
THÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par: l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 14 Juin 2018 par:

Noura EL HAJE

A Heterogeneous Data-Based Proposal for Procedural 3D Cities

Visualization and Generalization

JURY

Gilles GESQUIERE Rapporteur

Stéphane MERILLOU Rapporteur

Nancy RODRIGUEZ Examinateur

Cédric SANZA Examinateur

Véronique GAILDRAT Co-Directeur

Jean-Pierre JESSEL Directeur

École doctorale et spécialité:

EDMITT: Domaine: Mathématiques et Informatique

Unité de Recherche:

Institut de Recherche en Informatique de Toulouse

Directeur de Thèse:

Jean-Pierre JESSEL

Rapporteurs:

Gilles GESQUIERE et Stéphane MERILLOU

To the soul of my father

The strength of my mother

The ambition of my brother

and the sensitivity of my sister

Acknowledgment

First of all, I would like to thank my thesis supervisor, Prof. Jean-Pierre Jessel, for

both his technical and moral support and encouragement throughout the research and

thesis writing. I also express my gratitude to Prof. Veronique Gaildrat at IRIT and

Dr. Cedric Sanza in Vortex team, for their useful comments which put me in the right

track when it was needed.

Many thanks to my colleagues and friends at IRIT whose positive and motivating talks

helped me go to the end of my thesis: Chantal, Charlotte, Clémentine, Lenka, Francois

and Martin. My friends from Lebanon: Mouin, Azza, Hoda, Amani, and Ranine thank

you for the visits, the dinner evenings, and the phone calls to check on me during my

most stressful times.

Last but not least, I owe this achievement to my beloved family: my mother Souha,

my brother Murad, my sister Maya and my aunt Rouba who mean the world to me.

They were and will always be the source of strength in my life. My belated aunt Maha

and my second mother, thank you for the care, the delicious meals and the listening

you’ve always given to me and my siblings. May your soul rest in peace. Dad, if it

wasn’t for you I wouldn’t be writing this thesis. Thank you for everything you have

done for me, You were and always be my idol and the best man in my life. Let me

seize this opportunity to dedicate this work for you and tell you how much I love you

and miss you.

Concerning the development part, I am grateful to the Cesium google group com-

munity who were willing to answer my questions about the platform and guide me

through the development process. Patrick Cozzi: the main developer of Cesium and

an active member in graphics and open source communities1. Sean Lilly: a 3D software

developer who worked on improving Cesium’s Graphics Engine and creating the 3D

Tiles (a concept we are going to explain further in this thesis). Thank you for Virtual-

CitySystems team, who gave me the permission to download a sample dataset of Berlin

1https://cesiumjs.org/team/PatrickCozzi/

3

4

from their portal2 in order to run some comparison tests explained in chapter6. The

data is updated and maintained by the support team of the business location center.

2http://www.businesslocationcenter.de/berlin3d-downloadportal/index.en.html

Abstract

Procedural modeling covers a number of techniques in computer graphics allowing to

automatically create 3D3 models and textures from a set of rules. This automatic

generation has been largely adopted by researchers in order to solve the manual gener-

ation burdens such as time and cost charges. Procedural modeling has been an active

research topic for at least thirty years and therefore many works have been established

on tools, concepts and techniques that allow the generation of 3D virtual worlds in

general and urban contents in particular.

Treating and managing real urban data have been a challenge, the main reason

being the heaviness of the 3D files that the developer is usually working on and his

obligation to go through a preprocessing step for files preparation and conversion be-

fore usage in an application for city construction or simulation. Many software have

been developed and adopted for constructing, editing and visualizing 3D geographic

data-based cities. They are destined for visualization, simulation or games contents

creation and sometimes they have the capability to deal not only with geometric, but

semantics for performance and consistency improvement. However, the visualization

and optimization of this kind of data on the web is still restrictive. In this thesis, we

propose a solution for real cities visualization and optimization based on standards,

tools and APIs4. The procedural work in the 3D city modeled is highlighted by the

procedural texturing and an optimized multi-resolution rendering.

We will also investigate multiple representation methods for the distinguished build-

ings throughout the animation rendering. In this context, a saliency method is applied

to compute the important points in the scene. The overall contribution of this thesis

is to highlight the necessity of optimizing the visualization of large urban data, and

knowing how to keep the focus on the objects of high interest by means of saliency and

texturing during the visualization process.

This is also to show how some methods and techniques could be unified in one

platform to solve the challenging problems of visualizing large 3D urban data.

3Three-Dimensional
4Application Programming Interface

5

6

Contents

I Introduction and Related Work 15

1 Introduction 17

1.1 Background and Motivation . 17

1.1.1 Virtual 3D City Models . 19

1.2 Research Objectives . 21

1.3 Contributions and Thesis Outline . 22

1.3.1 Thesis Outline . 23

2 Related Work 25

2.1 Generalization of Buildings . 25

2.1.1 Generalization of Single Buildings 26

2.1.2 Generalization of Multiple 3D Building Models 32

2.1.3 Generalization Based on CityGML Standard 33

2.1.4 2D/3D Buildings Generalization Algorithms: Study and Com-

parison . 34

2.2 3D City Models Visualization . 37

2.2.1 Direct Visualization . 38

2.2.2 Visualization using 3D standards 39

2.2.3 Visualization of the Distinguished Buildings 41

2.2.4 Smooth Visualization . 41

2.3 Discussion . 43

II Design and Implementation 47

3 Data Conversion and Simplification 49

3.1 Datasets Used . 49

3.2 Data Management and Conversion . 50

3.2.1 Creating Chunks . 51

3.3 Data Simplification . 52

7

8 CONTENTS

3.3.1 Our Simplification Approach . 53

3.3.2 Reconstruction of the Simplified Building 54

3.4 The Simplified Distinguished Buildings Representation 56

4 Texturing in the Navigation Context 61

4.1 Related Works . 62

4.1.1 Texturing Techniques . 62

4.1.2 Navigation in a 3D City Model 64

4.2 The Problem: Interactive Visualization VS Textures Rendering 66

4.2.1 The solution: Necessity of Textures Optimization for Different

Interactions . 67

4.3 Our Proposal: LODs Textures Representation 70

4.3.1 The Data Parameters . 71

4.3.2 Textures Mapping . 76

4.4 Rendering with LODs: the procedure 77

4.5 Discussion . 78

III Quantitative Results and Discussion 81

5 Quantitative Results and Case Studies 83

5.1 Quantitative Evaluation . 84

5.2 Texturing in the Animation Context 84

5.2.1 Texture Atlas Performance . 85

5.3 Saliency Metrics . 87

5.4 Discussion and Limitations . 88

6 Conclusion and Perspectives 89

6.1 Technologies, Tools, and Methods Overview 89

6.2 Using glTF for Web Rendering . 89

6.3 Answers for Thesis Objectives . 90

6.4 Conclusion . 93

6.4.1 Perspectives . 93

A Index of terms 107

List of Figures

1.1 The Five Levels of Details in CityGML 20

2.1 Kada Half-Space Generalization Approach 27

2.2 Roofs Generalization With Control Parameters 29

2.3 Cell Decomposition for Abstract Visualization 30

2.4 Generic template adaptation of two different buildings shapes 30

2.5 Hierarchical Tree of a Buildings . 31

2.6 Least Square Adjustment in Practice 34

2.7 Direct-Merge Operation . 35

2.8 Snap-Merge Operation . 35

2.9 Offset Removal . 36

2.10 3dcitydb Architecture . 40

2.11 Different Visualization styles for Generalization 42

2.12 Visualization Pipeline . 44

3.1 Moscow from far glTF . 51

3.2 A more Zoomed Gltf . 52

3.3 Chuncks Created in Meshmixer . 53

3.4 Curve Simplification explained . 58

3.5 Aggregation . 59

3.6 Buildings to be generalized . 59

4.1 Previous Work: texturing with LOD 63

4.4 Different applications of 3D city models 68

4.5 Polygon Algorithm . 70

4.6 Basic Algorithm . 70

4.7 Maximum Rectangle Algorithm . 70

5.1 Buildings to be generalized . 87

9

10 LIST OF FIGURES

List of Tables

2.1 Evaluation of Most Used Generalization Algorithms 32

3.1 Comparison of polygon numbers before and after generalization 56

11

12 LIST OF TABLES

List of Algorithms

1 Shortest Edge Removal . 55

2 Triangulation Algorithm . 75

13

14 LIST OF ALGORITHMS

Part I

Introduction and Related Work

15

Chapter 1

Introduction

Contents

1.1 Background and Motivation 17

1.1.1 Virtual 3D City Models . 19

1.2 Research Objectives . 21

1.3 Contributions and Thesis Outline 22

1.3.1 Thesis Outline . 23

This thesis project is born from a collaboration project between the research team

VORTEX1 at IRIT2 from one hand and education professionals, companies and public

entities in the other hand.

The collaboration project SCOLA is basically an e-learning platform based on serious

games usage at schools. It helps users acquire and spot predefined skills. This platform

offers to the teachers a new flexible tool that creates pedagogy-related scenarios and

customized students’ records.

Several contributions were assigned to IRIT. One of which is to suggest a solution for

automatic creation of 3D environments, to be integrated in the game scenario. This

solution is meant to prevent 3D computer graphic artists from manually modeling large

detailed 3D environments, which can be very costly and time consuming.

1.1 Background and Motivation

Various applications and prototypes have been developed for enabling the user to gen-

eralize and visualize his own virtual world mostly from a set of rules. Therefore, there

1Visual Objects: from Reality to EXpression
2Institut de Recherche en Informatique de Toulouse

17

18 CHAPTER 1. INTRODUCTION

is no unique representation schema to the virtual world due to the heterogeneity and

diversity of 3D contents conception, especially city models. This constraint has led us

to largely rely in our project on real 3D urban data instead of predefined custom data

made by the game designer.

The advancement in Computer Graphics, high computational capacities and web

technologies have largely revolutionized the data reconstruction and visualization tech-

niques. These techniques are applied in various domains, starting with video games,

simulations, and ending with films that use procedurally generated spaces and char-

acters’ animations. Though modern computer games do not have the same memory

and hardware restrictions that earlier games had, the use of procedural generation is

frequently employed to create randomized games, maps, levels, characters, or other

facets that are unique on each game play. The tendency nowadays is shifted to the

use of GIS to create urban worlds, especially after their success in being implemented

around the world to help support many domain applications.

GIS is more particularly dedicated for applications such as simulation, disaster

management and urban planning, without much usage in games, except for the game

”Minecraft” which latest version offers mapping using real world cities3. Existig urban

data usage is becoming more and more tempting for use in mapping applications for

two main reasons: first it allows to understand the spatial contents of urban objects in

a more logical way and second it provides a common platform to integrate city level

information from different resources and make them accessible to users.

A virtual 3D city model is a digital representation of urban space that describes

geometrical, topological, semantical, and appearance properties of its components. In

general, a 3DCM serves as an integration platform for multiple facets of an urban in-

formation space, as pointed out by Batty [Bat07]: In short, the new models are not

simply the digital geometry of traditional models, but large scale data bases which can

be viewed as 3D. As such, they already represent a way of merging more abstract sym-

bolic or thematic data, even symbolic models, into this mode of representation. The

importance of 3DCMs are demonstrated by application examples from various fields.

The most related application field in this work is the Visualization, which uses the

3DCM to associate it with thematic data to give spatial context, such as in [WA09].

Furthermore, components of the 3DCM can be used as visual variables, for example, by

adapting color or height of buildings according to the data to be mapped. Visualizing

3Geodata in Minecraft: http://www.geoboxers.com/inspiration-geodata-in-minecraft/

http://www.geoboxers.com/inspiration-geodata-in-minecraft/

1.1. BACKGROUND AND MOTIVATION 19

in the domain of GIS is called GeoVisualization, with the aim to communicate infor-

mation, explore data, buid and test hypotheses [MK01]. It draws from different fields,

such as cartography, computer graphics, and geographic information science, to effec-

tively present geospatial data. In addition to technical issues of rendering, aesthetic

and design aspects have to be taken into consideration.

The innovative, yet complicated part of this thesis is to combine the concepts of

procedural modeling in one hand and GIS data in the other hand in one 3D map.

The map is inspired of real city districts which will be faithfully reproduced. The

procedural part is mainly focused on some distinguished buildings texturing mecha-

nism, that respects the optimization idea throughout the scene. The efficiency of the

texturing method used is shown by a case study established in the last chapter. A

discussion about the generalization necessity for displaying large data in the web is

established, and a generalization method adapted to the project context is applied,

and is highlighted by a quantitative evaluation, with a possibility of improvement.

1.1.1 Virtual 3D City Models

Virtual 3D city models have been mainly used in the past for the visualization or

graphical exploration of cityscapes. Nowadays, the increasing number of applications

like urban planning, facility management, and personal navigation require additional

information about the city objects given in a standardized representation. The term

C ity Model is frequently used to refer to generic 3D models for computer graphics

applications. Such models allow, for instance, for flying or walking virtually through

a city [DB98]. In general, however, a generic 3D model is frequently not sufficient to

provide all relevant information of a city. Therefore, 3D city models comprise nowa-

days not only spatial and graphical aspects, but also ontological structures including

thematic classes, attributes, and their interrelationships.

Objects are decomposed into parts to a logical criteria instead of graphical consider-

ations. For example, a building will be decomposed into different building parts, if they

have variant roof types and their own entrance, like a house and its garage. Further-

more, virtual city models provide a basis for spatial querying of thematic data [DDA04],

and this data is changeable depending on the application domain in which the model

is used, and the preferable requirements on the information provided by this city model.

Throughout this thesis, we will be mentioning LOD1, LOD2, LOD3, and LOD4 as

defined by the CityGML standard, represented as follows:

• LOD1: Buildings are represented as block buildings, i.e., simple 3D shapes that

can be obtained by extruding horizontal footprint polygons along the vertical

20 CHAPTER 1. INTRODUCTION

Figure 1.1: The Five Levels of Details in CityGML: [Hae14]

axis. Facades and roofs may be textured in all LODs.

• LOD2: Buildings may have an explicitly specified roof geometry, described by a

set of polygons in 3D. In addition, the outer walls and the roof of a building are

represented as separate thematic objects.

• LOD3: Buildings are represented as detailed architectural models. Openings

such as windows and doors are accessible as separate thematic objects. All parts

of a building may be textured.

• LOD4: In addition to LOD3, interior building structures such as interior walls,

rooms, and furniture are provided as separate thematic objects.

A single building may contain representations for multiple LODs simultaneously. The

geometry of buildings and sub-objects of buildings is specified using a general geomet-

ric model in CityGML, which is also used for other city model components. In the

geometric model, a 3D object is described by a hierarchical aggregations of polygons

that represent the object’s boundary surfaces. The model supports the specification of

texture images and texture coordinates for all surfaces.

City Databases

In the specific area of Geographic Information Systems, various databases tools have

been developed to store spatial information [RSV01]. Oracle spatial provides spatial

indexing and search for geographic information4. However this tool and similar tools

4Oracle Corporation 2012:https://www.oracle.com/database/spatial/index.html

https://www.oracle.com/database/spatial/index.html

1.2. RESEARCH OBJECTIVES 21

are tend to focus on large geographic 2D data rather than the processing of individual

polygon model edits. In addition, open standards have emerged that aim at represent-

ing geographic data such as OpenGIS5, and these have a strong relationship to web

3D tools.

When dealing with large cities, appropriate qualification of 3D data is necessary.

The qualification can be done by an automated process or by manual interpretation.

According to Kolbe [Kol09], the semantic modeling only makes sense if the semantic

information can be used by different customers with multiple applications. This would

require to find a common information model over the different users and applications.

One of these models is CityGML, which has an aim to reach a common definition and

understanding of the basic entities, attributes, and relations within a 3D city model.

With the core model provided by CityGML, information exchange between different

disciplines can be aligned with the objects of the city model. Similar ideas are discussed

in the Towntology Project [TKRL07] and the nD Modeling Project [HWT+05], which

discussed the issue of urban data sets integration necessity at different scales by de-

veloping an urban scale city database. The integration and interoperability strategies

should also be addressed in order to enhance the city proper management.

1.2 Research Objectives

We derive in this section research questions that address the need for optimization

techniques for large 3D city models. This need represents a key challenge for an

optimized visualization. An important question of this thesis is: Given a converted 3D

city model ready to be streamed on the web, what aspects should the optimization take

and at which levels of details of the scene?. This question involves some requirements:

Consistent Reduced Information: Optimized representation of the city needs

to have reduced information, while maintaining sufficient both the general shapes of

the buildings, and a focus on the important buildings throughout the animation.

Semi-Automatic Reduction: The optimization technique, especially the gener-

alization should have some degree of automation, especially regarding the buildings

which are more or less similar.

Saliency Control: Saliency metrics should be used to keep the viewpoint with

respect to the distinguished buildings. That is why a method for distinguishing these

buildings should be applied.

The second research question occurs in the context of texturing rendering: How can

5GeoTools:http://docs.geotools.org/stable/userguide/library/opengis/

http://docs.geotools.org/stable/userguide/library/opengis/

22 CHAPTER 1. INTRODUCTION

we render the different Texture Atlases (to be explained) with the different resolutions?

This question involves the following requirement:

Multi-Resolution Texturing: It is crucial to make the textures adapt the camera

viewpoint. The textures display should take into consideration the distance of the

buildings from the camera, where the textures of the far buildings should have a lower

resolution than the ones of the close buildings. The necessity of Triangulation: To

optimize the texturing process, the textures should be applied on simplified models of

the buildings. It is much easier to treat the meshes as groups of triangles instead if

polygons.

1.3 Contributions and Thesis Outline

As we explained before, the research was done along two main lines: Generalization

and texturing. The contributions of this thesis are highlighted below:

In Buildings Generalization To improve visualizations of 3D city models and

overcome the visual complexity in terms of number of objects and geometric complexity,

with a lack of focus on the important landmarks. We present a generalization solution

applied on the 3D buildings in order to reduce the heaviness of the polygons in the

scene. Properties of the method and resulting representations are as follows:

• The derived representations yield a high degree of generalized objects. Currently,

approaches focus on individual buildings simplification, aiming at the reduction

of computational complexity and memory consumption, while maintaining visual

appearance.

• The technique could be applied to several buildings together which have common

base or footprints, or similar outside structure.

• Distinguished objects are not very much refined, to preserve their importance

and facilitate orientation. Saliency metrics are applied to detect these objects

and keep tracks of them throughout the animation rendering.

