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Abstract — The emergence of mobile phones and connected objects has profoundly
changed our daily lives. These devices, thanks to the multitude of sensors they embark, allow
access to a broad spectrum of services. In particular, position sensors have contributed to the
development of location-based services such as navigation, ridesharing, real-time congestion
tracking. . .

Despite the comfort offered by these services, the collection and processing of location
data seriously infringe the privacy of users. In fact, these data can inform service providers
about points of interests (home, workplace, sexual orientation), habits and social network of
the users. In general, the protection of users’ privacy can be ensured by legal or technical
provisions. While legal measures may discourage service providers and malicious individuals
from infringing users’ privacy rights, the effects of such measures are only observable when the
offense is already committed and detected. On the other hand, the use of privacy-enhancing
technologies (PET ) from the design phase of systems can reduce the success rate of attacks
on the privacy of users.

The main objective of this thesis is to demonstrate the viability of the usage of PET as
a means of location data protection in ridesharing services. This type of location-based ser-
vice, by allowing drivers to share empty seats in vehicles, helps in reducing congestion, CO2
emissions and dependence on fossil fuels. In this thesis, we study the problems of synchro-
nization of itineraries and matching in the ridesharing context, with an explicit consideration
of location data (origin, destination) protection constraints.

The solutions proposed in this thesis combine multimodal routing algorithms with sev-
eral privacy-enhancing technologies such as homomorphic encryption, private set intersection,
secret sharing, secure comparison of integers. They guarantee privacy properties including
anonymity, unlinkability, and data minimization. In addition, they are compared to conven-
tional solutions, which do not protect privacy. Our experiments indicate that location data
protection constraints can be taken into account in ridesharing services without degrading
their performance.

Key words: privacy, ridesharing, privacy enhancing technologies

Résumé — L’émergence des téléphones mobiles et objets connectés a profondément
changé notre vie quotidienne. Ces dispositifs, grâce à la multitude de capteurs qu’ils em-
barquent, permettent l’accès à un large spectre de services. En particulier, les capteurs de
position ont contribué au développent des services de localisation tels que la navigation, le
covoiturage, le suivi de la congestion en temps réel. . .

En dépit du confort offert par ces services, la collecte et le traitement des données de
localisation portent de sérieuses atteintes à la vie privée des utilisateurs. En effet, ces données
peuvent renseigner les fournisseurs de services sur les points d’intérêt (domicile, lieu de travail,



orientation sexuelle), les habitudes ainsi que le réseau social des utilisateurs. D’une façon
générale, la protection de la vie privée des utilisateurs peut être assurée par des dispositions
légales ou techniques. Même si les mesures d’ordre légal peuvent dissuader les fournisseurs
de services et les individus malveillants à enfreindre le droit à la vie privée des utilisateurs,
les effets de telles mesures ne sont observables que lorsque l’infraction est déjà commise et
détectée. En revanche, l’utilisation des technologies renforçant la protection de la vie privée
(PET pour Privacy Enhancing Technologies) dès la phase de conception des systèmes permet
de réduire le taux de réussite des attaques contre la vie privée des utilisateurs.

L’objectif principal de cette thèse est de montrer la viabilité de l’utilisation des PET
comme moyens de protection des données de localisation dans les services de covoiturage.
Ce type de service de localisation, en aidant les conducteurs à partager les sièges vides dans
les véhicules, contribue à réduire les problèmes de congestion, d’émissions et de dépendance
aux combustibles fossiles. Dans cette thèse, nous étudions les problèmes de synchronisation
d’itinéraires et d’appariement relatifs au covoiturage avec une prise en compte explicite des
contraintes de protection des données de localisation (origine, destination).

Les solutions proposées dans cette thèse combinent des algorithmes de calcul d’itinéraires
multimodaux avec plusieurs techniques de protection de la vie privée telles que le chiffrement
homomorphe, l’intersection sécurisée d’ensembles, le secret partagé, la comparaison sécurisée
dentier. Elles garantissent des propriétés de protection de vie privée comprenant l’anonymat,
la non-chainabilité et la minimisation des données. De plus, elles sont comparées à des so-
lutions classiques, ne protégeant pas la vie privée. Nos expérimentations indiquent que les
contraintes de protection des données privées peuvent être prise en compte dans les services
de covoiturage sans dégrader leurs performances.

Mots clés: vie privée, covoiturage, technologies renforçant la vie privée
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Introduction

The emergence of mobile and connected devices has fostered the ubiquitous world in which
we are living, where personal data like mobility data (GPS position), health data (weight,
blood oxygen, heart rates, calories burned, sleep patterns, . . . ), movies preferences, and shop-
ping activities, among many others, are gathered on a daily basis by services providers and
shared with third parties like marketing or assurance companies. According to a recent Cisco
report [31], the number of mobile-connected devices will hit 11.6 billion by 2021, with a
monthly global mobile data traffic around 49 exabytes. The increasing usage of these devices
has promoted the development of a wide range of services including ridesharing services as
demonstrated by the popularization of platforms like Uber and Blablacar.

Ridesharing, which falls into the broad category of the collaborative economy [16], presents
numerous advantages for both the drivers and the riders: It enables drivers to cut down their
travel costs and offers a financially-competitive alternative for riders, compared to traditional
means of transportations (e.g., train, plane). Also, ridesharing saves time as, in some coun-
tries, cars used for ridesharing can drive on so-called high occupancy vehicles lanes [128] which
are usually less crowded. Finally, ridesharing reduces CO2 emissions [27]. However, in their
current implementations, ridesharing service providers maintain highly sensitive data on their
users, such as personally identifiable information (PII), location data, and financial informa-
tion. The fine-grained nature of these data allows inference of sensitive information such as
points of interest or social ties [53], and raises privacy issues that may disrupt the adoption
of ridesharing services. For example, between 2014 and 2015, several privacy scandals have
involved the ridesharing company Uber, including monitoring of the location of riders in real-
time for entertainment [59], revenge attacks against journalists [123], and a security breach
which disclosed the names and drivers license numbers of nearly 50,000 drivers [33].

