
THE MAGNITUDE OF THE 

TROPOSPHERIC RESPONSE 

TO SOLAR VARIABILITY 

by 

Neill Simon Cooper 

Atmospheric Physics Group 

Imperial CoLlege 

LONDON 

A thesis submitted for the degree of Doctor of Philosophy 

at the University of London 

May, 1981 



ABSTRACT 

The possible effect of solar variability oil atmospheric tides 
and planetary waves is considered. Each may be sensitive to middle 
atmosphere variations, and in this way solar variability could 
affect the troposphere. 

Tides in the atmosphere are principally due to ozone absorption 
of Ultra-Violet (UV) radiation and water vapour absorption of visible 
radiation. The semi-diurnal (12 hour) tide is mainly due to the 
former forcing. So changes in the solar UV output will result in 
changes in the semi-diurnal tide. 

If, as has been suggested by Heath and Thekaekara (1977), the 
solar UV output increases by 207<> from sunspot minimum to sunspot 
maximum, then the semi-diurnal tide would significantly increase in 
amplitude. However, from tropical data the semi-diurnal tide is 
found not to vary over the sunspot cycle. From this it is concluded 
that the solar UV output varies by, at most, a couple of percent 
over the sunspot cycle. 

The diurnal (24 hour) tide has only a small component due to 
ozone absorption of UV. As the remaining forcings are tropospheric, 
and vary negligibly over the sunspot cycle, the diurnal tide should 
vary insignificantly with solar activity. However, it is found to 
decrease significantly from sunspot maximum to sunspot minimum. 
This variation remains unexplained. 

It has been suggested by Bates (1977) and Geller and Alpert 
(1980) that planetary waves are sensitive to solar activity, due to 
alterations in the middle atmosphere winds. Using a quasi-
geostrophic wave model it is found that wave number 2 is insensitive 
to middle atmosphere wind changes. However, observational studies 
have suggested that it is this wave which is most sensitive to 
solar variability. It is shown that neglecting radiative cooling 
results in gross overestimation of the sensitivity of wave number 
1 to middle atmosphere wind changes. It is also found that the 
effect of changes in these winds, not necessarily in response to 
solar activity, is to produce perturbation waves which have vertical 
phase lines at the ground. 
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The LORD answered Job: 

"Have you entered the storehouses of snow 
or seen the storehouses of the hail? 

What is the way to the place where the 
lightning is dispersed, 

or the place where the east winds are 
scattered over the earth? 

Does the rain have a father? 
Who fathers the drops of dew? 

From whose womb comes the ice? 
Who gives birth to the frost from the 

heavens? 

Who endowed the heart with wisdom, 
or gave understanding to the heart? 

Who has the wisdom to count the clouds? 
Who can tip over the water jars of 

the heavens?" 
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INTRODUCTION 

Though the study of sun-weather relationships has a long 

history, recently there has been a growth of interest. There is 

an abundance of papers claiming to show an observed tropospheric 

response to solar variability. However, meteorologists are 

sceptical and solar activity is not included in their prognostic 

models. This, the proponents of sun-weather connections claim, 

results in inaccurate forecasts. But there is as yet no way that 

solar activity could be included in meteorological models, for there 

is no generally accepted theory which predicts tropospheric changes 

of the.observed magnitude in response to solar variability. This 

also casts doubt on the observations, for they are not supported 

by any theory. 

This thesis concentrates on one particular theory, that the 

troposphere is noticeably affected by solar variability due to 

alterations in the middle atmosphere. The idea that tropospheric 

waves may be altered by solar variability, due to changes in the 

middle atmosphere affecting their vertical propagation, was first 

suggested by Hines (1974). In the model of Bates (1977), planetary 

waves in the troposphere are sensitive to middle atmosphere zonal 

wind changes. However, this result is contrary to that of Geller 

and Alpert (1980), who found that the effect of zonal wind 

alterations on planetary waves is negligible more than three scale 

heights below the zonal wind change. 

The effect of solar variability on atmospheric tides has 

previously received scant attention. This may be because atmospheric 

tides do not affect the weather. However, as the semi-diurnal tide 
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is predominantly forced by ozone absorbing solar Ultra-Violet 

radiation, it is a useful tool for investigating any possible 

middle-atmospheric response to solar variability. 

Before the effect of solar variability on the atmosphere can 

be considered, the variations in solar output need to be assessed. 

This is done in Chapter 1, where upper estimates for the variations 

in Ultra-Violet and total radiation output over the sunspot cycle 

and solar rotation period are considered. The effects that such 

variations would have on the middle atmosphere, in particular 

ozone concentrations and the zonal wind, are described in 

Chapter 2. 

Of the many suggested mechanisms by which solar variability 

may affect the troposphere, a few are outlined in Chapter 3. It 

is also shown therein that for soLar variability to be important it 

must affect the troposphere via an amplification mechanism, whereby 

small changes in the total solar energy output result in 

proportionately much larger changes in the troposphere. 

The nucleus of this study is in Chapters 4 and 5. In Chapter 

4 the effect of solar variability on atmospheric tides is considered. 

Theoretical values for the effect of a 207» change in solar Ultra-

Violet output (Section 4.5.1) are compared with those observed 

(Section 4.5.2). As well as this, a new simple model of tides is 

presented (Section 4.3). It qualitatively predicts the main 

seasonal and latitudinal variations in the diurnal, semi-diurnal 

and ter-diurnal tides. 

The effects of solar variability on planetary waves, due to 

changes in the middle atmosphere, are analysed in Chapter 5. The 
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forcing due to ozone absorbing Ultra-Violet radiation is shown, in 

Section 5.2.1, to be negligible. The zonal wind alterations used 

here are more realistic, and smaller, than those of Bates (1977) 

and Geller and Alpert (1980). The effect of radiative (Newtonian) 

cooling on the sensitivity of the waves to wind changes is 

considered. As the theory predicts changes which are inconsistent 

with the observations, the latter are also considered. In Section 

5.4.1, the observations of Parker (1976), of the sunspot cycle 

variation in surface pressure, are briefly discussed. The 

observations of King et al. (1977), of large variations in 500 mb 

height over the solar rotation period of 27.5 days, are considered 

in more detail in Section 5.4.2. 

The principle conclusions of this study are given in the 

final Sections of Chapters 4 and 5. 
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CHAPTER 1 

THE SUN 

1.1. Introduction 
i 

The Sun is a very normal star, neither large nor small, neither 

bright nor dim, neither young nor old, neither hot nor cold. It 

is located in one of the spiral arms of a medium sized, middle aged 

Galaxy. However, to our world the Sun is vitally significant. 

Without its light and energy there would be no life on earth and 

no atmospheric motions, for the temperature would be close to 

absolute zero. 

We are interested here in the Sun's energy output and its 

possible changes so as to evaluate the effect such changes may have 

on the atmosphere. Compared to "variable stars" the Sun is constant, 

but it does have transient features. These features, such as sunspots 

and solar flares, are collectively referred to as "solar activity". 

Sunspots are areas of low surface temperature and hence emit 

less radiation than their surrounds, while the largest flares 
26 

release up to 10 Watts. Even so, these effects will only change 

the total solar output by, at the largest estimates, a fraction of 

a percent. However, certain parts of the solar output, such as 

X-ray radiation and high energy particles, are highly variable. 

The effect of solar activity on these and other solar emissions, 

are now considered. 
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Figure 1.1 The annual mean sunspot number, A.D. 1700 - 1975 
From Eddy (1977) 

Figure 1.2 Solar butterfly diagram, A.D, 1898 - 1976. After 
Yallop and Hohenkert (1980). 



1.2. Solar Activity 

The only solar activity observable with the unaided eye is 

very large sunspots. The Chinese recorded 112 sunspots between 

28 B.C. and 1638 A.D., without the aid of telescopes. In 1610 

astronomy was revolutionised by the invention of the telescope. 

This was an epoch of high sunspot activity, so when astronomers 

pointed their new instrument at the Sun, they observed many 

sunspots. 

By observing a sunspot group over a period of a few days it 

is clear that the Sun rotates with a synodic (observed from the 

earth) period of about 27 days. Other important, but less obvious, 

characteristics available from sunspot data were not noticed until 

more than two centuries later. It was in 1843 that Schwabe 

announced that he thought there was a 10 year cycle in the number 

of sunspots. This result was not generally accepted until Wolf, 

using observations since the time of Galileo, found the period to 

be 11.1 years. This quasi-periodic behaviour in the sunspot number 

is clearly seen in Figure 1.1 which also shows the "Maunder Minimum" 

of very few observations of sunspots between 1650 and 1700. 

Variations in amplitude from one solar cycle to the next can 

be seen from Figure 1.1. The period is not constant but has varied 

between 7 and 17 years. Only a quarter of the well documented cycles 

(since 1750) have periods differing from 11.0 years (the average) 

by less than 6 months. So the sunspot cycle is only quasi-periodic. 

This introduced difficulties in evaluating and modelling the 

variations in solar output over the sunspot cycle. 

As well as the number of spots varying during the sunspot 
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cycle, Carrington (1858) observed that their latitude also changes. 

The first spots in a new cycle appear between solar latitudes 

20° and 35°. When the number of spots is largest ("Sunspot 

Maximum") they form between 5° and 30°, while at the end of the 

sunspot cycle spots develop below 15° latitude. This is shown 

in Figure 1.2, from Yallop and Hohenkert (1980), where the latitude 

of spots is plotted against time. From this diagram it can be seen 

that there is an overlap between sunspot cycles of a couple of 

years, during which time both the first spots of the new cycle and 

the last spots of the old cycle are simultaneously present. 

Sunspots (and solar activity in general) tend to congregate 

together in groups which are "centres of activity". The Wolf 

sunspot number (R) used in Figure 1.1, is calculated from both 

the number of individual spots (f) and the number of groups (g) 

by the formula 

R = k(10g + f) 

The k factor is to standardise the observing station. The 

formula is somewhat arbitrary but is still the primary measure of 

solar activity. 

Closely associated with sunspots are solar flares, which are 

sudden, short lived increases in intensity. The frequency of these 

features, which are best observed in the Hydrogen Alpha light, is 

proportional to the sunspot number. Small flares last for only a 

few minutes but the brightest flares are observable for several 

hours. 

Flares are only rarely observable in visible light, and so 

they have little effect on the intensity of solar emission of 
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visible (and Ultra Violet) radiation. However they have a dominating 

influence on solar cosmic ray and X-ray radiation. So these 

emissions vary with the sunspot cycle as the number of flares does. 

The other main signs of solar activity are faculae (bright 

areas near sunspots which are visible in white light) and 

prominances (gaseous sheets in the chromosphere, also called 

filaments). Faculae, being bright areas, emit more visible 

radiation than the surrounding surface. Apart from this, the effect 

of faculae and prominances on solar emission is unknown. 

1.3. Solar Rotation 

The first sunspot observations by telescope revealed that the 

Sun rotated with a period of about one lunar month. What was not 

realised was that the Sun does not rotate as a rigid body. The 

phenomenon of "differential rotation" (i.e. material at different 

solar latitudes rotating with different angular velocities) was 

first noticed by Carrington (1863). The synodic period of rotation 

varies from about 27 days, at the solar equator, to over 40 days, 

at the poles. By analysing 56 years of sunspot data, Newton and 

Nunn (1951) derived an expression relating the synodic period (t) 

for recurrent sunspots to solar latitude (B):-

t = 26.87 + 5.93 sin2B (1.1) 

A consequence of differential rotation is that, as the 

average latitude of sunspots varies over the sunspot cycle, the 

average rotation rate of sunspots also varies. This is seen in 

Figure 1.3 where the synodic period at the average latitude of 

sunspots for 1943-1977 is plotted. The sunspot distribution is 

from Fracastoro and Marocchi (1978) and Newton and Nunn's formula 

8 



Figure 1.3 The variation ofthe synodic period at the mean sunspot 
latitude^, 1943-1977. Sunspot data from Fracastro and Marocchi (1978), 

using the formula of Newton and Nunn (1951). 
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(1.1) is used to calculate the synodic period at the average 

latitude. 

By using formula 1.1, however, one of many formulae which 

slightly, yet significantly, differ has been chosen. The 
2 

difference is not due to the use of the form t = a + b sin B, for 

this is generally accepted as being a suitable representation of 

solar rotation for sunspot latitudes (B < 40°), but rather in the 

actual values of a and b taken. Results differing by one or two 

percent are obtained if non-recurrent spots, small spots or all 

spots are considered instead of recurrent spots. Similarly 

slightly different results are obtained if faculae, filaments, 

coronal holes or the corona are used. 

Instead of observing a "tracer", which is a feature on the 

solar surface and so may have a velocity relative to the local 

fluid, direct measurements of velocity can be made by analysing 

the Doppler shift of spectral lines. Using this method Howard 

and Harvey (1970) found that 

t = 28.18 + 3.83 sin2B (1.2) 

which for the equator is almost 57. higher than equation 1.1. They 

also found day to day variations of the order of 57». 

A third technique for measuring solar rotation rates has been 

suggested by Rhodes et al. (1979). The method is based on the 

fact that waves in a moving medium are Doppler shifted. In this 

case the frequency of surface pressure waves on the Sun (p-modes) are 

affected by solar rotation. By considering the two dimensional 

power spectra (in horizontal and temporal wave number) at any point, 

the doppler shift can be estimated, and hence the rotational 
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velocity. P-modes are used because they have very distinctive 

power spectra with well defined lines. This method may become a 

viable alternative to tracer and spectroscopic Doppler shift 

measurements. 

As well as depending on the method used the rotation rate 

also varies from year to year. Livingston and Duval1 (1979), 

analysing spectroscopic Doppler shifts, calculated that the 

equatorial rotation rate rose by 3.7(± 0.7)7» between 1966 and 1978. 

For the same period it was found that the polar rotation rate 

varied with the sunspot cycle, being about 87. lower at sunspot 

maximum than at sunspot minimum. The Sun's rotation rate also 

depends on altitude as well as on latitude, phase of sunspot cycle 

and observational method used. Slightly different observations, 

illustrating this variability, are shown in Figure 1.4. 

For investigating possible tropospheric responses to solar 

rotation a single value for the rotation period would be useful, 

though alternatively a "key date" method is possible. This period 

can be obtained by evaluating the power spectrum of a solar 

property, as in King et al. (1977). They obtained a slightly 

different result for 10.7 cm flux (27.51±0.15 days) compared to 

that for sunspots (27.37*0.14 days) for 1963 to 1972 (see Figure 

1.5). Their result for sunspots compares well with the value of 

27.33 for the mean rotation rate of spots (weighted by area) for 

the same period. Another value that can be used is the rotation 

period of the Interplanetary Magnetic Field. Like the values in 

Figure 1.3 this is in fact variable rather than a single value. 

All of these are attempts to approximate the actual period of 
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interest which is that in the solar output. Like the solar 

rotation rate this may vary with wavelength observed - assuming, 

that is, that there is any significant variation. 

1.4. Solar Output 

The Sun produces vast amounts of energy, and energetic 

particles, because of nuclear fusion reactions in its core. This 

energy is predominantly emitted as electromagnetic radiation with 

wavelengths between 3000& and 20000&. Only a minute proportion of 

the total energy emitted is at those wavelengths (Radio, X-ray and 

far Ultra-Violet) where the output greatly varies. Of predominant 

interest in this work will be the Ultra-Violet radiation which 

contributes VU to the total energy output from the Sun and, it has 

been claimed, varies significantly. It is absorbed in the 

stratosphere by ozone and this is considered in Section 2.2. 

1.4.1. Average Solar Output 

The amount of energy received by a unit area in a unit time, 

from the Sun at a distance of one astronomical unit (average earth-

sun distance) is called the "solar constant", S. It was not until 

1969 that continuous measurements of S from above the terrestrial 

atmosphere were made (from Mariners VI and VII). Using these, and 

other recent observations, FrBhlich (1977) calculated an average 

value of 

S = 1373(± 20) Wm* 2 

The distribution of this energy with wavelength is shown in 

Figure 1.6 using data from Allen (1973). Assuming that the Sun is 

a perfect black body radiator (which is true for visible wavelengths) 

then, using Wien's displacement law, the peak in the spectrum at 
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Figure 1.6 The Solar Spectrum. "MAX" is at sunspot maximum, "MIN" at 
sunspot minimum. Values from Allen (1973) 



4600X implies a solar surface temperature of 6300K (slightly higher 

than observed). When there is no solar activity the solar spectrum 

is close to that of a black body for all wavelengths longer than 

3000&. Below this, there is a wealth of emission lines and 

emission continua, formed at temperatures of between 8000K and 

4000K. However if the spectrum (Figure 1.6) is analysed with 

greater resolution then it is found that absorption and emission 

lines are superimposed on the continuum at all wavelengths, though 

the continuum is less apparent at lower wavelengths. 

1.4.2. Effect of Solar Rotation 

Regions of solar activity can persist for several rotations of 

the Sun. Vitinskij (1969) has also suggested that there are 

"prefered longitudes" at which activity will occur. If sunspots 

do alter the solar output then this effect will vary with rotation, 

so creating an apparent cycle of about 27 days. (The total*output 

of the Sun will not have this cycle, but the output seen from the 

earth will.) This effect can be seen in Figure 1.5 (note also that 

subsidiary peaks in the two graphs coincide, reinforcing the 

dependence of solar 10.7 cm radiation on sunspot number). 

Sunspots, being relatively cool, emit less radiation than the 

average solar surface; faculae, being warm, emit more. Sunspots 

and faculae occur together, so the two effects will tend to balance 

one another. Using typical values for the total area and mean 

temperature of sunspots and faculae, their combined effect on the 

solar output can be evaluated. This was done by Foukal et al. 

(1977) using data from 1969, a time of maximum solar activity. They 

calculated that sunspots would decrease the solar output by not more 
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Figure 1.7 (right) Variation in 
UV solar spectral irradiance per 
solar rotation. 
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Figure 1.8 (below) Measurements 
of the solar constant as function 
of date. Horizontal line is the 
mean value, least-squares linear 
regression fit to 1966-1969 data 
is also shown. From FrOhlich (1977) 
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Figure 1.9 Variations in solar spectral irradiance apparently 
related to the sunspot cycle, based on observations from 1964 
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than 0.057o while faculae would have a maximum effect of +0.47.. This 

they compared with the Mariner VI and VII observations of the total 

solar irradiance between 2000? and 500000& (99.997. of S). They 

found no observable evidence for sunspots or faculae affecting the 

solar constant, with an upper limit, due to experimental uncertainty, 

of 0.037o. So any change in the solar constant, greater than 0.037., 

over the sunspot cycle or during solar rotation, cannot be due 

directly to the temperature of sunspots and faculae. 

There is a variation in the 10.7 cm flux because of rotation. 

This is because at this wavelength, as well as there being the quiet 

Sun contribution to solar output, there is also a component, called 

the S-component, whose intensity is related to sunspot areas. 

Whether Ultra-Violet radiation also varies with rotation is the 

subject of debate. Heath (1973) claims that it does, slightly 

(17o) near visible wavelengths but greatly at extreme Ultra-Violet 

wavelengths, as shown in Figure 1.7. 

The effect that such a variation, as outlined above, would 

have on ozone, tides and planetary waves, is described later (in 

Chapters 2, 4 and 5 respectively). In those calculations the 

amount of variability used is that given by Heath, and is considered 

as an upper limit of the actual variability. 

1.4.3. Effect of Sunspot Cycle 

As extra terrestrial observations of solar irradiance have 

been made for little over a decade, it is difficult to deduce 

whether the solar constant varies with the sunspot cycle. As- the 

number of sunspots varies there is, a fortiori, a change in the 

solar output. But as shown by Foukal et al. (1977) this effect is 
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no more than 0.037». 

Though satellite measurements are more accurate than surface 

ones, the instruments used suffer from severe degradation, so any 

variation with a time scale of years cannot be easily separated 

from instrumental effects. Figure 1.8 is taken from FrBhlich (1977) 

and includes balloon and rocket as well as satellite observations. 

It indicates that there may be a cyclic variation in S of amplitude 

1.57» with a minimum at sunspot maximum. However, an alternative 

interpretation of the data is that S was constant. Until more 

reliable and continuous measurements, over at least one sunspot 

cycle, have been made, this problem cannot be resolved. 

There are similar problems with measurements of the solar flux 

in particular spectral bands. Heath and Thekaekara (1977) have 

claimed that the solar flux at 1750& is about a factor of 2.5 

greater at solar maximum than at solar minimum, while at 3000& the 

variability is about 187» (see Figure 1.9). However, in a footnote 

to their paper, Simon (1977) questions the values at about 2000& 

and suggests that the results are too high. Smith and Gottlieb 

(1974) state "there is no solar cycle effect longwavewards of 

1500&" but provide no observations to support this claim. 

