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ABSTRACT

Extensions of Einstein gravity with higher-order derivative terms are natural general-

izations of Einstein’s theory of gravity. They may arise in string theory and other effective

theories, as well as being of interest in their own right. In this paper we study static

black-hole solutions in the example of Einstein gravity with additional quadratic curvature

terms in four dimensions. A Lichnerowicz-type theorem simplifies the analysis by establish-

ing that they must have vanishing Ricci scalar curvature. By numerical methods we then

demonstrate the existence of further black-hole solutions over and above the Schwarzschild

solution. We discuss some of their thermodynamic properties, and show that they obey the

first law of thermodynamics.
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2015 marks the centennial of Einstein’s General Theory of Relativity. In Chinese tradi-

tion, it is customary for one to celebrate the 9’th rather than the 10’th anniversary. It is

thus appropriate to talk about black holes in this International Conference of Gravitation

and Cosmology/the 4’th Galileo-xu Gaungqi Meeting at Beijing in May 2015. The first

black hole solution in Einstein’s gravity was constructed by Karl Schwarzschild 99 years

ago [1]. Since then, there have been tremendous progresses in constructing exact solu-

tions of black holes in diverse dimensions, within the framework of Einstein gravity with

or without a cosmological constant. These include the four-dimensional asymptotically flat

rotating Kerr black hole [2], its higher dimensional generalizations [3], asymptotically (A)dS

rotating black holes in four [4], five [5] and general dimensions [6, 7]. However, there was

little progress in the construction of black holes involving higher-derivative terms in four

dimensions.

The well-known problem of the non-renormalisability of Einstein gravity has given rise

to many attempts to view it as an effective low-energy theory that will receive higher-order

corrections that become important as the energy scale increases (see, for example, [8]). In

string theory, the Einstein-Hilbert action becomes just the first term in an infinite series of

gravitational corrections built from powers of the curvature tensor and its derivatives. In

other approaches, the possibility is envisaged that just a finite number of additional terms

might be added. For example, as was shown in [9], if one adds all possible quadratic cur-

vature invariants to the usual Einstein-Hilbert action one obtains a renormalisable theory,

albeit at the price of introducing ghost-like modes in the theory.

Black holes can be viewed as the most fundamental objects in a theory of gravity, and

they provide powerful probes for studying some of the more subtle global aspects of the

theory. For this reason, it is of considerable interest to investigate the structure of black-hole

solutions in theories of gravity with higher-order curvature terms. In this paper, we report

on some investigations of the static, spherically-symmetric black-hole solutions in Einstein-

Hilbert gravity with added quadratic curvature terms. Since the Gauss-Bonnet integrand is

purely topological in four dimensions, the most general possibilities for additional quadratic

curvature terms can be parameterised by adding the square of the Ricci tensor and the

square of the Ricci scalar, with arbitrary coefficients. Equivalently, in view of the topological

nature of the Gauss-Bonnet combination, we can parameterise the most general action with

quadratic curvature in the form

I =

∫
d4x
√
−g
(
γR− αCµνρσCµνρσ + βR2

)
, (0.1)

where α, β and γ are constants and Cµνρσ is the Weyl tensor. We shall work in units where
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we set γ = 1, and the equations of motion following from (0.1) are then

Rµν − 1
2Rgµν − 4αBµν + 2βR(Rµν − 1

4Rgµν)

+2β(gµν�R−∇µ∇νR) = 0 , (0.2)

where Bµν = (∇ρ∇σ + 1
2R

ρσ)Cµρνσ is the Bach tensor, which is tracefree.

In general, the theory describes a system with a massive spin-2 mode with mass-squared

m2
2 = 1/(2α) and a massive spin-0 mode with mass-squared m2

0 = 1/(6β), in addition to the

massless spin-2 graviton. These massive modes will be associated with rising and falling

Yukawa type behaviour in the metric modes near infinity [10], of the form 1
re

±m2r and

1
re

±m0r. In particular, one can expect that if generic initial data is set at some small

distance, the rising exponentials will eventually dominate, leading to singular asymptotic

behaviour. In seeking black-hole solutions, the question then arises as to whether the rising

exponentials can be avoided for appropriately finely-tuned initial data.

