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Biological organisms rely on their ability to sense and respond appropriately to their envi-
ronment. The molecular mechanisms that facilitate these essential processes are however
subject to a range of random effects and stochastic processes, which jointly affect the relia-
bility of information transmission between receptors and e.g. the physiological downstream
response. Information is mathematically defined in terms of the entropy; and the extent of
information flowing across an information channel or signalling system is typically mea-
sured by the “mutual information”, or the reduction in the uncertainty about the output
once the input signal is known. Here we quantify how extrinsic and intrinsic noise affect
the transmission of simple signals along simple motifs of molecular interaction networks.
Even for very simple systems the effects of the different sources of variability alone and
in combination can give rise to bewildering complexity. In particular extrinsic variability
is apt to generate “apparent” information that can in extreme cases mask the actual infor-
mation that for a single system would flow between the different molecular components
making up cellular signalling pathways. We show how this artificial inflation in apparent
information arises and how the effects of different types of noise alone and in combination
can be understood.

Keywords: Mutual Information; Extrinsic Noise; Intrinsic Noise; Signal Transduction; Gene
Expression

1. Introduction

Information theory — as conceived by Claude Shannon — is the branch of the mathe-
matical sciences that deals with the quantification of structures, regularities or semantic
patterns in a stream of symbols or observations (Shannon, 1948). Information, different
from meaning, was defined probabilistically in Shannon’s work and this notion has been
applied with great success in the engineering and physical sciences (Peng et al., 2005;
Cover & Thomas, 2012). More recently, information theoretic approaches have gained in
popularity in the biological sciences (Cheong et al., 2011; Uda et al., 2013).

It is obviously important for biological organisms, ranging from single cells to multi-
cellular organisms, to sense, process and correctly adapt to their environment or their own
physiological state (Endres & Wingreen, 2009; Andrews & Iglesias, 2007; Tkačik & Wal-
czak, 2011; Tostevin et al., 2012; Rhee et al., 2012; Mc Mahon et al., 2014). A host of
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recent studies have applied such information theoretical measures and analyses to biolog-
ical systems, in particular gene regulation and signal transduction systems (Tkacik et al.,
2008b; Tostevin & ten Wolde, 2009; Tkacik et al., 2012; Porter et al., 2012; Selimkhanov
et al., 2014). In such a framework, we can for example, study how well a given molecular
pathway relays information arriving at cell-receptors into the cellular interior, and in eu-
karyotes perhaps into the nucleus. If a cell “misinterprets” its environment — or fails to
initiate an appropriate physiological response — then this can have obvious detrimental ef-
fects; we would therefore expect molecular signal transduction and information processing
to have been finely honed by evolution. Information theory provides a framework in which
we can attempt to quantify the accuracy and efficiency with which information is mapped
onto physiological responses or actions (Tkacik et al., 2008a; Doyle & Csete, 2011).

In molecular and cellular systems biology, but also in engineering or signal processing
applications we are often primarily concerned with the efficiency of information transmis-
sion, which is also, of course, the context in which Shannon’s original work was set. For
example, we may model the input and output of an information channel as random vari-
ables, X and Z, respectively. The mutual information, I(X ,Z) is then a measure that tells us
how much the uncertainty about Z is reduced if we know the state of the random variables
X (Cover & Thomas, 2012). In terms of the entropies, H(X),H(Z) of random variables,
X ,Z, the canonical measure of the uncertainty associated to a random variable, we have

I(X ,Z) = H(Z)−H(Z|X) = H(X)−H(X |Z), (1.1)

where H(Z|X) is the appropriate conditional entropy of Z if the state of X is known,
etc.; below we assume that we can calculate entropies and derived quantities using the
Lebesgue, counting or mixed measures as appropriate. For a perfect, noiseless channel in-
formation transmission is loss-less and, if the event spaces of X and Z are identical, we
will therefore have, H(Z|X) = 0.

