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Abstract

Understanding of human motor control is central to neuroscience with strong implica-

tions in the fields of medicine, robotics and evolution. It is thus surprising that the vast

majority of motor control studies have focussed on humanmovement in the laboratory

while neglecting behaviour in natural environments. We developed an experimental

paradigm to quantify human behaviour in high resolution over extended periods of

time in ecologically relevant environments. This allows us to discover novel insights

and contradictory evidence to well-established findings obtained in controlled labora-

tory conditions. Using our data, wemap the statistics of natural humanmovement and

their variability between people. The variability and complexity of the data recorded

in these settings required us to develop new tools to extract meaningful information in

an objective, data-driven fashion. Moving from descriptive statistics to structure, we

identify stable structures of movement coordination, particularly within the arm-hand

area. Combining our data with numerous published findings, we argue that current

hypotheses that the brain simplifies motor control problems by dimensionality reduc-

tion are too reductionist. We propose an alternative hypothesis derived from sparse

coding theory, a concept which has been successfully applied to the sensory system. To

investigate this idea, we develop an algorithm for unsupervised identification of sparse

structures in natural movement data. Our method outperforms state-of-the-art algo-

rithms for accuracy and data-efficiency. Applying this method to hand data reveals

a dictionary of sparse eigenmotions (SEMs) which are well preserved across multiple

subjects. These are highly efficient and invariant representation of natural movement,

and suggest a potential higher-order grammatical structure or “movement language”.

Our findings make a number of testable predictions about neural coding of movement

in the cortex. This has direct consequences for advancing research on dextrous pros-

thetics and robotics, and has profound implications for our understanding of how the

brain controls our body.
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1 Introduction

1
Introduction

“We have now sunk to a depth at which the restatement

of the obvious is the first duty of intelligent men.”
— George Orwell

1.1 Human Movement: Research and Applications

The brain’s primary function is arguably the generation and coordination ofmovement.

Consequently, understanding the processes and computations underlying motor con-

trol has been a central question in neuroscience. More than 100 years after Sherrington’s

seminal work on reflex actions (Sherrington 1910) – and almost 50 years after Bern-

stein’s description of coordination and regulation of movement (Bernstein 1967) – the

question is still far from being resolved.

Our understanding of movement generation and control varies greatly depending

on which level of hierarchy is being considered (Figure 1.1). The lower level is reason-

ably well understood: neurons from the (mainly) motor cortex innervate alpha motor

neurons in the spinal cord, which transmit the signal to the neuromuscular junction

of one or more muscles. There, the neurotransmitter acetylcholine is released which

causes the muscle to contract which in turn generates torque around the joint and

finally movement of the limb.

Coordination of multiple muscles or joints is less well understood. This is maybe

25
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Overall complexity

Decision
making

Task
identification

Subtask
selection

Joint
coordination

Muscle
activation

Current understanding

Figure 1.1: Natural movement can be schematised in decreasing stages of complexity.
Decision making and task identification represent the two highest stages of movement
planning. Subtask selection directly influences the decision of how to coordinate joint
movement. This is executed via muscle contractions which are controlled by neurons
in the spinal cord. While this last stage is well understood from a physiological point
of view, there is still much debate regarding higher-level processing.

not surprising if we consider that the musculoskeletal system is highly non-linear and

contains more than 600 muscles which are organised in a highly redundant fashion.

How then does the brain achieve the feat of controlling such an immensely complex

system so rapidly and seemingly effortlessly? Two theories emerge:

Optimal Feedback Control (OFC; Todorov and Jordan 2002) stipulates that to achieve

a goal, the brainminimises a cost function (typically considered to be the squared target

distance and energy expenditure). This theory implies that the brain must simulate

possible muscle activation patterns in order to find the one which optimises the cost

function. This makes a strong assumption on the existence of an accurate model of the

body’s dynamics in the brain, and supposes that the optimisation may be performed

in real-time. Interestingly, this theory results in what is known as the “uncontrolled

manifold” or “minimum intervention principle” where task irrelevant variables are
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not controlled (e.g. when grasping a stick, the hand’s position along the length of

the stick does not matter particularly and is thus allowed to fluctuate). Conversely,

any particular task will result in a stable muscle activation pattern which needs to be

maintained to achieve the goal.

On the other end of the spectrum, the Muscle Synergy approach assumes that these

activation patterns are not a consequence of the control method but rather a low-

dimensional manifold on which the brain can act (d’Avella, Saltiel, and Bizzi 2003).

Accordingly, the problem is not somuch to optimisemuscle activity globally but rather

to select from one (or more) of many possible synergies which by themselves constrain

the motor output. This approach has a number of shortcomings. However, its main

critique is that the synergies observed from decomposition of movement data may

simply be an artefact of the analysis method. In particular, synergistic muscle activity

seems to occur even if the movement is not executed voluntarily but instead by directly

manipulating the tendons (e.g. Valero-Cuevas, Venkadesan, and Todorov 2009).

Most research in motor control does not consider higher levels of processing. How-

ever, it seems obvious that the sequences in which tasks are being performed – though

not necessarily critical to achieving one’s goal – will influence the configuration of the

body and consequently requires adaptation of the motor command to be executed.

A major shortcoming from most of the aforementioned research is that it almost

exclusively considered simple movements (i.e. centre-out reaching tasks or similar)

performed in laboratory settings. It thus artificially constrains the potential output of

the motor system and consequently may lead us to see features which are not present

or miss some. In particular, it prevents us from understanding how complex tasks are

planned and executed. Are they monolithic or does the brain break them down into

individual motor programs? In the latter case, how are these sequences organised?

Yet, despite the limitations caused by laboratory experiments, the findings are widely

applied in real-world settings:
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In the clinical setting, the ability to perform certain movements is widely used for

assessing the progress of disorders or rehabilitation, in particular when neurological

damage is involved. These include the Fugl-Meyer Assessment of Sensorimotor Recov-

ery After Stroke (FMA; Fugl-Meyer et al. 1974), the Unified Parkinson’s Disease Rating

Scale (UPDRS; Goetz et al. 2007) and the Spinocerebellar Ataxia Functional Index

(SCAFI; Schmitz-Hübsch et al. 2008) to name but a few. These scales typically involve

comparing the patient’s ability to perform an “Activity of Daily Living” (ADL) with

a baseline or with a control population. Yet, while hundreds of different ADLs have

been proposed, the properties of natural human behaviour have yet to bemapped. This

has two negative consequences: (1) a clinician rating the subject’s ability to perform a

task is highly subjective and (2) functional recovery might mask (possibly nefarious)

compensatory mechanisms developed by the patient. Being able to compare natural

movement with a baseline would thus be a major step towards creating an objective

assessment of disease and recovery.

State of the art hand prostheses have the ability to perform a range of different grasp

types, with the user required to choose the grasp to perform manually (Farina et al.

2014). The choice of available hand motions includes some of the standard grasps (e.g.

power grasp, pinch, etc.) which have been identified through painstaking observation

and manual classification (e.g. Cutkosky 1989). Due to the subjective nature of this

procedure, the grasps it identifies may only represent a subset of possible hand con-

figurations. Furthermore, it does not directly quantify the movements necessary to

move from one pose to the next, but instead assumes that all movements start from an

arbitrarily decided “neutral” pose.

A detailed analysis of natural hand movements would also be of particular interest

because of their evolutionary significance. The shape of the modern human hand

is thought to be intrinsically linked with our ancestor’s development of stone tools

(Napier 1962; Marzke and Marzke 2000). Relatively short fingers and a proportionally
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longer thumb have been described as key features required to achieve a stable grip on

a stone for shaping it (Napier 1962).

Hand shape, however, was probably not the most important factor in allowing early

humans to design ever more complex tools. The crude Oldowan stone flakes (∼2.5

million years ago) were produced both by our predecessor Homo habilis as well as the

more primitive (and smaller brained) Australopithecus. Conversely, the much more

sophisticated Acheulean stone axes (∼1.5 million years ago) are the product of Homo

erectuswhich is known to have amuch larger brain volume than its ancestors (Ambrose

2001). Along the same line of reasoning, Faisal et al. (2010) demonstrated that the com-

plexity of hand postures required for producing Acheulean tools is not significantly

different from the ones required for the simpler Oldowan flakes. This leads the au-

thors to conclude that the ability of performing the complex task sequences and force

modulations required for the production of Acheulean stone axes is a consequence of a

more evolved brain. The study of complex movements may thus give us direct insights

into our evolution and the development of the brain.

Given the scientific and technological importance of understanding human move-

ment, it seems surprising that research has mainly been focused on laboratory ex-

periments. Human movement in ecologically valid settings is highly variable, which

reflects our versatility in interacting with numerous different environments. This large

variability, however, requires novel tools for analysing the data. We no longer have

the luxury of averaging over repeated identical trials. Instead, new tools are required

to identify interesting movements and comprehensively map the full extent of human

movement.
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1.2 Thesis Structure

Our work attempts to tackle some of these challenges. In Chapter 2 we introduce an

experimental paradigm for collecting kinematic data from healthy or diseased human

subjects in unconstrained settings. This overcomes the risk of overlooking important

aspects of human motor control by experimentally constraining the subject’s move-

ment. We describe the statistics of natural movement in order to identify invariant

features of human movement. These may be used as a baseline against which disease

progression may be measured. Additionally, we test some of the typical assumptions

in motor control for their validity in ecologically valid settings.

Chapter 3 goes further by looking into the structure of movement, both from a spa-

tial and a temporal perspective. In particular, we highlight the problem of collecting

data in constrained laboratory settings by contrasting results from a laboratory study

with those from studies in natural environments. From an application perspective,

we propose a new method for enhancing prosthetic control by exploiting information

provided by the inherent structure of natural movement. Finally, we review current

hypotheses of low-dimensional control strategies in the hand and propose a new ap-

proach inspired by work in the sensory system.

A key issue when dealing with large and unstructured datasets such as the ones we

collected from freely behaving subjects is that most classical analysis techniques are

not appropriate for investigating them. Consequently, Chapter 4 presents an algorithm

we developed for this type of data, specifically to investigate our hypothesis laid out in

the previous chapter. The method uses principled ways to identify meaningful local

patterns in the stream of data. We validate our algorithm and compare it to state of the

art applications.

This methodology is applied to hand movement data in Chapter 5. We show that

our representation (termed sparse eigenmotions) is more efficient at representing the

30



1.2 Thesis Structure 1 Introduction

data than current methodology, both for typical laboratory experiments and for un-

structured data. We demonstrate the existence of higher-order structure in this rep-

resentation, which points to a potential language of movement. Finally, we show

that knowledge of these local structures vastly improves the ability to predict hand

movements (and thus prosthetic control) by exploiting local structures.

Finally, Chapter 6 offers an outlook into the future potential of themethods presented

here and summarises the questions raised by this study, as well as possible ways of

answering them.
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2
Human Ethomics

“Never confuse movement with action.”

— Ernest Hemingway
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2.1 Introduction

The developing field of Ethomics combines classic ethology, i.e. the study of animal

behaviour in natural settings, with the potential given by modern genomics in the

hope of linking behavioural traits with gene expression. As such, the main subjects

of the research have typically been small organisms whose genetic material is either

well known or can be easily manipulated (Branson et al. 2009; Dankert et al. 2009).
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On the other end, what we term Human Ethomics aims to quantify natural human

behaviour, inparticular bymeasuring perception (sensory inputs) and action (movement)

in ecologically relevant settings. We move away from descriptive ethology towards a

highly quantitative measure of human activity, opening up the potential for detailed

studies of sensorimotor function, e.g. to produce novel biomarkers for ageing and

disease.

Studying motor behaviour in a laboratory setting has given us many important

insights into sensorimotor adaptation and integration in humans and primates (see

Ingram and Wolpert (2011) for a review). However, laboratory tasks are, by their very

nature, limited in their ecological validity. Thus, tasks whichmay appear impossible in

the laboratory may well be achieved in natural settings. For example, Rhesus monkeys

were seemingly incapable to use the experimenter’s gaze to determine which prop to

pick up (Anderson, Montant, and Schmitt 1996). Yet, a later study showed that similar

animals would rather steal food from the experimenter who was looking away than

the one watching the food (Flombaum and Santos 2005). The same ability was shown

in chimpanzees when competing over various food resources with a more dominant

conspecific: the non-dominant chimpanzee would go for food it knew the dominant

one could not see (Hare et al. 2000; Hare, Call, and Tomasello 2001). Therefore,

the monkey’s ability to use a specific skill was related to the ecological validity of the

context inwhich it had to use the skill. Similarly, researchers studying human cognition

have recognised the necessity to move away from the rigid and featureless laboratory

environment and study human behaviour in ecologically relevant contexts (Kingstone,

Smilek, and Eastwood 2008). A prime example of this approach is the study by Land

and Lee (1994), in which they studied eye movements of humans during a real-world

driving task. Having studied the human behaviour in a natural environment, they

then went on to copy some aspects of real driving in a laboratory setting to study the

importance of the field of view (Land and Horwood 1995). These studies identified
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that, contrary to prior belief, both near field (close to the car) as well as far-field vision

are required for safe driving at medium to high speeds.

While it may be argued that cognitive tasks are more likely to be influenced by the

context, studies show that this is equally true for motor tasks. Howard et al. (2012)

showed that two conflicting motor tasks can be learnt simultaneously, as long as the

context is suitably modified for each task, akin to our ability to lean the manipulation

of various different tools. Bock and Beurskens (2010) studied age-related changes in

walking both in the lab and in the park and showed there is an increased variability in

step duration with age in the laboratory setting, but not in subjects freely walking in

a park. Similarly, hand movements as part of a larger task were significantly different

from isolated movements (Bock and Hagemann 2010; Bock and Züll 2013). These

findings make a strong case for studying human motor behaviour in settings where

subjects can move and behave freely.

Quantitative studies of human behaviour “in-the-wild” have often relied on indirect

observation, such as diaries kept by the subjects themselves (Schlich and Axhausen

2003) or from observers shadowing the subject (Kilbreath and Heard 2005). Both

studies, however, lack objective data and are sensitive to subjects correctly reporting

results and the observer being capable of registering all the information rapidly enough.

The development of cell phones, and in particular smartphones with a large range of

sensors such as accelerometers, gyroscopes, magnetometers andGPShasmade it easier

to unobtrusively measure human behaviour in natural settings. Combined with body-

worn sensors which can stream data directly to the phone or an independently carried

recording unit, this can give us information about not only the subjects’ location, but

also their real-time activity1.

1As example, (Győrbíró, Fábián, and Hományi 2009) use a phone and three sensors attached on ankle,
wrist and hip to classify the subjects’ data between six different activities (resting, typing, gesticulating,
walking, running and cycling) with a neural network. While their system performs quite well, the
activities do have very different kinematic signatures.
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Although new technology has enabled the scientific community to collect kinematic

data from humans in natural environments, most of the motion capture equipment

which is commercially available – and has been available for a while now – is designed

with a laboratory setting in mind. Though it is still possible to collect ecologically

relevant data (e.g. theCarnegieMellonUniversityMotionCaptureDatabase2), subjects

are highly constrained in the space in which they can move. In addition to laboratory

based tasks, at least two studies modified equipment to make it usable by subjects

during their everyday life: Ingram et al. (2008) used a sensorised glove connected to

a laptop and a battery in a backpack to record the movement of subjects’ right hand

in completely unconstrained environments over periods of around 3 h. From the same

research group, Howard et al. (2009) adapted a magnetic positioning system to record

the movement of the subjects’ arms. Both studies confirmed findings from previous

laboratory experiments, such a the symmetry bias for arm movements (Kelso 1984) or

the dimensionality of hand movements (Santello, Flanders, and Soechting 1998), but

fall short of identifying novel features specific to natural behaviour.

More recently, Body Sensor Networks (BSNs) have emerged as a way of measuring

human movement in an unobtrusive way. These are typically small cases including

a 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer (thus called a 9-

axis sensor) which are attached to the subject’s body and can record its movement

over a prolonged period of time, storing it onboard or streaming it to a base-station.

Additional sensory modalities, such as skin galvanometry, surface electromyography

(sEMG) or mechanomyography (MMG) (Fara et al. 2013; Gavriel and Faisal 2014) may

be combined into these sensor blocks, termed nodes (as in nodes of a network). These

sensor systems have been independently developed by a number of research groups,

and some have recently become commercially available. Thanks to their small size

and weight, these sensors are ideally suited for measuring human movement and

2Available at http://mocap.cs.cmu.edu/ & http://kitchen.cs.cmu.edu/
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physiological parameters (respiratory and heart rate (Teichmann et al. 2014) and or

metabolic rate (Bourke et al. 2014)) during everyday activity.

In the medical field, BSN nodes are being studied to augment the normal diagnostic

protocol by providing objective data about the patient’s movements during standard

clinical test conditions, such as the 10 m walk for Parkinson’s disease (Giuberti et al.

2014). Despite promising advances, results obtained from BSN-augmented studies

need to be taken with caution. Indeed, because of their recency, a significant amount

of research is still going into refining sensor standards and data collection protocols.

Currently, sensors are frequently attached at different locations on the limbs and con-

sequently the data may be difficult to compare, especially if the location is not precisely

recorded. Such limitations will undoubtedly disappear with the more wide-spread

acceptance of such equipment in clinical environments and its commercial availability.

In the following, we present our work on the collection of human behavioural data

in unconstrained settings. We collect the data using a variety of inertial or mechanical

sensors, thus allowing the subject complete freedom over the space in which they

move and avoiding typical problems of optical systems such as sensor occlusion. A

special feature of this semi-unconstrained data collection paradigm is that it allows us

to annotate the subject’s behaviour online using custom software. Video recordings

are also available for subsequent, detailed offline analysis. We first present the data

collection environment along with the motion capture equipment and software used.

We then illustrate the methodology with some representative data and analyse its

potential as a baseline to assess natural and disease-related motor variability. We test

some assumptions and findings of constrained motor tasks to verify their relevance to

natural motor control. Limitations of the method are described in the discussion along

with further analyses of our findings.
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2.2 Materials and Methods

2.2.1 Subjects

A total of 62 healthy subjects (18 female, age 19–34) were recorded in various experi-

ments. All subjects were naïve to the purpose of the experiment and all experimental

procedures were approved by the Imperial College Ethics Committee.

2.2.2 Settings

A B C

Figure 2.1: Settings constructed to emulate the subjects’ natural environment. A A
bedroom complete with bed, covers and clothes to put on over the motion capture suit.
B A kitchen/breakfast setting for subjects to prepare and consume food. C An office
environment with various computer and paper related tasks. Themetal table and chair
depicted here were later replaced by plastic furniture to avoid magnetic interference.

We recorded subjects in three different settings emulating their natural life (Fig-

ure 2.1): (1) a kitchen/breakfast setting, (2) a bedroom setting and (3) an office setting.

These recording areas were set up inside the laboratory (bedroom) or in a communal

area. In each setting, subjects were given a number of tasks from their daily life to

perform (e.g. set the table, have breakfast) but were free to achieve these tasks in any

way they liked, thus enabling us to collect naturalistic motion data. On average, we
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collected 30–40 min of data for each subject and setting.

2.2.3 Movement Data Acquisition

The subjects’ behaviour was recorded using a variety of equipment, although not all

equipment was used simultaneously. We will refer to each different recording method

as a recording modality. In addition to the modalities described below, some subjects

also wore an eye-tracker to record their gaze. The data and recording method are

extensively described in William Abbott’s Ph.D. thesis and are not further discussed

here.

A

T-CMC
T-MCP

T-ABD

L-MCP

L-PIP

L-DIP

L/R-ABD

B

Foot
Shank

Thigh
Hand

Forearm

Upper arm

Head

Figure 2.2: A Sensor placement for the right-hand Cyberglove. The left glove is similar
but lacks sensors on theDIP joints. B Subjectwearing the IGS-180 suit. Arrows indicate
sensor placement, which is identical on the left hand side. Sensors on the hip, spine,
and clavicles are on the back of the suit (red boxes). Figure B modified from (Gavriel
and Faisal 2013).

Hand Data

The data from the subjects’ left and right handwere recorded using a CyberGlove I and

III respectively (CyberGlove LLC, San Diego, CA, USA). The CyberGloves are fabric

gloves with stretch sensors placed over the joints of the fingers (see Figure 2.2A for
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sensor placements). Note that the right hand glove also measures the movement of the

distal interphalangeal (DIP) joints, while the left hand does not. Moving the fingers

bends the sensors and thusmodifies their electrical resistance, which can bemeasured.

The hand movement is recorded at 140Hz and 90Hz for the left and right hand respec-

tively, and converted using an 8-bit analogue-to-digital converter (ADC). This results

in in an effective worst-case resolution of about 0.5°. Calibration is performed as a two

stage-process: an initial calibration using software provided by the manufacturer and

subsequent refinement by manually adjusting sensor gains and offsets while compar-

ing the subject’s hand with a visual rendering of the hand. The recorded data was

streamed to a laptop where it was saved along with a time-stamp obtained from the

system clock.