In Buildings Texturing Textures are important elements to sustain the character-

istics of the city. A normal 3D texturing for all the objects with a very large amount

of textures is not an options. Therefore, we present a method to texture the building

using texture atlas. It consists of packing a certain amount of textures in one large

texture. The textures resolution are adapted to the camera viewpoint. Properties of

the technique are as follows:

1.3. CONTRIBUTIONS AND THESIS OUTLINE 23

• The concept of using multi-resolutions textures enhances the focus on the distin-

guished buildings, even beyond their original visibility.

• The packing algorithm is chosen among several frequently used ones, for a more

optimized outcome. It is clearly shown in the distinguished buildings.

• The importance of rendering the scene with different resolutions of textures is

also validated.

1.3.1 Thesis Outline

The document is organized as follows:

1: Introduction, this section presents an overview about the research work. It describes

the basic ideas of the topic, the problem statement, and the research objectives. It

details the facts that led to this research and the possible problems that could occur

in the implementation, and an attempt to solve these problems.

2: Literature Review, it deals with the main focus topics of the research: 3D virtual

cities visualization, generalization, and focus points in rendering. The study of existing

methods and techniques will help us compare the different solution and focus on the

most relevant ones to our work.

3: This chapter focuses on the raw data control, what are the different types of files

used, and how they are converted and visualized. It also deals with our proposal in

simplifying the buildings with a medium complexity. The distinguished buildings are

only optimized with one iteration in order to keep the necessary details.

4: This chapter is divided into two parts: the first part deal with the texturing

technique used: the texturing the environment using texture atlas and multi-resolution

texture adaptation. The implementation of the multi-resolution solution for rendering

is also discussed.

5: This chapter is a discussion and analysis of the works in the previous chapters.

It allows to evaluate the different results quantitatively and application on use cases. A

test of texturing in the animation context is established, the efficiency of the texturing

and LOD management is evaluated, along with the constraints encountered.

6: Conclusion and Perspectives, this final chapter gives an insight on the research

objectives by a general conclusion and opens a window to further study and improve-

24 CHAPTER 1. INTRODUCTION

ment of our work, by explaining the technical limits, and how to be solved.

Chapter 2

Related Work

This chapter is divided into two parts. The first part provides

an overview of the generalization techniques, with a comparison

between different techniques, which form a basis of the general-

ization approach proposed in our work. The second part explains

the direct and standards based visualization, with a focus on the

visualization used to enhance the distinguished buildings. We will

also discuss the interest behind both the generalization and visu-

alization techniques, and on the other hand, their limitations.

The proposals are aimed at optimizing the final visualization for

the great amount of data on the web.

2.1 Generalization of Buildings

Different approaches were used to handle the generalization. Some were directly fo-

cused on managing some of the standards representing the city, such as CityGML [BAR13].

Other approaches dealt with the base of the building in order to simplify it while in

2D [HMM12].

A common constraint when dealing with large urban data is the high details of polygon

meshes represented in the buildings. The idea of employing a generalization method

in this work is actually to create multiple representation structures of the city model

in different LODs. A generalization technique adapted will have the advantage of im-

proving the visualization experience to the user, as it will be explained in Chapter 4.

A number of techniques for the generalization of 3D building models exist address-

ing specific requirements and challenges of building simplification [MF07]. Usually,

3D building models already have relatively simple geometry. Application of standard

surface simplification methods from computer graphics often results in lost general

25

26 CHAPTER 2. RELATED WORK

appearance and characteristics of the models, e.g., orthogonality and parallelism. In

addition semantic attributes need to be taken into account during simplification. The

following works represent approaches to handle these characteristics. The approaches

explained below are divided into Single Buildings Generalization and 3D City Models

Generalization.

2.1.1 Generalization of Single Buildings

Single building model generalization techniques process a building model indepen-

dent from its environment. In some cases, inconsistencies in visualization and topol-

ogy need to be managed in a post-processing step, such as in the work of Peter et

al. [PHF07]. The building generalization technique presented in Kada 2002 [Kad02]

simplifies boundary representation model or BRep, using a set of rules. First, a number

of constraints between faces are set up to ensure that the buildings characteristics are

maintained, such as parallelism, orthogonality, and symmetry. Then, surface features

are detected and simplified. Finally, the simplified model is optimized towards the

original model using Least Square Adjustment.

Using Half Spaces concept, Kada [Kad06] also proposed the reconstruction of a

building model for each wall surface of the original model. The algorithm works on

a plane and a related buffer: by starting with the face having the largest area, it

merges faces within a given maximum distance to the current face buffer, adapting

the plane parameters and leading to a smaller number of planes. The final planes are

used to create a cell decomposition of the building. The cells which not cover a given

percentage of the original building area are discarded. The remaining cells are used

to extrude 2.5D geometry. To complete the simplification, roof faces are reconstructed

separately for each cell using half spaces and finally merged to the resulting generalized

buildings.

Rau et al. Present an approach working on building models comprised of prismatic

shapes with sloped roof structures. First, the roofs are flattened and adjacent polyhe-

drons are merged if their height difference is smaller than a given feature resolution,

yielding 2.5D shapes[RCT+06]. Then, the footprint of each shape is simplified by col-

lapsing small edges (walls), and the vertices which belong to the longest edges are not

allowed to move in order to retain the principal structure. Feature resolution is the

minimum distance by which to control the simplification process. It is used at runtime

to make the selection of the appropriate representation for visualization.

Thiemann in 2002 [Thi02] focus on decomposition of a building model into its

principal shapes, following the approach of Ribelles et al. [RHG+01] in the previous

2.1. GENERALIZATION OF BUILDINGS 27

year. In the spirit of hierarchical segmentation. The model is decomposed into smaller

parts using planes built from the model’s faces. A quality parameter then controls

the selection of intersection planes and the order of their application. The resulting

shapes together with a boolean operation are stored in a constructive solid geometry

tree (CSG). The minimum shape size can serve as a parameter to control the selection

of displayed building components for a simplified building model.

A quite similar hierarchical tree-based approach is described by Ripperda et Bren-

ner [RB06] using a formal grammar to describe the structure of the building, especially

facades. According to their model, a facade can be decomposed into upper and lower

parts, and symmetric parts. They use this description for the interpretation of a facade

given in terms of laser scanner measurements or images. The grammar can, however,

also be used to synthetically generate a facade. As it is described in terms of an hier-

archical tree, it can also be understood as a series of representations in different levels

of details. The advantage of using a grammar for the segmentation purpose is that it

allows a direct definition of the appropriate generalization rules: e.g. an array of 4 by

3 windows can be generalized to a simplified array of 3 by 2 windows.

(a) 2D ground plan divided by six

half-space primitives.
(b) 3D building objects in their origi-

nal (top) and generalized shape (bot-

tom) using half-space

Figure 2.1: Kada half-space generalization approach

Thiemann and Sester [TS06] worked on adaptive 3D templates, where they catego-

rize building models into a limited number of classes with characteristic shapes. The

initial building model is then replaced by the most similar 3D template that best fit the

real object. The determination and selection of the templates can be pursued in two

ways: on one hand, an appropriate template can be selected based on the attributes of

the object. This is similar to 2D map case, where for example churches are assigned a

28 CHAPTER 2. RELATED WORK

certain building symbol in a given scale. On the other hand, if such a semantic assign-

ment is not available or, if a lesser degree of generalization is searched, the templates

can be generated based on a simplified form of the original object, a basically main

geometrically dominant shape.

Older 3D methods have been established. For example, Mayer in 1998 analyzed

morphological scale-space and curvature space operators in the context of 3D build-

ings. Scale-space operators are defined as moving faces in or against direction of their

normal, either uniformly by the same distance (morphological operators) or depending

on the local curvature (curvature space-operators). The distance by which to shift

the faces can be used as a parameter controlling the simplification. Further research

in that direction by Forberg and Mayer [FM02] addresses orthogonalization as a re-

quirement for effective employment of morphological operators and the identification

of concave/convex structures.

Today, algorithms dedicated for 3D shapes are designed. Forberg [For07] adapts

the morphology and curvature space operators of the scale space approach to work

on 3D building models. His algorithm is based on an intelligent shifting of parallel

building planes. Practically, it works by moving parallel facets towards each other

until a 3D feature under a certain extent is eliminated or a gap is closed. Though

this method works well for parallel structures, other methods have to be applied for

non-orthogonal structures such as roofs. A set of rules was made to decide which part

of the roof should be rotated, forced to either become vertical or horizontal. For the

generalization of the roofs, the size of an individual roof face is the control parameter

to decide if it has to be rotated. The moved faces result in merging building parts,

removal of protrusions, or adjustment. The maximum distance by which to shift the

faces can be used as a control parameter.

Cell Methods A structurally similar approach of that of THiemann has been pro-

posed by Kada [Kad07]. He also decomposes the whole building into cells that are

generated by the individual planes. After that, he aggregates adjacent cells, if filled

with building parts. This process would normally result in the same representation.

However, the difference between the two works is that Kada used buffered cutting

planes to determine the cells. The size of the buffer is a direct measure of the degree of

generalization. This method is first applied to the vertical faces and then to the oblique

faces of the roof. It conclusively provides very convincing generalization of buildings,

even complex ones. His simplification method to the roof structure was extended to

use predefined roof types in [Kad09].

Another method including cells is the cell-based generalization technique, proposed

2.1. GENERALIZATION OF BUILDINGS 29

Figure 2.2: The rotated edge (grey circle) and the direction (marked by an arrow) depend

on the relation of the inclined facet of a roof to its neighboring facets. Courtesy: Forberg et

Mayer 2007.

by Glander and Döllner [GD09]. The cell-based generalization is a technique to create

abstract representations of 3D city models. This abstract representation is focused on

giving a quick overview about the general structure of the city. Similar to topograph-

ical base maps that serve multiple purposes, the resulting abstract 3D city models is

intended to facilitate multiple purposes such as car navigation scenarios, tourist infor-

mation, and efficient visualization of arbitrary thematic data such as air temperature

and land use. That’s why the base 3D city models is reduced in details to show only

major structures. The work of Lynch [Lyn60] describes five major elements forming city

images: paths, edges, districts, and nodes. Therefore, a comprehensive representation

of a city has to incorporate and even emphasize these elements for easy comprehension,

while allowing the user to connect real world structures with the displayed representa-

tion. Block cells represent individual buildings abstractly. The cell blocks are further

shaped by computational geometry operations and enhanced by landmarks buildings,

which are maintained in the visualization.

Adaptation In order to fit the simplified template to the original building, an adap-

tation process has to be performed. One of the adaptation processes suggested by the

authors is to minimize the distances between surface points by discretization of the

individual surfaces by points, find the closest distances to the second surface and mini-

mize these distances. In order to have a good representation of the original face by the

point sample, the number of points have to be of an adequate size. The higher number

30 CHAPTER 2. RELATED WORK

Figure 2.3: Abstract Visualization in a City Based on Cell Decomposition

of sample points is, the better the accuracy will be. Coors applied in 2001 [Coo01]

an adapted surface simplification algorithm to simplify single buildings. Introducing

dominance values in important parts of the building, e.g. a bell tower of a church, the

simplification algorithm is adapted to conserve these parts while simplifying geometric

complexity of the remaining model.

(a) Before and After Adaptation
(b) Template Adaptation of U-shaped

Building

Figure 2.4: Generic template adaptation of two different buildings shapes

2.1. GENERALIZATION OF BUILDINGS 31

Hierarchical Trees Segmentation Hierarchical Trees Segmentation have been used

as part of the simplification process on individual buildings. A segmentation of the

building’s boundary surface was established by Thiemann and Sester [TS05]. The idea

is to segment the building’s boundary surface for generating a hierarchical tree. The

tree’s elements are then interpreted and selectively removed or organized to implement

elemental generalization operators for simplification. A conceptual framework for 3D

building generalization is suggested by Guercke and Brenner [GB09] that is also based

on a hierarchical feature model of a city and its components. For each feature different

implementations of generalization operators can be selected, while a central coordina-

tion instance is responsible for solving conflicts. The semantical structure expressed

by the feature hierarchy forms the basis for a generalization workflow presented by

Guercke et al. [GBS09].

Figure 2.5: Hierarchical Tree of a Building. Courtesy: Thiemann and Sester, 2005.

Iterative Simplification of 2D Ground Plans In kada 2000, an analogous ap-

proach for the generalization of 3D building models is presented. The polygonal build-

ing models are iteratively simplified by combining a number of edge collapse operations

into a single step. Building symmetries, that need to be detected prior to simplification,

are maintained in the process. Footprint has been serving as the connection between

2D and 3D. Many block models of buildings were extruded from cadastral maps using

32 CHAPTER 2. RELATED WORK

their footprints and heights. But more detailed models could not be acquired in this

way. Therefore, a question that rises is: how can we translate 3D building generaliza-

tion issues into 2D scope for generalizing more detailed 3D building models?

Several algorithms have been developed that remove line segments under a pre-

defined length by extending and crossing the neighbouring segments and by introducing

constraints about their angles and minimum distances [Reg01], [VK01a], [Har99],and

[Wei96].

The table presents our personal evaluation of some generalization algorithms for

3D building models: 2.1 shows the capabilities of some generalization algorithms for

3D building models such as characteristics functions describing objects under assess-

ment: feature extraction characteristic, continuous representation on different scales

characteristics, and individual/group buildings characteristic.

Characteristics/ Generalization Using Scale Individual/Group

Criteria Feature

Extraction

Semantic

Information

Fixed Continuous Individual

Buildings

Group of

Buildings

Sester Yes No Yes Yes Yes No

Mao, Ban, Harrie No Yes No Yes No Yes

Kada Yes No Yes No Yes No

Foreberg Yes No No Yes Yes Yes

Fan, Mang Yes Yes LOD3-LOD2 No Yes Yes

Table 2.1: Evaluation of Most Used Generalization Algorithms

2.1.2 Generalization of Multiple 3D Building Models

Sester [Ses02] presented a 3D visualization of simplified, aggregated, enhanced, and

displayed buildings by extruding the generalized building footprints to solids. As a use

case, adaptive generalization is applied to building models depending on their distance

to important building models. Anders aggregates linear groups of building models,

such as along a road. The proposed algorithm first projects the building geometry

onto its principal axes, yielding three sets of footprints. Then for each set, the foot-

prints are aggregated and simplified using 2D generalization operations [And05].

Finally, the simplified footprints are extruded and the resulting shapes are inter-

sected, yielding the final aggregated building model. Similarly, Tsai et al. [TLC12]

aggregate compact building groups by projecting and rasterizing their models along

the principal axes. After performing morphological operations on the images, the top

raster image is segmented according to the side images. A simplified 3D shape is fi-

nally reconstructed by identifying vertices and edges, creating polygons from the raster

2.1. GENERALIZATION OF BUILDINGS 33

images. An approach especially addressing the grouping of LOD1 building models as a

prerequisite for aggregating them is presented by Guercke et al [GZBZ12]. Properties

of the individual buildings, e.g., relative and absolute height, are taken into account

to decide which neighboring buildings should be aggregated. The decision task is for-

mulated as a mixed-integer programming problem that minimizes conditions, e.g. the

difference between the summed original and aggregated building models’ volume. In

contrast to heuristic, greedy algorithms, the resulting building groups are optimal with

respect to the given conditions.

2.1.3 Generalization Based on CityGML Standard

The approach of Fan et al. is directed at generalizing CityGML LOD3 building models.

In their approach, all the polygons that belong to one wall are projected to the farthest

of its polygons’ planes, polygons that are not parallel or coplanar are discarded. Thus,

the facade structure with window and door openings is maintained. Similarly the roof

polygons are clustered by their orientation and projected to the farthest plane of each

cluster’s polygons.

One of the optimized ways of representing a model is by a discrete and contin-

uous levels of details representation of polygonal and triangular meshes, in the aim

of reducing storage space, shortening geometric computations, and improving render-

ing performance. The triangle-based boundary representation is the most common

representation of a 3D object in the context of real-time computer graphics. It is a

composition of one or more triangle meshes, formed by multiple triangles in 3D.

During the simplification process, the triangle meshes should be managed in a way

that preserves the geometric accuracy as good as possible. The generalization algo-

rithms used so far usually show quite satisfying results, despite the geometric error

metric. Some are applied on highly complex objects, made from hundreds of thou-

sands to millions of primitives.

Problems could occur where some datasets are too complex to fit in main memory

and must therefore be processed out of core [Lin00]. Several objects that make up the

building block exhibit certain characteristics that need to be preserved during simpli-

fication, such as right angles.

Also, the geometric error metric as used in surface simplification does not account

for such characteristics, usually because the simplification operators were developed

34 CHAPTER 2. RELATED WORK

for smooth surfaces rather than angular 3D shapes and therefore their application to

a 3D building model often results in a skewed or tilted model.

A similar kind of problems occur for the automatic simplification of 2D building

ground plans. The line (e.g. the algorithm of Douglas and Peucker in 1973 and

revisited in 2011) [DP11] does not yield very good results for such objects. Since

then, specialized generalization algorithms have been proposed. Sester [Ses00] proposed

a work on 2D ground plans by the application of a set of simple rules followed by

a least squares adjustment. Focusing on creating simplified LOD models, Guercke

Figure 2.6: The Least Square Adjustment Applied to 2D Buildings Shapes. Courtesy: Bayer

2009.Automated building simplification using a recursive approach

et al. as well [GBS09] suggested a typification technique using the Least Squares

Adjustment, a Bézier surface approximating the original surface is computed. Then

the tile distribution (e.g. the number of rows and columns) is detected. For the

selection of the optimal LOD model, perception measures are suggested by the authors

that adapt the tile density in the LOD models to the depicted size.

2.1.4 2D/3D Buildings Generalization Algorithms: Study and

Comparison

In order to choose the best generalization method for hiding unnecessary details during

visualization, we carried out a study of 3D city models generalization algorithms. The

study focuses on the works rather dealing with simplifying the geometry of buildings

by focusing on their 2D footprints, and specific roof shapes. Our idea of generalization

starts with the 2D, meaning that the buildings footprints are first simplified and ag-

gregated according to the method adopted by Sester and Brenner in their work [SB05]

2.1. GENERALIZATION OF BUILDINGS 35

and extended by Fan et al. in their book [FLM09]. They focused in their algorithm on

two parts: the first part was about the simplification of ground plans and the removal

of intrusion and extrusion. The second part deals with roof structures adjustment with

respect to the ground plans. Moreover, they considered height, width, and positions

of facades and facade accessories at different LODs.

In block level, a number of methods have been developed for aggregation of 2D

cartographic objects and 3D buildings. Bundy et al. [BJF95] introduced in 1995 Direct-

merge operator and Snap-merge operator, which are two aggregation operators to move

two objects near to each other. The direct-merge operator maintains the alignment

of the objects by moving the objects together directly. The relationship between the

facing edges is represented by the triangles that have an edge in one object and a point

in the other. Figure2.7 below shows an example of direct-merge.

