROV and 

0. S. ROTHAUS) 

My motivation for the work of PART II can be summarized in the 

following: Geometric optics is a method for approximating solutions 

of Maxwell equations (eikonal approximation). It can be generally 

set up in a Riemannian manifold, whose positive-definite curvature is 

determined by the refractivity; light travels along the geodesies, i.e. 

the projection on the base manifold of the integral curves of the 

Hamiltonian vector field, defined on the cotangent bundle with the help 

of the metric tensor; these lie on the level surface of the 

Hamiltonian function. The Hamilton-Jacobi equation, determining the 

characteristics of the wave equation suggests that the method can be 

generalized for more general differential operators with a 

characteristic equation of the Hamilton-Jacobi type. Solutions are 

described by subsets of the cotangent bundle, in particular by what 

are called Lagrangian submanifolds (of a symplectic manifold in 
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general). The projection on the base manifold of the points at which 

such a submanifold is not transverse to the fibers of the cotangent 

bundle (singular set) is called the caustic set of the corresponding 

submanifold. This definition agrees with the caustic's definition in 

geometric optics as envelope surfaces of light rays (see: J. G. Dubois, 

J. P. Dufour, 0. Stanek "La theorie des catastrophes III Caustiques 

de l'optique geometrique", Ann. Inst. Henri Poincare, Vol. 24, No. 3 

(1976) 243-60). 

A generalization is attempted to the case of normal hyperbolic manifolds 

(spacetimes of General Relativity) and the inhomogeneous Hamilton-

Jacobi equation. In this case it is known that fundamental solutions 

for the wave equation near caustics do look different from the positive-

definite case (see: F.G. Friedlander, "The Wave equation in curved 

spacetime", Cambridge Univ. Press, 1975). However is not obvious if 

caustics are the same with catastrophe sets of a gradient model or a 

family of functions, if their-morphologies are stable and if so, what 

their normal forms look like. 

Finally a note on the bibliography; that of PART I is thorough 

and as a result extensive; the material of PART II is part of a number 

of different field: of study and to survey the literature seemed a 

pointless exercise; so in BIBLIOGRAPHY II only the publications that 

are being used have been cited; however we have included in the main 

text and in particular in section 4.1, a number of related studies in 

order to place this work in a certain perspective. 

The emphasis throughout has been on the mathematical, rather 

than the physical, aspects of the theories and the concepts considered; 

we hope this, although easier to conform to, has the advantage of 

being rigorous and clarifying rather than alienating. 



PART 1 - CAUSAL SPACES 

CHAPTER 1 

1.1 Introduction 

Far from being ambitious to give a detailed account on the 

category of causation, whatever is meant by causation for the moment, 

I will not even attempt to arrive at a generally acceptable definition. 

The literature on causality is enormous and the number of definitions 

of the term almost equals the number of authors. An elementary discuss-

ion of causality from the point of view of a physicist see M. BUNGE. 

The everyday usage of the words 'cause1 (C) and 'effect' (E), which 

everybody is familiar with, will suffice to the purpose of the follow-

ing. Let us start with the formulation below: 

'If C occurs, then and only then E is always produced by it' 

or translating into the categorical mode: 

'Every event of a certain class C necessarily produces an event at 

a certain class E'. (M. BUNGE, page 47)„ 

From a philosopher's point of view it might be of some interest 

to inquire about the adequate logical correlates of the above (and 

various others) verbal statements of the causal principle. This attempt 

of the logical formalization of causal statements (if proved successful) 

is by no means a reduction of the causal problem to logical terms if 

only because what is logically possible need not be physically e0g„ 

causally possible, and conversely the laws of nature, whether causal or 

not, are by no means logically necessary (causal relations are referred 

to a trait of reality and consequently cannot be settled a priori by 

purely logical means; see D. HUME, Section IV, Part II). On the other 

hand such an attempt is perfectly legitimate and let us get into it. 

Thus the logician is interested in studying the sentence: 'If C happens 

and C and E are causally connected then E must happen' by abstracting 

from the nature of the entities designated by 'C' and 'E' as well as from 

the specific character of the connection between C and E. One could argue 
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about the formulation above that determines the cause as a sufficient 

reason only (not necessary or both); there is strong evidence that this 

is most likely to be the case (R.G. NEWTON), The sentence then can be 

regarded in any of the following alternative ways: 

a) As an inclusion relation CC£ among classes 

b) As a relation of implication P c among propositions 

c) As a dyadic relation xRy among members x and y of the classes 

C and E. 

It is not hard to see that b) leads us straight to paradoxes as: 'anything 

is self-caused' since proposition P always implies itself, and 'a cause 

if absent entails any effect' because anything follows from a false 

proposition. Moreover the relation of implication need not be irreversible 

(asymmetrical) where the cause-effect link is essentially one way, A few 

attempts* to adopt the cause-effect propositional relation to somehow 

modified one of implication has been proved unsuccessful. 

Almost nothing has been said about a) and still c) remains as the 

most appropriate candidate. Indeed it summarises a few remarkable pro-

perties: it is a dyadic relation holding among elements interpretable as 

events and can be postulated to satisfy antireflexivity, which in turn can 

be interpreted as 'nihil est causa sui', transitivity and antisymmetry 

(i.e. XRy=^ —yRx). But the above properties are common to all ordered 

sets such as the succession of dawns and sunsets and although they specify 

the topology (J.L. KELLEY, Page 58) of the set do not say anything about 

the nature of its terms. 

So we can conclude with an aphorism: the logical aspect of the 

causal problem is semantical rather than syntactical i.e. what is required 

is not an extension of formally logical relations but the determination of 

a type of semantic connection among terms that are relevant to each other, 

* A.W, Burks: The logic of causal propositions, Mind (U.S.) 60, 363 (1951) 
G.P. Henderson: Causal implication, Mind (U.S.) 63, 504 (1954) 
H. Simon: On the definition of the causal relation, Journal of Philosophy 
49, 517 (1952). 
B.F. Chellas: Journal of Philosophical Logic 4 (1975) 133-153. 



The most common way a physicist perceives the function of a causal 

connection is in terms of theories which allow, at least in principle, the 

calculation of the future state of the system under consideration from 

data specified at a time t^. No specific reference to causes or effects is 

needed, but it is understood that all the phenomena (or variables) which 

can influence the system have been taken into account in the initial 

specification; which means that the system is closed. But if the system 

was indeed closed at all t < t Q, its past behaviour can also be calculated 

for all earlier times; so to call all our initial configurations 'cause' of 

all other configurations determined by it mathematically, would simply imply-

that effects can exist before as well as after the cause and this is a very 

unpleasant nomenclature. So functional interconnecteness is equivalent to 

deterministic causalism. 

The fortunate thing is that such closed systems are ideal structures, 

approximately realised as closed subsystems of our universe, whenever we 

can attribute within a theory the separability condition to it i.e. if our 

universe is divided into subsystems (which are sufficiently far removed 

from each other) each subsystem can be described in terms of variables 

referring to it alone (e.g. Newtonian point mechanics can accommodate 

separability without difficulty). 

If the system is open i.e. if interference by an outside agent is 

allowed, prediction of the future state of the system from its present 

one is not possible. If the interference is arbitrary no scientific 

statement can be made at all; if it is specified as definite function of 

time instead, the state of the system at times t :> t Q may still be 

calculated, but it is not a function of the state at t alone. One ' o 

usually finds himself in a much more complicated situation than having 

a finite aggregate of physical objects (which can be considered as closed 

in certain circumstances) i.e. one has to deal with a portion of a mass 

continuum or a field. 

The behaviour of a limited portion of a medium can no longer be 



calculated just from the initial data, as such a subsystem is in actual 

contact with the rest of the system and boundary conditions must be stated 

explicitly for all times. Fields necessarily extend over all space, so 

they can never describe a limited closed system, and the prescription of 

boundary conditions can not be dispensed with in this case. But boundary 

conditions such as required for the aforementioned cases can only be 

observed or set up arbitrarily and the calculations have to be tested 

experimentally. 

Still, it seems absolutely necessary to deal with a theoretical 

description of open systems at some level; simply because we must commun-

icate somehow i.e. use signals and a signal is an open system. Signals 

are necessitated by the Special Relativity Theory (definition of simultaneity 

and global spacetime coordinates); moreover are indispensible elements of 

the theory from an operational point of view and after all we have to rely 

on them if any degree of objectivity of our knowledge is to be attained. 

But a signal has to be an open system because if the initial state of the 

system would determine the future (past) state completely no information 
\ 

could be transmitted. For example in the case of the Maxwell's theory of 

electromagnetism the fact that we can set up arbitrarily the initial values, 

the changes of the charges and the currents and create discontinuities of 

the field which allow formation of a message, is the very proof that the 

theory can apply to an open system (the signal). To quote P. Havas (P. HAVAS, 

1, Page 86)*'the program of a T.V. station for the day cannot be predicted 

by even the most detailed description of the station's condition at 6 a.m. 

- even though we viewers do get this impression at times'. 

So one is interested in the following question: given for such a 

complicated system the initial data over a finite region and provided 

that non-local field theories are excluded (near action only is assumed 

* A clear distinction between open and closed systems is essential 
and as far as I know has only been put manifestly together with 
some of the arising problems in Newtonian, Special and General 
Relativity Theory in P. HAVAS, 1 and 2. 
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as taking place) can we calculate something about the past and future 

behaviour of our finite region considered as a subsystem (closed apart 

from boundary effects)? 

To summarize, we have started from the concept of causality in the 

ontal sphere and focussing on its epistemological and logical aspects we 

have reduced it to that of classification, particularly of ordering, of 

the elements of the class of the events.* A very popular representation 

of the class of events is one by a set endowed with a manifold structure 

One then can ask questions of the following kind: 

Upon which events does the event p depend, (Domain of dependence) 

Can the event p influence the event q by means of a signal? (Domain of 

influence). 

The study of a relatively simple model of space-time (or event space) 

that of the Minkowski space-time of the Special Theory of Relativity, will 

be our next step. 

1.2 Special Relativity Theory and Causal Considerations 

The Minkowski spacetime M is supposed to be a four-dimensional, 

C00-manifold which admits a single coordinate chart i.e. the IR4 with 

a quadratic form defined by: 
2 2 2 2 yj Q(x) = X q - x 1 - x 2 - x 3 V x e M 

It is obvious that the group of homeomorphisms of M endowed with the 

Euclidean topology for IR4 is much richer than the full Poincare group 

which preserves the Q(x). It is reasonable then to ask for 'natural* 

(with respect to Q(x)) topologies on M, compatible or not with its natural 
_ 4 

as a manifold topology (i.e. the Euclidean topology oflR ), but always 

compatible**with its linear vector space structure. 

Using the quadratic form Q(x) we define the following dyadic 

relations: # By event one usually understands the abstract concept of pointlike 

spacial an(j/or temporal phenomena 
** G. Choquet, Topology, Academic Press, 1966, Chapter III, 

definition 1.1 and proposition 1.2. 
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DFN. 1 The chronology ( « ) by: x « y iff Q(x-y) > 0 and x < y o o 
DFN. 2 The causality < < ) by: x < y iff Q(x-y) >, 0 and x < y o o 
DFN. 3 The horismos ( ) by: x y iff Q(x-y) = 0 and x < y o o 

PR. 1 The chronology and the causality relations are transitive. 

Hence they constitute partial orderings (J.L. KELLEY, Page 13), 

PR. 2 x y iff x < y and x y 

PR. 3 The horismos is not a transitive relation 

PR. 4 The chronology is an antireflexive relation where the 

causality is a reflexive one (i.e. x <j< x but x < x) 

The proofs are obvious from the null cone geometry. 

One is tempted to ask which transformations on M preserve the above 

relations. 

DFN. 4 Let f : M M be a one-to-one map. We call f a causal 

automorphism iff both f and f"1 preserve the chronology 

relation (i.e. x « y fx « fy x, y & M) 

If f is a causal automorphism^ preserves the causality (and hence the 

horismos too by PR. 2, 1.2) by: 

PR. 5 Let f : M M be a one-to-one map. Then f,f-1 preserve the 

partial ordering « iff they preserve the relation <. 

For a proof see E.C. ZEEMAN (1, Lemma 1). E.C. ZEEMAN in 1 has also 

proved: 

PR. 6 Causal automorphisms form a group (causality group) and this 

is the group G generated by the orthochronous Lorentz group 

plus the translations plus the dilatations (multiplication 

by a scalar). 

It is easy to see that G is contained in the causality group but the 

inverse is not at all obvious and the result depends essentially upon 

space being more than one-dimensional as can be seen by the following 

counter example: 
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Let K denote two-dimensional Minkowski space with Q(x) = x Q - x^ 

x = (xQ, X^) e. K. Choose new coordinates yQ = xQ - x^, y = xQ + x^. 

Then Q(y) = L e t f
0> f ^ / R ^ K be two arbitrary, nonlinear, orient-

ation preserving homeomorphisms of the real line into itself. Define 

f : K K by : f(yQ, y ^ = (fQ yQ, f
1y,

1>» T*1®11 f is a causal auto-

morphism but f ̂  G because f is non-linear. 

PR. 6 above shows that causality requirements on M are in absolute 

accord with the Lorentz structure. 

To return where we started i.e. to talk about topologiy and their 

homeomorphisms, we observe that all that has been said above is referred 
E to M endowed with its Euclidean topology where the quantities N^ = 

{ydM :f(x,y) < 6 } f (x,y) = < x
0" yo ) 2 + ( x l ~ y i ) 2 + < V y 2 ) 2 + ( x3~ y3 ) 2 

(Euclidean £-neighbourhoods) form a base for the neighbourhood system 

of the point x. (Appendix I) . But observe that Euclidean topology is 

locally homogeneous (in a loose sense) whereas M is not (every point has 

its associated light cone separating space vectors from time, vectors) and 

to repeat it again the group of homeomorphism of Euclidean space is vast 

and of no physical significance. 

But how does one understand the function of neighbourhoods, open 

sets and all that? What more a topological structure says about the 

the elements of a set is to ask what our neighbourhoods 

tell us when we say we are 'close' to a point. A 

relation of 'closer than' can be defined (G. WILLIAMS, 1) in terms of our 

Lorentzian (quadratic form) in an invariant way for all timelike and space-

like events (separately) but not for events on distinct null geodesies.* 

It turns out that the definition is not only invariant under the group 

of transformations leaving invariant Q(x) but it is not also devoid of 

any physical meaning e.g. if 'a' and 'b' are two events in the future 

* For the general problem in case of pseudo-Riemmanian geometry 
see: E. Schrodinger: Space time structure, Cambridge Univ. Press, 
1950. 
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(past) of x, we say that 'a' is closer than 'bf to x if the proper 

distance along the line joining x to 'a' is strictly smaller than that 

along the line joining x to fbf ; i.e. the time recorded by an inertial 

observer between the events x and 'a* will be smaller than that recorded 

by such an observer travelling between x and 'b'. Hence an intrinsic 

topology for Minkowski space should 'ignore' the null lines. 

As a first attempt we should consider Zeeman's fine topology 

(E.C. ZEEMAN, 2). 

DFN. 5 The fine topology for M is the finest topology for M with the 

property to induce the one-dimensional Euclidean topology on 

every time axis where a time axis is any subset of M of the 

form (R^ = (Rx{o]and a space axis =-[oJxIR3. 

Typical open sets in M with the fine topology (M^) are the £ -fine neighbour-

: y = x hoods N / ( X ) ~ N. E(x) 0 (CT(x) U CS(x)) with CT(x) = {y<sM: 
S 

or Q(y-x) > 0} and C (x) = {y<sM : y = x or Q(y-x) < 0}. They are 
E 

obtained from Ng (x) by removing the light cone and replacing the point x. 

PR. 7 Ng
F(x) are open in M^ but not in ME.* 

PROOF To show that N / ( X ) is open in M^ it is enough to show that 
F F n (x) is open in any space or time axis A i.e. N £ (x) l I A is open in the Euclidean topology. Indeed: 

N F(x)F! A = f N
6

E

( X ) H a if x A Both the right hand 

'CN E(x) - C T(x»n A if x 
E E T E sides are open in A because N g (x), N £ (x) - C (x) are open in M . 

Typical closed sets in M^ but not closed in M^ are the Zeno sequences 

defined by: 

DFN. 6 A Zeno sequence converging to z is a disjoint sequence of 
E 

points in M that converge to z in M but does not converge 
F in M . 

F E 
PR, S A Zeno sequence Z = i s cl° s e d i n M closed in M . 

E 
* By M we denote the Minkowski spacetime with its- Euclidean 

topology. 



ll*t E —E PROOF z z in M implies zg z (closure in Euclidean topology), n 
Since z Z it follows that z is not closed in M . 
\<A F Also, z

njr 2 in M means that there exists a neighbourhood 0 of z 

in fine topology such that Hence z is an interior point of 
F F — Z (complement in the fine topology). We claim that—Z is open in 

M^. It is enough to show that every x f z of— Z F is an interior point 
F F of — Z . Let x ^ z be any point of — Z ; then there exists a Euclidean 

neighbourhood of x not meeting Z (which also serves as neighbourhood in 

the fine topology since the fine topology is finer than the Euclidean 

topology). For if not, every Euclidean neighbourhood of x will contain 

infinitely many points of Z and consequently x will be the limit point 

of Z in M^, thus giving a contradiction since M^ is Hausdorff and x -f z 

PR. 9 The £.-fine neighbourhoods of x do not form a base of neighbour 

hoods of x in the fine topology. 

PROOF If a Zeno sequence is removed from a £ - fine neighbourhood 

of x then what is left is an open neighbourhood of x (in M*2) 

containing no 6 -fine neighbourhood. 

Summarising the results of E.C. ZEEMAN, 2, the fine topology 

is Hausdorff, induces a discrete topology on a light ray,* is not 

normal, does not have a countable base of neighbourhoods at any point 

(i.e. is not first countable and hence is not second countable as well), 

is not locally compact, is locally connected and connected, and has the 

very attractive feature: 

PR. 10 The group of homeomorphisms of M** is the group of auto-

morphisms of M given by the full Lorentz group plus the 

translations plus the dilatations. (E.C. ZEEMAN, 2, Theorem 3). 

E.C. Zeeman in (E.C. ZEEMAN, 2) conjectures that alternatives topologies 

* Intuitively this says, that the track of a photon is not a 
continuous path: we have no evidence of a photon other than 
the discrete events of its emission and absorption. 
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for M could be obtained each of which has the same homeomorphism group 

as that of the fine topology. The general procedure was to reduce the 

information available about the induced topologies on spacelike hyper-

planes, timelike and lightlike line. S. Nanda has proved (S. NANDA, 1 

theorem 2) : 

PR. 11 The group of homeomorphisms of the finest topology which 

induces the Euclidean topology on every spacelike hyper-

plane is the full Lorentz group plus translations plus 

dilatations. 

Another approach to arrive at topologies with a physical 

significance or counterpart is to depart from the causal relations. 

DFN. 7 The chronological future (past) of a set A is given by 

I+(A) = {yeM : x « y VxeA} (l"(A) = {y^M : y « x \/xeA>) 
+ 

In particular I"(x) is the .chronological future (past) of a single 

event. 

Consider the following families of sets: 

a) w + = {i+(x): VxeM} , w _ = {r<x):V*eM} 

b) w {i+(x), l~(x):VxeM} 

c) (A) = {l+(x) fl f'(y)": V'x/y6M} 

and ask whether or not can each be bases or subbases for a topology for M. 

(For a summary of the theory of bases (subbases) for a topology, see 

Appendix I). Using the results of Appendix I, it is easy to prove: 

PR. 12 W can be the subbase for some topology but not a base. 

PR. 13 (A), W a r e bases for some topologies on M. 

The topologies generated by W W^ have been studied by G.S. WHISTON 

They have the same group of homeomorphisms and this is the orthochronous 

Lorentz group plus dilatations. They are rather complicated topologic-

ally as they are only TQ, not T 2 (hence not Hansdorff), not T3, not 

paracompact, not locally compact, but they are locally connected and 

connected. 
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E.C. Zeeman's work was followed by a number of attempts to 

generalize its theorems (PR. 10, 1.2) (J.L. AL0NS0 - F.J. YUDURAIN 

and C. GHEORGHE - E. MIHUL) and extend it (G. WILLIAMS, 2). Also in 

a number of publications one can find a detailed study of the causality 

group itself (G. TEPPATI, G. BARUCCHI). 

1.3 Causal Spaces - The Abstract Theory 

We represent the work done by E.H. Kronheimer and R. Penrose 

(E.H. KRONHEIMER, R. PENROSE, 1) in 1966. We rearrange the material 

and provide some more detailed proofs and proofs of side conjectures 

in the original. 

DFN. 8 Any set X endowed with three dyadic relations (<, « , -*) 

(named causality, chronology and horismos respectively) 

satisfying the properties below is called a causal space: 

1 . X < X Vxe x 
2. X < y and y < z imply x < z 

3. X < y and y < x imply x = y 

4. X <J< x l/xex 
5. X « y implies x < y 

6. X < y and y « z imply x « z 

7. X << y and y < z imply x « z 

8. X -»• y iff x < y and x <J< y 

PR. 14 Given X a causal space and x < y < z*, x z, then x ->• y -»• z. 

PROOF Suppose x << y (y « z). By axioms6 and 7 of the DFN. 8, 1.3, 

x « y < z (x < y « z) imply x « z which contradicts x z 

(x < z and x <j< z). 

An alternative, equivalent axiom system should be: 

I. x < x V x £ X 

II. x < y < z x < z 

* x < y < z stands for x < y and y <z in an obvious abbreviation. 
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III. x < y < x x = y 

IV. x •*• x Vx<s X 
V. x y ^ x < y 

VI. x < y < z and x -»• z x y z 

VII. x « y x < y and x jA- y 

In view of PR. 14, 1.3, the equivalence is easily proved. Note that in 

each axiom system, one out of the three relations is defined trivially 

in terms of the other two (the horismos for the former and the chronology 

for the later one). 

One can even construct a causal space, but not in a unique fashion, 

just from one relation adding an appropriate constrain. When certain con-

ditions are met the resultant causal relations are compatible or even coin-

cide. For this purpose, it is useful to regard causal relations on X as sub-

sets of the Cartesian product X x X. (An order relation can be defined 

between order relations (!) R^/i£ I on X by the natural inclusion relation 

for subsets of X x X i.e. < R. iff R . C R,. It is called the natural i J 1 3 
order in any class of dyadic relations R,/ie I forming a set). Following 

E.H. KRONHEIMER (AND R. PENROSE) we introduce further the symbol {hor/cau <} 

for the collection of horismos compatible with the causality (<) to mean that 

for some relation '«' the quadruple (X,<,-*,«) is a causal space. CSimilarly 

one introduces {chr/cau <}, {hor/chr «},e.t.c.). 
At this stage we construct a causal space, given X and an 

horismotic* relation '-•* on X : 
u 

DFN. 9 x < y iff 3 x /i=l,2,...,n 3 x = x x -*• .. = y 
x 1 ^ n 

u u . 
DFN. 10 x « y iff x < y and x/» y 

u u 
PR. 15 (X , < , - * , « ) is a causal space. 

DFN. 11 (X ,<,->-, « ) is called a u-space iff '<' (and »«') 
u u 

coincide with '<' and '«*) 

A reflexive relation R is called 'horismotic' iff V 
x ± / l = l,2,...,n 3 x iRx i + 1 / i = 1,2,...,n, and h and k 
integers 9 1 < h < k < n, x Rx, Rx, and x Rx„ = x, 

1 h h k n I n k 
e.g. any reflexive partial ordering with the property: 
xRy and yRx = y, is a horismotic relation. The horismos 
is a horismotic relation too (notwithstanding that it is not a partial 
order). 
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u u 

PR. 16 If < C Z < (i.e. if x < y implies x < y) then(X,<, « ) 

is a u-space. 
u u 

PROOF V < £ {cau/hor +} = ^ < C Z < t i.e. < = ( l {cau/hor -*•}. Since if 
u 

x < x^/i = 1,2,... ,n 3 x = xi X2 " ' Xn = y 2111(1 b y 

axiom 8 of the DFN. 8, 1.3, x = x < x 2 < ... < x^ = y, which 
u 

in turn by axiom 2 of the DFN. 8, 1.3, imply x < y. Hence < 
u u 

combined with our hypothesis < G < imply < = <. Furthermore 
u u 

if < = = « by DFN. 10, 1.3, and axiom VII 
u 

( « = f] {chr/hor ->•}). 

DFN. 12 The causal, chronological and null future (past) of a set A 

are given by: 

J+(A) = (x<sX : a < x Va£A> (J~ (A) = {x g. x : x < a Va<£A>) 

I + (A) = {xg X : a « x N/a€A} (I~(A) = {x<= X : x « a \/afiA}) 

E+(A) = J + ( A ) — I+(A) ( E'(A) = J~(A) — I~(A) ) 

Introduce jja,bJ for {x<cX: a < x < b}, < a,b > for {x^x: a « x « b } 

and a//b iff neither a < b or b < a. Finally we define a topology on X 

namely: 

DFN. 13 The Alexandrov topology J* on a set X equipped with an anti-

reflexive partial ordering ' « ' is the smallest topology on X 

in which I~(x) are open V x f i X 

DFN. 14 A set linearly ordered* by the causality (chronology) is 

called a causal (chronological) chain. 

DFN. 15 A causal space is called regular iff for any distinct 

x , y. 3 x. -»• y. .. . _ - 0 then the horismos orderxx iff 

it orders y1 . 

In view of PR. 14, 1.3, this is equivalent to: For any distinct 

Xi' yj 5 = 1 , 2 X l / / X 2 i f f yi / / y2* 

* For the relation R on X linearly orders it iff R is a partial 
ordering and xRy or yRx V x<sX , yeX , x ^ y. 



14. 

Given a set X and an antireflexive partial ordering '«• on X (e.g. 

chronology) a number of situations can arise. The relation '«' is 

called future (past) reflecting iff I~(x) Cl"(y) (I+(x) I+(y)) 

whenever I + ( x ) 3 I+(y) (I (x) CT I~(y). The relation 

'«' is future (weakly) distinguishing iff x = y whenever 

I+(x) = I+(y) (I+(x) = I+(y) and l"(x) = l"(y)). Finally •«' is 

full iff Vx«£X 3 p ^ X 3 p « x; and if « x, pg « 3 

PI << P 0
 <<: 3 A N D Q << -L 

At this stage we can state a few theorems. They relate the 

Alexandrov topology for X to the above mentioned properties of the 

chronology. (Recall the notation (A)= {< x,y > : x ^ y, < x,y > ? jrf, 

x,yf X } and PR. 13, 1.3, which turns out not to be true in general). 

THR. 1 '«' is full iff (A) is a base for J* . 

PROOF Assume fullness. We shall show that (A) is a base for U{A : A£ (A)} 

It is enough to show that V A 0g(A) and x ^ a H a . ^ H a i S (A) 1 2 
3 xeAC A^M A^. (Aĵ  2 stands for: A ^ A2). 

Let A 1 > 2 = I+(*li2> D I"(y1>2). V x e A i 0 a 2 ^ x 6 A 1 ) 2 =9 

x^ 2 « x « y^ 2 and by fullness 3q,q' a x^ 2 « q « x « q f < < y 1 

i.e. x £ < q,q* ><= A i ^ A 2 * T a k e A = < >* 

To complete the proof note that V x s X ^ ,3p(p') b p << x 

(x « p') i.e. 3 < p, p' > e (A)9 xe< p, p' >. SoX<nu(A: Ae(A)} 
+ — 

and any set I (x) (I (x)), open in J*, can be written as: 

I+(x) = {ye=X : x « y} = u{< x,y > : y 6 X } d"(x) = 

{y<sX : y « x} = U{< y,x > : ye X }) i.e. as a union of the base 

elements. It follows then that (A) is a base for J*. 

Suppose (A) is a base for J*. V x g X A for some AE(A) 

i.e. x<£< p, p' > i.e. 3 p(p') p « x (x « pf). 

Since (A) is a base and X C R U { A : AG(A)} V A 1 g and V x £ A ^ A G } 

0 A„ i.e. V A„ „ and 1 A 1 , ̂  
y x £ I + ( X l ) f| l"(yi) f ] I+(x2) fl f (y2) 3 <q', q>CA iriA 2 
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and x 6 < q' , q > i.e. ^ 2 ^ xi,2 ** yi,2 ^ X <<: yl 2* 

3
 x l t 2 K< q <K K (X << q' << y l , 2 > ' 

THR. 2 If (X, j*) is Hausdorff and • « ' full then »«• is future 

(past) distinguishing. 

PROOF Suppose p,q<=X , p G < x ^ y >, q € < x ^ y 2 >, 

< y
1
 > ^ < x2, y 2 > , I+(p) = I+(q) and p f q. 

We'll show that they lead to a contradiction. 
+ + 

Let z^ e. < x^, y > 3 p « z^ i.e. z 1 (p) = I (q), henceq<<z 1 

Let z 2 € < x2, y 2 > 3 q « zg i.e. zg a. I+(q) = I+(p) , hence p « z g 

From q,p << z^ P, z £ < x , y^ > and 

q,p « z 2 q, z 2 € < x2, y 2 > 3 w 3 p « w < z 1 2 

w <= < x.̂ , y 1 >. But p « w ^ - w & I+(p) w e I+(q)=^q « w 

From q « w « z w <=. < x , y > which is a contradiction to 2 a a 

W £ < x1, y x > with < x v y x > f l < x2, y 2 > = ( f ) 

Moreover if (X.̂  J*) is T (i.e. Vp,q<r X , p f 3 < x,y >fr j* 

p 6 < x, y > and q < x, y > ) and '<<' is full, then X has to 

be weakly distinguishing. Because if we assume that 

I ^ p ) = r(q)=^ y <£: I+(p) = I+(q) q « y and x l"(p) = l"(q) 

x « q i.e. q e < x, y > , a contradiction. As T^-spaces are 

T q the argument is true for T^-spaces too. 

THR. 3 Let ' « ' be an antireflexive partial ordering on X, The follow-

ing are equivalent statements: 

1. ' « ' is full 

2. x e I + ( x ) c l * f | I ~ ( x ) c l * \ / x £ X(cl* means closure with respect 
to *-topol.). 

3. I+(x)cl* = {y<cX : I+(y)CZ I+(x)} and l"(x)cl*= { y e X : 

l"(y)cn I~(x)} V x e x + ± 

PROOF Since I~(x)C^ I (x) 3. trivially implies 2. 

2 implies 1. \ / x £ X since x £l (x)cl , I (x) open in .*-topology 

and x L̂ I (x), follows that x is an accumulation 
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point of I (x) i.e. 3 N(x) (a neighbourhood of x) 5 

N(X) n i~(x> ?<t> ; which in turn proves that exist y « x. 

(y <= N(x) H r ( x ) y T* x) If two y £ N(x) 0 l"(x) exist, 

it follows that y « x and since I (y.,) fl i+<y0> + $ (as x £ J. , & 1 £ 

+ f \ +. 
I (y-)1 1 I (y0)) and open (definition of *-topology) exist 

N1 (x) (neighbourhood of x) 3 N» (x) CT I+(y1) f| I+<y2)* B u t 

again N* (x) 0 I (x) ? <p (x is an accumulation point of I (x)) 

hence 3 p e N' (x) 3 y 1 2<< p « x and. this completes the requirements 

of fullness. 

1 implies 3. (a) V y e I+(x)Cl* and V z & I+(y) i.e. y « z 

it follows that y £ I (z) and I (z) is a *-neigh-
+ + cl* bourhood of y; hence intersects I (x) (y £ I (x) ) i.e. 

3 w £ I (z) x « w « z i.e. z £ I+(x) consequently 

I+(y) CZ I+(x). (b) y £ x I + ( y ) d I + (x) and any *-neighbour-

hood of y, there exists a < u, v >-neighbourhood of it 3 (y, v) f , 
3 + + + + rl* w € I (y) CZ I (x) i.e. w £ I (x) ; and y e I (x) 

These are enough to cover the equivalence between 1., 2. and 3. 

THR. 4 Let Acn X and X a full causal space. Then J + ( A ) C I+(A)cl* 
and I+(A) = J +(A) i n t* 

PROOF J+(a) = {ye. X : a < y}. V x £ I+(y) i.e. y « x and y £ J+(a) 

i.e. a < y « x which means that also y £ {y<£ X: a « x \/x£ 

I+(y)} = {y £ X: x£l +(a) Vx£l +(y)} = {y^x: I+(y)Cl I+(a)} = 

I+(a)cl* by THR. 3 (3.); and this is trueVa^A. 
V + int* —j + —i x<£ J (A) a *-neighbourhood of x in J (A) i.e. J p, q, r 

+ + 3x £< p, q > C I J (A) and p « r « x i.e. x £ I (A) ; therefore 
+ int* + + + + J (A) c l (A). Now note that I (A)CC J (A) and I (A) is 

+ int* open. But J (A) is the greatest open set contained in 

T+/AN ^ T+/AS/— T+ / l xint* _ + , .int* T + J (A) hence I (A)CC J (A) . So J (A) = I (A) 

PR. 17 Given X a causal space a necessary and sufficient condition 
+ + 

for H to satisfy I (A) CZ HCZIJ (A) for some A is that 
I +(H)d H ( H C X), 
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PROOF Assume I+(A) CT H d J +(A) for some A. V y£ H y £ J+(A) = 

{z£ X: a < z a £ A} i.e. a: < y; note that \/z £ I+(H) = 

{z£X: y « z, y<£ H} and V y ^ a < y « z i.e. a « z or 

equivalently z £ I+(A)CL H. So I+(H)C1 H. 

