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Opportunistic Multiuser Two-Way Amplify and

Forward Relaying with a Multi Antenna Relay

Duckdong Hwang∗, Bruno Clerckx∗∗, Sung Sik Nam∗∗∗ and Tae-Jin Lee∗†

Abstract

We consider the opportunistic multiuser diversity in the multiuser two-way amplify and forward

(AF) relay channel. The relay, equipped with multiple antennas and a simple zero-forcing beam-forming

(ZFBF) scheme, selects a set of two way relaying user pairs toenhance the degree of freedom (DoF) and

consequently the sum throughput of the system. The proposedchannel aligned pair scheduling (CAPS)

algorithm reduces the inter-pair interference and keeps the signal to interference plus noise power ratio

(SINR) of user pairs interference free when the number of user pairs becomes very large. When the

number of user pairs grows fast enough with the system signalto noise ratio (SNR), a DoF equal to the

number of relay antennas can be achieved. For a realistic number of user pairs, we propose an adaptive

CAPS and an adaptive semi-orthogonal CAPS (SCAPS) to improve the performance. Simulation results

show that adaptive CAPS and adaptive SCAPS provide throughput gain in the low to mid SNR region.

Index Terms

Two-way relaying, opportunistic user pair selection, amplify and forward, degree of freedom.

I. INTRODUCTION

Two-way amplify-and-forward (AF) relaying [?], [?] is an attractive technique to enhance

the spectral efficiency of AF relaying system, where a pair ofusers exchanges bidirectional
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messages in two phases. The two transmissions from the usersoverlap in the first phase and the

AF relay simply broadcasts the received signal toward the two users in the second phase. Each

user subtracts out the reflected self-interference and can decode the message signal from the

other user. Space division multiple access (SDMA) techniques at the multiple antenna AF relay

enable a set of user pairs to exchange the two-way traffics using the same spectral resource [?],

[?], [?], [?]. Since the reflected self-interference of a user can be subtracted out, the handling

of the inter-pair interference is the key challenge. A base station and a set of users form a

two-way traffic through a multi antenna relay in [?]. Here, the inter-pair interference is jointly

handled by the base station and the relay and the achievable degree of freedom (DoF) is the

minimum of the numbers of the base station antennas and the relay antennas. Multiple pairs

of two-way users through a multi antenna relay are considered in [?], [?], [?], [?]. When users

have a single antenna, the relay only handles the inter-pairinterference [?], [?], [?] and a DoF

up to the integer floor ofM+1
2

is achievable. Alternatively, the relay and the users collaborate

to suppress the inter-pair interference [?] with multi-antenna relay and users, where a DoF of

M is achieved whenM is the number of relay antennas,N is the number of user antennas and

they satisfyN ≥ (M + 1)/2.

When there are multiple users as in the cellular network, theindependent fading of user

channels can be exploited to provide the system with variousperformance gains [?], [?], [?].

This opportunistic multiuser diversity is utilized to schedule semi-orthogonal user channels in the

conventional multiuser multiple input multiple output (Mu-MIMO) zero forcing beam-forming

(ZFBF) system [?]. Also, it can be used for interference alignment in the cellular networks [?] or

in the interference channels [?]. For the two-way relay channel with single antenna users and an

AF relay withM antennas, we propose an opportunistic channel aligned pairscheduling (CAPS)

scheme and the DoF is guaranteed to beM (M pairs of two-way traffic can be served in two

phases) if the number of pair users (K) scales fast enough according to the signal to noise ratio

(SNR). The DoF is improved compared to those of [?], [?] but remains the same as the one in

[?]. Instead, the requirement for multiple antenna users is replaced by the opportunistic multiuser

diversity from a large number of user pairs compared to the schemes in [?]. For realistic values of

K, we propose an adaptive version of CAPS where the number of scheduled user pairs is adapted

depending on the channel realizations. A semi-orthogonal scheduling as in [?] can be embedded

into the CAPS and the resulting semi-orthogonal channel aligned scheduling (SCAPS) further

April 27, 2015 DRAFT



3

enhances the system sum rate performance in the low-to-mid SNR regime when the adaptive

version is applied to finiteK cases.

