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En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
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Introduction

The work within this manuscript deals with quantum magnetism, or more
broadly with condensed matter physics and strongly correlated systems. In
these systems, the many-body interactions and correlations between particles

cannot be neglected; otherwise, the models would simply fail to capture the relevant
physics at play and phenomena ensuing. Although the work presented thereafter is
all theoretical, it is worth noting that it is substantially connected with experiments.
In fact, a great deal of it has been performed in a fruitful collaboration with the
nuclear magnetic resonance group at the high magnetic fields facility1 in Grenoble,
France. This allows for both a better understanding of experimental observations
and an appropriate experimental checking of theoretical predictions regarding new
quantum phases of matter.

I. Strongly correlated systems and quantum
magnetism

Understanding the effects of many-body interactions in quantum systems is a
long-standing challenge of modern physics. Basically, describing ∼ 1023 coupled
degrees of freedom poses a cumbersome problem, impossible to solve exactly in most
cases. What makes it curiously interesting though, is that this intractable description
is usually based on models that are extremely simple to write down and understand.
Despite their apparent simplicity, they faithfully capture and describe a wide range
of properties and phenomena taking place in realistic materials. This goes from the
least to most exotic phases of matter (like superconductivity or the quantum Hall
effect) to phase transitions (like the changes of state of water).

1. Mott insulator and quantum magnetism

All in all, quantum condensed matter physics is mainly concerned with electronic
systems and electronic properties in materials. Usually, we are interested in crystalline
solids: the atoms are arranged in an ordered microscopic structure, forming a periodic
crystal lattice.

1Laboratoire National des Champs Magnétiques Intenses
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Often, the very first question is whether a given material is a conductor or an
insulator. This can be understood for many materials within band theory by means
of the nearly-free electron or tight-binding models. In the first case, the valence
electrons are treated as free particles, weakly perturbed by the periodic potential
caused by the nuclei and core electrons of the atoms. In the second approach, valence
electrons are tightly bound to the atom to which they belong, and the atoms in
the solid are nearly independent. In other words, the atoms can be pictured as
rather spatially well-separated but not quite enough to make the atomic description
relevant. Both models seem reasonable and cover relatively different cases. However,
they neglect electron-electron interactions. Although it may sound purely academic,
it still predicts results very close to the mark for many systems2. As we will only
briefly discuss the tight-binding approach in the following, one can refer to chapter
9 of Ref. 5 for more details about the nearly-free electron model. Without loss of
generality, one can write down the total Hamiltonian as

H(r) =
∑

R

Hatom(r − R) + ∆V (r), (1)

where Hatom is the Hamiltonian describing a single isolated atom and the sum runs
over each atomic position R of the lattice. Because the atoms are not independent
and some of their electronic orbitals might overlap, ∆V (r) accounts for all the
necessary corrections. Yet, ∆V (r) is small enough to be treated perturbatively.
Hence, the atomic orbitals φn(r − R), which are eigenfunctions of the Hatom of a
single isolated atom at position R,

Hatom(r − R)φn(r − R) = Enφn(r − R), (2)

should provide a good starting basis. Neglecting electron-electron interactions and
using second quantization formalism with the atomic orbital as a basis state, the
electronic Hamiltonian reads

H = −
∑
i,j

∑
m,n

∑
σ=↑,↓

tm,n
i,j

(
c†i,m,σcj,n,σ + c†j,n,σci,m,σ

)
, (3)

where c†i,m,σ and cj,n,σ are respectively creation and annihilation operators of an
electron with spin σ in the orbitals m and n of the atoms centered around the
vertices i and j of the lattice. The operators obey the fermionic anticommutation
relation {ci,m,σ, c

†
j,n,σ′} = δijδmnδσσ′ with at most one electron of given spin σ in the

orbital m because of Pauli’s principle. The hopping integral tm,n
i,j can be determined

by computing the overlap between orbitals, i.e.,

tm,n
i,j =

∫
dr φ∗

m(r − Ri)∆V (r)φn(r − Rj). (4)

With the knowledge of the matrix elements tm,n
i,j

3, one can then construct the Hamil-
tonian matrix (3) and attempt to solve the Schrödinger equation. It leads to the

2This would probably deviate us too much from the goal of this section, but the reason why
neglecting electron-electron interactions work so well, especially to describe metallic phases can be
understood by the phenomenological Fermi liquid theory [1–4]. It states that the properties of a
large number of interacting electrons is basically those of non-interacting ones with parameters
renormalized by the interactions. This is for example the case of the electron mass me → m∗

e.
3This can be achieved by means of standard, yet non trivial, quantum chemistry calculations.
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Figure 1: The left-hand side panel corresponds to a very simplified picture
of the potential of a single atom, with its discretized electronic energy levels
labeled by n = 1, 2... The right-hand side panel displays these energy levels as
a function of one over the distance between atoms in the crystal. The region
(a) is the atomic limit where the atoms are well-separated from each others.
The energy levels are Natoms-fold degenerated. As the atoms are moved closer
to each others, they become perturbed by their neighboring atoms, which lifts
the degeneracy. Finally in (b), since there are about Natoms ∼ 1023 atoms in
the crystal, the energy levels form a continuum with band structures. This
figure has been reproduced from Ref. 5.

simplified picture displayed in Fig. 1, with the neighboring atoms perturbing the
atomic limit and leading to a band-like structure of the energy spectrum. The
low-temperature properties are then obtained by filling the energy levels (bands)
with the Ne electrons, starting at the bottom. We call valence band the last one
fully filled and conduction band the one just above, with possibly a gap in between.
The highest energy level filled with an electron is known as the Fermi level and its
position sets the cursor between three different cases,

(i) If the conduction band contains electrons, then the system is a conductor
because there are accessible states at arbitrarily low-energy;

(ii) If the conduction band is empty but there is no gap with the valence band,
the system is also a conductor;

(iii) If the conduction band is empty and there is a finite gap with the valence band,
then the system is an insulator4.

After introducing band theory and before getting to the point of this section, let
us simplify the Hamiltonian (3) a bit more. First, as the distance between atoms
|Ri − Rj| becomes large, we expect the hopping integral to be zero and we consider
nonzero matrix elements for nearest-neighbor only, noted 〈i, j〉. We will focus on
the case (i) with the conduction band containing electrons. To describe the low-
temperature properties in this case, we assume that only this band needs to be taken
into account. This is because the electrons within other bands are strongly bound

4The difference between an insulator and semi-conductor is the width of the gap. A semi-
conductor is a “bad insulator” with a gap energy that is at least of the order of the temperature T .
This means that electrons can access states from the conduction band through thermal fluctuations.
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and it would require a huge amount of energy to excite them. As for empty bands of
higher energy, they are too far away, energetically speaking. It follows,

Htight−binding = −t
∑
〈i,j〉

∑
σ=↑,↓

(
c†i,σcj,σ + c†j,σci,σ

)
, (5)

with only four possible states by site: |0〉, |↑〉, |↓〉 and |↑↓〉. If treating a material
in the non-interacting limit predicts the right conductor/insulator behavior in most
cases, it also fails sometimes. Indeed, some materials, while experimentally insulating
are conductors within band theory, the so-called Mott insulators [6]. As the biggest
assumption made was neglecting the electron-electron (Coulomb) interaction, it is
natural to suspect that it actually plays a role and takes the form of an additional
term next to the tight-binding Hamiltonian,

HHubbard = −t
∑
〈i,j〉

∑
σ=↑,↓

(
c†i,σcj,σ + c†j,σci,σ

)
+ U

∑
i

ni↑ni↓, (6)

where ni,σ = c†i,σci,σ is the density operator. The second term is the screened Coulomb
potential which accounts for the electrostatic repulsion (U > 0) between electrons
on the same site, while the interaction between electrons on different sites has been
neglected5. This model is known as the Hubbard model [7], and it is the starting
point when studying strongly correlated systems. This is because at low-temperature,
the system will attempt to minimize its energy from two competing contributions.
On the one hand, the hopping term (t > 0) will favor a delocalized behavior whereas
the Coulomb repulsion will favor a localized behavior. It is easy to imagine that
t/U � 1 will lead to a metallic phase and t/U � 1 to an insulating one, namely a
Mott insulating phase, which cannot be explained otherwise than by the interactions.

We are now interested in the low-energy properties of the Mott insulating phase
at half-filling: with the model allowing at most two electrons per site, it means
that

∑
i,σ〈ni,σ〉/Nsites = 1. One can get some insights by using perturbation theory

since there is a small parameter in the Hamiltonian, t/U � 1 [8, 9]. Considering
only the Coulomb potential term (“zeroth-order”), all states that have exactly one
electron per site correspond to the degenerate manifold of the ground states. With
null first-order corrections in t/U , one needs to go to the second-order. It gives
an effective Hamiltonian that can be written in terms of spin-1/2 operators (up to
irrelevant additional constants) when comparing matrix elements,

HHeisenberg = J
∑
〈i,j〉

Si · Sj, with J =
4t2

U
. (7)

This corresponds to a magnetic lattice model, called the Heisenberg model, with spin
Si = (Sx

i , S
y
i , S

z
i ) degrees of freedom. The spin operators obey the usual commutation

relation [Sα
i , S

β
j ] = iεαβγδijS

γ
i [9]. There is definitely a lot to say about the Heisenberg

Hamiltonian, and I will come back to it at the very beginning of the first chapter. It
is a paradigm model when it comes to quantum magnetism and it will govern the
low-temperature properties of many Mott insulating materials.

5The Coulomb potential has a long-range nature, i.e., VCoulomb(r) ∝ 1/|r|, so it is a priori not
justified to restrict its effect on-site. However, though it might require a more careful treatment,
one can imagine that it is screened by other electrons.
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2. A zest of phase transitions

As a big part of the work in this manuscript is concerned with phase transitions,
it seems appropriate to make a quick introduction with the main ideas and right
terminology. A more thoroughgoing introduction can be read in Refs. 10, 11 and 12
to cite but a few. Essentially, a phase transition is a global and sudden change in the
physical properties of a system by tuning an external parameter, e.g., temperature
or pressure.

If you consider the temperature T and, let us say, any everyday life magnet,
it is only a magnet below a specific temperature T < Tc (which happens to be
higher than the room temperature), called the critical temperature — or in the
case of ferromagnets, the Curie temperature. The phenomena occurring at Tc is a
phase transition from a featureless paramagnetic phase to a ferromagnetic phase.
Microscopically, the magnetic moments (spins S) are the relevant degrees of freedom
which get spontaneously aligned along the same direction below Tc, while they look
completely disordered at higher temperature. Hence, each phase is respectively
referred as ordered and disordered. A successful attempt to build a general theory
for continuous phase transitions was done by Landau in the middle of the twentieth
century [13]. It states that a phase transition follows a spontaneous symmetry
breaking from the disordered to the ordered phase. In our example, the disordered
phase has a global rotation symmetry because the spins can point in any direction
in space whereas in the ferromagnetic phase it has been broken since the spins
are aligned in a given direction. The point is that the (classical or quantum alike)
Hamiltonian or Lagrangian describing the system do have the symmetry that is
being spontaneously broken below Tc, and that this breaking is not induced by an
external parameter. The spontaneous breaking of a symmetry can be quantified by
means of the order parameter, usually a scalar number m(T ) that is finite in the
ordered phase and zero otherwise,

m(T )

{
= 0 for T > Tc,
> 0 for T < Tc.

(8)

It is related to the microscopic model in some way, and it would be the magnetization
in our example,

m(T ) =

∣∣∣∣∣ lim
Nspins→+∞

∑
r

〈Sr〉/Nspins

∣∣∣∣∣ (9)

where 〈·〉 is the thermodynamic average. Another observable that can detect order
is the correlation function C(T, r) = 〈Sr · S0〉, in the limit of long distances, r → ∞.
It is closely related to the order parameter and accounts for its spatial fluctuations.
It takes the general form,

C(T, r) ∼
r→+∞

1

|r|D−2+η
exp

(
− |r|
ξ(T )

)
+m2(T ), (10)

with D the dimensionality of the system and η some exponent. When approaching the
critical point, T → Tc, the system is characterized by a diverging correlation length,
ξ ∼ |T − Tc|−ν with ν > 0, which indicates that the order parameter fluctuations do
not display a characteristic length scale. Therefore, fluctuations exist on all length

5



scales and the system look “similar” on all length scales as well. This is called
scale-invariance and it results in a power-law dependence of physical quantities close
to the transition: this is because an algebraic dependence is the only one that can be
scale-invariant and respect dimensional analysis of observables6. The exponents of
the power-laws dependence such as η or ν (more exists, e.g. C(T ) ∼ |T − Tc|−α for
the specific heat or m(T ) ∼ |T − Tc|β for the order parameter) are called the critical
exponents and fully characterize the system at the transition. This last statement can
actually be made stronger by introducing the concept of universality class. It regroups
together systems with the same dimensionality and which undergo the same symmetry
breaking at the transition, independently of the microscopic details7. Remarkably,
within the same universality class, systems that can microscopically be quite different,
will behave in exactly the same way at the transition, that is to say, with exactly
the same exponents. Another important result regarding phase transitions is the
Mermin-Wagner theorem [17–20]. It states that the spontaneous breaking of a
continuous symmetry is allowed at finite temperature for three-dimensional (and in
higher dimensional) systems but only allowed at T = 0 in the two-dimensional case.
As for one-dimensional systems, there cannot be spontaneous long-range order with
a continuous symmetry breaking, even at zero temperature.

So far, I have only discussed classical phase transitions which are driven by thermal
fluctuations. There also exists quantum phase transitions (see Refs. 21 and 22),
driven by quantum fluctuations, and which happen at absolute zero temperature
(T = 0). Again, it corresponds to a sudden and global change in the ground state
properties of a system by tuning one of the Hamiltonian parameters, H(g), with
for example g = t/U in the Hubbard model that I discussed in the previous section.
Looking at the eigenenergies of H(g) versus g, a quantum phase transition will be
defined as a point g = gc of non-analyticity in the ground state energy. This can
either come from a level-crossing with an excited state or an “avoided level-crossing”
as displayed in Fig. 2 (a). This implies that the energy spectrum will play a role
in a quantum phase transition and we define a characteristic energy scale ∆ for g
close to gc. This could be the energy between the first excited state and the ground
state if there is an energy gap between them. Or in the case of a gapless spectrum8,
this could be the scale at which there is a qualitative change in the nature of the
frequency spectrum. In any case, it should scale as,

∆ ∼ |g − gc|zν , (11)

with z the dynamic exponent, only nonzero for a quantum phase transition. The
product zν of two exponents comes from the fact that, similarly to classical phase
transitions, the correlation length behaves as ξ ∼ |g − gc|−ν , which leads to ∆ ∼ ξ−z.
Indeed, in quantum mechanics, energy and time are related through Heisenberg’s

6A scaling transformation on the spatial coordinates of the system takes the form r̃ → br, with
b ∈ R, and such a transformation should leave the physical properties invariant. With the fact that
close to the critical point, the correlation length is the only relevant length scale in the system with
ξ ∼ |T − Tc|−ν , this is the starting point of the scaling hypothesis and can be justified a posteriori
by renormalization group arguments [14–16]. For example, the scaling hypothesis suggests that the
correlation function of Eq. (10) takes the general form C(r) = |r|−D+2−η GC(r) (|r|/ξ) with GC(r) a
universal scaling function.

7It might also depend on the short/long-range nature of the interactions.
8Unlike a gapped spectrum with a finite energy difference between the ground state and the

first excited state, a gapless spectrum has such an energy difference equal to zero.
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Figure 2: (a) Simplified picture of the spectrum E(g), eigenenergies of the
Hamiltonian H(g), with only the ground state and first excited state energies.
The top panel corresponds to a level crossing and the bottom one to an “avoided
level-crossing” at g = gc. In both cases, gc is a point of non-analyticity, which
defines a quantum phase transition. This figure has been reproduced from
Ref. 21. (b) Schematic phase diagram in the vicinity of a quantum critical point.
The top panel displays an ordered phase (red line), in the sense of spontaneous
symmetry breaking, only at T = 0 and the bottom panel an ordered phase at
finite T (red region). In both cases, we have above the quantum critical point
gc a quantum critical region (grey region), bounded by dashed crossover lines
T ∼ |g − gc|zν , in which one can observe at finite temperature the universal
properties of the quantum phase transition. At high temperature, the system
properties are non-universal. This figure has been reproduced from Ref. 22

principle9, ∆ · τ ∼ 1, which gives τ ∼ ξz. Therefore, in addition a diverging length
scale ξ as g → gc, we have a diverging characteristic time τ , the correlation time10. A
quantum phase transition might sound all theoretical since no experiment really takes
place at absolute zero temperature. There exists however, what is called a quantum
critical regime at finite temperature, bounded by crossover lines T ∼ |g − gc|zν on
each side of the quantum critical point gc, as displayed in Fig. 2 (b). It hosts the
universal high-temperature regime of the field theory describing the quantum critical
point. It is the region of the phase diagram being probed by experiments and which
exhibits universal properties of the quantum phase transition at finite temperature.

Phase transitions are of first importance in condensed matter physics as it connects
9Unless specified otherwise, all physical constants are taken equal to unity in the following,

~ = c = kB = 1.
10In a nutshell, and one can refer to Refs. 21 and 22 for more details, this is the imaginary

correlation time — although this is related to the “real time” by a Wick rotation τ → it. It
naturally arises when expanding the partition function with β = 1/T → ∞ with a Suzuki-Trotter
decomposition to map a quantum D-dimensional problem onto a (D + z)-dimensional classical
problem.
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very different phases of matter with different properties and the transition itself
between phases exhibits universality. One challenging task is thus to characterize
the phases and the nature of the transition by getting the critical exponents, and a
large part of the work in this manuscript will be dedicated to that.

3. Numerical tools and methods

Independently of the quantum problem one is looking at, it will require at some
point to solve the time-independent Schrödinger equation

H|Ψ〉 = E|Ψ〉. (12)

This is a standard academic problem for a two-level system since the Hilbert space
dimension will be 2, but is generally intractable in condensed matter physics if one
wants to describe ∼ 1023 degrees of freedom. For instance, in the case of spin-1/2
systems (each spin can have the states | ↑〉, | ↓〉), this would lead to a Hilbert
space of dimension 210

23 . This is because the Hilbert space dimension scales, in
most cases, exponentially with the system size. Nonetheless, many analytical tools
have been developed to address this problem, such as field theories and various
approximations. Yet, not every problem can be solved exactly and approximations
remain approximations, and do not necessarily capture the right physical properties.
With the advent of computational resources, numerical methods have been developed
in the last decades to handle efficiently many-body problems, and I want to give a
glimpse, not to the methods themselves — to which I will come back all along this
manuscript —, but to a few general ideas. Furthermore we will see that it is not
necessary to simulate 1023 degrees of freedom to capture the relevant physics, and
depending on the numerical method and model, one is nowadays able to simulate
from tens to thousands degrees of freedom.

Exact diagonalization (up to the numerical precision of 10−16) is the solely
unbiased method and implemented in every linear algebra library. It constructs
numerically and iteratively the matrix U holding the eigenvectors of H, i.e. H →
U †HU . This algorithm complexity scales as O(N3) with N the dimension of the
Hilbert space. One can expect to diagonalize matrices of size ∼ 104 × 104 in a
reasonable amount of time. For spin-1/2 systems, this corresponds to about fourteen
spins. Beside the algorithm complexity, memory (RAM) is also very important, and
each of the N2 elements of the matrix requires 8 octets of memory. To give some
numbers, this corresponds to ' 6.4 Gb for N = 104 and ' 640 Gb for N = 105, and
this does not take into account the intermediary tables required for the algorithm,
or the table holding the basis states. In order to overcome these limitations, I
want to highlight the importance of symmetries. If SA is a symmetry operator that
commutes with the Hamiltonian, i.e., [H,SA] = 0, it is a conserved quantity labeled
by a quantum number sA. This can effectively reduce the size of the matrix by
partitioning it into blocks labeled by {sA} that can be diagonalized independently.
If there are multiple symmetries SA, SB, SC ... that commute with the Hamiltonian
and each others, one can divide further the Hamiltonian into blocks labeled by a set
of quantum numbers {sA, sB, sC ...}, see Fig. 3. For example, standard symmetries
include translations, rotations of the lattice, particles number... With their use, one
can expect to simulate from twenty to thirty S = 1/2 spins. This might not seem
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( ( ( (( (
Figure 3: On the left-hand side, we have the Hamiltonian matrix written as
a single block. The sketch in the middle represents the Hamiltonian matrix
divided into independent diagonal blocks by the use of a symmetry SA of the
Hamiltonian. Each block is labeled by a quantum number sA. Finally, on the
right-hand side panel, the blocks {sA} have been divided further by the use of
an additional symmetry SB. The blocks are now labeled by a set of quantum
numbers {sA, sB}.

like a huge gain, but again, the Hilbert space dimension scales exponentially with
the system size.

Another point that I want to mention is the variational principle which takes the
following form in quantum mechanics,

E
[
|Ψ〉
]
=

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

≥ E0, (13)

where E is the energy of the state |Ψ〉 and E0 the ground state energy of the system.
It means that no matter what state |Ψ〉 is considered, its energy will be larger than
the ground state energy of the system, except if the state is the ground state itself.
Since we are mostly interested in the low-energy properties, or in other words the
ground state, we need to minimize the energy by optimizing the wave function
coefficients |Ψ〉 =

∑N
n an|n〉, where the sum runs over the basis states. This is,

computationally speaking not easier than diagonalizing the Hamiltonian. However,
the interaction between degrees of freedom in most physical systems is local, resulting
in a very sparse Hamiltonian matrix with about ∼ N nonzero elements compared to
the N2 matrix elements. This makes matrix-matrix or matrix-vector multiplications
little demanding and interesting operations one can take advantage of. Let illustrate
this with the power method. It starts with a random vector |Ψ0〉 in the eigenbasis
{|m〉} with eigenvalues λm of H,

|Ψk〉 = Hk|Ψ0〉 =
N∑
m

cmHk|m〉 = λk1

[
c1|1〉+ c2

(
λ2
λ1

)k

|2〉+ . . .

]
, (14)

where the eigenvalues are sorted in ascending order |λ1| > |λ2|11... Therefore, in the
limit k → ∞, |Ψk〉 converges to the leading eigenvector |1〉 up to a multiplicative
constant (we assume that c1 6= 0). In this limit, and by considering two consecutive
steps k and k+1, one has access to the leading eigenvalue, λ1 = |Hk+1|Ψk+1〉/Hk|Ψk〉|.
In practice, more sophisticated methods, more stable and which converge faster, are
used like the Arnoldi, Lanczos or Jacobi-Davidson algorithms. Nevertheless, they are
based on the power method idea of matrix-vector multiplication to get the ground

11One has to make sure that |λ1| will be the largest eigenvalue of the Hamiltonian, and that λ1
will be the smallest. This can be achieved by shifting the whole Hamiltonian by the right constant
c, i.e., H → (H− Ic) at the beginning where I is the identity matrix.
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state, and can be used on top of the symmetries block-diagonalizing H, allowing one
to simulate up from twenty to fifty S = 1/2 spins [23–28].

Next, I want to discuss the basic idea behind the Monte Carlo methods: the
sampling the partition function in the canonical ensemble at temperature T ,

Z(T ) = Tr e−H/T . (15)

If one were to compute Z(T ) naively, it would require for a quantum system i) the
exponentiation of the Hamiltonian matrix H, involving its diagonalization, and then
ii) to perform an exponentially large sum with the system size. For a classical system,
the problem reduces to an exponentially large summation with the system size since
the energy of any configuration {σ} can be trivially computed. This summation is
still very limiting though, and the idea of Monte Carlo methods is to avoid its full
computation by building a Markov chain. Although I am interested in quantum
systems, the sampling concept can be understood for classical systems (like the Ising
model) just the same. The Boltzmann probability of a given configuration {σ} reads,

P ({σ}) = 1

Z(T )
W ({σ}) with W ({σ}) = e−E({σ})/T , (16)

and the idea is to generate a sequence of N configurations {σ1}, {σ2}, . . . {σN} whose
probability to appear in this sequence is equal to P ({σ}) as in Eq. (16) in the limit
of N → ∞. If one knows how to generate this sequence, each of its configurations
can be used to compute the system properties and then do the average over all the
sequence configurations. This should give a result close to the exact one, with a
sampling error of the order O(1/

√
N). The best-known way to achieve this is by

the Metropolis algorithm [29], based on the detailed balance principle. It states that
starting from a random initial configuration {σinit} and fulfilling the condition

W ({σA})P
(
{σA} → {σB}

)
= W ({σB})P

(
{σB} → {σA}

)
, (17)

should lead after a warming-up (thermalization) to a sequence of good configurations
that one can use; P ({σA} → {σB}) is the probability to go from configuration
{σA} to {σB}. In addition, we require that the sampling must be ergodic: any
configuration {σC} with a nonzero weight W ({σC}) must be reachable in a finite
number of moves starting from an arbitrary configuration. In practice, one suggests
a configuration {σk+1} resulting from some change in the current configuration {σk},
like a spin flip on a random spin of the system. The move is accepted with probability
min [P ({σk} → {σk+1}) , 1], and rejected otherwise, where

P
(
{σk} → {σk+1}

)
= exp

{[
E({σk})− E({σk+1})

]/
T

}
. (18)

It is now obvious why this procedure cannot work for quantum systems without
some workaround since a direct correspondence between a state and a probability W
cannot be made except in the eigenbasis of H, which is unknown. Moreover, even if
the eigenbasis was known, it is definitely not straightforward to think of some local
moves from one eigenstate to another.

As a last remark, it is unavoidable to perform a finite-size scaling analysis when
doing numerical simulations in condensed matter physics. Rather than just studying
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the physical properties of the largest system one can simulate, a systematic study is
performed on different system sizes N1, N2, . . . Nmax and the scaling of observables
in the thermodynamic limit, 1/N → 0, is extrapolated.

I have implemented and used various state-of-the-art numerical methods to
tackle the quantum many-body problems in this manuscript. This includes exact
diagonalization, quantum Monte Carlo and matrix product states algorithms like the
powerful density matrix renormalization group, based on the variational principle. I
will discuss thoroughly these last two methods in the following chapter now that the
basic ideas have been set up.

II. Organization of the manuscript

Chapter A The first chapter will be a natural follow-up of this introduction
where I will exhaustively go through the class of quantum spin systems I have been
studying. Specifically, it will focus on (quasi-)low-dimensional quantum antiferro-
magnets. A system geometrically one-dimensional such as a chain or a ladder is
by definition low-dimensional. Now, any lattice in higher dimension will also be
considered as such, as long as the couplings between degrees of freedom, lying on
the vertices, are at well-separated energy scales. As an example, take a simple cubic
lattice with first-neighbor couplings Ja,b,c in the a, b and c spatial directions. A
system with Ja � Jb,c will be qualified quasi-one-dimensional and made of weakly
coupled chains, hence “quasi”. What sets the cursor for the relevant energy scale of
the system is the temperature T . Therefore we might expect a temperatures range
T ∼ Ja � Jb,c around which universal one-dimensional features will manifest. As the
temperature gets lowered however, with T ∼ Jb,c, the system will unavoidably meet
specific three-dimensional phenomena such as a phase transition with a spontaneous
symmetry breaking towards an ordered phase, e.g., the Néel order for an antifer-
romagnet. I will show that in numerous antiferromagnets subject to an external
magnetic field, the Néel phase is analog to a Bose-Einstein condensation with all
its enthralling properties and experimental fingerprints, like the lambda anomaly
in the specific heat at the transition. In addition to the many great examples I
will discuss, an entire section will be dedicated to a specific quasi-one-dimensional
compound, made of weakly coupled S = 1 chains called “DTN”. Moreover, I will get
back in its own section on how the ordering process of the three-dimensional system
is modulated with reduction of dimensionality. I will also introduce beforehand the
numerical tools that have been implemented and used.

Chapter B The second chapter will be dedicated to the dynamical properties
of quantum spin systems which are accessed experimentally by means of inelastic
neutron scattering and nuclear magnetic resonance through the so-called spin-lattice
relaxation rate 1/T1. The quantities measured experimentally can be related to
time-dependent correlation functions such as 〈Sr(t) · S0(0)〉 where in the Heisenberg
picture Sr(t) = e−iHtSreiHt, with H the Hamiltonian describing the system and t
the time. The computation of such observables is theoretically very challenging. An
entire part of this chapter will introduce the numerical tools and methods that I

11



have implemented and used to reliably access the real-time dynamics of pure (zero
temperature) and mixed (finite temperature) quantum states. The main question that
will be addressed here is about the dimensional crossover of these dynamical quantities
in quasi-one-dimensional spin systems as function of temperature. Especially, I want
to define the temperature window in weakly coupled chain type compounds inside
which the universal one-dimensional features can be experimentally probed. This
range is defined for low-enough temperature such that the low-energy physics are
visible, but not too low either as we do not want to approach too much the phase
transition towards long-range ordering that might spoil the genuine one-dimensional
properties. I will precisely define what I mean by low-enough but not too low either.

Chapter C The third chapter will focus on the interplay between interactions
and disorder in quantum antiferromagnets. In condensed matter physics, disorder
and interactions lead to non-trivial low-energy physics, which goes beyond non-
interacting Anderson localization, where quantum interference of electronic waves
due to multiple scattering processes induced by the impurities, can completely block
the transport, thus driving a metal-to-insulator phase transition. In that respect,
doped quantum antiferromagnets offer a unique playground to address this subtle
interplay between impurities and many-body effects. The disorder is induced by
chemical doping by randomly substituting one atom by another and drive the “clean
system” toward new magnetic quantum phases of matter with a total change of its
physical properties. Specifically, I will be interested in two different phases that
I will introduce and briefly review in the first part: namely the random singlet
phase and the Bose-glass phase. A first work that I will present will focus on the
dynamical properties of the random singlet phase in one-dimensional Heisenberg spin
chains with random antiferromagnetic exchange couplings. As we will see, one main
inspiration is to motivate inelastic neutron scattering and nuclear magnetic resonance
experiments by presenting state-of-the-art numerical results in these systems. In
the last part of this chapter, I will present a series of works on the chemically
doped “DTN” compound at high magnetic fields, which has been proposed in prior
publications as the first experimental realization of the elusive Bose-glass phase in
a quantum magnet. The starting point of our works was an experimental study of
the putative high magnetic fields Bose-glass phase by nuclear magnetic resonance.
Unexpected observations hinted that something else than a Bose-glass was at play.
We theoretically showed that the disorder itself is actually getting ordered, forming
a Bose-Einstein condensation through a novel order-by-disorder mechanism that I
will discuss. Moreover, we provide a complete picture of the phase diagram “high
magnetic fields vs. doping concentrations vs. temperatures”. At low doping there
is still room for a Bose-glass phase and we study the critical properties of the
Bose-Einstein condensation to Bose-glass transition. The theoretically predicted
disorder-induced revival of Bose-Einstein condensation in “DTN” was afterwards
experimentally detected by nuclear magnetic resonance.
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— Chapter A —

(Quasi-)Low-dimensional quantum
antiferromagnets

Overall, this first chapter is organized as a more specialized introduction than
the real introduction (namely, the previous part) of this manuscript. I will
introduce more thoroughly the class of quantum spin systems I have been

studying as well as their — sometimes — peculiar physical properties, theoretical
tools to describe them, and efficient numerical methods to investigate them.

Section I I will first discuss generic one-dimensional antiferromagnets [30]
whose low-energy properties can be effectively described by the Tomonaga-Luttinger
liquid theory [31–33]. I will present this universal model, which can account for
the many-body interactions in various one-dimensional quantum systems: fermions,
bosons, or spins alike [34–39]. Besides that, I will review some remarkable experiments
checking for the accuracy of this description, favoring magnetic examples.

Section II In the second section, I will move to coupled spin chains in a
three-dimensional fashion. Specifically it is known that at low temperature, the three-
dimensional Néel ordering following the spontaneous symmetry breaking in numerous
quantum antiferromagnets subject to an external magnetic field is analogous to a
Bose-Einstein condensation as in — best known for — cold atoms experiments [40–42].
I will review this fascinating property and go through how it manifests itself in several
quantum antiferromagnets [43,44], eventually building up a dictionary translating
from boson to spin language, or vice-versa. I will also provide and discuss recent
experimental realizations.

Section III I will in the next section discuss numerical methods to investigate
the quantum systems discussed before. Well-suited for one-dimensional systems,
I will first present the Matrix Product States formalism [45, 46] along with the
variational Density-Matrix Renormalization Group method [47, 48] to obtain, in
the most efficient way up to date, ground-state properties of interacting quantum
systems. I will then introduce quantum Monte Carlo in its stochastic series expansion
formulation [49,50], whose basic idea is to sample the partition function of a quantum
system.

Section IV Mermin-Wagner theorem [17–20] states that the spontaneous
breaking of a continuous symmetry is deeply related to the dimensionality of a
system. In antiferromagnets, the Néel order associated with spontaneous breaking of
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SU(2) or U(1) symmetry is allowed at any temperature for three-dimensional systems
but allowed only at zero temperature for purely two-dimensional systems (and cannot
happen in one-dimensional systems, even at zero temperature). I will discuss in this
section on how the ordering process of such a three-dimensional system is modulated
with reduction of dimensionality towards the two-dimensional limit.

Section V Finally, as another example for the first two sections, I will focus
on a realistic antiferromagnetic quantum S = 1 spin compound “DTN” [51]. This
material has an interesting double hatting. On one side, it is three-dimensional and
displays a Bose-Einstein condensation upon applying a sufficiently large magnetic
field at low temperature. On the other side, its weak three-dimensional couplings
make possible experimental investigations for universal Tomonaga-Luttinger liquid
properties at intermediate temperature, i.e., above the critical temperature below
which the system undergoes a phase transition towards antiferromagnetic order.

I. One-dimensional antiferromagnets

When it comes to quantum magnetism, the paradigm model is the one-dimensional
S = 1/2 Heisenberg model that we derived in the introduction,

HHeisenberg = J
∑
i

Si · Si+1. (A.1)

It is a lattice model, where the sum is run over each site i of the chain lattice which each
holds a spin Si = (Sx

i , S
y
i , S

z
i ) degree of freedom. The model is SU(2) invariant, which

means that both the total spin Stot =
∑

i Si and the total z-component Sz
tot =

∑
i S

z
i

are conserved quantities and commute with the Hamiltonian. Depending on the sign
of J , the model can describe different magnetic phases. In order to minimize the
system energy, it is obvious that J < 0 will favor neighboring spins pointing in the
same direction (ferromagnet) whereas J > 0 will favor neighboring spins pointing
in opposite directions (antiferromagnet). It is instructive to rewrite the model by
introducing the raising and lowering operators expressed as S± = Sx ± iSy,

HHeisenberg = J
∑
i

[
1

2

(
S+
i S

−
i+1 + S−

i S
+
i+1

)
+ Sz

i S
z
i+1

]
. (A.2)

It becomes obvious that in the ferromagnetic case, the basis state |↑↑ · · · ↑〉 is indeed
an eigenstate that will minimize the energy. The same cannot be said for the classical
Néel state |↑↓↑↓ · · · ↑↓〉 because of the spin flips induced by the raising and lowering
operators S±

i S
∓
i+1. However, the one-dimensional antiferromagnetic Heisenberg model

is integrable by means of Bethe ansatz [52,53], a powerful technique of mathematical
physics. This provides a goldmine of information on its ground state properties and
makes it one of the few many-body quantum models with a known exact solution.
For instance, its ground state is unique (non degenerated), of total spin Stot = 0
(singlet), Sz

tot = 0 [54, 55], and despite the antiferromagnetic nature of the model,
its staggered magnetization is zero, i.e.,

∑
i(−1)i〈Si〉 = 0. Its energy spectrum
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Figure A.1: Phase diagram of the S = 1/2 XXZ model in Eq. (A.4) as
a function of the dimensionless external magnetic field H/J and the Ising
anisotropy ∆, both along the z-component of the spin degrees of freedom. The
phase diagram is symmetrical with respect to the horizontal axis given that the
transformation Sz

i → −Sz
i restores the initial model formulation for H/J < 0.

There are three distinct phases, including two “classical Ising” limits: the Ising
ferromagnetic and the Ising antiferromagnetic phases, which are gapped, and
the XY phase which can be described by Tomonaga-Luttinger liquid theory.
This figure has been reproduced from Ref. 30.

is gapless [56] and the lowest excitations states are spin triplets with a spin wave
spectrum ε(q) = π| sin q|/2 [57] where q is the momentum. Besides, the spin-spin
correlation at long distance reads [58],

〈Si · Si+r〉 ∼
r→+∞

(−1)r
3

2π3/2

√
ln r
r

, (A.3)

where the alternating sign accounts for the antiferromagnetic properties of the model.
Ultimately, there is no long-range order, but the correlations are not short-ranged
either due to the power-law dependence; we refer in the literature to such a ground
state as quasi long-range ordered or critical, although there is no transition involved.

The one-dimensional S=1/2 XXZ model Before going further and to be more
general in the following, it is interesting to introduce a descendant of the Heisenberg
model,

HXXZ = J
∑
i

[
1

2

(
S+
i S

−
i+1 + S−

i S
+
i+1

)
+∆Sz

i S
z
i+1

]
−H

∑
i

Sz
i , (A.4)

called the XXZ model, because of the anisotropy ∆ induced along the z-component
of the interactions, which reduces the model symmetry from SU(2) to U(1)1. We also
have introduced an external magnetic field H which couples to the spin degrees of
freedom, along the same direction as the anisotropy, and which lifts the spin inversion
symmetry Sz

i → −Sz
i for H 6= 0. The phase diagram of this model is displayed in

Fig. A.1, with three different phases, including two “classical Ising” limits. The
Ising ferromagnetic ground state has its N spins pointing in the same z (or −z)
direction with a magnetization density mz =

∑
i〈Sz

i 〉/N = ±1/2. It spontaneously
breaks the discrete spin inversion symmetry Sz

i → −Sz
i of the model for H/J = 0

1Now, only the total spin z-component is conserved, i.e. [H, Sz
tot] = 0.
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by randomly choosing a direction. For H/J 6= 0 the symmetry is lifted anyway and
the ferromagnetic ground state will be stabilized along the magnetic field direction.
The low-lying excitations are magnons (one spin flip), gapped Sz = ±1 modes with
dispersion relation ε(q) = J(cos q − ∆) + H. The Ising antiferromagnetic ground
state breaks the discrete translation symmetry to two lattice spacing with a zero
magnetization and a finite staggered magnetization density

∑
i(−1)i〈Sz

i 〉/N 6= 0.
Its value depends on ∆ and H and is only maximum in the limit ∆ → +∞. For
instance, along the H/J = 0 line, it smoothly decreases from 1/2 in the true classical
limit to zero at ∆ = 1 to recover the isotropic Heisenberg model properties. This
dependence is due to quantum fluctuations (raising and lowering operators) since
the classical Néel is not the ground state, although it looks more and more like it
towards the classical limit. The gapped excitations of domain-wall type [59, 60] can
be better understood starting from this limit and using perturbation theory. The
last region of the phase diagram, the XY phase is of the same type as the isotropic
Heisenberg model: gapless, critical and can be described by the Tomonaga-Luttinger
liquid theory and bosonization techniques [37, 61].

To proceed, it is interesting to map the initial spin model to spinless fermions
via the non local Jordan-Wigner transformation [56, 62],

S+
j = c†j

j−1∏
l=1

eiπnl , and Sz
j = nj −

1

2
, (A.5)

where nj = c†jcj and c
†
j (cj) are creation (annihilation) operators of a spinless fermion

on site j. The exponential string ensures that the fermionic operators obey the right
anticommutation relation. The transformation leads to,

Ht−V =
∑
i

[
−t
(
c†ici+1 + c†i+1ci

)
+ V nini+1

]
− µ

∑
i

ni, (A.6)

up to additional irrelevant constants with t = J/2, V = J∆ and µ = (H + J∆). It
is called the t-V model, and it is very similar to the Hubbard model in the writing:
a hopping term t, a density-density interaction V and a chemical potential µ. In one
dimension, the correspondence with the XXZ spin-1/2 model remains local despite
the exponential strings, which happen to cancel out. For V = 0 we are left with
a tight-binding model of free fermions which can be diagonalized going to Fourier
space with the substitution cr =

∑
q eiqrcq/

√
N ,

H̃ =
∑
q

ε(q)c†qcq, with ε(q) = −2t cos q − µ, (A.7)

and q = 2πn/N with n = 1, 2 . . . N where N is number of sites. The
(
N
Nf

)
eigenstates

are constructed by filling the N levels with Nf fermions, and the ground state
by specifically filling the Nf lowest energy levels up to the Fermi level qF , i.e.,
|gs〉 =

∏qF
q c†q|0〉, with |0〉 the vacuum. As for any non interacting system that can

be “easily” diagonalized, one can compute many of its properties at zero or finite
temperature since the partition function factorizes into the single-particle partition
function. For instance, the spin-spin correlations of the ground state in the initial
spin language at zero magnetic field reads,

〈S±
i S

∓
i+r〉 ∼ (−1)r/

√
r and 〈Sz

i S
z
i+r〉 = −1/2(πr)2, (A.8)
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where the longitudinal (zz) correlation is only non zero for odd distances [56]. The
computation of the transverse (±∓) correlation is a bit more involved because of
the exponential strings, but can eventually be reduced to the computation of a
determinant [63]. Similarly to the isotropic case, we find a power-law dependence,
but with a different exponent values. For the general case in the XY phase, one can
derive the following scalar field Hamiltonian in the continuum limit2 [37, 61],

HTLL =
1

2π

∫
dr
{
uK [∂rθ(r)]

2 +
u

K
[∂rφ(r)]

2
}
, (A.9)

where θ(r) and φ(r) are canonically commuting bosonic fields, [φ(x), ∂yθ(y)/π] =
iδ(x − y) and r the spatial variable. In a geometrical interpretation, these fields
can be viewed as the two angles required to define a spin as a classical vector,
and quantum nature comes from the commutation relation. The model only relies
on two parameters, u, the propagation velocity of the bosonic excitations through
the system and K, the dimensionless Tomonaga-Luttinger liquid parameter which
measures “the degree of quantum fluctuations” in the system. At that point, it is
worth mentioning that the better known Landau’s Fermi Liquid theory [1–4] fails
to describe strongly interacting one-dimensional quantum systems, which require
a specific treatment known as Tomonaga-Luttinger liquid theory. Landau’s idea is
to recast the problem in terms of low-energy excitations called quasiparticles that
are only weakly interacting, bringing us back to the more comfortable case of free
particles. In one dimension however, particles behave in a highly cooperative way
and are governed by collective excitations rather than individual ones. This leads to
very peculiar and unique physical properties for one-dimensional quantum systems
such as Peierls instabilities [64,65] or spin-charge separation in electronic models [37].
The Tomonaga-Luttinger liquid theory is much more general than what it might
look and can actually describe from spin, fermionic and bosonic degrees of freedom
alike, to the edge states in the quantum Hall effect [66–68].

At zero magnetic field, the XXZ model is integrable and the value of the u and K
are known from Bethe ansatz equations as a function of the Ising anisotropy ∆ [71],

K =
π

2 arccos (−∆)
, and u =

Jπ
√
1−∆2

2 arccos (∆)
, (A.10)

and are displayed in Fig. A.2. Since they fully characterize the system, they are
related to physical observables such as the static susceptibility χ and the spin stiffness
ρs — or respectively to the compressibility and the superfluid density in the bosons
language. The latter corresponds to the variation of the ground state energy e0 of
the system in response to a twist of the boundary conditions, |Ψj=N+1〉 = eiΦ|Ψj=1〉.
These quantities take the form,

χ =
dmz

dH
=
K

uπ
and ρs =

d2e0(Φ)

dΦ2

∣∣∣
Φ=0

=
uK

π
. (A.11)

2The derivation of the Tomonaga-Luttinger liquid model uses the fermionic representation of
Eq. (A.6) as a starting point. Its exact and rigorous derivation is however quite demanding and
lengthy. I will skip it in this manuscript and redirect interested readers to the reference books 37
and 61.
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Figure A.2: Tomonaga-Luttinger Liquid parameters at zero magnetic field
H = 0 as a function of the Ising anisotropy ∆ for the XXZ Hamiltonian of
Eq. (A.4). u and K are computed from Eq. (A.10) and the prefactors A0, A1

of the correlation functions of Eq. (A.13) are obtained from the expressions in
Refs. 69 and 70.

The parameter K will also govern the critical behavior of the correlation functions
which have the asymptotic form at long distance r → ∞,

〈S±
i S

∓
i+r〉 ∼ (−1)r

[
A0

|r| 1
2K

− Ã0
cos(2πmz|r|)
|r| 1

2K
+2K

]
, (A.12)

and

〈Sz
i S

z
i+r〉 − 〈Sz

i 〉〈Sz
i+r〉 ∼ (−1)rA1

cos(2πmz|r|)
|r|2K

− K

2π2|r|2
, (A.13)

where A0, Ã0 and A1 prefactors which depend on the Hamiltonian parameters, with
known exact expressions versus the Ising anisotropy ∆ at zero magnetic field for
A0 and A1 plotted in Fig. A.2 [69, 70]. At zero magnetic field, the free fermions
case with K = 1, computed independently in Eq. (A.8) is recovered, and at the
isotropic point ∆ = 1, longitudinal and transverse correlation functions become
equivalent. However, because of the presence of a marginally irrelevant operator in
the fields theory at the Heisenberg point, logarithmic corrections appear in several
quantities. This includes the correlation function [58, 72–74], with a correcting
factor

√
ln r in the magnetic susceptibility behavior at low-temperature, 2πχ(T ) ∼

2+ln−1(T0/T )+O(ln−3 T ) [75], where T0 is a given constant, which was experimentally
observed in the S = 1/2 chain compound Sr2CuO3 [76–78]. Another evidence of the
Tomonaga-Luttinger Liquid regime is the linearity of the specific heat, C = Tπ/3u,
which was observed under magnetic field in the quasi-one-dimensional spin-chain
antiferromagnet BaCo2V2O8 material [79] and in the metal-organic, two-leg, spin-
ladder system3 (C5H12N)2CuBr4 [80].

3We discuss in the next section that upon applying a sufficiently strong external magnetic field,
a two-leg spin-ladder can be described by a Tomonaga-Luttinger-Liquid theory.
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Half-odd integer versus integer one-dimensional spin systems So far, I have
only been discussing S = 1/2 spin chains and one would naively think that S ≥ 1
should give very similar properties for the Heisenberg model of Eq. (A.1). It is half
true, in the sense that a distinction between half-odd integer and integer spin chains
must be made. The former S = 1/2, 3/2, 5/2 . . . are all critical with a gapless
energy spectrum, and display comparable properties, although only the first one is
integrable. Haldane showed in his seminal work [81,82] with semi-classical arguments
on the non-linear sigma model that S = 1, 2 . . . spin chains have a gapped spectrum
and that the spin-spin correlations are short-ranged 〈Si · Si+r〉 ∼ e−|r|/ξ with ξ the
correlation length. It was a hot topic in the late eighties and nineties to verify these
predictions and study the S = 1 spin chain since no exact solution exists for S ≥ 1.
The enthusiasm and excitement was mainly because at the time, most results relied
on spin-wave theory [83–85], which develops series expansions in powers of 1/S for
the low-energy parameters and this method works best close to the classical limit
(S → ∞); therefore, there was no reason to think that the case S > 1/2, would
be different. Numerical methods have played a major role, and the exponential
decay of the correlations was observed in quantum Monte Carlo [86, 87] and density
matrix renormalization group [47] simulations with ξ ' 6.03. The value of the
energy gap between the ground state and the first excited state was computed with
high precision as well, ∆g/J ' 0.41050 . . . [88] and observed by inelastic neutron
scattering experiments in S = 1 quasi-one-dimensional compounds AgVP2S6 [89, 90],
CsNiCl3 [91] and Ni(C2H8N2)2NO2ClO4 [92]. The presence of this gap strongly
dominates the low-temperature properties, T � ∆g, of integer spin chains with
activated laws ∼ e−∆g/T for physical quantities such as the specific heat or the
magnetic susceptibility as observed from nuclear magnetic resonance frequency shift
measurements in AgVP2S6 [93]. From Haldane work, the gap of integer spin S chains
should follow ∆g(S) ∼ e−αS with ξ ∼ 1/∆g and α some positive constant, to accord
the half-integer and integer behaviors in the classical limit.

It was soon realized that open S = 1 spin chains hold effective S = 1/2 degrees
of freedom at the boundaries [94], as observed in the Ni(C2H8N2)2NO2ClO4 material
from ESR and EPR experimental measurements [95–97], in Y2BaNi1−xMgxO5 [98] by
NMR measurements and in quantum Monte Carlo simulations [99]. It was later ob-
served by magnetization measurement in the doped CsNi1−xMgxCl3 compound [100].
The Ni2+ ions carry a S = 1 and the Mg2+ are non magnetic impurities cutting the
interacting S = 1 chain into finite-sized ones with open boundaries. The suscepti-
bility is exponentially suppressed at low temperature for x = 0 whereas for finite
x, there is a crossover to a diverging Curie behavior χ ∼ 1/T arising from the free
and non interacting effective S = 1/2 spins. To better understand this, the idea is
that a spin-1 can be decomposed into two effective S = 1/2 spins. Yet, the reverse
operation of combining two S = 1/2 spins can give rise to S = 0 and S = 1 spins
and the first one has to be projected out since we want to describe a spin-1 chain
in the end. An ansatz for the ground state is pictured in Fig. A.3, with effective
S = 1/2 spins from neighboring sites forming singlets. It is obvious that the effective
boundary S = 1/2 spins are dangling by not taking part to a singlet. This is not
the exact ground state of the Heisenberg S = 1 chain but one of its descendant,
the AKLT model [101–103] describing a one-dimensional S = 1 spin chain with a
Heisenberg interaction and an additionnal first-neighbor biquadratic interaction of
the form 1

3
(Si · Si+1)

2. Turning off the biquadratic term 1
3
→ 0 does not induce
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S = 1

S =
1

2

singlet

Figure A.3: Picture of the exact ground state for the S = 1 Heisenberg
spin chain with an additional first-neighbor biquadratic interaction of the form
1
3
(Si · Si+1)

2, called the AKLT model. The initial S = 1 spins are divided into
two effective S = 1/2 spins which form singlets with neighboring spins. There
are dangling free effective S = 1/2 spins at the boundaries which cannot form a
singlet. Since the AKLT ground state belongs to the same phase as the purely
Heisenberg chain, both are connected and share properties, including these
effective free S = 1/2 spins, observed in experiments, see text.

a quantum phase transition, which means that the AKLT and the exact S = 1
Heisenberg ground states are adiabatically connected, belong to the same phase and
share properties such as the effective free S = 1/2 spins at the boundaries, so-called
edge states.

Symmetry protected topological phase and entanglement entropy In this AKLT
picture (Fig. A.3), effective neighboring spins within a singlet have an opposite
Sz = ±1

2
component. This implies that for the original S = 1 degrees of freedom,

there cannot be two consecutive spins with the same z-component ±1, even though
there can be as many spins with Sz = 0 in between them. In other words, only basis
states with consecutive z-component ±1 and ∓1 (with as many Sz = 0 as we want
in between) are non zero in this description. This leads to some kind of non local
long-range antiferromagnetic order [104] where the non local correlation function
〈Sα

j ·
∏j+r−1

n=j+1 eiπS
α
n · Sα

j+r〉 with α = x, y, z takes a finite value at long distance, as for
long-range ordered systems. Later, it was realized that the edge states and non-local
order are fingerprints of what is now known as symmetry protected topological (SPT)
phases [105–110].

A more robust fingerprint of SPT phases is the exact double degeneracy of the
entanglement spectrum between two parts A and B of the system when cut in half
in real space. With |ΨAB〉 a pure (T = 0) state describing a quantum system, the
quantity of interest is the reduced density matrix,

ρA = TrB
(
|ΨAB〉〈ΨAB|

)
, (A.14)

where the partial trace runs over degrees of freedom from the B region, see Fig. A.4.
The eigenvalues of ρA define the entanglement spectrum of the subsystem A with
the other subsystem B. The amount of entanglement between these two subsystems
can be measured through Von Neumann entanglement entropy,

SvN (ρA) = −Tr
(
ρA ln ρA

)
, (A.15)

with the property SvN (ρA) = SvN (ρB). Entanglement-related quantities have proven
to be a powerful tool for investigating quantum many-body systems, and especially
in condensed matter physics (see Ref. 111 for a review). For instance it provides
major information on the nature of the ground state of a system, like criticality,
and gives access to the central charge for critical one-dimensional quantum systems
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Figure A.4: Real space bipartition of a (a) two-dimensional (D = 2) and a
(b) one-dimensional (D = 1) quantum many-body systems into two parts A
and B. The area law states that the entanglement entropy of the subsystem A
with B scales with the surface of A, see text.

described by conformal field theory [112–114]. It is also the corner stone of tensor
network algorithms [46,115,116] through the area law, a general statement telling
you that the entanglement entropy between two parts A and B of the ground state
of a system (Fig. A.4) grows with the surface of the subsystem A and not its volume,
i.e., SvN(ρA) ∼ LD−1 + . . . for a D-dimensional system [113, 117–119]. The fact that
the leading algebraic dependance with L becomes constant in one dimension (D = 1)
is, as we shall see, the reason why Matrix Product States work so well to describe
one-dimensional quantum systems.

II. Magnetic field-induced Bose-Einstein
condensation in quantum antiferromagnets

To remove any ambiguity straight away, unlike what may imply the chapter’s
title, a low-dimensional quantum antiferromagnet is not a necessary condition to
obtain a Bose-Einstein condensation in a magnetic insulator. Yet, it happens that
many realistic materials — including the one that we will thoroughly investigate
by the end of this chapter — are anisotropic with stronger energy couplings along
favored spatial directions, and ultimately qualify as quasi-low-dimensional. Thus,
although this section could be on its own, it still slightly fits in here.

Now, if one says Bose-Einstein condensation, what comes in mind first is cold
atoms related physics, definitely not antiferromagnets. But before moving to that,
let us review this phenomenon in the instructing academic case of a non-interacting
bosons gas in D dimensions, inside a volume LD. The prediction of this phenomenon
was done by Einstein and Bose in 1924 [120–122] in three dimensions but only
observed many years later (1995) in trapped ultracold Bose-condensed gases of
alkali atoms [123, 124]. We consider free particles with a generic dispersion relation
ε(q) = qz, and the states labeled by the momentum |q〉. The occupation number
nq of particles in a given state follows Bose–Einstein statistics and the density of
particles is simply

n =
1

LD

∑
q

nq =
1

LD

∑
q

1

e[ε(q)−µ]/T − 1
, (A.16)
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with µ < 0 the chemical potential which controls it and T the temperature. One can
then substitute the sum by an integral,

n =
1

(2π)D

∫ ∞

0

dq 1

e[qz−µ]/T − 1
=

2T
D
z

zΓ
(
D
2

)
(4π)

D
2

Γ

(
D

z

)
LiD

z

(
eµ/T

)
. (A.17)

To get the second term, we first move to generalized spherical coordinates in D dimen-
sions and then make the variable substitution qz/T → q̃. Γ(x) is the Euler gamma
function and Lis(x) =

∑∞
n=1 x

n/ns is the polylogarithm function: a monotonous
increasing function in x, and thus in µ for s > 0. Since µ→ 0 is the limiting value,
the density seems bounded, which is not physical. A workaround is to introduce a
critical temperature corresponding to µ = 0,

Tc = nz/D

(
z2D−1πD/2Γ(D/2)

Γ(D/z)ζ(D/z)

)z/D

, (A.18)

where ζ(x) is the Riemann zeta function. Still, there seems to be a flaw in the theory
and it is not clear what happens below Tc and how it is related to the boundedness
of the density. In fact, the flaw comes from the substitution of the sum in Eq. (A.16)
by an integral in Eq. (A.17), which implies some uniformity in the density of states
and is not true anymore for T < Tc: the limiting q = 0 ground state needs to be
explicitly written in this case,

n =
1

LD

1

e−µ/T − 1
+ · · · (A.19)

where the second omitted term is the same as Eq. (A.17). Above the critical
temperature T > Tc, this first term vanishes in the thermodynamic limit (L→ ∞),
and we recover the expression (A.17) for the density. Below the critical temperature
with µ→ 0, it follows that the fraction of particles in the ground state is,

n0

n
= 1−

(
T

Tc

)D/z

. (A.20)

This means that a macroscopic fraction of particles occupies the same (lowest) energy
state below a critical temperature Tc, known as the Bose-Einstein condensation
(BEC) phenomena. More generally, Tc is a critical point marking a phase transition
with a spontaneous symmetry breaking. It is not obvious what symmetry is broken
at Tc yet: let us define the wavefunction

Ψq=0 =
√
n0eiθ, (A.21)

describing the condensate fraction4, with |Ψq=0|2 = n0 and θ some generic phase
factor. For T > Tc, it is zero in the thermodynamic limit for any value of θ. Below
Tc however, the finiteness of the condensate fraction sets θ to some arbitrary value
which breaks the continuous U(1) symmetry of the Hamiltonian. The condensate
wavefunction (A.21) plays the role of the order parameter for the transition and
is a complex number. The mindful reader would have noticed that there seems to
exist a critical temperature (and therefore long-range order) in any dimension, which

4At finite temperature, the whole system is not described by a pure state but a mixed state.
However, a single microstate, q = 0 here, can be described as such.
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goes against Mermin-Wagner theorem. I have purposely overlooked the computation
of the density in Eq. (A.17). Indeed, the polylogarithm function only converges
for D/z > 1 if the chemical potential approaches zero. For a standard quadratic
dispersion relation with z = 2, we find that indeed, there can only be long-range
order at finite temperature for D > 2. For massless relativistic particles (z = 1),
condensation can takes place in D = 2, but only in D = 3 for finite-mass bosons (m)
with a dispersion relation ε(q) =

√
m2c4 + c2q2 with c the light velocity [125].

Closely related, although different, the superfluidity phenomena was observed in
1937 in liquid 4He [126, 127] and the connection with BEC was quickly realized [128,
129]. It is the curious property of a fluid to have exactly zero viscosity. For instance,
when stirred, a superfluid forms vortices that continue to rotate indefinitely, without
loss of kinetic energy. To mathematically define superfluidity, we need to distinguish
between dynamical (time-dependent) aspects and the response of the system to
an infinitesimally small perturbation [130, 131]. The second is used as customary
definition for the superfluid density ρs and can be related to the second derivative of
the free energy density of the system F with respect to a Galilean transformation of
velocity v to the system,

ρs =
1

V
lim
v→0

∇2
vF(v) ≡ 1

V
lim
Φ→0

d2F(Φ)

dΦ2
(A.22)

where ∇2
v is the Laplacian operator. The second expression in Eq. (A.22) equivalently

relates the superfluid density to the response of the free energy to a boundary phase
twist Φ. The interested reader can refer Ref. 132 where a rigorous and pedagogical
derivation can be found.

At zero temperature, liquid helium is 100% superfluid, but less than 10% of the
atoms are actually in the BEC [133, 134] — unlike the case of free bosons where the
whole condensed fluid is also superfluid. Indeed, due to interactions, most of the
particles are expelled from the condensate and spread over a wide range of momenta
q 6= 0. This is known as the quantum depletion of the BEC and was microscopically
explained by Bogoliubov’s theory in 1947 [135]. This points out the importance of
interactions in realistic systems: e.g., for interactions characterized by a scattering
length a, the condensed fraction at zero temperature at leading order

√
na3 � 1

corrects to n0/n ' 1− (8/3)
√
na3/π [136], which was verified by both Monte Carlo

simulations [137] and Bragg spectroscopy experiments [138].
If it is usual to introduce Bose–Einstein condensation for cold atomic gases,

the phenomenon can also take place with quasiparticles, i.e., effective particles
describing collective excitations in physical systems. Indeed, some have integer spins
and obey Bose–Einstein statistics like standard particles. Such systems include
semiconductor microcavities, in which photons are confined and strongly coupled to
electronic excitations, leading to the creation of exciton-polaritons [139–141], bosonic
quasiparticles that can display BEC signatures. Similarly, triplons have shown
condensation for the first time in the antiferromagnetic TlCuCl3 compound [142–144].
The quasiparticles density can be controlled by an external magnetic field, acting as a
chemical potential, to cover the limit from a dilute to a strongly interacting bose gas.
Nowadays, it is widely known that a large numbers of quantum antiferromagnets
display a BEC [43,44], on which we shall now focus.
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Figure A.5: Sketch of a quantum antiferromagnet with a U(1) symmetry
and subject to an external magnetic field along the z direction. The system
has a magnetization mz =

∑
r〈Sz

r 〉/N. (a) The system is antiferromagnetically
ordered in the XY plane for T < Tc and the spins component in the XY
plane are ordered in an antiferromagnetic way. The order is characterized by
a complex order parameter of Eq. (A.24). (b) The system is disordered with
T > Tc and the spins component in the XY plane is featureless with a random
organization.

1. Equivalence between Bose-Einstein condensation and anti-
ferromagnetic XY order

I want to establish the connection between the usual BEC properties that we just
reviewed for bosonic degrees of freedom with what is happening at low temperature
in some quantum antiferromagnets, described by spin degrees of freedom on a lattice.
This section will mostly resume ideas from Refs. 43 and 44, and the next section
will be dedicated to experimental examples that I will skip in the first place. It is
actually straightforward to make the connection between spins and bosons through
the Holstein–Primakoff [145] or Matsubara–Matsuda [146] transformations. For
S = 1/2 degrees of freedom, a down spin maps to an empty site and an up spin
to an occupied site by a boson. Unlike traditional bosons however, the maximum
occupancy needs to be constrained to one, and the bosons thus qualify as “hard-core”.
In this case, the transformation simply reads,

S+
j = b†j, and Sz

j = b†jbj −
1

2
, (A.23)

which indeed verifies the usual spin and boson commutation relations, i.e., [bi, b†j] = δij .
There are now two required conditions to have a system that could potentially display
a BEC. The first one is a three-dimensional system for the phase transition to happen
at finite temperature and the second is a U(1) symmetric system, since it is the
symmetry being spontaneously broken for T < Tc in a BEC. The last requirement is
necessary but not sufficient. For instance, coupled XXZ chains in the ferromagnetic
or antiferromagnetic Ising phases have a U(1) symmetry but it is not the one that
is being spontaneously broken (see Fig. A.1 and associated discussions above). An
extra requirement would be to have the ordered phase characterized by a complex
order parameter, as the BEC one. This is the case of magnets with antiferromagnetic
order in the XY plane,

mAF = lim
N→+∞

1

N

∑
r

eir·qAF〈Sx
r + iSy

r 〉, with qAF = (π, π, π) , (A.24)
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— Boson language Spin language
Particles density n Magnetization mz

Chemical potential µ Magnetic field H
Superfluid density ρs Transverse spin stiffness ρs

Order parameter Ψq=0 =
√
n0eiθ mAF = lim

N→+∞

∑
r eir·qAF〈Sx

r + iSy
r 〉/N

Kind of order BEC XY ordering

Table A.1: Translation dictionary of physical quantities from the boson to
spin language and vice-versa. It uses notations introduced in the text.

which is zero for T > Tc and non zero otherwise. A schematic representation of
this XY order is shown in Fig. A.5. Below the critical temperature, the spins are
antiferromagnetically ordered in the XY plane, which can be seen as a complex plane
(Sx

r , S
y
r ), with a randomly picked and locked value for the phase θ = arg

(
mAF). To

make the connection with the order parameter of the BEC in Eq. (A.21) plain, the
condensed fraction is related to the modulus squared of the XY order, n0 = |mAF|2.
Moreover, we show in Tab A.1 the correspondence of physical quantities in boson
and spin language.

The simplest magnetic systems that can realize BEC are coupled XXZ chains
which are individually in the XY phase (see Fig. A.1)5. More generally, one-
dimensional U(1) spin systems which display a critical XY phase that can be
described by Tomonaga-Luttinger liquid theory, will stabilize the quasi-long-range
order to plain XY long-range order at finite temperature when coupled together
in three dimensions [147–149]. Upon applying a sufficiently large magnetic field to
close the singlet–triplet spin gap, this includes, for example, coupled spin-ladders
and coupled S = 1 chains. Generically, these systems exhibit two quantum critical
points Hc1,2, with some gapped phase below Hc1, a trivial ferromagnetic phase above
Hc2 (also gapped) and a gapless XY phase in between. As already discussed in the
previous section, the one-dimensional Heisenberg S = 1 model displays an energy
gap ∆g ≡ Hc1 between its (singlet) ground state and its first (triplet) excited state.
Subject to an external magnetic field H ≥ Hc1, the system becomes gapless and
can be described as a Tomonaga-Luttinger liquid [150, 151]. When coupled, this
leads to XY long-range order as observed in inelastic neutron scattering experiments
on the SrNi2V2O8 material [152]. Two-leg S = 1/2-ladder systems can be seen as
two coupled spin chains with two different energy scales coupling neighboring spins:
along the chains with Jleg and within the rungs with Jrung. The limit Jrung = 0
carries the system to two independent single chains and the opposite one, Jleg = 0,
generates independent two spins (dimer) systems. In both cases, the presence of
a small parameter makes possible analytical investigations, and one can show that
weak and strong-coupling ladders are adiabatically connected and part of the same
phase. They have a gapped energy spectrum for Jrung/Jleg > 0 [153,154], whose value
smoothly depends on the couplings ratio, from ∆g = 0 for Jrung = 0 to ∆g = Jrung
for Jleg = 0. Analogously to the S = 1 chain, an external magnetic field H ≥ ∆g can
close this gap and brings the system to the Tomonaga-Luttinger liquid class [155,156].

5This is a valid statement except at the isotropic point ∆ = 1, H = 0 where the coupled chains
will display Néel ordering with a spontaneous SU(2) symmetry breaking below Tc. This is different
of the XY order and the BEC discussed here.
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Furthermore, to make the equivalence between antiferromagnetic XY long-range
order and BEC complete, it is important to point out that the temperature-driven
transitions in both cases from the disordered to ordered phases with the spontaneous
U(1) symmetry breaking belong to same universality class (known as 3D XY in three
dimensions). Therefore, the critical behavior of all physical quantities around Tc
happens with exactly the same exponents.

Lastly, after making the equivalence plain and introducing explicitly which kind
of magnetic systems can display a BEC and under which conditions, I want to make
a few more comments before moving to experimental examples. At zero temperature,
and for a magnetic field H > Hc2, the system is fully polarized with all its spins
pointing in the field direction. As the magnetic field strength is reduced, one, and
then more spin flips will occur to eventually reach a zero magnetization. These spin
flips are known as magnons, bosonic Sz = −1 quasiparticles. In the simplest S = 1/2
XXZ case (this can be easily extended to other systems), a single spin flip from
the ferromagnetic state at H = Hc2 has a dispersion relation ε(q) = J(1 + cosk)
with a minimum at q = qAF = (π, π, π). Around the antiferromagnetic wave-vector,
it can be approximated by ε(q → qAF) ' J |q − qAF|2/2, which is the dispersion
relation of a free particle with an effective mass m = 1/J . Since BEC can take
place without interactions, we have just shown that (non-interacting) magnons can
condense at q = qAF and that the external magnetic field controls their density. A
next and more realistic step that we will skip, would be to write an effective model
for these quasiparticles to take into account their interactions as in Refs. 147 and 143.
Another remark is that the knowledge of the quasiparticle dispersion relation close
to the quantum critical point Hc2 provides the value of the dynamical exponent
z = 2 for the quantum phase transition between the ferromagnetic and XY ordered
phases (also known as the superfluid/insulator transition [157])6. It is reasonable
to believe that this value will actually stand for more than a single spin flip (i.e. in
a small region around Hc2), as long as the magnons remain extremely diluted that
we can neglect interactions. Finally, the spontaneous breaking of the continuous
U(1) symmetry below Tc leads to gapless Nambu-Goldstone modes [158, 159] with a
linear dispersion above the BEC ground state around the antiferromagnetic wave
vector, i.e. ε(q) ∼ vs|q−qAF| with vs the spin-wave velocity. These modes have been
experimentally observed in the dimerized S = 1/2 TlCuCl3 compound by inelastic
neutron scattering experiments, see Refs. 160, 144, 161 and references therein.

2. Fingerprints of Bose-Einstein condensation in quantum an-
tiferromagnets and selected examples

To evince that BEC in quantum antiferromagnets is not a remote phenomena,
I show in the left-hand side of Fig. A.6 experimental measurements of the phase
boundary Tc(H) between the disordered and long-range ordered XY phases in several
three-dimensional compounds. We notice that the maximum critical temperature is

6In a periodic system, the momentum q is defined within a Brillouin zone where its components
are qi = 2niπ/Li with ni = 1, 2 . . . Li and Li a linear size along a given direction i. Close to a
transition, the only relevant length is the correlation length ξ, hence ε(q) = q2 ∼ ξ−2. Moreover at
a quantum phase transition, the characteristic energy ∆ scales as ∆ ∼ ξ−z, suggesting that z = 2 if
one believes that the dispersion relation is indeed the characteristic energy close to Hc2.
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measured by sweeping the field up and down at
0:01–0:05 T=min while monitoring the sample tempera-
ture with the bath temperature held fixed.

Distinct thermodynamic transitions can be observed in
the specific heat and magnetocaloric effect data for H
between 2.15 and 12.6 T. Representative data are shown
in Figs. 2 and 3, and the phase diagram determined from
these data is shown in Fig. 4. The specific heat data shown
in Fig. 2 exhibit sharp peaks for H ! 3:5 and 10 T. An
equal entropy construction was used to determine the
midpoint of the transition. For transitions occurring at a
given temperature, the specific heat transition at high
fields shows a taller peak than the transition at low fields.
This asymmetry is due to the influence of the Sz ! "1
excited state, which can play a role even at very low
energies in this compound. The DTN compound is in a
regime 2zJ=D# 1 for which a two-level (Sz ! 1 and
Sz ! 0) description does not work, and a more general
theory for Bose-Einstein condensation incorporating all
three levels is necessary [11].

In the magnetocaloric effect data shown in Fig. 3, heat-
ing is observed as the magnetic field is swept through the
AF transition, surrounded by regions of cooling before and
after the transition. The region of cooling after the tran-
sition can be attributed to a relaxation towards the bath
temperature, and the cooling preceding the transition re-
sults from an increase in entropy of the spin systems at low
temperatures as the Sz ! 1 excited state approaches the
ground state. The peak in the first derivative of T$H%,
corresponding to maximum heating of the sample, was
identified as the phase transition. The transition tempera-
tures determined from specific heat and MCE are in ex-
cellent agreement as shown in Fig. 4. A second-order phase
transition, such as the AF transition we are expecting in
this compound, should exhibit heating when entering the
ordered phase and cooling when leaving it. However, all of
the MCE data show heating in both directions when the
field is swept up and down. This may indicate a coupling to
the lattice that results in an apparent first-order phase
transition.

The resulting phase diagram (Fig. 4) shows an ordered
phase occurring between Hc1 # 2:1 T and Hc2 # 12:6 T
with a maximum critical temperature of Tc ! 1:2 K. The
values of Hc1 and Hc2 extracted from this phase diagram
are in agreement with those determined from magnetiza-
tion to within a few percent [10]. The discrepancy could be
due to slight orientation errors of the sample and the fact
that, in the work by Paduan-Filho et al., the onset of the
transition is determined from the peak in the first derivative
of M$H%, whereas a comparison with the midpoint of the
transition in the specific heat and MCE effect would re-
quire taking the inflection point or the peak in the second
derivative of M$H%. The values of the transition fields can
be compared to theoretical predictions gc!BHc1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!2 " 4s2!

P
"J"

q
and gc!BHc2 ! D& 4

P
"J", using

the quantities J and D determined from our neutron mea-
surements, and gc ! 2:26 determined by susceptibility
measurements [14]. The predicted value of the lower criti-
cal field Hc1 ! 2:18$1% T is in very good agreement with
the experimentally observed transitions. However, the pre-
dicted upper critical field Hc2 ! 10:85 T is somewhat
smaller than the experimental value of 12.6 T from ther-
modynamic measurements. The discrepancy between the-
ory and experiment is puzzling in light of the excellent
agreement in Hc1. One possible explanation is a lattice
distortion at high magnetic fields, which would lead to a
change in the parameters D and J.