Figure 2.7: Direct-merge operation. Courtesy: Bundy et al. 1995

Meanwhile, the snap merge align the objects’ nearest parallel edges. It can be

achieved by aligning the merge vector with the shortest outer connecting edge, as

shown in figure.

Figure 2.8: Snap-merge operation. Courtesy: Bundy et al. 1995

Another method developed by Anders [And05] is quite suitable for aggregation of

buildings located on a straight line with same orientation. This method preserves the

location of original ground planes, and creates the new ones by prolonging the existing

one. He also introduced an algorithm to detect the grid structure of 3D building

groups. The buildings’ projections along height, width, and length should therefore

be in a straight line or superposition. These types of constraints are considered a big

36 CHAPTER 2. RELATED WORK

restriction for us, since most of the buildings in our environment are far away from

being aligned. And this risks to make our generalization approach applicable on a very

small scale.

For the single building model simplification, Mayer [May05] and Meng and Forberg

[MF07] created a scale-space technique partly based on the morphological operators

opening and closing to simplify 3D building model. Zhao et al. 2012 [ZZD+12] explored

the generalization method for detailed building models in both appearance and internal

structure with authentic architectural components. Fan and Meng proposed in 2012

a method with three steps to simplify 3D buildings, however applicable only in one

format, which is the CityGML [FM12]. An ancient method used for generalizing 2D

geo spatial data is to extend and cross neighboring segments to remove line segments of

ground plan on a given both thresholds of the angles and distances. This idea was used

by Sester and Brenner in 2004 [SB05], and extended by Fan et al. in 2009 [FLM09].

It will be adopted in our proposal with certain modifications. Some applied rules to

buildings are defined in the authors’ algorithm:

• Rule 1: A Building side smaller than a threshold should be removed. Important

objects lying on the side, however, should not be removed.

• Rule 2 : If more than one smaller parts consecutively exists, which are smaller

than a threshold and make a pattern, then all of them needs to be treated col-

lectively not individually.

• Rule 3: If the removal or modification affects the neighboring feature, or if

there’s an overlapping between two smaller features, than the two features should

be treated together.

Figure 2.9: Removal of offset by taking neighbouring edges into account. Courtesy: Mao et

al. 2010.

The figure represents a removal of offset for simplification of footprints according

to Rule1 of Sester and Brenner. The building side Sn is smaller than the threshold

and there’s no important part of the building that lies on it. Other sides connecting

with Sn are Sn+1 ,and Sn-1, which are larger and parallel to each other, while Sn-2 share

2.2. 3D CITY MODELS VISUALIZATION 37

an edge with Sn-1. Therefore, the larger side Sn-2is extended and vertical side Sn+1 is

reduced, resulting with the new side Sn-2, Sn.

Existing generalization algorithms are restricted by the data format of input build-

ing models and different models (explicit or parametric). The approaches presented

above are only applicable to a single building model.

2.2 3D City Models Visualization

After giving an insight that led us to propose a building generalization method for the

buildings in our city (to be explained in Chapter4), we are going to focus

3D city visualization combines both the disciplines of visualization and real-time

rendering. It is considered as a special case for data visualization. The definition of

rendering was given by Schumann and Mũller as being part of the visualization pro-

cess [SM13]. In computer graphics, rendering means the creation of synthetic images

fast enough so that the viewer can interact with a virtual environment. Rendering in

games and simulation is calculated and displayed in real time, at rates approximately

20 to 120 frames per second.

In real time rendering, the goal is to show as much information as possible as the

eye can process in a fraction of a second (or in one frame). Rendering for interactive

media, such as games and simulations, is calculated and displayed in real time, at rates

of approximately 20 to 120 frames per second. In real-time rendering, the goal is to

show as much information as possible as the eye can process in a fraction of a second

(a.k.a. in one frame. In the case of 30 frame-per-second animation a frame encom-

passes one 30th of a second). The primary goal is to achieve an as high as possible

degree of photorealism at an acceptable minimum rendering speed (usually 24 frames

per second, as that is the minimum the human eye needs to see to successfully create

the illusion of movement).

In the case where a city model contains geometry specifications and appearance

information, the terms ”Visualization” and ”Rendering” are frequently used synony-

mously. However, a distinction should be established between the two. The reason is

that sometimes the actual appearance of a city is not always the primary aspect of

interest, like in the case of urban development, where the geometry of the city model

serves basically as a medium to visualize spatially referenced thematic building infor-

mation which is not necessarily visible. Another reason is that direct rendering of a

model might not necessarily provide actual insight.

38 CHAPTER 2. RELATED WORK

Therefore, it can be used to amplify the resulting image perceptually by using non

photo-realistic techniques. In the other hand, the effectiveness of interactive visual-

ization is not determined by the rendering process only. It depends strongly on the

effectiveness of the navigation techniques available, which control the way in which a

user steers the virtual camera within the virtual space. To all of these reasons, city

model visualization includes but is not restricted to 3D rendering. For an accurate visu-

alization of big data sets, much information is often reduced. This lead to consequences

like losing some of the data because many tools use single precision files, as well as

losing the geo-referencing since most of the software have their own coordinate systems.

This could also lead to unusable textures because of the control over the Level of Detail.

In recent years, many frameworks have been proposed for the visualization of cities

purpose and listed by Bo in 2011 [Mao11a]. Another work by Rodriquez et al [RFC13]

describes the implementation of a Web3DGIS based on the conversion of CityGML

into X3D models and its visualization through the web. Another implementation of

a visualization framework is presented in the work of Kramer and Gutbell [KG15].

On the other hand, Thick Client based on Nasa World Wind Virtual Globe has been

extended to support the visualization of 3D city models [PDS+15]. This open source

has limitations when compared against Google Earth. This last allows easy creation

and placement of accessible, low resolution 3D models and is the most popular and

best supported virtual globe tool.

2.2.1 Direct Visualization

In order to visualize a city in real-time, Beck [Bec03] directly emloyed OpenGL1 to

visualize 3D city models. In order to achieve the high speed, the framework employed

the computer graphics related technologies such as pre-stripping the triangles, frame

controls, texture management etc. The data is contained in a databse in self-defined

3D format and integrated with the textures. LODs are used to display several geomet-

ric representations of the same object at different times. Fewer details are represented

when the object is far away and more detailed when it is closer to the observer.

Dollner et al. [DBB06] presented in their book a direct illustrative visualization

technique to provide expressive representations of large-scale 3D city models. Their

rendering algorithm consists of four phases: Phase 1 generates a texture encoding

shadowed regions in image space, Phase 2 renders the scene with enhanced image-

1Open Graphics Library

2.2. 3D CITY MODELS VISUALIZATION 39

space edges, shaded and textured facades, Phase 3 renders stylized edges, and Phase

4 renders remaining components of the 3D city model.

Although it may increase the visualization speed, the direct visualization framework

has to deal with basic computer graphics issues such as frame control, scene rendering

etc, which could increase development difficulties and workload. In addition, different

versions of the visualization programs need to be developed for different platforms.

Furthermore, the details related with the basic operation system and graphics interfaces

may highly influence the portability of the visualization framework. For all of these

reasons, our focus will be on the web visualization of 3D cities based on 3D standards.

2.2.2 Visualization using 3D standards

Many related-GIS standards have been used to reconstruct and visualize 3D cities on

the web such as:

KML Standard Keyhole Mark-up Language (KML) is an XML based file format

to represent geo-location on web applications such as Google Earth and Google Maps.

Collaborative Design Activity (COLLADA) is also an open standard XML scheme to

represent 3D models. With COLLADA integration, KML is being successfully used for

3D visualization on the web browsers. KML/COLLADA integration makes it possible

to visualize CityGML data with the help of the software 3DCityDB.2.

3DcityDB is an open source software, which allows to import CityGML dataset to

a 3D geo database such as PostGIS 2.0 and Oracle Spatial. The major features of this

software are the supports all kind of level of details and appearances, the support of

complex terrain and building models. With the import of CityGML to a geo-database,

it allows direct analysis of a city model. It also allows the export of CityGML from the

geo-database. To visualize virtual cities from existing GIS data, many attempts have

been made. For example, a virtual model of London was generated from 2D plans and

supported in a collaborative virtual world [SF99].

Many 3D WebGIS applications are built around 3DcityDB. One of them aimed at

retrieving and visualizing data according to some semantic characteristics [PD16].The

3DCityDB schema was originally installed, which supports the multi-scale and rich

semantic structure of CityGML [KNH13]. CityGML data was chosen for representing

the buildings in LOD2 and LOD4. In addition, storing data into DB was achieved by

the use of 3DcityDB importer/exporter.

23D City Database:http://www.3dcitydb.org

http://www.3dcitydb.org

40 CHAPTER 2. RELATED WORK

Figure 2.10: 3DcityDB General Architecture.

A more recent work by Byelozyorov et al. [BJPS13] demonstrated an open architec-

ture to view models from OpenStreetmap data. Gaillard [GVB+15] also demonstrated

generation of a web visualization of city models starting with CityGML as input. Also,

a discontinued tool for city curation in Google Earth has been replaced by an automatic

visualization of building models from aerial imagery. Although no clear reason exists

from the decision of replacement, results of the automatic visualization look impressive

when textured, but the undelying mesh, while sufficient for simple map visualization,

is quite noisy and inaccurate. With the visualization proposal for our platform, we aim

at reducing the time required to visualize buildings while trying to maintain a high

quality level.

Cesium It is an open source Javascript library for world-class 3D globes and maps.

It offers a time-dynamic content with a quite fast performance, precision, and ease of

use. A number of open 3D geospatial formats have grown out of Cesium. Open formats

used adapted to Cesium create interoperability for a full ecosystem of tools.

CZML, the Cesium Language, is a JSON schema for describing time-dynamic 3D

scenes. Another format, the quantized-mesh enables efficient 3D terrain streaming

and rendering. The Cesium team has worked closely with Khronos to create 3D Tiles,

a specification for streaming massive heterogeneous 3D geo spatial datasets.

2.2. 3D CITY MODELS VISUALIZATION 41

2.2.3 Visualization of the Distinguished Buildings

Researches focused on the Distinguished Buildings touch several areas including visu-

alization style and generalization context. In addition, adaptive maps and map-like

representations include landmarks. Regarding visualization styles for landmark build-

ings, Elias and Paelke [EP08] analyze different graphical representations and introduce

a design matrix to help choose the appropriate one for different categories of build-

ings, including visually outstanding buildings. For the case of perspective images, Lee

et al. [LKPM01] suggest depicting distinguished buildings by placing photographs in

the scene, which have been taken from a similar perspective. In the context of gen-

eralization, enhancing the important features is a job that belongs to cartographic

generalization. The resulting conflicts due to a potential overlap with the surrounding

features of the important buildings need to be resolved. Ruas used in 1998 [Rua98]

the Local Incremental Displacement, whereas Sester [Ses05] focused on a more general

approach, theGlobal Optimization. 3D geo virtual environments, as a specific class

of map-like visualizations, need the distinguished buildings of the city to ensure that

users can orient themselves and navigate. Detailed guidelines that we will be taken

into consideration in Chapter4 for designing and placing the buildings in the virtual

environment are suggested by Vinson [Vin99]:

• Landmarks should be visible at all times, especially at all navigable scales.

• Landmarks should be distinguishable from heir environment.

• Concrete representations of landmarks should be preferred over abstract ones.

In classical 2D maps, different visualization styles for landmarks are used, ranging from

textural and iconic to realistic styles.

Depending on the current scale, landmarks can be depicted larger than their neigh-

borhood [HGM94], highlighted by different colors or drawing styles, and exposed by

clearing their immediate surroundings. Clearing surroundings generate some unde-

sirable effects, for instance occlusion occurs which could hide important objects. In

addition, having an interactive visualization of a 3D city model repeatedly changes the

image, requiring constant attention of the user.

2.2.4 Smooth Visualization

To provide a smooth visualization, some concepts such as Morphing are applied. It

is suggested as a generalization operator specific for interactive visualization that per-

forms a smooth transition between different representations. Morphing is suggested

42 CHAPTER 2. RELATED WORK

Figure 2.11: Visualization Styles for map Generalization. Courtesy: Paelke 2008

by many authors: Van Kreveld, Cecconi and Galanda. [VK01b] [CG02]. Semmo et

al. [STKD12a] presented an interactive visualization system for generalized virtual

city models base on image blending and multi resolution models and discuss geometric

morphing as a means to transform city models from one level of abstraction to another.

As is it not reasonable and rather costly to produce models at different LODs, they

should be generated with highest possible details and then automatically simplified to

the required LOD as needed. Although the necessary techniques have been proposed

in the context of height field rendering [Hop98], [LKR+96], [RHSS98], and mesh

simplification [Hop96], [GH97], cartographic generalization methods for 3D building

models are not yet capable of generating what is referred to asContinuous LODs, a

collection of techniques that allows for the smooth transition between different LODs

in both directions.

In Chapter4 , we will cover a concept of implementing a geometric landmark en-

hancement. The technique aims at dynamically highlighting landmark objects by con-

sidering the current view and applying deformation as a working principle. It resolves

the problem of landmarks being occluded or too small. By scaling landmarks depending

on the distance to the virtual camera, their visibility is enhanced. This enhancement

supports the user in taking advantage of the landmarks and can be justified with

their importance. In addition, surrounding objects are displaced as a consequence

2.3. DISCUSSION 43

of the scaling. The presented real-time rendering technique is generally suitable for

applications which rely on visualization. Despite the implementation of methods and

algorithms that we are going to develop in the following chapters, a manual pre and

post intervention in our work seems unavoidable.

2.3 Discussion

In an interactive city scene, visualization and generalization are correlated: new vi-

sualization techniques may introduce other generalization considerations addressing

specific challenges in 3D city models. The process of visualization forces the kind of

data processing to make, and at which stage it should be done. Depending on the

visualization technique of the city models adapted, a convenient generalization tech-

nique is applied. In the process of visualization, Ware describes in his book [War12],

the different stages of the visualization pipeline. The four stages consist of:

• The collection and storage of data itself

• The preprocessing designed to transform the data into something we can under-

stand

• The display hardware and the graphics algorithms that produce an image on the

screen

• The human perceptual and cognitive system (the perceiver)

In the first stage, the original raw data is obtained by measurements or simulations is

preprocessed, enriched, and selected in the filtering stage. This results in a derived,

processed data. In the mapping stage, the data is prepared for visualization by map-

ping it to visual variables like color, size, and shape. The resulting mapped data is

used to create images on the screen. The interactive visualization could be controlled

by the user at several levels in different ways: through direct interaction (e.g. chang-

ing the view parameters), through mapping adaptation by selecting different colors,

and by controlling the filtering stage, e.g. by loading a new data set or by changing

preprocessing parameters. According to Glander et al. [GTD11], generalization can be

applied within the visualization pipeline at all the stages mentioned above.

The presented decomposition incorporates five operators: Selection, Transforma-

tion, Join, Generalization, and Rendering. The concrete application of an operator

on a given data is guided by the set of given visualization requirements that act as

additional input to the operator. Each operator can be associated with a stage of the

44 CHAPTER 2. RELATED WORK

Figure 2.12: Map-Like visual representations from geodata visualization requirements

visualization pipeline, i.e. filtering, mapping, and rendering. The generalization oper-

ator is an exception. Some parts of its functionality are related to filtering(e.g. data

abstraction), while others are related to mapping(e.g. assignment of visual variables).

In general, it is not possible to split the functionality of the operator into a filtering

and a mapping stage that are executed in sequence without iteration. This is because

of complex interrelations that exist between the parts. The input geodata model is

the secondary model, the intermediate output of the mapping stage corresponds to the

cartographic model and the generalization operator corresponds to the cartographic

generalization mapping.

Generalization operations such as Selection, Aggregation, and Simplification could

be applied to the original geodata of a virtual landscape model, leading to a gener-

alized one. Other operators such as exaggeration, enlargement, and displacement are

only functional in case a cartographic landscape model is targeted. At the Rendering

stage, generalization operations can be applied to adapt the graphical representation

and enforce cartographical principles as the user changes the view parameters, e.g.

camera position and projection. In practice, concrete generalization techniques uses a

combination of these generalization operators. In particular, if they have to provide

adaptive, dynamically generalized models for interactive 3D visualization systems, gen-

eralization operators for all the stages mentioned above are required.

2.3. DISCUSSION 45

In Generalization The presented state of the art techniques and the comparison es-

tablished between some of them has made us synthesize clearly what technique is the

most adopted to our needs and to the context of our work. Our proposal in generaliza-

tion of some buildings which will be explained in 3 aims at optimizing the visualization

on the web. The advantage of applying a general concept is to avoid the distinctive and

individual generalization of each of the objects in the city, as it takes into consideration

the similar building shapes and only one operation will be applied to each group. In

addition, simplification on the level of the building alone is a long and not specifically

important for the least detailed buildings. Also as we have seen, the presented methods

above also maintain the general structure of the buildings well. Therefore, we will be

reducing the geometric complexity without sacrificing the visual quality.

In Visualization The visualization method adopted in Chapter4 as well, highlights

the importance of assuring a constant view of the landmarks of the city in each change

of frame as the user moves into the scene. This keeps the hierarchy in the scene and

also helps in the texturing process, as we will see in Chapter5. It also complements the

previous visualization methods, which also discuss deformation of either the landmarks,

or the surrounding buildings. Nevertheless, it has its inconvenient that is elaborated

in 5. We will also evaluate the result of the buildings texturing, LOD management,

and mapping by a salience map creation in 5

46 CHAPTER 2. RELATED WORK

Part II

Design and Implementation

47

Chapter 3

Data Conversion and Simplification

Contents

3.1 Datasets Used . 49

3.2 Data Management and Conversion 50

3.2.1 Creating Chunks . 51

3.3 Data Simplification . 52

3.3.1 Our Simplification Approach 53

3.3.2 Reconstruction of the Simplified Building 54

3.4 The Simplified Distinguished Buildings Representation . 56

In this chapter, we are going to explain the data management

and the conversion process adapted in order to obtain the suit-

able city file to be visualized. We are also going to explain our

3D generalization method with different LODs. Since the LOD0

cannot reflect the full properties of 3D city models and LOD4 is

not of interest for us in this thesis, we will focus on the general-

ization models in LOD1, LOD2 and LOD3.

3.1 Datasets Used

Before the city visualization, a reconstruction phase has to be done in order to merge

and synchronize all datasets and formats as a one framework compatible with cesium

import data for visualization purposes. For the reconstruction task, different formats

of the city components are chosen. Having each city layer represented by a raw data

gives a high flexibility to style and adapt the map in many different ways. The real

49

50 CHAPTER 3. DATA CONVERSION AND SIMPLIFICATION

advantage of having multiple datasets sources is the availability of manifold points of

interest (POIs). POIs are point locations which may be useful or interesting. Thus,

the 3D City model can be enriched with numerous items of information, making the

3D map generated much more informative for the user [FOJ04].