The paper is organized as follows. The system model appears in Section II. The presentation

of CAPS algorithm and its properties appear in Section III. Two adaptive scheduling schemes,

adaptive CAPS and adaptive SCAPS, are introduced in SectionIV with numerical results.

Section V concludes the paper.Notations: The bold lower case letter represents a vector and

the bold upper case letter represents a matrix.E[a] denotes the average of a random variable

a. The notationsAT ,AH , A† andTr[A] are the transpose, the Hermitian transpose, the pseudo

inverse and the trace of a matrixA, respectively.A⊥ and ‖a‖ denote the projection onto the

space orthogonal to the columns ofA and the norm of a vectora, respectively.|A| denotes the

cardinality of a setA. Ik denotes the identity matrix withk× k dimensions.CN (0,C) denotes

the complex white Gaussian random vector with zero mean vector 0 and the covariance matrix

C. The integer floor function⌊a⌋ returns the largest integer less than or equal toa.

II. SYSTEM MODEL

In Fig. 1, the multiuser two-way relay channel is depicted, where the half-duplex AF relay

hasM (M ≥ 2) antennas and the2K single antenna user terminals makeK two way pairs,

where two users in a pair exchange bidirectional information through the relay. TheM × 1

channel vector between the useri and the relay is denoted byhi. The elements of these channel

vectors are independent and identically distributed (i.i.d.) CN (0, I). We assume that thei-th user

(i = 1, . . . , K) is paired with the(i +K)-th user without loss of generality. Each user sends a

pilot signal so that the relay can learn the channels for all users (hi, i = 1, . . . , 2K), based on

which m (m ≤ M) two way pairs are selected by the relay.

The transmission of two-way relaying is composed of two phases. The2m users in the selected

pairs transmit their messages toward the relay in the first phase and the relay broadcasts the beam-

formed signal toward the2m users in the second phase. All the channel vectors do not change

during the two transmission phases. Thei-th user sends the message symbolxi, (E[|xi|2] = Ps)

through the antenna in the first phase. The received signal atthe relay is given as

yr =
m
∑

i=1

(hixi + hi+Kxi+K) + nr, (1)
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yj = hT
j Wr[hj+Kxj+K +

m
∑

i 6=j

(hixi + hi+Kxi+K) + nr] + nj

= hT
j Wrhj+Kxj+K + Ij + nr,j + nj , (3)

where theM × 1 vectornr is CN (0, IM). The relay applies aM ×M beam-formerWr to the

received signal (1) and transmits the product vectorWryr in the second phase. Then the signal

received at thej-th user in the second phase is given as

yj = hT
j Wryr + nj

= hT
j Wr[

m
∑

i=1

(hixi + hi+Kxi+K) + nr] + nj, (2)

wherenj is CN (0, 1) again. IfhT
j Wrhj is known to thej-th user from the embedded pilots, it

can subtract out the self-interference termhT
j Wrhjxj . Then, (2) becomes as (3), wherenr,j =

hT
j Wrnr and the inter-pair interference termIj = hT

j Wr

∑m
i 6=j(hixi + hi+Kxi+K). The signal

to interference plus noise power ratio (SINR) of thej-th user is given as

SINRj =
Ps|hT

j Wrhj+K |2
|Ij|2 + ‖WH

r h
∗
j‖2 + 1

. (4)

A. Relay beamformer Design

To limit the transmit power at the relay, the relay beamformer Wr should meet

Tr[PsWrHHHWH
r +WrW

H
r ] = Pr, (5)

where the columns ofH are2m channel vectors (hj) of the selected user pairs andPr is the relay

power constraint. Letβ be the power control parameter so that Eq. (5) is to be satisfied, then we

haveWr = βW̃H
r W̃r, where thej-th row of them×M matrix W̃r is denoted as1×M vector

wj, (‖wj‖ = 1) and has the property that the angular distance toward the user channels of the

other pairs are bounded. Also, let the selected user pair setS = {1, . . . , m,K +1, . . . , K +m}.

