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17 INTRODUCTION 

1.1 BACKGROUND 

Quality of food supplies has always being an issue in human societies. Having access to proper 

food supplies is necessary to avoid potential risk to human and animal health. Some fungi, especially 

from Ascomycota, are capable to synthesize a plethora of products as part of their metabolism, some 

of them toxic to humans and vertebrates, named mycotoxins. The ubiquitous presence of fungi in 

staples cannot be avoided, thus, their presence become a potential health risk for humans and 

livestock. 

Mycotoxin contamination of staples is an important risk to public health because these 

compounds produce detrimental effects on vertebrates and humans. Since their discover, several 

studies have been performed to identify the principal mycotoxins depending on the geographical 

areas, the minimal doses of their toxicity, the fungi responsible of their production, and to develop 

strategies to control them in order to avoid their effects on human health, as well on animal health 

and to reduce economic losses. Once the amount of mycotoxins exceeds the levels permitted by the 

regulations, it is hardly recommended to eliminate staples from the food chain. However, in some 

regions worldwide, especially those including developing countries, monitoring and policies against 

mycotoxin presence in food and feed for human and animal consumption unfortunately are not well 

regulated. As consequence, the risk of entrance of mycotoxins in the food chain is high (Bhatnagar et 

al. 2002). 

Aspergillus section Flavi is one of the most economically important groups of molds; their 

detrimental effects are an important public health issue, furthermore the stability of its taxonomy is 

of practical concern (Geiser et al. 2007; Pildain et al. 2008). The section encloses species able to 

produce several mycotoxins, among them, aflatoxins are a major concern because their deleterious 

effects in vertebrates (IARC 2003). Due to their physiological requirements, these species grow 

principally in tropical and subtropical regions worldwide. In these areas, they are a problem because 

harvest and storage conditions are not always the most appropriated ones to avoid mold 

development and mycotoxins production, besides, environmental conditions generally contributes to 

their production. Resulting in two main issues, the first is the risk on human and animal health, and 

the second, staples that are contaminated cannot be exported, which affects negatively some 

countries’ economies because they are based on exportation. In fact, staples contamination of 

mycotoxins lead to great economic losses. In temperate regions, the importance of section Flavi is 

linked to the importation of contaminated raw material, as well as the possibility of the colonization 

of harmful species due to climate change, which could result in new niches for these species (Perrone 

et al. 2014). 

http://ijs.sgmjournals.org/search?author1=Mar%C3%ADa+B.+Pildain&sortspec=date&submit=Submit
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The present introduction is divided in three parts: the first introductive part encloses a general 

overview of molds and the principal mycotoxins; the second part includes an overview of Aspergillus 

section Flavi, and the third part that summarizes the principal secondary metabolites yield by them. 

 

  



 
19 INTRODUCTION 

1.2 FUNGI OVERVIEW  

Fungi is a diverse eukaryotic kingdom containing an estimated of 3.5 to 5.1 million organisms, 

from unicellular to macroscopic multicellular, that inhabit a wide range of ecological niches 

worldwide (O’Brien et al. 2005). These organisms play a key role in nutrient cycle as decomposers, 

and include saprophages, symbionts and pathogens. As heterotrophs fungi fed from others organism 

by extracellular digestion, yielding enzymes that able them to digest and absorb nutrients. Fungi 

development requires certain elements that are used in their primary and secondary metabolisms, 

principally sources of carbon and nitrogen, and in a lesser extent potassium, phosphorus and 

magnesium, among others trace elements. Additionally, environmental factors, such as pH, light, 

temperature and water availability, are crucial for their development (Dix 2013; Dighton 2016).  

Due to fungi diversity of life history strategies, several species are widely studied and applied 

in biotechnological industries to produce enzymes, medicines, biocontrol agents, natural fertilizers, 

natural pigments, cosmetics, alcoholic drinks, and food (Galagan et al. 2005; Schoch et al. 2009; 

Dupont et al 2016; Blackwell 2011; Jayasiri et al. 2015; Bill and Gloer 2016). Taking into account their 

diversity, the number of infectious species is low, yet those species have detrimental effects in 

organisms’ health, including plants, animals and humans, and can be a worldwide threat for food 

security. Similarly, during the last decades, novel diseases produced by fungi have been discovered, 

and in some cases host population infected have decreased in alarming numbers, almost 

disappearing (Fischer et al. 2013). Summarizing, several fungi are economically important organisms, 

making their study mandatory (Mitchell 2010).  

Fungi reproductive cycles include sexual and asexual reproduction, both mechanisms are 

mediated by spores (conidia, ascospores etc.), which have reproductive and dispersal functions. 

Some species present only sexual or asexual cycles while others a combination of both reproductive 

mechanisms. A holomorph fungus present both types of reproduction, an anamoph fungus presents 

the asexual type and a teleomorph fungus the sexual type. A fungus can have strains in anamorph 

state and others in teleomorph state; phenotypically they might be different and hence, be classified 

under different names. Moreover, some fungi show different anamorphic states, like some species of 

Neurospora, Fusarium and Botrytis, which show strong differences between their micro- and 

macroconidia (Webster and Weber 2007; Dix 2013). 

Fungi are divided in ascomycetes, basidiomycetes, zygomycetes, and chytrids (Figure 1); the 

first two, Basidiomycota and Ascomycota, contain most species, including the most important to 

humankind. Ascomycota contains approximately 33.000 described species, including most lichens 

known and about 90% of pathogenic fungi (ca 400 species). Ascomycota fungi are characterized by 

their reproductive structures, ascus, nevertheless most species produce also asexual spores (Pitt and 
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Hocking, 2009), in fact they are most commonly found in their conidial state, and for some species, 

the sexual reproduction seems to be lost; this phenomenon seems to have occurred several times in 

the evolution of the group. The conidial states of Aspergillus and Penicillium are generally arranged in 

phialides, and their arrangements are generally used as diagnostic state. In Aspergillus, the 

conidiophore tip is swollen, forming the vesicle, and phialides start directly on its surface (uniseriate) 

or present a palisade of sterile cells, metulae, followed by phialides (biseriate) (Raper and Fennell 

1965). Penicillium lacks vesicles, and the conidiophore tip has directly a monoverticillate 

arrangement or series of metulae followed by philiades, the levels of ramification could be from one 

to several series of metulae (Raper and Thon 1968).  The cell walls in Ascomycetes are composed 

mainly by chitin and glucans and in general the septum is incomplete, forming a central pore that 

result in coenocytic mycelia (Webster and Weber 2007). Ascomycota probably arose around 500 to 

900 million years ago; it is subdivided in three main groups, Archiascomycetes, Hemiascomycetes 

(yeasts), and the large Euascomycetes (molds) (Mitchell 2010).  

 

 

 

Figure 1: Fungi classification. The figure shows the relationships of fungi with other groups of 

Eukaryotes. In addition, it shows the main groups with Fungi, and the division of Ascomycota, and the 

placement of Aspergillus. The figure is adapted from Pitt and Hocking (2009). 
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Climate change presents a challenge for fungal relationships, between different fungi, between 

fungi and other organisms, and between fungi and their ecosystems. Resulting in shifts in community 

composition, creating new ecological niches, therefore, producing changes in the symbiotic 

associations between fungi and other organisms, changes in the distribution patterns of species, and 

the increment of detrimental effects caused by harmful fungi (Jayasiri et al. 2015). Climatic model 

predictions suggest that climatic conditions will vary over the next two decades, atmospheric 

concentrations of CO2 are expected to double or triple (from 350 to 700 or 900-1000 ppm) and the 

regional cycles are going to change, some areas will become drier, and global temperatures will 

increase by approximately 2-5 °C (Medina et al. 2014). These environmental changes would result in 

homeostatic stress in crops. Hence, environmental changes would modify the agricultural cycles, 

affecting mycobiota composition in soils and crops, and the mycotoxinogen species, therefore the 

mycotoxins yield (Medina et al. 2014).  

 

1.3 FILAMENTOUS FUNGI AND THEIR SECONDARY METABOLITES 

Filamentous fungi are considered as the main producers of mycotoxins. It is a paraphyletic 

group, enclosing the Ascomycota phylum and some species from Mucorophyta (zygomycetes). 

Nevertheless, Ascomycota species are the most diverse and the most important at economical level, 

as they are linked to staple spoilage during harvesting or storage processes. In fact, the genera 

Aspergillus, Fusarium and Penicillium are considered as the main source of mycotoxins (Pitt and 

Hocking 2009).  

Aspergillus and Penicillium genera are important to humankind not only because of their 

detrimental effects, but also because of their use in biotechnology; enzymes and other compounds 

synthesized as part of their primary and secondary metabolisms are used, as well as a direct 

inoculation of fungi on foodstuff. Aspergillus and Penicillium have been used in food production for 

several centuries in fermentation processes to produce beverages, sauces and in the cheese industry. 

Likewise, proteases, amylases, lipases and pectinases are important in the manufacture of dairy, 

bakery, distillery and brewery products, juices and leather, and in the starch industry. Furthermore, 

they have been used to synthesize antibiotics, such as penicillins and cephalosporins that comprise 

around the 50% of antibiotics production worldwide (Kavanagh 2017); or griseofulvin used as anti-

tumoral and in dermatology (Banani et al. 2016). 
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1.4 WHAT IS A SECONDARY METABOLITE? DEFINITION, FUNCTION AND MYCOTOXINS 

In order to cope with their environment, fungi have developed the ability to produce several 

extracellular chemicals, called secondary metabolites, which are not essential in the primary 

metabolism of fungi (i.e. growth, reproduction, respiration), and not required for their survival when 

growth in laboratory conditions. These compounds are low-weight molecules (< 1000 Daltons) 

produced by their secondary metabolism, which encloses the molecular pathways that are not 

essential for the survival of the organism (Bennet 1987; Bennet and Klich 2003). These molecules are 

diverse in their chemical nature, including polyketides, non-ribosomal peptides, terpene, indole 

terpenes and hybrids (Figure 2). These organisms are capable to produce a large number of these 

compounds, and their secondary metabolic profile will vary depending on the genetic information 

(presence of secondary metabolic gene clusters), environmental conditions (mainly nutrients and 

water availability), and community composition (Brakhage 2013; Bills and Gloer 2016).  

 

 

 

 

Figure 2: Biosynthetic pathways of secondary metabolites. In blue the groups of secondary 

metabolites. In black the main mycotoxins produced by these pathways. In orange the enzymes associated with 

each pathway; NRPS: non-ribosomal peptide synthetase, PKS: polyketide synthetase, TC: terpene cyclase, 

DMAT: dimethyl allyl transferase. 

 

 

Polyketides are the most diverse group of secondary metabolites, including polyphenols, 

polyenes and macrolides. Due to their diversity, they exert different biological activities, some of 

them exploited in industrial processes. Fungal polyketides are synthesized by type I polyketide 
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synthases (PKSs) that are multidomain proteins linked to eukaryotic fatty acid synthases. Polyketides 

result from the metabolization of acetate, and are formed by the consecutive polymerization of 

ketide groups (CH2-CO). The main difference between fungal polyketides and fatty acids is that 

polyketides are formed by PKSs able to use other carboxylic acids, rather than acetyl-coenzyme A as 

substrate. In addition, the oxidation state is variable and β-carbon is not necessary fully reduced in 

polyketides synthesis, for which the ketoacyl CoA synthase (KS), acyltransferase (AT) and acyl-carrier 

(ACP) domains are essential. Fungal PKSs are considered ‘iterative PKSs’ because they present just 

one module for the addition of methylmalonyl CoA, so the processes of addition require repeated 

biosynthetic reactions. Fungal PKSs are divided in three groups: non-reduced, partially reduced and 

highly reduced synthases. In addition, five of the six mycotoxins regulated to date by the EU, 

aflatoxins, ochratoxin A, patulin, fumonisins and zearalenone belongs to this group (Keller et al. 

2005; Cano et al. 2016). 

Terpenes are yielded by fungi, bacteria and plants. Plant terpenes are the best known, and are 

essential for plant growth, development, and interactions with their environment. Terpenes play a 

main role in interaction with pollinators and predators (i.e. herbivores), in the protection against 

photo-oxidative stress, in thermoregulation, among others (Tholl 2006). Aristolochenes, carotenoids, 

gibberellins and trichothecenes are some important terpenes characterized in fungi. Terpenes are 

formed by the combination of dimethylallyl pyrophosphate (DAMPP) and isopentenyl diphosphate 

(IPP), this reaction is catalyzed by isoprenyl diphosphate synthases, which belong to the family of 

phenyl transferases. Based on their chemical structures terpenes are classified as: (i) monoterpenes 

or geranyl diphosphate that are rarely yield by fungi, (ii) triterpenes that are mainly produce by 

plants, (iii) sesterterpenes, tetraterpenes or carotenoids linked to the defense against UV radiation, 

and (iv) sesquiterpenes that enclose the tricothecenes family known as an important group of 

mycotoxins (Cano et al. 2016).  

Non-ribosomal peptides (NRPs) are compounds not involved in the primary metabolism. As 

their name suggest, their synthesis does not include proofreading mechanisms, making their 

structure highly variable, in fact, at the moment several hundreds of substrates of NRPs have been 

identified in comparison to the 20 amino acid involved in protein synthesis (Finking and Marahiel 

2004). The synthesis of NRPs is catalyzed by non-ribosomal peptide synthetases (NRPSs), which have 

functions similar to those of enzymes catalyzing ribosomal peptides. When compared, fungal NRPs 

are reported to achieve bigger sizes than bacteria NRPs, and could be explained because their 

synthesis in fungi is generally catalyzed by one NRPS. These enzymes have a dual function, working as 

temperate and as biosynthetic machinery; actually, they are organized in different modules that 

integrate amino acids into the polypeptide chain. The synthesis of NRPs requires the presence of at 

least three domains: (i) the A-domain that determines the amino acid to be included and activates 
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the amino acid or the hydroxyl acid; (ii) the T or PCP domain, a thiolation or peptidyl-carrier protein, 

which transports the activated units between active sites of the domains; and (iii) the C-domain, a 

condensation domain, where the formation of the peptide bond (C-N) occurs between the 

polypeptide chain and the new amino acid. Other domains could also play a role in the synthesis, by 

adding special features, like non-proteinogenic amino acids, fatty acids, carboxylic acids, among 

others (Pang et al. 2016).  

Indole alkaloids are mainly synthesized from tryptophan and DAMPP, but sometimes they 

include other amino acids as precursors. The steps of biosynthesis are yet to be elucidated, for some 

known compounds three processes were described that include steps of tryptophane prenylation 

catalyzed by DMATS, followed by the methylation of dimethylallyl tryptophan, and finally, a series of 

oxidation steps, which can be catalyzed by NRPSs. Some other enzymes can be involved in the 

biosynthetic pathways, like oxidases, methylases and prenyl transferases (Keller et al. 2005). 

The development of genomic, transcriptomic, and proteomic is unmasking processes linked to 

compound synthesis in fungi. In fact, the genome characterization of several species has enabled to 

elucidate the biosynthetic pathways of several mycotoxins and the processes occurring in fungal 

cells, including an increase of knowledge of the biology of harmful fungi. For instance, pathogenic 

ascomycetes present more genes for polyketides, peptides, terpenes and other secondary 

metabolites than those non-pathogens such as Neurospora crassa (Desjardins 2006). Likewise, 

genome studies have shown that secondary metabolic yield depends on global transcriptional 

factors, encoded by unrelated genes with a specific biosynthetic pathway (e.g. VeA and LaeA), and on 

specific enzymes for each biosynthetic pathways that differ from primary metabolism enzymes. In 

Ascomycetes, biosynthetic pathways of secondary metabolites are often clustered together, which 

makes them different from other eukaryotes. The purpose of secondary metabolites is still not 

completely understood, however it is believed that they confer selective advantages to fungi under 

natural conditions, especially under stress conditions (e.g. environmental stress, nutrient availability, 

interspecies competition, predator defense) (Magan and Adred 2007; Fox and Howlett 2008, Schwab 

and Keller 2008; Brakhage 2013). 

 As aforementioned, several secondary metabolites are beneficial to humankind and are used 

in pharmacology, food industry, cosmetics, energy and construction (Bhatnagar et al. 2002). Some 

others, known as mycotoxins, are toxic and could exert deleterious effects on vertebrates, including 

humans (Peraica et al. 1999). Mycotoxins are amply studied due to their detrimental effects on 

vertebrates’ health and their impact in agriculture and economy. Nowadays, over 1000 secondary 

metabolites are described, ca 400 are considered mycotoxins, 30 are considered as important 

mycotoxins for their effects, and from them just 7 are legally regulated by the European Union. Best-
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known mycotoxins include aflatoxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes 

and zearalenone (Bennet and Klich 2003; Cano et al. 2016) (Table 1).  

 

Table 1: Principal mycotoxins and producing species, frequent sources and effects (AFSSA 2009; CAST 2003, 

Bbosa et al. 2013). In red the mycotoxin and their principal producer. 

MYCOTOXIN TYPE MAIN PRODUCERS 
CONTAMINATED 

PRODUCTS 
EFFECTS CHEMICAL NATURE 

Aflatoxins B1, B2, G1, G2 

Aspergillus flavus, 

A. parasiticus, 

A. nomius, 

Several spp. in A. section 

Flavi 

Cereals: maize, 

wheat, rice, 

sorghum; spices, 

sunflower, nuts, 

almonds, pistachio, 

coconut, cotton, 

dried fruit 

Hepatoxic, 

Carcinogenic, 

Immunotoxic, 

Teratogenic, 

Acute toxicity 

Polyketide 

Trichotecenes 

T-2 Toxin and HT-2 

F. tricinctum, 

F. langsethiae, 

F. sporotrichioides, 

F. poae, 

F. equiseti 

Cereals: wheat, 

maize, rice, soy, 

beans and barley 

Genotoxic, 

Immunotoxic, 

Reprotoxic, 

Neurotoxic 

Terpene 

Deoxynivalenol 

Fusarium graminearum, 

F. culmorum, 

F. sporotrichoides, 

F. langsethiae, 

F. tricinctum, 

F. poae, 

F. solani, 

F. equiseti 

Cereals: wheat, 

maize, rice and 

sorghum 

Immunotoxic, 

Digestive problems, 

Haematopoietic 

Terpene 

Fumonisis B1, B2, B3 

F. verticillioides, 

F. proliferatum 

Cereals: maize, rice, 

sorghum 

Carcinogenic, 

Neurotoxic 

Polyketide 

Ochratoxin A  

Penicillium verrucosum, 

Penicillium nordicum 

A. ochraceus, 

A. carbonarius 

Cereals, cacao, 

coffee, wine, grape 

juice and spices 

Nephrotoxic, 

Immunotoxic, 

Teratogenic 

Polyketide 

Zearalenone F-2 Toxin 

F. graminearum, 

F. culmorum, 

F. crookwellense  

Cereals: maize, soy, 

sorghum, wheat, 

rice and oat 

Reprotoxic, 

Immunotoxic 

Polyketide 

Patulin 

 P. expansum, 

Byssochlamys nivea 
Apples, pears and 

derivates juices 

Neurotoxic, 

Genotoxic, 

Cytotoxic 

Polyketide 

Ergot alkaloids 

 Claviceps purpurea, 

C. paspali, 

C. africana, 

C. fusiformis 

Rye, wheat and 

triticale 

Neurotoxic, 

Digestive problems, 

Vasoconstriction 

Alkaloids 
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1.4.1 Mycotoxins 

Mycotoxins are classified based on fungus that produce them, chemical structure and/or mode 

of action. Their degradation is a challenge because most are heat-stable and form toxic compounds 

while degradation processes are applied. Generally this compounds are hydrophobic (except for the 

fumonisins), allowing them to accumulate in lipophylic tissues in plants and animals (Hussein and 

Brasel 2001).  

Mycotoxicosis symptoms depend on several variables that interacts synergistically, including 

the mycotoxin chemical nature, the exposure time (duration and dose), the organism that intakes the 

mycotoxin (species, sex, age, health, diet), and the mixed effects of mycotoxin with other 

xenobiotics. The effects exerted on vertebrates could be chronic (low doses, long periods of time) or 

acute toxic (high doses, short periods of time), mutagenic, teratogenic, carcinogenic, nephrotoxic, 

hepatotoxic, immunotoxic and estrogenic. The main target organs depend on the mycotoxin and the 

organisms that ingest it, and include the liver, kidney, lungs and the nervous, digestive, endocrine 

and immune systems (Bhatnagar et al. 2002). In general, more than one mycotoxin is found in 

staples, and a mix of them is thus usually ingested. The interaction between mycotoxins can produce 

different effects in the organism: antagonists, additive or synergic, which are linked to the mycotoxin 

nature, the decontamination pathway, of the host species, the time of exposure, and the doses and 

ratio of mycotoxins (Peraica et al. 1999; Alassane-Kpembi et al. 2017). 

Mycotoxins have being around humans for as long as agriculture was developed, or even 

before, when recollection started as mechanisms for food storage (Richard 2007). Some episodes of 

mycotoxicosis can be traced in the literature, myths, and arts. For instance, they could be tracked in 

the Bible, as part of the Seven Plagues of Egypt or in the Dead Sea Scrolls (Richard 2007). Withal, the 

decline of Etruscan civilization (5th century B.C.) could be related to fusariotoxins (toxin T2 and ZAE) 

(Yiannikouris and Jouany 2002). Howbeit, the episodes of hallucinations of “Saint Antony’s fire” or 

ergotism (11th century), produced by alkaloids of Claviceps purpurea on rye, might be the best-known 

example of mycotoxicosis in ancient times (Figure 3). During the Middle Ages outbreaks were 

common, some registered epidemic episodes occurred during 8th and 15th century A.D.; also some 

more recently episodes are also suggested to be caused by ergotism, like witchcraft in Salem, USA, 

and Finnmar, Norway. Symptoms of ergotism include delirium, prostration, acute pain, abscess and 

gangrene of the limbs, and sometimes death (Peraica et al. 1999; Richard 2007; AFSSA 2009). 

Likewise, “Shoshin-kakke” or “yellow rice disease” is another well-known example of mycotoxicosis 

outbreak, this disease that causes acute cardiac beri-beri, was reported in Japan, affecting especially 

the colder regions. This illness is caused by the exposure to citreoviridin, a Penicillium citreonigrum 

mycotoxin. The fungus contaminated rice during the storage processes due to poor conditions and 
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practices. Once these conditions were controlled, the disease disappeared from the region, and has 

not been reported lately (Udagawa and Tatsuno 2004). Although fungal contamination occurred and 

relations with some diseases were perceived, the awareness of mycotoxins and their toxic effects 

arose for the first time in London (England) in 1962. Poultry presented a strange disease, “turkey X 

syndrome”, which killed at least 10,000 birds. Interestingly, while tracing the origin of the illness, it 

was discovered that peanuts used to feed poultry were contaminated by secondary metabolites, 

aflatoxins, named after Aspergillus flavus (Bennet and Klich 2003); years later, cyclopiazonic acid was 

also proved to interfere in this outbreak (Richard 2008). Other compounds were also recognized as 

mycotoxins and their study became under scope. Mycotoxins are found in a wide variety of staples, 

use as animal and human food, principally cereals (maize, wheat, rye, rice, etc.), oligenosus seeds 

(peanuts, cotton, nuts, pistachios, etc.), and spices (Bath et al. 2010).  

 

 

  

Figure 3: Art as evidence of mycotoxins contamination. Above: Paint exemplifying an ergotism outbreak. Down 

left: “Saint Anthony’s hallucinations” by Mathias Grünewald (effects of hallucinations associated to ergotism). 

Down right: rye ear contaminated by Claviceps purpurea. 
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1.4.2 How mycotoxins enter in the chain food and their distribution 

Occurrence of mycotoxin contamination can be divided in pre-harvest (crops and recollect) 

and post-harvest steps (mainly storage). The fungi that contaminate staples will vary depending on 

the geographical region, but also of the agriculture methods, crop cycles, harvesting and storage 

conditions. Humans’ exposure to mycotoxins can occur by direct intake of staples of vegetal origin 

contaminated by mycotoxins, or by the intake of contaminated animal products. There is also the risk 

of dermal, respiratory and maternal exposure routes (Bath et al. 2010; IARC 2015).  

In general, mycotoxigenic fungi are divided in two main groups, one enclosing species more 

prone to colonize staples and yield mycotoxins in crops (principally Fusarium species), and another 

group more prone to colonize and yield mycotoxins during storage (principally Aspergillus and 

Penicillium), yet, some fungi are able to colonize during both steps, like A. flavus (AFSS 2009; 

Antonissen et al. 2014). For example, Fusarium generally colonized grains before harvest, where 

moisture is high, whereas maize and peanuts are generally colonized in post-harvest, where 

temperatures and drought are more suitable for Aspergillus section Flavi colonization (Bryden 2012). 

As aforementioned, fungi reproduce by spores that are dispersed principally by the wind and insect 

vectors. Once the spores reach a suitable nutrient source, suitable environmental and atmospheric 

conditions, such water availability, humidity and drought conditions, pH, and temperature, they will 

germinate (Figure 4). Besides, these environmental conditions can trigger stress and predisposition of 

cultivars, helping fungi developpment. The optimal for these variables depend on the fungus, for 

example, Aspergillus glaucus requires approximately 10% less of water availability than A. flavus. 

Substrate is also important; some fungi are generalist, while others have more constrained niches. 

Generalist fungi might prefer a substrate that suits better their nutrimental and physiological 

requirements, like A. flavus that will prefer maize (though it colonized several commodities), whereas 

some Fusarium species prefer cereals with small grains (Dierkman and Green 1992; AFSSA 2009; 

Pinnoti et al. 2016).  
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Figure 4: Pre-harvest contamination and main factors affecting mold contamination. Modified from Paterson 

and Lima 2010. 

 

Insects have a key role in fungi contamination; they not only disperse spores, but also damage 

raw products, allowing an easier colonization by fungi. In fact, insects wound maize kernels, and 

transport spores of Aspergillus and Fusarium, resulting in disturbance of the natural barrier (leaves 

protecting kernels) (Aiko and Mehta 2015) (Figure 5).  

 

Figure 5: Cycle of fungi contamination (Modified from Abbas et al. 2009). 
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Agricultural practices are part of the factors that interact in pre-harvest contamination, some 

of the main practices include the variety of plants used (more or less sensitive), the type of crop 

rotation and soil tillage. Some techniques used to diminish fungi contamination includes growing 

resistant crop varieties, management of crop rotation, the type of soil tillage, chemical and biological 

control of plant diseases, and insect control (Rychlik et al. 2014). 

Post-harvest contamination includes steps from crop maturation to feed and food 

consumption. Abiotic conditions, such as water availability, temperature, oxygen availability, are 

more easily controlled than the pre-harvest steps, facilitating the control of mold growth. 

Nevertheless, methods to storage following all the requirements are expensive, and easier to obtain 

in products that have higher markets, making this process not always achievable for small production 

or in some countries (Dierkman and Green 1992; Magan et al. 2003; Paterson and Lima 2010). Grain 

storage is a good example of how mycotoxins can contaminate feed and food supplies. In general, a 

community of microorganisms, most of them innocuous, colonizes grains. Mycotoxigenic fungi can 

be good competitors, and under proper temperatures and water availability, they can develop and 

produce mycotoxins. Insects play a similar role in the storage processes as well (Magan et al. 2003; 

Paterson and Lima 2010) (Figure 6). 

 

 

Figure 6: Post-harvest contamination and main factors affecting mold contamination. Modified from Paterson 

and Lima 2010. 

 

 Once the mycotoxins are present in feed and food commodities, they can contaminate the 

whole food chain. As said above, humans can ingest mycotoxins in two ways, by direct consumption 
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of contaminated vegetal commodities or by ingesting contaminated animal products, and in general 

are contaminated with more than one mycotoxin. A study case of nephropathy in Bulgarian pigs and 

chickens was caused by cocktail of mycotoxins, including ochratoxin A, penicillic acid, FB1 and an 

uncharacterized metabolite (Bryden 2012).  

In animals, ruminants have a gastric system with a rich microbiota that facilitates the 

degradation of mycotoxins, whereas monogastric species, like pork and poultry, are especially 

sensible to mycotoxicosis because intestinal microbiota is less diverse. Poultry is less prone to 

biotransform toxins to less toxic compounds before the intestine absorbs them. For ruminants it has 

been documented that rumen function is nevertheless affected negatively by the presence of 

mycotoxins, as well some biotrasformation can produce toxic products, which can be excreted thus 

making it available, like the case of AFM1 (Hussein and Brasel 2001; AFSSA 2009). The major problem 

for livestock and poultry associated with ingestion of mycotoxins is the poor animal performance, 

which can be difficult to diagnose and quantify because of the diversity of life histories, physiological 

status, biotransformation pathways, detoxification mechanisms and the intra- and inter variability of 

species that ingested them. Similarly, the type and level of mycotoxin in feed, the time of the 

exposure, and the interaction between mycotoxins are also a problem (Bryden 2012; Alassane-

Kpembi et al. 2015). 

 In addition, there are the ‘masked’ or conjugated mycotoxins that occur in vegetal food 

supplies, and are often linked with livestock and poultry feed intake, resulting in a decrease in their 

performance. These types of mycotoxins are the result of biotransformation processes occurring in 

plants (Bryden 2012; Pierron et al. 2016). Some examples are zearalenone-4-glucoside, a conjugate 

of zearalenone, and deoxynivalenol-3-glucoside a conjugate of deoxynivalenol. There is some 

evidence that OTA and fumonisins can also be conjugated in plants (Bryden 2012). The discovery of 

these mycotoxins has put them under scope. 

 

1.4.3 Impact of mycotoxins 

The presence of mycotoxins in staples is a major concern, not only for public health, but also 

for their economic impact. Food commodities losses due to mycotoxin contamination represent 

above 25% of spoiled food (FAO 2003). For instance, only in the United States the Food and Drug 

Administration (FDA) has estimated that the losses exceed $900 million per year (CAST report 2003). 

Due to its impacts, food security associated to mycotoxin contamination is a major issue worldwide; 

public health commissions all over the world try to ensure safe and healthy feed and food for animals 

and humans (Stoev 2013). In developed countries, food security is carried out better than in 

developing countries, in which food quality monitoring and the infrastructure to avoid mycotoxin 
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contamination are more difficult to settle. Nevertheless, regulation of mycotoxins reduced the intake 

in those countries that have proper regulation and monitoring, and increase exportation standards 

around the world. On the other hand, it could result in a higher risk of consumption of mycotoxins by 

human and animal populations of developing countries, as the best quality staples are exported, 

whereas the poor quality ones remain for domestic consumption (Wild and Gong 2009; Stoev 2013). 

As aforementioned, the global distribution of mycotoxins is not homogenous, the conditions in 

each region will favor the development of certain fungi over others, thus favor some mycotoxins over 

others. In addition, climate change is shifting distribution and prevalence of some fungi, and thereby, 

mycotoxin distribution. Streit et al. (2013) determined the presence of the main mycotoxins 

(aflatoxins, zearalenone, deoxynivalenol, fumonisins and ochratoxins) around the world for a period 

of eight years. Their results showed that most of the samples (72%) were mycotoxin positive, and 

38% showed a multicontamination (more than one mycotoxin). In addition, they determined that the 

percentages of each mycotoxin were more or less stable during the years, with the exception of 

aflatoxins, their level increased between 2005 and 2009 in tropical regions. Another study, that also 

screened mycotoxin presence in long term, showed the risk of mycotoxin contamination depending 

of the geographical distribution worldwide (Figure 7).  

 

 

Figure 7: Global distribution of the main mycotoxins. Survey performed by Biomin 2017 based on more 

than 3715 samples and 14244 analyses in 54 countries. Afla: aflatoxins, ZEN: zearalenone, DON: 

deoxynivalenol, T-2: T-2 toxin, FUM: fumonisins and OTA: ochratoxin A. Moderate risk: 0-25% of samples above 

risk threshold; High risk: 26-50% of samples above risk threshold; Severe risk: 51-75% of samples above risk 

threshold; Extreme risk: 76-100% of samples above risk threshold. 
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1.5 BIODIVERSITY OF ASPERGILLUS SECTION FLAVI: FOLLOWING THE TRACES OF CRYPSIS 

Aspergillus is a group of filamentous ascomycetes that encloses some of the most widespread 

fungi, containing approximately 350 recognized species. It encloses species of high economic 

importance for their compound production. Some species are used in biotechnology (enzymes, 

organic acids, bioactive metabolites), other species are harmful and considered as foodborne 

contaminants (food spoilage and mycotoxin contamination) or as causal agents of human mycoses 

(pulmonary, otomycosis, keratitis) (Kocsubé et al. 2016), and others use as model species to 

understand eukaryotic cell biology and molecular processes (i.e. A. nidulans) (Whiteway and 

Bachewich 2017). This genus is endowed with a diagnostic morphological trait reminding the holy 

water sprinkler, the ‘aspergillum’, which consists on a conidiophore that ends in a spherical vesicle 

bearing phialides and metulae that generate chains of conidia (Dyer and O’Gorman 2012) (Figure 8). 