Ridesharing has received many attentions from the research community over the last few
years. In particular, Agatz et al. [2] formalize the ridesharing problem in a dynamic setting and
propose several optimization techniques to solve it. Bit-Monnot et al. [21] introduce 2SP-SP,
the two-synchronization points shortest path problem to determine the optimal meeting points
(pick-up and drop-off locations). Stiglic et al. [111, 110] demonstrate that a reasonable
increase in flexibility — regarding the desired departure, transit times and locations — results
in a significant improvement of the overall performance of ridesharing services (e.g., matching
rate). Unfortunately, most works focus on the optimization problem underlying the matching
of drivers and riders, and very few works focus on the privacy aspects of ridesharing.

This thesis analyzes the research question “Can ridesharing services be implemented in
a privacy-preserving fashion?”. To answer this question, we consider two essential problems
in ridesharing, namely the computation of meeting points and the matching of drivers and
riders. We formalize these two problems and design privacy-preserving protocols to solve
them.

This thesis has been elaborated in the groups Operations Research, Combinatorial

1



Optimization and Constraints (ROC) and Dependable Computing and Fault Tolerance
(TSF) of the Laboratory for Analysis and Architecture of Systems (LAAS-CNRS).
It has been funded by the grant program called Axes Thématiques Prioritaires of the
University of Toulouse III Paul Sabatier.

This thesis is divided into three parts, each of which is composed of two chapters:

Part I introduces preliminary concepts. Chapter 1 gives general definitions of privacy,
its threats, properties as well as existing legal and technical protection provisions. Chapter
2 introduces graphs and multimodal routing notions that are employed in this dissertation.
It also introduces ridesharing and analyzes its routing and matching aspects.

Part II presents our privacy-preserving protocols for ridesharing. In Chapter 3 , we for-
malize the Secure Meeting Points for Ridesharing (SMP4R) problem, and provide two privacy-
preserving protocols to solve it. The results of our experiments show that one can design
privacy-preserving meeting points determination protocols with similar quality as existing
(non-privacy-preserving) ridesharing protocols without introducing important computational
and communication overheads. The findings of this work, done in collaboration with Sébastien
Gambs (Université du Québec à Montréal), have been published in [7, 5, 6]. In Chapter 4
we consider a generalized version of the SMP4R problem, in which we consider several drivers
and riders and want to securely assign drivers to riders according to the ridesharing cost.
We propose SRide, a privacy-preserving ride matching system which operates in three steps.
First, it uses a secure filtering protocol to build the bipartite graph of feasible matches. Then,
it relies on privacy-preserving meeting points determination protocols proposed inChapter 3
to obtain the cost of each feasible pair. Finally, it determines optimal assignments of drivers
and riders. We evaluate our protocol and demonstrate its computational and communication
efficiency. The results of this work, done in collaboration with Kévin Huguenin (Université
de Lausanne), are submitted to [8].

Part III presents our empirical analysis of a real-world ridesharing service, and PlayMob:
a platform that we develop during this thesis. Chapter 5 is dedicated to the analysis of data
collected from Covoiturage-libre.fr 1: a popular, openly available ridesharing web service in
France. This analysis allows us to get more insights about ridesharing in France and to use
this information while generating synthetic data for our experiments. In Chapter 6 , we
present the main features of PlayMob.

Finally, we conclude by giving future research directions.

1http://covoiturage-libre.fr
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Chapter 1

Privacy

1.1 Definition

The Oxford dictionary defines the word privacy as “the state of being free from public atten-
tion” [95]. Privacy can be seen as the ability of a subject or community to keep their personal
data away from the eyes of society. A widely used definition of privacy is by Alan Westin
[125] who defines privacy as “the claim of individuals, groups, or institutions to determine
for themselves when, how, and to what extent information about them is communicated to
others”.

In France, the Data Protection Act (Loi Informatique et Libertés) defines personal data
as any information relating to a natural person identified or that can be identified, directly
or indirectly, by reference to an identification number or several elements of its own [78].
The National Institute of Standards and Technology (NIST) defines Personally Identifiable
Information (PII) as «any information about an individual maintained by an agency, including
(1) any information that can be used to distinguish or trace an individual’s identity, such as
name, social security number, date and place of birth, mother’s maiden name, or biometric
records; and (2) any other information that is linked or linkable to an individual, such as
medical, educational, financial, and employment information.» [89]. In general, any data
relative to a subject can be classified as Explicit Identifier or Quasi Identifier (QID) or
Sensitive Attributes or Non-Sensitive Attributes [25]. Explicit identifiers are attributes like
name, social security number and biometric records that can directly identify a subject.
Quasi Identifiers are attributes that, combined (e.g., zip code, date of birth, sex), could
potentially identify a subject. Sensitive attributes are sensitive information such as disease,
salary, religion. Non-Sensitive Attributes are attributes that can not be classified in the three
previous categories.

1.2 Location-based services

Location-based services (LBS) are part of a larger family of services: context-aware services
[11], which, to provide services such as filtering or presenting information, will adapt to
the information context. The information context itself is organized into two hierarchical
levels: (1) a primary level containing raw data from the sensors (light sensor, microphone,
accelerometer, GPS, . . . ) and (2) a finer level obtained by combining, filtering, inferring
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information from the first level. In the case of location-based services, the primary context
of the information is a location that can be refined to obtain a spatial or spatiotemporal
secondary context. Location-based services include among other: Check-ins services which
are online social networks that allow users to report locations that they have visited and
share them with their friends, Navigation services which help in finding best itineraries and
Recommendation services which allows users to find friends or places (like restaurant, public
transport station, gas station . . . ) nearby.

1.3 Location data

Digital traces left by individuals using location-based services can be categorized into two
families, namely mobility traces and contact traces [90]. A mobility trace is characterized
by an identifier which allows to uniquely recognize the individual who interacts with the
location based service (username, phone identifier, connected object identifier, . . . ), a spatial
component, which can be a GPS position (latitude, longitude, altitude), a spatial zone (name
of a street) or a semantic label (school, home), a temporal component which can be a
precise time (9:30 am) or a time interval (morning) or frequency (every Monday morning) and
additional and optional information such as speed and direction of movement, presence
of other devices or individuals in the vicinity, accuracy of the measured position . . . . A
contact trace is a set 2 identifiers, and a timestamp.