In order to study the occurrence of BEC of the Ni spins
in DTN, we examine the temperature dependence of the
AF phase boundary near Hc1. As mentioned before, a
power-law temperature dependence Hc$T% "Hc1 / T#,
where # ! 1:5, is predicted for a transition to a BEC
phase. In our fits to the Hc$T% data for the compound
DTN, we limit ourselves to investigating the low field
side of the phase diagram due to the possibility of a
magnetically induced strain phase occurring at high fields.
The value of # is closely dependent on the value of Hc1, as
well as on the temperature range of the fit. # is expected to
approach 1.5 only as T ! 0. As a first step, we fix # and fit
the Hc$T% data to determine Hc1. This fit is performed for
data between 100 mK and Tmax and repeated for different
trial values of #. The resultant Hc1 as a function of Tmax are
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FIG. 3 (color online). Left: Magnetocaloric effect data deter-
mined by monitoring T while sweeping B up and down with a
fixed bath temperature. Right: dT=dH for several temperatures,
where the transition is identified as the peak.
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at Tc

Figure A.6: The left panel (a) shows the phase diagram Tc(H) of numerous
magnetic Mott insulators which display a Bose-Einstein condensation (inside
the shaded regions), including BaCuSi2O6 [162], NiCl2-4SC(NH2)2 (DTN) [163],
Ba3Mn2O8 [164], TlCuCl3 [165], (Hpip)2CuBr4 [166, 167], Pb2V3O9 [168],
Sr2Cr3O8 [169], Ba3Cr2O8 [170] and (C7H10N)2CuBr4 (DIMPY) [171]. This
figure has been reproduced from Ref. 44 and the data have been captured from
various experimental measurements in the above references. The right hand
side figure (b) shows experimental measurements of the specific heat versus
temperature for various magnetic field values in the S = 1 NiCl2-4SC(NH2)2
(DTN) compound. It displays the characteristic λ-anomaly at the transition
for H = 3.5 T and H = 10 T, but not for the two other fields which are in the
gapped phase below the first critical field Hc1. This figure has been adapted
from Ref. 163.

large compared to what is required to obtain a condensate in cold atoms experiments
(Tc ∼ µK), about six orders of magnitude larger in fact. The downside is that these
experimental candidates require a very large magnetic field to close the spin gap and
get beyond Hc1, and an ever larger magnetic field to be able to map the whole phase
boundary, experimentally inaccessible for a few of them. Nevertheless, they allow the
experimental study of the critical properties of the transition, with the advantage
that these materials are in the thermodynamic limit and have a high degree of spatial
homogeneity due to the crystalline lattice. On the contrary, cold atoms experiments
are carried out with only a few thousands of them, and the confining trap potential
makes it difficult to obtain a high degree of homogeneity. Yet, this comparison is
to be contrasted, because spin compounds are far from being ideal systems as they
have additional interactions (crystalline anisotropies, dipolar interactions, spin-orbit
coupling...) that might weakly break the required U(1) symmetry and modify the
physics in the vicinity of the transition. Although such additional terms should
be taken into account to rigorously describe the system, especially at very low
temperature where these effects might become prominent, most systems provide a
clean “magnetic field/temperature” window where physical quantities and critical
properties can be neatly measured and studied. Also, the orientation of the external
magnetic field is in some cases crucial and it is tricky to ensure that it does not unduly
break the U(1) symmetry of the system (other than spontaneously below the critical
temperature). A precursor for the phase transition is the cusp observed in the specific
heat at the critical temperature, which can be used to map the phase boundary
Tc(H) between disordered and ordered phases. Experimental measurements on the
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FIG. 1. (Color online) (a) Typical 14N NMR spectra above and below the transition, Tc = 340 mK, in 15 T. Four NMR lines
from inequivalent 14N sites are doubled by quadrupolar splitting (I = 1), which results in a mirror image about the center
(dashed line). The splittings of the lines at low temperature are di↵erent due to di↵erent hyperfine coupling tensors. (b) The
splitting of the lowest-frequency line (filled with grey color in the spectrum shown in (a)) as a function of temperature in four
di↵erent magnetic fields between 3.5 and 15.0 T. The inset shows fits to the power-law, where solid line represents the best
fit. (c) Magnetic phase diagram obtained by plotting the onset temperature (Tc) for the line splitting, where the low-field part
(H  3.5 T) was completed by 1H NMR (see the text). Solid line represents the critical scaling for magnon BEC. Previous
results from thermodynamic measurements, squares for specific heat [4] and triangles for specific heat and magneto-caloric
e↵ects [26], are also shown.

bined with the thermodynamic measurements and neu-
tron scattering results, predicted Hc2 ' 29 T [4]. The
saturation was indeed observed around a similar value
of 31 T at 1.6 K in preliminary pulsed-field magneti-
zation measurements [25]. Furthermore, field-dependent
thermodynamic anomalies in specific-heat and magneto-
caloric e↵ects were found and attributed to magnetic
transition into a low-temperature long-range ordered
phase due to weak inter-ladder coupling [4, 26]. This
transition is expected to belong to the 3D XY universal-
ity class and the ordered phase (canted XY antiferromag-
net) can be described as magnon Bose-Einstein conden-
sate (BEC) [17], though a direct evidence for the order
parameter has not yet been found. The available experi-
mental results, supported by theoretical calculations [4],
highlight DIMPY as an ideal strong-leg ladder compound
in which one can hope for probing attractive interactions
in the TLL phase [4, 26].

In this Letter, we present the NMR investigation of
DIMPY providing the first direct evidence for a TLL
with attractive interactions. We first identify the order
parameter below the magnetic transition temprature Tc

through NMR line splitting, and map out the ordered-
phase boundary as a function H. Then we evidence
power-law spin correlations in the TLL phase defined
above Tc via the NMR relaxation rate, 1/T1, measure-
ments as a function of temperature. They allow us to
extract the sign and field-dependent strength of the in-
teraction between the spinless fermions.

For these experiments, we used a single crystal with ap-

proximate dimensions 1.5⇥ 1⇥ 1 mm3 and mass 2.5 mg,
which has been grown from solution with the tempera-
ture gradient method described in detail in Ref. [3]. The
monoclinic crystalline structure (space group P21/n) and
quality of the crystal was confirmed by x-ray and neu-
tron scattering [3], and a trace of paramagnetic impuri-
ties were found to be negligible, of the order of 0.1 % (see
the Supplemental Material [32]). A unit cell contains two
di↵erent ladders running along the a axis with di↵erent
rung vectors [2] and each ladder is assigned with two in-
equivalent N sites (see the Supplemental Material [32] for
the structure). Both 14N and 1H NMR were used in com-
plementary manner: simple and well resolved 14N spec-
tra (Fig. 1a) arising from only four inequivalent N sites
in a unit cell allow us to accurately track the line split-
ting with temperature. Precise temperature-dependence
of 1/T1 was obtained mainly by 1H NMR, to take ad-
vantage from its strong signal intensity due to the large
gyromagnetic ratio (1�/14� = 13.8). We have checked
that 14N and 1H results are consistent in both spectrum
and T1 data as described later.

Figure 1a shows typical 14N NMR spectra above and
below the transition at Tc = 340 mK in 15 T. The mag-
netic field was applied along the direction 14o o↵ from
a axis of the crystal. This choice of orientation ensures
that all the 14N NMR lines are well resolved and sepa-
rated from one another, so that the line splitting expected
from internal fields could be clearly visible. Indeed, in
Fig. 1a each line of the high temperature spectrum splits
into two at low temperature. Half of the lines are visibly

(a)

Figure A.7: The left panel (a) shows the value of the line splitting in the
14N NMR spectra of the (C7H10N)2CuBr4 (DIMPY) compound as a function
of the temperature for different magnetic fields value. It is proportional to
the modulus of the order parameter mAF which allows for the checking of the
critical behavior |mAF| ∼ |1− T/Tc|β with β the order parameter exponent.
The figure is from Ref. 173. The right hand side panel (b) shows the linear
behavior (grey line) of the critical temperature versus the rescaled magnetic field
|Hc2 −H|2/3 close to the second critical field Hc2, for the coupled S = 1 chains
NiCl2-4SC(NH2)2 (DTN) material. The red square symbols are experimental
data obtained by NMR measurements and the purple dots are obtained by
quantum Monte Carlo simulations on the spin model describing this material.
The data have been taken from Ref. 174.

coupled S = 1 chains compound NiCl2-4SC(NH2)2 (DTN) are reported in the right
panel of Fig. A.6, with a striking λ-anomaly at the transition for H = 3.5 T and
H = 10 T, as observed in liquid 4He [172].

One experimental fingerprint that the transition observed at Tc belongs to the
same universality class as the BEC one comes from the critical behavior of the
order parameter. The left hand side panel of Fig. A.7 shows the value of the line
splitting in the 14N NMR spectra of the antiferromagnetic spin ladder compound
(C7H10N)2CuBr4 (DIMPY) as a function of the temperature for various magnetic
field values [173]. This is directly proportional to the magnetization in the XY plane,
or in other words, to the modulus of the complex order parameter mAF7. Close to
the transition, its critical behavior is governed by the order parameter exponent β,

Line splitting ∝ |mAF| ∼ |1− T/Tc|β , (A.25)

whose value is β = 0.3486(1) for the 3D XY universality class [175]. The rescaling of
the experimental data with respect to Tc gives the inset of Fig. A.7 (a), and the best
fit results in an exponent β = 0.36, very close to the one expected for this transition.

Another experimental checking is the critical behavior of Tc in the vicinity of
the quantum critical point Hc2. This corresponds, as already discussed, to the limit
of extremely diluted condensed bosonic quasiparticles with a quadratic dispersion
relation which gives a dynamical exponent z = 2. Moreover, in dimension D > 2,

7Although mAF is complex, only its modulus is accessible in most, if not all, cases (experimentally
and numerically). Thereby, I will often abusively refer to |mAF| as mAF in the following.
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the magnetization (≡ particles density) scales linearly with the magnetic field, i.e.
1−mz ∝ (Hc2 −H) [147, 176–178]. Close to a quantum critical point, the scaling
relation generically reads,

Tc ∼ |Hc2 −H|φ, (A.26)

with φ a critical exponent that we can actually relates to φ = z/D. Indeed, going back
to the calculations of the density versus the critical temperature for non interacting
bosons, we found that Tc ∼ nz/D in Eq. (A.18). I plot in the right panel of Fig. A.7
the scaling of the critical temperature for the coupled S = 1 chains NiCl2-4SC(NH2)2
(DTN) compound in the vicinity of the upper critical field Hc2. The data are from
Ref. 174 and include experimental NMR measurements and quantum Monte Carlo
simulations on the underlying model describing the material; overall they are in
very good agreement with the expected scaling φ = 2/3. To be fully consistent, it
is important to mention that the upper critical dimension for the XY transition is
Dc = 4. Above Dc, the critical exponents of the theory describing the system become
the same as for the mean-field treatment for this theory. Around the quantum
critical point Hc2, the effective dimension is D + z = 5 > Dc and thus, the mean
field exponents apply. This is why the magnetization is proportional to the magnetic
field for instance. This also explains why the hyperscaling relation zν = φ with ν
the correlation length exponent does not stand anymore8.

III. Numerical methods

After introducing the quantum magnetic systems I am interested in, I now want
to present numerical methods to investigate them. First, I will focus on the Matrix
Product States formalism for one-dimensional systems. It is an ansatz to represent an
intractable wave function in practice — exponentially large with the system size N —
as a more practical product of N matrices (or more generally tensors). Every one of
them will be associated to a degree of freedom on the lattice and their elements will
hold information as would do the global wave function, but with some very reasonable
approximations to make the description tractable. I will then introduce quantum
Monte Carlo in its stochastic series expansion formulation whose idea is to expand
the partition function Z = Tr e−βH as the Taylor expansion of the exponential in
powers of the inverse temperature β = 1/T . There is plethora of complete reviews
on the two subjects from which I took great inspiration, Refs. 179, 115, 45 and 46
for Matrix Product States and Refs. 180 and 181 regarding quantum Monte Carlo,
including references therein for both methods.

8At a quantum phase transition, we can define a characteristic energy scale ∆∼|Hc2 −Hc|zν
and also for D ≥ 3, we have the scaling of the critical temperature Tc ∼ |Hc2 −Hc|φ. The critical
temperature Tc is also a characteristic energy scale, leading to the hyperscaling relation φ = zν.
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Figure A.8: Graphical notation for tensors as a closed shape, a circle
in this case. The panels (a), (b) and (c) respectively shows the graphical
representation of rank-1 (vector), rank-2 (matrix) and rank-3 tensors. The
elements of a rank-N tensor are labelled by N indices and each index of
the tensor is represented by a line emanating from it. The panel (d) shows
the graphical representation of the contraction operation which generalizes
standard vector-vector, matrix-vector, matrix-matrix multiplications for higher
rank tensors. To indicate that pairs of indices are shared amongst two tensors
and that they can be contracted, they are joined together by a line.

1. Matrix Product States

A state describing a quantum system comprised of N degrees of freedom is usually
written as a vector |Ψ〉 in a given work basis {|σ〉} = {|σ1σ2 · · ·σN〉},

|Ψ〉 =
∑
σ1

∑
σ2

· · ·
∑
σN

cσ1σ1···σN
|σ1σ2 · · ·σN〉, (A.27)

where σµ can take d different values, each representing a state of the degree of freedom,
e.g. for a spin-1/2 chain σµ =↑, ↓ and d = 2, which leads to a 2N components
wavefunction to describe the system. We will restrict ourselves to one-dimensional
lattice9 models with degrees of freedom living on the vertices, in such a way that σµ
and σµ+1 are neighbors in real space.

A rank-N tensor is a mathematical object holding data whose elements are
labelled by i, j, k, . . . indices (N in total), e.g. Aijk... and its total number of elements
is the product of the maximum index value taken by each one of the indices, i.e.,
Nelts = imaxjmaxkmax . . .. It is the generalization of vectors and matrices, which
are respectively rank-1 and 2 tensors. More advanced, tensor networks are made
of multiple “connected” tensors and traditional tensor notation quickly becomes
unwieldy: it is helpful to use a graphical notation [183]. The basic graphical notation
for a tensor is to represent it as a closed shape such as a square or a circle, although
there is no standard convention and it is sometimes useful to use different shapes
to represent different kind of tensors. Each index of the tensor is represented by
a line emanating from it, with as many lines as indices. In Fig. A.8 (a,b,c) I show
the graphical representation of rank-1 (vector), 2 (matrix) and 3 tensors. The
contraction of two tensors is the mathematical operation that generalizes the better

9Actually, Matrix Product States are also used to simulate two-dimensional systems by repre-
senting the 2D lattice as a one-dimensional path at the price of introducing long-range interactions,
see Ref. 182. However, as we shall discuss, all the benefits of one-dimensional systems with local
interactions resulting from the area law are lost, making simulations very difficult and demanding.
Generalization of MPS in two-dimensions are known as Projected Entangled Pair States (PEPS),
but are definitely not as efficient as MPS, although a lot of work has been dedicated to them in the
past few years. See Ref. 46 for an introduction to PEPS.
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known matrix-vector or matrix-matrix multiplications, e.g.
∑

j AijBj = Ci and∑
k AikBkj = Mij. Basically, the elements of the two tensors that are labelled by

the same indices are first multiplied element-wise and then summed. Graphically,
to indicate that pairs of tensor indices are contracted they are joined together by a
line, as in Fig. A.8 (d). This is an example of a contraction between a rank-3 tensor
and a matrix sharing a common index and which results in a rank-3 tensor, i.e. the
number of unpaired lines left over. If no index lines remain unpaired the result is a
scalar. We will usually drop the index labelling in the graphical notation since they
can be distinguished by their location in the diagram.

Wave functions and Hamiltonians as tensor networks Ultimately, we want to
describe a quantum system as a collection of tensors, one for every degree of freedom.
It seems natural that the tensors will share indices at some point since the degrees of
freedom σµ are coupled and entangled. Concretely, the vector Ψi with i = 1, 2 . . . dN

describing a quantum system can be reshaped into a rank-N tensor Ψσ1,σ2...σN
where

each index σµ can take d values without any loss of information since it has exactly
the same number of elements, see Fig. A.9 (a). This way of representing a state
is actually more natural — but probably less practical — since setting a value of
each of the index defines a basis state and provides its weight cσ1σ1···σN

in the wave
function. This object is still too big to be dealt with and the idea is to crack it
into smaller pieces. A well-suited mathematical operation to do that is the singular-
value decomposition (SVD), a generalization of the eigendecomposition of a positive
semi-definite normal matrix to any rectangular matrix M ,

Mij = UikΛkkV
†
kj, with U †U = V †V = I, (A.28)

with M of size m× n, Λ a diagonal square matrix of linear size min(m,n) holding
the singular values and U , V holding the left-singular and right-singular vectors.
However, this operation applies on for a matrix, not for a tensor. Though it might
be tedious, this is not a problem in practice: a tensor can be mapped to a matrix by
merging indices and vice-versa by splitting an index. This is just a different way to
label the same elements of the object by more or less indices. The steps to crack the
rank-N tensor are explained in Fig. A.9 and provide at the end a tensor network,
also known as a Matrix Product State (MPS),

|Ψ〉 =
∑
σ1

∑
σ2

· · ·
∑
σN

Aσ1
a1
Aσ2

a1a2
· · ·AσN

aN−1︸ ︷︷ ︸
cσ1σ2···σN

|σ1σ2 · · ·σN〉, (A.29)

where each tensor Aσµ
aµ−1,aµ is associated to a degree of freedom σµ with aµ a virtual

index shared between neighboring tensors. Note that the contraction of all the A
tensors along their common virtual indices would give back the object rank-N tensor
of Fig. A.9 (a). Obviously, at this point there is no gain and it is still intractable
to rewrite the wave function within a tensor network formulation compared to the
standard vector form. In practice, we do not want to rewrite the wave function
differently but directly start from the MPS formulation. For instance, the cumbersome
process of finding the ground state of a given Hamiltonian by optimizing its coefficients
cσ1σ2···σN

through a variational principle translates to optimizing the tensors elements
and can be carried tensor after tensor. We will see that this can be done very
efficiently using the Density Matrix Renormalization Group algorithm, with some
control parameter in the number of elements to optimize by imposing a maximum D

33



j

(a)

�1

(b)

�1

 �1,�2...�N  �1,j

j

Reshape SVD �1 (c)
�2

k

(d)
Reshape

Merge indices(e)

k

SVD
k

Reshape
�2 (f)(g)

(h)

l

�3

etc.
Reshape

Matrix Product State N tensors
(i)

�1 �2 �3 �N�1 �N

Figure A.9: The steps (a) to (h) explain the procedure to crack down the
rank-N tensor of panel (a) into N tensors, one for each degree of freedom
σµ of the system. The tensor is first reshaped into a matrix in (b) isolating
σ1 from the rest where j = 1, 2 . . . dN−1. We then perform in (c) a singular
value decomposition (SVD) on the matrix to factorize the matrix, the singular
values have been absorbed in V †, see Eq. (A.28) for notations and surrounding
discussion. Note that this operation has introduced a virtual index (in blue)
which does not hold a physical degree of freedom. We focus on the right-hand
side matrix and reshape it in (d) to a rank-3 tensor by isolating the degree
of freedom σ2 from the index j where k = 1, 2 . . . dN−2. In e, the indices σ2
and the virtual index outgoing from the previous SVD are merged together
to obtain a matrix. Again, a SVD is performed on this matrix in (f) with
the singular values absorbed in the right-hand side matrix. The left-hand side
matrix is reshaped into a rank-3 tensor in g by splitting the blue index to
explicitly show the index σ2 that was absorbed earlier on for the purpose of the
SVD. The right-hand side matrix of step (f) is reshaped in (h), isolating the
index σ3, with l = 1, 2 . . . dN−3. The following operations are the same as the
previous ones, starting from step (d). In the end, we get the tensor network
shown in panel (i), which represents a Matrix Product State (MPS) with N
tensors, one for each degree of freedom. Neighboring tensors share a common
virtual index resulting from the successive SVD performed.

value for the virtual indices. The total number of elements in the MPS formulation
is ND2d, to be compared with the exponentially large number of coefficients dN of
the traditional wave function. A variational principle is based on some Hamiltonian
describing the system for which we want to find the ground state. Similarly to a
MPS, we can write a Hamiltonian matrix in a local form, known as a Matrix Product
Operator (MPO) [184–187],

H =
∑
σ1,σ′

1

· · ·
∑

σN ,σ′
N

W
σ1σ′

1
b1

W
σ2σ′

2
b1b2

· · ·W σNσ′
N

bN−1︸ ︷︷ ︸
=〈σ1σ2···σN |H|σ′

1σ
′
2···σ′

N 〉

|σ1σ2 · · ·σN〉〈σ′
1σ

′
2 · · ·σ′

N |, (A.30)

where each tensor W [σµ] ≡ W
σµσ′

µ

bµ−1,bµ
is associated to a degree of freedom σµ with bµ a

virtual index shared between neighboring tensors. The fact that interactions remain
localized around neighboring degrees of freedom and are generally two-body make
it possible for most Hamiltonian to encode exactly, quite easily, and surprisingly,
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Figure A.10: (a) Matrix Product Operator formulation of the Hamiltonian
matrix H. Each degree of freedom σµ is associated to a rank-4 tensor W .
Surprisingly, the tensorsW take a very simple, small and compact form that can
be written exactly in most cases, see text for discussion. (b) Overlap between
the wave function |Ψ〉 and its conjugate transpose in the MPS formulation. To
obtain the conjugate transpose of a MPS, we take the complex conjugate of
each entry. The result of the contraction of all the tensors is naturally a scalar.
(c) Expectation value of the operator H in the MPS/MPO formulation. The
tensors have to be contracted altogether to get the resulting scalar.

in a compact form the tensors W [σµ]. This is to be stressed since in practice,
performing the steps of Fig. A.10 (a) to go from the standard matrix form to an
MPO is impossible because the Hamiltonian H is exponentially large with the system
size. Considering our favorite one-dimensional XXZ model, the tensors W [σµ] read,

W [σµ] =


I 0 0 0 0
S+ 0 0 0 0
S− 0 0 0 0
Sz 0 0 0 0

−HSz (J/2)S− (J/2)S+ ∆JSz I

 , (A.31)

where each of its element is an operator acting on the degree of freedom σµ
10.

Consequently, it is easy in practice to implement the MPO of the XXZ model
which consists of rank-4 tensors with a total number of elements equal to 52d2.
Knowing how to represent a wave function and an operator in this tensor network
representation, the next step is to compute expectation values. This could not be
more straightforward as shown in Fig. A.10 (b,c), the task simply consists of tensor
contractions. The only caution is about the order in which the tensors are being
contracted because we do not want to end up with intermediate tensors that would
be far too large to be handled — remember that the number of elements in a tensor is
the product of the size of all its indices. Theoretically, we could make the contraction
in any order and the resulting scalar would be the same, but in practice we want to
make it efficient. The best way to achieve this is to start on one end of the tensor
network and contract the first column of tensors, and we contract this new tensor
with the ones next to it, and so on, like the fasten of a zipper.

The Density Matrix Renormalization Group algorithm I now want to briefly
explain the idea behind the Density Matrix Renormalization Group algorithm to

10The rank-3 tensors for the first and last sites are respectively given by W [σ1] = [0 0 0 0 1]TW [σµ]
and W [σN ] =W [σµ][1 0 0 0 0]. with W [σµ] from Eq. (A.31).
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Figure A.11: (a) In the Density Matrix Renormalization Group (DMRG)
algorithm, we optimize the elements of each tensor independently, focusing
on one (degree of freedom µ) and keeping the others on its left (in blue) and
right (in red) constant. These left and right tensors, once contracted altogether
provide an effective environment (tensors L, L̃, R and R̃) in which to carry the
optimization problem. (b) Taking the extremum of Eq. (A.32) with respect
to the tensor (A

σµ
aµ−1aµ)

∗ gives rise to dangling indices in the tensor network.
(c) Solving the equation of the previous panel can be recast to a generalized
eigenvalue problem Heff|ϕ〉 − λN|ϕ〉 = 0 by reshaping the different tensors
to matrices and vectors. The goal is now to find the lowest eigenstate |ϕ0〉
that will be reshaped back to a rank-3 tensor to replace the old Aσµ

aµ−1aµ tensor.
This optimization procedure is repeated back and forth for each tensor until
convergence (of the ground-state energy for example).

obtain reliably the ground state of a one-dimensional system up to several hundred
degrees of freedom. Unlike what the name of the algorithm suggests we have never
introduced any density matrix in this section. This is because the first formulation
of the algorithm was done using a density matrix by White in early nineties [47, 48]
whereas tensor networks in the context of condensed matter have been developed
about ten years later. We thus present here the Density Matrix Renormalization
Group (DMRG) in the age of Matrix Product States11. The problem we want to
solve comes down to extremizing

〈Ψ|H|Ψ〉 − λ〈Ψ|Ψ〉, (A.32)

with λ a Lagrangian multiplier to ensure that |Ψ〉 is normalized. As already empha-
sized, this is impossible in practice in a standard quantum mechanics formulation,
because the number of coefficients in |Ψ〉 is exponentially large with the system size.
In the tensor network formulation, we will solve this problem by optimizing the
coefficients tensor by tensor, keeping the others constant. Let us optimize the tensor
A

σµ
aµ−1aµ associated to the degree of freedom σµ that we keep explicitly written in the

two terms of the expression (A.32) to extremize,

〈Ψ|Ψ〉 = Laµ−1a′µ−1

(
Aσµ

aµ−1aµ

)∗
Aσµ

aµ−1aµ
Raµa′µ , (A.33)

and

〈Ψ|H|Ψ〉 = L̃
bµ−1

aµ−1a′µ−1

(
Aσµ

aµ−1aµ

)∗
W

σµσ′
µ

bµ−1bµ
Aσµ

aµ−1aµ
R̃

bµ
aµa′µ

, (A.34)

11This is actually the title of the review 45 by U. Schollwöck that I heartily recommend.
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where the L, L̃, R and R̃ are the contractions of all the tensors to the left (L) and to
the right (R) of the degree of freedom σµ, see Fig. A.11 (a). We have also implicitly
assumed the summation over all the indices to lighten writing. Taking the extremum
of Eq. (A.32) with respect to (A

σµ
aµ−1aµ)

∗,

∂

∂(A
σµ
aµ−1aµ)∗

[
〈Ψ|H|Ψ〉 − λ〈Ψ|Ψ〉

]
= 0, (A.35)

gives rise to the tensor network of Fig. A.11 (b) with dangling indices because of the
derivative with respect to the tensor (Aσµ

aµ−1aµ)
∗. From this point, the problem can

be recast to a generalized eigenvalue problem as shown in Fig. A.11 (c) where we
have isolated each element,

Heff|ϕ〉 − λN|ϕ〉 = 0. (A.36)

Solving this equation for the lowest eigenvalue λ0 gives the ground state |ϕ0〉 of
the effective Hamiltonian, which can be reshaped to a rank-3 tensor Aσµ

aµ−1aµ and
inserted back into the tensor network. The matrices Heff and N are hermitian and
of linear size dD2. It is in general too large for an exact diagonalization, but since
we are interested in finding the lowest energy state, we can use iterative Lanczos or
Jacobi-Davidson algorithms. The optimization scheme is carried by sweeping from
left to right for each tensor and then right to left, and so on until convergence (of
the ground-state energy for instance). I want to make a few general remarks on the
algorithm that I presented in its most simple form:

– Solving numerically a generalized eigenvalue problem is quite demanding.
Fortunately, we can ensure that the MPS is left-normalized up to site µ− 1
and right-normalized from site µ+ 1 onwards, i.e. the blue and red tensors at
the bottom of Fig. A.11 (c) are identity matrices, which implies that N = I.
With this condition, the problem reduces to a simpler eigenvalue equation
Heff|ϕ〉 − λ|ϕ〉 = 0.

– Since the DMRG optimizing scheme is local, one might wonder if we wont’t get
stuck into local minima or if we are guaranteed to find the global minimum, i.e.
the ground state in its MPS representation. As for any optimization algorithm,
there is no such guarantee but this can be easily checked by computing the
variance 〈H2〉−〈H〉2 which should be zero for an eigenstate of the Hamiltonian
— not necessarily its ground state, but chances that we would get stuck in an
arbitrary eigenstate are small. In practice, we do not locally update one tensor
at a time but two next to each others to whittle convergence issues. Another
helper is to encode the symmetries of the Hamiltonian within MPS in order to
have a block-diagonal structure [188–190]. It ensures that the state will have
the good quantum numbers and this will also speed up calculations.

Why is the MPS representation efficient? The most recurrent operations when
dealing with MPS are contractions and SVD. For example, contract two neighboring
tensors in a MPS,Kσµσµ+1

aµ−1aµ+1 =
∑

aµ
A

σµ
aµ−1aµA

σµ+1
aµaµ+1 , on which we perform an arbitrary

operation that could not have been performed on both tensors independently. Once
the task is done, we want to get back to the local form with one tensor for each
degree of freedom σµ and σµ+1. Hence, we perform a SVD by first reshaping K
into a dD × dD matrix. The factorization leads to K = U(ΛV †) with Λ of size
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dD × dD holding the singular values. The matrices U and (ΛV †) are then reshaped
back to tensors with a new common virtual index of dimension dD compared to
before when it was of dimension D only. It was not obvious up to now, but SVD
are making the resulting factorized tensors grow, and that needs to be controlled.
The singular values are real positive numbers and by keeping only the D largest
ones, K̃ = U Λ̃V † is the best approximation of the initial K matrix which minimizes
the Frobenius norm of the difference between K̃ and K, with K̃ truncated and of
dimension D ×D. I want to explain in a few words why the MPS representation
of a one-dimensional ground state with a finite D value is actually so accurate, not
to say exact. This understanding comes from the physical meaning of the singular
values λi ∈ Λ emerging when performing a SVD between two neighboring sites µ
and µ+ 1, cutting the systems in two parts A and B. The rescaled singular values
λ̃i = λ2i /

∑D
i λ

2
i correspond to the entanglement spectrum and govern the degree of

entanglement between parts A and B of size LA and LB through the entanglement
entropy, SvN(NA,B) = −

∑D
i λ̃i ln λ̃i. As a function of the system size, one might

naively expect D to scale exponentially to retain a high accuracy. However, as
mentioned before, the area law states that the entanglement entropy of the ground
state of a local, gapped and one-dimensional Hamiltonian does not depend on the
subsystem size NA,B but is constant SvN(NA,B) ∼ cst [113,117–119,191]. This implies
that there is only a finite number of λ̃i that will actually contribute to an accurate
description of the ground state, independently of the system size, hence totally
justifying the truncation. The entanglement entropy of the ground state of a local
one-dimensional critical Hamiltonian will not be constant but grows logarithmically
with the subsystem size SvN(NA,B) ∼ lnNA,B, keeping the description tractable and
accurate up to relatively large systems.

In the following, all presented works including numerical Matrix Product States
simulations are based on the ITensor library [192].

2. Quantum Monte Carlo

The stochastic series expansion formulation of the quantum Monte Carlo (QMC)
algorithm is based on the Taylor expansion of the partition function in powers of the
inverse temperature β = 1/T [49, 50],

Z = Tr e−βH =
∞∑
n=0

(−β)n

n!
TrHn =

∑
{|σ〉}

∞∑
n=0

(−β)n

n!
〈σ|Hn|σ〉, (A.37)

with H the Hamiltonian describing the system and with the trace expressed in the
work basis {|σ〉} = {|σ1σ2 · · ·σN〉} in the second term. The powers of H can be
rewritten as all possible products of all the terms in the Hamiltonian. To provide
an example and without loss of generality, consider a pairwise interaction between
degrees of freedom at positions b = [i, j] described by H(b). The total Hamiltonian
reads,

H =
∑
b

H(b), with H(b) =
∑

terms a

H(a, b). (A.38)

For a spin system described by our favorite XXZ Hamilotnian, a = 1 can label the
diagonal interaction H(1, b) = J∆Sz

i S
z
j −H(Sz

i + Sz
j ) and a = 2, 3 the off-diagonal
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ones H(2, b) = J
2
S+
i S

−
j and H(3, b) = J

2
S−
i S

+
j . In this formulation, at a given power

n of the Hamiltonian in the Taylor expansion emerges products of n terms that we
readily represent by a sequence Sn,

Z =
∑
{|σ〉}

∞∑
n=0

∑
{Sn}

(−β)n

n!
〈σ|

n∏
p=0

H(a, b)|σ〉, (A.39)

where we have introduced the position p of the term Hp(a, b) in the sequence Sn. For
a given sequence, the indices a and b are redundant with p but it will be useful in the
following to have them explicitly written. Note the sum over all possible sequences
in the partition function. In the Taylor expansion, the sum over n runs up to infinity
and leads to infinitely large sequences Sn of operators, which cannot be numerically
handled. Since we simulate finite size systems at finite temperature, it is reasonable
to think that only sequences of finite size n will give significative contributions to the
partition function12. Therefore, we impose a cutoff M for the maximum value of n,
such that configurations labelled with n > M are negligible. Without going into the
details, its optimal value can be determined dynamically during the thermalization
process. For practical reasons, sequences n < M will be artificially enlarged by
adding M − n identity operators into it. There are

(
M

M−n

)
= M !

(M−n)!n!
different ways

to add these identity operators to a sequence of size n. When this is included into
the definition of the partition function to avoid multiple counting of a same sequence,

Z =
∑
{|σ〉}

∑
{SM}

(−β)n(M − n)!

M !
〈σ|

M∏
p=0

Hp(a, b)|σ〉, (A.40)

with n the number of non-identity operators in the sequence. The identity terms are
now labelled by a = 0, furthermore, an identity term does not act on a particular
pair of sites b, which will be referred in this case as b = 0. This formulation of the
partition function clarifies what is a Monte Carlo configuration: it is defined by a
basis state |σ〉 and a sequence of operators SM with a weight given by,

W ({|σ〉, SM}) = (−β)n(M − n)!

M !
〈σ|

M∏
p=0

Hp(a, b)|σ〉, (A.41)

which is directly related to the Boltzmann probability associated to a given configu-
ration, P({|σ〉, SM}) = W ({|σ〉, SM})/Z. For it to be interpreted as a probability,
it must be real and positive. There is in general no guarantee of that, although
we can easily manage it for spin or bosonic models on a bipartite lattice13. The
number of non-identity operators is n = n1 + n2,3 with n1 the number of diagonal
operators and n2,3 the number of off-diagonal ones in the sequence. We can write
(−β)n = β(−1)n1+n2,3 , and by ensuring that every one of the diagonal operators
induce a minus sign in the product, we can cancel n1 of them. This is easily done by
shifting the whole Hamiltonian by a dummy constant, and make sure that all matrix
elements involving a diagonal operator are negative, i.e. Hp(1, b) → Hp(1, b) + ε

12We indeed show at the end of this section that in average 〈n〉 = −βE with E the energy of the
system, extensive quantity with the system size.

13A lattice is bipartite if it can be divided in two sublattices A and B with degrees of freedom of
the sublattice A only interacting with those of the sublattice B.
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with ε an appropriate constant shift. The remaining n2,3 minus signs have to do
with off-diagonal operators. There is no problem when describing a ferromagnetic
system with J < 0 which indeed leads to n2,3 negative matrix elements involving the
terms J

2
S±
i S

∓
j . For an antiferromagnetic system with J > 0 the idea to overcome

this is to carry out a unitary transformation of the spin operators on one of the
sublattices, such that S+

j → −S+
j and S−

j → −S−
j (and no change for the operator

Sz
j ). The commutation relations of the spin operators remain unchanged by this

transformation. Hence, it does not affect the spectrum of the model, even though
the sign in front of the off-diagonal terms change to “−”. This is enough to cancel
the remaining n2,3 minus signs of all the possible weights (A.41) of the configuration
space. The minus sign in the weights gives rise to the so-called “sign problem” that
can be worked around for specific models as we just showed. When no simple trick
exists to skirt the sign problem, the model cannot be simulated. One can refer to
Ref. 193 for a more complete introduction on this.

With everything fine, the stochastic computation of the partition function can
be performed with movements in the configuration space {|σ〉, SM} as long as we
verify the detailed balance. Although the Hilbert space dimension is exponentially
large, as for the number of different possible sequences SM , a single configuration is
easily represented: |σ〉 is simply a basis state and the operator string can simply be
represented by a list of integers:

SM =
[
(a, b)1, (a, b)2, . . . (a, b)p, . . . (a, b)M

]
(A.42)

with a the type of the term (0 for identity, 1 for diagonal and 2, 3 for off-diagonal) and
b labelling the two sites on which the term acts; for a nearest-neighbor interaction
it simply labels the bonds of the lattice. In this formulation, it is actually easy
to visualize a given configuration of the {|σ〉, SM} space, where the action of the
operator string

∏p
l=0Hl(a, b) on a given initial state of the system can be interpreted

as the propagation of this initial state along the operator string itself, see Fig A.12 (a):
at a given slice p, the state |σ(p)〉 is obtained after the action of the first p operators
of the string on |σ〉 ≡ |σ(0)〉,

|σ(p)〉 =
p∏

l=0

Hl(a, b)|σ(0)〉 (A.43)

with the periodic condition |σ(M)〉 = |σ(0)〉 due to the cyclic invariance of the trace.
This notation is useful to isolate the action of a single operator at a given slice p
from the state at the previous slice p− 1, e.g.

〈σ(0)|
M∏
l=0

Hl(a, b)|σ(0)〉 = 〈σ(p− 1)|Hp(a, b)|σ(p)〉, (A.44)

where the first p− 1 operators of the string have been applied on the bra 〈σ(0)| and
the operators onwards p+ 1 on the ket |σ(0)〉.

Monte Carlo updates As in any Monte Carlo algorithm, we now need to start
from an initial configuration {|σ〉, SM} and suggest updates to accept or refuse with
a transition probability from the old configuration to the new satisfying detailed
balance. The ergodicity is encoded in the fact that all the weights (A.41) are strictly
positive. Again, as in any Monte Carlo algorithm there is a lot of different possible
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Figure A.12: (a) Graphical representation of one Monte Carlo configuration
for a one-dimensional four spin-1/2 system with a first-neighbor interaction.
The colors blue and red correspond respectively to a state |σi〉 = | ± 1

2
〉. The

cutoff M = 7 and there are n = 5 non-identity operators. The diagonal
operator is represented by a straight line between two sites and an off diagonal
operator by a zig-zag line. The identity operators have been omitted in this
representation. (b) Different possible movements for the worm (red line) on a
vertex, depending on the relative position between the entrance and exit legs.
Their names are quite explicit: the jump, the turn, the straight and the bounce.
These movements are related to the update of the operator on the vertex.

updates but we want the most efficient ones. A good candidate that I will present is
known as the directed loops algorithm with two types of updates. The first one is the
diagonal update which tries to exchange an identity operator by diagonal operator,
and vice-versa, in the sequence SM , i.e. (0, 0) ↔ (1, b) [49, 50, 194]. The other type
of update is the loop operator update that attempts to exchange an off-diagonal
operator by another off-diagonal operator or a diagonal one, and vice-versa, i.e.
(m, b) ↔ (n, b) with m,n = 1, 2, 3 [195].

The diagonal update runs through all operators of the sequence. If a = 2, 3
(off-diagonal term), we do nothing and move to the next one. If an identity operator
(a = 0) is encountered, a pair of sites b is randomly picked amongst all the Nb possible
ones and the exchange of the identity operator by a diagonal one (0, 0)p ↔ (1, b)p is
proposed with probability of acceptance,

P
[
(0, 0)p → (1, b)p

]
= min

(
1,
Nbβ〈σ(p− 1)|Hp(1, b)|σ(p)〉

M − n

)
, (A.45)

and similarly for the reverse move (1, b)p ↔ (0, 0)p if a diagonal operator is encoun-
tered in the sequence,

P
[
(1, b)p → (0, 0)p

]
= min

(
1,

M − n+ 1

Nbβ〈σ(p− 1)|Hp(1, b)|σ(p)〉

)
. (A.46)

During a diagonal update, the number n of non-identity operators changes, but it
should not reach the cutoff value M that we introduced for the Taylor expansion. To
ensure that its value is large enough, it is dynamically updated during a thermalization
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process. In practice, we start with a random basis state |α〉 and an empty sequence
(filled with identity operators) of small size M . We then perform diagonal updates
until some convergence. Namely, if n > 4

5
M , we extend the sequence size to M → 5

4
n

by adding identity operators and extend the size of the sequence as many times as
necessary until the average 〈n〉 value does not fluctuate too much when performing
updates and remain smaller than M . We will see by the end of this section that the
average value of non-identity operators is related to physical observables such as the
energy of the system and justifies that 〈n〉 ∝ βN with N the number of degrees of
freedom in the system.

Diagonal updates are used in the thermalization process and used alongside
loop operator updates for the usual sampling movements. This second movement is
trickier than the first one because a simple substitution of a diagonal operator by an
off-diagonal one in the sequence would give a configuration with a zero contribution
to the partition function since the matrix element 〈σ(p− 1)|Hp(m, b)|σ(p)〉 would
vanish with m = 2, 3. To overcome this problem we introduce the non-local loop
update. The idea is to represent every one of the n non-identity operators acting on
sites [i, j] as 4-legs vertices labelled by k = 1, 2, 3, 4. At a given pth vertex, there is
a state associated to each leg, i.e.

|σ(k = 1)〉 = |σi(p− 1)〉
|σ(k = 2)〉 = |σj(p− 1)〉
|σ(k = 3)〉 = |σi(p)〉
|σ(k = 4)〉 = |σj(p)〉

(A.47)

In this representation, the update runs as follow. First, one of the n vertices is
randomly chosen, as well as one of its legs, the “entrance leg” kin. Then, an exit
leg kout is chosen on the same vertex together with new states |σ(kin)〉 and |σ(kout)〉
for the entrance and exit legs respectively, according to a certain probability table
satisfying detailed balance. In agreement with these new proposed states, we replace
the old operator at this vertex by a new one that would initiate the proposed change
if we were to simply follow the propagation lines. The allowed new states are only
those corresponding to non-zero matrix elements,

〈σ(k = 1)σ(k = 2)|Hp(a, b)|σ(k = 3)σ(k = 4)〉, (A.48)

where a can take the values 1, 2 or 3. The next step consists of following the
propagation line on the same site as the exit leg until a new vertex is met. The
update procedure is exactly the same as for the first vertex. The operation is carried
until a closed loop is formed, by going back to the initial vertex through the first
same entrance leg that we picked and with the exact same initial updated state
|σ(kin)〉. Note that due to the periodicity |σ(p = 0)〉 = |σ(p =M)〉, if the loop goes
through the boundary, the initial state will be changed. By going from one vertex
to another from an exit leg to an entrance leg the update process can be pictured
as a worm moving in the configuration space [196,197]. Depending on the relative
position of the entrance and exit legs on a vertex, there are four possible movements
for the worm as shown in Fig. A.12 (b): jumping, turning, going straight or bouncing.
The jumping and turning movements bring the worm on a different site and are
associated to off-diagonal operators. By going straight, the worm stays on the same
site and the operator on the vertex should be diagonal. The last movement is the
bounce which keeps the vertex unchanged. There are actually different ways to build
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the probability table for the worm movements/vertex updates. A generic solution
is to consider that the probability to change one vertex to another is proportional
to the weight of the matrix element (A.48) after the update, independently of the
entrance leg. However, this choice turns out to be inefficient in many cases because of
“bounce” movements which do nothing and that we want to avoid. A more efficient
probability table can be constructed by minimizing the probability of bouncing, and
is known as the directed loop update since it explicitly depends on the entrance
leg [198–202].

Computation of physical observables The stochastic series expansion formulation
of the QMC algorithm makes it quite easy to compute observables, and as I don’t
want to present a catalog of observables here, I refer the interested reader to Ref. 180.
To justify a posteriori the truncation M introduced in the Taylor expansion at the
beginning, one can show that the total energy E of the system is given by

E = −∂ lnZ
∂β

= −〈n〉
β
, (A.49)

where the shift constant ε inserted in the first place to avoid a sign problem has
been subtracted already. Here, the symbol 〈·〉 stands for the average number n of
non-identity operators over many sampling configurations. The energy being an
extensive quantity, the energy density is e = E/N ; which justifies the cutoff M
with 〈n〉 ∝ βN being finite. Also, I want to mention that for magnetic systems
displaying long-range XY order that I discussed in the previous section, the complex
order parameter mAF cannot be entirely computed, only its square modulus |mAF|2
is accessible, with no information on its argument θ = arg(mAF). This is because its
computation is based on the transverse correlation function,

|mAF|2 = lim
N→+∞

1

2N2

∑
i,j

(
〈S+

i S
−
j 〉+ 〈S−

i S
+
j 〉
)
. (A.50)

Besides, if one were able to compute the complex order parameter mAF, it would be
zero since a continuous symmetry cannot be spontaneously broken on a finite size
system. Quantum Monte Carlo is an exact numerical method within error bars, in
the sense that we did no approximation. The error bars result from the stochastic
sampling in the configuration space and scale as O(1/

√
Nm) with Nm the number of

measurements performed, and the reduction of the error bars simply implies longer
simulation times. However, one cannot just evaluate the error bars as the standard
deviation of all the measurements performed, because consecutive measurements do
not result from strictly independent Monte Carlo configurations, but from updated
ones. Owing to the non zero auto-correlation time between consecutive measurements,
the standard deviation would actually underestimate the errorbars and a faithful
estimation is obtained by a resampling of the measurements using jackknife or
bootsrap methods [203].
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Figure A.13: (a) Upper panel, a three-dimensional spin system on a tetrago-
nal lattice. Black and red bonds represent the Heisenberg exchange interactions
J and J ′ between neighboring spins respectively. When the exchange interaction
J ′ along the z axis is gradually switched off, it converges to a two-dimensional
spin system on layered squared lattices as shown in the lower panel. (b) Possible
scenario of suppression of the XY ordering by the reduction of dimensionality
from 3D (lighter blue) to quasi-2D (darker blue). Note that the critical tem-
perature remains finite even in the quasi-2D limit. (c) A schematic distinction
of the quasi-2D and the 3D ordered phases. The quasi-2D ordered phase is
spread near the critical temperature Tc and associated by the suppressed but
nonzero spontaneous order mAF(T ). The quasi-2D ordered phase inherits the
critical behavior of the 2D Kosterlitz-Thouless critical phase. The 3D ordered
phase is a rather conventional ordered phase with a well developed interlayer
correlation. Those phases are roughly separated at a crossover temperature Tcr.

IV. Dimensional modulation of the ordering process
in weakly coupled spin chains

Adapted from the work Phys. Rev. B 94, 144403 (2016)
Shunsuke C. Furaya, Maxime Dupont14, Sylvain Capponi, Nicolas Laflorencie,

and Thierry Giamarchi

Spontaneous symmetry breaking is deeply related to dimensionality of a sys-
tem [17–20]. The XY antiferromagnetic order going with spontaneous breaking
of U(1) symmetry is safely allowed at any temperature for three-dimensional sys-
tems but allowed only at zero temperature for purely two-dimensional systems. In
this work, we closely investigated how smoothly the ordering process of the three-
dimensional system is modulated into that of the two-dimensional one with reduction
of dimensionality. The critical temperature is kept finite even in the two-dimensional
limit although the long-range order is greatly suppressed for low-dimensionality. This
feature of the critical temperature is highly nontrivial and dictates how the order
parameter is squashed under the reduction of dimensionality. We investigated this
dimensional modulation of the order parameter using analytical tools and numerical
methods. Magnetic insulators are particularly interesting from the viewpoint of
dimensionality since one can control it with their temperature. Let us take as an

14In this theoretical collaboration, I carried out the numerical simulations, which include DMRG
and quantum Monte Carlo calculations.
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grows again and the low-energy excitations change the
nature. We present the original NMR signatures of the
crossover and discuss a possible origin in light of the recent
theory [27].
A single-crystal sample was directly put into a 3He-4He

mixture of a dilution refrigerator to ensure a good thermal
contact. 14N (nuclear spin value I ¼ 1) NMR experiments
were performedusing a standard pulsed spin-echo technique.
The spectrum was obtained by performing a Fourier trans-
form of the spin-echo signal that follows an excitation and
refocusing NMR pulses. The NMR spin-lattice relaxation
rate T−1

1 was obtained by a saturation-recovery method,
using the theoretical relaxation function for I ¼ 1 nuclei,
MðtÞ=M0 ¼ 1− 0.25exp½−ðt=T1Þα%− 0.75exp½−ð3t=T1Þα%,
whereMðtÞ is the nuclear magnetization, t is a time interval
between the saturation pulse and the echo pulses, and M0

is the nuclear magnetization in equilibrium (t → ∞). The
stretch exponentαwas introduced to describe thedistribution
of T−1

1 values. The saturation of nuclear magnetization was
achieved by using a single pulse as long as 10–20 μs to
reduce the excitation power so that unwanted heating effects
were avoided.
Figures 2(a) and 2(b) show the 14N NMR line shape as a

function of the temperature in an applied field of 9.0 and
15.0 T, respectively. In both fields, a spectral line at high
temperatures becomes broadened as the temperature is
lowered and then splits symmetrically into two lines across
Tc ≃ 330 mK [20]. This splitting reflects the growth of the
staggered transverse (⊥H)moments, i.e., the order parameter
(OP). Figure 2(c) plots the temperature evolution of the
splitting, which tends to saturate as the temperature
approaches 150 mK. However, as the temperature is further
lowered acrossT& ∼ 100 mK, the split lines begin to separate
further away symmetrically. At the lowest measured temper-
ature of 40 mK, the splitting becomes 33 kHz, which is 50%
larger than the 22 kHz observed at ∼150 mK.

The NMR lines have a Gaussian shape over the measured
temperature and field ranges, except close to Tc, where the
line shape can be decomposed into two superimposed
Gaussians [Figs. 2(a) and 2(b)]. The linewidths at high
temperatures above 400 mK are 4.4 and 6.9 kHz in 9 and
15 T, respectively, meaning that the line broadening scales
with the field and is thus of a magnetic origin. When the
temperature is lowered acrossTc, the line broadens on top of
the splitting, which is a hallmark of a magnetic-ordering
transition.On the other hand, the line shape andwidth remain
almost completely intact across T&. Figure 2(d) plots the
linewidth normalized by the high-temperature value as a
function of the temperature. The overall spectral features
are practically indistinguishable between 9 and 15 T.
The crossover behavior in the spectrum across T& is

further corroborated by the relaxation rate measurements.
Figure 3(a) shows T−1

1 as a function of the temperature in
9.0 and 15.0 T. Note that T−1

1 probes Cu2þ electron spin
fluctuations in the low-energy limit. At high temperatures
in the TLL regime, T−1

1 increases with the lowering
temperature by 1D quantum-critical fluctuations [20]. As
the temperature further approaches Tc, the T−1

1 increases
even more rapidly by the addition of thermal-critical
fluctuations, which is another hallmark of a magnetic-
ordering transition. Then, a very strong suppression ofT−1

1 ,
by more than 2 orders of magnitude, follows the peak atTc
as the temperature is lowered below 300 mK. In the
temperature range where the OP is apparently saturated,
we find T−1

1 ∼T5.5. A similar suppression has been
observed in other quasi-low-dimensional quantum magnets
below the ordering transition [28]. However, as the temper-
ature is further lowered across T&, the T−1

1 begins to bend
out from the strong suppression and roughly followsT−1

1 ∝
Tbehavior. In addition, T−1

1 in 9 T is roughly twice larger
than the one in 15 T in this regime.

FIG. 2. (a) 14N NMR spectra as a function of the temperature in an applied field of 9.0 T and (b) in 15.0 T. Dashed vertical lines
correspond to the first saturation of the line splittings at around 150 mK on cooling. (c) The line splitting as a function of the temperature,
where three different regimes are identified and presented using different background colors and separated by the vertical dash-dotted
lines. (d) Normalized linewidth as a function of the temperature.
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Quasi-2D3D

Figure A.14: 14N NMR spectra as a function of the temperature in an applied
field of (a) H = 9.0 T and (b) 15.0 T. Dashed vertical lines correspond to the
first saturation of the line splittings at around T = 150 mK on cooling. (c)
The line splitting, proportional to the modulus of the order parameter |mAF|,
as a function of the temperature, where three different regimes are identified
and presented using different background colors and separated by the vertical
dash-dotted lines. Adapted from Ref. 204.

example a spatially anisotropic quantum Heisenberg antiferromagnet on a three-
dimensional cubic lattice whose exchange interactions are J in the x and y directions
and J ′ in the z direction as shown in Fig. A.13 (a). For J ′ � J , this system is
effectively identical to two-dimensional (2D) quantum spin systems when the tem-
perature T is high enough to mask the interplane correlation due to J ′. On the
other hand, when T � J ′, the interplane coupling J ′ is non-negligible and leads to
spontaneous XY order. In short, the Heisenberg antiferromagnet on weakly coupled
square lattices behaves two-dimensionally for T � J ′ and three-dimensionally for
T � J ′. There must be a dimensional phase transition or crossover at a moderate
temperature in between these two distinctive regions. The Heisenberg quantum
antiferromagnet on the spatially anisotropic cubic lattice has a spontaneous XY
order mAF(T ) below a critical temperature Tc for J ′/J ' 1. It is well known that
mAF(T ) exhibits a domical temperature dependence represented by the lightest-blue
curves in Fig. A.13 (b). On the other hand, it exhibits spontaneous XY order only at
zero temperature for J ′/J = 0. Here we ask the question of how the mAF(T ) curve is
modified when reducing J ′/J and how it dictates the existence of a quasi-2D ordered
phase where the system behaves two-dimensionally except for the suppressed but
nonzero mAF(T ) breaking the U(1) symmetry, see Fig. A.13 (c).

This work is greatly motivated by experimental measurements on the strong-
leg spin-ladder compound (C7H10N)2CuBr4, also known as DIMPY. As already
discussed, a two-leg spin ladder has a gapped singlet phase at low field where a
nonzero excitation gap exists. A strong magnetic field closes it and allows the field-
induced TLL phase. The system of 3D coupled antiferromagnetic spin ladders exhibits
long-range XY order on the low-temperature side of the field-induced TLL phase.
NMR measurements of the order parameter versus temperature, reported in Fig. A.14
show two different regimes labelled quasi-2D and 3D and interpreted as such [204].
More broadly, DIMPY has recently been under active experimental and theoretical
investigations [171,173,205–209] because it is the first spin-ladder compound with
strong leg interactions Jleg/Jrung = 1.7. Since coupled spin chains and coupled
spin-ladders subject to a magnetic field can both realize a 3D XY ordered phase at
low-temperature, results should be independent of the underlying model. That is
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why we slightly move away from the realistic description of DIMPY by considering
more generic spin-1/2 degrees of freedom on the vertices of an orthorhombic lattice
with spatially anisotropic couplings J , J ′

1 and J ′
2 such that J � J ′

1 � J ′
2. The 1D

nature of the underlying model is masked by well developed interchain correlations
in the quasi-2D or 3D ordered phases and thus not essential for our claim of the
dimensional modulation. Still, it is technically convenient for theoretical analyses.
The model is described by the following Hamiltonian,

H = J
∑
〈ij〉0

[
1

2

(
S+
i S

−
j + S−

i S
+
j

)
+∆Sz

i S
z
j

]
−H

∑
i

Sz
i +H3D

with H3D = J ′
1

∑
〈ij〉1

Si · Sj + J ′
2

∑
〈ij〉2

Si · Sj, (A.51)

with 〈ij〉n restricting the sum to nearest-neighbors in the three different n spatial
directions.

1. Analytical approaches

Mean-Field treatment The simplest way to deal with a phase transition is a
mean field approach. It has proven to be often precise enough to determine the
phase boundary of the XY ordered phase of various compounds such as the weakly
coupled spin-1/2 Heisenberg antiferromagnetic ladders CuBr4(C5H12N)2 by treating
the three-dimensional coupling in a mean-field way [166, 171, 210]. In the ordered
phase, the antiferromagnetic order develops in the XY plane and is measured by
the order parameter mAF = limN→+∞

∑
r m

AF
r /N with mAF

r = eiqAF·r〈Sx
r + iSy

r 〉 and
qAF = (π, π, π) the antiferromagnetic wavevector. For convenience, we rotate the XY
spin components such that 〈Sy

r 〉 = 0, which brings the XY ordering solely along the
x component. Doing that is like imposing the angle θ = arg(mAF) to be zero, while
it is normally spontaneously locked to a random value due to the phase transition.
However, as we only seek to describe the ordered phase here, it is fine to choose
its value. The mean-field Hamiltonian is derived by rewriting the operators of the
interchain coupling Hamiltonian H3D in (A.51) as Sµ

j = 〈Sµ
j 〉+ (Sµ

j −〈Sµ
j 〉) where 〈·〉

denotes the average value on the ground state. Neglecting quadratic terms and up
to an irrelevant constant we get,

H3D → HMF = (z1J
′
1 + z2J

′
2)
∑
j

[
mAFSx

j +mzSz
j

]
. (A.52)

where z1,2 = 2 is the number of neighboring chains coupled through J ′
1,2. Note that

we have assumed an homogeneous system with mAF = (−1)j〈Sx
j 〉 and mz = 〈Sz

j 〉,
valid for any site j. Ultimately, the mean-field Hamiltonian describes a single chain
subject to an effective longitudinal magnetic field ∝ mz and an effective staggered
transverse magnetic field ∝ mAF accounting for the XY order.

Generically, the order parameter is given in linear response by mAF = χxxhstag
with χxx the transverse susceptibility of the full system (A.51) and hstag a staggered
magnetic field. Likewise, we get for a single chain described by the mean-field
Hamiltonian which is explicitly subject to a staggered field itself,

mAF = χxx
1D

[
hstag + (z1J

′
1 + z2J

′
2)m

AF
]
. (A.53)
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Isolating the order parameter from the above expression, we finally get,

χxx =
χxx

1D
1− (z1J ′

1 + z2J ′
2)χ

xx
1D
, (A.54)

known as the random phase approximation (RPA) [211,212]. The 1D susceptibility
χxx

1D in the Tomonaga-Luttinger Liquid phase can be computed exactly [37, 155, 210]
and is given by

χxx
1D =

A0 sin
(

π
4K

)
u

(
2πT

2u

) 1
2K

−2

B2

(
1

8K
, 1− 1

4K

)
, (A.55)

with B(x, y) = Γ(x)Γ(y)/Γ(x+ y) the Beta function and Γ(z) the Gamma function.
u and K are the Tomonaga-Luttinger Liquid parameters and A0 the prefactor of the
transverse correlations. The RPA formula (A.54) tells us that the phase transition
occurs when the susceptibility diverges, i.e. 1− (z1J

′
1 + z2J

′
2)χ

xx
1D = 0. This equation

has a unique solution,

Tc =
u

2π

[
A0(z1J

′
1 + z2J

′
2) sin

(
π
4K

)
B2( 1

8K
, 1− 1

4K
)

2u

] 2K
4K−1

. (A.56)

The RPA analysis we just performed tells us the fate of the critical temperature
in the 2D limit J ′

2/J
′
1 → 0: even when J ′

2 = 0, the susceptibility (A.54) diverges
at a certain finite temperature known the Berezinky-Kosterlitz-Thouless transition
temperature TKT [213–215]. Note that the susceptibility is divergent everywhere in
the Kosterlitz-Thouless phase [216]. Let us see our system as a weakly coupled 2D
systems with an infinitesimal interlayer coupling J ′

2 as in Fig. A.13 (a). Performing
the RPA calculation with respect to J ′

2, we obtain the susceptibility,

χxx =
χxx

2D
1− z2J ′

2χ
xx
2D
, (A.57)

where χxx
2D is the transverse susceptibility in the 2D limit J ′

2/J
′
1 = 0. The above

susceptiblity χxx is divergent at a temperature Tc which is a solution of

χxx
2D|T=Tc

=
1

z2J ′
2

. (A.58)

Since the right hand side of the above equation is large but finite, the 2D susceptibility
at Tc on the left hand side must be finite as well. Therefore it immediately follows
that TKT < Tc for any J ′

2/J
′
1 > 0. The relation of the critical temperature and the

Kosterlitz-Thouless temperature indicates that the critical temperature converges
to a finite value, which is TKT in the quasi-2D limit (another argument, developed
in Ref. 217, leads to the same conclusion regarding the fate of Tc as J ′

2/J
′
1 → 0).

Therefore, the RPA analysis supports the dimensional reduction scenario sketched
in Fig. A.13 (b). We will develop in the following further evidences by studying the
shape of the order parametermAF versus the temperature through various approaches
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Figure A.15: Normalized XY order parameter plotted agains the temperature
(arbitrary units) for several ratios of J ′

2/J
′
1. The variational method allows the

computation of the order parameter in two limits: deep in the ordered phase
(blue triangles) and close to the critical temperature (red circles).

Variational method The variational method is designed to build a quadratic
action that best approximates the nonlinear action of the original theory. Using the
bosonization representation of the spins [37] the Hamiltonian of the system in the
ordered XY phase leads to the Euclidean action15,

S =
∑
µ,ν

{
K

2πu

∫
dτdx

[
(∂τθµ,ν)

2 + u2 (∂xθµ,ν)
2
]

− J ′
1A0

∫
dτdx cos (θµ,ν − θµ+1,ν)− J ′

2A0

∫
dτdx cos (θµ,ν − θµ,ν+1)

}
, (A.59)

The θµ,ν ≡ θµ,ν(τ, x) field describes the antiferromagnetic XY order with mAF(T ) =√
A0〈cos θµ,ν〉. Note that when J ′

1 = J ′
2 = 0, the action represents a set of mutually

independent Tomonaga-Luttinger Liquids. The basic idea of the variational method
is to search for a quadratic variational action, that will make the computation of
observables possible (especially the order parameter here), of the form

Sv =
T

2Ω

∑
ωn,q

G−1
v (iωn,q)|θ(iωn,q)|2, (A.60)

that approximates best the original action with Gv(iωn,q) the Green’s function
to determine. Here ωn are the Matsubara frequencies and Ω is the volume of the
system. The field θ(iωn,q) is the Fourier transform of θµ,ν(τ, x). To find the optimum
approximation of the Green’s function, we use the variational principle over the free
energy [218]. The free energy is defined as F = −T lnZ, where Z is the partition
function, Z =

∫
D[θµ,ν ]e−S where D[θµ,ν ] denotes the integration over all paths. The

variational principle reads F ≤ Fvar where Fvar is the variational free energy defined
as

Fvar = Fv + T 〈(S − Sv)〉v. (A.61)

Here Fv is the free energy of the variational action (A.60) and the average 〈·〉v
is taken with respect to it. The optimal Sv is determined so as to minimize the
variational free energy from the saddle-point equation δFvar/δGv = 0. An expression
of the Green’s function versus the temperature and the couplings J ′

2/J
′
1 is then be

obtained, but the underlying equations that need to be solved self-consistently can
15The other field φµ,ν , dual to θµ,ν can be discarded in the description of the XY ordered phase

characterized by θµ,ν only.
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only be handled in basically two limits: deep in the ordered phase and close to the
critical temperature. Fig. A.15 shows the order parameter in the whole temperature
range for J ′

2/J
′
1 = 0.1, 0.01, 0.001 and 10−4, where the discontinuity between the red

and blue symbols is a technical artifact resulting from the two limits considered for
calculations. For J ′

2/J
′
1 � 1, we clearly see a rapid growths of the XY ordering below

a certain crossover temperature Tcr separating the quasi-2D phase (red symbols)
from the 3D phase (blue symbols) with a change of curvature, supporting scenario of
Fig. A.13 (b).

Classical approximation In order to describe the ordering process coherently in
the entire region of the ordered phase, trying to accord the two limiting cases of
Fig. A.15, we discard the imaginary-time dependence of the fields θµ,ν(τ, x) ' θµ,ν(x),
which replaces the original (3 + 1)-dimensional quantum system to the (3 + 0)-
dimensional classical one. This classical approximation works well near the critical
temperature [21] and, although it is challenging to specify its precise range of validity,
we can expect that it is very wide in the 2D limit J ′

2/J
′
1 → 0 because the system

stays at the critical line at low temperatures T < TKT. Moreover, it is reasonable
to think that in the ordered phase, the field fluctuations of neighboring chains µ
and µ + 1 within a same 2D layer are going to be much more smaller than those
from neighboring chains on different 2D layers (ν and ν + 1) if J ′

1 � J ′
2. Hence,

we expand the cosine term of the interchain interaction up to second order as
cos (θµ,ν − θµ+1,ν) ' 1 − 1

2
(θµ,ν − θµ+1,ν)

2. Dropping the constant, we move to the
continuum limit in the µ direction, (θµ,ν − θµ+1,ν)

2 → (∂yθν)
2 where the classical

field now depends on the 2D layer ν and the continuous variables x and y as θν(x, y).
Straightforwardly, the new action reads

Scl =
∑
ν

{
K

2πuT

∫
dxdy

[
u2 (∂xθν)

2 + v2y (∂yθν)
2
]

− J ′
2A0

T

∫
dxdy cos (θν − θν+1)

}
with v2y =

u2J ′
1A0

2K
, (A.62)

where we have used
∫
dτ = 1/T and the substitution

∑
µ →

∫
dy resulting from the

continuum limit with lattice spacings set to unity. For convenience, we also make
the following rescalings y = vyτ

′, K ′ = vyK/T and J̃ ′
2 = vyJ

′
2/T , which leads to

S =
∑
ν

{
K ′

2πu

∫
dxdτ ′

[
u2 (∂xθν)

2 + (∂τ ′θν)
2
]

− J̃ ′
2A0

∫
dxdτ ′ cos (θν − θν+1)

}
. (A.63)

By comparing this form of the action with the original one, it is clear that it can be
seen as the description of a (2 + 1)-dimensional quantum system, i.e. quantum spin
chains with Tomonaga-Luttinger parameters K ′ and u, coupled in a two-dimensional
fashion through J̃ ′

2 and whereK ′ ∝ 1/T . Along with a renormalization group analysis
of the couplings, one way to go further into the calculations (other than numerically,
see next section) is to make a mean-field approximation of the J̃ ′

2 interaction in
the action (A.63). This reduces the problem to a single chain in a staggered field.
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Figure A.16: Order parameter in the strongly 2D case for various values
of the couplings ratio J ′

2/J
′
1 computed in the mean-field approximation of the

(2 + 1)-dimensional action (A.63), leading effectively to a (1 + 1)-dimensional
model described by the integrable sine-Gordon theory. The horizontal axis
represents the temperature 1/K ′ ∝ T

The resulting action is known as the sine-Gordon theory and is integrable. One can
get an expression for the order parameter mAF(T ), shown in Fig. A.16 for different
values of J ′

2/J
′
1, where the curves are qualitatively consistent with the results of the

variational calculations of Fig. A.15.

2. Numerical study

We are at the stage of supporting our results obtained thus far with unbiased
numerical calculations. The initial 3D model of Eq. (A.51) with J � J ′

1 � J ′
2 is

numerically out of reach due to the strong anisotropy required between couplings
which makes the quantum Monte Carlo simulations too demanding to reach low
enough temperatures to capture the relevant physics. Indeed, a rough estimate based
on the RPA formula (A.56) gives a critical temperature Tc ∼ O(J ′

1) and we have
to go far below this temperature to capture the quasi-2D and then 3D regime for
the order parameter16. However, the classical approximation, which has proven to
give reasonable results consistent with the variational method, makes it possible
to simulate the underlying Hamiltonian associated to the action (A.63). Indeed,
simulating weakly coupled spin chains in two-dimensions at zero temperature is
substantially less demanding. In this section we provide numerical evidences to
support previous analytical results by reproducing the order parameter mAF(T )
curve of Fig. A.16. Especially, the numerical analysis allows us to go beyond the
simple mean-field approximation with respect to J̃ ′

2 that we have made and test the
validity of the mean-field approximation. The Tomonaga-Luttinger Liquid (TLL) is
a universal description, basically independent of the microscopic details. Thus, in
order to test the analytical results, we can use any 1D lattice system as long as it is
described by TLL theory at zero temperature. In practice, we will use the simplest

16We did attempt to simulate the 3D system described by the Hamiltonian (A.51) with J ′
1 = J/10

and J ′
2 = J ′

1/10. While being at the limit of what one can expect to compute, we could not observe
the quasi-2D regime of the order parameter. We believe that the factor 10 between the couplings
was not large enough to actually observe it.

50



0.0 1/2 1.0 3/2 2.0

1/K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
x

non-physical zone

Analytic
DMRG+MF
Spin-wave
QMC

J0 = 1.0

J0 = 10�1

J0 = 10�2

J0 = 5 · 10�3

�1.0 �1/
p
2 0.0 0.5 1.0

�

1/K

�

m
A
F
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quantum Monte Carlo (infinite size extrapolations).

example, namely coupled XXZ spin-1/2 chains described by the Hamiltonian

H =
∑
i,n

{
J

[
1

2

(
S+
i,nS

−
i+1,n + S−

i,nS
+
i+1,n

)
+∆Sz

i,nS
z
i+1,n

]
+J ′Si,n ·Si,n+1

}
,(A.64)

where i and n label the sites along and perpendicular to the chains. ∆ ∈ [−1, 1]
is the Ising anisotropy governing the TLL parameter of isolated XXZ chains [71],
and J ′ controls the strength of the transverse 2D interchain coupling17. In the
following, the intrachain coupling is set to unity J = 1. The goal is to numerically
investigate the ground-state order parameter as a function of the TLL parameter K
in order to compare it with various analytical approaches. We first discuss mean-
field approximations, both analytically and within a numerical scheme [219] based
on DMRG calculations. We also compare these results with a spin-wave theory.
Lastly, quantum Monte Carlo simulations are used to deal with the exact quantum
mechanical problem and to compute the order parameter of weakly coupled XXZ
chains in the limit of small interchain coupling J ′.

Analytical mean-field treatment Rewriting the 2D interchain coupling of the
Hamiltonian (5), similarly to what we did in the beginning of this section, we obtain
a model describing a single one-dimensional chain in a staggered magnetic field
∝ mAF along the x spin component. The associated fields theory corresponds to the

17In our published work, there was also an Ising anisotropy ∆ along the z spin component in the
transverse 2D interchain coupling. However, we showed that its value played no role in the zero
temperature order parameter value and simply keep the transverse coupling SU(2) symmetric.
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integrable sine-Gordon theory [37, 69, 212, 220] from which the order parameter can
be computed (details are in previous references),

mAF =
√
A0

8Kπ2

(8K−1) sin
(

π
8K−1

) [Γ(1− 1
8K

)
Γ
(

1
8K

) ] 8K
8K−1

[
Γ
(

4K
8K−1

)
Γ
(
16K−3
16K−2

)]2 (
πA0J

′

u

) 1
8K−2

. (A.65)

It is plotted against 1/K in Fig. A.17 and discussed in the following.

Numerical mean-field treatment One can also simulate the mean-field Hamilto-
nian describing a 2D array of coupled chains self-consistently. Specifically, numerical
simulations can be performed in a self-consistent way using the DMRG algorithm
at T = 0. To do so we start with a nonzero initial guess for the order parameter
mAF in the Hamiltonian and (tar)get the system ground state. Once we have it,
a new value of the order parameter is measured and a new Hamiltonian is built
accordingly. The procedure is repeated until two consecutive measures of the mAF

appear to be converged. As visible in Fig. A.17, both analytical and numerical
mean-field approaches agree better for smaller J ′. The numerical mean-field is more
controlled than the analytical approach when J ′ is not very small, giving mAF ≤ 0.5,
as it should be, in particular close to the ferromagnetic point 1/K → 0. Nor does it
predict any divergence for mAF close to 1/K → 2, attributed to the divergence of
the prefactor ∝

√
A0 in Eq. (A.65).

Spin-wave As known for a long time, back to the seminal work by Anderson [83],
spin-wave theory gives excellent estimates at the 1/S order for the order parameter
of D ≥ 2 spin-S quantum antiferromagnets, even for the most quantum case of
S = 1/2. The question of weakly coupled chains, where spatial anisotropy enhances
quantum fluctuations is more delicate, as discussed in several works [219,221–223].
After making a rotation in order to align the quantization axis with the classical
order along the x direction, we use the Dyson-Maleev representation of the spin-S
operators in the rotated frame,

Sx
i = S − ni, Sy

i =
1

2i

[
(2S − ni)b

†
i − b†i

]
,

and Sz
i = −1

2

[
(2S − ni)b

†
i + b†i

]
, (A.66)

where the operators b†i and bi follow bosonic commutation relations. At this point we
make two things: first, we introduce a transverse field −Γ

∑
i,n S

x
i,n (along the order

direction) that will be useful to compute the order parameter; then, we make the
operators substitution for spin S = 1/2, keeping only O(S) and O(S2) terms,

Hsw =
1

4

∑
i,n

{
2(ni,n + ni+1,n)− 1 +

∑
+−

±(1±∆)
(
b†i,nbi+1,n + h.c.

)
+ J ′

[
2(ni,n + ni,n+1)− 1 + 2

(
b†i,nbi+1,n + h.c.

)]
− 2Γ (1− ni,n)

}
. (A.67)

This Hamiltonian can easily be diagonalized using a standard Bogoliubov transfor-
mation in Fourier space q = (qx, qy) with qn = 2πm/Ln with m ∈ [0, 1, . . . Ln − 1].
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Here Ln is the system size in the n = x, y spatial direction with N = LxLy degrees
of freedom. Up to an irrelevant constant we get,

H̃sw =
∑

q

Ωqα
†
qαq, with Ωq =

√
A2

q −B2
q, (A.68)

where Ωq is known as the spin-wave excitation spectrum with

Aq = (1 + J ′ + Γ)− (∆− 1)

2
cos qx,

and Bq =
(∆ + 1)

2
cos qx + J ′ cos qy. (A.69)

In the absence of the external symmetry breaking field Γ, the dispersion has a zero
mode at q = (qx = 0, qy = 0)18. The order parameter can be computed using the
Hellman-Feynman theorem 〈∂ΓH(Γ)〉 = ∂Γ〈H(Γ)〉 as [224],

mAF = 1− 1

2N

∂E

∂Γ

∣∣∣
Γ=0

= 1− 1

2N

∑
qx,qy

Aq

Ωq
, with E =

∑
q

Ωq (A.70)

where the sum is performed over all q 6= (0, 0) to avoid the diverging term A0/Ω0
in the sum. Spin-wave results are plotted together with MF estimates as well as
with exact QMC results in Fig. A.17. In the repulsive TLL regime (1/K > 1), the
spin-wave mAF is strongly depleted for increasing anisotropy (decreasing J ′), and
deviates from mean-field results. On the other hand, for the attractive TLL regime
(1/K < 1), the agreement with mean-field is remarkable, in particular for smaller
values of J ′. Nevertheless, we cannot expect the spin-wave theory to be reliable for
extremely small J ′ for any 1/K > 0 because the spin-wave expansion is not justified
in the 1D limit J ′ → 0.