Mathematically, we can write the property of thej-th row as

|wjhk|
‖hk‖

≤ δ, k ∈ Sj , (6)

April 27, 2015 DRAFT



5

whereSj = S \ {j, j +K}. Whenδ can be made equal to zero, the inter-pair interference can

be forced to zero by the relay beamformerWr. It is well known that the beamformer with

M antennas has the capability to suppress the interference among theM channel vectors by

satisfying (6). Ifm(> M/2) two-way pairs are scheduled, there are more thanM channel vectors

from these overloaded user pairs andWr suffers from handling the inter-pair interferences (δ

in (6) becomes large). By aligning the channels within a userpair, we can keepδ small enough

and thus maintain the inter-pair interference within a certain level.

With the aid of the property in (6), the following Lemma 1, theproof of which is provided

in Appendix-A, shows that the inter-pair interference power can be bounded ifm ≤ M .

Lemma 1: As long asm ≤ M , the inter-pair interference power is bounded as|Ij |2/Ps ≤
(βm)2δ2‖hj‖2

∑

k∈Sj
‖hk‖2.

Similarly, we can show that the relay noise power term delivered to thej-th user receiver

‖WH
r h

∗
j‖2 is bounded as‖WH

r h
∗
j‖2 ≤ β2‖hj‖2(1 + (m− 1)δ)2. Once thej-th user pair beam-

formers (wj) satisfy the property in (6), the power of the two hop channelhT
j Wrhj+K is lower

bounded as|hT
j Wrhj+K |2 ≥ β2|hT

j w
H
j wjhj+K |2. Therefore, a reasonable choice ofwj is to

maximize|hT
j w

H
j wjhj+K | within the constraint given in (6).

III. CHANNEL ALIGNED PAIR SCHEDULING

In this section, we utilize the opportunistic diversity from a large number of user channels to

align the channels of users in a pair so that the well known beamformers like ZFBF, applied at

the relay, can handle the inter-pair interference easily bysatisfying (6). The CAPS algorithm in

Table I picks upm(≤ M) user pairs whose channels within a pair are mostly aligned. Starting

from the largest correlation, reorder the selected pairs indecreasing order. Leti = ϕ(k) denote

this reordering, wherei runs from 1 to m. Find the mean direction vector1 between the two

vectors in each selected pair and construct the relay precoderWr based on these mean direction

vectors. From the SINR expression in (4), it is easy to see that the inter-pair interference power

|Ij|2 becomes the bottleneck to thej-th user throughput at high SNR if the alignment of the

channels within a pair is imperfect so that the relay beamformerWr fails to reduce this quantity.

1The mean direction vector is the one that halves the angle between two vectors. Simple interference power analysis with

trigonometry reveals that, if we pick vectors, each of them is a vector from a pair vectors, and form a ZFBF from these vectors,

we have about twice more interference than the mean direction vector approach. Note that (6) is satisfied by ZFBF.
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fµ(µ) = m(M − 1)

(

K

m

)K−m
∑

n=0

(

K −m

n

)

(1− µ)(M−1)(K−n)−1(−1)(K−m−n). (7)

Therefore, we will see in this section that the CAPS algorithm reduces this interference power

and achieves a DoF ofM through the opportunistic multiuser diversity ifK goes to the infinity.

First, we are interested in the distribution of the worst case correlationνϕ−1(m) since we will

use the upper bound of the interference power. Lemma 2, proved in Appendix-B, presents the

probability density function (pdf) ofνϕ−1(m) selected by the CAPS algorithm.

Lemma 2: The pdf ofµ = ν2
ϕ−1(m) is given as in (7).

Let us defineθk = cos−1 νk, the angle between the two channel vectors of thek-th pair. Since

the relay beamformer̃Wr of CAPS is constructed to zero-force the mean channel vectors of

other pairs, theδ in (6) is determined byδ2 = sin2 θk/2. Using the trigonometric identity, we

can define̺ (K,M,m) = E[δ2] = 1−E[µ]
2

. Proposition 1 provides the convergence behavior of

̺(K,M,m) with a largeK.