Conversely given I+(H)CI. H, take A = H.Then J+(H) = 

{y: h < y, h £ H> and since h < h H C J+(H) i.e. 

I+(H)c= H C J + ( H ) . 

PR. 18 Given HCZX, X causal space and 

1. I+(H)CT H 

2. I ~ ( - H ) = - H 

3. I + (H) fl H) = (p 
1. and 2. are equivalent and imply 3. 

3. imply 1. if the space is 'partially full' i.e. given x x 

and y £ X 3 x « y 3 z X 3 x « z « y 

PROOF l.=^2. 

J ( - H) = {x: x « y , y e — H} and note that x H and y - H 

imply x « y; since if x « y was true=^y I (x) i.e. y ^ H 

by 1., contradicting y £ - H. Hence xi H and I (-H) H = 0 i.e. 

I~ ( - H) CH — H„ 

2. ^ 1 . 

I+(H) = {x: y « x, y£ H} and again x H, y g H imply y <j< x; 

since if y « x was true=^-y £ I (x) i.e. y £ I (— H) i.e. y H 

by 2., contradicting y 6 H. So I+(H) H ( - H ) = (p and I+(H)C=:H. 

l.(2.)r=^3. in an obvious way. 

3.^=^-1.(2.) whenever X is 'partially full'. 

By 3. ^ x £ I+(H) fl I~(- H) i.e. x 3 h « x « h ' h £ H , 

h' £ - H . 

Moreover I + (H)fl ( - H) = <j> (I~(-H)fl H = j) ) since if 

x £ I +(H)H ( — H) 3 h £ H 3 h « x and by partial fullness 

3 y ^ h « y « x i.e. y I + (H) and y £ I (-H) contradicting our 

hypothesis 
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(if x £ l"(- H) H H 3 hf 6 ~ H and y 3 x « y « h» i.e. 
+ -

y£ I (H) since x g H and yet y £ I ( - H), the same contra-

diction too.) 
Sets H, satisfying the condition I (H)c: H are called future sets; e.g. 
+ + 
I (N), J (N) are future sets for every NCI X. 

THR. 5 Given X a full causal space and AC. X , then all sets H satis-
+ + 

fying I (A)cr H C J (A) have the same closure and the same 
+ bdv* 

interior with respect to *-topology. Moreover E ( A ) d H J 

(E+(A) = J+(A) - I+(A)) 

PROOF By THR. 4: HC=J +(A)CC I+(A) C l* ===7 H C l* cr I+(A) C l* 
+ + cl* cl* cl* + cl* » I I (A)CC H I (A) C U E hence H = I (A) , the same V H. 
+ + int* •+ + ini** I (A) = J (A) , H C T J (A) and I ( H ) C H (I (H) being 

open in *-topology) I+(H) = H i n t*. 
+ , + + + cl* + cl* int* bdv* E (A) =(J (A) - I (A))cr(I (A) - I (A))=(H - H ) = H y 

A 'boundary' can be defined for such a set (I+(H)cz:H) without resort 

to any topology by: B+(H) = { x g X : I + ( x ) C H and I~(x)cr-H}. 

THR. 6 Given I+(H)c= H H b d y CC B+(H) and H b d y* = B+(H) whenever X 

is full. 

PROOF Suppose X is full and x £ B+(H). Any hbd.N of x is a set of 

the form < p, q > where p « x « q. Choose p', q* such that 

p « p' < < x << q' < < q. Then p'e. l"(x)C=l X — H so < p, q > 

intersects X — H. Also q' I + ( x ) C H y s o < p, q > intersects H. 

Hence N intersects both H and X-H i.e. z £ H bdy*. 

Let x g H b d y* (I); suppose I~(x)<^ X-H, then 3 h € l"(x) fl H i.e. 

x I+(h)CZI H .So I+(h) is a nbd. of x which fails to intersect X — H 

contradicting (X) . 

Suppose I~ (x)^H; then 3 z <£ I + ( z ) — H. Since z ^ HC> t+(H) , I~(z ) f) H = 

= ̂  . Hence I ( z ) is a nbd. of x which fails to intersect H, contradict-

ing (I). Thus X £ B+(H). 



19. 

To state and prove the next theorem, the notion inherent 

to the construction of a causal space from a partial antireflexive 

ordering (chronology) is necessary. 

Given X and a partial antireflexive ordering ' « ' on x » define 
B + + -

DFN. 16 x < y iff I (x)ZD I (y) and I (x) d I (y) 
• B+ + +

 B B 

DFN. 17 x < y iff I ( x ) I (y) Note that: <<=•< 
B B / 

DFN. 18 x ->• y iff x < y and x <k y 
B B+ 

PR. 19 (X, <, « ) is a causal space iff ' « ' is weakly distinguish-

ing (to ensure the validity of axiom 3, DFN. 8; 1.3). 
Correspondingly: 

B+ B+ 

(X, <, « ) is a causal space iff ' « ' is future reflecting 

and weakly distinguishing. 

DFN. 19 (X, <, « ) is called B-space (future-reflecting B-space) 
B B B+ B+ 

iff r<'(and ) coincide with <, (<, 
B B 

PR. 20 If < C Z < (i.e. if x < y = ^ x < y) then (x, <, -»-, « ) is a 
B-space (and hence ' « ' is weakly distinguishing). 

Correspondingly: 
B+ B + 

PR. 21 If < c z < (i.e. if x < y x < y) then (X, <, « ) is a 

future reflecting B-space (and hence ' « ' is future-reflecting 

and future distinguishing). 
B 

PROOF of PR. 20 if < e {caus/chr « } then < cz < (i.e. if x < y ^ 
B - + w 

x < y) since x < y x £ I (y) and y e I (x); V z £ I (x) 

and z1 I+(y) z « x « y and x « y « z* i.e. z « y 
• — — + + 

and x « z i.e. I (x)C I (y) and I (y)CH I (x). Furthermore 
B —i 

given x < y JZ1 < e{caus/chr. « } ^ x < y (u < v iff u = v 

or u « v or u - x and v = y), so < = u {cau/chr « } C = 
U{hor/chr « } ) 

+ 

DFN. 20 Denote by J the smallest topology with respect to which 

J (x) V x £ X are closed. 
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THR. 7 Let X be a full causal space. Then the following state-

ments are equivalent 

1. X is a future-reflecting B-space (i.e. ' « ' is future 
B+ 

reflecting, future distinguishing and < = <). 
+ + cl* 2. J (x) = I (x) \/ x 6 x 
+ + cl* yj + 3. J (A) = I (A) V Aci X ,A compact with respect to J topology 
+ bdy* + + 

4. J (A) = E (A) V A C X , A compact with respect to J topology 

PROOF 2.=?1. 

By virtue of PR. 21, Chapter 1,sec.3,it is enough to show that 
B+ B+ B+ + + « Z < i.e. if x < y = ^ x < y. But x < y I (x) HD I (y) by 
DFN. 17, 1.3. Since I +(x) C l* = {y6x : I+(x) ZD I+(y)} by THR. 3 

+ cl* + r i 
and I (x) = J (x) = iy^X : x < y} by our hypothesis, 
+ + 

I (x) I (y) implies x < y. 

3. = ^ 2 . obviously 

3. = ^ 4 . 

Assume J+(A) = I+(A) * Apply THR. 5 with J+(A) = Hi 
+ + cl* + + + bdv* + cl* I (A)CZ I (A) = J (A)CH J (A) and J (A) 7 =CJ (A)CX -
_+ int* ,,T+/A*cl* cl* T+/AN - r +/AN i n t* - J (A) ; =((I (A) ) - I (A)),using I (A) = J (A) 

+ cl* + by THR. 4, 1.3, and I (A) = J (A) by our hypothesis. 
cl cl cl + bdv* + + (Note that <AC )CA = A ). Hence J (A) y = J (A) - I (A) = 

= E+(A). 

4.=^3. 
+ bdv* + + + Suppose I (A) y = E (A) = J (A) - I (A) and apply THR. 5 

+ + 4- + int* + with I (A) = H: I (A) CZ I (A) = J (A) J (A) where 

I+(A) = J +(A) i n t* by THR. 4. Also I +(A) b d y* =(I+(A)Cl* -
+ int* + cl* + + I (A) ) = I (A) - I (A) since I (A) is open with respect 

+ bdv* + + to the *—topol. Compare with I (A) J = J (A) - I (A) 
+• + cl* (our hypothesis) to get J (A) = I (A) 

Finally one can prove that l.=^3. (E.H. KRONHEIMER, R. PENROSE, 1, p. 

494) (and it is at this part of the proof that compactness is 

employed and all these establish the equivalence. 



21. 

The next theorem states a condition of comparability of J + (DFN. 20, 

1.3) and J* (DFN. 13) topologies. 
+ * 

THR. 8 Let X be a full causal space. J CZ. J iff X is a past 

reflecting B-space. 
* PROOF Assume X to be full and J CZ. J . Then J (x) is closed in the 

- cl* - cl+ -
•-topology; this is so since J (x) CZ J (x) and J (x) 

+ 

closed in the J topology by definition. But this is the 

statement 2. of the dual or the THR. 7, 1.3, and so X is 

past-reflecting B-space. 

Conversely if x is past-reflecting B-space, by the dual of 
the THR. 7 (2), 1.3, J~(x) = T ( x ) d * i.e. J~(x) is *-closed.' 

+ 
Since J is the smallest topology with respect to which J (x) 

+ * 
are closed ̂  J CZ J . 

Consider a set X with a horismotic relation '-*' on it. 
u 

Construct a partial reflexive ordering defined by < (to recall 
u -n DFN. 9, 1.3, x < y iff x ^ i = l,2,...,n & x = x + x ...-*xn = y) 

u 
Suppose that a finite subset F of X is linearly ordered by <, and 

u 
arrange the points of F in their ordering by < (It follows that any 

u 

subset of F is linearly ordered by < too). One is interested to know 

which are the minimal chains with respect to in F. 

Any two elements of F form a (trivial) chain whenever x y. If any 

three successive elements of F form a chain then F is called a girder. 

This is equivalent to Penrose's definition: 

DFN. 21 F is a girder means F is a finite sequence (g^/i = 1,2,...,N) u 

of elements of x linearly ordered by < (any causality relation 

in general), N > 3, and g. g. whenever j-i = 2. 

By PR. 14, 1.3, g. g. whenever j-i = 1 and the following diagram is 

representative of the situation: 
• • • i\_z * * • " ' 

• * S a + i 
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One can go a step further and consider the case where any 

four successive elements are linearly ordered by i.e. 
g 
'i-2 i-1 
Pictorially: 

->• e with e g , e ->• 2 and e i i+1 *i-2 i i-1 i+1 si-2 -v g i+1 

One can even go to larger subsets of F linearly ordered by , until 

one ends up -vwith all the N elements of F linearly ordered by the 

horismos. 

Another way to represent the situation above is through polygons and 

their diagonals: 

A three element unit 

X 
# 

• » # » 

6 

V 

* 5 

A four element unit 
% 

A set of five points linearly 
ordered by the horisoms A girder 

We will come back to subsets linearly ordered by the horismos when 

we talk about the links etc. 



23. 

PR. 22 If (g^,..., gN> is a girder and h lies strictly between 

and g (with respect to the causality ordering), then r+l 

(g1,..., gr,k, g r + 1» •••» SN> i s a girder. 

DFN. 22 H ( H e X f X endowed with a horismotic relation) is called 

a hypergirder iff H ^ p and V x,y<£ H 3 girder G 3 x,y e G 

and G C H . 

PR. 23 If F is any finite subset of the hypergirder H, there exists 

a girder G such that Fez G CHH. 

DFN. 23 A proper beam is a maximal hypergirder (i.e. a hypergirder 

which is not a proper subset of any hypergirder). 

PR. 24 Every hypergirder is contained in some proper beam (by 

Zom's Lemma). 

DFN. 24 Two points are called proximate iff they are successive points 

of some girder. 

THR. 9 Each pair of proximate points belong to precisely one proper 

beam iff the causal space is regular* 

PROOF E.H. KRONHEIMER, R. PENROSE, 1, pages 490-491. 

Note that the 'proximate' cannot be weakened to 'ordered by the 

horismos'. 

One can generalize the notion of the proper beam to the following: 

DFN. 25 A subset B of a causal space is called a beam iff either 

1. B is a proper beam (i.e. a maximal hypergirder) or 

2. B = { a , b : a , b ^ X , a ^ b, a b} and B is not contained 

is any girder. 

Then a theorem in analogy to THR. 9, 1.3, can be stated, dispensing 

with the regularity constrain. 

THR. 10 In any causal space each non-trivial set linearly ordered 

by the horismos is a subset of some beam. 

PROOF Let P f= <p linearly ordered by the horismos. Then K = U {Jp, q] : 

p,q ^ P} is partially ordered by '<' and choose a maximal chain 
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containing P (P is a chain with respect to '<' as well by 

axiom 8 of DFN. 8, 1.3). If H has more than two points, it 

is a hypergirder and by PR. 24, 1.3, is contained is some 

proper beam (and hence a beam). If H has just two points 

(i.e. P has just two points) and it is maximal, it means that 

these two points cannot be proximate and condition (2) of 

DFN. 25, 1.3, are met to give us a beam. 

Consider a subset F of x , where x is a causal space, and suppose F 

is linearly ordered by the horismos. Then F is linearly ordered by the 

causality too (axiom 8, DFN. 8, 1.3) i.e. F is a causal chain. It is 

somehow interesting to inquire the converse; i.e. when a causal chain is 

linearly ordered by the horismos? At first the most probable subset of 

X linearly ordered by the causality is of theform L = {p,q~]« Almost 

nothing can be said without imposing further conditions. For finite 

L the answer was given with the construction of girders. Now suppose 

all you only know is p q. One can prove: 

PR. 25 If X is a full and regular causal space then L - [p,<Q> P q> 

is linearly ordered by the horismos (hence it is a causal chain 

in a trivial sense). 

Fullness imply thatVx £ L i.e. P < x < q 3 z £ L s 1,4 1,4 
p < z < x . PR. 14, 1.3, implies p z, p - ^ x , z x , 

i.e. 

P > "z 

\ / 
* X i 

PROOF 

and by regularity x1 x (or x x ) 1 4 4 1 

To answer our question: 

PR. 26 If L = [p,q~] j P Q and it is a causal chain then L is linearly 

ordered by the horismos. 

PROOF \/ x. 6 L x < x (x < x ). Since p < x < q and 1,2 1 4 4 1 
P + q P + x l 2 q (by PR. 14, 1.3) and p < x l < x2> p + xg 

(p < x2 < x±, p -J- x j x i z 2 (x2 + xi). 
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Another possible answer is to postulate that in a set endowed with 

a reflexive, transitive and antisymmetric relation (i.e. a causality 

relation), the causal chains define horismodal connections, i.e. given 

X and a relation '<' on it satisfying axioms 1, 2 and 3 of DFN. 8, 1.3, 

define: 
C 

DFN. 27 x y iff x < y and '<' linearly orders, any proper subset 

[u,v] of [x,y]. 
c r DFN. 28 x « y iff x < y and x / y / 

DFN. 29 A causal space (X, <, « ) is called a C-space iff 
C C and « coincide with and « . 

C C 

Neither simple expressions for and « , nor criteria for X being a 

C-space, can be found as in PR. 16, 1.3, and PR. 21, 1.3, for the time 

being. We will be able to state some conclusions but let us develop 

an appropriate machinery. 

DFN. 30 The subset L = {p>q]cz. X, X a causal space is called a link 

iff L is a non-trivial chain and p q. 

By PR. 26 a link is linearly ordered by the horismos too; by THR. 10, 

1.3, it is therefore a subset of some beam. 

DFN. 31 Given Y d X , X a causal space; a linkage of y from p to q 

is a finite sequence x^/i = 1,2,..., n 9 x^ = p, x̂ . = q, 
, x, is a link and |x. , x. „ | d Y i = 1,2,..., n-1. u x i+l-> I i+1-i 

DFN. 32 Y is called linked iff V P , q <£ Y 3 p < q 3 a linkage of 

Y from p to q. 

A further refinement of THR. 10 can be achieved for the regular spaces 

since in this case a beam is a linked chain. This can be seen from the 

following considerations: In case of a proper beam B i.e. of a maximal 

hypergirder any two points belong to some girder by DFN. 22, 1,3, hence 

V a,b £ B = ^ a , b : are proximate. The space being regular by THR. 9, 

1.3, a,b belong to precisely one proper beam. Moreover [a*b] is a 

link because if x £ [?>b] i.e. if x strictly lies between a and b 

by PR. 22, x belongs to the same girder with a and b. Given two such 
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x' s i.e. ^ 2 £ La»k] sl-nce they belong to the same beam they are 

ordered by the causality i.e. x^ < x 2 or x < x , i.e. [a,b] is 

linearly ordered by the causality and by PR. 26, 1.3, DFN. 30, 1.3, 

£a,bj is a link hence B is a linked chain. In case of B = {a,b} 

a f b, a -»• b and B not belonging to any girder =^[a,b] — {a,b} = ^ 

and [a,b] is a trivial chain. Therefore: 

THR. 11 In a regular space any two points ordered by the horismos 

belong to some linked chain. 

Note that THR. 11, 1.3, may at first sight make superfluous the 

assumption of fullness in PR. 25, 1.3. This is not so, since 

L = (p ,q] need not be a subset of the beam which contains p and q 

and hence not a causal chain to apply PR. 26, 1.3. 

Finally come back to the construction of a C-space. 
C C 

PR. 27 = U{reg.hor/cau <}, « = D {reg.chr/caus <} 

PROOF E.H. KRONHEIMER, R. PENROSE, 1, page 489. 

Note that a C-space need not be regular; but a sufficient condition for 
C 

a regular causal space to be a C-space is that x y implies x y 
C 

(as x + y =£7 x -*• y by PR. 27). 

As a corollary of THR. 11, 1.3, we get a criterion for regular u-

spaces: 

PR. 28 If a regular space is a u-space then its underlying set is 

linked. The converse is true without the space being regular. 

PROOF Let x, yg X , X regular and u-space. Suppose x < y; then u n x < y and by DFN. 9, 1.3, d x . / i = l,2,...,n 9 x = x -»• x ... 1 1 2t 
x
n
 = y. Since X is regular [x , x i + 1 ] /i = l,2,...,n-l 

are links by THR. 11, 1.3, and therefore there is a linkage 

of X from x to y whenever x < y i.e. X is linked by DFN. 32, 

1.3. 
u u 

Conversely suppose X is linked. X is a u-space iff < ( « ) 

coincide with < («). Given that < =D{cau/hor ->} i.e. 
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u u 
x < y x < y it is enough to show that: x < y x < y 

Let x < y; X being linked implies the existence of a linkage 

{x } from x to y and hence x = x.. x 0 x = y X l a Q 
u 

i.e. x < y. 

E.H. KRONHEIMER and R. PENROSE devote a whole chapter to the 
+ + + 

null future (E (A) = J (A) - I (A)) and its intersection properties 

with causal chains. In view of the most common application of the 

abstract causal spaces theory, that on the causal structure of manifolds, 

where these results are more easily accessible through direct calcul-

ations, we stop at this point. 
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CHAPTER 2 

2.1 Introduction 

For about fifty years general relativity theory was rather 

a field for applied mathematicians than a description of nature. 

The situation has greatly changed with the identification of extremely 

distant extragalactic radio sources (quasars), with the discovery of 

a background radiation (in the microwave range), and with an improve-

ment of radar techniques for precision measurements within the solar 

system. An interpretation of such experiments demands more than an 

understanding of first, order post-Newtonian corrections to planetary 

kinematics. If the history of our universe is to be postdicted from 

experiments and predictions are to be made, we have to understand 

the large scale consequences of Einstein's theory.* 

A characteristic feature of general relativity considered as 

a field theory is that the solutions of the field equations provide 

the metric tensor of the spacetime itself. Consequently, on the one 

hand one cannot speak of a spacetime (in the presence of a gravitat-

ional field) without solving the field equations while on the other 

hand, almost every problem one faces in the solution of the field 

equations has a counterpart in the structure of spacetime itself. 

It seems natural to start with an abstract mathematical model 

for our spacetime and study the various underlying and/or primitive 

substructures, hoping to discover those features of spacetime geometry 

which are independent of the field equations. 

In the following, we concentrate on the possibilities of 

defining causal relations (in the sense of Chapter 1, Section 3, on 

our model and study their properties. 

* see: W. Kundt, Recent Progress in Cosmology, Springer Tracts in 
Modern Physics, Vol. 47, 1968 and 
C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W.H. 
Freeman and Co., 1973. 
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2.2 A Model for Spacetime 

DFN. 1 A spacetime is a real, four dimensional, connected, 
. QO 

Hausdorff and C -differentiable manifold with a globally 
. oO 

defined C -tensor field g of type (0,2) which is nondegener-

ate and Lorentzian. 

Nondegenerate means: V p 6 M and \/?c^Tp(M) g(x,y) = 0 y = 0. 

Lorentzian (or hyperbolic normal) means that V x e M 3 a basis 
in TL (M) , the tangent space to M at p, relative to which g 

* P 

has the matrix form: diag (1, -1, -1, -1). 

In an attempt to justify the above choice we remark the following. 

The connectedness condition is imposed because one would like 

to think that spacetime consists of one piece so that communication is 

possible. 

The -differentiable manifold structure is a rather natural 

choice on the assumption that the universe "looks the same" everywhere. 

This is because the group of automorphisms of a connected topological 

( C° ) manifold acts transitively i.e. \/ x, x* £ M there is a homeo-

morphism which carries any neighbourhood of x onto a neighbourhood of x'. 

The degree of differentiability (finite, infinite, real analytic) is a 

subtle point indeed; form a physical point of view (namely propagation 

of data for the Einstein's vacuum field equations) infinitely differen-

tiable initial data on some spacetime hypersurface imply infinitely 

differentiable solutions, while solutions whose initial data are k-times 

differentiable (k <co) do lose derivatives , but not significantly i . e. their 

integrated squared derivatives up to order k stay bounded for any k (k <oo) 

when bounded for the initial data*; finally from a purely mathematical point 

of view note that real analytic manifolds are not so easy to handle because real 

analytic functions are problematic (e.g. there are no real analytic partitions 

* Proceedings of the Thirteenth Biennial Seminar of the Canadian 
Mathematical Congress on: Differential Topology, differential 
geometry and applications, edited by J.B. Vanstone, Canad. Math. 
Congress, Montreal, 1972. 
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k k k of unity); anyway each C ^structure is C -equivalent (i.e. C -compatible)* 

to a C1w -structure** (or the weaker statement that each Ck-structure is C1*-

equivalent to a ^-structure). 

The ^-separability (Hausdorff property) is imposed mainly for 

mathematical convenience as can be seen from the following propositions. 

A topological manifold is already a T Q and T topological space. 

PR. 1 A connected and Hausdorff topological manifold is a T O 
(regular) topological space. 

PROOF \/ x 6 M choose a chart ( U,f ) at x (i.e. U open nbd. of x, 

f:U —•{R^is a homeo). Then ufl V , where V is an open nbd. 

of x, is an open nbd. of x too and • u f l v fR^s a homeo. 

onto an open subset of IRa. Choose £ > 0 such that the 

closed £ -ball B e (f(x)), B £ (f(x)) d f(U(1 V) (because of the 

regularity of fRn); C = f" 1(B £ (f(x)) is closed in M , C d V and 

C ' is a nbd. of x as B£(f(x)) contains an open nbd. of 

f (x). 

PR. 2 A connected, Haiusdorff differentiable manifold with a connection 

is second countable. 

PROOF See R. GEROCH, 1, Appendix. 

Consequently our spacetime is separable; the proof goes as follows: 

choose a point out of each member of the countable base thus obtaining 

a countable set A. The complement of the closure of A is an open set 

which, being disjoint from A contains no nonvoid member of the base and 

is hence void. 

The main property of second countable spaces is that they are Lindelof 

i.e. every open covering has a countable subcovering. By a theorem of 

K. Morita (J. DUGUNDJI, VIII, 6.5, page 174) in Lindelof spaces the 

k k * Two atlases A and B are C - compatible iff A (J B is a C -atlas. 
** H. Whitney - Differentiable manifolds. Ann. of Math. 37, pp.645-680, 

1956. 
J. Munkres - Elementary differentiable topology. Ann. of Math. 
Studies 54, § 4, Princenton. 
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concept of regularity and paracompactness are equivalent. In general, 
# 

paracompactness implies not only regularity but normality as well 

(J. DUGUNDJI, VIII, 2.2, page 163), Hence our spacetime is paracompact 

and normal in its manifold topology. 

Notwithstanding, mathematical convenience is not the sole reason for 

imposing the Hausdorff property. From an operational point of view, 

as it is impossible to reduce errors in a measuring process to zero, 

one must always say that a measuring process maps a physical condition 

onto a neighbourhood of the space of parameters used to characterize 

the measurements' values; so one must be able to state that the 

(respective) minimal nbd.s of two measured values do not overlap (i.e. 

they are disjoint, in order to be able to assert that the two measured 

values are distinct.. Given that minimal nbd.s must be considered open, 

the Hausdorff property must be assumed.* Finally P. Hajicek** has shown 

that reasonably defined non-Hausdorff spacetimes exhibit causal anomalies. 

PR. 3 Any connected, Hausdorff and paracompact differentiable 

manifold M admits a global Riemannian metric tensor field. 

PROOF The manifold being paracompact ensures the existence of a 

partition of unity on M i.e. of a pair((V),(F))where (V) is a 

locally finite covering of M and (F) = {fy:V6(V)} is a collection 

of real valued, C°°, functions on M such that each f y > 0 

\/ V € (V), the support of f y (= closure of the set {xeM: t (x) ̂  o}) 

is contained in V and 21 f = 1 (which makes sense since VS(V) v 

for eachx£M fy(x) = 0 for all but finitely many V e (V) . 

Then consider each Vg(V)as a coordinate neighbourhood and 

define a Riemannian C 0 0 structure R y by = 

where x. are the coordinate functions on V . Then define l 
R on M by R(x,y) = ^ ( V )

f y RyCx.y)***-

* For a detailed study see: Michael Cole - Int. J.Theor.Phys. 1, 
No. 1, pp.115-151, 1968. 

** Comm. Math.Phys. 2 1 , 75, 1971. 
*** Note that the converse is also true i.e. every Riemannian manifold 

is paracompact and although paracompactness ensures the existence of 
a partition of unity the inverse is not true. 
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DFN. 2 Any tangent vector X g T ^ M ) is said to be timelike (TL), 
a b spacelike (SL) or null (N) according as g (X,X) (=g X X ) X X j ED 

is positive, negative or zero. 

The null-cone at x (xeM), i.e. the set of null vectors in T ( M ), 

disconnects the TL vectors into separated components. 

DFN. 3 A spacetime M is said to be time orientable iff it is possible 

to make a consistent (continuous) choice of one component of the 

set of TL vectors Vx£M . To label the TL vectors so chosen 

future pointing (future directed) (FD) and the remaining ones 

post-pointing (past directed) (PD) is to make the spacetime 

time-oriented. 

The Lorentzian (i.e. locally Minkowskian) character is mathematically 

equivalent to the existence of a nowhere vanishing vector field which 

is continuous (R. GEROCH, 2, page 79). Once such a vector field 

has been constructed we can assert that either the manifold is 

noncompact or that it cannot be simply connected. The proof goes as 

follows: if the spacetime is simply connected, then the generalized 

STOKES' theorem assures us that there exists on M a single valued scalar 

function of which X iS the gradient field. But if M is compact this 

function must assume both its maximum and minimum values on M and at 

these extreme points the gradient must vanish. This contradicts the 

hypothesis that X is nowhere zero. 

There is another reason to exclude a compact spacetime and this is the 

fact that in a compact model there exist closed TL curves (R.W. BASS, 

L. WITTEN). (This is a causal anomaly and a proof based on purely 

causal considerations will be given at a later stage.) 

PR. 4 Any non compact spacetime (DFN. 1, 2.2) is time orientable 

(DFN. 3, 2.2). 

PROOF By PR. 3, 2.2, our spacetime carries a global Riemannian metric 

tensor field R. Being .Lorentzian too, it admits a non-vanishing 
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continuous vector field V if M is non-compact and has 

dimension greater than or equal to two.(L. MARKUS and 

N. STEENROD, § 39.6, § 39.7, § 40.10). The tensor field L 

defined by: /(X,Y) = R(X,7) - R(X,V ).R(Y,V ) / 2R(V,V ) 

is Lorentzian and V is nowhere vanishing and TL with respect to 

it. Consequently (M admits a nowhere vanishing, continuous 

and TL vector field and by DFN. 3, 2,2, is time-oriented. 

DFN. 4 A path in M is a C° map ot: I M ( I cz (R is an interval) and 

its image a(l) specifies a curve.* Any inverse image dO:a(I)-*-(R 

is called a parameterization of the curve. 

Piecewise smoothness (C°°-differentiability) and continuity are defined 

as usual. Future (past)-directed (FD(PD)), timelike (TL), causal (C) 

and null (N)) piecewise smooth paths are characterized by their tangent 
a b vectors; at a join if t , t are the tangent vectors one further X a 

a b assumes for a C-path that g t . t_ > 0 . Similar definitions for ab 1 4 

curves can be assigned through their defining paths. 

DFN. 5 An end-point p of a path cc (or its associated curve) is 

defined by: /i = 1,2,...} (a sequence) in I such that 
lim lim x^ a(b), where a = inf I (b = sup 1)=^ a(x^) p. 

For FDTL (FDC) paths past and future end-points are defined by a and b 

respectively. (Dually for PDTL (PDC) paths). TL (C) curves need not 

contain their end-points (and hence be closed) unless I is closed. When-

ever a future (past) end-point does not exist the path (curve) is called 

future (past) endless. 

DFN. 6 a TL(C) trip is a FD piecewise TL(C) geodesic. A trip from x e M 

to y eM is a trip with past end-point x and future end-point y. 

DFN. 7 V x € M , the light cone at x, denoted by lx> is the set: 

{•ye M :ylies on a null geodesic through x}. 

* More rigorously a curve should be the equivalence class of 
paths equivalent under parameter change (i.e. homeo. or diffeo. 
of the path domain). 
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THR. 1 Suppose that a FDTL or FDC trip exists from x to y 

(x,y£M, M a spacetime). Then a smooth FDTL path exists 

from x toy,unless the FDC trip is a single null geodesic. 

Provided a FDTL or FDC smooth path exists from x to y , then 

a FDTL trip exists from x to y unless the FDC smooth path 

is a null geodesic. 

PROOF Let a trip exist from x to y with a joint at A. We will show 

that the joint can be smoothed (the piecewise geodesic be 

replaced by a smooth curve). There is a simple region N 

containing A and no other joints, since the set of joints 

accumulate nowhere i.e. form a discrete set. Let 1 and 1 x a 
be TL(C) geodesies meeting at A and let L , L be the 1 a 
tangents to 1 and 1_ respectively at A. 1 « 
I. Suppose that both the tangents to 1 and 1 are not 1 a 
null.Choose the one, L^ say, to be the time axis in a new 

2 2 2 2 coordinate system (t,x,y,z). The locus t = + y + z ), 

zj- > 1 is a cone whose generators are TL lines. Let L lay on 

t 2 =A'(x2 + y 2 + z2). Choose so that ^ > > 1; then 
2 2 2 2 the cone t = + y + ® ) contains both L^ and in its 

interior. Construct a copy of this cone at every point in 

exp 1(N); since the image of the light cone at A under exp 1 
A A 

contains the ^*-cone and since the light cones in N 
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are a smoothly varying family of hypersurfaces, there exists 

an open nbd. U of A, UCN such that the image of the light cones 
- 1 a - 1 under V P & U contains the ^*-cone at ©xpA . (p). Choose 

W , W0 on L., L respectively in exp 1(U). Since the lines 1 A A 
L^, Lg lay within the ^*-cones at W^ and W^ respectively the 

joint can be replaced by smooth curve W whose tangent vector at 

each point lies in the cone at that point and which joins 

smoothly L and L 2 at and Wg. By construction expA(W) is 

TL smooth. 