3.2 Data Management and Conversion

The objective in this phase is to prepare the files retrieved from different sources and

representing the city layers in one single platform. A manual work is mandatory for

synchronizing the datasets. For the data fusion, our work is focused on the city of

Moscow, which was chosen due to the large availability and ease of access of related

geographic data, and the quite rich architectural models of the buildings. The input

and output data of 3D city layers of Moscow are represented in the following formats:

• Source Data: OpenStreetMap(.osm) Extract

• Intermediate Transformed Data: KML(.kml), and COLLADA(.dae)

• Output Data for Visualization Use: glTF files(.glTF), and glb files(.glb).

• Source Data: osm: A sample area of Moscow was downloaded from OSM ready

extracts1. The OpenStreetMap file covers the buildings layer of the city, repre-

sented in footprints: a 2D file containing features and representing the buildings

outlines. An extrusion operation on these outlines is needed. The input buildings

OSM were successfully imported in Blender using the importer plugin, extruded,

and then exported as a COLLADA file.

After converting the OSM into the COLLADA file, we moved on to the second

iteration of conversion. At this stage, we are going to keep the buildings as-

sembled in one group and test the visualization in Cesium, without any kind

of optimization, or texturing. Splitting the file into small group of buildings is

crucial at a later stage, the reason is because the models will be more adaptable

to processing such as simplifying and editing.

• glTF This format is very promising for the future 3D standards for high-performance

visualization of massive models on the web. It is the GL Transmission Format,

which is the open-standard runtime asset format for WebGL, OpenGL ES, and

OpenGL from Kronos group [RC14]. However, this format requires adaptation

and scaling to standards for massive models, such as terrain, points clouds, and

1download.bbbike.org/osm/bbbike/Moscow/

3.2. DATA MANAGEMENT AND CONVERSION 51

buildings in our case.

• COLLADA2GLTF CesiumJS has made available an open source component

for 3D model conversion. The COLLADA2GLTF model converter: is a model

converter developed by KronosGroup, that allows to generate a glTF 3D model

starting from a COLLADA file. It also supports textured 3D models. There

are two output files of the COLLADA2GLTF: the first is a file system-based

collection of glTF 3D models, one for input building. The second is a JSON

file, that is essential for ensuring the geo-reference of each component stored

in it. The purpose of the Json file is to describe the node hierarchy, meshes,

materials, and how to access the binary block. The accessors which constitute

a part of the Json content tell the parser how to read and interpret the binary

data and how to extract data required for rendering triangle meshes. It also

allows for creating larger data chunks and for optimization techniques that will

greatly improve rendering performance The conversion from Collada to glTF was

eventually successfully established, and the city was visualized in Cesium.

Figure 3.1: First test of a converted glTF file visualization of Moscow

.

The conversion output formats is obtained using the OpenSource converter:

COLLADA2GLTF.

3.2.1 Creating Chunks

Streaming the city using one glTF file is very constraining due to the number of poly-

gons to be processed at once in Cesium. this is why the file needed to be reduced into

many smaller files. For this, the software ”Meshmixer”2 is found to be handy, and

2http://www.meshmixer.com/

52 CHAPTER 3. DATA CONVERSION AND SIMPLIFICATION

Figure 3.2: A more zoomed view to the distinguished buildings

.

easy to use for this purpose. The software was created by Autodesk, and allows the

creation of mashups for an already existing 3D models. The function ”Plane Cut” is

used to chunk the 121.5 MB obj file through a cutting plane. The cutting plane could

be adjusted, transformed, and oriented according to the user’s needs.

This process led to six chunks of the obj file, which were exported from ”Meshmixer”

into COLLADA files for a further conversion to glTF, the same way we did with the

”Non Chuncked” COLLADA file of the city. The slices have the following file sizes:

Slice1: 14.9 MB, Slice2: 10.7 MB, Slice3: 4.2 MB, Slice4: 6.2 MB, Slice5: 12 MB, and

Slice6: 28.9 MB. Below are the chunks obtained from the random cuts executed,and

imported into 3Ds max. They are visualized respectively with their bounding volumes

in the perspective view.

As we can notice from figure, some of the chunks bounding volumes interfere with

each other. This is normal since some of the buildings are quite close to each other, or

have a certain spatial relationship.

3.3 Data Simplification

Usually, cartographic generalization is carried out manually by cartography experts.

With the development of GIS related technologies, the volume of data for 3D city mod-

els is increased drastically. Different researches have been done on 3D generalization

in order to reduce the complexity of 3D city models 3

The generalization of the data could be applied in any stage of the visualization

3Open Geospatial Consortium OGC:http://www.opengeospatial.org/standards/

http://www.opengeospatial.org/standards/

3.3. DATA SIMPLIFICATION 53

Figure 3.3: The different chunks created with their Bounding Boxes.

pipeline the Filtering, the Mapping, and the Rendering, see 2. In our case, the general-

ization will be applied in the rendering phase and will be adapted to our visualization

strategy.

3.3.1 Our Simplification Approach

Our simplification approach of the buildings consists in generalizing the buildings ac-

cording to the method explained in Chapter2. We need to provide adaptive and dy-

namically generalized models for the interactive 3D visualization. The challenges are

discussed in accordance to our system. Other visualization techniques may address

other challenges and therefore, other generalization techniques.

To start with, we are going to use an algorithm with generalization in order to

restrict lines, curves, and corners of the distinguished buildings ground plan. This is

done with the help ofMathWorks libraries implemented in Matlab. Working with the

ground plan of the building is a practical approach when it comes to generalization,

first because we can deal with the outer structure of the buildings, and second the

generalization rules are applied as 2D rules, which makes them easier to compute.

Footprints of 3D buildings may contain corners, offsets, and intrusions or extrusions.

That is why we are going to fix certain criterion and conditions in order to facilitate

the elimination of these unwanted details:

54 CHAPTER 3. DATA CONVERSION AND SIMPLIFICATION

• Geometry-Based rules inspired from the CityGML specifications4

• Threshold value: if the considered edge is shorter than this value, then it is

removed. Else, it will be extended to the neighbouring larger edge.

• If the removal or the modification affects the neighbouring feature or features,

they should be treated together.

• If two buildings are separate by a distance of 10m or less, these buildings are

merged or aggregated.

We are going to consider the different cases and shapes that we encountered in our

buildings and how they are dealt with:

Removal of Shortest Edge The criterion concerning the edge removal (the second

item) is shown in one of the buildings below. The difficult part when removing the

shortest edge is to adjust the neighbouring edges, while maintaining the length, ori-

entation, and association with each other.The process is repeated under other smaller

edges are removed. The simplification process is shown in the algorithm 1

Simplification of Curved Shapes Similar to lines or polygons, building footprints

could contain curves. The best way to deal with this kind of shape is to divide it into

nodes, then relate these nodes with straight lines. Then, the lengths are compared to

the threshold value.

Aggregation The aggregation of the buildings close to one another is established in

the same spirit of the framework proposed by Mao et al [Mao11b], who applied the

aggregation by connecting 2D footprints of neighbouring buildings using the Trimmed

Convex Hull. The aggregated height is then stored in order to support reconstruction

of extruded 3D shapes for visualization.

3.3.2 Reconstruction of the Simplified Building

The ground plan simplification shape result and the roof structure simplification shape

result are merged as part of the reconstruction of the resulting building. Each wall

is considered as a polygon of 4 vertices and its heights are increased until they touch

the roof polygons. The polygon of a new wall can be acquired by removing the line

segments above the intersection with roof.

4http://www.citygmlwiki.org/index.php/Specifications

3.3. DATA SIMPLIFICATION 55

Algorithm 1 Shortest Edge Removal

1: Input ← {poly(2 , n)}
2: Input ← {numvertices}
3: Output ← {Finalpoly}
4: numvertices← {length(poly)}
5: foreach vertex ∈ numvertices do

6: Calculate(Vertex Importance)

7: Vertex Importance(v , poly , numvertices)

8: Iterate

9: while numvertices > num do

10: Remove(vertex with least importance)

11: Recalculate(importance for vertices neighbouring the removed ones)

12: Calculate(Vertex Importancevp , poly , numvertices)

13: Clip Polygon to the final length num

14: Find adjacent vertices

15: Obtain adjacent line segments and lengths: len1= norm(dir1)

16: len2= norm(dir2)

17: dir1 = poly(vp,v)

18: dir2= poly(vp,vm)

19: Calculate the angle between the vectors and multiply by segment lengths

20: acos(dir1 ∗ dir2/len1 ∗ len2) ∗ len1 ∗ len2

21: return a

56 CHAPTER 3. DATA CONVERSION AND SIMPLIFICATION

The generalization algorithms has been implemented and tested on the distin-

guished buildings in the center. It shows good results for simple models, and the

more complicated ones. The advantage is that the complexity of the objects could

be reduced without destroying the overall appearance of the building. Some of the

buildings have erroneous symmetries. Even if they do not affect the topology of the

resulting building model, they could be adjusted manually.

Our method should be extended to fit the quite complex structures of some of the

buildings that could be found in the city. Subsequently, the generalization procedures

were applied and tested on a dataset of buildings in the center. The reduction in

the size of the generalized building models is calculated. The result of the data sim-

plification is presented in Table 3.1 based on different threshold values. In addition,

the graph shows that the percentage of data reduction is inversely proportional to the

value of threshold. Moreover, the buildings located closer to the viewing point of a

user seems less generalized as compared to the ones located far from user in street view.

Case Footprint Original Footprint Generalized 3D Model Original 3D Model Generalized

Vertex Number 361 156 970 725

Polygon number 44 20 230 97

Reduction Percentage 31 25 41.5 31.9

Table 3.1: Comparison of polygon numbers before and after generalization

3.4 The Simplified Distinguished Buildings Repre-

sentation

The distinguished buildings, or landmarks, are crucial to facilitate orientation in the

3D city. In this section, we are going to confirm the utility of the generalization part by

placing it in the context of a visualization scenario. It is also to improve the visibility

of the generalized landmarks. The problem with the 3D rendering is that it sometimes

implies perspective effects such as foreshortening and occlusion, which could hide the

landmark objects. An algorithm adapted from Winter et al. [WTES08] creates a

balanced landmark as follows:

(i) Triangulate landmarks using their centroids for a Delaunay Triangulation [DBVKOS00].

(ii) Compare each landmark’s saliency with direct neighbors in the DT and vote for

the highest saliency landmark among them.

3.4. THE SIMPLIFIED DISTINGUISHED BUILDINGS REPRESENTATION 57

(iii) Promote landmarks that have at least one vote to the next level.

(iv) Iterate until only one landmark is left. These interest values are computed for all

visible and non-visible parts of a feature. After being normalized, these are used

as blend values to compose the final image.

We start from the assumption that all of theDistinguished Buildings have a mini-

mal size allowing the user to clearly see them. The idea is focused on increasing the

buildings scale and thus reducing the space of the surrounding models. The scaling

process will depend on the camera distance. It is also calculated in real-time based

on pre-defined distance intervals for each landmark object. This scaling process could,

however, result in an overlapping problem between the objects. Therefore, the Sur-

rounding Objects are dealt with by applying the Displacement operation.

First, the input data consists of a part of the city or a 3D model chunk. This part is

generalized using the aforementioned generalization approach. Features are rendered

multiple times using different levels of details, which are continuously blended. To each

level of details, weight values are assigned. These values are computed at rendering

time using the three saliency metrics: the viewing distance, the view angle, and the

region of interest.

As we have discussed in the state of the art of city models generalization, the sys-

tems use heavy algorithms to find a suitable solution for displacing objects. However,

these algorithms are not applied to real-time visualization. As the user moves in the

scene, the camera distance and the viewing angle change respectively. An algorithm

that allows a computation of Scaling of the Distinguished Buildings, and Displacing of

the Surrounding Buildings should be implemented. Another assumption that we are

going to make is that in a camera view, the number of non distinguished buildings is

much greater than the distinguished ones.

The implementation starts with taking the 3D city model as input, and augmenting

it with weights defined per model during the tagging phase to separate distinguished

from non distinguished buildings. In our proof of concept, we use the height as the

landmark weight.

58 CHAPTER 3. DATA CONVERSION AND SIMPLIFICATION

Figure 3.4: Curve Simplification explained

3.4. THE SIMPLIFIED DISTINGUISHED BUILDINGS REPRESENTATION 59

Figure 3.5: The process of aggregating 2 buildings

Figure 3.6: Buildings of the center to be generalized.

60 CHAPTER 3. DATA CONVERSION AND SIMPLIFICATION

Chapter 4

Texturing in the Navigation

Context

Contents

4.1 Related Works . 62

4.1.1 Texturing Techniques . 62

4.1.2 Navigation in a 3D City Model 64

4.2 The Problem: Interactive Visualization VS Textures Ren-

dering . 66

4.2.1 The solution: Necessity of Textures Optimization for Differ-

ent Interactions . 67

4.3 Our Proposal: LODs Textures Representation 70

4.3.1 The Data Parameters . 71

4.3.2 Textures Mapping . 76

4.4 Rendering with LODs: the procedure 77

4.5 Discussion . 78

This chapter introduces multi-resolution texture atlases, an ap-

proach for real-time rendering of city models with high texture

complexity in terms of number of textures and texture size. It

describes the texture atlas tree, a data structure that forms the

core of the approach, as well as the related construction process

and real-time rendering. We will show that the triangulation

of the buildings is very helpful when applying the textures, and

the textures levels of details management utility in an interac-

tion context. The efficiency of the approach is demonstrated in

61

62 CHAPTER 4. TEXTURING IN THE NAVIGATION CONTEXT

performance tests. Finally, some improvements are explained to

optimize the implementation.

4.1 Related Works

4.1.1 Texturing Techniques

Huge urban models often require textures that exceeds the main memory capacity.

The common method for dealing with large textures requires subdividing a huge tex-

ture image into small tiles of sizes directly supportable by typical graphics hardware.

This approach provides good paging granularity for the system both from disk to main

memory and from main memory to texture memory. The problem of texture complex-

ity has been addressed in several approaches:

Clip Maps of Tanner et al. [TMJ98] use dynamic texture representation that effi-

ciently caches textures of arbitrarily large size in a finite amount of physical memory.

Cline and Egbert [CE98] proposed a software approach for large texture handling. At

runtime, they determine the appropriate mipmap level for a group of polygons based

on the projected screen size of the polygons and the corresponding area in texture

space. In another terrain viewing application, Lindstrom et al. [LKH+95] use the an-

gle at which textures are viewed to reduce texture requests over using a simple distance

metric.

In the context of texture management, Lefebvre et al. [LDN04] proposed a GPU-

based approach for large-scale texture management of arbitrary meshes. The novel

idea of their approach is to render the texture coordinates of the visible geometry into

texture space to determine the necessary texture tiles for each frame. However the

method requires a cost-intensive fragment shader and the geometry has to be ren-

dered multiple times per frame. Carr and Hart [CH02] introduced a texture atlas for

real-time procedural solid texturing. They partition the mesh surface into a hierarchy

of surface regions that correspond to rectangular sections of the texture atlas. This

structure supports mipmapping of the texture atlas because textures of triangles are

merged only for contiguous regions on the mesh surface.

Frueh et al. focused on the visualization in the animation context [FSZ04] by

describing an approach to create texture maps for 3D city models. The technique

includes the creation of a specialized texture atlas for building facades and supports

efficient rendering for virtual fly-through. Another approaches of textures rendering

4.1. RELATED WORKS 63

were more restricted on the camera movement. For instance, the approach of Hesina

et al. [HMT04] which describes a texture caching approach for complex textured city

models, only in case of an interactive walk-through.

Hierarchical Data Lakhia [Lak04] proposed an out-of-core rendering engine which

applies the cost and benefit approach of the Adaptive Display algorithm proposed

by Funkhouser and Séquin [FS93] to hierarchical levels of detail (HLOD) [EMBI01]

achieving interactive rendering of detailed city models. To support texturing, they

store down-sampled versions of the original scene textures with each HLOD1. In other

terms, the obvious method is to set the pixels of the output image to the average of

the corresponding n*n blocks in the input image. The algorithm adjusts image quality

dynamically in order to maintain a user-specified frame rate, selecting a level of detail

and an algorithm with which to render each potentially visible object to produce the

best image possible within the target frame time.

Another level-of-detail texturing technique creates a hierarchical data structure,

such as in the work of Buchholz and Döllner [BD05] who presented a level-of-detail

texturing technique that creates a hierarchical data structure for all textures used by

scene objects (4.1), and it derives texture atlases at different resolutions. At runtime,

their texturing technique requires only a small set of these texture atlases, which rep-

resent scene textures in an appropriate size depending on the current camera position

and screen resolution.

Figure 4.1: Applying textures with LOD consideration: original textures are used for the near

area (red), four texture atlases are used for the center area (yellow), and a single combined

texture atlas is used for the far area(green). Courtesy: Buchholz and Döllner

.

1Down-Sampling an image is reducing its size by multiplying the image by an integer factor n

64 CHAPTER 4. TEXTURING IN THE NAVIGATION CONTEXT

4.1.2 Navigation in a 3D City Model

In geovirtual environments, navigation represents a key functionality in the interaction

with virtual environments. Navigation and real-time rendering techniques are strongly

related to each other in two ways:

• Usability : Effective navigation tools are essential to make real-time rendering

techniques usable. If the navigation fails, an application is not used any longer,

independent of the underlying rendering techniques. The reason a navigation

fails, for instance, is when the user becomes disoriented in the virtual space and

is unable to control the virtual camera to a desired viewing perspective.

• Technical Requirements: Freedom of movement provided by the user affects the

demands on a real-time rendering technique, for instance:

– If the navigation is restricted to slow movements, the corresponding small

changes in the resulting images can be exploited to distribute the computa-

tional effort over several subsequent frames [Sch95].

– If the navigation does not allow movements on the ground, restricted vis-

ibility can be exploited to optimize rendering by occlusion culling algo-

rithm [BWPP04].

– If the navigation enforces a minimum flying altitude, textures of a city model

can be created at a lower resolution [FSZ04].

– If the user can only navigate along predefined paths and can neither alter

the viewing direction nor modify the environment, real-time rendering is not

required at all, since everything can be provided as precomputed animations.

Navigation Techniques Different ways exist that allow user navigation in city mod-

els. The variety of different existing navigation techniques motivates the development

of a rendering technique that does not depend on restricting assumptions on the navi-

gation. A Navigation Technique Maps user inputs received from input devices such as

mouse or keyboard to parameters of a virtual camera.