The classification of Aspergillus has undergone several modifications over the past years using 

different approaches aiming to group the growing number of species according to its phylogenetic 

relationships (Scheidegger and Payne 2003). Aspergilli classification was traditionally based on 

morphological traits, and has nowadays extended to include the secondary metabolic profile and 

molecular approaches. This review will focus on the Flavi section of the Circumdati subgenus. This 

section bears a particular interest since it includes human pathogens, important mycotoxin 

producers, especially of aflatoxins, as well as safe enzyme producers commonly used in the food 

industry. 

 

 

Figure 8. Aspergillum structure. Figures on left represent the mature conidiophore with primary sterigmata 

(above) and secondary sterigmata (below); right figure microscopic photo of Aspergillus flavus. 
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1.5.1 A compendium of section Flavi 

Aspergillus section Flavi is mainly composed of saprophytic molds occurring in diverse 

ecological niches and playing a keystone role in the first steps of the nutrient cycle (Cotty et al. 1994; 

Rodrigues et al. 2012). Among their general phenotypical characteristics are the conidial heads 

yellow-green to brown shades, uniseriate or biseriate and the production of black sclerotia (Varga et 

al. 2011; Houbraken et al. 2014). The characteristic secondary metabolites in the group include 

aflatoxins (AF), paspaline, kojic acid, aspergillic acid, and cyclopiazonic acid (CPA) (Frisvad and 

Samson 2000). These molds grow better under environmental conditions of humidity (around 0.85 to 

0.99 aw) (Medina et al. 2015; Yogendrarajah et al. 2016) and temperatures ranging from 28 to 42 °C 

and several grow faster at 37 °C (Varga et al. 2011). The environmental humidity and temperature 

preferences make the species within the section Flavi suitable to grow in the tropics and subtropics 

over the world, yet some of them are able to grow in temperate regions, like A. flavus. Furthermore, 

climate change affects principally these two environmental variables, creating new niches in areas 

that in the past were not suitable for Aspergillus section Flavi species development, which could 

favor their colonization into temperate regions (Perrone et al. 2014). 

Extrolites produced by these fungi make the section interesting for studying purposes. Some 

species, such as A. flavus and A. parasiticus have an impact on human and animal health as well as on 

international economy, as they are able to produce aflatoxins, especially aflatoxin B1 (AFB1), 

considered as mycotoxins of high health risk due to their carcinogenic, mutagenic and teratogenic 

potential (IARC 2012). In addition, species belonging to this section are also able of producing a wide 

range of other mycotoxins such as CPA, aflatrems, versicolorins, sterigmatocystin, ochratoxin A 

(OTA), etc. Albeit, other species are not toxinogenic and are used in biotechnology for producing 

enzymes and organic compounds commonly used in several industrial processes (Houbraken et al. 

2014). For example, A. oryzae and A. sojae synthesize kojic acid, a secondary metabolite used in the 

production of soy sauce, a market with estimated shares of billions of dollars worldwide (Chang et al. 

2007a). 

Although there are some morphological characters and secondary metabolites that allow 

identification at species level, when cryptic species are present they become insufficient for 

taxonomical differentiation. In addition, morphological analyses to discriminate among isolates can 

be tricky, because mold phenotype is affected by environmental and nutritional conditions, creating 

overlapping phenotypical traits (Chang et al. 2007a). Inclusion of molecular analyses to the methods 

aforementioned is crucial for species identification and to clearly define relations within the Flavi 

section (Samson et al. 2014). However, finding differences at the molecular level can be challenging 

since species of this group shares several conserved traits. For instance, Aspergillus flavus and A. 
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parasiticus share approximately 97-99% nucleotide identity of their genomes (Chang et al. 2007a). 

ITS gene is usually used as a barcode gene to differentiate fungal species, but in this section, it is 

highly conserved, making it almost uninformative (Varga et al. 2011; Houbraken et al. 2014). Even 

though, there are challenges to characterize these organisms at species level, it is important to 

keep a practical taxonomic system because it is the base to the development of regulations to favor 

food safety and control (Geiser et al. 2007; Godet and Munaut 2010). 

Over the last two decades, Aspergillus section Flavi has suffered several modifications in their 

composition; currently 26 species have been described based on a polyphasic approach, which 

includes phylogenetic, morphological and secondary metabolites analyses. The section is constituted 

by Aspergillus flavus, A. oryzae, A. parvisclerotigenus, A. minisclerotigenes, A. parasiticus, A. sojae, A. 

arachidicola, A. novoparasiticus, A. sergii, A. transmontanesis, A. mottae, A. nomius, A. 

pseudonomius, A. bombycis, A. tamarii, A. pseudotamarii, A. caelatus, A. pseudocaelatus, A. 

bertholletius, A. coremiformiis, A. togoensis, A. leporis, A. hancockii, A. alliaceaus, A. lanosus, and A. 

avenaceus. From these, the genome (strain = GenBank assembly accession numbers) of A. flavus 

(NRRL 3357 = EQ963472, AF70 = ASM95283v1), A. oryzae (RIB40 = GCA_000965245.1), A. parasiticus 

(SU-1= GCA_000956085.1, 68-5 = GCA_001576805.1), A. nomius (NRRL 13137 = GCA_001204775.1), 

A. bombycis (NRRL 26010 = GCA_001792695.1), A. hancockii (FRR 3425 = GCA_001696595.1), and A. 

arachidicola (CBS 117610 = GCA_002749805.1) have been sequenced. 

 

1.5.2 Reproduction in Aspergillus section Flavi 

 Most Aspergillus fungi are only known in an asexual state (64%) (Dyer and O’Gormann 2011), 

nevertheless, there is evidence that cryptic reproduction occurs in some species. In ascomycetes, 

sexual identity and later stages of sexual development are partially regulated by the MAT locus, 

conformed by two idiomorphs MAT1-1 and by the Mat1-2 genes, encoding a protein with a α-box 

motif and a protein of the high mobility group (HMG), respectively (Ramirez-Prado et al. 2008; Dyer 

and O’Gorman 2011). In heterothallic species, only one of the idiomorphs is present, whereas in 

homothallic both idiomorphs are present and they occur in the same loci or in different 

chromosomes (Dyer and Kück 2017). The section Flavi is mainly composed by heterothallic species, 

and asexual reproduction seems to occur more frequently. Sexual reproduction is reported only for 

six species and from them only one species is homothallic, A. alliaceus (Horn et al. 2011; Dyer and 

Gorman 2012). It has been hypothesized that homothallic type can be the ancestral state in this 

section because A. alliaceus is a basal species (Ramirez-Prado et al. 2008). The presence of both 

idiomorphs in most analyzed species, however, suggests that heterothallic type could be the 

ancestral trait in Aspergillus (Ramirez-Prado et al. 2008). Sexual forms in this section are clustered in 



 
36 INTRODUCTION 

the genus Petromyces, erected to include the teleomorph of A. alliaceus. Later on, sexual states of A. 

flavus, A. parasiticus, A. nomius and A. oryzae were incorporated, based on morphological evidence, 

like cleistothecia structure, and to maintain the monophyly of the group (Moore et al. 2009; Horn et 

al. 2009). Another important trait in the section is the production of sclerotia, which occur in several 

species. In asexual species, it has been hypothesized that sclerotia aid species to cope with adverse 

environmental conditions and predators, which is supported by the type of secondary metabolites 

produced (McAlpin and Wicklow 2005; Cary et al. 2015b), while in sexual species they also play a role 

in the formation of cleistothecia (Horn et al. 2009). 

 

 

 

Figure 9. Reproductive cycle in Aspergillus (Image representing A. nidulans) (reprinted from Casselton and 

Zolan 2002) 
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Another way Aspergillus species recombinate is by the formation of a stable heterokaryon, 

resulting from hyphal anastomosis between strains sharing the same alleles of het loci (Pál et al. 

2007). These heterokaryons are used to test species diversity, which might limit heterokaryosis and 

asexual gene flow in communities (Barros et al. 2007). Species from the section Flavi present 

different level of diversity of vegetative compatibility groups (VCGs), for instance A. flavus presents 

higher diversity than A. parasiticus, the first one tends to present several VCGs in one community, 

whereas the latest presents few. Making the study of VCGs appropriated to estimate diversity at 

community level, niche use, life cycles, and to control aflatoxigenic strains (Barros et al. 2007; 

Ramirez-Prado 2008; Grubisha and Cotty 2015). 

 

1.6 DIVERSITY IN THE SECTION 

A. flavus, A. parasiticus and A. nomius were considered as the only producers of aflatoxins. A. 

flavus produces type B aflatoxins (AFB), whereas A. parasiticus and A. nomius produce B and G 

aflatoxins (Perrone et al. 2014). The discovery of other species, including species phylogenetically 

close to A. flavus able to produce AFB and AFG and non-aflotoxigenic species, accentuated the 

complexity of the section Flavi. Varga et al. (2011), in an attempt to organize the section, suggested 

the division in seven clades using a polyphasic approach: Aspergillus flavus clade (7 species), A. 

tamari clade (4 species), A. nomius clade (3 species), A. alliaceus clade (2 species), A. togoensis clade 

(2 species), A. leporis (2 species) and A. avenaceus (Figure 10). The addition of new species in the 

section increased the number of clades to ten. The principal modification is the division of Aspergillus 

flavus clade in two groups, A. flavus and A. parasiticus clades. Aspergillus flavus clade contains A. 

flavus, A. oryzae, A. parvisclerotigenus, and A. minisclerotigenes, whereas A. parasiticus clade 

contains A. parasiticus, A. sojae, A. arachidicola, A. novoparasiticus, A. sergii and A. transmontanensis 

(Soares et al. 2012). The other important modification is the inclusion of two clades, A. mottae and A. 

bertholletius, both composed by a single species (Taniwaki et al. 2012; Soares et al. 2012).  
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Figure 10. Maximum parsimony phylogenetic tree based on β-tubulin gene. Bootstrap values are indicated 

above 70% (reprinted from Varga et al. 2011). 
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1.6.1 Basal species  

Basal species are less studied because they are rare and do not produce secondary metabolites 

considered as main mycotoxins. Aspergillus avenaceus, A. leporis and A. alliaceus are characterized 

by a Q-10 ubiquinone system, while derivate species often have Q-10 (H2) ubiquinone system 

(Yamatova et al. 1990; Kuraishi et al. 1990; Rigo et al. 2002; Varga et al. 2003). Conidia of A. leporis 

and A. alliaceaus are mostly globose, like the majority of species in the section, though they are 

smaller, whereas the conidia of A. togoensis clade are irregular and larger (Varga et al. 2011). 

 Aspergillus avenaceus clade 

Aspergillus avenaceus clade is formed by a single species, which is the basal taxon of the 

section (Figure 11). Aspergillus avenaceus home range in restrained to the USA, and it has been 

isolated from soil, seeds, peanuts and cornmeal. Phenotypic traits are colonies in olive shades, long 

conidiophores and black and long sclerotia, small and relative globose conidia, biseriate and radiate 

heads, and a restricted growth up to 37 °C (Christensen 1981). It is a heterothallic fungus that forms 

multiple nonostiolate ascocarps within the matrix of sclerotia (Horn et al. 2011). Though it is unable 

to produce aflatoxins, it is able to produce ochratoxin A, and avenaciolide, an extrolite with antibiotic 

properties (Bayman et al. 2002 ; Varga et al. 2011).  

 

 

Figure 11. Colonies of Aspergillus avenaceus CBS109.46. Cultures on CYA and MEA, 7 days at 25 °C (modified 

Varga et al. 2011)  

 Aspergillus togoensis clade 

Aspergillus togoensis clade is a basal group formed by two species, A. coremiiformis and A. 

togoensis (Figure 12). Both species have been isolated from forest environments in Africa and are 

rare (Wicklow et al. 1989; Christensen 1990). Evidence that these species are sister taxa includes 

phenotypic traits, gene sequences, presence of synnemata (Varga et al. 2003), and it is the only basal 

clade presenting a Q-10 (H2) ubiquinone system in the section (Yamatova et al. 1990). These fungi 

have radiate and biseriate conidial heads, yellowish to brown colonies, and sclerotia (Wicklow et al. 

http://www.mycologia.org/content/103/1/174.full#ref-4
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1989; Christensen 1990). A. togoensis and A. coremiformiis were included in the section Flavi for 

their phenotypic characteristics, which overlap those of A. tamarii, aside from the presence of 

septate phialides in the first two species (Rigo et al. 2002). Molecular data confirmed that they 

belong to A. section Flavi, but they are not closely related to A. tamarii (Varga et al. 2011; Taniwaki et 

al. 2012). Available isolates of both species are scant, making difficult to elucidate the relations 

between them, and to fully characterize their secondary metabolic profiles. Aspergilllus togoensis 

distributes in Central Africa, and grows on seeds in tropical forests (Wicklow and McAlpin 1990). It 

produces AFB and is the only species documented to storage sterigmatocystin in the section Flavi 

(Rank et al. 2011; Varga et al. 2015). Aspergilllus coremiiformis has been isolated in Côte d’Ivoire 

from soil, their colonies are olive to brown shades, and conidiophores are in coremiform 

arrangements (Christensen 1981; Kozakiewicz 1989).  

 

 

Figure 12.  Colonies of Aspergillus togoensis clade. A= A. togoensis CBS272.89; B= A. coremiiformis CBS553.77. 
Cultures on CYA and MEA, 7 days at 25 °C (modified Varga et al. 2011). 

 

 Aspergillus alliaceus clade 

Aspergillus alliaceus clade encloses two species, A. alliaceus and A. lanosus (Figure 13). The 

classification of these species was complicated, at the beginning they were placed in the A. ochraceus 

group based on their metabolite production and phenotypical traits, and later on in the A. wentii 

group (Kozakiewicz 1989). Finally, the clade was moved to A. section Flavi based on a more complete 

profile of its secondary metabolites and molecular markers (Varga et al. 2000a). In addition, Varga et 

al. (2011) synonymized A. albertensis with A. alliaceus based on their secondary metabolic profiles, 

phenotypic and molecular traits. Literature described A. alliaceus and A. lanosus as different species, 

although, overlapping traits are observed while analyzing them, and generally both species do not 

show important differences (Varga et al. 2000a), with the exception of the amino acidic sequence of 

http://www.sciencedirect.com/science/article/pii/S0166061614600580#bib111
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Mat1.1 (Soares et al. 2012), which has an histidine and a tyrosine at the position 43, respectively. 

More analyses are required to understand the relations between these species. 

Aspergillus alliaceus was described as a pathogen of onion bulbs, it has a cosmopolitan 

distribution, and it is isolated from grassland soils, groundnuts, nuts, figs, and air (Christensen 1981; 

Wagacha et al. 2013). A. alliaceus is found in its homothallic state (formerly Petromyces alliaceus), 

loci MAT1-1 and MAT1-2 are linked in the same chromosome, which differs from other homothallic 

genera were both genes are not placed together, like some species of Emericella (Horn et al. 2011). 

A. alliaceus teleomorphic state has smooth ascospores with several equatorial lines and a fine ridge, 

they are found as ascocarps encapsulated in stromata, their germination is slow (Horn et al. 2009). 

Colonies are in ochre shades, conidia heads yellow to cinnamon, smooth and ovate, biseriate, stipes 

smooth, abundant sclerotia, and growth intensified at 37 °C (Chistensen 1981; Horn et al. 2009). It is 

non-aflatoxigenic, but it produces several others mycotoxins, like ochratoxins A and B, the first one 

being linked to figs contamination in California (McAlpin and Wicklow 2005). Furthermore, A. 

alliaceus is associated to certain cases of othorrea, invasive aspergillosis and pulmonary infection; it 

also produces asperlicins, an antagonist of cholecystokinin, affecting the pancreatic hormonal 

regulation, gastric secretion, gallbladder contraction and gut motility. Howbeit, some enzymes are 

used in industry to perform steroid and alkaloid transformations, as peptin degrading enzymes and 

for their insecticidal properties (in Varga et al. 2000b), also it produces kojic acid and kotanins 

(Frisvad and Varga 2000). Its sister taxon, Aspergillus lanosus, is an asexual rare species occurring in 

India in teak forest soil. A. lanosus is characterize by a colony surface with spicular and trailing 

hyphae in shades yellow becoming in ochre shades with time, conidia smooth, ovate, globose to 

subglobose, teratological heads are rare, and lacks sclerotia (Christensen 1982; Varga et al. 2000a). 

 

 

Figure 13. Colonies of Aspergillus alliaceuss clade. A= A. alliaceus 110.26; B= A. lanosus 654.74. Cultures on CYA 
and MEA, 7 days at 25 °C (modified Varga et al. 2011). 
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 Aspergillus leporis clade 

Aspergillus leporis clade encloses two non-aflatoxigenic species, A. leporis, and the recently 

described species A. hancockii (Figure 14).  

Aspergillus leporis occurs in soils associated with shrub communities in the desert areas and 

woodlands in the USA, where its frequency could be important, and in rabbit feces (Wicklow 1985). 

Its conidia are globose and small, conidial heads in olive shades, reverse uncolored or pale yellow and 

white-tipped cinnamon long sclerotia, and slow growth at 37 °C (Christensen 1981). Sclerotia 

production has been reported on rabbit dung, whereas on Czapek Yeast Autolysate Agar (CYA) or on 

Malt Extract Agar (MEA) is absent (Wicklow 1985). The sclerotia of A. leporis produce the N-

alkoxypyridone antiinsectan metabolite, leporin A, suggested to be useful in control of Lepidoptera 

pests (Varga et al. 2011). The second species, A. hancockii is a rare species reported near Kumbia, 

Australia. Based on phenotypic traits and phylogenetic analyses it is clustered as a sister taxon of A. 

leporis. Its colonies are floccose, with a low sporulation rate, conidial heads radiate, greyish green to 

olive, sclerotia produced mainly in the center of the colonies, conidia small, spherical to sub-

spheroidal, greyish green to olive. New metabolites were reported as part of the screening of its 

secondary metabolic profile, hancockiamides A-F, dehydroterrestric acid and 7-

hydroxytrichothecolon. Additionally, A. hancockii yields onychoins A and B, speradine F, kojic acid, 

fumitremorgin A and eupenifeldin. Its genome was sequenced and deposited in GeneBank, under the 

BioProject accession PRJNA328536 (Pitt et al. 2017). 

 

 

Figure 14. Colonies of Aspergillus leporis clade. A= A. leporis CBS151.66; B= A. hancockii Cultures on CYA and 

MEA, 7 days at 25 °C (modified from Varga et al. 2011 and Pitt et al. 2017). 

 

 

http://www.sciencedirect.com/science/article/pii/S0166061614600580#bib20
http://www.sciencedirect.com/science/article/pii/S0166061614600580#bib30
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 Aspergillus bertholletius clade 

Aspergillus bertholletius is a mold associated with Bertholletia excelsa nuts (Figure 15). It is the 

sister taxon of a group that includes A. nomius clade, A. tamarii clade, A. mottae, A. parasiticus clade 

and A. flavus clade (Taniwaki et al. 2012). It occurs in Brazilian Amazonia, it is rare and it has been 

isolated from soil nearby the trees, nuts and shell nuts of B. excelsa. Its optimal temperature varies 

from others species in the section, growing slowly at 37 °C. Phylogenetic analyses suggested that is a 

monophyletic group, composed by a unique species (Taniwaki et al. 2012). Its conidia are profuse 

and brown on CYA and greenish on MEA, there is a lack of exudate, and reverse coloration is pale. 

The isolates of A. bertholletius do not produce aflatoxins, but some isolates can produce 

intermediary products (i.e. O-methylsterigmatocystin), suggesting the presence of an in complete 

aflatoxin gene cluster. Other secondary metabolites include CPA and its precursors, tenuazonic acid, 

kojic acid, ustilaginoidin C and indole alkaloids (Taniwaki et al. 2012).  

 

 

 

Figure 15. Colonies of Aspergillus bertholletius. Cultures on CYA and MEA, 7 days at 25 °C (modified from 
Taniwaki et al. 2012). 

 

1.6.2 Clades of species of major economical interest 

 Aspergillus flavus clade 

 Aspergillus flavus was considered as a unique species, nevertheless, several studies support 

that A. flavus sensu lato is a species complex, which includes cryptic species, making their 

differentiation complicated as they overlap several phenotypic and molecular traits. Species nested 

in the clade present colonies green to yellowish shades, conidial heads mostly biseriate and splitting 

radiate (Varga et al. 2011), and a Q-10 (H2) ubiquinone system (Varga et al. 2003). Species nested in 

the clade are heterothallic, and both idiomorphs of mating type gene Mat1.1 and Mat1.2 have been 

amplified (Soares et al. 2012). Aspergillus flavus sensu lato has been divided in two morphotypes 

based on the amount of conidia and sclerotia size: (1) “L” morphotype: high production of conidia, 
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large sclerotia (> 400 µm), and variable production of aflatoxin B and cyclopiazonic acid; and (2) “S” 

morphotype: low production of conidia, conspicuously production of small sclerotia (< 400 µm) and 

high production of aflatoxins and generally produce cyclopiazonic acid. The morphotype “S” is less 

frequently found, and is subdivided into two groups distributed differently in the world, and with a 

different synthesis of aflatoxins: the “SB”, strains that are only able to produce B aflatoxins and found 

in USA; and the “SBG” strains that are able to produce B and G aflatoxins (Cotty 1989; Geiser et al. 

2000; Chang et al. 2009b). Furthermore, based on molecular data A. flavus sensu lato was also split in 

two reproductively isolated groups, I and II, which were not necessary monophyletic (Geiser et al. 

1998). Ehrlich et al. (2004) suggested, based on molecular analyses, that strains belonging to the 

morphotype “L” were a monophyletic group, and strains belonging to “SBG” should be place into a 

different taxon. Later on, isolates classified as “SBG” and belonging to the group II have been 

reclassified as A. minisclerotigenes and A. parvisclerotigenus (Frisvad et al. 2005; Pildain et al. 2008). 

Further analyses determined that the lack of production of G aflatoxins was linked to deletions in the 

norB-cypA (AflF-AflU) region of the aflatoxin gene cluster on A. flavus sensu stricto. Two types of 

deletion were found, type I deletion (1.5 kb) mostly overlaps the type II deletion (1 kb), both 

deletions have arisen from independent evolutionary events. The type II deletion comprises two 

gaps, one absent in type I deletion, this gap of 32 bp in the norB (aflF) gene that encodes for amino 

acid residues 300-310 of the NorB aryl alcohol dehydrogenase (Chang and Erlich 2010). Further, 

Chang et al. (2006) showed that A. flavus L morphotype generally presents a 0.8 kb deletion, whereas 

A. flavus SB morphotype present of 1.5 kb. The inability of producing G- aflatoxin is suggested to have 

occurred several times in the group (Ehrlich and Yu 2010). 

Aspergillus flavus is the most well known species in section Flavi (Figure 16). This fungus is 

thermotolerant, growing at temperatures between 12 – 48 °C, yet its optimal temperature range is 

28 – 37 °C (Yu et al. 2005). Its sexual state has been characterized in laboratory conditions and 

named as Petromyces flavus, and cryptic sexual reproduction is accepted to occur in nature (Horn et 

al. 2009). Among fungi in the section, it has the wider distribution worldwide, being more common 

between latitudes 35 N to 35 S, and less frequent in temperate regions (Mehl et al. 2012). It is 

normally associated with cultivars and different storage commodities that are principally colonized 

by airborne conidia. Maize is its optimal substratum, followed by cottonseed, peanuts, nuts, spices, 

oil seed crops, among others (Horn 2003). A. flavus is considered as a minor phytopathogen 

associated with rot in certain crops like maize, peanuts and cotton seeds (Klich 2007). This species is 

the main producer of AFB1 worldwide, which is considered as the most potent natural compound 

with carcinogenic, teratogenic and mutagenic characteristics (IARC 1993), despite the majority of 

isolates identified are not AFB1 producers (60–70 %) (Varga et al. 2011). The genomic analysis 

showed that A. flavus and A. oryzae genomes present more genes than A. fumigatus and A. nidulans 
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(Machida et al. 2008). The acquisition of the genes can occur via two mechanisms, horizontal gene 

transfer (HGT) and gene duplication and divergence (GDD). These processes were suggested based 

on the mosaic distribution of anomalous genes on the chromosomes. Aspergillus flavus is also the 

second source for aspergillosis (Gonçalves et al. 2013). As Amaike and Keller (2011) reported that this 

illness is caused by the spores, principally via inhalation and less frequently by wounds. Aspergillosis 

affects mostly immunosuppressed patients, and has a high level of mortality (Gonçalves et al. 2013). 

It is also associated to invasive cutaneous aspergillosis in low-birth-weight infants in neonatal 

intensive care unit (McAlpin et al. 2005). A. flavus is the primary causative agent of keratitis that 

results in corneal damage and sight loss in patients from tropical regions, especially from India 

(Srinivasan 2004). Animals can also suffer from this illness, especially rabbits, poultry and bees 

(Amaike and Keller 2011). As aforementioned, Aspergillus flavus is characterized by its phenotypic 

and genotypic plasticity. Morphological traits include greenish to yellowish colonies, conidial heads 

usually biseriate and radiate, vesicles globose to elongate, conidia globose to ellipsoidal, smooth to 

finely roughened walls, sclerotia if present usually “L” and in some population of the USA “SB” 

morphotypes (Klich 2007). The production of mycotoxins is extremely variable, from highly toxigenic 

to nontoxigenic strains (Horn 2003).  

The most important extrolites associated with A. flavus are AFB1, cyclopiazonic acid, kojic 

acid, aspergillic acid, aflatrems, aflavinin and versicolorins. Nowadays, somewhat 56 putative gene 

clusters associated to secondary metabolites synthesis are presumed based on polyketide synthases 

(PKSs), nonribosomal peptide synthetases (NRPSs), hybrid PKS-NRPSs, and prenyltransferases (PTRs) 

genes (Georgianna et al. 2010; Arroyo-Manzanares et al. 2015; Cary et al. 2015b). The study of gene 

clusters and biosynthetic pathways in this fungus is ample; to date, secondary metabolites belonging 

to gene clusters linked to aflatoxins, cyclopiazonic acid, aflatrem, asparasone, leporins, bicumarins, 

piperazines, ditryptophenaline have been identified experimentally (Arroyo-Manzanares et al. 2015; 

Cary et al. 2015a; Cary et al. 2015b). These studies also evidenced the correlation of extrolite 

production and fungus physiology. Cary et al. (2015b) showed the conspicuous expresion of genes 

belonging to the cluster 39 in sclerotia, linked to the production of aflavarin that has anti-insectan 

activity. The authors suggested that aflavarin could play a key role in A. flavus ecology and survival, a 

part of its effects on insects. 

Several strategies to avoid the presence of aflatoxins in crops and storage have been 

developed, and most of them targets A. flavus as the main producer. The use of non-aflotoxigenic 

strains of A. flavus (e.g. AF36) as biocontrol in crops is already use for over a decade. This biocontrol 

benefits from parasexual reproduction, by controlling VCGs ratios in natural populations. In this type 

of reproduction, as aforementioned, stable hyphal fusions take place between VCGs with compatible 

het loci (Amaike and Keller 2011). Each VCG could comprise a variable number of aflatoxigenic and 
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non-aflatoxigenic strains. Non-aflatoxigenic strains are inoculated as part of a mix that includes the 

fungus and all the nutritional requirements for its development. As a result, changes in the genotype 

composition of A. flavus communities occur, reducing ratios of aflatoxigenic strains. It is suggested 

that is a safe type of biocontrol because there is not recombination between AF36 and strains 

belonging to other VCGs (Grubisha and Cotty 2015).  

Aspergillus oryzae is recognized as a domesticated A. flavus (Geiser et al. 2000), that is non-

aflatoxigenic and is considered as safe (GRAS status, FAO 2016) (Figure 16). This species is reported in 

Japan and China, and not in nature. A. oryzae is widely use in industrial processes, some linked to 

koji, as starters in the first steps of fermentation to digest ingredients such as steamed rice, soybean, 

and wheat, being its conidia the target structure (Machida et al. 2008; Ogawa et al. 2010). Similarly, 

it is also used as source for enzymes, like glucoamylase, alpha-amylases and proteases, for the 

production of starch, baking, and brewing worldwide (Machida et al. 2008). The lack of aflatoxin 

production is not a unique feature of A. oryzae considering that approximately 60% of A. flavus 

strains are non-producers (Cotty and Cardwell 1999), making their species status more practical than 

evolutionary, as it is easier to differentiate these isolates from the potential aflatoxigenic isolates of 

A. flavus. Amongst the evidence of its domestication is that both species shares 99.5% genome-wide 

nucleotide similarity (Chang and Erlich 2010). A. oryzae appears to come from a group of non-

aflatoxigenic A. flavus group I, since they share phenotypical traits, like olive green and floccose 

colonies, large conidia, large sclerotia if present, and molecular analyses clustered them (Geiser et al. 

1998, 2000; Chang and Erlich 2010). Genome data have shown that both species share common 

characters, like 8 chromosomes, and a common entire genome size around 37.6 Mb (Machida et al. 

2008; Cleveland et al. 2009). Further, deletions of type I and II in the aflF-aflU (norB-cypA) region, 

and a complete deletion of the region were also observed in A. oryzae (Chang et al. 2015).  

The most important genetic differences between A. flavus and A. oryzae are linked with the 

aflatoxin biosynthesis gene cluster, such as the deletion of AflT gene, a frameshift mutation in gene 

norA (AflE) and a nucleotide substitution in VerA (AflN) in A. oryzae, which leads to the non 

production of this mycotoxin (Lee et al. 2006; Tominga et al. 2006). Regarding the aflatoxin cluster 

gap, A. oryzae could be splitted in groups: (i) group 1 has the pksA (AflC), fas1 (AflB), aflR, ver1 (AflM) 

and vbs (AflK) orthologs; (ii) group 2 has the ver1 (AflM) and vbs (AflK) orthologs, in addition strains 

have a unique structure adjacent to the ‘breakdown and restoration’ region, located upstream of the 

ver1 (AflM) gene, suggesting a monophyletic group; and (iii) group 3 has the vbs (AflK) orthologs 

(Chang and Erlich 2010). Some other genomic differences are associated to other processes, like the 

presence of two or three copies of α-amylase (versus one copy in A. flavus), which facilitates starch 

degradation, as well as genotypic differences on the glutaminase and sesquiterpene loci (Gibbons et 

al. 2012). In addition, the absence of cyclopiazonic acid in A. oryzae is linked to gaps in the 
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chromosome 3 subtelomeric region, which interferes with the biosynthesis pathway (Geiser et al. 

2000; Chang and Erlich 2010).  

Gibbons et al. (2012) suggested that differences between A. oryzae and A. flavus primary and 

secondary metabolisms could partially be explained by the domestication of the first. The principal 

secondary metabolite produced by A. oryzae is kojic acid, which is used in industrial processes. In 

addition, Rank et al. (2012) identified some secondary metabolites that are not produced by A. 

flavus, an aflatrem precursor (13-dehydroxypaxilline), and two analogues of parasiticolide A (dide- 

and 14-deacetyl parasiticolide A).  

Regardless the presence of mating type genes Mat-1 in A. oryzae, Wada et al. (2012) isolated 

Mat1-1 and Mat1-2 idiomorphs in a study performed with 164 tane-koji strains. Abundance ratios of 

both idiomorphs were close to 1:1, suggesting that sexual reproduction could occur under certain 

circumstances, even though the scarce production of sclerotia. 

 

 

Figure 16. Colonies of Aspergillus flavus clade. A= A. flavus CBS100927; B= A. oryzae CBS100929; Cultures on 
CYA and MEA, 7 days at 25 °C (modified from Varga et al. 2011). 