Body Data

Themovement from the entire body (excluding fingers) was recorded using an IGS-150

or IGS-180motion capture suit (AnimazooUK Ltd, Brighton, UK). The suits aremainly

used in themovie andvideo-game industry to record themovement of characterswhich

would be difficult or impossible to animate artificially. A suit consists of a pair of Lycra

trousers and jacket with sensors embedded to measure the movement of various limbs

(see Figure 2.2B). The sensors are classic 9-axis inertial measurement units (IMUs)

and a complete data set (i.e. values from all sensors) are streamed to the laptop at

60Hz. The only noteworthy differences between the two models of the suit used are

that the IGS-180 has two additional sensors placed behind the clavicles and is capable

of streaming data wirelessly, potentially allowing for more natural movement by the

subject. Calibration of the motion capture suit is done by a simple routine provided by

the manufacturer as part of the control software.

The data provided by the suit comes in BVH format which saves each joint’s position

as Euler angles with rotation order ZXY (front, right, up from the subject’s perspec-
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tive). Because the rotations are not commutative and the rotation order is unlike the

motion of our limbs, this encoding is difficult to interpret in biomechanical terms. To

address this, we transform the rotation angles into biomechanically meaningful values

by representing the Euler angles as quaternions and then mapping them back to Euler

angles with different rotation orders as recommended by the Interational Society of

Biomechanics (Wu et al. 2002; Wu et al. 2005).

Scene Recording

The working area of the subjects was monitored externally using a standard video

recorder. The camera was placed on a tripod in a way to observe most of the subjects’

movements without requiring frequent repositioning. The data thus recorded is not

explicitly evaluated but serves as reference to compare data recorded from the suit and

gloves, as well as assisting post-experimental data annotation.

Data Preprocessing

Prior to further analysis, the raw data from suit and gloves was synchronised to a

common time vector at 100 Hz by linearly interpolating between available samples

using the spherical-linear interpolation method (Shoemake 1985). The position data

thus obtainedwas filteredwith three passes of a 110 ms moving average filter to remove

noise and artefacts due the ADC.

2.2.4 Data Annotation

The subjects’ behaviour was annotated online by the experimenter using one of two

custom-written tools implemented in Matlab (The Mathworks Inc., Nattick, MA). The

first, termed logING has been extensively discussed in an M.Sc. thesis (Vella 2012) and

will not be described in detail here.
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Kitchen

LayTable

OpenCupboard PickObject . . . CloseCupboard

Eat . . . ClearTable

Setting

Task

Action

DALI

Figure 2.3: Example annotation using the Dynamic Activity Logging Interface. Each
setting allows for a number of different taskswhichmay be performed using a sequence
of predetermined actions.

Dynamic Activity Logging Interface

A major drawback of logING is the requirement for the experimenter to remember the

mapping between keyboard short-cuts and actions or to look them up while they are

annotating the data, thus running the risk of voiding the initial work of creating a large

database of potential actions. Further, the number of possible actions is inherently

limited by the number of keys on the keyboard. To address these shortcomings, we

developed the Dynamic Activity Logging Interface. DALI simplifies the process of

online annotation by introducing two features:

Graphical User Interface Instead of remembering countless actions and their corre-

sponding keyboard short-cut, DALI displays all possible actions on a grid of clickable

buttons. In the event an action is not available, e.g. because the experimenter had not

thought about it before, a special "NEW" action allows to register the time-stamp of

manual annotations.

Hierarchical Structure While the number of actions a subject can perform is virtually

endless, they are intrinsically tied to the setting they are in. For instance, the action

42



2.2 Materials and Methods 2 Human Ethomics

"Sit down on bed" may occur multiple times when the subject is in the bedroom, but

is totally irrelevant when the subject is in the kitchen. To take this into account, DALI

introduces a hierarchical annotation structure where the annotator first identifies the

setting the subject is in (e.g. "Kitchen"), followed by the task the subject is currently

executing (e.g. "Clearing Table"). The list of actions available is then tailored to the

specific task and setting (see Figure 2.3).

Unlike logING, DALI does not provide the ability to record start and end times of an

action. This follows from the analysis of over 40 recordings made with logING which

suggest that the annotator has rarely the time to record both start- and end-times of

events.

2.2.5 Modelling

All analysis was performed usingMatlab. Unless otherwise stated, optimisations were

performed using an interior-point algorithm implemented by the fmincon function.

Position Data Fitting

To obtain a parametric distribution of the joint position data and enable outlier rejec-

tion, we fitted the data obtained for each joint and movement direction (i.e. flexion,

pronation, etc.) with a variety of the following distributions (and mixtures thereof):

• the normal distribution: θ ∼ N (µ, σ2);

• the generalised extreme value distribution: θ ∼ GEV (µ, σ, ξ);

• the "negative" generalised extreme value distribution: −θ ∼ GEV (µ, σ, ξ); and

• the continuous uniform distribution θ ∼ U (−180, 180).

The GEV distribution was added to this selection as it enables us to capture skewed

distributions and long tails. Alternatives (e.g. the skew-normal distribution) are
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possible but lack a closed-form analytical expression. As the raw data contains a

considerable number of erroneous data points (e.g. due to magnetic interference of

large metallic objects with the suit sensors), we estimated the distribution parameters

in multiple steps. (1) A mixture distribution was fitted which always contained a

uniform distribution spanning all possible values of the data. For the best fitting

distribution (as measured by the Bayesian Information Criterion (BIC)), the data points

which were more likely to come from the uniform distributions than from the other

mixture components were removed for the next step. (2) The uniform distribution was

removed from the mixture and the parameters re–estimated on the cleaned data set.

(3) We reconsider the entire data set, excluding only data points whose log-likelihood

was less than−5.83 and estimate themaximum likelihood parameters on this final data

set3.

The choice of distributions to add to the mixture, as well as initial parameter guesses

were chosen by visual inspection of the data. At each step of the fitting, the optimal

parameter estimate was obtained by maximising the likelihood function.

Velocity Data Fitting

In agreement with general observation and similarly to previous authors (Morasso

1981; Abend, Bizzi, and Morasso 1982; Flash and Hogan 1985), we assumed that the

velocity profile at the joints θ̇(t) is given by a bell-shaped curve. More complex

movement are simply considered to be a superposition of multiple such curves. Thus,

any particular movement can be described by:

θ̇(t) �
N∑

i�1
φi (t − τi) (2.1)

where N is the number of superimposedmovements, τi the delay betweenmovements

3This is the likelihood of a data point 5σ away from the mean in the normal distribution.
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and φi is approximated by:

φi � αi exp *
,
− t2

b2
i

+
-

(2.2)

where αi and bi respectively modulate the amplitude and duration of the movement.

Consequently, the probability of a single movement without superposition is given by:

P(θ̇i |α, b) � C−1b
√

ln(α) − ln(θ̇) s.t. θ̇ ∈ (0, α] (2.3)

where C �
1
2αb
√
π is a normalisation constant. Note that after normalisation, b disap-

pears fromEquation 2.3, thusmaking the probability of any given velocity independent

of the movement duration. Further, under the assumption that τi � bi , the probability

distribution over the velocity is simply given by:

P(θ̇) �
∑
αi∈A

ωiP(θ̇ |αi) s.t.
∑

i

ωi � 1 (2.4)

Here, A is the space of all possible amplitudes and ωi the probability of a movement

with peak velocity αi . The assumption that τi � bi is obviously problematic, as it

imposes that the movements are clearly separated from each other. The impact of

this assumption will be analysed in the discussion. To estimate the values of ω for the

observed velocities, θ̇o , we used the following procedure: (1) we picked 50 values for α,

logarithmically spaced between 0.06 deg/s and dθ̇oe. (2) The corresponding 50 initial

values of ωi were set to 1/50, and (3) we optimised the values of ωi by minimising the

cost function given by:

E �

∫ dθ̇oe

0
(F(θ̇o) − F(θ̇))2dθ̇ + λ‖

M∑
i�2

ωi − ωi−1‖22 (2.5)

where F is the cumulative distribution function (CDF) of P, λ is a regularisation
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parameter (see below), and
∑M

i�2 ωi − ωi−1 imposes smoothness onto the weights.

To determine the best value of λ, we randomly picked a data set and optimised

Equation 2.5 with 100 λ values logarithmically sampled between 10−3 and 103, as well

as λ � 0. For each ω thus obtained, we computed the Kolmogorov-Smirnov (KS)

statistic between F(θ̇o) and F(θ̇). The quality of the fit remained largely unchanged

for increasing values of λ until it started deteriorating for λ between 0.1 and 1. To

determine the ideal value of λ, we adapted the method of Cheung et al. (2005) to select

the point at which the KS statistic starts increasing. The corresponding value of λ, 0.7,

was used for the optimisation of all other velocity fits as it provides a good balance

between accuracy of representation and smoothness of the function.

2/3 Power Law

We examined how the relationship between movement velocity and curvature holds

in natural behaviour by fitting a power law between the two variables. As shown pre-

viously (Schaal and Sternad 2001), the resulting fit parameters vary greatly depending

on whether one fits a power law to the raw data using a non-linear least squares

method or by fitting a straight line to the data plotted on a log–log axis. To maintain

comparability with previous studies, we report values from both methodologies. An

additional difficulty which arises from analysing the relationship in natural movement

data is that the original formulation of the 2/3 power law (Lacquaniti, Terzuolo, and

Viviani 1983) assumes that the scaling coefficient of the power law, k, is only piecewise

constant. Thus, fitting a power law to the entire data set may give erroneous results by

confounding the effect of k. To avoid this, we fitted a power law to non-overlapping

500 ms (50 samples) windows of data and evaluated the R2 of the fit to decide whether

the scaling coefficient was approximately constant within the window. Only windows

with an R2 > 0.9 were considered for further analysis.
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Figure 2.4: Movement detection example on flexion movements of the right elbow.
A Empirical distribution of joint velocities and computed thresholds (dashed lines).
Note the logarithmic scale on the y axis. B Result on the time series. Areas shaded in
grey are those for which a movement is detected. Zero-crossings are bridged by the
morphological closing operation.

2.2.6 Movement Decomposition

We identifymovements by decomposing the time-series of each joint angle into periods

of movement and no movement. A movement segment is presumed to be one continuous

action. To identify the beginning and end of movements, we compute the empirical

probability distribution of the velocity data from a histogram with 104 evenly spaced

bins over the range of the data. The data points with an empirical p-value < 0.3 were

considered to be movement. To mitigate the effect of noise, bridge zero-crossings and

capture the entirety of the movement, we perform a series of morphological open-

ing and closing operations with increasing window size (3, 11, 11 and 55 samples

respectively) on the binary classification. An example of the ability of this method to

decompose a time-series into areas of movement and stillness is given in Figure 2.4.

2.2.7 Movement Plane Orientation

To analyse the planarity of hand movements, we identified start- and endpoint of

each movement using the aforementioned method and performed PCA on the 3-
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dimensional trajectory data in between. If the first PC accounted for less than 90%

of the variance (i.e. the movement was not deemed linear), we define n, the normal

vector to the movement plane as the third PC. As the sign of the n does not matter,

we ensured that they were all pointing into the northern hemisphere prior to further

analysis. To identify preferred orientations, we first projected n onto the surface of a

unit sphere before unwrapping it using the Lambert azimuthal equal–area projection.

As the name suggests, this type of mapping preserves areas and thus point density.

Preferred orientations were identified by comparing the point cloud obtained in this

way with a model of complete spatial randomness (CSR). In particular, we compare

the so-called G-function of inter-point distances (Bailey and Gatrell 1995, pp. 83–110):

G(w) �
#(wi ≤ w)

n
(2.6)

where #(wi ≤ w) indicates the number of inter-point distances less or equal to some

value w and n is the total number of points in the area. To be able to tell whether

the observed function G was significantly different from a purely random pattern, we

performed 2000 simulation runs by computing G with uniformly randomly distributed

data.

2.3 Statistics of Natural Movements

We analyse the natural movement data under a number of different aspects. First, we

present the raw probability distributions for joint position and velocity. To assist with

the evaluation of specific recordings, we compare individual recordings of healthy peo-

ple with the grand average, thus qualifying the individuality of movement. Next, we

show the relationship between joint position and instantaneous velocity, demonstrating

modulation of the velocity bandwidth by position. Finally, we examine the existence

of the 2/3 power law (Lacquaniti, Terzuolo, and Viviani 1983) in natural movement.
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Figure 2.5: Probability distributions of joint positions.
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between SD and IQR which is characteristic of a heavy tailed distribution.
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2.3.1 Position

The distributions of joint angles computed from the aggregate data of all recordings

are shown in Figure 2.5 for the right side of the body (the statistics for the left are com-

parable). Outliers were removed according the the procedure outlined in Section 2.2.5.

Unsurprisingly, knee flexion, hip flexion and elbow flexion show verymarked bimodal

distributions characteristic of sitting and standing. The other distributions all deviate

from normality by either being skewed or displaying an substantial excess kurtosis4

resulting in a distributionwith higher probability density around themean. The devia-

tion fromnormality is also found for each individualmodeof the bimodal distributions:

the best fit for each mode of the distribution was found to be a generalised-extreme

value distribution which is characterised by a heavy tail and a marked excess kurtosis.

While the average distribution of limb position may be interesting to understand

the general control of the body, we wanted to know how much individual samples

recordings varied from the mean. This baseline deviation may eventually help identi-

fying abnormal deviations from normal behaviour caused by injury or disease. To do

so, we compared the individual recordings using two metrics: (1) the Jensen-Shannon

divergence (JS, a symmetrised version of the Kullback-Leibler (KL) divergence) and the

average log-likelihood of individual data points. The results are reported in Figure 2.7

with different colour codes for each part of the body measured. Note that the twomet-

rics do not measure exactly the same property of the movement. The Jensen-Shannon

divergence measures the difference between the two distributions. Thus, someone

standing still manipulating an object with his hands will have a very large JS diver-

gence value for the lower limbs as their distribution will be almost singular and thus

very different from the global average. Conversely, the average log-likelihood looks at

every data point individually and computes how likely that observation is given the

4This is defined as the kurtosis of the distribution minus 3, the kurtosis of the normal distribution.
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Figure 2.7: Variation of individual recordings from the grand average as calculated by
theA Jenson-ShannonDivergence (lower is more similar) andB average log–likelihood
(higher is more similar) of recorded data points. The different coloured areas of the
plot indicate various body parts. As expected, right and left limbs show very similar
patterns with respect to their similarity score. The dissimilarity between the results
from the divergence metric and the average likelihood comes from the fact that they
measure slightly different aspects of the movement distribution (see text for details).
Full circles indicatemedians, boxes the interquartile range andwhiskers extend atmost
1.5 IQR. Hollow circles indicate outliers.
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Figure 2.8: Probability distributions for the velocity of all joints of the body. The shape
is largely preserved across joints, but the variance is very different. Note that neither
the double gamma distribution nor the Normal distribution can fit the data well, as
neither capture the heavy tails of the data.

grand average. This conceptual difference explains that the values of the JS divergence

and the average log-likelihood are only weakly correlated (r � −0.56).

Interestingly, the values for the JS divergence (Figure 2.7A) suggest that the upper

limb statistics of different subjects are more similar to each other than is the case for the

lower limbs. While this may at first seem surprising, it simply suggests that the upper

body is used in a similar fashion, independently of whether the subject is sitting or

standing. Conversely, the lower limb position are largely constrained by the subject’s

pose (sitting, standing, etc.) which causes a narrow distribution of joint angles and

thus a larger JS divergence.

2.3.2 Velocity

Unlike the position distributions which are very characteristic of the joints observed,

the shape of the distributions of joint velocities are largely independent thereof (see

Figure 2.8): the probability density falls off very sharply, thus indicating a majority of
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Figure 2.9: Contour plots of log10P(θ, θ̇) for flexion of the A right knee and B right
elbow obtained from a histogram with bins of 5° s-1 for velocity and 1° for position.
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Identifier Mean 95% C.I. Identifier Mean 95% C.I.

Hip Flex. L 0.49 -62.32 63.31 Elbow Pron. L -21.73 -60.19 16.74
Hip Abd. L -35.83 -90.26 18.61 Wrist Abd. L 0.3 -0.24 0.83
Knee Flex. L 10.05 -8.79 28.88 Wrist Flex. L -1.53 -21.67 18.61
Ankle Flex. L 2.05 1.75 2.35 Shoulder El. R 0.05 -1.97 2.08
Ankle Inv. L 3.29 1.28 5.3 Elbow Flex. R -7.16 -31.29 16.96
Hip Flex. R 11.26 -16.97 39.5 Elbow Pron. R -6.10 -33.64 21.44
Hip Abd. R 13.32 -11.1 37.74 Wrist Abd. R 0.37 0.18 0.55
Knee Flex. R 13.08 -11.65 37.81 Wrist Flex. R -6.67 -21.89 8.55
Ankle Flex. R -16.37 -65.59 32.85 Neck Flex. -0.41 -7.46 6.64
Ankle Inv. R -0.25 -0.64 0.14 Neck Abd. 7.67 -327.47 342.81
Shoulder El. L -0.04 -0.64 0.55 Neck Tors. 7.69 -38.31 53.69
Elbow Flex. L 8.96 -11.29 29.21

Table 2.1: Bootstrapped mean skewness and confidence intervals for the velocity dis-
tribution of various joints. Joints for which the estimate did not include 0 are indicated
in bold.

movements at relatively lowvelocity. However, this does notmean that fastmovements

are non-existent. On the contrary, rapidmovementsmaintain amuch higher likelihood

than could be expected if the distribution of velocities followed a Normal or "double"

Gamma5 distribution (Figure 2.8 solid and dashed lines respectively). The PDFs for

individual joints differentiate themselves mainly in terms of the standard deviation of

the distribution, neck abduction having the narrowest distribution (SD = 6°/s) and the

right elbow and wrist the largest (SD ' 40°/s).

Next, we asked whether the movement speed in a given direction (e.g. flexion)

was markedly different than the movement in the opposite direction (extension). We

expected joints where the muscles acting in opposing direction have very different

strengths (e.g. the elbow) to show a skew towards faster movements in the direction

in which the muscles are stronger. As shown in Table 2.1, this is generally not the case,

most skewness estimates having confidence intervals comprising 0. In the three cases

5This is the symmetrised Gamma distribution defined as P(x |k, θ) �
1

2Γ(k)θk |x |k−1e−|x |/θ with support
x ∈ (−∞,∞).
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Figure 2.10: A–W Probability distributions for peak velocities of all joints of the body.
A–E Left leg (Hip flexion, abduction; knee flexion; ankle flexion, inversion). F–J
Equivalent for the right leg. K–O Left arm (shoulder elevation; elbow flexion, elbow
pronation; wrist abduction, flexion). P–T Equivalent for right arm. U–W Neck flexion,
abduction and torsion. Note the variability in the shape of distributions, as well as
the consistency within equivalent joints on the left and right side of the body. Shaded
areas indicate standard deviation across N � 15 recordings.

where the 95% confidence interval did not include 0, the estimated skewness is so close

to zero that the distribution can still reasonably be approximated as symmetric. While

we found no direction dependence we did observe that fast movements were much

more likely to occur at positions with high likelihood (see Figure 2.9). This relationship

is characterised by a strong positive correlation between the likelihood of a given

position θ and the width of the contour lines of P(θ, θ̇) (Pearson’s r � 0.86± 0.06). An

exception to this rule is the knee (Figure 2.9A) which has an offset of 15–30°, consistent

with the region of peak velocity in the swing phase of walking (Chao et al. 1983).

We attempted to model the observed velocity distributions by assuming that each
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movement is composed of sub-movements (Morasso 1981; Milner 1992; Burdet and

Milner 1998) whose velocity profile can be represented by a bell curve with variable

amplitude (see Section 2.2.5). We chose 50 amplitude parameters, αi , i � 1 . . . 50, log-

arithmically spaced between the slowest and fastest observed movement of each joint.

The resulting curves fitted the empirical velocity distribution very well (GOF > 0.99

for all fits). From this modelling approach, we can extract the probability distributions

for peak velocities of individual joints (Figure 2.10). These distributions have three

noteworthy characteristics: (1) The shape of the distributions vary greatly from joint to

joint, but are similar for the same joint on either side of the body. (2) The distributions

for the right arm (dominant) are shifted towards higher peak velocities relative to the

left arm. This is not the case for the right leg. (3) They are extremely similar across

individuals. Indeed, the JS divergence between individual probability distributions

and the average is about an order of magnitude lower than it is the case for position

distributions (see Figure 2.11).

2.3.3 Movement Linearity and the 2/3 Power Law

As a final consideration, we verified whether features of movement recorded during

constrained experiments still hold in natural behaviour. We consider two long-standing

observations: (1) movements are mainly straight (Flash and Hogan 1985; Atkeson and

Hollerbach 1985; Uno, Kawato, and Suzuki 1989) and (2) the 2/3 power law (Lacquaniti,

Terzuolo, and Viviani 1983; Viviani and Cenzato 1985; Schaal and Sternad 2001).