There are two subtle but we feel important differences between traditional applications
of information theory and those found in biological systems. First, any molecular signal
transduction pathway typically maps the input (such as an environmental stimulus), X onto
an appropriate cellular response, (e.g. the concentration of an active transcription factor),
Z. Instead of faithfully reproducing the signal it is in fact processed , i.e. altered. Adap-
tive behaviour, where the response of the system attenuates back to the baseline level for a
continuing stimulus, serves as a useful example, where I(X ,Z) would vary over time and
eventually, for perfectly adapted behaviour will approach zero. This can be partly accom-
modated into a conventional information theoretical approach by considering X and Z to
be random variables with different event spaces (Tostevin et al., 2012). This may happen,
for example, for switch-like behaviour, where Z ≈ 0 for X smaller than some threshold
X < Xt , and Z ≈ c > 0 for X > Xt ; here a continuous input is mapped onto distinct “ON”
and “OFF” states (Tyson et al., 2003).

The second difference lies in the physical manifestation of biomolecular signal trans-
duction systems, which differ profoundly from their engineering counterparts: in physical
systems there is a clear distinction between the channel or information transmission infras-
tructure (typically wires or antennas), the message (electrons or electromagnetic waves)
and the energy required to deliver the message are typically distinct — although for e.g.
single molecule transistors such a separation no longer holds. In biomolecular systems, the
information processing machinery, the message, and the energy units are all molecules and
medium and message are intricately linked (Kelly & Stumpf, 2008; Bowsher & Swain,
2014; Mc Mahon et al., 2014).
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Here we investigate how information is transduced by simple molecular systems, and
using extensive simulation studies we attempt to distill the principles underlying molecular
information processing. In particular we shall focus on noise and its impact on informa-
tion processing in signal transduction (Bowsher & Swain, 2012; Komorowski et al., 2013;
Bowsher et al., 2013; Selimkhanov et al., 2014). The concept of “noisy channels” has been
central to information theory since its conception (Shannon, 1948), but in a molecular con-
text, as outlined above, we are not necessarily able to separate between the channel and the
transmitted message.

Given that information is measured by entropy and that dynamics at the molecular
scale tend to be stochastic we may expect systemic distortion of signals due to the noise
inherent to molecular dynamics (Bowsher & Swain, 2012). Furthermore, in addition to
such “intrinsic noise”, different individual cells will be subject to “extrinsic noise” sources
(Swain et al., 2002; Toni & Tidor, 2013). These include, by definition, variability among
cells due to factors not explicitly considered in the analysis. In signal transduction this may,
for example, be due to variability in the number of cell receptors, ribosomes, proteasomes,
kinases, phosphatases etc..

Below we will discuss the roles of intrinsic and extrinsic noise in the context of very
simple signal transduction systems. We will focus on proteomic processes and very sim-
ple ON/OFF signals. Three main lessons emerge from this analysis: (i) noise, especially
extrinsic noise, can lead to a systematic inflation in the apparent information transmitted
through molecular interaction networks; (ii) transmission of stationary and even the sim-
plest time-varying variable signals can differ quite profoundly (also in respect to which
different noise sources affect the information transmission) even for very simple signalling
motifs; and (iii) whereas we by now have good insights, often even intuition, as to how
different molecular architectures/motifs affect the dynamics of a biological system, un-
derstanding the transmission of information, despite considerable recent progress, is still
challenging. Even for the simple motifs considered here, a rich behaviour of even the con-
ventional mutual information can be found.

2. Methods

In order to analyse the effects of noise in cellular signal processes we use information the-
oretical concepts, in particular mutual information. Obtaining its value is widely regarded
as challenging and there is little consensus as to the best estimator of mutual information
(Cellucci et al., 2005; Fernandes & Gloor, 2010; Ziv et al., 2007; Zhang & Zheng, 2015).
Except for the special case where the joint distribution pX ,Y is multi-variate Gaussian,
analytical values cannot be obtained. For this reason many different types of estimators
have been devised; here we focus on a kernel density estimator based approach applied
on instantaneous measurements of input and output states; we also use the linear noise
approximation for trajectories, where we have analytical results as the distributions are
multi-variate Normal (MVN).

(a) Kernel Density Estimator

The kernel density estimation (KDE) was employed by Steuer et al. (2002). Consider-
ing a Gaussian kernel, a one-dimensional distribution f(x) is approximated from a data set
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where h is the bandwidth. For our Gaussian kernel we use the Silvermann’s rule of thumb
(Silverman, 1986), which is considered to be the optimal choice when the underlying distri-
bution is Gaussian, hopt = ( 4
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can be plugged into the continuous form of mutual information, which is a functional of
probability densities

Î(X ,Y ) =
∫

x

∫
y

f̂g(x,y) log
f̂g(x,y)

f̂ (x) f̂ (y)
dxdy. (2.2)

However, in order to simplify the algorithm we will typically represent the mutual infor-
mation by

Î(X ,Y ) =
1
N

N

∑
i=1

log
f̂ (xi,yi)

f̂ (xi), f̂ (yi)
. (2.3)

and sample N times from a mixture of multivariate Gaussians with mean (xi,yi) and applies
the KDE with respect to each Gaussian. In addition we apply the copula transformation, by
transforming the input data into quantiles (Nelsen, 2007). It is important to note that mutual
information appears less sensitive with respect to the chosen smoothening parameter than
the probability density.