II. In case that 1 and 1 possess null tangents at A (of 1 a 

different direction to ensure the existence of the joint) the 

above construction of cones cannot be carried out and to prove 

the result (mainly the case for a FDC-trip) we resort to the 

following: Consider a. and b on 1 and 1 respectively, in N. -L a 
Consider also the function <|>(x) =f(a, x),the world function 

of a and x^ as x varies from a to A on and from A to b on 

1 . I will show that § (a,x) > o when x is past A (on 1 ), 

which means that the geodesies ax ? x e 1, (and consequently 

the geodesic ab) are TL. First of all as x proceeds in future 

causal direction the geodesies ax are FD. More than this 

$ ( a , x ) > 0 and the r a t e of change of § ( a , x ) as measured along 
a FDC vector field T. is given by: TJ V . $ = g1J T. V . $> i J i j x 

which is non-negative. But since x is past the point A and 

since ^ (a,x) is continuous $(a,x) has to be strictly positive; 

t h i s i s because g 1 J T. V. T = 0 means that T. and V . $ must be l j A l l 

null and proportional, which at least is violated at A where 

can be identified as the tangent to at A and T^ as the 

tangent to at A (in the direction in which x proceeds), a 

contradiction as at A there is a joint. Surely the above is 

equally well true with one of the tangents at A being TL„ So a 
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FDC trip exists from x to y with at least one TL part (from 

a to b or from W to W ). 4 l 
III. The FDC-trip ( from b to y, being compact, can be 

covered by a finite number of simple regions N.,, N_...,N . 1 2 n 
Let x^ be the future end-point of ^ f) N^ from b. Choose 

yi 6 Nl ° n ^ w i t h yi ^ b* 
' Then apply II above; y 1

x
1 is 

FDTL. Now either x.̂  = y or 

X1 ^ N2 i n c a s e l e t x2 
be the future end-point of 

jflH from x^; choose y e. N^ 

on y x with y ^ x-. Then 1 1 4 1 
either x^ = y or we can repeat 

the construction.. The process 

must eventually terminate, 

since there is a finite number of connected components yfl N^. 

So a FDTL trip exists from b to y. The same procedure applied 

backwards from a to x gives us eventually a FDTL trip from x 

to y. Then part I provides us with a FDTL smooth curve from 

x to y. 

So in case a joint exists applying I. or II. a TL part always 

can be inserted in our FDC trip and applying III a FDTL trip 

joins x to y. Then I. gives the FDTL smooth curve. Given that 

no joints exist our FDC trip is already a geodesically FDC 

smooth curve which is either TL or N and this proves the first 

part of the theorem. 

To prove the second part of the theorem suppose that that a 

FDTL smooth path (1$) exists from x to y. The corresponding 

curve being compact can be covered by a finite number of simple 

regions N , N2, •••>N
n» L e t xi b e t h e future end-point of N 

from x. The geodesic from x to x^ is FDTL as © XP X \ (with 
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yelf between x and x^) never leaves the future component 

of the TL vectors at T x(M ), and repeating the argument we 

end up with a FDTL trip from x to y. 

Given a FDC smooth path and repeating the above construction 

we get a FDC trip. Applying the first part of the theorem, 

unless the given path is a single null geodesic, we get a 

FDTL smooth curve and again applying the above we get a FDTL 

trip. 

2.3 The Causal Structure 

Causal relations can be defined on our spacetime using either 

trips or smooth curves in an equivalent fashion by virtue of THR. 1, 

2 .2 . 

DFN. 8 Let x,y^ M ,M a spacetime. 

x < y iff a FDC trip exists from x to y. 

x << y iff a FDTL trip exists from x to y. 

x -»• y iff x < y and x <j< y. 

PR. 5 if x ->• y then a FD single null geodesic exists from x to y. 

PROOF Let x -»• y i.e. 3 a FDC trip and ^ a FDTL trip from x to y; 

by THR. 1, 2.2, either a FDTL smooth path exists from x to 

y or a single null geodesic. By THR. 1, 2.2, the FDTL smooth 

curve gives a FDTL trip which has been excluded by our hypothesis ; 

hence a FD single null geodesic joins x to y. 

Note that the converse of PR. 5 is not true in general. 

DFN. 9 Let x, ye M , M a spacetime. 

x < y iff a FDC smooth path exists from x to y. 
C 

x « y iff a FDTL smooth path exists from x to y. 
C 

x y iff a FD null geodesic joins x to y and 
C 

path from x to y. 

a FDTL smooth 

PR. 6 The relations <, « , coincide with the relations <, « , 
C C C 

PROOF (Straightforward using THR. 1, 2.2). 
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Although curves and trips are equivalent in this sense, they motivate 

two technically different approaches in any subsequent development. 

There are two major publications respectively by S.W. Hawking and 

G.R.R. Ellis (S.S. HAWKING, 1, G.R.R. ELLIS) and R. Penrose (R. PENROSE, 

2), which combine the results of a number of previous publications started 

around the mid-sixties. Both include a treatment of systems of curves 

(trips), of the Jacobi fields and conjugate points, and of the exist-

ence of geodesies as maximal curves. An account of all these, for 

geodesies only, can be found in N.M.J. Woodhouse's thesis 

(N.M.J. WOODHOUSE, 1). 

To be consistent, we adopt DFN. 8, 2.2, in terms of trips, throughout 

the rest, unless otherwise stated. 

A spacetime M endowed with the relations defined above (DFN. 8, 2.2 

and DFN. 9, 2.2) is a causal space in the sense of E.H. Kronheimer and 

R. Penrose (DFN. 8, 1.3) provided that no closed (self-intersecting FDC 

paths (trips) exist). 

The fact that no closed FD (or PD) TL (resp. C) trips are allowed can 

be stated as the chronology (resp. causality) conditions; these are 

the first two conditions in a causality condition hierarchy. 

DFN. 10 We say that our spacetime is a causal (chronological) (or 

it satisfies causality (chronology)) iff it does not contain 

closed FDC (FDTL) and PDC (PDTL) trips. 

PR. 7 Causality implies chronology. 

Note that violation of causality does not necessarily imply violation 

of chronology i.e. there may be closed null geodesies (e.g. identify 

two null hypersurfaces t-x = t^/i = 1,2 in Minkowski spacetime). 

PR. 8 A spacetime M considered as a causal space is a regular 

causal space. 

PROOF According to the definition of regularity (DFN. 15, 1.3) it 

is enough to prove that given x , y such that x -»• y 
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and y 1 y 2 then x̂ ^ -»• Xg. Let x̂ ^ « xg (or x g « x1> then 

x 1 « y 1 (or y 1 « x.̂ ) a contradiction to x 1 + y ^ By DFN. 9, 2.3, 

and PR. 6 x -*• y y (x y •»• y ) mean that FD null geodesies 1 1 2 2 1 2 

join x 1 to y 1 and y^ to y 2 (xg to y 1 and y to y2>. These 

geodesic paths form a single geodesic because otherwise by 

THR. 1, 2.2, and DFN. 8, 2.2, x][ « yg (xg « y2> a contradict-

ion to x^ y2« The portion of these geodesies between y^ and 

y 0 coincide and these two geodesies (x y y and x y y ) must be 2 1 1 2 2 1 2 
two portions of the same geodesic i.e. x -»• x 0 or x x . 1 2 2 1 

PR. 9 I+(A) (I~ (A)) is open in the manifold topology ^AciM. 

PROOF see R. PENROSE, 2, Proposition 2.8. 

PR. 10 The chronology relation ( « ) defined in a spacetime (DFN. 8, 

2.3) is full (THR. 1, 1.3). 

PROOF By PR. 9,2. 3,I±(x) \ / x £ M are open, hence 3 y 3 y £ I+(x) 1,2 1 

i.e. x « y 1 and yg e I~(x) i.e. yg « x. Also if j 1 2 £ i" (x) 

x £ I+(y1 2 ) but I + (yx) n I + (y2) is open and x e i+(y1) H i+(y2). 

Choose y £ T ( x ) H I +(y 1) 0 I+(y2> to get y ± 2 « y « x. 

Recalling the distinguishing properties of the chronology relation (1.3) 

we define: 

DFN. 11 A spacetime M is future (past) distinguishing at x £ M iff 

I + ( x ) ^ I + ( y ) (I~(x) f f (y))Vy 6 M 3 x jl y . 

DFN. 12 A spacetime is future (past) distinguishing iff M is future 

(past) distinguishing at every point. 

DFN. 13 A spacetime M is weakly distinguishing iff \/x,y £ M, x j= y 

either I+(x) j* I+(y) or l"(x) ^ l"(y) (i.e. I±(x) = I±(y) 

x = y). 

PR. 11 A future and past distinguishing spacetime is future or past 

distinguishing; and a future or past distinguishing spacetime 

is weakly distinguishing. 

PR. 12 A weakly distinguishing spacetime (DFN. 13, 2.3) is causal 

(DFN. 10, 2.3). 
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PROOF Because of proposition 3.8 in R. PENROSE, 2, (i.e. x < y 
+ + 

I (y)d I (x)) no spacetime containing closed causal trips 

can be either future or past distinguishing. 

Although the causality and chronology restrictions (DFN. 10, 2.3) 

do not allow for closed trips one would like to rule out the possibility 

for trips leaving the vicinity of a point and then returning close to it, 

even though an actual closed trip need not be the result. This is 

partially achieved with the future (past) distinguishing properties t 

if one realises the fact that DFN. 11, 2.3, is equivalent to: 

DFN. 14 A spacetime M is future (past) distinguishing at x g II iff 

every nbd of x contains a nbd. of x which no FD (PD) causal 

trip from x intersects more than once. 

There is in fact an infinite hierarchy of such higher degree causality 

conditions as has been pointed out by B. CARTER. First we extend our 

definition of causal relations. 

DFN. 15 Let A, B and C be subsets of M where M is a spacetime. Then 

it will be said that B lies in the causal future of A with 

respect to C (and write A < B iff from every point of B C 

there is a PDC trip contained entirely in C which intersects 

some point of A (qualified causality relation (B. CARTER, 

page 353)). 

Dual definitions and symbols as well as chronology relations (qual-

ified) are given in B. CARTER but we will not use them here. 

DFN. 16 Let A, B be subsets of M. The causal future of A with respect 

to B is given by: J_+(A) =. {x e M: A < x} 
B B 

Whenever no reference set is mentioned it is understood that it is the 
whole spacetime M. 

Qualified causal relations for points, whenever the reference set 

is open and hence a spacetime manifold in its own right (or, if C 

is not connected, a disjoint union of spacetime manifolds), possess 
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the same properties as unqualified ones. In particular, the sets 

I +(x) f l IA~(y) = (z <= M: x « z « y} are open if A is open. We 
A A A A 
recall the notation: I (x) fl I ~(y) = < x,y > (DFN. 12, 1.3); A A A 
< x,y > stands for < x,y > . M 
Since it is not always true that J (A) is a closed set one can, 

performing closure operations of causal futures (and pasts), end up 

with non trivial extensions. 

DFN. 17 Let A c M. The first degree future of A is defined as 

J+(A) = {x e M: J+(A) fl J~(x) U J+(A) fl j"(x) f 0} 
DFN.18 We say B belongs to the first degree future of A iff 

1 1 
B C J + ( A ) (A < B) 

Nth degree causality relations can be defined by induction. 

DFN.19 Let A and B be subsets of M and let A contain at least two 

points. A is called virtuous with respect to B iff 

V x, y e A with x f y at most one of the relations: x < y 
B 

and y < x is satisfied. 
B 

A is called globally virtuous iff B = M. 
th 

A is called virtuous to the n degree (n > 0) iff no pair 
r s 

x, y £ A satisfies x < y and y < x with r+s < n. 

DFN.20 A spacetime M is called n degree causal iff M is globally 
th 

virtuous to the n degree. 

Zero degree virtue is equivalent to the causality condition. 

PR. 13 A future and past distinguishing spacetime M is 1st degree 

causal and vice versa. 

PR. 14 Second degree virtue is equivalent to the fact that V x € M and 
every nbd. N of x there exist a nbd. of x contained in N x x 

which no causal trip intersects more than once. 

DFN.21 A spacetime which is 2nd degree causal is called strongly causal. 

One can obviously restrict the definition of strong causality just to a 

point. 
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So far every reference to topological properties was made 

with respect to the manifold topology; but causal spaces can be 

topologized intrinsically (i.e. using only the causal relations) as 

follows. We define J to be the smallest topology on M in which 

I+(x) are open V x £ M. J* is called the Alexandrov topology. 
+ m 

Incidentally I (x) are open in the manifold topology J (PR. 9, 2.3) 

and hence J * C J M . 
* 

One is interested in a base for J and under which circumstances 
* M 

J agrees with J . By THR. 1, 1.3 and PR. 10, 2.3, the set (A) = 

{l+(x) fl I (y), x, y £ M} is a base for J*. It turns out that the 

two topologies 

agree iff the spacetime is strongly causal; but first 

we have to introduce some new technicalities. 

DFN.22 An open subset A of M is called causally convex iff A 

intersects no TL trip in a disconnected set or equivalently 

V x , y £ A and x « z « y z A i.e. V x, y £ A=^< x,y >cz A. 

e.g. the sets < x,y > are causally convex; also a spacetime would be A 
called strongly causal at x e M iff x has arbitrarily small causally 

convex nbd.s. This is because: 

PR. 15 Given x, y £ N (a simple region), no C trip lying in M can 
intersect < x, y >„ in a disconnected set. N 

PROOF R. PENROSE, 2, Proposition 4.8. 

Consequently < x,y > M are causally convex in N. 

PR. 16 

PROOF 

DFN. 23 

PR. 17 

PROOF 

Given A an open subset of a simple region N and x £ A then 

there exist x„ _ £ A 3 x < x„, x„ >„ CZ A 1,2 1 2 N 

R. PENROSE, 2, Proposition 4.9. 

A local causality nbd. is a causally convex open set whose 

closure is contained in a simple region. 

A spacetime is strongly causal at x iff x is contained in 

some local causality nbd. 

R. PENROSE, 2, Proposition 4.12. 
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PR. 18 The following restrictions on a spacetime M are equivalent; 

(a) M is strongly causal 

. . . i - tM (b) J* agrees with J . 
* M 

PROOF (a) =7>-(b) : Since J cz J it is enough to show that every 

nbd. N of x £ M in the manifold topology contains an X 

Alexandrov nbd; choose a simple region N B X £ NcrN^; by 

strong causality a causally convex, open, set 0 containing 

x exists in N and is a local causality nbd as required by 

DFN. 23, 2.3. By PR. 16, 2.3, 3 x 6 0 9 x e < x1, x > <=0. 1,2 1 2 N But if < x , x > 7* < x x 0 > (an Alexandrov nbd.) then 1 2 fli 1 2 
there exists a trip from x to x which leaves and re-enters 1 2 
N. Thus it would have to leave and re-enter 0 also, violating 

its causal convexity. Thus x < x„ , x_ >, < x^ , > cr: 0 d N d N , 
1 2 * 1 2 x 

(b) =^»(a): V x e M and every nbd N^ of x in JM, there is an 

Alexandrov nbd contained in N ; it is a causally convex set x 
and (a) follows from DFN. 21, PR. 14, and PR. 15, 2.3. 

Note that since J^ is assumed Hansdorff the Alexandrov topology 

is Hansdorff for strongly causal spaces. The converse is true 

but a proof requires a study of the strong causality failure 

regions. 

Futures, Pasts, Cauchy developments, horizons 

Since a spacetime M is a full causal space (PR. 10, 2.3) 

theorems 3, 4 , 5 and 6, and PR. 17, 18 of Chapter 1 are true. These 

results cover part of the properties of futures and pasts. 

PR. 19 Let Q(P) be subsets of a spacetime M. Then the following 

relations (and their duals) are equivalent: 

1. I+(Q) cz Q 1'. T ( P ) c = P 

2. I~(-Q)crr -Q 2*. I+(-P)CS -P 

3. I +
( Q )fl l"(-Q) = 0 3'. l"(P)H I+(-P) = 9 

4. int Q = I+(Q) 4'. int P = l"(P) 

and int -Q = I~(-Q) and int -P = I+(-P) 
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5. = <-I+(Q) fl ( - f <-Q) 5'. = (-I~(P)) fl (-I+(-P)> 

6. I+(Q)<= Q<= J+(Q) 6'. I~(P) c P c J~(P) 

PROOF By PR. 18, 1.3, . By PR. 17, 1.3, 1<=>6 . 
* * M w Introducing the J topology (since J en J =^VAc=M 

int* Ac= int A, Ac: A*, ^ A c ^ A ) by THR. 5 and THR. 6, 1.3, 

int* Q = I+(Q) and B*Q = B+(Q) = {xgM: I+(X)crQ and l"(x)cz -Q} 

VQ<=M 9 I + ( Q ) C Q. But B+(Q) = {xeM: I+(x) d Q> fl{x £ M: I~(x)d-Q} 

= {xeM: y e I + ( X ) = ^ y e Q } P 1 { X 6 . M : y £ I ~ ( X ) ^ y e - Q } = ( - { x ^ M : Y E L + ( X ) ^ 

y^Q})fl (-{xfeM: y e l " ( x ) ^ y j [ -Q}) = (-{x^M: x 6 l"(y) and y^ Q})fl 

f|(-{x£M: x I+(y) and ye Q>) = (-I~(-Q) D (-I+(Q)); consequently 

1 (or 2 or 3 or 6) imply 4 and 5 in the Alexandrov topology. 
+ * 

4. =^1. (rather trivially) since I (Q) = int Q d int Q c Q 

5.=^4. ^ Q = (-int Q)fl(-int (-Q)) = -(I +(Q)U i" (-Q) i.e.VxeM: 

x e ^ Q I+(Q) and x ^ f ( - Q ) (I) or equivalently [ V x & M: 

x ^ Q i.e. x e int Q or x e int -Q x ^ I+(Q) or x e l"(-Q)] (P) • (P) 

implies I + ( Q ) = int Q (and I ~ ( - Q ) = int ( - Q ) iff int Q H I " ( - Q ) = 0 • 

(and int -Qfll+(Q) = 0). Indeed, let x£int Q 0 <-Q>; 3 a trip ft" 

from q e -Q to xeint Q (x « q) which has to cross the Q; let z e 

^Pltf ; then z£l~(-Q) contradicting (P). ( 4 < ^ 5 trivially). 

Obviously the equivalence of 4. and 5. is true independently of the 

topology used; all one needs is that 1 (or 2 or 3 or 6) imply 4 

(or 5) in the manifold topology. 

DFN.24 A subset A of a spacetime M is called a future (past) set 

iff A = I + (B) (l"(B)) for some B c M . 

PR. 20 A c M is a future (past) set iff A = I+(A) (A = l"(A)). 

PR. 21 Let A d M and A = I+(A). Then: 

1. A = {xeM: I +(x)d A} 

2. A = -I~(-A) 

3. A = -A D (-I~ (-A) = {x £ M: I + ( x ) c A and xj[ A} 
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PROOF: 1. (R. PENROSE, 2. Proposition 3.3) 

2. By 1 of PR. 21 and PR. 19, 2.3. 
+ 

PR. 22 A C M , I (A)crA and A open in M. Then A is a future set. 

PROOF: By PR. 19, 2.3. 

PR. 23 The union of any number of future (past) sets is a future 

(past) set; the intersection of finite number of future 

(past) sets is a future (past) set. 

PROOF: (R. PENROSE, 2, Proposition 3.7). 

DFN.25 A subset A of a spacetime M is called achronal (or semi-

spacelike) iffVx, y e A=^-x <j< y. 

Note that a subset A can be locally spacelike without being achronal. 

No achronal set need exist if M violates chronology. 

In the introduction to Chapter I the concept of the domain of 

dependence was mentioned; its physical significance lies mainly in the 

fact that it is precisely that part of the future (past) which is 

determined by initial data on some hypersurface, preferably an achronal 

one, provided that local physical laws (the possibility of superluminal 

field equations has been ignored) are deterministic (the spacetime being 

locally Lorentzian, the bicharacteristics of the partial differential 

equations involved should be null geodesies). 

DFN.26 Let A be an achronal subset of a spacetime M. The future, 

past and total domain of dependence of A (or future, past 

and total Cauchy developments of A) are defined by: 

D+(A) = {x£M: every PDTL and past endless trip containing x 

intersects A} 

D (A) = {xe M: every FDTL and future endless trip containing 

x intersects A} 

D(A) = D+(A) U D~(A) 

The use of curves instead of trips makes no difference as long as A is 

closed or achronal. Also S.W. Hawking in his early papers and in his 
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book with G.F.R. Ellis (S.W. HAWKING, 1) uses C rather than TL curves 

and there would be some physical justification for this; such a domain 

of dependence: D (A) = {x£M: every PDC and past endless curve containing 

x intersects A} is related to D+(A) by: 

PR. 24 D+(A) = D+(A) 

PROOF: (S.W. HAWKING, 1 and G.F.R. ELLIS, Proposition 6.5.1) 

For a fairly extensive account of the properties of the domain of 

dependence see: S.W. HAWKING 1, and G.F.R. ELLIS, R. PENROSE, 2, 

R. GEROCH, 3. 
± ± The boundaries of any I or D are called horizons. Four types 

± 
of horizons (H±, H ) are possible. 

e.g. in two-dimensional Minkowski spacetime: 

In particular if "ft is a TL curve considered as a point set in our 

spacetime M we define the I (ft) (= H (Jf)) as an event horizon and 
+ + 

the 3 I (ft) (= H (fl)) as a particle horizon; physically, the event 

horizon of separates those events which are observable by an 

observer whose world line is ft from those events unobservable by him, 

and similarly the particle horizon of tf separates those events from 

which a particle with world line ft" can be observed from those events 

from which the particle cannot be so observed. 
± ± x + H (A) = D (A) - IT(D"(A)) and are called future (past) Cauchy Horizons. 
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The following two concepts are useful in the study of horizons. 

DFN.27 A subset B of a spacetime is called an achronal boundary 

(or semispacelike boundary) iff B is the boundary of a 

future set. 

Note that the definition is time symmetric since B = £l+(A) = 

"b (-I+(A)) (R. PENROSE, 2, Proposition 3.14); an achronal boundary 

is an achronal and closed set which is a C° 3-dimensional submanifold 

of M (i.e. a continuous imbedded hypersurface) (R. PENROSE, 2, Lemma 

3.17 or S.W. HAWKING, 1, and G.F.R. ELLIS, Proposition 6.5.1). 

DFN.28 Let A be an achronal and closed subset of a spacetime M 

edge A = {x € M: V nbd. N o f x 3 x a x £ I (x) and x 1 l x 
+ x 6 IM (x) and a TL trip from x to x 0 in N not intersecting 2 N X 1 2 X 

A}. If edge A = 0 we call A edgeless (e.g. any achronal 

boundary in M is edgeless). 

Note that A - A en edge A c z A and consequently if A is edgeless A must 

be closed; edge A is the set of limits points of A not in A together 

with the set of points in whose vicinity A fails to be a topological 

submanifold. 

PR. 25 Let B = c)I+(A), A c M V x e B - A 3 a null geodesis in B with 

future end-point x and which is either past endless or has a 

past end-point on A. In case that x is the end-point of two 

geodesies either the one is contained in the other or every 

extension of either geodesic into the future must leave B and 

enter I+(A). 

PROOF See R. PENROSE, 2. Propositions 3.20 and 3.22. 

PR. 26 Let A be achronal. Every xfeH+(A) - edge A is the future end-
+ 

point of a null geodesic on H (A) which is either past endless 

or has past end-point on edge A. 

PROOF (R. PENROSE, 2, Theorem 5.12; S.W.HAWKING, 1, and G .F.R.ELLIS,Pro.6.5. 3) 

So horizons are (pieces of) null hypersurfaces except where they meet A; 

analogous statements hold for past horizons. Horizons can contain closed 

Qull lines. 
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2.4 Stable causality 

Recalling the causality conditions hierarchy (DFN. 20, PR. 13 

and PR. 14, 2.3), it seems that apart from actually closed TL or C 

trips (curves) (chronology or causality conditions respectively) we 

have excluded 'almost closed' TL curves (strong causality) and further-

more the case of TL curves which pass arbitrarily close to other TL 

curves, which then come arbitrarily close to the first curves (higher 

than second order causality condition). However one may ask for an 

ultimate causality condition which is stronger than all this hierarchy 

and which corresponds to spacetimes not being on the verge of violating 

causality. 

Besides, for operational reasons, any physically significant property 

or condition ought to have some form of stability, that is to say, it 

should also be a property of 'nearby' spacetimes. In order to give 

precise meaning to 'nearby' one has to define a topology on the set of 

all spacetimes. In particular one has to topologize the set o f 

symmetric, second rank, covariant tensors on M; the set of Lorentz 

metrics is a subset of T° (M) and so will inherit each topology from 

T° (M) (a Lorentzian metric tensor field is a cross section (M) S2 S2 

assigning an element g of T° (M) at each point P ^ M such that TT.g = 

identity, where tt is the projection: T° (M)-^-M). 

There is a number of different topologies that can be placed 

on T° (M); the topologies differ in how many derivatives of a metric Sa 

have to be near to those of another metric for the two metrics to be 

considered 'near' to each other and in what region they are required to 

do so. A sophisticated approach makes use of the bundle of jets over the 

fiariiio:1* M;* for an elementary treatment see S.W. HAWKING, 2, and 

R. GEROCH, 4. 

* R. Palais: Foundations of Global Non-Linear Analysis -
Benjamin - 1968. 
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By PR. 3, 2.2, a spacetime M admits a global Riemannian 

metric tensor field i.e. a (positive definite) metric h with ab 
respect to which covariant derivatives ( V a ) o f tensor fields on M 

can be defined; with these data we define a distance function on T° (M) S2 
by: 

= T #0 2"n i'riglng.|n 

where C any closed subset of M, p any nonegative integer and 

l « ' l n - { ^ a i - - - V a n < s r s " < W > ] C v b i . . . v b n C g a r - g a r - ) ] h a i \ . h " } 4 

Each arbitrary choice of h a b and C defines via the distance function 

a topology on (M) (a family of neighbourhoods of g £ T°_(M) ba aD ba 
consists of all {g' (M) B P (g . , g1 ) < E } V s > 0). However ab S2 j ab ab 

we are interested in topologies which are independent of such arbitrary 

choices; all we have then to do is to specify in some invariant way an 

appropriate collection of pairs ( h
a b, C) and consider the aggregate of 

all finite intersections and arbitrary union of open sets (defined via 

the distance functions from each pair (h . , C) of our collection) as a ab 
o topology on T (M). S2 

Rigorously this can be done as follows: Let<^ be the Cartesian 

product of the set of all positive definite metric tensor fields on M 

with the set of all nonempty closed subsets of M. Each subset of ^P 

defines a topology on T° (M). As the group of diffcomorphisms on M S2 

acts as a transformation group on T° (M) (and also o n ^ ) an invariant 

topology is one for which these transformations are homeomorphisms (or 

an invariant topology is defined by a subset of invariant under the 

action of the transformation group). 
p o The C -compact open topology for T (M) is defined by the collection ba 

of all pairs (hab> C) with C compact; so metrics are required to be 

near only on compact regions of the spacetime M. The Cp-open topology 

for T° (M) is defined by the collection of all pairs (h . , C) with C always S2 aD 
taken to be the whole spacetime M; so nearby metrics must be nearby everywhere and must 
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have the same limiting behaviour at infinity. Finally, if F(g u C) ab 
is the set of all metrics satisfying 0 (g g' ) < £ and coincide J ab ab 
with g a b outside the compact set C, define a nbd. of g & b to be the 

union of all F (g b > C) with C c M and C compact. The resulting 

topology is called the fine topology on T° (M). S2 
The fine topology is finer than the open topology which in turn is 

finer than the compact-open topology. As an example we give explicitly 
o 

the C open sets; these are defined to be the sets L(tf), where u is an 
o 

open set in T (M) and L(U) consists of all Lorentz metrics g such o2 

that g(M)cn U. 

DFN.29 A spacetime M satisfies the stable causality conditions 

(equivalently M is called stable) iff the Lorentz metric o 
tensor has an open nbd. in the C open topology such that 

M satisfies chronology for any metric belonging to the nbd. 

What this condition means intuitively is that one can expand the null 

cones slightly at every point without introducing closed TL curves. 

In general: 

DFN.30 A property P of a metric tensor g is stable in a given o 
topology on T (M) iff there is an open nbd of g, every 

, metric tensor of which has the property P. 

The following concept would also be in some use in the study of space-

times (i.e. of the set T°2(M)). 

DFN.31 A theorem holds generically or a property is generic in 
a subset of T° (M) iff it holds almost everywhere in that S2 

subset (i.e. it holds on an open dense outset of the subset). 

Note that, given two topologies J 1 d J 0 > for a property P to be stable in J. £d 

J^ is a stronger requirement than for P to be stable in J^. This, 

together with the fact that in the compact-open topologies any nbd. 

of any metric tensor g contains metric tensors in which there are 

closed TL curves (because outside the compact set C the metric tensors 
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can differ by an arbitrary amount), justify the choice of the open 

topology in the DFN. 29, 2.4, of the stable causality condition. To 

use the fine topology results in a definitely weaker condition. 

An important consequence of stable causality condition is stated in 

the following proposition. 

PR. 27 A spacetime M satisfies the stable causality condition iff 

there is a real valued function on M whose gradient is 

everywhere timelike. 

PROOF G.F.R. ELLIS,and S.W. HAWKING, 1, Proposition 6.4.9 and 

S.W. HAWKING, 3. 

The function mentioned in PR. 27, 2.4, can be thought of as a 'cosmic 

time' in the sense that it increases along every FDTLorFDN curve. 

Surfaces of constant cosmic time are slices in M i.e. closed, spacelike, 

3-dimensional submanifolds without boundary (properly imbedded in M); 

such slices may be thought of as surfaces of simultaneity in spacetime 

although they are not unique. If they are all compact they are all 

diffeomorphic to each other, but this is not necessarily true if some 

of them are non compact. PR. 27, 2.4, can be rephrased as: a spacetime 
o 

admits a cosmic time function iff it is stably causal in the C -open 

topology. 

Next to stable causality in the causality condition hierarchy 

is the concept of a causally continuous spacetime (S.W. HAWKING, 4, 

and R.K. SACHS, 1). But let us first introduce some new concepts: 

DFN.32 Given A an open subset of a spacetime M, the chronological 

past of A is defined by: 4-A = l"(xfcM: x « a \/agA). 

Clearly {x£M: x « a V a ^ A } is a past set and by PR. 19, 2.3, 

4-A = int{xeM: x « a V a e A}. Properties of common futures (pasts) 

are reviewed in R.K. SACHS, 2. We recall: 
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PR. 28 Given A and B subsets of a spacetime M, 

1. A c B ^ - f B C tA 

2. A C 

3. ACT ^ B iff B CZ 4-A 

4. V x e M i"(x>c: 4-i+(x) 

PROOF of 1, 2, 3 (R.K. SACHS, 2. Lemma 1.4) of 4 (S.W. HAWKING, 4 

and R.K. SACHS, 1, Proposition 1.1). 

DFN.33 A function F from a spacetime M into the power set of M 

which maps the whole of M into open subsets of M is called 

inner (outer ) cont inuous i f f V x ^ M and V compact s e t C(K) 
C D F ( x ) (K C (M - F ( X ) ) , 3 a open nbd. N of x A x 
C C F ( y ) V y e Nx (K c: (M - F(y)) V y € Nx ) . 

As an example note that: 

PR. 29 V xgM, I~(x) are inner cont inuous . 
PROOF see S.W. HAWKING, 4, and R.K. SACHS, 1, Proposition 1.7. 

One can define an ordering on the set of the Lorentz metric tensors: 

g < gf iff V non-zero vector X, g(X,X) < 0 implies g'(X,X) < 0 ; 

then the Seifert past is defined by: J (x) = f l j (x; g') 
S g'>g 

Another useful concept is the future (past) volume of a point 

x in a spacetime M; it is always possible to find an additive measure ^ 

on M which assigns positive volume V(U) to each open set u and assigns 

finite volume to M (R. GEROCH, 3, footnote 24). The future (past) ± (d U. volume of a point x g M is given by V (x) = J ' . That V be 
I~(x) 

increasing along TL curves is necessary and sufficient for the absence 
+ 

of closed TL curves; however V (x) will not in general be continuous. 

PR. 30 Given a spacetime M, the following are equivalent: 

1. M is a reflecting causal space (page 14, 1.3) 

2. V X £ M a n d V y^M x£J + ( y ) i f f y£J~ ( x ) 
3. V x e M 4-I+(x) = I~(x) and <f- I~(x) = I+(x) 

If in addition the spacetime is future and past distinguishing 

the equivalence is extended to 



4. \/ x <= M I"(x) are outer continuous. 

5. V~(X) are continuous (and hence, by definition, are 

C° 'global time1 functions) 

6. V x £ M sJ ±(x) = ? ( x ) 

S.W. HAWKING, 4, and R.K. SACHS, 1, Proposition 3 and 

Theorem 2.1. 

A future and past distinguishing spacetime M is called causally 

continuous iff it obeys any one of the equivalent condition of 

PR. 30, 2.4. 

A causally continuous spacetime is stably causal. 

S.W. HAWKING, 4, and R.K. SACHS, 1, Proposition 2.3 and 

H.J. SEIFERT. 

An open subset A of M is called causally simple iff V compact 

set C C A , J+(C) fl A and j"(C) 0 A are closed in A. 

Consequently a spacetime is causally simple i f f V x £ M,J~(x) are closed. 

Furthermore: 

PR. 32 A causally simple spacetime (DFN. 35, 2.4) is causally 

continuous (DFN. 34, 2.4). 

PROOF: By PR. 30, 2.4. 

The most severe restriction one can put on a spacetime (i.e. 

a manifold without boundary) is that of global hyperbolicity. 