 

 

 Species SBG 

Morphotype strains “SBG” had been reclassified as Aspergillus minisclerotigenes and A. 

parvisclerotigenus, one of the most conspicuous traits is the small size of their sclerotia, as both 

names suggest (Figure 17). A. minisclerotigenes is reported in different world regions (Africa, South 

and North America and Australia), whereas, A. parvisclerotigenus has a restricted distribution, it has 

been found in the Guinean Gulf, in Africa (Perrone et al. 2014; Adjovi et al. 2014). At the beginning 

both species where considered as A. flavus, nevertheless data accumulated suggested that the 

differences were enough to rise both at species level, like the production of B- and G- aflatoxins, and 
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the molecular evidence inferred from gene markers benA, cmdA and mating type genes MAT1 

(Pildain et al. 2008; Soares et al. 2012).  

Moreover, phylogenetic inference studies suggest that “SBG” morphotype is a paraphyletic 

group, which places A. minisclerotigenes as the sister taxon of a group formed by A. flavus and A. 

oryzae, whereas A. parvisclerotigenus is placed as the sister taxon of a group that includes the 

aforementioned species (Soares et al. 2012). Both species seems to share similar metabolic profiles, 

AFBG, CPA, kojic acid, aspergillic acid, aflatrem, and aflavarins. However, A. minisclerotigenes 

produces aflavinins, which are not reported for A. parvisclerotigenus, and the latest produces 

aspirochorin not produced by the former (Varga et al. 2011). 

 

 

Figure 17. Colonies of Aspergillus flavus clade SBG. A= A. minisclerotigenus CBS117635; B= A. 
parvisclerotigenus CBS121.62; Cultures on CYA and MEA, 7 days at 25 °C (modified from Varga et al. 2011). 

 

 

 Aspergillus parasiticus clade 

 Aspergillus parasiticus clade was proposed by Soares et al. (2012), before the species and 

species related to A. parasiticus were shown to be nested in A. flavus clade. The number of species 

related to A. parasiticus has increased during the last decade grace to the use of the polyphasic 

approach. These species have colonies in green shades, darker than those of A. flavus, conidial heads 

mostly uniseriate, a Q-10(H2) ubiquinone system (Varga et al. 2003), species are heterothallic, and 

present both idiomorphs for mating type gene Mat1 loci (Soares et al. 2012). They have smaller 

home ranges, and have more constrained niches regarding their substrate preferences while 

compared to A. flavus.  

Aspergillus parasiticus is considered as the second producer of aflatoxins, it is able to 

produce B- and G- aflatoxins, and only 3 to 6% of isolates are considered non-aflatoxigenic (Chang et 
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al. 2007a) (Figure 18). It is mostly associated with ground crops and with almonds, and rarely in other 

commodities (Amaike and Keller 2011). Like A. flavus, it occurs frequently in tropical and subtropical 

areas, however it can also be found in temperate regions (Varga et al. 2011; Baranyi et al. 2015). This 

species is heterothallic, and its populations are genetically diverse, which suggests that cryptic sexual 

reproduction occurs in nature (Horn 2007). Horn et al. (2009), after crossing different vegetative 

strains in laboratory conditions, identified the sexual form that was named Petromyces parasiticus. 

Morphological characters include conidial heads mostly uniseriate, rarely biseriate, and loosely 

radiate. Conidia globose to subglobose, conspicuously roughened. Sclerotia and stromata external 

appearance globose to ellipsoidal, becoming darker with time. Stroma contains fertile, infertile, or a 

combination of both types of ascospores. Ascospores oblate, finely tuberculate, presence of a thin 

equatorial ridge, hyaline to pale brown, frequently an oil droplet present, globose to subglobose or 

irregularly shaped, nonostiolate, with white to light brown interior (Horn et al. 2009). Aspergillus 

parasiticus produces aflatoxins, kojic acid and aspergillic acid but not cyclopiazonic acid (Varga et al. 

2015).  

Over the last decade Aspergillus parasiticus composition has changed, for instance, A. 

toxicarius has been synonymized based on phenotypical and molecular data (Rigo et al. 2002; Varga 

et al. 2011). On the other hand, some populations are questioned to belong to the same species. For 

instance, Garber and Cotty (2014) suggested that the populations of A. parasiticus associated to 

sugarcane from Japan and Rio Grande Valley (USA) presented considerable differences at molecular, 

phenotypical and VCGs level from A. parasiticus. These populations associated with sugarcane could 

be a new species that has coevolved with its host, and could play an important role in the community 

dynamics of sugar cane crops (Kumeda et al. 2003; Garber and Cotty 2014), however further analysis 

are required to understand their phylogenetic relationships. 

Aspergillus sojae is considered the domesticated species of A. parasiticus, and similarly to A. 

oryzae, this decision is based on practical purposes because it produces kojic acid, which is used in 

fermentation processes (Rigo et al. 2002). This species occurs in China, India and Japan, but it has not 

been reported in agricultural soils (Chang et al. 2007b; Varga et al. 2011). Morphologically, its isolates 

traits overlaps those of A. parasiticus; however differences in colonies coloration and texture, and 

conidia diameter are used as diagnostic traits. For instance, A. sojae colonies tend to be brownish 

olive versus dark olive green in A. flavus (Chang et al. 2007) (Figure 18). Genetically, the haplotypes 

of this species present differences from A. parasiticus. The main mutations are related to the 

aflatoxin biosynthetic pathway, especially differences observed on AflR (an insert of six-base repeat 

CTCATG in the amino-terminal coding region and a transition on nucleotide 1153 C for T) that creates 

a premature stop codon, resulting in a suppression of gene expression, and a disruption of 

interaction between AflR and the AflJ co-activator. In addition, the polyketide synthase gene presents 
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abnormalities (Chan et al. 2007). These differences between A. parasiticus and A. sojae explain why 

the latest does not produce aflatoxins and can be safely used. 

Description of Aspergillus arachidicola was based on an isolate from Arachis glabrata leaves 

in Argentina (Figure 18). Morphologically, the colony surface is floccose with plenty conidial heads 

olive to olive brown, uniseriate to biseriate, conidia globose to subglobose, echinulate, greenish, 

absence of sclerotia, vesicles globose to subglobose. A. arachidicola extrolites profile includes B- and 

G- aflatoxins, kojic acid and aspergillic acid, chrysogine, parasiticolide, ditryptophenaline and “NO2” 

metabolite (Pildain et al. 2008; Varga et al. 2011; Varga et al. 2015). The genome of the type strains is 

being sequenced (Moore et al. in preparation 2018). 

Aspergillus novoparasiticus (Gonçalves et al. 2012) is morphologically similar to A. parasiticus 

and is an aflatoxin producer. It was described in South America in hospital environments, yet latter it 

was isolated from crops (Viaro et al. 2017), and its home range shifted, including a population in the 

Guinea Gulf (Adjovi et al. 2014). In Africa, it was reported to grow on cassava (Adjovi et al. 2014). 

Morphologically this species is characterized by greenish-yellow to olive colonies, with profuse 

amount of conidiophores, conidia globose to subglobose, lobate-reticulate, green conidial heads 

columnar olive yellow, generally uniseriate, rare biseriate, absence of sclerotia, presence of 

exudates, vesicles spatulate to pyriform (Figure 18). Extrolites associated to this species are B- and G- 

aflatoxins and kojic acid.  

Soares et al. (2012) described three new aflatoxin producer species from Portugal, whose 

phenotypical features overlap those of A. parasiticus, including the production of B- and G- 

aflatoxins, A. sergii, A. transmontanensis and A. mottae. All species are rare species. Aspergillus sergii 

grows in almond shells (Prunus dulcis), it is able to produce aspergillic acid and cyclopiazonic acid in 

addition to aflatoxins (Varga et al. 2015). Morphologically it differs from A. parasiticus since it has 

rough conidia and mostly uniseriate conidial heads, presence of dark large sclerotia, and its conidia 

coloration tends to be lighter (Soares et al. 2012) (Figure 18). A. transmontanesis grows in almond 

shells (Prunus dulcis). Morphologically this species resembles to A. parasiticus, but it presents 

biseriate conidial heads and larger, darker and profuse sclerotia (Soares et al. 2012). Apart of 

aflatoxins, it produces aspergillic acid (Varga et al. 2015) (Figure 18).  
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Figure 18. Colonies of Aspergillus parasiticuss clade. A= A. parasiticus CBS100926; B= A.sojae CBS100928; C= 
A. arachidicola CBS117610; D= A. novoparasiticus CBS126849; E= A. sergii MUM10.219; F= A. 

transmontanensis MUM10.214; Cultures on CYA and MEA, 7 days at 25 °C (modified from Pildain et al. 

2008; Varga et al. 2011; Soares et al. 2012). 

 

 

A. mottae is the sister taxon of the group formed by A. flavus and A. parasiticus. It was 

isolated from maize kernels in Portugal and its occurrence is rare. In addition to aflatoxins, it 

produces aspergillic acid and cyclopiazonic acid. Morphologically, it is characterized by flat colonies, 

with scarce yellow-green conidia heads, small and profuse dark sclerotia, generally biseriate heads, 

rarely uniseriate, and vesicles globose to subglobose (Soares et al. 2012) (Figure 19). 

 

 

 

Figure 19. Colonies of Aspergillus mottae MUM10.231. Cultures on CYA and MEA, 7 days at 25 °C (modified 
from Varga et al. 2011). 
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 Aspergillus tamarii clade 

Aspergillus tamarii clade is composed by cryptic species with ubiquinone system Q-10 (H2), 

and overlapping phenotypic traits, for instance their colonies are initially in green or yellowish shades 

becoming brown to brown-bronze over time (Ito et al. 2001; Varga et al. 2003). Data from the genes 

benA and cmdA allowed the differentiation of four species in this group: A. tamari and A. caelatus 

that do not produce aflatoxins, and A. pseudotamarii and A. pseudocaelatus that produce B and G 

AFs (Varga et al. 2011). Metulae and philiades of A. caelatus and A. pseudotamarii are smaller than 

those of A. tamarii. In addition, temperature requirements are different among species, A. tamarii 

grows at 37 and 42° C whereas A. pseudotamarii and A. caelatus grow only at 37 ° C. Relationships 

among the species within the clade have been confirmed by molecular markers and secondary 

metabolic profiles (Ito et al. 2001; Soares et al. 2012). 

Aspergillus tamarii isolates are considered as a low risk species and several of its extrolites 

are used in fermentation processes in the food industry (Varga et al. 2011). Some health problems 

were related to it, for example the human keratitis in Southern India (Kredics et al. 2007) and several 

potential allergens that could be spread by spores in the air (Vermani et al. 2010). A. tamarii has 

been found in tropical and subtropical areas in Africa, Asia, North and South America on nuts, 

coconuts, coffee beans, soil, sugarcane, spices, cereals, Xylotrechus insects and soils (Rigo et al. 2002; 

Kumeda et al. 2003; Pitt and Hocking 2009). Phenotypic traits are colonies in brown to bronze 

shades, colorless to pinkish reverse, radiate and biseriate conidial heads, globose to subglobose 

conidia, roughened with tubercles, and rare sclerotia (Ito et al. 2001; Rigo et al. 2002) (Figure 20). 

Among its secondary metabolites, kojic acid, speradine A, cyclopiazonic acid, fumigaclavines, 

amylases, proteases and xylanolytic enzymes are produced.  

Aspergillus pesudotamarii occurs in South America and Japan (Varga et al. 2011). It is 

morphologically similar to some isolates of A. tamarii, showing an orange-brown or brownish bronze 

coloration on mature colonies. However, coloration differs at the first days of colony development; in 

A. pseudotamarii it is green or yellowish green, whereas in A. tamari it is mainly brown. Colonies are 

generally velvety and present abundant sporulated conidia, reverse pale yellowish brown. Conidial 

heads globose to radiate, generally splitting into several columns, biseriate. Sclerotia small and 

pyriform (Goto et al. 1996; Ito et al. 2001) (Figure 20). Aspergillus pseudotamarii produces AFB1, 

cyclopiazonic acid and kojic acid, yet its association with commodities contamination is unknown 

(Varga et al. 2015). 

Aspergillus caelatus is reported in the USA and Japan, it has been isolated from agricultural 

field soils, peanut damaged by insects and tea fields (McAlpin et al. 2005). Phenotypical traits include 

colonies in shades olive that become brownish-olive over time of maturation, reverse pale yellowish. 

http://www.sciencedirect.com/science/article/pii/S0166061614600580#bib68
http://www.sciencedirect.com/science/article/pii/S0166061614600580#bib152
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Conidiophores, vesicles and stipes are smaller than A. tamarii (Goto et al. 1996; Ito et al. 2001) 

(Figure 20). As well, A. caelatus can form synnemata and sclerotia sessile and stipitate, which 

resemble those of A. togoensis, but smaller (McAlpin 2004). It produces kojic acid and aspirochlorin, 

but not cyclopiazonic acid (Rigo et al. 2002; Varga et al. 2011). McAlpin and Wicklow (2005) 

suggested that VCGs in tea plantations in Japan are less diverse that VCGs in the USA, and this could 

be related to the agricultural systems; in the USA, fields uses a rotation crop system that causes more 

disruption in microbial communities and creates different niches, allowing the colonization by other 

genotypes. 

Aspergillus pseudocaelatus was described by Varga et al. (2011) based on a sample found in 

Argentina on a leaf of Arachis burkartii. Its distribution is restricted to South America, in some areas 

of Argentina (Corrientes) and Brazil (Varga et al. 2011; Taniwaki et al. 2017; Viaro et al. 2017). 

Colonies have a velvet surface and abundant conidial heads. Conidial heads olive to brown, uniseriate 

or biseriate. Conidia are greenish, globose to subglobose and echinulate; it does not produce 

sclerotia, and its vesicles are globose to subglobose (Figure 19). It produces AFBG, cyclopiazonic acid 

and kojic acid. 

 

 

 

Figure 20. Colonies of Aspergillus tamarii clade. A= A. tamari CBS104.13; B= A. pseudotamarii CBS766.97; C= A. 
caelatus CBS763.27; D= A. pseudocaelatus CBS117616; Cultures on CYA and MEA, 7 days at 25 °C (modified 

from Varga et al. 2011). 
 

 

 Aspergillus nomius clade 

The lack of production of cyclopiazonic acid is a diagnostic trait within the clade nomius and 

can be considered a synapomorphy of the clade. Moore et al. (2016) showed that the three genes 

responsible of CPA production are present in A. bombycis, but a deletion of a nucleotide at position 
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954 in the pks-nrps gene suppresses CPA production. Moore et al. (2016) also showed in A. bombycis 

that the gene cluster of aflatoxins is located in a different chromosome than the CPA gene, whereas 

in A. flavus and A. parasiticus both clusters are juxtaposed. Lack of information on the other two 

species of the clade does not allow confirming that this arrangement is fixed in the clade, but studies 

of CPA gene cluster could elucidate the evolution of the pathway, in addition to shed some light on 

the evolution of the Flavi section. Species in this clade have colonies in green shades, are 

aflatoxigenic, and sclerotia if present are small and oval (Barros et al. 2007). 

Aspergillus nomius is an important aflatoxigenic species (Figure 21), just below A. flavus and 

A. parasiticus. This species has a restricted distribution area, nevertheless, over the last years new 

reports suggest that it is widespread, occurring mainly in tropical and subtropical areas, and less 

frequently in temperate regions (Baranyi et al. 2015). In some regions (Brazil), the ability of A. nomius 

to produce aflatoxins is higher than that of the other two producers (Baquião et al. 2014). At the 

beginning, it was only associated with insects, but it also grows on other substrates, including 

Brazilian nuts, sugarcane, nuts, crops and seeds (Horn et al. 2011, Baquião et al. 2014). Ehrlich et al. 

(2007) suggested that this species is a complex species; based on DNA regions, it could be divided 

into three groups, likewise, sclerotia size of some strains are unusually big (1.00 to 4.00 mm), several 

small (> 400 µm) and coloration varies from tan to black. A. nomius is able to produce B and G 

aflatoxins, kojic acid, aspergillic acid, tenuazonic acid, miyakamides, anominine, aspernomine, 

pseurotin, parasiticol, paspaline, paspalinin, pseurotin A, tenuazonic acid, versicolorins, 3-O-

methylsterigmatocystin (Massi et al. 2014). This species is heterothallic and its sexual state was 

identified in laboratory as Petromyces nomius, yet the majority of crosses resulted in infertile crosses 

(76%) (Horn et al. 2010). 

Aspergillus pseudonomius (Varga et al. 2011) (Figure 21) is the sibling species of A. nomius, 

though their traits overlap, some are use as diagnostic, like floccose colonies, profuse aerial 

mycelium and low sporulation, lack of sclerotia, uniseriate conidia heads, globose to subglobose 

vesicles and stipes rough-walled when observed under scanning electron microscope (Massi et al. 

2014). A. pseudonomius has a restricted distribution in South America and it has been found on 

Brazilian nuts and peanuts (Baquião et al. 2014). Its produces B and G AFs, chrysogine, kojic acid and 

miyakamides, aspergillic acid, 3-O-methylsterigmatocystin, tenuazonic acid, a versicolorin and 

parasiticol (Massi et al. 2014). 

Aspergillus bombycis was described in 2001, the isolates were obtained from silkworm 

excreta in Japan and the home range settled in Asia (Peterson et al. 2001) (Figure 21). This species 

was previously misidentified as A. nomius since they have common traits (Peterson et al. 2001; 

Ehrlich et al. 2007; Moore et al. 2016), some of the diagnostic traits are related to temperature, A. 

bombycis grows slowly at 37 °C, and growth is inhibited at 42 °C. Colony texture is loose and deep, 
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green or yellowish, rarely brownish; roughened, globose to subglobose conidia; conidial heads 

arranged into loose columns; globose vesicles. Although this species is able to produce B and G AFs, it 

is not a pathogen for humans or animals. It also produces aspergillic acid and kojic acid (Varga et al. 

2015; Moore et al. 2016).  

Proper species identification is important at regional level, for instance, A. nomius and A. 

pseudonomius are large aflatoxinogenic contaminants of commodities in Brazil. Baquião et al. (2013) 

suggested that A. nomius contamination was more important than that of A. flavus and A. parasiticus 

in Brazil nuts, A. nomius producing higher amounts of aflatoxins and being more suitable for storage 

conditions. Later, Massi et al. (2014) suggested that part of the strains found in Brazilian studies 

corresponded to A. pseudonomius. Both examples underline the importance of a proper recognition 

at species level. 

 

 

Figure 21. Colonies of Aspergillus nomius clade. A= A. nomius CBS260.88; B= A. pseudonomius; C= A. bombycis 
CBS117187; Cultures on CYA and MEA, 7 days at 25 °C (modified from Varga et al. 2011). 

 

 

1.7 SECONDARY METABOLITES IN SECTION FLAVI 

Aspergillus section Flavi includes a plethora of secondary metabolites and only a small portion 

has been characterized that includes some beneficial compounds used in biotechnological processes 

and some mycotoxins. Among the most important mycotoxins in the group are aflatoxins (AFs) and 

their biosynthetic intermediates such as sterigmatocystin (ST). In addition, among the most 



 
56 INTRODUCTION 

important secondary metabolites are other toxic compounds, such cyclopiazonic acid (CPA), 

ochratoxin A (OTA) and emergent mycotoxins such as tenuazonic acid (TeA). Here, only a dozen are 

shown, and their selection is based on the importance in the group (AFs, CPA, ST, aflavarin), or 

because of its importance as mycotoxins (OTA, TeA). 

 

 Aflatoxin biosynthetic pathway 

The aflatoxin biosynthetic pathway has been extensively studied because it contains the genes 

for the biosynthesis of at least ten mycotoxins, including AFs as final products, and sterigmatocystin 

(Georgianna et al. 2010). Among the species presenting this cluster are species from Aspergillus 

sections Flavi, Nidulantes and Ochraceorosei.  

In A. flavus, the gene cluster in charge of AF synthesis is the cluster 54. In several species, it is 

located near the telomere of the chromosome 3 (Georgianna and Payne 2009). In A. flavus, the 

cluster contains at least 25 genes and it spans a region of approximately 70 kb. The cluster is flanked 

on the distal end by four putative sugar-use genes and on the proximal end by the cyclopiazonic acid 

cluster (Amare and Keller 2014). The main cascade regulator genes are aflR and aflS (Yu 2012). 

Studies on several genomes of aflatoxin producer species (A. flavus, A. oryzae, A. parasiticus, 

A. fumigatus and A. terreus) have shown that the aflatoxin gene cluster is arranged into seven 

modules: aflA (fas2)/aflB (fas1), aflR/aflS (aflJ), aflX (ordB)/aflY (hypA), aflF (norB)/aflE (norA), 

aflT/aflQ (ordA), aflC (pksA)/afW (moxY) and aflG (avnA)/aflL (verB) (Carbone et al. 2007a) (Figure 

22). Cluster evolution studies suggest that the cluster was transferred vertically and that the 

retention or loss of the modules occurred differently among species, resulting in divergent lineages. 

In A. fumigatus and A. terreus, the clusters have five genes, aflC, aflS, aflR, aflX and aflY, it has been 

suggested that they derive from an ancestor with a more complete cluster and that several genes 

have been lost, as well as that the ancestral cluster may had other functions (Chang and Ehrlich 

2010). In A. fumigatus and A. terreus, these genes are implicated in the synthesis of trypacidin and 

geodin (Nielsen et al. 2013; Mattern et al. 2015; Trockmorton et al. 2016). In species that have the 

cluster of aflatoxin, some genes are conserved through evolution, some are duplicated and some 

genes are transcribed bidirectionally from a single promoter (aflA-aflB and aflR-aflS) (Chang and 

Ehrlich 2010). 
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Figure 22. Aflatoxin gene cluster arrangement. Arrows represent the gene position and transcription 

orientation. Genes are named with the old nomenclature (below arrows) and with the actual nomenclature 

(above arrows) (modified from Amaike and Keller 2011). 

 

In the next paragraphs, the biosynthetic pathway of AFs in A. flavus will be summarized. Some 

genes have homologs in other species that produce these compounds.The first steps of the synthesis 

is the transformation of acetyl-CoA and malonyl-CoA into norsoloric acid (NOR). This step requires 

four genes (enzyme encoded in parenthesis), aflA and aflB (fatty acid synthases), aflC (polyketide 

synthase) and hypC (anthrone oxidase) (Ehrlich 2009; Yu et al. 2004b; Roze et al. 2013). AflA and AflB 

are in charge of the transformation of the acetyl-CoA and malonyl-CoA in their polyketide structure; 

AflC catalyzes the formation of the polyketide skeleton and the formation of norsoloric acid anthrone 

(NAA), which is the substrate for the formation of NOR, and this transformation is catalyzed by HypC 

(Yu et al. 2004b; Roze et al. 2013) (Figure 23). Then, NOR is transformed into averatin (AVN), and the 

reaction is catalyzed by a norsolorinic acid ketoreductase encoded by the gene aflD (or nor-1). In this 

reaction, the enzyme converts the 1'-keto group of NOR into the 1'-hydroxyl group of AVN (Zhou and 

Linz 1999) (Figure 23).  

 The next steps include the transformation of AVN in 5’hydroxyaverantin (HAVN); this 

hydrolysis reaction is catalyzed by a cytochrome P-450 monooxygenase (cytP450) encoded by aflG 

(avnA) (Yu et al. 2000a). Then, HAVN is transformed into 5’-oxoaverantin (OAVN) by the action of an 

alcohol dehydrogenase encoded by aflH (adhA). OAVN is the substrate for averufin (AVN); this 

reaction is catalyzed by a cyclase encoded by aflK (vbs) (Sakuno et al. 2005). The next reactions 

include the conversion of AVN into versiconal hemiacetal acetate (VHA). Three genes are involved in 

this two-step process. The first step is the transformation of AVN into hydroxyversicolorone (HVN) 

(Yu et al. 2000b), which is carried out by a cytP450 encoded by the gene aflI (avfA) that is supposed 

to catalyze the ring formation. HVN is then used as a substrate for VHA. Two enzymes are involved in 

this step, a cytP450 (cyclization) and a monooxygenase (transformation by a Baeyer-Villiger reaction), 

encoded by aflV (cypX) and aflW (moxY), respectively (Wen et al. 2005; Yu et al. 2004a). Then, 
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versiconal hemiacetal acetate is transformed into versiconal (VAL) by an esterase encoded by aflJ 

(estA); this is a reaction in both directions. Another gene that interacts in this reaction is the 

aforementioned aflK, which encodes a cyclase, and transforms versiconal (VAL) in versicolorin B 

(VERB) (Yu et al. 2004b; Ren et al. 2017). The transformation of VERB to versicolorin A (VERA) is 

carried out by a cytP450 encoded by aflL (verB). Formation of VERA and VERB are important steps in 

the production of B and G aflatoxins (Yabe et al 1991) (Figure 23). 

The conversion of VERA into demethylsterigmatocystin (DMST) is encoded by 4 genes: i) aflM 

(ver-1) encodes a ketoreductase (Hong et al. 2013); ii) aflN (verA) encodes a cytP450 whose role is 

unknown, but it is suggested that it can be linked to the formation of an intermediate and the 

formation of sterigmatocystin (Yu et al. 2004b; Cary et al. 2006); iii) aflY (hypA) seems to play a role 

in two hypothetical intermediate structures between VERA and DMST, catalyzed by a Baeyer-Villiger 

reaction (Ehrlich et al. 2005; Cary et al. 2006); iv) and aflX (ordB) encodes an oxido-reductase that 

catalyzes an oxidative decarboxylation and a ring-closure using a Baeyer-Villiger intermediate that 

results from AflY-catalyzed oxidation (Cary et al. 2006; Ehrlich 2009). Demethylsterigmatocystin is the 

substrate for O-methylsterigmatocystin (OMST) and two genes are involved in this process, aflO 

(omtB) and aflP (omtA). Both codes for O-methyltransferases, and the reaction catalyzed by AflP 

(OmtA) is reversible (Caceres 2016) (Figure 23). 

The transformation of demethylsterigmatocystin into O-methylsterigmatocystin involves 4 

genes: aflQ (ordA), hypB (hypB2), aflE and hypE, the functions of the first two were elucidated. AflQ 

encodes a cytP450 monooxygenase that is important for oxidation of the A-ring of OMST and leads 

to the AFB1 precursor, 11-hydroxyOMST (HOMST). HypB encodes an oxidase, linked with the 

conversion of HOMST into a 370 Da 7-ring lactone (Ehrlich 2009) (Figure 23).  
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Figure 23. Biosynthetic pathway of aflatoxin in Aspergillus flavus (modified from Yu et al. 2004). 

 

 

 Aflatoxins 

As aforementioned, aflatoxins were isolated and characterized for the first time after being 

identified as the cause of turkey X syndrome, an acute aflatoxicosis outbreak that killed over 100,000 

poultry in England in the 60s’. Poultry were intoxicated by eating Brazilian peanut (Arachis hypogaea) 
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cake contaminated with Aspergillus flavus (Blount 1961). Further studies based on the 

symptomatology suggested that CPA was also involved (Chang et al. 2009a). AFs are mainly produced 

by species of the Flavi section, however some species of Aspergillus section Ochraceorosei (i.e. A. 

ochraceoroseus and A. rambellii) and A. section Nidulantes (i.e. A. astellatus) are also producers 

(Varga et al. 2009). The role of AFs is not fully understood, however, they do not seem to be essential 

for the development of the fungus. Assumptions of AF functionality include the removal of excess 

carbon in carbon-rich substrates, chemical signals between species, compounds linked to some 

development processes, protection against soil microbial and insect competitors, and being a 

vestigial trait that has survived through gene clusters and horizontal gene transfer mechanisms. 

Conversely, they do not appear to have phytotoxic functions (Ehrlich et al. 2004). 

Aflatoxins are derivatives of difuranocoumarin formed by two furans and one coumarin ring 

synthesized by a polyketide pathway. This family of secondary metabolites includes around 20 

compounds (e.g. AFB1, AFB2, AFG1, AFG2, AFM1, P1, Q1, B2a, G2a, D1, B3) (Ashiq et al. 2014). This 

group of mycotoxins is known to be the most dangerous of the mycotoxins due to their carcinogenic, 

teratogenic and mutagenic effects on vertebrates. The most studied for their potential adverse 

effects are AFB1, AFB2, AFG1, and AFG2 (Figure 24), which are produced by fungi while the other 

compounds are the result of biotransformation processes (Groopman et al. 2008). In fact, AFB1 is the 

most potent naturally occurring chemical liver carcinogen known. Mixtures of naturally occurring 

aflatoxins have been classified as a Group 1 human carcinogens by the International Agency Research 

on Cancer (IARC) and have demonstrated carcinogenicity in many animal species, including rodents, 

nonhuman primates, and fish (IARC 1993; Groopman et al. 2008). B and G aflatoxins have been 

named based on their fluorescent characteristics under longwave ultraviolet light (λ=365 nm), AFBs 

have a blue fluorescence, while AFGs have a green fluorescence, in addition to having an extra 

oxygen atom in the A-ring (Ehrlich t al. 2008, Abbas et al. 2009). The absence of AFG in some species, 

like A. flavus, is due to deletion in the aflF (norB) – aflU (cypA) region, which is linked to the AFG 

promoter, and the expression of afly (nadA) gene (Ehrlich et al. 2008; Chang and Ehrlich 2010). AflF 

encodes an aryl alcohol dehydrogenase, AflU encodes a cyt P450 monooxygenase and nadA encodes 

a reductase (Ehrlich et al. 2004; 2008). The inability to produce AFG is suggested to have occurred 

several times in the group (Ehrlich and Yu 2010). In the Flavi section, the AFB and AFG producing 

species have the same orientation for this cluster and have similar genomic distances (A. bombycis = 

68.1 kb, A. parasiticus = 68.3 kb and A. nomius = 68.4 kb) (Moore et al. 2016). AFB2 and AFG2 are the 

dihydro-derivatives of the parent compounds AFB1 and AFG1 (Pitt and Tomaska 2001). 
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Figure 24. Aflatoxin structure 

 

 

Once AFs have contaminated staples, toxins are hard to remove because of their chemical 

conformation; their denaturation temperature is above 200° C (IARC 2002), they are liposoluble, 

therefore soluble in polar solvents like methanol and dimethyl sulfoxide, and slightly soluble in water 

(10–20 mg/L) (Jalili 2015). 

Effects of aflatoxins depend on the doses and time exposure and on the characteristics of the 

organism that ingest them (species, gender, age, tolerance and health conditions). For instance, 

sheep, rats and dogs are more sensitive than monkeys, chicken, mice and humans (Bbosa et al., 

2013). Acute exposure can cause jaundice, vomiting, hemorrhages, abdominal pain, acute liver 

failure, problems with absorption of nutrients, and can be lethal (IARC 2015). Outbreaks in India 

(during the 70s) and in Kenya (2004) caused the death of 100 and 125 people, respectively (Lewis et 

al. 2005; Azziz-Baumagarner et al. 2005). Chronic exposure is associated to high risk of 

hepatocarcinoma, immunosuppression, teratogenic and mutagenic effects, reduction in nutrient 

absorption , child stunting, effects in the endocrinal system and liver failure (Stack and Carlson 2003; 

Turner et al. 2005; Bbosa et al. 2013). Teratogenic effects occur during pregnancy, AFs are 

transferred into the placenta, causing congenital malformations of the fetus, and can also lead to a 

high risk of childhood cancer (Wangikar et al. 2007). In world regions where incidence of hepatitis B 

is high and where AFs contaminate food and feed, hepatocarcinoma is more common, suggesting a 

synergistic association between the two (Liu and Wu 2010). 

The biotransformation of AFs occurs mainly in the liver. However, the most studies pathways 

concern those related to AFB1, as this aflatoxin is the most frequent and dangerous (Figure 25). In 

general, biotransformation is carried out by different cytP450s (Wild and Gong 2009). AFB1 enters 

the human body when contaminated products are ingested and then biotransformed. Once AFB1 

reaches the intestine, it is absorbed by the intestinal cells and from there it reaches the blood and 
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reaches the liver. In the liver, AFB1 is metabolized by cytP450s (in particular CYP3A4 and CYP1A2) to 

an unstable intermediate compound, AFB1-exo-8,9-epoxide (Wu et al. 2013). The molecule AFB1-

exo-8,9-epoxide is likely to form covalent bonds with different cellular components such as proteins 

to form AFB1-albumin and other protein adducts. AFB1-exo-8,9-epoxide also binds with DNA 

guanines to the N7position of the p53 gene, codon 249, which results in a transversion GC→TA, 

forming AFB1-guanine adducts that lead to more than 60% of AFB1- linked hepatocarcinoma (Hsu et 

al. 1991; Bennet and Klich 2003; Groopman et al. 2008; Xia et al. 2010; Bbosa et al. 2013). Another 

compound formed by the biotransformation of AFB1 is AFM1, which is sometimes bioaccumulated in 

lipophylic tissues of vertebrates and can be excreted by different fluids such as urine, bile, feces and 

the most important milk from which it takes its name. This AF is also heat resistant, so it cannot be 

eliminated by pasteurization or other food processing (Vidal et al. 2013). It has been suggested that 

the cytP450 involved and the adducts formed differ according to the species that has digested the 

AFs (Bbosa et al. 2013).  