Quantum Monte Carlo treatment In order to go beyond the mean-field approxi-
mation and take exactly into account the 2D interchain coupling J ′, we use QMC
through the stochastic series expansion algorithm [198, 225]. Since we are interested
in ground state properties, we need to perform QMC simulations at temperatures
well below the finite size gap of our finite size system, the lowest spin-wave gap being
dictated by the weak coupling J ′. Note also that one needs to perform a very careful
finite size scaling analysis in order to reach the thermodynamic limit. We work on
finite size systems with N = L2/r spins, where L is the length of the L/r coupled
chains and r is the aspect ratio of the 2D system. Finite size systems with aspect
ratio r > 1 have been used before to reduce finite size effects for the anisotropic
case [226] and surprisingly, also for isotropic case [227]. For the present study, we
performed simulations for different 2D couplings J ′ = 1 (r = 8), J ′ = 0.1 (r = 16),
J ′ = 0.01 (r = 16) and J ′ = 0.005 (r = 32) for multiple Ising anisotropy values
covering the whole range ∆ ∈ [−1, 1]. In order to ensure that we are probing only the
ground state, we have performed QMC simulations both at temperatures T = 2J ′/L
and T = J ′/L and checked that it provided the same results. We compare QMC
results in Fig. A.17 for four values of J ′. We notice that the order parameter value

18The zero mode is not at the AF wavevector (π, π) because we carried out a unitary transformation
of the spin operators on one of the sublattices to perform spin-waves calculations, i.e. S+ → −S+

and S−→−S− on Hamiltonian (5).
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given by QMC is always smaller than that by numerical mean-field, which is expected
as the mean-field approximation overestimates the order by discarding fluctuations.
Note that the error bars do not reflect the QMC errors, which are much smaller,
but rather gives an idea on the uncertainty due to the infinite size extrapolation
procedure.

3. Summary and discussions

In this work, we discussed the dimensional modulation of magnetic ordering
process in spatially anisotropic quantum antiferromagnets. Taking advantage of the
small interchain and interlayer interactions, we performed several complementary
analyses which all led to the dimensional reduction scenario sketched in Fig. A.13 (b).
Because the critical temperature converges to the Kosterlitz-Thouless transition
temperature TKT in the 2D limit J ′

2/J
′
1 → 0, the quasi-2D ordered phase emerges in

the range Tcr < T < Tc, where Tcr represents the crossover temperature to the 3D
phase, see Fig. A.13 (c). Since Tc → TKT and Tcr → 0 in the 2D limit, the quasi-2D
ordered phase is smoothly connected to the Kosterlitz-Thouless phase. As we saw in
the variational approach (Fig. A.15), the XY order mAF(T ) is strongly suppressed
near the critical temperature when J ′

2/J
′
1 � 1. We note that the same mAF(T )

curve is also derived with the aid of the classical approximation, see Fig. A.16. This
agreement shows that our system in the quasi-2D ordered phase is well approximated
by the classical system, for which we have provided a clear numerical confirmation
based on quantum Monte Carlo simulations of an equivalent quantum system,
compared to mean-field and spin-wave approximations. This characteristic of the
quasi-2D ordered phase is inherited from the Kosterlitz-Thouless phase in the 2D
limit.

V. Study of the S=1 antiferromagnetic quantum
spin-chain compound “DTN”

Adapted from the work Phys. Rev. B 95, 020404(R) (2017)
Rémi Blinder, Maxime Dupont19, Sutirtha Mukhopadhyay, Mihael S. Grbić,

Nicolas Laflorencie, Sylvain Capponi, Hadrien Mayaffre, Claude Berthier, Armando
Paduan-Filho, and Mladen Horvatić

This section is dedicated to the spin-1 antiferromagnetic insulator compound
NiCl2-4SC(NH2)2 also known as Dichlorotetrakis-Thiourea-Nickel or “DTN” for short,
that we investigated during my thesis in a fruitful collaboration with the NMR group
at the high magnetic fields facility in Grenoble, France. Several works regarding this
compound will be reported throughout this manuscript, especially in the last chapter

19In this experimental/theoretical collaboration, I performed the theoretical analysis, including
the numerical simulations relying on DMRG and quantum Monte Carlo methods.
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(b)magnon state have been observed in our experiments and
are denoted by squares in Fig. 2 (the resonance C). These
excitations correspond to a single-spin flip from the Sz !
"1 to Sz ! 0 state and are uniformly delocalized over the
entire lattice with a well-defined momentum k. The Sz ! 0
state propagates along the lattice as a free quasiparticle
with hopping J! along the ! direction (! ! fa; b; cg),
which arises from the transverse part of the Heisenberg
interaction. There are also diagonal energy gains of
"2#Jc$ 2Ja% due to the Ising part, and "D due to the
single-ion anisotropy. The diagonal energy cost comes
from the Zeeman interaction g"BH. Then, the single-
magnon excitation dispersion can be calculated exactly:
 

!#k% ! g"BH "D" 2#Jc$ 2Ja%
$ 2#Jc coskz $Ja coskx $Jb cosky%: (2)

The ESR transitions taking place at k ! 0 have the fre-
quency !C ! g"BH "D. The best fit of the ESR data
denoted by squares in Fig. 2 reveals D ! 8:9 K for the
anisotropy constant. From the exact expression for Hc2,
given as [17]

 Hc2 !
1

g"B

!
D$ 4

X
#
J#

"
; (3)

and using Hc2 ! 12:6 T [16,17], we obtain
P

#J# ! Jc$
2Ja ! 2:557 K. The zero-field dispersion of magnetic ex-
citations calculated using neutron-scattering data [17]
yields Ja=Jc ! 0:082. Thus, in addition to the anisotropy
constant D ! 8:9 K, all three exchange parameters, Jc !
2:2 K and Ja ! Jb ! 0:18 K, can be calculated quite
precisely.

The phase boundary (obtained from magnetocaloric-
effect measurements) and the field dependence of the
magnetization at T ! 16 mK were computed for the ob-
tained set of parameters by means of a quantum
Monte Carlo simulations for a finite lattice of L3 sites, L !
16. Figure 3 shows a very good agreement between the
calculated (solid symbols) and experimental (open sym-
bols) data.

In addition to ordinary single-magnon states and two-
magnon continuum, the theory [9] predicts the existence of
two-magnon bound states (sometimes referred to as single-
ion bound states [5]). The physical picture of the two-
magnon bound-state excitations corresponds to a double-
spin-flip transition from Sz ! "1 to Sz ! $1. The trans-
verse part of the Heisenberg term of H mixes this state
with the one that has a pair of Sz ! 0 states. Since the
diagonal energy difference between these two states, 2D, is
much bigger than Jc and Ja (associated with hopping in the
c and a directions), the distance between the two Sz ! 0
sites remains finite, giving rise to a two-magnon bound
state. The two-magnon bound states appear to be a specific
feature of anisotropic spin-1 Heisenberg systems. It is
worth mentioning that the two-magnon bound states were
already predicted in 1970 by Silberglitt and Torrance [5]

for Heisenberg ferromagnets with single-ion anisotropy.
Later on, this subject attracted a great deal of attention
due to its potential relevance to the intrinsic localized spin
modes in anisotropic ferromagnets [22] and antiferromag-
nets [23]. It was suggested [9] that the two-magnon bound
states should make a distinct contribution to the excitation
spectrum of S ! 1 large-D AFM chains above the upper
critical field Hc2 and that their effect can be unambiguously
identified by ESR measurements. A signature of two-
magnon bound states was obtained by means of high-field
ESR in the spin-1 chain compound Ni#C2H8N2%2Ni#CN%4
(known as NENC) [24]. A broad absorption was detected
in the high-field spin-polarized phase. Based on analysis of
the temperature dependence of the ESR intensity, this
feature was interpreted as transitions from the single-
magnon to two-magnon bound states.

Here we report on the first observation of transitions
from the ground state to two-magnon bound state in a spin-
1 AFM chain system with strong easy-plane anisotropy in
the high-field FSP phase. The corresponding excitations
are denoted by triangles in Fig. 2 (bottom) [the resonance
E, Fig. 2 (top)]. The frequency-field dependence of the
ground-state two-magnon bound-state excitations can be
calculated exactly using the set of parameters obtained as
described above. Results of corresponding calculations are
shown in Fig. 2 (bottom) by line E. One more resonance
absorption was observed at higher temperatures (which
indicates transitions within excited states). The corre-
sponding data obtained at T ! 4:3 K are denoted in
Fig. 2 (bottom) by stars. This ESR mode corresponds to
transitions from single-magnon to two-magnon bound
states [Fig. 1 (right)], which occur at k ! 0. The
frequency-field dependence of these transitions can be
calculated, using the expression !F ! !E "!C (where
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Figure A.18: (a) Crystallographic structure of the DTN compound. The
S = 1 are carried by the Ni2+ ions (red dots) and the Chlorine atoms (blue dots)
makes the compound spatially anisotropic (tetragonal lattice). (b) Temperature
vs. magnetic field phase diagram of the XY AF ordered phase obtained from
magnetocaloric effect measurements (open squares), see text for discussions
about the different phases. The magnetization curve at T = 16 mK (open
circles) is also displayed. Results of the quantum Monte Carlo simulations
of the phase-diagram boundaries and the magnetization are denoted by solid
squares and circles respectively. Adapted from Ref. 163.

dedicated to the interplay between interactions and disorder at high magnetic fields in
this material, when chemically doped with Bromine impurities. Therefore, it is only
natural to start this section with a self-consistent — if not exhaustive — overview
about this compound to better seize its physical properties. The disorder-free case
will be considered here, and the doped case saved for later. Being made of weakly
coupled S = 1 chains, the question of one-dimensional based approaches to capture
the relevant physics at play will be addressed in the second section.

1. Introduction to the DTN compound

The magnetic properties of the DTN compound are described by S = 1 degrees of
freedom, borne by Ni2+ ions, forming a tetragonal lattice — a cubic lattice with two
equivalent and one inequivalent spatial direction20. Two Chlorine atoms are present
in between two Ni2+ along the crystallographic axis c (referred as the main or chain
direction) and are responsible of the spatial anisotropy as shown in Fig. A.18 (a).
The other atoms do not play a particular role in the magnetic description and are

20Actually, the situation is somewhat more complex than a simple tetragonal lattice. In fact,
the DTN compound is a body-centered tetragonal lattice, corresponding to two interpenetrating
tetragonal subsystems shifted by half of the tetragonal unit cell [228]. This frustrated coupling
makes the theoretical study more difficult or even impossible in the case of quantum Monte Carlo
simulations. However, its strength is supposed to be the smallest energy scale of the system
(Jf = 0.08 K) [229] and can be safely neglected, especially regarding the nature of the ordered phase,
because a perfectly frustrated coupling between the two subsystems should have no effect at all
at the mean-field level, i.e. J⊥ ∼ J̃⊥ + Jf since it is treated on the same level as a non-frustrated
transverse coupling J̃⊥. Plus, this additional coupling does not induce any symmetry breaking in
the system, see discussions.
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not considered. The S = 1 interact through the following Hamiltonian [163, 230],

H =
∑
i

{∑
m

[
JSi,m · Si+1,m +D

(
Sz
i,m

)2 − gµBHS
z
i,m

]
+
∑
〈m,n〉

J⊥Si,m · Si,n

}
, (A.71)

where the first index of the spin operator refers to the spin position on the chain
to which it belongs, labeled by the second index. The 〈·〉 symbol in the last sum
restricts it to nearest-neighbor chains. The spin-spin exchange interactions are of
the Heisenberg type with J = 2.2 K along the chain direction and J⊥ = 0.18 K in
the transverse directions. In addition, every spin is subject to a strong easy-plane
anisotropy D = 8.9 K. An external magnetic field H which couples to the spin
degrees of freedom is applied in the same direction as the D anisotropy such that the
Hamiltonian remains U(1) invariant, where the gyromagnetic factor g = 2.3121. It is
quite unusual to note that all energy couplings are exactly known for this compound,
with the applied magnetic field being the only tunable parameter here.

The ratio J⊥/J ' 0.08 makes the system look like weakly coupled spin-1 chains,
and in the first approximation we neglect the three-dimensional coupling (J⊥ = 0) to
study the zero temperature phase diagram versus the magnetic field. Starting from
the limitH → +∞, the ground state is a trivial ferromagnet, with all the spins aligned
along the magnetic field direction |↑↑ · · · ↑〉 with energy EN = JN +DN − gµBHN
where N is the total number of spins in the system. As the magnetic field strength
is reduced, the ferromagnetic phase will subsist until the first spin is flipped from |↑〉
to |0〉. More precisely, the change of the ground state will occur if the energy of the
single flipped spin state EN−1 = EN −D − 4J + gµBH becomes smaller than EN .
The magnetic field value for which this change occurs defines the critical point H1D

c2 ,

H1D
c2 = (D + 4J) /gµB = 11.4 T. (A.72)

In the other limit at H = 0, the ground state is in the so-called large-D phase [235]
and is not of the Haldane type. This is because D/J ' 4 in DTN, which is larger
than the critical value Dc/J = 0.968 [236] above which the ground state is in a trivial
paramagnetic gapped phase (called large-D). It is only below this critical point —
at which the gap closes — that the system undergoes a transition towards the better
known topological Haldane gapped phase of the bare Heisenberg S = 1 chain. In the
large-D phase, the ground state corresponds to a “dressed” state where all the spins

21Depending on the work one refers to, the value of the critical fields Hc1 and Hc2 determined
experimentally vary from 2.05 to 2.15 T for the first one [231] and from 12.2 to 12.6 T [230,232]
for the second. This can be explained by magnetic field calibration problems or a non-meticulous
sample orientation compared to the external magnetic field that would explicitly break the U(1)
symmetry. Moreover, magneto-elastic couplings have been highlighted in DTN by magnetostriction
and ultrasounds experiments [233,234]; due to these couplings, the pressure applied on the sample
to hold it tight can affect the critical fields [231]. Since the critical fields can be related to the
microscopic parameters of the Hamiltonian (see text), they are used to determine the coupling
constants. In our works on DTN, we have used the most common set of parameters J = 2.2 K,
J⊥ = 0.18 K and D = 8.9 K and decided to tune the value of the gyromagnetic factor such
that the theoretical value of the upper critical field Hc2 fits with our experimental determination.
Hence g = 2.31, although independent ESR measurements give g = 2.26 with accuracy better than
0.5% [163].
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have a zero z-component |00 · · · 0〉. Note that this is the exact ground state only in
the D/J → +∞ limit. It is clear that the first excitation must be a spin flip, which
will eventually occur upon applying a sufficiently large magnetic field H ≥ H1D

c1 to
close the gap, given in perturbation theory by [237],

H1D
c1 =

[
D − 2J − J2

D
+

J3

2D2
+O

(
J4

D5

)]
/gµB = 2.6 T. (A.73)

The intermediate region in between H1D
c1 and H1D

c2 corresponds to a gapless Tomonaga-
Luttinger Liquid phase, that can only describe a purely one-dimensional quantum
system. Therefore, it will not subsist when plugging back the 3D coupling of
the true DTN Hamiltonian, but will turn into antiferromagnetic XY order with
the spontaneous breaking of the U(1) symmetry, robust to finite temperature up
to Tc. On the contrary, the two gapped phases at low and high fields are only
slightly affected, with shifted critical points Hc1 = H1D

c1 − 4J⊥/gµB = 2.1 T and
Hc2 = H1D

c2 + 8J⊥/gµB = 12.3 T. The phase diagram is shown in Fig. A.18 (b),
and the ordered phase corresponds to a so-called “Bose-Einstein Condensation” in
a quantum antiferromagnet, discussed earlier, with Tmax

c ∼ 1.2 K. The gapped
nature of the large-D and ferromagnetic phases is characterized by the magnetization
plateaus displayed on Fig. A.18 (b) for H 6∈ [Hc1, Hc2].

2. “How one-dimensional is the DTN compound?”

If the previous section was more of an introduction on the DTN compound, I
will now be more specific and summarize the work of our experimental-theoretical
collaboration on the DTN compound. On the experimental side, this work holds
the first measurement of the absolute value of the order parameter at very low
temperature (T = 0.12 K). On the theoretical side, the main idea is to check
on the accuracy of Tomonaga-Luttinger Liquid (TLL) approaches to capture the
three-dimensional properties of the XY ordered phase of DTN such as the critical
temperature and the order parameter. For reference, these TLL-based methods (the
random phase approximation and the sine-Gordon model) are identical to those
introduced in the previous part “Dimensional modulation of the ordering process in
weakly coupled spin chains”.

Tomonaga-Luttinger Liquid parameters The various TLL-based approaches treat-
ing the 3D coupling in a mean-field way, through the random phase approximation
for the critical temperature or the sine-Gordon model for the order parameter, see
Eqs. (A.65) and (A.56) of the previous part, required the knowledge of the Tomonaga-
Luttinger Liquid parameters value A0, K and u of the model. If analytical expressions
relate them to the microscopic model for the XXZ spin-1/2 chain thanks to Bethe
ansatz, this is not a general statement holding for any model. Then, the main part
of the work consists of determining these values using numerical simulations. Indeed,
the TLL parameters appear in various physical quantities such as the magnetic
susceptibility, πχ = K/u or the correlation functions 〈S±

i S
∓
i+r〉 ∼ (−1)rA0/|r|

1
2K

that can be computed within DMRG and fitted afterwards.
Numerical simulations were carried out on a lattice chain of size N = 200 by

imposing a total magnetization Sz
tot = 1, 2 . . . N − 1 on the system to determine
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Figure A.19: Tomonaga-Luttinger Liquid parameters K, u and A0 as a
function of the magnetization mz of the one-dimensional DTN compound
described by the Hamiltonian (6) with J = 2.2 K, D = 8.9 K and J⊥ = 0. The
parameters have been calculated using DMRG simulations, see text. Values for
K at mz → 0 are not represented as the behavior of K in that region could
not be precisely defined.

the TLL parameters in each of the magnetization sectors. From the ground state
energy E0(S

z
tot) of a given magnetization sector, one is able to reconstruct the global

magnetization curve versus the external magnetic field H by the Legendre trans-
formation mz(H) = min [E0(S

z
tot)− gµBHS

z
tot] /N . Taking its numerical derivative

dmz(H)/dH, one has access to the ratio K/πu. The correlation function 〈S±
i S

∓
i+r〉

is also computed in each of the magnetization sector and fitted with the right form
versus r to extract K and A0 [238,239]; from the knowledge of K, u can be safely
deduced from the susceptibility. The TLL parameters of DTN are reported in
Fig. A.19, but their determination becomes increasingly difficult when approaching
critical fields, in the mz → 0, 1 limits and we made use of the expected analytical
behaviors to correct the obtained values: u(mz) and A0(m

z) are approaching zero
linearly and as a square root, respectively. K(mz) is linearly approaching 1 on both
sides, but its mz → 0 behavior could not be precisely defined.

Order parameter Our work constitutes on the experimental side to the first mea-
surements of the absolute value of the amplitude of the order parameter mAF of the
ordered phase in DTN at T = 0.12 K22. To compare with the experimental mea-
surements, I performed QMC simulations of the S = 1 Hamiltonian (6) at the same
temperature as the measurements on finite size systems counting N = L3/64 spins

22In order to determine value of the order parameter in the BEC phase, nitrogen spectra were
recorded by NMR at T = 0.12 K and at different magnetic fields 9 T < H < Hc2. In the
ordered phase, a transverse spin component appears in the 14N spectra, corresponding to the order
parameter. Since the spins are antiferromagnetically ordered, it creates a staggered local field at the
nuclei, which results in a splitting of each NMR line. In canonical systems, the antiferromagnetic
order induces a doubling of the unit cell, which results in a splitting of each line into 2, since the
local field takes only 2 possible values, as seen in previous NMR studies [166,173]. However, due
to the body-centered tetragonal lattice of DTN, each NMR line splits into 2× 2 = 4 lines when
entering an AF ordered phase. This line splitting can be successfully tracked in 14N spectra and
converted into the order parameter. The main issue is to infer hyperfine tensors relating the spin
polarization mAF to the observed local hyperfine field δH induced at a given nuclear position by
the surrounding magnetic moments. It is a highly nontrivial task as explained more thoroughly in
our work and its supplemental material [174]
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FIG. 1. Evolution of 14N NMR spectrum when entering the BEC
phase in DTN at T = 0.12 K. In the spectrum taken at Hc2 = 12.32 T
(bottom), the contributions from the two crystallographic sites,
orange-colored N(2) and gray-colored N(1), are clearly separated,
and the quadrupolar splittings, indicated by blue horizontal lines, are
easy to identify. Within the ordered phase, at 12.22 and 11.27 T, the
AF order splits each line into four, as shown on the lowest frequency
N(2) line by the dotted curves. Orange-gray hatching denotes the
region where the N(2) and N(1) lines overlap.

and (3) we also determined the sample magnetization at
Tc and thus the critical boson density, complementing the
already existing data close to Hc1 [25]. The complete set
of experimental data is accurately reproduced by numerical
quantum Monte Carlo (QMC) simulations for the standard
3D S = 1 model of Eq. (1). This method is computationally
quite demanding, but provides a reliable basis to discuss the
validity of simpler (approximate) analytical predictions, within
either TLL theory or a mean-field Hartree-Fock-Popov (HFP)
description [14]. Unlike in the previously studied spin ladders,
where the 3D (interladder) couplings were taken as a free
adjustable parameter to fit the experimental Tc values, in DTN
these couplings have been determined independently [8,10],
making the theoretical description fully constrained and able
to predict the absolute values of observables.

Experiments were performed on a DTN single crystal of
dimensions ∼2 × 2 × 3 mm3, placed inside the mixing cham-
ber of a dilution refrigerator, by NMR of proton 1H (nuclear
spin I = 1/2) and nitrogen 14N (I = 1) nuclei. The local
magnetization (spin polarization) of magnetic (Ni2+) ions,
polarized by the applied magnetic field H , is “seen” by NMR
nuclei as an additional local field δH and the corresponding
NMR frequency f = γµ0|H + δH |/(2π ), where γ is the
gyromagnetic factor [26,27]. The observed asymmetric line
shape of each individual line in the NMR spectrum (Fig. 1)
is well explained by the inhomogeneity of the demagnetizing
field over the sample volume [28]. 14N nuclei, in addition,
experience the so-called quadrupolar coupling to the local
electric field gradient (EFG) tensor [26,27] which strongly
splits each NMR line in two (Fig. 1). This splitting has
dramatic variations when the sample is rotated, thus allowing

FIG. 2. The order parameter (S⊥) in the BEC phase of DTN at
T = 0.12 K determined by NMR (circles) and by QMC simulations
(crosses). NMR points are overlapped by neutron diffraction data
from Ref. [10] downscaled by −25% (squares). The orange solid
line and dashed-dotted black curve are the T = 0 prediction by
DMRG+MF and by TLL+MF, respectively. The inset shows a zoom
close to Hc2.

precise in situ determination of the complete EFG tensor
and consequently of the sample orientation (for details, see
Ref. [28]). The c axis of the sample was here tilted by θ = 3.1◦

from the field direction. In order to determine the (nearly)
zero-temperature value of the order parameter in the BEC
phase, nitrogen spectra were recorded at T = 0.12 K, a tem-
perature ten times lower than the maximum Tc, T max

c = 1.2 K,
and at different magnetic fields 9 T < H < Hc2 (Fig. 2). Two
different 14N signals are observed in the NMR spectrum,
attributed to the two nitrogen crystallographic sites N(1) and
N(2) [28–30]. On entering the BEC phase, one can observe
that the relative intensity of the N(2) lines is decreasing,
which is just an artifact of the measurement sequence (effect
of the “T1” relaxation) [31]. More importantly, a transverse
spin component S⊥ appears, corresponding to the BEC order
parameter. Since S⊥ is AF ordered, it creates a staggered local
field at the nuclei, which results in a splitting of each NMR
line. In canonical systems, AF order induces a doubling of
the unit cell, which results in a splitting of each line into two,
since the local field takes only two possible values. This is seen
in previous NMR studies [18,20]. The situation is somewhat
more complex in DTN, which has a body-centered tetragonal
(BCT) lattice, corresponding to two interpenetrating tetragonal
subsystems shifted by half of the tetragonal unit cell [29].
As a result, each NMR line splits into 2 × 2 = 4 lines when
entering an AF ordered phase (see Supplemental Material
(SM) [30]). This line splitting is very difficult to follow in
the proton spectra (not shown), because they comprise many
overlapping lines, but can be successfully tracked in 14N
spectra. Indeed, as soon as H is slightly misaligned from
the c axis of tetragonal symmetry, 14N NMR lines are well
separated by the quadrupolar effects (Fig. 1), so that the overlap
of lines remains tractable.

To convert the observed line splitting into an order param-
eter, the main issue is to infer hyperfine tensors A relating the
spin polarization S⊥ to the observed δH . For a homogeneous
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Figure A.20: The order parameter in the BEC phase of DTN at T = 0.12 K
determined by NMR (circles) and by QMC simulations (crosses). NMR points
are overlapped by neutron diffraction data from Ref. 229 downscaled by -25%
(squares). The orange solid line and dashed-dotted black curve are the T = 0
prediction by DMRG+MF and by the sine-Gordon theory, respectively. The
inset shows a zoom close to Hc2.

where L is the number of consecutive S = 1 spins along the chains direction. In order
to adapt the simulation to the quasi-one-dimensional character of the Hamiltonian,
only L/8 spins are then taken in each transverse directions (aspect ratio r = 8). A
careful finite-size scaling analysis needs to be performed in order to determine the
order parameter value in the thermodynamic limit. As shown in Fig. A.20 (a), the
extrapolated QMC data agree remarkably well with the experiments.

For a quasi-one-dimensional system, a second, computationally less demanding
approach to describe the order parameter at T = 0, is to take into account the inter-
chain coupling within a mean-field (MF) approximation, neglecting spin fluctuations.
This leads to a model of a single DTN chain in an effective magnetic field having a
transverse staggered component due to AF ordering and a longitudinal component
due to the magnetization by the external field, see Eq. (A.52) above. This model
can be solved numerically in a self-consistent way using the DMRG algorithm to
find the ground-state (T = 0) order parameter. The values obtained in this way
and shown in Fig. A.20 (a) are very close to those from QMC calculated at 0.12 K;
the apparent overestimate of mAF by this DMRG+MF method, of about 3%, is
partly due to the difference in the corresponding temperatures. Another possibility
to solve this effective one-dimensional model is by rewriting it as a sine-Gordon field
theory from which the order parameter can be computed from Eq. (A.65) in the
previous section. In Fig. A.20 (a) we see that this estimates considerably deviate
from the DMRG+MF results, especially close to Hc2, while the two results should
be identical in the J⊥/J � 1 limit. Apparently, as regards mAF(T = 0), the value
J⊥/J ' 0.08 is not small enough to consider DTN as a system of weakly coupled
spin chains, in particular when the total interchain coupling 4J⊥ becomes larger
than the intrachain energy scale u close to Hc2. This is to be compared with other
“more one-dimensional” compounds, such as the weakly coupled spin-1/2 ladders
(C5H12N)2CuBr4 where the sine-Gordon-based description of mAF was remarkably
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FIG. 3. NMR data (red circles) for (a) Tc and (b) the critical
boson density nc at Tc (see the text) are compared with theoretical
predictions: QMC data points are shown as crosses, HFP predictions
are given by the dotted and solid lines (for the parabolic and true
magnon dispersion, respectively), and the TLL prediction for Tc

[Eq. (4), with k = 0.67] by the dash-dotted line (see the text). In (a)
squares correspond to the magnetocaloric effect data from Ref. [7]
(with the field values downscaled by −2.3% to overlap the slightly
different Hc2 values). The lower inset in (b) explains the determination
of the H(2) line-shift frequency (right scale in the main panel) that
measures nc. Other insets are zooms close to Hc2.

for S⊥ in Fig. 2). Tc can also be described by the analytical
TLL-based expression [17,18]

Tc = u

2π

[
sin

(
π

4K

)
B2

(
1

8K
,1 − 1

4K

)
kZJabAx

u

]2K/(4K−1)

,

(4)

where B(X,Y ) = "(X)"(Y )/"(X + Y ), except very close to
Hc2 where the TLL description fails [16]. Here we have
explicitly included a renormalization parameter k to take
into account the effects of spin fluctuations beyond the MF
treatment of interchain interaction. This was first discussed
analytically for the Heisenberg spin chain in zero field in
Ref. [37] and then precisely verified numerically in Ref. [38],
where k = 0.695 was obtained. A slightly different value,
k = 0.74 was successfully applied in describing Tc(H ) of

the BPCB compound [17,39], while for our DTN data we
find k = 0.67(2), pointing to a quite universal value of this
correction.

Close to Hc2 one expects that the 3D description of
the HFP model, describing the low boson density limit, is
valid. Using the low-energy quadratic approximation for the
magnon dispersion [14], this model provides the canonical
shape of the phase boundary, Tc(H ) ∝ (Hc2 − H )2/3, which
is well observed by our NMR data, in contrast to previous
reports [24]. (From a nonlinear power-law fit the exponent
value is 0.72 ± 0.04.) To better access higher temperature,
one can improve the model by taking the exact, numerically
calculated dispersion of magnons (as in Ref. [40]), which
indeed fits the data slightly better. In both cases, the interaction
parameter U3D = gcµB(Hc2 − H )/(2kBnc) was fitted to adapt
the Tc(H ) data points below 0.25 K. The obtained values,
U3D = 4.1 and 3.7 K, are perfectly consistent with the initial
slope of the measured nc(H ) dependence shown in Fig. 3(b),
confirming the validity of the HFP model. We remark that
close to Hc1 a higher value, U3D = 7.2 K, was reported [25],
which should be attributed to the renormalization described
in Ref. [41]. In Fig. 3(a) we also see that the HFP model
in both variants clearly fails above 0.3 K, corresponding to
nc

∼= 4%. We have verified that this cannot be compensated by
taking the renormalized field-dependent U3D value from the
observed nc(H ) dependence, meaning that above nc

∼= 4% the
interactions modify the effective density of states as compared
to its noninteracting value.

To conclude, by NMR we investigated static properties of
the high-field part of the BEC phase in the quasi-1D quantum
magnet DTN, and analyzed the data using several theoretical
approaches. QMC numerical simulations for a standard spin-1
model provide excellent fit to the data, and we used them as
a reference to discuss the applicability of other approximate
techniques and their sensitivity to the strength of 3D coupling.
For a moderately 1D system such as DTN (Jc/Jab

∼= 12) we
find that analytical TLL-based predictions are still very good
for Tc (when the renormalization of MF interaction is taken into
account) but insufficient for the order parameter S⊥. For S⊥,
DMRG+MF turns out to be precise, and does not require any
renormalization. The HFP description is found to be valid only
very close to Hc2, for the critical boson densities below 4%.
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FIG. 3. NMR data (red circles) for (a) Tc and (b) the critical
boson density nc at Tc (see the text) are compared with theoretical
predictions: QMC data points are shown as crosses, HFP predictions
are given by the dotted and solid lines (for the parabolic and true
magnon dispersion, respectively), and the TLL prediction for Tc

[Eq. (4), with k = 0.67] by the dash-dotted line (see the text). In (a)
squares correspond to the magnetocaloric effect data from Ref. [7]
(with the field values downscaled by −2.3% to overlap the slightly
different Hc2 values). The lower inset in (b) explains the determination
of the H(2) line-shift frequency (right scale in the main panel) that
measures nc. Other insets are zooms close to Hc2.

for S⊥ in Fig. 2). Tc can also be described by the analytical
TLL-based expression [17,18]
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where B(X,Y ) = "(X)"(Y )/"(X + Y ), except very close to
Hc2 where the TLL description fails [16]. Here we have
explicitly included a renormalization parameter k to take
into account the effects of spin fluctuations beyond the MF
treatment of interchain interaction. This was first discussed
analytically for the Heisenberg spin chain in zero field in
Ref. [37] and then precisely verified numerically in Ref. [38],
where k = 0.695 was obtained. A slightly different value,
k = 0.74 was successfully applied in describing Tc(H ) of

the BPCB compound [17,39], while for our DTN data we
find k = 0.67(2), pointing to a quite universal value of this
correction.

Close to Hc2 one expects that the 3D description of
the HFP model, describing the low boson density limit, is
valid. Using the low-energy quadratic approximation for the
magnon dispersion [14], this model provides the canonical
shape of the phase boundary, Tc(H ) ∝ (Hc2 − H )2/3, which
is well observed by our NMR data, in contrast to previous
reports [24]. (From a nonlinear power-law fit the exponent
value is 0.72 ± 0.04.) To better access higher temperature,
one can improve the model by taking the exact, numerically
calculated dispersion of magnons (as in Ref. [40]), which
indeed fits the data slightly better. In both cases, the interaction
parameter U3D = gcµB(Hc2 − H )/(2kBnc) was fitted to adapt
the Tc(H ) data points below 0.25 K. The obtained values,
U3D = 4.1 and 3.7 K, are perfectly consistent with the initial
slope of the measured nc(H ) dependence shown in Fig. 3(b),
confirming the validity of the HFP model. We remark that
close to Hc1 a higher value, U3D = 7.2 K, was reported [25],
which should be attributed to the renormalization described
in Ref. [41]. In Fig. 3(a) we also see that the HFP model
in both variants clearly fails above 0.3 K, corresponding to
nc

∼= 4%. We have verified that this cannot be compensated by
taking the renormalized field-dependent U3D value from the
observed nc(H ) dependence, meaning that above nc

∼= 4% the
interactions modify the effective density of states as compared
to its noninteracting value.

To conclude, by NMR we investigated static properties of
the high-field part of the BEC phase in the quasi-1D quantum
magnet DTN, and analyzed the data using several theoretical
approaches. QMC numerical simulations for a standard spin-1
model provide excellent fit to the data, and we used them as
a reference to discuss the applicability of other approximate
techniques and their sensitivity to the strength of 3D coupling.
For a moderately 1D system such as DTN (Jc/Jab

∼= 12) we
find that analytical TLL-based predictions are still very good
for Tc (when the renormalization of MF interaction is taken into
account) but insufficient for the order parameter S⊥. For S⊥,
DMRG+MF turns out to be precise, and does not require any
renormalization. The HFP description is found to be valid only
very close to Hc2, for the critical boson densities below 4%.
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I. QUANTUM MONTE CARLO SIMULATIONS

Throughout the paper we use quantum Monte
Carlo (QMC) stochastic series expansion (SSE)
algorithm.1,2 We work with finite size systems counting
N = L⇥ L/8⇥ L/8 spins where L is the number of
consecutive S = 1 spins along the chains (c) direction.
In order to adapt the simulation to the 1D character of
the Hamiltonian, only L/8 spins are then taken in each
transverse (a and b) directions, meaning an aspect ratio
of 1/8.

A. Transverse order parameter

To reliably extract the order parameter S? at the ther-
modynamic limit, we performed simulations for di↵erent
system sizes, up to L = 128, and did various linear and
quadratic fits of the transverse structure factor

(S?)
2 =

1

2N2

X

i,j

e
iq·(ri�rj)hS+

i S
�
j + S

�
i S

+
j i (S-1)

at q = (⇡,⇡,⇡) as a function of 1/N
1
3 (Fig. S-1), which

allows to extrapolate the value to the thermodynamic
limit (N ! 1). The summation in Eq. (S-1) is over all
possible sites i and j of the lattice. The values of the
order parameter given in Fig. 2 of the main manuscript
correspond to the square root of the mean value coming
from the various extrapolations of (S?)2, while the error
bars correspond to the standard deviation of these ex-
trapolations around their mean value. Thus they do not
directly reflect the QMC errors even though they have
been taken into account when performing the fits.

B. Critical temperature

The critical temperature was numerically determined
using QMC through the crossing of the spin sti↵ness ⇢

times L for various sizes up to L = 160. Indeed, at the
critical point one expects a scaling ansatz for ⇢ which only
depends on the dimensionality (d = 3 in the case of DTN)
such that ⇢L ⇠ constant (Fig. S-2). More precisely, the
estimated values of Tc(H) given in Fig. 3, as well as their
error bars, are determined performing Bayesian scaling
analysis3,4 of the spin sti↵ness data.

FIG. S-1. Two examples, at di↵erent magnetic fields, for the
extrapolation of the order parameter to the thermodynamic
limit. Various linear and quadratic fits (solid lines) are per-
formed taking into account a varying number of QMC data
points (circles). SSE simulations are performed for the DTN
model at T = 0.12 K.

FIG. S-2. Two examples, at di↵erent magnetic fields, of the
crossing of the spin sti↵ness ⇢ times the system size L to
determine the critical temperature.
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RÉMI BLINDER et al. PHYSICAL REVIEW B 95, 020404(R) (2017)

FIG. 3. NMR data (red circles) for (a) Tc and (b) the critical
boson density nc at Tc (see the text) are compared with theoretical
predictions: QMC data points are shown as crosses, HFP predictions
are given by the dotted and solid lines (for the parabolic and true
magnon dispersion, respectively), and the TLL prediction for Tc

[Eq. (4), with k = 0.67] by the dash-dotted line (see the text). In (a)
squares correspond to the magnetocaloric effect data from Ref. [7]
(with the field values downscaled by −2.3% to overlap the slightly
different Hc2 values). The lower inset in (b) explains the determination
of the H(2) line-shift frequency (right scale in the main panel) that
measures nc. Other insets are zooms close to Hc2.

for S⊥ in Fig. 2). Tc can also be described by the analytical
TLL-based expression [17,18]

Tc = u

2π

[
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)
kZJabAx
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]2K/(4K−1)
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where B(X,Y ) = "(X)"(Y )/"(X + Y ), except very close to
Hc2 where the TLL description fails [16]. Here we have
explicitly included a renormalization parameter k to take
into account the effects of spin fluctuations beyond the MF
treatment of interchain interaction. This was first discussed
analytically for the Heisenberg spin chain in zero field in
Ref. [37] and then precisely verified numerically in Ref. [38],
where k = 0.695 was obtained. A slightly different value,
k = 0.74 was successfully applied in describing Tc(H ) of

the BPCB compound [17,39], while for our DTN data we
find k = 0.67(2), pointing to a quite universal value of this
correction.

Close to Hc2 one expects that the 3D description of
the HFP model, describing the low boson density limit, is
valid. Using the low-energy quadratic approximation for the
magnon dispersion [14], this model provides the canonical
shape of the phase boundary, Tc(H ) ∝ (Hc2 − H )2/3, which
is well observed by our NMR data, in contrast to previous
reports [24]. (From a nonlinear power-law fit the exponent
value is 0.72 ± 0.04.) To better access higher temperature,
one can improve the model by taking the exact, numerically
calculated dispersion of magnons (as in Ref. [40]), which
indeed fits the data slightly better. In both cases, the interaction
parameter U3D = gcµB(Hc2 − H )/(2kBnc) was fitted to adapt
the Tc(H ) data points below 0.25 K. The obtained values,
U3D = 4.1 and 3.7 K, are perfectly consistent with the initial
slope of the measured nc(H ) dependence shown in Fig. 3(b),
confirming the validity of the HFP model. We remark that
close to Hc1 a higher value, U3D = 7.2 K, was reported [25],
which should be attributed to the renormalization described
in Ref. [41]. In Fig. 3(a) we also see that the HFP model
in both variants clearly fails above 0.3 K, corresponding to
nc

∼= 4%. We have verified that this cannot be compensated by
taking the renormalized field-dependent U3D value from the
observed nc(H ) dependence, meaning that above nc

∼= 4% the
interactions modify the effective density of states as compared
to its noninteracting value.

To conclude, by NMR we investigated static properties of
the high-field part of the BEC phase in the quasi-1D quantum
magnet DTN, and analyzed the data using several theoretical
approaches. QMC numerical simulations for a standard spin-1
model provide excellent fit to the data, and we used them as
a reference to discuss the applicability of other approximate
techniques and their sensitivity to the strength of 3D coupling.
For a moderately 1D system such as DTN (Jc/Jab

∼= 12) we
find that analytical TLL-based predictions are still very good
for Tc (when the renormalization of MF interaction is taken into
account) but insufficient for the order parameter S⊥. For S⊥,
DMRG+MF turns out to be precise, and does not require any
renormalization. The HFP description is found to be valid only
very close to Hc2, for the critical boson densities below 4%.
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FIG. 3. NMR data (red circles) for (a) Tc and (b) the critical
boson density nc at Tc (see the text) are compared with theoretical
predictions: QMC data points are shown as crosses, HFP predictions
are given by the dotted and solid lines (for the parabolic and true
magnon dispersion, respectively), and the TLL prediction for Tc

[Eq. (4), with k = 0.67] by the dash-dotted line (see the text). In (a)
squares correspond to the magnetocaloric effect data from Ref. [7]
(with the field values downscaled by −2.3% to overlap the slightly
different Hc2 values). The lower inset in (b) explains the determination
of the H(2) line-shift frequency (right scale in the main panel) that
measures nc. Other insets are zooms close to Hc2.
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for Tc (when the renormalization of MF interaction is taken into
account) but insufficient for the order parameter S⊥. For S⊥,
DMRG+MF turns out to be precise, and does not require any
renormalization. The HFP description is found to be valid only
very close to Hc2, for the critical boson densities below 4%.
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I. QUANTUM MONTE CARLO SIMULATIONS

Throughout the paper we use quantum Monte
Carlo (QMC) stochastic series expansion (SSE)
algorithm.1,2 We work with finite size systems counting
N = L⇥ L/8⇥ L/8 spins where L is the number of
consecutive S = 1 spins along the chains (c) direction.
In order to adapt the simulation to the 1D character of
the Hamiltonian, only L/8 spins are then taken in each
transverse (a and b) directions, meaning an aspect ratio
of 1/8.

A. Transverse order parameter

To reliably extract the order parameter S? at the ther-
modynamic limit, we performed simulations for di↵erent
system sizes, up to L = 128, and did various linear and
quadratic fits of the transverse structure factor

(S?)
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2N2
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i,j

e
iq·(ri�rj)hS+

i S
�
j + S

�
i S

+
j i (S-1)

at q = (⇡,⇡,⇡) as a function of 1/N
1
3 (Fig. S-1), which

allows to extrapolate the value to the thermodynamic
limit (N ! 1). The summation in Eq. (S-1) is over all
possible sites i and j of the lattice. The values of the
order parameter given in Fig. 2 of the main manuscript
correspond to the square root of the mean value coming
from the various extrapolations of (S?)2, while the error
bars correspond to the standard deviation of these ex-
trapolations around their mean value. Thus they do not
directly reflect the QMC errors even though they have
been taken into account when performing the fits.

B. Critical temperature

The critical temperature was numerically determined
using QMC through the crossing of the spin sti↵ness ⇢

times L for various sizes up to L = 160. Indeed, at the
critical point one expects a scaling ansatz for ⇢ which only
depends on the dimensionality (d = 3 in the case of DTN)
such that ⇢L ⇠ constant (Fig. S-2). More precisely, the
estimated values of Tc(H) given in Fig. 3, as well as their
error bars, are determined performing Bayesian scaling
analysis3,4 of the spin sti↵ness data.

FIG. S-1. Two examples, at di↵erent magnetic fields, for the
extrapolation of the order parameter to the thermodynamic
limit. Various linear and quadratic fits (solid lines) are per-
formed taking into account a varying number of QMC data
points (circles). SSE simulations are performed for the DTN
model at T = 0.12 K.
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FIG. S-2. Two examples, at di↵erent magnetic fields, of the
crossing of the spin sti↵ness ⇢ times the system size L to
determine the critical temperature.
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Figure A.21: (a) NMR data (red circles) for the critical temperature Tc
compared with theoretical predictions: QMC data points are shown as crosses
and the TLL prediction for Tc by the dash-dotted line (see the text). The squares
correspond to the magnetocaloric effect data from Ref. 230 (with the field values
downscaled by -2.3% to overlap the slightly different Hc2 values). The inset
shows a zoom close to Hc2. (b) Example at H = 10.74 T of the crossing of the
spin stiffness ρs times the longitudinal system size L to determine the critical
temperature Tc = 0.7572(1) K according to the scaling law of Eq. (A.74).

accurate and fully consistent with the numerical DMRG+MF treatment23 [166, 210].

Critical temperature We now turn our attention to the phase boundary Tc(H).
By NMR the precise critical temperature value is detected from the position of
the maximum position of the corresponding critical spin fluctuations, which was
measured as the corresponding peak of the transverse nuclear spin-spin relaxation
rate 1/T2. NMR data, shown in Fig. A.21 (a), are in excellent agreement with the
QMC simulations: for various system sizes and temperatures, we compute the spin
stiffness [194, 240] and the order parameter, which both reveal a finite temperature
transition using a standard finite-size scaling analysis,

ρs(L) = L2−D Gρs

[
L1/ν (T − Tc)

]
, (A.74)

and,

mAF(L) = L−β/ν GmAF
[
L1/ν (T − Tc)

]
, (A.75)

where D = 3 is the dimensionality. The 3D XY critical exponents [175, 241, 242]
ν = 0.6717 (the correlation length exponent) and β = 0.3486 (the order parameter
exponent) are used to extract the critical temperature Tc, after a Bayesian scaling
analysis [243, 244]; see Fig. A.21 (b) for an example based on the spin stiffness. One
can also include corrections to scaling of the form G

[
L1/ν(T − Tc)(1 + cL−ω)

]
, where

ω is a subleading exponent of the order of one accounting for a finite-size drift, which
gives similar values within the error bars. Our final Tc estimates in Fig. A.21 (a) are
averages of the individual Tc from ρs and mAF crossings, with and without irrelevant
corrections, while the given error bars (actually smaller than the symbols size) reflect
uncertainty between various estimates.

23Out of curiosity, we also compared the DMRG+MF treatment with the sine-Gordon based
approach on a modified DTN Hamiltonian with J⊥ = 0.01, and which led to a better comparison
between the two MF approaches and comfort us on the reason why the sine-Gordon estimate of
mAF fails for the true DTN Hamiltonian.
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Figure A.22: (a) Critical temperature of the DTN compound versus the
system magnetization. The RPA-TLL prediction clearly overestimates the
critical temperature compared to the unbiased QMC except if one rescales the
transverse coupling J⊥ → αJ⊥ of the RPA-TLL based approach. (b) Rescaling
factor α of the three-dimensional coupling versus the magnetization of the
system to make the critical temperature estimate from the mean-field RPA
equal to the QMC estimate. The value of α is quite independent of the system
magnetization except close to the critical points mz → 0, 1, where the MF
description fails anyway. Moreover, note that we were not able to actually
determine accurately the TLL parameter K for the DTN spin chain for mz → 0.
The average value of the rescaling parameter ᾱ = 0.67(2) is evaluated excluding
these points.

The critical temperature can also be described by the analytical expression based
on the random phase approximation of the susceptibility of a single TLL as in
Eq. (A.56) and plotted in Fig. A.21 (a). Note that here, we have explicitly included
a renormalization parameter α to take into account the effects of spin fluctuations
beyond the mean-field treatment of interchain interaction, i.e. J⊥ → αJ⊥, see
Fig. A.22 (a) to observe the difference with and without this rescaling factor. This
was first discussed analytically for the Heisenberg spin chain in zero field in Ref. 245
and then precisely verified numerically in Ref. 246, where α = 0.695 was obtained. A
slightly different value, α = 0.74 was successfully applied in describing Tc(H) of the
(C5H12N)2CuBr4 compound [167, 210], while for our DTN data we find α = 0.67(2),
pointing to a quite universal value of this correction. For a given magnetic field, we
determine the value of α such that TQMC

c (H) = TRPA
c (H) as shown in Fig. A.22 (b).

Summary and discussions On the experimental side, the order parameter and the
critical temperature of the high-field part of the antiferromagnetic ordered phase in
the quasi-one-dimensional quantum magnet DTN were investigated by NMR. We
compared them using several theoretical approaches. Especially, quantum Monte
Carlo simulations for the standard spin-1 DTN model provide excellent fit to the
data, and we used them as a reference to discuss the applicability of approximate
techniques and their sensitivity to the strength of the three-dimensional coupling.
For a moderately one-dimensional system such as DTN with J⊥/J ' 0.08, we
find that analytical TLL-based predictions are still very good for Tc as long as the
renormalization of mean-field interaction is taken into account J⊥ → αJ⊥ with
α ' 0.67. The TLL treatment of the mean-field Hamiltonian results for DTN in an
order parameter mAF that deviates too much from the expected value. However, the
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exact treatment of the chain mean-field approximation using DMRG turns out to be
precise and in agreement with the expected value.
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— Chapter B —

Dynamical properties of
antiferromagnets

The computation of time-dependent quantities or the response of a quantum
system over time to an initial perturbation are challenging problems to all
fields of physics and especially condensed matter theory. It is however essential

to understand these effects since they relate to most of the experimental probes
involved in order to investigate quantum systems.

Section I For instance, I will be concerned in this chapter with spectral func-
tions obtained through inelastic neutron scattering experiments [247,248] and with the
nuclear magnetic resonance spin-lattice relaxation rate, the so-called 1/T1 [249–251].
These are both standard experimental tools in the condensed matter community to
study quantum spin systems. I will present them in the first introductory section,
mostly adopting a “theoretical point of view” by briefly explaining the underlying
physics and quickly relate what is experimentally measured to what actually needs
to be computed to have a direct comparison.

Section II In the following section, I will discuss the general numerical methods
to capture time-dependent phenomena in quantum systems based on the Matrix
Product States formalism and on the stochastic series expansion formulation of the
quantum Monte Carlo algorithm that were both introduced in the previous chapter.
All numerical methods suffer from some limitations that will also be discussed.

Section III Tomonaga-Luttinger Liquids are very peculiar systems. In the
low-temperature limit, their nuclear magnetic resonance spin-lattice relaxation rate
is expected to behave versus temperature with a power-law dependence [147], whose
exponent is a function of the dimensionless parameter K. The first work of this
chapter aims at defining properly the crossover “low-temperature limit” between a
non-universal high temperature regime and the universal one-dimensional properties
at low-temperature in quantum spin chains.

Section IV In a realistic compound, spin chains are always coupled to each
others at some point. As already discussed in the previous chapter, the three
dimensional coupling strength compared to the one-dimensional one J⊥/J makes the
system look more or less one-dimensional and the temperature effectively controls the
dimension. Being a natural follow-up of the previous work, we will be concerned here
with the dimensional crossover in the spectral functions and the nuclear magnetic
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resonance spin-lattice relaxation rate in two and three dimensional spin systems. We
will employ both numerical and analytical calculations to address the dynamical
properties of these systems versus the temperature.

Section V Lastly, I have studied the S = 1 Heisenberg chain, with a finite
spin gap ∆g ' 0.41J , known as the Haldane gap, from which we simply expect
an activated law for the nuclear magnetic resonance spin-lattice relaxation rate
∼ exp(−γ∆g/T ). This work was motivated by conflicting predictions based on field
theory of the nonlinear O(3) sigma model, γ = 1 or γ = 3/2 [252,253], while both
have been experimentally observed. In this work, we numerically investigated the
S = 1 model in order to reconcile and settle the different analytical predictions as
well as the experimental observations.

I. Introduction

Throughout this chapter, we will be interested in the dynamical properties of
quantum antiferromagnets at finite temperature described by some generic U(1)
symmetric Hamiltonian H in D dimensions where the anisotropy stands along the z
spin component. Those are captured by the time-dependent correlation function,

Sµυ
q (t) = 〈Sµ

−q(t)S
υ
q(0)〉 − 〈Sµ

−q(t)〉〈Sυ
q(0)〉, (B.1)

where 〈〉 indicates the thermal average, Sµ
q(t) = eiHtSµ

qeiHt is the time-dependent
spin operator in the Heisenberg picture and the index µ, υ ∈ [x, y, z] is the spin
component. The spin operator in momentum space is related through a discrete
Fourier transform to the real space by Sµ

q(t) =
∑

r eiq·rSµ
r (t)/

√
N with N the total

number of spins in the system. Depending on the system dimension, r and q are
D-dimensional vectors where each of the momentum components are ∈] − π, π]1.
The Fourier transform from time t to frequency ω gives the dynamical spin structure
factor also known as the spectral function,

Sµυ
q (ω) =

∫ +∞

−∞
dt eiωtSµυ

q (t), (B.2)

which is the main quantity of interest and is somehow related to experimental
probes such as inelastic neutron scattering (INS) measurements, the electron spin
resonance (ESR) spectrum [254] or the nuclear magnetic resonance (NMR) spin-
lattice relaxation rate 1/T1. What is known as the static spin structure factor is
recovered when integrating over frequencies,

Sµυ
q =

1

π

∫ +∞

−∞
dω Sµυ

q (ω), (B.3)

with
∑

q S
µυ
q = δµυ/4 fulfilling the sum rule. For a two or three-dimensional system,

it also relates to the modulus square of the complex order parameter, i.e. |mAF|2 =
1In all directions, lattice spacing has been set to unity.
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Sxx
qAF

+ Syy
qAF

, accounting for spontaneous antiferromagnetic order in the XY plane
with qAF = (π, π, π) the antiferromagnetic wave-vector. For convenience and due to
the U(1) symmetry of the Hamiltonian considered here, the transverse part to the
anisotropy along the z spin component can be isolated and written using raising and
lowering operators,

Sxx
q + Syy

q =
1

2

(
S+−

q + S−+
q

)
. (B.4)

1. Inelastic Neutron Scattering

Inelastic neutron scattering is a spectroscopy technique that can directly relate
to the spectral function (10). The wave vector q is the momentum transferred to the
sample between incoming and outgoing wave vectors k′ and k of the neutrons, and
ω the kinetic energy transferred to the system due to the collision. More precisely,
INS experiments measure the partial differential cross section [247, 248],

d2σ(q, ω)
dΩdω

=
|k′|
|k| F

2
q

∑
µυ

(
δµυ −

qµqυ
q2

)
Sµυ

q (ω), (B.5)

with qµ the projection of the wave vector q on the spin component µ. The prefactor of
the dynamical spin structure factor in the sum ensures that only the spin components
normal to q contribute to the cross section. The magnetic form factor Fq is the
Fourier transform of the spatial density of the scatterer, i.e. the electrons holding the
relevant spin degrees of freedom in our case. The ratio |k′|/|k| and the form factor
are known quantities that can be factored out of the experimental data. Furthermore,
the spectral function is only non zero if µ = υ for the Hamiltonian considered, which
gives the corrected scattering intensity,

I =
∑
µ

(
1−

q2µ
q2

)
Sµµ

q (ω) = I⊥ + I‖, (B.6)

where the intensity has been divided into longitudinal and transverse parts due to
the U(1) symmetry of the Hamiltonian. Moreover, the qµ-dependent prefactors can
be calibrated in experimental setups and will be set to unity in the following, which
results in

I‖ = Szz
q (ω), and I⊥ =

1

2

[
S+−

q (ω) + S−+
q (ω)

]
. (B.7)

2. Nuclear Magnetic Resonance relaxation rate

In NMR experiments, the nuclear spins of the sample are polarized through an
external magnetic field and then perturbed by an electromagnetic pulse. One can
select and target specific nuclei by choosing the right frequency ω0 corresponding
to the level splitting of the picked nuclei due to Zeeman effect. Following the
perturbation, the nuclear spins precess around the magnetic field direction and
relax over time with an energy transfer to the external environment, the lattice and
specifically the electrons holding the electronic spin described by the Hamiltonian
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H [249–251]. The return of magnetization M to equilibrium over time reads 1 −
M(t) ∝ e−t/T1 , where 1/T1 is known as the spin-lattice relaxation rate and can be
related to the dynamical correlation function in crystalline magnets,

1

T1
=
γ2

2

∑
q

∑
µυ

[
Aµυ

q

]2
Sµυ

q (ω0), (B.8)

with γ the gyromagnetic ratio and Aµυ
q the hyperfine tensor describing the hyperfine

and dipolar interactions between nuclear and electronic spins. Its q-dependence
provides a kind of form factor which can modify the sensitivity of 1/T1 to different
wave vector components of the spin dynamics [255–257], although for simplicity,
we will consider it to be independent of q and equal to unity in the following, just
as γ2/2 = 1. Thereby, the sum over q simplifies to the local (r = 0) dynamical
correlation function in real space,

1

T1
=
∑
µυ

Sµυ
r=0(ω0) =

1

T⊥
1

+
1

T
‖
1

, (B.9)

As for the scattering intensity, we can separate the longitudinal and transverse
contributions,

1

T
‖
1

= Szz
r=0(ω0), and 1

T⊥
1

=
1

2

[
S+−

r=0(ω0) + S−+
r=0(ω0)

]
. (B.10)

It is theoretically justified to take the limit ω0 = 0 since the NMR frequency is
of a few tens or hundreds of MHz, corresponding to temperatures of the order of
mK, often making it the smallest energy scale of the problem. However, taking this
limit assumes some smoothness in the local spectral function Sµυ

r=0(ω), with no sharp
contribution at ω → 0 that would not be captured by the actual NMR measurements
due to the finiteness of ω0

2. The ω → 0 limit makes it also convenient to express
the 1/T1 components directly as the integral over time of the dynamical correlation
functions,

1

T⊥
1

= Re
∫ +∞

−∞
dt 〈S±

r (t)S∓
r (0)〉 = 2Re

∫ +∞

0

dt 〈S±
r (t)S∓

r (0)〉, (B.11)

and similarly,

1

T
‖
1

= 2Re
∫ +∞

0

dt
[
〈Sz

r (t)S
z
r (0)〉 − 〈Sz

r (t)〉〈Sz
r (0)〉

]
. (B.12)

II. Numerical methods

Here comes the volume two regarding the numerical methods developed and
implemented during my thesis where I will use the same notations as before. The real

2As a side remark, the local (r = 0) spectral functions S+−
r=0 (ω0) and S−+

r=0 (ω0) become equivalent
in the ω0 → 0 limit [258] and one can compute whichever is the most convenient.
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time evolution of quantum systems is computationally a very challenging problem
as all methods suffer from severe limitations. In Matrix Product States (MPS)
algorithms, the major drawback is the rapid growth of entanglement entropy of the
system during the time evolution. This implies to keep a larger and larger bond
dimension D in the MPS if one wants to be accurate, limiting in practice numerical
simulations to short times. Exact diagonalization of the Hamiltonian to compute
the evolution operator e−iHt is limited by the exponential size of the Hilbert space
with the system size, though recent progress was made to compute dynamics in
the Krylov space, allowing slightly larger systems. The two methods have been
successfully used for one-dimensional systems so far, with only few options left for
higher dimensions, like quantum Monte Carlo (QMC). However, QMC algorithms
have the major caveat that dynamical data are obtained in imaginary time τ (= −it)
so that analytic continuation is needed a posteriori. This is an ill-posed problem due
to the intrinsic sampling statistical error of the measured observables, resulting in
an infinite number of solutions from imaginary time to real time. To overcome this
issue, a standard workaround is the “maximum entropy” method which imposes an
entropic prior (as in information entropy) in the analytic continuation to satisfy the
principle of maximum entropy [259], but often results in distortions and broadening
of the spectra. Recent developments introduced a stochastic analytic continuation,
which performs stochastic samplings of all possible results and average those that fit
the QMC data equally well, with very promising results [260–262]. The simulation of
quantum mixed state (finite temperature) of dynamical quantities is directly part of
QMC algorithms but requires extra work for MPS techniques with the introduction
of auxiliary degrees of freedom (ancillas), acting as a thermal bath and artificially
doubling the system size.

1. Matrix Product States

As we are interested in real-time dynamics, it is only natural to start by presenting
an efficient way to apply the evolution operator e−iHt on a quantum state |Ψ〉 written
as an MPS. I will then show how to represent and deal with a mixed state within the
MPS language, which is known as the purification method. Lastly, I will describe a
recently introduced method to compute spectral function directly in frequency space
via a Chebyshev polynomials expansion. For entanglement entropy related issues,
we shall discuss as well why all these methods are, at the very most, suitable for
one-dimensional systems.

a. Time evolution

We will be general and consider the case with a Hamiltonian consisting of nearest-
neighbor interactions only as it is the case for the XXZ model or the one-dimensional
DTN Hamiltonian introduced before, i.e. H =

∑
j Hj,j+1. Ultimately, we want to

time-evolve a wave function represented by an MPS up to a time t. In general this
is done by applying the evolution operator e−iHt on the state but intractable in
practice because it requires to diagonalize H to exponentiate it. The idea behind the
Trotter decomposition is to first discretize the time using small time steps τ such
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(a)

e�iH⌧ '
Even links

Odd links

(b)

contraction

SVD

Figure B.1: (a) Tensor network representation of a first Trotter decom-
position step of odd and even bonds Hj,j+1 of the evolution operator e−iHτ ,
which becomes exact in the limit τ → 0. A blue (red) tensor corresponds to
an odd (even) bond evolution operator. (b) Applying the Trotter decomposed
evolution operator to an MPS is quite straightforward. Successively, the two
involved tensors of the MPS are first contracted together with the associated
evolution gate. Then, a simple SVD on the rank-4 tensor gives back the original
local MPS form. When performing the SVD, we only keep the largest singular
values to control the bond dimension D of the system.

that t = Nτ , leading to e−iHt =
∏N e−iHτ . Now, if the time step τ is small enough,

a first or higher3 order Trotter decomposition can be performed,

e−iHτ '
N∏

e−iHevenτ
N∏

e−iHoddτ +O(τ 2) (B.13)

where Heven and Hodd respectively correspond to the sum of all even and odd bond
Hamiltonians Hj,j+1 only acting on two nearest-neighbor spins. The decomposition
is possible because even (odd) bond Hamiltonians commute with each others. But
it is not exact and leads to an error in τ due to the fact that the commutator
[Hj−1,j,Hj,j+1] 6= 0. The advantage is that the bond Hamiltonians can easily be
diagonalized and exponentiated since they are only d2 × d2 matrices, see Fig. B.1 (a).
And so, applying successive evolution gates on the MPS as well as singular value
decompositions to restore the MPS original tensor-site dependent form as shown in
Fig. B.1 (b) will eventually lead to a time-t evolved state. This whole procedure is
known as the time-evolution block decimation (TEBD) algorithm [266].

The main limitation about time-evolution is the linear growth of entanglement
entropy with time [111] while evolving the state. This implies to keep larger and
larger number of states D in the MPS if one wants to be accurate, strongly limiting
numerical simulations in practice. Thus, fixing a maximum number of kept states D
limits simulations to a finite time tmax (typically of the order of few tens of the inverse
energy scale of the system). Although its use did not prove to be systematically
reliable in our case, I would like to mention the possibility to use so-called linear
prediction technique [267], coming from data analysis, which aims at predicting
“longer time” behavior from the knowledge of dynamical correlations at “intermediate
time”.

3In practice, we actually use a Trotter decomposition of the fourth order with an er-
ror scaling as O(τ5) and which reads e−iHτ = U(τ1)U(τ1)U(τ2)U(τ1)U(τ1) where U(τi) =

e−iHoddτi/2e−iHevenτie−iHoddτi/2 with τ1 = (4− 4
1
3 )−1τ and τ2 = τ − 4τ1 [263–265].
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b. Finite temperature

To address the challenge of mixed states, several MPS-based methods have
been proposed, developed and compared [268], e.g., the finite-temperature Lanczos
method [269], the purification scheme of a pure state in an enlarged Hilbert space [270],
and, more recently, the minimally-entangled typical thermal states approach [271,272].
In all my works, I have used the purification scheme which introduces an auxiliary
Hilbert space Q acting as a thermal bath [45]. It can be taken as a copy of the
physical Hilbert space P, thus enlarging it to P⊗Q or, equivalently, doubling the
system size to 2N with N physical and N auxiliary degrees of freedom. The overall
idea is to represent the density matrix of the physical system,

ρβ = e−βH/Z(β), with Z(β) = Tr e−βH, (B.14)

at temperature β = 1/T in an artificially enlarged Hilbert space as a pure state,

|Ψβ〉 =
∑
n

an|φn〉P|φn〉Q, where ρβ = TrQ|Ψβ〉〈Ψβ|, (B.15)

where TrQ is the partial trace over auxiliary degrees of freedom {|φn〉Q}. To get how
this scheme works, we first rewrite the density matrix as,

ρβ = Z−1(β)e−βH/2 I e−βH/2, (B.16)

with I the identity operator which is nothing but Z(0)ρ0 according to Eq. (B.14).
Assuming that we know what is the MPS representing the wavefunction |Ψβ=0〉 such
that if we trace over its auxiliary degrees of freedom, Eq. (B.15) is fulfilled and give
us the right density matrix ρ0 of the physical system then it follows that4,

ρβ =
Z(0)

Z(β)
e−βH/2 TrQ

[
|Ψβ=0〉〈Ψβ=0|

]
e−βH/2. (B.17)

Since the Hamiltonian in the exponential does not act on the auxiliary space Q, the
partial trace can be pulled out as

ρβ =
Z(0)

Z(β)
TrQ

[
e−βH/2|Ψβ=0〉〈Ψβ=0|e−βH/2

]
. (B.18)

At the end, an imaginary time evolution has to be performed over the infinite
temperature MPS (β = 0) in order to get the finite temperature MPS,

|Ψβ〉 = e−βH/2|Ψβ=0〉, (B.19)

which can be performed using the TEBD algorithm described in the previous sec-
tion except that now it → β/2. In this formulation, the computation of physical
observables is straightforward,

〈O〉β = TrP

[
Oρβ

]
=

Z(0)

Z(β)
TrP

[
O TrQ|Ψβ〉〈Ψβ|

]
=

Z(0)

Z(β)
〈Ψβ|O|Ψβ〉, (B.20)

where we have used Eq. (B.18) for the expression of the density matrix ρβ in the last
equality. Plus, since the resulting overlap 〈Ψβ|O|Ψβ〉 is a number, the partial traces

4We will show that the infinite temperature MPS representing |Ψβ=0〉 can hopefuly be constructed
exactly at the end, but we do not need to worry about that for now.
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can be safely dropped. The ratio of the two partition functions trivially follows from
the expectation value of the identity operator,

〈I〉β = 1 = TrP

[
Iρβ

]
=

Z(0)

Z(β)
TrPTrQ|Ψβ〉〈Ψβ| =

Z(0)

Z(β)
TrPTrQ〈Ψβ|Ψβ〉.(B.21)

Finally, we get that the thermal average value of an observable O is given by,

〈O〉β =
〈Ψβ|O|Ψβ〉
〈Ψβ|Ψβ〉

, (B.22)

which is easy to compute. At this point we still do not know what the infinite
temperature MPS is and this is what we shall focus on now. The β = 0 density
matrix of the physical system is given by,

ρ0 =
1

dN
I =

(
1

d
I

)⊗N

, (B.23)

which factorizes over each of the N degrees of freedom and where dN corresponds to
the Hilbert space size. Hopefully, the MPS representing |Ψβ=0〉 can be factorized in
pairs of physical and auxiliary degrees of freedom |Ψβ=0〉 = |ψ1〉|ψ2〉 . . . |ψN〉. Noting
that

1

d
In =

1

d

∑
{σn}

|σn〉P〈σn|P

= TrQ

[(
1√
d

∑
{σn}

|σn〉P|σn〉Q

)(
1√
d

∑
{σn}

〈σn|P〈σn|Q

)]
, (B.24)

where the sum runs over the {σn} states of the local Hilbert space of the nth degree
of freedom. It follows that the local state |ψn〉 corresponds to a maximally entangled
state,

|ψn〉 =
1√
d

∑
{σn}

|σn〉P|σn〉Q. (B.25)

which is trivial enough to be built exactly within the MPS formalism as shown in
Fig. B.2. Indeed, the MPS in this enlarged Hilbert space can be pictured as a ladder
with one leg corresponding the physical degrees of freedom P and the other to the
auxiliary ones Q. At infinite temperature, the rungs are independently maximally
entangled but not entangled to each other. For instance, the rungs for a spin-1/2
system read |ψn〉 = (| ↑P,n↑Q,n〉+ | ↓P,n↓Q,n〉)/

√
25.

It becomes increasingly difficult to reach low temperatures with this method. This
might seem a bit surprising at first since I have just explained in the introductory
section on MPS in the previous chapter that there is no better way we know of
to represent a one-dimensional ground state (an exactly zero temperature state!)
thanks to the area law. Unfortunately, because of the auxiliary sites which are used

5One can actually carry out local unitary transformations on a rung on both physical P and
auxiliary Q degrees of freedom separately and keep the maximally entangled structure. In practice,
to have a system P⊗Q with conserved quantities, we will use |ψn〉 = (| ↑P,n↓Q,n〉+ | ↓P,n↑Q,n〉)/

√
2

such that Sz
tot(P) + Sz

tot(Q) = 0 is a conserved quantity. Note that Sz
tot(P) and Sz

tot(Q) are not
conserved quantities separately.
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Figure B.2: Representation of the MPS |Ψβ〉 in an enlarged Hilbert space
P ⊗ Q, where the lwer leg represents the physical degrees of freedom P and
the upper one the auxiliary ones Q, hence artificially doubling the system size
N → 2N . As an MPS can only represent one-dimensional system, a 1D path is
chosen between the vertices of the lattice, at the price of long-range interactions
(up to second neighbors f, see the dotted line). The infinite temperature MPS
corresponds to a product state of maximally entangled states between pairs of
physical and auxiliary degrees of freedom (in red here). This makes the choice
of the ladder lattice very convenient to actually encode exactly the maximally
entangled states on the rung of the ladder.

to represent the thermal state, one expects a volume-law entanglement entropy (i.e.
linear with the system size N). As a consequence, the size of the virtual dimension D
needed to describe accurately the system will grow exponentially as the temperature
T decreases. We are basically able to reach βmaxJ ∼ 10 with J the energy scale
of the system. When using real-time evolution on a mixed state, one can make
use of the auxiliary degrees of freedom by time-evolving them with −H, which
is mathematically without effect regarding the physical properties of the system,
but has been shown to improve substantially the accessible time range [273]. By
construction, this trick only applies to finite-temperature simulations. More recently,
a more general approach has been proposed to find an approximately-optimal way to
represent auxiliary degrees of freedom by sequentially applying local disentangling
operations, whose real time evolution by −H is just one possibility [274].

c. Chebyshev expansion of the spectral function

The finite temperature spectral function Sµυ
q (ω) defined in Eq. (10) can also be

expressed through the Källén-Lehmann spectral representation,

Sµυ
q (ω) =

π

Z(β)

∑
m,n

e−βEm|〈n|Sµ
q |m〉|2δ

[
ω − (En − Em)

]
δµυ, (B.26)

where (Sµ
q)

† = Sυ
−q has been assumed. The sum is performed over the eigenstates |m〉

of energy Em of the Hamiltonian describing the system. The result is a collection of
delta peaks which eventually forms a continuum in the thermodynamic limit. In the
current MPS framework, the spectral function in the form (B.26) can be rewritten
as,

Sµυ
q (ω) = 〈Ψβ|

(
Sµ

q ⊗ IQ

)
δ (ω − L)

(
Sυ
−q ⊗ IQ

)
|Ψβ〉/〈Ψβ|Ψβ〉, (B.27)

with L = HP ⊕ (−HQ) = HP ⊗ IQ − IP ⊗HQ the Liouville operator where HP,Q is
the Hamiltonian acting either on the physical or the auxiliary space. The eigenvalues
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of L are all the differences of the eigenenergies of the Hamiltonian, which makes
the relation with the original representation more obvious. A way to compute
this quantity is to represent it as a Chebyshev polynomials expansion of the first
kind [275–280] that we will briefly explain. First of all, the Chebyshev polynomials
Tn(x) are defined by the recurrence relation,

T0(x) = 1,
T1(x) = x,
Tn(x) = 2xTn−1(x)− Tn−2(x),

(B.28)

where Tn(x) = cos[n arccos(x)] are the only polynomials satisfying the above relation.
They form a sequence of orthonormal functions on the interval x ∈ [−1, 1],

∫ 1

−1

dx
π
√
1− x2

Tn(x)Tm(x) =


0 n 6= m

1 n = m = 0
1
2

n = m 6= 0

, (B.29)

so that a function f(x) defined on the interval x ∈ [−1, 1] can be expressed via the
expansion f(x) =

∑∞
n=0 anTn(x), which eventually converges to f(x) as long as the

function has all nice properties one can expect: it needs to be smooth and continuous
mostly. The coefficients an can be computed recursively because the Chebyshev
polynomials form an orthogonal basis, with∫ 1

−1

dx
π
√
1− x2

T0(x)f(x) =
∞∑
n=0

an

∫ 1

−1

dx
π
√
1− x2

T0(x)Tn(x), (B.30)

equals to (B.29). Here, T0(x) has been chosen for convenience as a reference. At the
end,

f(x) =
1

π
√
1− x2

[
µ0 + 2

∞∑
n=1

µnTn(x)

]
, µn =

∫ 1

−1

dx f(x)Tn(x) (B.31)

where the coefficients µn are known as the Chebyshev moments. Now the idea is to
express the spectral function Sµυ

q (ω) (B.27) as a Chebyshev expansion by computing
its moments µn recursively6. For the Chebyshev expansion to be well-defined and
convergent, a first step is to rescale the frequency ω of the spectral function such that
it is bounded by [−1, 1]. This is done by mapping the bandwidthW of the Liouvillian,
corresponding to the difference between its largest and smallest eigenvalues, to [−1, 1].
They can be obtained using standard DMRG with the Liouvillian L as an input
directly rather than the Hamiltonian as one would usually do7. Ultimately, the
Liouvillian operator is rescaled as,

L → L′ =
1

a

(
L+

W

2

)
−W ′, and ω → ω′ =

1

a

(
ω +

W

2

)
−W ′, (B.32)

6The Chebyshev expansion is favored compared to any other such as a Legendre expansion
because of its “better numerical properties” such as convergence and goodness of fit. I took the
example of Legendre polynomials because they are defined in the same interval x ∈ [−1, 1] with
similar orthogonality properties.