It can easily be seen that any solution of pure Einstein gravity will also be a solution of

(0.2), and so in particular the usual Schwarzschild black hole continues to be a solution in

the higher-order theory. The question we wish to address, then, is whether there exist any

other static black hole solutions, over and above the Schwarzschild solution.

Static, spherically-symmetric black-hole solutions have been investigated by Nelson [11],

using generalisations of the Lichnerowicz and Israel theorems for Einstein gravity. Since we

will arrive at somewhat different conclusions, we shall briefly summarise the key elements

in Nelson’s discussion, although derived in a different notation. We consider static metrics

of the form

ds24 = −λ2 dt2 + ds̄23 , ds̄23 = hij dx
idxj , (0.3)

where λ and hij are functions only of the three spatial coordinates xi. We shall shortly

perform a Kaluza-Klein type reduction on the time coordinate. First take the trace of

the field equations (0.2), obtaining β (� −m2
0)R = 0. Then multiply by λR and integrate

over the spatial domain from a putative horizon out to infinity. Expressed in terms of the

covariant derivative Di with respect to the spatial 3-metric hij , this gives∫ √
h d3x

[
Di(RDiR)− λ(DiR)2 −m2

0λR
2
]

= 0 . (0.4)

Since λ vanishes on the horizon, it follows that if DiR goes to zero sufficiently rapidly at

spatial infinity the total derivative (i.e. surface term) gives no contribution, and the non-

positivity of the remaining terms then implies R = 0. In other words, as shown in [11], any

static black-hole solution of (0.1) must have vanishing Ricci scalar: R = 0. This leads to a
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great simplification, and it means that one can, without loss of generality, study the case of

pure Einstein-Weyl gravity (i.e. (0.1) with β = 0), since obviously the term quadratic in R

makes no contribution to the field equations for a configuration with R = 0. Furthermore,

the trace of the field equations (0.2) for Einstein-Weyl gravity immediately implies R = 0.

In fact, the two differential equations for h and f are both now of only second order in

derivatives.

The second stage in Nelson’s discussion then involved looking at the remaining content

of (0.2), i.e. the non-trace part. According to [11], this led to another integral identity

that then implied, under certain assumptions, that Rµν = 0. If this were correct, then the

conclusion would be that the usual Schwarzschild solution was the only static black hole

solution of the theory described by (0.1). However, we find that there are sign errors in

the expression given in [11]. Setting R = 0, as already argued above, multiplying (0.2) by

λRµν , and then integrating over the spatial region outside the horizon gives∫ √
hd3x

[
DiWi − 1

4λ(DiR̄− 4DjRij)
2 + 4λ(DjRij)

2

−4λ(D[iRj]k)
2 + λ(DiRjk)

2 − 1
4λR̄

2(m2
2 + R̄)

−λ(m2
2R

ijRij − 2RijRjkR
k
i)
]

= 0 , (0.5)

where Wi = λRjkDiRjk + 1
4λR̄DiR̄ − 2λRjkDjRik − λR̄DjRi

j , and R̄ is the Ricci scalar

of the spatial metric hij . Although the surface term will give zero, the mix of positive and

negative signs in the bulk terms precludes one from obtaining any kind of vanishing theorem

for the Ricci tensor of the four-dimensional metric. This raises the intriguing possibility

that there might in fact exist static, spherically symmetric black-hole solutions over and

above the Schwarzschild solution.

The equations of motion following from (0.1) are too complicated to be able to solve

explicitly, even for the case of the static, spherically-symmetric ansatz

ds2 = −h(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2) . (0.6)

In our work, we have therefore carried out a numerical investigation of the solutions. To do

this, we begin by supposing that there exists a black-hole horizon at some radius r = r0 > 0,

at which the metric functions h and f vanish, and we then obtain near-horizon Taylor

expansions for h(r) and f(r), of the form

h(r) = c
[
(r − r0) + h2 (r − r0)2 + h3 (r − r0)3 + · · ·

]
,

f(r) = f1 (r − r0) + f2 (r − r0)2 + f3 (r − r0)3 + · · · (0.7)
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Substituting into the equations of motion (0.2), with β set to zero for the reasons discussed

above, the coefficients hi and fi for i ≥ 2 can be solved for in terms of the two non-trivial

free parameters r0 and f1. There is also a “trivial” parameter, corresponding to the freedom

to rescale the time coordinate, which we have accordingly written in the form of an overall

scaling of h(r). Thus we have

h2 =
1− 2f1 r0
f1 r20

+
1− f1 r0
8αf21 r0

, f2 =
1− 2f1 r0

r20
− 3(1− f1 r0)

8αf1 r0
,

and so on. (We used Taylor expansions to O((r− r0)9) in our numerical integrations.) The

Schwarzschild solution corresponds to f1 = 1/r0, and so it is convenient to parameterise f1

as

f1 =
1 + δ

r0
, (0.8)

with non-vanishing δ characterising the extent to which the near-horizon solution deviates

from Schwarzschild.