 

 

 

Figure 25. Biotransformation pathways of AFB1. AFB1, when ingested by humans, is metabolized by 

cytochrome P450 enzymes to its reactive form, AFB1-8,9-epoxide (AFB1-epoxide). Then, AFB1-epoxide forms 

covalent bonds with DNA strands, forming AFB1-DNA adducts (AFB1-N7-Gua adduct and AFB1-FAPy adduct) 

(reprinted from Xia et al. 2013). 
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 Sterigmatocystin (ST)  

Sterigmatocystin is regarded as an emerging mycotoxin and is synthesized by several 

Aspergillus (e.g. A. flavus, A. parasiticus, A. togoensis, A. nidulans, A. versicolor, A. ochraceoroseus), 

Penicillium, Bipolaris and Chaetomium fungi. This mycotoxin is one of the last precursors of aflatoxin 

and is synthesized via the AF pathway. In some non-AF producing species such as A. nidulans, ST is 

the last product and the cluster has fewer genes (Gruber-Dorninger et al. 2017; Bertuzzi et al. 2017). 

This mycotoxin is prevalent in the environment (Jakšić et al. 2012). It is suggested that the ST cluster 

was transferred horizontally and evolved independently in different groups of fungi (Rank et al. 

2011). In A. nidulans, the ST cluster has 20 genes that are homologous to AF genes, but some of the 

open reading frames (ORFs) in A. nidulans cluster (e.g. ST and STD) have not been found in the AF 

cluster (Ehrlich et al. 2005). Generally, the homologous genes in the AF and ST clusters have similar 

lengths and rarely differ in number of introns (Yu et al. 2004a). 

Sterigmatocystin has been recognized as potentially carcinogenic, mutagenic and teratogenic 

in animals and was classed as group 2B carcinogen (possibly carcinogen for humans) (IARC 2013; 

Bertuzzi et al. 2017). As well as AFs, this compound is a polyketide and its toxic effect is linked to its 

furofuran ring structure that forms DNA adducts after metabolic activation to an epoxide (Gruber-

Dorninger et al. 2016) (Figure 26). The role of this metabolite is unknown, yet it may have synergistic 

effects with other toxic secondary metabolites. ST has active effects against fungivorous insects, 

probably provides chemical protection for conidia and sclerotia. ST biosynthesis is related to 

conidiation, so it can play a role in survival fitness (Rank et al. 2011). 

 

 

 

Figure 26. Sterigmatocystin structure 

 

It is suggested that Flavi section species are weak producers of sterigmatocystin because 

most of it is biotransformed into AFs. The main producers of ST are the non-aflatoxigenic species, in 

particular A. nidulans and A. versicolor as they do not produce AFs (Varga et al. 2003; Bertuzzi et al. 

2017).  
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The biosynthetic pathway includes the genes previously mentioned of the AF pathway. The 

fluG and flbA genes regulate asexual development and ST production. fluG acts upstream of flbA and 

appears to be involved in the production of extracellular low-molecular-weight diffusible factors that 

activate conidiation and ST production (Calvo et al. 2002).  

 

 

 Versicolorin A and B (VerA and VerB) 

 A and B versicolorins are part of the AF and ST biosynthetic pathways (Figure 23 and 27). 

These compounds can be present in mold particles and conidia and can be taken by the respiratory 

system. Cytotoxic and genotoxic effects of verA and verB were tested in pulmonary A549 cell line and 

have shown positive effects, IC50 of 109 ± 3.5 µM and 172 ± 4 µM, respectively. However, their 

effects were 10 – to 20 times and 30- to 50 times less toxic than AFs and ST, respectively (Jakšić et al. 

2012). It would be interesting to check the concentrations of these compounds in natural 

environments because they are metabolized to AFs and ST, so they effects can be less strong.  

 

 

 

 

Figure 27. Versicolorin A and versicolorin B structures. Left = VerA and right = VerB. 

 

 

 Cyclopiazonic Acid (CPA) 

Cyclopiazonic acid is an indole-tetramic acid compound, synthesized by PKS-NRPS enzymes 

(Chang et al. 2009b). CPA is produced by species of Penicillium, Aspergillus section Flavi, A. section 

Versicolores and A. section Fumigati. Amongst the principal producer are P. camembertii, P. 

chrysogenum, P. verrucosum, A. flavus, A. minisclerotigenes, A. oryzae, A. parvisclerotigenus, A. 

pseudocaelatus, A. pseudotamarii, A. tamarii and A. bertholletius (Varga et al. 2015). CPA was first 

identified in Penicillium cyclopium, but it is not known how the cluster was inherited in both genera, 

anyway horizontal gene transfer mechanisms are not discarded (Moore et al. 2016). Its main effect is 

the inhibition of the calcium-dependent ATPase in the sarcoplasmic reticulum, leading to increased 

muscle contractions. Its effects vary on different vertebrates. In rodents, it could cause liver, kidney, 



 
65 INTRODUCTION 

pancreatic, spleen and heart damage. In poultry, it could cause ulcerative proventriculitis, mucosal 

necrosis and lead to a significant mortality rate, and in mammals, dogs are more sensitive than pigs, 

and the two species are more sensitive than other animals. In addition, it is suggested that it could be 

involved in the ‘kodo poisoning’, which occurred in India when contaminated kodo millet was 

ingested (Vaamonde et al. 2006, Chang et al. 2009a). Moreover, in some species such as poultry and 

pigs, CPA has additive effects with AFs and OTA, respectively (Chang et al. 2009a) (Figure 28). 

 

  

 

Figure 28. Cyclopiazonic acid structure 

 

 

The function of CPA is not known, but it might play a role in niche adaptation, providing an 

advantage in fungus fitness under specific environmental conditions (Georgianna et al. 2010), or it 

can act as sequestering agent of Fe3+ because it is an excellent chelator. CPA might have partially 

fulfilled the function of ion-chelation before siderophore molecules were incorporated in the fungus 

genome. In A. flavus, sidC and sidT (msf2), which encode a siderophore and a siderochrome-iron 

transporter, are settled in the same subtelomeric region than the CPA gene cluster, yet they are 

located at the terminus of the chromosome 3, suggesting that they were incorporated later (Chang 

et al. 2009a).  

In Aspergillus flavus and A. oryzae, CPA is synthesized by the cluster 55, which is located in the 

subtelomeric region of chromosome 3, close to the AF cluster (Chang et al. 2005; Tominaga et al. 

2006). On the other hand, in A. bombycis, this cluster is settled in a genomic region different from 

that of the AF cluster and it has some deletions, such as a deletion in the 11.7-kb pks-nrps gene at 

position 954, which results in a frameshift stop codon at position 1096, stopping the translation of 

3541 amino acids and thus the lack of production of CPA (Moore et al. 2016).  

The CPA biosynthetic cluster contains three essential genes, identified in the genome of A. 

flavus and A. oryzae (Figure 29). CPA precursors include a tryptophan residue, two units of acetic acid 

and an isoprenoid moiety (dimethylallyl diphosphate—DMAPP) in a three-enzyme biochemical 
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pathway. Two stable intermediates are produced in the synthesis of CPA: cyclo-acetoacetyl-L-

tryptophan (cAATrp) and β-cyclopiazonic acid (β-CPA), by the action of CpaS, CpaD and CpaO, which 

form an hybrid two-module polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS). CpaS 

(or CpaA), catalyzes the formation of the tetramic acid cyclo-acetoacetyl-L-tryptophan (cAATrp). It is 

prenylated by the prenyltransferase CpaD (or dmaT), producing a β-CPA, which is the ultimate 

tricyclic precursor of α-CPA. The conversion of β- to α-CPA is catalyzed by a cyclo-oxidase CpaO (or 

maoA) in a redox reaction forming two rings (ring C and D) (Uka et al. 2017). Gaps in the CPA cluster 

have been identified, and depending on the size of the gap differences, the synthesis of this 

mycotoxin can be altered. For instance, the non-toxigenic strains of A. flavus, NRRL 21882 and NRRL 

35739, lack the CPA cluster.  

 

 

 

Figure 29. Cyclopiazonic acid cluster. Arrows represent the gene position and transcription orientation 

(modified from Tokuoka et al. 2015) 

 

 
 

 Kojic acid (KA) 

Kojic acid is a beneficial secondary metabolite produced by the species Acetobacter, 

Penicillium and Aspergillus, including several species in the Flavi section, but the main producers are 

A. oryzae, A. sojae and A. tamarii (the three species are used in biotechnology processes) (Burdock et 

al. 2001; Terabayashi et al. 2010) (Figure 30). This metabolite is used in the production of several 

food processes including miso (soybean paste), shoyu (soy sauce) and fermented beverages such as 

sake, amazake, shouchu and mirin (mostly Asian products) during fermentation processes. KA is used 

for its antioxidant properties in food processing for example in beef, fried bacon and fruits to prevent 

the formation of warmed-over flavor, nitrosopyrrolidine production and fruit oxidation, respectively. 

It has also been used as starting material for the synthesis of the food enhancers: maltol and ethyl 

maltol. In the cosmetic industry, it is used as a skin-lightening agent, as KA is a copper-sequestrating 

agent; it inhibits the activation of tyrosinase and thus inhibits melanine production; additionally, KA 

has UV protective properties. Finally, KA has been used as an antibiotic and pesticide (Burdock et al. 

2001; Bentley 2006; Terabayashi et al. 2010; Sanchez et al. 2012). Toxicological studies suggested 
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that it is a safe compound for vertebrates because it has no acute toxic effects, is not mutagenetic, 

and although chronic exposure tests have shown a tendency to affect pituitary function, these effects 

were easily reversible and not linked to a genotoxic pathway (Burdock et al. 2001; Bentley 2006).  

 

 

 

Figure 30. Kojic acid structure 

 

 

Although KA has been known for over a century, its biosynthesis is not fully understood. 

During the last decade, some of the genes in A. oryzae have been identified. The cluster is located on 

the chromosome 5, in the genomic region between AO090113000132 and AO090113000145 that 

includes approximately 14 genes. Three genes have been identified and tested to play a role in KA 

synthesis, one gene (kojR or AO090113000137) encoding a transcription factor, one gene (kojA or 

AO090113000136) encoding an enzyme and one gene (kojA or AO090113000136) encoding a 

transporter (kojT or AO090113000138). kojR encodes a fungal-specific Zn(II)2Cy6 transcription factor 

located between kojA (upstream 743 bp) and kojT (downstream 383 bp). The experiments have 

shown that KojR regulates the transcription of kojA and kojT (Terabayashi et al. 2010; Yamada et al. 

2014) (Figure 31). It is postulated that kojR is expressed at low levels, causing an accumulation of 

kojA and kojT transcripts, which leads to the synthesis of KA. When KA synthesis reaches a threshold, 

it induces a higher production of kojA and kojT, which increases the synthesis of KA (Maraui et al. 

2010)  
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Figure 31. Schematic diagram showing the genes in the kojic acid cluster. KojR (transcription factor) activates 

one gene (KojA) encoding an enzyme and one gene (KojT) encoding a transporter (reprinted from Terabayashi 

et al. 2010). 

 

 

 Aflatrem 

This mycotoxin belongs to the indole terpene family and is classified as a potent tremorgenic 

compound that causes neurological disorders. The mechanism by which aflatrem exerts its effects in 

mammals is unknown, however it appears that this could be related to interaction with receptors 

and interference with the release of neurotransmitters in the central and peripheral nervous systems 

(Zhang et al. 2004). 

Studies in A. flavus and A. oryzae have elucidated the biosynthesis of aflatrem, two clusters 

are in charge: cluster 32 (chromosome 7) and cluster 15 (chromosome 5). Cluster 32 loci (ATM1) is 

located telomere proximal and contains three genes, atmG, atmC, and atmM, while cluster 15 loci 

(ATM2) is located telomere distal and contains five genes, atmD, atmQ, atmB, atmA, and atmP 

(Nicholson et al. 2009). The backbone enzyme for cluster 15 is a dimethylallyl tryptophan synthase, 

whereas there is no backbone for cluster 32 (Dolezal et al. 2013). One of the regulators of this 

mycotoxin is VeA and mutants for this gene no longer produce the mycotoxin, besides, exposure to 

light increases the synthesis of this mycotoxin (Duran et al. 2007) (Figures 32-33).  

 
 



 
69 INTRODUCTION 

 
 

Figure 32. Aflatrem clusters in Aspergillus flavus and A. oryzae. Physical maps of ATM1 and ATM2 loci and the 

syntenic regions of other Aspergillus species. Arrows represent the gene position and transcription orientation   

(modified from Nicholson et al. 2009). 

 

 

 

 

Figure 33. Biosynthetic pathway of aflatrem in Aspergillus flavus (modified from Nicholson et al. 2009). 

 

 

 Aflavinine 

This secondary metabolite is part of the indole-diterpenes, they have a cyclic diterpene 

backbone in their structure derived from geranylgeranyl diphosphate and an indole group that is 

derived from indole-3-glycerol phosphate (Figure 34). These compounds are associated with 
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antiinsectan activities and can confer an ecological advantage to fungi that produce them. In fact, 

aflavinines occur in the sclerotia of some species of A. section Flavi and they belong to the non-

paxilline indole-diterpenes (Saikia et al. 2008). It is suggested that the production of aflavinines and 

their derivates is linked to sclerotia production (Gloer et al. 1980). Among the antiinsectan activity 

are their effects ion the fungivorous beetle Carpophilus hemipterus and the Lepidoptera Helicoverpa 

zea (Parker and Scott 2005). To date, the cluster responsible from its synthesis has not been 

elucidated. 

 

 
 

Figure 34. Aflavinine structure. 

 

 

 Aflavarins 

Aflavarins are bicoumarins and their synthesis is hypothesized to occur by the dimerization of 

monomeric coumarins (Figure 35). Aflavarins are produced in sclerotia and can have antiinsectan and 

actibacterial properties, but they are not cytotoxic; hence, they play an important ecological role in 

producing species and contribute to their survival (TePaske et al. 1992, Cary et al. 2015b). Besides, 

the cluster in charge of aflavarin biosynthesis is necessary for normal production of sclerotia (Cary et 

al. 2015b). This polyketide secondary metabolite is found in some Aspergillus species, including 

several species of A. section Flavi.  

 

 

Figure 35. Aflavarin structure 
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The cluster responsible for the production of these metabolites has recently been 

characterized by Cary et al. (2015) in Aspergillus flavus and corresponds to the cluster 39. The cluster 

is conserved in some species (e.g. A. oryzae, A. nidulans, A. niger, A. terreus, A. fumigatus, A. 

fischerianus and A. clavatus), and homologs for the genes are found. There are at least four isomers 

of aflavarin and its diversity is linked to the the C-C bridge (biaryl axis) (Figure 36). 

  

 

 
 
 

Figure 36. Comparison of cluster 39 among Aspergillus species. The scheme shows the cluster 39 in A. flavus 

NRRL3357 (above the arrows the names of genes encoding each enzyme), and compares it with others species 

of the genus, showing the level of conserved genes (reprinted from Cary et al. 2015). 

 

  

 Tenuazonic Acid (TeA) 

  Tenuazonic acid is a tetramic acid derivative mainly synthesized by species of Alternaria 

followed by Phoma sorghina and Magnaporthe oryzae and rarely by Aspergillus nomius, A. caelatus 

and A. bertholletius of Flavi section (Varga et al. 2011; Taniwaki et al. 2012; Gruber-Dorninger et al. 

2016). This mycotoxin is non-mutagenic and its effects might be associated with the interference of 

protein biosynthesis. The effects of this mycotoxin include tremors, diarrhea, vomiting, and 

hemorrhages; for some species like rodents it can be lethal. Toxicity experiments have shown that in 

mice, rats, beagle dogs, chickens and monkeys, it has a certain degree of toxicity. A survey performed 
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by EFSA (2011) has shown that TeA was present in 15% of the samples (n = 300) of European feed 

and agricultural commodities at concentrations of about 500 and 4310 μg/kg, and in feed and feed 

raw materials in 65% of the samples (n = 83) at median and maximum concentrations of 68 and 1980 

μg/kg, respectively. The product that presented the higher levels of TeA (up to 1200 μg/kg) was 

Sorghum-based infant food. EFSA (2011) concluded that TeA is unlikely to be of human health 

concern, but more recent studies have nonetheless suggested that because of the high doses in 

Sorghum-based infant food, TeA can pose health risks, so further experiments are needed. In 

addition, more experiments are needed to confirm that TeA is not a risk for poultry (chickens) 

(Gruber-Dorninger et al. 2016) (Figure 37). 

 

 

Figure 37. Tenuazonic acid structure 

 
 
 

 Ochratoxin A (OTA) 

Ochratoxins are mycotoxins produced by Aspergillus and Penicillium species. It was first 

described in A. ochraceus, and later found in P. verrucosum, P. nordicum and in the Nigri and Flavi 

sections of subgenus Circumdati and in the Flavi section it is produced by A. alliaceus clade (Varga et 

al. 2015). Ochratoxins are 3,4-dihydromethylisocoumarin derivatives linked with an amide bond to 

the amino group of L-phenylalanine (Dirheimer and Creppy 1991, Fungaro and Sartori 2009) (Figure 

38). The staples that are contaminated by this mycotoxin include cereals, spices, coffee, cocoa and 

grape derived products. Like other mycotoxins, OTA is very stable and very little degradation occurs 

during food processing such as cooking, washing, and fermenting, therefore, it is found in staples 

(Fungaro and Sartori 2009). 
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Figure 38. Ochratoxin A structure 

 

 

Ochratoxin A is known for nephrotoxic, immunosuppressive, teratogenic and carcinogenic 

effects. Toxicity of OTA is caused by the lactone moiety, which has a structure similar to that of tRNA 

phenylalanine synthetases, therefore it competes with it and binds to the substrate, thus 

interrupting protein synthesis (Dirheimer and Creppy 1991). OTA appears to act as a competitive 

inhibitor of ATPase, succinate dehydrogenase and cytochrome C oxidase in rat liver mitochondria. In 

addition, OTA produces cellular damage through the formation of hydroxyl radical and lipid 

peroxidation. Amongst the vertebrates sensitive to the toxin are poultry, rats and mice. Experiments 

in vitro on human and dog kidney cells at concentrations of 100 nmol/L resulted in apoptosis. 

Besides, OTA is associated with several nephropathies in humans and mammals (Hussein Brasel 

2001; Varga et al. 2015). OTA was classified by IARC (2012) in 2b group. Although the mechanisms by 

which OTA produces its carcinogenic and teratogenic effects is not totally clear, the formation of 

DNA adducts and single strand breaks have been reported (Lühe et al. 2003). 
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AIM OF THE STUDY 

Aspergillus section Flavi is a group of molds that are at risk to health and the economy and 

widespread worldwide, formed by species able to produce a plethora of secondary metabolites, 

including several mycotoxins and beneficial compounds. The principal mycotoxins, which have 

already been highlighted, are AFs, CPA, ST, aflatrems, OMST, versicolorins and OTA. To date, this 

group comprises 26 described species, including a number of cryptic species. The majority of species 

are generally isolated from tropical and subtropical regions worldwide; hence, these regions are 

more affected by AFs and other mycotoxins, causing human health impacts and economically issues. 

The presence of A. section Flavi is not only an issue for countries in these geographical regions, but 

also a problem in temperate regions due to the importation of potentially contaminated raw 

materials. In addition, climate change is leading to environmental shifts that might alter the home 

range and frequency of Aspergillus section Flavi worldwide.  

As aforementioned, the ability of species to produce secondary metabolites is in part species-

specific, hence the need for adequate characterization from a food safety perspective. The 

characterization of species in the section is traditionally morphological, yet currently secondary 

metabolite screening and the inclusion of molecular markers are also performed, which facilitates 

identification. Molecular marker techniques used to characterize Flavi section include RFLPs, AFLPs, 

RAPDs and phylogenetic inference. Regardless of these methods usefulness, to date there is no 

agreement on which are the best molecular markers and combinations to distinguish between the 

species in the Flavi section. 

The general aim of this dissertation was to identify the molecular markers that allow 

appropriate characterization at species level in Aspergillus section Flavi.  

The first aim of the study was to develop a molecular tool based on phylogenetic inference to 

identify species from Flavi section. To achieve this goal, a pool of 11 genes has been selected from 

the literature. At the same time, a collection of fungi, including most of the section’s species, was 

created. Genes were amplified when possible, and their potential applicability as molecular markers 

using phylogenetic inference was tested using Maximum Likelihood and Bayesian Inference (Chapter 

2). 

The second aim was to test the effectiveness of the molecular tool with unidentified strains of 

Aspergillus from the section. We collaborated with Dr. Catherine Brabet for a screening of the Flavi 

section in the peanut production chain in the Côte d’Ivoire. This collaboration allowed us to test the 

molecular tool and identify the best combination of the different genes (Chapter 2.2 and 2.3). We 

also collaborated in the project ARVALIS for screening maize samples in France, this work also 

allowed to test the molecular tool (Chapter 2.4). 
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2.1 CHAPITRE 1 

Molecular Flavi Tool 
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As mentioned before, species identification in Aspergillus can be challenging, and section Flavi 

is one of the best examples of their complexity. Species have high inter and intra variability of traits, 

making only one of identification methods (morphological, molecular characterization and secondary 

metabolites profile characterization) futile (Taylor et al. 2000; Geiser et al. 2007). Conversely, the 

development of molecular tools over the last two decades has allowed the development of new 

techniques that are useful for species identification in Aspergillus, nevertheless a combination of 

methods is recommended to achieve robust results (Geiser et al. 2007; Varga et al. 2011).  

 

2.1.2 Polyphasic approach, ways of determining section Flavi species 

 Species concept 

There are several concepts of species, depending on the field the definition of a species is 

slightly different (Table 1). However, several authors suggested that all these concepts had a main 

core, and that the species concept should be based on it, and so the unified species concept was 

born (De Queiroz 1998; 2005; 2007). Under this concept, a species is a lineage that has evolved 

separately from other lineages, so it is not mandatory to be verified under the limits of other species 

concepts, it does not need to be recognized for its phenotype, diagnose as monophyletic, nor 

reproductively isolated, etc. (de Queiroz 2007).  

 

Table 1. Species concepts (Reprinted from de Queiroz 2007) 

CLASS OF SPECIES 

DEFINITION 

PROPERTY UPON WHICH IT IS BASED 

BIOLOGICAL Interbreeding (natural reproduction resulting in viable and fertile offspring) 

      Isolation Intrinsic reproductive isolation (absence of interbreeding between organisms 

of different species based on intrinsic properties, as opposed to 

geographic barriers) 

      Recognition  Shared specific mate recognition or fertilization system 

(mechanisms by which organisms of the same species, or their gametes, 

recognize one another for mating and fertilization) 

 

     Ecological Same niche or adaptive zone (all components of the environment with 

which the organisms interact) 

 

PHYLOGENETIC Heterogeneous 

 

     Monophyletic Monophyly (consisting of an ancestor and all of its descendants; 

commonly inferred from possession of shared derived character states) 

 

     Genealogical Exclusive coalescence of alleles (all alleles of a given gene are 

descended from a common ancestral allele not shared with 
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those of other species) 

 

     Diagnosable Form a diagnosable group (qualitative difference) 

 

EVOLUTIONARY Form a diagnosable group (qualitative difference)/ Separation of lineages (intrinsic 

or extrinsic) 

 

PHENETIC Form a phenetic cluster (quantitative difference) 

 

GENOTYPIC CLUSTER Form a genotypic cluster (inferred from deficits of genetic 

intermediates, e.g. heterozygotes) 

 

 

Species classification in Aspergillus, and especially in section Flavi include differences in the 

approach of the terms, nevertheless, it is possible to use the unified species concept to include all the 

information obtained, hence, better acknowledging the relationships in the genus. There are two 

main currents in species classification of section Flavi, one more conservative proposed by Cotty and 

collaborators, and other more flexible, supported by Samson, Ehrlich, Frisvad, Pitt, Varga and 

collaborators. The first one suggests that A. flavus clade and A. parasiticus clade are, each of them, 

one species, and both species are plastic. Cotty and collaborators in some studies have accepted the 

possibility of species complexes; however, they do not openly incorporate the recently described 

species, especially for A. minisclerotigenes and A. parvisclerotigenus. These species are mainly 

supported by the ITS gene, VCGs, and phenetic traits. From all of them, A. flavus is the more plastic 

species, presenting strains with large and small sclerotia, and producers of B- and G- AFs. The more 

lax current suggests that A. flavus, A. parasiticus and A. nomius are species complexes that enclose 

cryptic species that are more feasible to be recognized by the combination of phenetic and 

physiological traits, secondary metabolic compounds, and molecular markers. The idea of species 

complex in section Flavi is increasingly been accepted as it is well supported by secondary metabolic 

profiles and molecular data. With the acquisition of more information of gene expression and omics, 

these cryptic species are better supported.   

 

 Morphology and physiology 

Conventional classification of the Aspergillus section Flavi includes several phenotypic traits, 

which, when used together, allow most species to be grouped. This approach presents some 

difficulties especially when cryptic species are present. In addition, phenotypic traits are variable and 

depend on environmental conditions, such as temperature, nutrient availability, moisture, 

competitors, microorganism communities, host, etc. The morphological traits include macro and 

microscopic traits. For example, colony color and texture, arrangement of conidial heads (globose to 
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radiate) and coloration in shades of yellow-green to brown; globose to subglobose or flask shapes 

vesicles; conidia form, coloration and texture; uni- and biseriate sterigmata; dark sclerotia (Raper and 

Fennell 1965; Varga et al. 2011). Other traits include ubiquinone systems, growth at different 

temperatures, media color shifts due to metabolite production (AFPA and CREA media) (Varga et al. 

2003; Rigo et al. 2002; Gonçalves et al. 2012). 

 

 Secondary metabolites 

 The secondary metabolic profile of a species comprises all the secondary metabolites that a 

species can produce, including toxins, antibiotics, among others. Although, several species can 

produce similar secondary metabolites, the secondary metabolic profile is species specific, working 

like a fingerprint, and is helpful for species characterization in ascomycetes like Alternaria, 

Aspergillus, Fusarium and Penicillium (Frisvad et al. 2008). However, some species present a highly 

similar metabolic profile, especially those species that are closely related. Furthermore, the 

expression of the genes encoding for secondary metabolites in fungi depends on abiotic and biotic 

factors, triggering different genes. Some of the secondary metabolites frequent synthesized by 

Aspergillus section Flavi are kojic acid, aspergillic acid, aflatoxin B (Samson et al. 2014). The 

disadvantages of this approach includes the intra species variability (e.g. AffF-AflU region in A. 

flavus), the development of the fungus (during different steps in their life different secondary 

metabolites can be expressed), and the response to stimuli including environmental, like pH, 

temperature, carbon and nitrogen sources, and stimuli derived from other organisms (Frisvad et al. 

2008;  Brakhage 2013). 

 
 

 Molecular markers  

  The advantage of molecular markers over phenotypic markers (including those linked to 

secondary metabolites) is that they are more stable. In addition, the development of biotechnology 

and the development of biostatistics approaches and software facilitate the analyses, making them 

quicker, less expensive and more robust (Mitchell 2010). The use of molecular markers has helped to 

resolve taxonomic questions that have not been resolved by morphological and physiological 

approaches (Perrone et al. 2004).  

Molecular markers are defined as any region of the genome that could be identified, and must 

be designed with the purpose of the study in mind, targeting the genomic regions that will be more 

informative to accomplish it. Molecular markers include DNA, RNA, and amino acid sequences of 

proteins. In fact, the design must consider the potential variability between gene sequences, a 
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conserved marker will be preferred to determine higher taxonomic groups than the marker used at 

population level (Taylor 2000; Aguileta et al. 2008; Mitchell 2010). In strains identification studies, 

the use of markers that include noncoding regions, hence that lack selective pressure, are preferred. 

Some uses of molecular markers include fingerprinting of allozymes of fungi with medical purposes, 

electrophoretic karyotypes, DNA hybridization probes, PCR-based genotypes, endonuclease 

restriction fragment length polymorphisms (Table 1) (Mitchell 2010).  

Several molecular markers and techniques have been tested in an attempt to properly classify 

the species in A. section Flavi, including RAPDs (random amplified polymorphic DNA), AFLPs 

(amplified fragment length polymorphism), RFLPs (restriction fragment polymorphism), sequence 

analyses of cytochrome b gene, ITS region, and analyses of the aflatoxin gene cluster. However, the 

use of a single molecular marker has not been sufficient to solve the identification issues (Geiser et 

al. 2007; Godet and Manaut 2010). 

 

Table 2. Screening methods to determine fungal species (Reprinted from Mitchell, 2010) 

METHOD 

APPLICATION  

Strain identification, 

molecular 

epidemiology, 

population genetics 

Species identification 
Phylogenetics, 

systematics 

Examples Aspergillus 

section Flavi* 

Electrophoretic karyotype X    

RFLP X X  Somashekar et al. 2004 

Southern hybridation X X  Kumeda and Asao 1996 

RAPD, AFLP, PCR fingerprint X X  
   Massi et al. 2014;  

   Viaro et al. 2017 

Microsatellites X X  
   Tran-Dinh et al. 2009 

Microarrays X X     Guo et al. 2011 

SNP, MLST, DNA sequencing X X X 
   Pildain et al. 2008;     

Varga et al. 2011 

*= There are only shown a couple of examples per method 

 

 Phylogenetic inference 

Nowadays, the use of molecular markers for phylogenetic inference is not only applied to 

understand inter species relationships, it is also used to identify the relationships between genes, to 

decipher evolutionary history at several levels (kingdoms, families, genera, species, populations, 

cellular lineages, genes), and to compare and understand pathogens dynamics, metagenomic 

regions, regulatory elements, and non-coding RNAs (Taylor et al. 2000; Ziheng and Rannala 2012).  
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The use of molecular markers in fungi is controversial. Depending on the target group, some 

markers could be more informative than others. However, markers can include genes that have 

biases or are not good enough for unmasking relationships in certain groups (Aguileta et al. 2008; 

Schimitt et al. 2009). For instance, in Aspergillus the most preferred molecular markers are ITS, β-

tubulin and calmodulin genes, yet the first two have been reported to have problems in relationships 

inference, particularly ITS (internal transcribed spacer located between RNA subunit genes) (Geiser 

2007). Withal, the robustness of the analysis will increase when multiple independent loci lead to a 

congruent answer (Taylor et al. 2000; Begerow et al. 2004; Townsend 2007), and the inclusion of 

molecular markers have to take into account their plausibility for molecular inference (Aguileta et al. 

2008). 

The use of phylogenetic inference to identify species in the section Flavi was included as part 

of the polyphasic approach. Generally, it includes one or more genes, which are mostly analyzed 

independently or together. The inclusion of this technique has allowed addressing the complexity of 

this group, and has reinforced the idea that species, such as A. parasiticus sensu lato and A. flavus 

sensu lato corresponded to species complexes (Peterson 2008; Pildain et al. 2008; Varga et al. 2001; 

Soares et al. 2012; Taniwaki et al. 2012).  

 
 

2.1.3 Objective 

To screen the species relationships in this group based on different markers, and subsequently, 

identify a combination of several molecular markers that allows species delimitation and 

classification in the section Flavi by phylogenetic inference. 

 

2.1.4 Material and methods 

Creating the database of Aspergillus section Flavi, “THE FLAVI TOOL” 

 

GENES 

For the present study, we chose twelve genes based on their function and their use in 

phylogenetic studies on fungi, in addition, for some strains the region aflF-aflU was analyzed (Figure 

1).  
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Figure 1. Genes used during the study, and their main classification. 