1.4 Location privacy

In location context, Beresford and Stajano define location privacy as «the ability to prevent
other parties from learning one’s current or past location» [19]. Shokri et al. [109] formally
define location privacy as the estimation error of a malicious entity, hereafter referred to as
the adversary, when trying to achieve his objective (e.g., obtain the probability distribution
of a user’s locations at a specific time, obtain the number of users at a particular location at
a specific time, . . . ) based on his prior knowledge.

1.5 Threats and Attacks against privacy

1.5.1 Adversary model and privacy properties

Generally speaking, any entity that seeks to recover personal data of somebody, without his
explicit consent, to establish a profile or to infer his private data is referred to as an adversary.
Deng et al. [39] notice eight main privacy properties classified in two categories: hard privacy
properties and soft privacy properties, which we present in Tables 1.1 and 1.2.

Hard privacy properties are properties required at users’ level to ensure that personal data

8



are not revealed. They are more expected in untrusted environments in which data subjects
do not trust the data company in collecting and processing their personal information. On
the contrary, soft privacy properties are properties required at service providers’ level as
users already lost control on their personal data and rely on service providers to ensure data
privacy by the mean of policies explicitly mentioned and accepted. Therefore, depending on
the setting (user-centric or centralized architecture), the adversarial environment varies. In
hard privacy setting, adversaries include service providers, other users or external entities
while in soft privacy, adversaries are essentially external entities or other users.

Property Definition

Pseudonymity Possibility to use pseudonyms as identifiers instead of real name.

Anonymity Impossibility for the adversary to identify a subject
within a group of subjects.

Unlinkability
Impossibility for the adversary to sufficiently distinguish at least
two items of interest (subjects, actions, messages, . . . ) that are
related.

Plausible deniability
Ability to deny having performed an action that other parties can
neither confirm nor contradict. That is, the adversary should be
unable to confirm that a subject knows, has said or has done something.

Unobservability
Impossibility to detect the absence or the presence of a particular subject and
impossibility to discern a subject (if present) from
the other subjects.

Confidentiality Impossibility for non authorized persons to have access to an item.

Table 1.1: Hard privacy properties. Adapted from Deng et al. [39].

Property Definition

Content awareness
Users are fully aware of the personal data they generate
and are informed that they provide only the just necessary
with regard to the service they expect

Policy and consent compliance

Service provider should implement the collection and
processing of personal data in accordance with the
legislation in force. Ability to the users to explicitly
express their agreement to the collection and use of
their personal data
(e.g., "I understand and accept the conditions")

Table 1.2: Soft privacy properties. Adapted from Deng et al. [39].
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1.5.2 Privacy threats

In the light of privacy properties mentioned above, Deng et al. [39] propose seven potential
threats to privacy, namely Identification, Linkability, Non-repudiation, Detectability, Infor-
mation disclosure, Content unawareness, Policy and consent noncompliance.

Linkability indicates the possibility for an adversary to link two or more actions, messages
to the same subject (for example, Alice took the bus 78 at 5:30 pm and Alice went to cinema
in the downtown at 7:00 pm).

Identification indicates the possibility for an adversary to find a subject in a group of
subjects (for example, Alice, who lives in Toulouse, is a member of the ecologist group France
Verte. In the anonymized list of actions carried out by members of France Verte, there is a
single action carried out by a person living in the city of Toulouse).

Non-repudiation means that an adversary can prove that a subject knows, has said or
has done something.

Detectability indicates the fact that an adversary can conclude about the presence or
the absence of a subject in a data set.

Information disclosure indicates the fact that unauthorized users have access to infor-
mation.

Content unawareness indicates that users are not aware of the data they provide or
produce more data than necessary regarding the expected service.

Policy and consent noncompliance indicates that the service provider does not respect
the conditions for data collection and processing as read and explicitly accepted by users.

1.5.3 Privacy attacks

Inference Attacks. Most attacks against privacy are inference attacks, in which the ad-
versary will extract personal data relating to a subject (hereafter referred to as the target) or
will acquire new knowledge about the target.

Generally speaking, they are four types of attacks: the record linkage, the attribute linkage,
the table linkage and the probabilistic attack [51]. Record linkage, attribute linkage and table
linkage respectively happen when the adversary, based on the knowledge of the QID of his
target, is able to link him respectively to a record in a published dataset, to a sensitive
attribute in a published dataset, to the published dataset itself while a probabilistic attack
happens when the adversary improves some beliefs on the target after obtaining the published
dataset.

More precisely, in linkage attack, the adversary matches his target’s QID to a small group
of individuals and uses additional knowledge to uniquely identify the record of his target. In
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an attribute linkage, the adversary learns sensitive values from his target based on the set of
sensitive attributes values associated with the group the target belongs. For example, if the
target belongs to a group whose sensitive attributes values for a disease are Hepatitis and
HIV, then the attacker knows that his target has either Hepatitis or HIV, which, per se, is
already damaging. In table linkage, the adversary learns the presence or the absence of his
target in the published dataset. For example, if the adversary happens to detect that his
target is present in a dataset of subjects and type of cancer they have, the fact of knowing
his target has cancer (no matter what cancer) is already damaging. Finally, in a probabilistic
attack, the adversary increases the difference between his prior and posterior beliefs about
the target.