We use the expansions to set initial data at a radius ri just outside the horizon, and

then use numerical routines in Mathematica to integrate the equations out to large radius.

Generically, one finds that for a given choice of the parameters r0 and δ the solution rapidly

becomes singular as one integrates outwards from r = ri, as expected in view of our earlier

observations about the rising Yukawa terms in the asymptotic form for the metric. If we

fix a particular value for r0, we can then use the shooting method to try to home in on

a special value of δ for which the outward integration can proceed without encountering a

singularity. Of course in practice, because of accuracy limitations in the integrations, the

solution will always eventually become singular at large enough r. The signal for a good

black-hole solution is that it should be possible to see f(r) approaching very close to 1 as r

increases, with h(r) approaching a constant also, and that by stepping up the accuracy and

precision goals in the calculations one can extend at will the maximum upper limit r = rf

for which the smooth behaviour can be achieved. In practice, by running the routines with

accuracy and precision goals of order 20 decimal places, we have been able to obtain very

clean and trustworthy solutions out to at least 60 times the horizon radius.

Our findings are that there exists a range of values for the horizon radius, bounded below

by a certain multiple of the length
√
α, for which we can obtain precisely one static black-

hole solution in addition to the Schwarzschild solution. In order to make the statement of

our results in the most concise possible way, it is convenient, without loss of mathematical

generality, to make a specific choice for the value of α in (0.1). We shall take

α =
1

2
. (0.9)
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We then find that for each choice of r0 > rmin
0 , where

rmin
0 ≈ 0.876 , (0.10)

we can find a non-Schwarzschild static black hole. For each such r0, there is a corresponding

value δ = δ∗ of the “non-Schwarzschild parameter” that yields the non-singular black-hole

solution. As r0 is taken closer and closer to the value rmin
0 , the required value δ∗ becomes

smaller and smaller, tending to zero at r0 = rmin
0 . Thus the Schwarzschild and the non-

Schwarzschild black holes “coalesce” as r0 = rmin
0 is approached.

As r0 is increased above rmin
0 , the Schwarzschild and non-Schwarzschild black-hole solu-

tions separate more from one another (and in particular the required value of δ increases).

The mass of the Schwarzschild black hole is simply 1
2r0, and thus it increases linearly as

r0 increases. By constrast, the mass of the non-Schwarzschild black hole decreases as r0

increases, until at r0 = rm=0
0 it becomes massless, where

rm=0
0 ≈ 1.143 . (0.11)

(The definition of mass in higher-derivative theories was discussed in detail in [12, 13].

For asymptotically-flat black holes it is just 1
2 the coefficient of 1/r in gtt (assuming t

is normalised canonically at infinity).) Interestingly, if r0 is increased beyond rm=0
0 , one

can still obtain a non-Schwarzschild black-hole solution for an appropriate choice of δ,

but now the mass is actually negative. In other words there is still a regular horizon,

and the metric is asymptotically flat at large distances, but the metric function f now

rises above 1 as r increases from ri, before sinking down to 1 again in the asymptotic

region. Figure 1 shows the masses and Hawking temperatures of the Schwarzschild and

non-Schwarzschild black holes as a function of r0. We can then compare how the masses are

related to the temperature of these two black holes. The maximum possible mass for the

non-Schwarzschild black hole, attained when r0 = rmin
0 , is given by Mmax = 1

2r
min
0 ≈ 0.438.

The plots of the metric functions f and h for the examples of a positive-mass black hole

r0 = 1 and a negative-mass black hole r0 = 2 are shown in Figure 2.