Movement Duration and Linearity

We analysed the straightness of hand movements by identifying start and end times

of motions and decomposing the time-series accordingly (see Section 2.2.6). We iden-

tified N � 3523 movements with an average time of 1.6s. The duration of individual

movements could accurately be described by a log-normal distribution with parame-
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Figure 2.11: Top Representative examples of peak velocity distributions for three sub-
jects (coloured lines) and the average (black). From left to right, they represent the
left and right knee flexion, left and right elbow flexion and neck flexion. Bottom
Jensen-Shannon divergence between individual peak velocity distributions and the
mean. These values should be contrasted with the distance of position distributions
(Figure 2.7A), which are about an order of magnitude larger.

ters µ � −0.15 ± 0.035 and σ � 1.05 ± 0.025 (mean± 2SD; Figure 2.12A). Movement

straightness and planarity were analysed using Principal Component Analysis (PCA).

As shown in Figure 2.12B, it results that 69% of movements are straight, i.e. more

than 90% of their variance is captured by the first principal component (PC). Two PC

are sufficient to accurately represent 99.2% of movements, meaning that they are ef-

fectively all executed in a plane. Linearity and movement duration were negatively

correlated, meaning that longer movements were less likely to be straight lines (Spear-

man’s ρ � −0.66, p < 10−5). The plane of movement is rarely parallel to the ground.
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Instead, its orientation is extremely varied as shown by the projection of the plane’s

normal vector onto the unit sphere (Figure 2.12C). Further analysis did not reveal

any particular structure or preferred orientation for planar movements: the observed

G function, which gives a sense of spatial randomness was not significantly different

from a simulated G-function with truly random data (Figure 2.12D).
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Figure 2.12: A Distribution of movement durations and exponential fit. B Our results
indicate that almost all (> 99%) movements are executed in a plane, while only about
70% can be described as linear. C For the planar movements, the normal vector to
the plane did not appear to point in a consistent direction, as shown in this equal area
projection of the unit-sphere. D The randomness of plane orientationwas confirmed by
comparing the distribution of points inCwith amodel of complete spatial randomness.

The 2/3 Power Law

A number of studies have observed that the angular velocity, ω, of the hand along its

path is related to the curvature of the path by a power law with exponent β � 2/3
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(Lacquaniti, Terzuolo, and Viviani 1983; Schaal and Sternad 2001). Mathematically,

this takes the form of:

ω̇ � kc2/3 (2.7)

or, alternatively,

ẋ � kr1/3 (2.8)

where ẋ is the tangential velocity, k is a constant, c is the curvature and r � 1/c is the

radius of the path and β � 1/3. For any given path, k is supposed to be a piecewise

constant function (Viviani and Cenzato 1985). Amajor concernwith this finding is that

with one exception (Schaal and Sternad 2001), all the data supporting the power law

comes from experiments in the plane. Further, the vast majority of experiments looked

at specific, predetermined movement patterns, in particular ellipses and lemniscates

(figures of eight). We wondered whether the power law would still hold in natural, 3D

movements and if so, whether it was consistent with previous research.

To this end, we calculated the instantaneous curvature and velocity for each indi-

vidual recording Figure 2.13A and fitted a power law to the relationship between the

two variables. The result for a representative subject is shown in Figure 2.13B. The

dashed blue and red line correspond to power law fits using non-linear least squares

on the raw data (βNL � 0.49) and linear fits on log-log plots (βLL � 0.64) respectively.

These coefficients are significantly different from each other and from the ideal value of

β � 0.33 (Bootstrap test, all p < 10−3). This approach, however, neglects the assumption

that k be piecewise constant (Viviani and Cenzato 1985). To take this into account, we

divided the data into non-overlapping windows of 500 ms and fitted the power law in

each individual window (Figure 2.13D. We only considered windows in which the fit

had an R2 > 0.9. In case of non-linear fits, this accounted for 13.6% of windows for the
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curvature, but the exponent value is very dependent on the method used to compute it
(and in any case not 0.33). C The value of k estimated from the data in A is smooth and
shows no trace of discontinuities. D Distribution of power-law exponents computed
on windowed data. Error bars indicate IQR.

right hand, 13.7% for the left hand, 6.3% for the right foot and 7% for the left foot. These

values were higher for linear fits on log-log plots, being 19.4%, 19%, 10.7% and 11.5%

respectively. This method did not reveal an exponent value of 0.33 either. Instead, the

values obtained were very variable and broadly distributed, with medians β � 0.46

for hand movements (0.41 when fitting on a log-log plot) and β � 0.38 (0.36) for foot

trajectories. Using these empirically determined exponents, we could then determine

the scaling coefficient k. As shown in Figure 2.13C, this was not a piecewise constant

function with sharp discontinuities but instead varied smoothly. Computing k using a

different value than the fitted exponent of β � 0.41, e.g. by using the theoretical value

of 0.33 did not produce the postulated result, either.
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2.4 Discussion

2.4.1 Methodology

We collected behavioural data of freely behaving subjects in simulated natural envi-

ronments. Unlike previous studies (Ingram et al. 2008; Howard et al. 2009; Faisal

et al. 2010; Belic 2010), we captured the full perception-action loop by simultaneously

measuring sensory inputs (in particular visual stimuli) and the brain’s output in terms

of movements (both of limbs and the eyes). We are thus, for the first time, mapping

the entire statistics of natural human behaviour. While such studies have been done

previously on a smaller scale (i.e. measuring only movement of certain limbs (Ingram

et al. 2008; Howard et al. 2009) or in more constrained environments (Torre et al. 2009),

it is important to review the findings presented here terms of the ecological validity of

the proposed methodology. Two points in particular could argue against the fact that

we are collecting "natural behaviour": (1) due to experimental constraints, recordings

only lasted 2-3 hours for each subject during which they were placed in various natu-

ralistic settings which emulate their normal environment. The area in which subjects

could move was further constrained by connectivity of the equipment, some of which

was tethered to a laptop by means of a USB cable. This restriction in space and time

implies that subjects could not go by their daily routine completely unhindered. (2) the

suit, gloves and eye-tracker had to be worn in addition of the subjects’ normal clothing,

potentially hampering their movements. The latter issue is an inherent limitation to

current motion capture technology and is likely to affect recordings using either op-

tical or inertial sensors. Markerless motion technology which could overcome these

restrictions does exist (e.g. Corazza et al. 2010; Schmitz et al. 2015) but is still very

inaccurate and suffers from the same limitations as marker-based optical systems (see

Section 2.1). Despite these constraints, no subject reported any problems with execut-

ing movements when asked after the experiment. It should, however, be noted that
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the use of gloves for measuring hand movements does limit tactile feedback, though

previous studies did not report problemswith this (Ingram et al. 2008; Faisal et al. 2010;

Belić and Faisal 2015). Regarding the nature of the data collected, we acknowledge that

due to the very active nature of the subjects’ behaviour, the probability distributions

of joint position and velocity are likely to be somewhat biased. An adult in working

age spends on average 9.4 h sitting (Miller and Brown 2004) and 7.7 h sleeping (Basner

et al. 2007). During that time, the joint position is likely to vary very little, whichwould

cause sharper peaks in the probability distributions for position as well as skew the

distribution of velocities more towards zero. Thus, the data presented here should be

used with care when trying to draw conclusions about a specific subject, i.e. when

trying to determine disease progression (Gavriel et al. 2015a).

2.4.2 Joint Position and Velocity Distributions

The data collected during our experiments enables us to quantify, for the first time,

the probability distribution of the position of individual joints during natural tasks

(Figure 2.5). We note that the distributions are extremely varied, in particular for

the lower body (Figure 2.7). This is likely caused by the fact that our subjects spent

most of their time sitting at a table, where they were allowed to sit any way they

liked. This is reflected in very sharp distributions for leg positions which may explain

the observed variability. In contrast, the probability distribution of joint velocity was

similarly shaped for all joints considered and consistent across subjects. This invariance

may go some way in explaining why humans are much better in identifying biological

motion (i.e. dot patterns which appear to move like humans (Johansson 1973)) than

biological configuration (Krakowski et al. 2011; Buzzell et al. 2013).

The consistency of velocity distributions was preserved when we analysed the am-

plitude of individual movements by fitting a specifically constructed probability distri-

bution to the data (Figure 2.10). This method makes the simplifying assumption that
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movements are far enough apart to avoid significant overlap between them. Since there

is a considerable amount of literature pointing towards the existence of submovements,

i.e. overlapping movements (e.g. Morasso 1981; Burdet and Milner 1998), it is worth

considering the bias induced by our method: our estimate of peak velocities is likely to

be slightly inflated since it does not take into account the contribution of surrounding

submovements. However, based on evidence from detailed analyses of submovements

(Milner 1992; Rohrer and Hogan 2006), this effect is likely to be small, in particular if

assuming a Gaussian shape for submovements, as we do. It should in theory be pos-

sible to quantify exactly how much our estimate is off by using "exact" submovement

decomposition algorithms (Morasso and Ivaldi 1982; Milner 1992; Rohrer and Hogan

2003; Rohrer andHogan 2006), however, the computational demands of thosemethods

make them unsuitable for the amount of data we were analysing (Rohrer and Hogan

2006).

2.4.3 Similarity Between Subjects

We investigated two measures of behavioural similarity between subjects: (1) the

Jensen-Shannon divergence between the probability distribution of individual sub-

jects’ position and movement and the grand average (Figure 2.7A) and (2) the mean

log-likelihood of subjects’ data given the grand average (Figure 2.7B). Both measures

are based on the same probability distribution and are thus related. However, differ-

ences exist in the quantity theymeasure: the JS divergencemeasures distances between

distributions. It is thus unsuited for small quantities of data and – in particular for posi-

tion distributions – highly dependent on the activity performed. It is thus best suited to

observe consistent differences in position/velocity in longitudinal studies where large

amounts of data are available and fine differences need to be detected. Conversely,

the average log-likelihood only measures the probability of a given point (or sequence

of points) given the overall data available. It could thus be used to rapidly identify
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odd body configurations during specific experiments or when monitoring patients. In

either case, we maintain our previous reservations regarding the generalisation of this

data to other circumstances. In particular, we would recommend to use the (peak)

velocity distributions (Figure 2.10) when comparing subjects as these are less prone

to perturbations of the motion capture equipment, characteristic of the joint under

consideration and highly preserved between subjects (Figure 2.11).

2.4.4 Planarity of Hand Movements

Unlike the standard centre-out reaching movements as performed in countless

laboratory-based studies (e.g. Georgopoulos et al. 1982; Shadmehr and Mussa-Ivaldi

1994; Moran and Schwartz 1999, to name but a few), the shape of self-pacedmovements

was straight only∼70%of the time. The choice of straightmovements to study the effect

of perturbations on motor control can thus be justified in that they are so common that

learning of the basic task is not required and should be well represented in the brain.

The fact that these studies normally involve movement in a horizontal plane can also

be justified by considering that all movement planes appear to be equally probable:

moving in a horizontal plane is thus unlikely to be a special case of general reaching.

On the other hand, the apparent universality of planarity for reaching movements of-

fers an intriguing new possibility for experimental setups: 3D movements. Although

movements in 3D-space have been studied previously (e.g. Morasso 1983; Desmurget

and Prablanc 1997; Schaal and Sternad 2001; Domkin et al. 2005; Biess, Liebermann,

and Flash 2007), the trajectory of the endpoint is mostly planar in all cases. Indeed,

Morasso (1983) found that evenwhen subjects were free to "scribble" in 3-D space, their

velocity profile could be decomposed into planar sections, very much in the same way

as e.g. Viviani and Cenzato (1985) decompose planar movements into submovements

based on a change in scaling factor in the 2/3 power-law. Forcing subjects to trace a

clearly 3-dimensional path and generate perturbations on that space might thus lead
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to valuable insights into human motor control.

2.4.5 The 2/3 Power-Law

The 2/3 power-law relationship betweenmovement speed and curvature, aswell as the

discontinuous nature of the scaling coefficient, has often been pointed to as evidence

for segmented motor control (Morasso 1981; Morasso and Ivaldi 1982; Morasso 1983;

Viviani and Cenzato 1985; Flash and Hogan 1985; Ivanenko et al. 2007) and as a central

constraint to movement generation by the CNS (Lacquaniti, Terzuolo, and Viviani

1983; Massey et al. 1992; Ivanenko et al. 2002). Its apparent universality has even

been used as a validating feature for theories of motor control which do not directly

depend on motion segmentation (e.g. Harris and Wolpert 1998; Sternad and Schaal

1999). Yet, our findings relating to the 2/3 power-law in natural movements do not

reflect previous findings Figure 2.13. First of all, the power-law was rarely a good

fit of the relationship between velocity and radius of curvature, applying to only 10–

15% of all data windows analysed depending on the fitting method used. This low

number could reflect the arbitrary nature of our data segmentation. However, the

small data window (500 ms) combined with a median movement duration of 860 ms

make the low percentages observed unlikely to be caused by bad luck. Secondly, the

exponent values observed, in particular for hand movements, are not in accordance

with the expected value of 0.33. Instead, we observe very variable values withmedians

between 0.36 and 0.46, depending again on the fittingmethod Figure 2.13D. We are not

the first to observe violations of the 2/3 power-law (Wann, Nimmo-Smith, and Wing

1988; Schaal and Sternad 2001; Ivanenko et al. 2002), although previous studies mainly

found deviations occurring in the exponent value. That is not to say that a (power-law)

relationship between velocity and curvature does not exist. In fact, we find thatwithout

segmenting the data, a noisy power-law relationship exists between velocity and radius

of curvature (Figure 2.13B). While the reasons for this being a power-law are unclear,
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it is not surprising that such a relation exists: basic physics imply that changes in

direction imply accelerations proportional to v2/r or, alternatively, that v ∼ kr0.5 for a

constant acceleration. This exponent value is much closer to the actual value observed

in our study. Of course, we do not directly apply forces to the endpoint but have to

move it by applying torque to multiple joints. The impact of endpoint acceleration on

joint torques through inverse kinematics and the implications for motor control are left

to future studies.

2.4.6 Conclusion

Analysing large data sets of naturalistic movement opens the potential for verifying

assumptions commonly made in laboratory settings, as well as providing a ground on

which to build new experiments targeting specific observations. Our work provides

a framework as well as a tool-set for performing such large-scale experiments which

will undoubtedly be easier to perform in the near future with less intrusive monitor-

ing technology. Our results enable us to quantify key statistics of natural behaviour

which would normally not be measurable and put into question previous findings of

experiments performed in restricted laboratory settings. These outcomes will hope-

fully stimulate further studies and highlight the necessity of scientific work performed

in the lab as much as in the real world.

67





3 Structure of Natural Movement

3
Structure of Natural Movement

“The whole is greater than the sum of the parts.”

— Aristoteles

3.1 Introduction

Acentral question inmotor control is to understand how the brain controls themultiple

degrees of freedom of our body (Bernstein 1967). Whether we consider the problem

from a kinematic or a muscular perspective, the number of degrees of freedom (DOF)

accessible to the brain to achieve a given goal are typically larger than strictly necessary,

resulting in a underdetermined system. In this case, which combination of DOF should

the brain choose? Attempts to answer this question fall broadly into two categories:

(1) optimisation of a cost function (Uno, Kawato, and Suzuki 1989; Todorov and Jordan

2002; Li, Todorov, and Pan 2004; Todorov, Li, and Pan 2005) and (2) dimensionality

reduction (Bizzi, Mussa-Ivaldi, and Giszter 1991; Giszter, Mussa-Ivaldi, and Bizzi

1993; Santello, Flanders, and Soechting 1998; d’Avella, Saltiel, and Bizzi 2003; Cheung

et al. 2005; Gentner and Classen 2006; Ingram et al. 2008). We will mainly focus

on dimensionality reduction in the kinematic space which suggests that motor control

takes place in a low-dimensional subspace of all possible joint configurations. However,

note that linking various kinematic variables, e.g. the power-law relationship between
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velocity and path curvature (see Section 2.3.3 and work by Lacquaniti, Terzuolo, and

Viviani (1983)) is also a form of dimensionality reduction as it reduces the number of

possible combinations of variables.

Initial studies on hand movements suggested that the 21 DOF of the hand could

be reduced to 1 synergy (i.e. all joints of the hand move proportionally to each other)

during reach-to-grasp movements of conical objects (Mason, Gomez, and Ebner 2001)

or 2–3 synergies during imagined grasping of everyday objects (Santello, Flanders, and

Soechting 1998). These studies, however, fail to take into account the use of the hand

during object manipulation. A study of synergy use during a haptic exploration task

reported 7 synergies required to explain 90% of the data (Thakur, Bastian, and Hsiao

2008), but the methodology used differs markedly from previous studies, making a

direct comparison difficult. To the best of our knowledge, only a single study has

investigated synergistic finger use across a large range of behaviours (Ingram et al.

2008). This study outfitted the dominant hand of three subjects with a sensorised glove

measuring joint position and allowed them towear it for the duration of a day, yielding

adata set of naturalmovement. This data could bewell described by a set of 6 synergies,

2 of which were common to all subjects. This value is estimated from data which has

not been normalised, suggesting that the real number may actually be higher. Finally,

Jarrassé et al. (2014) looked into synergies during controlled bimanual manipulation of

objects, finding that 3 synergies per hand explain almost all the variance in their data.

It should be noted that all of these studies used principal component analysis (PCA)

for their dimensionality reduction, effectively equating a synergy with a principal

component (PC).

A further aspect of synergistic motor control is the timing, which can be divided

into two categories: (1) synchronous synergies (SS) (e.g. (Santello, Flanders, and

Soechting 1998; Ingram et al. 2008)) and (2) time-varying synergies (TVS) (d’Avella,

Saltiel, and Bizzi 2003). The former assumes that the command is applied to all
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actuators (muscles or joints) simultaneously, while the latter allows for time shift in

the activation. This distinction has to date only been made for muscle synergies:

discovering low-dimensional control manifolds using PCA intrinsically enforces a SS

model. Allowing for TVS in kinematic data may reveal an even lower-dimensional

control than seen to date.

In this chapter, we build upon previous work by analysing natural hand movement

of both the dominant and non-dominant hand in natural settings, allowing us to

examine not only low-dimensional control structures within each hand but to compare

the synergies across hands and investigate the existence of bimanual synergies. To

assess the assumption that the kinematics of handmovements underlie a SS model, we

analyse the temporal structure of the data in search of time delays. Next, we transpose

the analysis performed on the hand data onto all other joints of the body. Is synergistic

control the general rule, or is it specific to the hand? Finally, we link both analyses

by exploring the structure of arm and hand movement, with the particular goal of

evaluating its potential to improve prosthetic control by exploiting natural movement

statistics.

3.2 Methods

3.2.1 Data

We use data collected simultaneously from two CyberGloves (CyberGlove LLC, San

Diego, CA, USA) and an IGS-180 motion capture suit (Animazoo UK Ltd, Brighton,

UK). Data collection protocols and preprocessing were performed as described in

the previous chapter. Any additional processing will be highlighted in the relevant

sections.

71



3 Structure of Natural Movement 3.2 Methods

3.2.2 Comparison with Previous Studies

We extracted previously published PCs and VAF curves from Ingram et al. (2008) and

Jarrassé et al. (2014) using a free online tool (WebPlotDigitizer). Subsequently, PCs

were normalised for them to have unit length and VAF curves modified to display the

cumulative variance explained. The data from Ingram et al. (2008) contains values for

the distal interphalangeal (DIP) joints, which were removed from the PC vectors before

computing subspace distances. It was further necessary to apply an orthogonalisation

procedure to the PCs extracted as the data reported in both cases is the average from

multiple subjects which effectively destroys the orthogonality between the PCs. As

linear subspaces are being compared, transforming PCs such that they are orthogonal

to each other while still defining the same space does not affect the results. Since direct

PC-to-PC comparison would be affected, the re-orthogonalisation procedure was not

applied in those cases.

3.2.3 Comparison of PCA Subspaces

To compare low-dimensional subspaces generated by multiple PCs we use the method

described by Krzanowski (1979). In brief, given any two sets of PCs L � {l1, . . . , lQ }
and M � {m1, . . . , mQ } the method computes θ, the angle between li , i � 1 . . .Q and

l′i , it’s representation in the space of M. Thus, the total distance between the subspaces

defined by L and M can be described as
∑

i θi . Since this value is dependent on the

number of PCs considered, we report the value d �
∑

i θi/π, which is bound between

[0, 1].

3.2.4 Prediction of Hand State

We define the hand state, y(t), to be the 30-dimensional vector describing the hand’s

configuration and instantaneous velocity at any point time. To predict the state of
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the hand without any knowledge of its previous state (such as would be the case for

prosthetic control), we performed multivariate linear regression (MVLR) between y(t)

and the position and velocity of the contralateral (relative to the hand being predicted)

hand as well as of both elbows (flexion and pronation), shoulder elevations and neck

movement (termed x(t) hereafter). The linear model was fitted using the Matlab

function lmfit without additional parameters. To avoid over-fitting, we performed

10-fold cross-validation by randomly dividing the data into 10 blocks of equal size,

training the model on 9 such blocks and testing its performance on the remaining data.

To assess the chance level of such a regression, we performed the same analysis but

first randomly shuffled x(t) to destroy any temporal relation to y(t).
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Figure 3.1: Distance between PCA subspaces. A Inter-subject distance ("our data") and
distance to data published by Ingramet al. (2008) and Jarrassé et al. (2014). BEquivalent
for the left hand. Dashed lines indicate position, solid lines velocity. Shaded areas
represent standard error.