DFN. 36 A subset A of a spacetime M is said to be globally hyperbolic 

iff 1st, it is strongly causal, 2nd V x , y £ A J+(x)f] J~(y)CZ A, 

and 3rd J+(x) fl J (y) is compact. 

PR. 33 An open, globally hyperbolic set is causally simple. 

PROOF S.W. HAWKING, 1 and R.K. SACHS, 1, Proposition 6.6.1. 

PR. 34 Given A a closed and achronal subset of a spacetime then 

int D(A), if nonempty, is globally hyperbolic. 

PROOF: S.W. HAWKING, 1, and G.F.R. ELLIS, Proposition 6.6.3. 

PROOF: 

DFN.34 

PR. 31 

PROOF: 

DFN.35 
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Global hyperbolicity is related to the existence of Cauchy surfaces. 

DFN.37 A partial Cauchy surface is a spacelike hypersurface which 

no causal curve intersects more than once. 

DFN.38 A partial Cauchy surface S is said to be a (global) Cauchy 

surface iff D(S) = M. 

PR. 35 If S CZ M is an achronal set which intersects every endless 

null geodesic in M in a nonempty compact set, then S is 

a Cauchy surface for M. 

PROOF: R. PENROSE, 2, Proposition 5.14. 

By PR. 34, DFN. 38, 2.4, and R. GEROCH, 3: 

PR. 36 A spacetime is globally hyperbolic iff a Cauchy hypersurface 

exists for M. 

PR. 37 If a Cauchy surface S exists for M, then M is homeomorphic 

to [Rx S. Further if f : (Rx S - ^ M is the homeo, we can 

arrange it so that f(t,S) is a Cauchy surface VtefR and 

f([RjS ) is a TL curveVs £ S. 

A number of minor technicalities such as limit curves, imprisonment 

and trapped surfaces have not been tackled in the above presentation. 

Our main aim was to expose the causality conditions hierarchy. 

Another major subject, that of extension of spacetimes, (spacetimes 

with boundary) is somehow related to further causality restrictions 

(weakly asymptotically simple and empty spacetimes, future asymptotically 

predictable from a partial Cauchy surface spacetimes et.al.) has not 

been mentioned at all; the main difficulty is how the causality relation 

can be extended to the boundary points. Physically the boundary of a 

spacetime is related to the nature of singular points (singularities) 

and asymptotic properties (infinity). 
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2.5 An algebraic view 

A causal spacetime (DFN. 10, 2.3), being partially ordered by 

chronology and causality, qualifies for some applications of well 

known results of lattice theory. 

Let M be a causal spacetime. We denote by J its manifold topology; 

J ?== B(M) , B(M) is the power set of M. By (P) S J and (F)<= J, 

the collections of past and future sets (DFN. 24, 2.3) 
A V 

By L (L) the sets {L e B(M) : L = A, A £ j} *({L <= B(M) : L = * A, 
V 

AeJ}); L S ( P ) (L^(F))by DFN. 32, 2.4, and PR. 9, 2.3. 

A pair (P, F) £ (P) x (F) is called a hull pair iff P and F = -f- P. 

PR. 38 In a causal spacetime the following are true: 
A V 

1. L = 4,(F) (dually L = t(P)) 
* V 

2. ) is the identity map on L (L) 
i a 

PROOF: Since ( F ) C j ^ r « I - | ( F ) 9 i.e. ^ ( F ) C ^ J = L. 

Conversely let L = 4- U, U £ J ; by the dual of PR. 28, 2.4, 

U S t - 4 - U = t L and L = 4- U ^ 4 ,tL; but L S4"fL ; there-

fore L = 4 . f L (this proves (2)). t L £(F)hence L^4-(F) 
A 

Thus L = ^ (F). 

PR. 39 The mappings 4', "t" : J — ^ J are antitone (J is partially 

ordered by the set inclusion relation) 

PROOF: PR. 28 and its dual, 2.4. 
A 

THEOREM: L is a complete lattice partially ordered by set inclusion, 

under the meet operation defined by: H (N) = interior O N , (N)< 
N£(N) 

and the join by: 

Li(N) = 4- • t U N 

N £ (N). 

PROOF: J is a complete lattice partially ordered by set inclusion, 

with 'interior f~] ' as meet and ' |J' as join. By PR. 39. 2.5 

and PR. 28, 2.4, ) is a Galois connection from J to 

itself; hence 4- ( f . 4 ) is a closure operation on J. By 

PR. 38, 2.4, L is the set of closed elements. 

* See Appendix II. 
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/s V 

The partial order on L (L) induced from its lattice structure 
A 

i.e. L x < L2> L 1 j 2 £ L iff L x n L 2 = h± ( i n t (1^ f| L £) = 

Ll — V ° r L 1 U L 2 = L2 ( L1 U l
2
} = L2 ^ L l — L2 a g a i n ) 

being a set inclusion relation and hence reflexive, qualifies for a 

causality rather than a chronology relation. Consequently the question /s V 
remains how one could define a consistent chronology on L (L) and how 

/N v 

these definitions should extend to L U L and further to more general 

sets (e.g. future and past sets: ( P ) U (F)). T h© motive behind such 

an attempt is closely related to the various procedures involved in the 

completion of a spacetime (i.e. attachment of a boundary representing 

•singular' points and points at 'infinity') and cannot be fully 

appreciated unless one examines thoroughly this problem. 

A general scheme has been proposed by R. K. Sachs and R. Budic 

(R.K. SACHS, 2, and R. BUDIC) given on (P) U (F) by the following 

table. 

causality chronology Woodhouse's chronology 

(P) X (F) P1 - P2 * P2 f 9 P 1 ^ P 2 f 9 

(F) X (F) F ^ F 2
 F I ^ F

2
 f 9 ^ n ^ f 9 

(P) X (F) 3 L,L F G L , L ^ P t P f W F f 9 *4-PfUtF f 0 

(F) x (P) 3 F ? L , L E P F fl P ? 0 t F f U P ? P 

In a specific treatment of chronological sequences (N.M.J. WOODHOUSE, 2) 

a definition of the chronology relation is provided which is a special 

case of the one cited above as can be seen from the last column of the 

above table and the fact that P ̂  P and t F 2 F . (The results of 

N.M.J. Woodhouse have been translated into our notation). 
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PART 2 - SINGULARITY THEORY AND GENERAL RELATIVISTIC SPACE-TIMES 

CHAPTER 3 

3.1 The Characteristics of a characteristic equation 

The characteristic of the wave equation, that is the first-

-order partial differential equation 
\2 

• U i r - i K M S f J W K T ] - (3.1) 

where c is a constant, (t,x,y,z) £ S and f a continuously diff-
4 

erentiable real valued function on M , is linked with Realitivity Theory 

in more than one significant ways. 
Let us introduce a new notation : (Xq, X^, X^, X^) for the 

4 coordinates in E with x = ct, x. = x, x_ = y, x 0 = 2, and a quadratic O 1 2 3 
form denoted by ds and given by 

2 r 2 ds = ) e (dx ) 
L n a a a=0 

Relation (3.1) then looks like 

(Vf)2 = 

( 6o = 1 6 1 = e2 = e3 = 

v df 

^ ealix a=0 v or 
= 0 

(3.2) 

(3.3) 

Upon a coordinate transformation 

x' = X (xQ) a a 8 (a,3 = 0, 1, 2, 3) 

with a non-vanishing Jacobian, i.e. there exist functions Xf(x') such that ot p 

X = X*(x') 
a a 3 

(3.2) and (3.3), transforms into 
2 3 

(a,3 = 0, 1, 2, 3) 

and 

ds = I g g dx' dx' 
a,3=0 a 3 a 3 

(Vf')2 = y 
a,3=0 3 x; 3x3 

(3.3) 

(3.5) 

** 3 X ' with f ( X a ) = f(x ), g = I e _ T 
p y=0 Y 3x' dx a 

a3 , » g e 
3X 3X-a 3 

y 3x dx Y Y 
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satisfying 

3 
I ga3 g - 6a -

8=0 

1 a = y T (3.6) 
0 a f y 

The Principle of Special Relativity asserts that phenomena occuring 

in a closed system are independent of any non-accelerated motion of the 

system as a whole. In the domain of pre-relativistic mechanics the 

principle has long been known-; it is the Galilean relativity principle. 

Einstein's achievement was to extend it to all phenomena (though in the 

first place to electromagnetism) and to derive from it certain consequen-

ces regarding the interrelation of space and time. The key concept in trying 

to make the content of this postulate precise is that of an inertial frame; 

in pre-relativistic physics the notion of an inertial frame was related 

to the laws of mechanics and an inertial frame was defined as one with 

respect to which a body moves uniformly and in a straight line, provided 

no forces act on it (Newton's first law of motion); to relate this notion 

of an inertial frame to electromagnetism one has to consider Maxwell's 

equations for which has always been assumed, even before Relativity, that 

at least one reference frame exists that is inertial with respect to 

mechanics and in which at the same time they (.Maxwell's equations) are 

valid. One can show that an electromagnetic wave front, a characteristic 

surface for the Maxwell Equations, is given by an equaiton 

f(x ) = 0 (a = 0,1,2,3) (3.7) a 
where f is a solution of equation (3.3) (V. FOCK, §3). Relation (3.7) 

is clearly the equation of a certain hypersurface in the four-dimensional 

space-time continuoum; define a displacement (dx , dx , dx ) given by „ 1 2 3 
d x i = Y l s V f l • dm n t b f

x . = S T = ^ 2> 3>- 3 V f • ( 3 V i T • 3 l > 1 1 X i 1 2 3 

and n the conormal vector on the hypersurface defined by (3.7). 

Relation (3.7) implies Is^fldn + f dx = 0 and (3.7) may represent a 1 1 x o o 
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surface (in three dimensional space) in motion, if the desplacement velocity 
2 2 defined by v = c 

i.e. 

dn 
dx o ' 

2 2 is equal (or less) the velocity of light (c ) 

(Vf)2 _< 0 (3.8) 

A frame that is inertial both in the mechanical and in the electromagnetic 

senses could therefore be characterized by the following two properties : 

1st A body moves uniformaly and in a straight line, provided no forces 

act on it. 

2nd. The equation of propagation of an electromagnetic wave front has 

the form (.3.3) 

It is a consequence of the second condition that the velocity of light 

is independent of the velocity of its source; but the condition is 

capable of a more general interpretation, such as : 

"There exists a maximum speed for the propagation of any kind of 

action; this is numerically equal to the speed of light in 

free space". 

This is consistent with the Principle o± Relativity, for if there was 

no single limiting velocity but instead different agents (light and 

gravitation, propagated in vacuo with different speeds) then the Principle 

of Relativity would necessarily be violated as regards at least one 

of the agents. 

The existence of a general upper limit for all kinds of action, endows 

the speed of light with a universal significance and equation (3.3) 

acquires a general character; it becomes more general than Maxwell's 

equations from which it is derived. As a consequenc of the principle 

of the existence of a universal limiting velocity one can assert that 

the differential equations describing any field that is capable of trans-

mitting signals must be of such a kind that the equation of their charact-

eristics is the same as the equation for the characteristic of light 

waves (i.e. equation (3.3)). 
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Equation (3.5) is a partial differential equation of the following general 
form: H(x , f ) = 0 (i = 1 n) (3.9) l xi 

2n where H(x^,y^) is a function on E , at least twice continuously differen-
2 tiable, and such that in the neighborhood of the point at which H ^ 0 
7i 

it is also true that H(x ,y ) = 0; f(x^ is an at least twice contin-

uously differentiable function on and a solution of equation (3.9). 

By partial differentiation of the relation (3.9) with respect to x we 

obtain the identities 

H + H f = 0 (i = 1,...,n) (3.10) 
Xi yj Xj Xi 

8f / where y. = f (and f = /3x,). i x̂ ^ x i / i 

We consider in the space of the x^ an arbitrary differentiable curve 

x. = x. (W) . l l 
By substitution of these values of x. into y. = f (x.) and differenti-1 1 x. i I 
ation with respect to W (denoted by a dot) we obtain the relations: 

y. = f x. i = 1,...,n) (3.11) l x.x. j 
i J 

Adding equations (3.11) to equations (3.10) we obtain the identities : 

y. + H = f (x. - H ) (i = 1,...,n) (3.12) i x. x. x. j y. 1 1 J J 
Let us now specialize our curve x^(W) by requiring 

x = H (x., f ) (3.13) 
i y. j x. i j 

and from (3.12) 

y. = -H (x.,f ) (3.14) 
Xi J Xj 

If we consider that in (3.13) and (3.14) we must take 

f = f (x.(W)) = y .(W) (y. = f (x.(W)) = y.(W)) then it can be x. x. 1 j 1 x. J 1 J J i 

seen that the 2n functions x^(W) and yi(W) are solution of a system of 

ordinary differential equations, first used in mechanics, the so called 

canonical differential equations : 
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<i = 1,...,n) (3.15) 

(i = l,...n) (3.16) 

In order to determine the family of curves which is defined by equations 

(3.15), we must have an at least twice continuously differentiable 

solution f(.x ) of the partial differential equation (3.9) where existence 

is in no way ensured. On the other hand by the existence theorems of the 

theory of ordinary differentiable equations the system (3.15), (3.16) 
o can determine each curve of the family if at point x^ of this curve we 

0 o merely know the values y (=f (x )). To state this fact in geometric 1 x± j 
language consider in an (n+l)-dimensional space (x^,z) a surface element which. 

o 
passes through the point (x^,0) and whose normal has the components 

o 

(yi?1); if there exists at least one twice continuously differentiable 

solution f(x^) of the partial differential equation (3.9) which con-

sidered as a hypersurface z = f(x^) contains this surface element, 

then firstly the entire curve x^ = x^(N) which we calculated as a solution 

of (3.15) with the given initial conditions must lie on the surface 

z = f(x^) and secondly , the direction components of the normals to 

the surface are determined along this curve by the functions y^(W) which 

likewise are uniquely determined by the prescribed initial values and 

(3.16). One can show that one can pass infinitely many distinct surfaces 

z = f(x^) through a given surface element such that f is a solution of 

the partial differential equation (3.9); all these surfaces must 

therefore touch along the curve just calculated which is called a 

characteristic of the differential equation (3.9). From the single 

characteristics which one obtains as solutions of the ordinary differ-

ential equations (3.15) and (3.16) one can construct families of curves 

which constitute the totality of the characteristics lying on a solution 

of the partial differential equation; the value of the method, developed 

by A.L. Cauchy as early as 1819, 
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is that it reduces partial differential equation of the form (3.9) 

to the integration of ordinary differential equations; (C. CARATHEODORY 

§40, §41, §42) i.e. one can construct from the characteristics all, 

at least twice continuously differentiable solutions of the equation 

(3.9). Specifically, for partial differential equation of the form 

(3.9), it is possible to establish necessary and sufficient conditions 

in order that the family of functions 

x = £ (W,ua) i = l,...,n 
(3.17) 

yi = n i ( W , u a ) a = 1> m m m , n" 1 

represent all characteristics of a solution of this differential 

equation which pass through a certain region of the space of the x^; 

more precisely. 

PR. 1 If the functions (3.17) denote continuously differentiable 

solutions of the canonical differential equations (3.15), 

(3.16), then these represent the characteristics of a solu-

tion f(x^) of the partial differential equation 

H(x,,f ) = constant for suitable value of these last i x ± 

constants if and only if the functional derivative 

3(5 ,..,£) 
r 7* 0 and all relations Cu ,W3 = 0, Cu ,u_] = 0 3(W,u , . . . ,u ) a a 3 1 n-1 

are fulfilled (where the symbol L J denotes the Lagrange 
3 5± as. an. 

brackets defined by Cu = 
a ^ 3u 3u 3u 3u a B 8 a 

3 ni 8 ni and [u , W] = TTT- TTT- T — ) a 3u 3W 3W 3u a a 

PROOF (C. CARATHEODORY, §46, Theorem 2) 

In the four dimensional case (n=4) and for the equation (3.5) 
3 1 p a8 (H(x ,y ) = 2 ) g (x )y y n) the canonical differential a a 7, rT a a 8 a, 8=0 

equations (3.13) and (3.14) look like : 
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dx 3 g 
-^T = I g yft <a»3 = 0,1,2,3) (3.18) 
d W 3=0 3 

dy 3 8y 
W - s I a f - V Y C A , 3 ' Y = ° ' 1 ' 2 ' 3 > ( 3 - 1 9 ) 

8,Y=0 a 

In the special case of equation (3.3), equations(3.18) transform 

into: 

dx dx 
— - = y — - = -y (i = 1,2,3) (3.20) dW yo dW K ' ' ' v ; 

Upon integration with respect to W and with initial conditions 
o o 

(x^.y^Ma = 0,1,2,3) we obtain (substituting W with the time t.c. after 

the integration of the first of equations (3.20)) the equation of a straight 

line o yi x. = x. - c t i = 1,2,3 l l o ' 
yo 

As a consequence the second condition in the definition of an inertial 

system is equivalent to the fact that light travels in straight lines. 

At this point one can pose a purely mathematical problem, i.e. find a 

transformation between two inertial frames without any further physical 

assumptions, other than the definition of an inertial frame given in 

page 59. More precisely, find the coordinate transformation 

x' = X (x.) (a,8 = 0,1,2,3) (3.21) 

a a (3 
for which the following two conditions are fulfilled: 

1st To a uniform rectilinear motion in the coordinates (x ) there a 
corresponds a motion of the same nature in the coordinates (xM. 

2nd To a uniform rectilinear motion with light-velocity in the coordinates 

(x ) there corresponds a motion of the same nature in the coordinates (x'). 

a a 
or equivalently : To the wave front equation (3.3) in the coordinates 

(x ) there correspond just such an equation in the coordinates (x*) . a a 
The results, obtained by V. Fock (V. F0CK, Appendix A) and also in 

H. Weyl's Mathematische Analyse des Raumproblems (1923) can be summarized 
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as follows : 

1st The most general form of the transformation (3.21) which satisfies 

the 1st condition is a transformation involving linear fractions, all with 

the same denominator 

2nd The most general form of the transformation (3.21) which sat-

isfies the 2nd condition is a product of a linear transformation followed 

by a Mobius transformation, known as special conformal map (J. WESS, §1) 

and a change in scale. 

A special conformal map is generated in general by a triple product of an in-
r 2 - 1 version by reciprocal radii ( i.e. t x '(>e x ) ) , a translation a a ^ a a 

by <c ) and the same inversion, where defined, and it has the explicit form: 

V 2 x - c ) e. x . a a £ 8 8 
x V x x = (a,3= 0 0, 1, 2, 3) 
V 8 3 3 2 3 2 

1 - 2 I e c x + I e c I e x 

3=0 p p p 8=0 p p y=0 Y T 

The special conformal transforamtions form a non affine abelian subgroup 

of the full conformal group which lies in the identity consponent; a 

Mobius transformation reduces to identity either by also adopting the 

1st condition or by additionally demanding that it should always transform 

finite values of coordinates into finite ones. ct8 In General Relativity Theory the quantities gag(g ) in the expressions 
? 3X' 3X' (3.4) and (3.5) are not necessarily given by ^ e y y and 

y=0 Y 3x' 3x' a 8 
3 3X 3X 
r a 8 ) e -r—- respectively, but they are taken simply as functions ^ y 3x 3x y=0 y y 

of the coordinates x' ; however they are not arbitrary functions of x' a a 
as they are restricted to satisfy Einstein's equations, and also the 

inequalities g > 0, g., r•r < 0(i,k = 1, 2, 3, rt 6 I , in order oo lk 1 k x 

to ensure that x' is of the nature of time whereas x| (i = 1, 2, 3) o 1 
are of the nature of spatial coordinates. 

It is readily seen that equations (3.18) and (3.19) are equivalent to the 
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equations for the space-time geodesic curves (space-like, time-like and 

null with the appropriate choice of the constant in PR. 1, 3.1, as a negative, 

positive and zero number correspondingly), 
3 

By (3.6) 3x a 
{ O ^ J _ 
• a 3x a K V s 

Y = 0 ' 

3Y 
- I 

3 3g a 8y 3g 6y 

8=OyXa 
g + &ya Y x 

8=0 Y ' a 
= 0 

dx 
By (3.18) y = I g ^ 

' a=0 1 

(3.22) 

Relations (3.19) transform into 

dy 3 
I 

3g 8y 

dw « 3x a,8,y=0 a 
y8 gya dw 

dx 3 3g a a _ 1 r 6ya _8y 
~ t L 3x 

a,8,Y=0 d X a 
g y 

dx a 

8 dw 

(3.23) 
By using relations (3.22) and (3.18), relation (3.23) becomes 

d 
dw 

r dx, 
a
L
n
 ga8 " H 8=0 dw 

3 g dx dx va y a = h y L 3x dw dw a,y=0 a 
(a = 0, 1, 2, 3) 

(3.24) 

hence 
d2x. 3 

E ga8 2 ^ 3x dw dw B=0 dw 3 > y = 0 y 

3 3g dx dx. 
+ y — s i __i _ 4 y L rlw Hur ^ L 

3 
[ 

,y=0 

3 g0 dx dx, 8y y i 
3x dw dw a 

= 0 

dx. dx 8 y and symmetrizing the coefficient of -77— with respect to 8 and y : 

v3 d % 
£ ga8 ~ T + 
5=0 P dw 8,y=0 

I i 
3g a8 

dw dw 

3g_ 
3x 
t Y 

3x 
3g, \ 

6 3x 
dx„ dx y = 0 
dw dw 

(3.25) 

Introducing the Christoffel symbols : 

'a 8 
3x 

Y 

3g 9g o ay 1 8y + - f 
3x 

Y 
3x a 

{8Y,CT} 

and 

8Y I g {8Y ><*} 
a=0 

(3.25) is written as 
3 
I g. 

8=0 
a 8 

2 3 d xrt V ro \ dxQ dx 8 + I {8y ,a} 8 y 
dw 8,y=o 

dw dw = 0 
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or 

d^x^ dx dx 
— 7 T + r^ = 0 (3.26) . 2 a dw dw dw By 

A solution of equations (3.18) and (3.19) according to PR.l, 3.1, and 

relation (3.17) is given parametrically by : 

x = £ (w,u ) a = 0, 1, 2, 3 a a i 

y = n (w,u ) i = 1, 2, 3 a a i 

( £ , n ) ( a = 0 , 1, 2, 3) must therefore satisfy equations (3.15) and Ct Ci 
(3.16) i.e. 

a = H v (5„,na) (3.27) 3w y a 

(a, = 0, 1, 2, 3) 

*r ( W ( 3 - 2 8 ) 

Let H(£ ,n ) = (^(w,^); we now investigate the derivatives of 6: a a i 
3d> 3H 3H 9r,a 
3w = Jx 3w~ + 3y 3w~ = b y v i r t u e o f equations (3.27) and (3.28); 

a a 
hence the function H(x ,y ) is an integral of the differential equations a a 
(3.18) and (3.19) for the characteristics; 

but H(x (w)), y (w)) = i I g a 3(x (w))y (w)y (w) 
a a a , 8 = 0 a a p 

= % I g a 8 ( X a ( w ) ) V w ) V W ) b y ( 3 ' 2 2 ) 

a , 8 = 0 
determines the sign of the square of the infinitesimal space-time interval 
2 

ds (see relation (3.4)) along a solution curve of equations (3.26)(of 

equations (3.18) and (3.19)equivalently), which, since H is constant 

along each characteristic curve , detemines its null, spacelike or timelike 

character. 

36 _ „ H 3n 3n 3£ 3ri a a + H v a = - a a a a . , , „ 9 u - a * a ^ ^ — ^ — 7 by (3.27) and (3.28) 
I a 3u. u 3u. 3w 3u. 3w 3u l i l i = - L u ^ w ] = 0 (i = 1, 2, 3) 
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and therefore the function <f> (.u,) = H(£ ,n ) must be constant everywhere. i a a 
From the latter propositions, by choosing according to PR.1,3.1, this 

constant equal to 0, -1 and 1, we obtain for a characteristic a null, 

spacelike and timelike geodesic respectively. 

The above presentation of geodesic curves in General Relativity i.e. 

via the theory of characteristics, has the advantage over the Lagrangian 

formulation that it includes null geodesies as well, which cannot be acc-

ounted for by a vanishing Lagrangian. Most significantly so, since the 

null geodesies can be regarded as invariantly determined gravitational 

rays i.e. trajectories of propagation of the gravitational wavefront. 

Indeed, equation (3.5) is also the characteristic equation for 

Einstein's equations in empty space (B. FINZI). The(characteristic) 
a 

hypersurface f(x ) = 0 of the field equations can be shown to be the 

hypersurface of discontinuity of the field functions (and/or their deri-

vatives) , known as the wave-front surface and the discontinuity as the 

Hadamard discontinuity in the solution of the equations on the hyper-

surface. See V.D. Zakharov (V.D. ZAKHAROV chapter 2 §2) for a biblio-

graphical review. Furthermore the bicharacteristics of Einstein's 
equations are isotropic (null) geodesies. 

Lastly we would like to mention the relation between a general 

integral of a system of canonical differential equations and the so called 

canonical transformations. 

Let the relations 

x! = X (x ,y ) (i,j = 1,... ,n) (3.29) 

1 1 J J 

yl̂  = W V (3.30) 

hold between n pairs of variables (x.,y.) and a similar set of variables 3 3 (x^,yp such that the functions are at least continuously differentiable 

and the relations 

c V x k ] = 0 ' c V y k ] = V ' c Y y * ] = 0 

(.1, j,k = 1,. . . ,n.) (4.31) 
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ox± ax a x i 
hold Identically CCx, ,y, ] = r -r - -r— etc) j k 8yk 9yk 3x 

A transformation of variables i = 1,...n, into the variables 

(xj^yjOi i = 1,...,n, defined by equations (3.29) and (3«30)will be 

then called canonical. 

Equivalently , a necessary and sufficient condition for the transformation 

defined by (3.29) and (3.30) to be canonical is expressed by the 

simultaneous existence of the relations : 

(X.>X ) = 0, (Y.iX ) = 6ij, (Y.,Y.) = 0 (i.J = 1, ••.,n) (3.32) 
i j i j i 3 

where the brackets are the Poisson brackets 

3X± 3X± 

e.g. (X^Yj) The Poisson bracket is an 

invariant formula under a canonical transformation (i.e. Cx,y) = (x*,y'), 

where X and Y are any twice continuously differentiable functions on 

2n variables) and this additionally proves that the set of canonical 

transformations in 2n variables forms, a group for any n . A certain 

subgroup of the group of canonical transformations is that of the 

elementary canonical transformations; they are defined as products of both 

the following transformations 

x' = x i a 4 

(i = 1,...,n) (3.33) 
1 ai 

(ai) i = l,...,n is any permutation of the first n integers 

and 

x' = y X = 1, . . . ,p) 1 < P < n 
A A (3.34) 

x' = x y = p+1,...,n 
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One can further prove that one can regard every canonical transformation 

as the product of an elementary canonical transformation and a transformation 

for which the functional determinant 
(3(x ,...,x ) 1 n 
aCy-.-.-.y > l n 

* 0 of X 's with respect 

to y's is different from zero. One then can solve for y = Z (x.,xf) i i j k 
and prove that there is an at least twice continuously differentiable 

function $(x. ,x'),called generating function, satisfying the relations J k 

Z.Cx^x') = -
3<f(x | X k) 

3x. and Y 
9<&(x.,x;) 

i ( W = — (3.35) 

from which $ can also be calculated by integration. 

Conversely, given an at least twice continuously differentiable function 
r32$(X;j>x£) } 

satisfying the condition det 3x ,3x' , J k 

transformation (for which $ is a generating function) from the relations 

7* 0 one can calculate a canonical 

(3.35) 

3$ (x ., x' ) 3<Kx.,x') 3 k , , _ .1 k y. £ and -

Similar results are also true for the general case, although the form 

of $ and the construction proofs are more complicated. 

In one parameter family of canonical transformations 

x^ = X±(w,x_.,yJ, y!̂  = Yj.(w, x,. (i , j=l,...,n) (3.36) 

the functions X.,Y. can also be considered as the general solution of 1 1 
a system of differential equations 

x! = 4>.(w,x',y') , y' = tp(w,x' ,y» ) (i, j=l, . . . ,n) * ^ J J «J «J 

where the dot. means differentiation with respect to w. Therefore 

3X. 3Y. 
cj). (w,X.,Y.) and = i|>4 <w»x* 
i J 3 

(3.37) 

3w 3w 

and the relations (3.32) result into 

3X. 
3w 

^3Y 

' x j j 

3w 
i , X 

3cf). 3X 
i 3d>. l 

3y' j I 3w ' Yjj 3x'. 3 
3 \l>. I r 3Y i i 3 ijj. i 
3 yj ' 3xf. 3 
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Differentiating relations (.3.32) with respect to w and inserting the 

above we have 

3cf> 3<f> 3ij> 34>, 

i J J i j l 

Equations (3.38) imply the existence of a function H(x^,yp such that 

the equations 

3H 3H 

are valid. Therefore the equations (3.37) have the canonical forms 

x' = H (w,x',y') y' = -H (w,x' y') (3.40) 
i J J J J 

Conversely given an arbitrary system of canonical differential equations 

(3.40) as well as a general (2n-parameter family) of solutions (3.36) 

of these equations, which depend on the constants of integration 

(x.,y.), the Lagrange brackets [x.,x.] , [x.,y.] and Cy.,y.] are independent i i i j i j i i 
of w as can be seen for example from the expression 

3X ax- a Y 3Y 
_ _ v Hx' £ £ , V H £ £ 

^ I 3X. / P y'y'pdx. 3x. k,£ i j k,£ i 3 

which is symmetric in i and J• 

3__ 
3w 3x. 3x. i 3 ' 

By choosing the initial values of x^, yl̂  such that the functions 

satisfy the conditions (3.31), then these conditions are identically 

satisfied for all values of w and the equations (3.36) represent a family 

of canonical transformations. Hence the proposition : 

PR.2 An arbitrary one-parameter family of canonical transformations 

and the general integral of a system of canonical differ-

ential equations whose constants of integration have been 

so chosen that the Lagrange brackets satisfy the relations 

(3.31), are identical concepts. 
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3.2 An invariant description 

The aim of this section is to describe the structures related 

to non-linear first order partial differential equations, such as the 

equation (3.5), 3.1, in an invariant i.e. coordinate free way. Although 

we will be talking about spacetimes i.e. four-dimenional, connected, Haus-
oo 

dorff and C -differentiable (smooth) manifolds with a globally defined, 

smooth, tensor field of type (0,2), which is nondegenerate and Loventzian 

(DFN.1,2.2), everything we say will also hold for any n-dimensional, smooth 

manifold. 
CO 

We consider the ring of smooth further C (M) on a smooth manifold, 
its maximal ideal m ,p £ M, consisting of the functions that vanish at p P 
and its powers m , k > 0, consisting of the functions that vanish at p toget-P 

k co k+1 her with their first k-derivatives, and the factor rings J (M) = C (M)/m p p 

and Jk(M) = mp/ k+i- We give both J k(M) = u Jk(M) and Jk(M) = u Jk(M), 
P p peM p peM p 

0 k < 00, the structure of a smooth manifold : Let (x^) , i = 1 ,...,n 

be a system of local coordinates in a neighbourhood U <= M; in J (M) , p e U, 
P 

regarded as a vector space, we introduce coordinates (u ) , a = ( a , . . . , a ) , a I n 
a | = a +...+a < k, relative to the (vector space) basis : 1 n — 

O a l ° a n 
j (id.) , j ( X - X ) (Cx. - X ) ...(X. -X. ) N ) k p k i i p k i i p 

CO where x? = x. (p) and j, (f) is the image of f € C (M) under the natural l i k p 
00 k . 00 

projection C (M) Jp(M) called the k-get of f e C (M) at p £ M; thus an 

element j, (f) can be written with respect to these coordinates as : k p 

jk ( f )p = (f(P>' I f 
8 'a ' f 

a a
 an 

D X , . . . DX 1 n 

) | a | <_ k 
P 

Let U = u J (M) (open by definition) and every point P e U is uniquely 
peU P 

determined by the (n+l)-tuples (x^,...,x ,u ), IotI< k, where x. are the 1 n a 1 i 
k k coordinates o f p e U ^ M , P e J (M) and u its coordinates in J (u) relative p a p 

to the basis introduced above. It is easily seen that if x. and x! l l 
(coordinates of a point p in U n U') are smoothly connected so are 
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(x.,u ) and (x!,u'). i a i a 

PR. 3 The triples (Jk(M) ,M,it ) and (Jk(M) ), where tt and K iC i£ 
* are defined by JT (j (f) )) = p and \ (i (f-f(O)) ) = p, k k p k k p 
are vector bundles (Appendix III), called the k-jet bundles 

k ~k whose fibres at p are J (M) and J (M) respectively, with 
P P 

the natural vector space structure, 
k L 

The map ^ ^ : J <M) J (M) , k >_£, defined by 

U o(j.Cf) ) = j/?(£) is a morphism of vector bundles. rC p v p k 00 
Let J [M] and J [M] be the C (M)-modules of smooth section 

k ~k ~ of (J (M),M,rtJ and J (M) , M, ̂  ) respectively; the vector bundle morphism K & 
k Z k t 

\ t d e f i n e s a m o d u l e hormorphine ' : J [M]-> J [Mj , k >_ L ; 

~k k o J [M] is the kernel of the homomorphism .T ' . For example let k = 0; 
J°(M) = S and (J°(M),M,TT ) is an one-dimensional vector bundle with trivia-P o 
lizing section say, j (id.) : M -»• J°(M) such that j (id.)(p) = p and o o 
thus J°(M) = M x S ; J°[M] = C°°(M) . If k =1 J1(M) = T* (M) is the cotangent 

manifold to M and is the module of differentiable one-forms 

on M. 