7The largest eigenvalue of L can be obtained using −L as an input. However, its largest
eigenvalue is equal to the opposite of the minimal one, i.e. Emin = −Emax. This is because the
eigenvalues of L correspond to all the possible eigenvalue differences of the Hamiltonian H.
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with W ′ = 1 − ε/2, where ε = 0.025 is a numerical safeguard to ensure that
ω′ ∈ [−1, 1] and a = W/2W ′. The Chebyshev vectors |tn〉 are constructed through
the recursion relation,

|tn〉 = 2L′|tn−1〉 − |tn−2〉, (B.33)

with |t0〉 = (Sυ
−q⊗IQ)|Ψβ〉 and |t1〉 = L′|t0〉 as starting point, similarly to Eq. (B.28).

The expansion of the spectral function (B.27) reads,

Sµυ
q (ω) =

1

a
√
1− ω′2

[
〈t0|t0〉+ 2

∞∑
n=1

〈t0|tn〉Tn(ω′)

]/
〈Ψβ|Ψβ〉, (B.34)

where the overlaps 〈t0|tn〉 are the Chebyshev moments µn we need to compute.
Although all the operations to carry might seem straightforward here, like applying
an MPO to an MPS or computing the overlap between two MPS, there is one, the
addition of two MPS |Ψ〉+ |Φ〉 as in the above recursion relation, that is actually
a bit tricky, in the sense that it is not simply the element-wise sum of the tensors
elements [45]. Indeed, consider,

|Ψ〉 =
∑
σ1

∑
σ2

· · ·
∑
σN

Aσ1
a1
Aσ2

a1a2
· · ·AσN

aN−1
|σ1σ2 · · ·σN〉, (B.35)

and

|Φ〉 =
∑
σ1

∑
σ2

· · ·
∑
σN

Bσ1
b1
Bσ2

b1b2
· · ·BσN

bN−1
|σ1σ2 · · ·σN〉. (B.36)

The resulting MPS from the addition reads,

|Ψ〉+ |Φ〉 =
∑
σ1

∑
σ2

· · ·
∑
σN

Cσ1
c1
Cσ2

c1c2
· · ·CσN

cN−1
|σ1σ2 · · ·σN〉, (B.37)

where Cσn
cn−1cn

= Aσn
an−1an

⊕ Bσn
bn−1bn

, except for the first and last tensors, made of
two indices only; what we have to do here is to form respectively a row vector
Cσ1

c1
= [Aσ1

a1
Bσ1

b1
] and a column vector CσN

cN−1
= [AσN

aN−1
BσN

bN−1
]T. Surprisingly, the

addition of two MPS of respective virtual dimensions DΨ and DΦ leads to a new MPS
of virtual dimension DΨ +DΦ. Of course, the new MPS representation of the state
resulting from the addition might be uneconomical, e.g., performing |Ψ〉+ |Ψ〉 = 2|Ψ〉
should not lead to a growth of the virtual dimension but just to a rescaling of the
tensor elements by a factor 2. Hence, following the addition of two MPS, it is
advisable to perform a singular value decomposition in order to compress it to a
lower virtual dimension D if possible, without loosing too much information.

What is computationally difficult with this method is to accurately compute the
MPS |tn〉 or equivalently the Chebyshev moments µn to reconstruct the spectral
function (B.34) in a second step. The recursive way to compute Chebyshev vectors
by successive multiplication and additions makes the virtual dimension of |tn〉 grow
and require some control and truncation. This limits the maximum order n reliably
accessible in the Chebyshev expansion. Due to the finite n ≤ Ncheb truncation which
introduces artificial oscillations of period ∼ 1/Ncheb, we attach a damping factor to
the moments µn → gnµn. There are multiple choices for gn, and we employ in our
case a Jackson damping [276] given by,

gn =
(Ncheb − n− 1) cos πn

Ncheb+1
+ sin πn

Ncheb+1
cot πn

Ncheb+1

Ncheb + 1
. (B.38)
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2. Quantum Monte Carlo

Because of the “sign problem” (“phase problem”), real-time dynamics is not
accessible in quantum Monte Carlo simulations. Instead, one can compute imaginary-
time (τ = −it) correlations and then, a posteriori, analytically continue from the
imaginary axis to the real axis. This procedure is difficult due to the limited
information contained in the correlation functions in the presence of statistical
sampling errors, resulting in a wide range of possible solutions when transforming to
real time. I will first explain how to compute 〈Sµ

r (τ)S
υ
r′(0)〉 within the Stochastic

Series Expansion formulation based on Ref. 281, and the analytic continuation will
be discussed in the next section.

Measuring diagonal correlation functions We will distinguish two kinds of correla-
tion functions in the following, diagonal (related to the operator Sz) and off-diagonal
ones (related to the operators S±) because they are computed differently within
the algorithm. Starting easy, static (equal time) diagonal correlations are straight-
forwardly computed since a configuration is expressed in the Sz basis. Using the
notations introduced in the previous chapter, the static diagonal correlation reads,

〈Sz
rS

z
r′〉 =

〈
1

M + 1

M∑
p=0

[
〈σ(p)|Sz

r |σ(p)〉〈σ(p)|Sz
r′|σ(p)〉

]〉
, (B.39)

where the outermost average is performed over different Monte Carlo configurations.
The sum runs over theM slices p8. Also, |σ(p)〉 is obtained after the action of the first
p operators of the string on the initial configuration |σ(0)〉. The prefactor 1/(M + 1)
is the normalization of the sum. In the end, all the information required to compute
the static diagonal correlation (B.39) is already accessible within the algorithm
without much effort. The next question asks if there are equally efficient estimators
for time-dependent diagonal correlations? The imaginary-time does not explicitly
appear in a Monte Carlo configuration of the stochastic series expansion algorithm,
as it would in a standard path integral approach, but one can show [49, 50] that
it is related to the propagation index p. Precisely, an imaginary-time separation τ
corresponds to a binomial distribution of propagation distances ∆p = p′−p ∈ [0,M ]9,

w(τ,∆p) =

(
M

∆p

)(
τ

β

)∆p(
1− τ

β

)M−∆p

, (B.40)

where w(τ,∆p) is known as the weight factor and τ ∈ [0, β]. Therefore, the diagonal
time-dependent correlation function is related to the correlator

Czz(r, r′,∆p) = 1

M + 1

M∑
p=0

[
〈σ(p+∆p)|Sz

r |σ(p+∆p)〉〈σ(p)|Sz
r′ |σ(p)〉

]
, (B.41)

8As already discussed, the (M − n) identity operators in a given operator string are uniformly
distributed over all the possible Monte Carlo configurations to sample and do not influence the
mapping from index p to imaginary time τ . All calculations here can be performed by only
considering the nonidentity operators in the operator string of a given configuration, i.e. one can
make the substitution M → n. I find it more convenient to consider a fixed string size M for
computational reasons I will explain in the following, but the two approaches can be found in the
literature.

9One can ensure that ∆p is positive thanks to the periodicity |σ(0)〉 = |σ(M)〉 resulting from
the cyclic property of the trace in the partition function.
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via,

〈Sz
r (τ)S

z
r′(0)〉 =

〈
M∑

∆p=0

w(τ,∆p)Czz(r, r′,∆p)
〉
, (B.42)

where the average is performed over different Monte Carlo configurations. Within
the algorithm, the computation of Czz(r, r′,∆p) is similar to Czz(r, r′, 0), with no
additional difficulty.

Measuring off-diagonal correlation functions The computation of the off-diagonal
time-dependent correlation function 〈S∓

r (τ)S
±
r′ (0)〉 is more involved, since the off-

diagonal operators introduce highly non-local changes to a configuration. An analo-
gous problem occurred when trying to define an efficient update scheme satisfying
detailed balance for the off-diagonal operators in the first chapter, and led to the
development of the directed loop update algorithm. The proposed strategy is to com-
pute on the fly, directly during the loop update process, the correlator C±∓(r, r′,∆p)
such that

〈S±
r (τ)S

∓
r′ (0)〉 =

〈
M∑

∆p=0

w(τ,∆p)C±∓(r, r′,∆p)
〉
. (B.43)

The (directed) loop update algorithm can be pictured as a worm moving in the
configuration space making a closed loop at the end. The loop consists of I successive
intervals or segments between the exit leg of an off-diagonal vertex and the entrance
leg of the next off-diagonal vertex encountered in the loop. The interval edges consist
of one operator S± acting at positon r in space and p along the propagation axis.
The worm has a fixed tail, corresponding to the starting point or first interval edge.
During the loop update, its head will pop out and slip from one edge to the other
until it bites its own tail, marking the end of the off-diagonal update. Rather than
positioning the off-diagonal operators on the edges of the intervals, they can be put
on the worm’s head: every time the worm enter a new interval, a new operator is
attached to it. In its path, the worm modify a state |σ(p)〉 of the configuration
space to |σ̃(p)〉. The off-diagonal correlators can be measured between the operator
positioned at the tail and the moving head of the worm, both separated by ∆p
propagation indices. If during the update process the head and tail are at the
same propagation index ∆p = 0 (they can be at different positions r in space), the
off-diagonal correlator reads,

C±∓(r, r′,∆p = 0) = 〈σ̃(p)|S±
r S

∓
r′ |σ(p)〉, (B.44)

and for ∆p 6= 0,

C±∓(r, r′,∆p) = 〈σ̃(p)|S±
r |σ(p)〉〈σ̃(p+∆p)|S∓

r′ |σ(p+∆p)〉, (B.45)

where S∓
r , S∓

r′ are the operator located at the tail and at head of the worm respectively.
In practice, recording all the measured correlators will drastically reduce the

efficiency of the loop update algorithm. Plus, the storage table of all the correlators
(r, r′,∆p) is huge and intractable in practice for memory related issues since every
time the worm’s head slip from one propagation index p to p+ 1 a new correlator
has to be measured. Workarounds need to be found. Regarding memory, a finite
set of {τ} points is defined beforehand. With a fixed number M of operators in
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the string, the weight factors w(τ,∆p) can be computed after the thermalization
process once and for all. The size of storage table now scales as O(N2size{τ}) rather
than O(N2M) with N the total number of degrees of freedom. Using translation
invariance or going in momentum space |r − r′| → q, the scaling factor N2 can be
reduced to N . Regarding the slowing down of the loop update by the measurements,
one can realize that within a given interval, the correlator remains constant, and the
contribution of an entire interval to 〈S±

r (τ)S
∓
r′ (0)〉 in one step,

〈S±
r (τ)S

∓
r′ (0)〉 =

〈
I∑

i=1

C±∓(r, r′, i)
[
W (τ, pi,2)−W (τ, pi,1)

]〉
, (B.46)

where C±∓(r, r′, i) is the constant correlator value on an entire interval i ∈]pi,1, pi,2]
of the propagation axis and W (τ,∆p) =

∑∆p
n=0w(τ, n) is called the integrated weight

function.

3. Stochastic Analytic Continuation

The analytic continuation from imaginary-time τ to real-time t (or frequencies
ω) of the correlation functions is done by inverting the Laplace transform L,

S(τ) = L
[
S(ω)

]
(τ) =

1

π

∫ +∞

−∞
dω e−τω S(ω), (B.47)

where I have purposely omitted the various indices usually attached to the spectral
function for readability. The inverse Laplace transform is not readily done numerically:
L[S(ω)](τ) will uniquely determine S(τ) but the inverse operation, namely recovering
S(ω) from S(τ) will not. In other words, arbitrarily small changes in S(τ) can produce
arbitrarily large changes in the value of S(ω). Due to the numerical precision or
more specifically the Monte Carlo sampling errors, the operation to carry is an
ill-conditioned (unstable) problem since the errors in the measurement data may
lead to indefinitely large errors in the solutions [282], hence an infinite number of
possible solutions. Fortunately in physics, the functions S(ω) we are looking for have
specific features or some that can be excluded, i.e. there is usually no high-frequency
components, especially at low-temperature and, as a matter of fact, these functions
are actually quite smooth10. This may help in choosing among possible solutions the
most probable ones.

Many methods have been developed to overcome this issue, but all are far from
solving it reliably in all cases and with a perfect control the problem, which is
mathematically ill-posed anyway. To illustrate the wide range of methods, I will cite
the singular value decomposition method [283,284], the non-negative least-squares
method [285], the method of consistent constraints [286] and the Padé approximants
which consists of parametrizing the numerical function by means of a ratio of two
polynomials, or equivalently by a terminating continued fraction and then analytically
continuing the Padé expression to real frequencies [287–289]. Most commonly used
(or known) in the condensed matter theory community is the “Maximum Entropy”
method [259,290–294] of which we will briefly recall the main ideas before moving to
the stochastic analytic continuation (SAC) method that I used in my work, following
Ref. 262.

10Except for possible singular δ(ω) peak contributions.
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General definitions As discussed in the previous section, quantum Monte Carlo
simulations provide the imaginary time correlation S(τ) for a finite set of τi points with
i = 1, 2, . . . , Nτ . The data are correlated in two ways: first, successive measurements
result from close configurations and several Monte Carlo updates are required before
fully decorrelating consecutive measurements. Then at a given measurement step in
the Monte Carlo algorithm the data at different τ points are also correlated because
they result from exactly the same configuration. Unless working with a different
simulation for each of the τ points, this second source of correlations is inevitable.
A simple standard deviation to evaluate the error bars is not enough and their full
characterization requires the covariance matrix, which can be evaluated with the
Monte Carlo data divided up into a large number of bins Nb,

Cij =
1

Nb(Nb − 1)

Nb∑
b=1

[
Sb(τi)− S(τj)

][
Sb(τj)− S(τi)

]
(B.48)

where the average of the Monte Carlo data of a bin b is noted Sb(τi) and the global
average by S(τi) =

∑Nb

b Sb(τi). In our case, a bin is comprised of a thousand
successive measurements such that data in different bins are uncorrelated. The
diagonal elements of the covariance matrix Cij are the squares of the standard
statistical errors, i.e. σ2

i = Cii, and all other elements i 6= j would be zero only if
the data at different τ points were strictly independent. The numerical analytic
continuation performed by the maximum entropy or stochastic analytic continuation
methods is based on the parametrization of the spectral function such as a large
number of δ functions with adjustable positions and amplitudes in the frequency
domain. These parameters are adjusted such that the Laplace transform (B.47) of
the proposed spectrum provides imaginary-time data S̃(τ) close to the real ones
obtained by QMC in the sense of the “goodness of fit”,

χ2
[
S(ω)

]
=

Nτ∑
i,j=1

[
S(τi)− S̃(τj)

]
C−1

ij

[
S(τj)− S̃(τi)

]
. (B.49)

However, minimizing χ2 does not produce useful results since the best solution
consists of a typically small number of sharp peaks [295, 296], not counting the
many other very different solutions with almost the same χ2 value, reflecting the
ill-conditionned nature of the inverse of the Laplace transform. The maximum
entropy or stochastic analytic continuation methods provide some regularization
mechanism to overcome this. In the first one, the entropy E (as in information
theory) of the spectrum with respect to a default model D(ω) is defined as E[S(ω)] =
−
∫∞
−∞ dω S(ω) ln[S(ω)/D(ω)] [259,290–294]. The default model is a smooth function

that serves as the zero (maximum) entropy configuration and which can hard code
any features of the true spectral function if known in advance. The maximum entropy
method solution is the function that minimizes Q[S(ω)] = χ2−αE with α a parameter
that controls the degree of regularization. One can show that the likelihood of any
spectral function S(ω) to be the true spectral function is equal to P [S(ω)] ∝ e−Q[S(ω)].
The minimization of Q can be performed using Newton’s method for instance, and
numerous ways of defining α exist in literature: a compromise between over-fitting
(α = 0) and over-smoothing by D(ω) (α→ ∞).
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The Stochastic Analytic Continuation In the stochastic analytic continuation
(SAC), the entropy is not imposed explicitly but is generated implicitly by a Monte
Carlo sampling procedure of a suitably parametrized spectrum [296–299]. In the
SAC method, a spectrum S(ω) is sampled according to the probability distribution,

P
[
S(ω)

]
∝ exp

(
− χ2

2Θ

)
, (B.50)

with χ2 the goodness of the fit defined in Eq. (B.49) and Θ a fictitious temperature
(this is a parameter) playing a regularization role similar to the paramater α in the
Maximum Entropy method [297]. Indeed, making the connection with a statistical-
mechanics problem, χ2/2 plays the role of an energy and Θ of the temperature. At
low temperature, the Monte Carlo will lead to low-energy configurations (spectrums
with a small χ2/2) whereas in the limit Θ → +∞, all configurations (all spectra,
independently of their χ2) have the same probability (B.50). Hence, the value of Θ
is very important and needs to be carefully set. I will discuss a scheme of fixing the
temperature in the following and first discuss a parametrization for the spectrum as
well as the Monte Carlo method engineered in the SAC. For convenience, we redefine
the Laplace transform (B.47) such that it now reads,

S(τ) =

∫ +∞

0

dω K (τ, ω) S̃(ω), with K (τ, ω) =
e−τω + e−(β−τ)ω

1 + e−βω
, (B.51)

where S̃(ω) = S(ω)(1 + e−βω). We have used the fact that S(−ω) = e−βωS(ω) and
that τmax = β with the symmetry property S(τ ≥ β/2) = S(β − τ). Basically, it
means that the computation of the dynamical correlation functions can be reduced to
τ ≤ β/2 and the parametrization of the spectral function S̃(ω) to positive frequencies.
It is parametrized as the sum of a large number Nδ of δ functions,

S̃(ω) =

Nδ∑
n=1

anδ (ω − ωn) , with
Nδ∑
n=1

an = S(τ = 0), (B.52)

where the normalization constraint on the δ functions amplitude ensures the right
sum rules for the spectral function11. In practice, we have used Nδ = 500, all of
fixed different amplitudes an = n, but with a position ωn in frequency space that will
be optimized by the Monte Carlo. We restrict the frequency space to the interval
ωn ∈ [0, ωmax] where ωmax needs to be sufficiently large such that the spectral function
should have a negligible weight above this threshold, e.g. we have used ωmax = 10
in our works. Because every Monte Carlo movement will require the computation
of χ2 to know if it is accepted or rejected, it is useful to use a discrete frequency
space rather than working in the continuum, e.g. a small frequency step ∆ω = 0.05
was used in practice. This way, the Kernel K(τ, ω) can be computed once and for
all at the beginning and the computation of the Laplace transform (B.47) reads
S̃(τ) =

∑
n anK(τ, ωn). Moreover, it is also useful to work in the eigenbasis of the

covariance matrix (B.48), which lightens numerical operations for the computation
of χ2.

11We have the sum rule corresponding to the zero time and zero space correlation function,
Sµυ

r=0(t = 0) = Sµυ
r=0(τ = 0) = 〈Sµ

r Sυ
r 〉 where the last term is usually very easily computed exactly

for Sµ
r = (Sυ

r )
†.
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We have used two different Monte Carlo updates to move the δ functions in
the frequency space. The first one randomly picks a δ function amongst the Nδ

available and randomly suggest a new position ωn → ωn+d with d chosen at random
within a window centered at d = 0. The width of the window is adjusted during
the Metropolis algorithm to give an acceptance rate close to 0.5. Similarly, the
second update randomly picks two δ functions at a time and try to move them
independently in the frequency space. After thermalization, the spectrums are
collected and averaged over sufficiently many update steps to obtain smooth results.

The temperature Θ needs to be set in the first place before performing the
Metropolis algorithm. As already mentioned, it should not be too small (overfitting),
nor too large (then any spectrum would be possible). Hopefully, there exists a range
of Θ over which the average χ2 value is small but the fluctuations are significant,
and cause an acceptable smoothing of the spectrum. There is no agreement on
exactly how the temperature should be chosen, but in general the different schemes
proposed in the literature produce very similar results. In our work, the adopted
strategy is to perform a simulated annealing by adjusting successively the value of
the temperature, as in Refs. 261 and 262. We start with a large value Θinit = 100
and perform Monte Carlo updates as describe above. The average χ2 along with the
variance σχ2 = (χ2)2 − χ2

2 is computed over a sufficient number of spectrums and
saved along with the value of Θ. In the next step the temperature is reduced, e.g.
Θstep = Θprev. step/1.1, and the measurement of χ2 and σχ2 is repeated. It has been
found that a “good value” is given by,

χ2
(
Θgood

)
≈ min

[
χ2
(
Θ
)]

+ aσχ2 , (B.53)

with a a constant of order one. There is a simple hand-waving argument in favor of
this choice for the temperature. The idea is to add one standard deviation to the
minimum average χ2. Indeed, if one sees Nτ as the number of degrees of freedom
as in a simple fitting procedure in the computation of χ2 (B.49), then one standard
deviation corresponds roughly to the removal of distortions due to “fitting to the
statistical errors”. This choice has proven to to provide excellent results [261, 262].

III. One-dimensional spin systems

Adapted from the work Phys. Rev. B 94, 144409 (2016)
Maxime Dupont, Sylvain Capponi, and Nicolas Laflorencie

I will present results of numerical simulations performed on one-dimensional spin
chains in order to extract the so-called spin-lattice relaxation rate 1/T1 accessible
through NMR experiments [250]. Building on numerical tensor network methods
using the Matrix Product States formalism, we can follow the non-trivial crossover
occurring in critical chains between the high-temperature diffusive classical regime
and the low-temperature response described by the Tomonaga-Luttinger liquid (TLL)
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theory, for which analytical expressions are known. In order to compare analytics
and numerics, we focus on a generic spin-1/2 XXZ chain which is a paradigm of
gapless TLL, as well as a more realistic spin-1 anisotropic chain, modeling the DTN
material discussed in the previous chapter and which can be either in a trivial
gapped phase or in a TLL regime induced by an external magnetic field. Thus, by
monitoring the finite temperature crossover, we provide quantitative limits on the
range of validity of TLL theory, that will be useful when interpreting experiments
on quasi-one-dimensional compounds.

The NMR 1/T1 spin-lattice relaxation rate contains lots of information on the
dynamical properties of the system since it is directly related to dynamical spin-spin
correlations. Moreover, being a local quantity, a crucial property of NMR technique,
we will argue that reliable data can be obtained even though we will simulate
finite spin chains. Being of fundamental interest, the low temperature behavior
of the NMR relaxation rate has been investigated for several one-dimensional or
quasi-one-dimensional quantum magnets. Spin-gapped compounds, such as two-leg
ladders SrCu2O3 [300], BiCu2PO6 [301], Sr14−xCaxCu24O41 [302], weakly coupled
Haldane chains Y2BaNiO5 [303], or dimerized spin chains AgVOAsO4 [304], exhibit
an activated relaxation at low temperature. For gapless Heisenberg chain systems,
the low-energy critical behavior has been studied [305–308] for Sr2CuO3 which is an
almost ideal realization with a large one-dimensional exchange interaction J ∼ 2000 K
and much smaller three-dimensional couplings so that the ordering temperature is
pushed down to Tc ' 5 K. For such an SU(2) symmetric compound12, a careful
comparison of experimental and numerical NMR data has shown the prominent role of
logarithmic corrections [309]. Another route to TLL behavior is to apply an external
magnetic field on gapped materials such as spin-1 Haldane gap compound [310]
(CH3)4NNi(NO2)3 or dimerized spin-1/2 chains [311]. For such systems, a theoretical
analysis of the 1/T1 behavior has been performed in Refs. 312 and 166. A useful
experimental review on NMR properties of several spin chains can be found in
Ref. 313. Note also that 1/T1 measurements have also been used to characterize
one-dimensional metallic phase in carbon nanotube [314] or quasi-one-dimensional
superconductor [315].

More recently, interesting quasi-one-dimensional spin-gapped materials have also
been investigated using NMR [316]: an anisotropic spin-1 system NiCl2-4SC(NH2)2
(DTN) and a spin-ladder one (C5H12N)2CuBr4 (BPCB). In both cases, 1/T1 mea-
surements could be interpreted either as coming from magnon (respectively spinon)
excitations in the gapped (respectively gapless) one-dimensional phase, and the quan-
tum critical regime was also argued to be universal. Most importantly, the whole
temperature range, including one-dimensional as well as three-dimensional regimes,
was discussed. Experimentally, when decreasing temperature, the NMR relaxation
rate 1/T1 has been found to diverge in the TLL regime, with power-law governed by
a characteristic exponent. Such an analysis is used in experiments to determine the
corresponding TLL exponent K [317, 318]. For example, it was a smoking-gun signa-
ture of attractive TLL in (C7H10N)2CuBr4 (DIMPY) compound [173, 319]. However,
given that we are generically dealing with quasi-one-dimensional materials, critical
fluctuations and three-dimensional ordering will limit the low-energy one-dimensional

12Since the NMR technique requires an external magnetic field, the SU(2) symmetry (which is
experimentally never exact anyway) is theoretically broken. However, the energy coupling J being
immensely large in this compound, the applied magnetic field is negligible.
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regime, and a genuine TLL critical behavior is observable only within some finite
window in temperature.

1. Models and predictions

Studied models Although both models that we studied in this work have already
been introduced in the previous chapter, I will briefly recall them here for consistency.
We first considered one of the simplest paradigmatic example of TLL liquid, namely
the spin-1/2 XXZ chain Hamiltonian:

HXXZ = J

N−1∑
j=1

[
1

2

(
S+
j S

−
j+1 + S−

j S
+
j+1

)
+∆Sz

jS
z
j+1

]
−H

N∑
j=1

Sz
j (B.54)

where ∆ ∈ (−1, 1] denotes the Ising anisotropy, J the coupling strength and H is an
applied magnetic field along the same direction as the anisotropy. The Hamiltonian
is defined with open boundary conditions here, as will be used in our numerical
simulations. In the range ∆ ∈ (−1, 1] the XXZ model can be described by a TLL
as long as its spectrum remains gapless [37]. As a function of magnetic field, the
gapless regimes extends up to a critical field Hc = J(∆+1), and the system becomes
gapped for H > Hc. In the latter regime, the gap increases linearly with the applied
magnetic field, ∆g = H −Hc.

We also discuss the quasi-one-dimensional magnetic insulator compound “DTN”,
whose relevant three-dimensional structure consists of weakly coupled S = 1 chains in
the two other transverse (with respect to the chain axis) directions. Although there
is three-dimensional magnetic order observed below Tc ∼ 1.2 K [230] due to weak
interchain couplings along the two transverse directions, J⊥/J ' 0.08, one expects
one-dimensional physics and a TLL regime at higher T . The effective Hamiltonian
to describe this situation reads

HDTN−1D = J
N−1∑
j=1

Sj · Sj+1 +
N∑
j=1

[
D
(
Sz
j

)2 − gµBHS
z
j

]
, (B.55)

where Sj = (Sx
j , S

y
j , S

z
j ) are spin-1 operators and J = 2.2 K is the one-dimensional

antiferromagnetic coupling and D = 8.9 K is the single-ion anisotropy. The magnetic
field H is given in Tesla with g = 2.31. In the absence of magnetic field, due to the
large on-site anisotropy D, the system is in the so-called large-D phase [235]. This is
a trivial phase, adiabatically connected to the product state |00 · · · 0〉 where each spin
is in a non-magnetic Sz = 0 state. Clearly, this phase has a finite spin-gap, which
corresponds to the first critical field Hc1 needed to magnetize the system. Its value is
known to be, at first order in J/D � 1 [237]: Hc1/gµB = D− 2J +O(J2/D) ' 3 T.
At finite magnetic field there is a gapless TLL regime for H ∈ [Hc1, Hc2], with
Hc2/gµB = D + 4J = 11.4 T. Above this critical saturation field, the system
becomes gapped again, entering a fully polarized phase. In the TLL phase and
close to the upper critical field Hc2, the DTN Hamiltonian can be mapped toward
an effective XXZ model of spins S = 1/2. Using perturbation theory, effective
parameters [316,320] are given by J → 2J and ∆ = 0.5. This result can be refined
using contractor renormalization method [321,322] leading to the same value of J
but a slightly reduced ∆ = 0.36. Both mappings lead to a value of the effective
magnetic field H → H − J −D.
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Tomonaga-Luttinger Liquid prediction for the NMR relaxation rate Let us first
recall that the retarded dynamical spin susceptibility within the linear response
theory is given by the Kubo formula as,

χµυ
q (ω) = i

∑
r

∫ +∞

−∞
dt ei(ωt−q·r)Θ(t)

〈
[Sµ

r (t) , Sυ
0 (0)]

〉
, (B.56)

where Θ(t) is the Heaviside function ensuring causality. Precisely, the susceptibility
corresponds to the linear response of the observable Sµ

r (t) to an external time and
space-dependent perturbation Hr′(t) such as magnetic field of the type Hυ

r′(t)S
υ
r′ .

The susceptibility can be related to the spectral function by [21],

Im
[
χµυ

q (ω)
]
=

1− e−βω

2
Sµυ

q (ω) . (B.57)

In the one-dimensional Tomonaga-Luttinger Liquid framework, the dynamical sus-
ceptibility χµυ

q (ω) can be computed exactly for the longitudinal (zz) and transverse
components (±∓) [37, 323]. In the limit βω � 1, the exponential in Eq. (B.57)
is expanded to first order e−βω ' 1 − βω and the temperature dependence of the
spectral function in the limit ω → 0, corresponding to the NMR frequency, can be
extracted [166, 210, 323],

1

T⊥
1

=
A0 cos

(
π
4K

)
u

(
2πT

u

) 1
2K

−1

B

(
1

4K
, 1− 1

2K

)
, (B.58)

and

1

T
‖
1

=
A1 cos (πK)

2u

(
2πT

u

)2K−1

B (K, 1− 2K) +
KT

4πu2
, (B.59)

with B(x, y) the Euler Beta function, u and K the usual TLL parameters and
A0,1 prefactors of the static correlation functions. Generically 1/T⊥

1 diverges as
we approach zero temperature as a K-dependent power-law, and dominates over
1/T

‖
1 . Note that for finite magnetic field, additional subleading corrections are

expected [324].

2. Spin-1/2 XXZ chain

Case study of the non-interacting point As a benchmark, we will first be inter-
ested in the XXZ Hamiltonian (B.54) at ∆ = H = 0 that can be mapped onto a
model of non-interacting spinless fermions at half-filling using a Jordan-Wigner trans-
formation, as already discussed in the first chapter. It can easily be diagonalized in
Fourier space and one can make use of the fermionic nature of the operators through
Wick’s theorem to compute analytical expressions of the dynamical correlation
functions 〈Sµ

r (t)S
υ
r (0)〉 required to obtain the NMR relaxation rate 1/T1 [325,326].

Unlike the TLL expressions (B.58) and (B.59) which are only valid in the low-energy
limit, the results presented in this section will be valid for all regimes. We show
the “bare” results in Fig. B.3. Ideally, one is interested in the thermodynamic limit
but we see that, at finite temperature (hence finite correlation length), working on
finite length chains with only a moderate number of sites N allows to get reliable
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FIG. 2. (color online) We compare numerical results (circles) used to determine the 1/T1 with analytical results (straight lines)
for the XX model. For the transverse (?) case, exact results are computed on a chain of size L = 64 (OBC). As for the
longitudinal (k) case, the chain size is L = 1000 (OBC). Numerics on their side are performed on a chain of L = 64 (OBC)
sites. The left panel shows the real value of the dynamical correlations. For readability, we only display numerical results for
the lowest temperature for the longitudinal correlations. Indeed, this is a priori the hardest to compute and thus the most
subject to errors. The right panel shows the real part of the Fourier transform of the real time data. Although we only show
data up to t = 40 J�1 the Fourier Transform of the exact zz correlations was performed using data up to t = 1000 J�1.

Indeed, the MPS estimates agree perfectly with the exact
expressions (see appendix A).

First of all, we consider the local dynamical correlation
of the site in the middle of the chain reducing de facto
boundary e↵ects. Then, as finite size e↵ects are known to
be caused by the reflection of the propagating excitations
at TLL velocity u on the boundary of the system, one can
estimate a time below which the dynamical correlations
can be considered as free of finite size e↵ects (basically,
ut ⇠ L).

We first discuss the transverse correlations, see Fig. 2.
For all temperatures, they decay rather quickly to zero,
so that we can safely truncate data to a maximum time
tmax (which is anyway a natural cuto↵ provided by the
inverse of the NMR frequency !0) and get reliable values
of 1/T?

1 by integrating over time. Moreover, we have also
checked that finite size e↵ects are extremely small since
we are computing a local correlation.

The same cannot be said for the longitudinal correla-
tions. They continue to oscillate even for high temper-
atures and long times, and their amplitude gets (very)
slowly smaller with time. This implies severe limitations
to get data in the thermodynamic limit. For instance,
exact computations using (A2) were done on L = 1000
and still displayed oscillations of amplitude around 10�4

at t = 1000 J
�1. This makes the value of 1/T k

1 very dif-
ficult to estimate. This well-known behavior is related to
spin di↵usion-like behavior62,63 which cause a logarith-
mic divergence at small frequency !. However, we have
to remember that the NMR frequency !0 eventually pro-
vides a natural cuto↵.

For completeness we display the real part of the Fourier
transform on the right panels of Fig. 2 for which the 1/T1

value as defined in section II B corresponds to the ! = 0
value.

B. Spin-1/2 XXZ chain at � 6= 0

1. Gapless regime

Building on the perfect agreement observed previously
between MPS estimates and the exact analytical solu-
tion of the XX model, we are now confident to extend
our study of the more generic XXZ case �1 < �  1,
described by a TLL, and compute the relaxation rates.
Results are plotted in Fig. 3 for various values of the
anisotropy. The simulations were performed on systems
of size L = 64 with a cuto↵ of " = 10�10 in the singular
values. We kept a maximal number of D = 500 states.
A fourth order Trotter decomposition was used with a
Trotter step of ⌧ = 0.1.
First, in the gapless regime we do observe an excellent

quantitative agreement between numerical estimates and
the TLL prediction Eq. (2.12) at low-enough tempera-
ture. This asymptotic regime with a power-law behavior
⇠ T

1
2K �1 occurs only below T/J ⇠ 0.1� 0.2 (depending

on the anisotropy �). Here we stress that there are no
free parameters in the analytic expressions. Indeed, the
TLL parameters are computed using the exact expres-
sions Eq. (2.9) for u and K, and Ax is obtained following
Refs. 64 and 65. The isotropic limit � = 1 is a spe-
cial point where logarithmic corrections appear in several
quantities66–68, leading to a very slow divergence of the
(isotropic) NMR relaxation rate12,69
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where ⇤ ' 24.27J . MPS estimates compare well with
this parameter-free expression, as visible in Fig. 3.
Interestingly, we notice the non-monotonic behavior of
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FIG. 2. (color online) We compare numerical results (circles) used to determine the 1/T1 with analytical results (straight lines)
for the XX model. For the transverse (?) case, exact results are computed on a chain of size L = 64 (OBC). As for the
longitudinal (k) case, the chain size is L = 1000 (OBC). Numerics on their side are performed on a chain of L = 64 (OBC)
sites. The left panel shows the real value of the dynamical correlations. For readability, we only display numerical results for
the lowest temperature for the longitudinal correlations. Indeed, this is a priori the hardest to compute and thus the most
subject to errors. The right panel shows the real part of the Fourier transform of the real time data. Although we only show
data up to t = 40 J�1 the Fourier Transform of the exact zz correlations was performed using data up to t = 1000 J�1.

Indeed, the MPS estimates agree perfectly with the exact
expressions (see appendix A).

First of all, we consider the local dynamical correlation
of the site in the middle of the chain reducing de facto
boundary e↵ects. Then, as finite size e↵ects are known to
be caused by the reflection of the propagating excitations
at TLL velocity u on the boundary of the system, one can
estimate a time below which the dynamical correlations
can be considered as free of finite size e↵ects (basically,
ut ⇠ L).

We first discuss the transverse correlations, see Fig. 2.
For all temperatures, they decay rather quickly to zero,
so that we can safely truncate data to a maximum time
tmax (which is anyway a natural cuto↵ provided by the
inverse of the NMR frequency !0) and get reliable values
of 1/T?

1 by integrating over time. Moreover, we have also
checked that finite size e↵ects are extremely small since
we are computing a local correlation.

The same cannot be said for the longitudinal correla-
tions. They continue to oscillate even for high temper-
atures and long times, and their amplitude gets (very)
slowly smaller with time. This implies severe limitations
to get data in the thermodynamic limit. For instance,
exact computations using (A2) were done on L = 1000
and still displayed oscillations of amplitude around 10�4

at t = 1000 J
�1. This makes the value of 1/T k

1 very dif-
ficult to estimate. This well-known behavior is related to
spin di↵usion-like behavior62,63 which cause a logarith-
mic divergence at small frequency !. However, we have
to remember that the NMR frequency !0 eventually pro-
vides a natural cuto↵.

For completeness we display the real part of the Fourier
transform on the right panels of Fig. 2 for which the 1/T1

value as defined in section II B corresponds to the ! = 0
value.

B. Spin-1/2 XXZ chain at � 6= 0

1. Gapless regime

Building on the perfect agreement observed previously
between MPS estimates and the exact analytical solu-
tion of the XX model, we are now confident to extend
our study of the more generic XXZ case �1 < �  1,
described by a TLL, and compute the relaxation rates.
Results are plotted in Fig. 3 for various values of the
anisotropy. The simulations were performed on systems
of size L = 64 with a cuto↵ of " = 10�10 in the singular
values. We kept a maximal number of D = 500 states.
A fourth order Trotter decomposition was used with a
Trotter step of ⌧ = 0.1.
First, in the gapless regime we do observe an excellent

quantitative agreement between numerical estimates and
the TLL prediction Eq. (2.12) at low-enough tempera-
ture. This asymptotic regime with a power-law behavior
⇠ T

1
2K �1 occurs only below T/J ⇠ 0.1� 0.2 (depending

on the anisotropy �). Here we stress that there are no
free parameters in the analytic expressions. Indeed, the
TLL parameters are computed using the exact expres-
sions Eq. (2.9) for u and K, and Ax is obtained following
Refs. 64 and 65. The isotropic limit � = 1 is a spe-
cial point where logarithmic corrections appear in several
quantities66–68, leading to a very slow divergence of the
(isotropic) NMR relaxation rate12,69
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where ⇤ ' 24.27J . MPS estimates compare well with
this parameter-free expression, as visible in Fig. 3.
Interestingly, we notice the non-monotonic behavior of

Figure B.3: We compare numerical results (circles) used to determine the
1/T1 with analytical results (straight lines) for the XX model. For the transverse
(⊥) case, exact results are computed on a chain of size N = 64. As for the
longitudinal (‖) case, the chain size is N = 1000. Numerics on their side are
performed on a chain of N = 64 sites. The left panel shows the real value of
the dynamical correlations. For readability, we only display numerical results
for the lowest temperature for the longitudinal correlations. Indeed, this is a
priori the hardest to compute and thus the most subject to errors.

data. Indeed, the MPS estimates agree perfectly with the exact expressions. First
of all, we consider the local dynamical correlation of the site in the middle of the
chain reducing de facto boundary effects. Then, as finite size effects are known to
be caused by the reflection of the propagating excitations at TLL velocity u on
the boundary of the system, one can estimate a time below which the dynamical
correlations can be considered as free of finite size effects , basically ut ∼ N . We
first discuss the transverse correlations, see Fig. B.3. For all temperatures, they
decay rather quickly to zero, so that we can safely truncate data to a maximum time
tmax and get reliable values of 1/T⊥

1 by integrating over time. Moreover, we have
also checked that finite size effects are extremely small since we are computing a
local correlation. The same cannot be said for the longitudinal correlations. They
continue to oscillate even for high temperatures and long times, and their amplitude
gets (very) slowly smaller with time. This implies severe limitations to get data in
the thermodynamic limit. For instance, exact computations were done on N = 1000
and still displayed oscillations of amplitude around 10−4 at tJ = 1000. This makes
the value of 1/T ‖

1 very difficult to estimate. This well-known behavior is related to
spin diffusion-like behavior [327, 328] which causes a logarithmic divergence at small
frequency ω. However, we have to remember that the NMR frequency ω0 eventually
provides a natural cutoff.

Extending to the whole XXZ regime Building on the perfect agreement observed
previously between MPS estimates and the exact analytical solution of the XX model,
we are now confident to extend our study to the more generic XXZ case −1 < ∆ ≤ 1,
described by a TLL, and compute the relaxation rates. Results are plotted in Fig. B.4
for various values of the anisotropy. The simulations were performed on systems of
size N = 64 with a cutoff of ε = 10−10 in the singular values. We kept a maximal
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FIG. 3. (color online) Transverse relaxation rate 1/T?
1

vs. reduced temperature T/J for the spin-1/2 XXZ
chain at various � and h = 0 obtained numerically us-
ing MPS techniques (circles, from top to bottom: � =
�0.8, �0.6, �0.5, �0.4, �0.2, 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1).
Numerics are compared to TLL theory Eq. (2.12) at low
temperature (thick lines) for |�| < 1, and with Eq. (4.2) for
the SU(2) Heisenberg point � = 1. The thin lines between
the circles are guides to the eyes.

1/T?

1 with temperature only when � & 0 (which cor-
responds to repulsive or vanishing interactions in the
fermionic language).

As a last comment, we have observed that for infinite
temperature (� = 0), the value of 1/T?

1 does not depend
on the sign of �, which is expected since the many-body
spectrum of H� is an odd function of �. Its value is min-
imum for � = 0 with 1/T?

1 =
p
⇡/(2J)70 and increases

with |�|. At the isotropic point |�| = 1 we expect the
relaxation rate to diverge due to the di↵usion-like behav-
ior62,63 of the dynamical correlation function. Our re-
sults at infinite-T go beyond Baker-Campbell-Hausdor↵
expansion developed up to O(t2) in Ref. 71 to com-
pute hS±

j (t)S⌥

j (0)i at short times, which would suggest

1/T?

1 ⇠ J
�1(1+�2)�

1
2 . This prediction is in contrast to

what we found, namely the transverse relaxation rate in-
creasing with |�|. Indeed, while such an expansion finds
the correct gaussian behavior for � = 0 (free-fermions),
higher-order terms have to be taken into account for
|�| > 0 where the transverse dynamical correlation func-
tion at longer times gets larger when increasing |�|.

2. Gapped XXZ chain

We then set the anisotropy value to � = 0.5 and apply
a magnetic field to move into the gapped phase. Trans-

verse and longitudinal relaxation rates 1/T?,k
1 are plot-

ted in Fig. 4 where we observe an excellent agreement

FIG. 4. (color online) Transverse and longitudinal relax-

ation rates 1/T?,k
1 plotted against reduced inverse temper-

ature �J for the spin-1/2 XXZ chain in its gapped phase
for the anisotropy � = 0.5. The critical magnetic field is
hc = 3J/2gµB and the value of the gap �g = gµB (h� hc).
Numerical results are obtained using MPS techniques (cir-
cles and diamonds) and the exponentially decaying behavior
is verified with the straight lines set with the expected gap
value 1/T?,k

1 = c?,k · e���g and c?,k a non-universal free
parameter.

with an exponentially activated behavior ⇠ exp(���g),
where �g is the spin gap. We notice that as the gap gets
smaller, the lower the temperature has to be to observe
the exponential law.

C. DTN

We now move to the DTN compound in its 1d limit
described by Eq. (2.2). We compute the relaxation rates
for various values of the magnetic field h, mainly close to
hc2 which is relevant for NMR experiments21. It is a more
challenging system to simulate than the XXZ model as
it is made of spins S = 1 (enlarged local Hilbert space).
The simulations were performed on open chains of size
L = 64 with a cuto↵ of " = 10�10 in the singular values.
We kept a maximal number of D = 150 states. A fourth
order Trotter decomposition was used with a Trotter step
of ⌧ = 0.02.
Numerical results, shown in Fig. 5, compare extremely

well with TLL prediction at low temperature. Inter-
estingly, the TLL power-law behavior starts at slightly
higher temperature, as compared to the XXZ model,
T ' 0.5K (T/J ⇠ 0.2), especially as we approach the
middle of the TLL phase, away from the critical field
hc2. We point out that there are again no adjustable co-
e�cients, the TLL parameters being computed indepen-
dently using standard DMRG72. The tiny di↵erence that
appears at low temperature between numerical data and

Figure B.4: Transverse relaxation rate 1/T⊥
1 versus reduced temper-

ature T/J for the spin-1/2 XXZ chain at various ∆ and H = 0 ob-
tained numerically using MPS techniques (circles, from top to bottom:
∆ = −0.8, −0.6, −0.5, −0.4, −0.2, 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1). Numerics
are compared to TLL theory Eq. (B.58) at low temperature (thick lines)
for |∆| < 1, and with Eq. (B.60) for the SU(2) Heisenberg point ∆ = 1. The
thin lines between the circles are guides to the eyes.

number of D = 500 states. A fourth order Trotter decomposition was used with a
Trotter step of τ = 0.1.

First, in the gapless regime we do observe an excellent quantitative agreement
between numerical estimates and the TLL prediction Eq. (B.58) at low enough
temperature. This asymptotic regime with a power-law behavior ∼ T 1/2K−1 occurs
only below T/J ∼ 0.1− 0.2 (depending on the anisotropy ∆). Here we stress that
there are no free parameters in the analytic expressions, the TLL parameters being
known exactly. The isotropic limit ∆ = 1 is a special point where logarithmic
corrections appear in several quantities [58, 72, 75], leading to a very slow divergence
of the isotropic NMR relaxation rate [308, 329],

1

T1
' 1√

2π3

√
ln Λ

T
+

1

2
ln
(
ln Λ

T

)
, (B.60)

where Λ ' 24.27J . MPS estimates compare well with this parameter-free expression,
as visible in Fig. B.4. Interestingly, we notice the non-monotonic behavior of 1/T⊥

1

with temperature only when ∆ & 0 (which corresponds to repulsive or vanishing
interactions in the fermionic language). As a last comment, we have observed that
for infinite temperature (β = 0), the value of 1/T⊥

1 does not depend on the sign of
∆, which is expected since the many-body spectrum of H(∆) is an odd function of
∆. Its value is minimum for ∆ = 0 with 1/T⊥

1 =
√
π/2J [330] and increases with

|∆|. At the isotropic point |∆| = 1 we expect the relaxation rate to diverge due
to the diffusion-like behavior [327,328] of the dynamical correlation function. Our
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FIG. 5. (color online) Transverse relaxation rate 1/T?
1 plot-

ted vs. temperature T for the spin-1 DTN chain obtained
numerically using MPS techniques (circles). The low temper-
ature behavior is compared to TLL prediction (straight lines).
The magnetic field h is given in Tesla. The inset compares
TLL prediction and numerical results for T = 0.4K and cov-
ers the whole TLL phase from hc1 to hc2. The lower panel is
a zoom on the low temperature asymptotic power-law regime.

TLL is due to the limited number of states m kept when
performing calculations. Though this does not dispute
the TLL prediction, it reveals the challenge in such time-
dependent simulations. The inset in Fig. 5 shows the
transverse relaxation rate at T = 0.4K for various val-
ues of the magnetic field covering the whole range from
hc1 to hc2. Once more, there is a very good agreement
between numerics and TLL theory except when one gets
close to the critical fields. Indeed, as we clearly see in
the lower panel of Fig. 5 for h = 11.0T, the power law
is not met yet for the lowest temperature we could reach
T = 0.2K.

The non-monotonic behavior of 1/T?

1 observed in the
XXZ model is absent for the DTN and may seem odd
at first place since it can be mapped e↵ectively onto a
S = 1/2 XXZ chain with � = 0.5 or 0.36 and could thus
be compared with Fig. 3. However this non-monotonic
variation is observed at high temperature while this map-
ping is only justified in the low-energy limit as discussed
in IIA 2.

One can also try to compare the relaxation rates of
Fig. 5 with the NMR data for the DTN compound

FIG. 6. (color online) Longitudinal 1/T k
1 and transverse 1/T?

1

relaxation rates for the DTN spin-1 chain at h = 11.0T, cor-
responding to mz ' 0.85. As 1/T k

1 cannot be estimated for
sure, we only provide a lower bound. The non-monotonic
behavior observed experimentally at high T in Ref 21 ap-
parently comes from the large contribution of 1/T k

1 at high
temperature. Experimental data for DTN21 at the same mag-
netization are shown for comparison, after a proper rescaling
in order to match the low-T regime. The 3d BEC transition
temperature TN (mz ' 0.85) ' 0.59 K36 is also shown.

given in Ref 21. What draws our attention is the non-
monotonic regime of 1/T?

1 observed at high temperature
experimentally, which, as we have just discussed, is not
theoretically predicted for a single DTN chain. Yet it
cannot be attributed to 3d e↵ects as J3d = 0.18 K is
very small compared to the temperature T . We then ob-
served that experiments are performed by proton (1H)

NMR which probes both 1/T?

1 and 1/T k

1 .

We therefore interpret this e↵ect as due to the parallel
contribution of the relaxation rate. We show in Fig. 6

both the transverse and longitudinal 1/T?,k
1 as a function

of temperature. We cannot precisely estimate the value

of 1/T k

1 due to its dependence on !0 (and therefore on
our maximum time in numerical simulations) so that we
give a lower bound. Its high temperature contribution
to the total relaxation rate clearly dominates over the
transverse part and explains well the experimental non-
monotonic regime at high T .

Perhaps more importantly, as displayed in Fig. 6, the
3d BEC ordering observed in DTN26,36 for mz ' 0.85 at
TN ' 0.59K occurs above the asymptotic regime where
the genuine TLL power-law behavior is expected. It is
therefore impossible to directly extract TLL exponents in
DTN, because of interchain e↵ects that eventually lead
to an ordering of the coupled TLLs. Ideally we would
expect for quasi-1d systems the TLL description of the
NMR relaxation to be valid in the following temperature
regime: J1d � T � J3d.
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FIG. 5. (color online) Transverse relaxation rate 1/T?
1 plot-

ted vs. temperature T for the spin-1 DTN chain obtained
numerically using MPS techniques (circles). The low temper-
ature behavior is compared to TLL prediction (straight lines).
The magnetic field h is given in Tesla. The inset compares
TLL prediction and numerical results for T = 0.4K and cov-
ers the whole TLL phase from hc1 to hc2. The lower panel is
a zoom on the low temperature asymptotic power-law regime.

TLL is due to the limited number of states m kept when
performing calculations. Though this does not dispute
the TLL prediction, it reveals the challenge in such time-
dependent simulations. The inset in Fig. 5 shows the
transverse relaxation rate at T = 0.4K for various val-
ues of the magnetic field covering the whole range from
hc1 to hc2. Once more, there is a very good agreement
between numerics and TLL theory except when one gets
close to the critical fields. Indeed, as we clearly see in
the lower panel of Fig. 5 for h = 11.0T, the power law
is not met yet for the lowest temperature we could reach
T = 0.2K.

The non-monotonic behavior of 1/T?

1 observed in the
XXZ model is absent for the DTN and may seem odd
at first place since it can be mapped e↵ectively onto a
S = 1/2 XXZ chain with � = 0.5 or 0.36 and could thus
be compared with Fig. 3. However this non-monotonic
variation is observed at high temperature while this map-
ping is only justified in the low-energy limit as discussed
in IIA 2.

One can also try to compare the relaxation rates of
Fig. 5 with the NMR data for the DTN compound
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relaxation rates for the DTN spin-1 chain at h = 11.0T, cor-
responding to mz ' 0.85. As 1/T k

1 cannot be estimated for
sure, we only provide a lower bound. The non-monotonic
behavior observed experimentally at high T in Ref 21 ap-
parently comes from the large contribution of 1/T k

1 at high
temperature. Experimental data for DTN21 at the same mag-
netization are shown for comparison, after a proper rescaling
in order to match the low-T regime. The 3d BEC transition
temperature TN (mz ' 0.85) ' 0.59 K36 is also shown.

given in Ref 21. What draws our attention is the non-
monotonic regime of 1/T?

1 observed at high temperature
experimentally, which, as we have just discussed, is not
theoretically predicted for a single DTN chain. Yet it
cannot be attributed to 3d e↵ects as J3d = 0.18 K is
very small compared to the temperature T . We then ob-
served that experiments are performed by proton (1H)

NMR which probes both 1/T?

1 and 1/T k
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We therefore interpret this e↵ect as due to the parallel
contribution of the relaxation rate. We show in Fig. 6

both the transverse and longitudinal 1/T?,k
1 as a function

of temperature. We cannot precisely estimate the value

of 1/T k

1 due to its dependence on !0 (and therefore on
our maximum time in numerical simulations) so that we
give a lower bound. Its high temperature contribution
to the total relaxation rate clearly dominates over the
transverse part and explains well the experimental non-
monotonic regime at high T .

Perhaps more importantly, as displayed in Fig. 6, the
3d BEC ordering observed in DTN26,36 for mz ' 0.85 at
TN ' 0.59K occurs above the asymptotic regime where
the genuine TLL power-law behavior is expected. It is
therefore impossible to directly extract TLL exponents in
DTN, because of interchain e↵ects that eventually lead
to an ordering of the coupled TLLs. Ideally we would
expect for quasi-1d systems the TLL description of the
NMR relaxation to be valid in the following temperature
regime: J1d � T � J3d.

H (T)

T (K)

H = 9.0 T
H = 9.5 T

H = 10.5 T
H = 10.0 T

H = 11.0 T

Figure B.5: Transverse relaxation rate 1/T⊥
1 plotted versus temperature T

for the spin-1 DTN chain obtained numerically using MPS techniques (circles).
The low temperature behavior is compared to TLL prediction (straight lines).
The magnetic field H is given in Tesla. The inset compares TLL prediction
(straight dotted line) and numerical results for T = 0.4 K (circles) and covers
the whole TLL phase from Hc1 (mz = 0) to Hc2 (mz = 1).

results at infinite-T go beyond Baker-Campbell-Hausdorff expansion developed up
to O(t2) in Ref. 331 to compute 〈S±

j (t)S
∓
j (0)〉 at short times, which would suggest

1/T⊥
1 ∼ 1/J

√
1 + ∆2. This prediction is in contrast to what we found, namely the

transverse relaxation rate increasing with |∆|. Indeed, while such an expansion finds
the correct gaussian behavior for ∆ = 0, higher-order terms have to be taken into
account for |∆| > 0 where the transverse dynamical correlation function at longer
times gets larger when increasing |∆|.

3. One-dimensional S=1 DTN compound

We now move to the DTN compound in its one-dimensional limit described by
Eq. (B.55). We compute the relaxation rates for various values of the magnetic field
H, mainly close to Hc2 which is relevant for NMR experiments [316]. It is a more
challenging system to simulate than the XXZ model as it is made of spins S = 1
(enlarged local Hilbert space). The simulations were performed on open chains of
size N = 64 with a cutoff of ε = 10−10 in the singular values. We kept a maximal
number of D = 150 states. A fourth order Trotter decomposition was used with a
Trotter step of τ = 0.02.

Numerical results, shown in Fig. B.5, compare extremely well with TLL prediction
at low temperature. Interestingly, the TLL power-law behavior starts at slightly
higher temperature, as compared to the XXZ model, T ' 0.5 K (T/J ∼ 0.2),
especially as we approach the middle of the TLL phase, away from the critical field
Hc2. We point out that there are again no adjustable coefficients, the TLL parameters
versus the magnetic field of the S = 1 DTN chain being known from independent
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FIG. 5. (color online) Transverse relaxation rate 1/T?
1 plot-

ted vs. temperature T for the spin-1 DTN chain obtained
numerically using MPS techniques (circles). The low temper-
ature behavior is compared to TLL prediction (straight lines).
The magnetic field h is given in Tesla. The inset compares
TLL prediction and numerical results for T = 0.4K and cov-
ers the whole TLL phase from hc1 to hc2. The lower panel is
a zoom on the low temperature asymptotic power-law regime.

TLL is due to the limited number of states m kept when
performing calculations. Though this does not dispute
the TLL prediction, it reveals the challenge in such time-
dependent simulations. The inset in Fig. 5 shows the
transverse relaxation rate at T = 0.4K for various val-
ues of the magnetic field covering the whole range from
hc1 to hc2. Once more, there is a very good agreement
between numerics and TLL theory except when one gets
close to the critical fields. Indeed, as we clearly see in
the lower panel of Fig. 5 for h = 11.0T, the power law
is not met yet for the lowest temperature we could reach
T = 0.2K.

The non-monotonic behavior of 1/T?

1 observed in the
XXZ model is absent for the DTN and may seem odd
at first place since it can be mapped e↵ectively onto a
S = 1/2 XXZ chain with � = 0.5 or 0.36 and could thus
be compared with Fig. 3. However this non-monotonic
variation is observed at high temperature while this map-
ping is only justified in the low-energy limit as discussed
in IIA 2.

One can also try to compare the relaxation rates of
Fig. 5 with the NMR data for the DTN compound
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FIG. 6. (color online) Longitudinal 1/T k
1 and transverse 1/T?

1

relaxation rates for the DTN spin-1 chain at h = 11.0T, cor-
responding to mz ' 0.85. As 1/T k

1 cannot be estimated for
sure, we only provide a lower bound. The non-monotonic
behavior observed experimentally at high T in Ref 21 ap-
parently comes from the large contribution of 1/T k

1 at high
temperature. Experimental data for DTN21 at the same mag-
netization are shown for comparison, after a proper rescaling
in order to match the low-T regime. The 3d BEC transition
temperature TN (mz ' 0.85) ' 0.59 K36 is also shown.

given in Ref 21. What draws our attention is the non-
monotonic regime of 1/T?

1 observed at high temperature
experimentally, which, as we have just discussed, is not
theoretically predicted for a single DTN chain. Yet it
cannot be attributed to 3d e↵ects as J3d = 0.18 K is
very small compared to the temperature T . We then ob-
served that experiments are performed by proton (1H)

NMR which probes both 1/T?

1 and 1/T k

1 .

We therefore interpret this e↵ect as due to the parallel
contribution of the relaxation rate. We show in Fig. 6

both the transverse and longitudinal 1/T?,k
1 as a function

of temperature. We cannot precisely estimate the value

of 1/T k

1 due to its dependence on !0 (and therefore on
our maximum time in numerical simulations) so that we
give a lower bound. Its high temperature contribution
to the total relaxation rate clearly dominates over the
transverse part and explains well the experimental non-
monotonic regime at high T .

Perhaps more importantly, as displayed in Fig. 6, the
3d BEC ordering observed in DTN26,36 for mz ' 0.85 at
TN ' 0.59K occurs above the asymptotic regime where
the genuine TLL power-law behavior is expected. It is
therefore impossible to directly extract TLL exponents in
DTN, because of interchain e↵ects that eventually lead
to an ordering of the coupled TLLs. Ideally we would
expect for quasi-1d systems the TLL description of the
NMR relaxation to be valid in the following temperature
regime: J1d � T � J3d.

T (K)

H3D = 11.47 TH1D = 11.0 T

Tc ' 0.59 K

Figure B.6: Longitudinal 1/T ‖
1 and transverse 1/T⊥

1 relaxation rates for the
DTN spin-1 chain at H = 11.0 T, corresponding to mz ' 0.85. As 1/T ‖

1 cannot
be estimated for sure, we only provide a lower bound. The non-monotonic
behavior observed experimentally at high T in Ref. 316 apparently comes from
the large contribution of 1/T ‖

1 at high temperature. Experimental data for DTN
taken from Ref. 316 at the same magnetization are shown for comparison, after
a proper rescaling in order to match the low-T regime. The three-dimensional
XY transition temperature Tc(mz ' 0.85) ' 0.59 K is also shown (taken from
Ref. 174).

calculations (as discussed in the previous chapter). The tiny difference that appears
at low temperature between numerical data and TLL is due to the limited number
of states D kept when performing calculations. Though this does not dispute the
TLL prediction, it reveals the challenge in such time-dependent simulations. The
inset in Fig. B.5 shows the transverse relaxation rate at T = 0.4 K for various values
of the magnetic field covering the whole range from Hc1 to Hc2. Once more, there
is a very good agreement between numerics and TLL theory except when one gets
close to the critical fields: for H = 11.0 T, the power law is not met yet for the
lowest temperature we could reach T = 0.2 K. The non-monotonic behavior of 1/T⊥

1

observed in the XXZ model is absent for the DTN and may seem odd at first place
since it can be mapped effectively onto a S = 1/2 XXZ chain with ∆ = 0.5 or 0.36
and could thus be compared with Fig. B.4. However this non-monotonic variation is
observed at high temperature while this mapping is only justified in the low-energy
limit.

One can also try to compare the relaxation rates of Fig. B.5 with the NMR
data for the DTN compound given in Ref. 316. What draws our attention is the
non-monotonic regime of 1/T⊥

1 observed at high temperature experimentally, which,
as we have just discussed, is not theoretically predicted for a single DTN chain. Yet
it cannot be attributed to three-dimensional effects as J⊥ = 0.18 K is very small
compared to the temperature T . We then observed that experiments are performed by
proton 1H NMR which probes both 1/T⊥

1 and 1/T
‖
1 . We therefore interpret this effect
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as due to the longitudinal contribution of the relaxation rate. We show in Fig. B.6
both the transverse and longitudinal 1/T⊥,‖

1 as a function of temperature. We cannot
precisely estimate the value of 1/T ‖

1 due to its dependence on ω0 (and therefore on
our maximum time in numerical simulations) so that we give a lower bound. Its
high temperature contribution to the total relaxation rate clearly dominates over the
transverse part and explains well the experimental non-monotonic regime at high
T . Perhaps more importantly, as displayed in Fig. B.6, the three-dimensional XY
ordering observed in DTN [174, 230] for mz ' 0.85 at Tc ' 0.59 K occurs above
the asymptotic regime where the genuine TLL power-law behavior is expected. It is
therefore impossible to directly extract TLL exponents in DTN, because of interchain
effects that eventually lead to an ordering of the coupled TLLs. Ideally we would
expect for quasi-one-dimensional systems the TLL description of the NMR relaxation
to be valid in the temperature regime J � T � J⊥ that will be discussed in greater
details in the next section, especially regarding the effect of J⊥. Concerning the
difficulty to obtain reliable data at high temperature for the longitudinal 1/T ‖

1 , it
is well known that this is due to spin diffusion-like behavior [327, 328]. Therefore,
measurements should in principle depend explicitly on the NMR frequency ω0.

4. Summary and discussions

Performing time-dependent numerical simulations at finite temperature on one-
dimensional systems to compute the NMR relaxation rate 1/T1, we have discussed
the temperature range validity of analytical predictions for two models (i) the
paradigmatic example for Tomonaga-Luttinger liquids: the spin-1/2 XXZ chain for
various Ising anisotropies, and (ii) a more realistic S = 1 Hamiltonian, relevant
for experiments on the DTN compound as a function of an external magnetic
field. Both models present in some regime a gapless phase that can be described
by low-energy TLL theory, with a relaxation rate dominated by its transverse
component 1/T⊥

1 ∼ T 1/2K−1 algebraically diverging at low temperature, where K
is the dimensionless TLL exponent. We observed that the expected power-law
behavior occurs only below T/J ∼ 0.1 − 0.2, thus defining the low-energy limit
of validity of TLL theory an order of magnitude below the energy scale J of the
system. It is important to be able to define this limit as TLL predictions are often
used experimentally on quasi-one-dimensional compounds to extract the value of K.
As a consequence, we believe that it remains experimentally challenging [311], and
often impossible, to explore a genuine critical one-dimensional regime in quasi-one-
dimensional compounds when J is small and three-dimensional ordering prevents
a wide TLL regime. For instance, we have shown that for DTN, the XY ordering
temperature is larger than the crossover temperature towards TLL behavior.

We have also studied the transverse relaxation rates of these two models in
other regimes than TLL theory: we considered high temperatures, with a peculiar
non-monotonic behavior in the S = 1/2 XXZ model in the repulsive regime at high
T , which does not exist for the one-dimensional S = 1 model of DTN. However, such
a non-monotonic dependence with temperature at high T is experimentally observed
in DTN. We showed that this effect comes from the longitudinal contribution of the
relaxation rate 1/T

‖
1 dominating at high temperature over the transverse part. We

want to emphasize again the role of three-dimensional ordering at finite temperature,
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preventing the observation of a one-dimensional TLL regime. As discussed for the
particular case of DTN, one needs a hierarchy of energy scale J � T � J⊥ to be able
to directly extract the TLL exponent K from the divergence of 1/T1 with T . While
completing this work, a related numerical study by Coira et al. has appeared [332].
Our results are perfectly compatible with each other when comparison can be made,
such as the transverse 1/T1 data for a single spin-1/2 XXZ chain with ∆ ≥ 0.

IV. Weakly coupled spin chains

Adapted from the work arXiv:1806.04913 (2018)
Maxime Dupont13, Sylvain Capponi, Nicolas Laflorencie, and Edmond Orignac

Extending our previous work on purely one-dimensional systems, we now theoret-
ically address the question of the dynamical response in quantum antiferromagnets
for weakly coupled spin chains. Indeed, residual couplings are always present in
nature, thus inevitably escaping the theoretical one-dimensional world. In particular,
we present a comprehensive theoretical study based on both analytical calculations
(bosonization + random phase and self-consistent harmonic approximations) and
numerical simulations (quantum Monte Carlo + stochastic analytic continuation)
which allows us to describe the full temperature crossover for the NMR relaxation
rate 1/T1, from one-dimensional Tomonaga-Luttinger liquid physics to the three-
dimensional ordered regime, as a function of inter-chain couplings. The dynamical
structure factor, directly probing the INS intensity, is also computed for the different
regimes.

As widely discussed, a three-dimensional array of weakly coupled spin chains
with a coupling J along the chains and J⊥ � J in the transverse directions is ex-
pected to display three dimensional behavior for T . J⊥, developing true long-range
order. However, at higher temperature this system should exhibit signatures of
one-dimensional physics, approximately in the range J⊥ � T � J . This regime
has already been identified for several compounds through thermodynamic quan-
tities. For example the specific heat in the quasi-one-dimensional spin-1/2 chain
antiferromagnet BaCo2V2O8 material [79] and in the metal-organic S = 1/2 two-legs
ladder system (C5H12N)2CuBr4 [80] shows a one-dimensional linear behavior ∝ T .
Another interesting case concerns the (purely one-dimensional) logarithmic correc-
tions predicted by Eggert et al. [75] for the magnetic susceptibility of a S = 1/2
Heisenberg chain, which has been observed for the quasi-one-dimensional cuprate
Sr2CuO3 [76–78]. For weakly coupled two-dimensional planes, I presented a work
in the first chapter where we studied how smoothly the ordering process of the
three-dimensional system is affected. We showed that the AF order parameter
mAF(T ) curve is modified with a non-trivial change of convexity when reducing the
interplane coupling as observed in the spin−1/2 Heisenberg antiferromagnetic ladder
compound (C7H10N)2CuBr4 (DIMPY) [204]. Similar theoretical works have also
been dedicated to the dimensional modulation of the spin stiffness [217, 333].

13In this theoretical collaboration, I carried out all the numerical simulations.
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Figure B.7: Different temperature regimes and crossovers for the transverse
component of the NMR relaxation rate 1/T⊥

1 , as defined in Eq. (13) for an
anisotropic three-dimensional antiferromagnet made of weakly coupled chains
with an ordering temperature Tc. The coupling strengths are J along the
chain direction and J⊥ in the transverse direction, see Eq. (B.61). (a) Deep
in the ordered phase, the NMR relaxation rate increases linearly ∝ T from
the absolute zero temperature due to spin-waves contributions. (b) Right
below the critical temperature Tc, the NMR relaxation rate goes through a
strong algebraic suppression ∝ Tα (α ' 4 − 5) due to its “[qAF]-component
suppression”. The change of behavior from (b) to (a) sets a first crossover
temperature. (c) When approaching the transition from above the critical
temperature, the NMR relaxation rate diverges with critical exponents ν, η and
zt characterizing the universality class of the transition, i.e. ∝ |T −Tc|−ν(zt−1−η).
The divergence associated to the transition is observed up to approximately
' 3Tc. (d) For J⊥/J � 1 we can expect a crossover towards one-dimensional
physics with a diverging NMR relaxation rate ∝ T 1/2K−1 where K is the
Tomonaga-Luttinger liquid parameter. (e) At high temperature, larger than
∼ J/10, the 1/T⊥

1 behavior is non-universal. Note that if 3Tc & J/10, the
region (d) of the diagram is squashed, and no universal TLL physics is present
in the system, at least regarding the NMR relaxation rate.

A key question we wish to address is about the signatures of a genuine one-
dimensional physics above Tc, and in particular the temperature range where a
universal TLL regime is expected. As seen in the ladder system (C5H12N)2CuBr4 [80]
the TLL crossover regime based on measurements of the magnetocaloric effect
is not sharply defined. Thus, one might ask how such a crossover shows up in
dynamical quantities such as the dynamical spin structure factor Sq(ω) measured
by inelastic neutron scattering experiments or the nuclear magnetic resonance spin-
lattice relaxation rate 1/T1. This is of great experimental interest, in particular to
estimate the TLL parameter K. For instance, the NMR relaxation rate of a TLL
diverges algebraically at low temperature as 1/T1 ∝ T 1/2K−1 [166, 210]. We found in
our previous work that for a strictly one-dimensional system, the predicted universal
power-law dependence can indeed be asymptotically observed, but only at quite low
temperature: T . J/10. As for static quantities, a finite three-dimensional coupling
J⊥ will ultimately change the dynamical response when approaching Tc. When
getting close to Tc, we will see that the NMR relaxation rate diverge with a power-
law 1/T1 ∝ |T −Tc|−ν(zt−1−η) with an exponent ν(zt−1−η) > 0 characteristic of the
phase transition. These different regimes for T > Tc summarized in Fig. B.7 (c–e) are
studied in great details in this work based on analytical and numerical calculations.

The TLL prediction is often used to fit the experimentally measured NMR
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relaxation rate versus T and obtain the dimensionless TLL parameter K, but a
proper definition of the temperature window inside which the genuine one-dimensional
properties can be observed is missing. For instance, we showed that for the quasi-
one-dimensional S = 1 chain NiCl2-4SC(NH2)2 (DTN) material [316], the critical
temperature is larger than the crossover temperature towards the 1D regime, thus
preventing the observation of TLL behavior. In other words, the region Fig. B.7 (d)
is squashed to zero for DTN, although it has proven to display other one-dimensional
fingerprints (see our work presented in the first chapter). Another promising material
with a smaller three-dimensional coupling (hence a smaller Tc) is DIMPY [171, 173]
where the 1/T1 has been fitted to obtain K versus the external magnetic field
H, but has shown some discrepancy with the expected value K(H) computed
numerically. Our present work reveals that the experimental fitting temperature
range 2Tc < T < 3Tc is probably too close to the critical temperature to be reliable.
This will be discussed in greater details in the following.

In NMR experiments, one way to map the boundary between the disordered and
ordered phases is to determine the temperature Tc at which the hyperfine splitting
of “the NMR line” in the spectrum of the targeted nucleus vanishes [166,174,204].
Another way is to look at the relaxation rate 1/T1 as a function of T , expected to
diverge at the transition, and resulting in practice in a strong enhancement [173,
204, 317, 318]. Below Tc, experimental observations of the NMR relaxation rate
show that it is greatly suppressed with temperature, empirically fitting an algebraic
dependence, 1/T1 ∝ Tα with α ' 4− 5 as observed in the two-leg spin-1/2 ladder
Cu2(C5H12N2)2Cl4 compound [334], DTN [335] and DIMPY [204]. This behavior,
reported as “[qAF]-component suppression” in Fig. B.7 (b) will be discussed and
compared with our numerical results, providing some insights and explanations.
Finally, although it remains very challenging to observe, both experimentally and
numerically since it should happen at very low temperature, deep in the ordered
phase the NMR relaxation rate is expected to grow linearly with T due to spin-waves
contribution from the absolute zero, as shown in Fig. B.7 (a).