3.3 Spatio-temporal Structure of Movements

3.3.1 Hand Movements

Similarly to previous studies (Santello, Flanders, and Soechting 1998; Mason, Gomez,

and Ebner 2001; Ingram et al. 2008; Faisal et al. 2010) we analyse the complexity of hand
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movements by means of principal component analysis. Our results are in agreement

with thedata from Ingramet al. (2008), the onlyprior studyonnatural handmovements

(see also Figure 3.2F), requiring ∼33% of PCs to explain 80% of the variance. This value

is somewhat misleading, as it combines both correlation structure in the movement as

well as vastly different movement amplitudes of different joints (e.g. MCP flexion vs.

abduction). If the latter contribution is removed by normalising the data, the fraction

of PCs required to explain 80% of the variance increases to 40% (compare Figure 3.2F

to Figure 3.3).

To test the similarity between the latent spaces defined by the principal components,

we computed the distance between them (see Figure 3.1). As expected, the latent

spaces of natural movement data were much closer to each other than those obtained

from data in the laboratory (Jarrassé et al. 2014). At a more detailed level, the first two

PCs from our study and from Ingram et al. (2008) are in good agreement both in terms

of position (R2 � 0.8 and 0.83) and velocity (R2 � 0.79 and 0.91, see also Figure 3.2A–

Figure 3.2D). In contrast, the data collected in the lab (Jarrassé et al. 2014) demonstrates

a very different first PC as well as substantially less variability (Figure 3.2E&F).

In contrast to Ingram et al. (2008) which looked only at the dominant hand, we are

in the position of comparing both hands and analysing bimanual structure in natural

movements. In terms of complexity, we find no difference between the dominant

(right) and non-dominant hand (Wilcoxon signed rank test; position p � 0.7; velocity

p � 0.07) as shown by the almost perfect overlap of the VAF curves in Figure 3.3.

Structure common to both hands is very limited but statistically significant in terms of

position (AUC Right: 0.81± 0.02 (mean± SD), Left: 0.81± 0.01; Combined: 0.82± 0.02;

(p < 10−3 in both cases). In the velocity domain, the difference is almost imperceptible

(AUC Right: 0.77 ± 0.01; Left: 0.77 ± 0.01; Combined: 0.78 ± 0.02) and significant only

between right hand and common structure (p < 10−3).

The independence between dominant and non-dominant can examined further by
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looking at the time duringwhich their fingersmove simultaneously (Figure 3.6). While

the fingers of the same hand are in motion simultaneously an average 43.4 ± 6.1%

(mean±SD) of the time, this value drops to 24.2±5.6% (pairedWelsh’s t-test; p < 10−4)

across hands. The difference between movement times of the dominant and non-

dominant hand is not significant (Welsh’s t-test; p � 0.15). Even if only considering the

period of simultaneous movement, the VAF curve for both hands combined did not

deviate from the globally computed one.

Differences between the dominant and the non-dominant hand become apparent

when considering the number of joints moving simultaneously at any moment in time

(Figure 3.4A). The probability of one to three fingers being in motion simultaneously is

significantly higher in the dominant hand, whereas the probability of full hand move-

ments (e.g. grasping) is more likely for the non-dominant hand. Jointsmost likely to be

moved individually belong to the thumb, irrespective of the hand under consideration,

whereas the middle and ring finger fail to move by themselves (Figure 3.4B). A more
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detailed analysis of the temporal structure of fingermovement reveals no further differ-

ences between dominant and non-dominant hands. The full width at half-maximum

(FWHM, see Figure 3.5A), which is an indicator for how rapidly movement changes is

almost identical between the right and left hand (see Figure 3.5B. Mean right: 222ms;

left: 223ms; t-test; n.s.). Cross-correlation analysis between joints of the same displayed

only a few non-zero values (Figure 3.5C), though even then the lag is limited to 1-2

samples and not always consistent between subjects or across multiple recordings of

the same subject. The exception to this rule is the precedence of movement of the

R-MCP on the L-MCP which occurs in more than 60% of recordings. Cross correlation

between hands displays no consistency and can probably be neglected given the low

peak values (see Figure 3.5D).
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Figure 3.5: A Illustration of the auto-correlation function. The double arrow indicates
the full-width at half-maximum (FWHM) of the function. BDistribution of the FWHM
for all joints and subjects of the right (orange) and left (blue) hand. Dashed lines
indicate the mean (223ms), which is not significantly different between hands. C
Cross-correlation lag between the joints of the right and left hand. Negative (blue)
values mean that the joint on the y axis leads on the joint on the x axis. Only lags where
the peak value of the cross-correlation function exceeded 0.67 are displayed. D This
value is the 95-percentile of the distribution of cross-correlation values within joints of
the same hand (red line). Cross-correlation between hands is almost nil as shown by
the very low peak values.

3.3.2 Spatio-Temporal Structure of Body Movements

While hand movements can be well described by a lower dimensional representation,

this is not the case for the whole body (Figure 3.7A). On average, 16 (range: 15–17) out

of 23 possible PCs were required to explain 80% of the variance in terms of velocity.

Comparing the PCs of the body data gives a very different picture from the hands: the

distance between PCA subspaces starts off very high and drops off almost linearly. This

makes the comparison of individual PCs difficult, as they lack the consistency found
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data. B Inter-subject distance of PCA subspaces. Shading indicates standard error.

in the hand data. As a general observation, the first PC captures mainly movement

of the legs, while the second PC is more representative of arm motion, in particular

coordinated shoulder and elbow movement.

A potential explanation for this lack of low-dimensional structure may be given

by Figure 3.6. Similarly to the hands, movement of one limb reduces the likelihood

of a different limb moving, resulting in a block-diagonal structure, each block being

one limb. An exception to this are the legs, which are likely to move simultaneously.

Nevertheless, some additional structure can be seen in Figure 3.6: (1) arms and head

occasionally move with the legs but wrists do not; (2) movement of the dominant

hand’s wrist suppresses head movements. This phenomenon is not as marked for the

non-dominant hand; (3) finger movement is more likely while the respective arm is

moving than when the opposite arm is moving (71% vs. 63%). This is particularly

marked for wrist movements (71% vs. 61%).

In terms of temporal structure, body movements happen on very different time-

scales depending on which limb is being considered, ranging from a median value of

∼400ms for movements of the ankle and wrist to more than 700ms for movements of
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Figure 3.8: A FWHM for various parts of the body. B Comparison between the median
FWHM and the percentage of body mass moved by the joint. A good relationship
exists for most joints, with exception of the hip flexion which has a uncharacteristically
low FWHM given the mass being moved.

the shoulders (Figure 3.8A). As for finger movements, there is no significant difference

between the left and right side of the body. We hypothesised that the difference in

time-scale is dependent on the mass attached to the joint moving, as a larger mass

implies a larger moment of inertia which may translate into longer movement times1.

This assumption holds to some extent (Figure 3.8B): within limbs, the FWHMof flexion

movements decreases in the distal direction, consistent with the decreasing mass (e.g.

the shoulder needs to move the mass of the entire arm, whereas the elbow only moves

the forearm). The intercept of the function relating the FWHM to the mass is similar

across limbs (legs: 397 ± 21ms; arms: 395 ± 42ms; paired t-test; p � 0.85) but the slope

is very different (legs: 12 ± 3 [ms/%]; arms: 42 ± 15 [ms/%]; p < 10−5). In all cases

the GOF for the fit exceeded 0.8. Cross-correlation analysis of body movements did

not reveal any consistent or strong patterns, almost all peaks (for non-zero lag) having

values well below 0.2.

1The fraction of body mass attached to each joint was obtained from De Leva (1996).
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right hand as a linear combination of other body movements. B Comparison between
the prediction quality of the right and left hand. Student’s paired t-test; ***: p < 10−3.

3.3.3 Arm-Hand Structure

With a view on improving user friendliness and facilitating control of multi-joint hand

prostheses, we wanted to evaluate the possibility to control hand movements based on

the motion and configuration of the rest of the body. In particular, we wanted to know

whether it would be possible to predict finger movement from the ipsilateral elbow

and shoulder, as well as the contralateral arm (including hand) and the neck. We chose

a linear prediction model as previous studies reported no significant improvement

by using more complex non-linear methods such as Gaussian Processes (Krasoulis,

Vĳayakumar, and Nazarpour 2015; Xiloyannis et al. 2015a). The results are shown in

Figure 3.9. Prediction of both hand configuration andmovement exceeded chance level

(GOF: ∼10−4) but generally was not very good. The GOF for position is 0.23 ± 0.03,

which is significantly better than for velocity (0.017 ± 0.005, see Figure 3.9A). There

was no statistical difference for the prediction quality of hand configuration between

the dominant and non-dominant hand (Figure 3.9B; Student’s paired t-test, p � 0.7).

Although significant difference exists for quality of the velocity prediction (GOF right:
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0.021 ± 0.004; left: 0.014 ± 0.005; p < 10−3), the quality remains very low.

Although the predictive quality of the model is relatively low, we can draw some

interesting insight into the factors contributing to this prediction, as visualised by the

relative contribution of the predictor variables’ coefficient after correcting for different

variances (Figure 3.10): (1) Position predicts position and velocity predicts velocity; (2)

the ipsilateral arm contributesmost to the prediction of hand state independently of the

hand under consideration but (3) ipsilateral arm movement contributes significantly

more when predicting motion of the right hand than for the left (Wilcoxon ranked sum

test; p < 10−6). These observations are consistent across all data sets examined.

3.4 Discussion

We compared kinematic synergies of both hand movements and body movements be-

tween different subjects and with synergies reported in the literature. We find that, for

the hand, the synergies are extremely consistent across subjects and in goodaccordwith

the synergies described in a previous study of naturalistic hand movement (Ingram

et al. 2008). Similarity with synergies from laboratory based tasks bore less resem-

blance with our data. Taken together, these two findings suggest that the synergistic

structure of handmovements revealed by the analysis is not simply a representation of

the biomechanical structure of the hand but most likely reveals something about the

control of the hands by the brain. Note, however, that while individual synergies are

different, the latent space they describe becomes increasingly similar with additional

numbers of synergies (Figure 3.1). While none of the cited studies gave a detailed

description of more than the first four synergies, we may expect that the similarity of

laboratory based and naturalistic subspaces eventually drop down to levels of inter-

subject variability. This would suggest that the low-dimensional structure observed

is only partially caused by a simplification of the control structure by the brain, the
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Figure 3.10: Normalised contribution of other joints on the prediction of the right
hand’s state, averaged across subjects. A clear separation can be seen when predicting
thehand’s positionwhere the velocity component of thepredictor variables have almost
no influence at all. When predicting the hand’s velocity, the separation is less clear but
the strong influence of the ipsilateral shoulder and elbow are evident. The values were
scaled by the predictor variable’s SD for fair comparison.
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rest being caused by the biomechanical structure of the hand which is well known to

have muscles and tendons acting on multiple digits at once. This may also account

for findings by (Todorov and Ghahramani 2004) which described a low-dimensional

structure in hand movements even when subjects were required to move their fingers

individually or at random.

The different number of synergies required to explain a given amount of variance in

the laboratory data vs. natural tasks further emphasises the need to study behaviour

in an unconstrained setting. This is particularly important when estimating the di-

mensionality of the space in which control occurs: it can be easily shown that PCA

on a small amount of data with no spatial structure but significant auto-correlation at

non-zero lags (such as is the case for movement data, see Figures 3.5B & 3.8A) will

falsely reveal some amount of spatial structure. Thus, the short time-scales of move-

ments in laboratory experiments combined with the repetitive and constrained nature

of the tasks performed are likely to severely under-estimate the effective dimensional-

ity of the latent subspace. A similar argument is made relative to muscle synergies by

Valero-Cuevas, Venkadesan, and Todorov (2009).

Is this synergistic control a key feature of human motor control or is it specific to the

hands? Both for movement of arms and legs, muscle synergies have been described

(d’Avella et al. 2006; Ivanenko et al. 2007). Similarly, activity of muscles in the legs and

the back has been shown to be synergistic in the context of gait and posture (Olree and

Vaughan 1995; Torres-Oviedo, Macpherson, and Ting 2006; Torres-Oviedo and Ting

2007), but to the best of our knowledge, multi-limb synergies during natural behaviour

have not been studied. Even if they had been, our results suggest that few muscle

synergies bridging multiple limbs would have been found. From a purely kinematic

perspective, very little structure (and even less consistency) is found when analysing

movement of major body limbs (see Figure 3.6). The exception to this rule is movement

of the legs, consistently with aforementioned studies.
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The "hand exception" may be explained by a combination of kinematic and neuro-

logical factors: as revealed in our analysis of temporal structure of natural movement,

the digits of the hand move together much more frequently than other limbs do (ex-

cept maybe the legs). It thus makes more sense to have a synergistic control structure

for fingers than for limbs which will move independently from each other anyway.

This is added to (or maybe a consequence of) the fact that the joints of the hand are

tightly linked mechanically. This linkage also requires muscle activation to prevent

fingers frommoving (e.g. Contraction of the index compartment of the finger extensor

muscle when the middle finger is flexed). This antagonistic co-activation of muscles is

reflected in the hand area of the motor cortex by two factors: (1) reduced somatotopy

with neurons acting on the same muscle spread over a large area and (2) branching of

descending connections where a single neuronmay innervate muscles required for the

movement of multiple, non-adjacent fingers (Schieber and Hibbard 1993; Weiss and

Flanders 2004). These features of the neuronal substrate of handmovements have been

suggested to be essential for the implementation of a synergistic controller at a cortical

level (Schieber and Santello 2004; Santello, Baud-Bovy, and Jörntell 2013). Yet, while

models for neural control of synergies have been proposed (Hart and Giszter 2010;

Santello, Baud-Bovy, and Jörntell 2013), electrophysiological evidence is still lacking.

Although TMS activation of the hand area in M1 causes hand movements resembling

synergies (Gentner and Classen 2006), a recent study of multi-electrode array record-

ings in the primary motor (M1) and ventral premotor (PMv) cortex of non-human

primates failed to find evidence for neuronal activation which was more correlated

with synergies than with individual joint movement (Mollazadeh et al. 2014). Sim-

ilarly, postural and muscle synergies in the hand do not display a clear one–to–one

relationship. Instead, muscle synergies of the hand are active in an unpredictable

fashion over a range of postural synergies (Weiss and Flanders 2004).
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3.4.1 An Alternative Hypothesis

Given the inconsistency of kinematic synergies across subjects and experimental set-

tings, as well as their lack of demonstrable neuronal representation one might argue

that the apparent synergistic control of the hand is an artefact of the analysis method

rather than an actual control strategy of the central nervous system (CNS). A similar

argument has been made repeatedly against work on muscle synergies, arguing that

what appears to be a low-dimensional control space is really only the consequence of

the minimum intervention hypothesis (Kutch et al. 2008; Valero-Cuevas, Venkadesan,

and Todorov 2009). This theory, which directly flows out of the concept of optimal

feedback control (Todorov and Jordan 2002) suggests that the CNS does not try to con-

trol task-irrelevant variables, leaving them to fluctuate freely. Without getting drawn

into that argument, it should nevertheless be noted that using PCA to find meaning-

ful synergies in kinematic data has two major limitations: (1) PCs are required to be

orthogonal to each other. While this has a lot of useful mathematical properties, it is

unclear why it should apply to kinematic or muscular synergies. (2) The number of

synergies will always be strictly smaller or equal the number of DOF being controlled.

This is a necessary consequence of (1), but may result in sub-optimal encoding of data

in some cases, as illustrated in Figure 3.11. We thus propose a slightly modified ver-

sion of the PCA approach to find synergies in kinematic data which overcomes the

aforementioned problems. As a reminder, the classic PCA methodology assumes that

X � ZB (3.1)

where X ∈ RT×D is a matrix of T samples of kinematic data, B ∈ RD×D a matrix of

principal components and Z ∈ RT×D the latent representation. Typically, B and Z are

truncated to retain only the first Q < D PCs. We modify this model in a small but

critical way by (1) removing the requirement for all elements in B to be orthogonal
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to each other and (2) allowing Q � D. This may seem counter-intuitive as we are

now increasing the dimensionality of the control space, thus worsening the problem

by adding complexity. We avoid this by stipulating that at any moment in time only

K � Q of the weights may be non-zero. This approach is similar to seminal work by

Olshausen et al. (1996) relating to sparse coding in the primary visual cortex (V1)which

elegantly demonstrated that a sparse code accurately describes the receptive field of

V1 neurons, which PCA fails to do. In analogy, we suggest that the CNS may have

access to a dictionary of sparse eigenmotions (SEMs, the new bi) fromwhich it can pick a

few elements and combine them to achieve its desired goal (Rizzolatti and Gentilucci

1988).

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x1

x 2

Figure 3.11: Example of six noisy
1-D structures embedded in a 2-D
plane. PCA would fail to identify
the low-dimensional structurewhereas
a sparse code should extract the red
lines.

The hypothesis of sparse encoding ofmotor

output has beenmentioned before as interest-

ing possibility (e.g. Tresch and Jarc 2009; In-

gram et al. 2008) but has not been investigated

further to the best of our knowledge. How-

ever, there has been some recent interest in

using sparse encoding of kinematics (termed

"efficient code" by the authors) to classify

movements (Johnson and Ballard 2014). The

authors find that sparse coding outperforms

PCA and random projections in most cases

but do not further investigate its application

to motor control. We hypothesise that sparse

encoding of movement may account for observed grasp-type specificity in neurons of

the monkey F5 (equivalent to human PMv) area (Rizzolatti and Gentilucci 1988; Raos

et al. 2006) andmay help understand the neuralmechanisms of learning by observation

(Di Pellegrino et al. 1992). Testing of these hypotheses will require more work from a
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methodological (how do we identify sparse eigenmotions?) and electrophysiological

perspective to verify whether neurons are responsive to this type of encoding.
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4
Sparse Eigenmotion Decomposition

“The important thing in science is not so much to obtain

new facts as to discover new ways of thinking about

them.”
— Sir William Bragg

4.1 Introduction

The spatial structure of movements – and evidence for low-dimensional control man-

ifolds – has typically been investigated using principal component analysis (PCA,

Santello, Flanders, and Soechting 1998; Mason, Gomez, and Ebner 2001; Gentner and

Classen 2006; Ingram et al. 2008; Faisal et al. 2010; Belić and Faisal 2015). Identifying a

low-dimensional structure in handmovements has multiple desirable properties: (1) it

simplifies the control problem, (2) provides insights into the dynamics governing the

data and (3) allows for comparison of control strategies across subjects and settings.

As argued previously (Section 3.4), Principal Component Analysis is severely lim-

ited by imposing orthogonality between the principal components. This imposes the

additional constraint that the number of principal components cannot exceed the di-

mensionality of the input data. Fromamathematical perspective, this low-dimensional

encoding can be written as:

X � BZ + Ξ (4.1)
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where X ∈ RDxT is the actual movement , B ∈ RDxQ a matrix where each column is a

principal component (PC) and Z ∈ RQxT refers to the individual activation of each PC

over time, also referred to as latent representation. The matrix Ξ ∈ RDxT represents the

noise and residuals which the linear model cannot capture. In the case of PCA, Q ≤ D

and preferably Q � D so as to capture as much of the variance in the data with as few

PCs as possible.

To achieve a high dimensionality reduction while avoiding the limitations of PCA,

Olshausen and Field (1997) implemented a method known as sparse coding. In essence,

thismodifies the terms in Equation 4.1 by allowingB, the dictionary, to be over-complete

(i.e. Q ≥ D andpotentiallyQ � D), which also implies that the elements ofBno longer

need to be orthogonal to each other. The sparsity resides in Z where for every time

point t ∈ T almost all elements are 0. However, an over-complete basis does not directly

imply a sparse latent representation. Indeed, identifying such a sparse encoding from

known data X and dictionary B is an active area of research.

Using over-complete dictionaries to represent the data has several advantages over

the use of complete bases (such as e.g. PCAor the Fourier basis). As the atoms aremore

specialised, they are capable of capturing higher-order correlations in the data (Mairal

et al. 2009b), and provide greater interpretability. This typically implies that the latent

representation of the data can be more sparse than in the case of complete bases, thus

allowing for higher compression of the data (e.g. the JPEG2000 image compression

standard is based on (sparse) wavelet decomposition). Further, it has been suggested

that coding based on an over-complete dictionary has benefits in terms of robustness

of the latent representation in the presence of additive noise on the data being encoded

(Simoncelli et al. 1992; Donoho, Elad, and Temlyakov 2006). Finally, sparse codes have

been claimed to be useful for feature and novelty detection (Barlow 1989).

