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Abstract

Plants are known to respond to various types of environmental stresses arising from physic-

ochemical changes and other organisms. As plants often simultaneously experience multiple

stress factors due to their immobility, capacity to appropriately regulate gene expression by

integrating multiple stress signals is crucial for successful adaptation to hostile environments.

Although significant progress has been made in elucidating the molecular mechanisms for

regulation of stress response genes under single stress, little is known about the effects of

combined stress signals on gene regulation and their associated mechanisms. This thesis

aimed to contribute to the understanding of plant stress response by studying the signal

integration mechanisms under various perspectives: first, the thesis explored how multiple

stress signals affect the choices over discretised regulatory outcomes, such as up-regulation

or down-regulation. We propose that processing of multiple signals can be described as

logical operations, and subsequently investigate the mechanisms for each signal integration

outcome by constructing logical model of intracellular signalling network. The resulting

insight was applied to analyse a transcriptomic dataset from the model plant Arabidopsis

thaliana, leading to novel hypotheses about potential crosstalk interactions that are miss-

ing between multiple stress signalling pathways. In parallel, the thesis also explored the

cases where integration of multiple stress signals modulates dynamics of gene expression.

An experimental study of the expression profile of Response-to-Dehydration 29A (RD29A),

a model stress response gene, was conducted to show that combination of multiple stress

inputs introduces a unique qualitative effect on dynamics of gene expression. The origin of

this behaviour was investigated via a dynamical model of the RD29A regulatory network,
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which subsequently revealed potential interactions in the regulatory network that are cur-

rently unknown. Taken together, this thesis argues that systematic comparison between

gene regulatory outcomes under single and combined stress inputs provides a crucial source

of information for discovering functionally significant regulatory interactions in the stress

signalling network.
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Chapter 1

Introduction

1.1 Importance of understanding plant stress response

As sessile organisms, plants possess remarkable abilities to adapt to surroundings. Funda-

mental to such abilities are the molecular mechanisms that allow plant cells to sense changes

in their environments and subsequently commit their resources toward eliciting appropriate

responses. Hostile changes in the environments leading to deviations from the physiological

norm are generally referred as stress, which may arise from combination of suboptimal or

damaging quantities of environmental factors such as water, light, and nutrient sources [221].

As responses to these changes, plants employ various molecular stress response mechanisms

in order to maintain osmotic and ionic balance [227, 229], to protect and repair damaged

proteins and membranes [45, 258], or to fend off incoming pathogenic attacks [49, 228].

Elucidation of the molecular stress response systems in plants holds significant social and

economic interests, mainly concerning food security. The world population stands at approx-

imately 7.349 billion individuals, which is expected to increase to 9.7 billion individuals by

2050 [249]. Such rapidly increasing population motivates searches for the ways to effectively

address various types of environmental stress, which are the major factors limiting the global

agricultural output [87]. For example, recent analysis has suggested that approximately 59%
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of irrigated areas used for agricultural purpose is under extremely high water stress, where lo-

cal water withdrawal far exceeds available water supply [82]. The climate changes introduced

by global warming and changing geographical location of pathogens also create additional

pressure for development of crop species that are resistant to environmental stresses [213].

Pathogen infection by fungi and bacteria is also responsible for significant yield loss in com-

mercially important crops worldwide annually [187]: Pseudomonas syringae is particularly

problematic for crops, due to its pathogenicity to over 180 plant species [31, 95]. The tradi-

tional methods of farm management, such as the use of pesticides and herbicides are costly,

and are being met with increasing resistance from target pest species [83, 216].

The ability to produce larger quantities of food therefore depend on a variety of crops that

can withstand various types of environmental stresses while having increased level of yield

[87]. The traditional approach to develop stress-tolerant crop species is selective breeding,

which is based on selection and enhancement of desirable phenotypic traits by controlled

pollination. With the advent of post-genomic technologies, this approach has been successful

in associating the genetic background in crop species with a phenotype [251]. Breeding crops

for resistance to a particular type of stress, however, often cause reduced grain yield due to

strong selection pressure for resistant genes. Traits associated with drought resistance such

as small plant size, reduced leaf area, early maturity and prolonged stomatal closure lead to

a reduced total seasonal evapotranspiration, which cause a reduced yield potential [65, 116].

Even with automated, high-throughput breeding programmes for identification of the lines

with desired traits, which often involve evaluation of a million genetic variants each year

[134], development of newly-bred stress resistant crops with decreased yield gap still remains

as a significant challenge.

Another approach involves genetic modification, which utilises molecular genetic techniques

to introduce new phenotypic traits that do not naturally occur in the targeted crop species

[254, 258]. Unlike selective breeding, genetic modification permits specific choice over which

gene functions to be amplified or attenuated. Such level of control has led to exploration

of alternative ideas for developing stress-resistant crops, such as transformation of naturally
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stress-resistant plant species as crop plants [66]. There have been some successes in engineer-

ing stress tolerance in crop: transgenic rice overexpressing the genes involved in production

of trehalose that grow better in saline soil compared to control plants [81]. Developing ge-

netically modified (GM) stress-resistant crop for widespread commercial use, however, has

proven difficult because most transgenic plants enhancing the activity of a particular gene

associated with stress resistance failed to thrive in field environments [79, 161, 171], or are

associated with undesirable side effects such as impaired growth [149, 245].

1.2 Arabidopsis thaliana as model organism

The challenges in developing stress-resistant crop species, driven by socioeconomic pressures,

have led to increased efforts to elucidate the molecular mechanisms of stress response gene

regulation in plants. The current understanding of the molecular mechanisms responsible for

responses to a variety of stress types has been pioneered by the studies of a small flowering

plant, Arabidopsis thaliana. Since the completion of its genome sequence in 2000 [9], A.

thaliana has been at the focal point of functional genomics research, serving as a model for

other plant species and eukaryotic organisms in general [231]. A. thaliana has several key

advantages as the in vitro investigative platform for various aspects of plant biology, such as

rapid and inexpensive cultivation, and its ability to grow in different environmental settings,

such as petri dishes, greenhouses [164], or even microfluidic devices for high-throughput

screening [163]. Manipulation of its genome is facilitated via generation of transgenic lines

carrying T-DNA insertions from Agrobacterium tumefaciens [40, 48], allowing studies of

phenotypic changes from genetic perturbations.

While the species itself does not hold agronomic significance, A. thaliana is often used as

a reference system for commercially important crop species. Direct analysis of common

crop species is hindered not only by lack of molecular tools and growth logistics, but also

higher complexity of genome; for example, Maize (Zea mays L.) has 2.3-gigabase genome

consisting of 10 diploid chromosomes [219], which is approximately 20 times greater than that
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of A. thaliana. Molecular understanding of Arabidopsis genome therefore provides a starting

point for understanding the crop plants. Many Arabidopsis genes involved in response to

environmental stresses have led to homology-based discovery of novel gene functions in crop

species [200]. Given that stress tolerance is a multigenic trait [28, 254], however, many

challenges remain towards developing stress-resistant crop species. More detailed elucidation

of the molecular mechanisms for stress response in A. thaliana is therefore an important

milestone towards achieving this goal.

Today, the Arabidopsis thaliana community possesses vast amount and variety of publicly

available resources, supporting efficient design of hypotheses and models. Many of the trans-

genic lines are available through seed stock centres such as Arabidopsis Biological Resources

Center (ABRC) in the United States, and Nottingham Arabidopsis Stock Center (NASC)

in the United Kingdom. Arabidopsis researchers are also well served by comprehensive and

integrated online data depositories, such as The Arabidopsis Information Resource (TAIR)

[80, 100, 133]. The databases offer easy access to wide variety of information, including

complete genome sequence and its genetic and physical map, gene product and ontology,

and protein structure.

1.3 Combined stress in plants

As plants are often subject to multiple types of stresses at same time in field environments,

the new stress-tolerant crop species must be resistant to simultanoeus presence of multiple

types of stresses [28]. It has been shown, however, that development of tolerance to multiple

types of stresses in crop species involves more than combining resistance to a single type of

stress, because plants do not simply perceive simultaneous presence of multiple stresses as the

additive sum of those stresses, but rather as a new environment [167]. As result, co-ocurrence

of multiple stresses give rise to unique physiological outcome that cannot be attributed to

the sum of response to individual stress: for instance, heat and dehydration stress exhibit

antagonistic interaction in control of stomatal opening, where dehydration inhibits increased
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transpiration caused by heat stress [211]. Effects of combined stresses are also observed

at the level of gene regulation, as transcriptomic profiling studies of plants subjected to

different combinations of stresses revealed significant disparity between the subsets of genes

regulated by combination of two stresses and those regulated by individually applied stresses

[110, 206].

Surprisingly, the theme of combined stresses received little attention in the field of plant

stress biology to recent dates, with only around 180 original articles that study combination

of two or more stresses in plants [156]. These studies mainly focused on characterising the

effects of combining multiple stresses on various plant processes, comparing their influences

on physiological characteristics such as growth and molecular changes such as gene regulation.

In a simplest term, the outcomes of simultaneously applying multiple stress signals can be

either synergistic or antagonistic. Such binate approach, mainly advocated by Mittler [167]

and Suzuki et al. [238], has been adopted to describe the modes of non-additive interaction

between various stress pairs. Mode of interaction for a specific pair of stress is determined

by examining the broad effects on various physiological traits such as growth and yield

upon presence of the pair stress. So far, most stress combinations have been shown to

interact positively, inflicting greater damage to plants in comparison to singly applied stresses

[238]. Drought and Heat, which is one of the most commonly observed stress combination,

exacerbate the detrimental effect on photosynthetic capacity and growth [41, 253]. On the

other hand, several stress combinations are known to exhibit negative interaction by either

mitigating the damage or enhancing tolerance to the other stress. For example, decreased

stomatal conductance caused by drought stress can reduce the amount of O3 uptake and its

associated damages [26, 191].

The presence of interactions between multiple stresses in regulating cellular and physiological

processes indicate that combined stress is likely to be perceived as a unique environmental

condition, rather than a sum of two types of singular stress. The interactions also suggest for

connectivity and interdependence of the molecular mechanisms regulating the responses to

each type of stress. It has also been argued, however, such approach may be an oversimpli-
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fication of the nature of interactions, as it only presents the average of numerous responses

that may exhibit wide variability. It has also been suggested that the responses to stress

combinations may depend on intra- and inter-specific variation, the order in which the pair

of stresses are applied, and the developmental stage [156].

1.4 Aims

The studies of combined stresses in plants are at their beginning, and their significance in

development of stress-tolerant crops has started to gain wider recognition across the commu-

nity [201]. Efforts are being directed to discovery of unknown interactions between different

stress pairs in modulating molecular and physiological processes, and under various experi-

mental and developmental conditions. Tangential to these goals, we identify two additional

research areas that need be addressed in order to achieve system-level understanding of how

plants address stress in realistic field environments:

• Systematic classification of interaction between pairs of stresses

Given the complexity in the outcomes of simultaneous presence of multiple stresses, de-

scribing the nature of interactions between two stresses only in terms of synergism and

antagonism may be misleading. This is because interaction between pairs of stresses may

bring different qualitative changes in the targeted process that cannot simply be described

as positive or negative relationship. In the case of gene regulation, for instance, a positive

relationship between two stresses may be used to describe the three independent situations

interchangeably: i) greater-than-additive increase in the level of expression by a gene that

is inducible by individual application of either stress, ii) greater level of expression by a

gene that is normally inducible by only a single type of stress, or iii) induction of a gene

that is not inducible by any of the singly applied stress upon treatment with combination

of two stresses. Such ambiguity undermines assessment of the potential biological conse-

quence of the observed interaction between the given stress pairs. In addition, interaction
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between two stresses may also lead to quantitative changes that are specific to intensi-

ties, time and order of applied stress inputs, which introduces further complexity in the

behaviours of affected genes [14]. Thus, a systematic classification of different modes of

interaction between a stress pair would simplify the understanding of potential outcomes

of combined stress, and allow investigation of their origin and biological significance.

• Elucidation of the molecular mechanisms coordinating the responses to com-

bined stress

Despite the increasing number of observations regarding the molecular and physiological

changes under different stress combinations, the knowledge of the molecular mechanisms

responsible for those observed behaviours is lacking. Most of the studies with the aims of

explaining various molecular changes in plants, such as regulation of stress response genes,

have relied on bottom-up assembly of the observations made for individual components

into a larger system. The resulting models are depicted as networks of interactions between

various signalling molecules, which often resemble a input-output system connecting the

external stress and the molecular/physiological changes in question. Such models provide

detailed understanding of the signalling components for relaying different types of stress

and have decent predictive power over the qualitative behaviours of the system such as

phenotypic changes upon genetic perturbations [105, 280]. Those models are, however,

insufficient to provide explanations for the behaviours observed under combined stress

settings: for example, transcriptomic analysis of various plant species including Arabidop-

sis [206], tobacco [211], rice [182] and Sorghum bicolar [110] under combination of two or

more stresses showed that numerous genes are activated specifically under stress combina-

tions, not their individual application. Because many of the traditional models of stress

gene regulatory network have been developed upon the observations under single stress

conditions, those models cannot explain how the genes specifically activate in response

to combined stresses. In order to translate the current knowledege of stress signalling

pathways into understanding of how plants respond to multiple simultaneous stress, it is

necessary to elucidate the signal integration mechanisms that facilitate crosstalk between
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signalling networks for different stress types.

In the light of these needs, we investigate how plants integrate multiple types of stress stimuli

present in their surroundings to improve their survival. Here, we specifically investigate con-

trol of gene expression by multiple simultaneous stress inputs, which we call compound gene

regulation. Because changes in gene expression profiles are relatively easy to measure via

existing experimental tools [16, 150] and measurement data on gene expression changes upon

both single and combined stress settings is abundantly available, there are ample opportuni-

ties to explore various outcomes of combining multiple types of stresses. To narrow down the

scope of research further, we focus on stress re Arabidopsis thaliana. Utility of Arabidopsis

thaliana as the model system is discussed in more detail in the next chapter.

1.5 Outline

The thesis is organised into two parts based on the aspect of gene regulation affected by in-

tegration of multiple stress signals. The first part of thesis examines how combining multiple

stress inputs modulate the cellular decision over types of regulation, such as up-regulation

or down-regulation. To achieve this, we extrapolate a classification framework developed by

Tanaka and Kimura [239] called compound logic, which allows reduction of possible gene

regulatory behaviours into finite number of signal integration outcomes. The mechanisms

behind each of the signal integration outcomes identified under this framework were then in-

vestigated by developing logical network models, which we used to describe the topologies of

signalling network. To further investigate utility of the classification framework and the log-

ical network models, a publicly available transcriptomic dataset measuring gene expression

responses to single and combined stresses in the model organism Arabidopsis thaliana [206]

was examined, which led to elucidation of diverse behaviours amongst the genes induced by

combined stress. By analysing the behaviours of a small subset of genes known to be regu-

lated by common transcription factors, the logical network models could be implemented to

generate novel hypothesis for the structure of the associated signalling network.
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The second focus of this thesis is to assess the effect of multiple stress stimuli on temporal

dynamics of gene expression. For this aim, we reduced our scope of study by selecting a

single gene, Response-to-Dehydration 29A (RD29A) [269, 270]. The gene is chosen for its

inducibility by multiple types of stress stimuli including salt stress (NaCl) and abscisic acid

(ABA), which is a principal plant hormone for dehydration signalling. We conduct exper-

imental investigation on RD29A expression time course profiles under various combination

of NaCl and ABA treatments to examine presence of interaction between the two stress

inputs in regulating RD29A expression. To explain the observed behaviours of RD29A upon

various treatment conditions, we construct a dynamical network model for transduction of

NaCl and ABA signals based on the current understanding of RD29A regulatory system.

Comparison between the experimental data and the model outcome reveals that the model

is insufficient to reproduce the synergistic effect on RD29A expression by combined NaCl

and ABA inputs. By systematic investigation of different network topologies, we identify

the possible mechanisms that may be responsible for the observed synergistic effect. We

show that the new model implementing the proposed mechanisms can correctly predict the

qualitative change in the dynamics of RD29A expression upon change in NaCl and ABA

input conditions.

The chapter details are as follows: Chapter 2 provides a general introduction of plant stress

biology. Development of classification framework based on compound logic, and analysis of

logical network models for investigation of signal integration mechanisms are presented in

Chapter 3, the results of which are applied to understand the transcriptomic profiles upon

combined stresses in Chapter 4. The next two chapters explore the latter theme: Chapter 5

presents and analyses the experimental data for RD29A expression profiles upon NaCl and

ABA treatments, and Chapter 6 describes development and analysis of the mathematical

model of RD29A regulatory system. Chapter 7 provides general conclusions and suggests

further work.
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Chapter 2

Regulation of plant stress response genes in

Arabidopsis thaliana

2.1 Introduction

The researches in plant stress biology has shown extraordinary progress to this date, result-

ing in detailed knowledge of molecular and physiological mechanisms in response to a wide

variety of stresses [96]. Before investigating the molecular basis of plant gene regulation in

response to combined stress, a review of the current understanding of the gene regulatory

mechanisms involved with singular stress is required. An extensive summary of plant stress

gene regulation, however, is beyond the purpose of this chapter, as it is provided by nu-

merous comprehensive texts [97, 208]. Instead, this chapter aims to develop and present

our view regarding the current knowledge of stress response gene regulation by focusing on

key subsidiary themes, and highlight the gaps that must be addressed in order to integrate

the availabile information into understanding of the mechanisms behind compound gene

regulation.

As a whole, the researches in plant stress gene regulation can be broadly divided into two

separate themes: i) identification and functional characterisation of transcription factors

(TFs), and ii) elucidation of the intracellular signalling network. The studies investigat-
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ing the former theme employ various techniques ranging from comparative genomics ap-

proaches to identify loci in genome coding for TFs [209], molecular characterisation of TF-

DNA binding [226, 270, 278], and assessment of phenotypic effects from perturbing activities

of those TF genes [75, 214, 250]. The latter cohorts of studies focus on the molecular mech-

anisms for perception of stress signals [168, 190, 195, 257], identification of intracellular

signalling components for transduction of the stress signals, and their functional character-

isation [102, 165, 274]. Convergence of the insights from these researches led to models of

signalling pathways for transduction of various types of stresses, which have been tradition-

ally depicted as sequential cascades [180, 267]. Figure 2.1 provides a summary of the core

signalling paradigm for stress response gene regulation in plants that emerges from examining

the models of various stress signalling pathways.

Identification of TF genes and their corresponding target DNA sequences (cis-elements) has

Figure 2.1: Control of stress regulon as the core signalling paradigm for stress-induced gene

regulation in plants. A stress regulon consists of a group of stress response genes (Gene1, Gene2, ...,

Genen) with various molecular functions that are regulated together due to presence of a common type of

cis-element (Cis-E) in their upstream promoter regions. Intracellular signalling pathways for regulation of

stress response gene expression have been typically classified into two groups, depending on involvement of

corresponding stress hormones in transduction of stress signals for induction of TF activities.
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revealed the fundamental basis for transcriptional control of stress response genes. In plants,

stress response genes that contain common cis-elements are regulated together as a single

functional unit called regulon [181]. Organisation of stress response genes into regulons serve

a similar purpose to having bacterial operons by facilitating tighter spatial and temporal con-

trol over expression of the member genes [136]. Plant stress regulons, however, differ to bacte-

rial operons in that they do not involve synthesis of polycistronic messenger RNAs, and exert

control over genes spatially distributed across the plant genome. Because each gene in a stress

regulon possesses its own unique promoter architecture, finer control of expression is also

possible via combining different types of cis-elements. The cis-elements that orchestrate the

responses to abiotic and biotic stresses have been identified in Arabidopsis : the best-studied

examples of stress-inducible cis-elements include the Dehydration-Responsive-Element / C-

Repeat (DRE/CRT) for drought-, salt-, and cold-induced gene expression [270], the ABA-

Responsive-Element (ABRE) [159, 175] for drought-, salt- and ABA-induced gene expression,

and as-1 [112], W-box elements [276] for biotic-stress-induced gene expression.

Detailed knowledge of TFs has also helped to concentrate the efforts in characterising the

intracellular signalling pathways that induce the activities of the TFs upon presence of stress

signals. Traditionally, studies of plant stress signalling have focused on elucidating the roles

of hormones that are synthesised in response to environmental stresses. The major plant

stress hormones include abscisic acid (ABA), which has long been regarded as the principal

transducer of various abiotic stress signals [248], and jasmonic acid (JA), salicylic acid (SA)

and ethylene (ET) for their roles in transduction of biotic stress signals [22]. Although the

activities of the TFs in stress response gene expression are regulated by a highly complex

network of molecular interactions, understanding of the relationship between the TFs and the

stress-induced hormones has greatly simplified the reconstruction of intracellular signalling

network architecture. For instance, TFs that are known to regulate subset of stress-inducible

genes have been often assigned into hormone-dependent and hormone-independent pathways.

Notable examples include identification of the TFs involved in ABA-independent and ABA-

dependent signalling pathways for regulation of drought and salt-induced genes [271], and
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the TFs in SA-dependent and SA-independent regulation of PR regulon [199].

This chapter first briefly discusses the physiological, cellular and molecular aspects of stress

response in plants, with focus on Arabidopsis thaliana. The chapter then reviews the studies

on molecular mechanisms of stress responses in three subsidiary themes: action and synthesis

of stress-induced hormones (with focus on ABA - Section 2.3), transcriptional regulation

(with focus on TFs and cis-elements - Section 2.4), and intracellular signal transduction

(with focus on abiotic and biotic signalling pathways - Section 2.5).

2.2 Roles of stress-regulated genes

To understand how plants respond to hostile changes in the environment, it is useful to

distinguish different types of stresses. In plants, environmental stresses have been broadly

categorised into two groups: abiotic stress represents suboptimal environmental conditions

imposed by physical and chemical factors, such as high salinity, drought, high and low

temperature, strong light, UV, heavy metals and hypoxia. Biotic stress, on the other hand,

denotes damages inflicted by other organisms such as bacterial and fungal infection, and

physical wounding caused by insects and other herbivorous animals. Each type of stress

imposes different effects on plant physiology. Figure 2.2 summarises the key damaging effects

introduced by each type of stress.

Abiotic and biotic stress factors detrimentally affect various cellular aspects such as osmotic,

ionic and metabolic balances, photosynthesis, membrane integrity, proteome stability, and

redox status [97]. While each stress may arise from distinct environmental conditions, the

type of cellular and physiological damages caused by different stresses show significant over-

laps (Fig. 2.2). This is exemplified from the effects of salt, drought and cold stress, which all

lead to reduction of plasma membrane integrity: in the case of drought stress, intracellular

water potential decreases due to removal of water in the aqueous environment surrounding

the membrane, which subsequently leads to reduced hydrostatic pressure [32]. In the case
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Figure 2.2: Damaging effects caused by common environmental stresses in plants. Each type

of stress elicits both distinct and common cellular effects, which subsequently causes various types of im-

pairments in the physiological processes of plants. Notably, all stress types lead to reduced cell wall and

plasma membrane integrity, suggesting that ubiquitous responses may be involved in mitigating the damages

incurred by different stress types. The information regarding cellular and physiological effects of each stress

type has been obtained from [97].
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of salt stress, membrane structure becomes destabilised via changes in static charge balance

across the membrane surface [237]. Cold stress, on the other hand, also directly affects

the mechanical properties of plasma membrane via perturbation of hydrophobic interaction

within lipid bilayer, causing the membrane to become less fluid [45, 257].

The apparent similarity in some cellular effects induced by different types of stresses have

led to a hypothesis that responses to different stress factors might involve common molecular

response mechanisms to address the cellular damages caused by the stress. Indeed, stress re-

sponse genes inducible by different types of stress show extensive overlap. From the microar-

ray profiles under different stress conditions in Arabidopsis and bioinformatic analyses of the

molecular functions, it has been suggested that the abiotic-stress-inducible genes typically

encode proteins responsible for protecting cells from stress such as molecular chaperones,

LEA (late embryogenesis abundant) proteins, osmotin, antifreeze proteins, mRNA-binding

proteins, key enzymes for osmolyte biosynthesis such as proline, water channel proteins,

sugar and proline transporters, detoxification enzymes, enzymes for fatty acid metabolism,

proteinase inhibitors, ferritin, and lipid-transfer proteins [129, 222, 272]. Similar microarray

analyses have shown that the genes inducible by biotic stresses encode proteins with an-

tibacterial, antifungal and insecticidal effects, various catalytic enzymes such as chitinases,

peroxidases, ribonucleases and lysozyme, and the enzymes leading to enhanced integrity of

cell wall such as those involved in lignin-biosynthesis [53, 157].

2.3 ABA action and biosynthesis

The similarity of molecular changes in responses to different stresses is at least partially

contributed by the actions of common hormonal regulators at upstream of those processes,

synthesisesd in response to multiple types of environmental stress. All of the hormones

mentioned above (ABA, JA, SA, and ET) are known to induce diverse yet designated sets

of genes. The stress-induced hormones can be transported across long distances via xylem

or phloem, diffuse locally between cells, or are maintained in their site of synthesis to exert
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their influence on target cells [69]. Before discussing how the molecular responses to counter

stresses are triggered, it is necessary to understand how the stress-induced hormones are

synthesised in responses to environmental stresses. Since ABA has been most intensively

studied amongst the stress-induced hormones so far with detailed information regarding

synthesis, signalling and molecular actions, we mainly focus on ABA in this section.