(b) The Linear Noise Approximation

When dealing with intracellular processes low copy numbers of molecules often lead to
significant stochastic fluctuations governing the system dynamics. The Linear Noise Ap-
proximation (LNA) provides a reliable solution for many such systems, especially those
for which the molecule number does not pass below ≈ 10 and which are not highly non-
linear (Wallace et al., 2012). It has been previously successfully applied to simulate bio-
chemical systems, for the inference of kinetic rate parameters (Komorowski et al., 2009;
Fange et al., 2010), and for the sensitivity and robustness analysis of stochastic reaction
systems(Komorowski et al., 2011).

We consider a general system of N species made up of Xi, i = 1, . . . ,N molecules
inside a volume Ω, giving a concentration xi = Xi/Ω. The state of the system can change
by one of R chemical reactions corresponding to an event j, leading to a change in species
i according to the stoichiometric matrix S = {Si j}i=1,2,..N; j=1,2,...R. The probability of an
event occurring in the time interval [t, t + dt] is given by the mesoscopic transition rates
ã j(x,Ω, t). The LNA approximates the chemical master equation by dividing the system’s
state into a deterministic and a stochastic part, which describe the the mean concentration
of the reactants and the deviation of the reactant from their mean concentration values,
respectively,

x(t) = ϕ(t)+Ω
−1/2

ξ(t). (2.4)

The equation describing the stochastic part is itself made up of two terms, respectively,
comprising the drift A and diffusion E

dξ(t) = A(t)ξdt +E(t)dW (t). (2.5)

and the final distribution across all species is MVN at all times. We use the Stochsens
package (Komorowski et al., 2012) to obtain the LNA equations for our given systems.
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(c) Simulations

In addition to analyses using the LNA we also considered stochastic differential equa-
tions, which were simulated using the Euler-Maruyama approximation (Kloeden & Platen,
1992); the sundials library (http://computation.llnl.gov/casc/sundials/main.html)
was used to solve ordinary differential equation. The simulations account for three differ-
ent cases: the presence of intrinsic noise, of extrinsic noise, and of both. In order to account
for extrinsic noise in the systems we consider parameters characterising different cells to
distributed according to a Gaussian distribution. In our simulations we balanced the rela-
tive effects of extrinsic and intrinsic noise to study their respective effects on information
transmission and simulations were used to calibrate the system such that the variance in
system output at steady state due to each individual noise source amounts to 10% of the
mean/deterministic steady state abundance.

3. Results
(a) Noise in Simple Motifs

We begin by estimating the mutual information between molecular species that form
the inputs and outputs of three increasingly complex molecular signalling motifs(Alon,
2007; Ingram et al., 2006; Domedel-Puig et al., 2010) under the effects of different types
of noise, see Fig. 1. The first motif we consider is a basic input-output system with just two
molecular species, corresponding to, for instance, a kinase and its regulated target sub-
strate, with no additional interactions. Next, we introduce an additional species, to create
a cascade motif, made up of a chain of elements with linear dependencies, which in a bio-
logical context could represent a simple signalling cascade (Miller et al., 2008). The final
motif is a three-species system of the simple feed-forward loop (FFL) type (Mangan &
Alon, 2003; Alon, 2007). Note that there are eight different structural types of FFL based
on different combinations of activation and repression, each categorised into coherent and
incoherent depending on whether the sign of the direct and indirect regulation path are the
same or opposite. Here the focus is on the so-called coherent type-1 FFL which appears
commonly in both E. coli and S. cerevisiae (Mangan & Alon, 2003).