Given F : M ->- M' , a smooth mapping we can define the ring homomorphism 

F* = C ° W ) C°°(M) defined by F*(f) = f 0 F, f e (^(M'). 

* 
F (f) = f 0 F 

M t M' 

* ^ 
F in turn induces a homomorphism J ,(F) of the factor rings J ,(M') 

P P 
Jk(M), p' = F(p), such that Jk

f (F) (j, (f) ,) = j, (F (f)) and by taking p p K p k p 

k W k k k the union of J , (F) V Pf e M', a smooth mapping J (F) : J (M') J (M) . P 
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C (M) <- C (M' ) 

j*(F (f)). 

Jk(M) < 
P 

J p , < F ) * 
J , (M*) T)' 

k k k * A module homomorphism J [F] : J [M* ] J [M]over F can also be defined by: 

J k[F] (6)(p) = Jk
t(F)(e(p')), p' = F(p) , 0 € J*CM'] 

Similarly for J [F]. 

Jk(M») 
J k(F) 

J 
p'eM' 

J K ( M ) 

Jk[FJ(0) 

M 3 p 

PR.4 k ~k From every smooth manifold M we have J [M] = J [M]@ J [M] ; 
k if furthermore F : M -»• M' is smooth, then J [F] = J [F]© J [F] 

PROOF (V.V. LYCHAGIN) Define an i = J°[M]+J [M] k 
by i (f) (p) = 1 ( f ) , p e M, f € C°°(M); k k p 

l k 0 
C°°(M) = J°[M) J [M] C°°(M) 

k 0 - k i k o we have IT ' ' O I =id and therefore J [MJ = Ker 71 ' © Im i • k k 
The decomposition of the maps follows from the fact that 
k r -I -k, o J LFJ commutes both with TT and i, . k 

As a result J1[Mj = /?"(M) © C°°(M) and therefore J1(M) = T*(M) x E ; a 
1 * 

projection tt : J (M) T (M) onto the first component and an injection 

a : T (M) J (M) onto the T (M) x {o} are defined in a natural way. 

We also define two differential operators DFN. 1 D^ = C (M) J [M], k >_ 1, is defined by Dk(f)(p) = Jk(f)(p), 
00 

p e M , f e C (M) is a differential operator of order k. 
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00 
For example D ̂  = C (M) J C m ] in view of the direct decomposition 

1 00 1 
(A (M) <3> C (M)) of J [MJ can be written in the form D ^ f ) = (df,f). 

DFN.2 D = J1CM]->-A1CM) is defined by D(w,f) = df-to, u e A1(M) 

PR.5 The operator D = J 1 [M] A1(M> has the properties 

1st Ker D = Im D i.e. the sequence 

D 
0 -J- C°°(M) ^ J 1 M —^••A 1(M) 0 

is exact on every smooth manifold. 

2nd D is natural with respect to every smooth mapping 

F = M M* i.e. DoJ1[F]= F*°D where F* = A1<M,> A1(M) 

PROOF From the definitiin given, the decomposition 
1 ~1 o * * 

J [F] = J [F] 9 J [F] = F Q F and the fact the operator 

of outer differentiation d is natural. 

The first star indicates the transpose of the derivative map F^ and 

not a pull-back action; each interpretation is usually easily infered 

from the context. 
DFN. 3 A non-linear first order partial differential equation on 

M is a submanifold E of J^M). A solution of E c jri<M> 

is a function feC^CM) such that D^(f)(M) c E. 

To see how this definition of equation and solution connect with the 

classical one let us introduce in J^(M) the local coordinates 

(x.,u,u ), i,j = l,..,n, u = u if a = (0,...,0) and u = u. i j c c J 

if a = (0,...,1,...,0) with 1 in the jth position; for every point 

in E we can find a neighbourhood U of it, in which E n U can be 

represented by the equations 
E.(x„,...,x , u, u„,...,u) = 0 1 < i < k l 1 u 1 n — — 

where, codim E = k; if E considered as manifold has dimension (n-k) 

codim E equals dimCT(M) /T(E)) CT(M) , T(E) are the tangent spaces to M 

and E respectively); in the coordinate system introduced, the section 
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D^(f) can be written as 

v f ) ( x i V = f ( V ' I ^ % } 

and the condition for the image of D^(f) (M) in U to lie in E n li 

means 

v x x v f < V ' % f^"> = 0 

which is the usual representation. 

In a space-time the equation we are interested in, is equation 
aB 3f 3f (3.5) with a constant on the right-hand side (i.e. g r — — ~ const.) oX o X„ a B 

The existence of the pseudo-Riemannian, non-degenerate, metric tensor field 
ct 8 g with components g Q ( g ), a,B = 0, 1,2,3, implies that there cip 

* 
exists a vector bundle diffeomorphism g ^ = T(M) T (M) with inverse 

g„ = g " 1 defined by gv(X) Y) = g(X,Y) , where X, Y £ T (M) , V/ p M, ff p J> P P * £ 

g ^ being clearly a bijection and an isomprphian on each fiber, smoothness 

is proved by considering the local representative of g^ with respect 

to the natural charts in T (M) and the smoothness of g (R. ABRAHAM, 

J. MARSDEN, Proposition 13.7); g, and g„ are known as the lowering > # 
and raising indices operators and involve a summation with respect to one 

ct 8 index of g and g respectively. g (as any other tensor field) 
00 

is considered here and in many other places elsewhere as an C (M)-
multilinear map from a cross-product of the appropriate combination 

00 * of C (M)-modules of sections of the vector bundles T(M) and T (M) 

(vector and covector bundles) into the reals. 

Then define the function H = T (M) S by H(p,w) = £g(g^ (co) , ĝ  (oj) ) 
* 

V <D £ T (M), known as the Hamiltonian function. This is consistent 

with relation (3.5) or the general convention that a superscript denotes a 

contravariant component and a subscript a covariant one, i.e. the 

3 f - — , a = l,...,n, constitute in general a covariant vector, f , a=l,...,n, dx a 
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the components of the one-form df on M. 

According to DFN. 3, 3.2,H(p,u>) = const.is a submanifold of J1(M) of 

codimension one, but the reason why we are considering H(p,oo) = const. 
1 * as a submanifold of J (M) rather than of T (M) , will not become evident 

till we further explore the geometric structures related to the concept 

of an equation and its solution. 

We endeavour to extract geometrically from the set of all smooth 

sections J of (J (M) ,M,iT^)those that are integrable, that is, 
oo 

have the form D (.f) for some f eC (M). This is done with the help 
1 * . 1 1 of classifying (universal) elements co e A (T (M)) and ft e A (J (M)) 

defined as follows. 

DFN. 4 03 € A1(T*(M)) is defined by o)(X) = no(X)II . (X) , V XeT(T*(M)), 3 1* 
where II and II are shown in the commutative diagram 3 1* 

* Hi* T(T (M)) T(M) 

n n3 2 

* n 
T (M) ±—>• M 

with II ,11 ,II , all vector bundle projections. 1 a o 
* Let (x^.u^), i = l,...,n, be the coordinates of a chart in T (M) 

so defined that u. are the so called conjugate coordinates to x. 
1 * 1 n 

(dx. are taken as a co vector base for T (M)); then a)(x ,u ) = T u dx : i x. i i i i l i=l 
n 

dw(xi>u^) = £ dx^ A du is a non degenerate closed two-form on T (M) 
i=l 

or a symptectzc form ; thus the cotangent bundle of every smooth 

manifold carries a natural symplectic structure; oo and do> are known as 
He 

the canonical (or normal) forms on T (M) and the coordinates chosen, 

the canonical coordinates. 
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PR.6 For an one-form 9 £ A"1" CM) a necessary and sufficient 

condition to he closed Ci.e. d0 = 0 ) is 9 (doa) = 0 

PROOF 9 and to Cdu) are considered as sections of the contangent 

and the second cotangent bundle of M; the star indicates 

the covariant functor 
* 9 * did * * 9 * M T ( M ) - 2 ^ T CT (M)) T (M) 

n 
Let 9(x.) = T aJ(x.)dx. and therefore 

J i=l 1 3 1 

n 8a 
d 0< x,> = I (x.)dx. A dx. ; 

j i=l J J 
3a 3a * d9 = 0 if and only if i = j ; to evaluate 6 (dtu) 
3x. dxJ J i 

we must compute doiCX.X') for X, X' tangent to graph(9); 

a base for the tangent space of graph (9) is given by 
3 n 3 * X = T — + y t | (i = 1, . . . ,n) and 9 (dw) = 0 

1 ox. H 3x. 3x. i J=1 l J 
3a. 3a 

iff — — = — 1 1 3x 3x. j i 

A closed form is by the Poincare Lemma locally exact and therefore 

can be written as df for some f £ C (M) defined by f(x) = but 
Y 

this obviously makes it dependent on the homotopy class of the path 

y and the criterion breaks down globally for non simply connected 

manifolds. By replacing A1 (M) by J^LM] (i.e. working on the first 

jet bundle) we avoid this obstacle. 

PR.7 A section 0 € J^CMJ is integrable, that is 0 = D (f) for some 
f £ C°(M) iff 0 (ft) = 0, where ft is defined as follows: 

DFN.5 ft = D ( p ) (D in the differential operator of DFN.2, 3.2) 

and p € J \ J ^CM)] is defined by the following proposition : 
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1 1 

PR.8 There exists a unique element p e J [ J (M)] such 

that V OeJ' [MljJ^CQ] (p) = 0 

jl C jl C M )] J 1 ^ 1 ) J ^ m ] 

PROOF Define p V P € J.^M) as p 
* 

= d1ClI
1(£))p where P 

P 
may be interpreted as the one-jet of some function 

f E C°°(M) at the point p = TT fP) i.e. P = j-(f) 1 1 p 
* 

TT (f) = f ° IT 
E — J (M) 

M 

J-^OlCp) = J 1 C0](j1(TT* Cf))p) by definition 

1 * 
= Jp(0)(j1(TT1 (£>)p) by definition of the 

J L...J map 

= j ( 0 * ° TT*(f)> P = 0 ( P ) 1 1 P 

j„ <f) as 0OTT = id 1 p 1 

= p = Q(P)• 

PROOF of PR.7, 3.2: 

By PR.5, 3.2, 0 = D ^ f ) if and only if D ( 0 ) = 0; By PR.8, 3 

0 = J ^ l C p ) and D ( 0 ) = D<J 1 [ 0 ] ( p ) ) = 0*<D<p)) by PR.5, 3 

= 9* (£2) by DFN. 5, 3 

In the special coordinate system (x^,u,u^), i = l,...,n, introduced in 

exemplifying DFN. 3, 3.2, we can choose for f(P = j„(f) ) the function 1 P 
o n ' 

u + y u.(x -x.) so that (x?,u?u?) are the coordinate of P: 
i=l 1 1 1 
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o n n 
Therefore p| = (,u, £ u°dx ) and in general p = Cu, £ u dx ) and 

'P i=l i=i 1 1 

n 
ft = du u dx . The injection a = T * ( M ) + J 1 C M ) induced map 

i=l 1 

a * : A1(J1(M))-> A1(T*(M)) relates U and ft by GO = a * ( f t ) 

Note that the sequence : 
D 

0—*-C°°(M) — »• J l[M] — A 1 ( M ) — 

is exact for every smooth manifold M, in contrast to the de Rham 

sequence. The one-form ft defined in DFN. 5,3.2, and PR.8, 3.2, 

endows J1(M) with a aontaot structure, since ft A (dft)n f 0 every-

where on J^(M) (the exponent denotes the exterior power) (D.E. BLAIR, 

chapter 1, §1). In view of PR. 7, 3.2, it seems natural to restrict 

the class of diffeomorphisms of J^(M) to those which preserve ;the 

kernel of the form ft and so must multiply ft by some function; 

this motivates the following definition 

DFN.6 A diffeomorphism <j>: J1(M) J1(M) is said to be contact 

(strict contact) diffeomorphism if and only if 

4>*(ft)=f-ft, f £ C°°(J1(M)) (cf)*(ft) = ft) 

The local picture of a contact manifold in general is much more sugg-
2n*̂ *l estive of a geometric interpretion. A differentiable manifold M is said 

to be a contact manifold in the wider sense iff it admits an atlas 
2n~t*l (0 .f ) a £ I such that (0 ) , a e I, is an open covering of M , a a a 

f : 0 + V c S 2 n + 1 V open, and f Q fl1 £ F(#2n+1), where F(l 2 n + 1) a a a a a $ 
2n+l * is a collection of diffeomorphisms of S with f ft = f*ft , 

ri <-w ^n + J. 
ft = du - I u.dx., f e C Cff ), f ^ 0 (i.e. contact diffeomorphisms) 

i=l 1 1 

2m* X and (x^u,^), i = 1,...,n, cartesian coordinates on S (F(iP ) is 

a pseudogroup being closed under composition, formation of inverses 
2n~t*l and restriction to open subsets of S ). An equivalence class of 

—1 on+1 atlases ((0 ,f ) and (0',f) are said to be equivalent iff f'of £ F(I ). a a a a a a 
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whenever defined) is called a contact structure in the wider sense 
2n*t"l 

on M . B y Darboux Theorem (S. STENBERG, Chapter III, Theorem 6.2) 

it is then easily seen that a contact manifold (i.e. one that carries a 

global differential one-form ft such that ft A(dft)n ^ 0 everywhere) is 
a contact manifold in the wider sense. The converse is true if 
2n*t"l M is orientable and n even (D.E. BLAIR, chapter 
1, §1 ); for the first-jet bundle of a space-time (n-4) the two 

concepts are therefore equivalent. 
2n+l If M is a contact manifold in the wider sense then there exists 

2n-t* 1 an open covering (0^), a e I, of M and locally defined contact forms 

ft on 0 . We can define an 2n-dimensional subbundle D of the tangent a a 
bundle T(M 2 n + 1) of M 2 n + 1 with fibres given by D = {X £ T (M2n+1):ft (X) = 0, p p a 
a £ I, p £ 0 }, the so called contact distribution. Since ft is a a 
contact on 0 , (dft ) n ¥ 0 on D and dft is a non-degenerate, skew-ex a p a 
symmetric » bilinear form; on D^ uniquely determined to within a 

non-zero multiple, i.e. ft = m ft on 0 n 0 ; in the transformation a ap p a p 
law for the (2n+l)-form ft A(dft )n, ft A(dft ) n = m11*1 (ft0 A (dft„)n) , a a a a ap p p 
n+1 m . is the Jacobian of the coordinate transformation which is always a8 

2n*t*l positive if M is orientable; for n even, m Q has to be positive ap 
2n+l 

and D is therefore orientable. The quotient bundle T(M )/D 

is then an orientable real line bundle and therefore admits a cross-

section without zeros. Thus M admits a global non-vanishing 
vector field X such that : c 

ft(X ) = 1 and dft(X ,Y) = 0 VY £ T(M) (3.41) c c 
the so called characteristic vector field of the contact structure. 

As a result the local cross-sections X over 0 , defined by the equations a a 
ft(X) = l V a £ l , satisfy X = m X where m 's are non-vanishing a a ' J a a c a ° 
functions of the same sign. By defining ft = m ft on 0 we obtain a a a a 
global one-form ft such that ft A (dft)n ^ 0 , Q.E.D. 
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n 2n+l 
For example the one form dft = du - £ u dx on S with Cartesian 

i=l 
coordinates (x ,u,u ) makes it into a contact manifold with characteristic vector 

3 field X^ given by and the contact distribution D spanned by 

3 3 3 X,= - — + u. t— and X = -r— i = 1, . . . ,n. i 3x_, i 3u n+i 3 ^ i i 
n 

The condition ft A(dft) f 0 means that the contact distribution 

D is as far from being integrable as possible. The first thing to be 

noted is the fact that there do not exist integral submanifolds of the 2n+l 

contact distribution on M of dimension higher than n. For if 

{X }, i = l,...,m, m > n, be m linearly independent vector fields 

which belong to the tangent space of such an m-dimensional integral 

submanifold we may extend these to a basis to the tangent space of the 

whole manifold by X X„ , X„ „ = X and note that ft(X.) = 0 m+1 2n 2n+l c l 
and dft(X.,X.) = $ (X ft(X.) - X. ft(X.) - ft([X.,X.])) = 0, V i,j = 1,...,m; i j i J J i i j 
then,since m > n, ft A (dft)n (X , . . .,X ) = 0 , a contradiction. The 1 alH"l 

conditions that ft and dft vanish when restricted to a submanifold are 

also sufficient for the submanifold to be an integral submanifold of D, 

because if 0 = dft(X,Y) = - £ft([X,Y]), [X,Y] belongs to D (i.e. D is 

involutive) and by the Frobevnous theorem (C. CHEVALLEY, p. 94) unique 

and maximal integrability is ensured. 

There is a large number of integral submanifolds of D, for the 

study of which an added difficulty is the fact that dft vanishes along the 

submanifold and so one does not have an induced structure. Indeed one 

can prove that the vanishing of ft and dft on m linearly independent 

vectors (m n) at a point is sufficient for the existence of an m-

dimensional integral submanifold tangent to them. Furthermore there 

exist always an m-dimensional integral submanifold of D (1 <_ m <_ n) through 

a point p and such that a given vector field at p is tangent to it 

(S. SASAKI and D.E. BLAIR, chapter III) 
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PR. 9 £ (ft) = 0 and £ (dft) = 0, where £ denotes Lie diff-
A A A 
C C C 

erentiation with respect to the characteristic contact 

vector field X . c 

PROOF From £ = do i + i o d, where i is the interior product 
X X X X 

with X, and relation (3.41). 
Applying DFN. 6, 3.2, a local, one-parameter group of contact diffeomorphisms 
<j) of J1(M), is defined by <f>*(ft) = f • f 6 C°°(J1(M)) and by taking the w w w w 
Lie derivative with respect to the corresponding vector field 

df 
(3.42) £,r(ft) = f • ft , where f = w 

Y ' dw 

w-o 

On the basis of this remark we make the following definitions 

DFN. 7 An infinitesimal contact transformation or a contact vector 

field is a vector field on J1(M) satisfying (3.42), 

PR. 10 A vector field X on J^(M) is a contact vector field iff 

the group of translation along X is a one-parameter 

group of contact diffeomorphisms. 

PROOF Condition (3.42) is equivalent to £ (ft) a ft = 0, it can x also be written in the form 

d 
dw C < J > * ( F T ) ) A ft = 0 

w=0 

Since t = T ° T ( T is the group of translations along X) w+v w v w 

d 
dw ( cj)*(ft))A- ft = 0 w w=v 

He He 
Therefore d> (ft)Aft = d> (ft) A ft = 0 and d> are contact diff-w o w 
eomorphisms. 

For example, the characteristic vector field X (defined by relations c 
(3.41)) is contact with f = constant. 
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There exists an isomorphism between contact vector fields 

on J1(M) and smooth functions on J^CM), guaranteed by the following 

proposition: 

PR.11 Every contact vector field X on J1(M) is uniquely determined 

by the function f = Q(X) . To every function f e ( M J 1 ^ ) ) 

there corresponds a unique contact vector field X„ such f 
that 

(1) ncx£) = f 

(2) £„ (ft) = X (f)-ft 
Xf C 

<3> ^ ^ = x*+x > e E C°°(J 1(M)) f+g f g 

(4) X f ; g= f-X g + g.X f- f.g.Xc 

(5) Xf(f) = Xc(f)-f 

PROOF (V.V. LYCHAGIN, theorem 1.4.3); see also the derivation 

of relation (3.44), 3.2, below. 

DFN. 8 The function f = ft(X) is called the Hccmiltonian of the 

contact vector field X on j!(M) 
oo i 

The question arises how to find XF when f £ C (J (M)) is given; if Y 

is a contact vector field by DFN. 7 and PR. 10, 3.2 ,£Y(ft) =g-ft; we 

take Y = f- x
c + Z where ft(Z) = 0; then 

£y(ft) 
= £ (ft) + £_(ft) by substitution f * X z c 

= f•£ (ft) + df A i (ft) + £ (ft) by the properties X A z c c _ 
of Lie derivation 

= df + doi (ft) + i odft by PR. 9, 3.2, and relation z z 
(3.41) 

hence 

i odft = g.ft - df (3.43) z 
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By applying (3.43) on X we have c 
dft(Z,X ) = g-ft(X ) - X (.f) c c c 

and by virtue of the relation (3.41) g = X (f). It is evident that c 
by taking Xf = f ^ + Z, where Z is defined by equation (3.43) with 

g = X^(f), we obtain the required field. In the local coordinates 
1 3 (x.,u,u.) i = 1, . . . ,n on J (M) , X has the form — (the trajectories 1 1 C D U 
1 * 3f of X are the fibres of (J (M) ,T : (M) , TT) ) , g = — and the relation C DU 

(3.43) reads : 

- Z dx + Z , du = -n+i. i i i u 3f 3f 
i 3u 3x. l 

3f dx. - t— du. i = 1,. . . ,n l 3u. l l 

which determines all but the — components of Z i.e. 3u 

x , = - I 
3f 3 

i=l 
3u 3Xj l i 

+ (f + ?) f j + I 
i=l 

3f 3f U. T — + T — 
1 d u d x . 3u. 

Condition (5) of PR. 11, 3.2, implies that the missing term is - u. 3£ i 3u. 

and therefore 

I 
3f 

i-1 3 ui 3 Xi 

n 3f 
3u. i=lu. i I 

* - 1 
d v 

i=l 
3f 3f 
T — + u. — 3x. l 3u 3u. 

(3.44) 

For example take the Hamiltonian function H defined on the cotangent 
CO * bundle of a spacetime; every function in C (T (M)) can be regarded as 

1 1 * a smooth function on J (M) via the projection TT : JX(M) T (M) and H 

on T*(M) induces TT*(H) on J1(M). Relation (3.44) yields for the corr-

esponding contact (Hamiltonian) vector field : 

v a6 . . 3 
X * - - I S (X )U 
Tt (H) a, 0=0 P a 

,a'0 
3 a$ 3 3 

•I I g a C^>u u ^ + £ I — -
a,B=0 a ^ J d u a,8,Y=0 

u u 3 a 3 ̂ — 3u Y 
and its integral curves (x (w), utw), u (w)), a = 0, 1, 2, 3, are given d ci 
by the equations : 
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dx. 
dw - = - I (X (.w)) u (w) 

6=0 
a = 0, 1,2,3 C3.45) 

du 3 3ga8(x (w)) 
I 55 V W ) V " > a, 0=0 Y 

Y = 0, 1, 2, 3 (3.46) 

I gUP0ca(w))ua(w)u (w) 
oc, 0=0 dw 

a0 
(3.47) 

Equations (3.45) and (3.46), are the canonical differential equations 

(3.18) and (3.19) (.the sign difference is due to the definition of X c 
in general and can be accomodated by a reflection : 

X goes into -X ; all it really matters is the sign difference 
* (H) 71 (H) 

between the a and n+a terms which cannot be altered by any such trans-

formation) ; a geometric interpretation of equation (3.47) appears in 

PR. 18, 3.3, below. 

To conclude this section, we give the following definition for a generali-

zed, many-valued, solution of a first-order partial differential equation 

DFN, 9 A (many-valued) solution of an equation E c J ^ M ) is a 
•y * 

submanifold L QjJ (M) , dim L = dim M, i (ft) = 0 where ft 
i 

is given by DFN. 5, 3.2, and lying in E. 
* 

Similarly for equations in T (M), with ft in the definition 

above replaced by the standard (normal) canonical two-form dw, (DFN.4), 3.2. 

DFN. 9, 3.2 is consistent with DFN. 3, 3.2 for the ordinary (single-valued) oo 1 
solution determined by a single function f € C (M). The map D^(f) : M +J (M) 

is an embedding; that is, the section D^(f) = (df,f) of J1(M) is an 

immersion, which implies that it has no critical points or equivalently 

that the derivative map T (D„(f)) from T (M) to T„(J1(M)) ,tt (P) = p, V p e M P i P P 
is of maximal rank, i.e. n, as it can be seen from its matrix form. 

3 21 3f 
n ! 3x.3x. ! 3x. ' i j l 

and also D^Cf) being a section, i.e. TC^oD^(f) ~ id^ 

is differentiable and it is homeomorphic onto its image D^(f)(M) because 
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the inverse under D ^ f ) of each member of the subbase for the topology 

for D (f)(M) , induced by the manifold topology of J 1(M) which 
D (f)(M) 

-1 -1 n 
in turn is defined by <J> , <{> : 7T (U) U x E x E, U open in M, is U, 

* 

i.e. open in M. Furthermore by PR.7, 3.2 i (ft) = 0 with 

i : D^(f)(M) J1(M), since D^(f) is an integrable section. To a many-

-valued solution corresponds an ordinary one iff submanifold L = 0(M) for 

some section 9 = M J1(M), that is to say when the restriction TT. 

L is a diffeomorphism. 

L->M of TT ̂  

We consider a differential equation of the form : 

E = {P £ J 1(M) : f(P) = 0. f £ C°°(J1(M))} 

then 

PR. 12 

PROOF: 

A solution L(DFN.9, 3.2) of E is invariant under Xf, the 

contact vector field corresponding to f and defined by PR. 11, 

3.2. 

We must prove that X € T (L) (where T (L) is the f (P) P P 

tangent space to L at P) ; let V be the linear 

span of Tp(L.) and in Tp(J1(M)); V has the following 

two properties; first ftCY) = 0 , V Y e V and second 

dft(Y ,Y ) = 0 , V Y , Y £ V; the first property is obvious 1 2 1 2 
L=0 and ft(Xf)(P) = f(P) = 0 from from DFN. 9, 3.2, as ft 

the definition of the equation E ; to establish the second 

it is enough to take Y^ = and Y^ e T p(L) since the 

second property is true for Y and Y , in T ( L ) (£ (ft)(Y ) = 1 4 P X A 

(d°l ft + i °dft)(Y ) = dft(Y ,Y ) as ft(Y ) = 0, and £ (ft) is Y ^ Y ̂  2 1 4 1 X ̂  

ft on P*, P' still in L); 

£„ (ft)(Y ) = X (f)ft(Y ) by property (2) of PR. 11, 3.2, 
A , 4 C 4 f 

= (d°i ft + i o dft)(Y ) by the Lie derivative X f X f 2 

relation to exterior and 

and interior differentiation 
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By the definition of interior differentiation i ft = ft(X ) 
Xf f 

C= f by property (.1) of PR. 11, 3.2) and (i dft) CY ) = 
Xf 2 

=dft (X Y ), therefore dft(X„(P), Y (P)) = X (f)(P)-ft(Y9)CP) 1 4 1 2 c -1 

-df(Y )(P) = 0; these conditions are sufficient for a sub-

manifold to be an integral submanifold of the contact 

distribution and as such of dimension no greater than n, 

i.e. dim V £ n, and since dim Tp(L) =» n, e Tp(L). 

3.3 Legendrian and Lagrangian mappings and their singularities 

Solutions of first order partial differential equations (DFN.3 and 

DFN. 9, 3.2) were identified as integral manifolds of the highest possible 

dimension of the contact distribution, determined by the universal con-

tact form (DFN. 5, 3.2), on the first jet bundle (PR.3, 3.2); this 

motivates the following definitions 

DFN. 10 An integral manifold of a contact distribution, on a contact 
2n+1 manifold M is called a Legendrian submanifold if and only 

if it has the higest possible dimension, namely, n. 
2n 

DFN. 11 A Lagrangian submanifold of a symplectic manifold M is 

one of dimension n, on which the symplectic form pulls back to zero. 

Legendrian and Lagrangian submanifolds are better understood as leaves 

of foliated structures; the Lagrangian and Legendrian fibrations. 
2 n J J 2n+1 ix 1 DFN. 12 A fibration T T : M B (TT : M + B ) i s said to be 

*"X ix Lagrangian (Legendrian) if and only if its fibres IT (B ) 

O f V + S ) are Lagrange (Legendre) submanifolds 

DFN. 13 A Lagrangian (Legendrian) equivalence is a diffeomorphism of 
2 n 2n+l 

M (M ) which preserves the symplectic (contact) structure 

and the structure of the fibration. 

Locally, 
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PR. 13 All Lagrangian fibrations are locally Lagrange equivalent 

PROOF By Darboux's theorem. 

Therefore, any Lagrange fibration is locally Lagrange equivalent to 

the standard fibration TT : T*(^n) ^ with coordinates x.± e E*1, 

u. € T ir(x. ,u ) = x. and form du> = dx. A du. . i x i i i 1 1 

Similarly 

PR. 14 All Legendrian fibrations are locally Legendre equivalent 

PROOF By the invariant and unique character of the contact form 

ft (DFN. 5 and PR. 8, 3.2). 

For example, a local model of a Legendre fibration is the fibration 

u : J 1 ^ ) + SP*1, with coordinates x̂ ^ e u £ T*(ffn) , u £ E, 
n 

TT(X, ( U ^ J = (XA ,u) and contact form ft = du -/ u dx. . i i i ^ i l 

DFN. 14 A Lagrange (Legendre) mapping is the composite of the 

embedding of a Lagrangian (Legendrian) submanifold in the 

total space of a Langrangian (Legendrian) fibration and 

the projection onto its base. 

DFN. 15 Lagrange (Legendre) mappings are said to be equivalent if 

and only if there exists a Lagrangian (Legendrian)equivalence 

which carries the corresponding Lagrangian (Legendrian) sub-

manifolds into each other. 

This is of course one of many definitions of equivalence and in fact 

a very strong one; for example all smooth curves in the plane are 
2 2 2 2 Lagrangian submanifolds, but the curves (x + y - 1) ((x -A) + y -1) = 0, 

0 X <_ 1, for different X's are Lagrange inequivalent because of the 

invariance of the affine structure on the fibre of a Lagrangian fibration 

(V.I. ARNOL'D, 1, §10) 
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To define the corresponding local concepts, it is only necessary 

to replace manifolds and maps by their germs everywhere. However, 

although Lagrangian equivalence implies equivalence in the sense of 

ordinary smooth maps (i.e. f , f^ : M N, f^ equivalent to f iff 

3 diffeomorphisms h : M •*• M and k. : N N k ° f = f^ o f) 

both locally and at large, the converse proposition is not true as it 

is shown by the example of smooth equivalent but Lagrange inequivalent 
3 3 4 germs at zero x and x +x . This is so, as there is not a diffeomorphism 

of a neighborhood of zero of the plane which carries 
3 3 4 L = {(x,y) : y=x } into L = {(x,y) : y = x +x }, while there are 1 2 

k, h e Diff(#2) such that k ° f = f ° h with f = x 3 and f = x3+x4; 1 2 1 2 
for h, a given diffeomorphism, k = £ o h ° £ 1 is a diffeomorphism in 2 1 
a neighborhood of zero because f 0 h is invertible in a neighborhood 

3 4 3 4 of zero, since f is one-to-one in a neighborhood of zero (x +x = x +x , 2 1 1 2 2 
x f x , with x < 1 is only possible with x < -1, because -1 < x < 0 1 2 1 2 A 

3 4 implies x + x < 0). a 3 

PR. 15 Any germ of a Lagrangian (Legendrian) submanifold is well pro-

jected onto at least one of the 2 n ( 2 n + S m-dimensional ((n+1)-

dimensional) coordinate subspaces (x ,u ) ((x ,u,uT) where X J X " 

I U J = {l,...,n} and I 0 J = 0 . In this case there exists 

a unique function F(x , u ) such that the germ of the Lagrangian x J > 
(Lengendrian) submanifold 

is defined by the equaitons 
3F(xI,uj) 

x_ = x_(xT,u_) = I u J = {l,...,n} 0 J 1 O rv 8 uJ I n J = 9 
8F(x x, U j) 

u = u (x_,u ) = - (3.48) 1 l x W fN 
8 xi 

<u = FfXj.Uj) - ^ « j U j ) 
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PROOF (V.I. ARNOL'D, 2, LEMMAS 3.1.1 and 3.3.1) 

PR. 15, 3.2, above is a local result and in view of PR. 13 and 

PR. 14, 3.3, it is enough to prove that every Lagrangian (n-

-dimensional) plane in (defined by the condition that 

the skew-scalar or wedge product of any two vectors of the 

plane equals zero) is transversal to one of the 2n- coordinate 

planes L^ = { ( x ^ u ^ : Xj = 0, Uj = 0, I u J = {l,2,...,n} 

I n J = 0} ; in fact it is enough to prove that the Lagrangian 

plane L, such that L n L be k-dimensional where L = {(x , u ) : n ' n i l 
r̂ i 

Xj = 0 I = {l,...,n}}, is transversal to one of the ^J 

coordinate planes L = {(x. ,u.) : x = 0, u = 0, I = {l,...,k}, xC X X 1 (J I n J = 0, I U J = {l,...,n}}. Let L = L n L be k-dimensional o n f ^ 

and in L transversal to one of the n (n-k)-dimensional planes 

T = L, n L for some k i.e. L n L, n L = 0 ; we want to k n o k n 
show that the plane L, is transversal to L i.e. L n L = 0. k k 
L^ c L and T c Ljj and since L and L^ are Lagrangian L and 

L^ are skew-orthogonal to and T respectively; However 

L + T = L which is itself a maximal skew-orthogonal plane and o u 
hence L n L, c L ; as a result L n L, c L n L n L = L n T = 0 k n k k n o 

The function F of PR. 15, 3.3, is called the generating function 

of the germ of the Lagrangian (Legendrian) submanifold defined by relation 

(3.48); one can further show that: 

PR. 16 Any germ of a Lagrangian mapping is Lagrange equivalent to 

the germ of a gradient map, i.e. any germ of a Lagrangian sub-

manifold in the neighborhood of each of its points, in which 

the tangent space to the submanifold is transversal to the 

u- space, is given by 
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8G u± = — i = 1,2,...,n <3.49) 
'xx 

PROOF By PR. 15, 3.3, the germ of the Lagrangian submanifold is defined 

by relation (.3.48); under the Lagrangian equivalence 

CDFN. 13, 3.3) xl = x , x' = x. + XuT, I X J J J 

u ' = u , \if = u > \ e E, I u J = l l , . . . , n } , I n J = 0, X I J J 

relations(3.48) become 
8F - , , 8F + AuL ui = -% = 3u'T I 3x' J j j 

which suggest that the new generating function will 

be F' (xj.,Uj) = F(Xj , Uj) - I \ I u^2 ; 
jeJ 

G = 7 x u. - F(x ,u ) and we can substitute for u' for 
j€J j 3 1 J J 

almost all values of X , since the condition of local solvability 
3F 82F of x' = Tr~- + Xu' is guaranteed by det ( — - - XI) f 0; J ou_ J « 4 J 3u J 

the exceptional X's are finite in number, they are in fact the 

eigenvalues of the Hessian of F with respect to u . J 
The geodesic curves, equation (3.26), of a specetime M were 

identified as the integral curves, equation (3.45) and (3.46) of the 

Hamiltonian vector field X ^ on the first jet bundle J^(M) over 
TT (H) 

M, i.e. the integral curves of the contact vector field determined 

(PR. 11, 3.2) by the Hamiltonian function H(p,w) = i g(g^ (0)) ,ĝ  (w)) . 