ABA is a small compound (C15H20O4) with weak acidic properties, first identified 50 years

ago as a growth inhibitor accumulating in abscising cotton fruits [3]. It is a ubiquitously

found in plants and also produced in some phytopathogenic fungi, bacteria and protozoans

[260]. Since its initial discovery, ABA has been found to be involved in many cellular and

physiological processes in various stages of development: ABA plays a crucial role in seed

maturation and maintenance of dormancy by mediating transition from growth via cell divi-

sion to growth via cell enlargement and accumulation of storage reserves [144]. Maintenance

of seed dormancy is attributed to continued production of ABA [141], whereas transition

from dormancy to germination involves decreased ABA content relative to gibberellin via

ABA catabolism [189]. ABA is also an inhibitor of floral transition, as shown by early

and delayed flowering in ABA-deficient and ABA-hypersensitive mutants compared to wild

type plants, respectively [131, 152]. While the effects of ABA on many growth-related pro-

cesses appear to be inhibitory, however, some low levels of ABA may be required for normal

growth of plant. This is shown through stunted growth exhibited by ABA-deficient plants

in comparison to wild type plants owing to reduced transpiration and turgor [64].

More importantly for us, plants use ABA as a molecular signal for various types of envi-

ronmental stress during vegetative growth stage. Its concentration substantially increases

under environmental stresses such as drought, salinity, cold, pathogen attack and UV radi-

ation [63]. For example, the baseline ABA level in maize measured under normal condition

was found to be in range of 300 to 400 pmol g−1 fresh weighti (FW), which increases up to

6000 pmol g−1 FW in response to dehydration stress within 24 hours [207]. Such increase

in ABA content leads to numerous changes that are beneficial to the plants under stress: at

iFresh weight denotes biomass that includes water content, as opposed to dry weight.
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Figure 2.3: Regulation of metabolic pathways leading to ABA biosynthesis. The ABA biosyn-

thetic pathway starts from zeaxanthin, which is a non-specific precursor to ABA generated from the 40-carbon

epoxycarotenoid reserve. Conversion of zeanxanthin to the next intermediate, violaxanthin, is mediated by

zeaxanthin epoxidase (ZEP). Violaxanthin is subsequently converted to neoxanthin, a structural isomer of

violaxanthin, through the action of neoxanthin synthase (NXS). Next, 9-cis-epoxycarotenoid dioxygenase

(NCED) cleaves neoxanthin into 15-carbon xanthoxin, the ABA-specific precursor. Xanthoxin translocates

to cytoplasm, and is converted to ABA-aldehyde by short-chain alcohol reductase (SDR). The final step of

the pathway involves oxidation of ABA-aldehyde into ABA, catalysed by ABA-aldehyde oxidase (AAO).

The activity of AAO requires presence of molybdenum cofactor (MoCo), which is activated (MoCo*) by

sulfurylation catalysed by MoCo sulfurase (MCSU). Stress induces ABA biosynthesis by induction of the

key regulatory genes, namely ZEP, NCED, AAO and MCSU. The information from this figure has been

obtained from [63] and [268].

the physiological level, ABA induces stomatal closure to minimise water loss through tran-

spiration [123]. It also mitigates cellular damages incurred by stress through up-regulation

of stress-responsive genes, which encode enzymes for the production osmolytes and proteins

to enhance cellular integrity [64]. Thus, the changes triggered by ABA collectively lead to

increased tolerance of plants to the specific environmental stress they are exposed to.
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Synthesis of ABA is a complex process with numerous regulatory steps, and understanding its

mechanism is crucial for understanding how plants respond to various types of environmental

stress. Figure 2.3 outlines the metabolic processes leading to de novo synthesis of ABA,

generalisable to different plant species. In summary, the current understanding suggests that

presence of stress results in induction of several genes, which encode enzymes or cofactor

proteins involved in different steps of ABA biosynthesis. Increased rates of reaction from

greater availability of those gene products consequently drive the whole pathway forward.

Deletion or loss-of-function mutants of those genes lead to ABA-deficient phenotype showing

severely impaired resistance to drought and salt stresses [63]. Among those genes, 9-cis-

epoxycarotenoid dioxygenase (NCED) is regarded as the key regulator of ABA biosynthesis

controlled by stress, as the reaction it catalyses is mostly the rate-limiting step for the whole

pathway [268]. The extent at which expression levels of other ABA biosynthetic genes are

regulated from stress varies between different organs and plant species: for example, salt

and drought stress have little effect on expression of zeaxanthin epoxidase (ZEP) in tobacco

[15] and tomato [243], whereas ZEP is strongly induced by those stresses in Arabidopsis

[266].

Synthesis of other phytohormones also involve mechanisms similar to the example of the ABA

biosynthetic pathway, where perception of stress in the environment leads to induction of nu-

merous biosynthetic enzymes and other regulatory genes involved in production of the target

compound. The detailed mechanisms of how environmental stresses trigger hormone biosyn-

thesis in plants have been extensively reviewed elsewhere (SA synthesis - [43], JA synthesis

- [247], and ET synthesis - [256]). Taken together, understanding of stress-induced hor-

mone actions and biosynthesis provided important insights regarding the molecular changes

occuring from initial perception of stress to early stages of stress response.
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2.4 Transcription factors

At the other end of plant stress research, numerous studies focused on identifying and char-

acterising the transcription factors that regulate stress response genes. Since sequencing

of Arabidopsis genome, 1533 genes were initially identified as TFs (5.9% of genome) [209].

These numbers are particularly high compared to that of other eukaryotic organisms such

as Drosophila menlanogaster (635 genes, 3.5% of genome) and Caenorhabditis elegans (669

genes, 4.5% of genome) [209], suggesting that regulation of transcription in Arabidopsis is

highly complex and diversified. There are currently four representative online databases of

Arabidopsis TFs: AGRISii [51], RARTFiii [103], DATFiv [90] and PlnTFDB v[196].

Each transcription factor is classified into different families according to their characteristic

DNA-Binding Domains (DBD), which recognise unique base pair sequences in the upstream

cis-regulatory region of the targeted genes [153], or their ability to form a transcriptional

complex with a particular interacting TF partner. Due to different criteria used for definition

of TF families, the number of genes assigned to each family of TF slightly varies amongst

the databases. For example, AGRIS ignores auxiliary transcriptional regulator proteins that

interact with TFS but do not directly bind DNA, while the others classify them as TFs [166].

Merging the information from each of the four databases described above, there are now 72

Arabidopsis TF families discovered so far [98]. While many of the TF families identified in

Arabidopsis are conserved across other species, there are also TF families that are exclusively

found in plants. A summary of six major TF families (three general, three plant-specific)

that are known to play important role in regulation of stress response gene expression is

shown in Table 2.1.

TF proteins in the Basic region/leucine zipper (bZIP) family are characterised by distinct

structure consisting of Basic region (BR) that facilitates DNA-binding, and leucine zipper

iiArabidopsis Gene Regulatory Information Server (http://arabidopsis.med.ohio-state.edu/AtTFDB/)
iiiRIKEN Arabidopsis Transcription Factor database (http://rarge.gsc.riken.jp/rartf/)
ivDatabase for Arabidopsis Transcription Factors (http://datf.cbi.pku.edu.cn/)
vPlant Transcription Factor Database (http://plntfdb.bio.uni-potsdam.de/v3.0/)
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Table 2.1: Summary of six major Arabidopsis transcription factor families involved in stress
response gene regulation

Specificity Family

name

Cis-element Consensus

Sequence

Notable TFs Stress factor

General

bZIP

as-1 (G-box) CCACGTGG TGA1-7 Pathogen infection

[218]

ABRE (C/T)ACGTGGC AREB1-3 Drought, Salt,

ABA [250]

HSF HRE AGAANNTTCT HsfA1 Heat [220]

bHLH
G-box CACGTG MYC2 Drought, Salt,

ABA [1]

Plant

AP2/ERF

GCC-box GCCGCC ERF1-5 Wounding, Salt,

Drought, ABA [72]

DRE (A/G)CCGAC DREB1,2 Drought, Salt,

Cold [149]

NAC
NACR CATGTG RD26 Drought, Salt,

ABA [73]

WRKY
W-box (T)TGAC(C/T) WRKY22,29 Pathogen infection

[10]
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region (ZR) that allows dimerisation [118]. In Arabidopsis, there are 76 putative bZIP TFs

identified to this date [98], which play diverse roles not only related to abiotic and biotic

stress responses, but also in light signalling, seed maturation and flower development too

[108]. A notable bZIP TF orchestrating biotic stress response is TGACG Sequence-specific

Binding Proteins (TGAs), which are principal regulators of Systemic Acquired Resistance

[67]. TGA binds to activation sequence-1 (as-1) motif, a variant of G-box element commonly

found in upstream promoter regions of Pathogenesis-Related (PR) genes [218]. Deletion of

various TGAs lead to loss of basal resistance [120], suggesting their significance in pathogenic

defence coordination. Another class of TF in bZIP family with a major role in abiotic stress

signalling consists ABRE-Binding Proteins (AREBs) [250]. Suppressing expression of the

AREB genes lead to reduced ABA sensitivity and drought resistance [275], implying their

significance in mediating responses to drought stress.

The Heat-Shock Factors (HSFs) family forms another generic TF family found across differ-

ent organisms, which play central role in heat stress response. The main downstream targets

of HSF proteins are Heat Shock Proteins (HSP) involved in orchestration of folding, intra-

cellular distribution and degradation of proteins [185, 259]. Specificity to HSF binding is

conferred by Heat-Shock Element (HSE) that is found in the promoters of HSP genes [186].

A notable example in this family is HsfA1, which is the master regulator of thermotolerance

in Arabidopsis [220].

The Basic helix-loop-helx (bHLH) family is the second largest TF families in Eukaryotes

[209], with 162 putative members identified in Arabidopsis [18]. The bHLH proteins are

characterised by two functional domains, with the basic domain for contacts with recognised

DNA sequences and HLH domain for oligomerisation. The bHLH proteins bind to various

types of cis-elements, but G-box is known to be their most common target [11]. Due to

diversity in structure and function, the bHLH TFs are classified into several classes and

subfamilies [244]. A notable member of the bHLH family that facilitates regulation of abiotic

stress response in Arabidopsis is MYC2, which is expressed in response to dehydration stress

and ABA [2]. Overexpression of MYC2 leads to higher sensitivity to ABA and osmotic stress
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tolerance in transgenic Arabidopsis [1]. Interestingly, MYC2 is also known to regulate defense

genes in response to JA and ET [29, 151], suggesting that it facilitates crosstalk between

ABA-induced abiotic stress response and JA/ET-induced biotic stress response.

The APETALA2/Ethylene-Responsive Element Binding Factor (AP2/ERF) family consti-

tutes one of the major groups of transcription factors that are specific to plants. The mem-

bers of this family possess a highly conserved region of 60 to 70 amino acids (AP2 domain)

originally identified from APETALA2, a homeotic gene involved in Arabidopsis flower devel-

opment [210]. Within the AP2/ERF family, two classes of TFs are of interest with respect

to regulation of stress response gene expression: Ethylene-Response Element Binding Fac-

tors (ERF) recognises GCC-box [188], which is commonly found in the promoters of biotic

stress response genes. Another important class of AP2/ERF TFs consists of Dehydration-

Responsive-Element Binding (DREB) TFs, which target DRE to regulate stress response

genes. The DREB TFs are further classified into into two functional subgroups: DREB1/C-

Repeat Binding Factor (DREB1/CBF) for cold stress responses, and DREB2 for dehydration

stress responses [149].

Numerous members of the NAM/ATAF1,2/CUC2 (NAC) family of TFs are also recognised

as abiotic and biotic stress response regulators [204]. NAC proteins contain highly con-

served region of approximately 150 amino acids and bind to NAC recognition (NACR) sites

as multimers [246]. An important member of NAC family is RD26, whose role in ABA-

dependent signalling of salt and dehydration stress has been established via differing ABA

sensitivities in transgenic plants with changes in RD26 expression [73]. Microarray analy-

sis showed that ABA- and stress-inducible genes were upregulated in RD26-overexpressing

plants and repressed in RD26-repressed plants, indicating that a cis-regulatory element, the

NAC recognition site [73], may function in ABA-dependent gene expression under stress

conditions.

Finally, the WRKY TFs form another plant-specific family of TFs with established roles

in biotic stress signalling [193]. The WRKY TFs are named after its highly conserved 60
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amino acid long WRKY domain, which contains WRKYGQK at the N-terminus and novel

zinc-finger-like motif at the C-terminus [47]. The WRKY TFs bind to consensus cis-element

called W-box found in many Arabidopsis defence genes [59]. The best-known TFs in the

WRKY family are WRKY22 and WRKY29, which play a central role in regulation of innate

immune response gene expression and disease resistance [60]. They are important compo-

nents of MAPK-cascade for Pathogen-associated Molecular Patterns (PAMP) signalling, and

enhancement of their activities via overexpression of WRKY22 and AtWRKY29 increases

resistance to both bacterial and fungal pathogens [10].

2.5 Intracellular signalling pathways for stress-induced

gene regulation

Connecting the insights gained regarding the action and biosynthesis of plant stress hor-

mones and transcription factors acting at downstream led to elucidation of key intracellular

signalling pathways. Here, we selectively review the current knowledge of the signalling

pathways known to play important roles in regulation of genes in response to various abiotic

and biotic stresses.

2.5.1 Abiotic stress signalling pathways

Many abiotic-stress-inducible genes are controlled by ABA, but some are not, suggesting

that both ABA-dependent and ABA-independent regulatory systems are involved in stress-

responsive gene expression (Fig. 2.4). Resposes to drought and salinity stresses are known

to be regulated via both ABA-dependent and ABA-independent pathways: the AREBs

represent the major components of ABA-dependent signalling pathways for transduction

of drought and salt signals along with several members of MYC and NAC family of TFs

also known for regulating in ABA-responsive gene expression, whereas DREB2s mediate

23



the drought and salt-induced gene expression in absence of ABA. In contrast, heat and

cold stress response appears to be regulated essentially by ABA-independent mechanisms

[4], with HsfA1 and DREB1 as the major TFs for heat- and cold-indued gene expression,

respectively.

The intracellular signalling pathway leading to activation of AREBs is the best-studied

example for ABA-dependent regulation of gene expression, and the only complete sig-

Figure 2.4: Signalling pathways for transduction of various abiotic stress signals. The stress

signals flow across different signalling layers, which are separated by dotted lines. Genes for drought and

salt responses are largely controlled by ABA-dependent and ABA-independent pathways, each comprising

of TFs (ellipses) that recognise specific cis-elements in the targeted genes (Boxes). Responses to Heat and

Cold largely occur in a ABA-independent manner. Bold arrows represent the signalling pathways that

are characterised in greater detail compared to other pathways, with highlights on the major signalling

components. Dashed arrows indicate the pathways for ABA biosynthesis. The figure is based on the

information mainly from [271] and other references mentioned in the text.
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nalling pathway with detailed knowledge regarding initial signal perception and transduc-

tion. Pyrabactin resistance 1 / Pyr-likes / Regulatory Component of ABA Receptors

(PYR1/PYLs/RCARs) were identified as a putative receptor for ABA perception, which

triggers downstream phosphorylation cascade for activation of AREB. PYR1/PYLs/RCARs

interact with type 2C protein phosphatases (PP2C) such as ABA Insensitive 1 and 2 (ABI1

and ABI2) [165], which blocks downstream signalling by dephosphorylating SNF1-related

kinase 2 (SnRK2)-type protein kinases (SnRK2) in the absence of ABA. Upon ABA accu-

mulation, PYRs/PYLs/RCARs bind to inactivate PP2Cs, eliminating the inhibitory effect

on SnRK2 kinases. SnRK2 kinases switch to the phosphorylated state, which in turn activate

AREBs by the phosphorylation of multiple Ser/Thr residues [77]. There are also evidences

for involvement of Ca2+-dependent protein kinase (CDPK) in phosphorylating AREBs in re-

sponse to increased intracellular Ca2+ levels induced by various stimuli [115, 281], suggesting

that AREBs may integrate multiple signal inputs under abiotic stress conditions.

The DREB2 proteins have been identified as the ABA-independent regulators of gene ex-

pression, as the DREB2 genes were shown to be induced by both drought and salt stresses,

but not ABA [149]. Although the complete information regarding signalling pathway archi-

tecture for activation of DREB2 is still missing, the DREB2 regulatory system is relatively

well characterised compared to other stress-mediating TFs. Overexpression of DREB2 genes

did not result in any phenotypic changes in transgenic plants [149], suggesting that DREB2

transcriptional activity requires post-translational activation. Domain analysis of DREB2

revealed that the central region of DREB2 contains a Negative Regulatory Domain (NRD)

and that deletion of this region makes DREB2 constitutively active (DREB2A-CA) [214].

The NRD in DREB2 has been proposed to regulate in vivo stability of DREB2 proteins, as

recombinant DREB2A-CA proteins without NRD is stable in the nucleus, while the native

DREB2A proteins are not. Regulation of DREB2 stability is thought to occur via protein

degradation mediated by DREB2-interacting proteins (DRIPs), which negatively regulates

DREB2 abundance via ubquitin-mediated proteolysis [205]. A recent finding, however, sug-

gests that inhibition of DRIP protein activity by either deletion of their genes or addition
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of proteasome inhibitor is not sufficient to induce expression of the genes at downstream

of DREB2, suggesting that there may be additional mechanism for activation of DREB2

activity [172]. Overexpression of DREB2A-CA also induced expression of heat shock (HS)-

related genes and improved thermotolerance in transgenic plants [214], suggesting the role

of DREB2 proteins in regulating Heat stress response. The details of signalling pathway

transducing heat signals for activation of DREB2 proteins is still at large.

The signalling mechanisms for regulation of various HSF proteins including HsfA1 are start-

ing to become clarified. Heat stress is initially recognised by various membrane sensors,

and it has been proposed that the plasma membrane cyclic nucleotide gated calcium channel

(CNGC2) acts as the primary thermosensor [62]. The CNGC2 proteins convert heat stress to

intracellular Ca2+ signals, which are subsequently perceived by calmodulin (CaM), a ubiqui-

tous calcium-binding messenger protein in plants and other eukaryotic organisms [230]. CaM

is an essential component in the heat signal transduction as calmodulin-binding protein ki-

nase 3 (CaMK3) interacts with the HsfA1 [147]. The role of calmodulin in heat signalling

has been further established by genetic perturbation of the calmodulin genes, where CaM3

knockout mutant plants in Arabidopsis were more sensitive to heat stress, whereas overex-

pression of CaM3 showed enhanced thermotolerance [279]. HsfA1 exists as transcriptionally

inactive monomer in a complex with Hsp40/Hsp70 and Hsp90 in absence of stress, and its

activity is only triggered when HsfA1 proteins are released from the complex to form trimers

after CaMK-dependent phosphorylation [220]. Notably, the negative regulators Hsp70 and

Hsp90 are up-regulated by HsfA1, suggesting that the TF is subject to negative feedback

control [91].

Genes inducible by cold stress are regulated by DREB1/CBF, which are DRE binding pro-

teins initially identified with DREB2 [149]. Transgenic Arabidopsis plants overexpressing

DREB1/CBF genes showed strong tolerance to cold stress [107, 117, 149], suggesting that

DREB1/CBF is the major regulator of the cold stress response genes. This contrasts DREB2,

which does not lead to stress tolerance when overexpressed. Thus, transduction of cold stress

signals via DREB1/CBF has been proposed to occur via transcriptional cascade rather than

26



enzymatic cascades involving post-translational modification of TFs [250]. Expression of

DREB1/CBF is regulated at the transcriptional level by Inducer of CBF Expression 1 (ICE1)

[45]. ICE1 is a MYC-type transcription factor that has also been shown to regulate stomata

formation [113]. ICE1 proteins are subject to post-translational control via ubiquitination

and sumoylation, which exert negative and positive effect on transcriptional activity of the

TFs. High expression of Osmotically Responsive gene 1 (HOS1), which a RING finger ubiq-

uitin ligase similar to DRIP [55]. In contrast SUMO E3 ligase (SIZ1) sumoylates ICE1 and

enhances its activation of the DREB1/CBF genes [169].

2.5.2 Biotic stress signalling pathways

Transduction of biotic stress signals are also broadly classified as hormone-independent and

hormone-dependent signalling pathways. While multiple hormones including SA, JA, and ET

play central roles in biotic stress signaling upon pathogen infection and mechanical wounding,

there are also signalling pathways that do not require production of any of these hormones

(Fig. 2.5). It has been suggested that the apparent multiplicity in number of signalling

pathways contribute towards combining generic defence responses with the responses that

are specific to the invading pathogens [198]. While conserved Mitogen-Activated Protein Ki-

nase (MAPK) signalling pathways that recognise Pathogen-Associated Molecular Patterns

(PAMP) allow responses to a broad range of pathogenic organisms, responses specific to

invading pathogen can occur via production of defensive compounds with different composi-

tion from prioritisation of either SA-, JA-, or ET-inducible responses. For example, infection

with biotrophic pathogens that establish long-term feeding relationship with hosts predom-

inantly results in the activation of the SA-dependent systemic acquired resistance response

(SAR) leading to the accumulation of SA-inducible PRs, while JA- and ET-inducible de-

fence responses are triggered by necrotrophic pathogens that kill the host cells to thrive

[85, 128, 240]. Wounding also results in the activation of JA- and ET-inducible defence

responses, but not SA-inducible defence responses [33].
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Figure 2.5: Signalling pathways for transduction of various biotic stress signals. As before,

the pathogenic stress signals flow across different signalling layers, which are separated by dotted lines.

Perception of pathogenic infection triggers production of phytohormones SA, JA and ET, which are induce

biotic stress response gene expression via TFs (ellipses) that bind to corresponding cis-elements in the

targeted genes (Boxes). In addition, a signalling pathway via MAPK cascade is activated in absence of

hormones. Wounding stress is primarily transduced by JA and ET, not SA. Dashed arrows indicate the

pathways for SA, JA and ET biosynthesis. The information presented in this figure was taken from [22] and

other references cited in the text.

The PAMP-induced MAPK signalling of biotic stress signals typically coordinate to the early

stage of stress response due to its rapid activation. The MAPK cascades in plants, similar

to those found in other eukaryotic organisms, consist of three types of protein kinases that

are sequentially activated from MAPK Kinase Kinase (MAPKKK, also known as MEKK),

MAPK Kinase (MAPKK, also known as MKK) to MAPK. The best studied example is

the flagellin-induced MAPK module, with complete steps of signal transduction from initial

perception of stress to regulation of gene expression: the flagellin derived peptide flg22 is

detected by FLS2 receptor kinase [88], which subsequently triggers a rapid and strong ac-
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tivation of MEKK1-MKK4/MKK5-MPK3/MPK6 cascade [10]. The activated MPK3 and

MPK6 proteins induce expression of WRKY22 and WRKY29 TFs, which control expression

of defence genes. The mechanism of WRKY22/WRKY29 gene activation by MPK3/MPK6

is not currently understood, but it has been proposed that MPK3/MPK6 phosphorylates

to attenuate the activity of transcriptional repressor for WRKY22/WRKY29 genes [60].

Transgenic Arabidopsis constitutively expressing of MEKK1 or WRKY29 showed reduced

symptoms under P. syringae infection, suggesting enhanced activity of this flagellin-induced

MAPK module confers greater resistance to pathogenic invasion [10]. However, it is un-

clear whether MEKK1 is the sole mediator of MPK3/MPK6 activation because deletion of

MEKK1 gene does not lead to reduced activity of MPK3/MPK6 [236].

The SA-dependent pathways for defence gene regulation play key roles in plant defense

against pathogens, especially regarding whole-plant adaptive responses to pathogens termed

systemic acquired resistance (SAR) [128, 130]. SAR helps to restrict pathogen growth and

the enhancement of disease resistance in the whole plant after local infection [130, 137].

Both endogenous increase in SA levels or exogenous SA treatments lead to rapid activation

of defense responses during which defense related genes such as PR genes are activated. The

significance of SA in disease resistance has been demonstrated via SA-deficient mutants,

which show reduced resistance to biotrophic pathogens [35, 86, 130]. Intracellular transduc-

tion of the SA signal occurs via Nonexpressor of PR1 (NPR1), where increase in the SA

level leads to breakdown of inactive NPR1 oligomers to transcriptionally active monomers

via redox changes [173]. The NPR1 proteins do not act as a TF, but rather transcriptional

co-regulator to induce the activity of other TFs. The primary partner for NPR1 is TGA

proteins, which belongs to bZIP family of TFs discussed in the previous section (2.4).

In contrast to the SA-dependent pathway, the JA-dependent pathways coordinate resistance

to a series of necrotrophic pathogens [130, 184, 242]. The key components of the JA signaling

pathway are the Coronatine Insensitive 1 (COI1) and the Jasmonate ZIM-domain (JAZ)

proteins, which act as activator and repressor of JA signalling, respectively. In the absence

of JA, JAZ proteins associates with various TFs including MYC2, a key inducer of JA-

29



dependent defence gene expression, and tightly repress their transcriptional activities [232].

The repression by JAZ is alleviated when COI1, the intracellular receptor for JA, targets the

JAZ repressor proteins for degradation by the proteasome [241]. Interestingly, JA signalling

via the COI1/JAZ system also regulates the ET-inducible regulons, because JAZ proteins

also repress ET-responsive TFs such as ERF [197, 261, 283].

The ET-dependent pathway show significant overlap with the JA-dependent pathway in

terms of physiological function, as impaired ET signalling also results in reduced resistance

to necrotrophic pathogens [184, 242]. ET signals are perceived transmembrane receptors

that are homologous to bacterial two-component histidine kinases [39, 78]. In the absence

of ET, the receptors activate Constitutive Triple Response 1 (CTR1), a Raf-like kinase

[121]. CTR1 phosphorylates another type of transmembrane proteins found in Endoplasmic

Reticulum (ER) called Ethylene Insensitive 2 (EIN2), which in their phosphorylated form

are targeted for proteolytic degradation. Inactivation of the receptors from ET binding

prevents EIN2 phosphorylation by CTR1, which causes cleavage and nuclear localisation of

EIN2 C-terminus and subsequent activation of TFs including ERFs [111].