In databases, adversary will target anonymity and unlinkability properties, this is known
as de-anonymization attacks. For this end, the adversary uses either prior knowledge on
his target (e.g., some habits, QID) to uniquely identify him in a group or uses QID to find
him in another database. In 2000, Sweeney [116] demonstrated by crossing an electoral list
with a pseudonymized medical database and using the triplet (zip code, date of birth, sex),
which is known to be unique for 87% of the US population [117], that one could link medical
data to individuals. In particular, she successfully obtained medical data of the governor of
Massachusetts. In 2006, journalists of The New York Times successfully re-identify individuals
in a pseudonymized list of 20 million Web search logs released by AOL [14]. Narayanan et
al. demonstrate that by crossing the Netflix Prize dataset, a pseudonymized Netflix’s movie
rating list of 500, 000 subscribers, with the Internet Movie Database, they could identify
the Netflix records of known users and de facto uncovering potentially sensitive information
(opinions, sexual orientations, religion, . . . ) [86]. De Montjoye et al. show that the knowledge
of only four location data is sufficient to re-identify 95% of individuals [37] in a pseudonymized
mobile phone dataset that contains call information for nearly 1.5 millions users of a mobile
phone operator. De Montjoye et al. [36] do similar research using three months of credit
card records for 1.1 million people and show that four spatiotemporal points are enough to
uniquely re-identify 90% of individuals. Furthermore, they demonstrate that knowing the
price of a transaction increases the risk of re-identification by 22%.

In social networks, adversary will target users’ anonymity by exploiting relationship be-
tween them. In [12], authors show that an honest but curious adversary can exploit his/her
existing relationships with other users in a social network to de-anonymize them in the anony-
mous version of this social network in which a random ID replaces each node. Furthermore,
they theoretically prove that a malicious adversary, by strategically creating a small subgraph
(whose order is logarithmically proportional to the social network’s order) of new accounts,
and linking them the set of targeted users, will have high probability in de-anonymizing them
in the anonymous network.

Adversarial model Many adversarial behaviors have been considered in the literature to
analyze the security of the protocol (more details can be found in [68]). The two most common
models of adversaries are: the semi-honest (or honest but curious or passive) adversary and
the malicious (or the active) adversary. The former will follow the recipe of the established
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protocol while trying to infer additional information from the output of the computation,
its intermediary results and the ciphered inputs of other participants while the latter may
actively cheat during the execution of the protocol to either infer information on other users
or fail the protocol.

Attacks on Location privacy. Wernke et al. [124] distinguish four types of location
privacy attacks (c.f., Figure 1.1) according to the prior knowledge of the adversary. Namely,
attacks on location privacy include (1) single position attack, (2) context linking attack, (3)
multiple position attack and (4) multiple position and context linking attack. According to
the same authors, the goal of an attack against location privacy is twofold: (1) the adversary
learns the identity of the target and (2) the adversary learns the spatial or spatiotemporal
information of the target’s location. In single position attack, the adversary solely relies on a
single mobility trace to achieve his goal. In context linking attack, the adversary uses external
data sources in addition to the mobility trace. In multiple position attack, the adversary
tracks and correlates several position updates or location queries of the target. The last type
of attack combines multiple position attack with context linking attack to increase the success
rate.

Figure 1.1: Adversary knowledge in location privacy attacks [124]

Inference attacks can be achieved with simple heuristics or machine learning algorithms
such as clustering or classification.

Clustering. Clustering is a form of unsupervised machine learning algorithm that groups
unlabeled items in clusters such that items belonging to the same cluster resemble each other
more than items of different clusters. The measure of resemblance called similarity or distance
metric expresses how far/similar two items are relative to each other. In location context,
the Haversine distance or the shortest path length can be used to evaluate the similarity of
two locations. That is, the closer they are the more similar they are to each other. The
k-means algorithm is an iterative clustering algorithm that computes k clusters as well as
their respective centroids (mean of all items within each cluster). Clustering algorithms can
be used to discover points of interest of a target given the set of locations he has visited. For
example, Hoh et al. [73] use k-means algorithm and some heuristics to find some individuals’
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homes based on GPS traces of vehicles in Detroit region (Michigan, USA). First, they filter out
GPS samples recorded at speeds higher than 1m/s. Then, they apply a clustering until every
centroid is 100 meters apart in average from all its elements. Finally, they eliminate clusters
with no recorded points between 4p.m. and midnight as well as clusters whose centroids are
outside residential areas.

Classification. Classification is a form of supervised machine learning algorithm that pre-
dicts values (which take on a small number of discrete values referred to as classes) for an
unknown item based on a model it trains with a set of labeled items referred to as training
set. Classification can be used to learn the semantic attached to a point of interest. For
instance, Subramanya et al. [112] use a dynamic probabilistic model trained using inputs
from GPS and wearable sensors to classify a person’s motion type (e.g., walking, running,
going upstairs/downstairs, driving) or environment (e.g., outdoor, indoor, in vehicle).

1.6 Legal protection provisions

The Universal Declaration of Human Rights, through its 12th article “No one shall be sub-
jected to arbitrary interference with his privacy, family, home or correspondence, nor to
attacks upon his honor and reputation. Everyone has the right to the protection of the law
against such interference or attacks.” [120] highlights the universality of the right to privacy
and the fact that should be respected everywhere in the world.

At European level, the GDPR (General Data Protection Regulation), which replaces
the Directive 95/46/EC and will apply from 25 May 2018, is an initiative of the European
Parliament, the Council of the European Union and the European Commission to unify data
protection policies continent-wide. It will apply to data companies and data subjects based
in the EU as well as to data companies based outside the EU, but that collect and process EU
residents’ data. GDPR recommends data companies, through its 25th Article, to implement
the so-called privacy by design as well as privacy by default policies. The former, introduced
by Ann Cavoukian in the 90’s, has as objective to proactively embed privacy directly into the
design phase of information technologies, business practices, physical systems and networked
infrastructures [29, 28]. The latter requires IT systems to achieve privacy by default. That is,
a new user should have his/her privacy protected without having to make any configuration.