Using a stochastic differential equation (SDE) model, extrinsic noise is introduced via
parameters that follow themselves a Gaussian distribution. We observe that most of the
time the mutual information I(X ;Z) is highest for the cases with extrinsic-only noise; in-
formation transmission is most affected, therefore, by the presence of intrinsic noise and,
perhaps counter-intuitively, the loss in fidelity is not sufficiently mitigated by increasing
signal strengths. Interestingly the mutual information value in the presence of both types
of noise appears, most of the time, to be between that displayed solely in the presence
of intrinsic and solely extrinsic types of noise. This is somewhat counter-intuitive as we
would expect the mutual information of the systems in the presence of both types of noise
to be the lowest of the three. It leads us to believe that the two types of noise interact in a
non-additive manner.

Furthermore, although this conclusion about the relative impact of the different types of
noise cannot be generalised to all signalling pathways, the observed pattern is surprisingly
similar across the three otherwise non-trivially different systems. The pattern also remains
consistent when analysing these systems with different input signals S. In addition, our
results show that increasing the value of S decreases the mutual information significantly
in the presence of extrinsic noise.
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Figure 1. Here we show the distributions of species X , Y and Z in the simple input-output motif (A),
the linear motif (B) and the feed forward loop motif (C), in the presence of extrinsic (purple) noise,
intrinsic(green), and both types of noise (blue) — all with comparable output variances — as well
as in the absence of noise (red cross). For simplicity all three motifs contain a single time-varying
stimulus S(t) and molecules with fixed degradation rates. In each subplot (A,B,C) we show how the
molecular species react to different input signals S = {1,5,10,20}, increasing from top to bottom
in each set of scatter plots respectively. The bar charts represent the trend in mutual information
computed via KDE between molecular species X and Z for the simple, linear and feed forward loop
in the presence of the above mentioned different input signals.

To investigate the generality of our results further, the same set of motifs was also
considered but accounting for the possibility of basal transcription and activation of each
of the molecular species under mass action kinetics — this would be expected to reduce the
ability of the system to trace the signal appropriately. In Figure 2 we show the trajectories
for molecular species Z in the simple, linear and feed forward loop obtained with the LNA
compared to 100 trajectories obtained with the SDE; the mean value of the latter (red line)
corresponds to the ODE trajectory obtained with the former (green line). As is apparent in
the figure, while the average behaviour of the LNA and the SDE are in excellent agreement
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Figure 2. Here we show the trajectories for molecular species Z simulated with both LNA and SDE,
for the simple (A), linear (B), and feed forward loop (C) motifs. The box plot displays the mutual
information for these motifs computed analytically with the LNA based approach (displayed by a
cross symbol) compared to 100 estimates obtained with the kernel density estimator which employs
the SDE results. While the LNA is capable of capturing the average behaviour, the variability of
the output is reduced considerably compared to the SDE case, and this is reflected in the apparent
increase in mutual information observed for the LNA compared to the SDE case.

(as are their respective variances), the (analytical) MI estimates obtained for the LNA are
consistently higher than those obtained from the SDE simulations (which were estimated
using KDE described in the Methods section); this reflects the way in which the LNA fails
to capture non-Gaussian noise. The MI estimates in figure 2 for the LNA appear inflated
compared to the SDE case, as the LNA restricts the joint distribution of the state variables,
here input, X , and output, Z, compared to the SDE (which captures the stochasticity of the
system fully). Nevertheless both estimates display the same qualitative dependence on the
signal and are consistent across motifs.

Thus far we have only looked at stationary signals. Biologically more interesting are, of
course, dynamically changing signals — such as spatial differences in nutrient abundance
or temporally varying environmental signals. For simplicity we consider a very simple
form for a signal that changes with time: a square wave process that alternates between
successive “ON” and “OFF” states. We model the motifs under two scenarios of this sig-
nal, corresponding to different switching rates, and investigate the covariances and mutual
information values between the inputs and outputs of the three motifs for different levels
of noise.

In a first instance, the motifs are simulated with the LNA which already accounts for
the intrinsic noise, to which varying degrees of extrinsic noise are added as displayed in
Figure 3. it was interesting to see how the mutual information varies in relation to the
signal dynamics. In fact it oscillates between two values, reaching its peak and base points
just after the switch is turned OFF and ON respectively. The average mutual information
between input and output is not affected by the level of extrinsic noise, but its variance
increases quite considerably; we do, however, observe that this increase with extrinsic noise
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is somewhat suppressed as the motifs become more complicated (as the effects of different
origins of noise can balance one another out). Interestingly, the covariances shown in the
figure trace the dynamics of the inputs more faithfully than do the MI estimates; this is
because the MI also depends on the individual variances of X and Z, which have their own
temporal dependencies. The details of this do, of course, depend on the parameters of the
motifs analysed here, but the results obtained here are characteristics for the behaviour that
can be observed for even such simple motifs. Obviously, signalling dynamics will depend
on the frequency characteristics of the input signal as well.