2.5.3 Crosstalk between stress signalling pathways

With growing knowledge of the stress signalling network architecture in plants, the mech-

anisms of interaction amongst different types of stresses recently have became the subjects

of significant interest. Studies of interaction between abiotic and biotic stress hormones are

the prime examples of such initiative (Fig. 2.6). While ABA is defined as a key hormone

controlling abiotic stress responses, it also plays important role in biotic stress responses by

interacting with biotic stress signals [14, 74]. In general, ABA treatments reduce SAR in-

creases the susceptibility to pathogens by inhibiting SA-induced expression of defence genes,

where the two hormones interact antagonistically at both the biosynthetic and signaling

levels [273]. Some pathogens exploit such antagonism to suppress SA-induced host defence

mechanisms by enhancing production of ABA [27]. For example, a bacterial toxin coronatine
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Figure 2.6: Crosstalk between stress-induced hormones for regulation of stress response genes.

Interactions between biotic and abiotic stress signals (ABA vs. SA, JA/ET), and interactions amongst

different biotic stress signals (SA vs. JA/ET) for regulation of stress response genes are characterised

by complex network of regulatory cues targeting either synthesis or signalling of other hormones. The

information presented in this figure was adapted from [12].
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triggers ABA accumulation, resulting in the suppression of SA synthesis [52]. SA also exerts

negative effects on drought tolerance mediated by ABA, as the expression of ABA biosynthe-

sis and ABA responsive genes was repressed by signaling downstream of NPR1, the principal

regulator of SA signalling [76]. ABA also inhibits JA/ET signaling pathways in a similar

manner, as disruption of either ABA-signalling genes or JA/ET-signalling genes resulted in

up-regulation of JA/ET-responsive genes and ABA-responsive genes, respectively [7]. These

results collectively suggest that there is mutual antagonism between ABA-mediated abiotic

stress signalling and SA/JA/ET-mediated biotic stress signalling.

Biotic stress hormones are also known to interact amongst each other (Fig. 2.6). SA an-

tagonises JA/ET-inducible gene transcription by inducing the expression of genes encoding

transcriptional regulators that interfere with JA/ET-signaling [130]. These SA-induced reg-

ulators could inhibit a positive regulator of JA-inducible gene expression by interacting with

it. SA could induce transcription of suppressive transcription factors that directly bind to

the promoter of JA/ET responsive genes to repress their expression. Alternatively, JA also

suppresses SA production because it induces production of ET-signaling gene EIN3/EIL1,

which in turn encodes suppressors of SA biosynthesis [119]. It has been suggested that JA

and ET signaling pathways take the precedence over SA mediated defense pathways in plant

defense, because in the mutants where JA and ET responses are constitutively activated, the

JA responsive genes were not suppressed by SA [143]. Pharmacological assays and mutant

studies also illustrated that ET signaling could render the JA signaling insensitive to the

suppression of SA [143].

Other than stress hormones, several signalling molecules have been proposed to facilitate

crosstalk between the abiotic stress signalling pathways. Intracellular Ca2+ regulate a vari-

ety of TFs involved in abiotic stress response [127]. For instance, FRY1 locus of Arabidopsis

encoding a Inositol 1,4,5-tris phosphate (IP3)-gated Ca2+ channel protein leads to an in-

crease in cytosolic Ca2+ in response to ABA, salt, and cold stress signals [265]. Considering

activation of HsfA1 against heat stress also involves a CDPK cascade, the role of Ca2+ in

abiotic stress signalling appears prominent. Another source of crosstalk between abiotic
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stress signals is multiple substrate specificty exhibited by some members of MAPK cascades:

activities of MAPK4 and MAPK6 proteins are triggered by both cold and salt stresses [102],

providing the basis for convergence of multiple stress signals [44]. However, the behaviours

of those potential mediators of crosstalk are still poorly characterised in presence of multiple

abiotic stress signals, which prevents further mechanistic understanding of their functions in

facilitating interactions between various abiotic stress signals.

2.6 Discussion

In this chapter, we have provided a broad introduction of plant stress biology by explaining

the role of Arabidopsis thaliana as the model plant organism, cellular and physiological dam-

ages incurred by different types of stresses, and the functions of the genes that are triggered

in response to each stress. The chapter also reviewed the past studies involving the molec-

ular mechanisms of stress response regulation by focusing on the key signalling pathways

for transduction of different types of abiotic and biotic stress. The signalling pathways have

been reconstructed by combining the insights from the studies on the stress response TFs and

their corresponding cis-elements (stress regulons), the stress signalling hormones, and the

intermediate signalling genes such as protein kinases and phosphatases, enzymes involved in

phospholipids metabolism, and calmodulin-binding proteins. The resulting models of stress

signalling pathways are often depicted as sequential cascades of biochemical processes. This

reductionistic approach to reconstruct stress signalling pathway has led to detailed mecha-

nistic understanding of signal transduction from initial perception of stress to transcriptional

regulation: one of the remarkable examples of such success is full reconstitution of the ABA

signalling pathway in vitro [71].

Integrating the insights regarding individual signalling pathways has revealed common ele-

ments shared by multiple signalling pathways, which are likely to serve as potential nodes

for crosstalk. Examples of such crosstalk are observed from all levels of signal transduction,

including the TFs (Fig. 2.4, 2.5), stress signalling hormones (Fig. 2.6), and other signalling
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components such as calcium and ubiquitous protein kinases shared by multiple signalling

pathways. Numerous evidences suggests that the control of these shared nodes may add on

to the diversity in gene expression outcomes. For example, it has been observed that DREB2,

a potential integrator of drought and heat stress, exhibit signature expression profiles that

are specific to the stress input [215]. Interactions between stress hormones are unlikely to be

simple antagonistic relationships, as the microarray profiling of Arabidopsis transcriptome

upon combination of SA and JA demonstrated simultaneous presence of both synergistically

and antagonistically regulated genes [217]. Moreover, it has been shown that the interaction

between SA and JA may be dynamically coordinated depending on time and quantity of

hormone treatments [177]. More detailed functional characterisation of the known crosstalk

connections is therfore necessary, with focus on the activities of multifunctional TFs and

calcium under various stress conditions. In addition to the map of interaction between hor-

mones, the origin of observed interaction between stress signalling hormones also awaits

further investigation.

With the availability of -omics datasets and bioinformatic methods, transcriptional networks

have also been studied in large-scale. Unlike the signalling pathways that have been recon-

structed via bottom-up assembly of individual signalling components, these transcriptional

networks are typically inferred directly from large-scale datasets based on pairwise correla-

tion [37], TF-gene interaction [192], or combination of multiple datasets and manual curation

[109]. While the large-scale transcriptional networks do not offer specific insights regarding

regulation of stress response genes or transduction of stress signals, the apparent density of

connection between the genes suggests that there may be numerous undiscovered interac-

tions with crucial roles in shaping gene regulatory outcomes under various stress conditions

and facilitating interaction between multiple stress. How does one then identify those func-

tionally important interactions lacking in the current model of stress signalling network?

Answering this question is the focus of the upcoming chapters.
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Chapter 3

Compound gene regulation as logical

operation

3.1 Introduction

As our understanding of the plant stress signalling pathways accumulates, it is becoming

increasingly clear that transduction of environmental stress signals occurs via highly com-

plex network. From the previous chapter, it was shown that interactions between multiple

stress inputs have effects on gene regulation and the resulting physiological responses, as

exemplified by apparent non-additive behaviours observed between the stress signalling hor-

mones (Fig. 2.6). Several studies have investigated the potential mechanisms behind such

interaction between multiple hormonal inputs in relatively well-characterised plant systems

such as guard cell signalling [23] and root development [148]. Notably, these studies have

utilised mechanistic models to determine the role of crosstalk between multiple hormones in

controlling given processes, such as stomatal aperture and auxin biosynthesis. Unfortunately,

similar detailed mechanistic modelling approaches are not yet available to the forthcoming

sets of data on gene regulatory outcomes in response to combined stresses, owing to incom-

plete characterisation of the upstream stress signalling pathways regulating many of those

genes. While further experimental characterisation of individual signalling components un-
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der a variety of environmental settings is one approach to shed more light on how multiple

external inputs are processed to regulate expression of stress response genes, such efforts are

likely to be expensive and time-consuming.

An alternative approach to elucidate the mechanisms for compound gene regulation is to

systematically characterise different outcomes of signal integration, and investigate each of

the observed outcomes in the light of a particular design of the regulating network. One of

the key concepts in Systems Biology is that design principles of a biological network, such

as network structure and kinetic parameters that govern network dynamics, determine the

behaviour of the network as a whole [125]. Numerous studies attempted to functionally

characterise recurring structural patterns called network motifs [140, 225] by associating

them with specific behaviours. For example, coherent feedforward loops commonly serve as

so-called persistence detector [158], where output is not produced by transient activation,

but only upon presence of a persistent input. Although it has been shown that behaviours

observed from biological network cannot be solely attributed to topological structure of the

network [104], it still leads to an interesting question whether a specific gene regulatory

outcomes observed under combined inputs can be mapped on to a specific type of network

structure.

The main difficulty in assigning the outcomes of signal integration into specific control struc-

tures, however, stems from large number of possible signal integration outcomes. The previ-

ous chapters discussed that the effects of combining multiple inputs may not sometimes be

adequately described by simple synergistic or antagonistic interaction. Thus, a conceptual

framework that identifies and limits the space of possible signal integration outcomes is an

important step towards elucidation of the molecular mechanisms behind compound gene

regulation. In this chapter, we examined compound logic, which was originally proposed by

[239], as candidate for such classification framework. The mechanisms behind the possible

outcomes of signal integration classified under compound logic were then investigated by

constructing simple models of signalling networks based on Parallel Distributive Processing

network [160]. The simplicity of the proposed model allowed systematic investigation of vari-
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ous signalling network topologies, which provide insights regarding the potential mechanisms

responsible for the classified signal integration outcomes.

3.2 Examples of signal integration from bacterial sys-

tems

To better understand the variety of signal integration outcomes, it is useful to consider

examples from other organisms that experience decision-making problems upon presence of

multiple environmental signals. Bacterial organisms are well known for their abilities to

integrate wide variety of environmental signals to increase their chance of survival [25, 38].

While there are large differences in the exact signalling mechanisms employed by bacterial

and plant systems, similarities can also be found amongst those examples with respect to

the biological outcomes triggered by multiple environmental inputs, such as level of gene

expression or protein activity.

One of the best studied examples of biological networks integrating multiple external inputs

is the lac operon in Escherichia coli [106]. The lac operon contains the genes required for

lactose utilisation, including LacY for lactose import, LacZ and LacA for lactose metabolism.

The activity of the lac operon is regulated by two carbon sources, namely lactose and glucose,

and the key function of lac operon is to induce expression of the three genes only in presence

of lactose. Figure 3.1a outlines the core control structure involved with regulation of lac

expression. There are two signalling pathways, one involving the lac repressor (LacI) as the

lactose sensor, and catabolite activator protein (CAP) as the glucose sensor. LacI represses

expression of the lac genes, whereas CAP activates expression of the lac genes. Presence of

lactose and glucose inhibits the DNA-binding capability of LacI and CAP, respectively. The

ability of CAP to trigger expression of the lac genes is prevented by LacI, as LacI blocks the

transcription initiation sites immediately downstream of CAP. This cross-regulation from

LacI to CAP plays a key role in establishing glucose as the preferred carbon source over
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Figure 3.1: Examples of signal integration from bacterial systems. a) The core control structure

of the lac operon outlines signalling pathways for lactose and glucose consisting of LacI and CAP, which are

the repressor and the activator of lac expression. b) Regulation of σE stress response is facilitated by two

periplasmic proteins RseA and RseB that are responsive to OMP and LPS signals, respectively. The latter

binds the former, rendering it insensitive to OMP. c) Two quorum inducers, C4-HSL (C4) and 3-oxo-C12-

HSL (C12) in Pseudomonas aeruginosa activate LuxR-dependent expression. C4 and C12 have different

half-life.
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lactose because expression of the lac genes specifically occurs when only CAP is active.

Thus, this example demonstrates that E. coli is able to integrate simultaneous lactose and

glucose signals to make decisions over induction of its genes, preventing committment to

production of the proteins involved in lactose metabolism when both carbon sources are

present.

Another example of signal integration in bacterial gene regulation is control of σE-dependent

regulation of stress response genes in gram-negative bacteria such as E. coli, which plays

a crucial role in repair of damaged envelope. Biochemical signals characterising damages

in outer membranes is accumulation of unfolded outer membrane proteins (OMPs) and

Lipopolysaccharides (LPS) in periplasmic space [5]. The pathways for OMP and LPS sig-

nalling is known to interact with eacther other (Fig. 3.1b). In the OMP signalling pathway,

degradation of RseA mediated by DegS is responsible for production of σE factors. OMP,

however, is unable to initiate RseA degradation on its own because RseA is tightly associ-

ated with RseB, the LPS sensor [146]. Simultaneous presence of OMP and LPS is therefore

required to trigger σE-dependent expression of stress response. This example demonstrates

that integrating multiple signals can be used to reduce waste of cellular resources by pre-

venting unnecessary expression of downstream genes upon transient increase in the stress

signals, which are not likely to represent severe damage to the envelope.

Signal integration is also observed in bacterial quorum sensing, which involves intercellular

signalling between bacterial cells to modify collective behaviours of bacterial cell population

based on population density [262]. To achieve this, individual bacterial cells produce and

detect chemical signaling molecules called autoinducers (AIs) to modulate expression of their

own genes and across neighbouring cells. Notably, many quorum-sensing bacteria utilise

multiple types of AI, each with designated receptors at the membrane level but regulating

a common signalling target. For example, Pseudomonas aeruginosa biofilm formation is

triggered by two AIs, namely C4-HSL and 3-oxo-C12-HSL [46], which lead to activation of

master quorum-sensing transcriptional regulator, LuxR (Fig. 3.1c). The utility of integrating

multiple AI signals, however, has been a controversial topic. Having two types of input
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signals that activate a common downstream target may lead to loss of information, as noisy

fluctuation associated with one signal undermines signalling of the other [162]. A relatively

recent study conducted by Cornforth et al. [50] suggested that combination of multiple

AIs allow detection and response to different environmental states at greater resolution,

particularly when the AIs have different chemical properties such as decay rate. From the

changes in Pseudomonas aeruginosa transcriptome in response to two inducer molecules with

distinct decay rates, the same study identified several gene clusters displaying constrasting

behaviours. Although the detailed mechanisms leading to specific behaviours are not yet

understood, the bacterial quorum-sensing example demonstrates that signal integration helps

to fine-tune downstream responses to the precise environmental state by harnessing the

information about dynamics of multiple inputs.

3.3 Compound logic

The above examples shows that integration of multiple environmental signals governs cellular

decision regarding regulation of gene expression. Specifically, those examples showed that

the outcomes of gene regulation from integrating multiple environmental signals can be

described as logical operation. Such interpretation of biological processes integrating multiple

environmental signals led to development of compound logic as a systematic framework for

classifying different signal integration outcomes by Tanaka and Kimura [239].

The basic idea of compound logic is simple (Fig. 3.2): given that logical variables can be used

to describe the states of input signals, S1 and S2, and the output R that is jointly controlled

by the two inputs, the input-output relationship can be described with a logical function,

K, which is defined by the states of R at all possible input combinations. Systematic

identification of signal integration outcomes is possible, as the finite number of states for

the inputs and the output limits the number of unique K functions. For example, binary

description of the inputs and the output states leads to 24 unique K functions. Thus, a

signal integration outcome, which describes how different combinations of the input signals
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Figure 3.2: Representation of signal integration outcomes via compound logic. a) Signal inte-

gration is a process where two input signals lead to regulation of a shared output. b) The outcomes of signal

integration can be defined by a logical function K describing the state of output at different combinations

of inputs. If the states of the inputs are approximated with binaries, the space of possible output can be

divided into four quadrants.

affect the output, can be succinctly described with a single function K. Figure 3.3 shows

representation of signal integration outcomes presented in the three examples discussed above

based on binary compound logic.

The compound logic functions identified based on binary approximation of input and output

states can be described in terms of Boolean algebra. However, one of the most frequently

encountered questions regarding gene regulation is not whether a gene simply switches on

or off, but how the external signals induce change in the activity of the gene with respect

to control. Differential cDNA microarray, for example, detects the genes showing relative

difference in behaviours under two experimental conditions. This means that transcriptional

regulation of a gene, which can either be positive or negative, cannot be adequately captured

with binaries. Compound logic offers a solution to this problem by allowing a larger number

of states for description of the inputs and the output. More adequate description of gene

regulatory outcomes can be achieved by considering three states of gene activity that include
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Figure 3.3: Use of compound logic functions to describe signal integration in the bacterial

examples. The effects of integrating multiple environmental signals from the examples described in Figure

3.1 are shown. Numbers in each quadrant indicates the state of the genes subject to regulation, described

in binaries (0,1). a) Integration of lactose and glucose signals by interaction between LacI and CAP leads

to selective expression of lac operon under single lactose condition. b) Both OMP and LPS signals are

required to trigger σE stress response due to the interaction between RseA and RseB. This is equivalent to

logical AND operation. c) Combined treatments of C4 and C12 lead to various regulatory outcomes amongst

LuxR-induced transcriptome [50]. Four most frequently observed logical functions are shown (n = number

of genes).
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up-regulation (1), no change (0), and down-regulation (-1).

The resulting compound logic functions that describe the effects of signal integration on

direction of gene expression change are shown in Figure 3.4. Here, we consider possible

changes in gene expression under three input conditions (S1 only, S2 only, and S1 + S2)

because the outcomes of signal integration describe relative change in gene expression with

respect to control. Given that there are three possible states of gene expression for each of

three input conditions, there are 33 possible regulatory profiles.

Compound logic can also be generalised further to account for larger numbers of possible

states for the output and input conditions. Given that the numbers of possible states for

the output and input conditions are represented by r and s, respectively, the possible num-

ber of signal integration outcomes would correspond to rs. While characterisation of signal

integration outcomes for arbitrary number of states is possible, it introduces combinato-

rial complexity that quickly becomes overwhelming. We argue that classification based on

ternary gene regulatory outcomes (Fig. 3.4) provides sufficiently detailed and comprehensive

coverage of diverse behaviours observed from compound gene regulation.

3.4 Logical network models

3.4.1 Gene regulatory network as Parallel Distributive Processing

Network

Having identified the possible signal integration outcomes in terms of compound logic func-

tions, we then investigate whether each function can be assigned to particular network struc-

ture. As discussed in chapter 2, environmental stress generates multiple biochemical signals

in a variety of forms, such as damages to membrane structure and changes in intracellular

osmotic balance. Those signals are subsequently processed by multiple signalling pathways

acting in parallel, each regulating a subset of genes. Such aspect of of stress-induced gene
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Function S1 S2 S1 + S2 Function S1 S2 S1 + S2 Function S1 S2 S1 + S2

K1 -1 -1 -1 K10 0 -1 -1 K19 1 -1 -1

K2 -1 -1 0 K11 0 -1 0 K20 1 -1 0

K3 -1 -1 1 K12 0 -1 1 K21 1 -1 1

K4 -1 0 -1 K13 0 0 -1 K22 1 0 -1

K5 -1 0 0 K14 0 0 0 K23 1 0 0

K6 -1 0 1 K15 0 0 1 K24 1 0 1

K7 -1 1 -1 K16 0 1 -1 K25 1 1 -1

K8 -1 1 0 K17 0 1 0 K26 1 1 0

K9 -1 1 1 K18 0 1 1 K27 1 1 1

Figure 3.4: Identification of compound logic functions for description of relative gene expres-

sion change based on ternary logic. Relative changes in transcriptional activity of a gene with respect to

the basal level (black quadrant) can occur in three directions: increase (1), no change (0) and decrease (-1).

This leads to identification of 27 unique logical functions highlighting various effects of signal integration on

gene regulatory outcomes.
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regulatory system bears remarkable resemblence to Parallel Distributive Processing (PDP)

networks [160].

An example of stress-induced gene regulatory system expressed as a PDP network is shown

in Fig. 3.5. A PDP network consists of three layers of nodes (or units); the nodes in the

‘input’ layer denote the state of environment, which in our case, indicate presence of stress.

The state of input nodes determine the state of the nodes in the intermediate layer, which

correspond to the activities of intracellular signalling pathways. This layer is referred as

‘hidden’ because states of the nodes belonging to this layer are not observable directly from

experiments. Finally, the ‘output’ nodes represent the states of the genes regulated by the

‘hidden’ nodes. Collective states of the nodes in the output layer is equivalent to the overall

transcriptomic response induced by stress inputs.

Figure 3.5: Transcriptome regulatory network depicted as Parallel Distributive Processing

network. Different combinations of two stresses, S1, S2, induces changes in promoter states of m genes,

denoted by P, via n signalling pathways, denoted by X.
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3.4.2 Model description

To investigate possible network topologies for each of 27 compound logic functions identified

in the previous section, it is necessary to develop a model of signalling networks for regulation

of a single gene. As dictated by the PDP framework, regulatory network for a single gene

is described with three layers of nodes. The state of each node is determined by functions

providing phenomenological description of the relationship between inputs and output of the

node:

Xi = f(S1, S2), (3.1)

P = g(X1, X2, X3, ..., Xn), (3.2)

where i = 1, 2, 3, ..., n. Fig. 3.6 shows two network structures that will be examined during

the subsequent analyses. Here the state of a transcription factor Xi is determined by function

f , and the promoter P by function g. Genes controlled by homotypic promoters (containing

a single type of TFBS) are represented by g with n = 1. Genes with heterotypic promoters

(containing two types of TFBS) are described by g with n > 1. Topology of the overall

signalling network is described by a combination of any function f , and g. For simplicity,

we only investigated two cases, n = 1 and n = 2.

The transcription factor Xi is considered to conduct logical operation of S1 and S2 to deter-

mine its state, which is assumed to be in binary form (active, inactive). Table 3.1 shows the

truth table resulting from 7 possible logical functions used for describing f (excluding the

function that is zero for all three stress conditions). Although the individual steps of signal

transduction are not explicitly modelled by f , each logical function still confers how the two

stresses interact with each other in regulating the activity of targeted TF.

The state of individual TF consequently determine the state of promoter, any change in which

results in change in gene expression. Determining the logical functions to describe promoter,

however, is more difficult because the states of promoter must be described with ternaries
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in order to describe increase, no change, and decrease in the level of gene expression. We

resolve this by introducing two types of promoters, where one is targeted by an transcriptional

activator (Xi,A) and the other by an transcriptional repressor (Xi,I). Positive changes in gene

expression are assumed to be facilitated by actions of transcriptional activator, while negative

changes occur when transcriptional repressor is triggered by stress inputs. The distinction

means that a TF can only act either as activatory or inhibitory pathway, not both.

Based on these assumptions, we defined 12 logical functions describing how states of one

or multiple TFs affect the state of promoter (Table 3.2). The first two functions (g1, g2)

represent the genes with promoters targeted by a single type of TF. The other ten functions

describe the genes regulated by two pathways, which were selected to represent commonly

observed types of interactions between two TFs. ‘Independent’ functions (g3, g4, g5, g6) de-

pict promoters that are bound by two TFs with no interaction. ‘Competitive’ functions

(g7, g8, g9, g10) describe the promoter that preferentially binds to one TF. ‘Cooperative’ func-

tions (g11, g12) describe the promoters that require presence of both TFs to be active.

Figure 3.6: Overview of a logical network model for description of signalling network topology.

a) Gene regulatory network with a single signalling pathway (n = 1), b) Gene regulatory network with two

signalling pathways (n = 2).
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Table 3.1: Logical functions describing regulation of TF activity by multiple external inputs.

Function
S1 = 1 S1 = 0 S1 = 1

S2 = 0 S2 = 1 S2 = 1

f1(S1) 1 0 1

f2(S2) 0 1 1

f3(S1, S2) 1 1 1

f4(S1, S2) 0 1 0

f5(S1, S2) 1 0 0

f6(S1, S2) 0 0 1

f7(S1, S2) 1 1 0

Table 3.2: Logical functions describing the states of promoters regulated by one or two TFs.

Function
X1 = 1 X1 = 0 X1 = 1

Type of TF interaction
X2 = 0 X2 = 1 X2 = 1

g1(X1,A) 1 0 1
Not applicable

g2(X1,I) -1 0 -1

g3(X1,I , X2,A) -1 1 0

Independent
g4(X1,A, X2,I) 1 -1 0

g5(X1,A, X2,A) -1 -1 -1

g6(X1,I , X2,I) 1 1 1

g7(X1,I , X2,A) -1 1 -1

Competitive
g8(X1,I , X2,A) -1 1 1

g9(X1,A, X2,I) 1 -1 -1

g10(X1,A, X2,I) 1 -1 1

g11(X1,I , X2,I) 0 0 -1
Cooperative

g12(X1,A, X2,A) 0 0 1

48



3.4.3 Genes regulated by homotypic promoters (n = 1)

We now investigate which network topologies (combination of function f and g) reproduce

which compound logic function defined in the previous section. The network topologies

for genes regulated by a single signalling pathway can be described by any of the first two

functions of g, combined with any of seven available f , leading to 2 × 7 possible network

topologies. Each of the resulting 14 structures could be assinged to a specific logical func-

tion.