Navigation techniques have to achieve conflicting goals: on one hand, they should

provide sufficient freedom of movement to allow the user to achieve all desired viewing

perspectives, and on the other hand, a navigation technique should be intuitive, and,

therefore, not too complicated to handle from the user’s perspective. Controlling a

virtual camera means to control at least five degrees of freedom simultaneously, taking

4.1. RELATED WORKS 65

only camera position and viewing direction into account. Therefore, a navigation tech-

nique must provide an appropriate compromise between both goals. Correspondingly,

a single navigation technique that is optimal for all applications does not exist and

according to Ware [War12], the optimal navigation method depends on the exact na-

ture of the task. In addition, different user skills and experiences as well as individual

preferences of users are relevant [CCM00].

Examples of navigation techniques that are useful for city models are the following:

• Pedestrian Navigation: it supports exploration of a virtual environment from the

point of view of a virtual avatar. Forward, backward, and sideward movements

are performed by keys, while the head rotation and the walking direction is

controlled by mouse movement. This technique has become quite popular due to

its frequent use in computer games.

• Fly-Over : it is frequently used in geovirtual environments.

• Trackball Navigation: rotates the virtual camera around a focus point. For this,

the mouse movement is mapped to a movement of the virtual camera along the

surface of an invisible sphere. The focus point is determined by shooting a ray

from the camera position towards the viewing direction and choosing the first

intersection point with the environment(4.2).

• Zoom Navigation: is also based on a focus point and allows for controlling the

distance between focus point and virtual camera, e.g. by mouse wheel or mouse

movement.

• Focus-Point Selection: enhances trackball and zoom navigation by the ability to

select a new focus point. The technique rotates the camera in a way that the

focus point moves smoothly to the center of the screen during a short animation

period.

• Panning Navigation: moves the camera parallel to the horizontal plane at a

constant height. By dragging an arbitrary point on the ground along the screen,

the camera is moved in a way that the currently dragged point follows the mouse

pointer.

Pedestrian and Flyer navigation are well suited for presentation and entertainment

applications. A combination of trackball and zoom navigation is commonly used for

the investigation of single objects. In addition to the above mentioned techniques,

there are also semi-automatic navigation in which the user navigation is interpreted to

trigger on-demand camera animations:

66 CHAPTER 4. TEXTURING IN THE NAVIGATION CONTEXT

Figure 4.2: Image sequence illustrating the Focus-Point Selection. a) No focus point is de-

fined, therefore the trackball is unable to work. b) The perspective has been modified by the

adjustment strategy to obtain a valid focus point. c) The trackball can now be used for leaving

the pedestrian perspective.

• Landmark Selection: invokes on-demand camera paths from the current camera

perspective to predefined viewpoints [HS00], [SGLM03].

• Path-Drawing: allows the user to specify camera paths spontaneously by drawing

strokes onto the screen [IKMT98]. The strokes are projected back into the 3D

space, and a smooth camera path is invoked along the resulting curve.

• Semantic-Based Navigation: comprises a collection of navigation techniques for

city models which enhance the path-drawing approach. These techniques initiate

camera paths based on user gestures taking into account the semantics of cur-

rently visible city models entities. For example, drawing a stroke along a street

followed by clicking onto a building is evaluated by flying along the street and

finally rotating the camera towards the selected building.

4.2 The Problem: Interactive Visualization VS Tex-

tures Rendering

As we said before, there is a tight relationship between navigation and real-time render-

ing techniques. Many navigation techniques have been used in applications examples.

An interesting implementation of these navigation technique is based on a navigation

framework proposed by [BBD05]. Currently, large city models face a challenge between

the Interactive Visualization and the Textures Rendering. The large amount of

textures presented in the scene makes the visualization through the user interaction

(walkthrough, flyover) less efficient and could be burdening.

4.2. THE PROBLEM: INTERACTIVE VISUALIZATION VS TEXTURES RENDERING67

They could only be rendered efficiently if the amount of textures is relatively small.

Another problem that we noticed is the quality of the lighting in the scene. In most

of the existing visualization applications, the viewer provides automatic creation of

the lighting textures to improve the rendering quality compared to standard real-time

lighting (Figure 4.3). Currently, these textures are rendered in a conventional way,

so that the quality of the lighting is restricted by the available texture resolution. In

addition, the required texture memory restricts its application to small models.

Figure 4.3: Comparison of standard real-time lighting (left) and precomputed lighting textures

(right).

4.2.1 The solution: Necessity of Textures Optimization for

Different Interactions

Optimizing the textures for rendering is essential in terms of reducing the number

of WebGL draw calls, in other terms in reducing the number of meshes as much as

possible. A texture atlas is an image containing a collection of smaller images, usually

packed together to reduce the atlas size. An atlas can usually consist of a uniformly-

sized sub-images, or they can consist of images of varying dimensions. A sub-image is

drawn using custom texture coordinates to pick it out of the atlas. In an application

where many small textures are used frequently, it is often more efficient to store the

textures in a texture atlas which is treated as a single unit by the graphics hardware.

The texture atlas algorithms address the problem of two-dimensional image pack-

ing [CGJT80] and building a texture atlas from a set of rectangular images involves

allocating this set of rectangular images into a larger rectangular image by minimizing

the unused space. This is commonly known as the bin packing problem [LMM02]. The

most efficient known algorithms use heuristics to accomplish results which, as good as

they are, are not always the optimal solution. Three common algorithms for texture

packing are used:

68 CHAPTER 4. TEXTURING IN THE NAVIGATION CONTEXT

(a) Application using

LandXplorer

(b) Lighting Simulation

(c) 3D Visualization

(d) Fly-over a city

(e) Berlin3D

(f) A 3D building viewer

Figure 4.4: Different applications of 3D city models

4.2. THE PROBLEM: INTERACTIVE VISUALIZATION VS TEXTURES RENDERING69

• The Basic: it divides the texture atlas into empty and filled regions. The first

item (1) is placed in the top left, the empty region remaining is split into two

rectangles along the side of the items. To insert the next item (2), we will check if

it can fit in the empty space (above A), and left of B. If it is full (which is the case

here), then the item will be on the right of B. If it fits on this place, B is exactly

split like we split the original texture, otherwise, we insert and split below A.

Doing this in a recursive way builds a binary tree representing the texture atlas.

When adding an item, there is no information on the sizes of the items that are

going to be packed after this one. This keeps the algorithm simple and fast. The

items could also be rotated when inserted into the texture atlas2

• The Maximal Rectangles: the Maximal Rectangles algorithm stores a list of free

rectangles that represent the free are of the bin (texture packing format). For

splitting purposes, this algorithm performs an operation that essentially corre-

sponds to picking two split axes at the same time. When an input rectangle R

is placed in the bottom-left of a free rectangle F , the two rectangles F1 and F2

(that cover the L-shape region of F/R) are computed. The ”Maximal” refers to

the property that these new rectangles F1 and F2 are formed to be of maximal

length in each direction, That is, at each side they touch either the bin edge or

some rectangle already placed into the bin.

• The Polygon: like the name shows, this algorithm looks for the polygons in the

2D texture and cuts it around the external boundaries. It is particularly effective

with textures having irregular polygons and complex polygons contents.

The Maximal Rectangle algorithm provides a fast but often the non optimal so-

lution, involving placing each item into the first bin in which it will fit. It requires

O(nlog n) time, where n is the number of elements to be packed. The algorithm

can be made more effective by first sorting the list of elements into decreasing or-

der, although this does not guarantee an optimal solution, and for longer lists may

increase the running time of the algorithm. Basic has the shortest generation time

and produces good results. As for efficiency, TPIM3 comes in the first level with

the (HighestusedArea/TotalSizeRatio). To see the three algorithms in practice, we

packed the available textures for the buildings in the part of the city that contains the

distinguished buildings three times, applying the algorithms explained above succes-

sively. This is what we get as result:

2 http://blackpawn.com/texts/lightmaps/default.html
3Touching Perimeter Algorithm

70 CHAPTER 4. TEXTURING IN THE NAVIGATION CONTEXT

Figure 4.5: Polygon Algo-

rithm

Figure 4.6: Basic Algorithm

Figure 4.7: Maximum Rect-

angle Algorithm

However, for a bigger range of flexibility and for designing texture atlases with

different resolutions, we are going to implement our own texture packing method.

4.3 Our Proposal: LODs Textures Representation

Usually, LODs textures packing are commonly used to handle large textures in real-

time, where the amount of simultaneously visible texture data can be arbitrary high

at full resolution. As part of the optimization process we are carrying during the visu-

alization, applying a technique that adjusts the texture LOD according to the building

distance is very important. This will largely reduce the textures memory allocation

since the texture regions that are viewed from large distances will only cover a small

part of the screen. Hence, it is not necessary to use high texture resolutions for such

regions. Based on these facts, the solution to handle large terrain textures would be

to use high texture LOD only for terrain regions close to the camera and to decrease

the texture LOD with increasing camera distance.

Our technique derives texture atlases at different LODs. At runtime, the texturing

technique requires only a small number of texture atlases. The textures are represented

in an appropriate size depending on the current camera position and screen resolution.

This technique aims at solving the problem of uneven texture distribution in a 3D

scene. Therefore, a focus should be shifted towards a scene subdivision that is based

on the textures workload, and not only on the scene geometry, which in most cases, is

established in the 2D representation of the scene.

4.3. OUR PROPOSAL: LODS TEXTURES REPRESENTATION 71

4.3.1 The Data Parameters

To begin with, we need to construct a tree or a hierarchical representation of the texture

atlases. In general, the input data from which a texture atlas tree is constructed consists

of:

• An arbitrary 3D scene, given as a set of triangles G. Each triangle in G has 2

vectors: a position vector and a 2D texture coordinate vector.

• A set of related textures, T . Each texture is specified in the form of a 24-Bit

RGB image. If it is not the case, the textures are managed in a different texture

atlas tree rendered simultaneously as the first one (24-bit images).

• An identifier that assigns to each triangle in G a single texture in T .

• A minimum distance parameter d. d should be chosen small enough so that the

geometry within a distance >= d from the camera will be rendered with original

textures.

• A ratio of pixel per texel4 equal to 1.0 which is the ideal case. This value could

be changed if it is necessary to trade image quality for performance. The higher

this value is, the lower the resolution to be rendered.

• Finally, a texture atlas size defined by W ∗H width and height. The best atlas

generation occurs when W = H, and the size is a large as possible. We will show

further that W = H = 512 is the most appropriate choice.

Creating the Atlas Tree In order to create a texture atlas, each node N or a group

of buildings needs to be triangulated. The atlas is created in such a way that for a

given distance d, there should be no magnification in the texture atlas, provided that

the camera has a mimimum distance d from all triangles. d is chosen with respect to

two criterias:

• It should be small enough, so that all triangles from a given viewpoint within

a distance d are rendered with the Original Textures. In case of larger d

values, the nodes should contain more full-resolution textures, which could slow

the rendering performance.

• The smaller the distance d, the bigger the size of the tree data structure, and the

higher preprocessing time.

4Textures per Pixel, the smallest element of a texture applied to a surface

72 CHAPTER 4. TEXTURING IN THE NAVIGATION CONTEXT

Figure 4.8: The nodes of the atlas

Now, we will use the predefined size 512*512 of the atlas and, for the calculations,

a perspective camera projection is assumed with a defined angle of view α. Three

calculations are established:

• For each texture, the minimum resolution at which the texture should be repre-

sented in the texture atlas to avoid magnification at a distance d.

• For each texture, the size of the required area within the texture atlas and in

parallel the source area in texture space.

• The single texture atlas of the size A of the textures, found in the second step.

The basic structure of the texture atlas tree is shown in figure 4.9. The tree defines a

hierarchical subdivision of both the scene and the textures atlases.

Texture Size Calculation Now that we have the original textures and the set of

triangles that use these textures, we are going to manage the LOD of the textures to

avoid the distortion at a camera distance of d. The obvious thing to do is to calculate

each texture height and width required for each triangle in the scene. The maximum

value of all the calculated widths will be the required width and the maximum value of

4.3. OUR PROPOSAL: LODS TEXTURES REPRESENTATION 73

Figure 4.9: Local coordinates versus global coordinates

the calculated heights will be the required height. For a triangle T at a camera distance

> d, the texture dimension is calculated according to the screen-space projections of

the vectors s(1, 0) and t(1, 0) in the texture space. If the screen has a length of x pixels,

the texture must have a width of x texels. In the same way, if the screen has a height

of y pixels, the texture must also have a height of y texels.

Figure 4.10

Node Triangulation The next logical step after the tree atlases creation is to render

this tree, or in other words, apply the corresponding texture atlas to each node in the

scene.

The triangles of the node have to be subdivided into four groups, one group for

each node. For a good subdivision, we will try to meet two important conditions:

74 CHAPTER 4. TEXTURING IN THE NAVIGATION CONTEXT

• The overlap of the group’s bounding boxes should be small.

• The summed number of texture pixels for all required texture areas of a group

should be approximately equal for all groups.

For establishing the triangle subdivision, we consider that the texture mapping is

unique: for each texture, each point in texture space is mapped to at most one point

in world space. Therefore, if the same area of a texture is mapped to two different

triangles, these triangles are not considered for the subdivision. Also as a result of

the unique texture mapping, the summed number of texture pixels for all the required

texture area is proportional to the summed area of all the triangles in world space.

That is said, condition b) can be substituted by the condition b’) The summed surface

area of all triangles of a group should be approximately equal for all groups.

The triangulation algorithm chooses two of the three main coordinate axes along

which B has the largest bounding box formed by the triangle set to be divided. For

faster implementation, we worked on small sets of the buildings to implement the trian-

gulation method successively. We decided to implement the algorithm based on Non-

Constraint Delaunay Triangulation. Reasons for this choice are the following: this

type of algorithm is the most popular and most used in practice. It is also relatively

easy to implement and can be modified for another types of triangulations. [LLL17].

• first, the research data is focused on a small set of 60 buildings, to better explain

the process and effect of the algorithm. The algorithm starts by locating the

centers of the buildings footprints. The connection between these points will

create a large sets of triangles. Only the outside triangles are kept, and the

inside ones (included in the building shape) are removed.

• Second, the triangulated set is split into two groups along the x-axis. The first

group contains the first set of triangles with incrementing x coordinates, and the

second group contains the remaining ones. The set of triangles are chosen in a

way that the sum of their surfaces are equal in both groups.

• Another iteration of splitting is done, this time along the y-axis, to obtain another

two groups, having a total of four groups which have equal summed areas.

• Usually, the splitting iteration process should stop when single triangles have a

largely small surface compared to the triangle set to be subdivided.

We know that, for a given set of triangles, the iteration steps are successful if the

texture atlas creation shows no errors in each of the resulting groups, meaning that

the texture atlas area alone will not exceed the predefined maximum texture atlas size.

4.3. OUR PROPOSAL: LODS TEXTURES REPRESENTATION 75

Algorithm 2 Triangulation Algorithm

1: procedure Triangulation Algorithm(Xi, Xk)

2: Xi ← list of points in the triangulation set

3: Xk ← a set of seed points

4: for each item Xi in Xk do

5: dist← (Xi - X0)

6: return dist

7: Sort the points in the set XK by increasing X coordinates

8: return the three first points X0, X1, X2

9: Link the points to form a triangle

10: Iterate for points Xi, Xi+1 and Xi+2

11: return C

12: Flip the edge of the newly formed triangle and the existing neighbouring one

if necessary

Figure 4.11: Result of Triangulation Algorithm for a complex building

76 CHAPTER 4. TEXTURING IN THE NAVIGATION CONTEXT

4.3.2 Textures Mapping

Once we have all the textures packed into a single texture atlas and the nodes were tri-

angulated, we want to wrap the texture with the triangles , including the self-repeating

textures. The aim is to achieve a wrapping scheme able to compress efficiently the

repetitive patterns. At this stage, it seems interesting to work with mipmapping: a

pre calculated, optimized collections of images that accompany a main texture, in-

tended to increase rendering speed and reduce aliasing artifacts [Wil83]. We used a

specialized texture coordinate that compactly represents the textures. We first discuss

the process of mapping of the original textures, a way to use mipmapping, and finally

the requirements to well adapt the wrapping.

Figure 4.12: Mapping the textures to the model

Let us assume that a building, composed by several meshes, has a set of planes

having this equation:

f(v) = { (a, b, c, d)|ax+ by + cz + d = 0 } (4.1)

The roof and facade planes were already clustered based on the normal of the plane.

Assuming a plane P , the zenith angle angle θ of the normal is defined as :

θ = arccos(
c√

(a2 + b2 + c2)
) (4.2)

If the angle is less than 10 degrees, then this plane is defined as roof. The character-

istics of the texture pixels can be evaluated by texture mapping. Triangle a(V4, V5, V6)

has three vertices in the model mesh, and the triangle b(u4, u5, u6) is the corresponding

4.4. RENDERING WITH LODS: THE PROCEDURE 77

in the texture image. The texture coordinates of the vector V4 for example are (x, y),

ranging between 0 and 1. The coordinates of u4 are (ux, uy)

Figure 4.13: The concept of mapping

4.4 Rendering with LODs: the procedure

Rendering scene parts very close to the camera at full texture resolution frequently

consumes a significant amount of the overall rendering time. Therefore, it is useful to

accelerate rendering with full-resolution textures by using conventional texture atlases

as long as the textures are small enough and non-repetitive. As a key advantage, LOD

texture atlases facilitate the rendering of large city models that are completely covered

with individual textures. Each triangle can be textured independently. This provides

a technical basis to use surfaces of city model objects to visualize various kinds of the-

matic data that result from computational models. For this, these data are encoded

into surface textures, i.e., textures that are draped onto the surfaces of city model

objects.

Usually, when rendering a frame, there is no need for all the texture data to be at full

resolution, only the texture data viewed from the current viewpoints are accessed by

the renderer. Since the screen resolution is bounded, less detailed versions of textures

can be used for distant geometry. In other words, displayed texture LOD does not need

to exceed screen resolution. Automatic LOD is a powerful Unity extension that allows

you to quickly generate and manage multiple levels of detail for your 3D models.

On the first level, the domain of the texture coordinates ranges from the center of

the first element tot the center of the last one. It could happen that a voxel is aligned

on different levels, which results in separation of the texture between two adjacent

voxels. The width of texture elements on each level is calculated as we explained

78 CHAPTER 4. TEXTURING IN THE NAVIGATION CONTEXT

Figure 4.14: Original textures without LOD Rendering

before, and since the chunks have a constant shape, texture coordinates can be always

determined. In order to account for a continuous levels of details transition, texture

pieces boundaries need to be adapted whenever the hierarchy is changed by moving

the focus point. As long as there are no level transitions greater than one are specified,

our approach allows to use arbitrary texture resolution for every chunk. According

to the OpenGL specification textures can be stored in different internal formats in

the graphics subsystem. In general, the texture maps used for rendering can either

consist of color values or color indices, which are then transformed to color values using

texture lookup tables. The hierarchical decomposition does not imply any restrictions

on the internal format of the textures. Down-sampling at textures boundaries can be

performed in any case.