It is known that the sunspot cycle has important effects on 

some parts of the solar output. An extreme case of this is solar 

particles, which are primarily released by flares, the frequency 

of which is governed by the sunspot cycle. However, this and the 

other cases of solar output modulated by the sunspot cycle, occur in 

energetically insignificant portions of the output. 
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For later calculations it will normally be assumed that the 

only variability that need be taken into account is in the Ultra-

Violet ( X < 3500&), where the values obtained by Heath and 

Thekaekara (Figure 1.9) will be used. It is clear from the above 

discussion that this model does not necessarily represent the true 

behaviour but will be useful in predicting the maximum expected 

tropospheric response to solar variability. 
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TEMPERATURE 
Figure 2.1 Variation of the mid-latitude temperature with height. 
Also given are the names used to describe different regions of the 
atmosphere. z is the height in kilometres, while X is in scale . 

heights. 
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CHAPTER 2 

THE ATMOSPHERE 

2,1. General 

On the earth, atmospheric motion is due entirely to solar 

heating. An immediate consequence of this is that variations in 

solar output will affect the atmosphere. The vertical variation 

of temperature, shown in Figure 2.1, is determined by absorption 

of solar radiation. This is most noticeable at the stratopause, 

where the warm temperature is due to ozone absorbing Ultra-Violet 

radiation. In the troposphere, the gradient of temperature is 

shallower than would occur in radiative equilibrium for in that 

case the atmosphere would be unstable. 

The nomenclature used to describe the various levels in the 

atmosphere is shown in Figure 2.1. The region between the 

tropopause and the mesopause is referred to as "The Middle 

Atmosphere". We will consider what effect changes in the middle 

atmosphere, such as those which solar variability may cause, would 

have on the troposphere. 

\ 

The only effect of solar variability on the middle ai tiosphere 

considered here is that in Ultra-Violet radiation (UV). If, as 

suggested by Heath and Thekaekara (1977), UV greatly varies with 

solar activity, then more radiation will be absorbed by ozone at 

solar maximum than at solar minimum. This would warm up the 

stratopause and probably also affect the mean zonal winds, which 

are related to the latitudinal temperature gradient. 
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Figure 2.2 The density of air and ozone 
in mid-latitudes as a func-tion of altitude. 
Note that thg density scales differ by a 
factor of 10 so that curves intersect at 
1 part in 10 of ozone. From Thrush (1980), 

Figure 2.3 Estimated ozone variations in North Polar 
and north temperatelatitudes based on ozonesonde 
measurements in 8-16,16-24 and 24-32 km layers, Umkehr 
measurements in the 32-46 km layer, and total-ozone 
measurements. A 1-2-1 smoothing has been applied twice 
to the ozone values at seasonal intervals. The vertical 
bars extend two standard deviations on either side of 
the mean. Tick marks are in summer. From Angell and 
Korshover (1979) 
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2.2. The Ozone Layer 

For the reasons given above, ozone has a very important effect 

on the stratosphere. However, its greatest concentration is only 
13 

3 parts per million while it is densest (10 molecules per cc) at 

25 km (see Figure 2.2). As ozone absorbs UV effectively, 

concentrations of only 10"^ molecules per cc absorbing significantly, 

the maximum heating, at about 50 km, is above the maximum ozone 

concentration. The "ozone layer", defined as the region where 

heating due to ozone absorption is important, is between about 3,0 

and 60 km. 
- 2 - 2 The ozone layer absorbs about 20 Wm of UV, and 10 Wm of 

visible radiation when the sun is at the zenith. As the heating 

is mainly due to UV, changes in it will alter the stratopause 

temperature and also the photo-chemical equilibrium, and hence 

ozone concentrations. Callis and Nealy (1978) and Penner and 

Chang (1978) predict the effect of large changes in UV. Angell 

and Korshover (1978, 1979) show the observed changes in ozone 

concentration and stratospheric temperature from year to year. 

The ozone layer may also be altered by other aspects of solar 

variability. Dlltch (1979) considers the effect of solar proton 

events, modulation of N0 x production by galactic cosmic rays and 

auroral electrons. The effects are slight, and are ignored here. 

To model its effect, UV variations need to be parameterised. 

The results of Callis and Nealy (1978) used here have a 207„ sunspot 

cycle variation between 21008 and 30708, and a 50% variation 

between 17508 and 21008. The results of Penner and Chang (1978) 

involve changes of 357» below 26008, 07« above 34008 and a linear 
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Figure 2.4 Temperature variation 
within given height layers for the 
western hemisphere : (a) North Polar 
region, (b) north subtropics and 
(c)equatorial zone. A 1-2-1 smoothing 
has been applied twice to successive 
seasonal values after removal of an 
annual oscillation. When more than 
one station is available, the 
vertical bars on the rocketsonde 
data extend two standard deviations 
on either side of the mean. Tick 
marks are in summer. From Angell 
and Korshover (1979). 
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interpolation in between. The models show that an increase in UV 

intensity results in the ozone concentration being increased by 

about 107<> below 35 km. However, higher than this temperature 

feedback, due to the temperature dependence of reactions involving 

ozone, becomes important. Near the stratopause increased UV results 

in decreases in ozone of up to 207„. (This is illustrated in Figure 

4.19.) Concurrent temperature changes have a maximum near the 

stratopause of 15°C. 

These values are larger than observed. Angel1 and Korshover 

(1979) found the ozone concentrations for altitudes below the 

stratopause at different locations. There is no clear sunspot 

cycle variation at any level, nor in the total ozone, at North 

Polar and northern temperate latitudes (see Figure 2.3). This is 

to be compared with the theoretical decrease of about 107. from 

1969 (sunspot maximum) to 1975 (sunspot minimum). 

Similarly Angell and Korshover (1978) sought a solar cycle 

effect in stratospheric temperature. They divided the hemisphere 

into three latitude regions. A solar cycle effect was most 

apparent in the North subtropical region, where the stratospheric 

temperature was 2 to 4° higher at sunspot maximum than at sunspot 

minimum, (see Figure 2.4). The data for the polar region was very 

noisy and no significant variation is apparent, while in the tropics 

the most noticeable feature is a cooling trend. As only one sunspot 

cycle is considered the localised, sub-tropical, variations may not 

be caused by solar variations. Penner and Chang (1978) calculate 

the effect of UV variations on stratospheric temperature to be 

about ±3°C. While this agrees with Angell and Korshover's 

25 



sub-tropical observations, it is larger than their tropical 

observations. 

So the sunspot cycle effect on both ozone and stratospheric 

temperature is overestimated by Penner and Chang, and even more so 

by Callis and Nealy (1978). This may be due to an overestimation 

of sunspot cycle variations in UV, a conclusion reached in Chapter 

4 from an analysis of tidal variation. 

Perturbations in the middle atmosphere temperature profile 

result in zonal wind changes, through the thermal wind relationship: 

3 y . _ j l l . f i T l 
3 2 ~ a f d e U n " 

So if the sub-tropical stratosphere is warmest at sunspot 

maximum, while the polar and equatorial regions are unaffected, 

then the mid-latitude westerlies will be strongest at sunspot 

maximum. Assuming a maximum warming of 3°C at 40 km, decreasing 

linearly to 0°C at 15 km and 90 km, and assuming the wind is 

unaltered below 15km, the mesospheric jet will be strengthened 

by 6.5 ms and raised by 0.65 km. 

These values are very similar to those predicted by Schoeberl 

and Strobel (1978b), who use a quasi-geostropheric middle atmosphere 

model to find the effect of ozone and solar variations on the 

middle atmosphere. They predict that the mesospheric jet should 

increase in strength by about 7 ms \ and rise 1 km, for each 

107o increase in S. As almost all of the heating in their model was 

due to UV being absorbed by ozone, the results are equivalent to a 

change in UV of 107o with .no variation at other wavelengths. They 

also predict a temperature rise of 6°C, per 107o increase in UV, at 
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the stratopause, larger than the result of Penner and Chang (1978), 

but smaller than that predicted by Callis and Nealy (1978). 

From the above, if there is a ± 107<> variation in the solar UV 

output over the sunspot cycle, then the mesospheric jet should vary 

in strength by dk 7 ms ^ (10%) and in height by ± 1 km (the mean 

height is about 60 km). Observations of the winds at this height 

have been made, from rocketsondes, for the last 20 years. Nastrom 

and Belmont (1980) analyse these, searching for a solar cycle effect. 

However, the response they find is in the semi-annual cycle. At a 

height of 60 km the semi-annual cycle has an amplitude of ~ 2 0 ms 

They find the solar cycle effect on this is ±3*5 ±1-7 ms They 

make no reference to any similar effect on the mean wind, or on the 

annual cycle. One can but assume that they found none. 

In Section 5.3.2, the above zonal wind changes are used to 

investigate the effect of UV variability on tropospherically forced 

planetary waves. 
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CHAPTER 3 

MECHANISMS 

There have been numerous reports of tropospheric responses to 

solar variability. In contrast to this, there is a dearth of 

suggestions of realistic mechanisms whereby (slight) solar 

variability may noticeably affect the troposphere. Those mechanisms 

which at present receive the widest interest are described below. 

3.1. Direct Calculations 

The simplest model for predicting the global average temperature 

is to assume radiative equilibrium, so 

Energy absorbed = Energy emitted 

Tt R 2 ( I - a ) 5 = V i t R ^ f * 
_ 2 

where S is the solar constant (1370 Wm ) 

a is a global albedo (~0.3) 

8 is a global emissivity (^0.9) 

f is a global temperature -8 -2 -4 o- is Stefans constant (5.7x10 Wm K ) 

and R is the earth's radius 

This zero-dimensional model assumes that the albedo and 

emissivity are constant over the earth. This is not true, but from 

the mean values given above T®*261K, so the model gives reasonable 

results. Now also assume that if the solar constant, and hence T, 

changes, a and t are unaffected (so there is no albedo, or 

emissivity, feedback). Then 

dS _ tyS 
dT T 

So a change in the solar constant of 0.!7o (an upper estimate for 
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the variation over the sunspot cycle, see Section 1.4.3) would 

imply a mean global temperature change of 0.1°C. Refinements of 

the model lead to greater sensitivity. Manabe and Wetherald (1967) 

assuming radiative-convective equilibrium, found that the 

tropospheric response was 0.2°C, double that for the simplest model. 

This simple model also does not include the fact that variations in 

solar output depend on wavelength. 

As the total mass of air in the atmosphere is constant, it is 

not easy to calculate how pressure will depend on energy input. 

Green (1979) evaluated the response to a sinusoidal variation in 

the solar constant of amplitude A S and period as follows. The 

excess heat input per unit mass is 

which induces a heating ̂  o v w a Ae^rt Vi 

dT __ AQ 
ar cf 

and hence a pressure change 

sP - - - ' " t C ^ 

This method implies a surface pressure oscillation of 0.04 mb 

in response to an oscillation of 0.17a in S. This is much less than 

the observations of 4 mb for the 27.5 day period (King et al., 1976) 

and of 2 mb for the sunspot cycle (Parker, 1976). The above 

argument was for a static atmosphere. In atmospheric waves, Kinetic 
2 2 

Energy ) is conserved, and hence wave amplitude is proportional 

to (•J / ) where ^ is the density of air at the source of the 
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waves. This factor, only significantly different from 1 for 

stratospherically forced waves, is therefore included into the 

expression for Sp to parameterise dynamics. Hence including 

dynamics only slightly alters the results, so some sort of 

"amplification mechanism" is needed to explain the observations. 

3.2. Feedback Mechanisms 

A change in the global mean temperature may cause a change in 

the global mean albedo. This will result in feedback, since a 

decrease in albedo increases the total solar energy absorbed and 

hence the temperature. If an increase in temperature causes a 

decrease in albedo, then the feedback is positive, and the effect 

of solar variability is amplified. While if albedo increases with 

temperature, then there is negative feedback and the effect of 

solar variability is diminished. 

In one-dimensional models the albedo is normally assumed to 

only depend on temperature via the total ice-cover. This 

automatically results in positive feedback as the albedo decreases 

when ice melts, which occurs as the temperature rises. Changes 

in cloud cover are neglected as they cannot be adequately 

parameterised in a one-dimensional model. However, Vallis (1980) 

has shown that these changes are very important. In global 

circulation models predicting the albedo is very difficult. In the 

atmosphere the albedo as well as depending on temperature is also 

dependent upon the humidity which in turn is determined by the past 

history of the air parcel. So the model, to be at all accurate, 

has to be very complicated. No such model has yet been used to 

investigate the possibility of albedo feedback in response to solar 

variability. 
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As well as being theoretically untested, the hypothesis that 

positive albedo feedback amplifies the tropospheric response to 

solar variability is also observationally untested. For the albedo, 

global or local, is very difficult to observe accurately. Ellis 

and Vonder Haar (1976) give a global mean value of 0.32 ±.0.02. No 

solar cycle variation has been isolated from the large background 

noise. 

Being untested, and not producing any predictions (except from 

very simple, unrealistic models) the hypothesis that albedo feedback 

is an amplification mechanism is at present redundant. 

3.3. Mechanisms Involving Ozone 

Ozone, it has been claimed, varies with changes in the solar 

output (see Section 2.2). The possible tropospheric consequences 

of this variation, and that in Ultra-Violet radiation, is now 

considered. 

3.3.1. ChappiLiis Band Absorption 

As well as absorbing almost all the incident Ultra-Violet 

radiation, ozone also mildly absorbs at visible wavelengths, in 

the Chapputs Band. So changes in the total ozone concentrations 

will alter the amount of visible radiation absorbed, and hence also 

the amount that reaches the ground. As the Chappui.s Band absorption 

is slight, it is a linear function of the total ozone. Angione et 

al. (1976) calculated that changes in ozone cause a 0.57o variation 

in the total radiant energy reaching the troposphere. However, 

they overestimated the change in ozone. Using a figure of 10% for 

the change in total ozone (see Section 2.2), a value of 0.17» is 

arrived at for the change in visible radiation. This is similar to 
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the suggested value for A S . While this effect may be important, 

it is not in itself an amplification mechanism. 

3.3.2. Atmospheric Tides 

Green (1979) suggested that observations of King et al. (1977), 

of planetary wave variations, may be due to changes in the tides, 

for isobaric surfaces are plotted at fixed universal time, while the 

tides are functions of local time. The effect is small, but not 

insignificant. At sea level the tides have amplitides of about 1 mb 

near the equator falling to about 0.2 mb at 50°N/S. At the same 

latitudes planetary waves have amplitudes of 2 mb and 10 mb 

respectively. As most reports of solar induced changes in planetary 

waves are for high latitudes, the phenomena observed cannot be due 

solely to changes in the tides. 

However, both the diurnal (24 hour) and the semi-diurnal (12 

hour) atmospheric tides have significant components forced by ozone 

absorption, of Ultra-Violet radiation. So changes in the UV flux 

will result in concurrent tidal variations. Due to the semi-diurnal 

tide being highly sensitive to the UV flux, observations of the tide 

can be used to estimate the variation in UV over the sunspot cycle. 

This is done in Chapter 4, where both the theory and observations 

are given. 

3.3.3. Planetary Waves 

Bates (1977) and Geller and Alpert (1980) showed that changes 

in the middle atmosphere zonal winds affect planetary waves. If 

such changes occur in response to solar variability, then an 

"amplification mechanism" would have been identified. This 

possibility is considered further in Chapter 5. 
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3.4. Other Mechanisms 

The two mechanisms considered in later chapters have been 

outlined above (Sections 3.3.2 and 3.3.3). There was not time to 

consider other mechanisms that have been suggested. Some of these 

mechanisms are now described. 

3.4.1. Thunderstorms 

Brooks (1934) noted that there was, in some places, a strong 

correlation between the sunspot number and thunderstorm frequency. 

Around this result, Markson (1978) constructed a theory. The 

explanation of the observations is based on the strong solar-cycle 

effect in the ionosphere. This, it is postulated, will affect the 

electrical properties of the troposphere and in particular the 

frequency of thunderstorms. This is a reasonable explanation of 

Brooks' results which were based on reports of lightning and 

thunder, electrical properties. Markson then suggests that changing 

the electrical structure of a storm will change its dynamical 

structure by altering the cloud micro-physics, such as coalescence 

rates. This is much less plausible for the micro-physics is 

governed by the macro-physics, rather than vice-versa (Green, 1979). 

The reason for this is the enormous amount of Kinetic and Available 

Potential Energy in a thunderstorm. The amount of electrical energy, 

though large, is minute in comparison. 

i 
Another flaw in Markson's theory is that the more recent 

observations of Klejmenova (1967) are not in agreement with those 

of Brooks (1934). 

\ 
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3.4.2, Cirrus, Nacreous and Noctilucent Cloud 

Roberts and Olson (1973) observed intensification of trough 

development shortly after geomagnetic storms. To explain this they 

suggest that cirrus cloud formation is increased at this time. 

Geomagnetic storms are caused by solar flares which emit large 

numbers of highly energetic solar corpuscles. These deposit their 

energy, both directly and by secondary processes, in the atmosphere. 

If they have a significant effect as low down as 30 mb, then at 

that level atmospheric ions would be formed. These would act as 

condensation nuclei for Cirrus cloud formation. Roberts and Olson 

estimate the temperature perturbation to be 1 to 2°C. This would 

then: change the static stability and make it easier for troughs to 

intensify. However, the ion production rate due to these high 

energy particles is much larger in the stratosphere than in the 

troposphere (Johnson and Imhof , 1975). So a similar process may 

affect Nacreous and Noctilucent clouds, though very little is 

known about their physics. Herman and Goldberg (1948, p.243) suggest 

that this will alter the albedo, perhaps significantly. However, 

as these clouds occur at high latitudes , a slight change 

in the albedo will have a negligible effect on the total radiation 

received by the earth. 

3.4.3. Stratospheric Carbon Dioxide 

As well as possibly affecting Nacreous and Noctilucent clouds, 

the ionisation due to high-energy particles, referred to in the 

previous section, may also affect carbon dioxide concentrations 

(Sekihara, 1979). This is because the reaction between CO^ and 

0 ions is very fast. Changing carbon dioxide concentrations will 
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affect the cooling rate at tropopause level, and hence the 

temperature there. This will alter the stability of air masses 

at this level, and will modulate the frequency of trough development 

at high latitudes. 

Schuurmans and Oort (1969) observed a temperature drop of 

1.8 (± 0.6) C in tropopause temperatures a day after solar flares, 

while Roberts and Olson (1973) noted an intensification of troughs. 
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CHAPTER 4 

ATMOSPHERIC TIDES 

4.1. Historical Introduction 

Since time immemorial it has been known that the oceans rise 

and fall twice a day. That these tides are in some way related to 

lunar motion was first suggested 2,300 years ago by an explorer-

mariner called Pytheas. During the subsequent 2,000 years many 

theories were proposed as to how the moon caused tides. The basis 

of the currently accepted theory is provided by Newton's Three Laws 

of Motion (Newton, 1687). One corollary of this theory is that tides 

are forced by the gravitational pull of the moon and sun. Newton 

(1687) realised that his theory would apply to the atmosphere as 

well as to the oceans, but he thought that atmospheric tides would 

be too small to be observed. 

That the oceanic tide is related to the moon can be inferred 

from its period being close to 12.5 hours. The atmospheric tide 

repeatedly peaks at the same time of day and hence is sun 

synchronous. This regularity of the tide is most apparent at the 

equator, where the tide is larger and ambient pressure variations 

smaller, than at extra-tropical latitudes. So when Humboldt took 

a barometer with him to South America in 1799, he observed that the 

two daily maxima m pressure, at about 10.00 a.m. and 10.00 p.m., 

were so regular as to serve as a clock. These observations cannot 

be explained by Newton's gravitational theory, which predicts that 

the lunar forced tide would be largest in the atmosphere as well as 

in the ocean. 

At the same time as Humboldt was sailing to South America, 
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Laplace was developing his tidal theory in M&chanique Celeste 

(Laplace, 1799). While Newton had considered a static equilibrium 

tide on a non-rotating earth, Laplace included the effect of the 

earth's rotation, which introduces dynamics into the theory. He 

found that in the ideal case of a uniformly deep ocean there are 

infinitely many free modes of oscillation, some of which could 

resonantly interact with solar or lunar forced tidal oscillation. 

However, Laplace's theory has very limited applications to the 

oceans, as they have (irregular) boundaries and also are of non-

uniform depth. 

Like Newton before him, Laplace considered the implications 

of his theory for atmospheric tides. As the atmosphere has no 

lateral boundaries, Laplace's tidal theory is appropriate, once 

the compressibility of air is taken into account. By considering 

an atmosphere with constant scale height, H, Laplace deduced that 

the atmospheric tidal motions can be inferred from the results for 

an ocean depth h = ^ H (where ^ , the ratio of the specific heat of 

air at constant pressure to that at constant volume, equals 1.4). 

When forced modes are considered, h is an eigenvalue of the Laplace 

Tidal Equation, and for any given frequency there is an infinite 

set of "equivalent depths", > each associated with a different 

latitude variation, given by the Hough Function (5^(0). 