Because g only specifies the sign of change in gene expression in this case, the type of K

associated with the given network topology is mainly governed by the choice f . Some of

the results are intuitive: for example, systems implementing f1 and f2, which describe the

TFs that are activated only under one type of input, show no change in response when

two inputs are combined together. Implementation of function f3, which represents the

TF that are inducible by both inputs, lead to regulatory changes of identical sign across

all input conditions. Implementation of f4 and f5 leads to TF activities being suppressed

upon combination of inputs, describing nullification of downstream gene expression. Finally,

TFs represented by f6 and f7 are only active when both inputs are present, leading to gene

regulatory outcome specific to combination of two inputs.

While the simple logical network models implementing a single TF provide simple and in-

tuitive explanation of the possible behaviours of genes, those could not reproduce all func-

tions.

3.4.4 Genes regulated by heterotypic promoters (n = 2)

Because the proposed logical network models implementing single type of TF could not

capture all of the 27 compound logic functions (Fig. 3.4), we investigated the models with two

types of TF. Description of the network topologies for genes regulated by two TFs requires

choice of g for promoter and f for both signalling pathways, which leads to 10×7×7 possible
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Table 3.3: Logical functions reproduced by models of regulatory network consisting of a single
TF.

Structure
S1 = 1 S1 = 0 S1 = 1 Compound logic

S2 = 0 S2 = 1 S2 = 1 function

g1(f1(S1)) 1 0 1 K24

g1(f2(S2)) 0 1 1 K18

g2(f1(S1)) -1 0 -1 K4

g2(f2(S2)) 0 -1 -1 K10

g1(f3(S1, S2)) 1 1 1 K27

g2(f3(S1, S2)) -1 -1 -1 K1

g1(f4(S1, S2)) 1 0 0 K23

g1(f5(S1, S2)) 0 1 0 K17

g2(f4(S1, S2)) -1 0 0 K5

g2(f5(S1, S2)) 0 -1 0 K11

g1(f6(S1, S2)) 0 0 1 K15

g1(f7(S1, S2)) 1 1 0 K26

g2(f6(S1, S2)) 0 0 -1 K13

g2(f7(S1, S2)) -1 -1 0 K2

network topologies. Although the resulting 490 profiles are able to reproduce all 27 variants

of function K, each function K could not be attributed to a single network topology.

Fig. 3.7 shows the number of different network topologies that produce the outcomes de-

scribed by each function K. The result shows that each regulatory profile can be explained

by approximately 12 to 18 network topologies with an exception of the K1 and K27, which

are reproduced by 40 network topologies. In addition, 38 network topologies fail to induce

change in expression under any of the three stress conditions (K14).

Given that the interactions of two signalling pathways occurring at the promoter level leads to

increase in the number of possible network topologies for each regulatory profile, determining
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Figure 3.7: Number of possible network topologies with two signalling pathways for each

regulatory profile.

the network topology that explains the observed regulatory profile requires integration of

additional information.

3.5 Discussion

In this chapter, we have built up on the compound logic framework originally developed by

Tanaka and Kimura [239] for systematic classification of possible signal integration outcomes.

Ternary logic was used to describe up-regulation, down-regulation or no change in expression.

This offers a unique advantage to the binary framework, which can only describe changes in

gene expression in terms of “on” and “off” states. Limiting the number of possible states

of genes led to identification of 27 unique behaviours via compound logic. Having clearly
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defined possible gene regulatory outcomes from integration of multiple input signals, we

explored whether each of the defined behaviours can be associated with a particular network

topologies. This was achieved by developing simple models of signalling network inspired by

the PDP network.

In order to model a gene regulatory network modulated by multiple environmental inputs

as a PDP network, it is essential to describe the behaviours of genes with logical (discrete)

variables. In a dynamical systems perspective, one way to interpret such discrete behaviours

of genes is transition from one equilibrium point to another upon perturbation by input

signals. Specifically, use of such description requires the following two conditions to be

assumed:

1. The system of interest has reached an equilibrium after sufficient time has passed from

initial input perturbation, and

2. It is possible to fully determine the steady-state behaviours of system with a finite

(three in the case of ternary compound logic) number of fixed point attractors.

Assuming these two conditions introduces several limitations associated with the compound

logic method and modelling of gene regulatory networks with PDP network models. The first

condition forces us to ignore time and trajectories the system has taken to reach equilibrium,

which means that the method cannot be used to describe any transient behaviours exhibited

by a gene. The second condition also excludes the possibility of a gene showing other types of

stable behaviours, such as convergence to limit cycles or strange attractors [235]. Although

it is known that many genes behave in discrete manners through well-known motifs such as

bistable switch [203] and such qualitative changes in the state of the gene are often what

matters in decision-making of a cell [56, 93, 132], it is biologically unrealistic to apply the

same assumptions to all genes. For instance, circadian rhythm in plants plays a critical role

in regulating cellular processes independently to environmental conditions, and the state of

the genes affected by the clock usually do not converge to a single equilibrium value over a

long period of time [92].
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Despite its limitations, however, the compound logic method can still provide new insights

regarding the behaviour of genes under combinatorial input conditions provided that it is

carefully used. By describing a gene’s behaviour under different input conditions with a

pre-defined compound logic function, it is possible to rapidly identify how multiple input

signals interact with each other to regulate the gene. Several compound logic functions

defined above describe complex processing of two input signals (e.g. reversal of regulatory

outcome seen in K6 and K22 - see Fig. 3.4), and presence of genes that can be approximated

by those compound logic functions may reveal biologically important regulatory interaction

between the two input signals. Furthermore, it is possible to reduce a potentially large

model space into a manageable number of models through construction of PDP network,

subsequently allowing a systematic investigation of the system structure responsible for the

observed behaviours. Given that the PDP network models are also readily scalable into

larger networks, we argue that the analytical framework proposed altogether in this chapter

can be particularly useful in enquiring large gene expression datasets to generate the first

insight regarding connectivities between input signals and different nodes in the upstream

regulatory network.

If the proposed analytical framework using compound logic and PDP network can be used to

analyse gene expression dataset and provide insights about important regulatory structures

of gene regulatory network, how does it compare with conventional methods used for recon-

struction of gene regulatory network structures? Numerous existing techniques already use

transcriptomic microarrays data to infer topology of gene regulatory network: for instance,

clustering algorithms can be used to organise gene expression data by grouping similar ex-

pression profiles together [94], based on degree of similarity between a pair of genes using

Euclidean distance and Pearsons Correlation Coefficient [54]. Alternatively, Bayesian in-

ference methods have been used for more accurate prediction of causal relationships from

microarray expression profiles [70, 277]. Irrespective of the theoretical basis and assump-

tions specific to each method, those existing gene regulatory network inference methods

are based on the premise that promoters of those similarly-behaving genes are regulated
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by common transcription factors and upstream network elements, and aim to translate the

information from gene clusters into a graph with regulatory interactions (edges) between

genes (nodes). Indeed, those methods have led to highly successful examples of large-scale

gene regulatory network inferred from transcriptomic datasets [101, 139]. However, we note

that these methods cannot fully replace the analytical framework we propose in this chapter

due to their own limitations: importantly, the existing network inference methods focus ex-

clusively on gene-gene relationships, and are unable to consider complex interaction between

multiple environmental input signals. The graph models resulting from those methods are

therefore limited to description of overall topological structure of gene regulatory networks,

and offer little mechanistic insights regarding the origin of behaviours observed amongst the

genes.

In conclusion, we argue from the results presented in this chapter that comparison between

gene regulatory changes to single and combined stresses may also be a viable source of

information, providing a basis for further distinction between different groups of genes that

are potentially regulated by common transcriptional regulatory mechanisms. We explore

this idea more thoroughly in the subsequent chapters.
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Chapter 4

Analysis of transcriptomic changes under

combined stresses in Arabidopsis thaliana

using compound logic

4.1 Introduction

In this chapter, we apply the analytical framework developed in Chapter 3 to a real gene

expression datasets related to plant stress responses and demonstrate how the framework

can be used to extract information about the regulatory network structure. Before moving

onto actual application of the compound logic framework, we briefly review the status quo

of the transcriptomic studies conducted in various plant species upon single and combined

environmental stresses, and the previous attempts to infer structure of stress response gene

network from the datasets resulting from those studies.

Transcriptomic changes under various single stress condition have been well documented

across different plant species: In Arabidopsis, several studies have independently investi-

gated transcriptomic responses to individual abiotic or biotic stresses [122, 129, 222]. Using

conventional gene regulatory network inference methods (discussed in Section 3.5), many

studies successfully identified several features regarding global organisation of gene regula-
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tory system in response to various stresses [145]. For instance, association of the module

identified from transcriptomic datasets with known TF-Binding Site (TFBS) motifs suggests

for presence of a ubiquitous stress response module, which acts in response to a variety of

stress types [155]. While the studies specifically focusing on stress-related transcriptional net-

work are scarce, numerous studies have successfully integrated the transcriptomic datasets

with the results of genomic sequence analysis (e.g. identification of TFBS and resulting

TF-gene relationships) to map genome-wide transcriptional regulatory networks, which are

made publicly accessible via online databases: for Arabidopsis, two most notable examples

include the AraNet [138] and AthaMap [233] databases.

On the other hand, the datasets showing transcriptomic responses to combined stress in

different species became only recently available [110, 182, 206, 211]. Measuring direction

of change in expression profiles across the entire transcriptomes, these studies commonly

demonstrated that the set of genes whose behaviours are changed by combined stresses show

little overlap with those affected by single stresses. At one end, such unique expression

profiles observed under combined stress indicates that regulatory cues on genes from singly

applied stresses are modulated by addition of another stress. Some genes that are not

induced by singly applied stresses at all were shown to be regulated under combined stress

conditions. Such dissimilarity between the transcriptomic responses to single and combined

stresses suggests that interaction between multiple stress types to regulate target sets of

genes is not restricted to synergistic and antagonistic relationship, and there are mechanisms

responsible for processing of simultaneous stress signals to produce such unique regulatory

profiles. Although few, there have been attempts to make use of these transcriptomic datasets

from combined stress to infer transcriptional regulatory network topology: for instance,

Barah et al. [21] separately analysed parts of the global transcriptional network responsive

to different stress conditions. The study found that some TFs, especially those with roles

associated to circadian clock and developmental processes, act as master regulators of stress

responsive genes, while other TFs mediate regulate subset of genes specific to a particular

type of stress condition.
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Despite these interesting developments we have seen so far, the current approaches for re-

construction of stress-responsive transcriptional regulatory network in plants share a fun-

damental limitation. The insights generated from those approaches are largely restricted

to topological structures of the transcriptional network, which do not provide mechanistic

explanation of the non-additive behaviours exhibited by the genes in response to combined

stress. In this regard, we apply the compound-logic description of gene expression profiles and

derivation of PDP network models from those profiles as an alternative method to overcome

this challenge. Here, we chose to specifically examine the transcriptomic dataset generated

by Rasmussen et al. [206], which contains information about gene expression changes upon

10 different (single and combined) stress conditions.

The chapter executes as follows: first, the genes in the transcriptomic dataset are anal-

ysed according to the compound logic functions defined in the previous chapter for detailed

comparison of the responses of the genes to single and combined stress treatments. We then

explore possible network topologies that may give rise to each regulatory profile based on the

PDP network models. The models that are developed for each of the pre-defined regulatory

profiles highlight possible origins of the regulatory profiles within the upstream signalling

networks in terms of control of TF activities and promoter interaction. By analysing the

genes that are regulated by HSF and WRKY pathways for heat and biotic stress signalling as

the examples, we show that the model can be applied to understand the expression profiles of

smaller subsets of genes controlled by common cis-elements. The result is a framework that

allows integration of information from transcriptomic profiles and promoter architecture to

generate new hypotheses regarding the upstream signalling network structure.
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4.2 Regulation of Arabidopsis transcriptome by com-

bined environmental stresses

4.2.1 Regulatory Profiles Matrix

For comprehensive visualisation of the transcriptomic responses to various stress conditions,

we obtained a Regulatory Profiles Matrix (RPM) (Fig. 4.1) from the data published by

Rasmussen et al. [206]. RPM summarises the qualitative changes in the expression profile

of each gene in response to each stress as a series of ternary logical outcomes: up-regulation

(1), no change (0) and down-regulation (-1).

Source of data The original dataset was downloaded from Gene Expression Omnibus (Ac-

cession number: GSE41935), an online public database repository containing gene expression

profile data from a wide variety of organisms and experimental settings [57].

Experimental conditions The original dataset contains expression profiles measured under

12 stress treatment conditions: no stress, NaCl (N), Heat (H), High Light (HL), Cold (C),

Flg22 peptides as the inducer of biotic stress response (F), and six pairs of those stresses

(S+H, S+HL, H+HL, C+HL, H+F, and C+F). For detailed description of the treatment

settings, see the orignal paper [206]. The dataset also contains the expression profiles data

for 10 Arabidopsis ecotypes. For our analysis, however, we used the expression profiles

Figure 4.1: Regulatory Profiles Matrix - an illustrative example.

Stress N H HL C F N+H N+HL H+HL C+HL H+F C+F

Gene1 1 1 0 0 -1 0 0 1 0 0 0

Gene2 0 0 0 1 0 0 0 0 1 0 0
...

...
...

...
...

...
...

...
...

...
...

...

Gene25430 1 0 0 -1 0 0 0 0 0 0 -1
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data from only Columbia (Col) ecotype. This was because the information used for model

development in latter parts of the chapter is mostly based on the Col platform.

Identification of significantly regulated genes The expression profiles of 25430 anno-

tated genes were analysed, which excludes the measurements for mitochondrial and chloro-

plastic genes in the original dataset. Student’s t tests were carried out between the triplicate

control samples and the triplicate samples treated with each stress (p ≤ 0.1) for each gene.

Directions of regulatory changes amongst the strongly regulated genes were determined by

comparing the mean expression indices from the control samples and those from the treated

samples.

4.2.2 Overview of transcriptomic responses to single and double

stresses

To compare transcriptomic responses to various stress conditions, we first analysed the RPM

obtained from the microarray data of Rasmussen et al. [206] based on percentage of genome

regulated, and the degree of overlap between the subset of genes regulated under each stress

condition.

Analysis of the first five columns of RPM allows comparison of the transcriptomic profile

induced by singly applied stresses (Fig. 4.2). The result revealed that percentage of genome

up-regulated slightly varies across different stresses; High Light stress and Flg22 induced

positive changes in greater number of genes (4.3% and 5.2% of genome, respectively), while

NaCl and Cold stresses positively affected relatively smaller number of genes (2.3% and 2.5%,

respectively). Amongst the genes detected as down-regulated, a stark contrast was observed

between percentage of genome affected by abiotic stresses (NaCl, Heat, High Light, and

Cold), which only induces changes in only 1.8-2.2% of genome, and the biotic stress (Flg22),

which induces changes in 12.3% of genome. This indicates the response to biotic stress

mainly involves down-regulation of the genes that are constitutively expressed in absence of

the stress.
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The subsets of genes detected as regulated by each stress were further classified into those

specifically responding to the corresponding stress and those with promiscuous roles in other

types of stresses (Fig. 4.2). Here, another clear difference between the role of abiotic stress

response genes and biotic stress response genes emerged. Approximately half of the genes

regulated by each abiotic stress is regulated by one or two other types of stresses (turquoise),

suggesting the responses to those stresses show some overlap. A small number of genes is

found to change in response to more than three stress type (yellow), suggesting that these

genes might be the ubiquitous regulators of the stress response. In contrast, the majority of

genes responsive to Flg22 do not respond to any of other type of stress (dark blue), suggesting

that transcriptomic profile to biotic stress is mainly specific to the stress.

Analysis of the genes regulated under pairs of stress (Fig. 4.3) showed that the transcrip-

tomic responses to combined stress are not additive of the transcriptomic responses to each

member of the pair. The percentages of genome regulated under combinations of the stress

do not show significant increase with respect to the percentage of genome regulated under

individually applied stress, which is expected if the responses to combined stresses are addi-

tive. In fact, combination of certain stresses even reduced the size of regulated sets of genes

compared to individually applied stresses; pairing of Flg22 stress with either heat or cold

stress leads to decrease in the number of down-regulated genes, from 12% to 7.9% to 9.1%,

respectively (Fig. 4.3b).

An evidence for non-additive interactions between different pairs of stresses is also seen from

the degree of overlap between the sets of genes regulated by combined stress and single stress.

Amongst the genes regulated by each pair of stresses, only a limited number showed similar

regulatory profiles to those observed under each member of the pair applied individually (dark

blue, turquoise). Majority of the genes regulated by combined stresses showed regulatory

profiles that do not resemble the behaviours observed under single stresses (yellow). These

genes represent the genes that are specific to the combination of stresses, whose presence

suggests for the uniqueness of transcriptomic responses to combination of stress.

60



Figure 4.2: Transcriptomic responses to singly applied stresses from Col ecotype. a) Percentage

of the genes up-regulated by each stress, and b) down-regulated by each stress within the whole 25430

annotated genes. The subset of genes regulated by each stress was divided into three subclasses depending

on the number of stresses that the constituting genes can respond to.
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Figure 4.3: Comparison of transcriptomic responses to combinations of two stresses against

the responses to singly applied stresses. The transcripts detected as significantly regulated by each

combination of two stresses S1 + S2 were classified into three portions, including those showing identical

regulatory profile to the first stress S1 (dark blue), those showing identical regulatory profile to the second

stress S2 (turquoise), and those behaving differently with respect to their response to either of the stress

applied individually (yellow).
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4.2.3 Classification of gene regulatory profiles under single and

combined stress conditions

In their original paper, Rasmussen et al. [206] proposed their own framework for classifying

gene regulatory outcomes, which categorises the genes five modes of transcriptional regula-

tion based on comparison between single stress responses and combined stress response:

• Combinatorial mode describes the genes showing the unique regulatory change under

a pair of inputs that is not observed under either of single input.

• Cancelled mode describes combining two inputs nullifies the response elicited by single

input.

• Prioritised mode describes the genes where combination of two inputs follow the

response triggered by one of the singly applied input, where the two singly applied

inputs induce contradictory changes.

• Independent mode describes the genes that respond only to one type of singly applied

stress, where response to the stress combined with another leads to identical expression

profile.

• Similar mode describes the genes that show same type of regulatory change under

both singly applied stresses and their combination.

While such classification of genes according to mode of regulation offers intuitive biological

insights regarding the potential effects on gene expression triggered by combined stress in-

puts, its description can also be ambiguous, as each mode can describe multiple regulatory

profiles. To provide more precise description, we clarified the set of mathematical rules in

the definitions of these regulatory modes (Table 4.1). As before, the response of a gene to

a specific stress condition is denoted with function K(S1, S2), which leads to three possible

output {−1, 0, 1} under three possible input conditions (S1, S2 and S1 + S2). Note that

Combinatorial, Cancelled and Prioritised logic demonstrates nonlinear interaction between

the two stresses, as the other three logical outcomes are concordant to the properties of
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Table 4.1: Mathematical rules used for definition of the five regulatory modes extracted from
the description of each mode by Rasmussen et al. [206].

Mode Single stress condition Combined stress condition

Combinatorial K(1, 0) = K(0, 1) K(1, 1) 6= K(1, 0) and K(0, 1)

Cancelled K(1, 0) 6= K(0, 1) K(1, 1) = 0

Prioritised K(1, 0) 6= K(0, 1) K(1, 1) = K(1, 0) or K(0, 1)

K(1, 0) and K(0, 1) 6= 0

Independent K(1, 0) 6= K(0, 1), K(1, 1) = K(1, 0) or K(0, 1)

K(1, 0) or K(0, 1) = 0 K(1, 1) 6= 0

Similar K(1, 0) = K(0, 1) K(1, 1) = K(1, 0) and K(0, 1)

linear system.

Establishing the set of mathematical rules also enabled direct comparison between logical

functions identified in the previous chapter with the five modes of classification. It was

found that not all of the logical functions can be assigned to the mode of regulation defined

by Rasmussen et al. [206], suggesting that the five modes of regulation is insufficient to

account for all of the possible signal integration outcomes. Fig. 4.4 shows assignment of

each compound logic function presented in Chapter 3 into one of the five transcriptional

regulatory modes proposed by Rasmussen et al. [206], excluding the function that does not

show response to any of the three stress conditions (K(1, 0) = K(0, 1) = K(1, 1) = 0).

Notably, there were four profiles that could not be assigned to any of the original five modes

based on the rules defined in Table 4.1. We therefore classified these functions into a sixth

mode of regulation called Reversed, which describes the genes where the direction of change in

response to one type of singly applied stress is reversed by combination of two stresses.

Based on the compound logic functions defined in the previous chapter, we subsequently con-

ducted a more detailed analysis of the transcriptomic dataset by examining the behaviours
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Figure 4.4: Classification of all possible regulatory profiles via compound logic. Each of the

26 profiles, which shows nonzero response to at least one stress condition, was assigned to one of the five

modes of regulation (A-F). The functions in each mode of regulation were further indexed numerically. The

regulatory profiles in bold represents the behaviours that were not considered by Rasmussen et al. [206].
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of individual genes. Each of 25430 genes in the RPM was assigned with one of the 26 logical

function for each of the six stress combinations measured in the experiment. Note that we

gave new indexing of each logical function according to the six mode of regulation (A-F, Fig.

4.4). We then analysed the distribution of six regulatory modes and their constituting reg-

ulatory profiles across the whole Arabidopsis transcriptome under different pairs of stresses

(Fig. 4.5).

The results showed that Combinatorial and Cancelled modes occur frequently under all stress

pairs, where they account for more than 75% of the total transcriptomic response together

(Fig. 4.5a). Independent and Similar modes, which represent the overlap between the set

of genes regulated by single and combined stresses, occupy approximately 20% of the total

transcriptomic responses. Prioritised and Reversed modes are observed from only a small

number of genes, affecting less than 5% of transcriptome under all stress pairs. Overall,

the differences between stress pairs are not apparent from classification of six modes, with

one exception: pairs of abiotic and biotic stress (H+F, C+F) do not invoke Similar mode,

which contrasts the combinations of abiotic stresses (N+H, N+HL, H+HL, C+HL). This

suggests that the number of genes with ubiquitous roles in abiotic and biotic stress response

is negligible.

Distributions of individual logical functions led more detailed visualisation of similarities

and differences between the transcriptomic responses to the stress pairs (Fig. 4.5b). From

consideration of individual logical function, it can be seen that prevalence of a regulatory

mode within the overall transcriptomic response is mainly due to high occurence of only a

few logical functions. For example, most of the genes regulated via Combinatorial mode

show the function A1 and A2 under all stress pairs, while almost no genes are described

with A5 and A6. Similarly, B6 in Cancelled mode is also rarely observed across all stress

pairs.

Analysing the similarity between most and least frequently observed logical functions in-

form us about the mechanisms that are commonly used, and those that are not. The most
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Figure 4.5: Regulation of individual genes across transcriptome under different pairs of

stresses. a) Distribution of the six regulatory modes the total transcriptomic set induced by each pair

of stresses. b) Breakdown of each mode into individual regulatory profiles (in ascending orders of ID).

The height of each bar shows the number of genes showing the corresponding regulatory profile under the

designated pair of stresses.
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frequently observed functions, such as A1, A2, B1, B2, B4 all describe the genes that are

specifically responsive to one type of stress condition, either single or combined. Presence of

those genes suggests that their corresponding regulatory network act in autonomous man-

ner, responding only to one type of stress amongst the tested combination. In contrast,

the least frequently observed functions, such as A5, A6, B6 along with all of Prioritised

and Reversed profiles, describe the genes showing incoherent responses to different stress

conditions, suggesting that it is uncommon for genes to respond positively to one type of

stress while responding negatively to another. An exception to this observation is B5 in

the pairs of abiotic and biotic stresses (H+F, C+F), which describes the genes responding

positively to singly applied abiotic stresses and negatively to Flg22 treatment. Enrichment

of this function indicates that there may be genes with contradictory roles in coordinating

the responses to abiotic and biotic stress.

4.3 Prediction of signalling network topologies from

the transcriptomic dataset

4.3.1 Heat and biotic stress-inducible genes regulated by HSF-

and WRKY-mediated signalling pathways

Having analysed the distribution of compound logical functions across Arabidopsis tran-

scriptome, we investigate the topology of signalling network responsible for regulating stress

response genes upon single and combined stress inputs. This is achieved by applying the PDP

network models developed in section 3.4 for the set of genes displaying particular compound

logic function. Given that multiple topologies can be used to describe a given compound

logic function, however, additional information regarding the promoter design of the genes is

required. We therefore choose a specific stress pair and examine the compound behaviours

of a smaller set of genes to that are known to respond to that pair. Here, we choose the
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combination of Heat + Biotic stress as a demonstrative example. The key regulators of tran-

scriptional response to heat stress are Heat Shock Factors (HSF), which bind to Heat Shock

Element (HSE) motifs in the promoters of target genes [234]. Transcriptional responses to

Flg22 is triggered by activation of WRKY family of transcription factors [193], which bind

to conserved W-box motifs in the promoters of target genes [47].

Although the HSF and WRKY pathways are known to transduce heat and biotic stress

signals, they are not the sole mediators of transcriptional responses to the streses [185, 255].

Furthermore, presence of HSE or Wbox motifs in cis-regulatory regions does not guarantee

the genes’ response to the corresponding stress. Thus, we assume that HSF and WRKY

pathways regulate only a partial subset of genes responding to Heat stress and/or Flg22.