In France, the National Commission on Informatics and Liberty CNIL (Commission Na-
tionale de lInformatique et des Libertés) is an independent regulatory agency whose mission
is to ensure that all data subjects and data controllers are informed about their rights and
duties and that the processing of personal data is carried out in conformity with the provisions
of the Act 78-17 on information technology, data files, and civil liberty.
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Surname Age Zip Sex Disease

Yoshida 23 33077 M Asthma

Cohen 29 33300 F Hypertension

Achebe 25 33400 F Schizophrenia

Murphy 42 31200 M Cancer

Bouchard 45 31400 F Diabetes

Smith 55 31300 M Influenza

Surname Age Zip Sex Disease

1 23 33077 M Asthma

2 29 33300 F Hypertension

3 25 33400 F Schizophrenia

4 42 31200 M Cancer

5 45 31400 F Diabetes

6 55 31300 M Influenza

Table 1.3: Example of a medical dataset (up) and its pseudonymised version (down)

1.7 Technical protection provisions

Privacy Enhancing Technologies (PETs) are defined in [121] as a system of Information and
Communication Technologies (ICT) measures protecting informational privacy by eliminat-
ing or minimizing personal data thereby preventing unnecessary or unwanted processing of
personal data, without the loss of the functionality of the information system. In [32], privacy
methods are classified in two main categories: law-based and technique-based approaches. Al-
though law-based approaches can deter an adversary from committing a privacy breach due
to the threat of heavy penalties, their actions are perceptible a posteriori, when the offense
(i.e., privacy violation) is already committed. In the other hand, PETs approaches help in re-
ducing the success rate of the adversary’s attacks by the mean of several techniques. Possible
privacy-preserving techniques include:

Pseudonymization. It is about replacing the identifier by pseudonyms like random identi-
fiers. However, since the seminal attack in [116], pseudonymization, as such, is not considered
as a viable privacy protection technique. An example of pseudonymization is given in Ta-
ble 1.3.

Dummies generation. It is about hiding user data in a list of dummies while querying a
service provider. That is, a set of dummies is generated and send along the real query and,
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upon reception of the answers, the answer corresponding to the real query is filtered out.

In location context, the real query will contain user’s actual location while dummy queries
will contain random locations. However, it is important to generate realistic dummies so that
the service provider cannot distinguish the real query from the dummies. For instance, in
[75], Kido et al. propose a privacy-preserving and user-centric location query system that
enables users to hide their locations in a set of dummies. The dummies generation algorithm
is devised such that dummies behave like actual locations. In the first strategy proposed by
the authors, dummies are generated in the vicinity of the previously generated dummies. The
second strategy is a collaborative one, in which users generate dummies in regions containing
other users. The solution is evaluated with real-world data and assessed through the impact
of the number of dummies on the location anonymity which is defined as the maximum
uncertainty that the LBS has on the actual location.

generalizations and suppressions. Generalizations and suppressions are used to hide
details about a QID to prevent observation of uniqueness patterns. More precisely, a gen-
eralization replaces an attribute value by a more generalized parent value (e.g., a zip code
value 31400 will be replaced by 31 ∗ ∗∗ as both refer to places within the city of Toulouse).
Suppression replaces an attribute value by a special value (e.g., sex attributes Female and
Male will both be replaced by ∗). A classic generalization and suppression technique is
k-anonymization, which guarantees the k-anonymity property [115].

Definition 1.1. (k-anonymity) k-anonymity requires that each equivalence class (i.e., set of
items that are similar with respect to a QID) contains at least k records.

An example of a 3-anonymized dataset is given in Table 1.4. A dataset published using
k-anonymization is privacy-preserving w.r.t. record linkage as each record is indistinctly
matched to at least k record, however, it is not resistant to attribute linkage. To solve this
problem, anonymization methods with l-diversity [80] and t-closeness [77] properties have
been proposed.

Definition 1.2. (l-diversity) l-diversity requires that each equivalence class has at least l

well-represented values for each sensitive attribute.

Definition 1.3. (t-closeness) t-closeness requires that for each equivalence class, the distance
between the distribution of a sensitive attribute in this class and the distribution of the same
attribute over the whole dataset is at most a threshold t.

Anonymization technique with l-diversity and t-closeness properties ensure that the pub-
lished dataset is resistant to attribute attack. However they can not achieve privacy w.r.t.
table linkage and probabilistic attack. To thwart this issue, the notion of differential privacy
[44, 45] has been proposed.

Differential Privacy. Differential privacy aims at making the probability of any query
output insensitive to the presence or absence of any individual in the dataset regardless the
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Surname Age Zip Sex Disease

Yoshida 23 33077 M Asthma

Cohen 29 33300 F Hypertension

Achebe 25 33400 F Schizophrenia

Murphy 42 31200 M Cancer

Bouchard 45 31400 F Diabetes

Smith 55 31300 M Influenza

Surname Age Zip Sex Disease

* < 30 33*** * Asthma

* < 30 33*** * Hypertension

* < 30 33*** * Schizophrenia

* ≥ 40 31*** * Cancer

* ≥ 40 31*** * Diabetes

* ≥ 40 31*** * Influenza

Table 1.4: Example of a medical dataset (up) and its 3-anonymized version (down)

adversary’s background knowledge. That is, differential privacy achieves privacy against table
linkage and probabilistic attack.

Definition 1.4. (Differential Privacy) A randomized mechanism M : X n → Y is (ϵ, δ)-
differentially private if for every pair of adjacent databases (i.e., databases that differ only for
the addition of one record) D,D′ ∈ X n, and for every subset of output S ⊆ Y,

Pr[M(D) ∈ S] ≤ exp(ϵ)Pr[M(D′) ∈ S] + δ

Cloaking. Cloaking is a particular use of k-anonymity in the spatiotemporal context. It
ensures that at each period, each subject is located within a spatial area that is shared by
at least k − 1 other subjects. For example, in [64], authors propose an algorithm that can
be used by a centralized location-based service to enhance location privacy of its users. The
algorithm can adjust spatial resolution of a location data to satisfy an anonymity requirement.
More precisely, given a geographic area, a degree of anonymity k, the current position of the
requester and the current positions of all other users in the considered area, the algorithm
subdivides the area around the requester until the number of subjects it contains falls below
k. The previous grid which still matches the constraint is returned. The proposed approach
is evaluated with synthetic requests generated from transportation network information of
the city of Denver, Colorado and the spatial resolution of the solutions are compliant with
E-911 requirements.
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Mix zone. Mix zones mimic the functionality of mix-nodes in communication systems. In
fact, similarly to a mix node, which guarantees unlinkability between incoming and outgoing
messages, a mix zone is an area in which mobile users can change their pseudonyms so that the
mapping between their old pseudonyms and new pseudonyms are not revealed. Furthermore,
each outgoing user is required to be k-anonymous regarding the mix zone she is leaving.