Laplace knew that the solar atmospheric tides were much larger 

than the lunar ones, and so he concluded that the solar components 

were due to th6mal forcing. However, he thought that there was 

little hope of constructing a theory to describe thermally forced 

tides. As well as introducing mathematical difficulties, ascribing 
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the solar component to thermal forcing introduces another problem, 

succinctly described by Thomson (later Lord Kelvin): 

"The cause of the semi-diurnal variation of barometric 
pressure cannot be the gravitational tide-generating 
influence of the sun, because if it were there would be 
a much larger lunar influence of the same kind, while 
in reality the lunar barometric tide is insensible or 
nearly so. It seems, therefore, certain that the semi-
diurnal variation of the barometer is due to temperature. 
Now, the diurnal term, in the harmonic analysis of the 
variation of temperature, is undoubtably much larger in 
all, or nearly all, places than the semi-diurnal. It 
is then very remarkable that the semi-diurnal term of 
the barometric effect of the variation of temperature 
should be greater, and so much greater as it is, than 
the diurnal." (Thomson, 1882) 

He then proceeds to suggest a resonance theory in which it is 

postulated that one of the modes of free oscillation has a period 

very close to 12 hours, and hence the forcing would resonantly 

interact with this free mode. It was shown by Pekeris (1937) that 

this theory would be valid if the atmosphere above 80 km were cool 

200 K). The first measurements of the temperature at this level 

were made from rockets in the earLy 1950's. They showed that above 

100 km the atmosphere is hot, hence resonance does not occur and 

Kelvin's theory is incorrect. 

Heating due to direct atmospheric absorption of solar radiation 

by ozone and water vapour forces tidal motion. Using these two 

components of the forcing, Butler and Small (1963) calculated values 

for the semi-diurnal (12 hour) and ter-diurnal (8 hour) surface 

pressure oscillations that agreed with the observations. The reason 

why the semi-diurnal tide dominates the diurnal (24 hour) is that 
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forcing at all levels contributes towards its amplitude at the 

ground, while the amplitude of the diurnal tide decays exponentially 
foe 

away from ̂ forcing. 

4.2. Observations 

In the analysis of observations the tides are assumed to be 

synonymous with the average diurnal variations with periods of 24, 

12 and 8 hours, and hence they are obtained by Fourier analysis 

of hourly average values. (The "hourly average" is the mean value 

at a particular hour, averaged over many days.) The global 

distribution can then be expressed in terms of spherical harmonics 

and directly compared with the theory. As data is Fourier analysed 

to evaluate both tides (this chapter) and planetary waves (next 

chapter) a description of the technique is now given. 

4.2.1. Fourier Analysis of One-Dimensional Data 

The simplest, and the commonest, situation in which Fourier 

analysis is required is with one-dimensional data (e.g. pressure as 

a function of time, 500 mb height as a function of longitude). The 

technique can be illustrated by the following example:-

Let p(i) be the hourly annual average pressure, where i = 0,1..23 

corresponds to 00Z, 01Z,..23Z. The Fourier coefficients A^ and B^ 

are defined by 
12. 

(4.1) 

Using orthogonality properties it can be shown that for m> 0 

(4.2a) 

(4.2b) 
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This method has assumed that p(t) is periodic, while in general 

p(24) is not equal to p(0). The simplest way of accounting for this 

difference is to remove a linear trend. There is no a-priori 

reason for selecting a linear trend, but it is the easiest model 

to analyse. 

A "corrected" pressure, p'(i) is used, where 

p'(0 = p(i) (4.3) 

and d p = 

The Fourier coefficients of P ;, A' and B', can be calculated r ' n n' 
as before. 

= (4.5a) 

+ (4.5b) 

These corrections to the yearly average tides are small even 

in the extreme situation of there being a 50 mb difference between 

the surface pressure at the start and end of the year. For then 

dp = 0.14 mb and B^ - B m = 0.04,0.02 mb for m = 1,2. The data analysed 

here is for India, where the diurnal and semi-diurnal tides have 

amplitudes of about 0.6 mb and 1.1 mb, and Britain, where they are 

about 0.1 mb and 0.3 mb. So the corrections needed will be less 

than 107o, except for the British diurnal tide, and this large only 

if a low pressure system passes over the station at New Year. Often 

only one of p(0) and p(24) is tabulated, in which case no correction 

can be made. 
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Another cause of error in the Fourier analysis is due to the 

inaccuracy of the values used. The instantaneous pressure can be 

measured to an accuracy of 1 mb, so the annual averages are accurate 

to 0.003 mb. However, in the Indian data used they were only quoted 

to the nearest 0.1 mb. From this data, how precisely can the tides 

be calculated? 

In this case there are 24 values p(i) each having a random 

error V ^ So p(i) = P(i) + V_̂ , where P(i) is the actual hourly 

average surface pressure. Let the mean value of V be E(V), then 

the variance. Var(V) = E(V ) - [ E ( V ) J ' Consider a particular 

Fourier coefficient, the sine component of wave number m, then 

from equation 4.2b it can be seen that 

7Z 
Now, as V is independent of i, ^ £ (V) S\t\ - 0 

W ? 2.1+-

E i O - I S E t t a o - ^ X P ^ V i ) Also ... , 

* sin ^ x s i n ^ M <4.7 > 
2 4 . * 2 1 + 

By considering the cases of i= J and separately, the right 

hand side of 4.7 can be evaluated, giving 

E ( O - [ E ( A i + 2 T { R v M E ( v f f } (4.a) 

And so 

V a r ( A J = ^ Va r ( V ) <4-9) 

1 2 With readings quoted to the nearest 0.1 mb, Var(V)= -^oq * 
lmb 2 equation 4.9 gives that Var(Am) = . Hence the standard 
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Figure 4.1 World maps of2the semidiurnal tide showing: 
(a)-above- Amplitude (10 mb) and (b)-below-Phase. 
After Hauî witz (1956) 
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Figure 4.2 World maps of the diurnal tide showing equilines o, 
(a)-above- the sine and (b)-below- the cosine component in 10 
mm of mercury. After Haurwitz (1965) 
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deviation of the error is about 0.01 mb, and the result of the tidal 

analysis can be expressed accurate to one more order of magnitude 

than the observations are quoted. So the error due to rounding 

is of the same order of magnitude as the maximum possible error due 

to variations between 00Z on January 1st and 24Z on December 31st. 

4.2.2. Global Harmonic Analysis 

By Fourier analysing the hourly annual average pressure at 

a station, the amplitude and the phase of the tides can be evaluated. 

Comparing several years' results shows that the semi-diurnal tide 

is almost constant, while the diurnal tide fluctuates between years. 

The errors in these mean tides can be reduced by averaging over 

several years of data. Compiling such averages, Haurwitz (1956 and 

1965) plotted maps of the worldwide distribution of the annual 

average semi-diurnal and diurnal tides. These maps are reproduced 

here as Figures 4.1 and 4.2. From them it can be seen that the 

semi-diurnal tide has very little longitudinal variations, whereas 

the diurnal tide, dominated by orography and the land/sea pattern, 

depends on longitude as well as latitude. 

The tides can be expressed as a linear sum of components whose 

latitudinal (6?), longitudinal ( <f ) and temporal (t) dependences 

have been separated. The tidal theory given in Section 4.4 shows 

that the canonical form for expressing the © dependence of tides 

is in terms of Hough Functions, which are eigenfunctions 

of the Laplace Tidal Equation. The longitudinal and temporal 

dependences are taken to be sinusoidal, so the diurnal variation of 

the surface pressure can be decomposed into its tidal components thus: 
12. oO oO ^ ^ 

p c o - Z X £ ( 4 - 1 0 ) 
\ <r=i a—«J0 n«o n 5 r n ' 
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Ddurnal S^.r.i - P l u m a l 

n Amp(A 1 , 1> n Phase C ^ ' 1 ) n 
-6 .12U(.128) 1704(1708) 

-4 .236(.2U6) 170^(1708) 

-2 .M+2(.458) 0516(0516) 
1 .273(-283) 0504(0504) 

n Amp (A ?' ?) n Phasofe^'2) 
? 1.094(1.133) 0942(0940) 

3 .051 (.065) 0006(003U) 

-153 (.182) 0932(093*0 
6 .059 (.072) 0 9 2 8 ( 0 9 3 2 ) 

Table Amplitude (mb) and phase (time of maximum) of the main 
diurnal and semi-diurnal tidal components- Annual means, with 
equinoctal m^ans (March, April, September, October) in brackets. 
(After Haurwitz and Cowley, 1973) 

S _ A r ~ *j 
A M ' ' T -"-J Mt / 

j ; / ° 
v f ; \ 

N 

•5-
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i 2 tc i. where Greenwich Mean Time, <j> , and the local time t^ - ^ . 

A method for evaluating A^" ,s and , S is given by Haurwit2 

and Cowley (1973). Their tabulation of the main components, when 

CT =s = l, and <T = s = 2, is reproduced here (Table 4.1). These 

results are for modes which are "stationary" relative to the Sun, 

hence their dependence on longitude and time can be expressed by a 

single variable, the local time (t^), and ff-s. As the semi-

diurnal tide, expressed in terms of local time, has little 

longitudinal variation, Table 4.1 lists all its important components. 

However, this is not the case for the diurnal tide which, having 

large longitudinal variations, has important modes which "travel" 

relative to the Sun. One of the significant "travelling" modes 

(s = 0) is stationary in the atmosphere, but the others (when s^0,l) 

propagate relative to longitude as well as local time. Ozone 

heating, which only slightly depends on longitude, cannot force such 

large "travelling" components. They are due to orography and 

longitudinal variations in water vapour heating. 

i 

An alternative method of expressing the latitudinal variation 

of the tides is as a single expression. This form, used in all 
the early work on tidal observations, is based on the expansion 

00 

p(0 = XSSCe) sin (s if. + £s) (4.11) ' S — 00 1 

Chapman and Lindzen (1970) list values for s = l,2 and 3. 

r 1 

0 ( 0 ) = c o s 3 © 

S ® ) « 1 - 1 6 c o s 3 © - m b 

S3(e) = -563> cos3es\n© tnV> 
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From equation 4.14 it can be seen that the ter-diurnal tide changes 

phase by 180° between summer and winter, and also between 

hemispheres (shown by the sin 0 term). 

The diurnal and semi-diurnal, as well as the ter-diurnal, tides 

show systematic seasonal variations as can be seen from Figures 4.3 

and 4.4. The former shows the monthly average tide at Kew 

(51°N, 0°W) for 1871-1926 (data from Mitchell, 1930), while the 

latter is for Maiduguri (12°N, 13°E) for 8 years (data from Giwa, 

1972). At both stations there is clearly an annual cycle in the 

ter-diurnal tide, with a phase change of about 150° between summer 

and winter. Apparent in the semi-diurnal tide is 

1. a semi-annual cycle in amplitude, with maxima shortly after 

the equinoxes and minima at the solstices, and 

2. an annual cycle in phase, being latest in July and earliest 

in November, the difference being 25 minutes at Kew and 45 

minutes at Maiduguri. 

The diurnal patterns show no similarities, concurring with the 

deduction from Figure 4.1 that this tide varies greatly with 

geography. 

A very simple model of tides, which assumes that the amplitude 

of the tides are proportional to Fourier components of solar heating 

is now presented. 

4.3. Simple Model 

It was shown by Butler and Small (1963) that the primary 

forcing of atmospheric tides is due to absorption of solar radiation 

by water vapour and ozone. Consideration of how the Fourier 

components of this heating varies with the seasons will give some 
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indication of how the tides vary during the year. 

In this model the Sun's elevation is used to parametrise solar 

heating of the atmosphere, using the relationship 

Sin E = s'm S SMfi 0 -V- cos ^ cos© c o s H 
(4.15) 

where E is the solar elevation 

0 is the latitude 

and H is the local hour angle 

The declination, S , is equal to the latitude at which the sun is 

overhead. It is defined by the equation 

sin 8 = sin 23.5° sin t 
y 

where t^, the time of the year is 0 at the March equinox, ̂  at the 

summer solstice. H q, the time of sunset (E=0), is defined by 

equation 4.15 as 

c o s H 0 = - f e n S tan© (*.i6) 

The amount of energy incident on horizontal ground is 

proportional to sin E, so, if reflection and scattering are 

ignored, * 

Q (H ) - Q 0 ( s m S> 3\n 9 + cos % cos © cos V l ) \H| < U e 

- i Q o 9 ( cos V\ - cos V\0) 1HI < H 0
 1 7 ) 

1 0 \H\ > Ho 

Where Q q , the constant of proportionality, is the amount of energy 

absorbed by the atmosphere when the sun is at zenith (directly 

overhead). As Q is an even function of H, the Fourier sine 

components are all zero. Defining the cosine components by 
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Figure 4.5 Variation of the diurnal (A ) and semi-diurnal (A2> heating with 
latitude at an equinox. The ter-diurnal component (A ) is identically zero. 
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Figure 4.6 As Figure 4.5 but for the June solstice. 
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Q ( H ) = 4 :A 0 + § Ancos tM <4-18> 
H 

Then = Y " J " * Q ( H ) C O S n H ciH (4.19) 
o 

The A 's of interest-here are n 

A j - % C O S & c o s e ( H 0 - S i n H 0 c o s H 0 ) ( 4 . 2 0 ) 

A 2 — ^ C O S S C O S © S'U\3H0 (4.21) 

A 3 = Y^CosS COS0 sin3H0 cosHq (4.22) 

The only other situation to be resolved is what happens near 

the poles, when jtanS tan 0\ > 1 and hence H q does not exist? There 

are two cases to consider 

(a) tan6 tan0 > 1 ("land of the midnight sun") 

Then A, = cos& cos e . C L 

A = 0 for all n > 2 . n 

(b) tank tan@<-l (sun always below the horizon) 

A =» 0 for all n. n 

Using these results with Equations 4.20 to 4.22, the tidal 

forcing can be estimated for any latitude and time of year. The 

situations at an equinox (t^=0 or Tt ) and at a solstice = 

are illustrated in Figures 4.5 and 4.6 respectively. The following 

properties are readily observable: 

(i) A^ is largest at midsummer and smallest at midwinter, in 

extratropical latitudes, while at the equator it has two 

maxima, at the equinoxes. 

(ii) A^ is a maximum at the equinoxes and a minimum at the 
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Figure 4.7 Comparison of the seasonal variations in the temperature and surface pressure tides at 
Kew and Maiduguri with the simple model. Each curve is normalised to have a mean absolute value 
of 1. Observed values for Kew from Mitchell (1930) and for Maiduguri from Giwa (1972). 



solstices, for all latitudes, 

(iii) There is a 180° phase difference in A^ between the Northern 

and Southern Hemispheres, and between summer and winter in 

the same Hemisphere. 

A comparison between this theory and the observations of 

diurnal variations of pressure and temperature at Kew and Maiduguri 

is shown in Figure 4.7. The simple theory predicts seasonal changes 

in the Fourier coefficients of the diurnal temperature variation. 

At Kew it does so very well, apart from underestimating the changes 

in the semi-diurnal tide, while at Maiduguri it is a complete 

failure. This is because the theoretical seasonal changes are 

smaller nearer the equator (except for the ter-diurnal component), 

so other effects, such as cloud cover, have greater significance. 

However, the semi- and ter-diurnal variations in pressure are also 

close to the theoretical results. This is because these tides are 

predominantly due to the absorption of Ultra-Violet radiation (UV) 

by ozone on a global scale, so local and tropospheric variations are 

unimportant. 

This simple theory gives good qualitative results, but a more 

complete, quantitative theory of tides is needed to investigate the 

effects of solar and ozonospheric variations on tides; this is 

described in the next Section. 

4.4. Complex Theory 

4.4.1. Approximations 

The theory now outlined is based on that of Pekeris (1937), 

elucidated by Chapman and Lindzen (1970). Many approximations are 

used, these are: 
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(a) The atmosphere behaves like a perfect gas; which is true to 

within 0.27o below 100 km. 

(b) The atmosphere is "thin", so if the earth's radius is a, and 

z is a typical height above the surface, then z/a is negligible 

compared to 1. This implies that g is assumed to be constant, 

when in fact it is 27» less at 100 km than it is at the ground. 

(c) Hydrostatic equilibrium is assumed (vertical velocities not 

affecting pressure). 

(d) The earth is assumed to be a perfect sphere. This implies that 

not only is ellipticity ignored, but so is topography. Hence 

tides travelling relative to the Sun cannot be modelled as there 

is no' longitudinal variation. 

(e) Dissipation, such as that due to viscosity and infra-red 

radiative transfer are ignored. 

(f) The equations are linearised, and assumed to be in a steady 

state. 

(g) The tides are assumed to be in an otherwise static atmosphere. 

This implies that in the basic state temperature, density and 

pressure are all independent of latitude and longitude. 

(h) Gravitational tidal effects are neglected, though this 

introduces errors of up to 47,. 

The hydrostatic approximation (c) can be shown to be valid by 

a posteriori checks. Chapman and Lindzen (1970) conclude that 

although the approximations (d) to (g) introduce errors, "the 

approximate theory does quite well in predicting solar thermotidal 

oscillations in surface pressure." Later work, (Lindzen and Hong, 

1974, Walterscheid and Venkateswaran, 1979, Walterscheid et al., 

1980) has investigated the effect of zonal winds on the tides and 
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found that it is a significant cause of the discrepancy between 

theory and observation. 

4.4.2. Equations 

The motion is described by the Navier-Stokes equations for a 

compressible gas. The atmosphere is assumed to be in local 

thermodynamic equilibrium. The equations of a motionless basic 

state are:-

Horizontal momentum ,, ,-s // oo v \ 
j n •. = VI — w l =» O (4.23a,b,c; and continuity o 0 0 ' 

Gas Law ^ == ̂  (4.23d) 

t t = ~ 3 

Where u is westerly velocity 

Hydrostatic 4 " 76° = -Q (4.23e) 

v is southerly velocity 

w is vertical velocity 

p is pressure 

Jj is density 

z is height in metres 

T is the temperature 

R is the gas constant for air 

and the subscript o denotes the basic state 

From 4.23 d and e 

d 

w 

H has the dimensions of length and is called the "scale height", for 

in an isothermal atmosphere the pressure decreases by a factor of 

e over a depth of one scale height. In the non-isothermal case, by 
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defining x _ ^ Z ( 4 # 2 5 ) 

then 

and also 

= p o(C0e (4.26) 

Hydrostatic 

Gas Law 

(4.28a) 

The linearised tidal equations are:-

Horizontal Momentum 

3u/ o ' . Q -i 'a (P'A 
3 t s m 9 = o T c o s e 

Continuity | + 4- fQ K 

(4.28d) 

1 L X (4.2 8e) 
Po & To 

and the thermal energy equation 

Where uu is earth's rotation rate 

J is the thermotidal heating of unit mass in unit time. 
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and the prime denotes the perturbation from the basic state. 

In considering tidal motion, sinusoidal variation in time and 

longitude is assumed, while in the latitudinal direction the 

components are Hough Functions, so any property A can be expressed 

as 

. A - A 0 + 5 5 ? A f t o ®:,s(e) e x p U - r t ^ ) ] 

where Aq is the basic state. The superscripts ( C and s) and 

subscripts (n) will be dropped in future, except when this leads 

to ambiguity. 

The main dependent variable used in the calculation is G, the 

divergence ( X ) corrected for diabatic heating. It is defined as 

A 
r - ^ . T - - i D s (4.30) 

It can be shown (Chapman and Lindzen, 1970) that 

4Hw \\ d & » 
| > ' j d x j 

, dz L. v. j t
b ( 2 ) y j H ^ J 

l+.aj'w ©(e) 

where 

a ( cos 9 3 A 
\ f - s W \ x 0 W 

J ( s^ 4 sm a 9 

(4.31) 

e - cos e ae \ 9 0 ; f - w e ^ ^ f * . S l v © ^ e 
(4, 

The left hand side of Equation 4.31 is a function of z only, while 

the right hand side is a function of © only. Hence both are equal 

to a (separation) coefficient, denoted by -1/h, and Equation 4.31 

can be separated into two equations. First the O equation is 

considered. As it was first derived by Laplace, it is also called 
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the Laplace Tidal Equation. 

4.4.3. The Laplace Tidal Equation 

F e [ 0 ( 0 4 - ^ ^ 8 ( 9 (4. 33) 

It has the boundary conditions that @ ( 0 ) is bounded at the 

poles ( 0 =» O t TC). For any fixed or and s, (which occur in the 

definition of F Q , Equation 4.32), 4.33 is an eigenvalue problem, 

which yields a set eigenvalues. The Hough Functions ((§)) 

were first evaluated, by expressing them as a sum of associated 

Legendre Functions, by Hough (1898), hence their name. The six 

Hough Functions that are used here are illustrated in Figure 4.8. 

Those which have positive h (positive subscripts) are largest near 

the equator while those with negative h (negative subscripts) are 

largest near the pole. 

The "equivalent depth", h, derives its name from comparison 

with the equivalent mode in an incompressible, uniformly deep, 

boundless ocean. In the case of negative equivalent depths, there 

is no obvious analogy as an ocean cannot be negatively deep. One 

important corollary of a mode having a negative h is that it has an 

imaginary vertical wavelength and so is vertically trapped (there 

is no vertical propagation of wave energy). When the vertical 

wavelength is positive the waves vary sinusoidally in the vertical, 

and so they propagate energy. Why the sign of h is so important can 

be seen by considering the z component of Equation 4.31, "The 

Vertical Structure Equation". 
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4.4.4. The Vertical Structure Equation 

The z part of Equation 4.31 is transformed into a simpler 

form by using x, as defined by 4.25, as the vertical co-ordinate 
k 

and removing a factor proprotional to Ĵ  from G, for as with most 

atmospheric waves the amplitude decreases with height roughly as 

y * . so 

The Vertical Structure Equation can then be written in the form 

This is the same form as the general Vertical Structure Equation 

given in the Appendix (Equation A.l) with 

V a ( x ) = - t ( g - t - ^ - W ) - ! ( 4 . 3 6 ) 

From this, with the fact that H is a slowly varying function of x 

so ~ is always much less than K H , it can be confirmed that if h 
2 

is negative, so is V . Similarly if h is positive and "small", 
2 then V is positive. 