Fig. 4.6 shows how we isolated the genes that are regulated by HSF and WRKY pathways

by comparing the list of genes showing significant changes under singly applied Heat or

Flg22 from microarray data set (p-value < 0.1) and the list of genes known to contain HSE

or Wbox motifs in their promoters. The latter list, which contain 693 genes (205 genes

containing HSE and 488 genes containing Wbox), was obtained from the Stress-responsive

transcription factor database (STIFDB2)i [178]. The database hosts information about the

enriched Transcription Factor Binding Site (TFBS) motifs for the stress-responsive genes.

We then looked for the genes located in the intersect between the different lists of genes,

identifying 3 subsets of genes.

4.3.2 Distribution of regulatory profiles amongst the genes regu-

lated by HSF and WRKY pathways

Once the genes regulated by the HSF and WRKY pathways are identified, we classified

each gene with one of the compound logic function defined in Fig. 4.4, and the resulting

distribution of compound logic functions is shown in Fig. 4.7. The compound logic functions

observed from less than 5% of the chosen set of genes were omitted to account for the

iAvailable online at http://caps.ncbs.res.in/stifdb2/
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Figure 4.6: Identification of gene subsets controlled by Heat stress and/or Flg22. To identify

the specific subsets of genes controlled by HSF- and WRKY-mediated pathways, we integrated two sources

of information - the list of genes showing statistically significant change upon Heat stress or Flg22 treatment

in the dataset of Rasmussen et al. [206], and the list of genes that contain HSE and/or Wbox motifs in

their upstream promoter region from STIFDB2 database [178]. The resulting sets contain 693 genes in total,

which are responsive to either Heat stress, Flg22 treatment, or both via the HSF- and the WRKY-mediated

pathways.

possibility of erroneously identified functions from data uncertainty. Overall, the result

indicates that the chosen subset of genes show wide variety of compound logic functions.

The fact that the behaviours of the genes with common type of TFBS cannot be described a

single compound logic function suggests for presence of multiple signalling pathways targeting

the same TFBS, possibly by acting on different isoforms of HSF and WRKY transcription

factors.

The majority of genes in all three subsets of genes show Cancelled mode of regulation (B1-

B6), suggesting that the regulatory cues transduced via most of the HSF and WRKY path-

ways are nullified upon combination of the two stresses. However, presence of Independent
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Figure 4.7: Distribution of regulatory profiles amongst the genes containing either HSE, Wbox

or both. The regulatory profiles (in ascending order of ID) are organised into six modes of regulation:

Combinatorial (A), Cancelled (B), Prioritised (C), Independent (D), Similar (E) and Reversed (F). The

result shows that the genes with only HSE motifs in their upstream promoter (top panel) mainly show

Cancelled modes (B1, B3, B5), indicating that the heat and Flg22 stress signals are acting antagonistically

to regulate this subset of genes. On contrary, the genes controlled only by Wbox motifs (middle panel)

show both Cancelled (B2, B4) and Independent modes (D3, D4), suggesting for presence of multiple WRKY

pathways that respond differently to heat stress. The genes with both motifs (bottom panel) mainly show

nullification of regulatory change upon stress combination (A3, B5) and similar behaviours upon all stress

conditions (E1), with a small minority of them prioritisation of Flg22 response (C2). See Fig. 4.4 on page

65 for definition of each regulatory profile.
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(D1-D4) and Similar modes (E1, E2) also indicate that there are numerous genes whose be-

haviours are unaffected by addition of the second stress. Several genes that contain both HSE

and Wbox motifs show Combinatorial (A3) and Prioritised mode of regulation (C2).

A notable difference between the HSE-only and Wbox-only subsets is that most genes belong-

ing to the former exhibit positive change upon introduction of single stress input, whereas

the genes in the latter subset show both positive and negative response to single stress input.

For instance, the genes up-regulated by Heat (B1) is observed more frequently amongst the

genes containing only HSE motif compared to the genes down-regulated by the same stress

(B3). This contrasts what is observed from the genes containing only Wbox motif, where the

number of genes down-regulated by Flg22 (B4) is comparable to those up-regulated by the

same stress (B2). Together, these observations suggest that the HSF pathways are mainly

activatory, whereas the WRKY pathways play both activatory and inhibitory roles.

We acknowledge, however, that some features are artefacts of the method for identifying the

subsets of genes regulated by HSF and WRKY pathways. Because the genes were assigned

to corresponding subset based on their ability to respond to single Heat or Flg22 stress, the

genes that specifically respond to Heat + Flg22 combination (A1 and A2) are not identified.

The method of identifying genes also cause several regulatory profiles to occur exclusively in

certain subset of genes, such as B1, B3 in the HSE-only subset and B2, B4 in the Wbox-only

subset. Because the HSE+Wbox subset was obtained from finding the intersection between

HSE-only and Wbox-only subset, all regulatory profiles in HSE + Wbox subset represent

the genes that are inducible by both single Heat and single Flg22 stress.

4.3.3 Gene ontology analysis

Having identified the group of genes for each mode of transcriptional regulation, we examined

whether the group of genes are associated with particular biological function (Table 4.2) using

AmiGO analysis tool [36]. Due to small number of genes, statistically significant enrichment

of gene ontology terms was seen only from the whole set (150 HSE containing genes, 433
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Table 4.2: Enrichment of gene ontology terms amongst the genes containing either HSE or
Wbox motifs.

Wbox containing genes) and the genes showing cancelled mode amongst those genes. The

analysis shows that combining Heat and Flg22 stress leads to attenuation of specific biological

processess: for HSE containing genes, monocarboxylic acid biosynthesis, response to salt and

osmotic stress are nullified, whereas responses to oxidative stress, wounding and osmotic

stress are suppressed.

4.3.4 Network topologies for the genes with only HSE or Wbox

motifs

Classification of the gene behaviours with compound logic functions allows description of

HSF and WRKY pathways as PDP networks. Figure 4.8 shows the topologies of HSF

and WRKY pathways expressed as PDP networks, derived from the genes controlled by

homotypic promoters (i.e. either or HSE or Wbox only).

The resulting structures suggest that the HSF and WRKY systems consist of two subsystems.
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Figure 4.8: Possible Parallel Distributive Processing (PDP) network topologies for regulatory

profiles of the genes with homotypic promoter. Each observed profile is described by a combination

of functions f and g described in Chapter 3 (Table 3.1 and 3.2). a) The structure of the HSF pathways

predicted from distribution of compound logic functions suggests that there are three types of HSF pathways.

Two pathways are antagonistically regulated by Heat and Flg22, whereas the other pathway is independent

of Flg22. Notably, this heat-specific pathway only involves transcriptional activation. b) The predicted

structure of the WRKY pathways suggests for four types of WRKY pathways, with two pathways showing

antagonism between Heat stress and Flg22 and the other two pathways responding only to Flg22.
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One is only dependent on cognate stress input, such as Heat for the HSF pathway and Flg22

for WRKY pathway, described by f1 and f2. The genes regulated by these pathways are

unaffected by combination of two stresses. On the other hand, there is another type of

signalling pathways that are inactivated by addition of non-cognate stress input described by

f4 and f5. Both signalling pathways dependent on one or two stresses trigger transcriptional

activator and inhibitor.

Most of the logical functions observed from the chosen subset of genes could be explained

with the identified network topologies with a single TFBS, with one exception. Several

genes in the HSE-only subset displayed function B5, indicating that those genes are able to

respond to singly applied Flg22 stress even though they do not contain W-box motif in their

promoter. This suggests for the presence of another biotic-stress signalling pathway that

does not involve Wbox motif.

4.3.5 Network topologies for the genes with both HSE and Wbox

motifs

The genes with both HSE and Wbox motifs are regulated simultaneously by HSF and WRKY

signalling pathways (n = 2). Because it was shown in the previous chapter that there are

numerous network topologies that describe each of the 27 regulatory profiles (Fig. 3.7), it is

impossible to determine which network topology from the distribution of regulatory profiles

in HSE+Wbox subset alone.

From the analysis of HSE-only and Wbox-only subsets, however, it is known that the HSF

pathway is described by either f1 or f4, while the WRKY pathway is described by either f2

or f5. Assuming that the same signalling pathways act on the genes with dual binding sites,

it is possible to restrict the number of possible network topologies involving only those four

functions. Table 4.3 shows the choice of the network topologies based on this restriction.

The result indicates that profiles A3, C2, and E1 observed from the genes in HSE+Wbox
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Table 4.3: Possible Parallel Distributive Processing (PDP) network topologies for the genes
containing both HSE and Wbox motifs.

Regulatory
X1 X2 P

Type of

Profile TF Interaction

A3 f4 f5 g6 Independent

B5

f1 f2 g4 Independent

f4 f5 g4 Independent

f4 f5 g7 Competitive

f4 f5 g8 Competitive

C2 f1 f2 g9 Competitive

E1 f1 f2 g6 Independent

subset could be described by a single network topology, except B5 which can be described

by 4 network topologies.

Function A3 could be reproduced if the genes are simultaneously targeted by activatory HSF

and WRKY pathways whose activities are nullified under combination of stresses (f4 and

f5). Function E1 is also reproduced when both HSF and WRKY pathways are activatory,

but acting independently to each other. On the other hand, functions B5 and C2 could be

reproduced by the network topology with activatory HSF pathway and inhibitory WRKY

pathways. When the two pathways are inducible only by their cognate stress inputs (f1 and

f2), the mode of interaction between TFs determine the regulatory profile. For example,

the activatory and inhibitory cues may cancel each other out (g4) if the HSF and WRKY

transcription factors independently bind onto cis-regulatory region, leading to function B5.

Function C2 may be reproduced if the inhibitory WRKY signalling pathway outcompetes

positive HSF pathway. An alternative explanation for function B5 is that the signalling

pathways are attenuated by the combination of two stresses prior to TF-DNA binding (f4

and f5), resulting in no change in expression regardless of the mode of TF interaction.
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4.4 Discussion

In this chapter we have explored how plants choose subset of genes to be regulated under dif-

ferent stress conditions by analysing the differential cDNA microarray dataset of Rasmussen

et al. [206]. Our analysis of Regulatory Profiles Matrix obtained from the dataset led to the

conclusion similar to the original study that subsets of genes regulated by individually ap-

plied stresses significantly differ to the subsets of genes regulated by combination of stresses.

By describing the behaviours of each gene in terms of the compound logic functions devel-

oped in the previous chapter, we were able to visualise the patterns amongst transcriptomic

profiles under different pairs of stress. This also allowed further investigation for the sources

of the observed behaviours using the logical network models. We have classified putative

targets of HSF- and WRKY-signalling pathways according to compound logic, which led

to a newly proposed structure of the Heat/Flg22 signalling network integrating the HSF-

and WRKY-mediated pathways (Fig. 4.9). The structure exhibits two features that are

proposed for HSF- and WRKY-mediated signalling pathways: independent or competitive

binding between HSF and WRKY transcription factors at the level of transcriptional reg-

ulation, and cross-inhibition of HSF- and WRKY pathways by Flg22 and Heat signals are

proposed.

Although the evidence of antagonism between heat and pathogenic signals at physiolog-

ical level already exists [74], the molecular mechanisms of interaction between Heat and

pathogenic signals such as Flg22 are unknown. Because our model constructed as a logical

network was restricted to the set of genes that are known to be regulated by two types of

TFs, a direct hypothesis regarding the connection between the signalling networks upstream

of the chosen TFs could be generated. A potential mechanism for crosstalk between the

WRKY signalling pathway with heat signals may involve Calmodulin (CaM), which per-

ceives heat-induced increase in cytosolic Ca2+ (Chapter 2), as numerous WRKY proteins

were found to contain CaM-Binding Domain (CaMBD), which is a conserved structural mo-

tif found in group IId of the WRKY protein family [19, 194]. On the other hand, members
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Figure 4.9: Proposed structure of HSF- and WRKY-mediated signalling pathways. Green

arrows represent novel mechanisms that are predicted from the regulatory profiles observed amongst the

chosen subset of genes.

of MAPK cascades appear to be viable candidates for mediating crosstalk between HSF sig-

nalling pathways and the Flg22 signal, based on a recent paper reporting interaction between

MAPK6, the principal signalling kinase of PAMP-induced MAPK cascade, with HsfA2, a

major HSF regulator of heat stress along with HsfA1 [61]. Because whether those existing

crosstalk connections facilitate negative regulation as predicted in the logical network model

is not known yet, more detailed biochemical characterisation of the aforementioned proteins

upon single and combined Heat and Flg22 stress conditions will further clarify the nature of

interaction between the two stresses.

Similar analysis and modelling of interactions as was presented for Heat and Flg22 stress

can be conducted for other stress pairs. Classification of genes into pre-defined regulatory

profiles offers unambiguous distinction of the possible outcomes on gene expression from

combining two types of stress. Overall, the variation observed in the distributions of the
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regulatory profiles between for different pairs of stresses suggest that interaction between

two stresses for regulation of gene expression cannot simply be summarised as synergistic

or antagonistic. However, it was observed that combination of two types of stress results

in extensive transcriptional reprogramming, with suppression of the genes that are induced

by singly applied stresses (Cancelled), or expression of the genes that are normally inactive

under single type of stress (Combinatorial). This supports the notion that the responses

to the combination of stresses may indeed be unique compared to the responses to single

stresses.

In the previous chapter, we discussed about the limiting assumptions used in the compound

logic method and the resulting description of signalling networks with PDP network models

(Section 3.5). How do these assumptions affect the validity of the prediction presented

above? Because the dataset analysed here was taken only at a single time point (4 hours

after introduction of stress), it is highly likely that regulatory outcomes observed from each

gene may be transient. If the compound logic method is applied to a different dataset taken

at a different time point, the result of analysis can change: for instance, temporal difference

in gene expression profiles will affect the distributions of compound logic function shown

in Figs 4.5 and 4.7. In fact, distributions of compound logic functions, and the resulting

prediction about the upstream regulatory network structure, are susceptible to change if

behaviours of the subjected genes vary significantly across time.

To obtain more reliable prediction about the network structures, it is therefore essential to

investigate further about temporal changes in transcriptomic profiles. A suggested course

of action is to make comparison across different time points and investigate whether the

assignment of genes with compound logic functions changes across time. Functions that are

consistently observed across different time points within the target set of genes may indicate

that the behaviour of genes can be reasonably described by qualitative changes, enhancing

reliability of the prediction made based on the PDP interpretation of the signalling net-

work. If a gene cannot be described by a single function across different time points, it is

possible that temporal profile may play an important role in the gene’s function. Unfortu-
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nately, it would not possible to extract meaningful information about the regulatory network

topologies at upstream of those time-varying genes.

In conclusion, we have shown that the compound logic description can be used to analyse

large-scale transcriptomic data upon single and combined stress, and make predictions about

potential connectivities between the signalling pathways transducing different types of stress

signals. Given that behaviours of genes cannot always be described qualitatively, however,

we also learnt that more careful consideration of potential temporal behaviours is necessary.

The focus of next chapter is therefore on how simultaneous application of multiple stress

factors affect temporal dynamics of gene expression, a topic largely left unexplored in current

literature.
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Chapter 5

Experimental measurement of RD29A

expression dynamics in Arabidopsis

thaliana

5.1 Introduction

In this chapter, we study how combinations of different stress stimuli affect the temporal dy-

namics of stress response gene expression. Because an experimental study of temporal gene

expression dynamics at a transcriptomic scale is highly costly and time-consuming, here we

focus on a single gene called Response-to-Dehydration 29A (RD29A) in Arabidopsis thaliana,

a model stress-responsive gene encoding a 78kD hydrophilic protein [269] of unknown func-

tion [174]. RD29A has played an important role in abiotic stress research particularly os-

motic, salinity and dehydration stresses due to its inducibility by multiple types of stresses

[149, 270]. This makes the choice of RD29A as the model gene is particularly relevant for

the study of gene regulation in response to combined stress. In addition, the mechanism of

RD29A expression regulation is relatively well understood, with two cis-regulatory elements

identified in the RD29A promoter that participate in regulation by stress signals. Multi-

ple copies of ABRE and a DRE provide a basis for ABA-dependent and ABA-independent

81



regulation of the RD29A promoter, respectively [270].

Multiple simultaneous stress stimuli leads to various types of combinatorial effect in reg-

ulating RD29A expression. For example, Xiong et al. [264] measured RD29A expression

under combinations of NaCl and ABA, and reported that combinations of NaCl and ABA

treatment leads to synergistic activation of RD29A expression, where expression level of the

gene in response to combined NaCl and ABA exceeded the sum of the levels induced by

individual stress inputs. Complementary to this finding, it has been suggested that the two

types of TF-binding motifs in RD29A promoter, DRE and ABRE (discussed in Chapter 2),

interact with each other to induce synergistic RD29A expression [183]. However, the synergy

between NaCl and ABA in inducing RD29A expression reported in these studies is deduced

from single time-point measurements, which do not inform us how the combined NaCl and

ABA stimuli affect dynamics of RD29A expression.

To address this gap, we subsequently performed real-time quantitative PCR (qRT-PCR)

experiments to quantify RD29A transcript abundance at different durations of treatment.

The results indicate that the RD29A transcript abundance fluctuates over time even in

absence of NaCl or ABA, suggesting that RD29A expression may be dependent on circadian

rhythm operating independently to the gene regulatory mechanisms triggered by NaCl and

ABA. To discern the effect of NaCl and ABA stimuli on RD29A expression, we remove such

stress-independent fluctuation from NaCl- and ABA-induced RD29A expression profiles by

normalising them with the RD29A expression profile under unstressed control. The resulting

time course profiles reveal distinct qualitative features that are associated with single and

combined NaCl and ABA treatments.
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5.2 Materials and Methods

5.2.1 Stress treatment and Sample preparation

Arabidopsis thaliana (ecotype Col-0) seedlings were stratified at 4 ◦C for 48 hours, followed

by growth on agar plates containing Murashige-Skoog medium for 5-6 weeks in constant tem-

perature (20 ◦C). The seedlings were entrained with 12 hour light / 12 hour dark cycle (9:00

to 21:00 hours in real time) during growth, illuminated under 60 µmol m−2s−1 white light.

Seedlings were then hydroponically treated, where each treatment medium with varying con-

centrations of NaCl and ABA was prepared by dissolving appropriate amount of NaCl and

crystallised ABA in deionised water. The treatment conditions include control (H2O only),

150mM NaCl, 300mM NaCl, 50µM ABA, 100µM ABA, 300mM NaCl + 100µM ABA, and

150mM NaCl + 50µM ABA. Samples (n = 3) were collected at different durations of stress

treatment (0, 0.5, 1, 2, 3 and 5 hours after initial exposure to stress). Three replicate sam-

ples were made from collection of several randomly selected seedlings into three Eppendorf

tubes, with each tube approximately weighing 60mg (fresh weight) in total. The collected

samples were then immediately frozen in liquid N2 and stored at -80 ◦C prior to extraction

of RNA. Initiation of stress treatment and sample collection occurred at the same time of

day for all experiments, from 7:00 to 12:00 hours in Zeitgeber time (15:00 to 20:00 hours in

real time). Zeitgeber time indicates the specific point of the light / dark cycle under which

the plants were grown, with 0 ZT and 12 ZT indicating the start of light and dark period,

respectively.

5.2.2 Sample processing

Tissue disruption and RNA extraction were carried out using RNEasy mini kits (Qiagen).

RNA integrity was verified by using Nanodrop Spectrophotometer (ND-1000, Thermo Sci-

entific Inc.); the samples with relatively high RNA yield (500-800 ng/l) and high DNA to

RNA, RNA to salt separation ratio were selected. The resulting transcriptome samples were
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Table 5.1: List of primers

Primer Sequence

RD29A forward 5’-CCGGAATCTGACGGCCGTTTA-3’

RD29A reverse 5’-CCGTCGGCACATTCTGTCGAT-3’

actin-2 forward 5’-TCCTCACTTTCATCAGCCG-3’

actin-2 reverse 5’-ATTGGTTGAATACATCAGCC-3’

converted into cDNA using Quantitect Reverse Transcription kits (Qiagen). During this

step, the samples were diluted accordingly to give the uniform concentration of 500 ng/nl,

and were treated with DNAse to remove any trace of genomic DNA and obtain high-quality

transcriptome samples. Real-time quantitative PCR experiments were carried out (Rotor-

gene Q cycler, Qiagen) to measure the fold changes in RD29A expression compared to that

of a control gene, actin-2. The two genes are specifically amplified using the pre-prepared

primers (Table 5.1):

The reaction conditions are to be prepared using Rotor-gene Syber Green PCR kits. For

optimal results, the reaction samples were diluted again, such that the template cDNA

amount is 20ng per reaction. Prior to the qPCR experiments, each sample was divided

further into these technical replicates in order to achieve high technical accuracy.

5.2.3 Quantitative RT-PCR Data analysis

Cycle-Time (CT) data was obtained from the resulting fluorescence data of quantitative

PCR experiments by setting a threshold value (normalised fluorescence = 2.5 x 10−3 RFU).

The CT values for actin-2 transcript abundance were then subtracted from that of RD29A

transcript abundances to obtain ∆CT. Calculating log2(∆CT(S,ZT)) quantifies the relative

level RD29A transcript abundance with respect to that of actin-2, given under stress con-

dition S for the specific time of day measured in Zeitgeber time (ZT). To allow comparison
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between different time course profiles, we calculate fold change m with

m(S,ZT) = log2(∆CT(S,ZT))− log2(∆CT(0,ZT0)), (5.1)

where log2(∆CT(0,ZT0)) indicates the transcript abundance in absence of stress inputs

(S = 0) at specific reference time (ZT = 7:00 hour). Normalising transcript abundance as

such allows direct quantitative comparison between the time course profiles, as all profiles

start from fold change of 1.

5.3 Results

The experimentally measured temporal profiles of RD29A expression in response to various

treatment conditions is shown in Fig. 5.1. The chosen concentration of NaCl and ABA

in the hydroponic treatment media represent the level of stress at which RD29A expres-

sion is strongest (300mM NaCl and 100µM ABA), and their half (150mM NaCl and 50µM

ABA), based on a previous study [264]. Each data point indicates mean relative fold change,

m̄(S,ZT) with n= 3. Error bars associated with the time points represent standard deviation

calculated from the triplicate samples, where SD(S,ZT) =
√

1
3

∑3
i=1 |mi(S,ZT)− m̄(S,ZT)|2.

The time course expression profile obtained under H2O control (i.e. m̄(0,ZT)) shows that

RD29A expression level in absence of NaCl or ABA does not remain constant over time (Fig.

5.1a). Although this fluctuation is weaker than changes induced in RD29A expression level

by stress inputs (Fig. 5.1b-d), it is still non-trivial as the induced RD29A expression profiles

may contain some components the intrinsic variability seen from the H2O control. Assuming

that the effect of time-variability of the control on induced expression profile is multiplicative,

we remove stress-independent variability of control from each sample by calculating

M(S, t) =
m(S,ZT)

m̄(0,ZT)
, (5.2)
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Figure 5.1: Experimental measurements of RD29A expression level at different time and

treatment conditions. a) RD29A expression profile under negative control treatment (H2O), b) NaCl

treatments at full (300mM) and half-stregnth (150mM), c) ABA treatments at full (100µM) and half-strength

(50µM), and d) combined NaCl and ABA treatments at full (300mM NaCl + 100µM ABA) and half-strength

(150mM NaCl + 50µM). Horizontal and vertical axes represent time of day at which the measurements were

taken (ZT) and fold change of the transcript abundance measured each time point with respect to start of

treatment, respectively. Each data point represent mean fold change, m̄, and the error bars represent ± SD.
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where M denotes fold change in RD29A expression level that is independent of the intrinsic

variability seen from the H2O control. Since there is no longer a intrinsic variability in control

dependent on time-of-day (ZT), the normalised fold changes are now measured with respect

to durations of treatment, denoted by t. Furthermore, normalising each sample with mean

of the H2O control also means that the error bars are scaled by constants, such that the new

measure of error SD’ = SD/m̄(0,ZT).

Figure 5.2 shows the time course profiles obtained under different stress conditions without

the intrinsic time-variability of the control, which are equivalent to the responses triggered

purely by the stress inputs. It is observed that the responses to all stress treatments consist

of two distinct phases. During the early phase (t ≤ 2), only a small increase of expression

is observed with a negligible increase induced by 300mM NaCl and approximately 10-fold

increase induced by 100µM ABA (Fig. 5.2a, b). Transcript abundance during the late phase

(t > 2) is significantly greater than that in the early phase, where 300mM NaCl induces

up to a 110-fold increase in transcript abundance, while 100µM ABA induces up to a 60-

fold increase. Combined stimulation resulted in much larger increases in RD29A transcript

abundance, up to 460-fold by the combined NaCl and ABA stresses at full strength, and

up to 150-fold at half strength (Fig. 5.2c). Abrupt changes in transcript abundance are

observed under all stress conditions between 2 and 3 hours post-stress, suggesting that the

main production of RD29A transcripts initiates mainly after 2 hours of stress exposure.