Mix zones have been initially introduced in [18] and aim to increase the unlinkability of
the user. In this seminal work, authors first evaluate privacy as the size of the anonymity set
before defining a solid measurement metric which takes into account correlation between each
user’s ingress and egress positions. The latter definition enables to consider more powerful
adversaries that will exploit geographical context as well as movement characteristics.

Homomorphic Encryption. An encryption scheme allowing to perform operations (with-
out decryption) on ciphertexts as on plaintexts is called Homomorphic Encryption (HE).

Let us consider a cryptosystem Π with an encryption function ϵ and two messages m1 and
m2. Π is said to be an additive homomorphic encryption scheme iff : ∃ ∆ : ϵ(m1) ∆ ϵ(m2) =
ϵ(m1 + m2). Π is said to be an multiplicative homomorphic encryption scheme iff : ∃ ∆ :
ϵ(m1) ∆ ϵ(m2) = ϵ(m1 ∗ m2). For example the Paillier [91] cryptosystem is an additive
homomorphic cryptosystem while the RSA [100] and the ElGamal [46] cryptosystems are
multiplicative homomorphic encryption schemes.

An homomorphic encryption supporting an arbitrary number of operations (additions
and multiplications) is referred to as Fully Homomorphic Encryption (FHE) [57]. At a high
level, an FHE scheme relies on a Somewhat Homomorphic Encryption (SHE) [48] to perform
homomorphic operations and an additional building block –termed bootstrapping – which
guarantees the correctness of the decryption, by reducing the inherent noise introduced by the
homomorphic operations. SHE schemes allow an unlimited number of additions but a limited
multiplication depth. In practice, whenever the number of homomorphic multiplications is
small, SHE schemes provide better performances than FHE, with the same guarantee of
correctness.

Secret sharing. Introduced in the 70’s [22, 107], secret sharing protocols are cryptographic
protocols that allow a party to share a private input (called the secret) with other parties,
each of which receives a share of the secret. The secret can be reconstructed only when all (or
a subset of) the shares are combined. That is, individual shares are of no use on their own. In
the following, we discuss two commons secret sharing protocols in the two-party computation
setting, namely the arithmetic secret sharing and the boolean secret sharing.

Arithmetic secret sharing. In an arithmetic secret sharing protocol, the secret is an
integer s ∈ Zn. In this setting, the secret owner generates a random integer rA ∈ Zn. Then,
she computes rB ≡ s − rA mod n and sends it to the second party. For instance, in [60],
authors propose a protocol, based on an arithmetic secret sharing, which allows two parties
to compute the dot product of their private vectors obliviously. In the proposed protocol, the
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first party uses an homomorphic encryption scheme to encrypt elements of his vector x ∈ Zn

before sending both the public key and the encrypted vector to the second party. Then,
the second party computes the dot product with his private vector y ∈ Zn in the ciphertext
domain and adds a random number −rB. Finally, the first party receives rA ≡ x.y − rB

mod n. Since rA is computed in the ciphertext domain, only the first party knows its values.
Likewise, only the second party knows the values of rB. By putting their respective shares
(rA and rB) together, both parties will be able to obtain the result of the dot product; that
is, rA + rB ≡ x.y mod n.

Boolean secret sharing. In a boolean secret sharing scheme, the secret is assumed to a
binary number, and each bit of this binary number is shared in mod 2 between both parties.
Finally, by using the Goldreich-Micali-Widgerson (GMW ) protocol [62] or the Yao’s garbled
circuits protocol [129] both parties can evaluate any function (represented as a boolean circuit)
with their private boolean shares.

Secure Multiparty Computation. Introduced in the 80’s [129, 62], secure multiparty
computation (SMC) protocols aim at computing a function depending on the inputs of several
parties in a distributed manner so that only the result of the computation is revealed while
the inputs of each party remain secret. The gold standard would be the existence of a trusted
third party that would perform the entire computation and returns the output to all the
parties involved while erasing his memory afterward. The objective of SMC is to achieve
the same functionality, but without relying on a trusted third party. Yao first defines the
two-party comparison problem, now known as Yao’s Millionaires problem, and developed a
provably secure solution for this problem [129]. Since this seminal work, many works have
been done in the field of secure multiparty computation. Secure multiparty computations
are used for numerous tasks including coin-tossing, broadcasting, electronic voting, electronic
auctions, electronic cash, contract signing, anonymous transactions and private information
retrieval schemes.

An important building block for secure multiparty computation is the oblivious transfer
(OT) protocol [98], where the sender inputs two l-bit messages (m0, m1) and the receiver
inputs a selection bit s ∈ {0, 1} and obtains one message ms. The OT protocol guarantees
that the sender does not learn the choice s of the receiver, while the receiver only learns ms

and nothing about m1−s. This particular form of the OT protocol is referred to as the 1-out-
of-2 oblivious transfer protocol. A more generalized form of this protocol is known as the
1-out-of-n oblivious transfer protocol [85], where the sender has n messages (m0, . . . , mn−1),
and the receiver has an index i ∈ {0, . . . , n− 1}. In this version of the protocol, the receiver
wants to receive the ith message, without the sender learning i, while the sender wants to
ensure that the receiver receives only the message mi.

Private Set Intersection. In the field of SMC, series of work have been done [50, 76,
74, 67, 35, 42] on a cryptographic protocol referred to as Private Set Intersection (PSI) and
a variant known as Private Set Intersection Cardinality (PSI-CA). In these tasks, several
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(mutually-distrusting) parties jointly compute respectively the intersection or the cardinality
of the intersection of their private inputs without leaking any additional information.