There are two boundary conditions for the Vertical Structure 

Equation. At the ground there can be no vertical velocity, while 

at the top the radiation condition implies that there is no down-
2 ward propagation of energy (if V is positive) or else that the 

2 

Kinetic Energy decays with height ( V negative). 

The top boundary condition is d y . (4.37) 
a x / 
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2 • where V is positive if v> is positive, or tV is negative if 

V ^ is negative. 

The bottom boundary condition can be shown to be 

l U o j - O (4.38) 
dx 2 / 

As well as the boundary conditions, we also need to know the 
.A 

heating function (J) before solving the Vertical Structure Equation. 

This is where possible solar variability effects come in, as changes 

in UV will affect J(z). 

4.4.5. The Heating Profile 

As previously mentioned, the predominant forcing of atmospheric 

tides is by ozone and water vapour absorbing solar radiation. Other 

heating processes, which have been neglected here, are:-

(a) Cooling by infra-red emission. Though this is large (up to 

30°C per day at the stratopause), it has only a small diurnal 

variation as temperature variations are only a few percent of 

the mean. For the diurnal forcing the effect of infra-red 

cooling is about 127o of the Ultra-Violet heating while for the 

semi-diurnal tide it is 37,. 

(b) Heating by atomic oxygen absorbing UV at altitudes of about 

100 km. This contributes neglibably to the diurnal and semi-

diurnal tides at the ground (Green, 1965). 

(c) Heating of the boundary layer by upward eddy heat transfer 

from the ground excites a tide that can be neglected at mid-

latitudes (Siebert, 1961). In the tropics, however, it forces 

a large diurnal component whose neglect; results in the 

diurnal pressure oscillation over India being underestimated 

60 



by a factor of 5. The semi-diurnal component is relatively 

small and its neglect- results in only a small error, 

(d) Heating due to the release of latent heat in cumulo-nimbus 

clouds. Lindzen (1978) suggested this as a possible tidal 

forcing that would explain the discrepancies between tidal 

theory and observations of the semi-diurnal tide. (The theory 

predicts that it is a maximum at 0900 and 2100 local time, 

while observations indicate that it is 40 minutes later. Also 

predicted is a phase reversal at 28 km, which is not observed.) 

The heating (J), due to the absorption of solar radiation by 

a gas (G), varies with time of day, time of year, latitude, 

longitude, altitude, absorption coefficient of the gas (which 

varies with wavelength, and possibly other parameters) and solar 

output. Various assumptions therefore need to be made if the 

thermotidal heating is to be modelled. As ozone absorption is the 

only thermotidal forcing to be considered in detail, the comments 

will apply specifically to that case. 

The heating depends on the elevation of the Sun, E, given by 

Equation 4.15. Assuming that at those wavelengths where gas G 

absorbs solar radiation it is the only significant absorber in the . 
atmosphere, then the optical depth, u(z,E), defined as the total 

amount of G that the radiation has passed through, is given by 

It has also been assumed here that the earth's curvature can 

be neglected and, more important, that the density of gas G is 

independent of latitude, longitude and time of day. Leovy (1964, 

2 

(4.39) 
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Figure 4) showed theoretically that in the mesosphere, ozone 

concentrations should vary diurnally by factors 2 (at 60 Ion), and 

10 (70 km). However, this variation occurs during half an hour 

around sunrise and sunset, . so it only slightly affects the diurnal 

and semi-diurnal Fourier components of the heating. To assume that 

ozone does not vary with longitude is consistent with neglecting 

topography, as a longitudinal variation in ozone would force those 

modes which move relative to the Sun. Using a latitudinal averagev 

ozone profile does introduce errors, in particular to the 

calculations of Chappuis Band absorption of visible radiation. This 

is discussed later. 

The radiation having passed through an amount of gas u(z,E), 

its intensity at a wavelength "X will have been reduced to 

I ( V , E ) = T o M e * P W U(Z,Efl (4.40) 

where I q ( A ) is the intensity at the top of the atmosphere and 

is the absorption coefficient. Following Lindzen and Will 
G 

(1973), X is assumed to be independent of temperature and pressure. 

Knowing the intensity of radiation at a particular height, the 

heating can then be evaluated thus : 

Q ( * , E ) = -y Cz.) J i c f i ( A ) I O d A (4.41a) 

where the integration is over all wavelengths that contribute 

significantly to the heating. These equations (4.39 to 4.41a) 

obviously only apply when the Sun is above the horizon (E>0). 

At night 

Q ( z , E ) - 0 anc! E < 0 (4.4ib) 
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Q is the total heating per unit volume per unit time, while J 

(Equation 4.28) was heating per unit mass per unit time. So 

T C ^ E ) - ^ - ( 4 . 4 2 ) 

where the density of air, •j>(z)> assumed to depend only on 

height. 

To evaluate the forcing of a given mode, J(z,E) needs to be 

decomposed into separate components, J 

Because of the approximations made above, the only components 

calculated here are those which depend on local time, H= u) t+ (f> , 

and are otherwise independent of time and longitude. These are the 

components that are fixed relative to the Sun as fT7(= or /oo) = s. 

With and j) independent of time, Q depends on H only through 

sin E. Defining H = 0 at local noon, J(z,E) = J(z,H,0,time of year) 

is symmetric in H and so all the sin o-'H terms are zero. Hence 

CO A / 

<\-0 cr=o 
T ( 2 E ) = £ Z fe-) S C > ( 0 ) COS O-'H (4.43) 

The case considered here is that of the equinox so Equation 

4.15 simplifies to 

Siri E = Cos 9 cos H (4.44) 

and E > 0 if and only if |H| < . J in this case is also symmetrical 

about the equator, and 

71. \ 

t * ' w = = V J j J ( 2 £ ) © r y ( e ) COS O-'h d e d H (4.45) H-0 9-0 ' n 

a ' ' 

Using Equations 4.40 to 4.45, J
n°",<r (z) can be evaluated. This 

was first done for ozone forcing by Butler and Small (1963) using 
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Figure 4.9 Distribution 
of the tidal excitation. 
(a)-left- due to Chapman 
(1968). VI is due to H20,V2 
to 03. Similarly HI and H2. 
(b)-below- due to Forbes 
and Garrett (1978), 
decomposed into Hough 
function components. 
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Figure 4.10 Vertical distribution of Ozone concentration(1113) 
and total ozone column density (N3) used in the calculations here. 
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the method just described. The next calculation (by Lindzen 1967, 

1968, and used by Chapman and Lindzen, 1970) was based on values 

of J(z) obtained by Leovy (1964), who calculated the diurnal 

temperature range in the stratosphere and mesosphere. Lindzen 

(1968) assumed that the excitation of the semi-diurnal oscillation 

has the same altitude and latitude distribution as that of the 

diurnal oscillation (shown in Figure 4.9a) and that the forcing of 

every mode had the same vertical structure. The results of Forbes 

and Garrett (1978) show that these assumptions are wrong, as can be 

seen from Figure 4.9b. 

In their calculations, Forbes and Garrett (1978) evaluated 

J(z,E) using a parameterisation of ozone heating first suggested 

by Lindzen and Will (1973), and given in a refined form by 

Schoeberl and Strobel (1978a). This parameterisation is 

Hartley Band ~ / , _ / -iffvi'̂  
(2000 - 30008) e x ?(-8 - 8 , V O (4.46c) 

Hertzberg Continuum 
(2060 - 2425&) Q x 7-35*10' (-4'S* 10 ' N p (4.46d) 

Hz 

where m^(z) is the local number density of ozone (cm and N^(z) 
_ 2 

is the slant path column density of ozone (cm ). Forbes and 

Garrett adopted a single ozone profile (independent of G ), the 

mid-latitude model of the US Standard Atmosphere (1976). For the 

new results presented here the ozone profile is from Nicolet (1975) 
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Figure 4.11 Forcing of the principal diurnal (a) and semi-diurnal(b) tides due to ozone absorption. 



for heights up to 50 km while above this it is assumed to decay 

exponentially with height. The profiles of m^ and N^ (overhead 

Sun) are plotted on Figure 4.10. 

From Equations 4.46a - d, the Q's can be evaluated, and hence 

the thermotidal heating, 

T ( 4 , e , H ) - ( Q w + Q H a * Q „ Q j / f W (4.47) 

A ' 

From this formula, J^ ' (z) can be found by Equation 4.45. In 

that Equation the integrals can be approximated by sums, so 
A 

ff"' ff* J \ i \ i » 
T n = L T u A , H i ) c e > c o s < ? \ ) w f w f ( 4 . 4 8 ) 

Figure 4.11 is plotted using Equations 4.46 to 4.48. The 
A Q H values and weights (w^ ,Wj) used were calculated as 

follows: 

(a) Both summations in 4.48 were evaluated over 10 steps, so 

k = l = 10. For the accuracy needed here this number of points 

was sufficient, for with k = 10,1 =20 the results were changed 

by less than 0.17». 

(b) The times, H., were equally spaced so 

H r S Q - a » ( 4 . 4 9 ) 

(c) The latitudes, were taken from Abramowitz and Stegun 

(1965, p. 916, Table 25.4, n = 20). The values they give are 

for Gaussian integration, 
I 

j f 0 0 d x ^ £ W - f (x0 (4.50) 

Comparing the left hand side of this with 4.45 leads to 
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o 
Figure 4.12 Calculated diurnal variation of heating at 50 km, 4.4 
latitude (solid line) compared to the cosinei profile assumed'in the 
simple model of Section 4.3 (dashed line). J 
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T i / O . 

o 

where 0 ^ = s i n ^"(x^). So the weights, w®, given by Abramowitz 

and Stegun are divided by cosS^. This leads to Q^ and w® 
H having values very similar to H^ and w^. 

It is of interest here to see how J(z,0,H) and 
/ / H J ,(z,0 ) = /_, J(z, 0 ,H, )cos(o~H. )w. vary with latitude and time. * J J J . 

Figure 4.12 illustrates how the heating varies during the day time 

(it is zero at night) at 50 km altitude and 4.4° latitude (the 

smallest value of For comparison a cosine function with the 

same magnitude at noon is also plotted (cf theory of Section 4.3) 

and it can be seen that the actual heating has a much squarer 

profile than the cosine. This is because the heating due to 

atmospheric absorption depends on solar elevation only via the 

optical depth (N^N^/sin E). The sin E factor, as in the simple 

theory due to the area the solar beam covers, is cancelled by the 

fact that it passes through a length of 1/sin E in crossing a unit 

depth. Hence the diurnal variation of heating is closer to a 3tep 

function (constant for zero otherwise), then a cosine 

function. Because of this the diurnal component of the heating is 

larger (by about 167„) than that obtained using the simple model 

while the semi-diurnal component is only h of the value obtained 

there. So quantitatively the simple model is inaccurate, but its 

results are useful qualitatively. 

The latitudinal variation of the thermotidal forcing is 

illustrated by Figure 4.13. It is clear that, though there are 

similarities between the two components there are also large 
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LATITUDE 

Figure 4.13 Latitudinal variation of the diurnal (solid line) and semi-diurnal 
(dashed line) heating due to ozone absorption of UV at 50 km. 

CL FG Here 
<?, n 
1,1 0.39 0 .26 0.12 
1,-2 1.00 1 .00 1 . 0 0 

1,-4 0.35 0 .27 0.25 

2,2 1 . 0 0 1 .00 1.00 
2,4 0.26 0 .42 0.55 
2,6 0.15 0 .27 0.41 

Table 4.2 Normalised maximum 
amplitudes of the thermotidal 
forcings calculated by Chapman 
and Lindzen, 1970 (CL), Forbes 
and Garrett, 1978 (FG) and here 
The normalisation is such that 
the maximum amplitudes are 1.0. 



differences, contrary to the assumption of Lindzen (1968). Using 

Lindzen's model, Chapman and Lindzen (1970) noted that the (cr =2, 

n=s2) mode dominated the higher order semi-diurnal modes because 

its latitudinal variation was similar to that of the heating 

function. The results in Figure 4.13 show a different pattern, the 

forcing of the semi-diurnal tide (dashed line) being almost constant 

between ± 65°. Because of this the higher order modes are 

relatively larger than those obtained by Chapman and Lindzen, as 

can be seen in Table 4.2. These results agree with those of 

Forbes and Garrett (1978), also listed in Table 4.2. The diurnal 

forcing (solid line in Figure 4.13) shows a similar latitudinal 

variation to that given by Chapman and Lindzen (1970) and this 

manifests itself in the results of Table 4.2, though there still 

are significant differences between the relative amplitudes. 

Later in this chapter the effect of solar variability on the 

tides will be considered. There are two, related, processes by 

which changes in UV may affect the heating in the ozone layer and 

hence the tides. The direct result of the Sun emitting more UV is 

that more will be absorbed. But this extra absorption will affect 

the radiative-chemical balance of the upper atmosphere resulting in 

changes in the ozone distribution, as calculated by Callis and 

Nealy (1978) and Penner and Chang (1978). 

Changes in UV alter the radiation available for absorption by 

ozone in the Hartley and Huggins Bands and the Hertzberg Continuum. 

It is, therefore, of interest to know whether ChappUxs Band 

absorption is important in thermotidal forcing. Hence the heating 

rate for a zenith Sun has been decomposed into the four heating 



Figure 4.14 Comparison of the heating profiles of Butler and Small(1963), 
Lindzen (1968) and Forbes and Garrett (1978). 
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bands of Equation 4.46 (QCH> QHU> Q ^ j and Q H Z). 

Figure 4,15a shows that heating due to the Hertzberg continuum 

is always dominated by that in either the Hartley (high altitudes) 

or the Huggins Band (below 45 km). From this diagram it would seem 

that below 30 km Chappuis Band absorption would significantly 

contribute towards thermotidal forcing. However, as it is 

proportional to m a n d both m^ and J were assumed independent 

of latitude, it is almost independent of latitude and so contributes 

insignificantly to the calculated tides. This can be seen in 

Figure 4.15b which illustrates the absorption bands' contributions 

to the thermotidal forcing of the (tr'~ 2, n= 2) mode. For the 

same reason the tidal forcing above 65 km is negligible, for there, 

absorption is almost independent of latitude. With Chappius Band 

absorption unimportant, the thermotidal forcing by ozone is due 

only to absorption of UV. 

As was mentioned at the start of this Section, the only other 

significant forcing of atmospheric tides is by tropospheric water 

vapour absorbing visible radiation. This has been evaluated, first 

by Siebert (1961) and more recently by Forbes and Garrett (1978). 

It is assumed here that this forcing is unaffected by solar 

variability, for the solar constant varies by less than 1% over the 

solar cycle while, it is claimed, UV varies by up to 20% (see 

Section 1.4.3.). The water vapour content of the atmosphere at any 

location is highly variable and no solar cycle effect has, as yet, 

been distinguished from this background noise. As the thermotidal 

forcing due to water vapour is assumed constant the results of 

Forbes and Garrett (1978) will be used here. 
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4.4,6. Results for Mean Conditions 

For each mode (cr',n), J(z) and h are known and so y(x) may be 

evaluated by integrating the Vertical Structure Equation (4.35) with 

the appropriate boundary conditions. The pressure perturbation, 

$p, can be evaluated from y(x) using 

§ p C x ) = Po(Q)yh Y M ) (4.52) 

• 

By evaluating the main modes of frequency CT , the global distribution 

of the pressure anomaly can be derived from 

/ * * ff* ^ / A p ( x , 0 ) = E (e) (4-53) 

For an isothermal atmosphere &p can be evaluated analytically, 

as the Vertical Structure Equation can be directly integrated. Below 

the forcing 

y o o = ^ v g - ^ n v x ) J ^ ^ ( 4 . 5 4 ) 

2 k H H where V = — ^ - kt cC = - ^ and the integral is over those heights 

where ozone forcing is important. 

The ^surface pressure oscillation is 

W o > = ^ I****) f T r , \ P ( i v ' ^ z / H J ( 4 . 5 5 ) 

Vf (<<-ki.v) J J(z>€ d-z. 
(cf Equation A.12) where z(= xH) has been substituted in the integral. 

Note that both and J depend on the mode being considered. 

In the case of the (o*:=2,n= 2) mode, as V is very close to zero 

the forcing has similar phases at all altitudes and so contributions 

from all heights add together. In contrast to this, the (1,1) mode 

has a vertical wavelength (28 km) so small that forcing over depths 
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OZONE 
Amp Phase 

VATER VAPOUP 
Amp Phase 

TOTAL 
Amp Phase 

PATIO 
/ 

tf ,n 
OZONE 

Amp Phase 
VATER VAPOUP 
Amp Phase 

TOTAL 
Amp Phase 

PATIO 

.077 1731 .165 0H55 .135 W O 4 .47 

1,-2 .0*45 06oo . 160 oioo .205 0600 .28 
. o o 4 0 6 0 0 . 0 8 1 1 3 0 0 .077 1800 .05 

2,2 .584 0757 .268 0925 .798 0824 2.18 
. 1 1 1 0 0 0 3 .042 0825 .105 1119 2.66 

2,6 .0*42 0524 .019 0735 .053 0602 2.23 

Table 4.3 Amplitudes (mb) and Phases (time of maximum) of the 
main tidal components, evaluated by the analytic solution of the 
vertical structure equation for the case of an isothermal atmosphere. 
The column on the far right is the ratio of the ozone to the vater 
vapour forced components. 

Figure 4,16 Temperature profile used in the model. 
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comparable with that of the ozone forcing will partially cancel. 

The surface pressure perturbation, as given by this analytic 

solution, can be evaluated using the values of ^ n ( 2 ) shown in 

Figure 4.11. The integral in 4.55 is converted into a sum: 

' 3 " ( 2 } e ( i v - ^ A z = t w. <*-36> 

The values of z. (and hence w^ ) chosen so that this solution 

was directly comparable with the computational solution of the 

Vertical Structure Equation (4.35), where 

J was evaluated at 5 km intervals and linearly interpolated in 

between. When 1 = 3 0 0 the integration (4.56) is accurate to 0 . 0 1 7 o 

in amplitude <md 0.05° in phase. This precision is greater than 

that obtained by computational solution of the Vertical Structure 

Equation, hence 1= 300 (corresponding to w^ = 431 metres) was used 

for all the analytic solutions. 

The tides at the ground, for ozone and water vapour heating 

(individually and together), are given in Table 4.3. These 

solutions are for an isothermal atmosphere, but the atmospheric 

temperature varies greatly with height. The temperature profile 

used in the computational solutions, illustrated in Figure 4.16, 

is such that it is possible to solve the Vertical Structure 

Equation analytically, as was done by Pekeris (1937). (See Appendix 

Section A.2.3). However, it is much simpler to solve the Vertical 

Structure Equation computationally. The method for so doing is given 

in Section A.3 of the Appendix. The lower atmosphere, in this case 
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Figure 4.17 Variation of the computed surface amplitude of the (2,2) mode 
in an isothermal atmosphere (T=260 K) with the number of grid points. The 
dashed line is the value of the analytic solution. 

MODE 
ar\r\ 1,1 1,-2 I,-** 2,2 2,4 2,6 

2.38 3.50 5.26 2.37 2.38 2.39 
H2O 3.58 8.53 9-37 4.66 4.84 4.37 

Table 4.4 Percentage underestimation of computational solutions, 
with N = 1600, compared to analytic results. 

OZONE 
Amp Phase 

WATER VAPOUR 
Amp Phase 

TOTAL 
Amp Phase 

RATIO 
/ 

<7,n 
OZONE 

Amp Phase 
WATER VAPOUR 
Amp Phase 

TOTAL 
Amp Phase 

RATIO 

1,1 '.019 1351 .151 05O4 .128 0437 -13 
1,-2 . 0 3 6 0 6 0 0 .170 0600 .191 0600 -23 

.005 0600 . 0 8 7 1 8 0 0 .082 1800 . 0 6 

2,2 .598 O 8 5 8 .272 0901 . 8 5 6 0859 2.15 
2,4 .020 1053 .035 0849 .047 0931 -55 
2,6 .016 0404 .013 0813 .014 0550 1.19 

Table 4.5 "Same as table 4.3, but for computational solution 
for the realistic temperature profile (figure 4.16). 
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the bottom 17 scale heights, is split into N intervals of equal 

thickness in log-pressure co-ordinates, dx = 17/N. 

It was suggested by Chapman and Lindzen (1970) that if the 

grid points (in the computational solution of the Vertical Structure 

Equation) are separated by 17» of the minimum wavelength then the 

amplitude evaluated will be within 1% of the actual solution. 