It is possible to more clearly visualise the qualitative features unique to each stress condition

by comparing the time course profiles in logarithmic scale (Fig. 5.2d). First, there is a

negligible increase in the level of RD29A transcript during the first 2 hours of NaCl stress

treatment (blue), whereas the ABA and combined NaCl and ABA treatments induce weak

yet rapid induction of RD29A expression during the early phase. Second, the responses to

single NaCl and single ABA treatments, regardless of strength of the stress inputs, appear to

reach plateau levels from 3 hours of treatments. This observation is supported by the fact that

there is no significant statistical difference between the groups of samples obtained at 3 and 5

hours of treatment (Table 5.2). In contrast, the responses to combined NaCl and ABA do not
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Figure 5.2: Temporal dynamics of RD29A expression with intrinsic stress-independent vari-

ability removed. a) Mean normalised fold change M̄ upon single NaCl treatments at full- and half-strength,

b) upon single ABA treatments at full- and half-strength, and c) upon combined NaCl+ABA treatment at

full- and half-strength. Error bars represent ± SD’ (see text). d) Comparison between the time course pro-

files obtained under single and combined stress conditions at full strength at logarithmic scale. Horizontal

axes for all panels represent duration of treatment, t hours.
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Table 5.2: Comparison of RD29A expression level between 3 and 5 hours of treatment (two-sample t-test)

Treatment condition
M̄ (σ2)

p-value
3 hour 5 hour

300mM NaCl 103.4 (39.1) 110.7 (15.1) 0.825

150mM NaCl 30.3 (1.92) 39.8 (14.1) 0.605

100µM ABA 59.4 (11.7) 60.3 (28.9) 0.969

50µM ABA 31.3 (7.84) 29.8 (8.73) 0.789

300mM NaCl + 100µM ABA 95.7 (44.9) 462.3 (65.2) 0.007∗∗

150mM NaCl + 50µM ABA 40.2 (7.44) 145.3 (31.7) 0.005∗∗

M̄ and SD′ represents normalised fold change and standard deviation, respectively.

∗∗ Significant difference at p<0.01.

converge onto single values within 5 hours of treatment, which is supported by statistically

significant difference between the samples obtained at 3 and 5 hours of treatments (Table 5.2).

The observed differences between the expression level at 3 and 5 hours of treatment suggest

that the responses to single NaCl or single ABA treatments may be reaching equilibrium

more quickly compared to the responses to combined NaCl and ABA treatments.

Remarkably, halving the concentration of the stress inputs do not affect any of the qualitative

features above, with the time course profiles obtained under half-strength inputs all show-

ing two-phase response, and the differences in the early and late phase responses between

different stress conditions. This indicates that the strength of input stimuli only affects

the magnitude of fold increase in expression, not its dynamics. In fact, we observe that

halving ABA concentration reduces expression fold change by approximately half across all

data points, raising the possibility that strengths of stress inputs are linearly related to the

magnitude of fold increase induced by the stress inputs.
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5.4 Discussion

In this chapter, we have investigated the temporal dynamics of RD29A expression by ex-

perimentally measuring its transcript abundance at different durations of NaCl and ABA

treatments. The resulting data suggests that NaCl and ABA and their combination leads

to temporal profiles with qualitative features that are specific to treatment conditions. A

key observation made from the analysis of the data is that RD29A expression fluctuates

even without stress (Fig. 5.1a), which led to subsequent removal of the intrinsic time-of-

day variability in RD29A expression seen from the H2O control from all stress-induced time

course profiles (Fig. 5.2). Based on purely stress-induced changes in the time course profiles,

we identify three qualitative features characteristic to NaCl and ABA regulation of RD29A

expression:

Feature 1 Induction of RD29A expression by all combinations of NaCl and ABA occurs

in two phases, with weak initial increase in the level of expression followed by strong

increase after 2 hours of treatment.

Feature 2 Strength of the input stimuli affects the magnitude of expression, but does not

change the qualitative features described above.

Feature 3 RD29A expression remains at a constant level after 3 hours of treatment with

single NaCl and ABA, while it continues to increase under combined NaCl and ABA

treatment.

The treatment with combination of NaCl and ABA eventually leads to the level of expression

greater than the sum of individual responses: this agrees well with the observations previously

made in the study by Xiong et al. [264], which compared RD29A transcript abundance

induced by single NaCl and ABA with combined NaCl + ABA after 4 hours of treatment,

confirming the presence of synergy between NaCl and ABA signals in activating RD29A

expression. However, our measurement of time course profiles provides a novel insight that

combination of NaCl and ABA does not only affect the magnitude of expression, but also
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the dynamical profile of the response. Under single NaCl and ABA, RD29A appears to

maintain a constant level of transcript after approximately after 3 hours of treatment, which

indicates that the rates of transcript production and degradation may reach equilibrium

within 5 hours (Fig. 5.2a, b). The RD29A expression induced by combinations of NaCl and

ABA, on the other hand, do not reach a steady state level within the same time frame (Fig.

5.2c). This suggests that interaction between NaCl and ABA inputs may possibly modulate

the signalling process resulting in slowing down of the approach towards equilibrium.

If the the observed time course profiles are the properties of stress-dependent part of the

RD29A regulatory system, what might be causing the fluctuation of RD29A transcript level

in absence of stress? One possible explanation is that such variability of RD29A expres-

sion dependent on time-of-day originates from the effects of intrinsic circadian oscillation.

In fact, it has been already established that regulation of RD29A expression in response

to several types of abiotic stress is gated to circadian clock, where environmental stimuli

of identical strengths applied at different time of day leads to transcriptional response of

different intensities [99]. For example, the magnitude of RD29A expression in response to

cold depends on time of day because the activity of its cold-induced upstream regulator,

DREB1, oscillates with circadian rhythm [68]. Similarly, several components of ABA signal

transduction pathways were shown to interact with TOC1, a key regulator of circadian clock

[142]. This suggests that the RD29A responses to ABA treatment is also circadian-gated

[170, 224]. Although the exact mechanism of how the circadian clock influences RD29A ex-

pression is still unknown, these evidences in addition to our observation of stress-independent

variability of the control suggest that careful consideration of potential circadian effects on

regulation of RD29A (and any other stress-responsive genes) is an essential prerequisite for

investigation of the relationship between stress inputs and temporal dynamics of induced

gene expression.

Another important consideration that must proceed the investigation of stress-induced RD29A

expression dynamics relates to reliability and reproducibility of the data. Unfortunately, the

experiments conducted for this chapter were based on the small sample size (n = 3), which
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makes the results more prone to experimental errors. For instance, presence of outliers in

samples severely increased variability associated with certain data points such as at 10 ZT

under single NaCl at full strength (Fig. 5.1b), 8 ZT under single ABA at full strength (Fig.

5.1c), and 10 ZT under combined NaCl and ABA at full strength (Fig. 5.1d). Given that

such large error bars are only observed from the samples treated with full-strength stress,

one can suspect that the errors may be of a systematic origin, with the overly strong stresses

undermining the ability of the subjected plants to adequately induce gene expression. On

the other hand, contamination in some samples could also have led to the outliers. Thus, it

is essential that further repeats of the experiments with a large sample size are conducted

to improve reliability of the data.

Although the issues regarding the experimental design and errors may undermine reliability

of the data in a quantitative manner, it is possible to assess whether the qualitative fea-

tures observed from the data sufficiently reproducible via comparison with the other similar

data in literature. Several previous studies have also experimentally measured dynamics of

RD29A expression in response to single NaCl and ABA treatments, using the RD29A:LUC

luminscence reporter system [89, 252, 265]. Their results bear close resemblence to our

non-normalised measurement of RD29A transcript abundance data (Fig. 5.1): for example,

delayed induction by NaCl stress compared to ABA treatment is also observed in the data

from those studies [252, 265]. The results from our own preliminary investigation conducted

before the experiments conducted for this chapter (Section A.1 in Appendix) also suggest

that the qualitative features unique to treatment conditions are fairly reproducible. For

example, the previous results (Fig. A.1, A.2) also show that the responses to NaCl are de-

layed at least for one or two hours, while ABA responses seem to occur earlier compared to

NaCl. However, it is unclear whether the qualitative features from the results of the similar

experiments, both conducted by us and the others, originate from the regulatory system

triggered by NaCl or ABA signals or intrinsic circadian oscillation because those studies did

not consider the time of day at which the measurements were taken.
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Chapter 6

Mathematical modelling of RD29A

regulatory system

6.1 Introduction

The characteristic qualitative features observed from the time course RD29A expression

profiles upon various combinations of NaCl and ABA prompt further investigation of their

mechanistic origin. To address this, we construct and analyse the mathematical model of

RD29A regulatory network. Mathematical modelling is a powerful tool for investigating the

causal relationship between the understanding of the inner workings of a biological system

and its dynamical behaviours [6]. The main advantage of constructing mathematical models

include abstraction of complex network of the system into simpler understanding of control

mechanism, observe the effects of various perturbations in the system via computational

experiments, and generation of new hypotheses that can be validated via further experiment

[126].

The first aim of this chapter is to describe development of the model: structures of the

signalling pathways transducing NaCl and ABA signals for regulation of RD29A expression

are understood reasonably well, with detailed information regarding the functions of some

of their signalling components including transcription factors and their upstream regulators.
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We integrate the existing knowledge of RD29A regulatory system into a unified structure,

making several simplifying assumptions to address the lack of required information. The

resulting model representing RD29A regulatory network topology is translated into a net-

work of kinetic processes described by a system of Ordinary Differential Equations (ODEs).

Due to absence of experimentally measured kinetic data, the model parameters are globally

optimised by fitting the model to the experimental data.

The second aim is to explain the qualitative behaviours observed from the gene expression

dynamics in the light of the current knowledge of the RD29A regulatory network. Here,

we specifically examine whether the topology of the RD29A regulatory network reflected

in the ODEs can reproduce the qualitative features of the experimental data after suitable

parameterisation. While some of the observed features are explained by the properties of

the currently known signalling network, the result indicates that the model is insufficient to

simultaneously explain all features observed from the experimental data. To bridge the gap

between the model outcomes and the experimental data, various modifications in the model

structure are introduced, implementing hypothetical interactions between the NaCl and ABA

signals that are not evidenced in literature yet. We identify several mechanisms allowing the

model to reproduce all features observed from the experimental data, and evaluate feasibility

of those mechanisms by a further experiment and literature analysis. The insight resulting

from this analysis of the model reveals the possible mechanism of interaction between NaCl

and ABA stress signals.

Contribution: development of the methodologies leading to the main results of this chapter,

particularly regarding the analytical solutions to the ODE model and parameter estimation,

received some contributions from Dr. Neville J. Boon.
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6.2 Structure of RD29A regulatory system

The current understanding of the RD29A regulatory system is summarised in Fig. 6.1. The

RD29A regulatory system describes induction of RD29A expression by NaCl and ABA stress

via accumulation of transcriptionally active DREB2 and AREB proteins, which is facilitated

by stress-induced post-translational modification and TF gene expression.

Plant responses to high salinity stress occur in two phases [176]: Phase I responses are mainly

triggered by osmotic stress signals which typically last several days after introduction of salt

stress. Phase II responses are triggered by increased intracellular ion concentration, which

arise from failures of Phase I response and occur in the timescale of weeks . Because our

experiments in Chapter 5 were conducted in a short timespan (0 to 5 hours of stress treat-

ment), only the signalling mechanisms for Phase I responses are relevant for our model.

Several transmembrane sensors in the plasma membrane are responsible for initial detec-

tion of osmotic stress and an increase in the extracellular Na+ content [30]. These sensors

subsequently trigger increase in intracellular Ca2+ as the secondary messenger [44], which is

picked up by downstream signalling pathways.

Activation of the ABA-dependent pathways including the AREB-mediated pathway occurs in

response to increase in internal ABA concentration. NaCl stress, along with water deficit and

other stress types leading to osmotic imbalance, increases endogenous ABA concentration

via ABA biosynthetic pathways (Reviewed in Section 2.3). On the other hand, exogenous

ABA entering from cell exterior can also trigger the same ABA-induced responses: there is at

least one designated transmembrane ABA importer, namely ABCG40 [114]. Since its loss-of-

function mutants do not display severe phenotypic defects seen from ABA-deficient mutants

[190], however, other import mechanisms including passive diffusion across pH gradient also

play significant roles in ABA transport across plasma membrane [223].

The intracellular stress signals post-translational modification of their corresponding TF

proteins via enzymatic cascades. For instance, AREB requires phosphorylation prior to

binding its target motif, ABRE [77, 250]. As described in Chapter 2, the pathway leading
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Figure 6.1: Overview of the RD29A regulatory system involving the DREB2 and AREB

pathways. RD29A expression can be induced by both high salinity stress and exogenous ABA applied

from the cell exterior, which trigger production of secondary intracellular stress signals. For example, high

external NaCl concentration causes ionic and osmotic imbalance, which leads to production of de novo

ABA biosynthesis for activation of the ABA-dependent pathways and other stress signals picked up by

the ABA-independent signalling pathways. Exogenous ABA can also be imported to directly activate the

ABA-dependent pathways. Notably, there are key similarities in the structures of ABA-independent and

ABA-dependent pathways, which govern the dynamics DREB2 and AREB proteins: 1) both TF proteins

are activated via post-translational modification (phosphorylation cascade for AREB, unknown mechanism

for DREB2), 2) both TF proteins can be produced further by the stress signals via induction of their genes,

and 3) both TF proteins are subject to ubiquitin-mediated proteolysis.
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to post-translational AREB activation is well understood; upon binding of ABA, PYR/PYL

receptor sequestrates the activity of Protein Phosphatase 2 C (PP2C) such as ABI1 [195],

which prevents auto-phosphorylation of SNF-related Kinase 2 (SnRK2) in absence of ABA.

Accumulation of phosphorylated SnRK2 subsequently leads to AREB phosphorylation [75].

DREB2 is also considered to require post-translational activation prior to binding of DRE

motifs, as its transcriptional activity of DREB2 is not proportional to its abundance [172,

214]. The exact mechanism of DREB2 post-translational activation is currently unknown,

with no direct experimental studies available yet.

There are also evidences suggesting that NaCl and ABA cross-regulate the DREB2 and the

AREB signalling pathway, respectively. NaCl and ABA stresses also induce expression of

TF genes. DREB2A and DREB2B genes are induced by NaCl and osmotic stresses but

not significantly by ABA [149]. All AREB genes are inducible by presence of exogenous

ABA as well as NaCl [75, 250]. Although whether the protein levels of DREB2 and AREB

TFs increase upon presence of the stress inputs is yet to be confirmed, it is reasonable to

assume TF protein population increases with increased transcript levels of the TF genes.

Combined with the stress cues leading to post-translational activation of the TF proteins,

such increase in the inactive TF protein population results in stronger induction of RD29A

expression.

Lastly, TF protein concentration is negatively regulated via ubiquitin-dependent proteol-

ysis. This is mediated by RING domain E3 ubiquitin ligases such as DREB2-Interacting

Proteins (DRIP) for DREB2 [205] and KEEP ON GOING (KEG) for AREB [42]. Those E3

ubiquitin ligases are responsible for keeping the level of stress-inducible TFs low in absence

of stresses to avoid unwanted expression of stress response genes and waste of cellular re-

sources in maintaining the TF population. Whether activities of these E3 ubiquitin ligases

are modulated by stress inputs is still being debated: the DRIP and KEG genes both do not

exhibit strong changes upon introdution of stress inputs [122, 129], and there is currently no

evidence suggesting that their activities are modulated at protein levels.
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6.3 Model development

Based on the structure of the RD29A regulatory system, we developed a mathematical model

of the DREB2 and AREB pathways. This section explains how the model captures relative

increase in RD29A transcript abundance in response to NaCl and ABA stress inputs, based

on the structure of the upstream regulatory pathway. In particular, several simplifying

assumptions have been adopted during model development are stated in each section.

6.3.1 Stress input dynamics

Since the experiments are measuring the molecular changes occuring inside cells, there must

first be a description of intracellular stress signal dynamics based on stress inputs introduced

to cell exteriors. The experiments in Chapter 5 introduced NaCl and ABA stress input

to Arabidopsis seedlings by transferring them to hydroponic media of given concentration

of stress agent from normal unstressed condition. To reflect this abrupt change in stress

environment, the dynamics of intracellular salt stress signal S1(t) can be described by a

simple step increase:

S1(t) =


[NaCl]ext
[NaCl]max

if t > 0,

0 if t ≤ 0.
(6.1)

Here, [NaCl]ext and [NaCl]max represent the actual and maximum (300mM) strength of the

external NaCl stress input, respectively. The duration of stress treatment, t, is in the unit

of hours, where t = 0 represents the time at which the treatments commenced. Note that

by describing salt stress input dynamics with Eqn. 6.1, we are assuming that

1. Intracellular NaCl stress signal S1(t) is linearly proportional to [NaCl]ext.

In other words, the intracellular salt stress signal S1(t), ranging from 0 to 1, is equivalent

to salt input strength scaled by a constant. We set [NaCl]max = 300mM for it typically is
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considered as the saturating level of stress (i.e. cells are unable to function normally when

exposed to the stress beyond this concentration) [264].

On the other hand, the dynamics of intracellular ABA signal (endogenous ABA) is described

as follows:

S2(t) =


fABA(S1,t)+[ABA]ext
max fABA+[ABA]max

if t > 0,

0 if t ≤ 0.
(6.2)

The intracellular ABA signal S2(t), also ranging from 0 to 1, is described as above because

the amount of endogenous ABA can increase via two routes (Fig. 6.1): ABA is synthesised

directly in presence of the salt stress by the function fABA with a fixed maximum value, or

is imported from an exogenous pool located in cell exterior, the size of which is determined

by [ABA]ext. We set [ABA]max = 100µM [264]. Note that describing S2(t) with Eqn. 6.2

required the following assumptions:

2. The intracellular ABA signal S2(t) is linearly dependent to [ABA]ext.

As with the case of salt stress input, the second assumption simplifies the model by setting

the endogenous ABA concentration equal to [ABA]ext scaled by a constant. In fact, Eqn.

6.2 can be simplified even further to

S2(t) =


[ABA]ext
[ABA]max

if t > 0,

0 if t ≤ 0,
(6.3)

based on assumption that

3. The amount of ABA internally produced from de novo production is negligible com-

pared to the amount imported from exterior, such that max fABA � [ABA]max.

This third assumption is biological reasonable because there are evidences for such significant

difference between the levels of endogenous ABA produced via de novo synthesis and im-
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ported from cell exterior. For instance, the data from Ren et al. [207] suggests that S2 ≈ 1.8

×10−9g mol−1 fresh weight found when severely dehydrated (another stress similar to NaCl

able to induce de novo ABA biosynthesis), while the data from Windsor et al. [263] suggests

that S2 ≈ 1.6 ×10−7g mol−1 fresh weight found intracellularly when [ABA]ext= 100µM. For

the subsequent parts of the chapter, we will use Eqn. 6.3 to describe the dynamics of the

intracellular ABA signal.

6.3.2 Transcription factor dynamics

The intracellular stress signals, S1 and S2, affect the dynamics of DREB2 and AREB proteins,

the main transcription factors for RD29A regulation. The known structure of the DREB2

and AREB pathways (Fig. 6.1) show that the stress inputs NaCl and ABA control the

dynamics of transcription factor proteins via two separate mechanisms: (1) production of

the TF proteins in their inactive form (TFi) via induction of the TF genes, and (2) conversion

of the inactive TF proteins to the post-translationally activated form (TF ∗i ). The dynamics

of TF1(t), TF
∗
1 (t), TF2(t) and TF ∗2 (t) is described by a set of differential equations

˙TFi = ri + rτi Si(t− τ) + Ci + d−iTF
∗
i (t)− [dib + αiSi(t) + ui + δi]TFi(t), (6.4)

˙TF ∗i = [dib + αiSi(t)]TFi(t)− (d−i + δi)TF
∗
i (t), (6.5)

for i = 1, 2, where the parameters represent the rates of biochemical processes such as

production (ri, r
τ
i ), degradation (ui, δi) and post-translational modification of TF proteins

(αi, dib, d−i). Detailed biological meanings of the parameters, with description of whether

they can be fixed from literature information, is shown in Table 6.1 . Note that not all of

the known intermediate signalling components shown in Fig. 6.1, such as SnRK2 and DRIP,

are described as intrinsic state variables. Instead, the the model consolidates the effect of

intermediate signalling components into kinetic processes that directly relate TF proteins

against stress inputs. To model the overall relationship between the strength of stress inputs
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Figure 6.2: RD29A expression level upon varying NaCl and ABA concentrations (data taken

from Xiong et al., 1999 [264]). Points indicate the data from the original authors, and lines represent

linear regression fit the the data points. The dose-response characteristics for a) NaCl-induced and b)

ABA-induced RD29A expression profiles are well approximated by linear models.

and the amount of transcriptionally active TF ∗i , we have adopted a simplest description,

where

4. the effects of each of Si on both TFi activation (αi) and production (rτc ) are linear.

We argue that the fourth assumption is biological reasonable based on the existing evidence

for approximate linear dependence of RD29A expression on varying concentrations of NaCl

and ABA (Fig. 6.2).

The parameter τ represents the time delay for the input Si to affect accumulation of inac-

tive TFi via induction of its genes. Time delay is implemented here because unlike post-

translational activation of TFi that is triggered by enzymatic cascade, the pathways leading

to de novo production of functional TF proteins are likely to involve many hidden inter-

mediate steps including production of mRNA transcript, post-transcriptional processing,

polypeptide synthesis and post-translational processing for the TF genes.
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Table 6.1: Description of model parameters. All parameters, except τ that is measured in hours,
have the unit of hours−1. See Table A.1 in A.3 in Appendix for the values.

Pathway Name Biological process Method of Determination

TF1

r1 Basal TF1 production rate Fixed [149, 214]

δ1 Natural decay rate Fixed [202]

d1b Basal TF1 activation rate Fixed [214]

rτ1 S1-induced TF1

production rate

Parameter optimisation

α1 S1-induced TF1 activation

rate

Parameter optimisation

d−1 Basal TF ∗1 deactivation

rate

Parameter optimisation

u1 TF1 ubiquitination rate Parameter optimisation

TF2

δ2 Natural decay rate Fixed [202]

d2b Basal TF1 activation rate Parameter optimisation

r2 Basal TF1 production rate Fixed by analytical derivation

(Eqn. A.6, page 134)

rτ2 S2-induced TF2

production rate

Parameter optimisation

α2 S2-induced TF2 activation

rate

Parameter optimisation

d−2 Basal TF ∗2 deactivation

rate

Parameter optimisation

u2 TF2 ubiquitination rate Parameter optimisation

rτc S1-induced TF2

production rate

Parameter optimisation

Both τ
Time delay before TFi

production

Fixed (our experimental data)
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The term Ci in Eqn. 6.4 represents the effect of adjacent stress on production of TFi. We

assume C1 = 0 because the DREB2 expression is independent to ABA [149]. We assume

C2 = rτcS1(t−τ) with rτc representing the rate of TF2 production induced by S1, since AREB

expression is known to be triggered by NaCl [75, 250].

6.3.3 mRNA synthesis

Lastly, we describe production of RD29A mRNA transcript, the final outcome of the RD29A

regulatory system, from the actions of active DREB2 (TF ∗1 ) and AREB (TF ∗2 ). Although

transcriptional regulation in eukaryotes (including plants) is achieved through complex series

of molecular processes such as recruitment of RNA polymerase and chromatin restructing

[135], it is common to quantitatively describe the phenomenon via thermodynamic models

just based on fractional occupancy of DNA binding sites by TFs [17].

A thermodynamical model of transcription assumes that the rate of mRNA production is

proportional to the number of sites on DNA occupied by their corresponding TF proteins at

equilibrium. There are two TFs binding to separate sites in the case of the RD29A promoter,

(Fig. 6.1). First, we assume the followings:

5. There is no non-specific binding, such that DREB2 cannot bind to ABRE and vice

versa. This means that occupancy of each cis-elements is function of only the corre-

sponding TF such that θDRE = fDRE([DREB2]) and θABRE = fABRE([AREB]), with

binding fDRE and fABRE representing the binding equations.

6. DREB2 and AREB do not interact cooperatively between each other, both before and

after binding onto the cis-regulatory elements. Thus kc[DREB2][AREB] = 0, where kc

is the association constant for cooperative DREB2-AREB binding.

Based on these assumptions, we can specify fDRE and fABRE such that
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θDRE =
[DREbound]

[DREtotal]
=

KA,DREB2∗ [DREB2∗]

1 +KA,DREB2∗ [DREB2∗]
, (6.6)

θABRE =
[ABREbound]

[ABREtotal]
=

KA,AREB∗ [AREB∗]

1 +KA,AREB∗ [AREB∗]
, (6.7)

where [DREB2∗](t) and [AREB∗](t) represent the free concentration of transcriptionally

active (i.e. post-translationally modified) DREB2 and AREB transcription factors and

KA,DREB2∗ and KA,AREB∗ denote equilibrium association constants for binding of those TF

onto the targeted sites. More information about derivation of Eqn. 6.6 and 6.7 can be found

in [24]).

From Eqns. 6.6 and 6.7, we subsequently define the probability of RD29A promoter being

active as a whole (Pactive) with

Pactive =
nDRE

nDRE + nABRE

θDRE +
nABRE

nDRE + nDRE

θABRE, (6.8)

where nDRE and nABRE represent the copy numbers of DRE and ABRE motifs present in

the RD29A promoter, respectively. The copy number of each motif determines how much

contribution each motif makes towards total mRNA production. For example, if the copy

number of both motifs is one, each motif is responsible for half of the overall RD29A promoter

activity.

Eqn. 6.8 shows that Pactive has nonlinear relationship with [DREB2∗] and [AREB∗]. For

further simplification, the following assumption was employed:

7. The amounts of TFs are non-saturating, such that [DREB2∗] and [AREB∗]� 1.

At these non-saturating concentrations of TF proteins, we can then assume linear relationship

between the promoter activity and the TF amounts because θDRE ≈ [DREB2∗] and θABRE ≈
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[AREB∗]. We subsequently define

m = [DREB2∗] + k[AREB∗], (6.9)

where k = nABRE/nDRE. Note that m is a unitless quantity which changes with the amount

of active DREB2 and AREB proteins present, thus providing an arbitrary representation

of promoter activity. Such linear assumption appears to be a reasonable simplification, as

RD29A expression outputs linearly increase with increasing concentrations of NaCl and ABA

stress inputs ([264], Fig. 6.2).