Although the advantages of using an over-complete representation are clear, defining

an appropriate dictionary is a difficult task. Traditionally, these have been hand-
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crafted to have specific desirable properties (such as being invertible), and being well

suited to the data being compressed. As they originate from the image and signal

processing field, many such dictionaries have been designed to capture time-frequency

characteristics of the underlying signals, and are based on families of functions such as

wavelets, curvelets (Candes and Donoho 2000), bandlets (Le Pennec and Mallat 2005)

or controurlets (Do and Vetterli 2005). A drawback of using pre-defined dictionaries

is that the atoms they contain may not be suited for the data considered, thus yielding

sub-optimal compression and hindering interpretation. Deriving a dictionary directly

from the data has the additional benefit of providing insights into the underlying

statistics of the data being analysed. Indeed, learning the dictionary directly from the

data has led to several significant improvements in terms of image processing, such

as image restoration (Mairal, Elad, and Sapiro 2008; Mairal et al. 2009a; Mairal, Bach,

and Ponce 2012), inpainting (Mairal, Elad, and Sapiro 2008; Peyré 2009), denoising

(Simoncelli et al. 1992) and synthesis (Peyré 2009). Sound processing is another typical

application of sparse coding (Grosse et al. 2007; Févotte, Bertin, and Durrieu 2009),

where it is closely related to the problem of blind source separation. In particular,

learnt dictionaries have been found to be particularly useful for learning classifiers by

automatically identifying interesting features. This is helpful both in the supervised

(Mairal et al. 2008; Yang et al. 2009; Mairal, Bach, and Ponce 2012) as well as the semi-

supervised case (Mairal, Bach, and Ponce 2012). Remarkably, a learnt dictionary is also

the basis for self-learning classifiers (Raina et al. 2007), a particular type of classifiers

which learn features not only from a (small) sample of labelled data, but mainly from

a large volume of unlabelled data, without assuming that the unlabelled data belong

to the same classes as the labelled data.

Of particular interest to our research is the work by Bruno Olshausen and David

Field (Olshausen et al. 1996; Olshausen and Field 1996; Olshausen and Field 1997) on

sparse coding in the visual system. By learning an over-complete, sparse representation
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of natural images, they show that the resulting atoms have high similarity with the

receptive fields of neurons in themacaque V1 cortex (Olshausen and Field 1997). Given

the brain’s highly parallel structure and the many advantages provided by sparse

coding, it seems plausible that this strategy evolved to encode sensory stimuli (Field

1994) and has been mentioned as an alternative strategy to muscle synergies in motor

control (Tresch and Jarc 2009).

4.2 Dictionary Learning

Training of over-complete dictionaries directly from the data is an active area of re-

search. While a number of different approaches have been developed, they commonly

consider Equation 4.1 with an additional penalty term as an optimisation problem:

arg min
B,Z

‖X − BZ‖2F + λ‖zt ‖p (4.2)

where ‖ · ‖F denotes the Frobenius norm, p indicates the degree of the Lp–norm and

λ is a Lagrange multiplier. A truly sparse solution can theoretically be obtained by

penalising the activation of atoms by the L0 pseudo-norm, which simply counts the

number of non-zero elements in z. This approach has major drawbacks as it makes

Equation 4.2 non-continuous and is unable to cope with noise in the data (Wohlberg

2003). As a compromise, the L1–norm is often used, and it has been shown that under

certain conditions it yields the best sparse approximation to the data (Mairal et al.

2010).

Data-driven dictionary learning is first mentioned in work by Olshausen et al. (1996)

which used patches from natural images as inputs and optimised Equation 4.21 using

gradient descent2. Numerous modifications and enhancements were made to the
1Olshausen et al. (1996) use different cost functions to obtain sparsity: (1) −e−z2 , (2) log(1 + z2) and (3)
|z |, which is equivalent to ‖ · ‖1.

2It should be noted here that the problem is not jointly convex in B and Z and that it has a degenerate
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original framework by Olshausen and Field to give it a probabilistic interpretation.

These methods promote sparsity by implying a Cauchy (Olshausen and Field 1997) or

Laplace3 (Lewicki and Sejnowski 2000; Kreutz-Delgado et al. 2003; Bradley and Bagnell

2009; Mairal et al. 2009b) prior on the latent representation and finding B and Z based

the Maximum Likelihood (ML) or Maximum-A-Posteriori (MAP) estimate of the data

model. This has lead to a number of newalgorithms for data-drivendictionary learning

(Aharon, Elad, and Bruckstein 2006; Mairal et al. 2008; Mairal, Bach, and Ponce 2012) as

well as variants capable of handling non-negativity constraints (Hoyer 2004) or dealing

with data online (Mairal et al. 2010). A significant drawback of current methods is that

the size of the dictionary needs to be specified in advance, whichmeans that estimating

the true dimensionality of the data is close to impossible since it requires sweeping over

the number of elements in the dictionary aswell as having a reasonablemetric ofmodel

efficiency. Choosing too few elements is likely to generate a non-sparse representation,

whereas too many will cause some elements to be either very similar or not used.

Similarly, there is no guarantee that the bases chosen to represent a particular data

point do not conflict with each other (i.e. cancel each other out along one dimension).

Although this is not a problem in most applications, it would be preferable if two

simultaneously acting eigenmotions did not try to pull a joint into different directions

(but see Lesage et al. (2005) for a similar concept).

The following sections introduce a newmethod called Sparse Eigenmotion Decomposi-

tion (SEMD). It is a two stage algorithmwhich extracts the over-complete representation

of the data by obtaining the principal components from small data windows strate-

gically chosen within the time-series, thus guaranteeing local orthogonality. Once a

solution for Z → 0 and B → ∞. This problem is generally addressed by renormalising the elements
in B at each iteration of the gradient descent, but it is unclear how this affects the objective function
being optimised (Lewicki and Sejnowski 2000).

3This is equivalent to penalising z with an L1–norm. Using the L2–norm would be assuming a normal
distribution. Whilemathematically a lot simpler to dealwith, a normal prior does not typically provide
a sparse solution (Tibshirani 1996).
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satisfactory representation of the data is obtained, it then further refines this repre-

sentation by reducing conflict among eigenmotions. This allows us to automatically

estimate the number of elementswithin the dictionary, making SEMDanunsupervised

learning method with the added benefit of low computational cost.

4.3 Methods

4.3.1 Synthetic Eigenmotion Generation

Synthetic sparse eigenmotions (SEMs) were generated following themethod described

in Algorithm 1. This results in each synthetic SEM having a random number of

large non-zero values with the remaining entries being very small. Alternatively, the

addition of random noise ε may be skipped during the generation process and added

again each time the SEM is invoked in the data generation process. This has the

advantage of adding extra variability to the eigenmotion, as would be expected in a

biological setting.

Algorithm 1 Synthetic eigenmotion generation
function createSEMS(D, Q)

for i � 1 . . .D do
bi ← 0D×1
n ∼ U{0, D}
for j � 1 . . . n do

idx ∼ U{0, D} s.t. bi,idx � 0
bi,idx ←N (0, 1)

end for
ε ←N (0, 0.05)
bi ← bi + ε
bi ← bi/‖bi ‖2

end for
return B
end function
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4.3.2 Synthetic Data Generation

Synthetic data was generated for validation purposes following the methodology de-

scribed in Algorithm 2. The velocity profile f may be chosen as any square-integrable

function with finite support. For convenience, and because of its similarity to human

movement (Morasso 1981; Abend, Bizzi, and Morasso 1982; Flash and Hogan 1985),

we chose a truncated and randomly scaled bell curve with a width proportional to the

width of the support l. This in turn was uniformly sampled in the range [100, 200]. The

function’s starting point was randomly shifted by a small value ∆t in each dimension,

such that the peaks of the bell curve were not perfectly aligned, in agreement with em-

pirical observations. When deciding whether to start a new movement or not, we took

into consideration whether (1) the previous movement started more than 20 samples

Algorithm 2 Synthetic data generation
function createData(T, D, Q)

t ← 0
B← createSEMS(D, Q)
X← 0T×D
while t < T do

if can start new movement then
ε ←N (0, 0.05)
s← random compatible SEM ∈ B
s← s + ε
f ← arbitrary velocity profile of length l
for all d ∈ D do

if sd , 0 then
∆t ←N (0, 0.01l)
Xi,d ← sdXi,d + f , i � {t + ∆t, . . . , t + l + ∆t}

end if
end for
t ← t + 1

else
t ← t + 1

end if
end while

end function
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ago; (2) the current number of active SEMs is lower than 10, (3) at least one dimension

is not currently moving and (4) there are compatible SEMs available in the dictionary.

SEM compatibility requires that all currently active dimensions have 0 weight in the

new SEM to be selected.

4.3.3 Eigenmotion Comparison

When extracting SEMs from one or multiple time-series, it is crucial to be able to

compare them. This avoids the extraction of duplicate SEMs from the same time-

series and allows to compare the SEMs extracted from data belonging to different

subjects. The task of comparing two or more SEMs is equivalent to comparing D-

dimensional vectors. This is usually achieved by calculating the Pearson correlation

coefficient (Santello, Flanders, and Soechting 2002; Chvatal et al. 2011; Delis et al. 2013)

or occasionally the scalar product (d’Avella, Saltiel, and Bizzi 2003) between SEMs.

However, visual inspection of SEMs deemed similar by these metrics revealed widely

varying results and inconsistencies as some SEMs where considered similar when

considering the scalar product but not with respect to their correlation coefficient,

and vice-versa. To circumvent this problem, we compare SEMs using not one but six

different metrics:

• Pearson correlation coefficient;
• Euclidean distance;
• Scalar product;
• Synergy intersection;
• Functional correlation; and
• Functional GOF.

The last three metrics will be explained in more detail in the following sections. For

all of these metrics, significance values were estimated empirically from the distribu-

tion obtained by computing the corresponding metric for each possible pair of 10’000
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principal components computed from randomly sampled data windows.

Eigenmotion Intersection

The idea of SEM intersection is derived from the histogram intersection metric pro-

posed by Swain and Ballard (1991) for comparing colour histograms in images. In brief,

the original histogram intersection metric compares two histograms A and B with n

corresponding bins by calculating:

∑n
i�1 min(Ai , Bi)∑N

i�1 Bi
(4.3)

where Ai is the value in the i-th bin of the histogram.

We apply this method to SEMs by considering each dimension of the SEM as a bin.

It should be noted that unlike the SEMs considered in this work, colour histograms

cannot have negative values in their bins. Therefore, the metric wasmodified to ensure

compatibility with bin values of opposing sign. Given two Q-dimensional SEMs a and

b which have been normalised such that
∑Q

n�1 |ai | � 1 (where | · | indicates the absolute
value):

Hi �




min(Ai , B i) i f s gn(A) � s gn(Bi)

−|Ai − Bi | i f s gn(Ai) , s gn(B i)

0 i f s gn(Ai) � 0 or s gn(Bi) � 0

(4.4)

where s gn( · ) is the sign function and

ρinter �

Q∑
i�1

Hi (4.5)

This gives a similarity measure which is bounded between −2 (if a = –b) and 1 (if a =

b). As for all purposes of this work the sign of the SEM is irrelevant, any comparison
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between a and b is also computed for a and –b and the maximum value taken, thus

leading to a distribution in the interval [−1, 1].

Functional Similarity

Instead of considering the SEMs themselves, the concept of functional similarity com-

pares the relevance of the SEMs in the data. This is achieved by computing the

responsibility, z, of each SEM in reconstructing a random set of data. For n SEMs and

a T ×Q time series, this results in n, T × 1 time series of responsibility.

Subsequently, the functional correlation is defined as the Pearson correlation coefficient

between the time series of responsibility of SEM a and b:

ρFC � ρ(z2
a, z2

b) (4.6)

and the functional R2 as the R2 between the time-series:

ρFR2 � R2(z2
a, z2

b) (4.7)

Voting Procedure

As mentioned in the introduction to this section, individual similarity metrics were

found to regularly disagree on whether two SEMs are the same. Using the six metrics

described previously, we introduce a majority voting system where two synergies are

deemed similarwith confidence α if 3 ormoremetrics find themsimilar at a significance

level of 1 − α. Note that both functional similarity metrics get a single, combined vote

as their results are very closely related.
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4.3.4 Goodness of Fit (GOF)

Also known as coefficient of determination or R2, the goodness of fit is generally used as

a way of measuring how well a model fits the data. Typically4, this is computed as

GOF � 1 − VAR[x − x̂]
VAR[x] (4.8)

where x represents the data and x̂ the data as estimated from the model. While this

measure is perfectly acceptable for short and univariate data sets or simple linear fits,

it has several drawbacks when considering multivariate and/or very long data. When

considering multivariate data, a trivial extension of Equation 4.8 can be obtained by

considering how well each dimension of the data is fitted and take the average GOF

over all dimensions D:

GOF �
1
D

D∑
i�1

GOFi (4.9)

This measure does not, however, take into account that some of the dimensions may

be a lot more variable (and thus convey more information5) than others. This can be

remedied by using a variance-weighted GOF – which is typically known as Variance

Accounted For (VAF) in the dimensionality reduction literature (Cheung et al. 2005) –

by modifying Equation 4.9 to account for the different variability of dimensions:

VAF �
1
D

D∑
i�1

wiGOFi (4.10)

where wi � VAR[xi]/
∑D

i�1 VAR[xi].

A further disadvantage of the classic GOF is the global nature of this measure as it

4Some authors define the R2 as the square of the correlation coefficient between the model and the fit.
This measure is misleading because it does not consider whether the mean value of the fit matches
that of the data, nor whether the scaling is accurate.

5Under the assumption that all dimensions are affected by the same amount of noise.
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Figure 4.1: Comparison of goodness of fit measures. A Original data generated by
Algorithm 2. B Latent activity of the atoms. The first atom (grey area) was removed
from the dictionary during reconstruction. C GOF measures for the reconstruction.
All three show a value below 1 in the shaded areas, but most significantly for the VALL
metric.

only captures an average goodness of fit over the entire time-series. In general, it would

be interesting to know at what moment in time the model fits the data poorly, as this

may reflect an event of particular interest. For the specific case of this work, this local

knowledge is crucial as it allows to detect the presence of previously unseen kinematic

synergies. We therefore introduce the concept of local GOF (GOFL):

GOFL(t) � 1 − VAR[xW (t) − x̂W (t)]
VAR[xW (t)] (4.11)

where xW (t) and x̂W (t) are the data and its estimate taken from a window of size W
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around the time-step t. An example of its application is shown in Figure 4.1. In regions

where the model fits the data well (e.g. between sample 100 and 350), the GOFL is

high. In regions where the fit is less good (e.g. because the atom is not present in

the dictionary), the GOFL is low, indicating that that particular region may require a

different model. It should be noted that taking a windowed approach to computing

variance causes unwanted effects at the boundaries (i.e. beginning and end) of the

time-series as the local variance can no longer be accurately approximated. Thus, the

GOFL for time-points t <
⌈

W
2

⌉
should be considered with care. This measure can

be trivially extended to multivariate time-series by using different weights for each

dimension: equal (GOFL – Figure 4.1C, solid line), total variance (VAFL, dashed line)

or local variance (LVAFL, dotted line). Note that the latter metric is particularly useful

for identifying poor model fit as it does not assume the model is stationary, but allows

for variable variance.

4.3.5 Saturating Norm

The aim of this metric is to provide a quasi-binary measure of similarity between

objects. In effect, it gives a distance of 1 for any two points which are further apart than

a certain radius. This translates mathematically into the form:

‖x‖s � 1 − exp(−‖x‖22/σ) (4.12)

where σ ∈ R+ is a parameter which controls how rapidly the metric saturates to 1.

4.4 The SEMD Algorithm

The algorithm’s function is outlined in Figure 4.2 and can be broadly divided into

two stages which are computationally similar but follow different objectives. The first
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Figure 4.2: Sparse Eigenmotion Decomposition algorithm flowchart. After pre-
processing of the data, a small chunk of data is selected and eigenmotions are extracted
from it. These are refined and selected if they fulfil some usefulness criteria. After
the first termination condition is reached, the algorithm proceeds to a second stage
to reduce the interaction between atoms. Reaching of a further termination condition
ends the algorithm. See text for details.

run aims at identifying a sufficient number of eigenmotions to accurately reconstruct

the data; we will refer to this step as reconstruction stage. In the second iteration,

we further reduce the local dimensionality of the latent variable structure by reducing

conflict between bases and identifying additional eigenmotions which are better suited

to capture the data locally; this step will be referred to as interference reduction stage. The

following sections detail each processing stage of the algorithm and illustrate them as

appropriate.
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4.4.1 Initialisation

In the initialisation step, the time-series is separated into episodes of movement and

immobility. The aimof this is to concentrate the analysis onactivemovements andavoid

fitting the noise in the data. This is achieved by computing the empirical distribution

for each dimension of the data. Any data point for which at least one dimension

has an amplitude with corresponding p − value < 0.2 is classified as movement, the

others being classified as being static. To avoid zero-crossings to be counted as static

or noise as movement, a morphological closing operation followed by morphological

opening is applied to the binary classification time-series using a linear structuring

element. This has the effect of removing small islands of movement and immobility

(see Figure 4.3). A disadvantage of this motion detection method is that very slow

movements are potentially missed.
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Figure 4.3: The data preprocessing stage discards all regions inwhich there is no signif-
icant change in the data to avoid the EMD algorithm trying to fit noise. Small islands of
activity are removed by morphological opening, while excessive fragmentation of the
output and inclusion of zero-crossings is obtained by morphological opening of the
time-series. Compare the original output (dashed line) with the filtered output (solid
line).
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4.4.2 Region-of-Interest Selection

Identifying regions of interest (ROI) in the time-series which can provide us with novel

information is a key step in the SEMDalgorithm. When selecting the size of the ROI (we

will refer to it asTw), it is essential to take into account two potentially conflicting needs:

(1) time-scale of the underlying dynamics and (2) numerical stability of the estimated

statistics6. Selection criteria for the ROI depend on the stage of the algorithm, and can

be divided into three different categories:

Initialisation

When the algorithm is confronted with a new time-series for the first time, the

ROI is randomly selected from the data.

Reconstruction

During the reconstruction stage of the algorithm, the new ROI is selected as the

data around the time-point with the lowest reconstruction score (see Section 4.4.4

for reconstruction of data with non-orthogonal basis functions and Section 4.3.4

regarding the reconstruction score).

Interference Reduction

In the interference reduction stage, the ROI is selected around the time-point

with the highest basis conflict score CB. This value is computed on a dimension-

by-dimension basis by subtracting the contribution from the most important

eigenmotion from the sumof all contributions. If only one eigenmotion influences

a given dimension, the score is 0. Variations in data amplitude are compensated

through non-linear scaling via a saturating ’norm’ (see Section 4.3.5):

CB � ‖
Q∑

i�1
|zi | −max(|z|)‖s (4.13)

6For instance, the covariance matrix of a D-dimensional data set has 2D − 1 DoF and thus requires at
least as many data points to avoid over-fitting.
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It should be noted that in all cases, the ROI selected is then discarded to ensure that

it does not get selected on multiple occasions.

4.4.3 SEM Extraction and Refinement

The SEMs we seek can be considered as local principal components (which are equiv-

alent to atoms of our dictionary). They can thus be estimated from the data within

the ROI selected using classic PCA. The number of significant PCs extracted for each

ROI is automatically determined using the approach described by Cheung et al. (2005)

with a threshold set at 10−4. This method iteratively fits a linear function through

the VAF curve and terminates when the root mean squared error (RMSE) falls below

a given value. Because of the limited amount of data present (see Section 4.4.2 for

an explanation), this estimate may be inaccurate. This inaccuracy is mitigated in two

different ways: (1) the sample covariance matrix used as input to the PCA algorithm

is bootstrapped for a more accurate estimate and (2) the extracted PCs go through a

refinement process:

Significance Estimate

For each atom extracted in the ROI, its relevance to the entire data set needs to be

estimated before it can be taken up into the dictionary. This mitigates the risk of

extracting "noise SEM" or linear combinations of SEMs. Relevance for each sample in

the data is estimated by computing the empirical p-value of the reconstruction quality

(specifically the LVAFL metric, see Section 4.3.4). The empirical aspect emerges from the

comparisonof the reconstructionof thedata by the extractedPCwith the reconstruction

from a large number (typically 1000) of randomly generated SEMs (see Section 4.3.1 for

details). The only parameter to be set is the threshold for the p-value for which a SEM

is considered significant. If chosen too low, much of the data may be missed, if chosen

too high, we run the risk of including data for which that particular SEM is not truly
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relevant. Figure 4.4 illustrates this aspect: the areas shaded in green denote the regions

in the synthetic data in which a particular atom is truly active. The areas shaded in

red indicate the regions in which the atom is considered relevant at α � 0.99 levels

(Figure 4.4A). Setting the threshold so high virtually eliminates the false positive rate.

Lowering the threshold even slightly has almost no effect on the true detection rate but

increases false positives. Given the sensitivity of PCA to outliers, the high threshold of

0.99 was chosen.
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Figure 4.4: Empirical atom relevance determination. We compare the regions in which
an atom is determined to be relevant (red) with those in which it actually generated the
data (green). A Setting α � 0.99 produces almost no false positives while still correctly
identifying a large number of relevant data points. B Receiver operating characteristic.
Only very high values for α produce low false positive rates.

When selecting the right threshold for use in real data, one should consider that the

atom extracted in the first PCA step is likely to be noisy, i.e. the loadings may not be

exact. This will cause the reconstruction by this extracted atom to be qualitatively less

good than if the "true" atom was used, making it more similar to the random baseline.