4.5 Discussion

Our work differs from the cited works above is that we develop a multi-resolution

structure that allows smooth transition between levels. We also address the rendering

artifacts that still persist when rendering two differing but adjacent levels. Our multi-

resolution hierarchy is not strictly based upon an octree. Our work uses slicing planes

which are parallel to the image plane rather than spherical shells for rendering efficiency.

The goal of our hierarchical representation is twofold: first, to convert the volume

4.5. DISCUSSION 79

data into a multi-resolution representation that entirely fits into the limited texture

memory and second, to minimize texture lookups by adaptively resampling the data

with respect to the selected level-of-detail. Each brick locally stores approximations of

the original data at an ever coarser resolution. These copies are then used to adaptively

render arbitrary regions with reduced detail size. Even if the multi-scale representa-

tion does not entirely fit into texture memory, texture loading will be reduced. In

summary, by taking advantage of a level of detail representation as described, our goal

is improved rendering performance. We initially decomposed the data into chunks.

After constructing the texture hierarchy these bricks can be rendered at arbitrary res-

olutions. Some additional expenses is required to guarantee continuous transitions

between adjacent textures pieces at different levels.

One dimensional example of data set with four levels of detail. On every level the

size of texture elements increases by a factor of two. Note that at chunk boundaries

on the same level texture elements have to be included in multiple chunks in order

to guarantee continuous texture interpolation (filled areas). The original data set is

represented by textures of level 0. Ascending level indices indicate coarser texture

resolution. The width of texture elements on level k is twice the width of elements on

level k-1, whereas the texture size is reduced by a factor of two. Texture elements on

different resolution levels are aligned in such a way, that their centers on a certain level

corresponds to an even element on the next finer level. Since the geometry or shape of

chunk will be retained throughout the hierarchy, the domain of the underlying texture

function, necessary to compute appropriate texture coordinates, has to be adapted

accordingly.

80 CHAPTER 4. TEXTURING IN THE NAVIGATION CONTEXT

Part III

Quantitative Results and

Discussion

81

Chapter 5

Quantitative Results and Case

Studies

Contents

5.1 Quantitative Evaluation . 84

5.2 Texturing in the Animation Context 84

5.2.1 Texture Atlas Performance 85

5.3 Saliency Metrics . 87

5.4 Discussion and Limitations 88

Our overall approach to tackle the complexities of virtual 3D city models is to

design and implement methods for generalization and texturing optimization of large

urban data, originally in OSM. For this, we applied and combined general principles

and fundamentals from 3D visualization systems. The main reason for this process is

that raw data can not be directly used for rendering. It was transformed into graphics

representation basically that are rendered by Cesium, a 3D rendering engine.

Building data were originally provided as an OSM file. The processing of this kind

of data included three major stages and tasks:

• Data treatment: including geometry parsing, conversion, and creating 3D chunks

to facilitate the analysis of the groups of buildings.

• Geometry Optimization: generalizing the structures of the buildings, while ap-

plying a certain LOD control to the distinguished buildings to preserve their

general structure.

• Texture Optimization: includes texture atlasing and texture resolution control

depending on animation frame in the scene.

83

84 CHAPTER 5. QUANTITATIVE RESULTS AND CASE STUDIES

5.1 Quantitative Evaluation

Studies were carried out to test the efficiency of our methods regarding the visualization

format, the generalization, and the texturing in the context of scene animation. Frame

rates calculation and performance evaluation are shown next.

5.2 Texturing in the Animation Context

The frame rates for the camera animation were measured in three parts:

• In the first part, the rendering was done with the original scene textures. The

results are indicated by the thin solid line. The whole model of the city fitted in

main memory so that the frame rate measurements could be done for comparison.

• In the second part, the scene was rendered without texture switches, so instead of

several textures, a single white texture has been used for the complete scene. In

this part, the model did not appear correctly. However, the measured frame rates

provide an approximate upper bound for the rendering performance. The ren-

dering performance could theoretically be achieved by reducing texture switches

and texture workload. The result is shown by the dot line.

• In the third part, the scene was rendered using two texture atlas tree. Results

indicated by the thick line.

The average frame rates were 17 fps for the original textures, 30 fps without tex-

ture switches and 27 fps for the atlas tree. At the overview perspective the original

texture rendering dropped below 5 fps, while the atlas tree was permanently over 14

fps. Around frame 200, the second run surprisingly yielded the maximum performance.

This effect can be explained as follows: when rendering with a single white texture or

with LOD texture atlases, several small objects share a single texture atlas. Therefore,

they can be combined to larger objects and rendered with a single rendering call. This,

generally improves the rendering performance for most perspectives.

Around frame 200, however, the camera was in a perspective for which only a very

small number of triangles and textures were inside the view frustum. In this special

case, the rendering of separate small objects became advantageous because all objects

outside the view frustum could be excluded from rendering.

Another test was made on the chunks created in Chapter3, which include the dis-

tinguished buildings. It consists of the buildings in the city center, with the following

textures characteristics:

5.2. TEXTURING IN THE ANIMATION CONTEXT 85

• For each building, a 512*512 resolution texture is repeated around the facade.

• The textures were given an ID to each. The size of the texture on the facade is

50 MB.

This test shows the rendering speed in fps1 measured using a small animation con-

sisting of 300 frames, in the context of a user navigation (in walk-through and fly-over

modes). The average frame rate is 100 fps. A frame-rate minimum of 18 fps occurred

at an overview perspective. Remarkably, particularly the overview perspective is un-

critical from the point of view of textures because there is no building close to the

camera. In this case, only a small number of texture atlases is required for rendering.

For example, when the frame rate minimum occurred, the number of used texture

atlases was 34, while in the beginning of the camera path, where the frame rate was

between 40 and 50 fps,the number of texture atlases was in the range of 60. This indi-

cates that the bottleneck of switching between textures has been successfully overcome.

Therefore, we could deduce that the frame rate drop is caused by other factors, such

as the complexity of the model, or the fill rate, which means the number of number

of triangles or the number of fragments that have to be processed by the graphics

hardware.

These performance measurements change from one scene to another, depending on

the amount of visible triangles per frame. This could lower the average frame rate in

general. Tests made on the generalized models will drastically improve the frame rate,

since the text-data contains less amount of redundantly high tessellated geometry, for

example, rectangular walls that were represented by several triangles instead of just

two. For the test we explained in this section, the redundancies had been removed

from the model. Therefore, the frame rate minimum was higher in the new test (with

18 fps instead of 12 fps), although twice as many block buildings were rendered.

5.2.1 Texture Atlas Performance

The generation of the Texture Atlas in our city has made it possible to render the

data set with drastic reduction of elements with respect to manual texture by texture

implementation. Our rendering test was capped by 60 fps. A smooth rendering was

performed in case of the atlas generation.

1Frames per Second

86 CHAPTER 5. QUANTITATIVE RESULTS AND CASE STUDIES

LOD Management Efficiency The efficiency of LOD management of the texture

atlas has also been tested. Our test configuration started with the following parame-

terization:

• The resolution of the texture atlas is set to 512*512, followed by the fact that

each block should not exceed 130 KB.

• The summed size of all blocks in memory was limited to 100 MB.

• The screen resolution of 800*600 pixels with a pixel-per texel ratio of 1.0 on an

HP ELITEBOOK Laptop with Intel(R) Core(TM) i5-4300U at 1.9 GHz, 4GB

Main Memory, and Mobility Graphics Card with sufficient Graphics Memory.

The test is only carried out for the scene parts rendered with LOD management. The

roofs are not considered in the specification of texture complexity mentioned above nor

in the following frame rate measurements.

We needed to specifically check the ability of the LOD texture atlases approach

to cope with scenes in which the texture workload is irregularly distributed over the

scene. Snapshots of the model are shown in The geometric complexity of texture data

is about 36 million texture pixels, which could, theoretically, be handled directly by the

graphics hardware. The model contains, however, about 2000 different textures, which

are all visible at once from an overview perspective. Therefore, when rendering the

scene in a conventional way is caused by the number of texture switches. In addition,

the scene contains several repeated textures with high repetition counts such as the

tile texture on the ground in the lower part of This makes it difficult to reduce the

number of textures switches by applying conventional texture atlases

Repeated Textures Repeated textures must also be considered when using LOD

texture atlas. Textures repetition is applied for our city model. In contrast to con-

ventional texture atlases, LOD texture atlases allow using texture repetition without

problems even for large repetition counts because the texture resolution does only de-

pend on the screen space area covered by each triangle at a distance d¿dmin. That

is, it is not relevant for the required texture space whether a triangle contains 100

repetitions of a tile texture or a single one. It is because the repeated tiles appear

correspondingly smaller.

This made it easier to apply texture repetition to our model. In contrast, using

conventional texture atlases for the model, texture repetition would have increased the

total amount of texture data to multiple billion texture pixels, leading to an unaccept-

ably large number of necessary texture atlases.

5.3. SALIENCY METRICS 87

5.3 Saliency Metrics

We are going to evaluate in this section the proposal of Chapter4 by creating the

saliency maps of the output buildings, for different saliency parameters. The focus

of the important buildings brings out aspects related to Saliency2. It is used to dif-

ferentiate between information of Hight Interest and those of Low Interest. It could

be applied to images, as well as to 3D models. To identify areas of high details, we

are going to compute the interest value for each visible feature using saliency metrics.

These metrics are: The view Distance, the Vertical View Angle, and the Region of In-

terest. Other metrics can be added as long as they are normalized. For example, view

metrics can be defined by Normalized Euclidean Distances and Angles.The Region of

Interest is represented by a distance map that is computed using the Jump-Flooding

Algorithm [RT06], and is used to visualize ROIs3 or routes through a virtual 3D city

model [TBPD11, STKD12b].

Other metrics can be added as long as they are normalized. For instance, view

metrics can be defined by Normalized Euclidean Distances and angles as we showed in

figure:

Figure 5.1: The different saliency metrics parameters

.

As can be seen, visual saliency of homogeneous graphic styles is distributed across

focus and context regions. By contrast, the visualization method with texturing pre-

sented in Chapter4 yields to concentrated high saliency within a circular region of

interest, and for single landmarks in the context area.

2The quality of being particularly noticeable, important, or prominence
3Regions of Interest

88 CHAPTER 5. QUANTITATIVE RESULTS AND CASE STUDIES

5.4 Discussion and Limitations

During development and authoring of the use cases, it was noticed that the parametriza-

tion of the system can be heavy. Based on this, we need to configure a way to configure

the transitions between one use case to the other. A parametrization of the graphic

styles could be also helpful in order to deploy usage scenarios.

Another observation concerns testing the texturing method on the generalized

buildings too. Although this part was not developed due to time limits, we could

have proposed a way that allows the modification of the textures we have in order to

adapt the change of vertices and geometries when the generalized method is in action.

The way we proceeded with applying the textures is applicable on the non generalized

buildings. It could be interesting as a future work to test its efficiency on the simplified

model of our city, with numbers showing the time consumption between both cases:

Simplified Vs Non Simplified.

Moreover, the performance evaluation indicates that a single-threaded rendering

engine has impact on the system’s interactivity.

This work presents a concept and an implementation of a system that visualizes

a 3D city model in an optimized manner. This includes generalization of the distin-

guished buildings, applying the textures by using the concept of LOD texture atlas

depending on the building distance from the camera. The texturing work is evaluated

by using saliency metrics, as explained before. We also established use cases and evalu-

ate the performance in case of animation. The system is extensible and could be used to

improve existing visualization techniques, such as focus+context zooming [QWC+09]

and deformation. Moreover, the generalization technique proposed gives a potential

to our system to be applied on mobile devices, for the simplification of the buildings

reduces information compression on displays with limited size.

Chapter 6

Conclusion and Perspectives

Contents

6.1 Technologies, Tools, and Methods Overview 89

6.2 Using glTF for Web Rendering 89

6.3 Answers for Thesis Objectives 90

6.4 Conclusion . 93

6.4.1 Perspectives . 93

This chapter discusses the methodologies explained in the previ-

ous chapters with the advantages and disadvantages, answers the

thesis objectives, and offers proposals for future improvement.

6.1 Technologies, Tools, and Methods Overview

Our work includes various techniques and tools that allow the optimization of the data

visualization, without the loss of important information of the city. These techniques

and tools have their advantages and disadvantages, which we are going to elaborate.

First, we consider our proposal in this thesis as an effective optimized rendering solution

for streaming 3D heavy urban data in web environments. This is done under the

premise of using the open source software Cesium, international standard, and royalty-

free transmission formats (in Chapter3).

6.2 Using glTF for Web Rendering

Modern web browsers have powerful built-in functionalities such as WebGL, which

can be leveraged in order to create online applications including 3D GIS and Virtual

89

90 CHAPTER 6. CONCLUSION AND PERSPECTIVES

Globes. WebGL is supported by all modern browsers at least since 2013 and is cur-

rently further developed to support OpenGL. Hence, web browsers provide a reliable

platform for publishing and viewing 3D city models. However, the overall performance

of WebGL still lags with technical limitations.

The data processing by the client and 3D rendering must be streamlined as much

as possible in order to avoid rendering problems. The advantage of using WebGL

implemented in Cesium is that all necessary software components are already installed

on the client, and the integration with other web content and layout is straight-forward.

In this context, using glTF as a rendering format in Cesium 3D.js has the following

advantages:

• Meshes can be merged effectively across multiple geometries without losing the

possibility to identify single features in order to increase rendering performance.

• Cesium.js allows interacting with single features easily such as selecting, high-

lighting, and extracting features properties.

• Vertex data is stored as binary data, which is more efficient than text representa-

tions both in terms of file size and parsing speed. Compressing files for network

transmission is not necessary.

6.3 Answers for Thesis Objectives

In this section, we present the attempts to answer the research of the introduction in

the same order: Question1: How accurate is the choice of the openstreetmap standard

as a starting point of the city raw data?

Answer: Choosing the osm format to work with as a starting point invoked questions

about the accuracy of this choice. Of course dealing with large-scale open source

database has its constraints. In the case of osm the data quality could be better, the

coverage could be incomplete, and we could find inconsistencies from place to place,

as stated by Hakla [Hak10]. However, these issues are gradually decreasing and the

advantages offered by OpenStreetMap outweights these issues for many applications

done. Yet all of these issues are gradually being out. The advantages of Open Street

Map outstrips these issues for many applications already. These advantages include:

• Rapid updates of new projects

• Greater range of attributes

• Ability to publicly share data without the need of specific license

6.3. ANSWERS FOR THESIS OBJECTIVES 91

3D geo-databases are needed to handle surface and volume models and new direc-

tions for the development of 3D geo-databases to open new fields for interdisciplinary

research are addressed In this domain, it is important to look at the nature of the mod-

eled objects, which differs from one application to another. The task of geo-database

researchers is to find implementations for geo-models that provide efficient storage adn

retrieval of the models in geo-databases. Transformation is also necessary to convert a

geo-model used for visualization into a geo-model stored in the geo-database.

Consistent Reduced Information: Optimized representation of the city needs

to have reduced information, while maintaining sufficient both the general shapes of

the buildings, and a focus on the important buildings throughout the animation.

Automatic Reduction: The optimization technique, especially the generalization

should have some degree of automation, especially ragarding the buildings which are

more or less similar.

Saliency Control: Saliency metrics should be used to keep the viewpoint with

respect to the distinguished buildings. That is why a method for distinguishing these

buildings should be applied.

The second research question occurs in the context of texturing rendering: How can

we render the different Texture Atlases with the different resolutions? This question

involves the following requirement:

Multi-Resolution Texturing: It is crucial to make the textures adapt the camera

viewpoint. The textures display should take into consideration the distance of the

buildings from the camera, where the textures of the far buildings should have a lower

resolution than the ones of the close buildings.

There are, however, some disadvantages of using glTF:

• The internal structure of the features such as defined in CityGML could not be

represented so far, for example the subdivision into thematic surfaces can not

be represented by B3DM batches because it is not possible to store hierarchy

information. TO However, experiments are done showing that with workarounds

it is possible to extend the concept of the batch table as specified by B3DM so

that model hierarchies can be included, such as in the work of [SBN16].

• LODs are stored statically in glTF. Mixed LOD scenes using HLOD (or Hierar-

chical LODs) CityGML filtering can be stored in a single B3DM file. Switching

between different building representations according to the distance to the viewer

is, nevertheless, not possible.

Question2: Is it possible to apply some modifications for better texturing outcomes?

Answer: the answer opens the door for many titles:

92 CHAPTER 6. CONCLUSION AND PERSPECTIVES

Model Simplification could be one of the answers. It could surely be used in

combination with the texture atlas, so instead of using the original geometry for all tree

levels, simplified versions of the scene geometry could be stored in the inner node of

the texture atlas tree. And as we said before, our simplification proposal works best for

smooth continuous surfaces, and simplifying the very detailed city models will consist

of large numbers of small disjoint geometric objects, so that drastic simplification will

lead to distortions in the visual representation. Reducing the original geometry will

certainly reduce the geometric workload, and therefore what is handled by the graphic

hardware will only be the texture complexity instead of having both the textures and

the geometric complexity.

Reducing Texture Atlas File Size The file that stores the original textures of

a texture atlas tree, sometimes reaches gigabytes. A possible way to reduce its size is

to reduce the amount of unused textures, by arranging the textures in a more efficient

way. Concerning the optimization of the atlas itself, there are not lots of things that

could be done, since it is already an optimized version of the original textures. It is also

considered a considerable fraction of the original textures is when the scene contains

many repeated textures. It is due to the fact that usually, repeated textures in a

texture atlas are handled by a fragment shader, introduced by [Wlo05]. Integrating

such shader in the rendering process reduces the file size and preprocessing time at

the cost of additional computational effort involved by the fragment shader and the

restriction to recent graphics hardware.

Also, Improvements need to be done as for having a standard relational data model

in database systems, although there are remarkable attempts to standardize the geo-

data, for example by the OpenGeoSpatial Consortium (OGC), and exchanging data in

an unified way. Anyhow, Geo-databases will also play an important role in bridging

the geometric modeling of man-made and natural geo-objects. Therefore, it is useful to

provide geometric primitives for both man-made and natural objects eo construct more

complex objects, with the database serving as a tool to access the geometric features

of the objects. Important directions include the integration of 2D and 3D data models

and the development of dimension-independent topological and geometric data models.