So, geodesic curves are considered as families of curves in the first 

jet bundle. Of special interest are those families of null and/or 

timelike character emanating from a hypersurface in spacetime; it is 

exactly this biased view of spacetime geometry which depicts the moving 
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(evolutionary) character from a spacetime (world) geometrical 

picture. Hypersurfaces in the four-dimensional spacetime mani-

fold, given locally by an equation f ( x
a ) = 0 > a = 0 , 1, 2, 4, 

relation (3.7), can be divided into two classes; two-surfaces 
2 

in motion, ((Vf) 0 , relation (3.8)) with a displacement 

velocity equal or less the velocity of light and the whole of infinite 

2 
space ((Vf) > 0 ) the various points of which are all taken at 

different instants of time, the time at which a point is taken, 

being determined by the (time) equation in such a way that their 

four-dimensional interval (relation (3.4)) between any two of them is 

always spacelike (negative}• 

PR. 17 A hypersurface in a spacetime M, together with its normal 

covector at each of its points define a representative 

of a germ of a Lagrangian submanifold of the cotangent 

bundle T*(M). 

PROOF Let the hypersurface in M be given locally by 
3f f3f } f(xa) = 0, a : 0, 1, 2, 3) with say f 0 ^ 0 , 

o ^ 1 ' 
then one can choose as coordinates of the embedded 

* 1 2 3 o o x 3 1 submanifold in T (M) the set (x ,x ,x ,dx ) ((x ,x ,x , dx )) 

and any such submanifold is locally the graph of a closed one-
* 

form, namely df; hence by PR. 6, 3.2, (df) (dw) = 0 i.e. 

the symplectic form doj pulls back to zero on the graph (df); 

its dimension is clearly n = 4 and by DFN. 10, 3.3, is a 

Lagrangian submanifold. 
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PR. 18 The set of points defined for every fixed value of the affine 

parameter on the geodesies (considered as families of curves 

in the first jet bundle of a spacetime) conormal to a hyper-

surface of spacetime (specifying the zero value of the affine 

parameter) form a Legendrian submanifold. 

PROOF: By DFN. 9, 3.2 and DFN. 10, 3.3, a solution of the equation 

E = {P E J 1 ( M ) :7T*(H) = constant, H E C°°(T*(M))} is a 

Legendre submanifold lying in E. By PR. 12, 3.2, such a 

submanifold is invariant under X^^.. Relations (3.45) and 77* (JJ) 
(3.46) however identify the integral curves of X with the ' 7T* (H) 

geodesies of the spacetime; relation (3.47) determines the 

character (null ot timelike) of the family according to the 

value of the constant (zero or one respectively) in the 

definition of the equation E. 

PR.19 Let Lq be an (n-1)-dimensional, smooth, isotropic submanifold 

of the cotangent bundle T*(M) such that H L —o and X H ( P ) € T ( L O ) 

VPELQ. Then the (local) flow L of LQ along the integral 

curves of X.. in H=o, is a Lagrange submanifold on which H=o and n 
apparently locally the only one containing L . o 

PROOF: The statement in PR.19 is equivalent to saying that the Cauchy 

problem for the equation E={PeT*(M): H(P)=o, H£C°°(T*(M))} is 

well posed locally (V.V. LYCHAGIN, 1.5.3, Proposition) (i isotro o 
p i c m e a n s dco(X,Y)=O, V X , Y € T ( L Q ) ) . 

We can state our main objective in this chapter; that is to 

relate the image (critical values) of Legendre (Lagrange) mappings for 

Legendrian (Lagrangian) submanifolds, such as the ones identified in 

PR. 17 and PR. 18, 3.3, with wavefronts (focal (conjugate) points) 

in General Relativistic 



94 

spacetimes. Relations(3.48) give locally the form of a germ of a 

Legendrian (Lagrangian) submanifold; by DFN. 14, 3.3, the form of the 

corresponding Legendre (Lagrange) mapping is 

f o i 
( X T , U , U J ) > x . u = F - V u. I . - l 

3F 
, _ - 3u ' XJ 3u jeJ j J 

3F 

7T ° i 
( ( x r V 

3F 
X R ' X J 3u J 

(3.50) 

where F = F (x ,u ). The image of 7T ° i is called a wave front ; I «J 

the set of critical values of IT ° is called a caustic ; in 

the context of the contangent bundle model, the singular set consists 

of those points at which the Lagrangian submanifold cannot be written, 

locally, as the graph of a (closed) one-form or equivalently those 

points at which the Lagrangian submanifold is not transverse to the 

fibres of the cotangent bundle. 

Our aim next is to demonstrate how the study of focal or 

conjugate points to a hypersurface in specetime is the same with that 

of the critical values of certain Lagrangian mappings. 

The propagation mechanism given by H, the Hamiltonian function 

H(x,co) = £g(x) (g^ (a)) (03)) , can be described as follows. Consider 

a hypersurface N in M as the initial wavefront. Its conormal 
* 

n(x) e T^(M) for every p = p(x) £ N, specifies a geodesic through p, 

the projection of the maximal flow line of X through (x,H(x,r| (x)),n(x)) 
± IT (H) 

in J (M). Assuming that for some fixed value of the affine parameter 

w, the geodesies are still defined for every p £ N, we call 

N^ = {exPp(w,r|)| p £ N} the wavefront at w , where exp = exp ° ĝ  
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and exp = T (M) -»• M defined on those vectors in T (M) for which the 
P P P 

geodesic y(w) (with affine paramter w) with y(0) = p and 

Y(0) e T (M) is defined on the interval containing the point one; 
P 

exp(w,X) = Y w XCl) is then defined in some open interval (0,w), w > 0, 

since y (w) = y (aw), aeS, Y (aw) I = aX, and the fact that 
a A A A I w u 

y(w) is uniquely determined by y(0) and Y(0) = X. We call the 

map N N^, given by x -*• exp^Cw.n(x))the geodesic map at w. In 

the language of Lagrangian submanifolds introduced in PR. 17, 3.3, the 
* 

esponding objects to N and N^ in T (M) are Lagrangian submanifolds 

L„ and Lv ; L T is the canonical lifting of the normally oriented N N N 
w * 

submanifold N in M and the projection IT = T (M) -*• M onto M 

defines an embedding of L^ with image manifold N c M; however the 

projection of L^ need not be one and in case it is not, there is 
w 

no well defined geodesic map from N to N^. Therefore the image 

points under the geodesic map of those points in N, at which the 

geodesic map has rank < n(n=4) are the critical values of the expo-

nential map and they are the same with the points in N w at which 
L„ fails to embed i.e. the critical values of the corresponding N w 

Lagrangian map. 

To establish further the equivalence between conjugate points 

to N and critical points of the exponential map, let us assume that 

there is a focal point to N along y(w), where Y(0) = peN and y(0) 

is orthogonal to T(N); then exp is singular. In this result P N 
N need not be a hypersurface; it can be just a submanifold of M. 

Conjugancy implies the existence of a Jacobi field X(w) associated with 

a Jacobi variation ( K W , T ) , T e I = (-T ,T ), of the geodesic Y(w), o o 
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(M.M. POSTNIKOV, chapter 4, §3 and Appendix) such that : 

X(w) = (w. 0) 

which vanishes at a point along Y(w), and the variation is such that: 

cf>(0,T) £ N T £ I (({)(0,0) = Y(0)) 

(0,T) is orthogonal to T ^ ^ d O <|£(0,0> = Y(0)) 

For every fixed w , the Jacobi variation tp defines a (smooth) o 
3d) curve d)(w ,t), T £ I, and a vector field -r-*- (w ,T),T £ I , on o dw o 

4><w ,T>, which uniquely determines a geodesic (j)̂ (w) (<j> (w) = cj)(w,T) , 

for arbitrary, fixed T £ I) of the variation, by definition. For 

arbitrary, x £ I, now 

<J>(w,T) = exp^(() x )(w, (0,T)) (3.50) 

and differentiating with respect to X and setting X - 0 

X(w) = | | (w,0) = {D(exp )} OT p 
yv 

|i(o,o> 

D 3d> D 3cb But — —z- (w,T) = — -̂ jr (w,T) (where D denotes the1 derivative 
3w 
D D map and —— , -r— denote covariant differentiation with repect DT Dw 

D 3d> D 3d) to x, w respectively, on <J)(T,w)) and — (0,0) = — -^-(OjO) = DT dw Dw dT 

= X(0) , X(0) = 4^-(0,0), and since the existence of X(w) has been Dw dT 

D postulated, X(0) and X(0) cannot be both zero, D(exp^) is singular 

at p if X(w) vanishes somewhere along Y(w). Conversely let us assume 

is singular i.e. there is a non-zero rector A e T (M) that exp P N 
in the kernel of D(exp ) which is orthogonal to T (N)then take a Jacobi p p / 

J. 
variation of the type provided by relation (3.50) where i s t h e in" 

tegral curve of an arbitrary vector field in T(M) orthogonal to T(N) at 
every point and equal A over p. 
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CHAPTER 4 

4.1 Introduction 

Our aim is to arrive at a classification of some of the 

objects we introduced in chapter 3; more specifically we endeavour 

to demonstrate how to arrive at normal forms of germs of certain 

Lagrange (Legendre) mappings; as a result some properties of 

topological nature of caustics and wavefronts are established. 

The problem of classifying geometrical objects (or forms) 

becomes much simpler if one tries to classify only stable objects; 

furthermore stability is a natural condition to place upon forms or 

processes, understood as a system of forms in evolution, in nature 

[R. THOM]. Following R. Thorn we understand a form in the 

following context: if E is a topological space and G a group (or 

pseudogroup) operating on E, then a G-form is defined to be an 

equivalence class of closed sets of E modulo the action of G. Then, 

a G-form A is called structurally stable iff any form B sufficiently 

close to A in E is G-equivalent to A; there may only be a finite 

(or, at most, enumerable) number of G-forms with the property of 

structural stability. We are interested in continuous families of 

geometrical objects Ag, each object Ag of the family parametrized 

by a point sof a space of parameters S; if Ag is the object 

corresponding to a given point s in S, it may happen that, for any 

point s' sufficiently close to s in S , the corresponding object A 
s 

has the same form as A ; in this case A is called a structurally s s 

stable object of the family; the set of points s in S for which 

Ag is structurally stable forms an open subset of S ; its complement 

is called the set of bifurcation points; the question, whether the 

bifurcation set is nowhere dense is what is usually called the 
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problem of structural stability and in most theories the object is 

to specify its topological structure and its singularities. 

In many cases, though not in all, the stable objects 

themselves are generic, that is, they form an open and dense set; 

so in these cases almost every object is stable and every object is 

near to a stable one; the non-stable objects are exceptions 

(nonforms); in all cases however, structural stability is a generic 

property (e.g. DFN.30, 2.4). S. Smale has suggested, and has 

remained standard in the technical literature, that the adjective 

"generic" should be reserved for properties of a topological space 

and should never be applied to points of the space, a property being 

generic if the set of points possessing that property is dense in 

the space considered. Nevertheless, density of a property is not 

of itself a justification for assuming the property effectively true 

of all the points of the space; for example, the set of all 

irrational numbers between zero and one is dense, but it would be 

absurd to argue that the properties of irrationals are in some sense 

universal. Furthermore for any sets A<̂ B a topology can trivially 

be chosen to make membership of A generic. For a consideration of 

this and related issues in the context of Catastrophe Theory see: 

T. P0ST0N "On deducing the presense of catastrophies". Math. Sci. 

Hum. Vol. 16, no. 64, (1978) 71-99. 

00 
We are interested in geometric properties of C -differentiable 

00 
mappings, C (M,N), from a smooth and compact manifold M into a 

00 
smooth manifold N; the function space C (M,N) (a Banach manifold) 

may be considered as the parameter space; two mapping f and g, in 
00 

C (M,N) have the same form or belong to the same topological 

(differentiable) equivalence class iff there are two homeomorphisms 

(or diffeomorphisms) U, v such that the following diagram: 
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M N J ' I 
M N 

is commutative. 

J. Mather has given a characterization and classification of proper 

(drop the assumption on M), stable mappings. There are two points 

of interest in his work; first, the stability of a map is determined 

by its germ at each point and second, the criteria on the germs of a 

map which determine its stability are algebraic conditions on the 

jets of the germs. Both of the above statements with regards to the 

structural stability of dynamical systems are false (J. GUCKENHEIMER, 

1) . For smooth real valued functions (germs) the theory is rather 

trivial; such functions (germ) are stable iff they are Morse 

functions (i.e. all of their singularities are nondegenerate) with 

distinct critical values (M. GOLUBITSKY, V. GUILLEMIN, Chapter III, 

Proposition 2.2). 

An answer to our question of stability and hence of 

classification of caustics has been provided for a variety of 

concrete and precisely formulated problems; we shall point out some 

ways in which they differ. In the language of the propagation 

mechanism described in 3.4, when the affine parameter is taken to 

be the time t, we define as caustic points at t, C those points 

of the initial wavefront N (an one-codimensional oriented submanifold of 

M) on which the gerdesic map has rank <n-l; the set of all caustic 

points at all times t in the interval during which the propagation 

is considered is called the caustic set of the propagation. if We 
add to the assumptions for the existence of the geodesic map, the 

assumption that the map B+*T*(M)-HVP<M defined by ( tt(n) , exp (t ,n) ) is 
regular at (t, H), then (TT, exp) is a local diffeomorphism at (tQ, n Q) 
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and hence for suitable neighbourhoods U of x = T T ( r i ) • x o o 
and U of y =exp (t ,n ) we can choose o o o 
for O R . exp) a local inverse s : U xu+FF X T * ( M) such that x + 
s(x , y )=(t ,r| ): the function we obtain if we follow s by the o o o o 

projection onto S+ is called a geodesic length function T, 

associated to ('t0>rl0)> as it gives the parameter length of some 

geodesic from x to y; note that we have not require (t,rio) to be a 

regular point for every t and that for a given Hamiltonian the germ 

of a geodesic length function at C't0»no) depends only on C't0»rl0) 

and not on the choice of s. We then define a function F on NXU by: 

F= (T-t )|NXU o 
and two sets of points: 

A= {y€U: 3x€N^F(x,y)=t-t Q and dxF(x,y)=o} ( 4 , 1 ) 

and 

B= {y £U: 3xeN 3F(x,y)=t-t , d F(x,y)=0 and (4.2) o x 
2 

d F(x,y) degenerate} x 
For everywhere positive and positively homogeneous of degree one 

Hamiltonian functions and under certain assumptions of smallness 

for U x and U (iff s(Ux*U) never contains both (t,n)and (t,-r|)) and 

N and e, £>0, (for a given s, (tQ-£, tQ+e)xT*(N)cs(U^U)) we h a v e , \ f 

te(t -e. t +£), N^=A and C =B. For this result see: K. JANICH, o ' o ' t t ' 

"Caustics and Catastrophes", Math. Ann., Vol. 209 (1974) 161-180, 

Theorem 1. This result establishes rigorously a relationship 

between the caustics of the propagation and the bifurcation set of 

a dynamical system (gradient model) see (Appendix III). 

Structural stability of caustics in the above model is being 

ensured locally under small perturbations of the initial wave front 

only: G. WASSERMANN, "Stability of Caustics", Math. Ann., Vol. 216 

(1975) 43-50, Theorem 4. 

One can actually solve for the successive wavefronts, in a 
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direct sense, by introducing the Hamilton-Jacobi (partial) 

differential equation, H(x,df)=0, where the function t:Vt+E is a 

solution such that f|N=0; each level surface of f will be the set of 

points at a given geodesic distance from the initial wavefront N 

and will be one of the surfaces N ; however the caustic points are w 
the points where one cannot find a smooth solution with the given 

initial data. By PR. 19, 3.3, to find local solutions f of H=0 

is equivalent to finding pieces of Lagrangian submanifolds 

transversal to the fibers on which H=0. A singularity of a solution 

is a point in M such that the corresponding lagrangian submanifold 

is not transversal to the fiber of T T : T * ( M ) - * - M over the point in 

question. One would like to describe the local structure of the 

singularities of a generic set of solutions; in this context we 

mention a few facts from the work of J. GUCKENHEIMER, "Catastrophes 

and partial differential equations", Ann. Inst. Fourier (Grenoble), 

Vol. 23, No. 2 (1973), 31-59, and "Caustics and non-degenerate 

Hamiltonians", Topology, Vol, 13, (1974) 127-133. First, by 

introducing a parametrization of all Lagrangian submanifolds (planes) 
2n 

of E , we may identify the set of germs of Lagrangian submanifolds 

through a given point with a given tangent plane with the cube of 

the maximal ideal of the ring of germs of functions on E^. Let 

T*(^n) be identified with <t!n via the map (x,u)-*-(x+iu) and let us 
n n define a hermitian scalar product in (£ by (x^,+iu^) • (x'.-iu') so 

n 
that its real part Z * (x.x!+u.u.r) is the Euclidean scalar product in i=l 1 1 1 1 
2n n 

E and its imaginary part (u^x^-x^u^) the standard symplectic 
form; let L(n) be the set of all n-dimensional subspaces 

L in <fl on which the imaginary part of the hermitian 
scalar product vanishes indentically; this means that L and iL are 

orthogonal with respect to the Euclidean scalar product; the unitary 

group U(n) acts transitively on L(n) and its isotropy subgroup at 

E11 (i.e. UEn=En) is the orthogonal group 0(n); we can therefore 
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identify L(n) with U(n)/0(n) (Appendix III). An element A+iB of 

GL((fcn) corresponds to an element^ a)0* GL(ff2n) and it is 

f 0 -1 transversal to (PR. 15, 3.3) if A is nonsingular; then A -B 

is symmetric and the Lagrangian plane determined by ( b A V s t116 span 

f 1 
of the first n-coluran vectors or the span of\A *BJ or the graph df, 

where f£C°°(^n) is the quadratic fimction determined by A~*B; if 
graph df passes through the origin and has a horizontal tangent plane 

2 3 there, f(o)=df(o)=d f(o)=o and fem (n) . To describe the set of 

germs of solutions of the first-order partial differential 

equation H(x,u)=o, choose coordinates so that H(o,o)=o and let (o,o) 

be a regular point of H so that one can choose local canonical 

coordinates such that H becomes a coordinate function, i.e. 

H(x,u)=x or H(x,u)=u ; in the later case the solutions are ' n n 

functions f which do not depend upon x^ and the Lagrangian sub-

manifolds consist of (n-l)-dimensional families of lines parallel 
3 

to the x -axis, i.e. m (n-1), which can be identified with germs of n 
ii"" X 

Lagrangian manifolds of T*(ff ); the non invariant choice of 

coordinates with respect to Lagrangian equivalences (DFN.13, 3.3) 

nonwithstanding, this is a nongeneric (in n-dimension) situation; 

the solutions of H(x,u)=xn are problematic too in that they are not 

transversal to the fiber of TTIT*^11)-*-^11 at any of its points; this 

is always the case for (positively) homogeneous (in the fibre 

coordinates) Hamiltonian functions which give rise to conic 

Lagrangian submanifolds; to define their singularities one cannot 

utilise their transversality to the fibers of T*(M) as they are 

nowhere so, and their singularities are the points at which I T *i 

(relations 3.50) fails to be a local diffeomorphism. Second, one 

can construct a surjective map, O, from a certain family of functions 

parametrized by M (Appendix III) into the germs of Lagrangian 

submanifolds of T*(M); O corresponds to A , of our construction below, 
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and Z(F) to L (DFN.l, 4.3); J. Guckenheimer introduces three types r 
of equivalence, and hence of stability, for germs of Lagrangian 

submanifolds, refered to as type I, II and III by using 

diffeomorphisms of the base M which map the critical values of the 

corresponding Lagrange mappings into each other, fiber preserving 

local diffeomorphisms of the bundle space T*(M) which map the 

Lagrangian submanifolds into each other and equivalent families of 

functions respectively. He then proves that the germ of the set 

of degenerate critical points of a family of functions in question 

occurs as the germ of the set of the critical values of the Lagrange 

mapping of the corresponding Lagrangian manifold if it is Ill-stablej 

and indicates how to prove that these sets describe the 

singularities of almost all solutions of H=o for certain H*s; the 

conditions on the Hamiltonian functions are rather general: zero is 

not a critical point of H, its zero level is transverse to the fibers 

of T*(M), and its Hessian with respect to the fiber coordinates is 

not degenerate. Genericity of solutions is determined in terms of 

transversality to the stratification induced by the equivalence 

relation in question; this is possible utilizing a suitable 

version of Thorn's transversality theorem (Appendix III). A certain 

relation to the stability of gradient vector fields is also treated 

by considering the family of functions determined up to a constant 

by the family of gradient vector fields, but no direct connection 

can be found to the model of the geodesic length function treated 

by K. Janich. However in the second of the above mentioned papers 

by J. Guckenheimer these results are further strengthened by 

proving II-stability for generic solutions of H through a given 

point, and the technique used is in a sense a generalisation of the 

initial wavefront method in that it constructs a total (n-parameter) 

solution without the homogeneity and positive definiteness 
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assumptions on H, which, can be interpreted as a wavefront 

propagation in a non-Riemannian setting. 

The study of Lagrangian submanifolds and the study of the 

critical values of their corresponding Lagrange mappings was 

originated however in a slightly different context, that of integrals 

of rapidly oscillating functions and the theory of (pseudo-) 

differential operators. Studying (L. HORMANDER) general integral 

operators(A) of the following type 

Af (x)= / e i F ( X' y' U )G(x,y ,u)f (yMydu 

the only contributions to the integral which are not rapidly 

decreasing come from the set of points where F is stationary as a 

function of u, i.e. {(x.uKi?11*^: duF=o}; under certain 

conditions of regularity for F, i.e. rank(d^x u^duF)=k, the map 

A: (x,u)-*-(x,dxF) has an infective differential and therefore defines 
i 1 1 locally an embedding of L in T*(i? ) whose image turns out to be a 

£ 

Lagrangian submanifold (J.J. DUISTERMAAT, relations (1.1.12) and 

(1.2.9)). The asymptotic character of such integrals is thus 

related to the singularities of the corresponding Lagrange mapping; 

Lagrange mappings have more singularities than general mappings from 

an n-dimensional manifold into IE*1; a classification was originally 

given by V.I. Arnol'd (V.I. ARNOL'D 1,3) and a proof was suggested 

which was subsequently carried out in a somewhat sketchy fashion 

together with an extended classification by V.M. Zakalyukin (V.M. 

ZAKALYUKIN). The part of Arnold's paper (V.I. ARNOL'D 1) dealing 

with the classification of single singularities of smooth functions 

has been worked out by D. Rand (D. RAND). In the context of the 

study of oscillatory integrals, J.J. Duistermaat in his review 

article (J.J. DUISTERMAAT) develops a theoretical framework for a 

global study of Lagrangian submanifolds (Lagrange immersions i: 
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L-*T*(M)); in the first instance generalizes L. Hormander's 

construction of conic Lagrangian subraanifolds via a generating 

family of functions (the phase function F) homogenerus of degree one 

in the fiber variable (u) dropping the assumption of homogeneity; 

secondly in considering L (x)= {u£^k=(x,u)eL } he assumes the most 
£ F 

general case of it containing more than one element i.e. assumes the 

function F(u,x) having both degenerate critical points as well as 

multiple critical values with respect to u. However the second case 

corresponds to shock phenomena and for our purpose one need not 

employ the rather cumbersome notation for multi jets. 

Finally a note on the topology of the function (map) spaces 

we will be using; the Lagrangian (Legendrian) submanifolds which 

are of interest to us (PR. 17 and PR. 18, 3.3) are invariant under the 

action of the Hamiltonian X (contact X +/Tts') vector field (relations 
li TT* (H) 

3.45 to 3.47) which implies that close Lagrangian submanifolds can 

be obtained from each other along the solution curves of X ^ X ^ ; 

as a result one can choose a neighbourhood in the space of inclusions 

of Lagrangian (Legendrian) manifolds with the Whitney C°°-topology 

consisting of only one element; the next less fine topology of the 

same nature is the Weak C°°-topology (Appendix III) . 

There has been an application to first-order WKB approximation 

of solutions of Einstein's equations near a conjugate point to a 

fixed spacelike surface, using certain normal forms for the phase 

function by Y. Manor: "Caustics in general relativity II. The WKB 

approximation", J. Phys. A, Vol. 10, No. 5, (1977) 765-76, but the 

classification itself (unpublished) based on the techniques developed 

by F. W. Warner: "The conjugate locus of a Remannian manifold" Am. J. 

Math, Vol. 87 (1965) 575-604, retrieves only one simple, stable 

form for the phase function. 
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4.2 Versal deformations of functions 

The remarks in the introductory section related to the 

definition of wavefronts and the caustic sets via the 

singularity (A) and the bifurcation (B) sets respectively of a 

local gradient model (Appendix ill), together with relation (3.48) 

and (3.50) defining locally a Lagrangian (Legendrian) submanifold 

and its Lagrange (Legendre) map, suggest that we will be interested 

in n-parameter families of germs of singularities, that is, germs 

at the origin of functions F (u, x ) e C P ° s u c h that where 
o 

f has a germ in m (k)f the second power of the maximal ideal m(k) in 

the ring of differentiable germs E(k) of functions on ^ at zero; 

such families are referred to as deformations or unfoldings of f. 

Let E(n) denote the ring of germs of differentiable functions 

at zero and m(n) its maximal ideal (Appendix III); no 

misunderstanding will arise from the use of the same symbol in 3.2 

for the maximal ideal of differentiable functions on a general 

manifold which vanish at a given point. Next we define morphisms 

between unfoldings; they are permitted to transform arbitrarily the 

parameter space and the fibres of the fibration tt̂  V̂xei?11 

other than the origin; in the range we only allow translations, the 

simplest transformations which allow us to ignore the constant terms 

of the restrictions of F to the fibres, as we are only being 

interested in germs of functions; hence we have the following 

definition; 
DFN.1 Let f€m(k), FeE(k+n) and F'€E(k+m) unfoldings of f• A (right) morphism 

from F to F1 is a pair of map-germs ((p,ip), (p^E (k+n, k+m) 

ij; E(n, m), where (j) | =id^k , and f m ( n ) such that 

F=F* • cb+f - TT , TT 'd)=lIl'TT n' n Y Y m 
We say that the unfolding (n,F) of f is induced by (<£,?) from 
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the unfolding (m,F'). 

Diagramatically: 

The condition | ^ ^ i n implies that 0 is a local 

diffeomorphism for those values of u£# sufficiently close to zero; 

a morphism is an isomorphism exactly when cf> is invertible; that is 

iff n=m and ip is the germ of a local diffeomorphism. 

DFN.2 A deformation (n,F) ofjz is called versal iff any other 

deformation of f is induced from (n,F) by a suitable morphism; 

a versal deformation with minimal n is called universal 

(miniversal). 

The significance of the concept of versality consists in its being 

equivalent to stability. Stability is defined by requiring that for 

every sufficiently small perturbation F' of a representative of a 

germ of a deformation F, F and F' are G-equivalent in the 

sense of 4.1 but for a function F', defined in a neighbour-
ly+n 

hood of the origin in E , close to F, where F is a representative 

of a germ of a singularity f, the germ of F' l^ x{o} wi-1-1 n o t b e 

equal to f, in fact it will not even be equivalent to f in the sense 

of mapping equivalence; however it is reasonable to expect that for 

F' sufficiently close to F, the germ at (u,x) of F'l^ k
x{ x} w i l 1 b e 

equivalent to the germ of f, considered as a germ in m(k) , that is, 

being made into a germ at the origin by prefixing a translation of 

+ n and then made into an element of m(k) by ignoring the constant 

term. Consequently the definition of stability although modelled on 

the definition, DFN.1,4.2, of an (iso-) morphism, must involve 
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functions defined on a neighbourhood of the origin as well as germs; 

the diffeomorphisms considered will always respect the fibration 

k +n DFN.3 Let F ^ O O ^ ) , V± open in R' 1 = 1,2; we shall say that F • 

at (u ,x >£V. is equivalent to F_ at (u ' ' ) if there exist o o l z o o 
some open nbd.s U„ of u in and Urt of x in ^ such that 1 o 2 o 

U^Ug^V^ and there exist smooth functions <J>,iJ/: 'Û -fit and 

f:U satisfying the following: 

(i) 0Cu ,x ) =x and if(x )=x ' o o o o o 
(ii) ($(u,x), i;(x))eV2, ueU1 and x ^ 

(iii) ?|TT vr i is non-singular at (u ,x ), ip is non-singular u^xixj- o o 
at x

 a nd £ non-singular at x o o 
(iv) F^= F2-(J)+f, i.e. F1Cu,x)= F2(<J(u,x), i|J(x))+f(x) ueU2 

and x£U where ($,$)=<!> A 
DFN.4 We shall say a deformation is stable iff for every open nbd. 

U of the origin in and every representative F of the 

deformation, defined on U, there is a nbd. (/ of F' inJC°°(Uf^, 

with the Weak C°°-topology , such that for every F'el/, there 

is a point (u,x)6Vc^ + n such that F' at (u,x) is equivalent, 

DFN.2, 4.2, to F' at (o,o). 

This is one of many definitions of stability given the definition of 

equivalence and the choice of topology, and the idea is to prove that 

stability does depend only on the equivalence class of the 

deformation; there is a definition of stability (infinitesimal 

stability) given by an algebraic condition which can be explicitly 

checked out, which, one can prove, is equivalent to versality for a 

certain class of singularities. This is what we will sketchily 

demonstrate in the rest of this section; to this purpose we need a 

few more technicalities. 
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Let G(k) be the group of germs of local diffeomorphisms of $ 

at the origin; an element of G(k) induces an R-algebra homomorphisra 

on E(k) by action on the right. Let Gr(k) denote the space of the 
r 

r-jets, 3.2, of the elements of G(k); G (k) is canomically isomorphic 

to the group of ^-algebra homomorphism of # Let 

f££(k>, then fG denotes the G-orbit of f, and fGr the Gr-orbit of 
r r r j (f); G -orbits are embedded submanifolds of J since the action of 

G (k) is smooth and algebraic. In general, for the right, smooth 

action of a separable finite dimensional Lie group G acting on a 

smooth manifold M we define: 

DFN.5 A G-orbit is said to be simple if there exists a sufficiently 

«mall nelfrnbourhcod of any of it® points which only meets a 

finite number of G-orbits. 

If the group and action are algebraic, which is the case for the 

r» r 

action of G.r on J , then every small neighbourhood of an orbit meets 

either a finite number of distinct orbits, or a continuous family of 

orbits; the.parameters are called moduli. 