Thus, choosing a high threshold may cause the majority of the data to be discarded.

To avoid this, it may be tempting to reduce the significance threshold but this has the

averse effect of including irrelevant data. Nevertheless, we keep the value of α at 0.99

throughout our analysis since it minimises the risk of including false positives.
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Eigenmotion Re-Estimation and Validation

We consider an atom to be relevant to the dataset if it is significant in at least Tw points

outside the original ROI. In this case, all the data in which the atom was found to be

significant are pooled and a single atom is extracted using the normal PCA algorithm.

Finally, we check whether this atom adds anything to our knowledge of the data. This

criterion is dependent on the stage of the algorithm: in the reconstruction stage, we

check whether the reconstruction with the additional atom is significantly better than

without. In the interference reduction stage, we only accept an additional element in

the dictionary if it reduces the interference between atoms within the data.

4.4.4 Data Reconstruction

Given a dataset X and an over-complete and/or non-orthogonal dictionary B, deter-

mining the optimal selection of atoms to represent a given data point is a non-trivial

task, and a number of methods have been developed over the years. The possibly

simplest solution to the problem, termed Matching Pursuit (MP Mallat and Zhang

1993), projects each xi onto B and selects greedily the best matching atom. This process

is then repeated with the residuals until a pre-determined number of atoms has been

selected or the residuals are smaller than a given threshold. Orthogonal Matching

Pursuit (OMP Pati, Rezaiifar, and Krishnaprasad 1993) takes the same approach as MP

but restricts the selection of additional bases to those which have not yet been chosen.

These methods are, however, very sensitive to noise in the data and yield unstable

representations which may change significantly depending on the signal-to-noise ra-

tio. Moving away from these greedy methods, Basis Pursuit (BP) (Chen, Donoho, and

Saunders 1998) and the Least Absolute Shrinkage and Selection Operator (LASSO)

(Tibshirani 1996) both consider the task of finding the best matching bases as a classical

optimisation problem to be solved by any valid optimisation algorithm, where the cost

109



4 Sparse Eigenmotion Decomposition 4.5 Algorithm Validation

function to be minimised is:

C � ‖X − BZ‖22 + λ
∑

i

‖zi ‖1 (4.14)

which is the same formulation as Equation 4.2 for a known basis B. Finally, the Least

Angle Regression (LARS) algorithm by Efron et al. (2004) provides a highly efficient

method for combining all of the above7 and giving an intuitive geometrical solution to

the problem. For the SEMD algorithm, we reconstruct the data using the LASSO-LARS

algorithm implemented in the SPAMS Toolbox by Julian Mairal (Mairal et al. 2010).

4.5 Algorithm Validation

4.5.1 Validation Data

We validate our method on data of various length and dimensionality, as well as by

varying model parameters. To this end, we generate synthetic data sets with known

dictionary and latent structure (see Section 4.3 for details on data generation) on which

we tested the algorithm by varying number of data points (T), dimensionality of the

data (D) and latent dimensionality (Q) as detailed in Table 4.1. For all cases, the

window size Tw was set to 51 samples. In particular, we are interested in measuring

Table 4.1:List of parameters for thedatawithwhich theSEMDalgorithmwasvalidated.
In total, 300 trialswere run. Note that the value for Q is only indicative andmay slightly
fluctuate given to flexibility in the algorithm generating the data.

T D Q Runs
1 1000 16 3 50
2 4000 16 10 100
3 15000 16 32 50
4 4000 10 10 50
5 4000 54 10 50

7By changing some parameters of LARS, all other methods can be reproduced.
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the robustness of our method, the impact of the interference reduction stage on the

algorithm’s ability to extract the eigenmotions from the data and its ability to determine

the underlying dimensionality of the dataset. To do so, we evaluate the performance

of our method on the basis of the following metrics:

1. The fraction of the number of extracted atoms, NE, over the dimensionality of the

latent representation, Q;

2. The fraction of extracted atoms which match the input atoms, NM , over Q, where

similarity between input atoms and extracted atoms ismeasuredwith themethod

described in Section 4.3.3;

3. The GOF of our model to the data; and

4. The amount of interference between the SEMs normalised by the number of data

points.

4.5.2 Example Output

Anexample of the algorithm’s application is given in Figure 4.5. The toppanel indicates

the set of 10 16-dimensional atoms which were used to generate the data in the middle

panel. The bottom panel indicates the algorithm’s output. Note that, except for some

noise, the extracted atoms almost perfectly match the input. The shaded areas in the

data indicate the windows from which the atoms can be extracted. The small amount

of data required makes the algorithm extremely data efficient.

4.5.3 Overall Performance

The performance across all trials, as well as the comparison between the reconstruction

stage of the algorithm (orange) and its overall performance (green), are summarised in

Figure 4.6. If we first focus on the reconstruction stage, we note that it very accurately

determines the dimensionality of the data (NE/Q median(iqr): 1.02 (0.9–1.2)), and
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Figure 4.5: Example data and output. Top Input atoms which are used to generate
the data (Middle). The algorithm identifies a dictionary of the corrext size, and with
atoms which are almost identical to the input (Bottom). The shaded areas in middle
plot indicate the windows from which the atoms were identified.

112



4.5 Algorithm Validation 4 Sparse Eigenmotion Decomposition

correctly identifies 77.6 (60–89.5)% of the input atoms. In contrast (Figure 4.6A), the

complete algorithm compares unfavourablywhen estimating the latent dimensionality,

significantly overestimating it 1.13 (1–1.33) (median(iqr), Wilcoxon signed rank test:

p < 0.001), though it performs significantly better at identifying the correct input atoms

81.25 (70–90)% (p < 0.001). In terms of the model’s GOF, the interference reduction

step only slightly improves the overall result, but pulls up the models with the poorer

fit: median(iqr) 0.73 (0.66–0.76) vs. 0.74 (0.69–0.77) (Figure 4.6B). It does however
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Goodness of Fit Atom Interference
0

0.2

0.4

0.6

0.8

1

1.2

***
***

Reconstruction Stage
Complete Results

Figure 4.6: Performance of the SEMD algorithm and comparison between the recon-
struction stage and the fullmethod. A (Left) The reconstruction stage accurately identifies
the dimensionality of the latent representation, with the ratio NE/Q being very close to
1. The full method, however, significantly overestimates it. (Right) In contrast, the full
algorithm performs significantly better when it comes to identifying the correct input
atoms, achieving >80% matches on average. B (Left) The dimensionality reduction stage
of the EMD algorithm slightly, though significantly improves the model’s goodness of
fit, and (Right) significantly reduces the interference between atoms within the data.
Whiskers indicate IQR. Wilcoxon signed rank test; ***: p < 0.001.

achieve its main purpose by greatly reducing the interference between atoms, despite

a substantial increase in dictionary size: 0.30 (0.12–0.59) vs. 0.21 (0.08–0.51) (p < 0.001).

In the following sections we detail SEMD performance when confronted with data sets
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of different lengths and dimensions.
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Figure 4.7: Influence of number of data points on reconstruction stage performance.
A Distribution of the number of extracted (grey) and matching SEMs (black). Small
data sets or data with high latent dimensionality slightly degrade performance. B
Joint distribution of the fraction of extracted atoms and of the fraction of matching
atoms. The extraction of "correct" atoms is not influenced by the total number of atoms
extracted. Ideal performance would be at (1,1). C The goodness of fit improves with
the amount of available data and D is related to the algorithm’s ability to identify the
correct atoms in the data. See text for details.

4.5.4 Impact of Data Set Size

The algorithm’s performance when confronted with data sets of varying length and

latent dimensionality is shown in Figure 4.7 and Figure 4.8 for the reconstruction stage

and the complete algorithm respectively. As for the overall results (see Section 4.5.3), we

note that the reconstruction stage by itself provides a good estimate of Q (Figure 4.7A,

grey boxes), although slightly more upwards biased (median: 110%, iqr: 100%–127%),
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and is particularly variable for small data sets with low values of Q. This variability is

reflected in the numbers of input atoms identified (black boxes). We further observe

that the algorithm’s ability to correctly identify the input atoms appears to be highly

dependent on both data size and latent dimensionality, as it identifies significantly less

input atoms for both very small and very large data sets, which implies a high Q. The

difference between small and large data sets is not significant (T � 1000 vs. T � 4000,

median: 0.66 vs. 0.89, p < 0.001; T � 4000 vs. T � 15000, median: 0.89 vs. 0.78,

p < 0.01; Kruskal-Wallis one-way ANOVA, Bonferroni corrected). Interestingly, we

find no correlation between NE and NM (Figure 4.7B8).

In terms of goodness of fit, the results are globally in line with the overall statistics

(Figure 4.7C). However, the algorithm has trouble with small data sets, significantly

under-performing situations where more data is available (T � 1000 vs. T � 4000

vs. T � 15000, median: 0.67 vs. 0.75 vs. 0.75, p < 0.001 for T � 1000 vs. rest,

not significant between T � 4000 and T � 15000; Kruskal-Wallis one-way ANOVA,

Bonferroni corrected). Maybe unsurprisingly, we find a correlation between the GOF

and NM , although the values remain generally high (Figure 4.7D, Spearman’s ρ � 0.46,

p < 0.001).

Considering the algorithm’s performance after adding the interference reduction

stage (Figure 4.8), we first note that both the goodness of fit and the ratio NM/Q

improve significantly across all conditions (p < 0.001, Wilcoxon signed rank test with

Bonferroni correction), thus demonstrating the usefulness of the second stage. In

particular, the interference reduction stage has the benefit of levelling the field between

data sets of various lengths. Thus, the ratio NM/Q becomes the same for both T � 1000

and T � 4000 time steps, although it still remains a bit lower for the long data set with

high value of Q (Figure 4.8A, black boxes).

8This figure, as well as Figure 4.7D and similar figures in this section were obtained by estimating the
distributions using a kernel density approximation with a Gaussian kernel with a bandwidth of 0.1.
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This homogenisation across conditions is further exemplified in Figure 4.8B, where

the distribution P(NE/Q, NM/Q) is much better defined, and in Figure 4.8C for the

model’s goodness offitwhere there is nomore significantdifferencebetween conditions

(Kruskal-Wallis one way ANOVA, Bonferroni corrected). The goodness of fit is also

distributed more narrowly, though the dependency on NM persists, albeit to a lesser

degree (Figure 4.8D; Spearman’s ρ � 0.31, p < 0.001).
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Figure 4.8: Influence of number of data points on the performance of the complete
SEMD algorithm. A–D The second stage significantly improves both NM/Q and the
goodness of fit with respect to the reconstruction stage alone, as well as levelling the
results across various conditions. A, grey boxes: The downside is that the estimate for
Q is further biased, in particular for very short time-series.

116



4.5 Algorithm Validation 4 Sparse Eigenmotion Decomposition

A

10 16 54
0

100

200

300

Dimensionality of the Data

%
of

Q

B

0 0.5 1 1.5 2
0

0.5

1

NE/Q

N
M
/Q

C

10 16 54
0

0.2

0.4

0.6

0.8

1

Dimensionality of the data

G
oo

dn
es

s
of

Fi
t

D

0 0.2 0.4 0.6 0.8 1
0

0.5

1

NM/Q

G
oo

dn
es

s
of

Fi
t

Figure 4.9: Influence of dimensionality the performance of the reconstruction stage.
A Distribution of the number of extracted (grey) and matching SEMs (black). B Joint
distribution of the fraction of extracted atoms and of the fraction of matching atoms.
C Goodness of fit of the learnt model. Contrast the poor performance in extracting the
correct atoms for 10-dimensional data in A with the comparatively high GOF. This is
further detailed in Dwhich displays a variable dependency of GOF on the ratio NM/Q.
See text for details.

4.5.5 Impact of Data Dimensionality

Next, we illustrate the algorithm’s ability to deal with data of varying dimensionality,

as well as some of its limitations. As with the previous analysis, we first present the

output of the reconstruction stage (Figure 4.9), followed by the results for the complete

algorithm (Figure 4.10). Again, we note a slight bias in the estimate of Q, though it

appears that the value is significantly dependent on the overall dimensionality of that

data (Figure 4.9A): upwardly biased for low dimensional (10 & 16) and downwardly

for high dimensional (54) data. The number of input atoms identified also varies with

117



4 Sparse Eigenmotion Decomposition 4.5 Algorithm Validation

the dimensionality of the data: the results for D � 10 is significantly lower than for

D � 16 or D � 54, which do not differ from each other (p < 0.001, Kruskal-Wallis one

way ANOVA, Bonferroni corrected). This result may seem surprising as it should be

a lot easier to identify a low-dimensional atom than a high-dimensional one as there

are less numbers to be estimated. This paradoxical finding is an artefact caused by the

method used for computing the similarity, and is discussed further below as well as in

Section 4.3.3. As previously, we find no correlation between NE and NM although the

distribution is quite a bitwider,mainlydue to the aforementioned artefact (Figure 4.9B).
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Figure 4.10: Influence of dimensionality on the performance of the complete SEMD
algorithm. A–D The second stage significantly improves both NM/Q and the goodness
of fit with respect to the reconstruction stage alone. The estimate for Q worsens for 10
and 16 dimensional data but improves for 54. In general, the algorithm performs best
with 16 dimensional data and worst with the high-dimensional one.

Akin to the results for NM , the goodness of fit is significantly worse for D � 10 than
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for D � 16 (median: 0.71 vs. 0.75). However, it is even lower for D � 54 (median:

0.57) (Figure 4.9C). This result can be explained by considering that the dependency of

the GOF on NM is much higher for the 54-dimensional data than the 10-dimensional

data (Figure 4.9D, Spearman’s ρ � 0.83 vs. 0.46). This is not surprising: because of

the curse of dimensionality, reconstructing data with ’wrong’ bases will lead to larger

errors in high-dimensional space than in low-dimensional space, thus pulling down

the goodness of fit.

The second stage of the algorithm further improves both NM/Q as well as the good-

ness of fit significantly (p < 0.001, Wilcoxon signed rank test, Bonferroni correction), as

found previously. Its ability to equalise results across conditions is, however, less clear

for varying dimensions: the number of correctly identified atoms in the 10-D data is

still significantly below the values for the other cases (Figure 4.10A; p < 0.001 Kruskal-

Wallis onewayANOVA, Bonferroni correction), although the spread of the distribution

is again reduced (Figure 4.10B). Thanks to the second stage, the goodness of fit for

D � 10 becomes similar to the one for D � 16. In the case of the high-dimensional

data, the gof improves, although it remains significantlyworse (Figure 4.10C, p < 0.001,

Kruskal-Wallis one way ANOVA, Bonferroni correction). The relationship between the

fraction NM/Q and the gof remains present, but its impact on high-dimensional data

is reduced (Figure 4.10D; Spearman’s ρ � 0.67, p < 0.001).

4.6 Comparison with the State of the Art

To compare our algorithm’s performance with competitor algorithms, we analysed the

same dataset which we validated our algorithm with using two alternative dictionary

learning algorithms: K–SVD (Aharon, Elad, and Bruckstein 2006), a widely used al-

gorithm and standard in numerous image processing applications and the method

proposed by Mairal et al. (2010), which implements recent developments in the field
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and is claimed to work online. We compare the results in terms of the same metrics we

used for the validation process. A summary of the results is provided in Figure 4.11.

Note that both these methods require an initial dictionary or at least with a guess as to

the size of the dictionary. This was set to be the true Q as to avoid bias.

We compared the output dictionaries with the input dictionaries to determine the

number of input atoms correctly identified by the algorithm (Figure 4.11A). The

SEMD algorithm shows clear superiority to both other methods, correctly identify-

ing 81.25(70–90)% (median(iqr)) of the input atoms. This is significantly higher than

the performance of Mairal et al. (2010) (70(60–80)%, p < 0.001, Wilcoxon signed rank

test) and the K–SVD algorithm (54.09(40–70)%, p < 0.001). Similarly, the interfer-

ence between atoms is significantly lower for our algorithm than for the other cases

(Figure 4.11B). None of the methods, however, achieve the ideal value of 0. This is

not particularly surprising considering that to obtain such a low value would require

extracting the input atoms with absolute precision, a task made very difficult by the

presence of noise in the data. The goodness of fit does not vary very much between the

methods (median; SEMD: 0.740; Mairal (2010): 0.737; K–SVD: 0.717), though SEMD

outperforms the other algorithms significantly. These values should be contrasted

with the goodness of fit obtained using the exact input atoms (Figure 4.11C, dashed

and dotted lines (median and iqr respectively)). Even using the exact input atoms, the

GOF remains well below its ideal value of 1. This can be explained by three factors:

(1) noise in the data, (2) the linearity of the model which makes it unable to deal with

time-shifts in the carrier functions (∆t in Algorithm 2) and more importantly (3) the

sparsity constraints of the reconstruction algorithm. Depending on the value used for

λ (see Equation 4.2), the reconstruction will sacrifice some of the goodness of fit for

sparsity, thus potentially suppressing low-amplitude signals.

Themajor drawback of ourmethod is its computational cost which increases linearly

with data size (Figure 4.11D). The main contribution to this cost is calculating the
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Figure 4.11: Comparison of the SEMD algorithm with the state of the art. A Fraction
of correctly identified input atoms. SEMD significantly outperforms its competitors
by correctly identifying more than 80%. B Similarly, the interference between atoms is
significantly lower for the results obtained by the SEMDalgorithm that the competitors.
CThe goodness of fit for allmodels is sensibly the same, but SEMDslightly outperforms
the other algorithms. D In terms of run-speed, the online algorithm by Mairal et al.
(2010) effectively remains approximately constant with additional data. SEMD slightly
outperforms K–SVD for longer data sets. All values are medians and inter-quartile
range. Dashed and dotted lines indicate ideal performance, except for B where it is
indistinguishable from the x–axis. See text for details. **: p < 0.01; ***: p < 0.001,
Wilcoxon signed rank test.
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distributions for estimating the significance of atomswithin the data (see Section 4.4.3),

as well as calculating the GOF at each iteration. While it is unlikely that the overall

complexity of the algorithm can be reduced, the implementation can certainly be sped

up significantly, though this is not the aim of this work.

4.7 Discussion

We presented a new algorithm for dictionary learning from time-series of arbitrary

dimensionality. Our method can be understood as both an extension and an improve-

ment on the technique used by Olshausen and Field (1997) and refined by numerous

others (e.g. Aharon, Elad, and Bruckstein 2006; Mairal et al. 2010). Three aspects set

our approach apart from previous work: (1) data efficiency, (2) consideration of spa-

tiotemporal instead of only spatial structure and (3) automatic estimate of the latent

dimensionality.

The first aspect is achieved by a highly selective sampling approach which attempts

tomaximise the information gathered by each iteration. This selective, windowed sam-

pling approach – combined with the morphological filtering operations – also implies

that despite using PCA (a method for spatial structure) locally, we effectively recover

bases which have a spatiotemporal function in the data. This is in stark contrast with

the previously mentioned global methods which are invariant to random shuffling of

the input data. Our algorithm’s ability to automatic estimate the latent dimensionality

of the data is also a consequence of the selective sampling method: when no more

novel information is available, or the data is accurately represented by a sufficiently

sparse code, it can be assumed that the number of atoms obtained are equal to the latent

dimensionality. Using a window, of course assumes that the frequency spectrum of

the data is not white, i.e. that there is some temporal structure. It also adds an addi-

tional parameter to be set. Fortunately, the time-scale of the dynamics governing the
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data being analysed can be obtained relatively easily by either considering theoretical

aspects, or by studying the auto-correlation function (e.g. Figure 3.5A&B).

We validated the algorithm’s behaviour for data of varying size and dimensionality,

demonstrating its ability to recover both under-complete and over-complete bases from

thedata. In contrast to ourmethod, the only other algorithmcapable of determining the

(over-complete) dimensionality of the data, Generalised Principal ComponentAnalysis

(Vidal, Ma, and Sastry 2005), has the disadvantage of being computationally extremely

costly and thus unusable for high-dimensional data.

A disadvantage of our approach is that unlike the method described by Mairal et al.

(2010), it is not possible to parallelise. However, it is conceivable to chunk a very

large dataset into smaller blocks and process these in parallel, although there is a

real risk of increasing the number of dictionary elements thus identified. This adds a

further complication as it requires a method for merging dictionary elements which

are very similar. This is the approach taken by (Mukherjee and Seelamantula 2014)

which learns a sparse representation of the union of individual dictionaries. However,

a simple clustering approach may provide equally good results.
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5
Sparse Representation of Natural Movement

“Nature uses only the longest threads to weave her

patterns, so each small piece of her fabric reveals the

organization of the entire tapestry.”
— Richard Feynman

The Character of Physical Law

5.1 Introduction

When we formulated our alternative hypothesis to hand control in Chapter 3, we

drew inspiration from a previous study which showed that sparse encoding of natural

images reflects the receptive fields of neurons in the primary visual cortex (Olshausen

and Field 1997). Setting aside the argument that “it worked elsewhere”, why is a sparse

code a good idea? Andwhat evidence is there that such a concept is being implemented

in the brain? The first question is typically answered using three distinct arguments:

(1) energy consumption, (2) stimulus discrimination and (3) memory capacity and

retrieval.