However, that was not found to be so here. Figure 4.17 shows the 

surface pressure amplitude plotted against N for the case of an 
O 0 

isothermal atmosphere, with T = 260°K (so that h ^ = 292 km). The 

above condition implies that only N = 4 4 points (of width km) 

are needed to obtain solution accurate to 17<>, while the graph implies 

about 3,500 points (of width 36 metres) are needed. Increasing the 

number of points increases the energy input, but this is only a 

0.057, increase in the energy. The calculation of values at the 

boundaries also introduces numerical errors, but as the expression 

for the boundary conditions given by Chapman and Lindzen are also 

employed here, they cannot be the cause of the difference between 

the predicted N = 4 4 and the calculated N= 3,500. This dichotomy is 

unresolved. 

For the numerical integrations a value of N=1,600 was chosen. 

This leads to the actual solutions being underestimated by between 

2 and 97o. The error is larger for those modes which have an 

imaginary vertical wavenumber, (cr=i, n negative), and also larger 

for water vapour than for ozone forcing. It is assumed that there 

are similar errors in the solutions when the realistic temperature 

profile is used, and correcting multiplicative factors are introduced 

(so for the 1,1 mode the ozone forced amplitude is multiplied by 

1.0238). 
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There are two main reasons why a change in the temperature 

profile affects the results. Firstly, when the temperature is 

changed so is the density and hence the total energy absorbed, 

E = Jj> Jdz, is as well. Secondly, the vertical wavelengths will be 

changed and hence the interplay between components forced at 

different levels altered. Changes in vertical wavelengths will also 

affect the vertical structure of the tides. The mode of primary 

concern here (2,2) is virtually unaffected, hence it seems to be 

insensitive to alterations in temperature. The water vapour forced 

components are only slightly affected by changes in the temperature 

profile as the forcing is localised. However, some of the ozone 

forced components (1,1; 2,4; 2,6) are radically reduced. This 

reinforces the pre-emincnce of the (2,2) mode amongst the semi-

diurnal components. Also, the phases of the tides are altered by 

changing the vertical temperature profile. 

The results of Table 4.5 qualitatively agree with the 

observations(Haurwitz and Cowley, 1973) and with previous theoretical 

calculation (Walterscheid et al., 1980), but there are significant 

quantitative differences. Compared to the observations (Table 4.1) 

all the amplitudes are underestimated. Walterscheid et al. show 

that the effect of zonal winds is to increase the tides, so the 

model described above, which neglects winds, will underestimate the 

tides. 

While the model is not perfect, it is adequate for the present 

needs, which are to consider the effect of solar variability on the 

tides. 
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4.5. The Tidal Response to the Sunspot Cycle 

4.5.1. Theoretical 

The results presented here are obtained by altering the heating 

profile and so simulating the effect of Ultra-Violet variability. 

Two basic models were used, one keeping the ozone distribution 

constant while UV changes, and the other with both varying. The 

same temperature profile (Figure 4.16) was used throughout, though 

Callis and Nealy (1978) and Penner and Chang (1978) predict a 

temperature oscillation of up to ±: 8 C (at 45 km) in response to the 

UV variations. This temperature change, with no alteration in the 

heating profile, was later found to significantly affect two modes, 

- 1, n = l ; and 2,2), which are 307, and 257, larger respectively 

using the temperature profile for the increased UV than for 

decreased. This accentuates the discrepancy between the theoretical 

and the observed changes in the semi-diurnal tide. 

The observations of Heath and Thekaekara (1977) shown in 

Figure 1.9, imply the solar radiation changes by less than 207o 

above 3000& over the sunspot cycle, but also that it changes by 

much more than 207<> below 2500&. The value of 207, is taken as 

representative, but, for the reasons just given, variations in 

Huggins Band absorption are overestimated while those in the more 

significant Hartley Band are underestimated. 

The simplest case to consider is when the ozone density is 

unaltered by the UV variation. This leads to the heating being 

increased by 107, above 50 km (where Chappuis Band absorption 

contributes negligibly towards the heating) when the UV radiation 

(wavelengths less than 3500&) is increased by 107,. The size of the 
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Figure 4.18 P ercentage increase 
in the thermotidal forcing when 
UV is increased by 10% with the 
ozone concentration constant. 

Figure 4.19 Changes in the ozone 
concentration,due to UV changes, 
evaluated by Callis and Nealy(1978) 
and Penner and Chang(1978). 
The dotted line is the estimated / 
effect in the mesosphere 
used here. (The changes 
were only evaluated up 
to a height of about 
50 km). 

C-J 
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response decreases as the relative importance of Chappuis Band 

absor'plTon increases. This more noticeably affects the (1,-2) than 

the (2,2) mode, as can be seen on Figure 4.18. (The heating profiles 

in this case of increased UV are referred to as P2, while those for 

average conditions are PI.) 

Four further heating profiles were generated, using altered 

ozone density profiles, to calculate the heating with the Ultra-

violet changed by ± 107, from average. Profiles P3 and P5 use the 

ozone profile alterations calculated by Callis and Nealy (1978), 

profiles P4 and P6 those of Penner and Chang (1978). As both sets 

of results were for the change between sunspot minimum and sunspot 

maximum, they are divided by 2 to give the change between mean 

conditions and sunspot maximum. Figure 4.19 shows the evaluated 

ozone changes. The Callis and Nealy model only went up to 55 km, 

while that of Penner and Chang went to 50 km. Above these levels 

values have been estimated by assuming no variation at 95 km, a 

linear decrease in change between 55 km and 95 km, and, for the 

Penner and Chang profile, the change being the same at 55 km as at 

50 km. The changes in column ozone (N^) were evaluated by assuming 

that the total ozone in any 5 km interval (values were taken at 

0,5,...100 km) is proportional to the mean of the ozone densities 

at the top and the bottom. The constant of proportionality at any 

height can be evaluated from the mean profiles of ozone density and 

column ozone. 

Profiles P3 and P4 are obtained for sunspot maximum conditions, 

with the UV intensity increased by 107o, while P5 and P6 are for 

sunspot minimum (UV decreased by 107,). The heating profiles thus 
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Figure 4.20 Changes in thermotidal forcing due to a 10% change in UV. P2, P3 and P4 

refer to different ozone changes, as described in the text. 



P2 P3 P4 P5 P6 
<T, n Amp Pha Amp Pha Amp Pha Amp Pha Amp Pha 
1,1 
1,-2 
1,-4 

-0.67 -3.4 
1.22 0 
0 0 

8.25 -1.4 
1.70 0 
0.09 0 

3.34 -3.4 
1.61 0 
0.07 0 

-5.86 2.5 
-1.68 0 
-0.16 0 

-2.05 3.6 
-1.64 0 
-0.09 0 

2,2 
2,4 
2,6 

6.99 -0.9 
10.32 2.1 
7.76 -1.4 

5.37 -0.3 
5.06 4.8 
6.15 3.5 

6.94 -0.8 
9.11 3.4 
8.37 0.8 

-5.79 0.5 
-5.54 -4.7 
-6.58 -2.6 

-6.97 0.9 
-8.68 -3.9 
-8.17 -0.3 

Table 4.8 Changes in the amplitude (percent) and the phase (degrees) 
of the tides due to changing the heating profile from PI (mean 
conditions) to Pi (sunspot maximum or minimum). Analytic solution 
for an isothermal atmosphere. 

P2 P3 P4 P5 P6 
<r, n Amp Pha Amp Pha Amp Pha Amp Pha Amp Pha 
1,1 
1,-2 
1,-4 

-1.23 0.3 
0.82 0 
0 0 

0.95 -2.1 
1.27 0 
0.09 0 

-0.67 -0.9 
1.11 0 
0.07 0 

-0.17 1.9 
-1.24 0 
-0.19 0 

0.91 0.7 
-1.16 0 
-0.09 0 

2,2 
2,4 
2,6 

6.62 0 
3.12 1.6 
7.29 -4.9 

5.62 0 
-4.29 2.4 
6.83 2.0 

6.78 0 
0.34 2.1 
8.56 -2.2 

-5.91 0 
2.76 -2.1 
-7.21 -0.3 

-6.79 0 
-0.43 -2.0 
-7.92 3.3 

Table 4.9 As Table 4.8, but for the computational solution with the 
realistic temperature profile of Figure 4.16. 

« 
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obtained (P3 to P6) are similar to that for mean conditions (Figure 

4.15), and the differences can be best illustrated by the 

change at each level. The results for the two main modes (2,2) and 

(1,-2) are shown in Figure 4.20. The deviations at sunspot maximum 

are nearly opposite to those at sunspot minimum and so are not 

-KN 

plotted. In the upper atmosphere the non-linearity (e 3) in the 

expressions for Q (4.46a to d) breaks the symmetry. From Figures 

4.20a and b it can be seen that the effect of altering the ozone 

as well as the UV is to accentuate the percentage change below 

40 km but to reduce, even reverse, it above that level. 

The heating profiles PI to P6 are used to evaluate the changes 

in the atmospheric tides due to a 107, oscillation in UV. Both the 

analytic and the computational methods, outlined in the previous 

Section, are used, and the results are given in Tables 4.8 and 4.9 

respectively. The largest effects (of around 77,), found in the semi 

diurnal modes, are slightly reduced by including ozone perturbations 

(P3 to P6). Using the realistic temperature profile, rather than 

an isothermal atmosphere, devastates the results for the (1,1) and 

(2,4) modes so that their variations become negligible. So the 

major effect is that in the n = 2 semi-diurnal tide, where an 

increase in UV radiation of 207> (sunspot minimum to sunspot maximum) 

induces an increase of about 0.11 mb in the tide. As the observed 

tropical semi-diurnal tide has a standard deviation of only 0.04 mb 

the effect of a 207, change in UV would be readily observable. 

Contrarywise, the slight changes in the diurnal tide (the largest 

variation, 0.005 mb for a 207, increase in UV, occuring for the n = 2 

mode) will be much more difficult to observe. 



So when the tidal observations are analysed, the amplitude of 

any sunspot cycle induced variability should be an order of 

magnitude larger in the semi-diurnal than in the diurnal component. 

This is now shown not to be the case, and also doubt is cast on 

Heath and Thekaekara's (1977) value of 207„. 

4.5.2. Observational 

(a) Britain. Stagg (1931) noted that the diurnal tide showed 

variations dependent on the general state of the earth's magnetic 

field. His calculations, from observations made at Aberdeen over 

the years 1922-1928, showed that the diurnal tide on magnetically 

disturbed days peaked 2 hours later and was double the amplitude of 

that on "magnetically quiet" days. In contract to this, the semi-

diurnal tide was independent of the amount of magnetic activity. 

Stagg also found that this effect was largest during a- period of 

little solar activity (1922-1924). Because of the relatively small 

number of days he considered (7 years of 5 pairs of days per month), 

Stagg's results include large non-tidal fluctuations. 

Further results given by Stagg (1931) show that the diurnal 

tide varies with the phase of the sunspot cycle, as well as with the 

earth's magnetic field. The diurnal tide was much larger during the 

dearth of sunspot activity, than during the remaining years when 

there were more sunspots. Using data from everyday, it can be 

calculated that the amplitude of the average diurnal tide was 0.173 mb 

for 1922-1924 compared to 0.066 mb for the following four years. 

However when many years of observations are considered the size of 

this effect is greatly reduced. 
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DIURNAL • SEMI-DIURNAL 
Amplitude Phase Amplitude Phase 

Mean (73) 104.1± 7.1 164*4 240.2*1. 9 144*0.5 
SS Max(21) 94.5*11.8 164*7 238.1*3.2 144 * 1 
SS Min(24) 111.6*11.8 158*7 240.94:3.7 143 ± 1 

Mean (82) 144.5± 5.6 206*2 348.1*2.1 149±0.3 
SS Max(25) 145. 9 ±11.1 202*4 353.6*3.9 149±0.6 
SS Min(26) 141.6* 8.3 207*3 345.9*3.9 148*0.7 

Table 4.10 Variations in the diurnal and semi-diurnal tides 
at Aberdeen and Kew with the sunspot cycle. Amplitudes are 
in jab and phases in degrees. The numbers of years used for 
each set of results is given in bruo,kets. 

DIURNAL SEMI-DIURNAL 
Amplitude Phase Amplitude Phase 

Mean 124.5 184.1 70.2 176.0 
ABERDEEN SS Max 126.6 184.0 73. 8 175.6 

SS Min 122.4 184.2 66.6 176.3 

Mean 165.6 185.6 128.9 176.9 
KEW SS Max 167.7 185.6 135.6 176.6 

SS; Min 163.5 185.7 122.1 177.1 

Table 4.11 Theoretical mean tides at Aberdeen and Kew, and 
predicted variations with the sunspot cycle. Amplitudes 
are in jab and phases in degrees. 
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Values for the diurnal and serai-diurnal tides at Aberdeen 

(57°N, 2°W) for 1871-1882 were obtained from Thompson (1891) and 

for 1887-1947 from a sequence of Meteorological Office publications 

(1887-1910, Hourly Observations; 1911-1921, British Meteorological 

and Magnetic Year Book; 1922-1947, The Observation Year Book). The 

same sources were used for the tides at Kew (51°N, 0°W), with, in 

this case, observations being published up until 1956 in the 

Observations Year Book. 

The years for which observations were analysed were split into 

three subsets depending on their phase in the sunspot cycle. In 

each cycle R , the annual sunspot number, increases from below 20 to 

a maximum for the cycle ( R m a x > which for the years analysed is 

always greater than 40) and then decreases to less than 20. Any 

year for which R < 20 is defined to be in the sunspot minimum set, 

while if R > it is allocated to the sunspot maximum set. Years 
max r 

not accounted for fall into the rising/falling set. The components 

of the tides (A and B^ of Equation 4.1) are then averaged over all 

the years for which data is available, and also over the years in 

the "maximum" and "minimum" sets. The results thus obtained are 

listed in Table 4.10, in which the standard error in the amplitudes 

(dA) is evaluated as the mean standard error of the two components 

(A and B ). The standard error in the phase (d0 ) is dA divided 
r r 

by the mean amplitude. . 

From Table 4.10 it can be seen that the diurnal tide at 

Aberdeen varies with the sunspot cycle, with the ratio of the 

amplitude at sunspot minimum to that at maximum being 1.18, (compared 

to 2.62 for 1922-1978). No other tidal variation in Table 4.10 
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is significant at the 957. level - when the change is greater than 

2 standard errors. To evaluate the standard error (se) of a 

difference between two sets of data, ^ a j and |bj , the formula 

[ s e ( a - b ) ] 2 = [se(a)] 2 + [se(b)] 2 

is used. 

Although this result is statistically significant at the 957o 

level, the hypothesis that it is a tropospheric response to solar 

variability is unlikely to be true, for the change in the diurnal 

tide at Aberdeen has the opposite sign to that predicted by theory 

(Section 4.5.1.). 

Before comparing the observed variations with the theoretical 

prediction, the validity of the theory for these latitudes is 

tested. This is done by comparing the values presented in Table 

4.11 with those previously given in Table 4.10. The amplitudes of 

the semi-diurnal tides are underestimated by about a factor of 3. 

This difference is due, in part, to the stationary "Arctic 

Component" of the semi-diurnal tide which (at these longitudes) is 

in phase with the global modes considered. (The Arctic Component 

is only significant at high latitudes. It is a function of 

universal, not local time, and causes the nodes in Figure 4.1.) 

Also, higher order modes, not considered in Section 4.4, may be 

important, as the low order modes (particularly 2,2) are greatly 

reduced at these latitudes compared to the equator. The amplitude 

of the diurnal tide i*s well predicted by the theory. 1 ; 

v r.-—- ' • ; _ .- • .. • : It will be 

assumed that the missing component of the tide at any station, not 

represented by the theory, varies with solar activity by the same 
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percentage as the theoretical tide. 

The variation in the diurnal tide at Aberdeen is five times 

larger than that predicted by the theory, as well as of the opposite 

sign. This effect, then, cannot be explained by the theory and 

must be due either to some other atmospheric response to solar 

variability or else to chance. For Aberdeen the theory predicts a 

change in the semi-diurnal tide double that which can be explained 

from the observations. This implies that, unless the missing 

component is negatively correlated with the sunspot number, the 

solar UV output varies by, at most, a half of the value given by 

Heath and Thekaekara (1977). 

The theory of Sections 4.4 and 4.5 is more accurate for the 

semi-diurnal tide at low latitudes, where the Arctic Component is 

relatively small. So tidal variations in the tropics, possibly 

caused by solar activity, are now considered. 

(b) Tropics 

Data for this Section was obtained from two sources of hourly 

averaged annual pressure. Results for Macau were from Resultados 

das Observa§oes Meterologicas (1952-1978), while the Indian values 

were from Indian Weather Review, Annual Summaries, 1948-1963 (except 

1955). Values for some of the Indian Stations were not always 

available, and on other occasions the data was obviously erroneous. 

Table 4.12 lists the eight stations used, their locations and for 

which years their data was used. 

The amplitudes of the mean tides, averaged over the 107 station 

years, are 0.817 mb (diurnal) and 1.191 mb (semi-diurnal). These 
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STATION LOCATION YEARS USED TOTAL 

Bombay 18.9°N 72.8°E 1948-54,56-62 14 years 
Calcutta 22.5°N 88.3°E 1948-54,56-63 15 years 
Macau 22;2°N 113.6°E 1952-75 24 years 
Madras 13.1°N 80.3°E 1951-54,56-61 10 years 
Nagpur 21.2°N 79.1°E 1949-54,56,58-63 13 years 
New Dehli 28.6°N 77.2°E 1949-53,56-63 13 years 
Poona 18.5°N 73.9°E 1948-54,56-62 14 years 
Seychelles 4. 6°S 55.5°E 1951-54 4 years 

Table 4.12 Details of the tropical stations whose observations were 
used here. 

Diurnal Semi-Diurnal 
Amplitude Phase Amplitude Phase 

Mean 
Mean 

Theory 
Obs. 

144.0 
662.6*10. 5 

9.0 
106.4*0.9 

727.5 
1033.7*7.4 

1.3 
315.0*0.4 

Diff 
Diff 

Theory 
Obs. 

12. 9 
-20.2*19.2 

-0.2 
-2.5*1.2 

125.6 
-8. 4* 8 .2 

-0.1 
1.2*0.8 

Table 4. 13 Mean tide at Macau and its difference (Diff) between 
sunspot maximum and sunspot minimum, both theory and observation. 
Amplitudes are in jab and phases in degrees. 

Diurnal Semi-Diurnal 
• Amplitude Phase Amplitude Phase 

Mean Theory 160.6 0.0 760.9 0.8 
Mean Obs. 851.4 107.5 1222.3 305. 3 

Diff Theory 13.8 0.0 154.2 0.0 
Diff Obs. -47.3 ±15.8 3.7±0.9 8. 3il4. 3 -0.2*0.7 

Table 4. 14 As table 4.13, but for Indian stations. 
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are larger than the values the theory (Section 4.4) predicts 

(0.157 mb and 0.754 mb) by factors of 5 and 1.6 respectively. The 

cause of this disagreement between the observations and the theory 

is mainly local effects for, as can be seen from Figures 4.1 and 4.2, 

the tides are larger over India than at all other longitudes on the 

same latitude circle. 

To begin with, observations at Macau are considered separately, 

(as they are independent of those from India). The theory under-

estimates the amplitudes by factors similar to those given above 

for the average of all the tropical stations. These factors are 

taken into account when predicting the theoretical changes in the 

tides. From Table 4.13 these can be compared with the observations. 

As at Aberdeen, the theory grossly overestimates the variations in 

the semi-diurnal tide while the diurnal tide shows no significant 

(at the 957o level) variation. There is also a significant phase 

change in the diurnal tide, not expected from the theoretical results 

of Section 5 . 4 . 1 . 

The results for the Indian Stations are considered en bloc (to 

reduce the standard errors). They are normalised at each station, 

before averaging over all the stations. The normalisation chosen 

is such that the mean tide at any station (x,y) is the unit vector 

in the x-direction (1,0). So for that station any mean annual tide 

(x,y) transforms to a point (^ ) given by 

. The values thus evaluated are averaged for the seven Indian 

stations, over all years, years of sunspot maximum and years of 

( 4 . 5 8 ) 
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X SUNSPOT MAXIMUM, DIURNAL 

•f SUNSPOT MINIMUM, DIURNAL 

-it- 0-02 

O SUNSPOT MAXIMUM, SEMI-DIURNAL 

D SUNSPOT MINIMUM, SEMI-DIURNAL 

T . 
i 

'ERROR BARS ARE ONE STANDARD ERROR LONG 
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Figure 4.21 Theoretical and observed variations in the diurnal and semi-diurnal tides in the tropics. 
Observations from Macau and India, 31 years of data for the "Sunspot Maximum" results, 29 for those 
at "Sunspot Minimum". 



sunspot minimum (as defined above). The results follow the same 

pattern as at Macau and Aberdeen, as can be seen from Table 4.14. 

The diurnal tide shows a significant (957,) variation of greater 

than 57, over the sunspot cycle, while the semi-diurnal tide varies 

by a tenth of the value expected (and with the opposite sign). 

By normalising the results at Macau, they can be combined with 

those from India. The effect of this is to reduce the standard 

errors, while other properties are only slightly changed as they 

are similar in both sets of observations. The combined results 

are plotted in Figure 4.21. This diagram highlights the 

discrepancies between the theoretical prediction (Section 4.5.1) and 

the observations. The semi-diurnal tide is predicted to vary by 

12.37. over the sunspot cycle, but it is observed to vary by only 

0.37, ± 1.07., while the diurnal tide shows much larger variations 

(-4.97, ± 1.67,) than predicted (1.67,). 