1. Models and definitions

We study coupled quantum spin-1/2 chains in three dimensions, ultimately
forming a tetragonal lattice as shown in Fig. B.8 (a). The system is generically
described by the following Hamiltonian,

H = H1D + J⊥
∑

r

∑
u=b,c

Sr · Sr+u, (B.61)

where the second term couples nearest-neighbor spins along the transverse directions
b and c with a Heisenberg interaction of strength J⊥. The first term of Eq. (B.61)
describes a single XXZ spin chain,

H1D = J
∑

r

(
Sx

rS
x
r+a + Sy

rS
y
r+a +∆Sz

rS
z
r+a
)
, (B.62)

with J the nearest-neighbor antiferromagnetic exchange along the chain direction a
and ∆ the Ising anisotropy along the z spin component. Although we focused in this
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Figure B.8: (a) Three-dimensional tetragonal lattice with the spatial a
direction non equivalent to b and c. The spin−1/2 degrees of freedom live
on the vertices. The Brillouin zone and irreducible Brillouin zone (red region)
are shown in panels (b) with wave vectors q = (qa, qb, qc). The vertices
Z = (π, 0, 0), R = (π, 0, π), A ≡ qAF = (π, π, π), Γ = (0, 0, 0), X = (0, 0, π)
and M = (0, π, π) are high-symmetry points of the Brillouin zone.

work on this specific model, it should apply for any system describing coupled one-
dimensional Tomonaga-Luttinger liquids [37]. The periodicity and spatial symmetries
of the system define the Brillouin zone (BZ) and irreducible Brillouin zone as shown
in Fig. B.8 (b). One can define momentum space spin operators through a Fourier
transformation, Sµ

q =
∑

r e−iq·rSµ
r /

√
N . N is the total number of spins in the system,

q = (qa, qb, qc) the wave vector with qa,b,c ∈]− π, π] its components along the a, b, c
spatial directions and µ ∈ [x, y, z] the spin component respectively.

Bosonized Hamiltonian In the presence of a weak interchain coupling, the quasi-
long range order of the chains will turn into a long range order for sufficiently low
temperature. For ∆ < 1 ordering in the XY plane is favored. To describe such
long-range ordering within bosonization, either the random phase approximation
(RPA) [147, 212] or the self-consistent Hartree approximation [336–339] can be used
(see below what the two approximations are about). The former is more convenient
to address the fluctuations above the transition, while the latter gives a simpler
picture of the low temperature phase. The low energy, long wavelength physics
of the Hamiltonian (B.62) for an Ising anisotropy |∆| < 1 can be captured by the
bosonization formalism [34, 71, 340],

H =
∑
r⊥

∫
dx
2π

{
uK
[
πΠr⊥(x)

]2
+
u

K

[
∂xφr⊥(x)

]2}
, (B.63)

where r⊥ = nbb + ncc, x is the position along the direction a, and bosonic fields
obey the commutation relation [φr⊥(x),Πr′⊥(x

′)] = iδr⊥,r′⊥δ(x− x′).

Random phase approximation In the same spirit as what we did in the first chapter
for the static AF order parameter, the random phase approximation [147,212] can
also apply for time-dependent quantities. One assumes that a spin chain responds to
an effective field that is the sum of the applied space-time dependent external field
Hµ

q(ω) and an internal field generated by the sum of responses of the other chains.
Above the critical temperature, the linear response of a single chain is given by,

Sµ
q(ω) = χµµ

1D(qa, ω)

{
Hµ

q(ω)− 2J⊥

[
cos(q · b) + cos(q · c)

]
Sµ

q(ω)

}
, (B.64)
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where χµµ
1D(qa, ω) is the susceptibility of a single chain along the a direction with

µ ∈ [x, y, z] the spin component. Defining likewise Sµ
q(ω) = χµµ

q (ω)Hµ
q(ω), where χµµ

is now the susceptibility of the full three-dimensional system, one gets the expression

χµµ
q (ω) =

χµµ
1D(qa, ω)

1 + 2J⊥

[
cos(q · b) + cos(q · c)

]
χµµ

1D(qa, ω)
, (B.65)

from which the dynamical spin structure factor Sµµ
q = coth(βω)Imχµµ

q (ω) is obtained
using the fluctuation-dissipation theorem. We recover that the static response
function, χµµ

qAF
(ω = 0) is divergent at a temperature such that 1 − 4J⊥χ

µµ
1D(qa =

π, ω = 0) = 0, which defines the critical temperature Tc. It can be shown that the
divergence occurs at a higher temperature Tc for µ = x, y than µ = z [147]. In three
dimensions, below Tc, easy-plane antiferromagnetic order sets in, and Eq. (B.65) is
not applicable anymore. Indeed, in the ordered phase, each chain is subject to a
staggered magnetic field Hx

r = Hx
MFe

iqAF·r — this is what we used in the two works
presented in the first chapter, one can refer to them for greater details. As a result,
rotation symmetry U(1) is reduced to a Z2 rotation around the x axis, and translation
symmetry to even multiples of a. Besides the normal response functions, χµµ

1D,normal,
an umklapp response χyz

1D,umklapp is present. The expressions of RPA susceptibility
are modified [212], and poles associated with Goldstone modes appear. Such modes
are expected to yield a contribution linear in temperature to the NMR relaxation
rate 1/T1. However, in order to do precise calculations of response functions within
bosonization, since the bosonized Hamiltonian in the ordered phase is a quantum sine-
Gordon model [37, 166], one has to resort to form factor expansion techniques [341]
generalized to positive temperature [342]. Such calculations quickly become very
involved, and a more elementary approach is provided by the self-consistent harmonic
approximation.

Self-consistent harmonic approximation In the low temperature phase, we have
to consider the full Hamiltonian,

H = H1D + J⊥A0

∑
r⊥

∫
dx
[
cos(θr⊥ − θr⊥+b) + cos(θr⊥ − θr⊥+c)

]
, (B.66)

with A0 the prefactor of the transverse static correlations of a single chain. In the
self-consistent harmonic approximation [336], one makes the approximation for the
cosine terms,

cos(θr⊥−θr⊥+b) '
〈
cos(θr⊥−θr⊥+b)

〉[
1−1

2
(θr⊥−θr⊥+b)

2+
1

2

〈
(θr⊥−θr⊥+b)

2
〉]
,(B.67)

turning (B.66) into a quadratic Hamiltonian whose interchain coupling J⊥A0〈cos(θr′⊥−
cos θr⊥)〉 have to be determined self-consistently [337–339]. The self-consistent
Hartree approximation allows to calculate the expectation value of the order param-
eter [337] and also predicts the dispersion of Goldstone modes [338].

2. Tomonaga-Luttinger regime at high temperature

Dynamical structure factor Before addressing the NMR relaxation rate, let us
first discuss the dynamical structure factor in the paramagnetic regime above the
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Figure B.9: The lower panels show the transverse inelastic neutron scattering
intensity I⊥ for weakly coupled spin chains in three dimensions with J⊥/J =
0.001 and an Ising anisotropy ∆ = 0.5 along the spatial a direction. The q
points follow the high symmetry lines of the BZ of Fig. B.8 (b). The temperature
of the system is T = 0.1J , such that we are in the universal one-dimensional
regime with 3Tc . T . 0.1J , making the BZ lines ΓZ, XR and MA equivalent
and corresponding all to the single chain spectrum. The white dot symbols
show the first moment of the spectrum and the plus symbols the position
of the maximum of intensity at a given q point. We also show the two sine
branches of the des Cloizeaux-Pearson dispersion relations in Eq. (B.68) where
the prefactor of the lower one corresponds to the TLL velocity u ' 1.299J of a
single chain with ∆ = 0.5. Note that the critical temperature for this system
is Tc/J ' 0.007 (evaluated by the RPA estimate with a rescaled transverse
coupling J⊥ → 0.69J⊥). The upper panels correspond to the static structure
factor. The data are from quantum Monte Carlo simulations on the largest
available system of size N = 96× 8× 8 = 6 144 spins.

transition. To do so we have simulated very weakly coupled XXZ chains J⊥/J = 10−3

in Eq. (B.61) and ∆ = 0.5 in Eq. (B.62). Such a very anisotropic system orders
below Tc ' 0.007J . In Fig. B.9 we show the transverse scattering intensity along the
high symmetry lines of the BZ, computed in quantum Monte Carlo supplemented
by stochastic analytic continuation. The spectrum along the chains direction a,
corresponding to the lines ΓZ, XR and MA are indistinguishable compared to
the single chain spectrum. This is expected for such weakly coupled chains in
a temperature range fulfilling Tc � T � J . For comparison, the better-known
isotropic SU(2) Heisenberg chain, where Bethe ansatz calculations are available at
zero temperature, has its dominant contribution (i.e. 98% of the spectral weight)
coming from a two and four spinons continuum [343–346] bounded from below and
above by des Cloizeaux-Pearson (dCP) dispersion relation [57, 347],

εlower(q) =
Jπ

2
| sin q|, εupper(q) = Jπ

∣∣∣sin q
2

∣∣∣ . (B.68)

For the XXZ case, predictions are mostly available for the longitudinal dynamical
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spin structure factor at small q [348, 349], e.g. Szz
q→0 = Kq with K the dimensionless

TLL parameter. Similarities are nonetheless visible: excitations are bounded from
above by εupper(q) and from below by a sine branch with a prefactor corresponding
to the TLL velocity for a single chain at ∆ = 0.5, u ' 1.299J , a bit smaller than
the velocity at the isotropic point, u = Jπ/2. The bounds are broadened due to
finite temperature effects. Low-energy (ω → 0) excitations are restricted here to the
usual commensurate modes q ∼ 0 and q ∼ π, while it is known that in presence of
any additional magnetic field along the the same direction as the Ising anisotropy
(hence at finite magnetization density mz), the XY correlations of the system would
develop incommensurate modes at q = 2πmz and q = 2π(1−mz) in addition to the
commensurate ones [37, 155].

NMR relaxation rate We now turn our attention to the transverse component
of the NMR relaxation rate for T > Tc. From its definition, it follows that in the
low-energy limit ω/T � 1, it is related to the following integral,

1

T⊥
1

= lim
ω→0

T

ω

∫
BZ

d3q
(2π)3

Im
[
χ±∓

q (ω)
]
. (B.69)

Within the random phase approximation, the dominant contribution to the NMR
relaxation rate is given by

1

T⊥
1

=

∫
dqbdqc
(2π)2

∫ Λ

−Λ

dqa
2π

{
lim
ω→0

T

ω
Im
[
χ±∓

1D (π + qa, ω)
]}

×

{
1 + 2J⊥

[
cos(qb) + cos(qc)

]
Reχ±∓

1D (π + qa, ω = 0)

}−2

, (B.70)

where Λ � π is a momentum cutoff. Its computation provides the following analytical
expression,

1

T⊥
1

=
A0

2uΓ2
(

1
4K

) (2πT

u

) 1
2K

−1 ∫ +∞

−∞

dξ
sin2

(
π
8K

)
+ sinh2(πξ)

∣∣∣∣∣ Γ
(

1
8K

+ iξ
)

Γ
(
1− 1

8K
+ iξ

)∣∣∣∣∣
2

×

E

(Tc
T

)4−1/K
∣∣∣∣∣Γ
(
1− 1

8K

)
Γ
(

1
8K

+ iξ
)

Γ
(

1
8K

)
Γ
(
1− 1

8K
+ iξ

)∣∣∣∣∣
4


1−
(
Tc
T

)4−1/K
∣∣∣∣∣Γ
(
1− 1

8K

)
Γ
(

1
8K

+ iξ
)

Γ
(

1
8K

)
Γ
(
1− 1

8K
+ iξ

)∣∣∣∣∣
4 (B.71)

where the integration over qa and qb has been performed exactly in terms of elliptic
integrals [350]: E(x) is a complete elliptic integral of the second kind. Γ(x) and
B(x, y) are respectively the Euler Gamma and beta functions. The above expression
can rewritten as,

1

T⊥
1

=

(
1

T⊥
1

)
1D

× Φ

(
Tc
T
,K

)
. (B.72)

The enhancement factor Φ depends only on Tc/T and the Tomonaga-Luttinger
exponent K. In the limit Tc/T → 0, we recover the NMR relaxation rate of a single
chain since Φ(0, K) = 1 in Eq. (B.71).
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Figure B.10: Transverse component of the NMR relaxation rate 1/T⊥
1

defined for weakly coupled chains in three dimensions with an Ising anisotropy
∆ = 0.5 along the spatial direction a, for various transverse couplings between
the chains J⊥/J = 0.1 (blue), 0.01 (green) and 0.001 (red). The temperature
axis has been rescaled by the critical temperature Tc of each model, respectively
Tc/J ' 0.224, 0.04 and 0.007. The bold straight lines correspond to the purely
one-dimensional TLL prediction, the small diamonds to the three-dimensional
mean-field (RPA) calculations (B.71) and the circles to quantum Monte Carlo
simulations. It shows that if any, the universal one-dimensional regime of the
NMR relaxation rate is visible for T & 3Tc. We stress that there are no free
parameters to adjust the different estimates here.

Numerically, the 1/T⊥
1 is directly computed from the spectral function in the

limit ω → 0. Quantum Monte Carlo simulations have been performed for weakly
coupled XXZ chains J⊥/J = 10−1, 10−2 and 10−3 with an Ising anisotropy ∆ = 0.5
along the chain direction a. These systems respectively develop long-range AF order
below Tc/J ' 0.224, 0.04 and 0.007. Numerical simulations results as well as the
RPA calculation of Eq. (B.71) and the purely one-dimensional result are plotted
together in Fig. B.10. In the high temperature limit, the RPA calculation gives back
the purely one-dimensional prediction ∝ T 1/2K−1, which becomes valid at low enough
temperature T . J/10 [332,351]. For coupled chains with J⊥/J = 0.1, the system
gets ordered above this crossover temperature preventing any one-dimensional regime.
As the three-dimensional coupling is lowered, the critical temperature decreases and
a one-dimensional regime sets up above Tc. Yet, the temperature should be such
that T � Tc to ensure that the transition does not spoil the universal 1D behavior.
Indeed, as we approach the transition (critical regime), the NMR relaxation rate
deviates from the power-law dependence, which will be discussed thoroughly in the
next section. For J⊥/J = 10−2 and 10−3, we find that for T & 3Tc we are far enough
from the transition and able to observe the 1D regime. More precisely, we find
that for ∆ = 0.5, systems with a three-dimensional coupling J⊥/J < 10−2 display
a nonzero temperature window T ∈ [3Tc, J/10] (assuming that 3Tc < J/10) inside
which the observation of the genuine ∝ T 1/2K−1 behavior for the NMR relaxation
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rate is possible. We stress that in Fig. B.10, there are no free parameters to adjust
the different estimates.

3. Critical regime

As we approach the transition, the NMR relaxation rate is strongly enhanced, as
observed in Fig. B.10 for T . 3Tc and numerous experiments [173,204,317,318]. This
can be understood within a scaling hypothesis since 1/T1 is related to a correlation
function. Specifically, at the transition, we expect a divergence of both the correlation
length ξ and the correlation time τ , linked through the relation τ ∼ ξzt with zt the
dynamical exponent in the sense of real-time dynamics14 [352, 353]. Within a scaling
hypothesis, the local (r = 0) time-dependent correlation function takes the form,

S±∓
r=0(t) = ξ2−D−η G̃

(
ξ1/ν |T − Tc|, t/ξzt

)
, (B.73)

where G̃ is a universal scaling function, D the dimensionality of the system, η the
anomalous exponent and ν the correlation length exponent. Its Fourier transform
to frequency space in the limit ω0 → 0 is the transverse component of the NMR
relaxation rate (12) and simplifies to,

1

T⊥
1

= ξ2−D−η+ztG
(
ξ1/ν |T − Tc|

)
(B.74)

where ξztG is the integral of G̃ with G a universal scaling function as well. Setting
D = 3 and using the scaling form of the correlation length ξ ∼ |T − Tc|−ν in
Eq. (B.74), one obtains the behavior of the NMR relaxation rate when approaching
the transition, T → Tc,

1

T⊥
1

∝ |T − Tc|−ν(zt−1−η), (B.75)

which diverges as long as η < zt − 1 since ν > 0.
In the classical limit, our model becomes the three-dimensional XY model, the

critical dynamics of which is described by Model E of Refs. 353 and 354. In
model E, the non-conserved order parameter and the conserved magnetization have
different dynamical exponents, respectively zφ,t and zm,t, satisfying zφ,t+ zm,t = 3. In
Eq. (B.75), we have zt ≡ zφ,t since the relaxation rate is obtained from a correlation
function related to the order parameter. Two possible fixed points exist for model
E dynamics [354], zm,t = zφ,t = 3/2 and zm,t < zφ,t. Using the values of exponents
obtained from numerical simulations in Ref. 355, η = 0.035, ν = 0.6693 and
zφ,t = 1.62, we find a behavior 1/T⊥

1 ∼ |T − Tc|−0.3915, that should hold in the
classical critical region of the transition. Alternatively, with a purely relaxational
dynamics (the so-called model A) [356], a classical dynamical exponent zt = 2
would be obtained, leading to 1/T⊥

1 ∼ |T − Tc|−0.64. We expect that in systems
where magnetization is non-conserved as a result of Dzyaloshinskii-Moriya or dipolar
interactions, this model A exponent will apply. Outside this classical critical region,
the mean-field exponents are recovered. In the vicinity of the antiferromagnetic

14This exponent is not to be mistaken with “z”, the dynamic critical exponent appearing in the
context of quantum phase transitions [21].
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Figure B.11: (a) Rescaled transverse dynamical spin structure factor at the
AF wave vector in the limit ω → 0 for different system sizes N = L3/82 made
of weakly coupled chains with J⊥/J = 0.1 and an Ising anisotropy ∆ = 0.5
along the spatial direction a. The transverse dynamical spin structure factor
has been rescaled according to the scaling law (B.76). The anomalous critical
exponent takes the value of the 3D XY universality class η = 0.0381 [175],
and zt = 1.62 [355] was considered. The crossing point for the different sizes
using these exponents is compatible with the expected critical temperature
Tc/J ' 0.224 for this system. (b) Transverse component of the NMR relaxation
of Eq. (B.71) from RPA calculations versus |T −Tc| with T > Tc. A divergence
with the mean-field exponents ν = 0.5 and η = 0 as well as zt = 2 is observed
as T → Tc according to Eq. (B.75).

ordering, T → Tc, we can expand the denominator in the integral of the Φ function in
Eq. (B.72), and recover the mean-field behavior 1/T⊥

1 ∝ |T−Tc|−1/2 [147], compatible
with the mean-field exponents η = 0 and ν = 1/2 if zt = 2 [353]. This is visible in
Fig. B.11 (b) for weakly coupled chains with J⊥/J = 0.1 and an Ising anisotropy
∆ = 0.5 along the spatial direction a.

A similar scaling to the transverse NMR relaxation rate of Eq. (B.74) can be
obtained for the transverse dynamical spin structure factor at the AF wave vector in
the limit ω → 0,

S±∓
qAF

(ω0 → 0) = ξ1−D−η+zt F
(
ξ1/ν |T − Tc|

)
, (B.76)

with F a universal scaling function. At criticality, ξ diverges and one can make the
substitution ξ → L for a finite-size system of linear size L. The above scaling implies
scale invariance at the critical temperature for S±∓

qAF
(ω0 → 0)/L1−D−η+zt . We plot

in Fig. B.11 (a) setting D = 3 and zt = 1.62 (see previous discussion) and using the
3D XY universality class value of the exponent η = 0.0381 [175]: it is noteworthy
that the different curves show a crossing point close to the critical temperature
Tc/J ' 0.224 of the system made of weakly coupled chains with J⊥/J = 0.1 and

99



an Ising anisotropy ∆ = 0.5 along the spatial direction a. However, the crossing is
not extremely accurate, which could be related either to the numerical value of zt or
more probably to the analytic continuation procedure. Similarly, we are unable to
get the universal scaling function as a rescaling of the x axis by T → (T − Tc)L

1/ν

with ν = 0.6717 [175, 241, 242] (the 3D XY universality class value of the correlation
length exponent) does not provide a satisfactory collapse of our data. The inability to
properly estimate error bars of analytically continued data is partially to blame, but
more importantly the diverging value of SqAF(ω0 → 0) below the critical temperature
is not accurately evaluated. It is known that analytic continuation has troubles to
capture sharp peaks such as δ or quasi-δ contributions in spectral functions like the
one present in SqAF(ω) as ω → 0 below the critical temperature.

4. Ordered phase

As discussed in the previous section, the strong enhancement when approaching
Tc is understood within a scaling hypothesis, provided zt + 2−D − η > 0. In the
ordered phase, a linear dependence of the 1/T1 with the temperature is predicted [147]
due to spin-waves contribution but has never been observed experimentally so far.
Instead, a stronger suppression of the NMR relaxation rate is reported ∝ Tα with
α ' 4 − 5, as in the two-leg spin-1/2 ladder Cu2(C5H12N2)2Cl4 compound [334],
DTN [335] and DIMPY [204]. We show in this section that the linear spin-waves
contribution should manifest only at low temperature and discuss the meaning of the
strongly suppressed 1/T1 close to Tc by looking at its different momenta components.

Close to the transition From the definition (B.8), the NMR relaxation rate can
be expressed as a sum over all momenta q of the dynamical spin structure factor
Sq(ω0) at the NMR frequency. We show in Fig. B.12 (b) the relative weight versus
temperature of the AF momentum qAF compared to all the others by defining,

WqAF =
SqAF(ω0)∑

q Sq(ω0)
. (B.77)

The AF wavevector clearly dominates below the critical temperature as hinted by
Fig. B.11 (a) showing its diverging behavior below Tc (the exponent 2+ η− zt is close
to zero and the multiplicative factor L2+η−zt on the y axis roughly of order one). As
mentioned a couple of times, there is experimentally no divergence of the 1/T1 below
Tc but a strong suppression. This can only mean that the sharp AF contribution at
low frequency ω → 0 is not captured in the ordered phase, which can be explained
by the finiteness of the NMR frequency ω0. To avoid a specific dependence on the
NMR frequency of the relaxation rate, we make a new definition removing the qAF
contribution,

1

T⊥
1

=
∑

q 6=qAF

S±∓
q (ω0 → 0). (B.78)

The regular contribution, if any, at low frequency of the AF component is also
dismissed in this definition but should not contribute more than any other wavevector
and only induce an error of order 1/N , with N the number of spins (or equivalently
the number of terms in the sum).
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Figure B.12: Transverse component of the NMR relaxation rate 1/T⊥
1

Eq. (B.78) where the qAF component has been removed (see discussions in main
text) for weakly coupled chains in three dimensions with an Ising anisotropy
∆ = 0.5 along the spatial direction a. It has been computed numerically using
QMC+SAC on different system sizes N = L3/82 with an interchain coupling
J⊥/J = 0.1, leading to a critical temperature Tc/J ' 0.224 (vertical dotted
line). In panel (a) and its inset (b), the stochastic analytic continuation has
been performed independently on all q components of Sq(ω0) and summed
thereafter to obtain the NMR relaxation rate. In panels (c) and (d), the
sum over q of the imaginary time QMC data is performed before doing the
analytic continuation. The inset (b) shows the relative weight of the q 6= qAF
components in the 1/T1 as a function of the temperature with WqAF defined in
Eq. (B.77). The inset (d) is the same as (c) in log-log scale where the power-law
compatible with ∝ T 4 can be observed. At lower temperature, the spin-waves
contribution of the 1/T1 ∝ T is plotted with the prefactor computed by the
self-consistent Hartree approximation in Eq. (B.83) (with no free parameter).

Focusing on weakly coupled chains J⊥/J = 0.1 with Ising anisotropy ∆ = 0.5
along the spatial direction a, we plot in Fig. B.12 (a) the NMR relaxation rate from
the definition (B.78) with no AF contribution. The stochastic analytic continuation
has been performed independently on the N − 1 dynamical spin structure factors
in momentum space and summed thereafter15. The 1/T1 is very little affected in
the disordered phase from the qAF component removal. It still displays a diverging
behavior when approaching the critical temperature (the maximum value increases
with system size) and the position of the maximum gets closer and closer to the actual
value of Tc as the system size is increased. In the ordered phase, the NMR relaxation
rate is suppressed for each one of the sizes but still growing with system size N .
This is undoubtedly a technical artifact of the stochastic analytic continuation: it is
not able to resolve accurately the very small contributions of the different q points
which are all added up at the end. This can be seen as the sum of positive-definite
(because a spectral function is positive-definite) “numerical noise”; note the hundreds
to thousands contributions added up.

In an attempt to overcome this issue, we first perform the sum of the imaginary
15Here we exploit the tetragonal structure of the studied Hamiltonian (B.61) to only perform

analytic continuation on q points of the irreducible BZ, see Fig. B.8. In the thermodynamic limit,
this reduces the computational cost by a non-negligible factor ∼ 16 (from 5 to 10 for the finite
lattices studied in the present work).
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Figure B.13: Lower panels: transverse inelastic neutron scattering intensity
I⊥ for weakly coupled spin chains in three dimensions with J⊥/J = 0.1 and
an Ising anisotropy ∆ = 0.5 along the spatial a direction. The q points follow
the high symmetry lines of the BZ of Fig. B.8 (b), focusing on regions where
the spectral weight is the more significant. The temperature of the system is
T = 0.1J , below the critical temperature Tc/J ' 0.224, explaining why all the
spectral weight is located at the AF wave vector. The white dot symbols show
the first moment of the spectrum. The straight white line is the spin-waves
dispersion relation εsw(q) with a gapless mode at the AF wave vector. The
plus symbols correspond to the maximum of intensity in the spectrum at a
given q point. The dotted white lines around the AF wavevector show the
linear dispersion relation around qAF of the SW spectrum but with corrected
(hydrodynamic) velocities, compared to the bare spin-waves ones, see text. For
visibility, the color intensity has been saturated to 0.0005. The upper panels
correspond to the static structure factor whose value at A ≡ qAF is the modulus
square of the order parameter which clearly develops for T < Tc (a careful
finite-size scaling analysis would need to be performed in order to obtain the
order parameter value in the thermodynamic limit N → ∞). The data are
from quantum Monte Carlo simulations on the largest available system of size
N = 96× 12× 12 = 13 824 spins.

time data resulting from the quantum Monte Carlo simulations, except for qAF
component, and then run a single analytic continuation. The result is shown in
Fig. B.12 (c) for the same system as panel (a), and is visually not as smooth as the
first panel. The high-temperature regime is not as well-captured as before with no
precise maximum defined at the transition. On the contrary, in the ordered regime,
the NMR relaxation rate seems more or less independent of the system size, a good
indicator since it is a local probe. The same data are shown in Fig. B.12 (d) in log-log
scale. It becomes increasingly difficult at low temperature to collect an accurate
estimate of the NMR relaxation rate which becomes exceedingly small. Nonetheless,
we are able to observe a strong suppression below Tc, compatible with a power-law
dependence 1/T⊥

1 ∝ T 4 as experimentally measured.
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Spin-waves contribution at low temperature Deep in the ordered phase at zero
temperature, the spin-waves (SW) dispersion relation can be obtained by treating
semi-classically the Hamiltonian (B.61). The idea is to first make a rotation of
the spin operators in order to align the quantization axis with the classical order
along the x direction [224]. Then, the Dyson-Maleev representation of the S = 1/2
operators is introduced and only quadratic terms are kept. In this representation,
the truncated Hamiltonian is diagonalized through a Bogoliubov transformation with
the SW excitation spectrum given by εsw(q) =

√
A2

q −B2
q, where

Aq = 2J⊥ + J +

(
∆− 1

2

)
cos (π − qa) , (B.79)

and,

Bq = J

(
∆+ 1

2

)
cos (π − qa) + J⊥

[
cos (π − qb) + cos (π − qc)

]
, (B.80)

with a zero mode at the AF wavevector (π, π, π). Expanding the cosines close to the
antiferromagnetic wave vector, we obtain a linear dispersion relation εsw(q → qAF) ∼
vνsw|q− qAF| with vνsw the SW velocity, which depends on the direction ν ∈ [a, b, c] of
the Brillouin zone for an anisotropic system,

vνsw =

√
Jν

[
J

(
∆+ 1

2

)
+ 2J⊥

]
, with Ja ≡ J and Jb,c ≡ J⊥. (B.81)

We plot in Fig. B.13 the spectral function in the ordered phase of weakly coupled
chains with J⊥/J = 0.1 and an Ising anisotropy ∆ = 0.5 along the spatial a direction.
As expected in the ordered phase, the maximum of intensity is located at qAF with
a zero mode. We also compute the first moment of the spectral function (white dots)
and display the position of the maximum of intensity (plus symbols). We only focus
on regions of the BZ close to the AF wavevector, where the spectral weight is the
more significant to be reliable (note that the color intensity has been saturated for
visibility). The spin-waves dispersion relation εsw(q) derived above is also shown
(straight line) and overlaps pretty well with the maximum of intensity, which seems
more relevant than the first moment here. The linear dispersion above the ground
state around the antiferromagnetic wave vector is overall well-captured, with the
linear slope given by the SW velocity of Eq. (B.81). This is especially true in the
transverse RA and AZ directions but the maximum of intensity deviates from the SW
dispersion relation along the chain direction as observed in the right panel. This is
certainly due to the linear spin-wave approximation restricted to O(1/S) corrections.
To go further, a well-known way to extract the velocity in an antiferromagnet is
to use the analog of a hydrodynamic relationship relating the velocity to the spin
stiffness and the susceptibility [357, 358],

vνhydro =

√
ρνs
χ
, vahydro = 1.334(6) and vb,chydro = 0.29(1) (B.82)

where χ is the magnetic susceptibility and ρνs the spin stiffness in the ν ∈ [a, b, c] spa-
tial direction. We computed both quantities for the system studied here, performing
a careful finite-size scaling analysis (N → ∞) and making sure that we were probing
the ground state by being at sufficiently low temperature. Our final estimates are
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displayed in Eq. (B.82) and plotted as dotted lines in Fig. (B.13). The correction
is almost invisible in the transverse directions but provides a better overlap to the
maximum of intensity along the chain direction.

Through the self-consistent Hartree approximation, one can compute deep in
the ordered phase, i.e. close to absolute zero temperature, the form of the NMR
relaxation rate. It displays a linear behavior with temperature resulting from the
spin-waves contribution,

1

T⊥
1

= T

(
mAF(T )

vb,csw
√
4K

)2

, (B.83)

where mAF(T ) is the expectation value of the order parameter, K the dimensionless
TLL parameter and vb,csw the SW velocity transverse to the chain direction a. Since
the order parameter rapidly saturates to its zero temperature value — this is already
the case at T ' Tc/2 — it is justified to make the substitution mAF(T ) → mAF(0)
in Eq. (B.83). This prediction is shown in Fig. B.10 (c,d) using the zero temperature
estimate of the order parameter, mAF(0) = 0.35(1) and K = 0.75 for spin chains
with an Ising anisotropy ∆ = 0.5. We hardly capture this linear behavior at low
temperature numerically, for reasons discussed earlier. However, we remain confident
that the parameter free expression in Eq. (B.83) makes it possible to experimentally
provide a quantitative estimate of the crossover temperature between the two regimes
below Tc, where lower temperatures are more reliably accessible than numerically.
Although the linear behavior has never been experimentally observed so far to our
knowledge, Eq. (B.83) should provide some guidance.

5. Summary and outlook

In this work, we described the full temperature crossover for the nuclear mag-
netic resonance spin-lattice relaxation rate 1/T1, from one-dimensional Tomonaga-
Luttinger liquid physics to the three-dimensional ordered regime, as a function of
inter-chain couplings. We properly defined the temperature window inside which
the observation of the universal one-dimensional behavior is possible T ∈ [3Tc, J/10],
assuming that 3Tc < J/10. Furthermore, we provided some insights regarding ex-
perimental observations of the NMR relaxation rate below the critical temperature,
strongly suppressed and empirically fitting 1/T1 ∝ Tα with α ' 4− 5. Also in the
ordered phase, the transverse inelastic neutron scattering intensity was discussed
and compared to spin-waves dispersion relation which overlaps with the maximum
of intensity of the spectral function.

It would be interesting to investigate the fully SU(2) symmetric case, which
transition is in a different universality class. This case is more difficult to tackle
analytically since the real-space response functions of the single chain present loga-
rithmic corrections and no explicit expression of their Fourier transform is known.
This prevents the application of RPA methods to obtain the behavior of the response
functions above the transition, unless logarithmic corrections are neglected. In the
low temperature phase, the situation is worse since applying the self-consistent har-
monic approximation would violate the SU(2) symmetry, yielding incorrect results,
in particular for the Goldstone modes. More sophisticated analytical approaches,
that can fully preserve the symmetry will have to be developed.
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As a last remark, it would be also interesting to consider the case of coupled
chains in two-dimensions [359]. However, the situation in this case is even less
favorable for an analytical approach. Indeed, the Mermin-Wagner theorem prohibits
the existence of long-range ordering at any positive temperature [17–20]. For chains
forming a rectangular lattice, the low temperature phase has only quasi-long range
order [213–215] until the Berezinskii-Kosterlitz-Thouless (BKT) transition [213–215]
where short range order sets in. In such situation, mean field theory breaks down
since the gaussian fluctuations around the saddle-point cannot be controlled [360].
However, SCHA [339] correctly reproduces the quasi-long range ordered phase, and
can be used to predict the BKT transition [213–215] temperature. But it incorrectly
predicts a first order transition [337], indicating its breakdown at temperatures of the
order of the BKT transition temperature. The SCHA might thus be applicable, as
in the 3D case, to the calculation of the NMR relaxation rate near zero temperature.

V. Haldane S=1 spin chain

Manuscript under preparation
Sylvain Capponi, Maxime Dupont16, Anders W. Sandvik, and Pinaki Sengupta

As discussed in the first chapter, the S = 1 Heisenberg chain in one-dimension is
a paradigmatic example of a gapped system as conjectured by Haldane [81, 82] and
verified numerically [88, 361, 362] or experimentally [89–92]. Its Hamiltonian is given
by,

H = J
∑
i

Si · Si+1 (B.84)

where J is the antiferromagnetic nearest-neighbor exchange and the numerical value
of the spin gap is ∆g/J ' 0.41 [88, 361, 362]. Because of the SU(2) symmetry of the
Hamiltonian (B.84), all spin components are equivalent and we consider the total
(as the sum of all spin components) NMR relaxation rate, and total spin structure
factor without distinction between longitudinal and transverse contributions in the
following. For very low-temperature, the spectral function Sq(ω) is dominated by a
single magnon branch. At intermediate temperatures, relative to the gap ∆g, the
competition between quantum and thermal fluctuations makes the problem quite
difficult, and recent numerical work has shown that intra-band magnon scattering can
lead to additional features in the spectral function [363, 364]. The NMR relaxation
rate being related to a local and dynamical spin correlation function, it is natural
to expect a simple activated law 1/T1 ∝ exp(−∆g/T ) at low temperature in a
S = 1 chain. There are some predictions based on the low-energy effective field-
theory, namely the nonlinear sigma model. In the large-N approximation, the simple
activated law above was found [252]. In a refined similar calculation, J. Sagi and
I. Affleck confirmed this result up to log(T/ω0) corrections (ω0 being the NMR

16In this theoretical collaboration, I carried out the numerical simulations based on Matrix
Product States methods.
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frequency), and also extended the result to finite magnetic field and other anisotropic
cases [365]. Using a semiclassical approach to the O(3) nonlinear sigma model
(although being integrable, finite temperature correlations are hard to compute), S.
Sachdev and K. Damle have improved over the previous result, by taking into account
spin diffusion which occurs at long time [253]. Their result is 1/T1 ∝ exp(−3∆g/2T ),
with a factor 3/2 in the activated law.

Thanks to progress that has been done to compute dynamical properties for
integrable models (mostly at T = 0 usually though), R. M. Konik has claimed
to obtain “exact low-temperature expansions of correlation functions” for Haldane
chains [366]. He was able to improve over J. Sagi and I. Affleck results [365] by
including higher order terms, but he still recovers purely ballistic transport, i.e.
1/T1 ∝ exp(−∆g/T ). Now, there are some subtleties in all approaches when taking
the long time limit [367] and it could well be that integrability or not of the model
might change results qualitatively [257]. So it seems that an unbiased numerical
study of the full quantum one-dimensional model is called for and we shall provide
results in the following. More broadly, the issue of ballistic versus diffusive transport
in single S = 1 chain appears to be still controversial.

1. Spin diffusion at large temperature

A simple emergence of the spin diffusion phenomenon lies within the diverging
behavior of the one-dimensional spin−1/2 diffusion constant D in the anisotropic
S = 1/2 XXZ model, connected to the spin dc-conductivity σdc via the associated
static susceptibility χ through the Einstein relation, D = σdc/χ. From linear
response theory, the spin diffusion constant reads D = limt→∞

∫ t

0
dt′C(t′)/Nχ with

C(t) = 〈J(t)J(0)〉 and J(t) the time-dependent spin current operator [368,369]. If
the operator J is a conserved quantity, i.e. [H, J ] = 0 as in the non-interacting case,
it is clear that the above integral diverges since this leads to a time-independent
current-current correlation function in the integral C(t) ∝ t−α with α = 0. Moving
away from what looks like a limiting pathological case, what happens at a non-zero
Ising anisotropy for the diffusion constant is at the center of the Drude weight
issue [257, 369, 370]. More generally, a system is said to display spin diffusion if the
long-time decay form of some spin correlation function is algebraic,

lim
t→∞

∣∣∣〈Sa
r (t)S

b
0(0)〉

∣∣∣ ∝ t−αr , αr ≥ 0. (B.85)

where a priori the exponent αr could depend on the distance r [328]. This behavior
was first predicted in a phenomenological theory describing the time-dependence spin
correlation function by a classical diffusion equation [257, 371]. This description is a
priori all the more valid at high temperature where quantum effects are not prevailing
and implies a conserved quantity (such as the total spin Stot or the total magnetization
Sz

tot along the quantization axis) due the associated continuity equation. Especially,
a purely diffusive exponent α = D/2 with D the dimensionality is found. The next
question asks whether or not an exact treatment of the microscopic model is consistent
with this prediction. In particular, the paradigmatic anisotropic XXZ spin-1/2 chain
has been intensively studied in this respect [307,327,328,330,372–374]: at infinite
temperature, the diffusion exponent α of the local correlation function 〈Sz

0(t)S
z
0(0)〉

along the quantization axis z is exactly equal to one at the non-interacting (XX) point
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Figure B.14: Real part of the local correlation function 〈SL/2(t) · SL/2(0)〉
versus time for various inverse temperatures 0 ≥ βJ ≥ 1, computed using
matrix product states on N = 64 spin chains. For βJ . 0.8, a spin diffusion
like behavior is found with an exponent α ' 0.62 independent of temperature.
Specifically, the bold translucid straight lines (in the log-log scale) correspond
to the power-law fit ∝ t−α considered. A maximum bond dimension of size D =
1000 was used in the simulation as well as a fourth order Trotter decomposition
for both the imaginary and real time evolutions with a time step of 0.1.

and found to vary continuously with the Ising anisotropy. This result is qualitatively
similar with the expected power-law decay although it differs quantitatively from
the expected α = 0.5 exponent. On the other hand, the transverse (compared to the
quantization axis) correlation 〈S±

r=0(t)S
∓
r=0(0)〉 does not display any diffusive behavior

at long time. This is because Sz
tot commutes with the Hamiltonian and naturally

appears in the momentum space formulation of the longitudinal correlation function
〈Sz

r=0(t)S
z
r=0(0)〉 =

∑
q〈Sz

−q(t)S
z
q (0)〉/N at the q = 0 point; while it does not in the

transverse case. Spin diffusion rises questions regarding the NMR relaxation 1/T1
which as a result of spin diffusion explicitly depends on the NMR frequency, playing
the role of a cutoff, as 1/T1 ∼ ωα−1

0 . Ultimately, a dominant contribution from
q ∼ 0 modes, especially over q ∼ π modes which one naively expects to dominates in
antiferromagnets, is a signature of spin diffusion. For instance, this has been observed
in the one-dimensional S = 1/2 Sr2CuO3 [255] and Cu(C4H4N2)(NO3)2 [375]
compounds, as well as in a S = 1 compound AgVP2S6 [376].

Using matrix product states, we are able to compute the time-dependent local
spin-spin correlation function of the S = 1 chain as shown in Fig. B.14. At high
temperature βJ . 0.8, an algebraic form is observed at long time t, in qualitative
agreement with the phenomenological spin diffusion theory. The diffusion exponent
obtained by fitting the long-time decay by a simple power-law is found to be
independent of temperature and in average equal to α ' 0.62. Its value is slightly
smaller than in the S = 1/2 case where α ' 0.68 was obtained in Ref. 328, and
compatible with the classical limit S → ∞ where α = 0.5 is expected to be recovered.
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Figure B.15: Momentum contribution Sq(ω0 → 0) to the 1/T1 obtained
from QMC simulations on chains of length N = 64 and N = 128 for various
inverse temperatures βJ = 2, 3, 4, 5, 6 and 7. The y axis has been multiplied
by N so that we can compare systems with different lengths N . The inset
shows the ratio R of the contributions close to q ∼ π versus q ∼ 0, as defined
in Eq. (B.86). Three different regions are observed: (i) corresponds to spin
diffusion at high temperature, dominated by q ∼ 0 modes with an explicit
dependence of the 1/T1 value with the NMR frequency ω0. In region (ii), at
inverse temperatures around the inverse spin gap, i.e. β ∼ 1/∆g = 2.44, the
spin-lattice relaxation rate is dominated by q ∼ π contribution as one might
expect from an antiferromagnet. However, as the temperature is lowered, a
crossover is observed where q ∼ 0 contributions start to dominate again in
region (iii), see discussions in text.

2. Contributions of antiferromagnetic modes

Although we are ultimately interested in the local dynamical spectral function, we
focus now on small ω for the entire Sq(ω) at finite temperature, in order to investigate
which momenta contribute significantly to 1/T1. Indeed, the spin-lattice relaxation
rate can be given as a sum over momenta q of Sq(ω0). We plot in Fig. B.15 these
contributions to 1/T1 as a function of momentum q. In order to check the finite-size
effect, we multiply by N so that 1/T1 is proportional to the integral under the curves
and we can compare systems with different lengths N . As expected, since this is a
local dynamical quantity, it does not depend much on N at fixed β. Regarding the
temperature dependence, we propose to quantify the relative importance of momenta
close to 0 and π by defining a ratio,

R =

∑
π
2
≤|q|≤π Sq(ω0)∑

0≤|q|≤π
2
Sq(ω0)

. (B.86)

As seen in Fig. B.15, there is a rather sharp crossover around βJ ' 6 below
(respectively above) which low-energy spectral weight is mostly at q ∼ π (respectively
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q ∼ 0). It can be expected that, due to antiferromagnetic interaction, excitations
with momentum q ∼ π should be important, and thus R > 1. However, as is known
from a long time [252,365], relaxation is in fact dominated by two-magnon processes
at very low-temperature (due to energy conservation), hence we do expect q ∼ 0 to
dominate at low enough temperature (much lower than the gap), which is illustrated
when R < 1 at large β. We can also observe a divergence at small q for any finite
temperature T , which would correspond to spin diffusion. Indeed, our QMC data
can be well fitted as ∝ q−1 for small q (data not shown), so that we formally get
a divergence as lnN which would correspond to spin diffusion: namely, the 1/T1
relaxation rate does depend explicitly on a cutoff, which is experimentally the NMR
frequency ω0. We seem to observe the same behavior for any temperature, with an
exponent α = 1 quite different from our MPS results for which we found α ' 0.62.
However, it is known that at high-temperature, the small range of imaginary-time
data τ ∈ [0, β/2] limits the accuracy of the stochastic analytic continuation, and we
do not trust quantitatively the SAC results at small β.

3. Temperature dependence of the NMR relaxation rate

Combining our numerical results, we can obtain the full behavior of 1/T1 versus
inverse temperature β, see Fig. B.16. At high temperature, we are more confident in
MPS results since imaginary-time simulation are limited to small time τ = β/2 and
cannot produce very reliable results, but anyhow for temperature above the Haldane
gap (β . 1/∆g), there is a spin diffusion regime where the 1/T1 explicitly depends
on the cutoff procedure, see above.

For intermediate and low temperature, we can only rely on QMC simulations
since real-time data obtained from MPS are limited to time tJ ∼ 50 and strong
oscillations prevent a reliable estimate of the Fourier transform (note that 1/T1
becomes exponentially suppressed). As already seen in Fig. B.15, there is another
crossover between a regime with dominant q ∼ π contributions (1/∆g . βJ . 6)
where the 1/T1 decreases very fast, approximately as exp(−3β∆g), which should not
be trusted too much since this is valid in a rather small temperature interval. At
lower temperature, the signal becomes extremely small and in order to have some
intuition on the quality of our data, we have performed a bootstrap analysis of our
QMC data using ten bootstrap samples followed by SAC. We extract some tentative
error bars from this analysis as visible in Fig. B.16. In this low-temperature regime
βJ & 6, we observe that q ∼ 0 contributions are dominant.

4. Summary of results and conclusion

Our numerical study relies on different numerical techniques: MPS, expected to
be valid at high-tempeature and SAC on top of QMC simulations which we trust for
low-temperature studies. We can summarize our key findings in different temperature
regimes:

– High-temperature (T > ∆g): we have observed a spin diffusion regime which
prevents any universal prediction since by definition, 1/T1 explicitly depends
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Figure B.16: NMR spin-lattice relaxation rate 1/T1 versus inverse temper-
ature β obtained from QMC simulations on a N = 128 spins chain (white
circles), and from MPS calculations on a N = 64 spins chain. In the latter case,
we only show data where Sr=0(ω0) could be precisely determined, i.e. with a
“relatively fast” decay of the correlation 〈Sz

N/2(t)S
z
N/2(0)〉 to perform a proper

Fourier transform despite the maximum time t we could reach in practice. We
also plot separately the contributions coming from q ∼ 0 (lower red triangles)
and q ∼ π (upper green triangles) of the QMC data. The dark bold line
corresponds to a naive activated law ∝ exp(−β∆g), expected to be valid when
β is much larger compared to the inverse spin gap 1/∆g ' 2.44. Spin diffusion
data at high temperatures have been discarded since they explicitly depend on
the NMR frequency ω0 and have been discussed earlier on their own.

on some numerical cutoff or experimental parameters. More precisely, our MPS
data suggest an exponent in real time correlation data which is not really one
half, as expected classically, but rather α ' 0.62. Since a similar, but larger
exponent, α ' 0.68 has been computed for the spin-1/2 chain case [328], it
would be interesting to investigate whether the classical result is recovered in
the classical limit, i.e. 1/S → 0.

– Intermediate regime (1/∆g < βJ . 6): we have shown that the dominant
contributions to 1/T1 come from momenta q ∼ π, that can be simply interpreted
since we have a large Lorentzian peak at the antiferromagnetic wavevector π
and single magnon excitation can be thermally excited in this temperature
range.

– Low-temperature regime (βJ & 6): due to energy conservation, dominant
contribution to 1/T1 is due to two-magnon processes [252, 365] and occurs
at q ∼ 0. This regime is compatible with a simple activated law 1/T1 ∝
exp(−β∆g), as shown in Fig. B.16.

From an experimental point of view, one has to remember that a precise com-
parison of 1/T1 depends on which nucleus is probed and what are the hyperfine
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Figure B.17: In the same spirit as Ref. 377, we report in this figure the pref-
actor γ ≥ 1 to the spin gap ∆g observed in the activated law of the NMR relax-
ation rate 1/T1 ∝ exp(−βγ∆g) in various gapped one-dimensional compounds,
investigated experimentally. AgVP2S6 [376, 378] and Y2BaNiO5 [303] are one-
dimensional S = 1 Haldane systems while SrCu2O3 [300, 379], CaV2O5 [380]
and (VO)2P2O7 [381,382] are two-leg spin-1/2 ladder systems which also display
a finite spin gap ∆g.

couplings to the electronic spins. Indeed, for instance, if the NMR nucleus is coupled
symmetrically to two S = 1 magnetic ions, then the q ∼ π contributions will be
filtered out due to the form factors. We have shown that there is a nontrivial
crossover when comparing the q ∼ π versus q ∼ 0 component contributions as shown
in Fig. B.16. As a result, we do expect that depending on the NMR details (such
as nucleus probed and hyperfine couplings), the temperature behavior could be
non-universal in a temperature range of the order of the spin gap. This could explain
the various results obtained when comparing the activation energy from 1/T1 and
the spin gap — which can also be extracted from NMR signal through the Knight
shift for instance —, see Fig. B.17. Also, it could hinder any attempt to fit the 1/T1
behavior in this intermediate regime.

Some puzzles remain though, as for instance AgVP2S6 where the activation gap
seems larger than the spin gap, independent of the NMR nucleus [376]. As pointed
out by R. M. Konik in Ref. 366, one cannot exclude that easy axis spin anisotropy,
weak interchain interaction or spin-phonon couplings could change qualitatively
the temperature behavior. In particular, these additional ingredients are already
known to modify strongly spin diffusion [383]. In some other related systems, such
as an explicit dimerized S = 1/2 chain, which is also a one-dimensional gapped
system, it has been shown for instance that a simple activated law 1/T1 ∝ exp(−β∆g)
holds [332] for the NMR relaxation rate. It will be interesting to investigate other
simple, yet non trivial, gapped one-dimensional systems such as spin-1/2 ladder or
other dimerized chains where a simple activated law is often measured [380,381,384].
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— Chapter C —

Interplay between interactions and
disorder in quantum antiferromagnets

Understanding the subtle effect of disorder in quantum interacting systems is
one of the major challenges of modern condensed matter physics. The presence
of random impurities or defects in regular crystalline materials breaks the

symmetry of translation, and may lead to novel physical phenomena, in particular at
a very low temperature where quantum effects are dominant. A very famous example
is the Anderson localization [385–388] in the absence of interaction, where quantum
interference of electronic waves due to multiple scattering processes induced by the
impurities can completely block the transport, thus driving a metal-to-insulator phase
transition. Extending this prediction towards realistic condensed matter systems,
where inter-particle interactions cannot be ignored, is a highly non-trivial issue which
is hard to track experimentally, with only a few examples: metal-insulator transition
in two-dimensional silicon MOSFETs [389], localization of ultra-cold atoms in quasi-
periodic potentials [390–392], Cooper pair localization in disordered superconducting
thin films [393]. Interestingly, there is a set of condensed matter quantum systems
for which the interplay between disorder and interactions can be investigated in
details: antiferromagnetic Mott insulators. In such systems, the amount of disorder
can be controlled by chemical doping, in contrast with other types of materials where
intrinsic disorder is unavoidably present but more difficult to quantify and control.

Section I I will first review the physical properties of two different phases
of matter induced by disorder in quantum antiferromagnets, namely the random
singlet glass phase and the Bose-glass phase. As already mentioned, disorder can be
experimentally induced by chemical doping in magnetic compounds. This results on
the theoretical side in couplings or more generally Hamiltonian parameters drawn
from some random distribution. Regarding the random singlet phase, we shall
see that a renormalization group analysis leads to a very simple, yet accurate and
asymptotically exact picture of this quantum phase. On the other hand, the Bose-
glass phase is more difficult to apprehend with no simple microscopic picture to
which to relate. Nevertheless, its physical properties are relatively well-established
and unambiguously characterize this phase.

Section II This section mixes dynamics and disorder to study the dynamical
properties of Heisenberg spin chains with random antiferromagnetic exchange cou-
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plings, which realize the random singlet phase in the low-energy limit [394–396]. The
investigations were carried using numerical tools presented in the previous chapter.
First concerned with the dynamical structure factor, we find a continuous narrow
band of low-energy excitations extending throughout the Brillouin zone, instead
of being restricted to q ∼ 0, π as found in the clean system. Regarding the NMR
spin-lattice relaxation rate 1/T1, we show that it is broadly distributed. Its mean
value first decreases with the temperature, but below a crossover temperature it
starts to increase and likely diverges in the zero temperature limit. We show that
this divergence is due to rare events in the disordered chains and is concealed in
experiments, where the typical value is actually accessed.

Section III The last section combines a series of works on the chemically doped
“DTN” compound at high magnetic fields, whose clean version was introduced in the
first chapter of this manuscript. It has been proposed in prior publications as the first
experimental realization of the Bose-glass phase in a quantum magnet [397–399]. The
starting point of our works was to experimentally study the putative high magnetic
fields Bose-glass phase by nuclear magnetic resonance. Unexpected observations
hinted that something else than a Bose-glass was at play. We theoretically show that
the disorder itself is actually getting ordered, forming a Bose-Einstein condensation
through an order-by-disorder mechanism that I will discuss. Moreover, we provide a
complete picture of the phase diagram “magnetic fields vs. doping concentrations vs.
temperatures”. At low doping there is still room for a Bose-glass phase and we study
the critical properties of the Bose-Einstein condensation to Bose-glass transition.
The theoretically predicted disorder-induced revival of Bose-Einstein condensation
in “DTN” was afterwards experimentally observed by nuclear magnetic resonance.

I. The physics of the random singlet glass and
Bose-glass quantum phases

1. The random singlet glass phase

In order to make the following discussion, it is convenient to introduce a model in
which the random singlet phase emerges: the spin-1/2 Heisenberg chain with random
exchange couplings,

H =
∑
i

JiSi · Si+1, (C.1)

where Ji > 0 is drawn from some distribution1. This model is very close in the
writing to the “clean” spin-1/2 Heisenberg chain, thoroughly discussed in the first
chapter, and realizing in the low-energy limit a Tomonaga-Luttinger liquid phase.
However, the presence of any amount of disorder in the exchange couplings brings

1The exact form of the distribution (bimodal, gaussian, uniform...) does not really matter since
in all cases, the random singlet phase will emerge at low-energy in the thermodynamic limit.
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singlet

Figure C.1: Effective cartoon of the random singlet ground state in a one-
dimensional spin chain. Dots correspond to spin degrees of freedom and red
bonds to singlets (C.2) formed between a pair of spins.

the system into a completely different, “random singlet” phase2 [394–396].

Strong-disorder Renormalization Group This disorder-induced quantum state of
matter can be studied by means of the strong-disorder renormalization group scheme,
and lead to an accurate microscopic picture of the actual exact ground-state. I will
only briefly discuss the renormalization procedure but one can refer to Ref. 396 for
a complete review. At the first step, the two neighboring spins with the strongest
energy coupling Ji are set into a singlet,

|singlet〉 = 1√
2

[
|↑i↓i+1〉 − |↓i↑i+1〉

]
. (C.2)

which locally minimizes the energy Esinglet = −3Ji/4 of the two spins independently
of the rest. These two spins are now frozen, as is the singlet they form. A new
effective coupling is computed using perturbation theory between the two (right i− 1
and left i+ 2) spins next to the singlet,

J̃i−1,i+2 =
Ji−1Ji+2

2Ji
. (C.3)

The generated new coupling is always smaller than the decimated bond. The
procedure is repeated until all spins have been paired into singlets. Noting Ω the
relevant energy-scale of the system at a given step, i.e. the energy of the decimated
bond, it gradually decreases during the renormalization process. The resulting
asymptotic state can be nicely pictured as a collection of spin paired up into singlets
spanning arbitrary distances, as shown in Fig. C.1. The technical part of the
renormalization procedure, that I am skipping here, tells us that the asymptotic
distribution of the couplings J generated by the decimation is given by,

P (J,Ω) =
−1

Ω lnΩ

(
Ω

J

)1+1/ lnΩ

Θ(Ω− J), (C.4)

where Θ(x) is the Heaviside step function and the initial energy scale Ω0 of the
decimation procedure has been set to unity, i.e. Ω → Ω/Ω0. In an infinitely large
system, at the fixed point, the energy scale Ω vanishes and the coupling distribution
becomes singular, P (J) ∼ 1/J . Approaching the fixed point, one can show that the
fraction of free spins is given by renormalization group by nfree ∼ ln−2(Ω). Hence,
a typical distance between remaining spins is Lfree ∼ 1/nfree = ln2(Ω). While the
energy scale is concretely defined in the context of a running decimation procedure,
it also has direct physical interpretations as an energy cutoff in various situations:
for instance, finite temperature can roughly be captured by setting the scale at

2It is worthwhile to point out that the random singlet phase has never been observed in systems
of dimension D > 1. Moreover, introducing an Ising anisotropy −1 < ∆ ≤ 1 in the system (C.1)
preserves the nature of random singlet phase.
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Ω = T . The radical change in the ground state due to disorder naturally affects
the low-energy properties of the system. At low temperatures one can expect that
excitations of the weak singlets — those that have been decimated at the latter
stages in the renormalization procedure — will give rise to low-energy excitations
not present in the uniform system. Especially, at temperature T ∼ Ω � 1, one
expects spins that have not been decimated yet to behave as free spins that should
essentially contribute to the magnetic susceptibility as a Curie law ∼ 1/T . Following
this argument, at Ω = T , a density nfree of spins contributes to the susceptibility,
which leads to

χ ∼ nfree

T
=

1

T ln2(T )
. (C.5)

In comparison, the susceptibility takes a finite value as T → 0 in the clean chain, up
to logarithmic corrections [75].

Observation of the random singlet phase Experimentally, spin chains with ran-
dom antiferromagnetic exchange couplings were first proposed and investigated exten-
sively in the context of a class of quasi-one-dimensional Bechgaard salts [400–407]. In
these systems, a power-law divergent magnetic susceptibility was observed, χ ∼ 1/Tα

with α typically around 0.7−0.8, i.e., smaller than α = 1 predicted by the strong disor-
der renormalization group theory [395], though the log correction in the (later derived)
theoretical result (C.5), may at least be partially to blame for the discrepancy. An-
other scenario is that the random Hubbard model, from which the random Heisenberg
model for the materials was derived [400], has a different form of the divergence [408].
In a more recent study of a different material, BaCu2(Si0.5Ge0.5)2O7 [409, 410], the
predicted random singlet behavior is rather well reproduced. Note that these systems
should not have any ferromagnetic couplings, in which case the random singlet
phase is not realized, due to the formation of arbitrarily large effective magnetic
moments [411], as observed in Sr3CuPt1−xIrxO6 [412].

Many works [413–416] have been devoted to unbiased numerical studies of this
model, with various numerical methods, including quantum Monte Carlo simulations
and the DMRG technique, to test the many predictions based on the renormalization
group scheme. For instance, the average correlation function between two spins
at distance r follows an algebraic decay C(r) ∼ (−1)r/r2, where the exponent 2
found is to be compared with the exponent 1 of the clean chain. These numerical
works have confirmed the various behaviors associated with the random singlet phase,
but also have made it clear that non-asymptotic corrections can partially mask the
random singlet physics when considering system sizes and temperatures that can
be reached in practice. In addition, multiplicative logarithmic corrections have also
been found [416].

2. The Bose-glass phase

Unlike the random singlet phase, there is no simple microscopic picture of the
Bose-glass phase. The set of properties defining it is however well-established: it
is a quantum phase (zero temperature), it has a finite susceptibility, its low-energy
spectrum is gapless, spin-spin correlations are short-ranged (exponentially decaying),
and there is no phase coherence, i.e. no spontaneous symmetry breaking. In short,
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it is a many-body localized ground-state, physically really different from a critical
random singlet state with algebraically decaying correlations. The first appearance
in literature of this elusive phase of matter traces back to the work of D. S. Fisher
and M. P. A. Fisher in 1988 [157,417]. Around the same time, although the name
“Bose-glass” was not explicitly mentioned, this disordered phase was studied in
one-dimensional quantum systems by T. Giamarchi and H. J. Schulz [418,419]. A
prototype model displaying a Bose-glass phase, especially well-suited for numerical
studies, corresponds to spin-1/2 degrees of freedom on a regular lattice with no
frustration. The spins are coupled through a standard antiferromagnetic Heisenberg
or XXZ interaction and are in addition subject to a magnetic field with a random
component such as ∝ −

∑
i(H +Hi)S

z
i , with H the static field and Hi drawn from

some random distribution. The width of the distribution, such as its variance,
quantifies the disorder strength δH in the system and is a relevant parameter of
the model in order to study the phase diagram of the system against disorder.
Regarding the prototype S = 1/2 model at zero temperature, it is well-known to
display superfluidity (in any dimension) or Bose-Einstein condensation (in dimensions
greater or equal to two). The question is whether or not disorder can destroy the
global phase coherence and if yes, is there a critical disorder strength δHc. In this
respect, the dimensionality of the system is of great importance: in one dimension
(D = 1) any infinitesimal disorder strength is a relevant perturbation in most of the
cases [37, 420–422], while in D = 2 a finite disorder strength is required [423, 424]
to destroy the zero-temperature superfluid condensate, leading to the Bose-glass
state. For D = 3 one needs stronger randomness to eventually induce many-body
localization in the ground state (T = 0) [425].

Qualitative picture of the Bose-glass phase Assuming a nonzero critical disorder
strength δHc, the “theorem of inclusions” [426] states that there will always exist
in one phase, arbitrarily large, though exponentially rare, regions of the competing
phase. This allows to derive some properties of the Bose-glass phase and at the same
time initiate a microscopic picture, though not as satisfying as the random singlet
one. Put in other words, the theorem reports that in a Bose-glass phase there will
always be near-uniform regions that mimic the properties of the clean system and
which can be pictured as superfluid — Bose-Einstein condensate — droplets. Though
spatially isolated, the known properties of these droplets allow one, for example, to
prove that the energy spectrum in the Bose-glass phase is gapless since superfluid
excitations are gapless as well. Moreover, the disconnected superfluid clusters confer
to the Bose-glass phase its finite susceptibility (or compressible nature in bosons
language) since they are compressible themselves. The absence of long-range order in
the Bose-glass phase is a result of the lack of phase coherence between the different
superfluid droplets in the system and explains its insulating properties.

Within this picture, the Bose-glass to superfluid (or Bose-Einstein condensate)
transition is often described as a percolation transition [427], with coherent droplets of
increasing sizes which will merge at some points to develop a global phase coherence
over the whole system. This description has been used in both theoretical [425, 428–
431] and experimental [432–434] studies of the transition which found that the critical
point δHc corresponds exactly to the percolation threshold δHperc. On the other
hand, some works [435–438] found that there is a discrepancy between the location
of the two points and put forward a “quantum percolation scenario”: even when
there is no percolating superfluid cluster in the system, quantum tunneling between
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separated clusters lead to an effective global phase coherence with δHc > δHperc.

Observation of the Bose-glass phase The main motivation to introduce and
study the disordered Bose-Hubbard model in the first place [157, 417] was to explain
experimental observations of 4He in porous media. In such experiments, 4He is
adsorbed on Vycor glass [439, 440] or on aerogel glass [441–444] that one can picture
as random three-dimensional networks of interconnected pores of varying size. The
onset of superfluidity appears at a finite critical density nc of Helium deposited on
the inside walls of the pores. For n < nc, 4He atoms are localized due to repulsive
interactions and the random medium, but upon increasing their density n, the
substrate potential is smoothed by the adsorbed bosons in the pores which form
layers. Once a critical coverage at nc is reached, a delocalized state appear with
superfluidity emerging following a power-law ρs ∼ (n − nc)

ζ , as experimentally
observed in 1983 [441]. The theory of M. P. A. Fisher et al., a few years later [157],
provided the scaling relation ζ = ν(D + z − 2) with D the dimensionality, z the
dynamical exponent and ν the correlation length exponent. The bounds and estimate
values of the critical exponents derived in the same work for superfluid to Bose-glass
transition were in agreement with the experiment, indicating that Helium in porous
media realizes a disorder-induced quantum phase transition belonging to a new
universality class.

A few other experiments in various systems also display this transition. For
instance, a transition from a superconducting to insulator phase has been observed
in amorphous (disordered) indium oxide films InO [393, 445, 446] as a result of
localization of Copper pairs due to disorder. The main concern is to make sure
that the Copper pairs survive as such at the transition and are not destroyed
to conserve their bosonic nature otherwise the nature of the transition would be
different [447,448]. It has also been observed in an array of quasi-one-dimensional
samples of 39K cold atoms, subject to a quasiperiodic optical lattice, the depth
of which fixes the disorder strength [390]. The interaction energy between atoms
can be varied thanks to a Feshbach resonance. Studying the phase diagram of the
system in the plane “interaction strength vs. disorder strength”, the first indication
on the nature of the system comes from measurements of root-mean-square width
of the momentum distribution, which characterizes the coherence of the system.
Further evidences on the nature of the different phases are obtained by transport
measurements and Bragg spectroscopy.

Another type of systems in which the Bose-glass phase has been investigated
are antiferromagnetic Mott insulators [449–452]. It has been reported in the weakly
coupled strong rung spin-1/2 ladder compound (CH3)2CHNH3Cu(ClxBr1−x)3 [453] by
means of neutron diffraction, and in the Tl1−xKxCuCl3 material [454] studied by spe-
cific heat and electron spin resonance measurements. Measurements consistent with
the thermodynamic scaling of the specific heat established for a Bose-glass phase were
also observed in the randomly diluted quantum spin-1/2 chains (Yb1−xLux)4As3 [455],
a realization of the linear Heisenberg antiferromagnet partitioned into finite-size
segments by the diamagnetic dopants Lu3+, creating site-diluted chains with missing
adjacent bonds. The Br doped spin-1 system Ni(Cl1−xBrx)2-4SC(NH2)2 “DTNX”
compound, whose clean version was introduced in the first chapter of this manuscript,
has also been reported to host Bose-glass phase at low and high magnetic fields with
both numerical (quantum Monte Carlo simulations) and experimental (specific heat,
susceptibility, and neutron diffraction measurements) evidences [231,397–399,456].
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We will revisit thoroughly in the last section of this chapter the high-magnetic field
phase diagram of this material, which actually hosts much more than a Bose-glass
phase.

II. Dynamical properties of random S=1/2
Heisenberg chains

Adapted from the work Phys. Rev. B 97, 104424 (2018)
Yu-Rong Shu, Maxime Dupont3, Dao-Xin Yao, Sylvain Capponi, and Anders W.

Sandvik

We study in this work the dynamical properties at finite temperature of Heisenberg
spin chains with random antiferrormagnetic exchange couplings, which realize the
random singlet phase in the low-energy limit. We use complementary numerical
methods: the Chebyshev expansion within the matrix product state (MPS) formalism
and the stochastic analytic continuation of quantum Monte Carlo (QMC) results
in imaginary time. Specifically, we investigate the dynamic spin structure factor
Sq(ω) and its ω → 0 limit, which are closely related to inelastic neutron scattering
and nuclear magnetic resonance experiments through the spin-lattice relaxation rate
1/T1. Our study reveals a continuous narrow band of low-energy excitations in Sq(ω),
extending throughout the q-space, instead of being restricted to q ∼ 0 and q ∼ π as
found in the uniform system. Close to q = π, the scaling properties of these excitations
are well captured by the random-singlet theory [457, 458], but disagreements also
exist with some aspects of the predicted q-dependence further away from q = π.
Furthermore we also find spin diffusion effects close to q = 0 that are not contained
within the random-singlet theory but give non-negligible contributions to the mean
1/T1. To compare with NMR experiments, we consider the distribution of the local
relaxation rates 1/T1. We show that the local 1/T1 values are broadly distributed,
approximately according to a stretched exponential. The mean 1/T1 first decreases
with T , but below a crossover temperature it starts to increase and likely diverges in
the limit of a small nuclear resonance frequency ω0. Although a similar divergent
behavior has been predicted [395] and experimentally observed for the static uniform
susceptibility, as in the BaCu2(Si0.5Ge0.5)2O7 compound for instance [409, 410], this
divergent behavior of the mean 1/T1 has never been experimentally observed. We
find distinction between the mean and typical values of the distribution, which
discloses the discrepancy between the divergence of 1/T1 as T → 0 in our results and
vanishing behavior found previously [459, 460].

3In this theoretical collaboration, I carried out all the numerical simulations based on Matrix
Product States methods.
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periodic boundary conditions (OBCs and PBCs, respectively)
are considered, depending on the numerical method.

Before discussing the disorder distributions and physical
quantities we will study, it is useful to review the salient
features of the model that follow from its treatment with
the SDRG method. This method amounts to decimation of
spin pairs as discussed in Sec. I, and at each step the energy
scale ! is reduced. The meaning of ! is that all remaining
effective couplings (i.e., those that will be generated during
the decimation of the remaining spins) are less than !. The
distribution of effective couplings J is given by [3]

P (J,!) = −1

! ln !

(
!

J

)1+1/ ln !

"(! − J ), (2.2)

where "(x ) is the Heaviside step function and the initial energy
scale !0 of the SDRG decimation procedure has been set to
unity (or else !/!0 should be used under the logarithms).
Here it is also assumed that the system size is very large (strictly
speaking infinite). Then, at the RS fixed point, the energy scale
! vanishes and the coupling distribution becomes singular.
While the energy scale ! is concretely defined in the context
of a running decimation procedure, it also has direct physical
interpretations as an energy cutoff in various situations; e.g.,
finite temperature can roughly be captured by setting the scale
at ! = T .

In the Heisenberg chain, any amount of disorder in the
exchange couplings will make the system eventually flow
towards the RS fixed point [3], though for a system with
weak disorder it takes a large system size and low temperature
to observe the crossover from the clean-chain behavior to
the ultimate RS properties; this crossover is also understood
quantitatively [48]. Many works have been devoted to unbiased
numerical studies with various numerical methods, e.g., QMC
simulations and the DMRG technique, to test the many predic-
tions based on the SDRG scheme for many different models. In
the case of the Heisenberg chain [22,48–50], these works have
confirmed various power-law behaviors associated with the
RS phase, but also have made it clear that nonasymptotic cor-
rections can partially mask the RS physics when considering
system sizes and temperatures that can be reached in practice.
In addition, multiplicative logarithmic corrections have also
been found [22].

In the present work, we use several different disorder
distributions of the random exchange couplings, given by the
distribution

P (J ) = A

d
J−1+1/d , Jmin < J < Jmax, (2.3)

in which the prefactor,

A = 1/
(
J 1/d

max − J
1/d
min

)
, (2.4)

is determined by the normalization of P (J ) and d is a
convenient parameter controlling the shape of the distribution.
We quantify the “disorder strength” D by the variance of the
distribution of the logarithm of the couplings [4]:

D2 = (ln J )2 − ln J 2. (2.5)

For d = 1, Eq. (2.3) generates random exchange couplings
uniformly drawn from the box (Jmin,Jmax), while when d > 1
the distribution has a power-law form. In the limit of d → ∞
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FIG. 1. Sketch of the four different disorder distributions of the
random exchange couplings considered in this work. They are defined
by Eq. (2.3) (except the bimodal distribution) and referred to by the
disorder strength D, Eq. (2.5). The mean couplings J̄ = 1 in all cases.

and Jmin = 0, Eq. (2.3) corresponds to the singular distribution
at the RS fixed point. Both the cases d = 1 and d = 2 with
Jmin = 0 are studied in the present work. One would expect
that the asymptotic RS behavior is better manifested (with less
nonasymptotic contributions) if d is large, but numerically,
with the relatively small system sizes accessible in practice, it
is easier to compute proper disorder averages if d is smaller.
The values chosen here reflect a practical compromise in this
regard. We also consider the case Jmin = 0.2 and d = 1, to
compare with previous results for the dynamic structure factor
obtained with this distribution [33]. The values of Jmax are
chosen by imposing that the average of all random couplings
J̄ equals 1, to ensure that the overall energy scale of the
Hamiltonian, Eq. (2.1), equals unity in all cases. We finally
also consider the bimodal distribution where Ji takes the values
2/3 and 4/3 with equal probability, in order to compare with
experiments where this distribution has been proposed [32].
Figure 1 summarizes all the different disorder distributions
considered in our work.

B. Dynamic structure factor

For the isotropic random Heisenberg chain we considered,
the finite-temperature dynamic structure factor is defined as
follows in the Källén-Lehmann spectral representation:

S(q,ω) = 3π

Z(β)

∑

m,n

e−βEm |⟨n|Sz
q |m⟩|2

× δ[ω − (En − Em)], (2.6)

where the sum is performed over the eigenstates of the Hamil-
tonian (2.1) with the partition function Z(β) = Tr{e−βH}
at inverse temperature β = 1/kBT (where we set kB =
1 in the following). The momentum-space operator Sz

q is
the Fourier transformation of the real-space spin operator
Sz

q =
∑

r e−iqrSz
r /

√
L with q = 2nπ/L for PBCs and Sz

q =
∑

r

√
2 sin (qr)Sz

r /
√

L + 1 with q = nπ/(L + 1) for OBCs,
where n = 1,2, . . . ,L. The static structure factor S(q) is
obtained by integrating over all frequencies,

S(q) = 1

π

∫ +∞

−∞
dω S(q,ω), (2.7)

which satisfies the sum rule
∑

q S(q) = 3L/4.
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Figure C.2: Sketch of the four different disorder distributions of the random
exchange couplings considered in this work. They are defined by Eq. (C.7)
(except the bimodal distribution) and referred to by the disorder strength
D2 = (ln J)2 − ln J2.