Proposition 1: In a largeK, ̺(K,M,m) converges to

lim
K→∞

̺(K,M,m) = lim
K→∞

Γ
(

m+ 1
M−1

)

2Γ (m)

1
M−1
√
K + 1

= 0. (8)

Proof: See Appendix-C.

Here, 1
M−1√K+1

determines the convergence speed while
Γ(m+ 1

M−1)
2Γ(m)

decides the overall scale

of ̺(K,M,m). The convergence speed slows down asM increases while the scale increases

with m. This results suggest that opportunistic multiuser diversity provides an opportunity to

schedule more thanM/2 pairs at the same time whenK is sufficiently large. For a largeM ,

the convergence of̺(K,M,m) becomes slow. In this case, we can lower the scale by taking a

smallm (schedule less pairs) since the overall scale
Γ(m+ 1

M−1)
2Γ(m)

decreases with a smallerm.

Second, the upper bound of the inter-pair interference power |Ij |2, the CAPS algorithm

produces, is presented in Lemma 3.

Lemma 3: With the CAPS algorithm, the inter-pair interference power|Ij|2 can be upper

bounded in largeKs as in (9).

|Ij|2 ≤ (βm)2Ps

Γ
(

m+ 1
M−1

)

2Γ (m) M−1
√
K + 1

‖hj‖2
∑

k∈Sj

‖hk‖2. (9)
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Proof: Combining the results of Lemma 1 and Lemma 2 by inserting̺(K,M,m) into δ2

in (11), we can arrive at the upper bound in (9).

Finally, Lemma 4 with the proof in Appendix-D gives the DoF convergence property of CAPS.

Lemma 4: The CAPS algorithm can achieve the DoF ofM asK goes to the infinity.

However, the DoF result of Lemma 4 should not be over stressedsince the property holds in the

infinite K and the convergence speed of the interference power becomesslower asM increases.

For a finiteK, |Ij|2 cannot be nulled out so that the CAPS suffers from ceiling effect in the high

SNR region though a smallerm or a largeK raises the ceiling upward. Hence, the DoF values

more thanM/2 can be hardly achieved for a finiteK. In the following sections, we provide

adaptive scheduling approaches for realisticK, which enhance the low-to-mid SNR performance

rather than the DoF.

IV. A DAPTIVE (S)CAPSALGORITHMS AND NUMERICAL RESULTS

WhenK is finite and thus it is hard to reduce̺(K,M,m). In this section, we will show how

to implement the idea of CAPS in realisticK cases by, first, decreasing the scale of̺(K,M,m)

(choosingm(< M) pairs) and, second, embedding the semi-orthogonal scheduling of [?]. If the

CAPS chooses onlym(< M) pairs, the relay ZFBF has a room to handle additional interference

of up to M − m dimensions if we assume that the aligned pair channel vectors take up only

m spatial dimensions. Therefore, we can modify the CAPS by scheduling additionalJ arbitrary

pairs at the same time, whereJ ≤ ⌊(M −m)/2⌋. The total number of channels in the system

is given as2(m + J). Then, the total spatial dimensions of the channel vectors that the relay

ZFBF deals with becomesm + 2J (≤ M). The ZFBF handles weaker inter-pair interference

than theM pair scheduling case and a better sum rate is expected at low to mid SNR due to

the additionalJ pair channels. The relay beam-former is constructed as follows

G = [h1, . . . ,hJ ,hK+1 . . . ,hK+J , h́ϕ−1(1), . . . , h́ϕ−1(m)]

Wr = βW̃H
r W̃r, W̃r = ρG†. (10)

Here,hj,hK+j, (j = 1, . . . , J) denote the channel vectors of additionally scheduled pairsand

h́ϕ−1(1), . . . , h́ϕ−1(m) are the mean vectors of the pair channels selected by CAPS. Now for each

channel realization, the CAPS is given a choice between different combinations ofm andJ for

the best sum rate performance. We call this scheduling approach as adaptive CAPS.
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We define the system sum rate as

R =

m+J/2
∑

k=1

1

2
[log2(1 + SINRk) + log2(1 + SINRk+K)] .