Because the generation of actionpotentials in the brain consumes such a large amount

of energy (ca. 80%; Attwell and Laughlin 2001), metabolic constraints place an upper

limit on the number of neurons which may be active at any given time. This imbalance

between energy requirements to maintain a neuron and to transmit a signal imply that
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an efficient neural code should try to maximise the information transmitted per spike.

In the most extreme case, this would result in “grandmother” cells – neurons which

represent one and only one concept (Konorski 1967). Thus, if that neuron did spike,

one would be certain that a particular stimulus has been presented (e.g. the face of the

grandmother). Without going to such lengths, a sparse code which represents high-

level features has been shown to be a promising candidate for encoding information

under energy constraints (Levy and Baxter 1996; Laughlin 2001).

By encoding these higher-order statistics of the stimulus, sparse codes make it also

much easier to discriminate between different inputs (Barlow 1972; Rolls and Treves

1990). This is particularly relevant when the input statistics are not completely random

but contain a lot of structure, such as natural images (Olshausen and Field 1997) and

sounds (Lewicki 2002).

Finally, sparse coding has been demonstrated theoretically to increase the memory

capacity and information retrieval ability of associative memory networks (Rolls and

Treves 1990; Okada 1996; Palm 2013). This is a memory model in which memories are

stored as the interaction of multiple neurons.

Evidence for sparse coding in the nervous system is abundant in the literature.

However, “sparsity” is often used interchangeably for two different concepts: Lifetime

sparsity, which implies that a neuron will only rarely fire throughout its life, i.e. codes

for a specific feature, and population sparsity which suggests that only a small part of

the population is active at any given time. Given data, separating both concepts is not

a trivial task as it requires monitoring a large population of neurons over prolonged

periods of time. However, it can be safely said that lifetime sparsity implies population

sparsity, although the opposite is not necessarily true.

In terms of sparse representation of high-level features, themost prominent example

is found in the visual system of monkeys (Baddeley et al. 1997; Vinje and Gallant

2000; Vinje and Gallant 2002) and humans (Quiroga et al. 2005; Quiroga et al. 2008).
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Building on the results of Olshausen and Field (1997), Vinje and Gallant (2000) and

Vinje and Gallant (2002) demonstrate sparse firing of neurons in V1 of awake and

behaving monkeys, and link it to interactions between the cells’ classical and non-

classical receptive field. Baddeley et al. (1997) follow the visual processing stream up to

the inferotemporal (IT) cortex and show an increase in neural firing sparsity, although

this was somewhat dependent on the metric. In the human medial temporal lobe

(MTL) which is one processing stage higher than IT, cells were evidenced which were

responsive to the representation of a single person, independently of the perspective

(Quiroga et al. 2005). Although reminiscent of the grandmother cells discussed before,

the authors themselves note that considering the number of stimuli used in the study

and the total number of neurons in MTL, it is more likely that these cells respond to

many more stimuli, thus making them a sparse code (Quiroga et al. 2008).

Similar evidence is available for the olfactory system of insects: in locusts, after a

population code type encoding of smells in the first processing stage, these are pro-

jected to a secondary processing stage, termed mushroom body, whose neurons show

extremely high selectivity for individual smells (Perez-Orive et al. 2002). Interest-

ingly, each neuron in the second processing stage is innervated by 50% of the primary

neurons. This lead the authors to conclude that albeit the neurons investigated only

responded to a single smell, the cells are likely to respond to a much greater number of

stimuli (Jortner, Farivar, and Laurent 2007). Concurrent results were demonstrated in

the mushroom body of drosophila (Honegger, Campbell, and Turner 2011) and even

in mice (Rinberg, Koulakov, and Gelperin 2006; Poo and Isaacson 2009).

Evidence for sparse coding in other sensory modalities is somewhat more spurious,

but present. Recordings in the rat’s auditory cortex, revealed that atmost 5%of the neu-

ral population respond to any given sound (Hromádka, DeWeese, Zador, et al. 2008),

and that the neuron’s tuning curves for sound frequency are very narrow (DeWeese,

Wehr, and Zador 2003). Furthermore, Lewicki (2002) showed that sparse coding of
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speech produces filters not dissimilar to those of the cochlea. In the somatosensory cor-

tex, whiskermovement and contact with objects result in only a small part of the neural

population firing (Brecht and Sakmann 2002; De Kock et al. 2007; O’Connor et al. 2010;

Crochet et al. 2011). The neurons’ response was not correlated with whisker position

or velocity, suggesting that higher-order features may be encoded (Kock and Sakmann

2009). The most compelling evidence for sparse coding, however, originates from a

study by Houweling and Brecht (2007) which demonstrated that rats were capable of

responding to stimulation of a single neuron in the sensory cortex. Further evidence

for sparse firing (and sometimes coding) in the brain can be found in place cells in the

hippocampus (Thompson and Best 1989), the prefrontal cortex of monkeys (Abeles,

Vaadia, and Bergman 1990), their gustatory system (Rolls, Yaxley, and Sienkiewicz

1990) and the electrosensory system of weakly electric fish (Vonderschen and Chacron

2011).

What about motor cortex? At least two studies point conclusively towards a sparse

representation of complex motor patterns by a small group of cells: in rats, stimulation

of a single pyramidal neuron in thevibrissaemotor cortex is capable of eliciting complex

whisker movements which far outlast the duration of the stimulation (Brecht et al.

2004). The movement amplitudes generated in this fashion were much smaller than

those observed behaviourally, suggesting that a small number of similar neurons firing

together may be the source of whisking in normal situations. In the zebra finch (a

songbird), neurons in the high vocal centre – a premotor area –were shown to represent

a temporal code of song generation. Spiking of one of these neurons generates a unique

pattern in the motor area it projects to, and is precisely time-locked to the bird’s song

(Hahnloser, Kozhevnikov, and Fee 2002).

In light of this evidence, and given the limited success of other methods to describe

motor output (see Section 3.4), we investigate the existence of a lifetime sparse repre-

sentation of motor outputs during natural human behaviour. If a meaningful sparse
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representation exists, we expect it to be task dependent butwith relatively large overlap

between tasks. To examine this question, we analyse two datasets: (1) in a controlled

setting (Belić and Faisal 2015) and (2) from freely behaving subjects. We demonstrate

that such task dependence exists, that dictionaries are likely to be finite in size and that

higher-order structure exists in the sparse representation of the data.

5.2 Materials and Methods

5.2.1 Data

We learnt dictionaries of sparse eigenmotions (SEMs) on two different data sets: (1) a

previously published database containing data of 7 subjects performing 10 repetitions

of 16 different tasks from everyday life (Belić and Faisal 2015). This data was recorded

using a Cyberglove (Cyberglove Systems LLC, San Diego, CA) from right-handed

subjects performing the taskswith their left hand and contains approximately 1million

samples equivalent to 3.5 hours of data. (2) A collection of recordings in natural settings

described in Chapter 2. This contains data from the right and left hand of 7 subjects

recorded in two different settings (kitchen and bedroom) and totals more than 4.5

million data points or 13 hours of recording.

5.2.2 Dictionary Learning

Dictionaries of SEMswere learnt for each individual recording using the algorithm de-

scribed inChapter 4. Thewidth of thewindow inwhich local principal components are

extracted was informed by the auto-correlation function of natural finger movements

(see Figure 3.5B) and set to 510 ms. Because of the large number of data points con-

tained in our recordings of natural movement data, we separated the data into blocks

of ca. 30000 samples, equivalent to 5 minutes of data. To obtain a unified dictionary

(and simultaneously estimate the number of SEMs used over time), we performed an
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iterative merger of the individual dictionaries as described below.

5.2.3 Dictionary Merger

Wemerge dictionaries using an iterative approach: given any two sets of SEMs B1 and

B2, we pool the elements and merge those deemed similar by averaging their values.

This procedure is done starting with very high thresholds for similarity and then

repeated with gradually lower thresholds. This guarantees that only similar SEMs are

actually merged and that "chains" of elements are not lumped together into one large

cluster. For our purposes, the similarity measures are the same as used in Chapter 4

and detailed in Section 4.3.3. The threshold started at 0.999 and was decreased in steps

of 0.001 until reaching 0.98.
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Figure 5.1: Comparison of sparse eigenmotions. A and B agree across in all five
measures andare consideredamatch. C andDonly agreeon twomeasures (intersection
and functional similarity) and are thus not considered to be equal.

5.2.4 Comparison with PCA

We use two different techniques to contrast the ability of SEMs and PCs to capture

natural movement data: (1) Variance explained with a latent dimensionality of 1 and

(2) the area under the VAF curve. In both cases, the latent SEM representation is

determined using the OMP algorithm (Pati, Rezaiifar, and Krishnaprasad 1993) which

enables us to precisely set the latent dimensionality. For fairness, the same method is
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used for finding the latent representation of PCA. That is, we do not restrict ourselves

to using a single PC throughout the data set but allow the algorithm to change PC at

every time-step. In addition – but for the repetitive movement data only – we restrict

size of the SEM dictionary and the number of PCs to be the same. When truncating a

dictionary to size Q, we pick the Q most prominent (in terms of squared latent activity)

elements. This guarantees that the number of parameters being compared in both

situations is the same.

5.2.5 Manipulative Complexity

Todetermine the complexity of a given task, we use themetric ofmanipulative complexity

as defined in Belić and Faisal (2015), which takes the mathematical form of:

Cm � 1 − 2
D − 1

D∑
j�1

j∑
i�1

(VAFi − 1/N) (5.1)

where VAFi is the variance captured by the i-th principal component. Values close

to 0 indicate low complexity, i.e. one PC explains most of the variance in the data. A

value of 1 would mean that all the PCs contribute equally to the variance in the data.

Intuitively, this represents the area between between the diagonal and the VAF curve,

and is equivalent to the Gini coefficient (Gini 1912).

5.2.6 Hidden Markov Model Training

We investigate the temporal structure of the sparse movement representation using

a hidden Markov model (HMM). The data is compressed to a latent dimensionality

of 1 by using the OMP algorithm and the 40 first elements of the SEM dictionary

of subject 4. We chose this dictionary because it generalised best across all subjects,

but most others probably could have been used. Data points during which the hand

was static were identified using the previously described method (Section 2.2), and
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removed. Non-zero values in the latent representation were replaced with the ID of

the corresponding SEM. Finally, self transitions were removed, leaving only a sequence

of different SEMs.

Using these sequences from all recordings, we learn a HMM using the Baum-Welch

algorithm. We trained HMMs with increasing numbers of hidden states (from 1 to

25). For each number of hidden states, we trained the HMM 10 times using a random

initialisation for the transition and emissionmatrices. The best HMM (i.e. the one with

the highest log-likelihood) was chosen for further analysis. To compare the trained

HMMs, we compute the Bayesian Information Criterion (BIC) for the HMM learnt.

The BIC is a principled way of comparing the quality of models when they have

different numbers of parameters. Lower BIC values indicate a better model.

5.2.7 Prediction of Hand Movements

We attempt to predict movements of the hand (y(t)) from the position and motion

of other body parts (x(t)), similar to the methodology used in Chapter 3. Instead of

directlypredictinghandmovements asdonepreviously,wefirst findaonedimensional,

latent representation of the data using the OMP algorithm and a single dictionary (see

Section 5.2.6 for details). For each SEM, we take the data assigned to it and learn a

linear regression model from x to y with 10-fold cross-validation. We then take the

entire data and learn a classification tree to predict the current SEM from y, also with

10-fold cross validation. This results in a two-stage predictionmethod: (1) predict SEM

from y and (2) use a SEM specific regression model to predict hand movements.

5.3 Results

We analyse two data sets of hand movements using the dictionary learning algorithm

presented in Chapter 4. The first data set contains multiple repetitions of the same task
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by various subjects (Belić and Faisal 2015). It is used as validation for the algorithm’s

performance when confronted with real data. The second data set contains much

longer time-series obtained from freely behaving subjects. On this data, we investigate

the potential of sparse coding for natural movement statistics, consistency of sparse

eigenmotions (SEMs) between subjects and higher-order structure in the time-series.
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Figure 5.2: Example of encoding data using a SEM dictionary. A Raw data captured
from the Cyberglove. Each colour represents a different channel. B Latent representa-
tion of the data. This example uses OMP with a single non-zero latent dimension as
reconstruction method. C Binary encoding of B where the latent dimension is either
on or off.
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Figure 5.3: A Comparison of the variance captured by 1 SEM vs. 1 PC. The proposed
method captures significantly more variability and generalises better across subjects.
Error bars indicate SD.Wilcoxon signed rank test. ***: p < 0.001. B The additional vari-
ance captured by a single SEM positively correlates with the manipulative complexity
of the task.

5.3.1 Repetitive Actions

We learnt dictionaries of sparse eigenmotions on 112 recordings of 7 subjects perform-

ing 16 different actions. Each recording contains 10 repetitions of the same action.

The SEMD algorithm identified an average of 23 ± 6.5 (mean±SD) SEMs per record-

ing. These enable us to compress the raw movement data (Figure 5.2A) into a sparse

representation (Figure 5.2B) or even a discrete code (Figure 5.2C). Figure 5.3A demon-

strates the ability of extracted SEMs to represent the data. The variance captured by a

single SEM was significantly higher than the variance explained by a single PC (SEM:

66.8 ± 5.3%, PC: 56.4 ± 5.6%; Wilcoxon signed rank test, p < 10−3). This was equally

true for the ability of SEMs to explain the data of other subjects’ performing the same

task (SEM: 58.1 ± 4.4%, PC: 48.9 ± 4.3%; p < 10−3). At the same time, the SEM dictio-

naries learnt were task-specific as they generalise significantly better to other subjects

performing the same task than the same subject performing different tasks (same task,

different subject: 58.1± 4.5%, same subject, different task: 56.6± 4.3%; p < 10−3). Inter-

estingly, a single SEM still captured more variance when generalising to other subjects
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than a single PC could explain for the data it was trained on (p < 10−3), pointing to the

generality of SEMs to represent movement data as well as the inadequacy of forcedly

orthogonal PCs for this task. The difference in variance captured by SEMs over PCs also

correlates positively (Pearson’s r � 0.31, p < 10−4) with the manipulative complexity

(Belić and Faisal 2015) of the task (Figure 5.3B). This supports the underlying assump-

tion that natural behaviour can be described as a – possibly overlapping – sequence of

simpler actions.

5.3.2 Natural Movement Data

Next, we analyse hand movement data collected during natural behaviour using the

same methodology as described above. The algorithm identified 88 ± 3.5 SEMs in

data of the right hand and 91± 4 for left hand data (Wilcoxon ranked sum test, n.s.). A

representative selection of SEMs froma single subject and their influence onhand shape

are displayed in Figure 5.4. Visual inspection of the loadings (i.e. weights of joints) on

individual SEMs showed that most act on multiple fingers simultaneously. The only

finger consistently being individuated inmultiple SEMswas the thumb,which fitswith

its special role in natural hand movement (see Ingram et al. 2008, and Chapter 3). The

SEMs explained significantly more variance for the same latent dimensionality than

PCA (Figure 5.5A; Wilcoxon signed rank test, p < 10−3 for both hands). On average,

encoding the data using a single SEM explained ∼140% of the variance captured by

a single PC. This value decreases smoothly before attaining 100% (i.e. equality) at a

latent dimensionality of 10 (Figure 5.5B, top). In terms of absolute difference, this

amounted to ∼16% for a latent dimensionality of 1 or 2 and then dropped off smoothly

to 0 (Figure 5.5B, bottom), suggesting that a local latent dimensionality of 2 may be

ideal for taking advantage of the properties of SEMs.

As for the previous data set, we tested how well the SEMD or PCA dictionary

generalise across subjects (Figure 5.5C). Again, SEMs outperformed PCs even when
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Figure 5.4: A–D Example activity of the 4major SEMs in the dictionary of subject 4. Top
Impact of SEM at different weightings (left axis) on hand pose. Bottom Mathematical
representation of the SEMs illustrated above. Bar height indicates relative movement
with respect to the other joints. Figures generated using LibHand (Šarić 2011).
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generalising to data they were not trained on, although the loss in variance captured

was not significantly different between SEMs and PCs (Wilcoxon signed rank test, right:

p � 0.79, left: p � 0.08). We did not restrict SEMD and PCA dictionaries to have the

same size as one of the key advantages of SEMs is to be over-complete. However,

this means that we are not quite comparing models of equal complexity. Interestingly,

while there was no difference in SEMD or PCA performance between hands when

encoding the data they were trained on (SEMD: p � 0.24, PCA: p � 0.90), the left (non-

dominant) handdidgeneralise significantly better in both cases (SEMD: p � 0.004, PCA:

p < 10−3), indicating a less individuated control structure. As a different measure of

generalisation, we counted the number of matching SEMs in dictionaries learnt on

different recordings. This overlap was 51.4± 7.9% for dictionaries learnt on right hand

data and 39.1 ± 7.3% for left hand data. Within subject, between hands generalisation

was 43.6±8.9%. This discrepancy between the dictionaries’ ability to explain data they

were not trained on and the lack of direct overlap of dictionary elements is intriguing.

It is not related to a globally less complex structure of left hand movements (see

Section 3.3.1), nor is it due to a smaller dictionary size (Figure 5.5D). We investigated

whether this observation could be explained by a skewed distribution of SEM activity

(i.e. a few SEMs represented in all dictionaries monopolising most of the activity), but

this was not the case either. A possible explanation lies in the inter-subject similarity

of PCA subspaces (Figure 3.1). As the similarity is significantly higher for subspaces

of the left hand than the right hand, SEMs of the left hand are more likely to reside in a

similar subspace, which allows them to better represent the data even though they are

not identical. This is consistent with the fact that although the left hand dictionaries

generalise better to other subjects, this advantage only holds when considering the

VAF curve as a whole. For latent dimensionalities up to 3, right hand SEMs explain

significantly more variance with respect to PCA than this is the case for the left (1 SEM

right: 126.5 ± 6% of PCA; left: 123.7 ± 6%. Wilcoxon ranked sum test, p < 10−3).
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Since we analysed the data by separating it into blocks of 5 min duration, we can

ask the question of how many unique SEMs are being used over time, i.e. how does

the dictionary size grow with additional data. As shown in Figure 5.5D, the number

of individual SEMs grows at an almost identical rate between the right and the left

hand. To model this growth, we fitted various functions to this curve. The best fit was

consistently achieved by a function of the shape y � A(1−exp(−t/τ)) (see Figure 5.5D).

This form gave better results than the two alternatives considered (a power-law and

a logarithmic function) although the logarithmic function was a close second. An

interesting feature of the exponential function is that it gives us an indication of the

total dictionary size by examining the parameter A. This was AR � 112.6 (104.5–120.7)

(mean (95%C.I.)) for the right hand and AL � 109.6 (100–119.2) for the left. Of course,

given a logarithmic model of dictionary growth there is no upper limit to the number

of SEMs.

5.3.3 Structure of the Sparse Representation

To further investigate the sparse encoding of the data, we look at a one-dimensional

representation, i.e. a vector indicating which SEM is most likely to have generated

each specific data point in the time-series (see Methods). Across all recordings, the

probability distribution of a point being represented by any given SEM was quite flat

(Figure 5.6A). The most represented SEM made up 5.3 ± 0.8% (mean ± s.d.) of the

data, while the least represented SEM still accounted for 0.9 ± 0.2% of the data. This

is characteristic of a sparse code where a single unit represents a specific high-level

feature of the data. Conversely, a dense code would concentrate the bulk of the activity

in a small number of SEMs.

Next, we investigated the transition matrix between SEMs. The matrix was pre-

dominantly diagonal, indicating that most transitions were self-transitions (pself �

0.85± 0.016). This is consistent with the fact that movements are not instantaneous but

139



5 Sparse Representation of Natural Movement 5.3 Results

have a certain duration. The time between SEM transitions followed an exponential

curve with decay constant τ � 75 ms (Figure 5.6B), a value which is substantially lower

than the full-width at half-maximum for hand movements (∼ 220 ms, see Figure 3.5B).

This is a consequence of finding the sparse representation using the OMP algorithm.

Given its greedy nature and disregard for surrounding time points and noise, it often

causes discontinuities in the latent representation. The LASSO (Tibshirani 1996) would

avoid this problem but is not suitable for our purposes as it does not allow control over

the latent dimensionality.
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Figure 5.6: A Mean probability distribution over SEM assignment for all data points.
The values are ordered from most to least common SEM. Error bars indicate stan-
dard deviation across all recordings. B Probability distribution of SEM duration and
exponential fit.

To see whether higher-order structure was present in the latent representation, we

trained hidden Markov models (HMM) with variable numbers of hidden states on the

SEM assignments (Figure 5.7A). The quality of the fit was assessed with the Bayesian

Information Criterion (BIC, Figure 5.7B). The optimal HMMwas determined to be the

one with the lowest BIC overall, and had 16 hidden states. This suggests that there

may be some temporal structure in the data.