Assuming that the change in the semi-diurnal tide is 

proportional to that in the U V , then from the observed variation 

in the tide a value for the sunspot cycle variation in UV can be 

estimated. As shown above, a 207, change in the UV would cause a 

12.37, change in the semi-diurnal tide, so a 0.37, i 1.07, variation 

in the tide is due to a(0.3±1.0) x (20/12 . 3)7, = 0 . 57, ±. 1.67, variation 

in the UV. 

The variation in the diurnal tide is larger than its mean 

ozone absorption forced component, and hence it is not due to 

variations in UV. As the diurnal tidal forcing due to local 

tropospheric heat transport is important in the tropics, it is that 

which decreases by about 57, from sunspot maximum to sunspot minimum. 
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Hence there was, during the years 1948 to 1975, a tropospheric 

parameter which had a significant variation over the sunspot cycle. 

4.6. Conclusion 

From the results for the semi-diurnal tide it is concluded that 

the UV decreases by only 0.57, 1.67, from sunspot minimum to sunspot 

maximum. This agrees with the assertation of Smith and Gottlieb 

(1974) that for wavelengths longer than 1500& there is no variation 

over the 11 year sunspot cycle, but is contrary to the claims of 

Heath and Thekaekara (1977) that the UV (at 3000&) varies by 187, 

over the sunspot cycle. No suggestion is ventured to explain the 

observations of the diurnal tide. They show that there was, during 

the period analysed, a tropospheric parameter which varied 

significantly between sunspot maximum and sunspot minimum. 
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CHAPTER 5 

PLANETARY WAVES 

5.1. Introduction 

The general circulation of the atmosphere at mid-latitudes is 

dominated by eddy processes. These are important for, as well as 

determining pressure distributions, they transfer large amounts of 

heat and momentum. There are two main types of large scale eddies, 

baroclinic waves and planetary waves. The former are transient 

phenomena, with zonal wavenumbers at least six. The latter, which 

have zonal wavenumbers one, two and three, are considered in detail 

here. 

Planetary waves are forced by airflow over orography and over 

longitudinal, asymmetries in heating (Shutts, 1978). Changes in 

the solar constant would affect the tropospheric heating and, if the 

zonal wind was altered, the orographic forcing. However, a more 

important process is the sensitivity of planetary waves to changes 

in the middle atmosphere (Schoeberl and Geller, 1976, Bates, 1977, 

and Geller and Alpert, 1980). So, if solar activity alters the 

middle atmosphere, it could affect planetary waves and hence the 

troposphere. This amplification mechanism is considered further 

in Section 5.3. 

There is evidence that planetary waves are affected by solar 

variability (Parker, 1976, King et al., 1977). Parker found a 

± 2 mb variation in surface pressure over the sunspot cycle, while 

King et al. found a ±50 m variation in 500 mb height over the solar 

rotation period. These observations are considered in Sections 

5.4.1 and 5.4.2 respectively. 
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5.2. Theory of Planetary Waves 

The predominance of low wavenumber planetary waves in the 

winter stratosphere was explained by Charney and Drazin (1961) 

using quasi-geostrophic theory. They showed that all but the 

largest scale waves are "trapped", the amplitide decaying 

exponentially away from the forcing. Whether a wave propagates or 

is trapped in the vertical is determined by the Vertical Structure 

Equation, (VSE). 

In the idealised case the waves are independent of time 

(stationary), and the vertical structure of the atmosphere (in 

particular zonal wind, u, and static stability, B) is independent 

of height. Charney and Drazin (1961) derived the quasi-geostrophic 

potential vorticity equation, on the mid-latitude beta plane (i.e. 

replacing f by f Q + p y ) . 

= o (5-D dz 

and v / = e x p [ i ( k x t 4 ) + ^ r l ( 5 - 3 a ) 

k and 1 are horizontal wavelengths in the x (eastward) and y 

(northward) directions. 

B is the static stability 

V is the vertical wavenumber 

H is the density scale height 

2 

Vertical propagation occurs if, and only if, y is positive. 

For if it is negative, 5 is an exponential function of z, and decay 

in amplitude away from the forcing. Propagation occurs if the wind 
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is westerly and less than the wave's critical velocity, 

/ 2 2 2 2 
u = /3/(k + 1 + f /4g B H ). Using representative values for the 
c ' o 

stratosphere, only those waves whose wavelengths are greater than 

20,000 km propagate. These values are quantatively changed when 

spherical co-ordinates are used (Shutts, 1978). For in that case 

V2 = i® f 2.n (th-2XtM)1 L (5.2b) 
V - % L I T ~ R* J W 

^ = P n
m ( c 0 5 e ) e x p ( a m X + ^ j ) (5.3b) 

and X = R U / S ^ n ® is assumed independent of height and longitude. 

Then u = 78 m s " 1 for n = 2 
^ > at 45 , independent of m 

45 ms for n = 3 J 

The most important modes are those with n = nrt-l, which have a 

single, mid-latitude, peak. The (m= 1, n = 2) mode has a longitudinal 

wavelength, at 45°N, of about 30,000 km. During the winter, the 

n = 2 waves propagate up to 100 km while the n = 3 waves become 

evanescent above 50 km. In the summer, all stationary planetary 

waves are confined to below 40 km. 

In obtaining the Vertical Structure Equation (5.1) various 

assumptions were made, many of which were also made for the complex 

tidal theory, Section 4.4.1. The relevant approximations are:-

(a) perfect gas, (b) thin layer, (c) hydrostatic, (d) sphericity, 

though orography is not ignored here, (e) dissipation neglected, 

(f) linearised equations. The important extra approximation made 

here is that the horizontal wind is approximated by the non-

divergent part (but the vertical velocity is not set at zero). 

This leads to vorticity advection, twisting and baroclinic generation 

of vorticity being neglected in the vertical component of the 
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vorticity equation. 

Following Shutts (1978) stationary perturbations on an 

atmosphere whose angular velocity depends only on height are 

considered, so 

a ( 9 , z ) - s i t \ 9 X(z) (5 .4) 

The waves are assumed stationary in time ( -^r = 0 ) and sinusoidal 

in longitude ( ^ = i m ) . Then separation of variables yields that 

the Q dependence is given by Associated Legendre Functions, 

P n
m ( c o s 0 ) . So the stream function ( $ ) and entropy source term 

(S) are replaced using 

5 - -cos © X + Re (if*) P^tcas ©) e™*) 
. S - Re (lS( 2)P n%se)e^ 

(5.5) 

In this case the VSE becomes 

< £ i - t - 6 d j i_ - ft r 2 A . ftv+attn-rt 
iz1 + b iz I 61 dT J J l T R* 

3fo * 1 6 J J * ill 6 j <5-6) 

The boundary conditions are zero T\onrtMxl velocity at the 

ground and a radiation condition at the top. Shutts (1978) 

introduced an "energy-transmitting" upper boundary condition by 

assuming that above the integration region the atmosphere is in 

solid body rotation. This leads to the condition 

d x 
dz T 3 r + i v + 2 H i $ / a t z = z* (5-7) 

2 
where V , the vertical wavenumber squared, is derived by setting 

/ k $ ~ (®/-f Q )
 F- When this is substituted in the VSE (Equation 5.6), 
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and the resulting equation normalised so that the coeficient of 

d J F 2 
j^J is 1, then the coefficient of F is v , 

The effect of orography is included, so the bottom boundary 

condition, in linear form, is 

4 $ ' I ' M 3 6 - at z - 0 (5 8 ) 

I T I S f m n < 5 , 8 ) 

where a m n is the (m,n) component of surface elevation. 

The VSE (5.6) can be solved with the boundary contions 5.7 

and 5.8 computationally or, if the vertical structure is "simple", 

analytically (see Appendix, Section A.2). Knowing ^'(z), 8p 

can be calculated from 

S p ( 2 ) = j > C 2 ^ F $ \ z ) € ~ 2 / i H ( 5 . 9 ) 

with u and independent of height, an analytic solution can be 

found. A method is outlined in Appendix A.2.1. The solution, at 

the ground, is 

pA 0 0 

Using typical values for a (200 m ) and 

S Q [(1.5 K day"^/260 K) exp (-z/4 km)] , the relative importance of 

the two terms in the solution 5.10 can be found. They each have 

an amplitude of about 5 mb for wave number m = 1, n = 2 implying that 

both tropospheric heating and orography are important. Ozone 

absorption of Ultra-Violet radiation (UV) forces a component that 

is negligible, as is now shown. 
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5.2.1. Ozone Forcing 

- 2 
Ozone absorbs about 30 Wm of solar radiation when the sun 

is at zenith (see Section 2.2). The globally averaged amount is 

_ 2 

a quarter of this (7.5 Wm ). Ozone varies only slightly with 

longitude (at those altitudes where its absorption causes most 

heating), and it is assumed here that the forcing of planetary 

waves is 17, of the longitudinal mean heating. This assymetry is 

due to the upward propagation of planetary waves. Using typical 

values ( f = 1 0 " 4 s " 1 , u = 3 0 m s ' 1 , H = 7600 m , T = 260 K , B = 4 x 1 0 " 5 m s - 1
f 

n = 2, m = 1) then at 45°, 1/ ^ = 1 . 1 x 10 ^ and 
\ l ' ( o ) \ = V\S x I 0 5 

SO 1&P \ ~ Oil*, MB 

This is only 17, of the tropospherically forced component. 

However, the values given in Chapter 1 for changes over the sunspot 

cycle (of ± 107, for UV, ^0.17, for the solar constant) imply a 

change of 0.01 .mb in both tropospherically and ozone forced 

planetary waves. This is similar to the result of Green (1979) of 

0.04 mb (Section 3.1), but two orders of magnitude less than the 

observed effect of 2 mb (see Section 5.4). 

Altering the height that the UV is absorbed results in the 

planetary wave having a different amplitude. If a fixed quantity 

of energy is absorbed at height h , then the amplitude is proportional 

to l / J (.p(h)), which in turn is proportional to exp (z/2H), in 

an isothermal atmosphere. (For details of the calculation see 

Section A.2.1). So for every kilometre the heating is raised, the 

amplitude of the planetary waves will be about 77, larger. Concurrent 

with this would be a phase change d © = (change in height)xV. This 
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could alternatively be expressed as an additional component of 

amplitude d A = 2 sin \ dO x ISpl. Assuming that changes in heating 

profile are proportional to those for the equator with the Sun at 

zenith, Sh4?0.3 km. So the redistribution in height can be 

represented as an additional component with amplitude of less than 

0.035 ISpl - again negligible compared to the observed variations. 

So perturbations in the longitudinal variations of ozone 

heating, due to possible UV changes, cannot change the amplitude 

of planetary waves at the ground by more than 0.02 mb. 

5.3. Variations in the Atmospheric Profile 

5.3.1. Previous Models 

Bates (1977) and Geller and Alpert (1980) consider the effect 

of zonal wind variations on planetary waves. However, the wind 

changes they use are larger than those calculated for the effect of 

solar variability (see Section 2.2). 

Bates (1977) derived, in a different method to that outlined 

in. Section 5.2, a vertical structure equation for planetary waves. 

The wind profiles were chosen so that the vertical wavenumber was 

constant in the troposphere, in the stra-osphere and above the 

mesospheric jet. This severely restricts the form of the wind 

profile, and there is a discontinuity in the wind shear, at the 

tropopause. The distance between the tropopause and the mesospheric 

jet is, in Bates' model, very close to one wavelength. He considered 

various wind profiles, as illustrated in Figure 5.1 where the height 

x = ln(p(0)/p). 

The basic profile, P, has the mesospheric jet at x = 6.8 with 
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U ms-1 
Figure 5.1 The vertical velocity profiles used by Bates 
(1977). P is the mean profile, S+ and S- involve changes 
in the mesospheric jet strength of 15 m/s and H+ and H-
changes in the mesospheric jet height of 0.5 scale heights. 

Figure 5.2a Mean zonal wind velocity and static stability profiles 
used in the new results here. They are typical mid-latitude winter 
profiles, and are based on those of Charney and Drazin (1963). 
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a strength 85 ms Profiles S+,S- are used to investigate the 

sensitivity of planetary waves to changes in the jet strength, in 

this case d u j e t
= ^ i5 ms Profiles H+,H- involve changes in the 

jet height of d X j e t =± 0 . 5 , with the jet strength unaltered. 

However, a change in the jet height causes a large change in the 

wind strength between x = 3 and x = 6. 

Bates found that the surface amplitude 6f the planetary wave-

number 1 is increased by 7.67, for a 15 ms ^ increase in the jet 

strength. There is a concurrent phase change of 2.1°. Similarly, 

when the jet is raised by half a scale height the surface amplitude 

is increased by 7.87> and there is a non-linear phase change of 

^ 10°. In his model the thermally forced component is about five 

times the amplitude of the orographic one. As the changes are of 

a similar magnitude for each component, the fractional effect is 

much larger on the orographic component. These results may be due 

to resonance, as one layer is very close to one wavelength deep. 

Geller and Alpert (1980) consider the effect of a vertically 

localised decrease in velocity of 207,. For their calculations they 

use the two dimensional, quasi-geostrophic model of Schoeberl and 

Geller (1977) with the 0 and z dependence of \ unseparated. The 

velocity profile used is two dimensional, and when altered only a 

region of width dx= 2, centred at X q , is changed. More than three 

scale heights below X q there is no "measurable change in planetary 

wave structure". However, when the velocity near X q = 4 is decreased 

by 207,, then at 500 mb ( x = 0 . 7 ) there are changes in height of up to 

20 m (107> of the mean amplitude). In this model the unrealistic 

restriction of the width of wind-changes to two scale heights 
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introduces rapid variations of the vertical wavelength with height. 

This affects the vertical propagation in a different way to more 

realistic (smoother and wider) wind changes. 

The magnitude of the change considered (6 ms * at 30 km) is 

an order of magnitude larger than would be expected from a 107, change 

in UV. Hence their conclusion that "planetary wave coupling between 

the troposphere and the upper atmosphere appears to be a plausible 

mechanism to give a tropospheric response to solar activity" cannot 

be inferred from their results. 

Though Bates (1977) and Geller and Alpert (1980) found large 

tropospheric responses to stratospheric wind changes, the changes 

themselves are unrealistic. From Bates' results, assuming a linear 

response, a 7 ms ^ increase in jet velocity causes an increase in 

surface amplitude of 3.67. and a phase change of -1.0° while a 1 km 

increase in jet height causes a 2.17. increase in amplitude. 

However, for these results it was assumed that radiative 

damping is negligible below the mesospheric jet. As is shown in the 

following Section, this leads to enhanced sensitivity to upper 

atmospheric variations. Hence Bates' (1977) results overestimate 

the effect of stratospheric wind changes on planetary waves. 

5.3.2. New Results 

The model uses the VSE (5.6) with boundary conditions 5.7 and 

5.8. The vertical profiles of zonal wind and static stability used 

for mean conditions are those of Charney and Drazin (1961), shown 

in Figure 5.2a. The wind profile above 18 km is given by 

U C 2 ) = _ ( U I ^ C O S ^ ] (5.11) 
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AMPLITUDE (gpm) PHASE 

Figure 5.2b Vertical profile of the three planetary waves considered 
here, with mean vertical wind profile. The top figure is for the case 
of orographic forcing while the bottom one is for thermal forcing. 
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where UJ ( = 80 ms"^") is the maximum zonal velocity of the 

mesospheric jet, occurring at height ZJ ( = 60 km). 

The method of integration is the same as that for atmospheric 

tides (see Section 4.4.6), outlined in Appendix A.3. The region of 

integration ( 0 ^ z £ 8 0 km) is split into 1,600 subintervals. The 

results, for constant u and B , were then accurate to t 0 . 2 7 o in 

amplitude and £ 0.2° in phase for orographic forcing. The accuracy 

of integrations with thermal forcing is less as the heating profile 

is approximated. However, this approximation is the same for 

differing velocity profiles if the tropospheric wind is unaltered. 

The forcings used are 

(5.12a) 

(5.12b) 

The vertical profiles of the waves are plotted on Figure 5.2b. 

Only wavenumber 1 propagates in the vertical, the other waves are 

trapped. However, Shutts (1978) found that both the (1,2) and (2,3) 

waves propagated. This disparity is discussed later, and it is 

found t h a£ the introduction of radiative cooling improves the model. 

The amplitude and phases at the ground of the three waves 

considered here (m= 1, n = 2 ; 2,3; 3,4), with both constant and 

realistic vertical profiles, are given in Table 5.1. For the former 

u = 20 ms B = 3 x 10 ^m, while for the latter the profiles in Figure 

5.2a are used. From this table it is apparent that the thermally 

forced components increase and the orographic components decrease 

S0 ( \ ' 5 KA«y"V260 K) exp (-z/4W) e) cos\ 

^W® 5 2.00 EJTCCOS©) COsX 
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THERMAL OROGRAPHIC 
CONSTANT REALISTIC CONSTANT REALISTIC 

m, n Amp Pha Amp Pha Amp Pha Amp Pha 
1,2 5.2 22 16.2 1 4.9 118 1.5 4 
2,3 2.6 19 10. 2 0 5.5 121 2.8 0 
3,4 1.8 14 3. 5 0 6.8 130 0.3 180 

Table 5.1 Amplitude (mb) and phase (Degrees) of the three main 
planetary waves at Sea Level. "Constant" is the analytic solution 

-5 -1 
when u(z)= 20 m/s and B(z)= 3x10 m ; "Realistic" is the computational 
solution with u(z) and B(z) as in figure 5.2.a. 

WAVE m=l, n—2 m=2, n=3 m=3, n=4 
FORCING Thermal Orographic Thermal Orographic Thermal Orographic 
HEIGHT 0 5 0 5 0 5 0 5 0 5 0 5 

PI 1622 299 154 116 1019 28 278 49 345 193 34 220 
P2 +54 -26 +15 -8 +13 -7 +8 -5 +31 -17 -30 -17 
P3 -62 +31 -18 +8 -13 +7 -7 +4 -41 +24 +39 +22 
P4 -137 +68 -39 +19 -27 +15 -16 +8 -91 +52 +87 +49 
P5 +112 -55 +32 -16 +36 -19 +22 -12 +57 -32 -55 -32 
P6 -6 +3 -2 0 -2 +1 -1 0 -1 +1 0 0 
P7 -98 +49 -28 +14 +113 -60 +68 -36 +43 -24 -26 -24 

Table 5.2 Amplitudes of the waves forced by thermal and orographic 
- 2 

forcing at both the ground (0, measured in 10 mb) and at 5 km (5, 
- 2 measured in 10 m). The velocity profiles are defined as follows:-

PI ZJ = 60, UJ = 80 
P2 ZJ = 61, UJ = 80 
P3 ZJ = 59, UJ = 80 
P4 ZJ = 60, UJ = 85 
P5 ZJ = 60, UJ = 75 
P6 as PI, but with a localised increase of velocity near 

the jet so that maximum jet strength = 85 m/s. No 
alteration for |z - 60|^5 

P7 as PI, but with a localised decrease near 25 km, so that 
up7(25km) = 0 . 8 upi(25km). No alteration for |z - 25|> 5 

Values for P2 to P7 are differences from the results for mean conditions (PI) 
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when, instead of the constant profiles, realistic profiles are used. 

The reason for the thermally forced waves 1 result can be seen from 

the VSE (5.6). The effect of thermal forcing at any height is 

inversely proportional to the zonal wind velocity, X s i n © / R . As 

the thermal forcing is predominantly tropospheric, where the real 

wind is less than 20 ms it is larger in the realistic wind than 

in the constant wind. The cause of the change in the \orographic 

component is less easy to isolate. With a constant wind profile, 

the amplitude is independent of the wind velocity (see Equation 5.10). 

When integrated with the realistic wind profile with, in the lowest 

d Y 100 metres, X altered so that = 0 at the ground, the results are 
dX 

very similar to those with 0. Hence the difference between 

the results with constant and realistic wind profiles is due to 

changes in the vertical wavenumber, ( v ). 

The effect of altering the zonal wind profile is now considered, 

and in particular whether resonance occurs. The main profile 

alterations considered are those involving changes in only ZJ or 

UJ. From Section 2.2, zonal wind changes associated with the sunspot 

cycle may be as large as i 5 ms in UJ and ±1 km in ZJ. Also 

considered is a change of small altitudinal extent (10 km), for 

comparison with the results of Geller and Alpert (1980). Some of 

the profiles used are shown in Figure 5.3, along with the wind change 

predicted by Schoeberl and Strobel (1978b). 

The tropospheric responses to these zonal wind alterations are 

listed in Table 5.2. Localised changes in the mesospheric jet 

(profile P6) has much less effect than when changes lower down also 

occur (P4). The effect of a 5 ms change in UJ is about 2.2 times 

110 



Figure 5.3 Some of the wind profileSused to calculate the 
values in Section 5.3.2. 