Authors in [50] propose PSI protocols based on Oblivious Polynomial Evaluations (OPE)
in which additive homomorphic encryption is used to evaluate a polynomial encoded with
private inputs obliviously. Figure 1.2 summarizes the main interactions of and OPE-based
PSI which engages two parties Alice and Bob. First, Alice represents elements of her private
set X = (x1, ..., xn) as the roots of a nth degree polynomial P (x) =

∏(
i=1 x−xi) =

∑v
i=0 αix

i.
Assuming pk to be Alice’s public key of any additive homomorphic cryptosystem, Alice en-
crypts the coefficients of P with pk and sends both the encrypted coefficients and her public
key to Bob. Then, Bob homomorphic-ally evaluates P with each of his private inputs yi ∈ Y .
Note that P (yi) = 0 if and only if yi ∈ X ∩ Y . More precisely, for each yi ∈ (y1, ..., yn), Bob
computes zi = E(riP (yi)+yi) (where ri is random number) and sens it to Alice. If yi ∈ C∩S

then Alice learns yi upon decryption. If yi /∈ C ∩ S then Alice decrypts a random value. For
performance reasons, author apply the Horner’s rule to evaluate the polynomial.

Inspired by the works presented in [50], authors in [76] explore the power of polynomial
representation of multisets, using operations on polynomials to obtain composable privacy-
preserving multisets operations such as set intersection, union, cardinality and over-threshold
operations.

Committed Oblivious Pseudorandom Function Evaluation, another approach to implement
PSI using secure pseudorandom function evaluations, has been introduced by [67] and lately
improved by [74] and [35].

Finally, another line of work [42] proposed Oblivious Bloom Intersection in which private
input sets are inserted in Bloom filters followed by the intersection of the Bloom filters. The
proposed approach has a linear computational overhead. However, the use of hash functions
with low and parameterizable probability in Bloom filters leads to the existence of false
positives which impacts the accuracy of Bloom filter-based PSI.
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Figure 1.2: Private set intersection protocol as presented in [50]
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Chapter 2

Multimodal routing and
Ridesharing

2.1 Graphs

2.1.1 Basic definitions

Graphs are discrete mathematical structures used to represent relations between objects. In
graph theory, these objects are referred to as vertices (or points or nodes), while relations
between them are called edges (or arcs or lines). Graphs have numerous applications in
Computer Sciences, Social Sciences, Engineering, Mathematics, Natural Sciences to name a
few. For instance, graphs are used to model network communications, to detect communities
in social networks or to find the shortest path to our favorite restaurant.

Definition 2.1. (Graph) A graph is represented as a tuple G = (V, E) of a nonempty set of
vertices V , a set E of edges that are one- or two-element subset of V .

A graph G = (V, E) is said to be finite if its vertex set V is finite. A graph with an infinite
set of vertices is an infinite graph. The number of vertices |V | = n of a graph is referred to
as its order, and the number of its edges |E| = m is its size. In this thesis, we solely rely on
finite graphs.

A graph G = (V, E) is said to be directed if each edge (u, v) ∈ E has a direction that
indicates how it can be traversed. By contrast, in an undirected graph, edges can be traversed
both ways.

A weighted graph is a graph with a function w : E → R which associates to each edge
(u, v) ∈ E a cost w(u, v). Weighted graphs are frequently used to model transportation
networks in which edges’ weights may represent time to reach a certain location via road
segments represented by the edges.

A graph that has multiple edges connecting a pair of vertices is called multigraph while
a graph without self-loop edges (i.e., (u, u)) and that is not multigraph is referred to as a
simple graph.

Definition 2.2. (Predecessors and successors) Given a directed graph G = (V, E), for each

21



vertex u ∈ V , the set of predecessors of u is defined as P(u) = {v | (v, u) ∈ E}. The set of
successors of u is defined as S(u) = {v | (u, v) ∈ E}.

Definition 2.3. (In-Degree, Out-Degree) Given a directed graph G = (V, E), the in-degree
and out-degree of a vertex u ∈ V are respectively the cardinality of P(u) and S(u).

Definition 2.4. (Walk, Trail, Path, Circuit) Given a directed graph G = (V, E), a walk is
an alternating sequence of vertices and edges (v1, e1, v2, e2, . . . , vn, en, vn+1), which starts and
ends with a vertex and has the following condition hold: ∀i = 1, . . . , n, (vi, vi+1) = ei. A
closed walk is a walk such that v1 = vn+1. A trail is a walk without repeated edges. A path
is a trail without repeated vertices. A circuit is a closed path.

2.1.2 Special graphs

Definition 2.5. (Vertex-labeled Graph) A vertex-labeled graph G = (V, E) is a graph such
that each vertex v ∈ V has a label.

In vertex-labeled graphs, labels are used to describe additional properties related to ver-
tices. For instance, a vertex in a transportation network can be labeled as potential meeting
station, parking station, bus stop, point of interest . . .

Definition 2.6. (Edge-labeled Graph) An edge-labeled graph G = (V, E, Σ) is a graph with
a set of labels Σ associated to its edges.

In edge-labeled graphs, labels are used to describe the nature of relation between vertices.
Edges are represented with the tuple (u, v, l) where u and v denote vertices and l the label
assigned to (u, v). For instance, transportation networks can be modeled as edge-labeled
graphs in which label are transportation modes; in this case, the edge (u, v, l) expresses the
fact that one can move from location u to location v by using transportation mode l.

2.2 Shortest path algorithms

Shortest path problems (SPP) usually concern weighted graphs. Let us assume G = (V, E) is
a directed weighted graph in which each edge (u, v) is associated with a nonnegative weight
w(u, v). The length of a path P is the sum w(P ) of its edges’ weights.

Generally speaking, there are two major types of shortest path problems: One-To-One
and Many-To-Many shortest path problems.

Definition 2.7. (One-To-One shortest path problem) Given a directed and weighted graph
G = (V, E), a source vertex s and a target vertex t, find the path P from s to t such that for
any path P ′ from s to t, w(P ) ≤ w(P ′). A shortest path algorithm returns the shortest path
P between s and t as well as its distance dist(s, t) = w(P ).
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Definition 2.8. (Many-To-Many shortest path problem) Given a directed and weighted
graph G = (V, E), a set S ⊆ V of source vertices and a set T ⊆ V of target vertices, find for
every pair (s, t) ∈ S × T , the shortest path from s to t.