The HMM can be further examined by investigating the transition and emission ma-

trices (Figure 5.8). The transition matrix displayed a strongly block-diagonal structure.
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Figure 5.7: A Log-likelihood of the HMM with increasing number of hidden states.
B Distribution of BIC values for HMMs with variable numbers of hidden states. The
lowest value (16) is indicated with an arrow. Black dots indicate median values.

(Figure 5.8A). Thiswas still the casewhen the number of hidden stateswas varied up or

down by 1 or 2, although the number of blocks varied slightly. This structure results in

relatively separate sub-networks of hidden stateswithin themodel (Figure 5.9) between

which switching is rare. The probability of self-transition was generally low (median:

9%, min: 0%, max: 71%), which may suggest that hidden states may encode a single

SEM. A brief look at the emission matrix (Figure 5.8B) or the HMM map (Figure 5.9)

reveals that this is not the case. Instead, most hidden states had a broad emission

spectrum, emitting on average 19 SEMwith a probability exceeding 1% (range: 13–29).

While the number of non-zero emission probabilities was high, it was non-uniformly

distributed with on average 4 (1–9) SEM accounting for more than 50% of the emission

probabilities for each state. This analysis also highlights the importance of SEMs 1,

2, 3, 6 and 20, which dominate the emission probabilities in states 3, 2, 7, 5 and 11

respectively. SEM 1 and 2 are depicted in Figure 5.4A and B respectively (Figure 5.8B).

The others (not shown) generate flexion along all MCP joints, thumb abduction and

thumb flexion respectively.
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Figure 5.8: A Transition and B emission matrices of the best fitting HMM.

5.3.4 Prediction of Hand Movements

Similar to our work in Section 3.3.3, we attempt to predict the velocity of hand move-

ments based on themovement andposition of the rest of the body. In this case, however,

we take a two stage approach. In the first phase, we use body data to estimate the SEM

having generated the data using a classification tree. In the second step, individually

trained regressors are used to predict hand movement data. The results are shown

in Figure 5.10. SEM prediction from body data was well above chance at 46.5 ± 5%

(mean ± s.d.) accuracy for right hand data (left: 49.5 ± 5%; Student’s t-test, p � 0.007).

No obvious pattern was visible in the misclassification rate of SEMs (Figure 5.10A).

In terms of hand movement prediction, the regression model with known SEM attri-

bution achieves 13.5 ± 1.3% accuracy for right hand movements (left: 10.3 ± 1.4%). If

we add the uncertainty given by the SEM classification stage, these values drops to

6.0 ± 1% (left: 4.2 ± 1.5%). This remains significantly higher than for direct prediction

without knowledge of SEM state (Wilcoxon ranked sum test, p < 0.001). As previously,

prediction of right hand movements was significantly better than for the left hand.
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Figure 5.9: Network diagram of the hidden Markov model. Transition probabilities
< 5% and emission probabilities < 1% are not displayed for clarity. Note the sub-
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5.4 Discussion

We used a previously introduced algorithm (Chapter 4) to analyse natural movement

data. Our goal was to identify whether there is the possibility that akin to sensory

data (Olshausen and Field 1997; Lewicki 2002), the statistics of natural motor output

may be represented by a sparse code. We demonstrate that such an encoding may be

learnt, and that it is much more efficient at describing the data than PCA, which has

been previously used to argue for a low-dimensional representation of hand move-

ments (Santello, Flanders, and Soechting 1998; Ingram et al. 2008; Faisal et al. 2010;

Belić and Faisal 2015). This advantage over PCA is directly dependent on task com-

plexity (Figure 5.3B), agrees with the idea of sparse eigenmotions (SEMs) representing

stereotyped individual movements. Crucially, these SEMs are well preserved across

subjects (> 50% between dominant hands), suggesting a certain amount of invariance

in hand representation in humans. Intriguingly, the sparse components could well be
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predicted from movement of other body parts (arms, contralateral hand and neck),

which suggests that the structure may extend beyond finger movements to include the

wrist, elbow and shoulder.

5.4.1 Differences Between Dominant and non-Dominant Hand

Our analysis reveals some intriguing differences between dominant (right) and non-

dominant hand: (1) although the SEMdictionaries are comparable in size (Figure 5.5D),

the overlap between dictionary elements is significantly higher in the dominant hand.

This contrasts with (2) the ability of non-dominant hand dictionaries to generalise to

other subjects, which is significantly higher than for the dominant hand. However, (3)

predicting dominant hand movements from body state was significantly better than

for the non-dominant hand.

How dowe reconcile these findings? Neurophysiological data suggests that the area

of primary motor cortex representing the dominant hand is larger (Amunts et al. 1996;

Volkmann et al. 1998) and more excitable (Tarkka and Hallett 1990; Boggio et al. 2006)

than that of the non-dominant hand. However, similar studies for premotor areas –

where we assume the sparse representation to reside – are lacking. If the results from

primary motor cortex extrapolate to higher cortical areas, this would explain why the

dictionaries of the non-dominant hands are able to generalise better. Yet, it does not

explain the similarity in dictionary size.

The difference in hand predictability is likely to have its origin elsewhere. In Sec-

tion 3.3, we showed that the correlation structure between fingers of both handswas not

significantly different. This is in line with results from Ejaz, Hamada, and Diedrichsen

(2015) which showed no difference between the functional representations of digits

in either hand. An increased correlation between fingers of the dominant hand is

thus unlikely to be the cause of the observed differences in prediction quality. We

suggest that this discrepancy comes from the reliance of the linear regression model
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on movements of the ispilateral arm (Figure 3.10): multiple studies have shown that

neurons in M1 code both for arm as well as hand movements (Vargas-Irwin et al. 2010;

Hendrix, Mason, and Ebner 2009). Although to the best of our knowledge no study has

examined how laterality affects these representations, we predict that in the dominant

hemisphere the number of neurons encoding both arm and hand areas is greater or,

alternatively, that corticocortical connections between the arm and hand areas of the

motor cortex are stronger.

5.4.2 Sparse Coding of Hand Movements in the Brain

The sparse representation of hand movements is supported by numerous electrophys-

iological studies of the motor and premotor cortex of monkeys, as well as the anterior

intraparietal lobe (Rizzolatti and Gentilucci 1988; Jeannerod et al. 1995; Murata et al.

1996; Murata et al. 2000; Raos et al. 2004; Raos et al. 2006). These studies reveal a

complex network responsible for visuo-motor transformation of object type shape and

orientation for grasping. Studies in all these areas, but predominantlymacaque area F5

(equivalent to the human PMv; Raos et al. 2006) exhibit neuronswhich code for specific

grasp types (e.g. precision grip or hook grasp), equivalent to our concept of sparse

eigenmotions. In a separate study, Schaffelhofer, Agudelo-Toro, and Scherberger (2015)

found 20 different hand configurations from monkeys grasping 50 objects of different

shapes and sizes. They demonstrate that during the planning phase the grasp type can

be best decoded from neurons in area F5 and the AIP, but less well fromM1. This trend

is reversed during themovement execution phase, with optimal decoding performance

coming from M1 and F5, and AIP being considerably worse.

These findings support the view of a hierarchical motor control system in which

the premotor cortex determines the overall hand movement shape and the execution

is performed at a more detailed level in M1. In particular, it should be noted that

these grasp types do not reflect an orthogonal basis of hand configurations as would
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be retrieved through PCA (Santello, Flanders, and Soechting 1998; Ingram et al. 2008),

and for which neural correlates could not be demonstrated (Mollazadeh et al. 2014).

The aforementioned studies are subject to two limitations: (1) all hand movements

performedwere grasps and typically started from a fixed configuration. Consequently,

we do not have information about the neural response to changes in hand shape

which occur naturally. Furthermore, it neglects the fact that only ∼13% of monkeys

handmovements involve reach-to-grasp (Graziano et al. 2002). (2) Electrophysiological

studies based on single unit recordings or on data obtained frommulti-electrode arrays

with subsequent spike sorting (this includes all those cited in this section), are prone to

sampling bias by identifying neurons which are particularly active (Barth and Poulet

2012). More studies are thus required to determine the total number of neurons in

these areas and those responsive to specific hand movements.

5.4.3 A Language of Movements?

With the original discovery of grasp specific neurons in area F5, Rizzolatti and Gen-

tilucci (1988) suggested that this representation may correspond to a “vocabulary of ele-

mentary motor acts”, in which individual neurons code for specific words. The original

formulation of the hypothesis thus reflects a “grandmother cell” code of motor actions,

but more recent findings suggest this is more likely to be a sparse code where multiple

neurons respond to a given grasp type (Raos et al. 2006; Schaffelhofer, Agudelo-Toro,

and Scherberger 2015). While this hypothesis is currently cited in later work, no follow-

up study has addressed this particular point. Indeed, the very paradigm at the heart

of current research (i.e. reach-to-grasp) prevents a detailed analysis of this point, as

the sequence of words is pre-imposed.

On the other end, Hidden Markov models have long been used for part-of-speech

tagging in natural language processing (DeRose 1988). This operation attempts to

assign a tag (noun, verb, adjective, etc.) to words in a body of text. Although most of
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the time the tags are predefined by an expert, it should in theory be possible to learn

the optimal number of tags (and subsequently assign a meaning to them) by learning

a HMM on natural language. Key features of this approach are that (1) the number of

tags is much smaller than the number of possible words and (2) words may belong to

more than one tag category (e.g. run may be both a noun and a verb).

Our analysis of thediscrete sequences constructedbyencoding thenaturalmovement

datawith aHMMreveals exactly that. The optimal number of hidden states (or tags) as

determined by the BIC is 16. Given the flatness of the BIC curve for 14–17 hidden states

(Figure 5.7B), the precise optimum is somewhat unclear and additional data and/or

simulations may clarify this aspect. It is, however, indisputable that the number of

hidden states is significantly smaller than the number of observed symbols. Moreover,

individual SEMs were mostly assigned to a small number of hidden states: the median

number of hidden states accounting for more than 50% of the emission probability of

a SEM was 2 (range: 1–4). These results make a strong argument for the existence

of a hierarchical, potentially language-like structure of human motor control which

is intuitively consistent with the decomposition of a complex task into a sequence of

simple subtasks.
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6
Conclusion

“I may not have gone where I intended to go, but I think

I have ended up where I needed to be.”
— Douglas Adams

The Long Dark Tea-Time of the Soul

The previous four chapters introduced various experimental methods, data sets

and analyses. In each case, we discussed the results and analysed weaknesses of our

approach, as well as the implications of our findings in the context of related research.

To finish, we summarise our findings, and put our work into the broader context of

neuroscientific research. Finally, we discuss potential avenues for further research.

6.1 Summary of Results

Following a general introduction in Chapter 1, Chapter 2 describes an experimen-

tal paradigm measuring human in unconstrained, natural settings. We describe the

statistics of joint positions and velocity and develop metrics for comparing behaviour

between humans. We find that while position is extremely variable, the distribution

of peak velocities in natural behaviour is highly stereotyped. We suggest to use this

feature in future studies for comparing movement of healthy subjects to patients with

neurological disorder and as target for rehabilitation. In addition the the characterisa-

tion of human behaviour, we examined two hypotheses in light of the newly collected
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data: (1) movement linearity and (2) the 2/3 power law (Lacquaniti, Terzuolo, and

Viviani 1983). We find that only 70% of movements are straight, but almost all (> 99%)

are planar. Interestingly, movement planes had no preferred orientation. This supports

current experimental procedures where subjects perform movements in a horizontal

plane. In contrast, the 2/3 power law is not supported by our analysis. Instead of

the expected exponent value of β � 0.33, we obtain very variable exponents, with a

median of 0.5. We argue that this new value can be related directly to the physics of

movement. The prevalence of the 2/3 power law in previous studies is unclear, and

may be related to the experimental protocol. These results make a strong argument for

validating results from laboratory experiments in ecologically relevant situations.

Chapter 3 goes beyond descriptive statistics by analysing spatial and temporal struc-

ture of the movement. In support of work in the previous chapter, we find that the

correlation structure of handmovements contrasts significantly whether theywere col-

lected in the laboratory (Jarrassé et al. 2014) or from natural behaviour (Ingram et al.

2008, and our data). Interestingly, we find no difference between the dominant and the

non-dominant hand either in terms of correlation structure or movement frequency (as

characterised by the auto-correlation function). The only consistent difference between

both hands is that the dominant hand tends to be used more for precision movements

(i.e. only a few joints move simultaneously) while the non-dominant hand use more

frequently used for grasping (i.e. all joints move simultaneously). Similar to move-

ments of the hand, we characterise the correlation structure of the major joints of the

body. In contrast to the hand, we find very few correlations between limbs: the only

ones which appear consistently between multiple recordings are correlations between

the lower limbs (probably induced by walking) and between shoulder and elbow (a

typical occurrence during grasping). Principal components of body movements are

consequently very variable between subjects. However, the little structure which is

present enables us to predict hand configuration and movement above chance levels.
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The findings of this chapter lead us to argue that PCA may not be the optimal way

of analysing natural hand movements and that, instead, a sparse code may be more

appropriate.

To identify a potential sparse code, Chapter 4 introduces an algorithm for data driven

dictionary learning. In contrast to most available methods, the method proposed

identifies not only spatial structure, but forces it to have temporal continuity. In

addition,we the algorithm is verydata efficient and capable of automatically estimating

the latent dimensionality of the data. We show that these features are robust to

changes in sample size, data dimensionality and latent dimensionality. Although it is

not quite as computationally efficient as other algorithms, our approach consistently

outperforms them when it comes to identifying the underlying generating dictionary.

Chapter 5 sees the application of the previously developed algorithm on natural

movement data. We show that our sparse eigenmotions (SEMs) are significantly more

efficient at encoding the data than principal components. In particular, the increased

efficiency scales with the complexity of the task. Applied to hand movement data

of freely behaving subjects, we identify dictionaries which are not only similar in

size, but also largely overlap between subjects. This is the strongest argument for the

existence of sparse coding of natural movement statistics. Compressing the data to a

one-dimensional latent representation and analysing the resulting time-series points

to the existence of a higher-level structure. We argue that this may be interpreted as a

language for movement. Finally, we take advantage of the newly discovered structure

to propose a new different approach to predicting hand movements from other body

parts. This variation on the method first proposed in Chapter 3 provides a 10-fold

increase in prediction quality. This improvement is an additional argument for the

existence of a sparse structure of hand movements.
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6.2 A Window Into the Brain

What does measuring natural movement tell us about motor control? If we make

the simplifying assumption that the motor plant can be seen as a linear system with

quadratic control cost and Gaussian noise (i.e. a LQG system) then a direct duality

exists between an optimal state estimator (a Kalman filter) and the optimal controller

(Kalman 1960). This implies that – given knowledge of the state space –we can estimate

the brain’s control method. This obviously raises three issues: (1) the assumption that

the motor plant is a LQG system, (2) the use of optimal control by the brain and (3)

knowledge of the state space.

The first question is somewhat beyond the scope of our work, although it is obvious

that non-linearities are present at every level of the motor control system, from the

integration of neural inputs to muscle activity. However, recent research suggests that

this duality might extend beyond the LQG setting to non-linear (but control-affine)

systems (Todorov 2008).

Whether the brain uses optimal control for planning and execution of motor tasks

is a much debated question. Multiple experiments demonstrated that motor control is

largely in agreement with optimal control which minimises energy expenditure (e.g.

Todorov and Jordan (2002), for a review see Scott (2004)). However, whether this is

due to active optimal control or is simply habitual as the consequence of evolution is

unclear (De Rugy, Loeb, and Carroll 2012).

From our point of view, the most interesting question regards the state space on

which the brain acts when controlling the motor plant. The output is obvious: move-

ment clearly happens in kinematic space and forces in muscle space. What does the

brain care about? Studies in the primary motor cortex of monkeys, mostly focused

on M1, have found neurons responsive to instantaneous velocity (Paninski et al. 2004),

peak velocity (Churchland, Afshar, and Shenoy 2006) and direction in extrinsic (Geor-
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gopoulos, Schwartz, and Kettner 1986) and intrinsic space (Kakei, Hoffman, and Strick

1999), force (in extrinsic space (Hepp-Reymond et al. 1994)), muscle tension (Kakei,

Hoffman, and Strick 1999) and, more recently, even muscle synergies (Overduin et al.

2015). Given the high amount of redundancy between these representations, it seems

unlikely that all of them are controlled simultaneously. In particular, Barlow’s effi-

cient coding hypothesis (Barlow 1961) suggests that in light of the physical constraints

on information processing by the brain (energy consumption, space limitation, pro-

cessing speed and thermodynamic noise), the central nervous system should utilise

a representation which is adapted to the statistical structure of the information being

processed. This approach was mainly developed for the sensory system where it has

been particularly successful in explaining the properties of neurons in the visual and

the auditory system (Olshausen and Field 1997; Lewicki 2002). These systems have the

advantage that it is relatively straightforward to characterise the statistical properties

of the input stimuli (e.g. picture of natural environments (Olshausen and Field 1997) or

natural sounds (Lewicki 2002)) and to derive efficient codes for them. Characterising

the natural output of the central nervous system is muchmore technically challenging.

Ourwork inChapter 2 andChapter 3 provides a step in that direction. For the first time,

we have measured and described the statistical properties of the kinematics of natural

movement from various perspectives. While these results do not in themselves tell us

howmovements are encoded in the brain, they provide a powerful tool for identifying

the correct encoding in electrophysiological studies as it should be expected that the

“true” representation is provided by a neural population with tuning curves optimally

adapted to the statistics of the natural output.

The problem might, however, be more complicated. We showed in Chapter 3 that

our limbs do not move completely independently of each other, but that a correlation

structure exists between them, in particular for the hand. It may thus be that instead of

encoding the statistical properties of individual joints or limbs, the brain encodes linear
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(or even non-linear) combinations thereof. In Chapter 5 we attempt to identify such

linear structure in hand movements by using the purpose-built algorithm described in

Chapter 4. We demonstrated that hand movements may be described by a sparse code

of eigenmotions which is task specific, generalises well across subjects and allows for a

hierarchical representation and control of movement. Whether this representation is

related to the way the brain controls movement remains to be studied in electrophys-

iological experiments. The fact that sparse eigenmotions (SEMs) are predictable from

other body parts suggests that there may even be structure spanning multiple limbs.

These findings have not only neuroscientific interest, but lay the foundations for

new approaches for context-aware robotic and prosthetic control. Recently, Abramova,

Faisal, and Kuhn (2011) demonstrated that intelligent switching between randomly

placed (in state space) linear controllers provides significant advantages over tradi-

tional methods for controlling non-linear robotic devices. Our sparse encoding of

natural movement, although not directly concerned with the control problem, sug-

gests a more intelligent way of placing the linearisation points and hints towards a

hierarchical approach to control switching. In terms of prosthetic control, we previ-

ously investigated the possibility that hand movements can be described as a sequence

of movement primitives (Thomik, Haber, Faisal, et al. 2013; Haber, Thomik, Faisal,

et al. 2014). Although that representation does not generalise as well as SEM encoding,

it already demonstrated that the approach of segmenting the possible output has sig-

nificant benefits in terms of intention prediction for prosthetic control. In addition to

the benefits of segmented control, we demonstrated that there is significant structure

between movements of the affected arm and the hand (Chapter 3) which is even more

obvious when the movement is segmented according to the generating SEM (Chap-

ter 5). These features are worth exploring in terms of a multi-modal control structure

for myoelectic hand prostheses. Movement of the arm and knowledge of the action ex-

ecuted previously may act as a prior for decoding the user’s intention and could easily
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be combined with recent developments in prosthesis control (see Farina et al. 2014, for

a review). Together, these results should provide users with a prosthetic device which

is more versatile and intuitive to control.

6.3 Future Perspectives

In order to fully exploit the statistics of natural movement and provide a deeper insight

into the neuroscience of motor control, we need to pursue two avenues of research.

First of all, new analytical and computational methods need to be developed for

analysing large, unstructured data sets such as natural behaviour. Controlled experi-

ments in which subjects repeatedly perform very specific actions or tasks simply lack

the statistical richness required to unravel the complexity of motor control. Analysing

the data from freelymoving subjects is, however, extremely complex. Traditionalmeth-

ods such as (cross-) correlation analysis, PCA, etc. are ill-suited to the task because they

consider global effects and thus average out local structure. Performing the analysis

on windowed data is itself problematic. How does one choose the window size and

placement? Consequently, it is necessary to develop novel methods which are capable

of identifying relevant local structure in a principledwaywhile accounting for artefacts

which such an analysis may create. The SEMD algorithm is one suchmethod designed

with a very specific application inmind. Other approaches might be needed to explore

higher order statistics or spatio-temporal structure of the data.

The bigger task is to relate the statistics of natural movement to its neural represen-

tation. Initially, this will require to develop experimental paradigms which enable us

to collect both behavioural and electrophysiological data in a rich, ecologically relevant

environment while minimising the typical constraints of experimental setups. This

will likely require creation of entirely new recording equipment and experimental pro-

tocols. Such studies have the advantage that they may be carried in a large range of
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organisms, be it worms (e.g. C. elegans) rodents or more complex organisms such as

primates. The analysis of neural recordings in light of the natural statistics of motor

output offer great potential in identifying the relevant variables and will help us better

understand the core purpose of our brain: movement.
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