1. Model and definitions

We consider the SU(2) symmetric S = 1/2 Heisenberg chain with random nearest-
neighbor couplings, described by the Hamiltonian,

Hrandom singlet =
N∑
i=1

JiSi · Si+1. (C.6)

Both open and periodic boundary conditions are considered, depending on the
numerical method (periodic for QMC and open for MPS). The exchange couplings
Ji are drawn from one out of several distributions defined by,

P (J) =
A

d
J−1+1/d, with A =

1

J
1/d
max − J

1/d
min

and Jmin < J < Jmax, (C.7)

in which d is a convenient parameter controlling the shape of the distribution. We
quantify the disorder strength D by the variance of the distribution of the logarithm
of the couplings, i.e. D2 = (ln J)2 − ln J2 [396]. For d = 1, the exchange couplings
are uniformly drawn from the box [Jmin, Jmax], while when d > 1 the distribution
has a power law form. In the limit of d → ∞ and Jmin = 0, it corresponds to the
singular distribution at the random singlet fixed-point. Both the cases d = 1 and
d = 2 with Jmin = 0 are studied in the present work. One would expect that the
asymptotic random singlet behavior is better manifested (with less non-universal
contributions) if d is large, but numerically, with the relatively small system sizes
accessible in practice, it is easier to compute proper disorder averages if d is smaller.
The values chosen here reflect a practical compromise in this regard. We also consider
the case Jmin = 0.2 and d = 1, to compare with previous results for the dynamic
structure factor obtained with this distribution [460]. The values of Jmax are chosen
by imposing that the average of all random couplings J̄ equals to 1, to ensure that
the overall energy scale of the hamiltonian (C.6) equals unity in all cases. We finally
also consider the bimodal distribution where Ji takes the values 2/3 and 4/3 with
equal probability, in order to compare with experiments where this distribution has
been proposed for the Heisenberg spin-1/2 chain compound BaCu2(Si1−xGex)2O7

compound at x = 0.5 [459]. All the different disorder distributions considered in this
work are summarized in Fig. C.2.
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Regular and singular contributions to the spectral function For the isotropic
random Heisenberg chain we considered, the finite temperature dynamic structure
factor is defined as follow, through the Källén-Lehmann spectral representation,

Sq(ω) =
3π

Z(β)

∑
m,n

e−βEm|〈n|Sz
q |m〉|2δ

[
ω − (En − Em)

]
, (C.8)

where the sum is performed over the eigenstates of the Hamiltonian4. While for a
finite system a spectral function is strictly speaking a sum of δ functions, the density
of these increases rapidly with increasing system size and a smooth continuous
distribution forms when some small broadening is imposed. However, in some cases
isolated δ functions with non-zero weight can remain even in the thermodynamic
limit. Generically, in Eq. (C.8) one can separate a δ function at ω = 0, which we
will refer to as the singular contribution, and regular parts forming a continuum:
Sq(ω) = Ssing

q (ω) + Sreg
q (ω). It is clear that this singular part arises from degenerate

energy eigenstates Em = En,

Ssing
q (ω) =

3π

Z(β)

Em=En∑
m,n

e−βEm|〈n|Sz
q |m〉|2δ(ω) = aq(β) δ (ω) , (C.9)

with aq(β) the weight of the δ-function at ω = 0. It follows that the regular part can
be easily computed by constraining En 6= Em in Eq. (C.8), which forms a continuous
distribution when some small broadening is imposed or by collecting the spectral
weight in a histogram with finite bin width. In fact the contributions to the weight
aq(β) of the possible singular part only can originate from eigenstates for which
Sz

tot 6= 0 (assuming that the total number of spins is even). In the presence of
disorder, there is normally no degeneracy in the energy spectrum — apart from that
related to the SU(2) symmetry, which does not play any role with the operators Sz

q

considered here (since these operators change the total spin by one unit). Accidental
degeneracies can occur in principle, but would just contribute to the smooth (in the
thermodynamic limit) continuum of the spectral function when ω → 0. Disregarding
these possible accidental degeneracies, the condition Em = En implies |m〉 ≡ |n〉. In
the sector with zero total magnetization, we can use the spin-inversion symmetry
operator Π, which flips all spins: Sz

i → −Sz
i . It has the eigenvalues pn = ±1

depending on whether the state |n〉 has odd (+) or even (−) total spin. It is easy to
show that diagonal matrix elements vanish in this sector,

〈n|Sz
q |n〉 = 〈n|Π2Sz

qΠ
2|n〉 = −p2n〈n|Sz

q |n〉 = −〈n|Sz
q |n〉, (C.10)

since ΠSz
qΠ = −Sz

q . Hence, there is no δ-peak contribution from the sector of
Sz

tot = 0. The singular contribution at ω = 0 could be probed using inelastic neutron
scattering experiments but is not relevant for NMR experiments performed at small
but nonzero resonance frequency and therefore should be excluded in the 1/T1.
It is thus advantageous to perform thermodynamic calculations in the Sz

tot = 0
subspace and we will refer to this as the canonical (C) ensemble — contrary to

4Because of the SU(2) symmetry of the Hamiltonian considered, the spin components x, y, z are
equivalent. For convenience, we only consider the z spin component, with a factor three in the
dynamical spin structure factor to account for each component contribution.
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the grand canonical (GC) ensemble, which includes all magnetization sectors5. At
zero temperature, the C and GC ensembles are the same for most Hamiltonians
since the ground state has Sz

tot = 0 (and also is a total-spin singlet), and at finite
temperature the two ensembles yield the same mean values for most observables
in the thermodynamic limit. This last statement on the equivalence between C
and GC ensembles however does not, a priori, account for singular contributions
or specific observables. For instance, evaluating the static uniform susceptibility
χ(T ) = 〈(Sz

tot)
2〉/NT , vanishes identically in the C ensemble while in the random

singlet phase it diverging as 1/T when T → 0 in the GC ensemble [394, 395, 461].

Numerically work in the canonical ensemble In the following, what is referred
as S(ω) corresponds in fact to its computation in the C ensemble. Quantum Monte
Carlo simulations were performed using the β-doubling trick [462] but measurements
were only carried on configurations respecting the Sz

tot = 0 condition. The idea behind
the β-doubling trick is to speed up the thermalization process and simulate efficiently
disordered systems where averaging over many disorder samples need to be done
on top of usual simulations. One usually starts from an inverse temperature β = 1
with Ne Monte Carlo updates, followed by Nm measurements, at the end of which
we have a sequence of operators SM and a basis state |σ〉. The next step consists in
doubling the inverse temperature β → 2β and use the previous |σ〉 state along with
the doubled operator string as the initial configuration. Indeed, if {|σ〉, SM} was a
typical configuration at inverse temperature β, SM → SM + (SM)−1, with (SM)−1

the reverse operator string (the two operator strings are connected tail-to-tail), might
be a good starting guess to represent a typical configuration at 2β. The process
is repeated until β = 2p with p ∈ N reaches the desired value. In practice, we use
Ne = 1000 and Nm = 2Ne. These rather short simulations are optimal for disorder
averaging when the statistical errors are dominated by the fluctuations between
different disorder samples, rather than the intrinsic Monte Carlo statistical error.

Concerning the method presented to simulate finite-temperature with matrix
product states in the previous chapter, the initial state at β = 0 before performing
the imaginary time evolution corresponds to the GC ensemble in the sense that the
quantum number Sz

tot(P+Q) is conserved but not Sz
tot(P) and Sz

tot(Q) separately.
To build a state fulfilling that condition, one has to project the initial maximally
entangled state onto the fixed Sz

tot(P) = 0 sector exclusively,
|ΨC

β=0〉 = PSz
tot(P)=0|ΨGC

β=0〉, (C.11)
with PSz

tot(P)=0 the projector operator such that the total magnetization along the z
axis is fixed to zero. This operator is hard to build in a Matrix Product Operator
(MPO) representation, but recent works [463,464] suggest two alternative ways to
build a canonical initial state, which we adopt here,

|ΨC
β=0〉 ∝

(
N∑

n=1

S+
n (P)⊗ S+

n (Q)

)N
2 N∏

n=1

|↓n〉P|↓n〉Q. (C.12)

This state fulfills both the condition of a maximal entanglement between pairs of
physical and auxiliary sites and fixed Sz

tot(P). The normalization constant is fixed
by the value of the partition function at infinite temperature in the C ensemble.

5Using a standard Matsubara–Matsuda transformation [146], we can map the model onto a
hardcore bosonic one, where canonical and grand-canonical are performed at fixed number of
particles or chemical potential respectively.
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Figure C.3: Comparison of QMC (upper panels) and MPS (lower panels)
results for Sq(ω) at inverse temperatures β = 4, 8 and 16 computed in the
C ensemble (Sz

tot = 0). The QMC calculations were carried out on N = 128
periodic systems and the MPS calculations on N = 64 open systems, in both
cases with the D = 1 box distribution of couplings. The white curves show
the first two cumulants, 〈ω〉 (solid curves) and 〈ω2〉 − 〈ω〉2 (dashed curves)
computed directly from the spectra. We show cuts through the β = 16 data
set at fixed frequencies and momenta in Fig. C.4.

2. Dynamic structure factor

In Fig. C.3 we compare MPS and QMC results for Sq(ω) for the full range of q
values at three different inverse temperatures, β = 4, 8 and 16 for D = 1. In the
current case, the results obtained by both methods agree very well at β ' 16. We
make both vertical and horizontal cuts (at fixed q and ω, respectively) through Sq(ω)
at β = 16, as shown in Fig. C.4 to show the details. Only a small discrepancy can
be seen in the low q modes in panel (d), which simply originates from the different
boundary conditions. At high temperatures, the low-energy structures are slightly
broadened in the QMC results, and as β increases, the imaginary-time information
becomes adequate for the stochastic analytic continuation (SAC) to generate high
quality spectra. While the MPS results are clearly more reliable at high T , we have
concluded that the QMC+SAC method is advantageous in the low-T regime, where
we cannot reach sufficiently large system sizes with the MPS method. Therefore, we
regard the two methods as complementary in different temperature regimes.

Comparing with the Heisenberg chain without disorder [307], we find out that
the main shape of the spectra are similar, as also found experimentally [465] (see
discussion below). However, in the disordered chains there is also a prominent band
at very low energies, with spectral weight extending throughout the Brillouin zone
but with a strong maximum around q = π at low temperatures (and a weaker
maximum around q = 0). This feature is a clear sign of excitations related to the
high density of low-energy states in the random singlet state. For D ' 0.567, the
work in Ref. 460 found similar structures of Sq(ω), except that the low energy peaks
are claimed to be singular δ peaks, which is different from what we observe here as
we have explicitly eliminated this singular contribution by working in the C ensemble.
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Figure C.4: Cuts at fixed momentum (upper row) and fixed frequency
(lower row) of the dynamic structure factor Sq(ω) at β = 16, from the same
calculations as Fig. C.3 at three different q and ω values. MPS and QMC
results are shown as blue and red curves, respectively. The slightly horizontal
shift of the data at fixed momentum in panels (a), (b) and (c) between the
two methods is due to the different definitions of q for PBC (QMC case) and
OBC (MPS case). At fixed low energy (ω ' 0) in panel (d), the difference at
small q between MPS and QMC is due to the different boundary conditions
used.

Thus, Sq(ω) in Fig. C.3 excludes any delta peak at ω = 0 and only represents the
regular contributions which still show a (regular) very sharp low-frequency peak.
Apart from the discrepancy regarding the claimed singular peak, the results for Sq(ω)
shown in Fig. S5 of Ref. 460 also appear to show a sharp structure around q = π
rather far above zero energy, whereas our results, for the same disorder strength and
similar system size, show a more continuously evolving spectral weight with maximal
intensity at significantly lower frequency. The reason for the different forms is not
clear to us, but the consistent results from both MPS and QMC+SAC calculations
in our work (such as the near perfect agreement at β = 16 in Fig. C.3) makes us
confident that these results are correct.

Comparison with “Strong Disorder Renormalization Group” predictions Next
we discuss scaling behaviors of Sq(ω) at low T . According to the strong disorder
renormalization group (SDRG) theory, at low energies, when q is close to π, at the
random singlet fixed point Sq(ω) obeys the scaling form [457,458],

Sq(ω) = A

{
lvω ln3(Ω0/ω)Φ

[√
|(q − π)lv| ln (Ω0/ω)

]}−1

, (C.13)

where A and lv are non-universal constants and Ω0 is a cutoff energy scale. The
universal scaling function Φ(x) is given by

Φ(x) = 1 + x
cos(x) sinh(x) + sin(x) cosh(x)

cos2(x) sinh2(x) + sin2(x) cosh2(x)
. (C.14)

To test this form, in Fig. C.5 (a) we plot QMC results for Sq(ω) at a fixed low
frequency ω ' 0 for N = 64, D = 2 at three low temperatures β = 64, 128, and
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FIG. 5. QMC result of S(q,ω) at fixed frequency ω = 0.00025 for
the D = 2 disorder distribution at three different temperatures: β =
64, 128, and 256. The solid curves are fits to the SDRG scaling form
c1#(c2

√
|q −π |), Eq. (4.1) at fixed ω close to q = π . The estimated

constants from these fits are {c1,c2} = {12.3,15.9}, {23.2,20.8}, and
{47.1,27.0}, for β = 64, 128, and 256, respectively.

where A and lv are nonuniversal constants and %0 is a cutoff
energy scale. The universal scaling function #(x) is given by

#(x) = 1 + x
cos(x) sinh(x) + sin(x) cosh(x)

cos2(x) sinh2(x) + sin2(x) cosh2(x)
. (4.2)

To test this form, in Fig. 5 we plot QMC results for S(q,ω) at a
fixed low frequency ω ≈ 0 for L = 64, D = 2 at three low tem-
peratures: β = 64,128, and 256 (and we do not consider MPS
calculations here because the temperatures are too low for this
method to work well). In the SDRG scheme the cutoff scale %0

in Eq. (4.1) can be interpreted as the temperature [2,3]. We have
chosen a very small frequency ω = 0.00025, so that we are in
the low-frequency regime ω ≪ %0, as required for the scaling
form to be valid [23,24], at the temperatures considered. We
have fitted the data to the form (4.1) individually for the three
cases, but we can see that the trend for increasing β (∼1/%0)
is roughly as expected based on the factor ln−3(%0/ω) which
directly controls the value at q = π . We should also note here
that there may still be some finite-size effects left for the system
size considered here, and in order to test the predicted form in
greater detail one would have to systematically study the con-
vergence with increasing L at fixed β values. Nevertheless, in
Fig. 5 we observe a peak at q = π consistent with the predicted
scaling form, reflecting the predominantly AF character of the
low-energy fluctuations [23,24], but moving away from q = π
we do not observe the minimum present in the theoretical form.
Instead we see a broader minimum at smaller q (away from
the region of wave number where the theoretical form can
be expected to apply) and a maximum as q → 0 that is not
predicted by the SDRG theory.

In addition to the peak structure at q = π , Ref. [24] also
predicts a quadratically vanishing behavior for small q: S(q →
0,ω) ∝ q2 for small ω, which is clearly different from our
results. As the temperature is lowered, we observe a peak
that increases sharply instead. Similar behavior can be seen
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FIG. 6. QMC results of S(q,ω) at different cutoff frequency ω for
systems with D = 2, β = 128. Panel (a) shows that for small ω, the
contribution close to q = 0 is divergent, while panels (b)–(d) indicate
that when the horizontal cut in Fig. 3 is made above the narrow band
at low energy in Fig. 3, the quadratic vanishing behavior predicted by
the RS theory is approximately recovered.

in Fig. 4(2a), even though the temperature there is higher.
However, as shown in Fig. 6, when the frequency ω of the
cut is fixed at larger values, e.g., at ω ≃ 0.1, a q2 behavior is
roughly reproduced. This indicates that the origin of the low-q
peak at very low frequencies (likely the whole band of low-
energy excitations significantly away from q = π ) in Fig. 3
is beyond the SDRG description, but the SDRG behavior for
small q can still be seen approximately once one moves away
from these very low frequencies. The low-energy behavior of
S(q ∼0,ω ∼0) is likely instead related to anomalous spin
diffusion and will be important for the NMR relaxation rate
1/T1, which we will discuss further below.

B. Local spectral function

The local spectral function S0(ω) can be obtained directly
in the MPS calculations by using the real-space spin operators
Sz

r instead of the q-space operators in Eq. (2.6). Since these
calculations are done with OBCs there is some dependence on
the location r within the chain even after disorder averaging has
been performed, and we normally then only consider the spin at
the center of the open chain. In the QMC calculations, where
we use PBCs, we can also work in real space and compute
G0(τ ) = 3⟨Sz

r (τ )Sz
r (0)⟩ and apply the SAC technique to obtain

S0(ω). This procedure can also be regarded as performing q
averaging of Gq(τ ) before applying the SAC method, and
we will refer to it as the q-SAC method. Alternatively, we
can average S(q,ω) over the wave numbers after the SAC
procedure has been applied to all individual q values:

S0(ω) = 1

L

∑

q

S(q,ω), (4.3)

which we will refer to as SAC-q. In the presence of statistical
noise in the QMC data, the q summation and SAC procedure
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where A and lv are nonuniversal constants and %0 is a cutoff
energy scale. The universal scaling function #(x) is given by

#(x) = 1 + x
cos(x) sinh(x) + sin(x) cosh(x)

cos2(x) sinh2(x) + sin2(x) cosh2(x)
. (4.2)

To test this form, in Fig. 5 we plot QMC results for S(q,ω) at a
fixed low frequency ω ≈ 0 for L = 64, D = 2 at three low tem-
peratures: β = 64,128, and 256 (and we do not consider MPS
calculations here because the temperatures are too low for this
method to work well). In the SDRG scheme the cutoff scale %0

in Eq. (4.1) can be interpreted as the temperature [2,3]. We have
chosen a very small frequency ω = 0.00025, so that we are in
the low-frequency regime ω ≪ %0, as required for the scaling
form to be valid [23,24], at the temperatures considered. We
have fitted the data to the form (4.1) individually for the three
cases, but we can see that the trend for increasing β (∼1/%0)
is roughly as expected based on the factor ln−3(%0/ω) which
directly controls the value at q = π . We should also note here
that there may still be some finite-size effects left for the system
size considered here, and in order to test the predicted form in
greater detail one would have to systematically study the con-
vergence with increasing L at fixed β values. Nevertheless, in
Fig. 5 we observe a peak at q = π consistent with the predicted
scaling form, reflecting the predominantly AF character of the
low-energy fluctuations [23,24], but moving away from q = π
we do not observe the minimum present in the theoretical form.
Instead we see a broader minimum at smaller q (away from
the region of wave number where the theoretical form can
be expected to apply) and a maximum as q → 0 that is not
predicted by the SDRG theory.

In addition to the peak structure at q = π , Ref. [24] also
predicts a quadratically vanishing behavior for small q: S(q →
0,ω) ∝ q2 for small ω, which is clearly different from our
results. As the temperature is lowered, we observe a peak
that increases sharply instead. Similar behavior can be seen
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FIG. 6. QMC results of S(q,ω) at different cutoff frequency ω for
systems with D = 2, β = 128. Panel (a) shows that for small ω, the
contribution close to q = 0 is divergent, while panels (b)–(d) indicate
that when the horizontal cut in Fig. 3 is made above the narrow band
at low energy in Fig. 3, the quadratic vanishing behavior predicted by
the RS theory is approximately recovered.

in Fig. 4(2a), even though the temperature there is higher.
However, as shown in Fig. 6, when the frequency ω of the
cut is fixed at larger values, e.g., at ω ≃ 0.1, a q2 behavior is
roughly reproduced. This indicates that the origin of the low-q
peak at very low frequencies (likely the whole band of low-
energy excitations significantly away from q = π ) in Fig. 3
is beyond the SDRG description, but the SDRG behavior for
small q can still be seen approximately once one moves away
from these very low frequencies. The low-energy behavior of
S(q ∼0,ω ∼0) is likely instead related to anomalous spin
diffusion and will be important for the NMR relaxation rate
1/T1, which we will discuss further below.

B. Local spectral function

The local spectral function S0(ω) can be obtained directly
in the MPS calculations by using the real-space spin operators
Sz

r instead of the q-space operators in Eq. (2.6). Since these
calculations are done with OBCs there is some dependence on
the location r within the chain even after disorder averaging has
been performed, and we normally then only consider the spin at
the center of the open chain. In the QMC calculations, where
we use PBCs, we can also work in real space and compute
G0(τ ) = 3⟨Sz

r (τ )Sz
r (0)⟩ and apply the SAC technique to obtain

S0(ω). This procedure can also be regarded as performing q
averaging of Gq(τ ) before applying the SAC method, and
we will refer to it as the q-SAC method. Alternatively, we
can average S(q,ω) over the wave numbers after the SAC
procedure has been applied to all individual q values:

S0(ω) = 1

L

∑

q

S(q,ω), (4.3)

which we will refer to as SAC-q. In the presence of statistical
noise in the QMC data, the q summation and SAC procedure
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Figure C.5: (a) QMC result of Sq(ω) at fixed frequency ω = 0.00025 for
the D = 2 disorder distribution at three different temperatures; β = 64, 128
and 256. The solid curves are fits to the SDRG scaling form aΦ(b

√
|q − π|)

of Eq. (C.13) at fixed ω close to q = π. The estimated constants from these
fits are (a, b) = (12.3, 15.9), (23.2, 20.8), and (47.1, 27.0), for β = 64, 128 and
256 respectively. (b,c,d,e) QMC results of Sq(ω) at different cut-off frequency
ω for systems with D = 2, β = 128. Panel (b) shows that for small ω, the
contribution close to q = 0 is divergent, while panels (c,d,e) indicate that when
the horizontal cut in Fig. C.2 is made above the narrow band at low energy,
the quadratic vanishing behavior predicted by the random singlet theory is
approximately recovered.

2566. In the SDRG scheme the cutoff-scale Ω0 in Eq. (C.13) can be interpreted as
the temperature [394, 395]. We have chosen a very small frequency ω = 0.00025, so
that we are in the low-frequency regime ω � Ω0, as required for the scaling form
to be valid at the temperatures considered [457, 458]. We have fitted the data to
the form (C.13) individually for the three cases, but we can see that the trend for
increasing β (∼ 1/Ω0) is roughly as expected based on the factor ln−3(Ω0/ω) which
directly controls the value at q = π. We should also note here that there may still
be some finite-size effects left for the system size considered here, and in order to
test the predicted form in greater detail one would have to systematically study the
convergence with increasing N at fixed β values. Nevertheless, in Fig. C.5 (a) we
observe a peak at q = π consistent with the predicted scaling form, reflecting the
predominantly antiferromagnetic character of the low-energy fluctuations [457, 458],
but moving away from q = π we do not observe the minimum present in the
theoretical form. Instead we see a broader minimum at smaller q (away from the
region of wavenumber where the theoretical form can be expected to apply) and a
maximum as q → 0 that is not predicted by the SDRG theory.

In addition to the peak structure at q = π, Ref. 458 also predicts a quadratically
vanishing behavior for small q, i.e. Sq→0(ω) ∝ q2 for small ω, which is clearly
different from our results. As the temperature is lowered, we observe a peak that
increases sharply instead. Similar behavior can be seen in Fig. C.4 (d), even though
the temperature there is higher. However, as shown in Fig. C.5 (b,c,d,e), when the
frequency ω of the cut is fixed at larger values, e.g., at ω ' 0.1, a q2 behavior is
roughly reproduced. This indicates that the origin of the low-q peak at very low

6We do not consider MPS calculations here because the temperatures are too low for this method
to work well.
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FIG. 7. Comparisons at two low temperatures of the local dy-
namic structure factor of L = 64 chains with D = 2, obtained with
QMC followed by the SAC technique applied before (dashed curves)
and after (solid curves) the summation over q. The inset shows more
details of the broad continuum to the right of the sharp low-energy
peak.

do not fully commute, and S0(ω) obtained using the different
orders of operations will show some differences. In Ref. [56],
where the uniform Heisenberg chain was studied, it was
pointed out that the results are better if the q averaging is
done as the last step (SAC-q), because the functions S(q,ω)
there have a rather simple frequency profile with only a single
peak, while the q-averaged function S0(ω) exhibits both a sharp
peak at low frequency and a broader high-frequency maximum.
The latter more complex structure is harder to resolve with
analytic continuation and, therefore, the final result is better
if the q averaging is done last. In the present case of the
disordered chains, the individual S(q,ω) spectra also typically
have two peaks, as seen in several of the preceding figures,
and therefore it is not as clear which order of operations
is better.

In Fig. 7 we present comparisons of results obtained with
the two different orders of SAC and q summation at low
temperatures. Here the two approaches deliver very similar
local spectral functions, with the low-frequency peak being
almost identical. Examining the details of the spectra at higher
frequencies (in the inset of Fig. 7), we observe significant
oscillations in the curves from the q-SAC method. There
are some oscillations also in the results from the SAC-q,
but these are much smaller. It is well known that extended
flat portions of a spectrum are difficult to reproduce with
analytic continuation, and most likely the large oscillations
reflect a rather flat, slowly decaying S0(ω) in the range ω ∼
0.5–2.5. The small oscillations seen in this frequency window
in the SAC-q should then just reflect statistical errors in the
shapes of the individual S(q,ω) spectra, which when added
up still cause some fluctuations. The larger oscillations in
the q-SAC results can likewise be regarded as correlated
statistical errors originating from the noise in G0(τ ), but with
larger distortions originating from the nonlinear way in which
errors are propagated from imaginary time to real frequency
through the analytic continuation procedure. Our conclusion
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FIG. 8. Temperature dependance of the mean NMR relaxation
rate 1/T1 for different disorder distributions. MPS data (shown with
x symbols) are available only up to β = 16 due to size limitations
(L = 64), while the QMC results (circles) are shown also at lower
temperatures based on L = 128 systems. The inset shows the relative
contributions from wave vectors close to 0 and π , as defined in
Eq. (4.4). Dotted lines are guides to the eye.

overall is as Ref. [56]: The structure of the individual S(q,ω)
functions are less prone to distortions in analytic continuation
than the q-averaged spectrum S0(ω), and, thus, it is better
to apply the SAC method to the q-dependent data before
averaging over q. The fact that the dominant low-energy
structure is essentially identical in the two approaches is
very reassuring when considering the important limit of small
ω, which enters in the spin-lattice relaxation rate that we
discuss next.

C. NMR relaxation rate

We have extracted the NMR spin-lattice relaxation rate
1/T1 as the mean low-energy structure factor S0(ω → 0)
for different temperatures and disorder distributions, using
the assumption of a purely local (q-independent) hyperfine
coupling in Eq. (2.13). The results from QMC and MPS
calculations are summarized in Fig. 8. In the MPS cal-
culations we directly averaged the local spectral function
S(r = 0,ω) obtained for each individual disorder realization
over several hundred realizations, while in the QMC cal-
culations we applied the SAC-q order after averaging over
disorder realizations.

1. Spin-diffusion regime

Due to the conservation of Sz
tot, low-energy contributions

are expected for small momenta q in S(q,ω). This is known
as spin diffusion and is only significant at high temperature in
most systems [25,26]. In this regime, the relaxation rate will
explicitly depend on the cutoff (length scale, NMR frequency
not being exactly zero, etc.).

In order to quantify contributions of the low-q and the q ∼
π modes, we separate the contributions from small q and q
close to π . In practice, this can be accomplished by separating
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Figure C.6: Temperature dependance of the mean NMR relaxation rate
1/T1 for different disorder distributions. MPS data (shown with x symbols)
are available only up to β = 16 due to size limitations (N = 64), while the
QMC results (circles) are shown also at lower temperatures based on N = 128
systems. The inset shows the relative contributions from wavevectors close to 0
and π. Dotted lines are guides to the eye. MPS data are expected to be more
reliable than QMC ones (because of the SAC) at high temperatures, hence the
slight disagreement observed in the figure

frequencies (likely the whole band of low-energy excitations significantly away from
q = π) in Fig. C.3 is beyond the SDRG description, but the SDRG behavior for
small q can still be seen approximately once one moves away from these very low
frequencies. The low-energy behavior of Sq'0(ω ∼ 0) is likely instead related to
anomalous spin diffusion and will be important for the NMR relaxation rate 1/T1,
which we will discuss further below.

3. NMR relaxation rate

We have extracted the NMR spin-lattice relaxation rate 1/T1 for different tem-
peratures and disorder distributions. The results from QMC and MPS calculations
are summarized in Fig. C.6. In the MPS calculations we directly averaged the local
spectral function Sr=0(ω) obtained for each individual disorder realization over several
hundred realizations, while in the QMC calculations we performed the stochastic
analytic continuation on the disorder averaged imaginary-time correlations data.

Spin diffusion regime Due to the conservation of Sz
tot, low-energy contributions

are expected for small momenta q in Sq(ω). This is known as spin diffusion and is
only significant at high temperature in most systems [178,306]. In this regime, the
relaxation rate will explicitly depends on the cutoff (length scale, NMR frequency not
being exactly zero, etc.). In order to quantify contributions of the low q and the q ∼ π
modes, we separate the contributions from small q and q close to π. In practice, this
can be accomplished by separating the q space into two equal parts [306], defining
a relative weight W0 =

∑
|q|≤π/2 Sq(ω = 0)/

∑
q Sq(ω = 0), which will typically be
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dominated by the q ∼ 0 contributions. Similarly, we define Wπ = 1−W0 to capture
the q ∼ π contributions. The temperature dependence of W0 and Wπ are plotted
in the inset of Fig. C.6 for different disorder distributions. At high temperatures,
W0 dominates 1/T1 and there exists a crossover temperature where Wπ overwhelms
W0. Even at the lowest temperature accessed, W0 is still non-negligible and grows as
the disorder gets stronger, implying that spin diffusion tends to play an important
role in the random singlet phase. This aspect of the dynamics appears to be beyond
the prediction made within the SDRG approach — recalling that SDRG suggests
a vanishing W0 at low T [458]. It is helpful to notice that, since W0 is normalized
and evidently decays much slower than 1/T1 is growing, the un-normalized partial
spectral weight

∑
|q|≤π/2 Sq(ω = 0) increases as T → 0.

Low-temperature regime At low-temperature, we expect a more universal behavior
when the spin-diffusive contributions are not important, as found, for instance, in
the uniform chain [332, 351]. Down to the lowest temperature accessible in the MPS
calculations, β ' 16, no tendency of increasing 1/T1 with β is observed for any of
the disorder distributions studied. The QMC results, however, exhibit a crossover
feature from the spin diffusion regime to the low T regime, with a disorder-dependent
crossover scale. As seen clearly in Fig. C.6, for β ≥ 16, 1/T1 increases dramatically
as T → 0, mainly due to the large contributions from q close to π, which is similar
to the uniform Heisenberg chain [178,306]. It is noteworthy that the contribution
to 1/T1 from q ∼ 0 is not always negligible even at low temperature, especially for
strong disorder D, which will be relevant for our discussion of experiments in the
next section. However, here we have a sharp discrepancy with both experiments and
previous numerical results [459, 460], in which 1/T1 was found to be decreasing as T
decreases. We believe such discrepancies arise from the difference between the typical
and mean values of a very broad distribution of 1/T1 values, as we will explain next.

Distribution of NMR relaxation rate Here we consider the distribution of 1/T1.
In a homogeneous system, the locally defined relaxation rate is also homogeneous,
taking single value, while in a disorder system one expects a distribution of relaxation
rates, associated with the measurement of the local dynamical correlation on each
(inequivalent) site of the system. In such a disordered system, the global nuclear
spin component along the applied magnetic field Mz is the average over each nucleus
(sites i) and relaxes as,

1−Mz(t) ∝
1

N

N∑
i=1

e−t/T1,i . (C.15)

In an experimental setup, one has only access to Mz(t), which can be phenomeno-
logically modeled by a stretched exponential to take into account disorder effects,

1−Mz(t) ' e−(t/τ0)
γ

(C.16)

with τ0 and γ fit parameters characterizing the stretched exponential distribution of
1/T1 [466,467]. It is evident that the uniform case should be recovered with γ = 1
and 1/τ0 = 1/T1 at any temperature. For the disordered chains, Fig. C.7 (a–d) shows
the cumulative integrated probability distribution of 1/T1 computed using MPS. The
distribution spreads over a few orders of magnitude and broadens as the temperature

127



SHU, DUPONT, YAO, CAPPONI, AND SANDVIK PHYSICAL REVIEW B 97, 104424 (2018)

0.00

0.25

0.50

0.75

1.00

C(
1
/T

1
)

D = ln(2)/ 2

β = 1.0
β = 2.0
β = 4 .0
β = 8 .0
β = 16.0

D ≃ 0 .567

10−5 10−2 101
0.0

0.25

0.50

0.75

D = 1

10−2 101

1/T1

D = 2

0.0 0.2 0.4 0.6
Gloc(β/2)

0

20

P
[G

lo
c
(β

/
2)

]

QMC Mean
Median
β = 16
β = 128

0 2 4 6 8

1/T1

0

1

P
(1

/T
1
) MPS β = 16

FIG. 9. Left panels: Cumulative probability distribution of the NMR relaxation rate 1/T1 obtained from MPS simulations for the different
coupling distributions at β = 1, 2, 4, 8, and 16. Note that the x axis is shown on a logarithmic scale. The vertical marks indicate the corresponding
mean values graphed in Fig. 8. Right panels: Distributions of 1/T1 in D = 2 systems from MPS calculations and G0(β/2) approximation from
QMC calculations. The mean and median values are indicated by the vertical solid and dotted lines, respectively. The distributions are so broad
that the mean value is dominated by the rare-event contribution, while the median value corresponds to typical events.

With 1/T1 defined by Eq. (2.14), the β approximation of its
value is then given by

1

T1
≈ π

4
βG0(β/2), (4.8)

where the local correlation function G0(τ ) also equals∑
q Gq(τ )/L. Similar to the MPS calculations, when consid-

ering the distribution of the 1/T1 values we have to work in
real space.
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FIG. 10. Mean and median values of 1/T1 obtained using dif-
ferent methods: MPS, QMC-SAC, and QMC with β approximation
according to Eq. (4.8). We also show the stretched exponential
fit parameter 1/τ0 defined in Eq. (4.6) obtained from the 1/T1

distribution of the MPS data. Symbols are the computed data point and
the lines are only guides to the eye. While the mean NMR relaxation
rate value is increasing with the inverse temperature β (dashed blue
line), the median value and the stretched exponential distributions are
both decreasing (dashed red and purple lines).

For the above approximation to be good, S(q,ω) should not
show a strong ω dependence in the window [0,%ω], where %ω
scales as 2/β. However, in the case considered here, S(q,ω)
appears to have a very high but narrow peak, with a width
smaller than 2/β, in the vicinity of ω = 0 and a much lower,
broader peak at higher energies, especially for strong disorder
at low T . Therefore, it is reasonable for the β approximation
to deviate from the exact results, as we indeed find. In any
case, we expect the distribution of approximants to reflect the
distribution of 1/T1. As an aside, we note that higher-order
approximants can in principle be defined by keeping more
terms in the Taylor expansion in Eq. (4.7) and in the future
we plan to develop practical procedures for accomplishing
this systematically. Here we just consider the lowest-order β
approximation.

As indicated by Eq. (4.8), at fixed temperature, 1/T1 is
proportional to G0(β/2) so that P(1/T1) can be readily read
off from P[G0(β/2)], which we graph in Fig. 9. We also plot
MPS results for P(1/T1) at β = 16, D = 2, for comparison.
The distribution P[G0(β/2)] is bounded by the equal-time
value G0(0) = 3/4 and has a long tail that becomes more
evident as the temperature decreases. The tail contributes large
rare-event values to the mean 1/T1, which originate from a
small number of sites with almost free spins in some disorder
realizations [24]. These rare events dominate the mean value of
P[G0(β/2)], and this value may not be suitable to describe the
experimental NMR measurements analyzed with the assumed
stretched-exponential distribution [32]. Alternatively, we use
the typical value of the distribution to represent a local probe
more properly [24].

We presents the temperature dependence of 1/T1 for D = 2
in Fig. 10, using the different methods discussed above. The
mean values obtained using QMC and MPS are computed in
the momentum space, as also already shown Fig. 8, while
the other calculations were performed in real space. Even
though the β approximation [Eq. (4.8)] cannot fully reproduce
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Figure C.7: (a,b,c,d) Cumulative probability distribution of the NMR
relaxation rate 1/T1 obtained from MPS simulations for the different coupling
distributions at β = 1, 2, 4, 8 and 16. Note that the x axis is shown on a
logarithmic scale. The vertical marks indicate the corresponding mean values
graphed in Fig. C.6. (e,f) Distributions of 1/T1 in D = 2 systems from MPS
calculations and Sr=0(τ = β/2) approximation from QMC calculations. The
mean and median values are indicated by the vertical solid and dotted lines,
respectively. The distributions are so broad that the mean value is dominated
by the “rare events” contribution, while the median value corresponds to typical
events. (g) Temperature dependence of the stretched exponential exponent
γ as in Eq. (C.16) for the different coupling distributions considered. Dotted
lines are guide to the eye.

decreases. Also, the larger the disorder strength D is, the broader the distribution is
at fixed temperature.

From the distribution, the response function Mz(t) can be constructed and fitted
to a stretched exponential as in Eq. (C.16), thus determining the parameters τ0 and γ.
The cumulative distribution in Fig. C.7 (a–d) implies a pronounced tail in P (1/T1),
and further, the existence of a γ that is much smaller than one [460], which we verify
in Fig. C.7 (g) where we plot the temperature dependence of the exponent γ. Its
value decreases with the temperature and the disorder distribution strength D, which
reflects the broadening of the distribution. Yet, at low temperature, the exponent
seems to converge to a given value independently of the disorder strength, showing the
limits of the stretched exponential fitting of the data. We also plot the temperature
dependence of 1/τ0 (interpreted as the NMR relaxation rate in experiments) for
D = 2 in Fig. C.8, and these results agree well with previous investigations [459,460].
However, the stretched exponential is only an approximation, since it neglects rare
events, which can be indeed seen as some anomalously large 1/T1 values in Fig. C.7 (f).
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With 1/T1 defined by Eq. (2.14), the β approximation of its
value is then given by

1

T1
≈ π

4
βG0(β/2), (4.8)

where the local correlation function G0(τ ) also equals∑
q Gq(τ )/L. Similar to the MPS calculations, when consid-

ering the distribution of the 1/T1 values we have to work in
real space.
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FIG. 10. Mean and median values of 1/T1 obtained using dif-
ferent methods: MPS, QMC-SAC, and QMC with β approximation
according to Eq. (4.8). We also show the stretched exponential
fit parameter 1/τ0 defined in Eq. (4.6) obtained from the 1/T1

distribution of the MPS data. Symbols are the computed data point and
the lines are only guides to the eye. While the mean NMR relaxation
rate value is increasing with the inverse temperature β (dashed blue
line), the median value and the stretched exponential distributions are
both decreasing (dashed red and purple lines).

For the above approximation to be good, S(q,ω) should not
show a strong ω dependence in the window [0,%ω], where %ω
scales as 2/β. However, in the case considered here, S(q,ω)
appears to have a very high but narrow peak, with a width
smaller than 2/β, in the vicinity of ω = 0 and a much lower,
broader peak at higher energies, especially for strong disorder
at low T . Therefore, it is reasonable for the β approximation
to deviate from the exact results, as we indeed find. In any
case, we expect the distribution of approximants to reflect the
distribution of 1/T1. As an aside, we note that higher-order
approximants can in principle be defined by keeping more
terms in the Taylor expansion in Eq. (4.7) and in the future
we plan to develop practical procedures for accomplishing
this systematically. Here we just consider the lowest-order β
approximation.

As indicated by Eq. (4.8), at fixed temperature, 1/T1 is
proportional to G0(β/2) so that P(1/T1) can be readily read
off from P[G0(β/2)], which we graph in Fig. 9. We also plot
MPS results for P(1/T1) at β = 16, D = 2, for comparison.
The distribution P[G0(β/2)] is bounded by the equal-time
value G0(0) = 3/4 and has a long tail that becomes more
evident as the temperature decreases. The tail contributes large
rare-event values to the mean 1/T1, which originate from a
small number of sites with almost free spins in some disorder
realizations [24]. These rare events dominate the mean value of
P[G0(β/2)], and this value may not be suitable to describe the
experimental NMR measurements analyzed with the assumed
stretched-exponential distribution [32]. Alternatively, we use
the typical value of the distribution to represent a local probe
more properly [24].

We presents the temperature dependence of 1/T1 for D = 2
in Fig. 10, using the different methods discussed above. The
mean values obtained using QMC and MPS are computed in
the momentum space, as also already shown Fig. 8, while
the other calculations were performed in real space. Even
though the β approximation [Eq. (4.8)] cannot fully reproduce
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Figure C.8: Mean and median values of 1/T1 obtained using different
methods: MPS, QMC+SAC and QMC with β-approximation according to
Eq. (C.17). We also show the stretched exponential fit parameter 1/τ0 defined
in Eq. (C.16) obtained from the 1/T1 distribution of the MPS data. Symbols
are the computed data point and the lines are only guides to the eye. While the
mean NMR relaxation rate value is increasing with the inverse temperature β
(dashed blue line), the median value and the stretched exponential distributions
are both decreasing (dashed red and purple lines).

These large values are very unlikely within the stretched exponential distribution,
and, thus, the resulting 1/τ0 value only gives an estimate of a typical 1/T1. Here and
below we use the median value of 1/T1, which is relatively insensitive to the rare
events, to represent a typical measurement.

In QMC calculations we do not perform the SAC procedures for individual
disorder realization but always work with the disorder averaged S(τ) in order to
have sufficient statistical precision, so that we do not have access to the distribution
of 1/T1 in this case. To study the 1/T1 distribution we instead use a long-standing
approximation (which we will refer here to as the “β-approximation”) where the 1/T1
value can be be obtained directly from imaginary-time data without full analytic
continuation [468]. We here provide an alternative derivation of the β-approximation
based on 1/T1 expressed using Sr=0(ω) instead of the related dynamic susceptibility
χq(ω) considered previously. The general idea underlying the approximation is that
the low-frequency behavior is most strongly reflected at the longest imaginary-time
value τ = β/2. At this τ point, by replacing Sr=0(ω) by its Taylor expansion around
ω = 0 and keeping only the leading term, we obtain,

Sr=0(τ = β/2) =
2

π

∫ +∞

0

dω e−βω/2
[
Sr=0(ω = 0) + ω∂ωSr=0(ω = 0) + . . .

]
' 4

πβ
Sr=0(ω = 0) =

1

T1

4

πβ
. (C.17)

For the above approximation to be good, Sr=0(ω) should not show a strong ω
dependence in the window [0,∆ω], where ∆ω scales as 2/β. However, in the case
considered here, Sr=0(ω) appears to have a very high but narrow peak, with a width
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smaller than 2/β, in the vicinity of ω = 0 and a much lower, broader peak at higher
energies, especially for strong disorder at low T . Therefore, it is reasonable for the
β-approximation to deviate from the exact results, as we indeed find. In any case, we
expect the distribution of approximants to reflect the distribution of 1/T1. According
to Eq. (C.17), at fixed temperature, 1/T1 is proportional to Sr=0(τ = β/2) so that
the 1/T1 distribution can be readily read off from the distribution of Sr=0(τ = β/2),
which we graph in Fig. C.7 (e). We also plot MPS results for P (1/T1) at β = 16,
D = 2, for comparison in Fig. C.7 (f). The distribution P [Sr=0(τ = β/2)] is bounded
by the equal-time value Sr=0(τ = 0) = 3/4 and has a long tail that becomes more
evident as the temperature decreases. The tail contributes large rare-event values
to the mean 1/T1, which originate from a small number of sites with almost free
spins in some disorder realizations [458]. These rare events dominate the mean
value of P [Sr=0(τ = β/2)], and this value may not be suitable to describe the
experimental NMR measurements analyzed with the assumed stretched-exponential
distribution [459]. Alternatively, we use the typical value of the distribution to
represent a local probe more properly [458].

We present the temperature dependence of 1/T1 for D = 2 in Fig. C.8, using the
different methods discussed above. The mean values obtained using QMC+SAC and
MPS are computed in the momentum space, as also already shown Fig. C.6, while the
other calculations were performed in real space. Even though the β-approximation
cannot fully reproduce the QMC+SAC result, it indeed impressively catches the
expected low-T diverging trend [458]. In addition, in the low-T regime we observe
good agreements between Refs. 459 and 460 and the median 1/T1 extracted from the
MPS results using the stretched exponential fitting.

4. Summary and discussions

Summary of the results In this work, we carried out the Chebyshev expansion
method using matrix product states and quantum Monte Carlo (supplemented by
the SAC method) calculations to study the dynamical properties of the random
S = 1/2 Heisenberg chain. We are able to ascertain that, in the random singlet
phase, the finite-temperature dynamic structure factor Sq(ω) preserves high-energy
features (at ω of the order of the mean exchange constant) similar to those of
the clean chain but broadened by the disorder, while new features appear at low
energy. Most prominently, the large density of low-energy excitations, expected at
low T in the random singlet phase, gives rise to a dispersionless narrow band of
spectral weight at ω ∼ 0. These low-energy excitations should be localized due to
the disorder. For q close to π, Sq(ω) largely obeys the scaling form predicted by the
SDRG approach [457, 458], however, the SDRG expectation that Sq'0(ω) ∝ q2 [458]
is not fulfilled in the limit of ω → 0. Instead, we find that Sq'0(ω ∼ 0) is large and
increase as T is lowered, suggesting that, in the presence of disorder, spin diffusion
plays an important role even at very low temperatures. This diffusive feature is
beyond the realm of the SDRG method [458].

We extracted the NMR spin-lattice relaxation rate 1/T1 from the low-energy
behavior of Sq(ω) and also studied the corresponding distribution. In the QMC+SAC
approach we compute only the mean value of 1/T1 over the disorder, while in an
experiment one can expect to probe typical values instead. To study the distribution
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of 1/T1, we use MPS calculations as well as an approximate method [468] to extract
the values from the imaginary-time QMC correlation functions that does not require
full analytic continuation. These calculations reveal a broad distribution of 1/T1
values, which can be fitted using stretched exponentials, in agreement with previous
investigations [460, 469], except for rare very large values. The stretched exponential
fitting is not sensitive to such rare contributions in the tail, thus giving the typical
value of the distribution instead of the true mean 1/T1. The typical 1/T1 exhibits a
slowly decaying behavior as T decreases [460,469]. Furthermore, we find that rare
events are responsible for the divergence of the mean 1/T1 as T → 0. This behavior
is also in agreement with analytical predictions of the excitations in the random
singlet phase [458].

Relevance to experiments The perhaps most extensive NMR studies of the random
singlet state were carried on BaCu2SiGeO7 [469], which can be modeled as weakly
coupled spin-1/2 Heisenberg chains with bimodal distribution of the couplings, with
in-chain random couplings Ja = 24 meV and Jb = 50 meV [469], though it is also
known that neglected small three-dimensional interchain couplings are ultimately
responsible for antiferromagnetic ordering at very low temperature (Tc = 0.7 K) [465].
In the experiments, 1/T1 was found to decrease slowly as T is lowered [459, 469], as
also seen in our results for the typical relaxation rate.

It should be stressed that comparisons between model calculations and experi-
ments, especially for dynamical quantities, still have to be viewed with some caution
and further work will be needed to clarify the effects of various perturbations normally
not included in the models. In fact, even for clean materials, e.g., BaCu2Si2O7 (with
J = 24.1 meV ' 280 K), no increase was observed in the 1/T1 at low-temperature
in disagreement with recent numerical studies [332, 351] and Tomonaga Luttinger
liquid theory, where a logarithmic increase in predicted [308,329]. We believe that
these discrepancies can have several explanations. First, the small three-dimensional
coupling J3D which is responsible for the three-dimensional ordering in the clean
(Tc = 9.2 K) and disordered (Tc = 0.7 K) compounds is not that small, and our work
in the previous chapter showed that the NMR relaxation can be affected already at
temperature of order 3Tc. As for the disordered system BaCu2SiGeO7, the NMR
experiments were performed using the 29Si nucleus [469], which is coupled almost
symmetrically to two Cu ions (on Ja bonds only), hence resulting in filtering-out of
the antisymmetric component q ∼ π by the hyperfine form factor. As a result, such
NMR data would correspond to measurements primarily of the q ∼ 0 modes, which
are responsible for a relatively small fraction of the total 1/T1 computed here under
the assumption of a strictly on-site hyperfine coupling.

It would be interesting to perform NMR studies also on a different nucleus. We
have not studied distributions of the low-frequency structure factor beyond the
completely local on-site correlations, and it is therefore not possible at this point
to make more detailed comparisons with the experiments with a realistic hyperfine
form-factor involving also nearest-neighbor correlations. The role of mean versus
typical relaxation rates in the experiments is also not fully settled, as one cannot
completely rule out that rare events also play some role. It is also clear that further
work is needed to understand the role of three-dimensional couplings on the random
singlet phase and on its dynamical properties.
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III. Doped S=1 antiferromagnet DTNX compound
at high magnetic fields

Adapted from the works Phys. Rev. Lett. 118, 067203 (2017)
Anna Orlova, Rémi Blinder, Edwin Kermarrec, Maxime Dupont7, Nicolas
Laflorencie, Sylvain Capponi, Hadrien Mayaffre, Claude Berthier, Armando

Paduan-Filho, and Mladen Horvatić

and Phys. Rev. Lett. 118, 067204 (2017)
Maxime Dupont, Nicolas Laflorencie, and Sylvain Capponi

and Phys. Rev. B 96, 024442 (2017)
Maxime Dupont, Sylvain Capponi, Mladen Horvatić, and Nicolas Laflorencie

and arXiv:1801.01445 (2018)
Anna Orlova, Hadrien Mayaffre, Steffen Krämer, Maxime Dupont, Nicolas
Laflorencie, Sylvain Capponi, Armando Paduan-Filho, and Mladen Horvatić

In this series of works, we study the interplay between disorder and interactions
for emergent bosonic degrees of freedom induced by an external magnetic field in the
disordered quasi-one-dimensional S = 1 antiferromagnetic compound Ni(Cl1−xBrx)2-
4SC(NH2)2 (DTNX), introduced in the first chapter for the disorder-free case. When
doping with Br impurities, DTNX displays fascinating properties [398]: it was
reported as an exceptionally convenient archetype material presenting a Bose-glass
(BG) phase [397–399]. Both the Bose-Einstein condensation (BEC) and the trivial
ferromagnetic (FM) phase of the clean case are robust to disorder and subsist
in the doped DTNX compound, although their associated critical fields Hc1 and
H ′

c2 are shifted. In addition, new BG regimes are predicted to (i) substitute the
gapped large-D regime at low field and (ii) to intervene between the BEC and
the polarized phase between Hc2 and H ′

c2 (see Fig. C.9 for a comparative picture
between x = 0 and x 6= 0). The BG phase in DTNX can be pictured and defined as
follows: coexisting with a gapped background, localized magnetic states occur in the
vicinity of impurities and display a finite local susceptibility. These localized degrees
of freedom are spatially separated with exponentially decaying correlations which
prevent any long-range ordering. Prior to our works, it was proposed in Ref. 398
that the BG phase at high magnetic field is uninterrupted between the BEC and
FM regimes, from Hc2 to H ′

c2, as shown in Fig. C.9 for x 6= 0. Instead, it turns out
that the impurity degrees of freedom display a striking “many-body delocalization”
with a resurgence of a global phase coherence, leading to disorder-induced long-
range order [449, 450]. Building on nuclear magnetic resonance experiments, we first
describe the localization of isolated impurity states, providing a realistic theoretical
modeling for DTNX. Going beyond single impurity localization we use quantum
Monte Carlo simulations to explore many-body effects from which pairwise effective
interactions lead to a impurity-induced Bose-Einstein condensation (BEC) revival

7In all these experimental/theoretical collaborations, I performed the theoretical work and
analysis.
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Figure C.9: Zero temperature phase diagram of DTN (x = 0) and DTNX
(x 6= 0) as a function of the magnetic field H. In the clean case, the intermediate
long-range ordered phase (BEC) is bounded by two critical fields Hclean

c1 and
Hclean

c2 . Below Hclean
c1 , DTN is in a large-D phase due to strong single-ion

anisotropy, and above Hclean
c2 , the material is a fully polarized ferromagnet

(FM). The disorder x 6= 0 expands the DTNX phase diagram with new BG
phases. However, we find that the high magnetic field BG phase is actually
undermined by long-range ordering induced by the disorder and focus on this
putative BG at high magnetic field (red square). Note also that the first critical
field Hc1 is renormalized downwards by the doping.

at H ≥ 12.3 T. Moreover we address the question of the existence of a many-body
localized Bose-glass (BG) phase in DTNX, which is found to compete with a series
of a new kind of BEC regimes made out of the multi-impurity states. The global
magnetic field–temperature phase diagram of DTNX reveals a very rich structure
for low impurity concentration, with consecutive disorder-induced BEC mini-domes
separated by intervening many-body localized BG regimes. Upon increasing the
impurity level, multiple mini-BEC phases start to overlap, while intermediate BG
regions vanish. Finally, further nuclear magnetic resonance experiments critically
address the stability of the Bose-glass phase in doped DTN (x = 13 ± 1%), and
find that, as we predict it, it indeed hosts a novel disorder-induced ordered state
of matter, where many-body physics leads to a resurgence of quantum coherence
emerging from localized states8.

1. Microscopic modeling

The DTN material is a three-dimensional antiferromagnet consisting of weakly
coupled chains of S = 1 spins, borne by Ni2+ ions, subject to a strong single-ion
anisotropy. The potential interest of this system, presenting at low temperature a
magnetic-field-induced, 3D-ordered, canted phase, was already realized in 1981 [51],

8Actually, the experiments probed the NMR relaxation rate 1/T1. This is a local quantity
that cannot directly detect long-range order. However, interpreting the temperature position of
the maximum of T−1

1 (T,H) as the critical temperature between an ordered and disordered phase
provided a phase boundary compatible with the one obtained by quantum Monte Carlo simulations.
Moreover, inside the new ordered phase, the power-law behavior of T−1

1 (T ) is identical to the one
observed inside the main BEC phase at lower fields, H ∈ [Hc1,Hc2].
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Figure C.10: (a) Sketch representation of the relevant three-dimensional
structure for DTNX model. On the chains, the clean sites (single ion anisotropy
D) with nearest-neighbor interaction (J) are in grey. The doped ones (single
ion anisotropy D′) are in pink with the modified interaction (J ′) in pink as
well. The three dimensional coupling between the chains J⊥ is not affected by
the doping. For readability, only one thick line representing a single chain is
displayed. (b) Two types of S = 1 dimers: clean Cl−Cl (left hand side) and
doped Br−Cl (right hand side), with Br preferentially positioned on the “left”
(see supplementary material of Ref. 398).

but DTN became a topical system only after this type of phase was recognized to be a
convenient representative of the BEC [143,147], and the upper critical field of the BEC
phase in DTN is found to be experimentally well accessible, Hclean

c2 = 12.3 T [470].
Since then, it became one of the most studied archetypal materials for the BEC-type
spin systems [44]. To describe pure and doped DTN we use the following model for
S = 1 spins on a tetragonal lattice:

HDTNX =
∑
i

{∑
m

[
Ji,mSi,m · Si+1,m +Di,m

(
Sz
i,m

)2 − gµBHS
z
i,m

]
+
∑
〈m,n〉

J⊥Si,m · Si,n

}
, (C.18)

where for pure DTN the AF exchange along the chain direction is Ji,n = J = 2.2 K,
the single-ion anisotropy is Di,n = D = 8.9 K, and the chains are coupled by
the interchain coupling between the nearest-neighbor sites (denoted by 〈m,n〉)
J⊥ = 0.18 K. H is an external magnetic field applied along the single-ion anisotropy
axis z, preserving the U(1) symmetry. We use g = 2.31 for the gyromagnetic
factor, such that in the absence of chemical disorder, the clean upper critical field
Hclean

c2 = (D + 4J + 8J⊥)/gµB = 12.3 T, as pictured in Fig. C.9 (x = 0).
In the doped DNTX compound, as shown in Fig. C.10 (b), one of the two Cl−

ions in the intrachain J coupling bond may be substituted by the doped Br− impurity,
introducing thereby disorder in the system. Based on the macroscopic experimental
data (magnetization, susceptibility and specific heat) and global modeling of the
system by quantum Monte Carlo simulation, DTNX was proposed to be a model
system for the investigation of the Bose-glass phase [397, 398]. It is assumed that
doping introduces only local perturbations: each Br impurity modifies only the
exchange coupling value of the affected bond to J ′ = 2.42J and the single-ion
anisotropy of the closest Ni ion to D′ = 0.36D, without affecting any other bond or
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Figure C.11: (a) Energy levels of an isolated doped S = 1 dimer, shown
in panel (b), plotted against the external magnetic field. A level crossing
between Sz

tot = 2 and Sz
tot = 1 states occurs at H∗

dimer ' 11.2 T using realistic
microscopic parameters J ′, D′ and D (see text).

anisotropy value (see Fig. C.10 (b)). In comparison to the initially proposed J ′ and
D′ values [398], the values given here are refined by combining NMR measurements
and theoretical work, which is explained in the following.

As regards other experimental investigations of the DTNX compound, the doping
dependence of the critical behavior near the first critical field Hc1 was studied by
neutrons [456] and compared to the situation in the nominally pure compound
DTN [231]. In contrast to the initially proposed evidence for the theoretically
expected change of criticality from the BEC-type to BG-type [398], the situation
appears inconclusive: the experimentally observed critical behavior is always affected
by the distribution of the critical field values and the effects of elasticity, and is
probably not representative of the theoretically expected physics. We further mention
the detailed neutron study of the 6% doped DTNX compound in Ref. 471 in which
a non-dispersive (local) mode is detected above the top of the magnon band. From
NMR results this mode is explicitly attributed to the doped impurities.

a. Single impurity physics

Single doped S=1 dimer A first step into understanding Br-doping effects is to
consider a single Br impurity in a isolated S = 1 dimer, see Fig. C.10 (b). The
resulting Hamiltonian is a 9 × 9 block-diagonal matrix, which can be analytically
diagonalized within Sz

tot = 0, ±1 and ±2 symmetry sectors. In the following we
use J ′ = 5.32 K and D′ = 3.2 K which are the microscopic parameters determined
from a direct comparison between NMR data and theory. This comparison will be
discussed below. The eigenenergy levels are shown in Fig. C.11 against the external
magnetic field H. The crossing between the two lowest Sz

tot = 2 and Sz
tot = 1 levels

occurs at

H∗
dimer =

[
J ′ +

D′ +D

2
+

1

2

√
(D −D′)2 + (2J ′)2

]
/gµB ' 11.2 T. (C.19)

At high magnetic field, one can restrict the problem in the vicinity of H∗
dimer to the
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Figure C.12: Effective one-dimensional model for the dynamics of a sin-
gle impurity dimer described at high magnetic field as a two-level system
{|Φ1〉, |Φ2〉}.

two lowest-lying levels. One of them is the ground state in the Sz
tot = 1 sector with

eigenvector

|Φ1〉 =
√
`|↑ 0〉+ eiθ

√
1− `|0 ↑〉, (C.20)

where

1/` = 1 +

D −D′

2J ′ −

√
1 +

(
D −D′

2J ′

)2
2

, (C.21)

and θ is a phase factor. The other is the ground state in the Sz
tot = 2 sector, trivially

given by |Φ2〉 = |↑↑〉. The imbalance between local anisotropies, D′ 6= D, leads to
a spin imbalance between the left and right sites of the perturbed dimer. Their
respective local magnetization in the |Φ1〉 state is simply equal to

mleft
z = ` and mright

z = 1− `. (C.22)

Although it provides some insight to the local magnetization imbalance, this single
dimer model is clearly oversimplified, as the clean environment is totally neglected.
In particular, it yields a crossover field H∗

dimer ' 11.2 T below Hclean
c2 = 12.3 T. One

can easily refine this picture by adding the mean-field contribution of the surrounding
spins of the clean background, assumed to be fully polarized, which leads to

H∗
Mean−Field = H∗

dimer + (J + 4J⊥)/gµB ' 13 T > Hclean
c2 . (C.23)

This is self-consistent with our assumption and confirms that the clean background
polarizes before the impurities in DTNX when increasing H.

One impurity on a single chain Going beyond the above mean-field scenario, we
now deal with the dynamics of a single spin flipped state | . . . ↑↑ 0 ↑↑ . . .〉 in a fully
polarized background, in the presence of a central perturbed dimer. We first start this
analysis on a single chain of N sites and work in the Sz

tot = N − 1 symmetry sector.
Using the two-level system representation {|Φ1〉, |Φ2〉}, the central dimer is replaced
by a single site (at position 0) as pictured in Fig. C.12, which can accommodate
one of the two states. Our new basis is made of the following states labeled by the
position j of the flipped spin,

|0〉 ≡ | . . . ↑↑↑〉|Φ1〉| ↑↑↑ . . .〉,
|1〉 ≡ | . . . ↑↑↑〉|Φ2〉|0 ↑↑ . . .〉,
| − 2〉 ≡ | . . . ↑ 0 ↑〉|Φ2〉| ↑↑↑ . . .〉, etc.

(C.24)
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In order to get a symmetric tight-binding structure for the low-energy dynamics, one
has to define for j > 0 a new set of states,

|j〉 =
√
`|j〉+ eiθ

√
1− `| − j〉. (C.25)

For an initial S = 1 chain of N sites and open boundary conditions, the dynamics
in the new basis is governed by the following effective tight-binding model with
Ñ = N/2− 1,

Htight−binding = J

Ñ−1∑
j=0

(
|j〉〈j + 1|+ |j + 1〉〈j|

)
−∆|0〉〈0|+ C

Ñ∑
j=0

|j〉〈j|, (C.26)

where the constant C and the impurity energy shift∆ located at the (j = 0) boundary
are respectively

C = 2N(D + J −H)− 2J +D′ + J ′ −H,

∆ = J ′ − J +
(
D′ −D +

√
(D′ −D)2 + (2J ′)2

)
/2 ' 6.3 K. (C.27)

Note that this description, based on the localization of the spin flip excitation on the
perturbed dimer is only valid for J ′ > J . The tight-binding Hamiltonian given by
Eq. (C.26), having a localized boundary (impurity) potential ∆, admits a localized
ground state |Ψ0〉 =

∑Ñ
j=0 cj|j〉, where cj ∝ exp(−j/λ) for ∆ > J . Inserting this

form into Eq. (C.26) gives

|Ψ0〉 =
Ñ∑
j=0

c0(−1)j exp
[
−j ln

(
∆

J

)]
|j〉. (C.28)

In the limit Ñ � λ = 1/ ln(∆/J), the occupation of the central (impurity) site is
|c0|2 = 1− exp(−1/ξ‖), where the localization length governing the decay of the spin
density is given by

ξ‖ =
1

2 ln (∆/J)
= 0.47. (C.29)

The energy of this localized bound-state can also be obtained analytically, and the
energy difference with the fully polarized state leads to the crossover field value

H∗
1D =

{
D + 2J

[
1 + cosh

(
1

2ξ‖

)]}
/gµB

= H∗
dimer + J/gµB + J2/(gµB∆) ' 13.1 T. (C.30)

As compared to the isolated dimer picture discussed above, the first correction term
corresponds to the mean-field contribution of the fully polarized one-dimensional
environment, J/gµB = 1.4 T. The delocalization of the flipped spin over its neighbor-
ing sites does not extend over large scales, but it is nevertheless gains some kinetic
energy, pushing the crossover field further up by J2/(gµB∆) = 0.5 T.
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One impurity in the three-dimensional lattice The previous single impurity anal-
ysis can be extended to a three-dimensional lattice with a similar Hamiltonian to
Eq. (C.26). The exponential ansatz solution now includes two different localiza-
tion lengths along and perpendicular to the chain direction ξ‖,⊥, with ξ‖ given by
Eq. (C.29) and

ξ⊥ =
1

2 arcsinh (∆/2J⊥)
= 0.14, (C.31)

expressed in units of lattice spacings. As a result, the final crossover magnetic field
is

H∗ =
[
H∗

mean−field + Je−1/2ξ‖ + 4J⊥e−1/2ξ⊥
]
/gµB ' 13.6 T, (C.32)

where the very short transverse correlation length makes the last correction term
negligible (0.01 T). The magnetization profiles of the original physical (magnetic)
sites at T = 0 and for H < H∗ can be computed in the vicinity of the impurity. On
the perturbed left and right dimer sites,

mleft
z = 1− (1− `)

[
1− e−1/ξ‖

] [
1− e−1/ξ⊥

]2
,

mright
z = 1− `

[
1− e−1/ξ‖

] [
1− e−1/ξ⊥

]2
,

(C.33)

where ` is defined in Eq. (C.21). A similar expression can be obtained for the
magnetization of the other (clean) sites of the three-dimensional system.

Exact diagonalization Besides the analytical approach presented above for the
one-dimensional chain and the realistic three-dimensional system, we also performed
exact diagonalization calculations. Working in a fixed Sz

tot = N − 1 symmetry sector
allows us to diagonalize large systems without much effort, the Hamiltonian matrix
being of N ×N size. We verified that the exponentially localized state ansatz is valid
in the limit J⊥ � J , and is thus exact in the one-dimensional case. In Fig. C.13 we
compare the analytical results for the local magnetization with the ones computed
by exact diagonalization on a system of size N = 40× 20× 20 spins with one dimer
located in the middle. The two results agree very well, even though in the semi-log
scale one can see a small difference between the two methods, especially in the
transverse direction. We also determined the correlation lengths ξ‖ = 0.476 and
ξ⊥ = 0.169 by fitting exact diagonalization results to exponential decays.

b. NMR versus theory

The above described level crossing is clearly evidenced in the recent NMR results
presented in Fig. C.14 (b). Before discussing these, we first recall the archetypal
signature of a level crossing as observed in molecular crystals consisting of antifer-
romagnetic spin rings: the molecular level crossing is there observed as a sharp,
“tanh-shaped” step in the magnetization that is concomitant with a peak of the
T−1
1 NMR relaxation rate, whose magnetic field dependence at low temperature

directly reflects the corresponding linear opening of the gap between the two lev-
els [473,474]. In DTNX the NMR data also show a peak in T−1

1 at the same field
value, H∗ = 13.63 T, where a step was previously observed in the bulk magnetiza-
tion data [398]. The position (H∗) of this T−1

1 peak is found to be nearly doping
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Figure C.13: Local magnetization profile in the Sz
tot = N−1 symmetry sector

(single spin flip) close to a doped bond, comparing the exact diagonalization
results (symbols) with the analytical ones (lines). The inset defines the color
code: the blue curve is along the spin chain direction and the pink/green
ones are perpendicular to it. The right panel in semi-log scale shows the
exponential localization of the depolarization around the impurity with very
short localization lengths: ξ‖ = 0.476 and ξ⊥ = 0.169 is obtained by exact
diagonalization.

independent, which means that it should be associated to a single-impurity effect.
Furthermore, the field dependence of the T−1

1 peak reveals the linear gap opening
above H∗, thereby confirming the level crossing scenario9.

The NMR spectra provided the second key-information to describe the impurity
levels: the precise value of the local polarization of the spin at the right-hand-side of
the dimer, as sketched in Fig. C.10 (b) and labeled as “site 1” in Fig. C.13. Below H∗

and at low temperature this site is depolarized to mright
z = 0.365 (see Fig. C.14 (a)

for experimental data), which provides the second independent information on
the impurity states. Together with the H∗ = 13.63 T value determined from the
position of the T−1

1 peak at low temperature, using equations (C.32) and (C.33),
or, equivalently, the exact diagonalization results shown in Fig. C.15 (a,b), we can
precisely determine the two local impurity values D′ and J ′,

J ′ = 2.42J and D′ = 0.36D. (C.34)

These values are in agreement with the ones proposed previously (J ′ = 2.35J and
D′ = 0.5D) [398] from the global fits, where the determination was mostly relying
on the H∗ value only (as plotted in Fig. C.15 (a)), so that the D′ value was in fact
not precisely known. Finally, the NMR results (see complete discussion in Ref. 472)
provide also clear evidence of effects going beyond the single-impurity description:

9We cannot use the dependence observed below H∗ because it is affected by the critical behavior
related to the nearby quantum phase transition at Hc2.
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is at the same position as at a high temperature,
H! ¼ 13.63 T. It has kept approximately the same width,
which should thus be associated to an intrinsic disorder and
not to a temperature effect. Since the transverse spin
fluctuations are dominant at the BEC phase transition,
the 1H and 14N data points overlap there. Unlike at high T,
the same is now valid close to H!, meaning that the nature
of spin fluctuations has changed there. Outside of these two
T−1
1 peaks, the 1H data points lay above the 14N data,

reflecting the presence of longitudinal spin fluctuations. On
the right-hand side of the H! peak, where the T−1

1 ðHÞ
dependence is not affected by the critical regime related
to Hc2, experimental points follow a gapped, ∝e−Δ=T ,
dependence [27]. The inset to Fig. 2 shows that the T−1

1

values taken at H! are nearly T independent, while the
T−1
1 ðTÞ dependence at 14.45 T is close to, but not exactly

the same gapped behavior as observed in the H depend-
ence. Remembering that the relaxation is here spatially
inhomogeneous, this can be easily modeled: for simplicity,
we assume that the corresponding distribution of the local
gap values is Gaussian, centered at Δ0, and having the
variance δ. One can then analytically calculate the average
gapped behavior, he−ΔðrÞ=Ti ∝ e−Δ0=Teδ

2=ð2T2Þ. Fitting the
14.45 T 14N data to this dependence, we estimate the
distribution ofH! values, δ ¼ 0.2 T, reflecting the disorder
of the system. As δ is field independent, we also understand
that the previously discussedH dependence of T−1

1 , taken at
fixed T, remains unmodified, simple gapped behavior.
We note that the peak in T−1

1 is observed for all doping
values at the same field value H! where the steplike
increase is found in the magnetization measurements and
associated to the number of dopants [13]. This magneti-
zation step, together with the previously discussed (gapped)
H and T dependences of T−1

1 are then analogous to what is
observed in the molecular antiferromagnetic rings, where a
peak of T−1

1 appears at each crossing of molecular levels
[30,31]. In DTNX, the peak should then be associated to
crossing of levels of the impurity states localized on Br
dopants. As the distance, and thus the mutual interaction
between these states are (randomly) distributed, we speak
of disordered level-crossing physics.
The final confirmation of this scenario comes from the

observation of the local spin value of one of the two
impurity sites linked by the Br-doped bond. Indeed, in the
14N NMR spectrum shown in Fig. 3, inside the gap
produced by the main quadrupolar splitting of the high-
frequency line (14N being a spin-1 nucleus), one can clearly
observe a small signal whose shape closely mimics the four
peaks of the main line (where this fine-split quartet is due to
the 2.5° tilt of the sample). This means that we observe the
impurity spin site at position “1” in Fig. 4, having
unperturbed D value. The intensity ratio of this impurity
signal and the main line is indeed close to the expected
value, 2x=ð1 − 2xÞ ¼ 0.09 [32]. We can thus separately
measure the local polarizations of the impurity site and of

the main regular sites away from the doped bonds. These
latter are practically unaffected by doping and closely
follow the magnetization of the pure DTN (Fig. 3), defining
thus the corresponding (global) hyperfine coupling
Accðq ¼ 0Þ. For a simple two-level crossing, the H
dependence of the impurity spin polarization has a
Brillouin-like behavior, starting at m low and saturating
at 1: m 1ðH;TÞ¼½ð1−m lowÞ=2&tanh½gcμBðH−H!Þ=2kBT& þ
ð1þm lowÞ=2. As much as the NMR line position of the
weak impurity signal could be resolved from the intense
regular NMR lines, its position (diamond symbols in Fig. 3)
is indeed following this prediction. However, we can expect
that the simple model of independent impurities will be
affected by disorder close toH!. Indeed, at low T and close
to H!, we observed complex bicomponent spectra, and
above H!, the impurity signal was screened by a weak
H-independent signal, denoted by crosses in Fig. 3.
Extracting the value of the local spin polarization from the

frequency of the impurity line is nontrivial. The global
Accðq ¼ 0Þ value, determined from saturated magnetization
of the regular NMR line, consists of two unknown local
couplings of 14Nnucleus to the two closest (Ni) spins, and of
known dipolar coupling to spins that are further away:
Accðq ¼ 0Þ ¼ A1 þ A2 þ Adip. Precisely these unknown
local couplings are active in measurements of individual,
local spin values. IfA1 andA2 are comparable but unequal, a
completely localized spin depolarization, (1 − m low), will be
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x = 4%

the spin polarization to the local magnetic field observed by
the NMR frequency shift of 1H and 14N nuclei. Three
different doping levels, x ¼ 4%, 9%, and 13%, of DTNX
single crystals were studied in a 4He cryostat, with H‖c
within 1°. The 4% doped crystal was further studied at a
lower temperature in a dilution refrigerator, with a fixed
orientation where the c-axis tilt was 2.5°.
Figure 1 presents the doping dependence of 1H T−1

1

taken at T ¼ 2.0 K, which is well above Tcmax. The system
is thus in the 1D Tomonaga-Luttinger liquid regime above
the BEC phase [11]. Below H c2, one thus observes high
T−1
1 values (spin fluctuations), which are nearly doping

independent. Upon increasing field, this is followed by the
critical regime around H c2, presenting for the pure DTN a
strong decrease of spin fluctuations. This dependence is
very close to what is predicted for the critical regime by the
second order processes for the transverse spin fluctuations
[26], hSþS−i ∝ e−3Δ=T , corresponding to triple of the gap
value, Δ ¼ gcμBðH − H c2Þ=kB, that magnetic field opens
for a spin-1 excitation, where the g-tensor value is gc ¼
2.26 [7]. One tesla above H c2, this strong decrease of
T−1
1 is slowed down as the longitudinal fluctuations

become dominant; they are indeed expected to decrease
much slower, directly reflecting a (single) gap opening,
hSzSzi ∝ e−Δ=T , which is close to what is observed in the
T−1
1 data at the high-field end for all doping values [27].
The most obvious effect of the doping is the appearance

of a peak in the 1H T−1
1 at 13.6 T, whose position is nearly

independent of doping while its strength increases and
then saturates above x ¼ 10%. This is accompanied by a
strong spatial inhomogeneity of T−1

1 , observed as a
stretched exponential relaxation of nuclear magnetization,

∝ e−ðt=T1Þβ . The β values reflect the spread of the distribu-
tion of local T−1

1 values, decreasing from β ¼ 1 for a
homogeneous system, to reach a distribution width of one
order of magnitude (on a logarithmic scale) already at β ¼
0.74 [24,28,29]. Here, the spatial inhomogeneity of local
spin fluctuations develops in DTNX above H c2 and is
particularly strong at the T−1

1 peak.
We remark that, in general, T−1

1 is sensitive to both
transverse and longitudinal spin fluctuations, through the
diagonal and off-diagonal elements of its A tensor, respec-
tively. This is particularly valid for 1H T−1

1 , where all the
elements of its A tensor are of the same order of magnitude
[24,25]. In contrast to that, T−1

1 measured on the high-
frequency line of 14N (see inset to Fig. 3), whose A tensor is
strongly dominated by its isotropic component, is strongly
dominated by transverse spin fluctuations. The nature of
spin fluctuations can thus be distinguished by comparing
T−1
1 measured on the two nuclei. For example, in Fig. 1, the

T−1
1 peak is barely visible in the 14N T−1

1 data (measured
only for the 4% doped DTNX), meaning that at this
temperature it dominantly reflects longitudinal spin fluc-
tuations. Note that the 14N T−1

1 values are multiplied by 3,
in order to overlap the 1H and 14N data points below H c2,
where the transverse spin fluctuations are dominant [26].
Figure 2 presents the T−1

1 data for the 4% doped DTNX,
both for 14N (closed symbols) and 1H (open symbols),
taken at very low temperature, T ≅ Tcmax=10. There are
two strong T−1

1 peaks: a very sharp one at H cð113 mKÞ ¼
12.14 T corresponds to critical fluctuations at the phase
boundary of the ordered BEC phase, while the second one
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(a)
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x = 4%

Figure C.14: (a) Magnetic field dependence of the local magnetization (right
scales) measured in 4% doped DTNX by the NMR line position (left scale) of
the high frequency 14N regular line (circles and pentagons, outer right scale) and
impurity line (other symbols, inner right scale for diamonds) at 0.89, 0.30, and
0.113. Blue solid line is the 0.94 K magnetization of pure DTN from Ref. 470.
Vertical dash-dot-dot line denotes the level-crossing value H∗ = 13.6 T. (b)
Magnetic field dependence of 1/T1 measured by 1H and 14N NMR in 4% doped
DTNX at 113 mK. Adapted from Ref. 472.

the temperature dependence of the level-crossing gap above H∗ reveals that the gap
value is (inhomogeneously) distributed, and the local polarization mright

z above H∗ is
found to present an unexpected field dependence at low temperature. Furthermore,
a weak secondary peak of T−1

1 was found above H∗ at H∗∗ = 15.2 T. This brings us
to the following section that treats the many-body effects.