 

 

Fungal cell function genes 

 Nuclear Ribosomal Internal Transcribed Spacer (ITS):  

This ribosomal region is universally used as bar coding gene for fungi. ITS is formed by a rRNA 

cistron constituted of 18S, 5.8S, and 28S rRNA genes, that suffer post-transcriptional processes  

resulting in the cleavage of the cistron by removing two internal transcribed spacers (White et al. 

1990; Schoch et al. 2012). These loci are useful to infer relationships among fungi species, as they 

have different segments with different resolution at different scales; ITS1 has a fast evolution rate, 

5.8S is highly conserved and ITS2 displays a moderately rapid evolution rate (Nilsson et al. 2008). 

Studies suggested that it is informative to delimit at genus level, and in some groups at species level 

(Nilsson et al. 2008; Scorzetti et al. 2002). ITS is suggested to be useful to obtain an idea of genera 

and species at community level (Buchan et al. 2002). However, the use of this gene as barcode for 

Ascomycota is sometimes insufficient; it can present pleomorphisms and alignment difficulties 

(Scorzetti et al. 2002; Nilsson et al. 2008; Seifert 2009). Furthermore, it has already been shown that 

this marker is insufficient to discriminate at species level in some groups of fungi. In some sections of 

Aspergillus and Penicillium it is not suitable because of difficulties in the alignment and/or the regions 

are highly conserved, indeed, the use of this markers is advise to use while other markers are also 

present (not necessarily in a multilocus dataset) (Varga et al. 2003; Geiser et al. 2007; Seifert 2009). 
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In the specific case of A. section Flavi it is informative for certain taxa, yet its ability to be useful at 

species level is questionable (Rigo et al. 2002). 

 

 β-tubulin (benA)  

Tubulins are crucial proteins for cells, they are an important component of the cytoskeleton, 

and essential for several processes such as chromosome segregation, cell division, cell shape, 

intracellular transport, and flagellar or ciliar movement (Einax and Voigt 2013). The family of tubulin 

proteins contains seven groups, α-tubulin and β-tubulin being the most frequent in Eukaryotes. β-

tubulin genes are useful for phylogenetic studies in Eukaryotes because they are easily amplified, 

they have some highly conserved regions, especially at N-terminal ends, which share approximately 

65–70% of their sequence (Glass and Donaldson 1995; Baldauf et al. 2000; Einax and Voigt 2003). On 

the other hand, intron sequences are more variable, as they can vary in number and position, which 

contributes to the variability of this gene, and enables the resolution of relationships at species level 

in certain clades (Einax and Voigt 2003; Peterson 2008; Samson et al. 2014). The use of benA for 

phylogenetic inference is currently widespread in different fungi taxa, and is generally accepted as a 

good phylogenetic marker (Begerow et al. 2004; Soares et al. 2012). Conversely, some studies 

suggest that the presence of orthologs of this gene can be an issue in some taxa (Begerow et al. 

2004; Ziheng and Rannala 2012). The inclusion of this gene can improve the robustness of the 

inference analysis (Schoch et al. 2012). 

 

 Calmodulin (cmdA) 

 Calmodulin is an important intracellular Ca2+ receptor among eukaryotes. This small acidic 

protein complex has several functions, such as regulation of cell growth and cycle. It activates 

phosphodiesterases, Ca2+-ATPase, protein kinases, and adenylate cyclase (Yasui et al. 1995). Similarly 

to β-tubulin, calmodulin has been chosen as marker because it is easily amplified and it has 

conserved and variable regions (Geiser et al 2000; Samson et al. 2014). The region works for most 

Aspergillus groups as a reliable marker (Samson et al. 2014). The primers of calmodulin used in this 

study contain approximately 580 bp, and includes introns 2, 3 and 4, and exons 2, 3, 4 and partial 

exon 5 (Hong et al. 2006).  

 

 Minichromosome maintenance protein (mcm7):  

The minichromosome maintenance protein encodes for essential proteins in the first steps of 

eukaryotic replication (Raja et al. 2011). This gene is present as a single copy in the genome, giving it 
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some advantages over other markers, such as β-tubulin or small ribosomal subunits 18S and 28S 

(Schmitt et al. 2009; Raja et al. 2011). Schmitt et al. (2009) suggested that mcm7 has characteristics 

that make it a good gene marker for phylogenetic inference among fungi, at large and fine scale. 

They tested this molecular marker across a wide range of unrelated taxa, resulting in good and 

robust topologies, with good resolution power and branch support. In fungi, phylogentic studies 

using this marker have showed that it is a suitable marker (Raja et al. 2011; Morgenstern et al. 2012; 

Schoch et al. 2012; Tretter et al. 2013). Raja et al. (2012) suggested that, although mcm7 did not 

always provide reliable relationships, it should be considered as useful marker for fungi, and 

Ascomycota.  

 

 RNA polymerase II, largest subunit (rpb1) 

RNA polymerase II is in chart of transcribing all mRNAs and several noncoding RNAs. Rpb1 has 

a C-terminal domain (CTD), consisting of about 25 repeats of the heptamer sequence Tyr1-Ser2-Pro3-

Thr4-Ser5-Pro6-Ser7; of which five amino acids can be phosphorylated, and prolines can be in cis or 

trans configurations (Suh et al. 2016). RNA polymerase genes are used as markers to understand 

evolutionary relationships between several eukaryotic taxa, including plants, fungi and protists 

(Cheney et al. 2004; Nickerson and Grouin 2004; James et al. 2006; Morgenstern et al. 2012). Among 

its advantages as a marker are that rpb1 is present as a single copy in the genome (Stockinger et al. 

2014), Rpb1 protein features include nine amino acid regions highly conserved among eukaryotes, 

bacteria, and archaea, named regions A–I. In addition, it has different evolutionary rates, allowing 

some studies at finer scale. For instance, the use of rpb1 has facilitated the comprehension of the 

evolution of arthropods, rhodophytes and protists (Nickerson and Grouin 2004). In fungi, its use can 

facilitate the understanding of evolutionary relationships at different levels, like in Glomeromycota 

(Stockinger et al. 2014) and Inocybe (Matheny et al. 2002). 

 

 Acetamidase (amdS) 

 Certain Aspergillus can use acetamide as source of nitrogen thanks to the presence in their 

genomes of the enzymes belonging to the acetemidase family. The search of these genes in 

Aspergillus section Flavi arose because of their use in industrial processes (Katsuya et al. 1991). A. 

oryzae was one of the first species of the genus where this gene was characterized (Katsuya et al. 

1991). Later on, Geiser et al. (1998) used this gene to infer relationships among A. flavus strains. This 

gene presents exons and introns, hence, it has conserved and variable regions that can be useful for 

phylogenetic inference (Geiser et al. 1998; Gonçalves et al. 2012).  
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Reproduction genes 

 MAT genes 

 As aforementioned, sexual reproduction in fungi can be heterothallic, requiring fungi with 

vegetative compatibility groups strains with opposite MAT loci, or homothallic, self-reproduction 

where the fungus present the two MAT loci (Paoletti et al. 2007). It is suggested that besides of the 

sexual reproduction, MAT loci are involved in several other cellular processes (Dyer and O’Gorman 

2012). MAT loci are formed by two gene regions, called MAT1-1 and MAT1-2 in euascomycetes. 

MAT1-1 encodes an α-domain transcription factor, and MAT1-2 encodes for a transcription factor 

with a high-mobility group (HMG) domain (Dyer and Kück 2017) (Figure 2). Some studies have tested 

that MAT loci and their ratios in the section Flavi and have shown that the vast majority of fungi are 

heterothallic (Geiser et al. 1998; Carbonne et al. 2007; Ramirez-Prado et al. 2008; Horn et al. 2011), 

nevertheless it is not known if all species present both idiomorphs. These genes are not suitable for 

phylogenetic inference per se, yet their analysis is interesting in order to increase the knowledge of 

the species in the section. 

 

 Pheromone precursor ppgA and pheromone receptors preA and preB  

 These genes have important roles in mating recognition. PpgA encodes for an α-pheromone 

precursor that binds to PreB, whereas preA and preB encode a-pheromone and α-pheromone 

receptors target by MAT, currently the gene that codes for the α-pheromone has not been identified 

(Dyer et al. 2003; Dyer and O’Gorman 2012) (Figure 2). Although some studies have compared these 

genes among different fungi taxa (Pöggeler 2002; Dyer et al. 2003; Hoff et al. 2008), their use as 

phylogenetic markers has not been performed.  

Pöggeler (2002) identified in A. fumigatus a type of gene that seemed to play a role as pro-α-

factor-like- pheromone precursor, ppgA, and suggested that it was involved in cell recognition and 

mating in filamentous ascomycetes. Moreover, she identified that the polypeptide encoded by ppgA 

had two identical repeats of a non-peptide hydrophilic pheromone sequence, and these regions were 

flanked by maturation signals that can lead to cleavage, like α-factor precursors found in 

Saccharomyces cerevisiae.  

Pöggeler (2002) also identified an ORF in A. fumigatus that had significant similarity with 

pheromone receptors of other filamentous ascomycetes, preA, whose protein sequence blasted with 

some Ascomycota and Basidiomycota pheromone receptors. In the same study, she identified 

another region similar to an α-factor receptor, preB. Although sequences are not identical, their 
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structures resemble and belong to the 7-transmembrane-type receptor family. Later on, Hoff et al. 

(2008) identified similar genes in Penicilium chrysogenum.  

 

 

 

 

Figure 2. Scheme of reproduction genes. MAT1loci, target genes of MAT1-1, and encoded transcription factors 

inferred from functional genomics experiments in Penicillium chrysogenum. The scheme shows that MAT1-1 

regulates several functions (reprinted from Dyer and Kück 2017). 

 

 

 

Genes linked to aflatoxin pathway 

 aflP 

AflP encodes an O-methyltransferase, an enzyme that is expressed only in suitable conditions 

for aflatoxin production and catalyzes the transformation of sterimatocystin into O-

methylsterigmatocystin (Yu et al. 1995; Scherm et al. 2005). It is suggested that this enzyme can also 

be involved in conidiation (Lee et al. 2002). The presence of this gene has been investigated in some 

aflatoxin producing species (Yabe et al. 1989; Yu et al. 1993; 1995). In fact, a comparison between A. 
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parasiticus and A. flavus suggested that aflP is similar in both species, sharing the same number of 

exons and introns, and at the same positions, as well as similar nucleotides and amino acidic 

sequences (Yu et al. 1995). Despite, some studies linking the function of the gene and its presence in 

section Flavi species have been performed, its use as a phylogenetic marker is not common (Geiser et 

al. 1998; Gonçalves et al. 2012). This gene can be interesting for phylogenetic inference in A. section 

Flavi because it is linked with aflatoxin production.  

 

 aflF-aflU region 

 Like aflP gene, the comparison of AflF-aflU amongst species of A. section Flavi can be 

interesting as a marker to understand evolution of aflatoxins, especially AFGs. This section can be 

amplified and compared between species that produce these aflatoxins. In addition, for A. flavus it is 

an interesting genomic region to address question at population level. In several species of 

Aspergillus section Flavi, aflF and aflU are close together, aflF encodes for an aryl alcohol 

dehydrogenase and aflU encodes for a cytochrome P450 monooxygenase. Ehrlich et al. (2008) 

suggested that aflF may catalyze the biosynthesis step after the rearrangement and decarboxylation 

of the NadA-reduced 386 Da intermediate. As mentioned before, A. flavus is incapable to produce G-

aflatoxins because it presents a deletion of 1-1.5 kb, this gaps occurs nearby 0.4 to 0.6 kb from the 

translational stop codon of aflF (Ehrlich et al. 2004) (Figure 3).  

   

 
 
Figure 3. Scheme of the aflF-aflU genomic region in different strains of Aspergillus section Flavi. Arrows shows 

the coding region and the transcription direction of aflF and aflU. Gaps are present in all samples. Asterisks 

show small gaps in G aflatoxin producers: A. nomius (13 bp), A. parasiticus (11 bp) and strain BN008R (4 bp). 

Aspergillus flavus and oryzae have different gaps that inhibits the synthesis of aflatoxins G. A. flavus AF70 and 

A. oryzae ATCC46264: Gap = 1516 bp; Strain AF13: gaps = 32 and 854 bp. Small arrows = position of 

oligonucleotide primers AP1729 and AP3551 (reprinted from Ehrlich et al. 2004). 
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ISOLATES 

 Fungal Strains and Culture Conditions  

A collection of Aspergillus section Flavi strains that includes at least one isolate of almost all 

species of the section are kept at Toxalim, INRA under controlled conditions (on Malt Extract Agar 

slope cultures at 4 °C). The strains used in this study and the isolates available in GenBank database 

that were included for constructing phylogenetic trees are listed in the Annexes and tables of 

chapters 2.2, 2.3 and 2.4.  

In addition, some isolates were included in the analyses to test the application of the tool and 

its robustness. Seventy-one strains from Côte d’Ivoire were obtained from a collaboration with 

CIRAD, and fifteen isolates from a study linked to the project ARVALIS (see Chapter 2.2 and Chapter 

2.4).  

 

 DNA Extraction, Amplification and Sequencing 

The DNA extraction protocol, and the amplification and sequencing conditions and protocols 

are described on chapters 2.2 and 2.3 (Figure 4). 

 

PHYLOGENETIC APPROACH: Alignment, Model Selection and Phylogenetic Inference 

 Alignment and Model selection 

We performed several analyses, each one contained different genes and gene mixes, to test 

the best combination with most robust results (Figure 4).  

We used BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html) to assemble, align and trim 

the databases for each gene, and to trim concatenated datasets. The alignments were performed 

using ClustalW algorithm in this program, and checked with the naked eye to avoid errors. 

Concatenated dataset were performed using Mesquite v3.2 (Maddison and Maddison 2017).  

To perform phylogenetic analyses, the determination of the best-fit model of nucleotide or 

amino acid substitution for each gene or each partition is required. Models of evolutionary 

substitution are based on the likelihood that a nucleotide or an amino acid changed into another 

one, resulting in a set of probabilistic assumptions that are accepted over others. Choosing a 

substitution model is problematic because assuming the wrong model would provide an evolutionary 

scenario that does not fit the real relationships among set of sequences. Thus, leading to a topology 

that does not correspond to the true evolutionary processes and that shows the wrong relationships 

among sequences (Posada 2009).  
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Figure 4. Phylogenetic inference process. The scheme shows all the steps and the software used. 
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Another issue in phylogenetic inference is to choose between two analyzing approaches, 

create a consensus from different single topologies or performing concatenated analyses. Consensus 

analyses have the advantage that, when performed properly, they produce branching pattern with 

high resolution, thus the topology provides a safe estimate of the phylogeny. It is easy to perform 

evolutionary model analyses for each gene, but with this method polytomies can increase, because there 

are not as many variation sites than in a concatenated matrix (Gadagkar et al. 200; Kubatko and Degnan 

2007). Additionally, genes do not evolve at the same rates, or necessary present the same scenarios, 

and one gene can lead to more incongruences between topologies (Ziheng and Rannala 2012).  On the 

other hand, the use of concatenated dataset can increase the number of variable sites, adding important 

information to clarify relationships. However, one of the problems that rise while using concatenated 

datasets is that different genes can be assumed to follow the same type of evolutionary model for 

nucleotide variation, leading to misinterpretation of the data, and a poor inference of the 

relationships (Gadagkar et al. 2005). Lanfear et al. (2016) partially solved this issue by providing 

software that allows testing different partitions in a dataset, and including complex algorithms and 

mathematical processes to improve the analyses. Nowadays, is also recommended to test for 

coalescence, especially when various genes are used, and some test has been developed to verify if 

data follows the parameters proposed by software (Degnan and Rosenberg 2009; Liu et al. 2009).  

In the present study, depending on the purpose of the analysis and the amount of genes used, 

one gene datasets and multilocus dataset were analyzed. To choose the best substitution model for 

nucleotide evolution in single gene datasets we used jModelTest v2.1.6 (Darriba and Posada 2012), 

and for concatenated datasets we used PartitionFinder v2.00 (Lanfear et al. 2016). jModelTest 

analyses were run using three different criterion: Akaike Information Criterion corrected (AICc) 

(Sugiura 1978), decision-theoretic performance-based approach (DT) (Minim et al. 2003) and 

Bayesian Information Criterion (BIC) (Kass and Wasserman 1995). Conversely, the best-fit nucleotide 

substitution model for concatenated dataset and partitioning scheme were calculated under BIC. To 

search for the best scheme we used the “greedy” algorithm with branch lengths of alternative 

partitions “linked”. The use of Bayesian Information Criterion increased over the last decade in the 

phylogenetic field (Lanfear et al. 2016). This criterion gives an approximate solution to the natural log 

of the Bayes factor, facilitating the analyses of large samples and nested competing hypotheses, and 

usually chooses simpler models than AIC (Posada 2009). In general, each gene has been analyzed 

alone and with a varying number of isolates (depending on the goal of each analysis). In some other 

cases, different genes were concatenated to obtain results that were more robust.  
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 Maximum Likelihood and Bayesian Inference  

Maximum Likelihood  

Maximum likelihood (ML) inference is one of the most widely used statistical methods for 

phylogenetic inference. This method is based on a priori conditions (evolutionary models), that are 

used as baseline for further probability analysis. ML searches for the best evolutionary model that 

has the highest likelihood with the given data, and also finds the best tree. Calculations are based on 

the probability that the pattern of variation of a site occurs given a particular substitution process, a 

particular tree and the overall observed base frequencies. The likelihoods for all the sites are 

multiplied to provide an overall likelihood. A good tree should have as many sites with high 

likelihoods, so the product of likelihoods is high (Brinkman and Leipe 2001; Ziheng and Rannala 

2012). 

 

Bayesian Inference (BI) 

 This statistical method has become more popular over the last two decades. The main 

difference between Bayesian inference (BI) and ML is that for the first the parameters in the 

evolutionary model are considered random variables, whereas for the latest they are considered 

fixed constants. In BI the parameters are assigned a prior distribution, which is combined with the 

likelihood for the given data to calculate posterior distribution. The strength of the method lies in the 

Markov Chain Monte-Carlo (MCMC) algorithms, which enables independent branch lengths on 

unrooted trees (Ziheng and Rannala 2012).  

 

Advantages and Disadvantages of Both Methods 

The two inference methods are based on evolutionary models, hence, it is important to choose 

and adequate substitution model. Likewise, both require complex calculations that are 

computationally demanding. Nevertheless, both methods have advantages over the maximum 

parsimony methods, making them widely used nowadays for systematics and phylogenetic analyses 

(Ziheng and Rannala 2012). 

These methods are based on maximum likelihood, however, the way in which statistic are 

inferred varies from one method to the other. For example, Bayesian statistics answers biological 

questions directly and their results are easy to interpret. Posterior probability of a tree is interpreted 

as the probability that the tree is correct for the data under a provided model, yet sometimes it is 

inflated. In the case of likelihood analysis, concepts, such as the confidence interval, requires a basic 
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knowledge of statistics for a proper interpretation. The confidence interval for the tree widely used 

bootstrap method, which could be difficult to interpret (Ziheng and Rannala 2012) 

Analyses 

Once best nucleotide substitution model was chosen, we performed ML and BI statistical 

methods to test the accuracy of our results, and to identify the best gene combination. ML analyses 

were performed in MEGA v6.0.6 (Tamura et al. 2013) or in GARLI v2.01 (Zwickl 2006). Analyses in 

MEGA 6.0.6 were performed using just one gene and when the model existed in the parameters. 

GARLI analyses were performed following the manual. Four independent analyses were carried out, 

two rounds were carried out following random starting tree, and two more following stepwise 

starting tree. We compared the trees/lnL scores, checked if they were similar, and then we chose to 

run with the best tree/lnL score. Boostrap was performed using 200 replicates, and Mesquite was 

used to visualize the results.  

For the Bayesian analyses, four independent runs were carried out for 107 generations, each 

with four MCMC chains, and sampling every 500 generations. More generations were added if the p-

value was higher than 0.01, because significance was not achieved after finishing the analysis. We 

confirmed, for each analysis that the average standard deviation of split frequencies between chains 

approaches to values of ≤ 0.01, and the potential scale factor reduction factor (PSRF) to 1. For all the 

analyses, 25% were arbitrarily discarded as “burn-in” from the total number of trees per run. The 

remaining trees were used to calculate posterior probabilities (PP) for each bipartition in a 50% 

majority-rule consensus tree using Tracer v1.6 (Rambaut et al. 2014). Phylogenetic trees were 

visualized and edited with FigTree v1.4.2 (Rambaut 2014). 
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2.2 CHAPITRE 2 

Biodiversity of Aspergillus isolates potentially 

aflatoxigenic recovered from peanuts in Côte 

d’Ivoire 
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2.2.1 BACKGROUND 

The present study resulted from a collaboration between CIRAD and Toxalim. The goal was to 

characterize at species level some strains from Flavi section isolated along the peanut paste 

production chain at Korhogo region (Côte d’Ivoire). Some strains were already characterized using 

the PCR-DDGE, yet some strains were not recognized using this technique. Additionally, the 

confirmation of the results of PCR-DDGE was necessary. This collaboration enabled us to test the 

“Phylogenetic Molecular Tool” developed. The phylogenetic inference analyses were performed 

using ITS, benA and cmdA genes. 

Risk of mycotoxin contamination is a global issue; however, some regions are more exposed to 

them, like sub-Saharan Africa, Latin America, and Asia. In fact, it is estimated that in these regions ca 

500 million people are at high mortality and morbidity risk (IARC 2015).  

In Africa, the presence of fungi belonging to section Flavi is frequent. The screening reports of 

mycotoxins are commonly positive for aflatoxins. Reasons for their presence in staples include 

suitable environmental variables, staples inadequate storage and transport conditions, and the 

unawareness of mycotoxin risk (Shephard 2003, Ezekiel et al. 2013; Wagacha and Muthomi 2008). In 

some African regions, aflatoxin contamination is a main public health problem, affecting people of all 

ages, including in utero infants (Lewis et al. 2005, Shephard 2008, Streit 2013). Actually, over the last 

decades, several aflatoxicosis outbreaks were reported, and were caused by the consumption of 

highly contaminated staples (Lewis et al. 2005; Azziz-Baumagarner et al. 2005). Moreover, aflatoxin 

contamination impacts African countries economy, since exportation of raw materials has to suit 

international mycotoxin policies (PACA 2013).  

Peanut is an important staple in African countries, is nutritionally rich, and an important 

economic source. Unfortunately, it is a host for several species from section Flavi, including 

aflatoxinegic ones (Matumba et al. 2014, IARC 2015). The frequent presence of G1 and G2 aflatoxins 

(AFG1 and AFG2) in peanut products (Kamika et al. 2014, Matumba et al. 2014; 2015) suggests that 

Aspergillus flavus is not the only species contaminating this kind of commodities, making peanuts an 

excellent product to test the “Phylogenetic Molecular Tool”.  

The manuscript is been prepared in order to be submitted in a journal. 
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ABSTRACT 

Mycotoxin contamination of staples is an issue in Sub-Saharan regions, especially aflatoxins and 

fumonisins, resulting in severe health and economy risks. Aflatoxins are important mycotoxins 

because they have detrimental effects in vertebrates, principally aflatoxin B1, which is consider as 

the most potent liver carcinogenic natural compound (IARC 1993). Maize and peanuts are important 

staples in Sub-Saharan region, and are among the staples more affected by AFs contamination. In the 

region, the main producers of aflatoxins are species belonging to Aspergillus section Flavi, the 

principal producer is A. flavus followed by other species from A. flavus clade and A. parasiticus. In the 

present study the biodiversity of Aspergillus section Flavi was assessed using a polyphasic approach 

along the peanuts chain process in Côte d’Ivoire. Experiments included morphological analyses, 

aflatoxins production, DGGE-PCR and phylogenetic inference. The results showed that in Korhogo 

region, in Côte d’Ivoire, three species of Aspergillus flavus clade grow on peanuts, the most frequent 

A. flavus, followed by A. parvisclerotigenus and the novel species A. korhogoensis. The lasts two 

species produced B- and G- aflatoxins, and in higher rates than A. flavus. The results also showed that 

the DGGE-PCR and multilocus phylogenetic analyses are elegant strategies for recognizing species of 

section Flavi, especially for A. flavus clade. 

 

KEYWORDS 

Aspegillus section Flavi, aflatoxins, peanuts, PCR-DGGE, phylogenetic analyses, polyphasic approach. 
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1 INTRODUCTION 

Mycotoxins are low-weight molecules (< 1000 Daltons), yield by the secondary metabolism of 

filamentous fungi, which are detrimental to vertebrates and humans. Mycotoxins are common 

contaminants of food and feed staples that contaminate approximately 25% of crops worldwide 

(CAST 2003), and generate important health and economic risks (Wu et al. 2014). Only in the sub-

Saharan Africa, Latin America, and Asia, an estimated number of 500 million people are exposed to 

mycotoxins at high levels, putting them at high mortality and morbidity risk (IARC 2015). Nowadays, 

400 putative fungal toxins have been described, seven of which are characterized as major 

mycotoxins and regulated by the European Union (EU) based on their effects and prevalence: 

aflatoxins, fumonisins, ochratoxin A, trichothecenes (specifically deoxynivalenol), zearalenone, ergot 

alkaloids and patulin (Bennet and Klich 2003; Cano et al. 2016).  

Among mycotoxins, aflatoxins have received lot of attention for their detrimental effects. 

Aflatoxin B1 (AFB1) is the most potent liver carcinogenic natural compound (IARC 1993). Chronic 

exposure to aflatoxins is linked with teratogenic, mutagenic and immune suppression effects, child 

stunting, hepatotoxic effects with a high risk of hepatocarcinoma (Turner et al. 2005; IARC 2015). 

Acute aflatoxicosis can cause hemorrhages, acute liver damage, issues in the absorption and/or 

metabolism of nutrients, and death (Bbosa et al. 2013). Several episodes of acute toxicosis due to the 

consumption of high-contaminated foods have been reported in the last decades. The most 

important occurred in Kenya on 2004, causing the death of 125 people (Lewis et al. 2005; Azziz-

Baumagarner et al. 2005). Aflatoxins are mainly produced by fungi of Aspergillus section Flavi in a 

variety of matrices, especially maize, peanuts, cotton seeds, oleaginous seeds, cereals and spices and 

are commonly found in tropical and subtropical regions worldwide, where the environmental 

conditions favor their production (Klich 2007). Aflatoxin B1 is the most recurrent aflatoxin and 

Aspergillus flavus is recognized as the main source of this toxin in warm and wet regions of the world.  

In Africa, aflatoxins are frequently found in mycotoxin screenings, favored by a combination of 

suitable environmental variables, inadequate storage and transport conditions of staples and the 

unawareness of mycotoxin risk (Shephard 2004, Ezekiel et al. 2013; Wagacha and Muthomi 2008). 

Regardless the fact that in certain Sub-Saharan African regions the level of aflatoxins is controlled, in 

some other regions it is a main public health issue, affecting people of all ages, including in utero 

infants (Lewis et al. 2005, Shephard 2008, Streit 2013). Chronic exposure in these areas can start as 

early as in uterus, and continue through adulthood (Turner et al. 2013). Infant population present a 

high risk of aflatoxin exposure, in some Western African regions 99% of children are positive to 

aflatoxins in blood (Gong et al. 2002), likewise, breastfed infants are also at risk of B1, B2 M1 and M2 

aflatoxin intake via their mothers’ milk (Shepard 2004). Additionally, aflatoxin contamination has an 

economic impact in African countries since international regulations were applied, especially EU 
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legislation, export rejection has increased. For instance, during 2007-2012, the EU issued 346 

notifications (PACA 2013).  

Aflatoxin intake within West Africa involves principally maize and groundnuts (IARC 2015). The 

latter is an important staple in some of these countries; it plays a role in nutrition as a cheap source 

of protein and nutrients, as well as income (Matumba et al. 2014). Fungi of Aspergillus section Flavi 

can contaminate peanuts during pre- and post-harvesting steps, and the main factors facilitating 

their development are plant stress, insect damage, environmental conditions, specially temperatures 

and humidity, inadequate storage, transporting and marketing conditions (Pitt et al. 2013). 

Aspergillus flavus is not able to produce G-aflatoxins due to a deletion of 0.9-2.2 kb in the norB (aflF)-

cypA (aflU) region, which modifies the promoter and coding regions (Ehrlich et al. 2004; Probst et al. 

2012). Therefore, the frequent presence of G1 and G2 aflatoxins in peanut products (Kamika et al. 

2014, Matumba et al. 2014; Matumba et al. 2015; Manizan et al. in press) suggests that A. flavus is 

not the only species contaminating this kind of commodities. Therefore, while G-aflatoxins are 

detected on staples, it is necessary to target other species as producers. Historically, peanuts’ 

aflatoxin contamination was associated with A. parasiticus (Pitt et al. 2013), however, in certain areas 

of the world aflatoxin contamination of peanuts produced by species such as A. minisclerotigenes, A. 

pseudocaelatus, A. pseudotamarii and A. flavus were also reported (Pildain et al. 2008; Martins et al. 

2017; Oyedele et al. 2017).  

The aim of the present work is to address the diversity of the section Flavi in peanuts in the 

Côte d’Ivoire. In pursuance of species identification, a polyphasic approach, enclosing macro- and 

microscopic analyses, characterization of aflatoxin production and two different molecular 

approaches were carried out. We developed a Polymerase Chain Reaction-Denaturin Gradient Gel 

Electophoresis (PCR-DGGE) analysis using a fragment of β-tubulin gene, in addition phylogenetic 

inference analyses were performed using ITS, β-tubulin (benA) and calmodulin (cmdA) genes. 

 

2 MATERIALS AND METHODS 

2.1 Fungal strains 

The biological material used in this study consists of 256 strains of Aspergillus isolated from 

peanut samples (pods, seeds, paste) collected along the peanut chain in Côte d'Ivoire. Peanuts 

samples were collected precisely in the Korhogo area in northern Côte d'Ivoire, in the villages of 

Gbandokaha (9°32’N 5°33’W) and Pokaha (9°24’N 5°30’W) and in the markets of Korhogo city 

(9°29’N 6°49’W). Strains were isolated after inoculation of samples on Aspergillus flavus/Aspergillus 

parasiticus Agar (AFPA) (Merck KGaA, Darmstadt, Germany) incubated at 30°C for 48 h (Pitt et al. 

1983). Then, isolated strains were stored at 4°C on inclined Potato Dextrose Agar (PDA) (Biokar 
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Diagnostics, Allonne, France), and at -80°C in physiological saline solution (NaCl 9 g/L) containing 20% 

glycerol in cryotubes (MAST, Biovalley, Nanterre, France).  

 

2.2 Morphological characterization 

For experiments, calibrated semi-solid spore suspensions (106 conidia/mL) were prepared from 

the 256 strains conserved on inclined PDA medium. For macro- and microscopic analyses, 3 x 5 µL of 

calibrated spore suspension were inoculated at three equidistant points on Czapek Yeast Agar (CYA) 

and on Malt Extract Agar (MEA) (Difco Bacto, France); cultures were incubated at 25°C for 7 days. 

Macroscopic analyses were carried on CYA and MEA (Pildain et al. 2008), whereas microscopic 

analyses were observed from colonies on PDA after 5 days of incubation at 25°C, using a microscope 

(Leitz Laborux S) at X400 and X1000. 

 

2.3 Aflatoxinogenesis tests of Aspergillus isolated 

2.3.1 Cultures and aflatoxin extraction 

After macroscopic and microscopic characterization, the 256 strains were divided into 179 

groups, from which one strain was tested for aflatoxin production potential. Test of potential of 

aflatoxin production were performed on PDA following the method described by Dachoupakan et al. 

(2009).  

Cultures stored at -80°C were used to inoculate the 179 strains on PDA at 25°C for seven days. 

Then, spore suspensions calibrated at 106 conidia/mL were calculated using a THOMA cell. For 

experiments, 5 µL of calibrated spore suspension (106 conidia / mL) were centrally inoculated on PDA 

and incubated at 25°C for 7 days. Inoculations were carried out in duplicate. 

For aflatoxin extraction, 4 plugs of 6 mm diameter were taken (2 plugs at the centre and 2 at 

the margins of the colony), and weighed in 4 mL amber vials. Then, 2.5 mL of methanol: formic acid 

(25: 1, v/v) solution was added. Next, samples were agitated for 20 min in an ultrasound bath 

(Brasonic, 3510E-MT, Danbury, USA). Extracts were obtained by filtration of the samples with a 

syringe (10cc) through a 0.45 μm PTFE syringe filter (Teflon PTFE, Interchim, France). Next, samples 

were evaporated under a flux of nitrogen at 45°C. Finally, the dry extracts were suspended in 1 mL of 

mobile phase (qH2O: methanol, 55:45, v/v, 350 μL of 4 M nitric acid, 119 mg potassium bromide) and 

passed in an ultrasound bath for 10 min before HPLC analyses. 