In particular, for the FFL, depending on the parameters, any number of different types
of behaviour can be observed. But generally, we find that the mutual information between
X and Z, I(X ,Z), is less variable, compared to the other motifs, as the extrinsic noise is
increased. More generally, the mutual information traces the signal more faithfully for the
FFL, as X affects Z both directly and indirectly via Y , which integrates out some of the
variability resulting from extrinsic noise.

To complete the analysis of the motifs under dynamic conditions, we analyse the be-
haviour of the motifs with the same signal conditions, simulated with ordinary differential
equations but perturbed by extrinsic noise only, and compared them to the corresponding
stochastic system (intrinsic noise) and a system with both types of noise. In figure 4 we
show trajectories for molecular species Z in the three systems. What can be seen from the
trajectories, is that the intrinsic noise appears to govern the dynamics of Z; in fact, combin-
ing both noise sources affects the trajectories only marginally. In the lower part of the figure
we focus on the mutual information estimates. The mutual information was computed via
the KDE across all types of noise for two specific time points. The time points, T 1 and T 2
displayed on the trajectories of species Z, were selected based on the observations made
in 3; specifically we chose time points just just after the switch is turned OFF and ON to
estimate the peak and base in the mutual information oscillation.

We show the estimated mutual information for the linear three-node motif and the
FFL are highest for the ODE with extrinsic noise, while for the simple motif it is lowest.
This result is highly dependent on the relative sizes of the different parameters and can be
explained by the effect that different parameters have on the system dynamics. Generally,
cells that have different internal parameters will map inputs onto different outputs, which
may appear as inflated information transmission: note that the steady-state abundances (if
steady states exist) of all molecules will depend on the parameters. We also compare the
information transmission efficiency for different signal frequencies (S1 and S2); the effects
here are more pronounced in the presence of both sources of noise: when extrinsic noise
is present we find a greater difference between minimal and maximal transmitted mutual
information. When only intrinsic noise is present, this apparent dependence of transmitted
information on the frequency of the signal is not pronounced. Across these systems it would
appear once again that the addition of intrinsic noise to extrinsic noise is not cumulative,
as the value of mutual information in the presence of both types of noise seems to be
oscillating around that of the intrinsic noise.

(b) Noise in protein expression and activation

So far we have considered generic models that have previously been described in, or
applied to, biological signalling or regulation dynamics. Here we apply the same perspec-
tive to a model of protein expression that is more immediately connected to biological
processes (Elowitz et al., 2002; Ingram et al., 2008). Protein expression requires a cascade
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Figure 3. The figure displays the mutual information values across time between variables Xand
Z,in the simple, linear and feed forward motif (from top to bottom respectively) in the presence of
different noise perturbations. The first column represents the system in the presence of intrinsic noise
only, already included in the linear noise approximation simulation; as we go from left to right we
gradually increase the amount of added extrinsic perturbation. The simulations were performed in
the presence of a signal S switching between an on and off state S = [0,1], every 1.0 (red) or 2.0
(green) time steps (the integration step used was dt = 0.01).
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Figure 4. The figure displays the trajectories of species Z,in the simple input-output, linear and feed
forward motif in the presence of different noise perturbations, intrinsic, both, and extrinsic, from
top to bottom respectively. The systems were simulated for different signal frequencies S1 and S2,
displayed in the bottom right side of the figure. For each of the frequencies different time points
T1 and a time point T2 were selected at which to estimate the mutual information. The strip chart
displays the mutual information values computed via the KDE between species X and Z for the
systems in question, under each type of noise conditions.

of biomolecular reactions to produce functional protein. Each reaction is associated with
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Figure 5. Heat map representation of the mutual information values in relation to different phos-
phatase and degradation activity. We consider different rates of dephosphorylation (phosphatase ac-
tivity) and protein degradation and find for extrinsic noise that when these rates are minimal, the mu-
tual information between mRNA, m, protein P, and active protein P∗ becomes maximal. It decreases
as the rates are increased, but increases again as both the degradation and phosphatase activity in-
crease. Intrinsic noise alone results in negligible transmission of information irrespective of the rate
constants for degradation and dephosphorylation.

a relative loss of information, but some may distort signals more than others. We consider
the model used by Komorowski et al. (2013) to describe gene expression and activation of
the protein product via reversible phosphorylation, where the kinase and phosphatase are
assumed to be abundant and at constant activity levels.