The i.i.d. CN (0, I) distributed channel vectors ofK user pairs are generated so that the CAPS

algorithm can selectm pairs and formWr. The user terminals are assumed to be the same

distance apart from the relay and use the same power (Ps) while the relay power isPr = Ps,

which includes the path-loss effect. Figure 2 compares the system sum rate of adaptive CAPS

scheme with that of ZFBF scheme without scheduling. Also, plotted are the system sum rates of

three combinations (m, J) of modified CAPS. As we increasesm the system sum rate saturates

faster at high SNR while the gain in the low SNR region increases. The adaptive CAPS harvests

the benefits of the modified CAPS schemes throughout the SNR region, though most of the gain

is observed in the low SNR region.

For a finiteK, the gain from opportunistic channel alignment is limited.Further improvement

in this case is expected if we embed the semi-orthogonal channel selection of [?] into CAPS.

The SCAPS algorithm summarized in Table II first selects a setof user pairs whose pair

channel alignments are greater than a threshold. Then, it sequentially chooses pairs, the minimum

magnitude of the pair channel vectors after the projection onto the space ofH⊥
S is the strongest,

where the columns ofHS are composed of the already selected pair channel vectors.2 It is

better to makeǫ small to keep the channels of a pair well aligned, which forces the cardinality

of the setS0 to be small as well. On the other hand,|S0| needs to be large enough to reap

the benefit of semi-orthogonal channel scheduling. Similarly with adaptive CAPS, the adaptive

scheduling through the modification of SCAPS is implementedfor a practicalK and we name

this scheduling as adaptive SCAPS. In Fig. 3(a) and Fig. 3(b), the system sum rates of SCAPS

are compared forM = 2 and M = 4, respectively. In simulations, we controlǫ so that2M

user pairs are selected forStep 2 of the SCAPS algorithm. It is shown that adaptive SCAPS,

by introducing semi-orthogonal channel selection, further enhances the sum rate performance of

adaptive CAPS in the low to mid SNR region.

2The virtually orthogonal channels of SCAPS allow us to consider the proportional fair scheduling similar to [?] as well. In this

case, the pair selection in Table II can be changed tok∗ = argmaxk∈S0
min[wk log(1+‖hk‖

2Ps), wk+K log(1+‖hk+K‖2Ps)],

wherewk is the fairness weight for the userk.
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|Ij |2
Ps

= β2‖ht
jW̃

H
r W̃rHj‖2 ≤ β2‖hj‖2υΞΛΞtυt = β2

(

(m− 2)δ2 + 2δ
)2 ‖hj‖2

∑

k∈Sj

‖hk‖2.

(11)

V. CONCLUSION

We show that the opportunistic multiuser diversity can be utilized to enhance the sum rate

performance of the multiuser two-way AF relay channel. Simple zero-forcing based beam-

forming and an efficient scheduling algorithm implemented at the multi antenna relay enhances

the degree of freedom and the sum throughput of the system. Tokeep the SINR of user pairs

interference free when the number of user pairs becomes verylarge, we propose the CAPS

algorithm. The SCAPS algorithm not only aligns the pair channels but also forms the inter-pair

channels semi-orthogonal to enhance CAPS. In practice where the number of pairsK is limited,

adaptive CAPS and adaptive SCAPS provide scheduling gain inthe low to mid SNR region.

APPENDIX

A. Proof of Lemma 1

Let Hj be theM×(M−2) matrix, where the columns corresponding to thej-th user pair are

struck out from the matrixH and let the1×m vectorυ = [δ, . . . , δ, 1, δ, . . . , δ], where one is on

the j-th entry ofυ. Also, let them× (2m− 2) matrix Ξ be the matrix whose elements are allδ

except for ones on the entries of(k, k), k 6= j and(k, k+K), where(i, k) denotes the entry on

the i-th row and thej-th column. Applying the property in (6) repeatedly, we get (11), which is

certainly less than or equal to(βm)2δ2‖hj‖2
∑

k∈Sj
‖hk‖2. Here,Λ is the(2m− 2)× (2m− 2)

diagonal matrix with‖h1‖2, ‖h2‖2, . . . , ‖hK+m‖2 on its diagonal entries.