 

2.3.2 Determination of AFs by HPLC/ FLD 

The aflatoxins recovered were quantified by reversed-phase high performance liquid 

chromatography (RP-HPLC) with fluorometric detection (Shimadzu RF 20A, Kyoto, Japan) according 

to the method of R-Biopharm, Aflaprep IFU (P07.V18) (2013). An aliquot of 100 μL of the extract was 
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injected into a C18 grafted column (250×4.6 mm, 5 μm, Uptisphere 120 Å OBD silica, Interchim, 

Montluçon, France) heated to 40°C. The flow rate of the mobile phase was 0.8 mL min-1. Aflatoxins 

were detected by fluorescence (λexc 362 nm, λem 425 nm) after post-column derivatization in a 100 

μÅ electrochemical cell (Kobra Mobile™ R. Biopharm Rhone Ltd., Glasgow, United Kingdom). The 

results were expressed in μg of aflatoxins g-1 of culture medium. 

 

2.4 Molecular analyses 

2.4.1 Extraction and purification of DNA using Cethy Trimethyl Ammonium Bromure (CTAB) method 

The DNA extraction method was adapted from the protocols of Prabha et al. (2012) and Borges 

et al. (2009). It was performed in three steps. 1) cell lysis: 5-day-old mycelium and conidia were 

suspended in 500 μL of CTAB buffer (1 M Tris pH 8, 5 M NaCl, 0.5 M EDTA, 20 g CTAB, 2.5 μL β-

mercaptoethanol) in an Eppendorf tube containing 0.3 g of glass beads (425 to 600 μm, Merck, 

KGaA). The suspension was vigorously homogenized for 2 min in a bead-beater instrument (Vortex 

Genie 2 SI-A256, USA Scientific, Orlando, FL, USA), then incubated at 65°C for 15 min in a water bath. 

The suspension was homogenized again for 1 min and incubated at 65°C for 15 min in a water bath. 

2) Inactivation of cellular nucleases: after incubation, 500 μL of a chloroform: isoamyl alcohol (24: 1, 

v/v) solution were added to the suspension and centrifuged for 5 min at 17000xg (centrifuge Heraeus 

Pico 21, ThermoFisher Scientific, Illkirch, France). 3) Purification of the DNA: 64 μL of 3 M sodium 

acetate (Merck, KGaA) and 233 μL of isopropanol (CARLO ERBA Reagents, Val de Reuil, France) were 

added to supernatant and centrifuged at 21,000xg for 5 min. The pellet was washed by adding 500 μL 

of 70% glacial ethanol. After centrifugation at 21,000xg for 5 min, the supernatant was removed and 

the pellet dried under a hood at room temperature for at least 4 h. The dry pellet was resuspended 

in 50 μL of sterile water and quantified using a Nanodrop (Biospec Nano, Shimadzu, Kyoto, Japan).  

 

2.4.2 PCR-DGGE analyses 

2.4.2.1 Protocol Polymerase Chain Reaction (PCR) amplification 

A region of the benA gene was amplified for the 179 isolates using the primer pair Bt2a and 

Bt2b-GC (Table 1). Using of the GC clamp prevents complete separation of the DNA strand during 

polyacrylamide gel migration (Huang et al. 2016). The amplification of the DNA was done according 

to the following steps: 1) Pre-denaturation at 94° C for 4 min. 2) Denaturation at 94°C for 40 s. 3) 

Annealing at 58°C for 1 min. 4) Extension at 72°C for 1 min. Steps 2 to 4 were carried out for 35 

cycles. 5) Final extension at 72°C for 5 min. 6) Final temperature 4°C. Negative controls and 

contamination checks were performed for all amplifications. PCR amplicons were analyzed on 2% 

agarose gels by horizontal electrophoresis in TAE 1X (Tris-acetate EDTA pH 8.3; EUROMEDEX, 
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Souffelweyersheim, France), molecular weight markers of 100 pb (DNA ladder, Promega, Madison, 

USA) were used to estimate the size of target fragments. 

 

Table 1: Primer sequences 

PRIMERS SEQUENCES USING 

Bt2a 5’-GGTAACCAAATCGGTGCTGCTTTC-3’ PCR-DGGE 

analyses Bt2b-GC 5’-GCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGG 

GACCCTCAGTGTAGTGACCCTTGG C-3’  

ITS1 5’-TCCGTAGGTGAACCTGCGG-3’  

Phylogenetic 

analyses 

ITS4 5’-TCCTCCGCTTATTGATATGC-3’ 

Bt2a 5’-GGTAACCAAATCGGTGCTGCTTTC-3’ 

Bt2b 5’-ACCCTCAGTGTAGTGACCCTTGGC-3’ 

cmd5 5’-CCGAGTACAAGGAGGCCTTC-3’ 

cmd6 5’-CCGATAGAGGTCATAACGTGG-3’ 

 

 

2.4.2.2 Denaturing Gradient Gel Electrophoresis (DGGE) Analyses 

PCR products of DGGE were analyzed using a Bio-Rad DcodeTM universal mutation detection 

system (Bio-Rad Laboratories, USA). Samples containing 40 μL of PCR amplicons were loaded into 8% 

(w/v) polyacrylamide gels (acrylamide: bisacrylamide, 37.5:1, v/v, Biosolve Chimie, Dieuze, France) in 

1X TAE buffer (40 mM Tris-HCl pH 7.4, 20 mM sodium acetate, 1.0 mM Na2-EDTA). All electrophoresis 

experiments were performed at 60°C using a denaturing gradient ranging from 30  to 60% (100% 

corresponded to 7 mol L-1 urea and 40% [v/v] formamide, Promega, Charbonnières-les-Bains, 

France). The electrophoreses were performed at 20 V for 10 min and then at 80 V for 16 h (El Sheikha 

and Montet 2011). After electrophoresis, gels were stained for 45 min with a solution of Gelred® 

(Biotium, Fremont, CA, USA) at 0.1 μg mL-1 and visualized on a UV transilluminator with the Gel Smart 

7.3 system (Clara Vision, Les Ulis, France). Two series of analyses were carried out by DGGE. First, the 

179 strains were compared against on the reference strains on A. flavus, A. parasiticus and A. 

nomius, and then against on the reference strains of A. parvisclerotigenus, A. minisclerotigenes and 

A. arachidicola. The reference strains used are listed in Annex 1.  

 

2.4.2.3 Image Analyses 

Images were processed using ImageQuantTL® Version 2003 software (Amersham Biosciences, 

Piscataway, NJ, USA). This software automatically covers the DNA bands constituting the DGGE 

profiles and generates the migration fronts. Each band corresponds to an individual sequence 

(Kowalchuk et al. 1997; Nakatsu et al. 2000) representing a genus or a species of mold. The DNA of 

reference strains were used as a marker (Aspergillus flavus, A. parasiticus, A. nomius, A. arachidicola, 

A. minisclerotigenes and A. parvisclerotigenus). These control DNAs account for the good migration in 
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the DGGE gel, and their migration position constitutes the reference position for each species in the 

analyses. 

 

2.4.3 Phylogenetic analyses  

2.4.3.1 Strain selection and PCR 

Strains classified as group 2, 3, and 4 were selected for phylogenetic inference analyses using 

other molecular markers. Some of the strains classified as group 1 were also selected. In total, 71 

strains were selected for ITS phylogenetic analyses (group 1 = 20, group 2 = 45, group 3 = 4, and 

group 4 = 1); and a subsample of 40 strains for benA and cmdA analyses (group 1 = 10, group 2 = 25, 

group 3 = 4, and group 4 = 1). 

All genes were amplified as follows: 1) Pre-denaturation at 94°C for 5 min. 2) Denaturation at 

94°C for 1 min. 3) Annealing at 55°C for 1 min. 4) Extension at 72°C for 1 min. Steps 2 to 4 were 

carried out for 40 cycles. 5) Final extension at 72°C for 10 min. 6) Final temperature 4°C. PCRs were 

performed in the C1000 TouchTM thermocycler (BioRad, Marnes-la-Coquette, France). Primers used 

in the study are shown in Table 1. Negative controls and contamination checks were performed for 

all amplifications. PCR amplicons were analyzed on 1% agarose gels by horizontal electrophoresis, 

molecular weight markers were used to estimate the size of target fragments. Purification of PCR 

amplicons were carried out with GeneEluteTM PCR Clean-Up Kit (Merck KGaA). Double stranded 

sequencing was performed in both directions by Plateau de Génomique GeT-Purpan (Toulouse, 

France). New sequences were deposited in GenBank under the accession numbers indicated in the 

Table 2.  

 

Table 2: Isolates and accession numbers deposited in GenBank. In normal sequences deposited in GenBank. In 

bold sequences recovered from a previous study. T = type strain, — = sequences not determined. 

Table continues in following pages 

 

ISOLATE 
NUMBER 

ACCESSION NUMBER 
DGGE-GROUP 

ITS benA cmdA 

A. flavus 

MACI1 KY689211 KY628762 KY661255 Group 1 

MACI3 KY689212 KY628763 KY661256 Group 1 

MACI16 — KY628764 KY661257 Group 1 

MACI18 KY689213 — — Group 1 

MACI21 KY689214 — — Group 1 

MACI22 KY689215 — — Group 1 

MACI26 KY689216 — — Group 1 

MACI30 KY689217 — — Group 1 

MACI36 KY689218 — — Group 1 

MACI69 KY689219 — — Group 1 
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ISOLATE 
NUMBER 

ACCESSION NUMBER 
DGGE-GROUP 

ITS benA cmdA 

MACI70 — KY628765 KY661258 Group 1 

MACI72 KY689220 — — Group 1 

MACI77 — KY628766 KY661259 Group 1 

MACI79 KY689221 — — Group 1 

MACI83 KY689222 — — Group 1 

MACI84 KY689223 KY628767 KY661260 Group 1 

MACI97 KY689224 KY628768 KY661261 Group 1 

MACI99 KY689225 — — Group 1 

MACI121 KY689226 — — Group 1 

MACI126 KY689227 — — Group 1 

MACI133 — KY628769 KY661262 Group 1 

MACI145 — KY628770 KY661263 Group 1 

MACI156 KY689228 — — Group 1 

MACI165 KY689229 — — Group 1 

MACI204 — KY628771 KY661264 Group 1 

MACI250 KY689230 — — Group 1 

A. parvisclerotigenus 

MACI5 KY689161 KY628772 KY661269 Group 2 

MACI6 KY689162 — — Group 2 

MACI8 KY689163 KY628794 KY661270 Group 4 

MACI12 KY689164 KY628795 KY661271 Group 2 

MACI14 KY689165 KY628773 KY661272 Group 2 

MACI15 KY689166 KY628774 KY661273 Group 2 

MACI20 KY689167 KY628775 KY661274 Group 2 

MACI62 KY689168 — — Group 2 

MACI63 KY689169 — — Group 2 

MACI65 KY689170 KY628776 KY661275 Group 2 

MACI118 KY689171 — — Group 2 

MACI122 KY689172 — — Group 2 

MACI139 KY689173 KY628777 KY661276 Group 2 

MACI140 KY689174 — — Group 2 

MACI142 KY689175 KY628778 KY661277 Group 2 

MACI143 KY689176 — — Group 2 

MACI177 KY689177 KY628796 KY661278 Group 2 

MACI179 KY689178 — — Group 2 

MACI180 KY689179 KY628779 KY661279 Group 2 

MACI184 KY689180 KY628797 KY661280 Group 2 

MACI185 KY689181 KY628780 KY661281 Group 2 

MACI188 KY689182 — — Group 2 

MACI191 KY689183 KY628781 KY661282 Group 2 

MACI192 KY689184 — — Group 2 

MACI198 KY689185 — — Group 2 

MACI200 KY689186 KY628782 KY661283 Group 2 

MACI201 KY689187 KY628783 KY661284 Group 2 

MACI202 KY689188 — — Group 2 

MACI203 KY689189 KY628784 KY661285 Group 2 

MACI206 KY689190 — — Group 2 
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ISOLATE 
NUMBER 

ACCESSION NUMBER 
DGGE-GROUP 

ITS benA cmdA 

MACI208 KY689191 — — Group 2 

MACI210 KY689192 KY628785 KY661286 Group 2 

MACI213 KY689193 KY628798 KY661287 Group 2 

MACI214 KY689194 — — Group 2 

MACI217 KY689195 KY628799 KY661288 Group 2 

MACI218 KY689196 KY628800 KY661289 Group 2 

MACI220 KY689197 KY628786 KY661290 Group 2 

MACI221 KY689198 KY628787 KY661291 Group 2 

MACI222 KY689199 KY628801 KY661292 Group 2 

MACI223 KY689200 — — Group 2 

MACI224 KY689201 KY628788 KY661292 Group 2 

MACI226 KY689202 — — Group 2 

MACI238 KY689203 — — Group 2 

MACI255 KY689204 — — Group 2 

MACI258 KY689205 KY628789 KY661293 Group 2 

MACI262 MG745384 MG757370 MG757370 Group 2 

Aspergillus spp. 

MACI46 KY689207 KY628790 KY661265 Group 3 

MACI219 KY689208 KY628791 KY661266 Group 3 

MACI254T KY689209 KY628792 KY661267 Group 3 

MACI264 KY689210 KY628793 KY661268 Group 3 

 
 

2.4.3.2 Alignment, model selection and phylogenetic analyses  

Sequences obtained were combined with published available sequences for species of 

Aspergillus section Flavi (Annex 1). BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html) was 

used to assemble, align and trim the databases for genes ITS, benA, and cmdA, using ClustalW 

algorithm. The best-fit nucleotide substitution model for ITS was chosen using jModelTest v2.0 

(Darriba and Posada 2012). Evolution model analyses were run using three different criterion: Akaike 

Information Criterion corrected (AICc), decision-theoretic performance-based approach (DT) and 

Bayesian Information criterion (BIC); however, for the analyses, BIC criterion was chosen (ITS = 

TPM2uf + G). BenA and cmdA datasets were concatenated using Mesquite v3.2 (Maddison and 

Maddison 2017), and resulted in a matrix of 845 bp. The best-fit nucleotide substitution model for 

the concatenated matrix and its partitioning scheme were calculated using PartitionFinder v2.0 

(Lanfear et al. 2016) under BIC. To search for the best scheme the “greedy” algorithm with branch 

lengths of alternative partitions “linked” was used, and resulted in one partition: benA + cmdA (K80 + 

G). 

Both, maximum likelihood (ML) and Bayesian inference (BI) statistical methods were carried 

out, using the best-fit substitution models, to obtain tree topologies for ITS and benA + cmdA. ITS ML 

analyses were performed in MEGA 6.0.6 (Tamura et al. 2013) with a modification of the best 
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substitution model (HYK), whereas multilocus benA + cmdA ML analyses was performed in GARLI 

2.01 (Zwickl 2006). Two hundred bootstrap replicates were run for bootstrap support statistics. For 

the Bayesian analyses, four independent runs were carried out for 107 generations, each with four 

MCMC chains, and sampling every 1,000 generations. For each analysis it was confirmed that the 

average standard deviation of split frequencies between chains approaches to values of ≤ 0.01, and 

the potential scale factor reduction factor (PSRF) to 1. For all the analyses, from the total number of 

trees per run (ITS = 10.001; benA + cmdA = 30.004), 25% were arbitrarily discarded as “burn-in”. The 

remaining trees were used to calculate posterior probabilities (PP) for each bipartition in a 50% 

majority-rule consensus tree. Aspergillus niger was used as outgroup for ITS and benA + cmdA 

inference analyses. Phylogenetic trees were visualized and edited with FigTree v1.4.2 (Rambaut 

2014). 

 

 

3 RESULTS 

3.1 Macroscopic and microscopic strains characterization  

 Macroscopic analysis of 256 strains isolated from peanuts and grown on MEA and CYA media 

allowed a preliminary classification into 179 groups. Several macroscopic traits were taken into 

account for the classification. On MEA, discriminating traits included colony coloration: white and 

brown shades, orangish brown (less frequent), dark brown, green shades, green and white, yellowish 

green or less frequent yellow-orange; floccose or flat colonies. Presence of sclerotia and exudates 

was rarely observed (43% of strains) on this medium. Colony diameter ranged from 30 to70 mm. For 

colony reverse, any strain penetrated the agar, and reverse coloration was in white, yellow or orange 

shades (Figure 1). On CYA, discriminating traits included colony coloration, brown, white or green, 

floccose or flat colonies, presence or absence of sclerotia (74% and 26%, respectively) and presence 

of exudates, abundant or reduced sporulation. Colony diameter ranged from 50 to 70 mm. Colony 

reverse was characterized by regular or irregular concentric penetration of agar, in beige, orange or 

brown shades (Figure 1).  
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Figure 1. Macroscopic comparison of strains on CYA and MEA media. a: MACI5; b: MACI12; c: MACI84; d: 

MACI219; e: MACI250. Cultures were grown on CYA and MEA at 25°C for 7 days. 

 

Microscopic analyses were performed on 51 strains. Strains observed, had conidial heads 

characteristic of Aspergillus with a radial or apical head. Conidial heads were mainly biseriate, rarely 

uniseriate. Conidia were usually round and the hyphae septate. Microscopic analysis confirmed that 

the isolated strains belonged to Aspergillus genus (Figure 2). 
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Figure 2. Microscopic comparison of conidial heads. A: MACI3; B: MACI12; C: MACI179; D: MACI46; E: 

MACI214; F: MACI254. Analysis performed at 400x 

 

3.2 Toxigenic potency of isolated Aspergillus strains 

 The 179 strains, representing all the groups, were split according to their aflatoxin yield; 150 

strains (83.8%) were aflatoxigenic, while 29 strains (16.2%) were non-aflatoxigenic. Aflatoxigenic 

samples (150 strains) were once again divided based on their aflatoxin yield, 8 strains produced 

AFB1, 92 produced AFB1 and AFB2, and 50 produced the four aflatoxins (AFB1, AFB2, AFG1 and 

AFG2). Strains that yielded the four AFs presented the highest levels of aflatoxin production. AFB1 

and AFG1 yield were the highest among strains, reaching maximum levels of 108.37 μg/g and 103.89 

μg/g, respectively. AFB2 and AFG2 were yield at lower levels, ranging from 0.02 to 2.02 μg/g and 0.07 

to 3.44 μg/g, respectively. 

 

3.3 PCR-DGGE analyses 

The group of 179 strains obtained from the macroscopic analysis were subjected to DGGE 

analyses. Fungal genomic DNA of each sample was amplified by PCR. All bands had a molecular 

weight around 550 bp, which corresponds to the fragment of β-tubulin gene; hence, amplicons were 

used for DGGE analysis.  

DGGE migration allowed the differentiation amplicons with the same size according to the 

composition of their DNA. GC-rich DNAs are less rapidly denatured than GC-poor ones and therefore 

migrate much further (El Sheikha and Montet 2011). DNA migration of reference strains indicates 
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that DGGE was perfectly performed. Each vertical lane represents one strain. The migration distance 

of the strains was compared with each other and with the reference strains. 

The results for the first DGGE analysis compared the 179 strains against the reference strains 

of A. flavus, A. parasiticus and A. nomius. Based on this analysis, the strains were divided into 4 

groups. Group 1 comprised 129 strains, and was characterized as A. flavus (Figure 3). The remaining 

50 strains were divided into 3 groups according to their migration distance: group 2 (45 strains), 

group 3 (4 strains) and group 4 (1 strain). The 50 strains were reanalysed by PCR DGGE in a finer 

analysis that included the reference strains of A. arachidicola, A. parvisclerotigenus and A. 

minisclerotigenes (Figure 4). This second analysis permitted to identify group 2 as A. 

parvisclerotigenus, conversely groups 3 and 4 were not characterized at species level. A. parasiticus, 

A. nomius, A. arachidicola and A. minisclerotigenes were not detected in this study. 

 

 

Figure 3. PCR-DGGE β-tubulin profile of Aspergillus strains. Reference strains (R): A. flavus, A. parasiticus and A. 

nomius. 
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Figure 4. PCR-DGGE β-tubulin profile of Aspergillus strains. Reference strains (R): A. arachidicola, A. 

parvisclerotigenus and A. minisclerotigenes. 

 

 

3.4 Phylogenetic analyses 

3.4.1 ITS analyses 

ITS 1-2 region was sequenced for 71 isolates from Côte d’Ivoire (Group 1 = 20, Group 2 = 45, 

Group 3 = 4, and Group 4 =1). All sequences were blasted against NBCI database, and characterized 

as Aspergillus flavus/Aspergillus oryzae. In addition, a subsample of 49 isolates (Group 1 = 18, Group 

2 = 22, Group 3 = 4, and Group 4 =1), was analyzed using a phylogenetic approach. The alignment of 

these sequences contained 507 bp. The results from Bayesian Inference (BI) and Maximum 

Likelihood (ML) suggested that samples from Côte d’Ivoire cluster together with strains of A. flavus, 

its domesticated species A. oryzae, A. minisclerotigenes and A. parvisclerotigenus. However, the 

relations within the cluster were not clear because all samples presented polytomies, hence the 

result suggested that strains belonged to A. flavus clade (PP= 98) (Figure 5). 
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Figure 5. Phylogenetic tree of Aspergillus section Flavi based on ITS data. Bayesian tree calculated from 82 

strains of Aspergillus section Flavi, which includes the reference strain of economically most important species. 

Species isolates numbers are indicated in each terminal, isolates coded as MACI corresponds to the strains used 

in this study. A. niger NRRL 35173 was used as outgroup. 
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3.4.2 Multilocus analysis 

In order to better place strains of the different groups, a phylogenetic analysis comprising 

genes benA and cmdA was also performed. The results obtained from BI and ML analyses were 

consistent for the basal groups, however, for more derived taxa (A. parasiticus clade and A. flavus 

clade) important differences were observed. The topology from the Bayesian analysis was selected as 

the best hypothesis for inferring the phylogenetic relationships since it was more congruent with 

other analyses previously performed in the section (Pildain et al. 2008; Rodrigues et al. 2009; Varga 

et al. 2011; Soares et al. 2012). However, samples isolated from Côte d’Ivoire were clustered 

following the same pattern under both statistical analyses, forming three clusters. Samples named 

group 1 clustered together with A. flavus and A. oryzae strains, samples named group 3 clustered 

together, and strains named groups 2 and 4 clustered together with A. parvisclerotigenus strains. 

The topology of BI for the aforementioned derived taxa suggested three clusters. A first one 

comprising strains belonging to A. parasiticus clade, including the strains of A. transmontanensis, A. 

sergii, A. arachidicola, A. novoparasiticus, A. sojae and A. parasiticus (PP=1). A second cluster 

comprising strains belonging to group 4, which did not cluster with any described species (PP=1); and 

a third cluster formed by A. flavus clade (PP=1). The latter enclosed three clusters: one formed by A. 

parvisclerotigenus and samples from groups 2 and 3 (PP=1), allowing the identification of these 

strains as A. parvisclerotigenus. A second group formed by A. minisclerotigenes strains (PP=0.98), and 

a third group formed by A. flavus, its domesticated species A. oryzae, and samples from group 1 

(PP=1), hence the group 1 was confirmed as A. flavus (Figure 6). 
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Figure 6. Phylogenetic tree of Aspergillus section Flavi based on benA + cmdA combined data. Bayesian tree 

calculated from 81 strains of Aspergillus section Flavi, which includes the reference strains of economically 

most important species. Posterior probability values are shown. The name of each strain is indicated in each 

terminal; isolates coded as Maci corresponds to the strains used in this study. A. niger CBS51388 was used as 

outgroup. 
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The combination of morphological analyses, aflatoxigenicity test, PCR-DGGE analyses, and 

phylogenetic analyses allowed the characterization of 256 isolates collected along the peanut paste 

production chain to species level. Group 1 was characterized as A. flavus, and strains were divided in 

three groups, AFB1 producers, AFB1 and AFB 2 producers, and non– aflatoxigenic. Groups 2 and 4 

were identified as A. parvisclerotigenus, and all strains were able to produce the 4 aflatoxins. Group 3 

was identified as a potential new species that produced the 4 aflatoxins, and was recently described 

as a new species, closely related to Aspergillus parvisclerotigenus: A. korhogoensis (Carvajal-Campos 

et al. 2017). 

 

4. DISCUSSION 

Peanuts are important sources of nutrients and economic income in Sub-Saharan regions, 

especially in rural areas (Ndung’u et al. 2013; Wagacha and Muthomi 2008; Wagacha et al. 2013; 

Matumba et al. 2014). In fact, peanuts are ranked sixth among oil producing crops and eighth among 

nutritional crops because they are nutrient-rich, providing carbohydrates, lipids, proteins, vitamins, 

minerals, fiber and some organic acids (Mupunga et al. 2017). Peanuts are considered to be one of 

the main commodities that are frequently contaminated by aflatoxins. In Asian countries, such as 

Thailand, Philippines and Indonesia, the prevalence of A. flavus in peanut samples is very high (Pitt et 

al. 1993; Pitt et al. 1998) while A. parasiticus is the most frequent aflatoxigenic species recovered 

from United States (Horn 2007; Moore et al. 2017). Several studies have been performed to address 

the microbiota that grows on peanuts in Africa (Ndung’u et al. 2013; Wagacha and Muthomi 2008; 

Wagacha et al. 2013; Kamika et al. 2014; Waliyar et al. 2015). In these reports, the most frequent 

species is Aspergillus flavus (aflatoxic and non-aflatoxic strains) and A. flavus SBG is less frequent. In 

East Africa, studies on this staple suggested that species contaminating peanuts included Penicillium, 

A. flavus L sensu stricto, A. flavus SBG, A. parasiticus, A. niger, A. tamarii, A. alliaceus and A. caelatus 

(information from Kenya and Malawi) (Ndung’u et al. 2013; Wagacha et al. 2013). In West Africa, in 

particular Nigeria, peanuts are mainly contaminated by A. flavus although contamination by G 

aflatoxins is frequent (Oyedele et al. 2017). One of the problems with the characterization of Flavi 

species in Africa is the definition of A. flavus, generally the definition of the A. flavus sensu lato 

species is used, which encloses A. flavus L and A. flavus S morphotypes. It has already been suggested 

that A. flavus S morphotypes are divided in S strains that are AFB producers and the SBG morphotype, 

which includes at least three cryptic species, A. minisclerotigenes (Pildain et al. 2008), A. 

parvisclerotigenus (Frisvad et al., 2005) and the novel species A. korhogoensis isolated in this study 

and recently described (Carvajal-Campos et al. 2017). Thus, A. flavus sensu stricto includes L and S 

morphotypes incapable of producing G-aflatoxins (Ehrlich 2004). As a result, in the past the 

biodiversity of the Flavi section has been underestimated. 
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The goal of the present study was to identify the biodiversity of Aspergillus section Flavi along 

the peanut value chain in Côte d'Ivoire. The species were identified using a polyphasic approach 

consisting of morphological, biochemical and molecular traits. Although morphological 

characterization is basic for identification in this section, overlapping traits resulted in a poor 

discrimination.  

In order to quickly gather strains in definite groups, PCR-DGGE analysis was performed. This 

allowed the discrimination among DNA strains based on differences in the nucleotide sequence of a 

target gene. For these analyses is important to choose molecular markers that contain conserved and 

variable DNA regions (Sheffield et al. 1989; Yoshikawa et al. 2010). In this study, analyses of the β-

tubulin gene by PCR-DGGE allowed the discrimination of isolates into four groups. Group 1 was 

characterized as A. flavus, groups 2 and 4 were characterized as A. parvisclerotigenus and group 3 

was characterized as Aspergillus korhogoensis. Laforgue et al. (2009) performed PCR-DGGE using β-

tubulin gene as molecular marker and showed that several species of Aspergillus, A. niger, A. 

aculeatus, A. carbonarius, A. fumigatus and A. japonicus could be discriminated with this method. 

Our study confirmed that PCR-DGGE using β-tubulin as molecular marker is useful for Aspergillus 

species characterization not only in sections of the genus, but also at a finer scale. Although no 

isolates belonging to A. parasiticus, A. arachidicola and A. minisclerotigenes were recovered from 

peanuts, the results obtained from PCR-DGGE analysis of their respective reference strains showed 

that the methodology is sufficiently accurate to discriminate these species. The results obtained with 

PCR-DGGE were validated by a phylogenetic approach based on benA and cmdA genes, which are 

also often used for the identification of Aspergillus species (Pildain et al. 2008; Soares et al. 2012; 

Varga et al. 2011). The two genes are considered informative, and when used together, the results 

are more robust. Moreover, it is a good method to rapidly identify species from the section Flavi. By 

contrast, our results confirmed that ITS sequence was highly conserved in Aspergillus, making it a 

poor marker for species identification in this genus (Geiser et al. 2007; Schoch et al. 2012) and not 

suitable for discrimination of A. flavus clade species. 

Aflatoxin production was also measured in this study. Among the 179 strains, 83.8 % were 

aflatoxin producers and 16.2 % were non-aflatoxigenic A. flavus. Among the aflatoxin producers, 66.6 

% were A. flavus sensu stricto and produced B-aflatoxins but at smaller rates (28%) than the 33 % B- 

and G-aflatoxin producers (A. parvisclerotigenus and A. korhogoensis), which reached levels of 

108.37 µg/g for AFB1 and 103.89 µg/g for AFG1. Our results showed that G-aflatoxin peanut 

contamination in Côte d'Ivoire was mainly caused by A. parvisclerotigenus, followed by A. 

korhogoensis.  

Before their description, the presence of these species in Benin has been evoked as A. flavus 

SBG (Cotty and Cardwell, 1999) and has been reported in several parts of Sub-Saharan Africa. A study 
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of soil biota reported that A. flavus SBG morphotype was significantly more frequent in the northern 

areas of Benin (Cardwell and Cotty, 2002). This observation has been strengthened by subsequent 

studies. SBG morphotype or A. parvisclerotigenus strains was isolated from maize samples collected in 

Mokwa (9°12 N, Nigeria) (Atehnkeng et al. 2008; Perrone et al. 2014), Abuja (9°03N, Nigeria) 

(Atehnkeng et al. 2008), Akwanga (8°55N, Nigeria) (Atehnkeng et al. 2008), from sesame harvested in 

Plateau State (8°38N-9°10N, Nigeria) (Ezekiel et al. 2014) and from cassava in Sinissou (9°51N, Benin) 

(Adjovi et al. 2013). In our study, the high frequency of A. flavus SBG (A. parvisclerotigenus and A. 

korhogoensis) can be explained by the sampling area, which is limited to the northern region of the 

Côte d’Ivoire (9° and 10°N latitude). These latitudes correspond to the agro-ecological zone of 

Northern Guinea savannah. In Senegal, SBG strains were present in maize and sesame samples from 

two successive agro-ecological zones: sub-humid Guinea savannah and semi-arid Sudan savannah 

(Diedhiou et al., 2010). The highest frequency of SBG isolates was also observed in poultry feed 

samples from Northern Guinea savannah and Sudanese savannah zones of Nigeria (Ezekiel et al. 

2014). The impact of the presence of A. flavus SBG (A. parvisclerotigenus and A. korhogoensis) on the 

aflatoxin contamination of staples is not well evaluated. While the studies above-quoted have shown 

that 40 % to 60 % A. flavus L strains are not aflatoxigenic, all A. flavus SBG strains produced the four 

aflatoxins at higher rates. In their founder study, Cardwell and Cotty suggested that crop 

contamination with G-aflatoxins in Northern Benin could be caused by the SBG strains. By contrast, in 

the study of Diedhiou et al. (2010), although SBG strains were sometimes present at high frequency, 

the aflatoxin content of maize and sesame samples has not been greatly influenced by the SBG 

isolates. 