These data models should be uniformly usable for both 2D and 3D worlds. If these

spatial data integration challenges are not solved, we expect the development of many

separate 2D and 3D solutions in the future. Such solutions would avoid seamless data

integration. Thus, challenges for future research include spatial data integration, new

user interfaces for geo-databases, and development of 3D/4D geo-information systems,

and geo-sensor databases.

textit Question3: To what extent is a city database creation important in large

6.4. CONCLUSION 93

data and how could it facilitate the web management?

Answer: In case the 3D city models have to be continuously managed, a database

creation is a must. Many databases have been created for storing, managing, and

maintaining the information about the city. Some GIS databases exist and are always

researched to produce city models semi or fully automatically.

6.4 Conclusion

The huge amount of data, rapid development, and the increasing data supplements

from map agencies has led us to experiment the fusion of different datasets and for-

mats. We considered the example of the city of Moscow, and for better performance

purposes, we focused on procedurally texturing the distinguished buildings. The struc-

ture of the application consisted in communicating between the server, the editor, and

the webpage. Many visualization engines require the presence of topological primitives

(such as nodes and edges) to support the display of 3D objects, with the data primarily

stored in proprietary file formats for performance purposes. It is therefore possible to

provide support for visualization in 3D as part of the implementation of topological

functionality, by modifying and enhancing the primitives model to support visualiza-

tion. In addition to this, the use of standard databases such as currently utilized to

hold GIS data, should also be considered to open the topologically structured data to

both query and visualization. This may provide one possible solution to the problem

of passing large data volumes to a visualization engine.

As a consequence of data volume issues, many 3D visualization applications use

varying levels of detail to describe objects at different scales. This process reduces the

quantity of polygon mesh data passed to the visualization engine as the user moves

away from a particular object. All the processing steps explained in 3, 4, and 5

which consider chunking, simplifying, and procedural texturing have been implemented

and integrated in a workflow, which uses the 3dcitydb and enables preparing raw

data city models for being efficiently published and viewed in a web browser. Using

open standards not only for storing and exchanging 3D city models but also for web

streaming will also improve interoperability and open up new possibilities for including

external data models and thus creating a mashup of standards and rules.

6.4.1 Perspectives

Regarding the completeness and accuracy about city datasets, we think that city layers

formats in general and CityGML in particular could get more advanced, especially in

terms of LODs. Tags used in the file content could integrate information like roof

94 CHAPTER 6. CONCLUSION AND PERSPECTIVES

types, roofs orientation, and eaves heights. For this goal, a database scheme should be

setup. Setting up a database for large datasets has big advantages:

• The data could be accessed by a variety of third party programs.

• Spatial queries could be done by clients accessing the database, which widens the

functionality of the database.

• Huge datasets could be stored in a database: the data is only transfered to RAM

when only a specific query is called.

The explained techniques and concepts used in our project have been successfully

applied to dynamically visualize the city data in specific use cases.

Nevertheless, multiple aspects are to be discussed:

Maintenance of multiple representations to be used as Levels- Of-Details is critical

aspect of large three-dimensional models (Thomsen et al., 2008). The consistent man-

agement of multiple representations is still far from being formalised. Currently, there

are no formal rules for transition from one 3D LOD to another.

Development of such rules might be a breakthrough in 3D generalisation techniques.

Such rules will permit only the most detailed model to be persistently stored because

any other LOD could be derived on demand. Although not critical for most natural ob-

jects, management of texture and mechanisms for texture mapping and texture draping

are critical for management of realistic 3D topographical object models. Man-made 3D

features are often textured with images from the real world. As 3D models continue

to develop, textures will be required for maintenance. Textures can be understood as

‘presentation’ attributes of 3D objects.

Appropriate indexing of texture images is required. To model more real-world

phenomena, 3D models must be extended with new representations such as parametric

shapes, free-form curves and surfaces, as discussed in (Breunig and Zlatanova, 2006).

The 3D spatial functionality regarding such complex 3D spatial data types must be

further defined. The role of databases remains an open question: can they be seen

primarily as repositories of data or as systems that provide certain functionality? In

our opinion, functionality should be developed (or extended) according to the extent

of objects to be maintained in the database. As soon as 3D geometry (with extended

primitives) and topological models are supported, a database should provide functions

and operations for validity, generic analysis and seamless conversion between models.

Import and export should be also synchronized with 3D geo-data standards.

Bibliography

[And05] Karl-Heinrich Anders. Level of detail generation of 3d building groups by

aggregation and typification. In International Cartographic Conference,

volume 2, 2005. 32, 35

[BAR13] Siddique Ullah Baig and Alias Abdul-Rahman. Generalization of build-

ings within the framework of citygml. Geo-spatial Information Science,

16(4):247–255, 2013. 25

[Bat07] Michael Batty. Model cities. Town Planning Review, 78(2):125–151,

2007. 18

[BBD05] Henrik Buchholz, Johannes Bohnet, and Jurgen Dollner. Smart and

physically-based navigation in 3d geovirtual environments. In Informa-

tion Visualisation, 2005. Proceedings. Ninth International Conference

on, pages 629–635. IEEE, 2005. 66

[BD05] Henrik Buchholz and Jurgen Dollner. View-dependent rendering of mul-

tiresolution texture-atlases. In Visualization, 2005. VIS 05. IEEE, pages

215–222. IEEE, 2005. 63

[Bec03] Michael Beck. Real-time visualization of big 3d city models. Interna-

tional Archives of the Photogrammetry Sensing and Spatial Information

Sciences, 34, 2003. 38

[BJF95] L. Bundy, B. Jones, and E. Furse. Holistic generalisation of large-scale

cartographic data. In GIS and Generalisation, Gisdata1, Taylor, pages

106–119. Muller, J.C., Lagrange, J.P., and Weibel, 1995. 35

[BJPS13] Sergiy Byelozyorov, Rainer Jochem, Vincent Pegoraro, and Philipp

Slusallek. From real cities to virtual worlds using an open modular

architecture. The Visual Computer, 29(2):141–153, 2013. 40

95

96 BIBLIOGRAPHY

[BWPP04] Jǐŕı Bittner, Michael Wimmer, Harald Piringer, and Werner Purgath-

ofer. Coherent hierarchical culling: Hardware occlusion queries made

useful. In Computer Graphics Forum, volume 23, pages 615–624. Wiley

Online Library, 2004. 64

[CCM00] C Chen, M Czerwinski, and R Macredie. Individual Differences in Vir-

tual Environments- Introduction and Overview, volume 51(6). Wiley

InterScience, 2000. 65

[CE98] David Cline and Parris K Egbert. Interactive display of very large tex-

tures. In Visualization’98. Proceedings, pages 343–350. IEEE, 1998. 62

[CG02] Alesandro Cecconi and Martin Galanda. Adaptive zooming in web car-

tography. Computer Graphics Forum, 21(4):787–799, 2002. 42

[CGJT80] Edward G Coffman, Jr, Michael R Garey, David S Johnson, and

Robert Endre Tarjan. Performance bounds for level-oriented two-

dimensional packing algorithms. SIAM Journal on Computing,

9(4):808–826, 1980. 67

[CH02] Nathan A Carr and John C Hart. Meshed atlases for real-time procedu-

ral solid texturing. ACM Transactions on Graphics (TOG), 21(2):106–

131, 2002. 62

[Coo01] V. Coors. Feature-preserving simplification in web-based 3d-gis. Pro-

ceedings on International Symposium on Smart Graphics, page 5, 2001.

30

[DB98] Victor J Deleon and H Robert Berry. Virtual florida everglades. In 4 th

International Conference on Virtual System and Multimedia VSSM98–

FutureFusion Application Realities for Virtual Age, 1998–Japan. Pg.

458. Citeseer, 1998. 19

[DBB06] J. DÃ–LLNER, K. BAUMANN, and H. BUCHHOLZ. Virtual 3d city

models as foundation of complex urban information spaces. Proceedings

of CORP, 2006. 38

[DBVKOS00] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong

Schwarzkopf. Computational geometry. In Computational geometry,

pages 1–17. Springer, 2000. 56

[DDA04] R Dogan, S Dogan, and MO Altan. 3d visualization and query tool for

3d city models. In Proceeding of XXth ISPRS Congress, 2004. 19

BIBLIOGRAPHY 97

[DP11] David H Douglas and Thomas K Peucker. Algorithms for the reduction

of the number of points required to represent a digitized line or its

caricature. Classics in Cartography: Reflections on Influential Articles

from Cartographica, pages 15–28, 2011. 34

[EMBI01] Carl Erikson, Dinesh Manocha, and William V Baxter III. Hlods for

faster display of large static and dynamic environments. In Proceedings

of the 2001 symposium on Interactive 3D graphics, pages 111–120. ACM,

2001. 63

[EP08] Birgit Elias and Volker Paelke. User-centered design of landmark visu-

alizations. Map-based mobile services, pages 33–56, 2008. 41

[FLM09] H. Fan, Meng L., and Jahnke M. Generalisation of 3d buildings mod-

eled by citygml. In Lecture Notes in Geoinformation and Cartography,

Advances in GIScience, Paelke V., Sester M.,and Bernard L., pages

387–405. Springer, Berlin, Heidelberg, 2009. 35, 36

[FM02] Andrea Forberg and Helmut Mayer. Generalization of 3d building

data based on scale-spaces. INTERNATIONAL ARCHIVES OF PHO-

TOGRAMMETRY REMOTE SENSING AND SPATIAL INFORMA-

TION SCIENCES, 34(4):225–230, 2002. 28

[FM12] H. Fan and L. Meng. A three-step approach of simplifying 3d buildings

modeled by citygml. International Journal of Geographical Information

Science, 26(6):1091–1107, 2012. 36

[FOJ04] Martin Fornefeld, Peter Oefinger, and Kathrin Jaenicke. Nutzen

von geodateninfrastrukturen. Studie, MICUS Management Consulting

GmbH, 2004. 50

[For07] Andrea Forberg. Generalization of 3d building data based on a scale-

space approach. ISPRS Journal of Photogrammetry and Remote Sens-

ing, 62(2):104–111, 2007. 28

[FS93] Thomas A Funkhouser and Carlo H Séquin. Adaptive display algorithm

for interactive frame rates during visualization of complex virtual envi-

ronments. In Proceedings of the 20th annual conference on Computer

graphics and interactive techniques, pages 247–254. ACM, 1993. 63

[FSZ04] Christian Frueh, Russell Sammon, and Avideh Zakhor. Automated tex-

ture mapping of 3d city models with oblique aerial imagery. In 3D Data

98 BIBLIOGRAPHY

Processing, Visualization and Transmission, 2004. 3DPVT 2004. Pro-

ceedings. 2nd International Symposium on, pages 396–403. IEEE, 2004.

62, 64

[GB09] Richard Guercke and Claus Brenner. A framework for the generaliza-

tion of 3d city models. In Proceedings of 12th AGILE Conference on

GIScience, 2009. 31

[GBS09] R. Guercke, C. Brenner, and M. Sester. Generalization of semanti-

cally of semantically enriched 3d city models. International Archives

of Photogrammetry, Remote Sensing and Spatial Information Sciences,

XXXVIII(3):28–34, 2009. 31, 34

[GD09] Tassilo Glander and Jürgen Döllner. Abstract representations for inter-

active visualization of virtual 3d city models. Computers, Environment

and Urban Systems, 33(5):375–387, 2009. 29

[GH97] Michael Garland and Paul S Heckbert. Surface simplification using

quadric error metrics. In Proceedings of the 24th annual conference

on Computer graphics and interactive techniques, pages 209–216. ACM

Press/Addison-Wesley Publishing Co., 1997. 42

[GTD11] Tassilo Glander, Matthias Trapp, and Jürgen Döllner. Concepts for au-

tomatic generalization of virtual 3d landscape models. Digital Landscape

Architecture Proceedings, pages 127–135, 2011. 43

[GVB+15] Jérémy Gaillard, Alexandre Vienne, Rémi Baume, Frédéric Pedrinis,

Adrien Peytavie, and Gilles Gesquière. Urban data visualisation in a

web browser. In Proceedings of the 20th International Conference on

3D Web Technology, pages 81–88. ACM, 2015. 40

[GZBZ12] Richard Guerckea, Junqiao Zhaob, Claus Brennera, and Qing Zhu. Gen-

eralization of tiled models with curved surfaces using typification. Ad-

vances in Geo-Spatial Information Science, page 33, 2012. 33

[Hae14] KH Haefele. Citygml model of the fjk-haus. In 3D Geoinformation

Science. Springer, 2014. 20

[Hak10] Mordechai Haklay. How good is volunteered geographical information?

a comparative study of openstreetmap and ordnance survey datasets.

Environment and planning B: Planning and design, 37(4):682–703, 2010.

90

BIBLIOGRAPHY 99

[Har99] Lars E Harrie. The constraint method for solving spatial conflicts in

cartographic generalization. Cartography and geographic information

science, 26(1):55–69, 1999. 32

[HGM94] Günter Hake, Dietmar Grünreich, and Liqiu Meng. Kartographie: Vi-

sualisierung raum-zeitlicher Informationen. Walter de Gruyter, 1994.

41

[HMM12] Shuang He, Guillaume Moreau, and Jean-Yves Martin. Footprint-based

3d generalization of building groups for virtual city visualization. In The

Fourth International Conference on Advanced Geographic Information

Systems, Applications, and Services, Valencia, Spain [online] Available

from: http://www. thinkmind. org/index. php, 2012. 25

[HMT04] Gerd Hesina, Stefan Maierhofer, and Robert F Tobler. Texture man-

agement for high-quality city walk-throughs. Proceedings of the CORP–

GeoMultimedia, pages 305–308, 2004. 63

[Hop96] Hugues Hoppe. Progressive meshes. In Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, pages 99–

108. ACM, 1996. 42

[Hop98] Hugues Hoppe. Smooth view-dependent level-of-detail control and its

application to terrain rendering. In Visualization’98. Proceedings, pages

35–42. IEEE, 1998. 42

[HS00] Ralf Helbing and Thomas Strothotte. Quick camera path planning for

interactive 3d environments. Smart Graphics 2000 Demo Session, 2000.

66

[HWT+05] Andy Hamilton, Hongxia Wang, Ali Murat Tanyer, Yusuf Arayici, Xiao-

nan Zhang, and YH Song. Urban information model for city planning.

Journal of Information Technology in Construction (ITCon), 10:55–67,

2005. 21

[IKMT98] Takeo Igarashi, Rieko Kadobayashi, Kenji Mase, and Hidehiko Tanaka.

Path drawing for 3d walkthrough. In Proceedings of the 11th annual

ACM symposium on User interface software and technology, pages 173–

174. ACM, 1998. 66

[Kad02] Martin Kada. Automatic generalization of 3d building models. In-

ternational Archives of Photogrammetry, Remote Sensing and Spatial

Information Sciences, XXXVIV-4, 2002. 26

100 BIBLIOGRAPHY

[Kad06] M. Kada. 3d building generalization based on half-space modeling. In-

ternational Archives of Photogrammetry, Remote Sensing and Spatial

Information Sciences, 36(2):58–64, 2006. 26

[Kad07] M. Kada. Generalisation of 3d building models by cell decompo-

sition and primitive instancing. In Proceedings of the Joint IS-

PRS Workshop on Visualization and Exploration of Geospatial Data,

Stuttgart,Germany, 2007. 28

[Kad09] Martin Kada. The 3d berlin project. In Photogrammetric week, pages

331–340, Wichmann Verlag, Heidelberg, 2009. 28

[KG15] Michel Krämer and Ralf Gutbell. A case study on 3d geospatial applica-

tions in the web using state-of-the-art webgl frameworks. In Proceedings

of the 20th International Conference on 3D Web Technology, pages 189–

197. ACM, 2015. 38

[KNH13] Thomas H Kolbe, Claus Nagel, and Javier Herreruela. 3d city database

for citygml. Addendum to the 3D City Database Documentation Version,

2(1), 2013. 39

[Kol09] Thomas H Kolbe. Representing and exchanging 3d city models with

citygml. In 3D geo-information sciences, pages 15–31. Springer, 2009.

21

[Lak04] Ali Lakhia. Efficient interactive rendering of detailed models with hier-

archical levels of detail. In 3D Data Processing, Visualization and Trans-

mission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium

on, pages 275–282. IEEE, 2004. 63

[LDN04] Sylvain Lefebvre, Jérome Darbon, and Fabrice Neyret. Unified texture

management for arbitrary meshes. PhD thesis, INRIA, 2004. 62

[Lin00] Peter Lindstrom. Out-of-core simplification of large polygonal mod-

els. In Proceedings of the 27th annual conference on Computer graphics

and interactive techniques, pages 259–262. ACM Press/Addison-Wesley

Publishing Co., 2000. 33

[LKH+95] Peter Lindstrom, David Koller, Larry F Hodges, William Ribarsky,

Nick L Faust, and Gregory Turner. Level-of-detail management for

real-time rendering of phototextured terrain. Technical report, Geor-

gia Institute of Technology, 1995. 62

BIBLIOGRAPHY 101

[LKPM01] YC Lee, Angela Kwong, Lilian Pun, and Andy Mack. Multi-media map

for visual navigation. Journal of Geospatial Engineering, 3(2):87–96,

2001. 41

[LKR+96] Peter Lindstrom, David Koller, William Ribarsky, Larry F Hodges, Nick

Faust, and Gregory A Turner. Real-time, continuous level of detail

rendering of height fields. In Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques, pages 109–118. ACM,

1996. 42

[LLL17] Po Liu, Chengming Li, and Fei Li. Texture-cognition-based 3d building

model generalization. ISPRS International Journal of Geo-Information,

6(9):260, 2017. 74

[LMM02] Andrea Lodi, Silvano Martello, and Michele Monaci. Two-dimensional

packing problems: A survey. European journal of operational research,

141(2):241–252, 2002. 67

[Lyn60] Kevin Lynch. The image of the city, volume 11. MIT Press, 1960. 29

[MA76] E.M. Mikhail and F.E. Ackermann. Observations and Least Squares.

New York: IEP, 1976. 109

[Mao11a] Bo Mao. Visualisation and generalisation of 3D City Models. PhD

thesis, KTH Royal Institute of Technology, 2011. 38

[Mao11b] Bo Mao. Visualisation and generalisation of 3D City Models. PhD

thesis, KTH Royal Institute of Technology, 2011. 54

[May05] H. Mayer. Scale-spaces for generalization of 3d buildings. International

Journal of Geographical Information Science, 19(8-9):975–997, 2005. 36

[MF07] L. Meng and A. Forberg. 3d building generalisation. Challenges in the

portrayal of geographic information. Amsterdam: Elsevier Science, 2007.