B. Proof of Lemma 2

The cumulative density function (cdf) of the angular distance (ν) of two complex random

vectors is derived in [?] through a reinterpretation of Theorem 1 of [?]. It is given as

Fν(ν) = 1− (1− ν)M−1,
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fµ(µ) = m

(

K

m

)

ft(1− µ)Ft(1− µ)(m−1)(1− Ft(1− µ))K−m. (12)

E (µ)=

∫ 1

0

µfµ (µ) dµ=m (M − 1)

(

K

m

)
∫ 1

0

µ(1−µ)M−2+(m−1)(M−1)
(

1−(1−µ)M−1
)K−m

dµ. (13)

over the setν ∈ [0, 1]. Let us define a new random variablet = 1 − ν, then it is easy to see

that the pdf and the cdf oft areft(t) = (M − 1)tM−2 andFt(t) = tM−1, respectively. Note that

choosingm largest members amongK realizations ofν is statistically equivalent to choosing

m smallest members among the same number of realizations oft. Using the property of order

statistics [?], the pdf ofµ can be found as in (12), which can be rewritten as (7).

C. Proof of Proposition 1

From a different form ofE (µ) derivation, we can see the behavior of̺(K,M,m) in a large

K. Starting from (12), we have (13). In (13), letx = (1− µ)M−1, then µ = 1 − x
1

M−1 and

dµ = 1
(M−1)

(1− µ)−M+2dx. As a result, we can re-write the integral expression in (13)as
∫ 1

0

µ(1−µ)M−2+(m−1)(M−1)
(

1−(1−µ)M−1
)K−m

dµ

=
1

(M − 1)

∫ 1

0

(

1− x
1

M−1

)

xm−1(1− x)K−mdx. (14)

Now, (14) can be re-written as the two simple integral expressions in (15). By the definition of

[?, (3.191.3)], the first and the second inner integrals in (15)can be re-written as the following

closed-form expressions in (16,17), respectively whereB (·, ·) is the beta function [?, (6.2)].

After substituting (16) and (17) into (15) and some manipulations, the desired closed-form

expression of (13) can be obtained as (18), whereΓ(·) is the Gamma function [?, (8.32)] with

the propertyΓ(t+1)
Γ(t)

= t. For infiniteK, the propertylimx→∞
Γ(x+α)
Γ(x)

= xα allows us

lim
K→∞

E(µ) =

[

1−
Γ
(

m+ 1
M−1

)

Γ (m)

(

1

K + 1

)
1

M−1

]

,

lim
K→∞

̺ (K,M,m) =
Γ
(

m+ 1
M−1

)

2Γ (m)

(

1

K + 1

)
1

M−1

.

(19)

April 27, 2015 DRAFT



11

1

(M − 1)

[

∫ 1

0

xm−1(1− x)K−mdx −
∫ 1

0

xm−1+ 1
M−1 (1− x)K−mdx

]

. (15)

∫ 1

0

xm−1(1− x)K−mdx = B(K −m+ 1, m) , for K −m+ 1 > 0, (16)

and
∫ 1

0

xm−1+ 1
M−1(1−x)K−mdx=B

(

K−m+1, m+
1

M−1

)

, for K −m+ 1 > 0, (17)

In a very largeK, ̺ (K,M,m) = (1− E(µ))/2 converges to zero for allM ≥ 2.

D. Proof of Lemma 4

Let ρj = m2‖hj‖2
∑

k∈Sj
‖hk‖2. The SINR expression in (4) can be lower bounded (invoking

Jensen’s Inequality) as in (20).