Conversely, better knowledge of the species that contaminate peanuts can contribute to the 

biocontrol already performed. Some attempts to perform biological control have been done in maize 

using cultivars resistant to pre-harvest contamination, but they have been limited by the lack of 

resistance genes. Although some resistant varieties have been developed to increase the germplasm 

in crops, resistance to aflatoxins in peanuts has not yet been achieved (Torres et al. 2014). Besides, 

the use of the Aflasafe™ biocontrol containing non-aflatoxigenic A. flavus strains has been used in 

Nigeria, Australia and Argentina. The first essay, in USA, reduced aflatoxin yield by approximately 85 

% on peanut stock and to a maximum of 98 % on shelled stock. Additionally, a novel strategy to 

target resistance-related genes in peanuts has been developed. The idea was to identify resistance-

related genes involved in defense response against A. parasiticus infection and subsequent aflatoxin 

contamination by developing expressed sequence tags (ESTs) from contaminated peanut seeds; the 

data obtained were used to create a microarray to identify candidate genes that confer resistance to 

A. flavus infection (Torres et al. 2014).  
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Aspergillus flavus is the main mold responsible of food and feed aflatoxin contamination 

worldwide (Perrone et al. 2014), and its toxinogenicity varies according to the geographical origin 

and the substrate (Rodrigues et al. 2009). Strains of A. flavus clade have a wide distribution in Africa 

and contaminate important staples, like maize and peanuts. Strains that do not belong to A. flavus 

sensu stricto are important in the region and have been associated with the outbreak in Kenya in 

2004. It is important to recognize these species, even though they are less frequent than A. flavus 

sensu stricto, they are a risk to human and animal health due to their B- and G-aflatoxin yield is 

higher (Wagacha and Muthomi 2008; Wagacha et al. 2013), hence when population booms occur, 

the likelihood of outbreaks increases (Probst et al. 2010). The two molecular analyses performed in 

this study showed excellent results to discriminate among species of section Flavi, providing fine 

results to discriminate amongst species of A. flavus sensu lato. Analyses are feasible and could be 

easily performed to unmask biodiversity and therefore, to perform better risk assessment.   

PCR-DGGE β-tubulin and phylogenetic analyses based on benA and cmdA are robust methods 

to characterize species from Aspergillus section Flavi. Results from the two studies were congruent 

suggesting that the methods can be useful tools; especially in areas were B- and G-aflatoxins are 

widespread.  
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Annex 1: Aspergillus isolates used in the study 

Species Strain Sampling Data Reference GeneBank accession number 

Substrate Country ITS benA cmdA 

A. alliaceus  NRRL 4181 =CBS 
54265T 

Soil Australia D. I. Fennell, University of 
Wisconsin, Madison, Wisconsin (in 
NRRL database) 

EF661556 AY160978 EF661536 

A. arachidicola  CBS 117610T =IBT 
25020 

Arachis glabatra leaf Argentina Pildain et al. 2008 HM560045 EF203158 EF202049 

A. arachidicola  CBS 117614 = IBT 
27183 

Arachis glabatra leaf Argentina Pildain et al. 2008 KY937923 KY924665 KY924677 

A. avenaceus  NRRL 517T Seed peas England Smith 1943  EF661556 EF661501 EF661503 

A. bertholletius  CCT 7615T Soil nearby Betholletia 
excelsa trees 

 Brazil Taniwaki et al. 2012 KY937924 KY924666 KY924678 

A. bombycis  NRRL 26010T =CBS 
117187 

Silk worm excrement Japan Goto, National Food Research 
Institute, Japan (in NRRL database) 

AF104444 AY017547 AY017594 

A. caelatus NRRL 25528T=ATCC 
201128 =CBS 
763.97=JCM 10151 

Peanut field soil Georgia, USA Bruce W. Horn, National Peanut 
Lab., Dawson, GA (in NRRL 
database) 

AF004930 EF661470 EF661522 

A. coremiiformis  CBS 553.77T=ATCC 
38576 

Soil Ivory Coast Centralbureau voor 
Schimmelcultures, Baarn, The 
Netherlands (in NRRL database) 

FJ491474 FJ49482 FJ491488 

A. flavus  NRRL 3518 Wheat flour Illinois, USA D. Graves NRRL isolate (in NRRL 
database) 

EF661552 EF661487 EF661510 

A. flavus  NRRL 4818=CBS 16870 Food, butter USA D. I. Fennell, University of 
Wisconsin, Madison, Wisconsin (in 
NRRL database) 

EF661563 EF661489 EF661510 

A. flavus * NRRL 3357 = CBS 
128202 

Peanuts cotyledons USA Nierman et al. 2015  MF966967 M38265 EED55330 

A. flavus * AF70 Seed of upland cotton, 
Gossypium hirsutum 

Arizona, USA   ASM95283v1
:751:1381:22
30:-1 

— — 

A. leporis  CBS 151.66T= NRRL 
3216 

Dung of Lepus 
townsendii 

USA States and Chistensen 1966 AF104443 EF203171 EF202078 

A. minisclerotigenes  CBS 117635T Arachis hypogaea seed Argentina Pildain et al. 2008 KY937925 KY924667 KY924679 

A. minisclerotigenes   E21 Cumin Morocco El Mahgubi et al. 2013 KY937926 JX456195 JX456196 
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A. minisclerotigenes   E44 White pepper Morocco El Mahgubi et al. 2013 KY937927 JX456210 JX456214 

A. minisclerotigenes   E74 Paprika Morocco El Mahgubi et al. 2013 KY937928 JX456211 JX456212 

A. minisclerotigenes  NRRL 29000 Peanut field soil  Australia David Gaiser , Pennsilvania State 
University (in Rodrigues et al 
2011) 

KY937929 KY924668 KY924680 

A. mottae  MUM 10.231T=CBS 
130016 

Maize seed Portugal Rodrigues et al. 2011 JF412768 HM803086 HM803015 

A. nomius NRRL 13137=CBS 
260.88 

Wheat  Illinois, USA A.F. Schindler, Food and Drug 
Administration, Wasington D.C. (in 
NRRL database) 

AF027860 AY017541 EF661531 

A. novoparasiticus  AFc31 Cassava  Benin Adjovi et al. 2014 KC9640099 KY924669 KY924681 

A. novoparasiticus  AFc32 Cassava  Benin Adjovi et al. 2014 KC964100 KY924670 KY924682 

A. novoparasiticus  LEMI 149 Hospital air São Paulo, Brazil Gonçalves et al. 2012 KY937931 KY924671 KY924683 

A. novoparasiticus  LEMI 267 Sputum, leukemic 
patient 

São Paulo, Brazil Gonçalves et al. 2012 KY937932 KY924672 KY924684 

A. novoparasiticus  CBS 126849T=LEMI 250 Sputum, leukemic 
patient 

São Paulo, Brazil Gonçalves et al. 2012 KY937930 KY924673 KY924685 

A. oryzae  CBS 100925T=IMI 
16266 

Unkown source Osaka, Japan Varga et al. 2011 MF668185 EF203138 EF202055 

A. oryzae * RIB40 Cereal (broad bean) Kyoto, Japan Machida et al. 2005 AP007173 BAE64122 XP_0018203
02 

A. parasiticus  CBS 100926 Pseudococcus 
calceolariae, sugar 
cane mealy bug 

Hawaii, USA Spaere 1912 (in Varga et al. 2011) KY937933 EF203155 EF202043 

A. parasiticus  NRRL 492 Unkown source China Shin, China (in NRRL database) KY937934 KY924674 KY924686 

A. parasiticus * SU-1 Unkown source Unkown Yu et al. 2015 — ASM95608
v1:498:145
22:16215:1 

KJK65439 

A. parvisclerotigenus CBS 121.62T Arachis hypogaea Nigeria Frisvad and Samson 2005 MF668183 EF203130 EF202077 

A. parvisclerotigenus AFc36 Cassava Benin Adjovi et al. 2014 KC964102 KC954604 KC954606 

A. pseudocaelatus  CBS 117616 Arachis burkartii leaf  Argentina Varga et al. 2011 KY937935 EF203128 EF202037 
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A. pseudonomius  NRRL 3353T=CBS 
119388 

Diseased alkali bees, USA Varga et al. 2011 AF338643 EF661495 EF661529 

A. pseudotamarii  NRRL 443 Soil Brazil Da fonseca, Brazil (in NRRL 
database) 

AF004931 EF661476 EF661520 

A. pseudotamarii  NRRL 22518 Tea field soil Miyazaki, Japan Tetsu Goto (in NRRL database) KY937937 KY924675 KY924687 

A. sergii  MUM 10.219T=CBS 
130017 

Almond shell,  Portugal Rodrigues et al. 2011 KY937936 HM803082 HQ340097 

A. sojae  CBS 100928 Soy sauce,  Japan Sakag and Yamada ex Murak 1971 NR_111545 KJ175494 KJ17555 

A. tamarii NRRL 20818=CBS 
104.13=QM 9374 

Activated carbon Unkown CBS database AF004929 EF661474 EF661526 

A. togoensis CBS 272.89T = NRRL 
13550 

Seed, near La Maboké Central Africa Samson and Seifert 1985 (in CBS 
database) 

AJ874113 FJ491477 FJ491489 

A. transmontanensis  MUM 10.214T=CBS 
130015 

Almond shell,  Portugal Rodrigues et al. 2011 JF412771 HM803101 HM803020 

A. niger* NRRL 35173 Cofffe Unkown Peterson 2007 (unpublished) AM270982 — — 

A. niger* CBS 513.88 Unkown source Unkown CBS database — GU296692 NT_166539.1
:c1747409-
1745942 

CBS, Centraalbureau voor Schimmelcultures, Utrech, The Netherlands; NRRL: National Center for Agricultural Utilization Research, U.S. Department of Agriculture, 

Peoria, IL, USA; LEMI: Laboratório Especial de Micologia, São Paulo, Brazil; MUM: Micoteca da Universidade de Minho, Braga, Portugal; CCT: Coleção de Cultura 

Tropical, Campinas, Brazil. SF: Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, USA. 

T = type strain; * = genome sequenced strains 
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2.3 CHAPITRE 3  

Aspergillus korhogoensis, a novel aflatoxin 

producing species from the Côte d’Ivoire 
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2.3.1 BACKGROUND 

The present study is also a result from the collaboration between CIRAD and Toxalim. The goal 

of the present work was to characterize the four strains named Group 3 in the previous study, and 

that were identified as a possible new species. These strains were interesting for further analyses for 

three main reasons: 

1) They grouped like a new clade while using benA and cmdA, suggesting a new species. 

2) Topologies for the genes ITS, benA and cmdA placed the strains in differently, making them 

interting to test the “phylogenetic molecular tool”. 

3) The four strains produce B- and G- aflatoxins, making them hazardous, even though they occur 

at low frequency. 

In order to characterize the four strains, phylogenetic analyses using ten genes (ITS, benA, 

cmdA, mcmc7, ppgA, amdS, rbp1, preA, preB, AflP) were performed (single genes analyses and a 

combination of them). The publication of the new species was based on the ML (annex 1) and BI 

results for the phylogenetic analyses using nine genes, and the results of BI were shown. By this 

approach the description of a new species, belonging to Aspergillus section Flavi, was possible. 

Aditionally, morphological analyses, and secondary profile characterization were performed. The 

mating type MAT loci were analyzed for several species in the section, allowing a better 

understanding of these genes in the section Flavi.  

This work was published in Toxins, 2017, 9: 353, and was the cover of that issue. In addition, a 

summary of the study has been lectured in the 39th mycotoxins workshop (Poland, 2017), and in the 

1st International MycoKey conference (Belgium, 2017). 
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Annex 1. Maximum likelihood phylogenetic tree of Aspergillus section Flavi (based on concatenated sequences from nine genomic loci: ITS, benA, cmdA, mcm7, amdS, rpb1, 
preB, ppgA, and preA). Maximum likelihood tree was calculated from 41 strains, and includes the Type strain for most species. Strong bootstrap values are shown at branch 
nodes. Species isolate numbers are indicated at branch tips. A. bertholletius CCT 7615 was used as the outgroup taxon. 
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2.4 CHAPITRE 4 

Identification of Aspergillus section Flavi in 

French maize 
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4.1 BACKGROUND 

The present study is part of a preliminary survey on French maize in 2015. The interest of the 

survey was to evaluate the risk of aflatoxin production on maize kernels and to identify the species 

that synthesize these compounds. The study consisted in testing the mycobiota in 19 maize samples 

contaminated with AFB and 24 none contaminated. The mycobiota was characterized based on a 

polyphasic approach. Isolation, morphological test and analyses of aflatoxin potential production 

(HPLC MS/MS) were performed by our colleagues from the Ecole Nationale Vétérinaire de Toulouse 

(France) (Sylviane and Jean-Denis Bailly). Here, phylogenetic analyses of selected strains to confirm 

the species identification are shown.  

Climatic conditions in Southern France were atypical that year, with warmer than normal 

temperatures and a drier summer. Maize was analyzed because under these climatic conditions 

kernels were prone to the development of Aspergillus section Flavi species.  

The results showed that all samples had Fusarium in their growing mycobiota. Regardless 

Aspergillus section Flavi diversity, mycological analyses resulted in the isolation of 67 strains from the 

section, recovered from samples contaminated and no contaminated with AF. The most frequent 

species was A. flavus, followed by A. parasiticus, and A. tamarii. To our knowledge, this is the first 

time that A. tamari is reported on maize in France. These results showed that Aspergillus section 

Flavi may be part of the soil mycobiota in France, and that two species, A. flavus and A. parasiticus 

represent a potential risk, the latter being able to produce B and G aflatoxins.  
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4.2 IDENTIFICATION OF ASPERGILLUS SECTION FLAVI IN FRENCH MAIZE  

 Climate change 

Climate change threatens food availability worldwide, alters primary agricultural systems, and 

therefore, affecting livestock and plant production (Van der Fels-Klerx et al. 2016). Climate change 

would have negative effects worldwide, though in some regions it could favor the development of 

some crops. Abiotic factors that have the greatest influence on crop changes are temperature, 

precipitation patterns and CO2 availability, which change due to climate change (Paterson and Lima 

2010; Medina et al. 2017). Overall, projections suggest that annual precipitations will increase in high 

latitudes and tropical regions, whereas in mid-latitudes conditions will become extreme, arid regions 

will become drier and wet regions wetter. Worldwide, extreme events will become more frequent, 

more intense and longer (Qin et al. 2013). According to some projections, atmospheric CO2 

concentrations will double or triple in the next 25 to 50 years (increasing to 800 - 1200 ppb), 

temperatures will rise in 2-5° C range, and extreme rain/drought conditions are expected in parts of 

Europe, Asia, and Central and South America. In these regions, several crops, such as wheat, maize 

and soya, are produced (Medina et al. 2017). 

Temperature, precipitation patterns and CO2 are important for agriculture, because they are 

key factors in plant development. Actually, changes in these factors are altering plant distribution 

patterns in the world and the associated pathosystems, because they influence host–pathogen 

dynamics, including mycotoxin distribution patterns (Paterson and Lima 2011; Battilani et al. 2016, 

Van der Fels-Klerx et al. 2016). In addition, some pathogens can be favored due to plant stress 

conditions, becoming more frequent, and the development of some pathogens can also be favored 

by climatic changes, increasing the number of their populations (Paterson and Lima 2010; Ehrlich 

2014; Van der Fels-Klerx et al. 2016). In general, there is a tendency of species to migrate towards 

the poles, some pests are suggested to migrate at a rate of 3-5 km/year (Medina et al. 2017). Abiotic 

and biotic pressures on plants can create new niches or/and create new conditions for the 

production of certain mycotoxins (Van der Fels-Klerx et al. 2016; Medina et al. 2017).  

 

 Europe, climate change effects on crops and mycotoxins 

Climate change in Europe may have different effects depending on the region; the positive or 

negative effects will depend mainly on increased temperature, the precipitation pattern, and 

physiological response of crops enriched with CO2. As consequence, crops, grazing livestock and plant 

pests may change. The biogeographic agricultural scenario for Europe suggests that crop production 

and arable areas will expand northwards, making northern Europe more suitable for agricultural 
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production, while southern regions may experience a reduction of production and a decrease of 

arable areas. Maize, sunflowers, and soybean are crops expected to follow these patterns (Miraglia 

et al. 2009, Medina et al. 2017).   

In northern Europe (Norway, Sweden, Finland and Baltic States) temperatures are expected to 

increase around 3–4.5 °C, resulting in mild temperatures, increase of rainfall, and higher risk of 

floods. Agriculture could benefit from these changes by increasing crop production (European 

Commission, 2007; Miraglia et al. 2009). In southern and south-Eastern Europe (Portugal, Spain, 

Southern France, Italy, Slovenia, Greece, Malta, Cyprus, Bulgaria, and Southern Romania), the 

projections suggest an increase in average annual temperature around 4–5 °C, a reduction of 

precipitations, especially in summer, a decrease in water availability,  and an increase of CO2. These 

phenomena will lead to a decrease in agricultural production in the range of 10–30% in many 

regions, drought, heat waves, soil and ecosystem degradation, and ultimately desertification. In 

central Europe (Poland, Czech Republic, Slovakia, Hungary, Northern Romania, Southern and Eastern 

Germany, and Eastern Austria) annual temperatures will rise by 3–4.5° C, rainfall will increase in 

winter and decrease in summer, increasing the risk of flooding. Impacts on agriculture include soil 

erosion, drought and higher temperatures in summer. In addition, in southern and central Europe, 

the changes of abiotic factors will affect the development of pathogens and insects, causing earlier 

flowering and ripening of cereals (Schröter et al. 2005; European Commission 2007; Miraglia et al. 

2009; Medina et al. 2017).  

 

 

  Aflatoxins in Europe 

In Europe, the main mycotoxins are produced by Fusarium spp., being F. graminearum one of 

the main contaminating fungi. However, since 2003 A. flavus has been recognized as an emerging 

problem (Piva et al. 2006). The increasing risk of AF contamination in Europe is due to the effects of 

climate change. Battilani et al. (2016), based on a study in maize, suggested that Aspergillus flavus 

can increase its home range in Europe in temperature rise scenarios of 2-5 °C, and that the most 

threatened areas are southern and central Europe.  

Although, species of Aspergillus section Flavi are not common in Europe, there are reports of 

some species, which present a risk because they are aflatoxins producers. The species most 

frequently reported is A. flavus, and staples contaminated with AFs included maize, nuts, barley and 

milk (Perrone et al. 2014; Battilani et al. 2016; Giorni et al. 2016; Prencipe et al. 2018). Another 

species that have been reported in Europe in isolated cases was A. parasiticus, which were identified 

in chestnuts (Prencipe et al. 2018), other rare species, reported only in Europe, are A. sergii, A. 
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transmontanensis, and A. mottae, found in Portugal in restricted niches (Soares et al. 2012). The non-

aflatoxigenic species A. tamarii has also been reported (Prencipe et al. 2018). 

Outbreaks of AFs in Europe have shown that it is important to perform analyses targeting AF 

contamination in the region. In fact, a major survey conducted by the European Food Safety 

Authority [EFSA] (2007) revealed that aflatoxins were an emerging problem, as contaminated corn, 

almonds, pistachios were identified, and A. flavus was the main producer. Contamination of milk 

with AFM1 has also been reported in Europe. In 2006 in Sweden, cattle feed with contaminated rice 

produced milk with AFM1 concentration that exceeded the EU legal limit of 0.05 μg/kg, therefore 

thousands of tons of milk were discarded; unfortunately, this was not an isolated event (Perrone et 

al. 2014).   

 

 Maize and aflatoxins  

Maize is an important crop in Europe and is used for different purposes, like grains for food, 

feed and processing, and green maize for silage or biogas production. It is one of the region main 

cereals and is grown in at least 27 countries (Figure 1) (Battilani et al. 2012). France is the leading 

producer of grain maize and the third largest corn silage producer in Europe. Grain maize is the 

second largest crop after wheat, covering about 6% of the agricultural area. Maize is mainly grown in 

two regions with different climatic conditions: the northeast (Grand-Est) and the south-west 

(Nouvelle Aquitaine, Occitanie) (Caubel et al. 2018).  

 

 

 

Figure 1.  European distribution of maize crops (reprinted from Battilani et al. 2012). 
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The main fungi that attack maize in the region are Fusarium species; therefore, their 

mycotoxins are a more frequent. Dispersion of Fusarium benefits from intense rainfall during the 

anthesis period, to disperse in maize ears, and from the prolonged period of warm humid conditions 

to infect the kernels. However, in recent years, the occurrence of species belonging to Flavi section, 

in particular A. flavus, has become more frequent (Battilani et al. 2012). Contamination by A. flavus is 

enhanced by plant stress, insect damage, especially the European corn borer Ostrinia nubilalis, and 

warmer and drier conditions (Van der Fels-Klerx et al. 2016). Although Aspergillus section Flavi is not 

frequent in the area, a survey in northern Italy on 2003 showed that out of 110 maize samples, 75% 

was positive for AFBs with an average of 4.4 and a maximum of 154.5 μg/kg (Piva et al. 2006). Under 

the changing climatic conditions, species belonging to Flavi section could become prevalent 

(Bunyavanich et al., 2003), especially in Romania and Italy (Battilani et al. 2012).  

Several studies have tested the possible effects of climate change on maize production, 

particularly those associated with plant performance under patterns of seasonal drought-stress 

conditions. As a result, maize sensitive traits, including phenology (maturity), anthesis-silking 

synchrony, kernels per ear and ears per plant will be altered (Harrison et al. 2014). The same 

conditions of drought and high temperatures during kernel development are also the suitable 

conditions for fungi colonization and aflatoxin production (Bruns 2003). A. flavus colonization of 

kernels starts after silking (female flowering) and continues during the season, and it is only observed 

when kernels are mature (Giorni et al. 2016). 

 

4.2 MATERIALS AND METHODS 

 FUNGAL STRAINS 

Twenty-two strains belonging to Aspergillus section Flavi, which did not displayed the A. flavus 

characteristic morphological traits, were selected for performing phylogenetic analyses. All samples 

were previously identified morphologically and their ability to synthesize aflatoxins and cyclopiazonic 

acid was analyzed by HPLC (Table 1). Of these samples, three strains were of particular interest 

because they showed interesting morphological traits: G641b, G649b and G644a (Figure 1). The first 

two were characterized as A. parasiticus with a profuse sclerotia production, and the latter as A. 

flavus with special sclerotia (Figure 2).   
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Table 1. Strains selected for phylogenetic analyses.  

STRAINS 

TOXINOGENIC POTENTIAL MORPHOLOGICAL 

 IDENTIFICATION AFB AFG CPA 

G632b + + − A. parasiticus 

G632c − − − A. parasiticus 

G638b + + − A. parasiticus 

G639 + + − A. parasiticus 

G640a + + − A. parasiticus 

G641b − − − Section Flavi 

G644a − − − A. flavus 

G644b + + − A. parasiticus 

G648b + + − A. parasiticus 

G649a + + − A. parasiticus 

G649b + + − Section Flavi 

G650d + + − A. parasiticus 

G651a + + − A. parasiticus 

G651c − − + A. tamarii 

G651e − − − A. parasiticus 

G652b + + − A. parasiticus 

G622Rc + + − A. parasiticus 

G622Rd + + − A. parasiticus 

G628Ra + + − A. parasiticus 

G629Ra - - − A. parasiticus 

G643Rb + + − A. parasiticus 

G647Rc + + − A. parasiticus 
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Figure 2. Non identified strains by morphological exam. Cultures grown on MEA at 25° C for 7 days (Photos: S. 

Bailly). 

 

 

 

Figure 3. Sclerotia of weird strains. Sclerotia isolated from 7 days-old cultures of at 25° C (Photos: S. Bailly). 

 

 MOLECULAR ANALYSES 

Molecular analyses were performed on the 22 strains following the processes previously 

explained: i) cultures and DNA extraction, ii) amplicon amplification by PCR of ITS 4-5, benA and 

cmdA genes, iii) annealing, trimming and alignment of sequences, and iv) phylogenetic analyses by 

ML and BI (see chapters 2.1-2.3). 

 

4.3 RESULTS 

For the ITS gene, the best-fit nucleotide substitution model was TIM2+I+G (jModelTest), 

whereas for the concatenated data benA + cmdA a partition was obtained, and the best substitution 

model was K80+G (PartitionFinder).  

The results from ITS 4-5 showed several polytomies, the A. flavus clade was nested in the A. 

parasiticus clade.  Resolution of A. nomius and A. tamarii clades was low. For the maize strains, two 

(G529Ra and G644a) were nested in “A. flavus clade”, 19 strains (G638b, G622Rc, G622Rd, G628Ra, 
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G632b, G632c, G639, G640a, G641b, G643Rb, G644, G647Rc, G648b, G649a, G649b, G650d, G651a, 

G651b, G651e) in A. parasiticus clade, and one strain (G651c) was nested as basal taxon of a group 

including A. tamarii and A. nomius strains (Figure 4). 

On the other hand, the results from the concatenated genes benA+cmdA showed a better 

representation of the clades, the A. flavus clade species clustered together (with the exception of A. 

korhogoensis that formed a new branch, as in previous analyses). Members of the A. parasiticus 

clade were clustered together; A. mottae was settled as basal taxon of the former clusters. A. nomius 

and A. tamarii clusters contained the species expected. For the samples recovered from French 

maize, we observed that G529Ra and G644a clustered with A. flavus and A. oryzae (PP=1). The 

sequences belonging to the 19 samples G638b, G622Rc, G622Rd, G628Ra, G632b, G632c, G639, 

G640a, G641b, G643Rb, G644, G647Rc, G648b, G649a, G649b, G650d, G651a, G651b, G651e) were 

grouped with A. parasiticus and A. sojae (PP=89). Finally, G651c clustered with A. tamarii (PP=1), 

both sequences forming the sister taxon of A. pseudotamarii (Figure 5). 

Hence, based on phylogenetic inference, three species of A. section Flavi were identified, A. 

flavus, A. parasiticus and A. tamarii. The atypical strains G644a and G649b were confirmed as A. 

parasiticus and G641b was confirmed as A. flavus.  
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Figure 4. ITS 4-5 BI tree. The tree included 58 isolates: 22 sequences from French maize samples and 36 recovered from GenBank (including the reference strain for most 
species in the section). PP values are shown. Strains for this study are indicated by brackets, clades are indicated with bars (in red shades: A. flavus; in green shades: A. 

parasiticus and in purple shades: A. tamarii). 
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Figure 5. BenA-cmdA BI tree. The tree included 67 isolates: 22 sequences from French maize samples, and 36 recovered from GenBank (including the reference strain for 
most species in the section). PP values are shown. Strains for this study are indicated by brackets, clades are indicated with bars (in red shades: A. flavus; in green shades: A. 
parasiticus and in purple shades: A. tamarii). 
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4.4 DISCUSSION 

The results confirmed the presence of A. section Flavi species in French maize. In this study, 

three species were isolated, A. flavus, A. parasiticus and the non-aflatoxigenic species A. tamarii. 

Aspergillus flavus represented the 69% of the 67 strains isolated from section Flavi. From the 67 

strains, 22 produced important quantities of AF, and in 8 non aflatoxigenic strains traces of CPA were 

observed. The weird isolate G641b with pigmented sclerotia was confirmed as A. flavus (PP=1, 

benA+cmdA). The presence of A. parasiticus, especially in post-harvest samples, suggests that this 

species is important in soil in France; and as expected, the majority of the strains were aflatoxigenic. 

Eventhough, samples G644a and G649b were atypical, molecular result showed that they are 

clustered with strains of A. parasiticus (PP=0.89, benA+cmdA).  

 Aspergillus tamarii has a wide distribution in tropical and subtropical areas. It is frequently 

isolated in nuts, such as betel nuts (Misra and Misra 1981), peanuts (Martins et al. 2017), pecans, and 

in a wide variety of sources like spices, peppercorns, cocoa and yams (Pitt and Hocking 1985; 2009). 

Although, its isolation in cereals is less frequently reported, most reports involve maize. In fact, 

several publications have reported A. tamarii in harvested maize in different African countries 

(Perrone et al. 2014; Probst et al. 2014). The occurrence of A. tamarii in Europe has been rarely 

reported and the majority of these reports are recent. In a Portuguese study, 8.2% of Aspergillus 

section Flavi isolates from almonds harvested in Morocco and Faro regions were identified as A. 

tamarii (Rodrigues et al. 2012). Another report concerns the presence of A. tamarii in “vinho verde” 

(Lago et al. 2014). In Italy, this species was reported in chestnuts mycoflora (Prencipe et al. 2018). To 

our knowledge, this is the first time that the presence of A. tamarii in European maize is reported. 

Studies of climate change scenarios for maize in France suggest that maize is likely to remain 

an important crop. Nevertheless, climatic change challenges the region by the increasing 

temperatures and the risk of water stress. In fact, Occitanie and Ile-de-France regions should be 

sensitive to water stress during grain development; especially Occitanie, where rainfall is expected to 

decrease. It is important to understand the effects of abiotic factors in maize and the risks for its 

production. Abiotic factors change phenology, vegetative and reproductive growth, grain quality 

(sugar or protein content) and the performance of cultural practices, which can lead to the 

development of maize grain under drier and warmer conditions (Olesen et al. 2011; Caudal et al. 

2018). These plants changes can make maize more vulnerable to contamination of A. Flavi section 

species. Actually, climate change scenarios in France suggest than maize will be prone to the 

colonization of A. Flavi section species, resulting in reduce safe maize production and economical 

losses. Therefore, the major challenge in France is to reduce drought stress, which is an important 

factor to reduce A. flavus colonization and AF production (Battilani et al. 2012) 
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Biocontrol is used to inhibit the growth of fungi and AF production. For instance, the use of 

maize cultivars more resistant to water stress is a strategy to limit the impact of water deficit on 

maize production and quality (Caudal et al. 2018). Similarly, the use of non-aflatoxigenic strains of A. 

flavus can also reduce the increasing risk of aflatoxigenic strains in fields. The isolation of “safe” 

strains during survey studies contributes to the search for French strains of A. flavus that could be 

used as biocontrol. The use of strains from the same region increases the reliability of the biocontrol 

(Battilani et al. 2012; Bandyopadhyay et al. 2016).  
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3.1 GENERAL DISCUSSION 

 A proper identification of species: why is it crucial? 

A proper characterization of species from Aspergillus section Flavi, which are potentially 

contaminants of staples, is necessary to ensure consumers safety (RASFF 2011; Prencipe et al. 2018). 

A proper identification of species prevents food and feed contamination, as life histories and 

ecological features of species are better addressed, improving risk assessment and reducing the 

potential risk of these species on human and animal health. This is particularly crucial for potential AF 

producer species, and for other important mycotoxin producers, though characterizing species and 

the strains occurring in different worldwide areas is also important (Vaamonde et al. 2003). Some 

species appear to have reduced home ranges and niches that are closely related to their host, such as 

A. sergii, A. mottae, A. transmontanensis, which have only been isolated in Portugal and are linked to 

specific substrates (Soares et al. 2012), or like A. parvisclerotigenus and A. korhogoensis that have 

been found in the Guinean Gulf (Adjovi et al. 2014; Chapter 2.2). A proper identification of strains 

may show that the home ranges are wider or even identify more species. 

Species characterization of molds, especially Flavi section, is not straightforward because the 

section present intra- and inter- variability, which results in phenotypic and physiologic overlapping 

traits. Additionally, some studies of species characterization include only one approach, leading to 

poor classification at species level. Several species have been misidentified, some of which were 

subsequently recognized as novel species, such as A. minisclerotigenes and A. parvisclerotigenus 

considered to be part of A. flavus; or A. pseudonomius considered to be A. nomius, which is the main 

aflatoxigenic species in Brazilian nuts (Pildalin et al. 2008; Varga et al. 2011; Massi et al. 2014), and 

the possible new species from A. parasiticus that grows in sugar cane crops (Kumeda et al. 2003; 

Garber et al. 2014). Likewise, there are studies where G-aflatoxins were identified, yet the species 

were not characterized, e.g. Matumba et al. (2014) found high levels of G-aflatoxins in Malawi 

peanuts, but they did not identify the producer.  

Species description in Flavi section is still under debate, A. flavus, A. parasiticus and A. nomius 

species are defined differently depending on the research team. Some authors (Cotty and 

collaborators) consider that phenotypic, molecular and physiology traits and in the production of 

secondary metabolites of these species are highly variable. Some others (Frisvad, Samson, Ehrlich 

and collaborators) consider these species as species complexes and that cryptic species embedded in 

them can be identify by a polyphasic approach. The latest statement is in agreement with the unified 

species concept and the phylogenetic concept. The recognition of these cryptic species is becoming 

each day increasingly accepted by researchers in the field because these new cryptic species can be 

considered as lineages that have evolved separately from other lineages, which has been proven by 
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phenetic and physiological data, secondary metabolic compounds, phylogenetic and molecular 

evidence, as well as some insights of ecology and life histories. I agree with the statement that A. 

flavus, A. parasiticus and A. nomius are species complexes and that most species described over the 

last decade are cryptic species.  