2. Many-body effects beyond single impurity

a. Effective theory from pairwise interactions

Mutual effect of two impurities The above given analysis of a single Br-doped
bond provides us with a precise picture of DTNX above Hc2: the clean background is
fully polarized and only the sites in the direct vicinity of Br-impurities remain not yet
fully polarized, whereas this depolarization is exponentially localized. The localization
lengths in both longitudinal and transverse directions are shorter than one lattice
spacing unit. In realistic DTNX samples with low doping concentration, 2x � 1,
isolated impurities (of “length” l = 1) are the most common objects. However,
there are also other objects, zones or clusters consisting of more than one isolated
impurity (l > 1). As long as 2x < 31.2% — the site percolation threshold on a cubic
lattice [475] — there cannot be an infinite-size Br-doped cluster in the sample. Below
this limit, plethora of impurity clusters of various sizes and spatial configurations may
exist, but the bigger ones are more rare. Moreover, the bigger they are, the larger the
magnetic field value has to be to polarize them, giving rise to Lifshitz tails [476, 477]
in the magnetization curve, up to H ′

c2 = (D′ + 4J ′ + 8J⊥)/gµB ' 16.7 T, which is
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Figure C.15: (a) Color map of the crossover field H∗ plotted in the
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rameters (D′/D, J ′/J) along the white line correspond to the same value of
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(see the white line in panel a). The bottom grey line shows the experimental
value of mright

z = 0.365.

the second critical field for the hypothetical homogeneously and fully doped sample,
2x = 1. Above H ′

c2 all the impurity cluster sizes, and thus the whole sample, are
necessarily totally polarized. In the following, we will first consider the mutual effect
of two impurities depending on their relative distance r‖,⊥.

To this end we performed exact diagonalization computations in the high magne-
tization sectors Sz

tot = N,N − 1, N − 2 of the three-dimensional system described
by Eq. (14) containing N = 16× 8× 8 spins and two impurities located at varying
distances r‖,⊥. The magnetization process of the two impurities is shown in Fig. C.16
for increasing distances r‖,⊥. For short relative separation between two impurities,
a magnetization plateau at Sz

tot = N − 1 is clearly visible. However, its width gets
rapidly reduced when the two dopants are moved apart. When r‖,⊥ is large enough,
the plateau width shrinks to zero, and one recovers the already discussed single
impurity limit: a single level crossing at H∗ = 13.63 T between the ground state
energy of the Sz

tot = N and Sz
tot = N − 2 symmetry sectors.

The presence of such plateaus at short distances is a signature of the mutual
effect of the two impurities. In the inset of Fig. C.16 an exponential decay for the size
of these plateaus is reported as a function of the relative distance between impurities
for both parallel and perpendicular directions. The length scales controlling such
decay reflect the localization lengths λ‖ ' 0.92 ∼ 2ξ‖ and λ⊥ ' 0.32 ∼ 2ξ⊥. We
further study this exponential decay of the effective coupling between impurity states
in the next subsection.

Effective bosonic description Having realized that close-by impurities do not
behave as isolated, it becomes clear that many-body physics should play a role in
DTNX, and that one has to consider the pairwise effects. We therefore propose
an effective hard-core bosons model description for DTNX at high magnetic field
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Figure C.16: Exact diagonalization results for the magnetization steps in
a N = 16 × 8 × 8 system with two impurities. Top: impurities in the same
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and λ⊥ ' 0.32.

(H > Hc2), based on exact diagonalization and which reveals an effective AF pairwise
interaction between the impurities around H∗. Again, what is called an impurity
corresponds to a Br-doped bond as pictured in Fig. C.10 (b), which exponentially
localizes the depolarization.

The picture of the effective model is as follows: the fully polarized state is the
vacuum and decreasing the field will lead to more and more depolarized impurities,
which we take for the effective particles. The initial model of DTNX is mapped to a
hard-core bosons model where the number of particles is controlled by the chemical
potential (magnetic field). The size of the local Hilbert space, labeled by |1〉 and |0〉,
is therefore reduced to the presence or not of a particle, or, in the initial language, to
a depolarized or polarized impurity. A generic hard-core bosons hamiltonian limited
to a two-body interaction is

HtV =
∑
i,j

[
tij

(
b†ibj + h.c.

)
+ Vijninj

]
−
∑
i

µini + C, (C.35)

where tij is the hopping strength, Vij is the interaction potential and µi is the chemical
potential. C is a constant shift of the whole energy spectrum. The operators b†i
and bi are respectively the creation and annihilation operators of hard-core bosons
(〈ni〉 = 〈b†ibi〉 ≤ 1) on site i. They obey bosonic commutation relations [bi, b†j] = 0 on
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different sites i 6= j and fermionic ones on the same site {bi, b†i} = 1. The summation
is over all possible sites i 6= j containing an impurity in the initial model. The idea
is to determine the Hamiltonian parameters that will reproduce the most faithfully
the way impurities (de)polarize, taking into account the many-body effects.

To obtain the effective model parameters, we project the wave-functions of the
low-energy spectrum of the real DTNX model Eq. (14) onto the effective model. Since
we have a pairwise interaction between the particles, we perform these calculations
with two impurities at positions i and j in the initial spin S = 1 model varying the
distance between them in the longitudinal (r‖) and the transverse (r⊥) directions.
We use exact diagonalization on the initial model in Sz

tot = N , N − 1 and N − 2
symmetry sectors and make the following correspondence between the states of initial
model and the effective one. First, the vacuum is associated to the fully polarized
state |ϕN〉 of energy EN and defines the energy shift C,

EN |ϕN〉 −→ C|0i0j〉. (C.36)

Then, we associate the state with two particles in the effective model with the
Sz

tot = N − 2 symmetry sector ground state |ϕN−2〉 of energy EN−2,

EN−2|ϕN−2〉 −→ (Vij − µi − µj + C)|1i1j〉. (C.37)

The correspondence in the Sz
tot = N − 1 symmetry sector is a bit more sophisticated

as we have two possible different states |0i1j〉 and |1i0j〉 in the effective model.
Considering the dimer states |Φ1〉 and |Φ2〉 defined earlier, we build the following
two states in the initial spin language,

|φ1〉 = | ↑↑↑ · · · 〉|Φ2〉| ↑↑↑ · · · 〉|Φ1〉| ↑↑↑ · · · 〉,
|φ2〉 = | ↑↑↑ · · · 〉|Φ1〉| ↑↑↑ · · · 〉|Φ2〉| ↑↑↑ · · · 〉, (C.38)

where |Φ1〉, |Φ2〉 are at the positions i and j of the two impurities. We assume that
linear combinations of |φ1〉 and |φ2〉 will be good approximations of the exact states
|ϕN−1〉 (ground state of energy EN−1) and |ϕ′

N−1〉 (first excited state of energy E ′
N−1)

of the Sz
tot = N − 1 symmetry sector. These exact states are projected onto the trial

ones,

|ψ1〉 = |φ1〉〈φ1|ϕN−1〉+ |φ2〉〈φ2|ϕN−1〉,
|ψ2〉 = |φ1〉〈φ1|ϕ′

N−1〉+ |φ2〉〈φ2|ϕ′
N−1〉,

(C.39)

which are orthogonalized using standard Gram-Schmidt procedure and normalized to
form a new eigenbasis with respective energies EN−1 and E ′

N−1. We then make the
correspondence between the effective Hamiltonian matrix in the basis {|1i0j〉, |0i1j〉}
and the initial model,

EN−1|ψ1〉〈ψ1|+ E ′
N−1|ψ2〉〈ψ2| −→

(
C − µi tij
tij C − µj

)
. (C.40)

When the two impurities are spatially well separated with no overlap of the expo-
nentially localized depolarization clouds, the ground state is twice degenerated as
expected, with EN−1 = E ′

N−1 when r‖,⊥ � 1.
The above procedure fully determines the parameters of the effective Hamiltonian.

They are computed varying the distance between the two impurities along the main
chain (r‖) and the perpendicular direction (r⊥) and plotted in Fig. C.17. Exact
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Figure C.17: Effective coupling parameters defined by Eq. (C.35) and
determined using exact diagonalization, plotted as a function of the distance
r‖,⊥ between the impurities. The results are given in both linear (left panel) and
logarithmic scale (right panel). The hopping term t displays the AF character
of the underlying microscopic model in both the longitudinal (green squares)
and transverse (pink diamonds) directions. The interaction potential, although
non-staggered, decays more rapidly with distance than the hopping terms
(yellow circles in the longitudinal direction and blue hexagons in the transverse
one).

diagonalization calculation is performed on a system of N = 16× 8× 8 spins with
periodic boundary conditions. The hopping term t and the interaction potential V
are both exponentially decaying: t, V ∝ exp (−|r|/λ) with λ‖,⊥ ' 2ξ‖,⊥ for t and
λ‖,⊥ ' ξ‖,⊥ for V , where ξ is the localization length of the wave-function around
the impurity introduced in Eqs. (C.29) and (C.31). The hopping parameter is
non-frustrated and preserves the AF character of the underlying microscopic model.
The interaction potential is frustrated but decays more quickly than the hopping
term, making it typically one or more orders of magnitude smaller. We thus assume
this frustrated term to be irrelevant and therefore neglect it in the following. The
chemical potential value is site-independent, with µi = gµB(H − H∗) = µ which
controls the density of particles. Shifting the Hamiltonian (C.35) by −C, we finally
get

Heff =
∑
i,j

tij

(
b†ibj + h.c.

)
− µ

∑
i

ni. (C.41)

This effective hard-core bosons model gives a quite simple two-level system description
for the localized states living in the vicinity of Br-impurities. One should emphasize
that,

(i) This effective Hamiltonian (C.41) is defined on a sparse three-dimensional
network of 2xN active sites;
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(ii) These sites are coupled through non-frustrated hopping terms which decay
exponentially with their relative separation, yielding a random hopping problem
due to the random location of the impurities in the original three-dimensional
cubic lattice;

(iii) The hard-core bosons density is controlled by a non-random chemical potential
µ ∝ (H −H∗).

Although the hopping term in Eq. (C.41) is exponentially suppressed with |r|, it
couples impurities at all distances. In order to mimic in a more simple way the
random distribution of distances between impurities and its implications on the
couplings distribution, we developed a phenomenological toy model of hard-core
bosons. We first limit ourselves to the one-dimensional case following Ref. 478 and
Ref. 479. The normalized probability to have two impurities at distance r = r‖ = r⊥
is given by p(r) = 2x (1− 2x)r−1, which can be used to compute the couplings
distribution

p(t) =
+∞∑
r=1

p(r)δ [t− t(r)] . (C.42)

Going in the continuum limit with the a hopping parameter of the form t(r) ∝
(−1)r−1 exp (−r/λ), one gets in the dilute limit 2x� 1,

p(t) ∝ t−1−λ ln(1−2x) ' t−1+2λx. (C.43)

In three dimensions, we simply replace in a heuristic way the characteristic length
scale λ by a characteristic volume vλ and introduce δ−1 = 2vλx, a phenomenological
parameter in the toy model controlling the disorder. Finally, we introduce the toy
Hamiltonian

Htoy =
∑
〈ij〉

tij

(
b†ibj + h.c.

)
− µ

∑
i

ni, (C.44)

where the hopping is possible between nearest neighbors only and its strength is
generated from a broad distribution p(t) ∼ t−1+1/δ, with t ≤ J along the chains and
t ≤ J⊥ in the transverse directions. The toy model is more practical for quantum
Monte Carlo simulations than the effective model since interactions are limited to
nearest neighbors.

The interplay between disorder and interactions for bosonic systems has mostly
been investigated for diagonal disorder, i.e. random potentials. Here the disorder
is of off-diagonal nature, i.e. with random hopping tij, a problem which has been
less studied. At the single-particle level, it is known that randomness of the hopping
terms modifies the Anderson localization at the center of the band where a delocalized
state exists [480, 481]. Moreover, for the so-called Lifshitz model [482], describing
three-dimensional diluted semiconductors with isotropic hopping terms ∼ exp(−r/ξ),
it was shown that extended states exist if the impurity density is above the critical
one, ρ > ρc, where ρc ' (3ξ)−3 [483]. In the presence of interactions, a few existing
studies of random exchange quantum antiferromagnets have shown that long-range
order remains in the presence of disorder [484, 485], a phenomenon corroborated by
order-from-disorder mechanisms observed in quantum spin gapped materials doped
with impurities [486, 487]. In view of these results, one can reasonably expect a
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similar effect for the effective Hamiltonian (C.41), at least in the vicinity of half-filling,
when H ∼ H∗. More precisely, the effective bosonic degrees of freedom, hopping
on a diluted three-dimensional lattice, should display low temperature long-range
order, i.e. BEC, meaning transverse magnetic order for the original DTNX material.
This general expectation has been unambiguously confirmed by realistic simulations
discussed below. However, this description is limited to strong dilution 2x� 1, where
many-body physics is faithfully captured by the above pairwise coupling approach.
Below, we go beyond and address the question of multi-impurity effects which may
modify this simple picture.

b. Multi-impurity effects

Magnetization curve The zero-temperature high magnetic field magnetization
profile of DTNX, obtained using QMC simulations, is shown in Fig. C.18 (b) where
step-like features are clearly visible. To understand this dependence, we focus on
objects made of two impurities (l = 2) close to each others at distances r‖ = 1, 2
along the chain direction, and which happen with respective probabilities ∝ (2x)2

and ∝ (1 − 2x)(2x)2. Longer distances rapidly approach the isolated impurity
case (r‖ � 1), as shown in Fig. C.16. Furthermore, the case of impurities next to
each others in the transverse directions can be considered as practically isolated
impurities due to the extremely short localization length ξ⊥. Finally, considering
objects consisting of more than two impurities (l ≥ 3) is equivalent to deal with rare
events due to the very small probability of existence, ∝ xl.

First of all, as pictured in Figure C.18 (a), the r‖ = 1 case has a first level
crossing around H = 12.3 T, close to Hc2, the critical field which ends the BEC
phase. This provides a very simple explanation for the measured magnetization
both experimentally by Yu et al. [398] and in numerical simulations presented in
Fig. C.18 (b) where mz is found to be larger than ' (1 − 2x), the value expected
if only clean sites were fully polarized. Instead, at Hc2 impurities in this particular
r‖ = 1 configuration are (half-)polarized which leads to a total magnetization
mz ' (1− 2x) + (2x)2, in excellent agreement with both experimental results [398]
and our numerical simulation shown in Fig. C.18 (b). Also, instead of sharp, square
steps sketched in Fig C.18 (a), in a realistic sample one expects smooth, rounded steps
at the edge of the plateaus, due to the bandwidth of the levels crossing, resulting
from the effective interaction between impurities. Moreover, something like true
plateaus cannot exist, because there is a multitude of level crossings corresponding
to all the different impurity cluster configurations. We are therefore left with a
compressible (non-zero magnetic susceptibility) phase up to H ′

c2. Although this phase
is compressible, level crossings at H = 12.7 T, 13.6 T and 14.7 T stand out because
(i) they are well isolated from the others and (ii) concern a relatively large number of
objects, which explains the strong step-like feature visible at these specific magnetic
fields in the magnetization curve [Fig. C.18 (b)] or in its first derivative, the magnetic
susceptibility curve [Fig. C.18 (c)]. In other words, at each of these levels crossing,
there is a qualitative change in the sample as a macroscopic number of the studied
“impurity objects” are getting polarized at the same time. As already mentioned for
the r‖ = ∞ case, the simultaneous closing of the local gap ∆(r‖ = 1, 2,∞) of these
objects, together with an effective pairwise AF interaction between them, opens the
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for TR 0. On the
contrary, for x5 0.08, we observe that the susceptibility is finite for
H$Hc2, and it even exhibits a strong satellite peak for H< 13.5 T.
The susceptibility vanishes only for H5Hs< 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H#Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0#H#Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H. 0) and an incompressible
Mott glass (for H5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D . For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, andwe neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x5 0.08.
We assign a J 0c value to the magnetic exchange coupling of the Br-

doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9<D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x5 0.075 (see Supplementary Information), is in
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Figure 3 | Phase diagrams in the field–temperature plane. a, Experimental
phase diagram of Br-doped DTN from specific heat and susceptometry,
compared to QMC data. The following phases are represented: Bose-Einstein
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represent the magnitude of the spin gap in the Mott insulating (MI) phase.
b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T5 19mK, compared to QMC
results, and to pure DTN magnetization (measured at T5 16mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f5 88.7Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H5 0 T to H5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H#Hc1< 1T, showing a non-exponential decay as TR 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pureDTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for TR 0. On the
contrary, for x5 0.08, we observe that the susceptibility is finite for
H$Hc2, and it even exhibits a strong satellite peak for H< 13.5 T.
The susceptibility vanishes only for H5Hs< 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H#Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0#H#Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H. 0) and an incompressible
Mott glass (for H5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D . For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, andwe neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x5 0.08.
We assign a J 0c value to the magnetic exchange coupling of the Br-

doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9<D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x5 0.075 (see Supplementary Information), is in
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b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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susceptibility of Br-DTN at frequency f5 88.7Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H5 0 T to H5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H#Hc1< 1T, showing a non-exponential decay as TR 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pureDTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
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Figure C.18: The top (a) panel is a simplified version of Fig. C.16, focusing
on the clearly separated level crossings for two impurities at distance r = 1, 2
and ∞. The central panel (b) displays the zero temperature magnetization
curve at doping concentration x = 7.5% (circle) and x = 10% (square) from
numerical simulations of the Hamiltonian (14) using QMC and the β-doubling
scheme. The results are from samples containing N = 40 × 8 × 8 spins and
each point is averaged over 200 disorder configurations. The bottom panel (c)
shows the first numerical derivative of the magnetization curve (corresponding
to the magnetic susceptibility χ). The highlighted levels crossing in the first
panel are clearly identified in realistic numerical simulations, as denoted by
vertical arrows. (d) a.c. susceptibility of x = 8% DTNX close to the lower
and upper critical fields. The curves have been vertically shifted with respect
to one another for readability purposes. Panel (d) is adapted from Ref. 398.

door to a global phase coherence of these new objects, in sharp contrast with the BG
regime predicted in Ref. 398. This scenario is indeed verified (see discussions below)
around H∗ = 13.6 T where a BEC∗ of the single impurities was numerically observed.
Based on similar mechanisms, we claim that there should also exist long-range
order at the two other levels crossing, H = 12.7 T and H = 14.7 T, with possible
intermediate BG regions at low doping concentrations. Before presenting numerical
evidence for such a scenario, we address now the experimental facts concerning
multi-impurity physics in DTNX.

Experimental evidences The first experimental evidence for the level crossing at
12.7 T can be found in the ac-susceptibility data presented in Fig. C.18 (d), adapted
from Ref. 398: at this field value there is a barely visible peak in the magnetic field
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dependence, present only in the lowest temperature, 1 mK data. The NMR data of
Fig. C.14 (b) provide a clear direct experimental evidence for the level crossing at
14.7 T: the low temperature (113 mK) data for the T−1

1 relaxation rate of protons
present a clear peak at slightly higher field value H∗∗ = 15.2 T. The small difference
between the predicted and the observed H∗∗ value can be accounted for by improving
the above given simplest model that describes DTNX by the first trivial correction:
the impurity modifying the J coupling into J ′ value corresponds only to the most
probable configuration where the doped bond is between one affected spin, having
the anisotropy D′, and one unaffected spin, having the “normal” anisotropy D.
When two neighboring bonds are doped, the bond between the two affected spins,
both having D′ anisotropy, is in fact expected to have somewhat different exchange
coupling J ′′. Indeed, a slight modification, J ′′ = 1.12J ′, is enough to match the
theoretically predicted value with the experimentally observed H∗∗. We have thus
clearly explained the observed peak of 1/T1 and quantified the first obvious correction
to the model. This correction being small, for simplicity, we have neglected it in
numerical simulations.

3. Impurity-induced long-range order at finite temperature

We use QMC through the stochastic series expansion algorithm to simulate the
S = 1 DTNX Hamiltonian (14) and the toy model of hard-core bosons (C.44) that we
derived. Simulations are performed on three-dimensional systems of N = L×L/R×
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L/R sites from L = 24 up to L = 120, where R > 1 is an anisotropic aspect ratio10,
numerically favorable when dealing with weakly coupled chains (J⊥/J ' 0.08) [195].
For various system sizes, temperatures and Br-doping concentrations x = 10%, 12.5%
and 16.67%, we compute two different thermodynamic quantities: the spin stiffness
ρs [194,240] and the transverse AF order parameter |mAF|2 ≡

∑
i,j eiq·rij〈S

+
i S

−
j 〉/N2

at the AF wave-vector qAF = (π, π, π), which both reveal a finite temperature
transition using a standard finite-size scaling analysis [180],

ρs(L) = L2−D Gρs

[
L1/ν (T − Tc)

]
and

mAF(L) = L−β/ν GmAF
[
L1/ν (T − Tc)

]
,

(C.45)

where D = 3 is the dimensionality. The 3D-XY critical exponents [175, 241, 242]
ν = 0.6717 (the correlation length exponent) and β = 0.3486 (the order param-
eter exponent) are used to extract the critical temperature Tc, after a Bayesian
scaling analysis [243, 244]. One can also include corrections to scaling of the form
G
[
L1/ν (T − Tc) (1 + cL−ω)

]
, where ω is a subleading exponent accounting for a

finite-size drift, which gives similar values within the error bars. Our final Tc es-
timates (Fig. C.20) are averages of the individual Tc from ρs and mAF crossings,
with and without irrelevant corrections, while the given error bars reflect uncertainty
between various estimates11.

The critical temperature at the crossover H∗ field grows with the doping x, as
shown in Fig. C.19 for 5% ≤ x ≤ 16.67% where we observe long-range order at
finite temperature for all doping levels. The ordering temperature grows linearly
with x. This is qualitatively expected from a naive mean-field reasoning, as the
average coupling between the chains (setting the 3D energy scale for a finite critical
temperature) is J3D ∼ J⊥x. More precisely, exact diagonalization calculations of the
effective pairwise coupling between impurities in DTNX, discussed earlier, yield an
average energy coupling in the transverse direction J3D ' 1.5x (K), which compares
well with QMC estimates, at least for large enough dopings x ≥ 8%. For small x,
accurate estimates for Tc are very hard to obtain because simulations get slower with
inverse temperature, and finite size effects become more serious when the number of
impurities decreases. Nevertheless, we can observe at low doping that the ordering
temperature starts to deviate form a simple linear scaling and displays a faster decay.
While it is impossible to exclude the existence of a critical concentration xc < 5%
where Tc vanishes, it is reasonable to expect that Tc(x,H∗) will vanish only when
x → 0, presumably with a convex form different from the mean-field-like shape
observed for x > 8%.

Fig. C.20 shows the global magnetic field–temperature H–T phase diagram
obtained from extensive QMC simulations of the DTNX model Eq. (14) for various
Br-impurity concentrations x. As previously discussed, besides the clean BEC type
order below Hc2 = 12.3 T, doping with Br leads to a new type of disorder-induced

10For the S = 1 model, we used (x,R) = (16.67%, 6), (12.5%, 8), (10%, 10), (8.33%, 6),(6.25%,8),
(5%, 10) for data obtained through “standard QMC” and (x,R) = (10%, 5), (7.5%, 5) for data
obtained through the QMC β-doubling scheme, with an average over 300 disorder realizations. For
the toy model, simulations are carried out with R = 5 and L = 20, 30, 40, 50, and averaged over a
large number ≥ 500 of samples.

11The critical temperature data for x = 10% from H = 12.5 T to H = 13.0 T (Fig. C.20), are
estimated using the β-doubling procedure, which strongly limits the temperature grid taken to
perform the finite-size scaling analysis (C.45): 1/T = 2p with p ∈ N. Therefore, the error bars in
this case reflect the closest available (min/max) temperatures to the estimated Tc value.
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Figure C.20: Finite temperature phase diagram at high magnetic field for
various Br doping concentrations, obtained by QMC simulations of DTNX (14)
for x = 0 (square), x = 10% (hexagon), x = 12.5% (diamond), x = 16.67%
(triangle) and the hard-core bosons toy model of Eq. (C.44) (circle) with δ = 2
(we found that δ = 1/5x yields a remarkably good agreement with the S = 1).
Besides the clean BEC dome at x = 0, a new impurity-induced ordered regime
BEC∗ develops at higher magnetic field. The hard-core bosons BEC* dome is
centered around H = 13.5 T. While at large doping x = 12.5% and x = 16.67%,
BEC and BEC∗ overlap, for x = 10% one clearly sees two resurgent distinct
BEC∗ mini-domes (see text).

ordered phase, which we call BEC∗, appearing as a mini-dome centered around
the single-impurity crossover field H∗ ' 13.6 T. This regime is quite extended and
overlap with the clean BEC dome for x > 10%. Interestingly, for x = 10% a second
mini-dome appears, centered around 12.7 T and separated from the main BEC∗

phase made of single impurity states around H∗. This observation clearly confirms
the expectation that objects made of two neighbouring impurities at distance r‖ = 2,
whose crossover field is precisely at 12.7 T, should experience an effective interactions
also leading to the long-range order. The natural question opened by the observation
of a second, “satellite” BEC∗ phase concerns the general trend when the impurity
concentration gets more reduced: one can wonder whether more satellites may appear,
and if intervening localized BG regimes could eventually be stabilized between these
ordered phases. In order to address this fundamental issue, especially important to
properly define the real extent of the high-field BG state proposed by Yu et al. [398],
we now turn to ground state physics at lower impurity concentration.

4. Zero-temperature phase diagram and Bose-Glass physics

To study the T = 0 phase diagram of DTNX at high magnetic fields, we use the
QMC techniques again, but this time associated with the β-doubling scheme [462]
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Figure C.21: Left: finite size scaling analysis (L = 20, . . . , 60 with an aspect
ratio R = 5) for the spin stiffness ρs and the AF order parameter mAF at
zero temperature, from QMC simulations with the β-doubling scheme, for
x = 7.5% Br doping. For points above 14.3 T, the Br doping is taken to
be x = 12.5% to reduce numerical difficulties in computing ρs and mAF at
high magnetization. Each point is averaged over 200 independent disordered
samples. The dynamical exponent value was set exactly to z = D = 3. The first
quantum critical point position Hc2 = 12.30(2) T and exponent ν = 0.75(11)
were estimated from the ρs data. Setting thus Hc2 and ν, the order parameter
exponent β = 1.08(20) was then determined from the mAF data. Right: scaling
functions Eq. (C.46) for the data around Hc2, which gives quite good collapse,
thus supporting that z = D = 3.

to reach low temperatures much faster than in standard schemes, in order to probe
the ground state properties. We remark that this method leads to large Monte
Carlo errors, due to the purposely small number of performed thermalization and
measurement steps, and may occasionally lead to systems out of the ground state
for some samples. Nevertheless, the estimate of the observables over different
disorder realizations is reliable, as it gives larger statistical errors (sample-to-sample
fluctuations) than the ones generated by the method. We compute the spin stiffness
ρs and the transverse order parameter mAF, averaged over 200 different samples for
each of the points presented in Figure C.21. The finite size scaling analysis close to
the BEC–BG transition follows

ρs(L) = L2−D−z Gρs

(
L1/ν |H −Hc|

)
and

mAF(L) = L−β/ν GmAF
(
L1/ν |H −Hc|

)
,

(C.46)

where Hc is the critical field, D = 3 is the dimensionality and z is the dynamical
exponent. The zero-temperature phase diagram of DTNX at high magnetic field
is shown in Fig. C.21 for the Br doping concentration x = 7.5%. Both the main
BEC∗ phase and its left “satellite” centered around 12.7 T get reduced as compared
to their x = 10% extension, and two intervening localized BG phases are stabilized
in between. Above 14 T, a third BG regime is also observed. Interestingly, ordered
phase appears at each of the noticeable levels crossings H = 12.7 T, H = 13.6 T
and H = 14.7 T. For the highest field value, this feature is also reported, but for a
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higher doping concentration (x = 12.5%), because of numerical difficulties to capture
ground state properties close to saturation (which corresponds to very small density
of particles).

The BEC-BG phase transition The quantum phase transition between BEC and
BG phases remains controversial in various aspects, such as the precise value of
some critical exponents [423–425, 488–490]. While it is now well established that the
correlation length exponent ν satisfies the Harris-Chayes bound ν ≥ 2/D [491, 492],
there are still some debates regarding the dynamical exponent equality z = D [423,
424, 488–490], as well as for the exponent φ governing the critical temperature
Tc ∼ |H −Hc|φ, for which some recent results [398, 399] are inconsistent with the
theoretical bound φ ≥ 2 [157], verified in a more recent numerical study [493]. Besides
these theoretical discussions, only a few experimental realizations of dirty bosons are
available to test such predictions, and in particular for condensed matter systems. In
TlxK1−xCuCl3 [454] and (C4H12N2)Cu2(Cl1−xBrx)6 [494], as well as in DTNX [398],
the measured exponent of the critical boundary was found to be φ ∼ 1, which lies
clearly below the φ = 2 bound.

In the following we address some critical properties of the T = 0 BEC-BG
transition close to Hc2, the critical field ending the ordered phase of the clean degrees
of freedom, for a doping level x = 7.5%, as shown in Fig. C.21. We start with the
finite size scaling analysis of the spin stiffness ρs, setting the dynamical exponent to
exactly z = 3. This leads to a very nice single-point crossing for the different system
sizes L = 20, 30, 40, 50 and 60, meaning that there is a quantum phase transition
happening at the crossing point, Hc2 = 12.30(2) T. This value for the quantum
critical point is identical to the value of Hclean

c2 in pure DTN, suggesting that the
degrees of freedom defining the end of this first ordered phase are the “clean” spins.
By optimizing the collapse of the data sets obtained for different L values on a single
(scaling) curve, one can estimate the correlation length exponent ν = 0.75(11) > 2/3,
compatible with the Harris-Chayes criterion. Using these estimates of Hc2 and ν,
we perform a similar finite size scaling analysis for the AF order parameter mAF,
and get the exponent β = 1.08(20), in agreement with the previous work [399]. The
scaling collapse of mAF data is also very good, confirming the value of ν obtained
from ρs data. Through the hyperscaling relation, the anomalous exponent η is found
to be

η = 2β/ν −D − z + 2 = −1.12(10), (C.47)

which verifies the inequality η ≤ 2−D = −1 [157]. Overall, the dynamical exponent
value z = D = 3 is fully compatible with our results, confirming previous stud-
ies [399, 493, 495]. Note also that good crossings are obtained at the other BG-BEC∗

transitions, as visible in Fig. C.21. We have not directly addressed the so-called
“φ-crisis” raised by conflicting numerics [493, 496]. It is clearly a very difficult nu-
merical task to safely probe the quantum critical regime using finite temperature
data. Moreover, we believe that the very peculiar situation at play in DTNX, with
successive narrow BEC∗ and BG regimes, is not favorable to disentangle a genuine
quantum critical regime from crossover effects due to competing phases.
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Figure C.22: Global Magnetic field – temperature phase diagram for DTNX
based on numerical (QMC) results (circles and diamonds), displayed for varying
Br doping x. For small finite doping x, above the clean BEC phase (blue
dome) at H > 12.3 T, a succession of impurity-induced BEC* phases (pink
domes) is stabilized together with intervening localized Bose-glass (BG) regimes
(yellow regions), before getting into the fully polarized ferromagnet (FM, green
region). Such a localization-delocalization series is expected to disappear
for increasing doping x, to eventually form a unique impurity induced BEC∗

regime, overlapping with the principal BEC dome. Above the three-dimensional
percolation threshold xperc = 15.6%, the system is expected to be ordered at
all field values up to the full polarization.

5. Summary of results and experimental observation

In a first step, based on NMR experiments at high magnetic field we have fully
determined the microscopic model of the DTNX compound. Indeed, the experimental
results can be interpreted and understood via single impurity physics, which makes
it possible to perform analytical as well as exact diagonalization calculations on large
systems from which a unique set of coupling parameters (J ′, D′) can be determined
for the impurity degrees of freedom. Moreover, this simple description provides
fruitful insights on the picture of DTNX at high magnetic field, such as the strong
localization of isolated impurity states and the fact that the clean background
polarizes for a smaller magnetic field than the impurities. Thus, a simple picture of
DTNX at high magnetic field consists in a frozen (clean) background with a collection
of impurities spatially randomly distributed, yet to be polarized upon increasing
the magnetic field. A natural extension was then to study the mutual effect of two
impurities. By means of exact diagonalization, we reveal that, despite the strong
localization of the impurity states, there exists an effective unfrustrated pairwise
interaction between impurity degrees of freedom. In order to capture the relevant
low-energy physics we have built an effective model of bosons in a diluted lattice with
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Figure C.23: (a) Temperature dependence of the NMR 1/T1 relaxation
rate in 13% doped DTNX at selected field values. The strong decrease of
1/T1 ∝ T 4 at low temperature is a signature of the ordered BEC phase, while
the relatively broad maximum corresponds to the critical spin fluctuations at
the phase transition into this phase. The error bars are less than the symbol
size, except for one point. (b) Magnetic field dependence of 1/T1 in the vicinity
of the phase transition into the ordered phase. Several positions of the 13%
doped DTNX phase diagram (solid dots) are compared to the case of much
less, 4% doped DTNX (open squares), to show how strongly is the 1/T1 peak
broadened by increasing the doping-induced disorder.

an exponentially decaying coupling with the distance between bosons. This model
suggests that the bosonic degrees of freedom can order at low-enough temperature,
which is confirmed by quantum Monte Carlo simulations of the full microscopic
model. This paves the way to a resurgence of global phase coherence in DTNX,
in sharp contrast with the uninterrupted many-body localized Bose-glass phase
reported in Ref. 398. We have extended the finite-temperature study of the realistic
DTNX Hamiltonian with state-of-the-art quantum Monte Carlo simulations at lower
temperature, for a Br concentration x = 10%, in order to compute the extension
of the disorder-induced BEC∗ revival and of the Bose-glass regime. We have first
shown that, for this concentration, the BEC∗ is connected to the large BEC phase of
the clean sites without any intervening BG. Furthermore, we reveal that the critical
temperature boundary of the BEC∗ actually presents not one, but two distinct domes:
the expected one centered at H∗ ∼ 13.6 T, which corresponds to the condensation
of single impurity degrees of freedom, and a new one centered around H ∼ 12.7 T.
The new dome can be understood as the ordering of multi-impurity objects. This
considerably extends the current picture of the phase diagram of DTNX at high
magnetic field: at low enough doping concentration, the consecutive disorder-induced
BEC∗ mini-domes are separated by intervening many-body localized Bose-glass
regimes. A summary of our results is shown in Fig. C.22, which displays a complete
three-dimensional representation of the high magnetic field phase diagram of DTNX,
“magnetic field vs. temperature vs. Br concentration”. However, decreasing the
doping concentration makes it very hard to reliably obtain the critical temperature
in numerical simulations. Consequently, we rather turned our attention to T = 0
physics for x = 7.5%, focusing on the still controversial quantum phase transition
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Figure C.24: Sketch of the global phase diagram of (a) pure DTN, and (b)
13% doped DTNX, where colors denote the BEC (blue) and BEC* (red) phases,
and the Bose-glass (BG, yellow) and gapped (green) regimes. (c) Focus on the
main BEC* phase. The Tc determined from QMC simulations for 12.5% doping
(blue open diamonds) is compared to Tc estimates from the T−1

1 NMR data in
a (13± 1)% doped sample: solid red dots and diamonds denote respectively
the maximum of T−1

1 (T ) and T−1
1 (H) dependence, reflecting the maximum of

the critical spin fluctuations, while orange squares provide the lowest estimate
for the Tc, taken to be the point where the T−1

1 (T ) dependence switches into
the power-law regime of the ordered phase. The grey small dots and diamonds
are respectively the experimental points and the QMC simulation of the BEC
phase boundary in the pure DTN, as reported in Ref. 174.

between the BEC and Bose-glass phases, in order to determine the critical exponents.
On the experimental side, the former NMR experiments that brought a basis for

the microscopic description of the doped sites, have been carried out (for technical
convenience) on relatively lightly 4% doped sample, where the transition into the
BEC∗ phase is theoretically predicted to be well below 40 mK, and could not be
experimentally reached. As by stronger doping the predicted phase diagram is pushed
up into the experimentally accessible range of temperature, the (13±1)% doped
DTNX was investigated in order to check for the existence of the disorder-induced
BEC* phase and establish its experimental phase diagram. In general, a second
order phase transition into an antiferromagnetically ordered phase can be detected
by NMR using either static or dynamic observables. In the former case, we directly
observe the growth of the order parameter, here the transverse spin polarization,
through the splitting or broadening of NMR lines. While this is nicely visible in pure
DTN [174], in strongly doped DTNX sample this method could not be employed,
because the NMR lines are much broader and the relevant signal much weaker.
The point is that the order of the BEC* phase is established only for the minority
sites, those affected by doping. Fortunately, the ordering temperature Tc can also
be determined from the corresponding peak of critical spin fluctuations, measured
through the nuclear spin-lattice relaxation rate 1/T1. Indeed, in a pure or weakly
disordered system, a sharp peak in the observed T or H dependence of T−1

1 (T,H)
data precisely defines the Tc, as shown in Fig. C.23. However, this peak is broadened
by disorder, and in the 13% doped DTNX data, only a very broad maximum of
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T−1
1 is separating the high temperature regime above the BEC* phase, where the

relaxation is essentially constant, from the rapid power-law decrease, T−1
1 ∝ T 4,

observed inside this phase. While this low temperature behavior of T−1
1 (T ) is clearly

a fingerprint of the ordered phase, the exact experimental determination of Tc is not
evident and different estimates are plotted in Fig. C.24.

Remarkably, the experimental estimates of the 13% doped DTNX phase boundary
are qualitatively identical and quantitatively quite close to the theoretical quantum
Monte Carlo predictions, in particular regarding the maximum Tc value of the BEC*
phase and its upper field boundary. The observed differences are minor: in the
theoretical prediction, the BEC part of the ordered phase is pushed by 0.1 T towards
lower field and the minimum of Tc between the BEC and the BEC* part is (therefore)
significantly deeper. The NMR data thus provide the final proof for the existence
of the new disorder-induced phase, whose microscopic nature is revealed by the
corresponding, precisely defined theoretical description discussed in this section.
In particular, theory tells us that the BEC* phase, in contrast to a Bose-glass, is
indeed fully three-dimensional coherent. NMR, being a local microscopic technique,
cannot directly provide this information, but the BEC* phase is accessible to neutron
experiments, which can provide further insights on how the coherence is established
in this highly inhomogeneous system.

Several fundamental aspects remain to be understood, for instance, how the
inhomogeneity of the order parameter in the BEC∗ phase develops when approaching
the transition to the many-body localized Bose glass. Furthermore, as the doping
dependence of the T–H phase diagram of DTNX is now well understood, we can
focus on the narrow windows in which Bose-glass phase does exist, to study its not
yet well understood finite-temperature properties or excitations. One appealing issue
concerns the possible existence of a finite-temperature glass transition above the
Bose-glass regime, where, despite the absence of a coherent response, the transverse
susceptibility is expected to diverge [157] with an unknown critical exponent.

156







Conclusion

Quantum magnets have proven to be ideal systems regarding the study and
emergence of new phases of matter. Especially, the apparent simplicity of
“spin models” provide an ideal testing ground for theories, experiments, and

numerical simulations in quantum magnetism. This allows for a better understand-
ing of the physics at play and of the microscopic mechanisms responsible for the
enthralling properties in these novel quantum systems. Interestingly, the theoretical
work presented in this manuscript is substantially connected with experiments, which
made a direct and fruitful comparison possible.

I. Summary

I started with a short introduction on the microscopic origin of the so-called
Mott insulators systems, whose relevant degrees of freedom are the electronic spins
holding the magnetic properties. Then, I briefly reminded the key ideas of the phase
transition phenomenon, that is a complete change in the physical properties of a
system by tuning an external parameter such as temperature, pressure or an external
magnetic field. I finished this introduction by giving a few examples of different
numerical methods and algorithms that one can develop and engineer in an attempt
to solve many-body problems. This mostly served as the building blocks of more
advanced numerical tools presented in the following chapters.

Chapter A The first chapter of this manuscript was a natural, though more
specialized, follow-up of the introduction. Its first section was dedicated to one-
dimensional antiferromagnets. I reviewed their general properties and emphasized
the fact that one-dimensional quantum systems are very peculiar and require a
specific theoretical treatment owing to the strong quantum fluctuations they exhibit.
For instance, they cannot develop long-range order by spontaneously breaking a
continuous symmetry, even at zero temperature where they are limited to quasi-long-
range order with algebraically decaying correlation functions. As discussed, this is
well-captured, as well as their other low-temperature properties, by the universal
Tomonaga-Luttinger liquid field theory, fully characterized by two parameters u and
K that one can hopefully relate to the underlying microscopic model.

The next section moved to three-dimensional quantum antiferromagnets, and
more precisely to a specific class that displays antiferromagnetic ordering in the
XY plane while the “z spin component” is subject to some anisotropy through

159



the interactions or induced by an external magnetic field along a specific direction.
One key message was to make the connection between this kind of order and the
Bose-Einstein condensation phenomenon, better known in cold atom experiments,
where a macroscopic fraction of the degrees of freedom occupy the lowest energy
level in the system. I have made the connection clear and eventually built up a
dictionary from bosons to spins language. I also provided experimental examples
of such magnetic systems where Bose-Einstein condensation fingerprints have been
unambiguously observed.

The following section was more technical and introduced numerical methods to
investigate the quantum systems discussed previously. Specifically, I first presented
the Matrix Product States formalism along with the variational Density-Matrix
Renormalization Group method to obtain, in the most efficient way up to date, zero
temperature properties of one-dimensional interacting quantum systems. I then
introduced Quantum Monte Carlo in its Stochastic Series Expansion formulation,
cleverly defining a configuration space in which to sample the partition function
of a quantum system with efficient movements from one configuration to another,
fulfilling both ergodicity and detailed balance as required for any stochastic method.

The first work that followed this introductory part was concerned with the
dimensional modulation of the antiferromagnetic order parameter mAF in weakly
coupled antiferromagnetic planes. We closely investigated how smoothly the ordering
process of the three-dimensional system is modulated into that of the two-dimensional
one with reduction of dimensionality in the limit of a zero interplane coupling.
In particular, it is well-known that in a fully three-dimensional system, the order
parameter exhibits a concave temperature dependence. On the other hand, it exhibits
spontaneous long-range order only at zero temperature in the two-dimensional limit.
We showed using a series of complementary theoretical and numerical methods that
themAF(T ) curve is modified with a non trivial change of convexity when reducing the
interplane coupling. This dictates the existence of a quasi-two-dimensional ordered
phase where the system behaves two-dimensionally except for the suppressed but
nonzero mAF(T ) breaking a continuous symmetry. This work was strongly motivated
by the weakly coupled spin-1/2 ladder compound (C7H10N)2CuBr4, also known as
“DIMPY”. In this material, the ladders are coupled in a two-dimensional fashion
making planes and also in a three-dimensional way where the interplane coupling
is the smallest energy scale in the system. The order parameter, experimentally
measured by nuclear magnetic resonance showed for instance such a crossover towards
a quasi-two-dimensional limit.

Finally, I focused on a realistic antiferromagnetic quantum S = 1 spin compound,
NiCl2-4SC(NH2)2 known as “DTN” for short, with an interesting double hatting.
On one side, it is three-dimensional and displays a Bose-Einstein condensation
upon applying a sufficiently large magnetic field at low temperature. On the other
side, its weak three-dimensional couplings make possible experimental investigations
for universal Tomonaga-Luttinger liquid properties at intermediate temperature.
Specifically, the high-field properties of the antiferromagnetic ordered phase such as
its order parameter and its critical temperature were studied by nuclear magnetic
resonance and directly compared to several theoretical approaches. Quantum Monte
Carlo simulations provided excellent fit to the data, and we used them as a reference
to discuss the applicability of approximate techniques and their sensitivity to the
strength of the three-dimensional coupling. We found that analytical predictions
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based on the one-dimensional Tomonaga-Luttinger liquid framework were very good
for the critical temperature as long as a renormalization of the three-dimensional
coupling is performed beforehand, but deviated too much for the order parameter
mAF. Our conclusion was that the DTN compound is actually “not sufficiently
one-dimensional” to be described by such approaches.

Chapter B Overall, I was interested in this second chapter in the dynamical
— time-dependent — properties of quantum antiferromagnets at finite temperature.
I first introduced the quantities of interest, namely the dynamical spin structure
factor obtained through inelastic neutron scattering experiments and the the nuclear
magnetic resonance (NMR) spin-lattice relaxation rate, the so-called 1/T1. I briefly
explained the underlying physics of these experimental probes and related what is
experimentally measured to what actually needs to be computed to have a direct
comparison.

Precisely, I discussed in the second section the general numerical methods to
capture time-dependent phenomena in quantum systems. First, based on the Matrix
Product States formalism, I discussed the time-evolution block decimation algorithm,
which is a natural and elegant way to apply the time evolution operator exp(−iHt)
on a one-dimensional quantum system. I also introduced the “ancilla trick” to
simulate mixed (finite temperature) states with Matrix Product States while it is
originally designed to deal with pure (zero temperature) states. I then presented
how to compute dynamical correlation functions in the stochastic series expansion
formulation of quantum Monte Carlo. However, this has the major caveat that
dynamical data are obtained in imaginary time so that analytic continuation is
needed a posteriori. This is an ill-posed problem due to the intrinsic sampling
statistical error of the measured observables, resulting in an infinite number of
solutions from imaginary time to real time. To overcome this issue I presented the
stochastic analytic continuation method, which performs stochastic samplings of all
possible results and average those that fit the quantum Monte Carlo data equally
well, with very promising results.

The first work that I presented regarding dynamics intensively used Matrix
Product States to compute the nuclear magnetic resonance spin-lattice relaxation
rate in paradigmatic one-dimensional spin chains realizing Tomonaga-Luttinger
liquids in the low-energy limit. Analytical predictions tell us that this quantity
is expected to behave versus temperature with a power-law dependence, whose
exponent is a function of the dimensionless Tomonaga-Luttinger parameter K, i.e.
1/T1 ∝ T 1/2K−1. The main goal of this work was to properly define the crossover
“low-temperature limit” between a non-universal high temperature regime and the
universal one-dimensional properties at low-temperature in quantum spin chains. We
found that quite independently of the underlying model, this crossover temperature
is about ∼ J/10 with J the characteristic energy scale of the system, i.e. the
antiferromagnetic exchange coupling. It was important to be able to define this
limit as Tomonaga-Luttinger liquid predictions are often used experimentally on
quasi-one-dimensional compounds to extract the value of K. As a consequence, we
believe that it remains experimentally challenging to explore the genuine critical
one-dimensional regime in quasi-one-dimensional compounds when J is small and
three-dimensional ordering prevents a wide Tomonaga-Luttinger liquid regime. For
instance, we have shown that for the quasi-one-dimensional S = 1 compound “DTN”,
the antiferromagnetic ordering temperature is larger than the crossover temperature
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towards one-dimensional behavior.
The next work that I discussed was the natural continuation of the previous

one by introducing a three-dimensional coupling J⊥ between the antiferromagnetic
spin chains. I presented a comprehensive theoretical study based on both ana-
lytical calculations (bosonization plus random phase and self-consistent harmonic
approximations) and numerical simulations (quantum Monte Carlo supplemented by
stochastic analytic continuation). This allows us to describe the full temperature
crossover for the nuclear magnetic resonance spin-lattice relaxation rate 1/T1, from
one-dimensional Tomonaga-Luttinger liquid physics to the three-dimensional ordered
regime, as a function of inter-chain couplings. We previously found that in strictly
one-dimensional systems, one can asymptotically observe the predicted power-law
dependence 1/T1 ∝ T 1/2K−1, but only at quite low temperature T . J/10. A finite
three-dimensional coupling J⊥ will ultimately change the dynamical response when
approaching the critical temperature. The Tomonaga-Luttinger liquid prediction is
often used to fit the experimentally measured relaxation rate versus T and obtain
the dimensionless parameter K, but a proper definition of the temperature window
inside which the genuine one-dimensional properties can be observed was missing.
In particular, when getting close to the critical temperature, we showed that the
NMR relaxation rate diverges with a power-law 1/T1 ∝ |T − Tc|−ν(zt−1−η) with an
exponent ν(zt − 1 − η) > 0 characteristic of the phase transition. We properly
defined a crossover temperature between the critical and one-dimensional regimes
with T & 3Tc and found that systems with a three-dimensional coupling J⊥/J < 10−2

display a nonzero temperature window T ∈ [3Tc, J/10], assuming that 3Tc < J/10,
inside which the observation of the universal one-dimensional behavior is possible.
For example, considering experiments on “DIMPY”, the 1/T1 has been fitted to
obtain K versus the external magnetic field H, but has shown some discrepancy with
the expected value K(H) computed numerically. Our quantitative work reveals that
the experimental fitting temperature range 2Tc < T < 3Tc was probably too close
to the critical temperature to be reliable. In the ordered phase, we identified two
regimes. Close to the transition, the NMR relaxation rate is first strongly suppressed
with temperature, empirically 1/T1 ∝ Tα with α ' 4− 5 as experimentally observed
in some compounds. At lower temperature deep in the ordered phase, the NMR
relaxation rate increases linearly with T due to spin-waves contribution from the
absolute zero. We also discussed the dynamical structure factor that we computed
for the different regimes and which is directly probing the inelastic neutron scattering
intensity.

The last section was again focused on a purely one-dimensional system, the
S = 1 Heisenberg chain, with a finite Haldane spin gap ∆g/J ' 0.41. A simple
activated law is expected for the nuclear magnetic resonance spin-lattice relaxation
rate ∝ exp(−γ∆g/T ), but conflicting works based on field theory of the nonlinear
O(3) sigma model predict γ = 1 or γ = 3/2. On the experimental side, everything
within this range (and beyond) has been observed. An unbiased numerical study of
the full quantum one-dimensional model was necessary in order to reconcile and settle
the different analytical predictions as well as the experimental observations. At high
temperature, T > ∆g, we have observed a spin diffusion regime, with an exponent
that is not really one half, as expected classically, but a bit larger. At intermediate
temperatures, J/6 . T < ∆g: we have shown that the dominant contributions to
1/T1 come from momenta q ∼ π that can be simply interpreted since we have a large
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Lorentzian peak at the antiferromagnetic wavevector π and single magnon excitation
can be thermally excited in this temperature range. At lower temperatures, T . J/6
due to energy conservation, dominant contribution to 1/T1 is due to two-magnon
processes and occurs at q ∼ 0 and our best fit in this regime is compatible with a
simple activated law, γ = 1. Our results were discussed in regards of experiments
and different scenarios were proposed to explain the discrepancies.

Chapter C In the last chapter, I got interested in the interplay between
interactions and disorder in quantum antiferromagnets. In these systems, the
disorder can be induced by chemical doping by randomly substituting one atom by
another and drive the “clean system” towards new quantum phases of matter. On
the theoretical side, the doping results in couplings or more generally Hamiltonian
parameters drawn from some random distribution. I introduced in the first section
two specific phases in this respect, the random singlet glass phase and the Bose-glass
phase. I provided a microscopic picture of the former, realized by the one-dimensional
Heisenberg model with random antiferromagnetic exchange couplings using strong
disorder renormalization group. Singlets are successively formed between the two
spins with the strongest exchange coupling at each stage, thereby decimating this
spin pair from the system but yielding a new effective interaction between the spins
previously coupled to it. The resulting asymptotic state can be nicely pictured as
a collection of spin paired up into singlets spanning arbitrary distances. From the
renormalization group analysis, the physical properties can be derived (correlations,
susceptibility...) and I discussed the comparison between these predictions and
numerical studies of the model as well as some experimental realizations. I then
moved to the Bose-glass phase, more difficult to apprehend with no simple microscopic
picture to which to relate. Nevertheless, the “theorem of inclusions” provides some
insights and defines the phase as a collection of spatially isolated and disconnected
superfluid droplets of various sizes. The fact that these clusters do not interact
with each others is responsible for the lack of global phase coherence in this phase
resulting in exponentially decaying correlation functions. I also presented various
experiments in different systems, including Mott insulators in which the Bose-glass
phase has been observed.

The first work combined disorder and dynamics by focusing on the dynamical
properties of the random singlet phase in random one-dimensional Heisenberg spin
chains. The investigations were carried out using state-of-the-art numerical tools such
as Matrix Product States and quantum Monte Carlo supplemented by stochastic
analytic continuation. First concerned with the dynamical structure factor, we
found a continuous narrow band of low-energy excitations extending throughout the
Brillouin zone, instead of being restricted to momenta q ∼ 0 and q ∼ π as found in
the clean system. Regarding the nuclear magnetic resonance spin-lattice relaxation
rate, we show that the local 1/T1 values are broadly distributed. More precisely, its
mean value first decreases with the temperature, but below a crossover temperature
it starts to increase and likely diverges in the zero temperature limit. We show that
this divergence is due to rare events in the disordered chains and is concealed in
experiments, where the typical value is actually accessed, as in the spin-1/2 random
Heisenberg chain material BaCu2(Si1−xGex)O7.

In the last section, I thoroughly summarized a series of works on the chemically
doped Ni(Cl1−xBrx)2-4SC(NH2)2 “DTNX” compound at high magnetic fields, which
has been proposed in prior publications, as the first experimental realization of the
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Bose-glass phase in a quantum magnet. We have first fully determined the microscopic
model of the DTNX compound based on nuclear magnetic resonance experiments
which can be interpreted and understood via single impurity physics. This made it
possible to perform analytical as well as exact diagonalization calculations on large
systems from which a unique set of coupling parameters could be determined for the
impurity degrees of freedom. This simple description provided fruitful insights on
the microscopic picture of DTNX at high magnetic field with a strong localization
of isolated impurity states and the fact that the clean background polarizes at a
smaller magnetic field than the impurities. Thus, a simple picture of DTNX at high
magnetic field consists in a frozen (clean) background with a collection of impurities
spatially randomly distributed, yet to be polarized upon increasing the magnetic field.
By studying the mutual effect of two impurities we revealed that, despite the strong
localization of the impurity states, there exists an effective unfrustrated pairwise
interaction between impurity degrees of freedom. This paved the way to a resurgence
of global phase coherence in DTNX, in sharp contrast with the many-body localized
Bose-glass phase reported previously. Indeed, using large scale quantum Monte
Carlo simulations, we showed that the disorder itself is actually getting ordered,
forming a Bose-Einstein condensation through a novel order-by-disorder mechanism.
Moreover, we determined a complete picture of the phase diagram “high magnetic
fields vs. doping concentrations vs. temperatures”. At low doping there is still room
for a Bose-glass phase and we studied the critical properties of the Bose-Einstein
condensation to Bose-glass transition. We found critical exponents compatible with
previous studies confirming the universal character of the transition, although we
could not be conclusive regarding the “φ-crisis” raised by conflicting numerics. The
theoretically predicted disorder-induced revival of Bose-Einstein condensation in
“DTN” was afterwards experimentally observed and verified by nuclear magnetic
resonance that I briefly discussed to conclude this series of works.

II. Open questions and perspectives

It clearly emerges from the work presented within this manuscript that one can
make a strong connection between theory and experiments in strongly correlated
systems with state-of-the-art numerical techniques. Especially, advances in the
computation of dynamical quantities open new routes in understanding new phases of
matter, connecting with nuclear magnetic resonance and inelastic neutron scattering
experiments for magnetic materials or equivalently Bragg spectroscopy for cold
atom setups. More generally, the developed tools can also be used for the study
of out-of-equilibrium quantum systems which has attracted a considerable amount
of attention over the last years in condensed matter theory and quantum gases
communities on both the theoretical and experimental sides. This gives access
to quantum dynamics governed by unitary evolution in order to study quantum
dynamical phenomena: many-body localization [391, 392, 497, 498], discrete time
crystals [499, 500] and dynamical quantum phase transitions [501–503] to cite but a
few.
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Localization is a key mechanism in the breaking of ergodicity in disordered
quantum systems, and in this respect, it is likely that the physics of classical spin
glasses [504], observed in the Edward-Anderson model (i.e. a classical Ising model
with random coupling strengths) and in the directed polymers problem [505, 506]
for instance, will also emerge in their quantum counterparts. A crucial point is
the extreme fragility of spin glasses; a small change in a parameter such as a small
disorder perturbation of the disorder configuration induces a complete reorganization
of the equilibrium configurations. In the context of spin-glass physics, this property
has been coined “chaos”. The glassy properties of disordered quantum systems
like the random singlet phase and the Bose-glass phase have never been looked
at although one calls the Bose-glass phase glass for example. One could also look
at dynamical properties of the Bose-glass phase, which have been relatively little
explored [507], and probably get some more insights on the microscopic picture, e.g.
what are the excitations?

Still regarding the Bose-glass phase, it is a many-body localized ground state in
one-dimension of the spin-1/2 Heisenberg model subject to a random field in the
Sz

tot = 0 sector, i.e. H =
∑

i Si ·Si+1−
∑

iHiS
z
i . This is also the paradigmatic model

to study what is known as “the many-body localization phenomenon” [508]. In a
nutshell, an eigenstate of this Hamiltonian belongs to one of the two phases called
thermal or many-body localized and is labelled by two numbers: the disorder strength
H which is related to the width of the box for a uniform disorder with Hi ∈ [−H,+H],
and its normalized position in the spectrum ε ∈ [0, 1], ε = 0 corresponding to the
ground state of H. A thermal state satisfies the eigenstate thermalization hypothesis
(ETH) [509,510], meaning in one word that statistical mechanics works: the reduced
density matrix ρA of a subsystem A (with respect to the rest of the system) of an
eigenstate |n〉 will take a thermal form ρA(|n〉) ∝ exp(−H/Tn) with the temperature
Tn matching the one of the canonical ensemble reproducing the eigenstate energy,
〈H〉Tn = 〈n|H|n〉 (see Ref. 511 for a more detailed introduction). On the other
hand, a many-body localized (MBL) state is not thermal and a statistical mechanics
description in terms of a canonical ensemble does not work. Interestingly, high-energy
MBL states behave roughly as ground states, especially regarding the entanglement
entropy fulfilling the area law. The Bose-glass phase corresponds to the ground state
(H 6= 0, ε = 0) and one can wonder if high-energy MBL eigenstates are connected
somehow to many-body localized ground states, i.e. is a high-energy MBL eigenstate
the ground state of the same Hamiltonian but with a different disorder configuration?

Finally, machine learning has found its way to condensed matter problems. For
instance, it has been successfully used so far to detect nontrivial [512] or topological
phase transitions [513] and find effective Monte Carlo movements [514] to significantly
reduce the computational complexity of simulations. Tensor network methods have
also found their way to the machine learning community to represent neural networks.
What is promising is the possibility to use the efficient optimization algorithms that
have been developed for tensor networks (like the density matrix renormalization
group algorithm) for machine learning problems [515–520].
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Résumé en Français†

Les travaux présentés dans ce manuscrit s’intéressent au magnétisme quantique,
ou plus largement à la physique de la matière condensée et aux systèmes dits
fortement corrélés. Dans ces systèmes, les interactions à plusieurs corps et

corrélations entre les particules quantiques ne peuvent être négligées, sinon, les
modèles échoueraient simplement à capturer les mécanismes physiques en jeu et les
phénomènes qui en découlent. Bien que théoriques, il est intéressant de noter que
ces travaux sont substantiellement reliés à des expériences. En effet, une grande
partie a été réalisée dans le cadre d’une collaboration fructueuse avec le groupe de
résonance magnétique nucléaire du Laboratoire National des Champs Magnétiques
Intenses à Grenoble, en France. Cela permet à la fois une meilleure compréhension des
observations expérimentales, mais aussi une vérification et comparaison expérimentale
des prédictions théoriques.

Comprendre les effets des interactions à plusieurs corps dans des systèmes quan-
tiques est un problème de longue date de la physique moderne. Essentiellement,
décrire ∼ 1023 degrés de liberté couplés est un problème compliqué, impossible à
résoudre exactement dans la plupart des cas. Ce qui le rend curieusement intéressant
est que cette description intraitable est basée sur des modèles qui sont extrêmement
simples à écrire. Malgré leur apparente simplicité, ils capturent et décrivent fidèle-
ment une large gamme de propriétés et de phénomènes survenant dans des matériaux
réalistes. Cela va des moins, aux plus exotiques phases de la matière, en passant par
les transitions de phase. Le plus souvent, les modèles étudiés dans cette branche de
la physique décrivent des degrés de liberté (électrons, ou plus particulièrement des
spins ici, pour le magnétisme) couplés et contraints dans l’espace sur les sommets
de structures géométriques appelées réseaux (par exemple carrés, cubiques, tétrago-
naux...), qui tirent leur origine de la structure microscopique sous-jacente des atomes
dans les matériaux.

Ce résumé est organisé en trois parties, chacune reprenant un chapitre du texte
principal. Les sections comprenant introductions, motivations, méthodes et détails
techniques ne seront que très peu — voire pas du tout — discutées. Seule une
partie des résultats sera présentée, s’articulant tout au plus autour d’une ou deux
figures représentatives. La première partie concerne les aimants quantiques en
dimensionalité réduite. Si géométriquement, des réseaux formant une chaîne ou
échelle sont par définition en “basse dimension”, car unidimensionnels (1D), des
réseaux en dimension plus élevée peuvent aussi être considérés comme tels du moment
que les forces des couplages entre les degrés de liberté sont fortement anisotropes,
ou, autrement dit plus ou moins fortes dans les différentes directions de l’espace.

†This is a not-so-short summary, in French, of the work presented in this manuscript. Its length
is constrained by administrative requirements.
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La dimension est un paramètre ayant un contrôle important sur les phénomènes
physiques. Par exemple, le théorème de Mermin-Wagner [17–20] établit que la brisure
spontanée d’une symétrie continue dans le cadre d’une transition de phase est possible
à n’importe quelle température T en trois dimensions (3D) et seulement à T = 0
pour des systèmes à deux dimensions — et ne peut pas avoir lieu dans des systèmes
purement 1D, même à température nulle. Il est alors intéressant d’étudier l’effet
de la modulation des forces de couplage sur les propriétés physiques, en particulier
au regard de la température qui va servir de curseur. Dans le cas d’un système
antiferromagnétique quasi unidimensionnel, à très basse température, on s’attend
à une mise en ordre de type Néel ou XY en dessous d’une certaine température
critique Tc. À plus haute température, loin de ce phénomène de transition de phase
caractéristique en 3D, on peut s’attendre, du fait de la forte anisotropie du système,
à avoir un régime où la physique si particulière du système purement 1D décrite
par la théorie des champs du liquide de Tomonaga-Luttinger, caractérisée par deux
paramètres u et K, se manifeste. Même si ce régime se développe a priori pour
T � Tc, la température doit rester petite devant l’énergie caractéristique du système
T � J (J est la force de couplage le long de la direction 1D), de façon à ce que
la physique quantique unidimensionnelle puisse émerger sans être masquée par des
effets non universels à plus haute température. Derrière ces images qualitatives, une
définition plus quantitative des différents régimes manque à plusieurs niveaux. Dans
la première partie, on étudiera d’abord la modulation du paramètre d’ordre mAF

dans des plans antiferromagnétiques faiblement couplés. Ensuite, on discutera, en
mêlant expériences et théorie, des approches basées sur la description liquide de
Tomonaga-Luttinger pour rendre compte des propriétés d’un composé magnétique
sous champ, “DTN”, constitué de chaînes de spins S = 1 faiblement couplées. La
seconde partie portera toujours sur l’effet de la modulation dimensionnelle d’aimants
quantiques, mais dans le cadre de propriétés dynamiques cette fois. On s’intéressera
notamment au taux de relaxation 1/T1 mesuré par résonance magnétique nucléaire
(RMN) ainsi qu’au facteur de structure dynamique S(q, ω) mesuré par diffusion
inélastique de neutrons. Enfin, dans la dernière partie, on s’intéressera aux effets
conjoints du désordre et des interactions dans le matériau dopé “DTNX” : plutôt
qu’une phase de la matière dite localisée, appelée verre de Bose, attendue à fort
champ magnétique, une phase ordonnée induite par le désordre lui-même est mise
en lumière, avec une réapparition inattendue de la cohérence quantique dans ledit
composé.

I. Aimants quantiques en dimensionalité réduite

La première sous-section s’intéressera à la modulation dimensionnelle du paramètre
d’ordre antiferromagnétique, mAF, associée à des plans magnétiques faiblement cou-
plés. Dans ce travail, on a étudié comment le processus de mise en ordre du système
tridimensionnel est modulé en celui du cas bidimensionnel par réduction de la di-
mensionalité dans la limite d’un couplage inter plan nul. Il est bien connu que dans
un système pleinement 3D, le paramètre d’ordre montre une dépendance concave
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avec la température ; cependant, il est fini uniquement à température nulle en deux
dimensions. En utilisant une série de méthodes numériques et analytiques, com-
plémentaires, on a montré que la courbe mAF(T ) est modifiée avec un changement
non trivial de convexité en réduisant la force du couplage inter plan. Cela suppose
l’existence d’une phase ordonnée quasi bidimensionnelle où le système se comporte
comme s’il était bidimensionnel, sauf concernant la présence d’un paramètre d’or-
dre mAF(T ) très faible mais non nul. Ce travail a notamment été motivé par le
composé (C7H10N)2CuBr4, aussi connu sous le nom de “DIMPY”, fait d’échelles
de spins S = 1/2 faiblement couplées. Dans ce matériau, les échelles sont d’abord
couplées d’une façon bidimensionnelle, formant des plans, mais aussi en trois dimen-
sions où ce couplage inter plan est la plus petite échelle d’énergie du système. Le
paramètre d’ordre du matériau, expérimentalement mesuré par RMN a montré une
telle modulation.

Dans un second temps, on se concentrera sur un composé antiferromagnétique
fait de spins S = 1, NiCl2-4SC(NH2)2, aussi appelé “DTN”, au double chapeau
intéressant. D’un côté, il est tridimensionnel et affiche donc une transition de phase
à température finie, sous réserve qu’un champ magnétique suffisamment fort soit
appliqué. D’un autre côté, ses faibles couplages tridimensionnels rendent a priori
possible l’observation des propriétés universelles unidimensionnelles décrites par la
théorie du liquide de Tomonaga-Luttinger. Les propriétés à haut champ magnétique
de la phase ordonnée antiferromagnétique telles que le paramètre d’ordre et sa
température critique ont été étudiées par RMN et directement comparées à diverses
approches théoriques. Des simulations numériques de Monte Carlo quantique se sont
montrées en parfait accord avec les données expérimentales. Nous les avons alors
utilisées comme référence pour discuter de l’applicabilité d’approches approximatives
et leur sensibilité à la force du couplage tridimensionnel. Nous avons trouvé que
les prédictions analytiques basées sur la théorie unidimensionnelle du liquide de
Tomonaga-Luttinger étaient très bonnes concernant la température critique du
moment qu’une renormalisation du couplage 3D était appliquée, mais déviaient trop
pour le paramètre d’ordre mAF. La conclusion est que le composé DTN n’est en
réalité “pas suffisamment unidimensionnel” pour être décrit par de telles approches.

1. Modulation dimensionnelle du processus de mise en ordre
dans des plans magnétiques faiblement couplés

Adapté de Phys. Rev. B 94, 144403 (2016)
Shunsuke C. Furaya, Maxime Dupont, Sylvain Capponi, Nicolas Laflorencie, and

Thierry Giamarchi

Ce travail a donc été grandement motivé par des mesures expérimentales de
RMN sous champ magnétique sur le matériau DIMPY, composé d’échelles de spins
S = 1/2. Prises individuellement, les échelles de spins à deux montants ont un
spectre en énergie présentant une bande d’énergie interdite entre l’état fondamental
(singulet) et le premier état excité (triplet) à bas champ magnétique. À plus fort
champ, ce gap se ferme et permet d’avoir une phase décrite par la physique du liquide
de Tomonaga-Luttinger. Maintenant couplées en 3D, ces échelles peuvent s’ordonner
en développant de l’ordre antiferromagnétique de type XY à basse température. Des
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grows again and the low-energy excitations change the
nature. We present the original NMR signatures of the
crossover and discuss a possible origin in light of the recent
theory [27].
A single-crystal sample was directly put into a 3He-4He

mixture of a dilution refrigerator to ensure a good thermal
contact. 14N (nuclear spin value I ¼ 1) NMR experiments
were performedusing a standard pulsed spin-echo technique.
The spectrum was obtained by performing a Fourier trans-
form of the spin-echo signal that follows an excitation and
refocusing NMR pulses. The NMR spin-lattice relaxation
rate T−1

1 was obtained by a saturation-recovery method,
using the theoretical relaxation function for I ¼ 1 nuclei,
MðtÞ=M0 ¼ 1− 0.25exp½−ðt=T1Þα%− 0.75exp½−ð3t=T1Þα%,
whereMðtÞ is the nuclear magnetization, t is a time interval
between the saturation pulse and the echo pulses, and M0

is the nuclear magnetization in equilibrium (t → ∞). The
stretch exponentαwas introduced to describe thedistribution
of T−1

1 values. The saturation of nuclear magnetization was
achieved by using a single pulse as long as 10–20 μs to
reduce the excitation power so that unwanted heating effects
were avoided.
Figures 2(a) and 2(b) show the 14N NMR line shape as a

function of the temperature in an applied field of 9.0 and
15.0 T, respectively. In both fields, a spectral line at high
temperatures becomes broadened as the temperature is
lowered and then splits symmetrically into two lines across
Tc ≃ 330 mK [20]. This splitting reflects the growth of the
staggered transverse (⊥H)moments, i.e., the order parameter
(OP). Figure 2(c) plots the temperature evolution of the
splitting, which tends to saturate as the temperature
approaches 150 mK. However, as the temperature is further
lowered acrossT& ∼ 100 mK, the split lines begin to separate
further away symmetrically. At the lowest measured temper-
ature of 40 mK, the splitting becomes 33 kHz, which is 50%
larger than the 22 kHz observed at ∼150 mK.