SINRj ≥
β2Ps|hT

j w
H
j wjhj+K |2

2β2PsγM
M−1√K+1

ρj + β2(‖hj‖2 + 2(M−1)γM
M−1√K+1

) + 1
. (20)

Assuming thatK approaches infinity, we can ignore the inter-pair interference terms and have

SINR expressions as

SINRj ≥
β2Ps|hT

j w
H
j wjhj+K |2

β2‖hj‖2 + 1
. (21)

Sinceβ2 = (Pr − M)/Tr[HHWH
r WrHPs], it is clear thatβ scales withPr. Hence withPr

increasing, theSINRj are dominated by
Ps|hT

j w
H
j wjhj+K |2
‖hj‖2 . If Ps scales to infinity as well, DoF

of 1 is achieved per user as long as the relay beam-former keeps the term|hT
j w

H
j wjhj+K |

non-zero. Since (21) is satisfied for allm pairs and we can schedule up toM pairs, we can

achieve2M DoFs in two phases (DoF ofM achieved).
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Fig. 1. The Multiuser Two-Way MIMO relay channel with K user pairs.
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Fig. 2. The average sum rates of the adaptive CAPS and modifiedCAPS with different(m+ J) values. Here,M = 2 in (a)

andM = 4 in (b) with the sameK = 100.
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TABLE I

THE CAPSALGORITHM

Step 1. For k = 1 to K, calculateνk =
|hH

k
hk+K |

‖hk‖‖hk+K‖
.

Step 2. Pick upm user pairs

with the largest channel correlation valuesνk.

Step 3. Starting from the largest correlation, order the selected pairs.

Let i = ϕ(k) denote this reordering.

Step 4. Normalize the channel vectors of userj and userj +K

and take the mean vector of them as

h̆ϕ−1(j) = hϕ−1(j)/‖hϕ−1(j)‖

+hϕ−1(j)+K/‖hϕ−1(j)+K‖, j = 1, . . . ,m.

h́ϕ−1(j) = h̆ϕ−1(j)/‖h̆ϕ−1(j)‖, j = 1, . . . , m.

SetG = [h́ϕ−1(1), . . . , h́ϕ−1(m)] and findW̃r = ρG†

to meet the property in (6).

Here,ρ is set to makeTr[W̃H
r W̃r] = M .

Step 5. SetWr = βW̃H
r W̃r and findβ using (5).

Step 6. Inform the selected users of the scheduling grants.
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TABLE II

THE SCAPSALGORITHM

Step 1. Take a small valueǫ (0 < ǫ ≪ 1)

and take an empty setS = φ.

Step 2. For k = 1 to K, calculateνk =
|hH

k
hk+K |

‖hk‖‖hk+K‖
.

Step 3. Let S0 be the set of user pairs withνk greater than1− ǫ.

Step 4. Set t = 1.

Among the user pairs inS0, pick up a pair

k∗ = argmaxk∈S0
min[‖hk‖, ‖hk+K‖].

SetS = S ∪ {k∗}, S0 = S0 \ {k
∗}, ϕ(k∗) = t

andHS = [hk,hk+K ].

Set t = t+ 1.

Step 5. Among the user pairs inS0, pick up a pair

k∗ = argmaxk∈S0
min[‖H⊥

S hk‖, ‖H
⊥
S hk+K‖].

SetS = S ∪ {k∗}, S0 = S0 \ {k
∗}, ϕ(k∗) = t and append

hk∗ andhk∗+K to the last two columns ofHS

((2t− 1)-th and2t-th columns ofHS).

Set t = t+ 1 and repeatStep 5while t ≤ M .

Step 6. SetG = [h́ϕ−1(1), . . . , h́ϕ−1(M)] and findW̃r = ρG†.

Here,ρ is set to makeTr[W̃H
r W̃r] = M .

Step 7. SetWr = βW̃H
r W̃r and findβ using (5).

Step 8. Inform the selected users of the scheduling grants.
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Fig. 3. The average sum rates of the adaptive SCAPS and modified SCAPS with different(m+ J) values. Here,M = 2 in

(a) andM = 4 in (b) with the sameK = 100.
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