Having established the existence of the non-Schwarzschild black holes, it is instructive

to study some of their thermodynamic properties, and to compare these with the properties

of the Schwarzschild black holes. In order to do this, we have collected the numerical results

for a sequence of black-hole solutions with r0 in the range rmin
0 ≈ 0.876 < r0 < 1.5, and then

fitted the data to appropriate polynomials. Because we are working with a higher-derivative

theory, the entropy is not simply given by one quarter of the area of the event horizon, and
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Figure 1: The masses (left plot) and temperatures (middle plot) of the Schwarzschild (dashed

line) and non-Schwarzschild (solid line) black holes as a function of the horizon radius r0.

The right plot shows the masses of the two black holes as a function of the temperature.
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Figure 2: The non-Schwarzschild black hole for r0 = 1 (left plot) and r0 = 2 (right plot). In

each plot the upper curve is f(r) and the lower curve is h(r). For clarity we have chosen a

rescaling of h so that it approaches 3
4 , rather than 1, to avoid an asymptotic overlap of the

curves.

instead we need to use the formula derived by Wald [14, 15]. This has been evaluated for

the ansatz (0.6) in quadratic curvature gravities in [16], and applied to our case with β = 0

and γ = 1 in (0.1) this gives S = πr20 +4πα(1−f1 r0) = πr20−4παδ∗. (There is a freedom to

add a constant multiple of the Gauss-Bonnet invariant to the Lagrangian, which shifts the

entropy by a (parameter-independent) constant without affecting the equations of motion.

We have used this to ensure the entropy of the Schwarzschild black hole vanishes when the

mass vanishes.) We then find that the mass and the temperature of these non-Schwarzschild

black holes, as a function of the entropy, take the form

M ≈ 0.168 + 0.131S − 0.00749S2 − 0.000139S3 + · · · ,

T ≈ 0.131− 0.0151S − 0.000428S2 + · · · . (0.12)

It can be seen that ∂M/∂S ≈ 0.131 − 0.0150S − 0.000417S2, which is very close to the
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expression for the temperature. Thus the non-Schwarzschild black holes are seen to obey

the first law dM = TdS to quite a high precision. Note that the expressions for M and

T as a function of S for the Schwarzschild black holes are very different in form, with

M = (S/4π)1/2 and T = 1
4(πS)−1/2.
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Figure 3: The first plot shows the entropy as a function of mass, and the second shows

the free energy F = M − TS as a function of T , for the Schwarzschild (dashed line) and

non-Schwarzschild (solid line) black holes.

It is interesting to note that the entropy of the non-Schwarzschild black hole of a given

mass is always less than the entropy of the Schwarzschild black hole of the same mass. The

two entropies approach each other asymptotically as r0 approaches rmin
0 . This can be seen

in the left-hand plot in Figure 3. It is also of interest to look at the free energy F = M−TS

as a function of temperature. This is shown in the right-hand plot in Figure 3. It can be

seen that the free energy is always larger for the non-Schwarzschild black hole at a given

temperature, with the two curves again meeting at the lower limit when r0 = rmin
0 .

In this paper, we have used black holes to probe some of the consequences of interpreting

the action (0.1) as complete classical action in its own right. We have seen that there exists a

second branch of static, spherically symmetric black holes, over and above the Schwarzschild

solutions. These are not Ricci flat, although they do have vanishing Ricci scalar. Restoring

the factors of α and γ that we fixed in our numerical simulations, the second branch of

black holes have can masses, which can become negative, bounded approximately by M ≤

0.438
√

2αγ. Thus in a regime where α is small, which one might hope would correspond

to a small correction to Einstein gravity, the second branch of black holes will be tiny,

and will actually have very large curvature near the horizon, thus tending to invalidate the

requirement that the curvature-squared should be small. In particular, the fact that their

mass can be negative, violating the usual positive-mass theorem of standard Einstein gravity,
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is a reflection of the fact that the ghost-like pathologies of the quadratically-corrected action

are becoming dominant in this regime. Thus it could be viewed as a satisfactory outcome

of our investigation that the only indications of the existence of black holes with potentially

pathological properties in the quadratic-curvature theories occur in a regime where yet

higher-order corrections, as in string theory, are going to be important also. It would be

interesting to obtain analytical proofs of the existence of the numerical solutions we have

found. Although this could be challenging, it might perhaps be easier to obtain restricted

no hair theorems that confirmed the apparent absence of non-Schwarzschild black holes

outside the parameter range where we have found them.
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