The NMR lines have a Gaussian shape over the measured
temperature and field ranges, except close to Tc, where the
line shape can be decomposed into two superimposed
Gaussians [Figs. 2(a) and 2(b)]. The linewidths at high
temperatures above 400 mK are 4.4 and 6.9 kHz in 9 and
15 T, respectively, meaning that the line broadening scales
with the field and is thus of a magnetic origin. When the
temperature is lowered acrossTc, the line broadens on top of
the splitting, which is a hallmark of a magnetic-ordering
transition.On the other hand, the line shape andwidth remain
almost completely intact across T&. Figure 2(d) plots the
linewidth normalized by the high-temperature value as a
function of the temperature. The overall spectral features
are practically indistinguishable between 9 and 15 T.
The crossover behavior in the spectrum across T& is

further corroborated by the relaxation rate measurements.
Figure 3(a) shows T−1

1 as a function of the temperature in
9.0 and 15.0 T. Note that T−1

1 probes Cu2þ electron spin
fluctuations in the low-energy limit. At high temperatures
in the TLL regime, T−1

1 increases with the lowering
temperature by 1D quantum-critical fluctuations [20]. As
the temperature further approaches Tc, the T−1

1 increases
even more rapidly by the addition of thermal-critical
fluctuations, which is another hallmark of a magnetic-
ordering transition. Then, a very strong suppression ofT−1

1 ,
by more than 2 orders of magnitude, follows the peak atTc
as the temperature is lowered below 300 mK. In the
temperature range where the OP is apparently saturated,
we find T−1

1 ∼T5.5. A similar suppression has been
observed in other quasi-low-dimensional quantum magnets
below the ordering transition [28]. However, as the temper-
ature is further lowered across T&, the T−1

1 begins to bend
out from the strong suppression and roughly followsT−1

1 ∝
Tbehavior. In addition, T−1

1 in 9 T is roughly twice larger
than the one in 15 T in this regime.

FIG. 2. (a) 14N NMR spectra as a function of the temperature in an applied field of 9.0 T and (b) in 15.0 T. Dashed vertical lines
correspond to the first saturation of the line splittings at around 150 mK on cooling. (c) The line splitting as a function of the temperature,
where three different regimes are identified and presented using different background colors and separated by the vertical dash-dotted
lines. (d) Normalized linewidth as a function of the temperature.
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Quasi-2D3D

Figure 1: Spectre RMN du 14N dans DIMPY en fonction de la température,
pour deux valeurs du champ magnétique, (a)H = 9.0 T et (b) 15.0 T. Les traits
pointillés verticaux correspondent à la première saturation de la séparation
des lignes RMN autour de T = 150 mK. (c) La séparation de ces lignes est
proportionnelle au paramètre d’ordre mAF. En fonction de la température,
trois régimes sont identifiés et représentés par trois couleurs différentes: 3D
(jaune), quasi 2D (bleu) et désordonné (rouge). Adapté de la référence 204.

mesures RMN du paramètre d’ordre en fonction de la température, tel que montré
dans la figure 1, montrent deux régimes distincts étiquetés — et interprétés comme
— quasi 2D et 3D. Plus largement, DIMPY a récemment été activement étudié, aussi
bien expérimentalement que théoriquement [171, 173, 205–209] en tant que premier
composé d’échelle de spins avec une interaction le long des montants des échelles
plus forte que le long des barreaux, Jmontant/Jbarreau = 1.7.

Étant donné que des échelles de spins couplées en 3D sujettes à un champ
magnétique externe peuvent réaliser une phase ordonnée antiferromagnétique XY, les
résultats observés sur la modulation du paramètre d’ordre ne devraient pas dépendre
du modèle microscopique sous-jacent. C’est pourquoi par la suite, on s’éloigne un
peu de la description réaliste de DIMPY en considérant des spins S = 1/2 sur un
réseau orthorhombique, qui affiche la même phase ordonnée, avec des couplages
anisotropes dans les trois directions de l’espace : J , J ′

1 et J ′
2 tels que J � J ′

1 � J ′
2.

La nature unidimensionnelle est masquée par les corrélations inter chaînes dans la
phase quasi 2D ou 3D, et n’est donc pas essentielle dans l’étude de la modulation du
paramètre d’ordre. Toujours est-il que c’est du point de vue technique intéressant
pour se rapporter à des méthodes de la physique 1D. Le modèle est décrit par le
Hamiltonien suivant,

H = J
∑
〈ij〉0

[
1

2

(
S+
i S

−
j + S−

i S
+
j

)
+∆Sz

i S
z
j

]
−H

∑
i

Sz
i +H3D

with H3D = J ′
1

∑
〈ij〉1

Si · Sj + J ′
2

∑
〈ij〉2

Si · Sj, (1)

avec 〈ij〉n restreignant la somme aux spins plus proches voisins dans les trois directions
n de l’espace.
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Approximation classique En utilisant la représentation de bosonisation des spins [37],
le Hamiltonien du système dans la phase ordonnée XY amène à l’action euclidienne,

S =
∑
µ,ν

{
K

2πu

∫
dτdx

[
(∂τθµ,ν)

2 + u2 (∂xθµ,ν)
2
]

− J ′
1A0

∫
dτdx cos (θµ,ν − θµ+1,ν)− J ′

2A0

∫
dτdx cos (θµ,ν − θµ,ν+1)

}
, (2)

où le champ θµ,ν ≡ θµ,ν(τ, x) décrit l’ordre antiferromagnétique XY avec mAF(T ) =√
A0〈cos θµ,ν〉. Notons que quand J ′

1 = J ′
2 = 0, l’action représente un ensemble

de liquides de Tomonaga-Luttinger mutuellement indépendants. Afin de décrire
le processus de mise en ordre, on néglige la dépendance en temps imaginaire des
champs θµ,ν(τ, x) ' θµ,ν(x), ce qui remplace donc le modèle quantique initial (3 + 1)-
dimensionnel par un modèle classique (3 + 0)-dimensionnel. Cette approximation,
dite classique, fonctionne bien proche de la température critique [21], et bien qu’il
soit difficile d’en prédire exactement son domaine de validité, on peut s’attendre
à ce qu’il soit très large dans la limite 2D, J ′

2/J
′
1 → 0, du fait que le système

reste dans ce cas proche de la ligne critique à basse température. De plus, il est
raisonnable de penser que dans la phase ordonnée, les fluctuations de chaînes voisines
µ et µ+ 1 au sein d’un même plan soient bien plus petites que celles entre chaînes
voisines appartenant à des plans différents (ν et ν + 1) si J ′

1 � J ′
2. De ce fait,

on développe le terme en cosinus du couplage inter chaîne jusqu’au second ordre
comme cos (θµ,ν − θµ+1,ν) ' 1− 1

2
(θµ,ν − θµ+1,ν)

2. En omettant le terme constant et
en considérant la limite du continu dans la direciton µ, (θµ,ν − θµ+1,ν)

2 → (∂yθν)
2,

où le champ classique dépend à présent du plan ν et des variables continues x et y,
θν(x, y). La nouvelle action est donnée par,

S =
∑
ν

{
K

2πuT

∫
dxdy

[
u2 (∂xθν)

2 + v2y (∂yθν)
2
]

− J ′
2A0

T

∫
dxdy cos (θν − θν+1)

}
with v2y =

u2J ′
1A0

2K
, (3)

où nous avons utilisé
∫
dτ = 1/T ainsi que la substitution

∑
µ →

∫
dy résultant du

passage à la limite continue avec le pas du réseau pris égal à l’unité. Pour plus de
commodité, on fait les changements de variables suivant, y = vyτ

′, K ′ = vyK/T and
J̃ ′
2 = vyJ

′
2/T , qui amènent à,

S =
∑
ν

{
K ′

2πu

∫
dxdτ ′

[
u2 (∂xθν)

2 + (∂τ ′θν)
2
]

− J̃ ′
2A0

∫
dxdτ ′ cos (θν − θν+1)

}
. (4)

En comparant cette forme à l’action initiale, il est clair que le problème peut être vu
à présent comme celui associé à un système quantique (2 + 1)-dimensionnel : des
chaînes de spins avec des paramètres de Tomonaga-Luttinger K ′ et u, couplées en
deux dimensions par J̃ ′

2 et où K ′ ∝ 1/T .
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Étude numérique Le modèle tridimensionnel initial avec J � J ′
1 � J ′

2 est
numériquement inaccessible du fait de la forte anisotropie entre les couplages, rendant
les simulations de Monte Carlo quantique beaucoup trop coûteuses en temps pour
accéder à des températures suffisamment basses et capturer la physique qui nous
intéresse ici. En effet, une estimation grossière de la température critique de mise
en ordre 3D est Tc ∼ O(J ′

1), et nous devons aller bien en deçà de cette température
pour capturer le régime quasi 2D puis 3D pour le paramètre d’ordre1. Cependant,
l’approximation classique développée précédemment rend possible la simulation du
Hamiltonien sous-jacent à l’action qui a été dérivée. En effet, simuler des chaînes
couplées en deux dimensions, à température nulle, est bien moins gourmand en
ressources. Le Hamiltonien considéré pour l’étude numérique est donc le suivant :
des chaînes de spins S = 1/2 XXZ couplées,

H =
∑
i,n

{
J

[
1

2

(
S+
i,nS

−
i+1,n + S−

i,nS
+
i+1,n

)
+∆Sz

i,nS
z
i+1,n

]
+ J ′Si,n · Si,n+1

}
, (5)

où i et n représentent les sites le long et perpendiculaires aux chaînes. ∆ ∈ [−1, 1]
est une anisotropie de type Ising qui permet de moduler les paramètres du liquide de
Tomonaga-Luttinger des chaînes isolées [71], et J ′ contrôle la force du couplage dans
la direction transverse 2D. Dans la suite, le couplage le long des chaînes J est pris
comme référence et égal à l’unité. Le but est d’étudier le paramètre d’ordre de l’état
fondamental de ce Hamiltonien en fonction de l’inverse du paramètre K, jouant le
rôle de température dans l’approximation classique.

Une première approche, de type champ moyen, ramène la description du couplage
des chaînes ordonnées de façon antiferromagnétique à celle d’une seule chaîne, soumise
à un champ magnétique alterné effectif, ∝ mAF, couplé à la composante x du spin.
Analytiquement, cela amène au modèle intégrable de sine-Gordon pour lequel le
paramètre d’ordre mAF peut être calculé de façon auto-cohérente. Une seconde
approche vise à effectuer la même procédure numériquement, à l’aide du groupe de
renormalisation de la matrice densité réduite (DMRG). Ces deux approches champ
moyen sont en bon accord pour des petites valeurs de J ′, comme visible dans la
figure 2. Le champ moyen numérique est cependant mieux contrôlé que son penchant
analytique quand J ′ n’est pas “trop petit”, dans le sens où la limite mAF ≤ 0.5
est respectée, particulièrement proche du point ferromagnétique 1/K → 0. Par
ailleurs, il ne prédit pas de divergence pour mAF proche de 1/K → 2. Une autre
approche, connue depuis longtemps est la théorie des ondes de spin d’Anderson [83],
connue pour fournir une bonne estimation à l’ordre 1/S du paramètre d’ordre pour
des systèmes antiferromagnétiques de spins S en dimensions D ≥ 2, même pour
S = 1/2. Dans la limite 1/K > 1, le paramètre d’ordre des ondes de spin est
fortement supprimé quand J ′ augmente et dévie énormément des résultats champ
moyen. D’un autre côté, dans le régime 1/K < 1, l’accord avec le champ moyen est
remarquable, en particulier pour des petites valeurs de J ′. Toutefois, on ne peut
pas s’attendre à ce que la théorie des ondes de spin soit fiable pour des valeurs J ′

trop petites, étant donné que le développement sur laquelle elle est basée n’est pas
justifié dans la limite unidimensionnelle J ′ → 0. Pour aller au-delà de ces approches

1Nous avons tenté de simuler le modèle original avec J ′
1 = J/10 and J ′

2 = J ′
1/10, à la limite de

ce qui est numériquement accessible et n’avons pas pu observer le régime quasi 2D attendu pour
le paramètre d’ordre. Nous pensons que le facteur 10 entre les couplages n’est pas suffisamment
important pour l’observer.
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Figure 2: Paramètre d’ordre mAF en fonction de l’inverse du paramètre
de Tomonaga-Luttinger 1/K ∝ T , pour différentes valeurs du couplage inter
chaîne J ′/J et différentes approches : champ moyen analytique (Analytic) et
numérique, basé sur le groupe de renormalisation de la matrice densité réduite
(DMRG+MF), ondes de spin (spin-wave) et Monte Carlo quantique (QMC).

approximatives et prendre en compte exactement le couplage inter chaîne J ′, nous
avons utilisé du Monte Carlo quantique [198,225] en s’assurant d’échantillonner l’état
fondamental, en se positionnant à très basse température. Par ailleurs, le paramètre
d’ordre a été calculé pour différentes tailles de systèmes et une valeur dans la limite
d’un système infini a été extrapolée. Les résultats sont affichés dans la figure 2. On
remarque que la valeur du paramètre d’ordre du Monte Carlo est toujours plus petite
que celle donnée par le champ moyen : cette approximation a tendance à surestimer
l’ordre du fait des fluctuations quantiques négligées.

Par le biais d’une approximation classique (d’autres ont été développées dans le
texte principal), nous avons montré que le paramètre d’ordre mAF(T ) d’un système
quasi 2Dmontre une dépendance convexe avec la température dans la limite J ′/J → 0,
contrairement à la forme concave à laquelle on s’attend habituellement pour un
système tridimensionnel.

2. Étude du composé magnétique “DTN” constitué de chaînes
de spins S=1 faiblement couplées

Les propriétés magnétiques du composé “DTN” sont décrites par des degrés
de liberté de spins S = 1, portés par les ions Ni2+, et formant dans l’espace un
réseau tétragonal. Deux atomes de chlore sont présents entre deux ions nickel le
long de l’axe cristallographique c et sont responsables de l’anisotropie spatiale dans
les couplages, comme montré dans la figure 3 (a). Les autres atomes ne jouent pas
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(b)magnon state have been observed in our experiments and
are denoted by squares in Fig. 2 (the resonance C). These
excitations correspond to a single-spin flip from the Sz !
"1 to Sz ! 0 state and are uniformly delocalized over the
entire lattice with a well-defined momentum k. The Sz ! 0
state propagates along the lattice as a free quasiparticle
with hopping J! along the ! direction (! ! fa; b; cg),
which arises from the transverse part of the Heisenberg
interaction. There are also diagonal energy gains of
"2#Jc$ 2Ja% due to the Ising part, and "D due to the
single-ion anisotropy. The diagonal energy cost comes
from the Zeeman interaction g"BH. Then, the single-
magnon excitation dispersion can be calculated exactly:
 

!#k% ! g"BH "D" 2#Jc$ 2Ja%
$ 2#Jc coskz $Ja coskx $Jb cosky%: (2)

The ESR transitions taking place at k ! 0 have the fre-
quency !C ! g"BH "D. The best fit of the ESR data
denoted by squares in Fig. 2 reveals D ! 8:9 K for the
anisotropy constant. From the exact expression for Hc2,
given as [17]

 Hc2 !
1

g"B

!
D$ 4

X
#
J#

"
; (3)

and using Hc2 ! 12:6 T [16,17], we obtain
P

#J# ! Jc$
2Ja ! 2:557 K. The zero-field dispersion of magnetic ex-
citations calculated using neutron-scattering data [17]
yields Ja=Jc ! 0:082. Thus, in addition to the anisotropy
constant D ! 8:9 K, all three exchange parameters, Jc !
2:2 K and Ja ! Jb ! 0:18 K, can be calculated quite
precisely.

The phase boundary (obtained from magnetocaloric-
effect measurements) and the field dependence of the
magnetization at T ! 16 mK were computed for the ob-
tained set of parameters by means of a quantum
Monte Carlo simulations for a finite lattice of L3 sites, L !
16. Figure 3 shows a very good agreement between the
calculated (solid symbols) and experimental (open sym-
bols) data.

In addition to ordinary single-magnon states and two-
magnon continuum, the theory [9] predicts the existence of
two-magnon bound states (sometimes referred to as single-
ion bound states [5]). The physical picture of the two-
magnon bound-state excitations corresponds to a double-
spin-flip transition from Sz ! "1 to Sz ! $1. The trans-
verse part of the Heisenberg term of H mixes this state
with the one that has a pair of Sz ! 0 states. Since the
diagonal energy difference between these two states, 2D, is
much bigger than Jc and Ja (associated with hopping in the
c and a directions), the distance between the two Sz ! 0
sites remains finite, giving rise to a two-magnon bound
state. The two-magnon bound states appear to be a specific
feature of anisotropic spin-1 Heisenberg systems. It is
worth mentioning that the two-magnon bound states were
already predicted in 1970 by Silberglitt and Torrance [5]

for Heisenberg ferromagnets with single-ion anisotropy.
Later on, this subject attracted a great deal of attention
due to its potential relevance to the intrinsic localized spin
modes in anisotropic ferromagnets [22] and antiferromag-
nets [23]. It was suggested [9] that the two-magnon bound
states should make a distinct contribution to the excitation
spectrum of S ! 1 large-D AFM chains above the upper
critical field Hc2 and that their effect can be unambiguously
identified by ESR measurements. A signature of two-
magnon bound states was obtained by means of high-field
ESR in the spin-1 chain compound Ni#C2H8N2%2Ni#CN%4
(known as NENC) [24]. A broad absorption was detected
in the high-field spin-polarized phase. Based on analysis of
the temperature dependence of the ESR intensity, this
feature was interpreted as transitions from the single-
magnon to two-magnon bound states.

Here we report on the first observation of transitions
from the ground state to two-magnon bound state in a spin-
1 AFM chain system with strong easy-plane anisotropy in
the high-field FSP phase. The corresponding excitations
are denoted by triangles in Fig. 2 (bottom) [the resonance
E, Fig. 2 (top)]. The frequency-field dependence of the
ground-state two-magnon bound-state excitations can be
calculated exactly using the set of parameters obtained as
described above. Results of corresponding calculations are
shown in Fig. 2 (bottom) by line E. One more resonance
absorption was observed at higher temperatures (which
indicates transitions within excited states). The corre-
sponding data obtained at T ! 4:3 K are denoted in
Fig. 2 (bottom) by stars. This ESR mode corresponds to
transitions from single-magnon to two-magnon bound
states [Fig. 1 (right)], which occur at k ! 0. The
frequency-field dependence of these transitions can be
calculated, using the expression !F ! !E "!C (where
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Figure 3: (a) Structure cristallographique du composé DTN. Les spins S = 1
sont portés par les ions Ni2+ (ronds rouges) et les atomes de chlores (ronds
bleus) rendent le composé spatialement anisotrope (structure tétragonale). (b)
Diagramme des phases température/champ magnétique, avec la détermination
d’une phase ordonnée antiferromagnétique XY, sous le dôme, obtenue par
des mesures magnétocaloriques (carrés ouverts). La courbe d’aimantation
à T = 16 mK (cercles ouverts) est également montrée. Les résultats de
simulations par Monte Carlo quantique concernant la température critique et
l’aimantation sont représentés par les carrés et cercles pleins respectivement.
Figure adaptée de la référence 163.

un rôle important en ce qui concerne la description des propriétés magnétiques et
ne sont pas considérés. Les spins S = 1 interagissent au travers du Hamiltonien
suivant [163, 230],

H =
∑
i

{∑
m

[
JSi,m · Si+1,m +D

(
Sz
i,m

)2 − gµBHS
z
i,m

]
+
∑
〈m,n〉

J⊥Si,m · Si,n

}
, (6)

où le premier indice de l’opérateur de spin correspond à la position du spin sur
la chaîne à laquelle il appartient, elle-même étiquetée par le second indice. Le
symbole 〈·〉 dans la dernière somme la restreint aux chaînes voisines. Les interactions
d’échange entre spins sont de type Heisenberg, avec un couplage J = 2.2 K le long
de la direction des chaînes et J⊥ = 0.18 K dans les directions transverses. Par
ailleurs, chaque spin ressent une anisotropie de spin décrite par D = 8.9 K. Un
champ magnétique externe H couplé aux spins est appliqué dans la même direction
que l’anisotropie D de telle sorte que le Hamiltonien conserve sa symétrie U(1). Le
facteur gyromagnétique prend la valeur g = 2.31. C’est assez inhabituel pour noter
que toutes les échelles d’énergie sont connues exactement pour ce composé, le champ
magnétique appliqué étant alors le seul paramètre ajustable.

Le diagramme des phases de ce matériau est affiché dans la figure 3 (b). À basse
température, dans la limite H → +∞, le composé est dans un état ferromagnétique
trivial, avec tous ses spins alignés le long de la direction du champ magnétique externe
|↑↑ · · · ↑〉. En réduisant l’intensité du champ magnétique, la phase ferromagnétique
va subister jusqu’à ce que le premier spin se retourne pour aller d’un état |↑〉 à |0〉.
Plus précisément, cela se passera lorsque l’énergie de l’état avec un spin retourné sera
plus petite que celle de l’état entièrement polarisé. La valeur du champ magnétique
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pour laquelle cela se produit définit un point critique quantique, nommé Hc2 dont la
valeur peut être exactement déterminée,

Hc2 = (D + 4J + 8J⊥)/gµB = 12.3 T. (7)

Dans l’autre limite, pour H = 0, l’état fondamental du système est dans une phase
de type grand-D [235], différente d’une phase de type Haldane. En effet, D/J ' 4
dans DTN, qui est plus grand que la valeur critique Dc/J = 0.968 [236], au-delà de
laquelle le fondamental est dans une phase paramagnétique triviale (la phase grand
D), séparée en énergie du premier état excité par une bande d’énergie interdite.
C’est seulement en dessous de ce point critique, que le système subit une transition
de phase vers une phase topologique de type Haldane. Dans cette phase grand D,
l’état fondamental correspond à un état “habillé” où tous les spins vont avoir leur
composante z selon |00 · · · 0〉 pour minimiser l’énergie. Il est évident que la première
excitation d’un tel état ne peut être associé qu’au retournement d’un spin, ce qui
arrivera inévitablement en appliquant un champ magnétique suffisamment élevé,
H ≥ Hc1. La valeur de Hc1, un deuxième point critique quantique peut être obtenue
en théorie des perturbations [237],

Hc1 =

[
D − 2J − J2

D
+

J3

2D2
+O

(
J4

D5

)
− 4J⊥

]
/gµB = 2.1 T. (8)

La région intermédiaire entre Hc1 et Hc2 correspond à une phase ordonnée XY
(ordre antiferromagnétique) qui subsiste à température finie, en deçà de Tc, et brise
spontanément la symétrie U(1) du système. La présence d’une bande d’énergie
interdite dans le spectre en énergie des phases grand D et ferromagnétique est
caractérisée par les plateaux d’aimantation affichés dans la figure 3 (b) pour H 6∈
[Hc1, Hc2].

Du côté expérimental, ce travail contient les premières mesures de la valeur absolue
(sans aucun ajustement) du paramètre d’ordre à basse température (T = 0.12 K).
Du côté théorique, l’idée principale est de vérifier l’applicabilité et la précision d’une
description basée sur le liquide de Tomonaga-Luttinger pour capturer les propriétés de
la phase ordonnée XY, comme sa température critique et son paramètre d’ordre. La
description liquide de Tomonaga-Luttinger étant pour des systèmes unidimensionnels,
le couplage 3D est traité de manière champ moyen au travers de l’approximation de
la phase aléatoire pour la température critique et le modèle de sine-Gordon pour le
paramètre d’ordre. Ces approches nécessitent la connaissance a priori des paramètres
A0, K and u du liquide de Tomonaga-Luttinger. Des expressions analytiques de ces
paramètres en fonction des paramètres microscopiques du modèle existent pour des
chaînes XXZ de spins S = 1/2 grâce à l’ansatz de Bethe, mais pas pour le modèle
spécifique de DTN sous champ. Une grande partie du travail consiste donc à les
déterminer par le biais de simulations numériques. Notamment, ils apparaissent
dans des quantités physiques comme la susceptibilité magnétique, χ = K/uπ ou les
fonctions de corrélations à deux corps, 〈S±

i S
∓
i+r〉 ∼ (−1)rA0/|r|

1
2K , qui peuvent être

calculées par le biais du groupe de renormalisation de la matrice densité réduite puis
fittés ensuite.

Tout d’abord, les mesures expérimentales de la température critique et du
paramètre d’ordre mAF sont comparées à des simulations de Monte Carlo quan-
tique. Comme montré dans la figure 4, les estimations Monte Carlo sont en parfait
accord avec les données expérimentales. Pour un système quasi unidimensionnel, une
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FIG. 1. Evolution of 14N NMR spectrum when entering the BEC
phase in DTN at T = 0.12 K. In the spectrum taken at Hc2 = 12.32 T
(bottom), the contributions from the two crystallographic sites,
orange-colored N(2) and gray-colored N(1), are clearly separated,
and the quadrupolar splittings, indicated by blue horizontal lines, are
easy to identify. Within the ordered phase, at 12.22 and 11.27 T, the
AF order splits each line into four, as shown on the lowest frequency
N(2) line by the dotted curves. Orange-gray hatching denotes the
region where the N(2) and N(1) lines overlap.

and (3) we also determined the sample magnetization at
Tc and thus the critical boson density, complementing the
already existing data close to Hc1 [25]. The complete set
of experimental data is accurately reproduced by numerical
quantum Monte Carlo (QMC) simulations for the standard
3D S = 1 model of Eq. (1). This method is computationally
quite demanding, but provides a reliable basis to discuss the
validity of simpler (approximate) analytical predictions, within
either TLL theory or a mean-field Hartree-Fock-Popov (HFP)
description [14]. Unlike in the previously studied spin ladders,
where the 3D (interladder) couplings were taken as a free
adjustable parameter to fit the experimental Tc values, in DTN
these couplings have been determined independently [8,10],
making the theoretical description fully constrained and able
to predict the absolute values of observables.

Experiments were performed on a DTN single crystal of
dimensions ∼2 × 2 × 3 mm3, placed inside the mixing cham-
ber of a dilution refrigerator, by NMR of proton 1H (nuclear
spin I = 1/2) and nitrogen 14N (I = 1) nuclei. The local
magnetization (spin polarization) of magnetic (Ni2+) ions,
polarized by the applied magnetic field H , is “seen” by NMR
nuclei as an additional local field δH and the corresponding
NMR frequency f = γµ0|H + δH |/(2π ), where γ is the
gyromagnetic factor [26,27]. The observed asymmetric line
shape of each individual line in the NMR spectrum (Fig. 1)
is well explained by the inhomogeneity of the demagnetizing
field over the sample volume [28]. 14N nuclei, in addition,
experience the so-called quadrupolar coupling to the local
electric field gradient (EFG) tensor [26,27] which strongly
splits each NMR line in two (Fig. 1). This splitting has
dramatic variations when the sample is rotated, thus allowing

FIG. 2. The order parameter (S⊥) in the BEC phase of DTN at
T = 0.12 K determined by NMR (circles) and by QMC simulations
(crosses). NMR points are overlapped by neutron diffraction data
from Ref. [10] downscaled by −25% (squares). The orange solid
line and dashed-dotted black curve are the T = 0 prediction by
DMRG+MF and by TLL+MF, respectively. The inset shows a zoom
close to Hc2.

precise in situ determination of the complete EFG tensor
and consequently of the sample orientation (for details, see
Ref. [28]). The c axis of the sample was here tilted by θ = 3.1◦

from the field direction. In order to determine the (nearly)
zero-temperature value of the order parameter in the BEC
phase, nitrogen spectra were recorded at T = 0.12 K, a tem-
perature ten times lower than the maximum Tc, T max

c = 1.2 K,
and at different magnetic fields 9 T < H < Hc2 (Fig. 2). Two
different 14N signals are observed in the NMR spectrum,
attributed to the two nitrogen crystallographic sites N(1) and
N(2) [28–30]. On entering the BEC phase, one can observe
that the relative intensity of the N(2) lines is decreasing,
which is just an artifact of the measurement sequence (effect
of the “T1” relaxation) [31]. More importantly, a transverse
spin component S⊥ appears, corresponding to the BEC order
parameter. Since S⊥ is AF ordered, it creates a staggered local
field at the nuclei, which results in a splitting of each NMR
line. In canonical systems, AF order induces a doubling of
the unit cell, which results in a splitting of each line into two,
since the local field takes only two possible values. This is seen
in previous NMR studies [18,20]. The situation is somewhat
more complex in DTN, which has a body-centered tetragonal
(BCT) lattice, corresponding to two interpenetrating tetragonal
subsystems shifted by half of the tetragonal unit cell [29].
As a result, each NMR line splits into 2 × 2 = 4 lines when
entering an AF ordered phase (see Supplemental Material
(SM) [30]). This line splitting is very difficult to follow in
the proton spectra (not shown), because they comprise many
overlapping lines, but can be successfully tracked in 14N
spectra. Indeed, as soon as H is slightly misaligned from
the c axis of tetragonal symmetry, 14N NMR lines are well
separated by the quadrupolar effects (Fig. 1), so that the overlap
of lines remains tractable.

To convert the observed line splitting into an order param-
eter, the main issue is to infer hyperfine tensors A relating the
spin polarization S⊥ to the observed δH . For a homogeneous
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FIG. 3. NMR data (red circles) for (a) Tc and (b) the critical
boson density nc at Tc (see the text) are compared with theoretical
predictions: QMC data points are shown as crosses, HFP predictions
are given by the dotted and solid lines (for the parabolic and true
magnon dispersion, respectively), and the TLL prediction for Tc

[Eq. (4), with k = 0.67] by the dash-dotted line (see the text). In (a)
squares correspond to the magnetocaloric effect data from Ref. [7]
(with the field values downscaled by −2.3% to overlap the slightly
different Hc2 values). The lower inset in (b) explains the determination
of the H(2) line-shift frequency (right scale in the main panel) that
measures nc. Other insets are zooms close to Hc2.

for S⊥ in Fig. 2). Tc can also be described by the analytical
TLL-based expression [17,18]
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where B(X,Y ) = "(X)"(Y )/"(X + Y ), except very close to
Hc2 where the TLL description fails [16]. Here we have
explicitly included a renormalization parameter k to take
into account the effects of spin fluctuations beyond the MF
treatment of interchain interaction. This was first discussed
analytically for the Heisenberg spin chain in zero field in
Ref. [37] and then precisely verified numerically in Ref. [38],
where k = 0.695 was obtained. A slightly different value,
k = 0.74 was successfully applied in describing Tc(H ) of

the BPCB compound [17,39], while for our DTN data we
find k = 0.67(2), pointing to a quite universal value of this
correction.

Close to Hc2 one expects that the 3D description of
the HFP model, describing the low boson density limit, is
valid. Using the low-energy quadratic approximation for the
magnon dispersion [14], this model provides the canonical
shape of the phase boundary, Tc(H ) ∝ (Hc2 − H )2/3, which
is well observed by our NMR data, in contrast to previous
reports [24]. (From a nonlinear power-law fit the exponent
value is 0.72 ± 0.04.) To better access higher temperature,
one can improve the model by taking the exact, numerically
calculated dispersion of magnons (as in Ref. [40]), which
indeed fits the data slightly better. In both cases, the interaction
parameter U3D = gcµB(Hc2 − H )/(2kBnc) was fitted to adapt
the Tc(H ) data points below 0.25 K. The obtained values,
U3D = 4.1 and 3.7 K, are perfectly consistent with the initial
slope of the measured nc(H ) dependence shown in Fig. 3(b),
confirming the validity of the HFP model. We remark that
close to Hc1 a higher value, U3D = 7.2 K, was reported [25],
which should be attributed to the renormalization described
in Ref. [41]. In Fig. 3(a) we also see that the HFP model
in both variants clearly fails above 0.3 K, corresponding to
nc

∼= 4%. We have verified that this cannot be compensated by
taking the renormalized field-dependent U3D value from the
observed nc(H ) dependence, meaning that above nc

∼= 4% the
interactions modify the effective density of states as compared
to its noninteracting value.

To conclude, by NMR we investigated static properties of
the high-field part of the BEC phase in the quasi-1D quantum
magnet DTN, and analyzed the data using several theoretical
approaches. QMC numerical simulations for a standard spin-1
model provide excellent fit to the data, and we used them as
a reference to discuss the applicability of other approximate
techniques and their sensitivity to the strength of 3D coupling.
For a moderately 1D system such as DTN (Jc/Jab

∼= 12) we
find that analytical TLL-based predictions are still very good
for Tc (when the renormalization of MF interaction is taken into
account) but insufficient for the order parameter S⊥. For S⊥,
DMRG+MF turns out to be precise, and does not require any
renormalization. The HFP description is found to be valid only
very close to Hc2, for the critical boson densities below 4%.
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I. QUANTUM MONTE CARLO SIMULATIONS

Throughout the paper we use quantum Monte
Carlo (QMC) stochastic series expansion (SSE)
algorithm.1,2 We work with finite size systems counting
N = L⇥ L/8⇥ L/8 spins where L is the number of
consecutive S = 1 spins along the chains (c) direction.
In order to adapt the simulation to the 1D character of
the Hamiltonian, only L/8 spins are then taken in each
transverse (a and b) directions, meaning an aspect ratio
of 1/8.

A. Transverse order parameter

To reliably extract the order parameter S? at the ther-
modynamic limit, we performed simulations for di↵erent
system sizes, up to L = 128, and did various linear and
quadratic fits of the transverse structure factor

(S?)
2 =

1

2N2

X

i,j

e
iq·(ri�rj)hS+

i S
�
j + S

�
i S

+
j i (S-1)

at q = (⇡,⇡,⇡) as a function of 1/N
1
3 (Fig. S-1), which

allows to extrapolate the value to the thermodynamic
limit (N ! 1). The summation in Eq. (S-1) is over all
possible sites i and j of the lattice. The values of the
order parameter given in Fig. 2 of the main manuscript
correspond to the square root of the mean value coming
from the various extrapolations of (S?)2, while the error
bars correspond to the standard deviation of these ex-
trapolations around their mean value. Thus they do not
directly reflect the QMC errors even though they have
been taken into account when performing the fits.

B. Critical temperature

The critical temperature was numerically determined
using QMC through the crossing of the spin sti↵ness ⇢

times L for various sizes up to L = 160. Indeed, at the
critical point one expects a scaling ansatz for ⇢ which only
depends on the dimensionality (d = 3 in the case of DTN)
such that ⇢L ⇠ constant (Fig. S-2). More precisely, the
estimated values of Tc(H) given in Fig. 3, as well as their
error bars, are determined performing Bayesian scaling
analysis3,4 of the spin sti↵ness data.

FIG. S-1. Two examples, at di↵erent magnetic fields, for the
extrapolation of the order parameter to the thermodynamic
limit. Various linear and quadratic fits (solid lines) are per-
formed taking into account a varying number of QMC data
points (circles). SSE simulations are performed for the DTN
model at T = 0.12 K.

FIG. S-2. Two examples, at di↵erent magnetic fields, of the
crossing of the spin sti↵ness ⇢ times the system size L to
determine the critical temperature.
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Figure 4: (a) Paramètre d’ordre de la phase ordonnée du composé DTN à
T = 0.12 K déterminé par RMN (cercles), simulations Monte Carlo quantiques
(croix). Les données RMN se superposent avec les données de diffraction de
neutrons tirées de la référence 229 et réduites par un facteur -25% (carrés).
La ligne pleine orange et la ligne pointillée noire sont les prédictions T = 0
du champ moyen numérique et analytique respectivement. L’encart est un
zoom proche de Hc2. (b) Données RMN (cercles rouges) pour la température
critique Tc, comparées aux prédictions théoriques : les simulations Monte Carlo
quantiques sont représentées par les croix et la prédiction analytique basée
sur l’approximation de la phase aléatoire par la ligne pointillée. Les carrés
correspondent aux mesures magnétocaloriques tirées de la référence 230.

seconde approche, numériquement moins coûteuse pour décrire l’ordre à température
nulle est de prendre en compte le couplage 3D dans une approximation champ moyen
en négligeant des fluctuations quantiques. Cette méthode, déjà utilisée pour le travail
présenté précédemment, ramène le problème tridimensionnel à celui d’une chaîne
unique dans un champ magnétique effectif avec une composante transverse alterné en
raison de l’ordre antiferromagnétique XY. Ce modèle est ensuite résolu numérique-
ment de façon auto-cohérente en utilisant l’algorithme du groupe de renormalisation
de la matrice densité réduite. Le résultat est affiché dans la figure 4 (a), et est très
proche des résultats Monte Carlo à T = 0.12 K. La surestimation du paramètre
d’ordre mAF d’environ 3% est en partie due à la différence de température entre les
différentes approches. L’approche champ moyen analytique dévie considérablement
des résultats numériques, notamment proche du champ critique Hc2 alors que les deux
résultats devraient être identiques dans la limite J⊥/J � 1. Apparemment, la valeur
J⊥/J ' 0.08 du matériau DTN n’est pas suffisamment petite pour considérer le
composé comme fait de chaînes faiblement couplées, en particulier quand le couplage
inter chaîne total 4J⊥ devient plus grand que l’échelle d’énergie à l’intérieur des
chaîne, u, proche du point critique Hc2. Cette observation est à mettre en parallèle de
composés similaires “plus unidimensionnels”, comme (C5H12N)2CuBr4 où l’approche
analytique pour le calcul du paramètre d’ordre était en très bon accord [166, 210]
avec des approches plus exactes. La température critique peut aussi être décrite
par une expression analytique basée sur l’approximation de la phase aléatoire de la
susceptibilité d’une chaîne unique. Ce résultat est montré dans la figure 4 (b). Ici,
nous avons explicitement inclus un paramètre de renormalisation α pour prendre
en compte des effets de fluctuations de spins au-delà du traitement champ moyen
de l’interaction inter chaînes, J⊥ → αJ⊥. Cette renormalisation a été discutée dans
des travaux antérieurs, aussi bien analytiques 245 que numériques 246 où α = 0.695
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fut obtenu. Une valeur légèrement différente α = 0.74 a été appliquée pour le
composé (C5H12N)2CuBr4 [167, 210], alors que dans notre cas, pour DTN, on trouve
α = 0.67(2). Cela pointe vers une valeur universelle de ce paramètre. Pour une
valeur de champ magnétique donnée, la valeur de α a été déterminée de telle sorte
que TMont. Carl.

c (H) = TCh. moy.
c (H).

II. Propriétés dynamiques d’aimants quantiques

Le calcul de quantités dépendantes du temps, ou bien la réponse d’un système
quantique au cours du temps à une perturbation initiale, constituent des problèmes
très difficiles dans tous les champs de la physique, et notamment en théorie de
la matière condensée. Il est cependant essentiel de comprendre ces effets sachant
qu’ils se rapportent à des sondes expérimentales impliquées dans l’étude de systèmes
quantiques. En particulier, je m’intéresserai dans cette partie aux fonctions spectrales
mesurées dans des expériences de diffusion inélastique de neutrons [247,248] ainsi
qu’au taux de relaxation spin-réseau RMN [249–251]. Ils sont tous les deux des
outils expérimentaux standards dans la communauté de la matière condensée pour
étudier les sytèmes magnétiques quantiques. Ces quantités peuvent être reliées à des
fonctions de corrélation dépendantes du temps comme

Sµυ
q (t) = 〈Sµ

−q(t)S
υ
q(0)〉 − 〈Sµ

−q(t)〉〈Sυ
q(0)〉, (9)

où 〈〉 correspond à la moyenne à température finie, Sr(t) = e−iHtSreiHt est l’opérateur
de spin dépendant du temps dans la représentation de Heisenberg et l’index µ, υ ∈
[x, y, z,+,−] est la composante du spin. L’opérateur de spin dans l’espace des
q est relié par une transformée de Fourier discrète à l’espace réel par Sµ

q(t) =∑
r eiq·rSµ

r (t)/
√
N où N est le nombre total de spins dans le système. En fonction

de la dimension D du système, les vecteurs r et q sont D-dimensionnels et les
composantes du vecteur d’onde sont ∈] − π, π] (le pas du réseau étant pris égal à
l’unité). La transformée de Fourier pour passer du temps t à la fréquence ω donne le
facteur de structure dynamique, aussi connu sous le nom de fonction spectrale,

Sµυ
q (ω) =

∫ +∞

−∞
dt eiωtSµυ

q (t), (10)

qui est la quantité principale ici, directement reliée aux expériences. Pour un
Hamiltonien avec une symétrie U(1) où l’anisotropie est selon la composante de spin
z, l’intensité de diffusion peut être séparée en deux parties, une longitudinale et
l’autre transverse, I = I‖ + I⊥,

I‖ = Szz
q (ω), and I⊥ =

1

2

[
S+−

q (ω) + S−+
q (ω)

]
. (11)

Il en va de même pour le taux de relaxation RMN,

1

T1
=

1

T⊥
1

+
1

T
‖
1

, (12)
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dont les composantes sont reliées aux fonctions de corrélation suivantes,

1

T
‖
1

= Szz
r=0(ω0), and 1

T⊥
1

=
1

2

[
S+−

r=0(ω0) + S−+
r=0(ω0)

]
. (13)

où ω0 correspond à la fréquence RMN, dont il est souvent théoriquement justifié de
la considérer comme nulle étant donné qu’elle est de l’ordre de quelques dizaines ou
centaines de MHz, correspondant à des températures de l’ordre du mK, la rendant
de ce fait la plus petite échelle d’énergie du problème.

Une nouvelle fois, il est question dans cette partie de l’effet de la dimension. Pour
un arrangement tridimensionnel de chaînes faiblement couplées, avec un couplage J le
long des chaînes et J⊥ � J dans les directions transverses, on s’attend à l’émergence
d’un régime tridimensionnel pour T . J⊥, avec la mise en place d’un ordre à longue
distance. Cependant, à plus haute température, ce système devrait montrer des
signatures de la physique unidimensionnelle, approximativement dans la fenêtre
J⊥ � T � J . Ce régime 1D a été identifié dans plusieurs composés au travers de
quantités thermodynamiques. Par exemple, la chaleur spécifique du matériau quasi
unidimensionnel BaCo2V2O8, fait de chaînes de spins S = 1/2 [79] et du matériau
organique (C5H12N)2CuBr4 [80] ont montré une réponse linéaire avec la température
∝ T , comme attendu pour un système purement unidimensionnel. Un autre cas
intéressant concerne les corrections logarithmiques prédites par Eggert et al. [75]
pour la susceptibilité magnétique de chaînes Heisenberg de spins S = 1/2, et qui
ont été observées dans l’oxyde de cuivre Sr2CuO3 [76–78]. La question principale
que l’on souhaite se poser ici concerne la signature de physique unidimensionnelle,
au-dessus de Tc, et en particulier quelle est la fenêtre de température dans laquelle
le régime universel du liquide de Tomonaga-Luttinger est attendu ? Comme vu
dans le composé fait d’échelles (C5H12N)2CuBr4 [80], le régime 1D basé sur des
mesures magnétocaloriques n’est pas distinctement défini. On peut donc se demander
comment un tel régime se manifeste dans des quantités dynamiques, en étudiant
des systèmes quasi unidimensionnels magnétiques en fonction de la température.
L’idée principale développée par la suite est de définir une fenêtre de température à
l’intérieur de laquelle les propriétés universelles unidimensionnelles sont visibles et
expérimentalement accessibles. Cette fenêtre est définie à basse température pour
que les propriétés quantiques émergent, mais pas à trop basse température non plus
étant donné que l’on ne veut pas s’approcher de la transition qui mènerait à une
mise en ordre qui masquerait le physique 1D. On cherche donc précisément à définir
ce qu’on entend par basse température, mais pas trop basse non plus.

1. Temps de relaxation RMN dans des chaînes de spins

Adapté de Phys. Rev. B 94, 144409 (2016)
Maxime Dupont, Sylvain Capponi, and Nicolas Laflorencie

Les liquides de Tomonaga-Luttinger sont des systèmes aux propriétés curieuses.
Dans la limite de basse température, on s’attend à ce que leur taux de relaxation
RMN diverge avec la température en suivant une loi de puissance [147] et dont
l’exposant est fonction du paramètre K caractérisant le liquide. Ce premier travail
vise à définir proprement ce qu’est cette “limite de basse température” entre un
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FIG. 3. (color online) Transverse relaxation rate 1/T?
1

vs. reduced temperature T/J for the spin-1/2 XXZ
chain at various � and h = 0 obtained numerically us-
ing MPS techniques (circles, from top to bottom: � =
�0.8, �0.6, �0.5, �0.4, �0.2, 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1).
Numerics are compared to TLL theory Eq. (2.12) at low
temperature (thick lines) for |�| < 1, and with Eq. (4.2) for
the SU(2) Heisenberg point � = 1. The thin lines between
the circles are guides to the eyes.

1/T?

1 with temperature only when � & 0 (which cor-
responds to repulsive or vanishing interactions in the
fermionic language).

As a last comment, we have observed that for infinite
temperature (� = 0), the value of 1/T?

1 does not depend
on the sign of �, which is expected since the many-body
spectrum of H� is an odd function of �. Its value is min-
imum for � = 0 with 1/T?

1 =
p
⇡/(2J)70 and increases

with |�|. At the isotropic point |�| = 1 we expect the
relaxation rate to diverge due to the di↵usion-like behav-
ior62,63 of the dynamical correlation function. Our re-
sults at infinite-T go beyond Baker-Campbell-Hausdor↵
expansion developed up to O(t2) in Ref. 71 to com-
pute hS±

j (t)S⌥

j (0)i at short times, which would suggest

1/T?

1 ⇠ J
�1(1+�2)�

1
2 . This prediction is in contrast to

what we found, namely the transverse relaxation rate in-
creasing with |�|. Indeed, while such an expansion finds
the correct gaussian behavior for � = 0 (free-fermions),
higher-order terms have to be taken into account for
|�| > 0 where the transverse dynamical correlation func-
tion at longer times gets larger when increasing |�|.

2. Gapped XXZ chain

We then set the anisotropy value to � = 0.5 and apply
a magnetic field to move into the gapped phase. Trans-

verse and longitudinal relaxation rates 1/T?,k
1 are plot-

ted in Fig. 4 where we observe an excellent agreement

FIG. 4. (color online) Transverse and longitudinal relax-

ation rates 1/T?,k
1 plotted against reduced inverse temper-

ature �J for the spin-1/2 XXZ chain in its gapped phase
for the anisotropy � = 0.5. The critical magnetic field is
hc = 3J/2gµB and the value of the gap �g = gµB (h� hc).
Numerical results are obtained using MPS techniques (cir-
cles and diamonds) and the exponentially decaying behavior
is verified with the straight lines set with the expected gap
value 1/T?,k

1 = c?,k · e���g and c?,k a non-universal free
parameter.

with an exponentially activated behavior ⇠ exp(���g),
where �g is the spin gap. We notice that as the gap gets
smaller, the lower the temperature has to be to observe
the exponential law.

C. DTN

We now move to the DTN compound in its 1d limit
described by Eq. (2.2). We compute the relaxation rates
for various values of the magnetic field h, mainly close to
hc2 which is relevant for NMR experiments21. It is a more
challenging system to simulate than the XXZ model as
it is made of spins S = 1 (enlarged local Hilbert space).
The simulations were performed on open chains of size
L = 64 with a cuto↵ of " = 10�10 in the singular values.
We kept a maximal number of D = 150 states. A fourth
order Trotter decomposition was used with a Trotter step
of ⌧ = 0.02.
Numerical results, shown in Fig. 5, compare extremely

well with TLL prediction at low temperature. Inter-
estingly, the TLL power-law behavior starts at slightly
higher temperature, as compared to the XXZ model,
T ' 0.5K (T/J ⇠ 0.2), especially as we approach the
middle of the TLL phase, away from the critical field
hc2. We point out that there are again no adjustable co-
e�cients, the TLL parameters being computed indepen-
dently using standard DMRG72. The tiny di↵erence that
appears at low temperature between numerical data and

Figure 5: Composante transverse du taux de relaxation RMN, 1/T⊥
1 , en

fonction de la température réduite T/J pour des chaînes XXZ de spins S = 1/2
à différentes valeurs de l’anisotropie ∆ à champ magnétique nul. Les résul-
tats numériques utilisant une méthode basée sur le groupe de renormalisa-
tion de la matrice densité sont représentés par les cercles (de haut en bas:
∆ = −0.8, −0.6, −0.5, −0.4, −0.2, 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1). Ces résul-
tats numériques sont comparés aux prédictions analytiques de la théorie du
liquide de Tomonaga-Luttinger à basse température (traits épais). Les traits
fins entre les cercles sont des guides pour les yeux.

régime non universel à haute température et le régime universel unidimensionnel à
basse température. Pour ce faire, on étudie des chaînes de spins S = 1/2 de type
XXZ avec une anisotropie Ising ∆ ∈ (−1, 1], mais aussi un système un peu plus
réaliste, correspondant à une chaîne unique du matériau DTN sous champ, comme
discuté dans la partie précédente.

Chaînes XXZ isolées Comme montré dans la figure 5, on observe un excellent
accord entre les estimations numériques et les prédictions analytiques à suffisamment
basse température. Ce régime asymptotique avec une loi de puissance caractéristique,
∝ T 1/2K−1, n’apparaît seulement qu’en dessous de T/J ∼ 0.1 − 0.2 suivant la
valeur de l’anisotropie ∆. Il est intéressant de noter qu’en réalité, dans l’expression
analytique, il n’y a pas de paramètre ajustable libre. Tout dépend, de façon connue,
des paramètres du liquide Tomonaga-Luttinger. À température infinie, on observe
que la valeur de 1/T⊥

1 ne dépend pas du signe de ∆, ce à quoi on s’attend du fait que
le spectre du Hamiltonien H(∆) décrivant le système est une fonction impaire de ∆.
Sa valeur est minimum pour ∆ = 0, et vaut exactement 1/T⊥

1 =
√
π/2J [330], puis

augmente avec |∆|. À haute température, et au point |∆| = 1, on s’attend à ce que
le taux de relaxation RMN diverge du fait d’un phénomène de diffusion se mettant
en place dans la dynamique des fonctions de corrélations [327, 328]. Nos résultats à
température infinie vont au-delà du développement de Baker-Campbell-Hausdorff,
utilisé jusqu’à l’ordre O(t2) dans la référence 331 pour calculer 〈S±

j (t)S
∓
j (0)〉 aux
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FIG. 5. (color online) Transverse relaxation rate 1/T?
1 plot-

ted vs. temperature T for the spin-1 DTN chain obtained
numerically using MPS techniques (circles). The low temper-
ature behavior is compared to TLL prediction (straight lines).
The magnetic field h is given in Tesla. The inset compares
TLL prediction and numerical results for T = 0.4K and cov-
ers the whole TLL phase from hc1 to hc2. The lower panel is
a zoom on the low temperature asymptotic power-law regime.

TLL is due to the limited number of states m kept when
performing calculations. Though this does not dispute
the TLL prediction, it reveals the challenge in such time-
dependent simulations. The inset in Fig. 5 shows the
transverse relaxation rate at T = 0.4K for various val-
ues of the magnetic field covering the whole range from
hc1 to hc2. Once more, there is a very good agreement
between numerics and TLL theory except when one gets
close to the critical fields. Indeed, as we clearly see in
the lower panel of Fig. 5 for h = 11.0T, the power law
is not met yet for the lowest temperature we could reach
T = 0.2K.

The non-monotonic behavior of 1/T?

1 observed in the
XXZ model is absent for the DTN and may seem odd
at first place since it can be mapped e↵ectively onto a
S = 1/2 XXZ chain with � = 0.5 or 0.36 and could thus
be compared with Fig. 3. However this non-monotonic
variation is observed at high temperature while this map-
ping is only justified in the low-energy limit as discussed
in IIA 2.

One can also try to compare the relaxation rates of
Fig. 5 with the NMR data for the DTN compound
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1
/T

?
,k

1

1/T?
1

1/Tk
1

mz ' 0.85 h1d = 11.0T h3d = 11.47T

TN ' 0.59K
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1

FIG. 6. (color online) Longitudinal 1/T k
1 and transverse 1/T?

1

relaxation rates for the DTN spin-1 chain at h = 11.0T, cor-
responding to mz ' 0.85. As 1/T k

1 cannot be estimated for
sure, we only provide a lower bound. The non-monotonic
behavior observed experimentally at high T in Ref 21 ap-
parently comes from the large contribution of 1/T k

1 at high
temperature. Experimental data for DTN21 at the same mag-
netization are shown for comparison, after a proper rescaling
in order to match the low-T regime. The 3d BEC transition
temperature TN (mz ' 0.85) ' 0.59 K36 is also shown.

given in Ref 21. What draws our attention is the non-
monotonic regime of 1/T?

1 observed at high temperature
experimentally, which, as we have just discussed, is not
theoretically predicted for a single DTN chain. Yet it
cannot be attributed to 3d e↵ects as J3d = 0.18 K is
very small compared to the temperature T . We then ob-
served that experiments are performed by proton (1H)

NMR which probes both 1/T?

1 and 1/T k

1 .

We therefore interpret this e↵ect as due to the parallel
contribution of the relaxation rate. We show in Fig. 6

both the transverse and longitudinal 1/T?,k
1 as a function

of temperature. We cannot precisely estimate the value

of 1/T k

1 due to its dependence on !0 (and therefore on
our maximum time in numerical simulations) so that we
give a lower bound. Its high temperature contribution
to the total relaxation rate clearly dominates over the
transverse part and explains well the experimental non-
monotonic regime at high T .

Perhaps more importantly, as displayed in Fig. 6, the
3d BEC ordering observed in DTN26,36 for mz ' 0.85 at
TN ' 0.59K occurs above the asymptotic regime where
the genuine TLL power-law behavior is expected. It is
therefore impossible to directly extract TLL exponents in
DTN, because of interchain e↵ects that eventually lead
to an ordering of the coupled TLLs. Ideally we would
expect for quasi-1d systems the TLL description of the
NMR relaxation to be valid in the following temperature
regime: J1d � T � J3d.

T (K)

H3D = 11.47 TH1D = 11.0 T

Tc ' 0.59 K

Figure 6: Composantes longitudinale 1/T
‖
1 et transverse 1/T⊥

1 du taux de
relaxation RMN pour une chaîne unique représentant le matériau DTN, de
spins S = 1 sous champ magnétique H = 11.0 T, correspondant à une densité
d’aimantation de l’échantillon le long du champ mz ' 0.85. Étant donné que
1/T

‖
1 ne peut être estimé de façon certaine, on ne fournit qu’une estimation

basse ici. Le comportement non monotone observé expérimentalement à haute
température dans la référence 316 provient apparemment de la contribution
large de la composante longitudinale. Les données expérimentales sont tirées de
la référence 316 à la même aimantation que le cas unidimensionnel pour mieux
comparer aux résultats purement 1D numériques. Les résultats expérimen-
taux sont multipliés par un facteur adéquat pour se superposer aux résultats
numériques à basse température. Dans le vrai matériau DTN, qui est tridimen-
sionnel, la transition de phase XY intervenant à Tc(mz ' 0.85) ' 0.59 K est
également affichée (valeur tirée de la référence 174).

temps courts, et qui donnait 1/T⊥
1 ∼ 1/J

√
1 + ∆2. Cette prédiction diffère avec ce

que l’on trouve, notamment le fait que le taux de relaxation augmente avec |∆|. En
effet, ce développement limité prédit le comportement gaussien, correct pour ∆ = 0,
mais des termes d’ordre plus élevés doivent être pris en compte pour |∆| > 0 où les
amplitudes des fonctions de corrélations transverses aux temps longs sont de plus en
plus larges quand |∆| augmente.

Composé unidimensionnel de spins S=1 “DTN” Nous avons également comparé
le taux de relaxation RMN du composé DTN, mesuré expérimentalement dans le
matériau [316] avec celui calculé numériquement pour une chaîne unique. Les résul-
tats sont montrés dans la figure 6. Les deux composantes, transverse et longitudinale
1/T

⊥,‖
1 sont montrées séparément concernant les résultats numériques. On ne peut

pas précisément évaluer la valeur de 1/T
‖
1 en raison de sa dépendance explicite avec

la fréquence RMN ω0 et ne fournissons donc qu’une estimation basse. Ceci est dû
au phénomène de diffusion [327, 328]. Sa contribution à haute température au taux
de relaxation RMN domine clairement sur la transverse et explique pourquoi un

218



régime non monotone est observé expérimentalement à haute température. Peut-
être plus important, la mise en ordre antiferromagnétique XY observée dans le
matériau [174, 230] pour une densité d’aimantation mz ' 0.85 se situe à une tem-
pérature Tc ' 0.59 K. Cette dernière se situe au-dessus du régime asymptotique, où
les propriétés universelles (dépendance en loi de puissance) du liquide te Tomonaga-
Luttinger se manifestent. Il est donc impossible de directement extraire le paramètre
K en ajustant le taux de relaxation dans DTN, du fait des couplages inter chaînes qui
entraînent une mise en ordre. Idéalement, on s’attendrait à ce que pour des composés
quasi unidimensionnels, la description du liquide de Tomonaga-Luttinger pour le taux
de relaxation RMN, soit valide pour un régime de température J � T � J⊥. En
conséquent, il reste expérimentalement difficile d’explorer le régime unidimensionnel
dans des composés quasi unidimensionnels lorsque J est petit et que la mise en
ordre antiferromagnétique empêche la présence d’une fenêtre large en température
pour observer le régime du liquide de Tomonaga-Luttinger. Précisément, pour le
composé DTN, nous avons montré que la température critique de mise en ordre est
plus grande que la température T/J ∼ 0.1, en dessous de laquelle on peut s’attendre
à voir le régime 1D.

2. Réponse dynamique dans des chaînes de spins faiblement
couplées

Adapté de arXiv:1806.04913 (2018)
Maxime Dupont, Sylvain Capponi, Nicolas Laflorencie, and Edmond Orignac

Prolongeant notre travail précédent sur des systèmes purement unidimension-
nels, on s’intéresse maintenant à la question de la réponse dynamique dans des
aimants quantiques faits de chaînes de spins faiblement couplées. En effet, une
interaction résiduelle est toujours présente dans la nature, nous éloignant du monde
unidimensionnel et de ses descriptions. En particulier, nous avons présenté dans ce
travail une étude théorique complète basée à la fois sur des calculs analytiques et
des simulations numériques, nous permettant de décrire le régime de températures
complet du taux de relaxation RMN : de la physique unidimensionnelle du liquide de
Tomonaga-Luttinger au régime tridimensionnel ordonné, et ce, en fonction de la force
du couplage inter chaînes. Ceci est intéressant pour déterminer expérimentalement
le paramètre du liquide de Tomonaga-Luttinger K : comme vu précédemment, on
s’attend à ce que le taux de relaxation RMN diverge de façon algébrique à basse
température comme 1/T1 ∝ T 1/2K−1 [166, 210]. Une première limite de la fenêtre a
pu être posée grâce au travail précédent où dans un système purement unidimension-
nel, la dépendance en loi de puissance est observée à basse température T . J/10
uniquement. Pour un système en trois dimensions, on s’attend à ce que la réponse
dynamique change lorsque l’on s’approche de Tc. Pa exemple, le taux de relaxation
RMN diverge comme 1/T1 ∝ |T − Tc|−ν(zt−1−η), où l’exposant ν(zt − 1− η) > 0 est
caractéristique de la transition de phase. Ces différents régimes pour T > Tc sont
résumés dans la figure 7 (c–e).

La prédiction associée au liquide de Tomonaga-Luttinger est souvent utilisée pour
ajuster expérimentalement les données RMN en fonction de T et ainsi obtenir le
paramètreK, mais une définition quantitative de ce régime en température fait défaut.
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Figure 7: Différents régimes en température pour la composante trans-
verse du taux de relaxation RMN 1/T⊥

1 pour un système antiferromagnétique
anistrope et tridimensionnel, fait de chaînes de spins faiblement couplées avec
une température critique Tc. La force de couplage est J le long des chaînes et
J⊥ dans les directions transverses. (a) Loin dans la phase ordonnée, le taux
de relaxation RMN augmente linéairement ∝ T depuis le zéro absolu du fait
des contributions des ondes de spin. (b) Juste en dessous de la température
critique Tc, le taux de relaxation RMN subit une suppression algébrique ∝ Tα

(α ' 4− 5) du fait de la “suppression de sa composante antiferromagnétique
qAF”. (c) À l’approche de la transition, par dessus la température critique,
le taux de relaxation RMN diverge ∝ |T − Tc|−ν(zt−1−η) avec des exposants
critiques ν, η and zt caractéristiques de la classe d’universalité de la tran-
sition de phase. La divergence associée à la transition est observée jusqu’à
approximativement ' 3Tc. (d) Pour J⊥/J � 1, on s’attend à avoir un régime
où la physique unidimensionnelle prédomine avec le taux de relaxation RMN
divergeant comme ∝ T 1/2K−1, où K est le paramètre du liquide de Tomonaga-
Luttinger. (e) À haute température, plus grande que ∼ J/10, le comportement
du 1/T⊥

1 n’est pas universel. Notons que si 3Tc & J/10, alors la région (d) est
réduite à zéro et aucune physique unidimensionnelle ne peut être observée, en
tout cas en ce qui concerne le taux de relaxation RMN.

Précédemment, nous avons montré par exemple que pour le composé, pourtant quasi
unidimensionnel DTN [316], la température critique est plus grande que celle en deçà
de laquelle la physique unidimensionnelle émerge, empêchant toute observation. En
d’autres termes, la région (d) de la figure B.7 est réduite à zéro pour DTN. Et ce, bien
que ce matériau ait montré d’autres empreintes unidimensionnelles (voir la deuxième
section du premier chapitre). Un autre matériau intéressant, avec un couplage
tridimensionnel plus petit (résultant en une Tc plus petite) est DIMPY [171, 173] où
le 1/T1 a été ajusté pour obtenir K en fonction du champ magnétique H, mais qui
a tout de même montré des différences avec la valeur de K(H) attendue, calculée
numériquement. Notre travail révèle notamment que la fenêtre expérimentale de fit
en température, 2Tc < T < 3Tc est trop proche de la transition pour être fiable.

Par ailleurs, dans des expériences de RMN, une façon de déterminer la position
de la transition entre une phase ordonnée et désordonnée est de déterminer la
température Tc à laquelle la division hyperfine de “la ligne RMN” dans le spectre du
noyau visé disparaît [166,174,204]. Une autre façon de faire et de mesurer le 1/T1 en
fonction de la température T , pour lequel on s’attend à ce qu’il diverge à la transition,
et résultant en pratique en une forte augmentation [173,204,317,318]. En dessous de
Tc, les observations expérimentales du taux de relaxation RMN montrent qu’il est
grandement supprimé avec la température, fittant empiriquement une dépendance
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en loi de puissance 1/T1 ∝ Tα où α ' 4 − 5, comme observé dans le composé
Cu2(C5H12N2)2Cl4 [334], le DTN [335] ou encore DIMPY [204]. Ce comportement
visible dans la figure B.7 (b), vient du fait qu’en dessous de Tc, la composante
antiferromagnétique qAF n’est plus capturée. Enfin, bien que cela reste difficile à
observer, tant expérimentalement que numériquement, étant donné que cela se passe
à très basse température, loin dans la phase ordonnée, on s’attend à ce que le taux
de relaxation RMN augmente linéairement avec T du fait de contributions ondes de
spin.

III. Effets conjoints du désordre et des interactions
dans un aimant quantique: DTNX

Adapté de Phys. Rev. Lett. 118, 067203 (2017),
Anna Orlova, Rémi Blinder, Edwin Kermarrec, Maxime Dupont, Nicolas

Laflorencie, Sylvain Capponi, Hadrien Mayaffre, Claude Berthier, Armando
Paduan-Filho, and Mladen Horvatić

Phys. Rev. Lett. 118, 067204 (2017),
Maxime Dupont, Nicolas Laflorencie, and Sylvain Capponi

Phys. Rev. B 96, 024442 (2017),
Maxime Dupont, Sylvain Capponi, Mladen Horvatić, and Nicolas Laflorencie

et arXiv:1801.01445 (2018)
Anna Orlova, Hadrien Mayaffre, Steffen Krämer, Maxime Dupont, Nicolas
Laflorencie, Sylvain Capponi, Armando Paduan-Filho, and Mladen Horvatić

Dans cette série de travaux, nous avons étudié les effets conjoints du désordre et des
interactions pour des degrés de liberté bosoniques émergents, induits par un champ
magnétique externe dans le composé antiferromagnétique quasi unidimensionnel
Ni(Cl1−xBrx)2-4SC(NH2)2 (DTNX). Ce matériau a été introduit dans la première
partie pour le cas sans désordre x = 0. En dopant le composé avec des impuretés
Br, DTNX développe des propriétés fascinantes [398] : il a été rapporté comme un
candidat potentiel présentant une phase de la matière dite verre de Bose [397–399].
Contrairement au cas sans impureté, la phase grand-D à bas champ est substituée
par cette phase verre de Bose en présence de désordre. Par ailleurs, elle émerge à
plus haut champ entre la phase ordonnée XY2 et la phase triviale ferromagnétique.
La phase verre de Bose du DTNX peut être définie de la manière suivante : co-
existants dans un environnement possédant une bande d’énergie interdite, des états

2Bien que non discuté ici, on peut montrer qu’une phase ordonnée antiferromagnétique de
type XY, comme dans le cas du DTN, partage de nombreuses propriétés avec les condensats de
Bose-Einstein que l’on retrouve dans des expériences d’atomes froids. De ce fait, par la suite, la
phase XY sera notée “BEC” pour Bose-Einstein Condensation, terme anglais pour condensat de
Bose-Einstein.
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magnétiques localisés prennent place autour des impuretés et développent localement
une susceptibilité finie. Ces degrés de liberté localisés sont spatialement séparés et
leur corrélation décroît exponentiellement, empêchant toute cohérence globale et
mise en ordre dans le système. Ultérieurement à nos travaux, il a été proposé dans la
référence 398 que la phase verre de Bose à haut champ magnétique est ininterrompue
entre la phase ordonnée et ferromagnétique. À la place, nous trouvons que les degrés
de liberté associés aux impuretés développent un phénomène de délocalisation à
plusieurs corps très net avec une apparition d’ordre induit par le désordre [449, 450].
Le composé pur et désordonné peut être décrit par le modèle suivant de spins S = 1
sur un réseau tétragonal,

HDTNX =
∑
i

{∑
m

[
Ji,mSi,m · Si+1,m +Di,m

(
Sz
i,m

)2 − gµBHS
z
i,m

]
+
∑
〈m,n〉

J⊥Si,m · Si,n

}
, (14)

où dans le cas du DTN pur, le couplage d’échange antiferromagnétique le long de la
direction des chaînes est Ji,n = J = 2.2 K, le terme grand D est Di,n = D = 8.9 K, et
le couplage entre les chaînes voisines (noté par le symbole 〈m,n〉) est J⊥ = 0.18 K. H
est un champ magnétique extérieur appliqué selon la même direction que l’anisotropie
D pour conserver la symétrie U(1) du système. Nous utilisons g = 2.31 pour le
facteur gyromagnétique. Dans le composé dopé DTNX, un des deux ions Cl−
dans le couplage intra chaîne de lien J peut être substitué par une impureté Br−,
introduisant ainsi du désordre dans le système. Comme annoncé, nous avons dans un
premier temps, à l’aide des expériences de RMN à fort champ magnétique, totalement
caractérisé le modèle microscopique du composé DTNX en présence d’impuretés.
En effet, ces résultats expérimentaux peuvent être interprétés et compris par de
la physique à une impureté, ce qui rend possible des calculs analytiques et de
diagonalisation exacte sur de grands systèmes. En supposant que le dopage introduit
uniquement une perturbation locale, nous avons montré qu’une impureté Br modifie
le couplage d’échange du lien par J ′ = 2.42J et l’anisotropie D de l’ion Ni le plus
proche par D′ = 0.36D, sans rien affecter d’autre.

De plus, cette description simple fournit de précieuses informations sur une image
du matériau DTNX à haut champ magnétique : les états des impuretés sont fortement
localisés et les degrés de liberté non affectés par le désordre se polarisent le long du
champ pour un champ magnétique inférieur à celui des impuretés. En conséquence,
une image simple du DTNX à fort champ consiste en un fond magnétique polarisé et
gelé avec un ensemble d’impuretés, qui sont distribuées spatialement aléatoirement
et pour le moment non polarisées. Une continuité naturelle a été d’étudier l’effet
mutuel de deux impuretés. Au moyen de diagonalisation exacte, nous avons révélé
que, en dépit de la forte localisation des états des impuretés, il existe une interaction
de paire, non frustrante entre les degrés de liberté associés aux impuretés. Dans le
but de développer une description physique simple à basse température, nous avons
construit un modèle effectif de bosons sur un réseau dilué (certains sommets sont
occupés par un degré de liberté et d’autres non) avec des interactions qui décroissent
exponentiellement avec la distance entre les particules. Ce modèle suggère que les
degrés de liberté bosoniques peuvent s’ordonner à suffisamment basse température,
ce qui est confirmé par des simulations de Monte Carlo quantique. Cela ouvre la voie
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Figure 8: Diagramme des phases global champ magnétique – température
pour le matériau DTNX, basé sur des résultats numériques de Monte Carlo
quantique (cercles et diamants), pour différentes valeurs de dopage en Brome
x. À petit dopage x, et au-delà de la phase ordonnée AF (dôme bleu, BEC)
à H > 12.3 T, une succession de phases ordonnées, induites par le désordre
(dômes roses, BEC∗) sont stabilisées avec entre deux des régions avec une
présence d’une phase verre de Bose (jaune, notée “BG”), avant d’arriver vers la
phase ferromagnétique totalement polarisée par le champ (région verte, notée
“FM”). On s’attend à ce que cette série de dômes disparaisse lorsque le dopage
x augmente, pour finalement avoir une seule phase ordonnée induite par le
désordre, qui vient par ailleurs se chevaucher avec la phase ordonnée principale
en bleu. Au-delà du seuil de percolation tridimensionnel, xperc = 15.6%, le
système sera ordonnée à toutes les valeurs du champs jusqu’à sa polarisation
complète.

à une résurgence globale de la cohérence quantique dans DTNX, en fort contraste
avec la phase verre de Bose qui a été rapportée dans la référence 398. En effet, en
étendant notre étude au modèle initial réaliste du DTNX, nous avons montré que ce
scénario est vérifié par des simulations de Monte Carlo quantique pour un dopage
x = 10%.

Pour cette concentration, le dôme de la phase ordonnée induite par le désordre
BEC∗ est connecté au dôme principal BEC sans aucune phase verre de Bose intermé-
diaire. De plus, nous montrons que la phase BEC∗ n’est pas constituée d’un seul
dôme, mais deux distincts : le premier attendu à H∗ ∼ 13.6 T qui correspond à des
degrés de liberté associés à des impuretés uniques, et un nouveau, centré autour de
H ∼ 12.7 T. Le nouveau dôme peut être compris comme la mise en ordre d’objets
constitués de plusieurs impuretés. Cela étend considérablement l’image actuelle du
diagramme des phases du DTNX à haut champ magnétique : à faible concentration
de dopage, les mini-dômes consécutifs d’ordre par le désordre sont séparés par des
phases localisées verre de Bose qui viennent s’intercaler. Un résumé de nos résultats
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est montré dans la figure 8, qui est une représentation complète, en trois dimensions,
du diagramme des phases “champ magnétique/température/concentration de Br” du
DTNX à fort champ magnétique. Nous nous sommes aussi intéressés à la physique à
température nulle T = 0 pour x = 7.5%, en se concentrant sur la transition de phase
quantique entre la phase ordonnée BEC et la phase verre de Bose, dans le but de
déterminer les exposants critiques de cette classe d’universalité, qui se sont trouvés
en accord avec ceux obtenus dans d’autres travaux [399, 493, 495].
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Dynamics and disorder in quantum antiferromagnets

Condensed matter physics, and especially strongly correlated systems provide
some of the most challenging problems of modern physics. In these systems,

the many-body interactions and correlations between quantum particles cannot be
neglected; otherwise, the models would simply fail to capture the relevant physics at
play and phenomena ensuing. In particular, the work presented in this manuscript
deals with quantum magnetism and addresses several distinct questions through
computational approaches and state-of-the-art numerical methods. The interplay
between disorder (i.e. impurities) and interactions is studied regarding a specific
magnetic compound, where instead of the expected many-body localized phase at
high magnetic fields, a novel disorder-induced ordered state of matter is found, with a
resurgence of quantum coherence. Furthermore, the dynamical response of quantum
magnets to an external perturbation, such as it is accessed and measured in nuclear
magnetic resonance and inelastic neutron scattering experiments is investigated.

Keywords: quantum physics condensed matter theory strongly correlated systems
quantum magnetism disordered systems time evolution
advanced numerical methods

Dynamique et désordre dans des aimants quantiques

La physique de la matière condensée, et notamment les systèmes fortement corrélés,
amènent à des problèmes parmi les plus stimulants et difficiles de la physique

moderne. Dans ces systèmes, les interactions à plusieurs corps et les corrélations entre
les particules quantiques ne peuvent être négligées, sinon, les modèles échoueraient
simplement à capturer les mécanismes physiques en jeu et les phénomènes qui en
découlent. En particulier, le travail présenté dans ce manuscrit traite du magnétisme
quantique et aborde plusieurs questions distinctes à l’aide d’approches computa-
tionnelles et méthodes numériques à l’état de l’art. Les effets conjoints du désordre
(i.e. impuretés) et des interactions sont étudiés concernant un matériau magnétique
spécifique : plutôt qu’une phase de la matière dite localisée, attendue à fort champ
magnétique, une phase ordonnée induite par le désordre lui-même est mise en lumière,
avec une réapparition inattendue de la cohérence quantique dans ledit composé. Par
ailleurs, la réponse dynamique d’aimants quantiques à une perturbation externe,
comme celle mesurée dans des expériences de résonance magnétique nucléaire ou de
diffusion inélastique de neutrons est étudiée.

Mots-clés: physique quantique théorie de la matière condensée
systèmes fortement corrélés magnétisme quantique systèmes désordonnés
évolution dans le temps méthodes numériques avancées
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