25, 36

[MK01] Alan M MacEachren and Menno-Jan Kraak. Research challenges in geo-

visualization. Cartography and geographic information science, 28(1):3–

12, 2001. 19

[PD16] I Pispidikis and E Dimopoulou. Development of a 3d webgis system for

retrieving and visualizing citygml data based on their geometric and se-

mantic characteristics by using free and open source technology. ISPRS

102 BIBLIOGRAPHY

Annals of Photogrammetry, Remote Sensing and Spatial Information

Sciences, pages 47–53, 2016. 39

[PDS+15] F Prandi, F Devigili, M Soave, U Di Staso, and R De Amicis. 3d

web visualization of huge citygml models. The International Archives

of Photogrammetry, Remote Sensing and Spatial Information Sciences,

40(3):601, 2015. 38

[PHF07] Michael Peter, Norbert Haala, and Dieter Fritsch. Preserving ground

plan and facade lines for 3d building generalization. In International

Archives of Photogrammetry, Remote Sensing and Spatial Information

Sciences, volume XXXVII-B2, 2007. 26

[QWC+09] Huamin Qu, Haomian Wang, Weiwei Cui, Yingcai Wu, and Ming-Yuen

Chan. Focus+ context route zooming and information overlay in 3d

urban environments. IEEE Transactions on Visualization and Computer

Graphics, 15(6):1547–1554, 2009. 88

[RB06] Nora Ripperda and Claus Brenner. Reconstruction of façade structures

using a formal grammar and rjmcmc. In Joint Pattern Recognition Sym-

posium, pages 750–759. Springer, 2006. 27

[RC14] Fabrice Robinet and P Cozzi. Gltf—the runtime asset format for webgl,

opengl es, and opengl, 2014. 50

[RCT+06] Jiann-Yeou Rau, Liang-Chien Chen, Fuan Tsai, Kuo-Hsin Hsiao, and

Wei-Chen Hsu. Lod generation for 3d polyhedral building model. In

Pacific-Rim Symposium on Image and Video Technology, pages 44–53.

Springer, 2006. 26

[Reg01] N Regnauld. Contextual building typification in automated map gener-

alization. Algorithmica, 30-no2:312–333, 2001. 32

[RFC13] José IJ Rodrigues, Mauro JG Figueiredo, and Celso P Costa. Web3dgis

for city models with citygml and x3d. In Information Visualisation (IV),

2013 17th International Conference, pages 384–388. IEEE, 2013. 38

[RHG+01] José Ribelles, Paul S Heckbert, Michael Garland, Tom Stahovich, and

Vinit Srivastava. Finding and removing features from polyhedra. In

Proceedings of Design Engineering Technical Conference (DETC), pages

1–10. Pittsburgh, PA, USA, 2001. American Association of Mechanical

Engineers (ASME), 2001. 26

BIBLIOGRAPHY 103

[RHSS98] Stefan Röttger, Wolfgang Heidrich, Philipp Slusallek, and Hans-

Peter Seidel. Real-time generation of continuous levels of detail for

height fields. In International Conference in Central Europe on Com-

puter Graphics and Visualization, pages 315–322. Václav Skala-UNION

Agency, 1998. 42

[RSV01] Philippe Rigaux, Michel Scholl, and Agnes Voisard. Spatial databases:

with application to GIS. Morgan Kaufmann, 2001. 20

[RT06] Guodong Rong and Tiow-Seng Tan. Jump flooding in gpu with applica-

tions to voronoi diagram and distance transform. In Proceedings of the

2006 symposium on Interactive 3D graphics and games, pages 109–116.

ACM, 2006. 87

[Rua98] Anne Ruas. A method for building displacement in automated map gen-

eralisation. International Journal of Geographical Information Science,

12(8):789–803, 1998. 41

[SB05] Monika Sester and Claus Brenner. Continuous generalization for vi-

sualization on small mobile devices. In Developments in spatial data

handling, pages 355–368. Springer, Berlin Heidelberg, 2005. 34, 36

[SBN16] Arne Schilling, Jannes Bolling, and Claus Nagel. Using gltf for stream-

ing citygml 3d city models. In Proceedings of the 21st International

Conference on Web3D Technology, pages 109–116. ACM, 2016. 91

[Sch95] G. Schaufler. Dynamically generated impostors. In Proceedings of

the Workshop Modeling-Virtual Worlds-Distributed Graphics(MVD’95,

pages 129–136, 1995. 64

[Ses00] Monika Sester. Generalization based on least squares adjustment. In-

ternational archives of photogrammetry and remote sensing, 33:931–938,

2000. 34

[Ses02] Monika Sester. Application dependent generalization-the case of pedes-

trian navigation. INTERNATIONAL ARCHIVES OF PHOTOGRAM-

METRY REMOTE SENSING AND SPATIAL INFORMATION SCI-

ENCES, 34(4):291–296, 2002. 32

[Ses05] Monika Sester. Optimization approaches for generalization and data

abstraction. International Journal of Geographical Information Science,

19(8-9):871–897, 2005. 41

104 BIBLIOGRAPHY

[SF99] Anthony Steed and Emmanuel Frécon. Building and supporting a large-

scale collaborative virtual environment. Proceedings of 6th UKVRSIG,

University of Salford, pages 59–69, 1999. 39

[SGLM03] Brian Salomon, Maxim Garber, Ming C Lin, and Dinesh Manocha. In-

teractive navigation in complex environments using path planning. In

Proceedings of the 2003 symposium on Interactive 3D graphics, pages

41–50. ACM, 2003. 66

[SM13] Heidrun Schumann and Wolfgang Müller. Visualisierung: Grundlagen

und allgemeine Methoden. Springer-Verlag, 2013. 37

[STKD12a] Amir Semmo, Matthias Trapp, Jan Eric Kyprianidis, and Jürgen

Döllner. Interactive visualization of generalized virtual 3d city mod-

els using level-of-abstraction transitions. In Computer Graphics Forum,

volume 31, pages 885–894. Wiley Online Library, 2012. 42

[STKD12b] Amir Semmo, Matthias Trapp, Jan Eric Kyprianidis, and Jürgen

Döllner. Interactive visualization of generalized virtual 3d city mod-

els using level-of-abstraction transitions. In Computer Graphics Forum,

volume 31, pages 885–894. Wiley Online Library, 2012. 87

[TBPD11] Matthias Trapp, Christian Beesk, Sebastian Pasewaldt, and Jürgen

Döllner. Interactive rendering techniques for highlighting in 3d geovir-

tual environments. In Advances in 3D Geo-Information Sciences, pages

197–210. Springer, 2011. 87

[Thi02] Frank Thiemann. Generalization of 3d building data. International

Archives of Photogrammetry Remote Sensing and Spatial Information

Sciences, 34(4):286–290, 2002. 26

[TKRL07] Jacques Teller, Abdel Kader Keita, Catherine Roussey, and Robert Lau-

rini. Urban ontologies for an improved communication in urban civil

engineering projects. presentation of the cost urban civil engineering ac-

tion c21 towntology. Cybergeo: European Journal of Geography, 2007.

21

[TLC12] Fuan Tsai, Wan-Rong Lin, and Liang-Chien Chen. Multi-resolution

representation of digital terrain and building models. Advances in geo-

spatial information science, pages 233–242, 2012. 32

BIBLIOGRAPHY 105

[TMJ98] Christopher C Tanner, Christopher J Migdal, and Michael T Jones. The

clipmap: a virtual mipmap. In Proceedings of the 25th annual conference

on Computer graphics and interactive techniques, pages 151–158. ACM,

1998. 62

[TS05] Frank Thiemann and Monika Sester. Interpretation of building parts

from boundary representation. In Proceedings of the 1st International

Workshop on Next Generation 3D City Models,Bonn. Whittles Publish-

ing, 2005. 31

[TS06] Frank Thiemann and Monika Sester. 3d-symbolization using adaptive

templates. Proceedings of the GICON, 2006. 27

[Vin99] Norman G Vinson. Design guidelines for landmarks to support naviga-

tion in virtual environments. In Proceedings of the SIGCHI conference

on Human Factors in Computing Systems, pages 278–285. ACM, 1999.

41

[VK01a] Marc Van Kreveld. Smooth generalization for continuous zooming. In

Proceedings of the ICA, 4th Workshop on Progress in Automated Map

Generalization, Peking, China, 2001. 32

[VK01b] Marc Van Kreveld. Smooth generalization for continuous zooming. In

Proc. 20th International Cartographic Conference (ICC’01), pages 2180–

2185, 2001. 42

[WA09] Markus Wolff and Hartmut Asche. Towards geovisual analysis of crime

scenes–a 3d crime mapping approach. In Advances in GIScience, pages

429–448. Springer, 2009. 18

[War12] Colin Ware. Information visualization: perception for design. Elsevier,

2012. 43, 65

[Wei96] Robert Weibel. A typology of constraints to line simplification. In

Advances in GIS Research II. 7th International Symposium on Spatial

Data Handling, UK, pages 533–546, 1996. 32

[Wil83] Lance Williams. Pyramidal parametrics. In Acm siggraph computer

graphics, volume 17, pages 1–11. ACM, 1983. 76

[Wlo05] Matthias Wloka. Improved batching via texture atlases. Shader X3:

Advanced Rendering with DirectX and OpenGL, pages 155–167, 2005.

92

106 BIBLIOGRAPHY

[WTES08] Stephan Winter, Martin Tomko, Birgit Elias, and Monika Sester. Land-

mark hierarchies in context. Environment and Planning B: Planning

and Design, 35(3):381–398, 2008. 56

[ZZD+12] J. Zhao, Q. Zhu, Z. Du, T. Feng, and Y. Zhang. Mathematical

morphology-based generalization of complex 3d building models incor-

porating semantic relationships. ISPRS Journal of Photogrammetry and

Remote Sensing, 68:95–111, 2012. 36

Appendix A

Index of terms

k-d Trees: A k-d tree is created when each tile has two children separated by a split-

ting plane parallel to the x, y, or z axis (or longitude, latitude, height). Usually, a k-d

tree does not have uniform subdivision like typical 2D geospatial tiling schemes and,

therefore, can create a more balanced tree for sparse and non-uniformly distributed

datasets.

R-Trees: R-Trees are data structures used for spatial access methods. The key is

to group nearby objects and represent them with their minimum bounding rectangle

in the next higher level of the tree. At the leaf level, each rectangle describes a single

object. At a higher level, it describes the aggregation of an increasing number of

objects. R-Trees do not guarantee good worst-case performance, but generally perform

well with real-world data. The spatial structure of the R-Tree is more suitable for non

homogeneous distributed data than regular data.

Quadtrees: A quadtree is created when each tile has four uniformly subdivided

children(e.g., using the center longitude and latitude) similar to typical 2D geospatial

tiling schemes. Empty child tiles can be omitted. Traditional quadtree subdivision,

used in TMS for example, is sufficient for map tiles and 2D, but it is suboptimal for 3D

and non-uniform dataset distributions. 3D tiles take advantage of empty tiles: those

tiles that have a bounding volume, but no content. Since a tile’s content property does

not need to be defined, empty non-leaf tiles can be used to accelerate non-uniform

grids with hierarchical culling. This essentially creates a quadtree or octree without

hierarchical levels of detail (HLOD).

MipMapping: In computer graphics, mipmaps (also called MIP maps or pyra-

mids), are a pre-calculated, optimized sequences of images, each of which is a pro-

gressively lower resolution representation of the same image. The height and width of

107

108 APPENDIX A. INDEX OF TERMS

each image, or level, in the mipmap is a power of two smaller than the previous level.

Mipmaps do not have to be square. They are intended to increase rendering speed

and reduce aliasing artifacts. A high-resolution mipmap image is used for high-density

samples, such as for objects close to the camera. Lower-resolution images are used as

the object appears farther away. This is a more efficient way of downfiltering (minify-

ing) a texture than sampling all texels in the original texture that would contribute to

a screen pixel. Mipmap textures are used in 3D scenes to decrease the time required to

render a scene. They also improve the scene’s realism, at the cost of 1/3 more memory

per texture.

Back-Face Culling: In computer graphics, back-face culling determines whether

a polygon of a graphical object is visible. It is a step in the graphical pipeline that tests

whether the points in the polygon appear in clockwise or counter-clockwise order when

projected onto the screen. If the user has specified that front-facing polygons have a

clockwise winding, but the polygon projected on the screen has a counter-clockwise

winding then it has been rotated to face away from the camera and will not be drawn.

The process makes rendering objects quicker and more efficient by reducing the num-

ber of polygons for the program to draw. For example, in a city street scene, there is

generally no need to draw the polygons on the sides of the buildings facing away from

the camera; they are completely occluded by the sides facing the camera.

Bulk Loading: Bulk loading is a way to load data (typically into a database)

in large chunks, where the user enters information once at a time into the system.

It takes a file of this same sort of information and could load hundreds, thousands,

and even millions of records in a short period of time. It is therefore to import and

export large amounts of data. This improves performance, for large amounts of data,

quite significantly. In case of dealing with a B-tree, indexes are usually optimized for

inserting rows one at a time. In case of adding a large amount of data, inserting rows

one at a time may be inefficient, for instance, the optimal way for a B-tree is to insert

a single key is very poor way of adding a bunch of data to an empty index. Instead, a

different strategy is pursued with B-trees. All the data is presorted, and are grouped

in blocks. Then, a new B-tree is built by transforming the blocks into tree nodes.

Although both techniques have the same asymptotic performance, O(n log(n)), the

bulk-load operation has much smaller factor.

First Fit Algorithm: In the Bin Packing problem, objects of different volumes

must be packed into a finite number of bins or containers each of volume V in a way

that minimizes the number of bins used. Optimal solutions to many instances of the

109

Bin Packing problem can be produced with sophisticated algorithms. In addition,

many heuristics have been developed: for example, the First Fit Algorithm provides

a fast but often non-optimal solution, involving placing each item into the first bin in

which it will fit. It requires theta(nlogn) time, where n is the number of elements to be

packed. The algorithm can be made more effective by sorting the list of elements into

decreasing order (sometimes known as the First Fit Decreasing Algorithm). Although

this still does not guarantee an optimal solution, and for longer lists may increase the

running time of the algorithm. It is known, however, that there always exists at least

one ordering of items that allows First Fit to produce an optimal solution.

Least Square Adjustment: The least square adjustment is a model for the solu-

tion of an overdetermined system of equations based on the principle of least squares

of Least squares adjustment is a model for the solution of an overdetermined system

of equations based on the principle of least squares of observation residuals. It is used

extensively in the disciplines of surveying, geodesy, and photogrammetry, the field

of geomatics, collectively. The conventional Least Square Adjustment Techniques in

practice is depending on categorizing different groups of variables which appear in the

mathematical model. The measured variables are called observations, while the un-

known variables that should be determined are called unknown parameters. The rapid

development in Geomatics, Photogrammetry, Computer Vision, and Laser Scanning in

the last three decades necessitate the development of modified adjustment techniques.

These adjustment techniques could handle the integration of different collected data in

the mathematical models in a more generic and unified way which is called the unified

approach of least square adjustment as mentioned in [MA76].

Morphing: It is a special effect in motion pictures and animations that changes

(or morphs) one image or shape into another through a seamless transition. Morphing

algorithms continue to advance and programs can automatically morph images that

correspond closely enough with relatively little instruction from the user. This has led

to the use of morphing techniques to create convincing slow-motion effects. Morphing

has also appeared as a transition technique between one scene and another, even if the

contents of the two images are entirely unrelated. The algorithm in this case attempts

to find corresponding points between the images and distort one into the other as they

cross-fade. Morphing is heavily used today, where morphing effects are most designed

to be seamless and invisible to the eye.

Selection: It chooses which objects to include in the representation (and which to

omit), e.g., by considering only major roads and omitting small building shapes.

110 APPENDIX A. INDEX OF TERMS

Aggregation: It is the combination of several objects into one shape, e.g., by

representing several single neighboring buildings by a single shape.

Simplification: It removes minor details of a shape, e.g., small protrusions of a

building footprint or small variations of a curve representing a road.

Saliency Map: Representing a Saliency Map of an image is a part of image

segmentation. In computer vision, image segmentation is the process of partitioning

a digital image into multiple segments (sets of pixels, also known as superpixels).

The goal of segmentation is to simplify and/or change the representation of an image

into something that is more meaningful and easier to analyze. Image segmentation

is typically used to locate objects and boundaries (lines, curves,...) in images. More

precisely, image segmentation is the process of assigning a label to every pixel in a

image such that pixels with the same label share certain characteristics. The result of

image segmentation is a set of segments that collectively cover the entire image or a

set of contours extracted from the image. Each of the pixels in a region are similar

with respect to some characteristic or computed property, such as color, intensity, or

texture.

111

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Part I Introduction and Related Work
	Chapter 1 Introduction
	1.1 Background and Motivation
	1.1.1 Virtual 3D City Models

	1.2 Research Objectives
	1.3 Contributions and Thesis Outline
	1.3.1 Thesis Outline

	Chapter 2 Related Work
	2.1 Generalization of Buildings
	2.1.1 Generalization of Single Buildings
	2.1.2 Generalization of Multiple 3D Building Models
	2.1.3 Generalization Based on CityGML Standard
	2.1.4 2D/3D Buildings Generalization Algorithms: Study and Comparison

	2.2 3D City Models Visualization
	2.2.1 Direct Visualization
	2.2.2 Visualization using 3D standards
	2.2.3 Visualization of the Distinguished Buildings
	2.2.4 Smooth Visualization

	2.3 Discussion

	Part II Design and Implementation
	Chapter 3 Data Conversion and Simplification
	3.1 Datasets Used
	3.2 Data Management and Conversion
	3.2.1 Creating Chunks

	3.3 Data Simplification
	3.3.1 Our Simplification Approach
	3.3.2 Reconstruction of the Simplified Building

	3.4 The Simplified Distinguished Buildings Representation

	Chapter 4 Texturing in the Navigation Context
	4.1 Related Works
	4.1.1 Texturing Techniques
	4.1.2 Navigation in a 3D City Model

	4.2 The Problem: Interactive Visualization VS Textures Rendering
	4.2.1 The solution: Necessity of Textures Optimization for Different Interactions

	4.3 Our Proposal: LODs Textures Representation
	4.3.1 The Data Parameters
	4.3.2 Textures Mapping

	4.4 Rendering with LODs: the procedure
	4.5 Discussion

	Part III Quantitative Results and Discussion
	Chapter 5 Quantitative Results and Case Studies
	5.1 Quantitative Evaluation
	5.2 Texturing in the Animation Context
	5.2.1 Texture Atlas Performance

	5.3 Saliency Metrics
	5.4 Discussion and Limitations

	Chapter 6 Conclusion and Perspectives
	6.1 Technologies, Tools, and Methods Overview
	6.2 Using glTF for Web Rendering
	6.3 Answers for Thesis Objectives
	6.4 Conclusion
	6.4.1 Perspectives

	Bibliography
	Appendix A Index of terms