DFN.6 A singularity is called simple iff there exists positive r 
' integers K,N such that the G -orbit of its r-jet is simple for 

all r>K and the number of abutting orbits p(f,r)<N, i.e. 

remains bounded as x <» 

An orbit A abuts an orbit B iff every neighbourhood of B meets A; r 

p(f,r) equals the number of G -orbits which meet a neighbourhood U of 

jr(f). DFN.7 A singularity f£i?(k) is said to be redetermined if its r-jet 
r r r j (f), is sufficient; an element s» of J is said to be 

sufficient if £=jr(f)=jr(f'), f'e^Ck), implies that f and ff 

are G(k)-equivalent, i.e. any two germs with E, as r-jet are 

right equivalent. 
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Lot b e t h e Jacob-tan ideal of f, that is the E(k)-raodule 

generated by the local ring of f, 1=1,. . . ,kJcE(k); we then 

define the dimension of the quotient m(k)/J(f)^^^ as an i?-vector 

space, as the codimension of f. 

All the above concepts are related in the sense that simplicity 

implies determinary which in terms is equivalent to finiteness; first 

we need a criterion for determinary and the following necessary 

condition for right equivalence of jets 

PR. 1 Let feE(k) and jr(f); then: 

T j r ( f )(fG r)=m(k)-J(f) E ( k ) mod mfe] 

where we identify the tangent spaces of Jr with Jr 

PROOF: (D. RAND, Remark 9.3CD and Lemma 9.4 and TH. B R O C K E R ,chapter 11, 

Lemma 11.8) 
i" PR.2 A germ feE(k); such that m(k)cm (k). J(f) j r ^ i s r-determined. 

r+1 
Conversely if feE(k) is r-determined, then m(k)cm (k). J ( f 

PROOF: (TH. BROCKER, chapter 11, theorem 11.3 and Corollary 11.10) 

z* i* r+1 2 r+1 Given the series of implications: m cj^n cm*J=>m CJQ fmt cm'J 
r+1 m cj, this is the strongest result one can actually prove; 

r+1 2 
for a proof of the suffiency when m cm «J see also D. RAND 

(D. RAND, Theorem 8.4 and Corollary 8.5) and E.C. Zeeman, 

"Classification of singularities of codim ^5", Warwick 

University preprint; J.N. Mather in: "Stability of C00 mappings, 

III: Finitely determined map-germs", I.H.E.S. Vol.35 (1968) 

279-308, deals with the general case of map-germs and right-

left equivalence. 
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The inclusion of relations in PR.l, 4.2, are between E(Jc.)-modules; 
r+1 by taking the quotient with submodule m ^ ) we transform them into 

r r+1 
conditions on the r-jet of f, e.g. m cm.J+m , such a condition 

r r 
written as m cm^J+ra-m implies by Nakayama Lemma (Appendix III) 
r m cm'J, i.e. our hypothesis. Our hypothesis is also equivalent to 

E(k)/ „ v being finite dimensional and as a result, "m(k) • J(f)E(k) 

generated by monomials of degree less than r as an E(k)-module. 

Indeed, let A= EClc)^^^ J(f)E(k)' t h e n m'AyA (contained but not equal) 

since by Nakayama lemma A=m-A would imply A=o; for every finite 
dimensional (r) , vector space V^V j=£V2' ''^t * Vi P r°P e r subspaces, 

t t - 1 there exist t such that V o and Z < v \ hence 0=m 'Acm- • Ac_.. .cm'AcjA 
t-1 (r=dim A); note that this case since m • Ac) ; but' m'J'A=0^ 

t I v implies a*A=o =>aem'J y hence m-A=o => m cm«J and since Z.<rf m cm-J. 
E E Furthermore /m-J finite dimensional is equivalent to /J being 

finite dimensional (Appendix III) . 

To say that f is r-determined is much more a statement about 
r p the r-jet, j (f), of f than one about f; j (f) is called s-deternrCned, 

I* I* I* I* I* for some s<r if for every £eJ such that TT (j (f ) ) = T T (£), j (f) and s s 
r 

£ are G -equivalent. One can see that if f£m(k) is s-determined, its 
r 

r-jet, j (f), s<r is s-determined and conversely (although it is hard 

to prove it) if r is big enough (r>s+l); in general r-determinary of 

jets is weaker than r-determinary of germs which represent them. 

The non-determined jets become more scarce as the power increases. 

To be more precise let 
J r = {^£jr: irr(£)=o} be the set of r-jets at zero of germs in o o 

E(k), whose zero-jet (value), is zero; J^ is a linear subspace of J r 

r E(k) of codimension one; for every £eJ define T(£)=dim_ /J(f)r/ o m . t(n) 
where f is any germ in m(k) such that j (f) = £ and let 

A , then £ is r-determining in the sense that 
r there exist fem(k) such that j (f)=£ and f is r-determined; 
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conversely if fem(k) is finitely determined, then for some r 
r r j (f)£Ar; is an algebraic subset of the Euclidean s£ace J q and 
r 

7Tg(Ag)cAr r^s. For example, no zero-jet (values) determines its 

germ, the non-determined one-jets form the line i?x{o} i n ff^^j1^11) 

and the non-determined two-jets form a thin set above a point on the 

line of non-determined one-jets. 

2 PR.3 If fem^^ is simple, then f is finitely determined 
PROOF (D. RAND, Proposition 13.1) 

2 
Suppose fem is not finitely determined; by PR.2, 4.2, for (k) r r r r r+1 every r>2 j (m )£j (m-Jf) (i.e. m (k)$z!m(k) • J(f)^ mod 

in full notation); thus for every r^2 choose a homogeneous 
_ P 

polynomial £ re m x/ mr+l which does not lie in j (m-J^); the map 

w jr(f)+w^r is transverse to jr(m*J^), which equals r T. r c f )(fG ) by PR.l, 4.2, and is thus transverse to the orbit 
r >• t fG . Hence for arbitrary small w^, (f+wr

(;r)G is distinct 
r s s from fG ; now the G orbits of j (f+w £ ), r=l,...,s and 

g 
j (f) are all distinct and hence p(f ,s)>r, i.e. f is not 

simple by DFN.6, 4.2. 
2 PR.4 Let fem (k); f is finitely determined iff codim f is finite 

2 
PROOF:Let docim f <°°; the sequence m/ om +J/ 3... must terminate and J «J 

r r hence m +J=J for some r>2, i.e. m cj, and by PR.2, 4,2, £ is 

(r+1)-determined. 
r 

Conversely by PR.2, 4.2, if f is finitely determined m cj for 

some r>2 and codim f = dim^m/mr<°°. 

The following result relates the concept of codimension of a 
r singularity to the codimensions of its G -orbits in the r-jet space; 

to this purpose one needs the following 
2 J (f V PR. 5 Let fem (k) and codim f<°°; then dim v E(k}/ x M m(k)'J(i;p 

equals n. 
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PROOF: (TH. BROCKER, 14.15 and D. RAND, Lemma 10.6) 

If f 1s not finitely determined, then PR.5, 4.2, is false; 
2 2 for example f=x and n=2, J=(x, o), m-J=(x ,xy) and dimension of 

J/m-J=l?2=n. 
2 r PR.6 Let fem (k) and c=codim f; then fG , r>c+2, is a submanifold 

2 
of m (k)/ r +i of codimension c. 

m (k) 
PROOF: By PR.l, 4.2, T j r ( f } (fGr)= <m(k)tf(f) g ( k ) ) mod m?£j; 

from the proof of PR. 4, 4.2, it follows that if r is the least 

positive integer such that f is r-determined, then r<codimf+2, 

hence by our assumption f is r-determined and by, PR.2, 4.2, 
r r 2 r+1 m cm»J. The codimension of fG in m /m is therefore 

equal to: 
m 2 / ,«• m-J dim_ / j.1-dim- / --

E m r + x E mr+J-

= dim^(m /mr+l)/(m2F/mr+1 ) 
. • m2 . = dimm / _ E mJ 

m , .. m. . m. m. _m2 
= dim_, / -dim™ / o since / = / o® / T E m J E m? • mjJ var mtJ 

m J m m m . J = dim,, /_+dim_ / -dim- / o since / = /_&/,. E J I 'nff E m? mS J m5 

= c+n-n by PR.5, 4.2 

One can further utilize this result in proving that for 
finitely determined singularities versality is equivalent to 

transversality (Appendix III) in the r-jet space of the orbits of G 

(the r-jets of the group of germs of local diffeomorphism of the 

parameter space of a deformation of a singularity, acting on the 

right). 
r r r c ̂ k ̂  Let Jo=rrr(m(k)), T y E c k W (J = ^(JJ 1)' 

k denote the linear subspace of J of codimension one of r-jets of 

germs of functions at zero, whose zero-jet (value) is zero, there 
r r r r exist a natural projection P :J ->J defined by P (j (f)(o))=j (f-f(o))(o) 

r 
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r r (swift to the origin) and a ^-linear map i*:J (k+n)-M (k), induced 

by the canonical linear embedding ( U +i(u)=(u,o)); define 

jr(f)=i*-P • jr(f); jr(f) sends (u,x) to the restriction on i^M'o} of o r o 
r-jet of v -+(f(u+v,x)-f(u,x)) at v=o; for a deformation of F of 

fem2(k) <Flifkx{0}=£) Jo(F)(o)=jr(f)(o). 
2 DFN.8 A deformation (n,F) of fem (k) is said to be r-transversal iff 

r r r jQ(F) is transversal at the origin to the orbit fG of j (f) 

in Jr. 

The importance of transversality lies in the following result: 

PR.7 If f is r-determined and (n,F) and(n,F') are r-transversal 

deformations of f, then (n,F) and (n,F') are isomorphic. 

PROOF: (TH. BROCKER 16.3 and G. WASSERMANN, 3.16) 

The proof is hard and the methods used are attributed to J. 

Mather. 

There is an explicit (algebraic) criterion for transversality: 
2 PR.9 A deformation (n,F) of fem (k) is r-transversal iff 

r+1 E(k) = J(f) E ( k ) + V p + m(k) (4.3) 

where V_ is the linear subspace of E(k) generated over E by £ 
the multiplicative identity of E(k) and the elements of 

,x{o}i-l,...,n 
3F 

J ( 3 5 V i-e-

PROOF: (TH. BROCKER, 16.4 and G. WASSERMANN, 3.13) 

E(k)=m(r)©J?, where f=(f-f(o))Qf(o) and as a result 

the condition is therefore equivalent to m(k)=J(f)^^k^+J(F)^+ 
9F - <o)>, 1=1,...n 

ffMo} • i 
r+l a m(k) where J(F)^ is spanned by (g 

One can then show, using PR.9, 4.2, rather straightforwardly that 

if (n,F) is a versal deformation, then F is r-transversal for every 

r. Conversely transversality implies determinary and PR.7, 4.2 

ensures versality. Moreover, for a finitely determined singularity 
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2 (If fem(k) and f/ra(k) then f is a universal deformation of itself) 
X 

the minimal dimension of a universal deformation of f equals the 

codimension of f. Therefore, if {f (u)}i=l,...,n is a system of 

representatives for a basis of m(k)/T/„. , then the deformation E(k) 

F(u,x) of f(u), defined by 

F(u,x)=f (u)+^_^Cjf j (u) (4.4) 

is universal. 

Finally we introduce the concept of infinitesimal stability ; 

to this purpose it is easier to consider equivalences of deformations 

under the combined action of the product group of germs of 

diffeomorphisms of the argument space of the parameters acting on the 

right with the general group of germs of diffeomorphisms of E acting 

on the left, instead of allowing only translations; this complicates 

things slightly but since a right morphism (DFN.l, 4.2) is a right 

isomorphism if and only if it is a right-left isomorphism the 

content of most of what has been said and especially PR.2 and PR.7 

4.2, will remain the same but for suitable changes in the order of 

jets involved; we shall refer to all extended concepts as concepts 
2 

"for levels"; a deformation (n,F) of a singularity fem (k) is called 

r-transversal for levels iff jQ(F) is transversal at the origin to 

the orbit Gr(l)fGr(k) of jr(f) in J1" (DFN.8, 4.2) under the action 

of Gr(k) on the right and G C(1) on the left. Let f* be the 

induced algebra homomorphism E(l)->E(k) by action on the right; f* 

makes E(k) into a module over E(l); then (note that J(F) +f*E(l)= M V_+f*E(l) comparing to PR.9, 4.2) F 
2 

PR.10 A deformation (n,F) of fem (k) is r-transversal for levels iff 

E(k)=J(f)E(k)+J(F)^+f*E(l)+mH]" (4.5) 

In view of PR.7, 4.2, for levels (G. WASSERMANN, 3.16), the relation 

(4.5) is also a condition for versality for levels; we will show 
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that it is equivalent to infinitesimal stability; it is also referred 

to in the literature as infinitesimal vevsality (for levels). The 

idea of infinitesimal stability is that the notion of stability 

(DFN.4, 4.2) for levels, should hold infinitesimally at F, i.e. 

~(u,x,o)=0, V(u,x)€UCi^ + n where F(u,x,t)=$t (Ft ( ^ (u,x) ,'p(x)) ,x) 

F(u,x)=(F(u,x) ,x) , and $ , ip , $ , are germs of smooth paths; 

differentiating we have: 

E(k+n)=J(F) E ( k + n )+J(F) E ( n )+ F*E(n+l) (4.6) 

where E(n) is considered as a subring of E(k+n). 

By applying i*:E(k+n)+E(k) we have the condition in PR. 10, 4.2. The 

proof of the converse is more involved and one needs the Malgrange 

Preparation theorem in the form of J. Mather (Appendix III) . What 

PR.9 and PR.10, 4.2, mean is that for any representative g of a germ 

in m(k) there exists a decomposition 

(4.7) 
k 3 f n 

x=o 
if F, as a deformation of f, is versal (for levels), where r^eS, and 

ip .em(k) . 
3 

Next comes the main result about deformations 

PR.11 Let (n,F) be a deformation of fem(k); F is infinitesimally 

stable iff F is stable 

PROOF: G. WASSERMANN, 4.11 and M.F. LATOUR, Theoreme) 

G. Wassermann proves an equivalence of a whole variety of 

stability definitions, which seem to be relevant to the various 

applications of catastrophe theory; the important result 

however is that of their equivalence to infinitesimal 

stability. M.F. Latour's proof dealing with families of maps 

rather than simply families of functions, rest entirely on the 

work (and notation) of J. Mather. A readable and short proof 

of the fact that infinitesimal versality implies versality 

has also been given in: V.M. Zakalyukin, "The Versality 
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theorem", Funct. Anal. Appl., vol.7, no.2 (1972) 110-112. 

There are simple (polynomial) normal forms for functions near 

a critical point; for nondegenerate and isolated critical points 

they are Morse functions; for degeneracies of simple germs one can 

achieve an analogous classification (i.e. discrete); there exist 

classifications even when moduli are present. From the point of view 

of classification of degenerate singularities (i.e. germs of functions 

at zero, with critical value 0 and Hessians of not maximal rank) two 

facts will be of interest to us; first, that the problem of classifying 

the simple singularities (DFN.6, 4.2) is reduced to the problem of 

classifying the simple singularities in two variables; second, that 

the sets of all nonsimple germs of singularities of various types or 

degrees of degeneracy have large codimensions (in E) (some infinite 

and certainly not less than six). Relations (4.4) allow us to 

compute normal forms for deformations. We will be interested in 

deformations of codimension four, because our families of functions 

are being parametrised by the points of a spacetime manifold. We 

state in the form of a proposition the relevant result from the 

classification theory. 

PR. 12 The following are the normal forms of simple functions of 

codimension <4 in the neighbourhood of a critical point (and 

their universal deformations): 
k+1 2 k—1 k—2 

Series i+Uj ± u2 + Q ( Xk-i uI + Xk-2 U1 ' ' + X 1 W l s k s 5 

Series ^ V ^ u f V l V X k - 2 U 2 ~ 2 + - ' " W ' 4 4 4 ' 

where Q denotes a standard quadratic form in the remaining 

u- variables 

PROOF: (V.I. ARNOL'D, 1, Lemmas 4.3, 5.3, 5.4 and Corollary 8.4 and 

D. RAND Propositions 15.1 and 16.7) 



118 

4.3 A necessary and sufficient condition for stability of germs 

of Lagrangian manifolds 

We start with two statements about the action of Lagrangian 

equivalences (DFN.13, 3.3) on the corresponding Lagrangian manifolds; 

we are actually talking about Lagrangian equivalence of germs of 

Lagrangian submanifolds (PR.13, PR.14 and DFN.15, 3.3). 

PR.13 A Lagrangian equivalence $ of the standard fibration 

7T:T*(i?n)->-i?n is uniquely determined by a pair (\p,f), where 

feE(n) is such that <j>*(0J)=f -oa, ooeA 1(T*(Z1)) , and ip-.E11^, 

" I T - T T • <p, is the induced diffeomorphism of the base. 

If F is the generating function of the germ of a gradient map 

for the Lagrangian manifold L (PR.16, 3.3), then 

F(|)=:(F+f) 'ip 1 is the generating function of <p(L). 

PROOF*' Any fiber preserving symplectic diffeomorphism in T*(^n) is 

locally of the form 

(x,u) (ip(x) , tD^(x)"1-(u+df(x))) 

for some ip and f. 

We now introduce the concept of a family of generating 

functions of a germ of a Lagrangian manifold. 

DFN. 9 A family of functions F. of u e ^ , parametrized by xeEn 

2 „ „ .2 , -rv p 
satisfying (i) d L-0 and (ii) rank 

3 u 
3 F L F l 

.9'u3 u 3 x9 u 
=k is called the 

generating family of the germ of the Lagrangian manifold L, 
2n defined by the immersion X : L -+E , where L is the submanifold F F 

k+n 
of E determined by the equations in condition (i) and A(u,x)= 

3 F Qx, L^ j condition (ii) ensures that the equations in condition • 3,x 
(i) are independent and therefore the dimension of L is n in F 

x k + n . 

In the model of the standard fibration (T*(^n) fE*1 , t t) and for a germ 

of a Lagrangian manifold given locally by equations (3.48)(PR.15, 3.3) 
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a germ of a generating family is given by F. (u,x)=E x u -F(u.,x. ) 
L j £ j J J J 1 

i€l, IUJ={1,2,...,n}, IflJ=0; the equations in condition (i), DFN.9, 

4.3, above, provide the one set of the defining equations in 3.48 
3 p 3 f 

(i.e. xj=£~jJ ) aJid the map A, the other (i.e. uj ="3~ )• For an 
J I 

invariant description see A. Weinstein (A. WEINSTEIN). 

It is natural to ask when two generating families over S0, (or Bn) 

generate equivalent Lagrangian submanifolds of (or M 2 n). We 

describe two operations on families which do not change the 

Lagrangian submanifold being generated. Let Ai ^ Bi a 

differentiable submersion and F. a function on B. for i=l,2: we say l l ' 
that the families F^ and F^ are diffeomorphic iff there is a 

diffeomorphism $:A -*-A such that A -$=A and F • $=F ; diffeomorphic 1 2 4 1 2 1 
families obviously generate the same Lagrangian submanifold. Also, if 

F is a family defined on A + B and r and s are nonnegative integers, 
I* +S we define the (r^s) suspension of F as the function F on B*E r, s 

r 2 s 2 
given by F (u^ , . . . , v r ,w1, . . . ,wg)=F(u )+Z=1 w. ; the 

3 F 3 F conditions r» s =o and r » s =o make the definition of F -— r .s 3vi a.Wi ' 
functionally dependent only on Bx{o,...,o} and therefore the 

Lagrangian submanifold generated by F is the same as that r,s 
generated by F. 

Taking into account the diffeomorphisms of the base B and the fiber 

preserving property of a Lagrangian equivalence (DFN.13, 3.3), 

we arrive at the following definitions of equivalence for generating 

families of germs of Lagrangian manifolds. 
k+n 

DFN.10 Two generating families F ,F gC»(l ) are said to be 

equivalent iff there exist a diffeomorphism (j) of a 

diffeomorphism ip of the base E11 and two functions feG°°(i?n) and k+n feC°°(E ) such that 

F_ • 6=F„ +f , f—f " TT TT • $=lp-IT 2 T 1 ' n n r n 
where TT n 

k+n 00 
DFN. 11 Two generating families F eC°°(i ) and F eC (F ) are said 

J. a 
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to be stably equivalent if there exist a family 

F €C°°(^n'M,)f nuSkjA such that F and F are equivalent to 3 1 J V 

appropriate suspensions of Fg respectively 
We now have available all the necessary concepts to state and prove 

PR. 14 All generating families of a germ of a Lagrangian manifold 

are mutually stably equivalent 

PROOF: (V.M. ZAKALYUKIN, §1, Assertion 4 and L. HORMANDER §3.1) 

We will set up a stable equivalence, in the sense of 

equivalence of generating families, between a representative 

of a germ of a generating family F(u,x) at (u ,x^e^"1"11 of 

L and its form in the standard fibration F, (lu x -f (u_, x )). L j 1 1 I J 
There exists a diffeomorphism 0 , which induces the identity 

on the base (ffn) , such that F*<|> =F +Qf where Q is a non-
921' 

degenerate quadratic form and •3TUTu(U , X ) = O; F. is stably o o l 
equivalent (DFN. 11, 4.3) to F. The immersion X:L +F , F 
(DFN.9, 4.3), given an appropriate choice of I (such that 
92F 
•TT-z—(u ,x )7eo) defines a local diffeomorphism d)_ and D U D X J o o 2 

F2=F1*(t>21 is equivalent (DFN. 10, 4.3) to F ^ Finally we 

consider the homotopy F^=F^+t•(F
2~F^)> t o t€[o,l]; we will 

show that it defines a one-parameter family of diffeomorphisms, 

4>t, of some nbd. of (u o,x q) which carry F^ into F^; the 

composition (f>1 •<J)0"<fe - is the desired equivalence. Indeed, 

dF t_ =-(F. -F_) , but F.-F belongs to the second power of the 
dt L 2 L 2 

Jacobian ideal of F^ with respect to u, because the 

Lagrangian L p is defined; by graph (<*UF), both for F^ and 
3F 3F. dF 3 F 

V h e n c e § T " = j d u ~ ' f l ' t j e o * * " * ) ; b u t g ^ ^ g 
1
 aSL 1 1 1 

9 F ^.^k+n+l. , 2 , gT€C00(JK ) because — ( u ,x )=o; therefore I dltfU o o 

9 F^ 9 F t t 
K-r- = £ 5 FT» Ft . =o, FT£C°°(Uc^k+n+1) with U a nbd. of (u ,x ), d t T d U_ I I L I O O I F 
which by a standard argument (G. WASSERMANN, Corollary 1.28) 
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defines a one-parameter family of diffeomorphisms <|>,(u =F ,x=o) in U. v 1 1 
The proof of PR,14, 4.3, actually ensures that the heuristic 

definitions of generating families (DFN.9, 4.3), and their 

equivalence (DFN.10 and DFN.11, 4.3), which was modelled to the 

equivalence of deformations, as families of functions (DFN.3, 4.2) 

or their germs (DFN.l, 4.2), are consistent and non-trivial. It is 

natural to ask next whether Lagrangian equivalence (DFN. 13, 3.3) for 

germs of different Lagrangian submanifolds is also ensured by the 

equivalence of the corresponding generating families; the answer to 

this is yes. 

PR. 15 The germs of the Lagrangian submanifolds L^, i=l,2, are 

Lagrange equivalent iff the corresponding generating families 

F ^ are stably equivalent. 

PROOF: By DFN. 10, PR. 13 and PR. 14, 4.3, the families F^ lead into 

Lagrange equivalent submanifolds L ; the construction of Fi 
DFN.9, 4.3, is invariant under diffeomorphisms. 

Comparing DFN.l and DFN.2, 4.2, to DFN.10, 4.3, we can state, 

trivially 

PR.16 Representations of germs of versal deformations are 

equivalent as generating families of Lagrangian manifolds 

PROOF: Versal deformations are isomorphic, i.e. (j)eE(k+n) and 

ipeE(n) are invertible and hence define local diffeomorphisms. 

To define the notion of stability for germs of Lagrangian 

manifolds recall the general idea (see 4.1) that a given topological 

space and an equivalence relation on the space, an element of the 

space is called stable iff it is an interior point of its equivalence 

class. To this purpose we introduce to all spaces of functions and 

mappings the .Weak • C»-topology (Appendix III); Lagrangian sub-

manifolds L(n) of a symplectic manifold M are identified with their 
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embeddings, i^, in the total space M of some Lagrangian fibration; 

i^OCLjM), L a fixed n-dimensional manifold and /-(n) = {f€C°°(L,M) , 

f a diffeomorphism and f(L) a Lagrangian submanifold of M}; i^(L) as 

a subset of M, is an element of LOO , modulo a C°°-diffeomorphism of 

L acting by composition on the right; the set A (n) = ̂ n V ^ i f f (L) has 

a topology induced from C°°(L,M) as a subset of C°°(L,M)/Diff(L) and 
3 

it is fibered over U(n)/0(n) with fiber m (n) (see 4.1). 

Then we define: 

DFN. 12 The Lagrangian submanifold L M is said to be stable iff every » 

embedding i^ in a nbd. of in the space, C°°(L,M) of mappings 

from a fixed, n-dimension a}, manifold L into M, is Lagrange 

equivalent (DFN.13, 3.3)^ by a Lagrangian equivalence close to the 

identity, to i^, modulo a diffeo. of L close to the identify. y 

DFN. 13 The germ (L,P) of the Lagrangian submanifold L at P is said 

to be stable (or else L is said to be stable at P) iff for 

every other Lagrangian submanifold L' close to L, there exist 

Pf close to P, such that the germs (L,P) and (L',P') are 

Lagrange equivalent 

One can easily see that in the case where i^ is determined locally 

by a generating family F^ (DFN.9, 4.3), stability of i 1 (DFN.12, 4.3) 

corresponds to stability of F^(DFN.4, 4.2). 

PR.17 The germ of a Lagrangian submanifold L is stable iff its 

generating family F^ (DFN.9, 4.3) has a stable germ as a 
(versal) deformation of F 

PROOF: By DFN. 4, 4.3, stability of F^ ensures that in a nbd. of the 

origin in JS^+n, and for every other function F* close to F^ 

one can find a point P' and maps as in DFN.3, 4.3, which 

therefore determine a fiber preserving (for IT ) local n 

diffeomorphism (J) such that the conditions of DFN. 10, 4.3 are 

fulfilled (with f=f*ir ) and the functions F* and F^ are 
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equivalent as generating families of germs of Lagrangian 

submanifolds; by PR.15, 4.3, Fl determines a germ of a 

Lagrangian manifold L* at P' equivalent (and close) , to L. 

We would like to have the equivalent of PR. 12, 4.3 for germs of 

Lagrange maps; we can only hope therefore to achieve a classification 

of stable and simple germs of Lagrange maps if and only if the germ 

of the corresponding generating family is related to a deformation 

of a simple singularity (DFN.6, 4.2); in rather general terms, a 

germ of a Lagrange map is simple if all nearby germs belong to 

finitely many equivalence classes; a simple germ can be non-stable, 

and a stable germ need not be simple. 

PR. 18 In the space of Lagrange maps ir*i :En+Ka, n < 6 , with the Weak 

C°°-topology, the maps which in a neighbourhood of each of their 

points, can be transformed to Lagrange maps with the following 

generating families, form an everywhere dense and open set: 
„ i K+l K-i. K-k5 z Series A^'.+u^ + xk-i* ui + Xk 2*U1 

2 k-1 k-2 2 Series V, :+u *u„+u„ +x_ *u„ +. ..+x *u- 4<k<5 k — 1 2 — 2 k-1 2 3 2 

PROOF: Stability of germs of Lagrange maps is tautological to 

stability of germs of Lagrangian submanifolds and by PR.17, 4.3, 

is equivalent to stability of deformations of functions; by 

PR. 12, PR.16, 4.3, and DFN. 11, 4.3, one need only to rewrite 

the series A and V omitting the terms of power zero and one K K 
in u and the quadratic terms Q. The Lagrangian manifold is 

_2n 3 F 3..T 
given in the space (x,u)ea by the equations Xj2^-^, ^ 

where 1= {]} for the series A^ and 1= {.1,2} for the series 

V, ; the Lagrangian map is the projection onto the x-space. K 
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APPENDIX I 

Bases and subbases 

Given a topological space (X, J), a family B of sets is a 

base for the topology J iff B CZ J and V x £ X and \/U (neighbourhood 

of x) 3 ,V & B such that x £ V C u . 

PR. 1 B is a base for J. Then V u £ J U = U V ,V e B. The 
i<:I 

converse is also true. 

THR. 1 A family of sets B is a base for some topology for the set 

U {v: V £ B} iff V U , V e. B and V x ^ u R v H w ^ B such 

that x £ Wc: U H V. 

Hence an arbitrary family of sets may fail to be a base for any 

topology. Still we may enquire whether there is a unique topology 

which is, in some sense, generated by our family of sets. 

THR.3 If S is any non-void family of sets, the family of all 

finite intersections of members of S is the base for a 

topology for the set U ( A : A 6 S} 

A family of sets S is a subbase for a topology J iff the family 

of finite intersections of members of S is a base for J or equivalently: 

PR. 2 Each member of J is the union of finite intersections of 

members of S. 

PR. 3 Every non-void family of sets S is the subbase for some 

topology and this topology is uniquely determined by S. 

It is the smallest topology containing S. 

Similarly one defines bases and subbases for the neighbourhood 

system of a point. 

For a more detailed account see J.L. Kelley (J.L. KELLEY, 

pages 46-50). 
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APPENDIX III 

On Lattices 

DFN.l A lattice is a set L with two operations, called join 0-*) 

and meet (/-»), and satisfying the following axioms: 

Al x ^ y = y ^ x and x ^ y = y<-»x V x , yg.L (commutativity) 

A2 x ^ ( y u z ) = (x»-/y)v^z and x^(y/^z) = (xny)-^ z 

V x , y, z 6 L (associativity) 

A3 X v (x^y) = xr>(x^y) = x (absorption laws). 

The above axioms are independent. 

PR. 1 x / ^ x = x w x = x V x e L, L a l a t t i c e ( i d e m p o t e n t l a w s ) 

PROOF: x v-' [ x r\ ( x y ) ] - x ^ x a n d x ^ [ x u ( x n y ) ] = x ^ x b y a p p l y i n g 

A3 to the parentheses; again x ^ [x^ (x^y)J = x o [ x ^ (x^y)] = 

by applying A3 to the brackets. 

DFN.2 Two statements of lattice theory are called dual iff each can 

be obtained from the other by interchanging the two operations 

s-y and . 

Axioms Al, A2 and A3 are self-dual, since any theorem that may be 

derived from these postulates can also be dualized within the theory 

(the proof being obtained from interchanging and r^ at each step) 

lattice theory as a whole is a self-dual theory. 

A lattice can be partially ordered: 

DFN. 3 x < y x, y ^ L iff x^/y = y iff x o y = x 

The relation < is uniquely defined by virtue of A3 as: x r\ y = 

x (xvy) = x. 

PR. 2 The relation < is reflexive, anti-symmetric and transitive. 

PROOF: By PR. 1, (x^x = x) and DFN. 3 x < x. Let x < y and y < x; 

By DFN. 3 x ^ y = y and y ^ x = x; by Al Xv^y = y w x and hence x 

Let x < y and y < z; by DFN. 3 x ^ y = y and y ^ z = z; x^ z = 

x ̂  (y^ z) and by A2 xvJz = ( x ^ y ) ^ z = y ^ z = z i.e. x < z. 
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DFN.4 The converse (dual) relation (>) to the partial order < 

is given by x > y iff y < x x, y ^ L . 

As a consequence of the partial order a number of derived 

concepts can be utilized in the study of lattices. Let P be a 

partially ordered set; 

DFN. 5 If V x, y & P either x < y or y < x is true, P is said to 

be linearly ordered (or simply or totally ordered) and it 

is called a chain. 

DFN.6 An element xa P is called an upper (lower) bound of 

A, A E P iff a < x (x < a) V a e A. 
DFN.7 The sets of all upper (lower) bounds of a singleton set: 

{a} ag P, are called upper (lower) ideals of P. 

We denote {x^P: x < a} by 4- [a] and {x£P: a £ x} by f [a]. 

An upper ideal is often called the principal filter generated 

by a. 

DFN. 8 Generalizing DFN. 7 we denote fA(^A), A ^ P , the sets 

{x £ P: a < x V a £ A} ( {x£ P: x< a V a £ A}). 

Then t A = 0 ^ [a] and A = ^ A i H < D denotes point * a t A a £ A 

set intersection here) and 't , can be considered as maps 

from B(P) into B(P). (the power set of P). 

DFN. 9 An element m £ P is called minimal (maximal) iff x < m 

(m < x) ̂  x = m. 

A minimal (maximal) element is called least or a lower unit 

or zero (greater or an upper unit or universal element) iff 

m < x (x<m) V x £ P. 

DFN.10 A least upper bound (supremum, join, union) of A, A P, 

is an element 1 & P such that__ 1st a < 1 V a ^ A and 2nd if 

a < x V a£ A, X £ P 1 < x. 