The following equations, involving mRNA m, protein, P and active (phosphorylated)
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protein, P∗, were considered in order to simulate the system in a similar fashion as above:

dm
dt = α−βm− γm
dP
dt = γm−δP+ωP∗−χP
dP∗
dt = χP−ωP∗−µP∗

(3.1)

The model represented in Figure 5, was considered with different rates of dephospho-
rylation (parameter ω) and degradation of the active protein (parameter µ), which were
previously shown to be the reactions that make the largest relative contributions to the
variability in the abundance of the active protein(Komorowski et al., 2013). For this sys-
tem we proceed as before and estimate the MI for the three noise scenarios between the
three molecular species at steady state. Again we find that extrinsic noise leads to an ap-
parent increase in the mutual information, see Figure 5, whereas intrinsic noise leads to a
clear reduction in the mutual information. Mutual information is always highest between
P and P∗ but low overall. Again we observe a trend where mutual information appears to
increase in the presence of extrinsic noise and in the presence of both types of noise the
mutual information typically takes on intermediate values.

The dependence of the mutual information (for the two cases exhibiting extrinsic noise)
on the rates of dephosphorylation and degradation is such that it initially decreases as the
rates of these two processes increase, before increasing again with further increase in the
dephosphorylation and degradation rates. We will revisit these observations below. The
most important result of this finding is that the apparent amount of mutual information
between e.g. mRNA and protein or active protein can be inflated by cell-to-cell variability
due to extrinsic sources of variability.

4. Discussion
An important issue to remember is that while mutual information can shed light upon the
effectiveness of transmission of information, information is only a statistical measure for
the regularity of patterns in a stream of data — not all of this may be biologically relevant.
Extrinsic noise — the systematic differences in molecular parameters between different
cells — will often (but not always) act to distort or stretch out signals (see also figure 6).
For the purpose of illustration we consider a system with two molecular species described
by random variables X and Y (e.g. the simple linear motif), with x∼ f (S,θ) and Y ∼ g(x,θ)
(we consider systems where Y is independent of S conditional on the state of X). Then given
an input signal (which may change over time S(t), in cells which have identical parameters
θ0 we obtain measurements x′1,x

′
2, . . . and y′1,y

′
2, . . .,

x′i ∼ f (si;θ0) and y′i ∼ f (x′i;θ0)

In the presence of extrinsic noise the cells will differ in their respective parameters and we
obtain x1,x2, . . . and y1,y2, . . .,

xi ∼ f (si;θi) and yi ∼ f (xi;θi)

Then is we generally expect (and have indeed found in the results shown here) that

I((x1,x2, . . .),(y1,y2, . . .))& I((x′1,x
′
2, . . .),(y

′
1,y
′
2, . . .)). (4.1)

The dynamics of the signal transduction system affect the mutual information as well as the
entropies of the random variables X and Y ; suppression of the effects of extrinsic noise will
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not be the rule, but its effect will be reduced is intrinsic noise is appreciable. We can also
rationalize the inequality (4.1) by considering the effects of extrinsic noise on the terms in
the definition of the mutual information:

I(X ,Y ) = H(Y )−H(Y |X).

Extrinsic noise will tend to lead to an increase in the spread of Y and hence H(Y ) will in-
crease under extrinsic noise. Depending on the dynamics of the signalling system we would
also expect the conditional entropy H(Y |X) to decrease as both Y and X are functions of
the parameters θ that differ between cells.