The last simplification we make for the purpose of modelling the RD29A regulatory system

involves how temporal dynamics of the transcriptional system relates to the dynamics of TF

proteins, previously described in Section 6.3.2:

8. Molecular processes leading to production of mRNA, such as RNAP recruitment and

polymerisation of nucleotides, occur at much faster rates compared to those that govern

the promoter activity, such that ˙[mRNA] = εṁ, with ε→ 0.

This assumption essentially introduces timescale separation between the mRNA production

dynamics and TF regulation dynamics, such that the dynamics of mRNA transcript is solely

governed by the those processes leading to accumulation of active TF proteins and increase

in the promoter activity.

The experiments in Chapter 5 measured relative increase in the amount of mRNA transcript

across differing durations of stress treatments (t) with respect to the basal level under un-

stressed condition (t = 0). Thus, the final model output M(t) is also defined as the relative

increase of transcript abundance induced by stresses with respect to its basal level in absence

of stress:

M(t) =
m(t)

m(0)
=

[DREB2∗](t) + k[AREB∗](t)

[DREB2∗](0) + k[AREB∗](0)
= TF ∗1 (t) + TF ∗2 (t), (6.10)
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where TF ∗1 (t) and TF ∗2 (t) are the dimensionless state variables representing quantities of

active DREB2 and AREB. The variables TF ∗1 (t) and TF ∗2 (t) represent the dynamics of all

DREB2 and AREB protein isoforms, and are the primary factors that govern the dynamics

of the system as a whole.

6.3.4 Summary

A graphical representation of the mathematical model to be analysed in the subsequent

sections is shown in Figure 6.3.

Figure 6.3: The proposed mathematical model of RD29A regulatory system, representing the

structure of the DREB2 (TF1) and AREB (TF1) pathways. Asterisks (*) denote post-translationally modi-

fied form of the protein. Solid arrows represent kinetic processes leading to change in the state variable, while

dashed arrows the kinetic processes associated with time delay. Arrows originating from null sets (∅) denote

de novo production of proteins, while arrows pointing towards null sets represent degradation of proteins.

Model parameters for kinetic rates of the signalling processes are shown next to the corresponding arrows.
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6.4 Results

6.4.1 Comparison of experimental data and model outcomes

Temporal profiles for RD29A expression calculated from the model were obtained from 6.10.

The analytical solutions to Eqns. 6.4, 6.5 can be found in section A.2 in Appendix. As

was shown already in Table 6.1, we fixed 6 parameters based on either the existing evidence

in the literature, or the assumptions derived from our experimental data. The remaining

parameters were estimated by fitting the model to the experimental data using Monte Carlo

Simulated Annealing (MCSA) algorithm. Further details about the methods of parameter

estimation as well as the nominal parameter set used for subsequent results are described in

section A.3 in Appendix. The results (Fig. 6.4) showed that the model could reproduce the

features observed from the responses to single NaCl and ABA treatments well, but not the

synergistic effect observed from the responses to combined NaCl and ABA treatments. Here,

we subsequently analyse how the model reproduces each of the three features identified in

the previous Chapter (section 5.4).

Feature 1: Induction of RD29A expression by all combinations of NaCl and ABA occurs in

two phases, with weak initial increase in the level of expression followed by strong increase

after 2 hours of treatment.

The model reproduces the two-phase induction of RD29A expression under all treatment

conditions by implementing two types of signalling process with one representing the fast

signalling processes via enzymatic cascade, and the other representing the delayed signalling

processes via induction of genes. Given that the experiments for all treatment conditions

shows abrupt changes in the behaviours of the system somewhere between 2 to 3 hours after

treatment, we assumed that the length of delay associated with the latter processes (τ) is

equal to 2.5 hours. Thus, the increase in RD29A expression level after 2 hours observed

from all treatment conditions can be attributed to increased amounts of TFi, facilitated by
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Figure 6.4: Comparison of the experimental data and the outcome of the RD29A regulatory

system model. a) A simplified overview of the system structure describing the regulatory cues from each

stimulus. Solid and dashed arrows represent fast and delayed regulatory cues, respectively. The model

outcomes (solid and dashed lines) calculated based on the identified parameter set (Table A.1 in Appendix)

are compared with the corresponding experimental data, obtained under b) single NaCl treatments, c) single

ABA treatments, and d) combined NaCl + ABA treatments.
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induction of the corresponding TF genes.

Other parameters also play important role in shaping the two-phase characteristic of RD29A

expression. Weak expression during the early phase of the response (0h ≤ t ≤ 2h) compared

to the late phase (t > 2h) indicate that there is limited amount of TF proteins available

immediately after treatments are introduced. In the model, scarcity of TF proteins arises

from negligible or weak basal expression of TF genes (ri), combined with strong constitutive

degradation of TF proteins maintained by ubiquitin-mediated proteolysis (ui). While the

enzymatic cascades are immediately switched on after introduction of stress, small amount

of inactive TF proteins restricts the amount of post-translationally active TF proteins being

produced, thereby limiting the level RD29A expression inducible by the input signals.

Feature 2: Strength of the input stimuli affects the magnitude of expression, but does not

change the qualitative features described above.

The model reproduces Feature 2 by assuming that Si(t) exerts linear control over the sig-

nalling processes considered in the model (See assumptions 4, 7). Although the experimental

measurements at only two levels of input strength (full- and half-strength) are insufficient

to determine whether the effects of NaCl or ABA on the signalling processes in the RD29A

regulatory system are actually linear, assuming this simplifies the model without compro-

mising its ability to reproduce magnitude of fold increases with respect to strength of the

input stimuli.

Feature 3: RD29A expression remains at a constant level after 3 hours of treatment with

single NaCl and ABA, while it continues to increase under combined NaCl and ABA treat-

ment.

The model reproduces the constant level of expression after 3 hours of single NaCl and ABA

treatment in terms of the steady-state response of the system. However, the continued accu-

mulation of RD29A transcript from 3 hours of combined stress response, is not reproduced
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by the model. The model can only describe the dynamics of combinatorially induced RD29A

expression profile as the sum of the dynamics of singly induced profiles (Fig. 6.4d, lines)

because there are no nonlinear interactions between the two stresses, which can act as the

potential source of synergistic effect. Given that model formulation based on the literature

fails to capture the greater than additive interactions between the NaCl and ABA stimuli,

the model must be modified in order to capture the greater than additive expression upon

combination of two stresses.

6.4.2 Cross-input modulation of intracellular signalling processes

The comparison between the experimental data and the model outcomes showed that the

model based on the current understanding of the RD29A regulatory system is unable to

capture the synergistic effect under combined NaCl and ABA treatments. This indicates

the model has failed to implement a unknown mechanism mediating interaction between

the NaCl and ABA signals. In this section, we systematically explore possible mechanisms

that can act as the potential source for the observed synergy between NaCl and ABA in

regulating RD29A expression.

We hypothesised that the synergistic effect observed from the combined NaCl and ABA stress

responses originates from cross-input modulation, where S1 and S2 cross-modulate TF2 and

TF1, respectively. More specifically, we define a cross-input modulation as a regulatory cue

produced by the non-cognate stimulus (S ′), leading to enhancement (E) or inhibition (I) of

the kinetic rates associated with the targeted signalling process (Fig. 6.5b). The effect of

cross-input modulation is implemented in the model by replacing the targeted parameter, pj

in the model equations (6.4 and 6.5) with

E(pj) = pj(1 + cEj S
′(t− τ)), (6.11)

I(pj) =
pj

(1 + cIjS
′(t− τ))

, (6.12)
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Figure 6.5: Definition of cross-input modulation. a) Synergistic interaction between the two input

signals can be achieved by modulation of the signalling processes in the adjacent pathway by the non-

cognate input signals. The blunt arrows coloured red and blue represent the regulatory cues of unknown

effect emerging from S1 and S2, respectively. Dashed lines indicate that the regulatory cues involve induction

of gene. b) A cross-input modulation occurs where a non-cognate input signal (S′) targets a signalling process

of the adjacent pathway (pj). Regulatory outcome of the crosstalk interaction can be either by enhancement

(E) or inhibition (I) of pj .

where the variable S ′ denotes the non-cognate input, which can be either S1 or S2 depending

on which pathway pj belongs to. Note that S ′ is delayed by τ , because the synergistic

effect in the experimental data appears most pronounced during the late phase of stress

response. This is equivalent to assuming that cross-input modulation affects the expression

of the genes responsible for the target signalling process. The parameters cEj and cIj represent

the strength of enhancement and inhibition of pj, respectively. The condition cEj = cIj = 0

corresponds to the case where there is no cross-input modulation, which is equivalent to the

model presented in Figure 6.4.

Amongst the 16 parameters in the model, there are 9 signalling processes in the RD29A reg-

ulatory system (rτ2 , α2, d−2, u2, r
τ
1 , α1, d−1, u1, r

τ
c ) that can be targeted by cross-input modu-

lation. This is because the other 7 processes (r1, r2, d1b, d2b, δ1, and δ2) are stress-independent

by definition and cannot form cross-input modulation (revisit Table 6.1 for further explana-

tion of their stress-independent nature).
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Implementing enhancement or attenuation crosstalk interactions for each of these 9 processes

led to 18 modified system structures (Fig. 6.6a). The parameters for each system structure

were identified ab initio, using the routine described in Appendix (Section A.3). We found

5 system structures that qualitatively reproduce the third qualitative feature (synergistic

effect), as well as the other two features (Fig. 6.6a, red and blue). The ability of each

system structure in reproducing the observed synergistic effect was assessed based on how

well the model fits the combined stress response data after parameter optimisation.

The 5 system structures, E(α1), I(d−1), I(u1), I(d−2) and I(u2), qualitatively reproduce all

three features observed from the experimental data (Fig. 6.6b, d, f). These system struc-

tures show a common topological feature, where the non-cognate input signals enhances the

post-translational production of TF ∗i . In system structures I(d−1) and I(d−2), non-cognate

input signals enhances accumulation of TF ∗i by attenuating the rate of its post-translational

deactivation. In I(u1) and I(u2), the non-cognate input signals indirectly increases TF ∗i by

attenuating degradation of TFi, which results in increased net forward conversion rate into

TF ∗i . E(α1) is also a valid crosstalk interaction because it enhances the post-translational

processing of TF1 into TF ∗1 . Thus, the results suggest that enhanced rate of TF ∗i accumu-

lation by non-cognate input signals may account for the synergistic effect observed from the

experimental data.

The remaining 13 system structures (Fig. 6.6a, grey) cannot reproduce the synergistic

effect qualitatively, no matter how the parameters of the original RD29A regulatory system

models and cross-input modulation are chosen (Fig. 6.6c, e, g). These fail to reproduce

the synergistic effect because they do not lead to selective enhancement of either pathway.

For example, cross-input modulation in some system structures such as E(d−1) or I(α2)

decreases the rate of TF ∗i accumulation, leading to attenuation of the targeted pathway

instead of enhancement. Modulating production of TF proteins via gene induction (rτ1 , r
τ
2 , r

τ
c )

also does not lead to effective enhancement of the selected pathway because it increases the

population of TFi rather than increasing its stability, only influencing the magnitude of

RD29A expression at steady state.
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Figure 6.6: Comparison of the system structures implementing different mechanisms of cross-

input modulation. a) An outline of all 18 possible system structures, organised by regulatory outcome

(E or I) and the non-cognate stress input (S1 or S2). The 5 system structures that reproduce the observed

synergistic effect are highlighted in colour (red = S1 modulates TF2 pathway, blue = S2 modulates TF1

pathway). b)-g) Comparison of the experimental data (black) with the best-fitting model outcomes obtained

from the 5 selected system structures (2 red and 3 blue lines) and the other structures (13 grey lines),

superimposed onto single plots according to treatment conditions.
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6.4.3 Evidence of individual crosstalk interactions in microarray

datasets

To further investigate the feasibility of the crosstalk interactions predicted from 5 iden-

tified system structures I(d−1), I(u1), E(α1), I(u2) and I(d−2), we subsequently examined

expression profiles of the genes that are potentially responsible for mediating the five cross-

input-modulated processes (d−1, u1, α1, u2, d−2) from two publicly available transcriptome-

wide cDNA microarray datasets produced by Kreps et al. [129] and Kilian et al. [122] (Table

6.2).

Suppression of DREB2 degradation in I(u1) is not supported by the expression profiles ob-

served from both datasets because expression of DRIP, an E3 ubiquitin ligase responsible

for targeted proteolysis of DREB2, appears independent to various abiotic stresses including

ABA [122]. The expression profile of KEG obtained from one dataset [122] shows indepen-

dence to NaCl stress, which contradicts attenuation of the AREB pathway claimed by I(u2).

Both datasets contradict I(d−2) by showing expression of AHG3, a gene encoding ABI-clade

Phosphatase [154], is up-regulated in presence of NaCl stress. Note that this observation

does not prove that crosstalk interaction of opposite regulatory outcome i.e. E(d−2) exist,

because ABA is known to strongly inhibit the protein activity of AHG3 [8].

Consequently, two system structures, E(α1), (ABA enhances DREB2 post-translational ac-

tivation α1) and I(d−1) (ABA attenuates post-translational deactivation of active DREB2

d−1), remain as viable system structures. The information regarding those system struc-

tures could not be extracted from the microarray datasets because the identities of the genes

responsible for DREB2 post-translational modification are yet unknown. This result sug-

gests that ABA-induced enhancement of post-translational activation of DREB2 via E(α1)

or I(d−1) is responsible for the observed synergistic effect.
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6.4.4 Reduction of synergistic effect upon reduced input strength

In parallel to the finding from the analysis of cDNA microarray datasets, we further vali-

date the ability of each identified system structures in predicting the qualitative synergistic

effects in combined stress conditions. Because the identified system structures implements

cross-input modulation in different directions (S1 → TF2 pathway or S2 → TF1 pathway),

the model predicts that halving the dose of either one in combined stress input would result

in asymmetric reduction in the synergistic effect. Reduction in the strength of input that

triggers the cross-input modulation results in greater reduction of the synergistic effect: for

instance, the cross-input modulation for structures E(α1), I(d−1) and I(u1) originate from

S1 signal, and reduction in value of S1 leads to reduced synergistic effect. Subsequently,

we conducted additional measurements of RD29A expression profile using the identical ex-

perimental settings (Chapter 5), except with combinations of NaCl and ABA with different

concentration (300mM NaCl + 50µM ABA, 150mM NaCl + 100µM ABA). The new data

is shown in Fig. 6.7.

Comparison between the prediction made by two selected structures, I(d−1) and I(u2), with

the newly obtained experimental data is shown in Figure 6.8. Note that the model outcomes

shown in Fig. 6.8a and 6.8b are obtained using the same parameter set used to fit each

structure to the previous experimental data (Fig. 6.6). The model outcomes for both

system structures do not provide quantitative description of the new experimental data, but

still qualitatively captures the difference in the degree of reduction in the synergistic effect,

which can be approximated by gradient of increase in expression between 3 and 5 hour time

frame.

Inability of the model predictions to quantitatively reproduce the new sets of experimental

data means that it is not possible to compare those two with conventional means, such

as quantification of model-data differences via the residual sum of squares. Since we only

consider whether the model can reproduce the third qualitative features observed from the

experimental data, we introduce our own metric to better analyse the difference between the
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Figure 6.7: Effect of combining NaCl and ABA at different strengths. a) Measurement of RD29A

transcript abundance induced by full-strength NaCl and half-strength ABA treatment and vice versa. The

effect of circadian oscillation has not been removed. b) Comparison of the RD29A expression profiles induced

by the combination of full-strength NaCl and ABA treatment from the previous experiment against the

profiles with the strength of one input halved. Effect of circadian oscillation has been removed by normalising

with the H2O profile obtained from the previous experiment. Note that decrease in either NaCl or ABA

concentration leads to significant reduction in the total level of expression.

two treatment conditions. We calculated a ratio, R, which compares the degree of reduction

in gradient of RD29A expression fold increase at 3 to 5 hours post-stress triggered by halving

of either NaCl or ABA stress (Fig. 6.8c). If halving of NaCl leads to greater reduction in

the synergistic effect compared to halving of ABA, R will be greater than 1. If halving of

ABA leads to greater reduction in the synergistic effect, R will be less than 1. Calculating

R for all five system structures indicate that the predictions from E(α1), I(d−1) and I(u1)

match that of the experimental data, while the predictions from I(d−2) and I(u2) do not

(Fig. 6.8d). This suggests that enhanced production of post-translationally active DREB2

by ABA is responsible for the synergistic effect unique to the profiles from combined NaCl

and ABA treatments.
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Figure 6.8: Reduction of synergistic effect upon halving the dose of one stress in a combined

stress input. a) Comparison between the predicted model outcome from the structure I(d−1) in response

to reduction of either NaCl or ABA concentration, with the corresponding experimental data. b) Similar

comparison made for structure I(u2). c) Quantification of the synergistic effect arising from combined

stress by the measuring the slope of increase in RD29A transcript abundance, M, between 3 and 5 hours of

treatment. The effect of halving either stress is compared by calculating the ratio, R. d) Comparison of the

ratio R calculated from experimental data with the predicted ratios from each of the five identified system

structures.
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6.5 Discussion

In this chapter, we investigated the signalling mechanisms that regulate the temporal dy-

namics of RD29A expression in response to NaCl, ABA, and their combinations. We ex-

plained RD29A expression dynamics using a simple mathematical model developed from

the existing knowledge of the DREB2 and AREB pathway structures. The current model

could reproduce the features observed in the dynamics of RD29A expression under individ-

ual NaCl stress and ABA, but was insufficient to reproduce the synergistic effect observed

under the combinations of NaCl stress and ABA. Via systematic investigation of plausi-

ble system structures, we identified five mechanisms of cross-input modulation that may be

responsible for the observed synergistic effect. Analysis of the existing microarray datasets

combined with a further hypothesis-driven experiment identified cross-input modulation me-

diating ABA-dependent DREB2 post-translational activation as the potential sources of the

observed synergistic effect.

Our mathematical model aimed to extract the core regulatory structures of the DREB2 and

the AREB pathways in order to understand the complex mechanisms that regulate expression

of stress response genes. While addressing this aim, several assumptions were adopted to

obtain a simplified description of numerous biological processes (Section 6.3). To ensure the

biological conclusion derived from analysis of this simplified model is valid, it is necessary to

examine how each of these assumptions affects the results obtained from the model. Table

6.3 provides the recap of the 8 assumptions taken during model development.

Assumptions 1, 2 and 4 are responsible for an overall linear dependence of the amount of

RD29A transcript on external NaCl stress and ABA exhibited by the model. Adopting

these assumptions may be a strong simplification of the real biological processes, as the pro-

cesses affected by these assumptions are likely to be nonlinear. For example, the magnitude

intracellular salt stress signal (e.g. Ca2+) may linearly increase with the concentration of

external NaCl only up to a certain point, beyond which there is no further increase. Such

saturating behaviours can also applied to other signalling processes such as activation and
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Table 6.3: List of assumptions used in the model of the RD29A regulatory network.

Assumption Model Interpretation Eqn.

1 Intracellular NaCl stress signal is linearly

proportional to external NaCl concentration.

S1 ∝ [NaCl]ext. 6.1

2 Endogenous ABA concentration is linearly

proportional to exogenous ABA concentration.

S2 ∝ [ABA]ext. 6.2

3 The amount of ABA internally produced from S2 = fABA + [ABA]ext, 6.3

de novo production is negligible compared to the

amount imported from exterior.

max fABA � [ABA]max.

4 The effects of intracellular stress signals on TF ˙TFi ∝ Si, 6.4

activation and production are linear. ˙TF ∗i ∝ Si. 6.5

5 There is no non-specific binding, such that DREB2 θDRE = fDRE([DREB2]) 6.6

cannot bind to ABRE and vice versa. θABRE = fABRE([AREB]) 6.7

6 DREB2 and AREB do not interact cooperatively

between each other.

ka[DREB2][AREB] = 0. 6.8

7 The amounts of TFs are non-saturating. [DREB2]� 1, 6.9

[AREB]� 1.

8 Molecular processes leading to production of mRNA ˙[mRNA] = εṁ, 6.10

occur at much faster rates compared to those that

govern the promoter activity.

ε→ 0.

production of TF proteins. Since the previous data on RD29A response to NaCl and ABA

doses shows linearly relationship within the range of stress inputs considered in our exper-

iments (Fig. 6.2), however, assuming linearity appears to be an adequate simplification of

the processes involved for the purpose of analysing the data presented in Chapter 5. Imple-

menting more complex nonlinear relationships to describe the effect of external stress on the

signalling processes may enhance explanatory power of the model over broader range of the

stress input strengths, but at the expense of significantly increasing the number of model

parameters.

Another strong simplification of a known biological process relates to exclusion of NaCl-
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induced ABA biosynthesis (Assumption 3). We have chosen to ignore de novo ABA biosyn-

thesis from NaCl stress inputs. Adopting this assumption changes the way the results are

interpreted, such that the temporal dynamics of RD29A expression induced by singly applied

NaCl stress is solely controlled by the DREB2 pathway. Such interpretation is incorrect, as

it is well established that singly applied NaCl stress can also activate the AREB pathway

and the stress responsive genes controlled by ABRE [149, 250]. However, we argue that

expanding the model to include additional processes involved in ABA biosynthesis does not

alter the conclusion regarding the difference between singly-induced and combinatorially-

induced response (Feature 3, regarding the synergistic effect unique to the combined NaCl

and ABA treatments). Because the amount of endogenous ABA is likely to be much smaller

than the amount of imported ABA in combined stress settings [207, 263], it is reasonable

to assume that activation of the AREB pathway under these treatment conditions is mainly

conducted by ABA imported from outside. Based on this interpretation, the reason why

the synergistic effect is not observed under singly applied NaCl stresses even though ABA

biosynthesis occurs is because the amount of ABA produced de novo is too small to trig-

ger additional ABA-dependent post-translational activation of DREB2, the main finding of

this chapter. Even if the amount of endogenous ABA produced de novo is comparable to

the amount imported externally such that the response triggered by single NaCl stress is

a product of both DREB2 and AREB pathways, our experimental data showing that the

synergistic effect is specific to combined NaCl and ABA treatments suggests it is still the

addition of externally supplemented ABA that cause this feature.

The last four assumptions (5-8) simplify the processes regarding transcriptional regulation.

One amongst those assumptions represents a particularly strong simplification: the assump-

tion that there is no interaction between DREB2 and AREB is likely to be incorrect, as an

in vitro study comparing RD29A promoter activities upon recombinant DREB2 and AREB

showed that activation by combined DREB2 and AREB results in greater-than-additive tran-

script production [183]. Again, we argue that relaxing this assumption does not affect the

final conclusion of this chapter, as the effects of cooperativity between DREB2 and AREB
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proteins will only occur in the magnitude of RD29A induction, not its temporal dynam-

ics. Specifically, greater-than-additive transcript production from simultaneous presence of

active DREB2 and AREB will change the dose response to combined NaCl and ABA into

a nonlinear curve, which does not concern how RD29A transcript level changes over time.

One important factor that can influence the temporal response to stress inputs is validity

of the last assumption (8), which leads us to interpret the results that the observed tem-

poral dynamics of RD29A expression arise solely from the TF dynamics, governed by the

signalling network structure. If this assumption is wrong, it is possible that the dynamics of

gene expression may change with the mRNA production and degradation rates, which are

intrinsic properties of the transcriptional regulatory system. Their effects on the dynamics

of RD29A expression, however, will be indifferent between all stress conditions, suggesting

that the dynamics of transcriptional regulation is not responsible for the unique differences

in dynamical features of RD29A expression profiles induced by single and combined NaCl

and ABA.

Having established that the simplified model is able to provide an adequate description of the

biological processes involved in RD29A regulation, it is interesting that such simplified model

has a certain degree of predictive power over the qualitative behaviour of the system upon

changes in combined stress inputs (Fig. 6.8). The apparent inter-dependence of the NaCl

and ABA signals in modulating both DREB2 and AREB signalling pathways then raises

a further question: how does the abiotic stress system distinguish and selectively express

ABRE- or DRE-controlled genes in response to single NaCl or ABA if the DREB2 and the

AREB pathways are cross-modulated by both NaCl and ABA? Our model shows that such

stress-specific response emerges from the activation mechanism of DREB2 and AREB, which

resembles a logical AND operator. Because activation of DREB2 and AREB requires simul-

taneous increase in post-translational modification and TF population through their gene

expression, activation of either one mechanism is insufficient to induce their transcriptional

activity. Given that the suggested cross-input modulation affects only the post-translational

modulation, the abiotic stress response system can avoid any unwanted outcomes of crosstalk
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interactions and produce outputs specific to DREB2 and AREB pathways under single stress

conditions.

Cross-regulation of DREB2 and AREB signalling pathways by NaCl and ABA has wider

implication for understanding abiotic stress response as a whole. Although both DRE and

ABRE regulons contain stress response genes, ABRE regulons also control biological pro-

cesses other than stress response such as long-term developmental response [179]. Thus,

we propose that selective enhancement of DRE regulon upon combined stress conditions

ensures prioritisation of the DRE-driven gene regulation to the stress without committing

to long-term effects induced by ABA. More detailed ontology analysis of genes constituting

the DRE and ABRE regulons, coupled with measurements of their expression profiles under

combined NaCl and ABA stress settings, will help in understanding the physiological role of

the crosstalk interaction.