<—WEST 

Figure 5.4 Effect on the orographically forced (1,2) wave of 
increasing the mesospheric jet strength (UJ). The results are 
similar for thermal forcing, and for the other wave numbers. 
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larger than that due to a 1 km change in ZJ. This is because the 

former causes stratospheric wind changes which are about double 

those from the latter (see Figure 5.3). The effect of a 207, 

decrease in the lower stratosphere (P7) is very large - of the order 

of 157>. This concurs with Geller and Alpert in showing that such 

wind changes would, if they occured, be very important. However, 

as shown, in Section 2.2, such changes do not occur in response to 

UV variability. 

For all but one wave (the orographically forced (3,4)), the 

changes at the ground are opposite in sign to those at 5 km. The 

reason for this is found when the vertical structure of the waves is 

considered. The orographically forced (1,2) wave, typical in this 

respect, is shown in Figure 5.4 for Z J = 6 0 with U J = 8 0 and 85. The 

graph shows that increasing the stratospheric wind results in the 

wave's nodes being lowered, in this case by about 1 km. This, in 

dA 

turn, affects the amplitude (A) as ^ " ^ O * For all but the 

orographic (3,4) wave; 

(see Figure 5.2b). So increasing the stratospheric wind reduces the 

amplitude at the ground, but increases that at 5 km. Obviously this 

is only true for "small" changes, such that the node which occurs in 

the bottom 5 km of the atmosphere remains there. However, no such 

node occurs for the orographic (3,4) wave in the reference state, 

hence its idiosyncracy. 

If the stratospheric winds are sufficiently increased, by 

reducing ZJ, the node is lowered to the ground. For the orographic 

(1,2) mode this occurs for Z J = 54.955 km, when the phase is 90° and 
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Figure 5.5 Variation of the wave amplitude and phase with the 
mesospheric jet height (ZJ). Solid lines are for orographically 
forced waves, while the dashed lines are for the thermally 
forced (1,2) wave. (a) m=l, n=2; (b) m=2, n=3; (c) m==3,. n=4. 
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its amplitude is 0.64 m . Lowering the height of the mesospheric jet 

even further results in resonance. So at ZJ= 50.357 km the amplitude 

is 812 m - though this is not realistic for the approximation of 

linearity will have broken down. This resonance occurs when 

For when 5.13 is true the left hand side of Equation 5.8 is 0 2 . 

But the right hand side is non-zero - hence the resonance. For 

those values of ZJ which yield very large or very small amplitudes, 

the phase is also very sensitive to ZJ. This can be seen from 

Figure 5.5. If the stratosphere was well represented by values of 

ZJ between 49 and 56 km, then the orographic (1,2) wave would be 

very sensitive to ZJ. At the realistic Z J = 6 0 km, a change of 1 km 

in ZJ results in an 117o change in the surface pressure - by no means 

negligible. 

Similarly the (3,4) wave is very sensitive to changes in ZJ, 

including when ZJ = 60 km (Figure 5.5c). However, in that case 

l&p(0)| = 0 . 4 P* mb, so large fractional changes are of small 

absolute amplitude. The (2,3) wave shows no resonance or sensitivity 

to ZJ (for ZJ in the range 50 to 70 km), a 1 km change in ZJ 

resulting in a 37. change in amplitude. 

The above results are for orographic forcing. When thermal 

forcing is considered resonance still occurs at the same height as 

for orographic forcing, but the slope above Z J = 5 5 km is noticeably 

reduced, (figure 5.5a shows response of the (1,2) wave). 

However, for the above results, as ZJ is reduced the profile 

becomes less realistic, as the zonal velocity at 80 km is reduced. 

at z = 0 (5.13) 
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This change only affects the (1,2) wave. 
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When Z J = 5 0 km, u(80) = 15 ms ^. So an alternative model is used in 

which 

U , C Z } = U . T [or Z > Z T (5.14) 

This alteration has a negligible effect on the waves when ZJ is 

larger than 60 km. For lower values of ZJ the sensitivity of the 

surface amplitude to changes in the mesospheric jet height is 

reduced. So the amplitude of the orographically forced (1,2) wave, 

which with the previous model varied by a factor of 1000, now 

varies by a factor of 10 (see Figure 5.6). Similarly phase changes 

are smoothed to a maximum of 4°/100 m compared to 36°/100 m. 

The (2,3) wave is virtually unaffected by this change - there 

was nothing to be smoothed! The trapped nature of the (3,4) wave 

results in it being insensitive to wind above the mesospheric jet. 

When comparisons are made with the results of Shutts (1978) 

and with observations, it is found that the model traps waves to a 

greater extent than it should (see Figure 5.7). This is because 

the upper boundary is taken at 80 km, compared to 40 km in Shutts. 

The large zonal wind velocities in the mesospheric jet act as a 

rigid lid and the waves take on "trapped" characteristics. In the 

atmosphere the region between 30 and 60 km is a sink of planetary 

wave energy (Shutts, 1978), and so the effect of the mesospheric jet 

as a rigid lid is reduced. This sink is here modelled using infra-

red cooling (radiative damping). 

Following Hoiton (1975) and Hartmann and Garcia (1979), the 

Vertical Structure Equation with cooling is 
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Figure 5.7 Vertical structure of orographically forced planetary waves. 

(a)-above- Calculated here using UJ=80, ZJ = 60 

(b)-below- From Shutts (1978) 

H E I G H T 
(km) 
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Figure 5.8 Vertical profile of Newtonian cooling 
coefficient used here (solid line). The crosses 
indicate the values calculated by Dickinson (1973) 

Figure 5.9 As Figure 5.4, but with Newtonian cooling included. 
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where oc is a Newtonian cooling coefficient. Figure 5.8 shows the 

vertical profile of oc used here, based on the values given by-

Dickinson (1973), shown as asterisks in the Figure. The boundary 

conditions are as before (Equations 5.7 and 5.8), but the vertical 

wavenumber squared is now 

(THaxn-o _ k 1 _li_(i= <ixji 

+ ±.\& L(k\ - _ j 
•P l l U T I I f 1 R A T~A 

n T T ~ ^ L (5-16) 

The effect on orographically forced waves of introducing cooling 

can be seen from Figure 5.9. The vertical profiles of waves are 

smoothed, particularly near nodes. This results in the phase 

variations of P^ being very similar to those of Shutts (1978), shown 

in Figure 5.7b. Another consequence of cooling is that maximum 

amplitudes (near the mesopause) are reduced, for wave energy is 

absorbed lower in the atmosphere. Similar effects occur in the 

thermally forced waves. 

This smoothing also applies to the dependence of the surface 

wave on the stratospheric winds (parameterised by ZJ), as can be 
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Figure 5.10 As Figure 5.5, but with the effect of Newtonian cooling 
also included (dotted line). For the results with cooling, 
u(z) = UJ for z> ZJ. 
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seen from Figure 5.10. The orographically forced (1,2) wave in this 

latest model varies by a factor of only 1.5, and the maximum phase 

variation is 0.25°/100 m . For ZJ = 60 km, the percentage change in 

amplitude is +17. for every 1 km increase in ZJ, a tenth of the value 

when cooling is not included. 

The (2,3) wave is virtually unaffected by changing the model, 

except for the phase being shifted by about 15°. The rate of change 

of amplitude with mesospheric jet height is slightly reduced, to 

2.47<> for every 1 km when Z J = 60 km. Like the (1,2) wave, the (3,4) 

wave is smoothed so the resonance disappears. However, the (3,4) 

wave still increases by a factor of 10 between Z J = 6 1 and Z J = 5 3 km, 

while the maximum phase variation is 1.5°/100 m . 

So resonance does not occur when cooling is included. 

To examine the effect of stratospheric wind changes in surface 

pressure and 500 mb height, the planetary waves are summed. Before 

this is done realistic forcings are introduced. 

The orographic forcing used is that given by Sankar-Rao (1965). 

The thermal forcing is less easily modelled. Geller and Avery 

(1978) evaluated the heating rates from a global circulation model. 

The values used here, given in Table 5.3, are based on those of 

Geller and Avery for 900 mb at 50°N. It is assumed that Fourier 

2 3 4 

analysing those values yield the forcings of P^, P^, and which 

in turn are assumed to decay exponentially with height. 

The global response to these forcings is shown in Figure 5.11. 

Comparison with the observed values of van Loon et al. (1973), 
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OROGRAPHIC THERMAL 
m, n Amp Phase Amp Phase 
1, 2 150 -91° 1.01 73° 
2, 3 242 -150° 0.74 96° 
3, 4 196 55° 0.28 86° 

Table 5.3 Amplitude and phase of the realistic 
forcings. The orographic forcing^is in metres 
and the thermal forcing in K day . The thermal 
forcing is evaluated from values in Geller and 
Avery (1978) for winter heating. 

Figu'e 5.11 Mean global perturbation due to the forcings given 
in Table 5.3, at sea level (lower diagram) in mb and at 5 km (upper 
diagram) in metres, for mean conditions. 

Figure 5.12 Observed mean Northern Hemisphere January 500 mb planetary 
wave height pattern (in decametres) due to zonal harmonics 1,2 and^3, 
using the results of van Loon et al.(1973). From Geller and Alpert (1980). 
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Figure 5.13 Difference between the global structure for ZJ = 60, 
UJ = 8 0 (as in Figure 5.11) and that for ZJ = 60, UJ = 85. Values 
at the ground (below) are in mb, while those at 5 km (above) are 
in metres. 

GROUND 500 MB 
m, n Amp Phase Amp Phase 

1,2 . 56 mb 82° 5.3 m 64° 
2,3 .11 mb 106° 1.0 m 96° 

CO .76 mb 180° 7.3 m 174° 

Table 5.4 Amplitudes and phases of the waves 
which comprise figure 5.13. 
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shown in Figure 5.12 (from Geller and Alpert, 1980), shows that the 

model underestimates the amplitude of planetary waves at 5 km. This 

is probably due to the assumption that the thermal forcing decays 

exponentially with height. For that means S(5 km) = 0.3 S(0 km) while 

Geiler and Avery show that the forcing at 5 km has a similar magnitude 

to that near the surface. So the forcing, and hence the amplitude, 

at z = 5 km has been underestimated. At the surface the model 

produces a pressure pattern dominated by wavenumber 1, for the 

wavenumber 3 component, evident at 5 km, is no longer significant. 

The effect of increasing UJ to 85 ms \ as would occur if the 

UV increased by 107o, is shown in Figure 5.13. As the pressure and 

height patterns are very similar to those of Figure 5.11, the 

difference between values for UJ = 80 ms ^ and UJ = 85 ms ^ are 

plotted. The dominant changes at both levels are in wavenumbers 1 

and 3, as is verified in Table 5 .4 , where the amplitudes and phases 

of the perturbation waves are listed. Hence the effect of changes 

in the middle atmosphere winds on the surface pressure and 50 mb 

height will, at mid-latitudes, be largest for wavenumbers 1 and 3. 

However, Parker ( 1 9 7 6 ) and King et al. ( 1 9 7 7 ) both observed 

variations which were predominantly wavenumber 2. As well as this 

qualitative disparity, the observed fluctuations are much larger 

than the predictions of the model for a 107. change in UV. 

So the observed planetary wave variations are not due to solar 

UV variations changing the middle atmosphere zonal winds and thence 

planetary waves at all levels, including the troposphere. 

It can be seen from Table 5.4 that the phases of the 

perturbation waves change little (< 20°) between the ground and 5 km 
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while 3» changes by over 100°. The reason for these small phase 

changes is that the bottom boundary condition for the perturbation 

waves implies that phase lines are vertical at the ground. For, 

as X (0) is unaltered, the RHS of Equation 5.8 is unaffected by 

the middle atmosphere wind changes. So 

4JL _ Iii^X _ i i _ sDi at 2 ( 5 17) 
Jz * J 2 dz -X (5-l7) 

where the subscript o refers to mean conditions (UJ=80), while 

1 refers to U J = 8 5 . Rearranging 5.17 gives 

Expressing the perturbation wave ( - in polar 

i Q 
form (Ae ), substituting in to equation 5.18 and equating real 

and imaginary parts yields 

I iA >42( . 4 ^ = 0 aVz = 0 
A * d 

(5.19) 

•z ' ciz 
So phase lines of are vertical at the ground, while the 

amplitude is proportional to the zonal wind velocity. 

The Vertical Structure Equation of is found by subtracting 

that for from that for 5 . Then, neglecting cooling, 

<L s i + b_ J / & U S S , a i 
dz2 fo az\&/dz ^ 

2J2_ (-n+xXn-0 
A R 1 

(5.20) 
f. 

where SX~ X 0 ' X ^ an<* x is a linear operator in S X > s 0 when 

&X i t s derivatives are zero, X( SX ) = 0» As SX i s z e r o i-n 

the troposphere, the mean tropospheric wavelength for all three 
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waves (1,2; 2,3; 3,4) is, as before, about 40 km and so phase changes 

are, on average, 90°/10 km. 

The vertical profile of hi is, when normalised so that 

( 0 ) = 1 , almost identical for orographically and thermally forced 

waves. This is because S X is zero where heating is significant, 

so the RHS of 5.20 is negligible, and hence S and a are not & & ' o mn 

explicitly used to calculate 6 $ . They are implicitly involved in 

the term of 5.20, but this term only occurs when z;>18 km. At 

these levels the orographic component differs by a constant 

multiple from the thermal one, so normalisation leads to identical 

results. 

The tropospheric variation of the three waves is shown in 

Figure 5.14. Though these results were obtained using meridional 

variation of zonal, wind which is independent of height (Equation 

5.4) similar results would follow from a two dimensional model. 

For in that case the bottom boundary condition is similar to that 

used here (Schoeberl and Geller, 1977) and Equation 5.18 still 

applies. Vertical wavelengths, at mid-latitudes, are also similar 

to'.those for the above results (van Loon et al., 1973). Hence the 

profiles of Figures 5.14, of the effect middle atmosphere wind 

changes have on planetary waves at mid-latitudes, are similar to 

those which would be obtained from a two dimensional model, such as 

that of Schoeberl and Geller (1977) used by Geller and Alpert (1980). 

It has been observed by Edmonds (1980), that geopotential 

height and temperature anomalies have little westward phase tilt 

with height. One possible explanation of this is that the effect 

of middle atmosphere wind changes on planetary waves are a major 
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Figure5.15 Pressure anomalies associated with the sunspot 
cycle, for Januarys 1750-1958. (a)-above- for within a year 
of sunspot maximum. (b)-below- for within a year of sunspot 
minimum. From Parker (1976) 

Figure 5.16 Difference between Figures 5.15a and b. Hatched 
areas are significant at 5% level, cross hatched at the 1% 
level. From Parker (1976) 128 



contributor to such anomalies. However, this would imply a minimum 

in the effect at 10 km, while that is where Edmonds observed the 

maximum effect. Also, the above results gave large phase changes 

between 7 and 12 km, while Edmonds observed little phase tilt below 

15 km. 

So changes in the stratospheric winds, not induced by solar 

variability, may be a major cause of tropospheric anomalies. 

5.4. Observations 

5.4.1. Effect of Sunspot Cycle 

Parker (1976), presenting results from 200 years data, 

illustrates how the surface pressure varied over the sunspot cycle. 

His charts for January are reproduced here (Figure 5.15). The 

largest effect is the winter hemisphere polewards of 30°, where 

planetary waves, and hence variance of the annual mean pressure, are 

largest. Similarly, the effect is larger in the northern than in 

the southern winter, for then the planetary waves have a larger mean 

amplitude. 

By Fourier analysing the values in Figure 5.15 around a mid-

latitude circle, it is found that the largest effect is on wave 

number 2. This result is inconsistent with the above theory, which 

implied that increased UV would have the greatest effect on wave-

numbers 1-and 3 not, as observed, on wavenumber 2. Also, the change 

in wavenumber 2, of about 1 m b , is double that which the theory 

predicts (Table 5.4). 

Parker plots the difference in surface pressure between sunspot 

maximum and sunspfct minimum (Figure 5.16) and shades the areas with 

significant variations. 57o of the area has variations significant 



at the 957o level, while less than 17, is significant at the 997, 

level. Also, there is no preference for particular latitudes in 

the significant areas. Hence the effects are probably random 

fluctuations. 

5.4.2. Effect of Solar Rotation 

The change in insolation due to solar rotation is much less 

than that due to the sunspot cycle (see Section 1.4). The ratio 

of the two effects is approximated here as a tenth, which probably 

results in an overestimation of the rotation effect. This factor 

is carried over into the models of Section 5.3.2. So the maximum 

effect of solar rotation, according to the model is -t 0.13 mb at the 

ground and ± 1.3 m at 5 km (about 500 mb). 

Calculations by King et al. (L977) showed effects of ±2.1 mb 

at the ground and ±70 m at 500 m b , much larger than the theory 

predicts. These observations are now considered in more detail. 

The data used by King et al. (1977) was the daily 500 mb 

heights for the years 1963-1972. The average values appropriate 

to each location and each day of the year were subtracted from the 

> 

daily values. Tt ise deviations from the climatic mean were then 

analysed to find the effect of solar rotation. Superposed epoch 

analysis was used with key dates successively, 27 then 28 days 

apart. For each key date, the 500 mb heights for up to 80 days 

after the key date are found. So by considering a number of key 

dates, sets of heights are formed for 0,1,2...80 days after key 

dates. These values in each set can then be analysed and variations 

between sets found. 
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500mbar HEIGHT,60°N,ALL LONGITUDES, 
NOV-APR, 1968-72(27 KEY DATES) 
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Figure 5.17 Superposed epoch analysis of the 
mean 500 mb height at 60 N, using key dates 
27.5 days apart. From King et al. (1977). 

Figure 5.18 Superposed epoch analysis of the 
500 mb height for three longitudes at 70° N, 
for the winters 1963/64 to 1971/72. From King et al. (1977) 

day oscillation in the 500 mb height. Results 
on day 8 and day 22 of the 27.5 day superposed 
epoch analysis at 70 N. from King et al (1977). 
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A period of 27.5 days was chosen as representative of 

variations in solar output (see Figure 1.4). The sunspot number 

and 500 mb heights are then analysed for the winters 1963/4 to 

1971/2. The results are illustrated in Figure 5.17. The sunspot 

number varied by 207., being a maximum on day 6 (six days after the 

key dates). The zonal mean 500 mb height at 60°N showed variations 

of ±20 metres with a similar phase. This result cannot be a 

planetary wave effect as it is a zonal mean. However, the response 

varied with longitude, as Figure 5,18 shows for 70°N. While the 

amplitude was large at 140°E and 340°E, there was no effect at 240°E. 

This is further illustrated by Figure 5.19, demonstrating the 

longitudinal variations on days 8 and 22. As well as a change in 

the mean height of 30 metres, there was also a change in wavenumber 

2, equivalent to a wave of amplitude 50 metres. With there having 

been no variation at 50°N,340°E, the mean pressure gradient between 

50 and 70°N,340°E varied by 507>, and hence so did the mean zonal 

wind, (Holopainen, 1979, showed that the wind is 937o of the 

geostrophic value at 500 mb over Great Britain). Also, variations 

in the 500 mb height imply variations in the mean tropospheric 

temperature. A 100 m increase in the 500 mb height, as at 

70 N , 340 E, impli es a 5K warming. This is only slightly affected 

by the concurrent changes in surface pressure. 

So during the winters 1963-1972 there were very large 27.5 

day oscillations in the 500 mb height, the zonal wind and the 

tropospheric temperature. 

Other authors have found tropospheric periodicities between 

20 and 30 days. Fraedrich and Bottger (1978) found a period of 
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apart. The 27.5 day period is dominant in both. 
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about 25 days for planetary waves in winter at 50°N and 500 mb. 

McGuirk and Reiter (1976) found a "strong, persistent and significant 

oscillation of about 24 days periodicity in hemispheric-scale energy 

parameters during the winter season". Craddock (1968, p. 158) found 

a period of 23-25 days in the surface pressure at*Aberdeen. So 

King et al.'s results could be another manifestation of this 

periodicity. Their results could be due to either chance, a 

coincidence of high/low pressure occurring a multiple of 27.5 days 

apart, or else solar variability affecting the troposphere, as 

King et al. suggest. 

Williams (1979) suggests that the results obtained by King et 

al. (1977) were due to a property of superposed epoch analysis when 

periodic key dates are used. He shows that such a method will 

result in the fundamental mode, in this case with period 27.5 days, 

dominating its harmonics, if the data have a "red" spectrum (greater 

power in lower frequencies). However, when key dates 55 days apart 

are used the first harmonic, and not the fundamental mode, dominates 

(see Figure 5.20). So the dominance of the 27.5 day period is not 

due to the method used. When using key dates 20 and 40 days apart 

it is the fundamental that dominates, as predicted by Williams' 

theory. 

The location of the largest effect found by King et al. (1977), 

70°N,20°W, is close to Jan Mayen Island. Green (1979) fountf that 

for the winter of 1957/58 the 500. mb height did not have the large 

variations with a period of 27.5 days which King et al. found for 

the winters 1963 to 1972. 
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Figure 5.21 Superposed epoch analysis using key dates 27.5 days 
apart. (a)-top- 500 mb height at Jan Mayen Island (71°N, 9°W) 
(b)-bottom- sunspot number. Both are for the winters 1956/57 to 
1958/59. A total of 19 key dates were used.-
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This is also true when the three winters 1956/57 to 1958/59 

are considered together, as shown in Figure 5.21a. However, the 

sunspot number for the same period also fails to show a clear 27.5 

day cycle (Figure 5.21b), indicating that the effect of rotation on 

solar output may have been reduced at that time of high solar 

activity. Hence these negative results do not disprove the 

hypothesis that the observations of King et al. were due to 

variations in solar output. 