For intrinsic noise alone the interplay between the dynamics of the molecular infor-
mation processing system and the concomitant inherent stochasticity are already difficult
enough to disentangle and have attracted considerable attention (Elowitz et al., 2002; Cai
et al., 2006; Friedman et al., 2006; Ingram et al., 2008). Especially for non-linear systems
the combined effects of noise and dynamics can give rise to rich and diverse behaviour of
the system (Bowsher et al., 2013). Here we have mostly focussed on the stationary dynam-
ics and there, as far as the information transmission is concerned, we can typically ignore
much of this complexity (provided a stable set of equilibrium solutions exists). Because
of the lack of normalization of the mutual information, the channel capacity (Cover &
Thomas, 2012; Uda et al., 2013),

C = argmaxp(S)I(S,Y )

is sometimes preferred over the mutual information; this is a variational problem over the
possible input distributions, p(S), of the signal, S.

But the channel capacity also implicitly depends on the parameters, θ, characterizing
the information processing network, i.e. the function, f (S;θ). This makes the interpretation
of the information processing capability of populations of systems/cells in the presence of
extrinsic noise less straightforward. In principle we could consider the channel capacity
averaged across the ensemble but this would hopelessly skew the results, as it will be
the between-cell variability that will drive the “apparent” information between inputs and
outputs that is captured by the mutual information. In each single cell — or any ensemble
of cells with the same kinetic parameters — the mutual information will be much smaller
as intrinsic noise alone will only decrease and never increase information — of course,
extrinsic noise only increases apparent information (the “level of surprise” at seeing a
given symbol/signal). Taken together we cannot predict a priori how these contrasting
forces will interact. Certainly the effects of different types of noise on signal transduction
are not simply additive.

Extrinsic noise, i.e. different parameters characterising the biomolecular reaction net-
works in different cells, can even lead to qualitatively different behaviour across a popula-
tion of cells; some cells might, for example, oscillate, while others attain a stable equilib-
rium (depending on the eigenvalues of the corresponding Jacobian matrices describing the
different systems). Different parameters, see figure 6, are associated with different gradient
fields that may drive solutions (even for identical initial values) to diverge; especially for
linear and monotonic systems we would then expect to observe an apparent increase in
the mutual information for extrinsic uncertainty. Intrinsic noise, by contrast will typically
(but not always) broaden a deterministic solution. How and when these different sources of
noise work together and how they affect information transmission, is highly dependent on
the system under consideration; this is especially true for non-linear and non-monotonic
dynamical systems.
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Figure 6. For suitable dynamical systems, differences in parameters (due to extrinsic noise) will give
rise to diverging solutions, (X(θ),Y (θ)) and the differences between θ and θ′ may suffice to drive
differences in estimates of the mutual information between X and Y .

However, it is clear that these types of noise do not contribute to the information trans-
mission across the system in a simple additive way. The present analysis appears to suggest
that extrinsic noise can give rise to “apparent information” and it is important to be aware
of this when assessing biological information processing systems, or comparing single-cell
and population level processes from an information theoretical perspective.

What this analysis has provided is a quantitative assessment of the effects of different
types of noise on the information transmission along simple network motifs inspired by
biophysical systems. We feel that there are two important lessons that follow from this
work: (i) even for very simple systems and simple signals the information theoretic analysis
reveals rich and diverse behaviour. Because of the statistical definitions of entropies and
mutual information this diversity may be hard to glean from looking at the dynamics of
the system alone; instead we really have to understand the effect of the dynamics of the
molecular reaction network onto the distributions of inputs; (ii) as single cell data are
becoming available more routinely it becomes important to be able to deal with extrinsic
noise as it tends to affect our assessment of biological information processing and can lead
to inflated estimates of the mutual information from single cell data. There are different
ways to implement extrinsic noise and the one chosen here is perhaps among the most
straightforward and convenient (Swain et al., 2002; Toni & Tidor, 2013).

The comparison of the LNA with exact stochastic simulations was instructive in show-
ing that the amount of variability and the shape of the distribution of outputs can play
a profound role. The LNA may miss some of this as real distributions may differ quite
substantially from the the underlying Gaussian assumption in the LNA, especially for low
molecule abundances and/or non-linear dynamics. The dynamical features of a system af-
fect the information transmission even at stationarity. Analysis of such simple motifs and
the way that they shape cellular information transmission can only be a first step, but it
is a necessary one, towards understanding of cellular decision making processes. Relevant
information is, however, not always just encoded in terms of abundances (or amplitudes);
frequency and gradients are sensed as well and for these more explicitly dynamical notions
of mutual information such as the transfer entropy need to be considered from the outset.
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The present results suggest, however, that the role of extrinsic noise ought to be considered
explicitly, as failure to properly account for its effects is likely to be misleading.
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