Considering 61% of Arabidopsis stress-induced genes display various types of compound

effect upon exposure to multiple abiotic and/or biotic stresses [206], studies of crosstalk

interactions between stress signalling pathways attracts increasing attention. To this end,

there have been studies on the crosstalk mechanisms in combinations of various stresses, such

as drought with heat [212], drought with high light [58, 84], heat with high light [34], and

abiotic stresses with biotic stress [13, 282]. Our approach provides a platform to integrate the

existing knowledge of individual stress signalling pathways generated from the conventional

genetic and biochemical framework, and systematically highlight the gap in understanding

through comparison with experimentally observed gene expression profiles under different

stress combinations.
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Chapter 7

Concluding Remark

Compound gene regulation refers to the control of gene expression outcomes by combinations

of multiple stresses, and is a fundamental aspect of plant adaptation to hostile environments.

From the observations made in the previous studies as well as ours, it has been shown that

regulation of gene expression upon a combination of stresses does not take place as a sum

of responses to individual types of stress. While significant knowledge has accumulated re-

garding plant stress response gene regulation, simple assembly of the intracellular signalling

pathways individually characterised for single types of stress is insufficient to explain the

non-additive outcomes observed under combined stress conditions. This suggests that the

current understanding of molecular stress response system is unable to address signal inte-

gration mechanisms, which ultimately allows plants to search for optimal responses to given

environments. In this thesis, we have investigated how the experimental observations of the

gene behaviours under single and combined stress conditions can be used to inform about

the structure of plant stress signalling network.

In Chapter 1, we argued that a framework for systematic classification of possible effects of

multiple stress combinations is essential. The first part of the thesis (Chapter 3, 4) addresses

this challenge by proposing compound logic as a possible framework for classifying different

behaviours induced by stress combinations. If changes in gene expression can be reduced to

discrete variables based on steady-state assumption, compound logic can be used to limit
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the outcomes of integrating multiple stress signals into a finite number of gene regulatory

profiles based on qualitative comparison of expression changes under single and combined

stress. Systematic investigation of the mechanisms for each profile was made possible by

logical network models of intracellular signalling networks inspired from Parallel Distributive

Processing (PDP) networks, with propagation of stress signals described as logical operation.

The logical network models could describe the non-additive interaction between multiple

stress inputs in regulating gene expression outputs based on integration of the stress signals

occuring at different stages of signal transduction. The compound logic framework was then

applied to Arabidopsis transcriptomic datasets obtained under single and combined stress

conditions [206]. Analysing gene expression profiles from the transcriptomic dataset revealed

various modes of interaction between pairs of stresses, which indicating greater diversity in

gene regulatory outcomes beyond conventional positive and negative relationship between

two stresses. Based on the assignment of logical network model to particular regulatory

profile from Chapter 3, cluster of genes identified from analysis of the transcriptomic dataset

was used as the potential source of information regarding the signal integration mechanisms.

This was demonstrated with the specific examples (HSF and WRKY pathways for heat and

biotic signal transduction, respectively).

Interaction between multiple stresses also lead to complex gene regulatory outcomes with

quantitative changes that cannot be described as discrete variables. The second part of the

thesis (Chapter 5, 6) investigated this in more detail, we experimentally measured the tempo-

ral expression profiles of RD29A induced by various combinations of NaCl and ABA stimuli.

The results presented in Chapter 5 showed that the synergistic effect of combined NaCl and

ABA in activating RD29A expression is time-dependent. This suggests that the outcomes

of integrating the two stress signals cannot simply be described with logical variables, which

prevents the use of the compound logic method developed in the early part of the thesis to

investigate the regulatory mechanisms for the unique dynamical behaviours of RD29A. A

mathematical model of the RD29A regulatory network consisting of the DREB2 and AREB

signalling pathways was constructed to further interrogate the experimental data, searching
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for the potential signal integration mechanism responsible for the observed synergistic effect

in the form of missing edges in the given regulatory network. By systematically implement-

ing additional edges in the model, we identified the system structures that allow the model

to reproduce the synergistic effect observed from the experimental data. We also showed

that the list of candidate structures can be reduced even more by checking the biological

plausibility of each interaction from other sources in literature, and the experiments designed

based on validating model predictions from different candidate structures. We ultimately

identify two possible edges in the RD29A regulatory network, which offer clear direction for

further experimental investigation.

With an increasing number of studies examining the effect of combined stresses in plant gene

regulation [201], the needs for mechanistic models to explain the gene expression profiles ob-

served from the resulting datasets are also becoming greater [156]. The current understand-

ing of the plant stress signalling network is mostly based on the information obtained from

single stress experiments, providing limited explanations for compound gene regulation. In

addition, the current knowledge of the plant stress signalling network is largely incomplete,

lacking many interactions with important functions in regulation of gene expression under

combined stress inputs. By using theoretical models of signalling network, however, we

showed that it is possible to make systematic inquiries on where the functionally important

interactions may be located. This was achieved by first constructing a model of signalling

network based on incomplete information, and subsequently comparing different the model

structures with regards to their ability to describe gene regulatory outcomes from both single

and combined stress inputs.

The key factor that enables such comparison is the level of abstraction at which the model

is constructed. Figure 7.1 illustrates our approach of using simplified models to extract in-

formation about system structure from the data. The logical network models in Chapter

4 consolidate the intracellular signalling network into three layers, which are minimalistic

representations of the network with limited descriptive capabilities. The RD29A regulatory

network model in Chapter 6 have been developed in a similar manner by omitting some of
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Figure 7.1: A conceptual framework for elucidation of signal integration mechanisms from

analysis of signalling network models at various levels of abstraction. Two alternative represen-

tations of a signal-integrating network are shown, with blunt arrows depicting direction of regulation that

can be either positive or negative. A detailed model of signal-integrating network can be abstracted into a

simpler model, which allows identification of functionally important interaction via systematic investigation

of model structure. The identified interaction validated from additional experiments can be used to elaborate

the existing model of signalling network.

the known details (such as the phosphorylation cascade leading up to AREB activation),

provided that such simplifications do not significantly alter the biological nature of those

processes. Our reason for adopting such principle of minimalism is twofold. Because the

purposes of the models are to investigate interactions between different signalling pathways

with varying degree of knowledge, standardisation in the level of abstraction was necessary.

The models with high levels of abstraction also provide several advantages: for example, the

PDP models may act as the first starting point for mining unknown signalling pathways,

as it can reveal the variety in behaviours under combined stresses amongst the genes con-

trolled by a common type of transcriptional regulators. Simplified description of the RD29A

regulatory network has reduced the number of plausible interactions to be tested, reducing

computational burden.

It is noted that translating the insights gained from the simpler models to guide further

experimental investigation requires more careful consideration. From the model of RD29A
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regulatory system constructed in greater detail, we were able to make a clear suggestion for

the new experiments that will validate the interactions required for the model to explain

the observed synergistic effect. The PDP model of signalling network, however, only offers

coarse picture of the network architecture. The proposed network facilitating integration

of heat and biotic stress signals (Fig. 4.9) does not suggest much beyond that there may

be negative crosstalk interaction between HSF and WRKY signalling pathways to achieve

attenuation of the genes that are normally expressed under single stress condition upon

combined stress inputs. Considering that there are numerous isoforms of HSF and WRKY

proteins [59, 185], shortlisting the pathway for further experimental analysis is not possible

with the information currently at hand. Further functional characterisation of the signalling

pathways with more details about which signalling components are involved will shed more

light on the mechanisms responsible for compound regulation of gene expression.

There are several suggestions for immediate future development on the work presented in

this thesis:

• Alternative classification methods for the outcomes of compound gene regulation

The compound logic framework rely on description of gene expression changes in binary

[239] or ternary form (Chapter 3, 4). The limited number of possible classified out-

comes may not adequately cover the variety of outcomes produced by interaction between

multiple stress inputs. A possible study that may address this shortcoming will involve

time-series microarray measurements of transcriptomic expression profiles upon combined

stress inputs, and enriching common qualitative patterns amongst the expression profiles

via clustering methods.

• Integration of compound gene regulation data into existing transcriptional network infer-

ence algorithms

A further work is needed for developing methods to implement compound gene regulation

data with the existing algorithms for transcriptional network inference. Numerous tools

for inferring transcriptional network from time-series microarray data are already available
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[20]. Further studies to scale up comparative analysis of transcriptomic profiles measured

under single and combined stress conditions and to exploit the resulting information in

inferring gene interaction may significantly enhance the speed and quality of the predicted

transcriptional network.

• Further experiments to validate the proposed structure of RD29A regulatory network

The identified interactions in the model may be tested further, time course measure-

ment of RD29A expression in mutants constitutively expression DREB2 proteins such

as 35S:DREB2A [214], based on abi (ABA-insensitive) as background is proposed. If

DREB2 post-translational activity is enhanced in presence of ABA-dependent signalling

mechanism, then deleting the activity of the ABA-dependent signalling mechanism is sup-

posed to remove the synergy in combined NaCl + ABA treatment. The reason for using

35S:DREB2A transgene is to compensate for lower DREB2 expression in abi lines [124].

Another possible confirmatory experiment is to obtain time-course measurements using

the genes that only contain DRE motif in their promoters. If DREB2 activity is enhanced

by ABA, then the genes containing only DRE will exhibit synergy. Conversely, the genes

only containing ABRE motif (e.g. RD29B) will not show synergy.

Beyond these specific suggestions, exciting oppurtunities for further studies are present in

the elucidating signal integration mechanisms for regulation of various molecular processes

in responses to various stress combinations [238]. Given that environmental stresses are the

primary reason for reduction in crop yield worldwide, development of new crop species that

are resilient to hostile environmental conditions is crucial in securing future food supply [254].

Understanding how plants perceive and respond to combination of stresses is the major step

towards uncovering the mechanisms engineering tolerance in complex environments. The

interdisciplinary approach proposed in this thesis may bring new perspectives to the future

studies on combined stress response in plants by helping them to systematically identify the

missing links in the current understanding of plant stress signalling network.
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Appendix A

Supplementary Data and Information for

Chapter 5 & 6

A.1 Additional RD29A expression dynamics dataset

(preliminary experiments)

This section provides the results for stress-induced RD29A expression dynamics from the old

experiments conducted prior to commencement of this PhD (2010, 2011). The data from

these experiments are shown here to strengthen the arguments about the qualitative features

of RD29A expression dynamics presented in Chapter 5. For example, the old datasets also

show delayed response under NaCl in comparison to immediate increase in expression under

ABA, and non-additive nature of the response to combined NaCl and ABA. The methods

used for the old experiments are identical to what was presented in Chapter 5, unless stated

otherwise below. They also add extra information regarding how the system behaves in a

longer timespan. However, these datasets were not used for the analysis in Chapter 6. The

2010 dataset (Fig. A1) lacks measurement of RD29A expression dynamics in unstressed

condition. Measurements for each stress condition in the both 2010 and 2011 (Fig. A1 and

A2) dataset were also taken at different time of day, which prevented accurate measurement

of time-variability of control.
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Figure A.1: Experimental measurements of RD29A expression level at different time and

treatment conditions (2010). Same methods described in Section 5.2 were used, except for the qPCR

control gene where actin-1 was used instead. All data points represent mean fold change in RD29A transcript

level from triplicate measurements with error bars representing ± SD.
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Figure A.2: Experimental measurements of RD29A expression level at different time and

treatment conditions (2011). Same methods described in Section 5.2 were used, except for the qPCR

control gene where actin-1 was used instead. All data points represent fold change in RD29A transcript

level from a single replicate.
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A.2 Analytical solutions for the model of the RD29A

regulatory system

In this section, analytical solutions for the model of the RD29A regulatory system presented

in Chapter 6 (Eqns. 6.4 and 6.5) is described. The solutions for two time domains (t ≤ 0

and t > 0) are presented separately.

A.2.1 Before treatment (t ≤ 0)

Before stress input (S1 = S2 = 0, t ≤ 0), the system is assumed to be at steady state

( ˙TF1 = ˙TF2 = ˙TF ∗1 = ˙TF ∗2 = 0). Some parameters are fixed based upon the literature (as

discussed in the main text) and the steady-state solutions before exposure to stress (t ≤ 0)

can be determined as follows:

TF1 = 0, (A.1)

TF2 =
δ2 + d−2
d2b

(A.2)

TF ∗1 = 0, (A.3)

TF ∗2 = 1. (A.4)

It is possible to reduce the dimension of parameter space based on the steady-state assump-

tion. With Eqn. A.4, the solution to the ODE describing ˙TF ∗2 at (t ≤ 0) becomes

d2br2
δ22 + δ2(d−2 + d2b) + u2d−2

= 1. (A.5)

Rearranging above enables determination of a parameter in terms of other parameters, thus

fixing the value of the chosen parameter. Here, we replace r2 with R2, which is a function
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described in terms of δ2, d2b, d−2 and u2:

R2 =
1

d2b
[δ22 + δ2(d−2 + d2b) + u2d−2]. (A.6)

A.2.2 After treatment (t > 0)

After exposure to stress (t > 0) we solve our model equations by first rewriting Eqns. 6.4

and 6.5 (page 100) in the form

˙TFi = Θi − (∆i + Ai)TFi + d−iTF
∗
i , (A.7)

˙TF ∗i = AiTFi − (δi + d−i)TF
∗
i , (A.8)

with i = 1, 2 representing the DREB2 and AREB pathway, respectively, and

Θ1 = rτ1S1(t− τ) + C1, (A.9)

Θ2 = R2 + rτ2S2(t− τ) + C2, (A.10)

∆1 = u1 + δ1, (A.11)

∆2 = u2 + δ2, (A.12)

A1 = α1S1(t), (A.13)

A2 = d2b + α2S2(t). (A.14)

The functions shown above represent the gross rates of particular biological processes, such

as production (Θi), degradation (∆i) and post-translational activation(Ai). Because Θi and

Ai contain the time-varying input parameters Si(t) (Eqns. 6.1 and 6.2, page 98), the domain

t > 0 can be separated further into two time windows:

T (t) =

 t if 0 < t ≤ τ ,

t− τ if t > τ .
(A.15)
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The solutions for Eqn. A.7 and A.8 can then be written as:

TFi(t) = K2,i(t)e
λi+T (t) +K1,i(t)e

λi−T (t) +
Θi(δi + d−i)

(Ai + ∆i)δi + d−i∆i

, (A.16)

TF ∗i (t) =
1

d−i

[
K2,i(t)(λi+ + ∆i + Ai)e

λi−T (t) +K1,i(t)(λi− + ∆i + Ai)e
λi−T (t)

−Θi +
(Ai + ∆i)Θi(δi + d−i)

(Ai + ∆i)δi + d−i∆i

]
, (A.17)

where the eigenvalues of the system are

λi± =
1

2

[
− (Ai + ∆i + d−i + δi)

±
√

(Ai + ∆i + d−i + δi)2 − 4(Aiδi + d−i∆i + δi∆i)

]
(A.18)

and

K1,i(t) =
1

λi− − λi+

(
d−iTF

∗
i,ss + Θi − (λi+ + ∆i + Ai)TFi,ss

+λi+
Θi(δi + d−i)

(Ai + ∆i)δi + d−i∆i

)
, (A.19)

K2,i(t) = TFi,ss −K1,i −
Θi(δi + d−i)

(Ai + ∆i)δi + d−i∆i

, (A.20)

with

TF ∗i,ss =

TF ∗i (0) if 0 < t ≤ τ ,

TF ∗i (τ) if t > τ ,
(A.21)

TFi,ss =

TFi(0) if 0 < t ≤ τ ,

TFi(τ) if t > τ .
(A.22)
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Cross-input modulation is implemented in the solution by replacing the chosen parameter

pj by E(pj) or I(pj) (Eqn. 6.11, 6.12), which subsequently changes the definition of either

Θ1,Θ2,∆1,∆2, A1, or A2 (Eqn. A.9-A.14).

A.3 Parameter identification

This section explains the method used to fit the model presented in Chapter 6 to the data

shown in Chapter 5.

A.3.1 Monte Carlo Simulated Annealing

Monte Carlo Simulated Annealing (MCSA) is an algorithm used to approximate the global

optimum in a given parametric function f(p) in a large search space. f(p) is the objective

function to be minimised, quantifying error between model simulation and experimental data.

MCSA is an adaptation of the Metropolis-Hastings algorithm in a sense that a parameter

set p′ sampled from a given distribution is accepted under a certain probability, defined by

acceptance function α,

α(p, p′, T ) =


1 : f(p′) < f(p)

1

1+exp
(

f(p′)−f(p)
max(T )

) : f(p′) ≥ f(p)
(A.23)

In other words, a new parameter set p′ is always accepted if the cost function is reduced by

the transition p→ p′. Even when the cost function of the p′ is higher, p′ can still be accepted

in order to avoid being trapped in a local minimum.

The main difference of SA to other algorithms is involvement of time-varying parameter, T ,

which gets decreases progressively with each algorithmic iteration. From Eqn. A.23, it can

be seen that as T decreases (hence the term “annealing”), α of accepting bad parameter sets
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(i.e. those giving f(p′) ≥ f(p) ) also decreases. The idea of MCSA is that as T tends to

zero, the remaining f(p) is the estimated as the minimum.

However, f(p′) obtained from lowest T does not necessarily represent the global minimum.

A great advantage of MCSA is that multiple minima can easily be identified via so-called

“reannealing”. Once a minimum in f(p) is identified, T is increased again with a differ-

ent starting point. Repeating annealing and reannealing steps allows approximation of the

minima, and after sufficient iterations, the lowest minimum can be selected to estimate the

global minimum.

A.3.2 Objective function

Whilst the values of several parameters are fixed from literature or analytical derivation

(Eqn. A.6), the values for the unknown parameters were determined by fitting the model to

the experimental data obtained from all experiment using a Monte Carlo Simulated Anneal-

ing (MCSA) algorithm. The algorithm seeks a parameter vector, p, which minimises the

objective function evaluating the fit between the model simulation and experimental data.

The vector p consists of 10 parameters for the original model. The objective function f(p),

for the vector p, is defined as

f(p) =
∑
S

∑
t

(
DS(t)−MS,p(t)

σADS(t)
+

∆DC −∆MC,p

σB∆DC

)2

. (A.24)

The first term quantifies goodness of fit of the simulated RD29A expression profile, MS,p(t)

to experimental mean of RD29A fold-change expression, DS(t), measured at time t (0, 0.5,

1, 2, 3 or 5 hours) at treatment condition, S = (S1, 0), (0, S2) or (S1, S2), with S1 and S2

represent NaCl and ABA input strength at arbitrary scale (0, 0.5, or 1). The error σA

associated with each data point DS(t) is assumed to be uniform (σA = 0.02), hence serving

as weighting coefficient of the first term in the objective function. The second term evaluates

the ability of the model with p to reproduce the observed synergistic effect, where ∆DC and
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∆MC,p respectively denote the observed and simulated slope of fold increase between 3 and 5

hours of combined stress treatment only. The error σB associated with the observed slope is

fixed (σB = 0.1). MCSA Optimisation of the objective function f for each system structure

identifies p′, which approximates the vector of parameters at the global optimum of the

objective function f . The parameter sets p′ identified for each systems structure is shown

in Table A.1.

A.3.3 Selection of system structure

The objective function f does not adequately represent the ability of the system struc-

ture to reproduce the synergistic effect, because the global minimum f(p′) is designed to

represent the best quantitative description of the observed RD29A expression profiles un-

der all stress conditions a system structure can provide, not specifically for the combined

stress. We therefore introduce a selection function, g, which evaluates the goodness of fit be-

tween the observed RD29A expression profile and the optimised model only under combined

stress:

g(p′) =
∑
t

(
DC(t)−MC,p′(t)

σ

)2

. (A.25)

where DC(t) represents the experimentally observed fold change at time t under combined

stress treatment, and MC,p′(t) the simulated fold change using the parameter set p′ identified

from optimising the function f . Note that g is normalised by a uniform error (=0.02). The

system structures producing lowest g when implemented in the model were chosen as the

viable structures (Fig. 6.6).
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‘Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula

Roth.) are modified by water stress’, Plant, Cell & Environment 21(7), 671–684.

[192] Palaniswamy, S. K., James, S., Sun, H., Lamb, R. S., Davuluri, R. V. and Grote-

wold, E. [2006], ‘AGRIS and AtRegNet. a platform to link cis-regulatory elements and

transcription factors into regulatory networks.’, Plant Physiology 140(3), 818–829.

161



[193] Pandey, S. P. and Somssich, I. E. [2009], ‘The role of WRKY transcription factors in

plant immunity’, Plant Physiology 150(4), 1648–1655.

[194] Park, C. Y., Lee, J. H., Yoo, J. H., Moon, B. C., Choi, M. S., Kang, Y. H., Lee,

S. M., Kim, H. S., Kang, K. Y., Chung, W. S. and Others [2005], ‘WRKY group IId

transcription factors interact with calmodulin’, FEBS letters 579(6), 1545–1550.

[195] Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S.,

Santiago, J., Rodrigues, A., Chow, T.-F. F., Alfred, S. E., Bonetta, D., Finkelstein, R.,

Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J.-K., Schroeder,

J. I., Volkman, B. F. and Cutler, S. R. [2009], ‘Abscisic acid inhibits type 2C protein

phosphatases via the PYR/PYL family of START proteins.’, Science 324(5930), 1068–

1071.
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heat-shock element is a functional component of the Arabidopsis APX1 gene promoter.’,

Plant Physiology 118(3), 1005–1014.

[235] Strogatz, S. H. [2001], ‘Exploring complex networks’, Nature 410(6825), 268–276.

[236] Suarez-Rodriguez, M. C., Adams-Phillips, L., Liu, Y., Wang, H., Su, S.-H., Jester,

P. J., Zhang, S., Bent, A. F. and Krysan, P. J. [2007], ‘MEKK1 is required for flg22-

induced MPK4 activation in Arabidopsis plants’, Plant Physiology 143(2), 661–669.

[237] Suhayda, C. G., Giannini, J. L., Briskin, D. P. and Shannon, M. C. [1990], ‘Electro-

static changes in Lycopersicon esculentum root plasma membrane resulting from salt

stress’, Plant Physiology 93(2), 471–478.

[238] Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. and Mittler, R. [2014], ‘Abiotic

and biotic stress combinations’, New Phytologist 203(1), 32–43.

[239] Tanaka, R. J. and Kimura, H. [2008], ‘Mathematical classification of regulatory logics

for compound environmental changes’, Journal of Theoretical Biology 251(2), 363–379.

[240] Thaler, J. S., Humphrey, P. T. and Whiteman, N. K. [2012], ‘Evolution of jasmonate

and salicylate signal crosstalk’, Trends in Plant Science 17(5), 260–270.

[241] Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K.,

He, S. Y., Howe, G. a. and Browse, J. [2007], ‘JAZ repressor proteins are targets of the

SCF(COI1) complex during jasmonate signalling’, Nature 448(7154), 661–665.

[242] Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogel-

sang, R., Cammue, B. P. A. and Broekaert, W. F. [1998], ‘Separate jasmonate-dependent

and salicylate-dependent defense-response pathways in Arabidopsis are essential for re-

sistance to distinct microbial pathogens’, Proceedings of the National Academy of Sci-

ences 95(25), 15107–15111.

[243] Thompson, A. J., Jackson, A. C., Parker, R. A., Morpeth, D. R., Burbidge, A. and

167



Taylor, I. B. [2000], ‘Abscisic acid biosynthesis in tomato: regulation of zeaxanthin

epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water

stress and abscisic acid’, Plant molecular biology 42(6), 833–845.

[244] Toledo-Ortiz, G., Huq, E. and Quail, P. H. [2003], ‘The Arabidopsis Basic / Helix-

Loop-Helix Transcription Factor Family’, The Plant Cell 15(8), 1749–1770.

[245] Tong, Z., Hong, B., Yang, Y., Li, Q., Ma, N., Ma, C. and Gao, J. [2009], ‘Overex-

pression of two chrysanthemum DgDREB1 group genes causing delayed flowering or

dwarfism in Arabidopsis’, Plant Molecular Biology 71(1), 115–129.

[246] Tran, L.-S. P., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama,

K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. [2004], ‘Isolation

and functional analysis of Arabidopsis stress-inducible NAC transcription factors that

bind to a drought-responsive cis-element in the early responsive to dehydration stress 1

promoter.’, The Plant Cell 16(9), 2481–2498.

[247] Turner, J. G., Ellis, C. and Devoto, A. [2002], ‘The jasmonate signal pathway.’, The

Plant Cell 14(Suppl 1), S153–S164.

[248] Tuteja, N. [2007], ‘Abscisic acid and abiotic stress signaling’, Plant Signaling & Be-

havior 2(3), 135–138.

[249] United Nations Department of Economic and Social Affairs [2015], World Population

Prospects : The 2015 Revision.

[250] Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki,

K. [2000], ‘Arabidopsis basic leucine zipper transcription factors involved in an abscisic

acid-dependent signal transduction pathway under drought and high-salinity condi-

tions.’, Proceedings of the National Academy of Sciences 97(21), 11632–12637.

[251] Varshney, R. K., Hoisington, D. a. and Tyagi, A. K. [2006], ‘Advances in cereal ge-

nomics and applications in crop breeding’, Trends in Biotechnology 24(11), 490–499.

168



[252] Verslues, P. E., Kim, Y.-S. and Zhu, J.-K. [2007], ‘Altered ABA, proline and hydro-

gen peroxide in an Arabidopsis glutamate:glyoxylate aminotransferase mutant.’, Plant

Molecular Biology 64(1), 205–217.

[253] Vile, D., Pervent, M., Belluau, M., Vasseur, F., Bresson, J., Muller, B., Granier, C. and

Simonneau, T. [2012], ‘Arabidopsis growth under prolonged high temperature and water

deficit: independent or interactive effects?’, Plant, Cell & Environment 35(4), 702–718.

[254] Vinocur, B. and Altman, A. [2005], ‘Recent advances in engineering plant tolerance

to abiotic stress: Achievements and limitations’, Current Opinion in Biotechnology

16(2), 123–132.
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