Dually a greatest lower bound (infimum, meet, intersection) 

of A, A<E.P, is an element g £ P such that: 1st g < a V a £ A 

and 2nd if x < a V a 6 A, x<£ P x < g . 
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Generally in a partially ordered set least upper (and greatest lower) 

bounds need not exist; but if they do, they are unique. In a lattice 

these elements exist for finite subsets as can be seen from the follow-

ing proposition and by induction. 

PR. 3 y x, y £ L , L a lattice, x u y and x ^ y is the least upper 

bound and the greatest lower bound respectively of {x,y} 

under the relation < (DFN. 3). 

PROOF: x ^ ( x ^ y ) = ( x ^ x ) ^ y = x ^ y i.e. x < x^y; similarly 

yv_/(x^>y) = y ^ ( y ^ x ) = ( y ^ y ) ^ x = y ^ x = x ^ y i.e. 

y < x ̂  y. Hence x«^y is an upper bound of {x,y} . Next let 

x < z and y < z ; then x u z = z and y^ z = z; therefore ( x ^ y z = 

xv-/(y^z) = X>J z = z and x ^ y < z. Consequently x»~/y is the 

least upper bound of {x,y}. The proof dualized gives x ^ y 

as the greatest lower bound. 

PR. 3 suggests that one can reverse the process of determining the 

algebraic structure of.a lattice and make the order relation fundamental 

so that a lattice can be said to be a partially ordered set in which 

every pair of elements has a least upper and a greatest lower bound. 

As operations in general determine relations one could dispense with 

operations entirely.and deal only with relations; however it is more 

convenient to work with operations separately. Considering consequently 

homomorphisms between lattices one should rather specify whether the 

homomorphism is preserving only the order relation (monotone map, 

isotone, order preserving and dually order-inverting, antitone map, 

dual homomorphism) or the operations as well; however every lattice 

homomorphism is a partial order homomorphism. It is worth noticing 

that in the special case of isomorphisms the converse is true i.e. 

if f and f * are order preserving isomorphisms then f preserves join 

and meets i.e. it is a lattice isomorphism; we will use this latter in 

the proof of PR. 6. 
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DFN. 11 Given a partially ordered set P and Q C p, Q is called a 

subpartially ordered set iff there exists a relation f 

on Q such that iff x, y £ Q and x < y y. A subset A 

of a lattice is called a sublattice iff A is dosed under the 

lattice operations. 

Every sublattice is automatically a subpartially ordered set. 

Completeness, closure operations, Galois connections, Dedekind cuts 

DFN.12 A partially ordered set P is called join-complete, meet 

complete or complete iff every subset of P has a least upper 

bound, a greatest lower bound or both, respectively. 

It is possible to define a number of degrees of completeness between 

that of closure and completeness as in DFN.12; these are defined by 

limiting the size of the sets (i.e. specifying their cardinality) 

which are required to have joins or meets. 

An example of a complete lattice is the family of subalgebras of a 

given algebra (J.C. ABBOTT, Theorem 4.10). 

A particular class of endomorphisms of some interest in the 

theory of partially ordered sets and lattices, are the closure 

operations. 

DFN. 13 An operation 0: P — > P (x v—^O(x) = x) on a partially ordered 

set P is called a closure (interior) operation iff it satisfies: 

al x < y x y (isotone) 
— o a2 x < x (extensive) (x x (intensive)) 

33 x = x (idempotent) 

Respectively an element X£.P is called closed (open) iff x = x (x = x°). 

PR. 4 In a complete lattice with a closure operation the set of 

closed elements form a complete lattice under the operations. 

r i x ^ = fl x ^ 1 1 x . = [J x^ 0 < e I a n index set. 
0< * d <K 

PROOF: By al ||x,< x ^ f| x < x = x ̂  hence 
tf <x -

H x<y 1 n Xk. . But by a.2 f ] x r / < f] x ; therefore 
a, cx cx u oc 
n * „ ~ n x . i.e. f\ X is closed if the x are closed. 
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DFN. 14 A closure operation in a lattice with a lower unit is called 

a Kura-towski closure operation iff it satisfies further: 

a4 X u y = x u y 

a5 The lower unit is a closed element. 

The most significant examples are the topological spaces. For 

another example see Zoltan Domotor (Z. DOMOTOR, theorem 1). 

There is a simple way to construct closure operations from 

homomorphisms: 

DFN15 Given two partially ordered sets ^ < p
2 ' ? 2 > 

and a pair of maps f , f , f : P P and f : P P ; 1 2 1 1 2 2 2 1 
we call (f , f ) a Galois connection between P1 and P 1 a 1 

iff 1st f ^ ±2 are antitone, 2nd x f 1 f • f 1 ( x ) V x e P 1 

and yf2 f^ (y) V y ^ P ^ 

DFN.16 A Galois connection induced by a relation ^ between two 

sets X and Y is the Ga.lois connection between their power 

sets B(X) and B(Y) defined by: f ^ A ) = { y e Y : x ^ y V x 6 A } S B(Y), 

A^B(X) and f2(B) = {x£X: xj?y Vys.B}^B(X), B eB(Y). 

The DFN. 16 is consistent as (f ̂  f ) is indeed a Galois connection j 

the proof goes as follows. 

Let A, A' e B(X), A S A ' and y & f ^ A 1 ) i.e. x j> y V x e A' whence 

V x <=. A; thus y€f 1<A) and f ^ A ' ) ^ f1<A) i.e. f ± is antitone. Similarly 

for f2. Now let x£ A and B = f ^ A ) > then y \/y £ fi<A> ~ B> h ence 
x^f 2(B) = f . fx(A) i.e. A O f2-fx(A). Similarly B c f ̂ f2 (B) V b £ B O ) 

PR. 5 If (f , f ) is a Galois connection between P and P , then 1 2 1 2 
f • f. is a closure operation in P„ and f • f is a closure 2 1 ^ 1 1 2 
operation in P . 

PROOF: fn, f are antitone and consequently f • f and f • f are 1 A l a a 1 
isotone. a2 of DFN. 13 is the 2nd property of DFN. 15. 

Finally let f ^ f ^ x ) = x, x £ P and denote f , f by <. 

x < x x < x and f, (x) < f, (x); but f, (x) < f,. f • fi (x) = 

f^Cx) and t^- f^(x) > f ^ f ^ x ) i.e. x > x. Hence x = x and a3 
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is satisfied too. 

As an example consider the pair t ,4- of operations (endomorphisms) 

defined on B(P) as a Galois connection induced by a partial order 

relation (<) on P . The combined maps ^.4 and 4-,/t* are closure 

operations on B(P) by virtue of PR. 5; the closed elements Cp of B(P) 

are characterized by the property. A = 1" • 4 A( 4 t A) A6B(P). 

Such elements are called Dedekind cuts after Dedekind's method to 

define the real numbers out of the non-complete lattice of rationals. 

As can be seen from the following propositions this same method can 

be used to embed any partially ordered set to a complete lattice; in 

other words this lattice contains a subpartially ordered set isomorphic 

to the original set (H. MACNEILLE). 

PR. 6 If L^, L^ are complete lattices, then the sets of closed 

elements of L , L : C_ = {x 1* : x = x = f • f (x)} and 1 2 Li-ĵ  1 2 1 
C_ = {x £ L : x = x = f «f (x)} are complete lattices and l>2 2 1 2 
f^, fg are dual isomorphisms between them. 

PROOF: By PR. 4, CT and C_ are complete lattices. Let X£.C_ ,i.e. L x L2 LJ_ 

x = f2* f i ( x ) (== i f y = = f ^ f ^ f ^ x ) = f-f^Cy) 

i.e. y ^ C L . Therefore f 1 maps C L 1 into C L 2 ; similarly 

f 0 maps Cl_ into Cr . Further since x = f . f (x) V x e Cr, A -"1 A 1 1 

and y = f^ *2(y) V y e C ^ , f2* f 1 a n d f 1* f 2 a r e t h e i d e n t i t y 

maps on Cl- and Cl_ respectively i.e. f , f are one-to-one and 1 A 1 2 
onto. The fact that they are antitone means they are dual order 

isomorphisms. Consequently they are dual lattice isomorphisms. 

PR. 7 If P is any partially ordered set then P can be embedded in the 

complete lattice of all its Dedekind cuts. 

PROOF: By PR. 6 the set of Dedekind's cuts forms a complete lattice. 

Given t h a t V x £ P 4 [x] =4t[x] and dually f [xj = f4 [x] 

•I H [X1 5 the map : P C cr.B(P), being isotone, 

is a partial order isomorphism; hence the set: (4 [xj : V x<i P}, i .e. 

the set of principal lower ideals of P, is a subpartially ordered 
set of C isomorphic to P. 

J? 
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APPENDIX III 

Concepts in Differential Geometry, Differential Topology and the 

Theory of Singularities 

III.l General Manifold theory 

DFN.l A manifold of dimension n is a Hausdorff space such that 

every point has an open nbd. homeomorphic to an open subset of 

P. 

For our purposes manifolds are assumed locally connected and 

paracompact 

DFN. 2 An atlas on a manifold M (dim. n) is a set of homeomorphisms 

(f> =u (iel) such that M=y U. , where U. is open in M and V, 
i i i aeii 1 i 

open in 

DFN.3 Let X be a topological space. A pseudogroup G on X is a 

collection of homeomorphisms 4>:U->-V, U, V open in X such that 

(i) The identify belongs to G 

(ii) (j), ip e G => (p'lpeG, where <j>:U+V, ijJiU'-V* and 

<j>'iprip~1(VnV' > ->- (p(UnV') 

(This composition is associate) 

(iii) cjx-G => (P'Kg 

(iv) if <J):U+V is a bijection, U ^ u ^ and (j) | y (U±) 

is in G for every i => <j)eG 

(v) if (J):U-+V, 4>eG and W open and WcU 

=> (J)|w:W-̂ j)(W) is in G. 

DFN.4 An atlas ((j) U ), iel, on a manifold M is a G-atlas iff » i 
4)i#i|;~1€G for all i,j£l. 

A G-structure on a manifold M is a maximal, G-atlas. 

We will be mainly dealing with smooth manifolds, i.e. manifolds with 

a (Diff)°°-structure (the set of all local homeomorphisms on which 

are differentiable to any power); differentiable class k usually 
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means k at least one; k=o,U) are refered to as topological and 

analytic respectively. 

DFN. 5 Let M an n-dimensional C°°-manifold and N a connected subset 

of M. N is said to be a submanifold of M of dimension m(m< n) 

iff V xcN there exist an element of the differentiable 

structure ((f>,U) such that xeU and <j>(UnN) is an open subset of 

-bJc/1. 

According to this definition submanifolds inherit the topology 

(induced topology) of the main manifold. 
Jj 

DFN.6 Let M be a C -differentiable manifold of dimension n 
jc 

fsC (M) means f:M->J? and for every (chart) (U,<j>), 

f•(f)"1:(j)(U)->-i? is . Ck-differentiable 
k k <J>eC (M,N) means <J>:M-+N and for every C -differentiable function 
k k feC (N) the pullback f9(p is C -differentiable. f,0 are smooth 

iff f,<J> are C -differentiable for every k. 
k 

DFN.7 Given (peC (M,N), the derivative map D(J) at P£M, is a linear map 

(m=dim M and n=dim N) given by (dijj*<j>*x "S at X(P) where 
(U,ij;) and (V , x ) are charts for M and N, peU and <j)(U)cV 

jj 

DFN. 8 Let <p€C (M,N) and D(|) at p has the maximum possible rank 

(i) if dim M <dim N (j) is said to be an immevsion at p 

(ii) if dim M > dim N <j> is said to be a submersion at p 

(iii) if (j) is an immersion (submersion) at p, for every p, then 

cf) is said to be an immersion (submersion) 

(iv) An immersion which is a homeomorphism onto its image is 

called an embedding 

DFN. 9 A subset N of a manifold M is called an immersed submanifold 

if the inclusion map is an immersion; for a submanifold 

clearly the inclusion map is an embedding; and a closed 

manifold is a submanifold for which the inclusion map is 

proper, i.e. the preimage of every compact set is compact. 
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III.2 Topologies on function spaced 

Let X, Y be topological spaces and C°(X,Y) the set of continuous 

maps from X to Y; the fine topology on C°(X,Y) is defined by considering 

as an open nbd. of feC°(X,Y) all geC°(X,Y) such that graph(g)cU where 

U is an open nbd. of graph(f) in XXY; if U is an open subset of XXY, 

then W(U)={f: graph(f) cu} is a typical open set in the fine topology. 

Given a continuous map TT:Y-KX, a section of TT is a map s:X+Y 

such that 7T's=idx; one can topologize the space of sections 

S(V) = {s :LT*s=id and s(X)cV, V open subset of Y}; one then has A 

PR.l The space of sections of 7T:Y-*-X form a subspace of C°(X,Y) with 

the fine topology. 

PROOF: We will show that S ( V ) = W ( X X V ) n sections and hence S ( V ) is open 

in the fine topology on sections. 

Let U open in XXY and feC°(X,Y) such that graph(f)cU 

(i.e. f<STT/(U)); U=UAX B where A open in X and B open in Y; let 

V = U ( I T " 1 ( A ) N B ) ; geS ( V ) implies VxeX g(x ) £ V and VxeX there exist 

A and B as above such that g(x)€ir 1 ( A ) N B ) i.e. VxeX, g(x)eB 

and T T(g(x ) ) 6 A or (x, g(x) )€A*BCU; hence g£S ( V ) implies 

graph(g)cu, i.e. S(V)cW(U) . 

Conversely: geW(U)n sections means Vx such that (x,g(x))eU 

that there are A and B such that xeA, g(x)eB; but x=(Tr*g)(x) 

and g(x)£Tr"1(A), i.e., g£5(V). 

DFN 10 The fine topology on Ck(M,N), where M, N are finite 

dimensional manifolds, is the topology induced by the fine 

topology on the space of sections M J^CMyN), where J^CMyN) is 

the space of k-jets from M to N. 

The coarse C^-topology is generated by finite intersections 

of sets {f: j '(f)(C)cv} for some fixed, compact C in M and open 

V in Jk(M,N). 
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For M compact, the two topologies coincide; one can see this when a 

basis of neighbourhoods is constructed for f: 

P R . 2 Let f:M+N be a C -differentiable map. Let {C^be a locally 

finite family of compact subsets of M. For each iel let B^ be 
k k an open subset of J (M,N) (an open nbd. of j (£)(C )). Then 

(i) is- j k(g) » i s a n °P e n n b d- o f f i n t h e f i n e 

Ck-topology 

(ii) Fixing [C^} such that M =
i £j Ui> varying gives us a 

basis of nbd.s of f 

PROOF: Cover M by coordinate nbd. s and choose ^ such that 

some coordinate nbd. of N and C.cU. , some coordinate nbd. of M; i i' ' 
jj 

specify B_, using two coordinate charts, i.e. B . c j (U.,V.)=U xy x i ' i i ' l i i 
vectorspace. 

k k Let 7T:J (M,N)->M. To prove (i) need only show that lg:j (g) (C ) 

cB^} is a nbd. of f, i.e. need only to construct IT open in 

Jk(M,N) such that j k(g) (M)cU implies jk(g) (Ci>cBi , Vi; Vx£C± 

(not necessarily.uC.=M) let I (x)={iel:xeC.}; j (f)(x)e B*-J1 1 X£1\X/ 
B(x) is then open and there exist an open nbd. A(x) of x in M 

IJ 
such that j (f) (A(x))cB(x) and A(x)nCi=0 unless i€l(x); 

U=TT~1(M\uCi)u^u^g(x)nTr"1(A(x))>), hence jk(f)(M)cu. 
1 k k Conversely suppose j (g)(M)cU and let x'eC^ then j (g)(x')e 

IT 1(A(x))nB(x) for some x in some projecting via 7T, X'€A(X), 
IJ 

A(x)nCi^0 and iel(x); hence B(x)cBif j (g)(x*)€Bi, i.e. 

jk(g)iC±)dB±. 
k k To prove (ii) given U, open in J (M,N) such that j (f)(M)cU, 

choose "t-Ĉ } a covering, and put B ^ U for each i; then 

{g:jk(g)CC.)cB., Vi€l}={g:jk(g)(M)cU} 

One can utilize the fact that a countable intersection of open and 

dense subsets of a complete metric space with its metric induced 

topology, is dense, to prove that C°°(M,N) is a Baive space in the 
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fine C00-topology; the property is however true, but hard to prove 

since C°°(M,N) is not even a topological vector space as scalar 

multiplication is not continuous, for M non-compact; the idea is to 
k k k introduce a metric in J (M,N) k>o, via p, (j (f), j (g))=sup k x € M 

' {pk<jk<£)<x), jk<g)(x)}, by P(f,g)=J:12"k ; (C°°(M,N),p) is a 
1+Pk 

complete metric space; the corresponding topology is the fine C00-

topology. 

For function spaces, such as C°°(U,i?), U open in M, a zero nbd. basis 

is given by the sets' {f£C°°(U,#) : || f|| k c < £, Vk, C compact in U} 

for the coarse C k (C00)-topology , where the norm || f|| k ^ sup{ | D^f (a) | , 

xeC, OF(a1,. .. ,a ), |ct|=^L1 ̂ ^ k } ; a typical open set of feC°°(U,.ff) is 

{g£C°°(U,5>: jk(f-g) (C)cU, U open zero nbd. in Jk(U,#)}. 

It easily seen that: 

PR. 3 Every sequence of functions converges in the C (C°°)-topology 

iff there exist a compact set such that the sequence together 

with its k first (all) derivatives converges uniformly on it, 

and equals the limit outside it, with the exception of at most 

finitely many of its elements. 
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III.3 The theorem of Darboux 

The theorem of Darboux states that any non-singular closed 
2n 2-form in E is locally isomorphic to the standard form, that is 

that in a suitable chart at a point, it has the standard expression 
n 

0J(x>li)==Z-1 dxiAdui. The classical proof is lengthy; it is however a 

corollary of the following more general statement on Banach manifolds. 

PR.4 Let M be a self-dual Banach space and U) a non-singular closed 

2-form on an open set U of M. Let x^eU; then 0) is locally 

isomorphic at x to the constant form o)(x ). o o 

PROOF: (S. LANG) Let 0):MxM-»# be continuous and bilinear and such, 

that the induced mappings between M and M* are toplinear 

isomorphisms; then a) is called non-singular; if such an U) exist, 

then M is self-dual. 
Let CO =OJ(X ) and to =0) +t*(OJ-O) ) te[o,l]; let us find a vector o o t o o 

field X^, locally at o such that X^ )=(JL>o ; then the local 

isomorphism X^ satisfies the requirements of the proposition. 

By Poincare Lemma there exist a one-form 9, locally at o such 

that w-U) =d0; assume 9 (x )=o; let X^ be such that i„ (Oh )=-Q '> o o t Â . t 
by the existence theorem for flows, X^ can be integrated at 

least to t=l; but XQ(0JQ)=A)Q(X(o,x)=x and DX(o,x)=id.) and 
j d - £ ( X . ( 0 ) ))=o; indeed dU) =o implies £ (to)=d(i (QJ )) and — dt "t t t Xt t X̂ . t dt 

c v > t » - * t C 5 t V + V V V > = V « V d < V V ) ) = 

X. (0)-0) -d0)=o. Q.E.D. v O 

The theorem is also used in the following form 

PR.5 If ft is a globally defined one-form on a differentiable 

manifold M, such that Q (dft)11̂ © everywhere oh M, then M is a 

contact manifold in the wider sense, i.e. there exist a 
n 

coordinate covering of M such that ft^U-j^ UI D XI 

PROOF: The condition ft (dft)11?5© implies that the rank of dft is n: 
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n + l n + i (dft) =0 since (dft) is a (2n+2) form in a (2n+l)-dimensional 

manifold and (dft)n=o contradicts ft (dft)11^; hence dft is non-
n 

singular and PR.l applies, i.e. dft= ̂ E ^ d x ^ d u ^ ft then is given 

by du+x^du^ and du is either a linear combination of the dx's 

and the du's or not; in terms of these coordinates ftA(dft)n= 
duAdx. A. . . Adx Adu. A. . . Adu and since it is different from zero 7 i n 1 n 
everywhere du is independent of the dx's and du's i.e. u can 

only be a function of the remaining coordinate and one can 

extend (UjX'SjU'S) to a new coordinate system such that 
n 

ft=du-^_1 dx^Adu^. 

III.4 Homogeneous spaces 

Given a Lie group G, a closed subgroup H of G and the quotien 

topology for G/H, the map G-K5/H is continuous; any topological space 

homeomorphic to G/H for some G and H is called a homogeneous space; 

G/H can be given the structure of a differentiable manifold (C. 

CHEVALLEY); furthermore if G acts transitively on M (M locally compact), 

i.e. given x,yeM there exist geG such that g(x)=y, then M is 

diffeomorphic to G/Gx, VxeM, where Gx={g£G:g(x)=x} is the isotropy 

subgroup of G at x. For example, G the set of n-dimensional n,n, 
2n 

linear subspaces of E , i.e. the Grassmannian space of n-planes, is 

the homogeneous space 0(2n)/o(n)*o<n) where 0(2n)={Ae0(n) : A(P)=P 1 I i 
A(P )=P ,PeGn n> and 0(2n)p=0(n)><0(n) , since 0(2n) acts transitively 

on G q n« To prove that M is homeomorphic to G/Gx, fix xeM and define 

frflfr-KJ by f(g)=g(x); the transitivity of the action of G implies that 

f(G)=M; therefore f(g)=f(g'), i.e. g(x)=g*(x), is equivalent to 

g' 1geGx and f factors through G/Gx; diagramatically: 
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G f y M 

f is a continuous bijection; since p is continuous, it is sufficient 

to prove that f is open; let U be an open subset of geG; choose a 
-1 2 compact nbd. V of the identity e in G such that V=V and gV cu 

— 1/ — 1 / 2/ 2 (where V ={g£G:g£V=>g e'v} and V =KgeG: geV=>g eV) the existence of 

V follows from the continuity of group action; there exists a 

sequence g eG such that G=ug V (G is a manifold and second-countable) , n n ' 
hence M=u(g V) (x) ; g V is compact and so is therefore (g V) (x) and we n n n 

have expressed M as a union of countably many compact sets; at least 

one (gQV) (x) has an interior point (because if we choose a sequence 

x £M, open sets W cM such that W cW , W compact and a £W \(g V) (x), n ' n n+1 n' n n n &n " 

W n_^n(g n
v) (x)=0, then nWn=0, a contradiction), hence V(x) has an 

interior point say g(x); then x is an interior point of (g S o (x) 

cV(x) (since g 1£V and V 1 = V ) and V(x)c(g ^u) (x), i.e. g(x) is an 

interior point of U; the choice of U and g was arbitrary Q.E.D. 

III. 5 Vector Bundles 

By a Cpo-bundle we mean a triple (M,B,ir) where M, B are smooth 

manifolds and 7T is a C°°-map of M into B with the following property. 

There exists a manifold F such that for any x£B, there exists an 

open nbd. U of x in M and a diffeomorphism (j>:ir (̂U)->-UXF such that 

•^•(f)^* where 7T is the projection of U*F on its first factor. 

By a C^Vector bundle we mean a bundle such that each fiber 

Mx=7T "^(x) is provided with the structure of an ^-vector space so that 

the set of its sections over any open subset U of B is a C00(U)-module. 
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III.6 Families of functions 

Given M,N,P differentiable manifolds, by a family of maps from 

M to N, parametrized by P we mean the commutative diagram: 

M x p 

where 7r̂  is the projection onto the second factor. 

An n-parameter family of functions in k-variables is a map 

F : i^-K^Ci^) ; it is a stable object iff F : ̂ x ^ - ^ x j defined by 

F(u,x)=(F(x)(u),x) is stable in the set of mappings fibered over I11; 
tr 

if fcC°°(M ) can be embedded in a stable finite dimensional family, 

we say that f has finite codimension; for example a polynomial of 

degree n, (in one variable (u)) F : E^ , F(xlt. . . > x
n. 1) = 

x«u+...+x * + u n + \ is a stable (n-1)-parameter family (of the l n— l 
coefficients (x„,...,x ,)). 1' 'n-1 

III.7 On transversality 

The following considerations provide us with some insight into 

the definition of transversality to follow; two linear subspaces L^ 

and Lg of a linear (vector) space L are said to be transversal if 

L-+L =L (e.gi two planes in IE? meeting at a non-zero angle); next 1 a 
consider two manifolds M and N and two maps of f and g from M and N 

respectively into the same manifold A, i.e. 

M £ A $ N 

such that either f(x)7*g(y) or f(x)=g(y)=aeA, (x,y)eMXN, and the 

images of the tangent planes to M and N at x and y under the action 

of f and g respectively are transversal in the tangent space of 

A at a: 

* * (TX(M) ) +g3)e <T (N) )=Ta(A) 
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The two maps are said to be transversal at (x,y) or transversal if 
i 3 

they are transversal at . every point Cx,y)eM><N (e.g. two lines in X 

are transversal only if they do not intersect) 

DFNX1 Let A and M be smooth manifolds, B a submanifold c of A and f a 

smoothma: from M into A; then f is said to be transversal to 

the submanifold B if it is transversal to the embedding i=B-»-A. 

Since the image of the tangent space and the tangent space to the 

image are not one and the same thing, note that a map of a line into 

a plane can fail to be transversal to a given line in the plane even 

when the image is normal to the given line. 

Let M and N at least C -differentiable manifolds and let 
£ k J (M,N), k>£>o, the manifold of the £-jets of C -differentiable 

k (k-£) mappings C (M,N) from M into N; let B a C -differentiable 
I 

submanifold of J (M,N) of codimension c. 

PR. 6 The set of maps in C (M,N) , whose &-jet extensions are 

transversal to B, is everywhere dense, in the fine C -topology, 

if (k-&)> max((m-c),o}, m=dim M. 

PROOF R. Thorn and H. I. Levine in: Lecture Notes in Mathematics, 

Vol. 192, §7.1 (C.T.C. WALL). 

The following is knows as the Weak transversality theorem: 

PR.7 Let f:M>A be a smooth map of a compact, smooth manifold M into 

a smooth manifold A and let B a compact submanifold of A. Then 

the maps f that are transversal to B form an open and everywhere 

dense subset of the function space of all maps from M into A 

with the Ck-topology k>max {(dim M-dim A+dim B),o}. 

If B is not compact, "open" must be replaced by "intersection of a 

countable family of open sets"; if M is not compact one uses the 

fine topology. 

There is a generalization in the case where the space of maps from 

M into N is taken to be the space of sections of a fiber bundle with 
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base M and fiber N or cano.nLcaL or contact or volume preserving 

mappings (or transformations) (S.M. VISIK). However, since the 

whole purpose of this exercise was in fact to reduce the statements 

and proofs about Lagrangian (Legendrian) fibrations, i.e. canonical 

Ccontact) invariants, into statements about, rather general, families 

of functions, one only needs a rather simplified version of the PR.6 

above, on smooth manifolds and mappings and only for the Weak (coarse) 

C°°-topology (G. WASSERMANN, §1.22 and 1.23). 

III.8 The Local Ring 

Given two topological spaces X and Y, a map germ f at x, xeX, 

is an equivalence class f o f continuous maps f:U-»*Y, U a nbd. of x in X, 
where f is 

^equivalent to f':V->-Y iff lthere exist a nbd. W of x in X such that 

=f' W ,„; a member f of an equivalence clan f is called a w WcUnV and f 

representative of f; let E(n,m)(E(n)) be the set of germs at zero of 

C«(/1,lin)(C°°(ffn)); C°°Cffn) is a ring and A={f£C°°(#1) : f vanishes on a 

nbd. of zero} is an ideal; by the first isomorphism theorem there 

exist (j) such that the following diagram: 

_ ,mn„ h C °°(2? ) 

/A 

commutes and kernel (<J>)=kernel (h)/^ ( H i s "the natural homomorphism 

f -»• A+f) ; A=kernel(h) and therefore kernel ($) equals the zero 

subring of C°°(i?n)/^, hence (f> is injective; since h is surjective 

E(n) is isomorphic to C°°(5n)/^. Similarly if m(n) is the set of 

germs at zero of C00(^n) vanishing at zero, the following diagram 

commutes 



142 

E(n) L _ > B 

E ( n ) / m ( n ) 

and E(n)/ . v is isomorphic to M; hence m(n) is a maximal ideal. We m(n) 

have therefore proved: 

PR.8 E(n) is a local ^-algebra 

PROOF: Need only to show that the unit germ (the germ of the identity 

map) belongs to the same ideal with f,f(o)^o; choose a nbd. U 

of zero such that f^o on U and U'cU and define f'=(j) »f+(l-<{)), 

where (|)€C<»(5n) is zero outside U, <1 outside U' , equals 1 on 

U' and ^o everywhere else; f > o everywhere, f' 

f- V f , =1. 

U' = f u 311(1 

PR.9 m (n) is a finitely generated E(n)-module; in particular is 

generated by all monomials of degree r. 
r E(n) (n+rl* PR.10 J = / r+lv is a local ^-algebra with dimension / m (n) & n!r! 
as an iP-vector space; J is isomorphic to . . . ,x 

r+1 (x^,...,x ) , i.e. the quotient of the ring of polynomials 1 n 

in x by its ideal generated by ) raised to 

the power (r+1). 

PR. 11 (Nakayama Lemma) Let R be a local ring and m its unique 

maximal ideal; let A be a finitely generated R-module. Then 

m.A=A implies A=o 

PROOF: (TH. BROCKER, 4.15) 

Given A an R-module and 8 a submodule of A (i.e. an additive 

subgroup closed under the multiplication by every element of 

the ring R) an R-module structure can be defined on the 

quotient A/g by r. (a+8)=r .a+8, aeA, VreR and V coset a+8. 

PR. 12 Let B,C be R-modules such that A,8cC; then Ac8+m.A implies 

Ac B 
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A*B PROOF: By the remark above (8+m .A) /g=m* ( / g ), but by the second 
A+B A A isomorphism theorem /g= a n d by Nakayama /<\ns=0> hence 

A=AnB or AcB 

Finally: 
E E PR. 13 dim /,<» is equivalent to dim / <°° J m» J 

proof* Since m « J c j , c ^ / _ __ _ FKUUJ;- ' /J m« J; conversely from E=m»# (direct sum) 

m«J+J =J (vector-space sum) and m'J+J^,/ = J/ _ is isomorphic m M m* J m*J 

T«T -»' b u t d i m J/ T=dim JS/ _ T <Jn, since dim J <n and m.JnJw m-J m'JnJjp ' i? 
E E E dim(( / T)/(J/m« J) )=dim / <°° implies dim / <°°. m* J J m* J 

All the algebraic material used is from: B. Hartley and T.O 

Hawkes, Rings, Modules and Linear Algebra, Chapman & Hall, 1970. 
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III.9 An interpretation scheme for the main classification theorem 

in the theory of singularities 

Let V^eQniV,M), V a nbd. of zero in be a family of potential 

functions parametrized by the coordinates xeU, U an open nbd. in M0, 

(external parameters of the model); when the extremal condition are 

fixed, at a fixed point xeU, the system, subject to the dynamic 

described by the potential function V , will stay at a minimum of V ; x x 
V x are generically Morse functions (their minima are isolated and the 

quadratic form of the second derivatives is nondegenerate, i.e. V x is 

2-determined) at the singular point; however as x varies, one may ask 

which kinds of singularities can occur, generically, in the family of 

functions V ; the local change in V around a point X€U and a X 

singular point u e ^ correspond to a deformation of the singularity 

V x around x; the versal deformations give a description of all 

possible deformations; one wants to see those points in the control 

space (i.e. the space of deformation parameters x) which are most 

significant for the catastrophe i.e. the points where V^ has a 

singularity of order higher than two; in other words those points 
where a local extremum disappears; minima of V x (unfolded) are called 

local regimes and a process for a germ Vx (unfolded) is a 
section s of the bundle .ff̂ xu-HJ such that (s(x),x) is either a local 

regime or at infinity; a regular point of a process is a point in the 

subset U where the section is locally defined and continuous on a nbd. 

of the point, which is equivalent to saying that over a nbd. of the 

point there exist a homermorphism of the bundle taking the section 

onto a constant section; a catastrophe point is a non-regular point; 

the morphology or the catastrophe set is the set of all catastrophe 

points; a convention assigns a process to the unfolded potential 

function and there are two basic ones to consider: the Maxwell 

convention states that s(x) is a point where V^ has its lowest 

minimum (as this may be at minus infinity, this convention is best 
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used when V has only finite minima; clearly catastrophe points 

occur when V attains an absolute minimum in two places) ; the X 

perfeat-delay convention states that the section s will remain 

continuous for as long as possible, i.e. s(x) will follow a continuous 

family of minima until these minima disappear. Thus a particular 
2 catastrophe determines a germ fem(k) which has a deformation 

Fem(k+n) with the points D =tt(A ), important candidates for catastrophe r J? 
points, where TT.'^XU-^U, A = {(u,x)<s:Z : d2F is a degenerate}, F F u 
£_= {(U^EFF^xu : D F=o}; 2 , A_ and D are also known as the IT U F J: Jc 

catastrophe manifold, the singularity set and the bifurcation set 

respectively. (R. THOM) 
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