The plethora of mycotoxins synthesized by fungi belonging to Aspergillus section Flavi, includes 

AFs, VER A and B, STC, OMST, CPA, OTA, aflatrems, TeA, amongst others (Varga et al. 2011; 2015). It 

is important to take into account that mycotoxins yield depend on inter- and intra- species variability. 

To recognize species, and the specific isolates in specific geographical areas, is thus important to 

have an overview of the secondary metabolites yield in those areas and to assess the potential 

health risks (FAO 2003; IARC 2015). Generally, a mixture of secondary metabolites is yield by a strain, 

resulting in staples contaminated by several mycotoxins. As aforementioned, a mixture of 

mycotoxins leads to antagonist, additive or synergic effects, depending on the mycotoxin structure, 

as well as the amount of each compound, the host (species, sex, age, health, diet), and the intake 

pathway (Paterson and Lima 2010; IARC 2015). 

A good example of the importance and applicability of proper recognition of strains is the use 

of “non-toxigenic” strains to reduce the impact of “toxigenic-strains”. This method is based on the 

importance of microbiota diversity and the competition between strains, in order to reduce the 

prevalence and effects of undesirable strains. In fact, this method seems to have excellent results, 

and its use is widespread in the USA, Africa and Eastern Europe (IARC 2015; Bandyopadhyay et al. 

2016). Rodrigues et al. (2013) already underlined the importance of a diverse microbiota, which 

could explain the low rates of detrimental species and isolates of Aspergillus identified in their 

chestnut samples. Similarly, Prencipe et al. (2018) explained their results by the diversity of species 

and non-aflatoxigenic strains that reduce the presence of aflatoxigenic strains. 

Aspergillus from Flavi section also synthesizes beneficial compounds, some of which are linked 

to billion dollar markets. A. sojae, A. oryzae and A. tamarii are used for the production of kojic acid 

and several enzymes, like α-amylase, glucoamylase, and proteases, for the production of starch, 

baking, and brewing worldwide (Rigo et al. 2002; Machida et al. 2008). In this section, non-

aflatoxigenic species in particular are interesting to study and to identify new beneficial compounds. 

On the other hand, climate change is challenging fungal relationships because fluctuations in 

temperature and rainfall are creating new environmental conditions that lead to shifts in community 

composition and the formation of new ecological niches. These changes will vary depending on the 

worldwide areas, and will create new pressures and scenarios; in general, these environmental 

changes will affect the agricultural cycles. Therefore, climate change affects microbiota composition 

in soils and crops, modifying associations (symbiotic or not) between fungi and other organisms, and 

creates changes in the species distribution patterns. Modeling projections suggest a worldwide 
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increase of detrimental effects caused by harmful fungi (Wu et al. 2011; Medina et al. 2014; Jayasiri 

et al. 2015). 

In Europe, climate change could increase the risk of AF contamination. Battilani et al. (2016) 

suggested that the risk of Aspergillus flavus presence increases in scenarios with a temperature rise 

of 2 to 5 °C, and its home range could expand. In general, areas that are most at risk are the south 

and central parts of Europe, with migrations northwards. Moreover, these scenarios place AF 

production above the threshold set by the European Regulations in food and feed (Commission 

Regulation 2001/466/EC). Battilani et al. (2016) study focused on A. flavus and maize, its principal 

substrate. Likewise, other species from the section, that have not been studied, can follow the same 

patterns (Prencipe et al. 2018). For instance, some AF producers, like A. parasiticus, A. sergii, A. 

transmontanensis, and A. mottae, contaminate other staples, in particular nuts and oily grains. 

Although, these species are less frequent in staples, they produce B- and G- aflatoxins, as well of 

other mycotoxins, and may cause health risks. Regardless the preliminary results of ARVALIS project, 

this is the first report of A. parasiticus and A. tamarii on maize in France, and the frequency of Flavi 

section is expected to increase under the climate change scenarios.  

In tropical and subtropical areas, species belonging to Flavi section are more frequent, growing 

principally on maize, peanuts, nuts, spices, which are ingested on daily basis by the inhabitants. In 

these areas, an important part of smallholder farmers consume the products as home-grown foods. 

Besides, commercialization of the products in small markets is usual; conversely, the methods to 

control mycotoxins contamination in food and feed are scarce. Altogether, Flavi species place the 

population at high risk of mycotoxin consumption (Paterson and Lima 2011; IARC 2015; 

Bandyopadhyay et al. 2016). Depending on the region, climate change would not be favorable either, 

as these areas would become more arid, and rainfall would fluctuate. For instance, in Africa and 

Oceania the projections suggest a decrease in suitable areas for agriculture, whereas in Asia and 

Latin America they suggest more savanna and fewer tropical forests (Figure 1) (Paterson and Lima 

2011). Once again, the lack of knowledge of the diversity of Aspergillus section Flavi, and the poor 

information of the life history and ecology of most species could lead to more health risk in these 

areas. Under climatic changing conditions there is a possibility that in Africa, A. minisclerotigenes, A. 

parvisclerotigenus and A. korhogoensis could expand their home ranges; the scenarios of climate 

change suggest drier and warmer conditions that apparently favor their frequency. A recent study on 

Aspergillus flavus clade showed that strains from Benin grouped together, forming a group 

evolutionary different from the other strains of the clade (Moore et al. 2017). These strains 

correspond to A. parvisclerotigenus strains and support the results showed in this study. To 

summarized, Aspergillus flavus is the most frequent species in Africa, however, some areas have high 
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presence of A. flavus SBG morphotype, in the agro-ecological zone of Northern Guinea savannah, A. 

parvisclerotigenus, and in Kenya, A. minisclerotigenes.  

 

 

Figure 1: Predicted areas to become tropical. In light color, the predicted areas to become tropical, therefore 
more suitable to mycotoxin contamination (reprinted from Paterson and Lima 2011). 

 

 

 Phylogenetic inference vs. other molecular techniques 

The use of molecular markers revolutionized science. They opened a new understanding of the 

world, and provided new tools to comprehend life. They enabled the recognition of the biodiversity 

and to clarify relatedness between different groups, from kingdom to species. Fungi were thus 

recognized as the closest group of Animalia thanks to molecular markers, which also helped to 

recognize among cryptic species. In a practical way, molecular markers have allowed the 

identification of pathogens and their biological machinery. In addition, they can also be used for 

screening species in different environments.  

Mitochondrial RFLPs in fungal systematics gave fruitful results, resolving some relatedness in 

Aspergillus, and has been suggested to be relevant for Flavi section screening. Several restriction 

enzymes were used, but the procedure sometimes failed to discriminate strains, which can be linked 

to section variability (Quirk and Kupinsky 2002). To date, this technique is less applied because it is 

time consuming and unfriendly, requires important amounts of DNA, and has screening limitations 

(Grover and Sharma 2014). RAPDs have also been widely used as screening tool in the section. Tran-

Dinh et al. (1999) reported a population study that used a battery of RAPDs combining several 

primers to distinguish isolates of A. flavus and A. parasiticus. They have shown that A. flavus is more 

polymorphic, which contributes to the hypothesis that its plasticity confers advantages in its life 
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history and pathogenicity (Hedayatii et al. 2007). Gonçalves et al. (2012b) used RAPDs as screening 

technique for section Flavi in Brazilian nuts, and identified a high variation in the fungal populations. 

They complemented their studies with other techniques, including phylogenetic inference. Godet 

and Munaut (2010) performed another example of RAPDs, showing interesting results. They 

developed a molecular analytical tool that included several RAPDs and a small digestion; this 

technique used several markers and real-time PCR to discriminate among species. Using this 

technique, they could distinguish important species from the section, albeit, they could not 

differentiate A. parvisclerotigenus. Again, the use of more than one molecular marker showed better 

results than the use of a single marker. However, there are some drawbacks, RAPDs often target 

unknown dominant markers, the results are not always reproducible because of low annealing 

temperatures, and differences due to Taq polymerases are found. To solve these problems there are 

variations of the technique that can improve it (Grover and Sharma 2014). Another technique useful 

to screen in this section is the PCR-DGGE based on β-tubulin (Chapter 2.2), since, it was able to 

distinguish between A. flavus clade and A. parasiticus clade species, and highlighted the four strains 

belonging to A. korhogoensis.  

Although these techniques showed good results, phylogenetic inference is a finer tool for 

species screening. Its robustness makes it the third axis of the polyphasic approach, which is 

mandatory for species description in Aspergillus section Flavi. Phylogenetic inference uses identified 

gene markers, and compares the sequences based on complex mathematical algorithms that test the 

plausibility of evolutionary scenarios based on their nucleotides. Since it includes all these data, it is 

an excellent tool when used properly. An example of the ability to discriminate among strains in Flavi 

section, is the comparison with PCR-DGGE, although this technique is innovative, its accurateness 

was lower than that of phylogenetic inference. The latter resolved the relationships for group 4 (Maci 

8 sample), which was characterized as A. parvisclerotigenus, and showed robust evidence of group 3 

as a novel species. 

As suggested in the last paragraph, phylogenetic inference is convenient to unmask 

relationships amongst fungal species and can be used as screening tool for taxa, like Aspergillus 

(Taylor et al. 2002; Peterson 2008; Mitchell 2010; Raja et al. 2011). Some of the characteristics that 

make it a robust molecular tool are highlighted. First, phylogenetic inference allows the use of more 

than one molecular marker to solve questions regardless relationships (Peterson 2008; Soares et al. 

2012). Second, this technique is friendly and quick. Third, the algorithms used by the software are 

complex and include several evolutionary scenarios that enable to test complex assumptions to test 

relatedness between isolate sequences. Fourth, the data generated for each marker can be reused, 

and by anyone, once deposited in GenBank; whereas other molecular techniques requires new 

control cultures for each new analysis to compare results. Fifth, free software for analysis are 
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available, as well as tutorials and manuals explaining how to use them. Besides, on line courses 

become frequent and inexpensive.  

Conversely, the main issues with phylogenetic inference are to properly perform the steps. 

Molecular markers should be selected according to the aim of the study, markers has to be 

informative, and can be one or several. The same gene has to be amplified from different organisms, 

and amplicons have to be confirmed as the correct sequences in order to compare the same gene, 

and avoid the amplification of ortholog sequences or genes with multiple copies in the genome. A 

proper alignment of sequences must be performed, to date there are several software that performs 

this step, usually using CrustalW algorithm, but alignments must always be checked by the naked 

eye. This is a crucial step, because if there are some errors in the alignment, a completely different 

inference can be obtained from the data. Depending on the aim of the study, introns can be used; 

and gaps must be treated carefully. The best evolutionary nucleotide model must always be tested 

and software that test different evolutionary scenarios should be chosen (e.g. jModelTest, 

PartitioningFinder). If a concatenated dataset was chosen, it is important to run tests of evolutionary 

nucleotide model for each partition and coalescence test (Beast and Mesquite, among other 

programs include complex test to try to find the likelihood of all possible scenarios). Once these steps 

are performed, the next step, which is time consuming, is to perform the analyses. This step must 

include all the priors of the alignment, and it is suggested to run likelihood and Bayesian analyses to 

infer properly the relationships between the sequences of the sample. There are different software 

to perform these analyses, such as BEAST, GARLI, MrBayes, as well as some platforms developed to 

save computing time that are online, like CIPRES. Finally, once the analyses have been performed, 

the interpretation of topologies has to be performed thinking in the question to be solved and 

including the knowledge of the group that is being studied.  

  

 Single locus vs. multilocus  

Phylogenetic studies to discriminate among species in Flavi section are based in a few genes 

already considered as informative markers (ITS, β-tubulin, cmdA, mcm7, rpb2, tsr1, etc.). Some 

authors analyzed single genes and subsequently compared their topologies to classify species (Varga 

et al. 2011; Gonçalves et al. 2012b; Taniwaki et al. 2012; Tam et al. 2014; Pitt et al. 2017; Prencipe et 

al. 2018); while others used a mixture of single and multilocus analyses to classify them (Probst et al. 

2012; Gonçalves et al. 2012; Soares et al. 2012). However, the use of multilocus datasets has been 

suggested as a good tool to perform robust phylogenetic analyses (Taylor et al. 2000; Samson and 

Varga 2009; Houbraken et al. 2014). The advantage of using concatenated matrices over the use of 

single genes analyses lies in the addition of informative sites to the final analysis, whereas in single 
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genes analyses the branches should be compared at the end of the analysis in order to obtain a 

consensus between the genes. Before, the main issue with a concatenated approach was that the 

analysis of all genes was done as a single gene, which can be reflected in the loss of coalescence, but 

nowadays this problem can be solved by analyzing the evolutionary models of each gene and 

performing coalescence tests (Gadagknar et al. 2005; Degnan and Rosenberg 2009; Lanfear et al. 

2016). It is important to recall that evolution rates are directly associated to selection pressures, and 

their effects differ between genomic region, genes loci, and the sections of a gene (exons, introns, 

and nucleotide position in the codon) (Huelsenbeck et al. 1996; Degnan and Rosenberg 2009). 

Herein, I agree with this statement, based on the slightly differences observed by each gene, that the 

incorporation of more genes to the analyses can help to discriminate in a proper way the species in 

this section.  

The use of a single gene can be useful to have a picture of the relatedness of species in the 

section. As part of the work conducted in this study, several single gene analyses were performed 

using variable number of haplotypes to test among genes. As a result, the use of at least three genes 

is hardly recommended. The results observed during the analyses are also comparable to those 

reported in the literature (previously mentioned).  

I agree with the suggestion of several authors (Geiser et al. 2007; Seifert 2009; Schoch et al. 

2012) that explain that the use of ITS is useless to predict the relatedness within section Flavi. The 

use of this gene permits to split the section Flavi into the main clades: A. nomius, A. tamarii, and A. 

flavus sensu Varga et al. (2011). Albeit, ITS gene is too conserved to clarify relationships within these 

clades, making it not recommended to screen these fungi because it does not add valuable 

information and its amplification and sequencing increase the cost and time of the analyses. 

The genes benA and cmdA are widely used to characterization of Aspergillus species, and in the 

Flavi section (Taniwaki et al. 2012; Gonçalves et al. 2012b; Soares et al. 2012; Prencipe et al. 2018). 

They are generally used in single gene analyses, and topologies are then compared. However, the 

resulting topologies often differ slightly in the placement of species in the clades (Hong et al. 2006). 

The same tendency was observed in the analyses performed in this study. The results for benA and 

cmdA had the same tendency, but slightly differences were identified in certain species relationships. 

A main difference was observed when A. korhogoensis strains were analyzed. The four strains were 

always nested in the A. flavus clade (following Varga et al. 2011 classification), but there were 

differences between both topologies. Topology of benA showed several polytomies in the clade A. 

flavus (following Varga et al. 2011 classification); in fact, A. novoparasiticus, A. korhogoensis and 

some strains of A. parvisclerotigenus are not resolved with this gene, whereas, cmdA had a tendency 

to group the species as expected (following the classification of Soares 2012). 
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Mcm7 and rpb1 genes have also been tested for phylogenetic inference in Aspergillus, 

although their use is less frequent than the previous two genes. Single gene analyses for mcm7 and 

rpb1 tested in this study showed that both genes discriminate the A. parasiticus clade from the A. 

flavus clade, but they are not informative enough to solve relationships within each clade. Similarly, 

A. mottae was placed differently in both analyses; it was nested in A. flavus clade with mcm7, and in 

A. parasiticus clade with rpb1.  

Mcm7 topology clustered together species belonging to A. flavus clade, and the strains nested 

inside were grouped more or less as expected, yet it was not useful to divide the sister species A. 

parvisclerotigenus and A. korhogoensis. Conversely, the results of A. parasiticus clade were less 

robust, the topology showed polytomies for almost all species. The topology for rpb1 showed clear 

differences between A. flavus clade and A. parasiticus clade, but it was not informative enough to 

solve the relationships within each clade, in particular for A. parasiticus clade. Rpb1 divided A. flavus 

clade in three main groups (A. flavus, A. minisclerotigenes and A. parvisclerotigenus/A. korhogoensis), 

but strains of A. minisclerotigenes did not formed a group with a node, they were placed as 

polytomies in the cluster. A. tamarii clade and A. nomius clade were placed as expected with the 

genes mcm7 and rpb1. AmdS followed a similar trend; A. bertholletius was settled as a basal group, 

followed by the clades A. nomius and A. tamarii. The clades A. parasiticus and A. flavus were 

evidenced using amdS. A. flavus clade was divided in three polytomic clusters, A. flavus/A. oryzae, A. 

minisclerotigenes and A. parvisclerotigenus/A. korhogoensis. The clade A. parasiticus was clustered 

as expected, except for A. sergii, which was settled as the ancestral taxon of A. parasiticus/A. flavus 

clades and A. mottae was nested as the sister taxon of A. novoparasiticus. AmdS was quite 

informative, but it is not so easy to amplify because there are several copies in the genome, hence, 

this gene is not the best option for phylogenetic inference in Aspergillus. 

To our knowledge, the use of genes related to reproduction is not common in phylogenetic 

analyses of Aspergilli. Here, we tested ppgA, preA and preB. The results for the three genes showed 

interesting topologies. PreA and PreB had similar topologies, which were congruent with the 

expected results as they split the A. flavus clade from the A. parasiticus clade. The relatedness within 

each of these clades was congruent with the expected topologies; in general, all species were 

clustered together. They differed slightly in the position of A. korhogoensis, which was settled as 

basal taxon of A. flavus clade with PreA, and as sister taxon of A. parvisclerotigenus with PreB. The 

placement of A. transmontanesis changed in the A. parasiticus clade. A. mottae was embedded in A. 

parasiticus clade with both genes. The results with ppgA were different; the topology clustered 

species of the A. flavus clade together, but the relationships within the clade were poorly resolved, 

showing several polytomies. Conversely, the relationships in A. parasiticus clade were better 

explained and species were clustered together as expected.  
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In general, the use of a single gene solves poorly the relationships within A. flavus and A. 

parasiticus clades, particularly in the last one. A. mottae was nested differently with the different 

genes. All genes placed A. bertholletius as basal group and all genes placed A. tamarii and A. nomius 

clades as expected. 

On the other hand, AflP showed poor results. First, amplification of the genes was not 

straightforward. Secondly, the species were generally poorly clustered, with the exception of A. 

minisclerotigenes, A. parvisclerotigenus/A. korhogoensis and A. tamari clade; whose haplotypes were 

grouped as expected. Polytomies were identified in all the clades, and A. novoparasiticus was split in 

two basal clades. This gene was not informative at any level and was quite complicated to amplify, so 

it is not recommended for use in phylogeny. 

The use of concatenated genes helped to clarify the relationships within the group. As 

explained above, genes have different evolutionary rates, which were expressed as differences in the 

topologies. The use of concatenated genes incorporates the different evolutionary histories, 

providing more robust results (Huelsenbeck et al. 1996; Seifert 2009; Taylor et al. 2000), so the use of 

concatenated matrix is therefore recommended, and the advantages and disadvantages of three 

genes matrices will be explained in the next section. 

 

 Selecting the best genes for the “phylogenetic molecular tool” 

The use of benA and cmdA are highly recommended to unmask the relationships in this 

section. Both markers are highly recommended for use in a concatenated matrix, because the 

relationships in the group are better explained than when single gene matrices are used, thus, both 

genes are necessary to cluster isolates and species properly. Moreover, the copious amount of 

published data on both genes is an advantage, because haplotypes of several strains can be 

integrated into the matrices, adding more information to the analyses. Nevertheless, I observed that 

they were not sufficient to place properly A. korhogoensis. Further, partition analyses had sometimes 

integrated both genes into the same partition and under the same evolutionary model, whereas, in 

some other cases both genes were included in different partitions, indicating the need of 

evolutionary model analyses each time than an analysis is performed.  

In this study, two good examples of the applicability of benA and cmdA as molecular markers 

for Flavi section are shown. The first shows how the use of both genes facilitates the identification of 

strains in this section (chapters 2.2 and 2.4). In the study of strains isolated along the peanut 

production chain, both genes allowed the classification of strains as A. flavus, A. parvisclerotigenus 

and four strains as a new clade, A. korhogoensis. Albeit, the two genes used independently or 

together were not sufficient to nest the new species in Aspergillus flavus clade. These results were 
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improved by including at least one gene. In the ARVALIS study, we observed that the strains were 

placed consistently with morphological results when both molecular markers were used.  

Despite this, the addition of more genes resulted always in an improvement of the analyses; 

with results more consistent with the information already known from the literature and previous 

analyses (species classification in the section).  

Three gene matrices (benA and cmdA + one more gene) were tested to identify the advantages 

and disadvantages of each combination. The tested genes included mcm7 (Figure 2), rpb1 (Figure3), 

ppgA, preA (Figure 4) and preB (Figures 5). The inclusion of either of them settled A. mottae as the 

basal taxon of A. flavus + A. parasiticus clades. The clades A. nomius and A. tamarii with all the 

combinations were settled as basal clusters of the previous taxa (A. mottae (A. parasiticus clade + A. 

flavus clade)). However, the matrices including preB and ppgA clustered A. nomius and A. tamarii as 

a sister group of the aforementioned taxa (A. mottae (A. parasiticus clade + A. flavus clade)), whereas 

mcm7, rpb1 and preA settled A. nomius as the most ancestral clade, followed by the A. tamari clade 

and the more derived clades. Perhaps the lack of some taxa in both clades did not allow a more 

precise resolution for preB and ppgA. 

In the case of A. parasiticus clade, all combinations clustered species together, and settled A. 

sergii as the basal taxon in the cluster, although A. transmontanensis and A. arachidicola were placed 

differently depending on the gene combination. For A. flavus clade, all genes related A. flavus strains 

(A. flavus + A. oryzae) with A. minisclerotigenes, and overall all showed acceptable results. A. 

parvisclerotigenus, in most cases, was settled in a cluster as sister taxon of the group composed by A. 

flavus, A. oryzae and A. minisclerotigenes (with or without A. korhogoensis). Despite, the main 

difference among the topologies was the settlement of A. korhogoensis. The topology of benA, cmdA 

and mcm7 genes did not nested A. korhogoensis in A. flavus clade, placing A. korhogoensis as a 

cluster related with A. flavus and A. parasiticus clades. Conversely, A. korhogoensis was nested with 

A. parvisclerotigenus, as it sister taxon, with preB, and as basal taxon of A. flavus clade when either 

rpb1, preA, ppgA genes were added. It is important to recall that A. korhogoensis is a cryptic species 

that was nested with A. parvisclerotigenus after analyses based on a polyphasic approach that 

included analyses of a matrix concatenating all genes, morphological analyses and secondary 

metabolic profile, this result is robust and confirms A. korhogoensis position as sister taxa of A. 

parvisclerotigenus. 
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Figure 2:  Bayesian topology for concatenated tree using benA, cmdA and mcm7. PP values are shown. In red 
brackets A. flavus clade; dand in blue brackets A. parasiticus clade. 
 
 

 
Figure 3:  Bayesian topology for concatenated tree using benA, cmdA and rpb1. PP values are shown. In red 
brackets A. flavus cl ade, and in blue brackets A. parasiticus clade. 
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Figure 4:  Bayesian topology for concatenated tree using benA, cmdA and preA. PP values are shown. In red 
brackets A. flavus clade; and in blue brackets A. parasiticus clade. 
 
 
 
 
 
 

 

Figure 5:  Bayesian topology for concatenated tree using benA, cmdA and preB. PP values are shown. In red 
brackets A. flavus clade; and in blue brackets A. parasiticus clade. 
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An overview of the results confirms that the use of at least one of these genes is strongly 

recommended for performing a robust topology of the section. As described before, these genes are 

presented as a single copy in the genome. Further, these genes could help to solve discrepancies 

obtained by the use of only benA and cmdA, as explained above and through chapter 2.3.  

Sexual genes Preb and PreA showed interesting topologies, grouping most clades as expected, 

which make them suitable for phylogenetic analyses in section Flavi. They were more easily amplified 

for derived taxa. In the case of preA, it was not easily amplified, and it is necessary to develop new 

primers in order to be use in other sections of Aspergillus. For preB even though it was easier to 

amplify, it is also necessary to develop more universal primers for its use in other sections of 

Aspergillus. On the contrary, for the discrimination among “economically important species” from 

section Flavi, both genes add information to the multilocus analyses. The use of mcm7 did not 

increase the reliability of the analysis for A. korhogoensis, but it is informative for the other clusters 

of the section Flavi. Furthermore, it has the advantage that is more frequently amplified, making 

more feasible to obtain data of several species, and also it is a gene that was quite easily amplified, it 

has already used with good results in studies on A. section versicolores (Jurgevic et al. 2012). Mcm7 

has been suggested to be a good marker in other section of Aspergillus, in Ascomycota, and fungi 

(Schmitt et al. 2009). Based on that, it can also be recommended as a third marker for other sections 

of Aspergillus, and when A. korhogoensis is not included in the matrix, it is robust for this section. 

Rpb1 and ppgA, show as well good results, making them also good candidates for analyses. Rpb1 is a 

longer region and includes exons and introns, adding more informative sites, there are also evidence 

that it is informative in studies comprising several genes, like in A. section versicolores (Jurgevic et al. 

2012), or in combination with the gene tsr1, which allowed the description of A. tanneri species 

(Sugui et al. 2012). 

To summarize, the genes tested are informative for the section Flavi, and they might be 

informative for other economically important sections of Aspergillus, such as section Nigri, Fumigat, 

and Nidulans and in Penicillium. Before testing these genes in other sections, the development of 

primers that targets these regions might be necessary, especially for sexual genes. The inclusion of 

one or two more genes (mcm7, rpb1 or a sexual gene), add robustness to the analyses in section 

Flavi, and are therefore necessary to be included. ITS gene is not useful for characterization at 

species level, and its use should be avoided. In addition, phylogenetic inference is a robust approach 

to screen species of section Flavi, it is true that slightly differences can be appreciated while different 

genes are used, but the species clustered together and most combination allowed settling correctly 

the species within their clusters.  
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3.2 CONCLUSION 

Molecular markers have highlighted the diversity of fungi, including species that cannot be 

grown under laboratory conditions, which confirms the use of molecular inference as an appropriate 

tool. This is not only restricted to fungi. The inclusion of molecular data has allowed unmasking the 

biodiversity of several taxa, including archeas, bacteria, vertebrates, plants and algae. In relation with 

the molecular approach, the results obtained during this study have evidenced that the use of 

phylogeny inference based on a concatenated matrix is a fine tool to discriminate among species of 

Aspergillus section Flavi. This technique was used to confirm the characterization performed by other 

approaches, and proved to be a feasible and robust technique. Several species described after 2012 

that were not analyzed together, were included in the analyses and their position within the section 

was strengthened by adding information from more genes. Furthermore, a novel species belonging 

to the section was described, A. korhogoensis. Based on the literature of the selected markers, it may 

be interesting to apply the same combination of markers to discriminate between other sections of 

Aspergillus and Penicillium. 

A good combination of molecular markers is required; based on the results, I recommend the 

use of a multilocus matrix that includes at least benA and cmdA, which have proven several times to 

be two excellent markers. To increase the power of the analysis, at least one additional marker must 

be added, such as mcm7, rpb1, preB, preA and ppgA are recommended. Conversely, the use of ITS in 

Aspergillus can lead to an underestimation of the diversity because it is a too conserved gene. The 

study of mating type MAT1 loci in the section is useful for increasing knowledge of reproduction. 

Further analyses could help to understand better the many functions of these genes in the biological 

machinery of fungi, and in the future can be used in biotechnological processes to control 

development of strains. 

I agree with the statement that A. flavus, A. parasiticus and A. nomius are species complexes, 

and that the majority of species described over the last decade are cryptic (except A. bertholletius 

and A. hancockii). Further, the recognition of the new species is increasingly accepted by researchers 

as they were described using several traits, which show the reliability of these independent evolutive 

lineages. More studies should be done in the section Flavi because there is a high probability that the 

number of species will increase, as well as the ecological knowledge and information regardless the 

species life histories.  

Even though the use of phylogenetic inference is a good method to identify species at fine 

scale, and that I hardly recommend its application, it is important to keep in mind that it is not the 

only available tool. It has to be used cautiously, and bearing in mind that a morphological approach 
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and a secondary metabolic characterization are also important. There are several critical moments 

that can lead to misidentification.  
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RESUME :  

Certains champignons, notamment des Ascomycètes, peuvent synthétiser des métabolites secondaires toxiques 

pour les hommes et les vertébrés, appelés mycotoxines. Étant donné que la présence de ces champignons dans les aliments 

de base constitue un risque potentiel pour la santé humaine et animale, les aliments de base sont éliminés lorsqu’ils sont 

contaminés.  

La section Flavi est un des groupes de champignons les plus importants du point de vue économique et sanitaire car 

il comprend des espèces productrices de mycotoxines. Parmi les mycotoxines produites par ce groupe se trouvent les 

aflatoxines (AF), considérées comme une préoccupation majeure en raison de leurs effets délétères chez les vertébrés. Les 

espèces de la section Flavi se développent principalement dans les régions tropicales et subtropicales car elles bénéficient 

de conditions environnementales optimales. De plus, les conditions de récolte et de stockage sont souvent inappropriées, 

favorisant ainsi leur développement. Dans les régions tempérées, ces espèces se rencontrent moins fréquemment. 

Cependant, le réchauffement climatique pourrait favoriser leur colonisation. 

L’identification des espèces d’Aspergillus de la section Flavi est un défi, en raison de l’inter- et intra-variabilité des 

caractères. Par conséquent, l'utilisation d'une seule méthode d'identification (caractérisation morphologique, moléculaire 

ou du profil des métabolites secondaires) est insuffisante. Inversement, le développement d'outils moléculaires a facilité la 

tâche. Le but de notre étude était de déterminer les relations entre les espèces d’Aspergillus de la section Flavi à partir de 

différents marqueurs moléculaires (ITS, benA, cmdA, amdS, préA, perB, ppgA, aflP, gènes Mat1), puis d'identifier ceux qui 

permettent une classification des espèces par inférence phylogénétique.  

L'utilisation de l'inférence phylogénétique dans cette étude a montré qu'il s'agit d'une approche robuste pour identifier les 

espèces d’Aspergillus de la section Flavi, notamment en confirmant certaines hypothèses déjà proposées pour les espèces 

de la section Flavi. En effet, l’ajout de marqueurs moléculaires a permis de confirmer le placement phylogénétique des 

espèces dans la section Flavi. De plus, une nouvelle espèce cryptique a pu être décrite : Aspergillus korhogoensis 

(appartenant au clade A. flavus). Notre étude a également pu mettre en évidence que les marqueurs moléculaires 

sélectionnés (benA, cmdA, mcm7, rpb1, preB, preA et ppgA) sont de bons candidats pour l’étude d’autres sections 

d'Aspergillus. L'utilisation de l'inférence phylogénétique est une méthode élégante permettant d’identifier de façon précise 

les espèces. Sur la base de nos résultats, il est recommandé d'utiliser des matrices concaténées pour effectuer une 

inférence phylogénétique dans cette section, et la meilleure combinaison inclut les gènes benA, cmdA, et l'inclusion d’un 

autre gène : mcm7, rpb1, preB, preA ou ppgA. A l’inverse, l'utilisation du gène ITS chez Aspergillus peut conduire à une 

sous-estimation de la diversité car le gène est très fortement conservé. L'étude des gènes du loci Mat1 dans la section est 

utile pour accroître les connaissances sur la reproduction sexuée chez les ascomycètes. De plus, plusieurs fonctions de la 

machinerie biologique fongique sont liées aux gènes du loci Mat1. 

La caractérisation du profil métabolique secondaire chez les souches d’Aspergillus de la section Flavi doit être 

utilisée, non seulement comme outil d'identification, mais également pour discriminer les souches toxinogènes et 

atoxinogènes. La section Flavi renferme des espèces capables de produire à la fois de mycotoxines et de composés 

bénéfiques. Parmi les mycotoxines qui devraient faire l'objet d'une attention particulière figurent les AF, l’acide 

cyclopiazonique, les versicolorines a et b, la stérigmatocystine. Une étude plus approfondie du métabolisme secondaire 

sera également utile pour la recherche de nouveaux composés bénéfiques. 
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