To investigate the behaviour for 1963-72 in more detail Fourier 

analysis is used. King et al. (1977) suggest that the main wave 

is a standing wave with period 27.5 days and longitudinal wavenumber 

2. Two-dimensional Fourier analysis could be used to express the 

heights in terms of propagating waves, thus 

M / a 5/2-

h ( x V ) = Y 1 A m ( r sin (mx+<rfc + a m ( A (5.21) 
it\*o <r*o 

4- B s\n (*mx - c r t 
ms" 

where M is the number of points in the x-direction (in this case 18) 

and S is the number of points in the t-direction (in this case 27 

and 28 were used and the mean taken as representative of the 27.5 

day period). Standing waves, which have the formula 

C sin (rax+c) sin (<r*t+d), are not uniquely definable from 

Equation 5.21, for the sum of two propagating waves of equal 

amplitude and wavenumber moving in opposite directions is equal to 

one standing wave of double their amplitude: 

A sua (TT\x-t-<rlr-ta) -v- _ OA. » r a + b ^ , . ^ f ^ ^ M 
f \ s\r> (mx-<nr ^ M

 ( 5 2 2 ) 

This ambiguity is resolved by assuming that there is only one 
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propagating wave, the one which has the larger amplitude in 

Equation 5.21, so 

M / 2 S / Z 

^ ( X > t ) " So S o * ^ + ^ 

4 s i n e * J s m f t r t + e ^ ) (5.23) 

The amplitudes of CC (m<r> 0) and B — are listed in m,<r 1 m,«r 

Table 5.5 for m = 0,1,2,3, 6" = 0 , 1 . The largest wave is, as stated 

by King et al., the standing wavenumber 2, but its amplitude of 

12 m is only a quarter of that which they attribute to it. Linearly 

extrapolating the theory of Section 5.3.2, there would need to be 

an oscillation of amplitude 80 

ms in the mesospheric jet to 

produce this response. This in turn would need a change on 110?o in 

the solar UV, which does not occur. Hence the mechanism of the 

previous Section does not explain the large standing wave with 

period 27.5 days. 

King et al., using the notation of Schoeberl and Geller (1976), 

suggest that it is the (2,4) mode which is altered. As Schoeberl 

and Geller use Hough Functions, not Associated Legendre Functions, 

to describe the latitudinal dependence of planetary waves, this 

predominantly polar mode is not modelled in the previous Section. 

The large oscillation of 11 m in the zonal mean height (m= 0, <r* = 1) 

is not a planetary wave effect. 

The data was now split into two subsets, one for the winters 

1963/64 to 1966/67 and the other 1967/68 to 1970/71 - the results 

for 1971/72 being neglected. The former were at a period of low 

sunspot activity, the latter when it was high and so they are 
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m 0 1 2 3 
<r \ s S T S T S T 

0 0.3 m 6.1 m -13° 3.3 m -78° 1.8 m -97° 
I 11.0 m 6.8m +4.9 m 11.9 m +3.6 m 5.5m +0. 7 m 

o 
Table 5.5 The main planetary waves at 70 N, for the winters 
1963/64 to. 1971/72. The mean waves, 6" = 0, have both their 
amplitude and their phase given. The waves with a period of 
27.5 days (G" = 1), both standing (S) and travelling (T) have 
only their amplitude given. For the travelling waves a positive 
amplitude indicates eastward propagation, negative westward. 

m 
<r \ 

0 1 2 3 m 
<r \ s S T S T S T 
0 
1 

-8.7 m 
10.5 m 

9.2 m 60° 
9.8m +9.4 m 

. 3.4 m 0° 
6.5m +5.0 m 

9.9 m -117° 
2.8 m -4.0 m 

Table 5.6a As Table 5.5 but for MIN, the winters 1963/64 to 1966/67 

m 
<r \ 

0 1 2 3 m 
<r \ S S T S T S T 
0 
1 

12.6 m 
15.4 m 

7.8 m -98° 
2.1m +15.7 m 

16.1 m -108° 
17.7m -0.9 m 

1.9 m 57° 
7.6 m +4.3 m 

Table 5.6b As Table 5.5 but for MAX, the winters 1967/8 to 1970/71 

N v m 

<r \ 

0 1 2 3 N v m 

<r \ Amp Amp Phase Amp Phase Amp Phase 
0 21.3 m 16.7 m -110° 17.4 m -119° 11.8 m 62° 

Table 5.6c Difference between the standing waves, MAX - MIN. 

138 



referred to as MIN and MAX respectively. The amplitudes of the 

main waves for MIN and MAX are listed in Table 5.6. There are 

several interesting properties 

(a) The standing wavenumber 2 is large only in MAX. This supports 

the chance theory, that high pressure coincidentally occurred a 

multiple of 27.5 days apart. 

(b) The travelling wavenumber 1 has a large amplitude in both MIN 

and MAX. The reason for^small component over the whole period 

1963/64 to 1971/72 is that the two waves have a phase 

difference of 120°, and so partially cancel. 

(c) There are large changes (10 to 20 m ) in the time averaged 

- 0 ) waves. As they are averaged, they cannot be due to 

solar rotation, but may be due to the sunspot cycle. If the 

two standing waves, with periods 27.5 days and 11 years., 

were due to the same process then their longitudinal phases 

should be similar. This is not the case, for their phases 

are different by more than 60° for all three waves. As these 

observations are only over one solar cycle, no conclusion can 

be drawn as to whether the change is solar induced, (Pittock, 

1978). 

5.5. Conclusions 

Planetary waves are affected by changes in the middle atmosphere 

winds. However, the effect is not as large as suggested by Bates 

(1977) because radiative damping reduces the sensitivity of the 

waves. Even so, a 207» increase in UV over the sunspot cycle, as is 

claimed by Heath and Thekaekara (1977) to occur, would have a maximum 

effect of 2.6 mb at the ground. In agreement with Schoeberl and 

Strobel (1978b), it is found that wave number 2 is virtually 
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unaffected by changes in UV. However, both Parker (1976) and 

King et al. (1977) find that the largest changes coincident with 

solar activity are in wave number 2. Hence these changes are not 

explained by the theory of Section 5.3.2. 

The observations by Parker, of variations in surface pressure 

over the sunspot cycle, are not statistically significant and are 

probably random fluctuations. The largest component wave in the 

observations of King et al. is the standing wave number 2 (with a 

period of 27.5 days) which has an amplitude of 12 m . Because this 

component is much larger than the theory predicts, and is only large 

for part of the period considered, it is probably also a random 

fluctuation. 

One corollary of the theory applies to all middle atmosphere 

wind changes, not necessarily induced by solar variability. This 

is that while the mean waves have large westward phase tilts with 

height in the troposphere, the perturbation waves have almost 

vertical phase lines in the lowest 5 km. 
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APPENDIX 

THE VERTICAL STRUCTURE EQUATION 

A.I. Introduction 

The two waves considered in depth, planetary waves and 

atmospheric tides, have many similarities. Both are assumed to have 

a given periodic behaviour in the horizontal, parameterised by 

horizontal wavenumbers, while their vertical structures are 

governed by the "Vertical Structure Equation". The absorption of 

heat forces both, though planetary waves are also forced by 

orography. 

The generalised form of the Vertical Structure Equation (VSE) 

used in this appendix is: ' 

4 - | - 4 - V ^ ^ F C t j ) (A.l) 
d T) 

where yj is the height 

S (tj ) is the wave amplitude 

V ( 7 ] ) is the vertical wavenumber 

and F(lj ) is the forcing due to periodicity in the absorption/ 

emission of radiation. 

There are boundary conditions at TJ = 0 (ground) and at Tj = Tj^. 

The boundary conditions used are 

(a) No vertical velocity at the ground, w = 0 . 

(b) No propagation of energy downwards from above the forcing. 

They are initially represented as 

j l Qt T j - 0 (A.2) . 

n 
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A.2. Analytic Solutions 

When v is independent of height, Equation A.l can be solved 

analytically by a Green's Function method. The analytic solution 

function and other parameters of interest. 

In the real atmosphere V is far from constant. To solve .for 

realistic vertical structures, a computational method is needed 

(see Section A.3). However, these solutions, by their very nature, 

vertical profiles. Therefore analytic solutions for "simple" 

vertical profiles, which are more realistic than constant v , are 

of interest. These "simple" profiles are either piecewise constant, 

or else such that the VSE can be integrated analytically. Before 

considering these, the solution for the simplest profile is now 

given. 

A . 2.1. Constant Coefficients 

First we evaluate the Green's Function G(71 ,Tfl ) defined by 

has the advantage of giving % (tj ) exactly in terms of the heating 

fail to give formulae relating variations of with changes in 

where 

(A.5) 

(A.4) 

(A.6) 
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Integrating A.4 gives 

d £ 

drj 

-n, 
= 1 

1°: 

(A.7) 

(A. 8) 

where 
L X f r , ) ] ^ - U ( A ' 9 ) 

8 ^ 0 

The solution to Equations A.5 to A.8 must be sinusoidal in 

to satisfy A.4 away from T| = T| Q. It can be shown to be 

Soq V h T + c o s VT) - o^ S'kiviJ 

[ v te-tf) c©svr) r-»- C^y-fv'i s i a v r j 1 

-< (A.10) 

[ v ( d - y ) c0SVTjr v t ] 7 1 

The Equations to be solved are A.l to A. 3. Using Equations 

A.4 to A.6 it can be shown that: 

J fWG^^d^+pG^^-SG^^ (A.ii) 

For both tides and planetary waves with B and X u ) independent 

of height, S = 0 and ^ = iV and so 

It is this expression that is used to derive Equations 4.55 and 

5.10. 

The forcing term, F, is a linear function of the heating and 

also proportional to the square root of density. The latter is a 

consequence of normalising the dependent variable so that there is 

no -7-=- term in the VSE. Before normalisation the forcing is d T| 

143 



independent of density, afterwards 

RT]) = A j y X u ^ ] <a-i3> 
where A is a constant and is a linear operator, so 

" v T C f t C f t j ] - B ^ t C f t j i ] 

What happens if the same amount of energy input with similar 

vertical variations is centred at a different level? (This can 

only apply to ozone absorption as tropospheric forcing always 

extends down to the ground). 

f m ) 3 v w tai-k|<h, 
Let T(Tfl= <1 ^ (A. 14) ^ . \ 0 

where h is the centre of the heating. J is normalised so that 

J(0)=1 and hence M(h) can be evaluated using the fact that the 

total energy input E = J * ^ Jdz. 

M(h) = $ (0)/j> (h) = e h / H (A.15) 

As is linear this factor can be removed from the integral and 

using A. 12 to A. 15 it can be shown that 

^(o) = ^ j|3 e" 2 (A-16> 

As only the component forced by ozone absorption is considered, 

|3 = 0,and so, if the heating profile is raised with E fixed, then 
h / 2H 

the amplitude at the ground increases by a factor e . S o the 

effect of changes in UV are doubly felt: first directly by changing 

the total energy input but also by altering the ozone profile and 

hence the height of absorption. The latter effect is less than 107o 

of the former and highly sensitive to how the ozone profile varies. 

If the ozone varies as given by Penner and Chang ( 1 9 7 8 ) the two 
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effects have the same sign while the results of Callis and Nealy 

(1978) give opposite signs (see Table 4.9). 

A.2.2. Piecewise Constant Coefficients 
2 

This case where there are two or more layers with v constant 

in each, is only of interest in the case of planetary waves and 

cannot occur in any simple model of tides. For planetary waves on 

a sphere with constant zonal velocity u 

2 - Q s m e (TMXn-fi" z -I 
V - -r-rrr + J 

M i 1 P L u R R 2 J 
(A.17) 

At the tropopause the static stability, B(z), changes very rapidly 

and can be modelled as a discontinuous change. This implies a 

discontinuity in V(TJ ) so a two layer model with v constant in 

each layer is considered. To solve this, two boundary conditions 

at the interface are needed. 

Physically these conditions are that pressure is continuous 

across the interface and that the interface must behave as a 

material surface. If the interface is 

h(x,y,t) = h + h*(x,y,t) 

then the conditions are 

[ p ] - 0 \ 
n > at z = h (A.18) 
5t ( z " h ) = 0 J 

(with [ ] as defined in Equation A.9, the change in value at z = h) 

With undisturbed pressure and density continuous across z = h we 

can repl ace the first condition by 

[ S p ] = 0 at z = h (A.19) 

which in the notation of this chapter implies %(7|) continuous at 

z = h. The second condition can be expanded, giving 
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d z Now Tr-r-a w, so if h1 independent of t then operating on A.20 with a t 
t ] gives 

L w 3 = I j - C u ] = 0 (A. 21) 

substituting for w, using the thermodynamic equation, gives the 

condition that g ^ ^ * + is continuous at z = h. 

The upper and lower boundary conditions are as before and given 

in Section A. 1.2. There are two results, one for tropospheric 

("Yj q < h) and one for stratospheric heating (T| o>h). The former 

is denoted by the subscript L and the latter by U, and similarly 

Bl, are tropospheric values while Bu, v^ are stratospheric. 

It can be shown that the Green's Functions at the ground ("Y| = 0) 

are: 

G - t o r n = — r- (A. 22) 

_ VL (SS - H ) C O S - {vS ^ s\ovL 

( + ^ a X H V L h - i-V^ Sun v ^ H 

(A.23) 

What effect does the introduction of a tropopause have on the 
2 

surface amplitude? Assuming V > 0 for all v's, then for the 

three cases of interest, the amplitudes squared are: 

(a) No tropopause. / . | 
(A.24) 
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(b) Tropopause, heating above it 

( A ) 2 — ^ ( A -
2 5

) 

k " s 2 vLh sin1 vtU) 

(c) Tropopause, heating below it 

J _ \ 2 

If H: 

(A.26) 
jTT) ( v* COS1 + v a 2 si-nZvLh) 

2 2 

As B u > B^, then V > v>u and so for heating above the 

troposphere 

Equality occurs if, and only if, sin V Lh = 0. .The critical 

parameter is > number of wavelengths the troposphere is 

above the ground. Typical values when n = 2 are h = 7t /2v k and 

M - ^ t K i . These values lead to 

In the other case, that of heating in the troposphere, the 

Equation for the amplitude (A.26) is more complicated. With heating 

near the ground h - h cL TC/2 v^ , for the n = 2 mode, so 
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Using typical values of VL ^ JL , h ^ ^^L gives the 

following dependence on 1) 

( A ) c = | : [ | - i c o s ^ „ ( c o s v l V s m ^ ^ ( A ^ (A.30) 

which is 0.6 for heating at the ground rising to 0.9 for heating 

just below the tropopause. 

So the effect of including a tropopause in the model is to 

reduce the wave amplitude, hence neglecting the tropopause results 

in an overestimated amplitude, for forcing by stratospheric 

heating by troppspheric heating and by orography. 

2 
A.2.3. V Being a Simple Function oft) 

The models considered have been very idealistic, with 

assumptions made so that the differential equation has constant 
coefficients. Now more realistic vertical profiles are considered 

2 

which lead to V varying with Tj in such a way that the VSE 

(Equation A.l) still has analytic solutions. Even so, these 

analytic solutions involve either Bessel or else Whittaker Functions. 

Using these methods the solutions are noticeably closer to both 

observations and computation results than from the constant 

models. 2 
Two cases are considered, one where v is a linear function 

of T) and the other where it is a linear function of 1/*T] . 

(a) V 2 = Ar) + B 

This case occurs in tidal models when the temperature is 

assumed to be a linear function of , i.e. 

T = T q + arj 
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then (A.31) 

so (A.32a) 

(A.32b) 

If a is constant, then A and B are also. This model, though, 

is physically meaningless, for if a is the tropospheric adiabatic 

lapse rate of -3 K/km then above 100 km the temperature would be 

below absolute zero. This is, by definition, impossible. However, 

this parameterisation is useful in multi-layer models of tides, 

where a is negative in the troposphere and mesosphere, positive in 

the stratosphere and thermosphere, and zero at the tropopause, 

stratopause and mesopause. This method was used by Pefceris (1937), 

but as the thermospheric temperature was not known then he estimated 

it, at a value much less than it was later found to be. This model 
2 

is highly accurate as the only height dependent variable in y is 

temperature, which is well approximated by a series of straight 

lines. Indeed the numerical solutions were evaluated using such a 

profile (see Figure 4.16). 

The solutions are Bessel Functions, and so the boundary 

conditions between two layers are complicated. It may seem 

surprising that there have not been attempts to repeat Pekeris' work 

with the now more accurate temperature and heating profiles. The 

reason why it was not done here is because the algebra is daunting, 

while the computational solution is simple. 

2 
To obtain this form for v in modelling planetary waves, B 

would heed to be a linear function of T) while U was constant. A 
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much more realistic approximation is constant static stability in 
2 

uniform wind shear. This leads to the other simple form of V . 

(b) y 2= C/rj+D 

With uniform wind shear, u = u o + er| , then a co-ordinate 

transformation is needed. 

Let h = - (A.33) 2 then v -

1 e 

h 

and so C = ^ § (A. 35a) 

ft 
D = ~ fTTi """ T T ^ + l * ) (A.35b) 

By changing the scaling of h, the D term can be normalised to -k* 

Then the VSE becomes 

cTS 
-t-

which is a special form of Whittaker's Equation, the solutions of 

which are related to Confluent Hypergeometrie Functions, (see 

Shutts, 1978). 

This method was used by Shutts, and provided results which 

compare well with the observations. It is, however, complex and 

tiresome. Again, the computational solution is the normal means of 

solving the equation. For, to improve accuracy a multilayer method 

is needed, with uniform shear and static stability in each layer. 

This greatly increases the laboriousness of the method. 

So while it is possible to solve the VSE analytically, using 

reasonable approximations to the vertical profile of wind, temperature 

and static stability, it is normally more efficient to solve it 
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computationally. The one case in which analytic solutions are 

useful is when there is a critical layer, where u and therefore 

vertical wavelength, is 0. When this occurs V is infinite and 

the numerical method fails. For this case, Shutts (1978) patched 

together the computational solution for below the critical layer 

with the analytic solution within and above the critical layer. 

However, this problem does not occur here as there is no critical 

layer at mid-latitudes ih winter. 

A.3. Computational Solutions of the VSE 

The computational solution can be used for any V(TJ ) and 

F(t] ) profiles so long as V / 0 . The method is both fast and 

economic. Repeated numerical integrations will indicate how 

sensitive the solutions are to the vertical structure, as is done 

in Section 5.3.2. The method used here, first devised by Bruce et 

al. (1953), is described by Chapman and Lindzen (1970). 

First the Vertical Structure Equation, A.l, is converted to 

its finite difference form using 

" =r rill ZlzL (A. 37) 
d ^ 2&T) 

J r f 
(A.38) 

where &7) is the vertical grid length and ^ ^ (i=l to N) is the 
v th 

value of 5 at the i level, there being a total of N levels. 

Substituting A.37 and A.38 into A.l leads to the finite difference 

equation: 

151 



where A^ =» 1.0 

B = - 2 . 0 + S - * 2 v } 
1 (A.40) 

Ci " 

Di - s-n 2 Fi 

So as to satisfy both top and bottom boundary conditions (be) 

simultaneously, two dummy variables, U^ and V^, are introduced, 

though they have no physical meaning. They are introduced by 

defining 

(A.42) 

(A.43) 

J I ^ 

Now the bottom be is used to evaluate U^ and V^. A slightly 

modified form of A.37 in A.2 gives 

OT^ 

which, when rearranged, is 

Comparing A.41 and A.43: 
= c T ^ ) 

1 ( l - « S t ^ 

Substituting A.41 with i replaced by i-1, in A.39 and rearranging 

B i + U ^ C i fti+UnCt 

Comparing A.41 and A.45 

li. = ; VL= C; (A.«) 

(A.44) 
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So using the coefficients A., B., C, and D, and U, , and V, ., ° i 1 i i i-1 i-1 

U^ and V^ can be evaluated. U^ and V^ are known from A.44, so 

solving A.46 for i=2,3....N gives U^ and V^ throughout the region 

of integration. 

The top be is applied to evaluate . Substituting A.37 in 

A. 3, evaluated at i = n ~ l , gives 

2 S ^ 

Using A.41 with i = N-2 and N-l, and 5 can be eliminated N - | N - Z 
from A.47, so 

k = 2 ^ * + V N - ' l - U M - 2 - 2S* \»1 ( A 4 8 ) 

Finally, having found and f°r all i, A.41 is solved for 

i = N-l, N-2,....2, hence all the Ss^'s are evaluated. 

Using this numerical method, the VSE can be solved for various 
2 

heating and v profiles. By varying the heating profile and/or 

V (T| ) it can be determined how sensitive the amplitude is to a 

parameter. In particular, an amplification mechanism may be found 

in which a change induced by solar variability in one parameter 

could cause drastic changes in the wave at the ground. 
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