The One-To-All shortest path problem is a particular case of Many-To-Many shortest path
problem where S = {s} and T = V . In this case, the output is also known as out-shortest
path tree, as for each vertex u ∈ V the path from s to u in the tree is the shortest path from
s to u.

The All-To-One shortest path problem is also a particular case of Many-To-Many shortest
problem where S = V and T = {t}, its output is also known as in-shortest path tree. Finally,
all pairwise shortest path problem corresponds to the case S = T = V .

2.2.1 Standard techniques

The Dijkstra’s algorithm [40] is widely used to solve One-To-All shortest path problems. The
main idea of this algorithm is in updating a distance table dist(s, v) from s to all the vertices
v ∈ V . More specifically, it initializes by setting dist(s, s) = 0 and dist(s, u) = ∞ ∀u ̸= s

and by inserting s into a priority queue Q ordered by distance. When a vertex is extracted
from Q it will be referred to as scanned vertex. At every iteration, the vertex u with the
lowest distance dist(s, u) is extracted from Q and for each outgoing edges (u, v) the following
operation (also known as relaxation) is conducted:

• if v /∈ Q

– dist(s, v) = dist(s, u) + w(u, v)

– Q = Q ∪ {v}

• if v ∈ Q and dist(s, u) + w(u, v) < dist(s, v)

– dist(s, v) = dist(s, u) + w(u, v)

– Update Q

In the case of One-To-One shortest path problem, thanks to the label-setting property (once
a vertex u is scanned, its distance dist(s, u) is correct), one can stop the algorithm as soon as
the target vertex t is scanned. Dijkstra’s algorithm runs in O((|V |+ |E|)log|V |) with binary
heaps. This complexity can be reduced to O(|E|+ |V |log|V |) by using Fibonacci heaps.

The Bellman-Ford algorithm [17], even if it runs inO(|V ||E|), can be used as an alternative
to Dijkstra’s algorithm when the considered graph has negative edge weights. Similarly to
the Dijkstra’s algorithm, it initializes the distance to every to ∞ except the source node s

initialized to 0. Then, at each iteration, it relaxes all the edges in the graph. As the path
from the source vertex to any other vertex in the graph can be at maximum |V | − 1 edges
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long, the algorithm constructs the shortest path tree after |V | − 1 iterations provided there
is no circuit of negative length.

The Floyd-Warshall algorithm [49] solves the all pairwise shortest path problem inO(|V |3).
It can outperform |V | calls to Dijkstra’s algorithm on very dense graphs (|E| ≫ |V |) with
nonnegative edge weights.

2.2.2 Advanced techniques

To speed-up shortest paths algorithms and reduce the search space (i.e., number of scanned
vertices), several techniques have been proposed including bidirectional searches, goal-directed
searches, hierarchical techniques and table-based techniques.

Bidirectional search [94] simultaneously launches a forward and a backward search respec-
tively from the source vertex s and the target vertex t. The search terminates when the two
search spaces intersect (i.e., a vertex has been scanned by both search algorithms).

A∗ [66] is a well known goal-directed search algorithm. It uses a modified version of
Dijkstra’s algorithm which replaces the priority distance of a vertex u by dist(s, u) + h(u)
where h : V → R returns the estimation of the shortest path from u to the target vertex t.
This new priority distance forces the search algorithm to explore vertices that are near the
target first. A∗ is guaranteed to output the shortest path provided the heuristic h is feasible
(i.e., w(u, v) + h(v) − h(u) ≥ 0 ∀(u, v) ∈ E). Another goal-directed search algorithm: ALT
[61] combines A∗, the use of landmarks and triangle inequality to obtain better performances.
First, it selects a subset of vertices called landmarks and pre-computes the distances dist(l, u)
between each landmark l and every vertex u of the graph. Then, during the online phase, the
algorithm relies on triangle inequalities that hold between any vertex u, the target vertex t

and a landmark l to compute lower bound of the the distance dist(u, t) which in turn will be
used by the A∗ search.

Hierarchical techniques rely on road networks structure to identify parts of the networks
that are more likely to contribute to the shortest path (e.g., high-speed ways). For instance
highway hierarchy [103] exploits the natural hierarchy of roads (i.e., primary, secondary,
tertiary, residential, . . . ) and considers only roads with higher hierarchy along with roads
in the immediate neighborhood of the source and target vertices. Contraction hierarchy [55]
relies on the so-called shortcuts (edge representing the shortest path between two vertices)
computed in a pre-computing phase to avoid non-important vertices during the online phase
of long-distance queries. First, it orders vertices according to their importance (e.g., vertices
on primary roads are more important than those on secondary roads). Then, for each vertex
v (from the less important to the most important), adjacent vertices whose priorities are
higher are selected. For each pair (u, w) of such vertices, if the shortest path from u to w

goes through v, v is removed and a shortcut (u, w) is added to the graph. Finally, in the
online phase, a modified bidirectional Dijkstra’s algorithm, which prioritizes edges incident
to important vertices, is run.
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Table-based techniques pre-compute all pairwise distances between a subset of important
vertices and store distances in a table. During the online phase, they query the table to
retrieve distances. For instance Transit Node Routing [104] considers a subset T ⊆ V of
transit nodes. Transit nodes could be nodes that are more likely to have higher centrality
(e.g., access point to high-speed roads or roads exits). Next, it computes all pairwise shortest
paths within T . Then, for each vertex u ∈ V \ T , it computes its set of the so-called access
nodes A(u) ⊆ T . More precisely, a transit node v ∈ T is an access node for a vertex u if,
given the out-shortest path tree T (u) rooted at u, v is the first visited transit node in a path
included in T (u). Finally, during the online phase, the shortest path from s to t is obtained
by selecting the path a(s) − a(t) in T such that the length of the path s − a(s) − a(t) − t is
minimized.

2.2.3 Public transportation networks

Mobility constraints. In transportation networks, a highly desirable feature is the ability
of users to take advantage of the wide spectrum of transportation modes (e.g., car, walk,
bicycle, bus, subway, tramway, ferry, rental bike, . . . ) while scheduling their journeys. In this
case, in addition to minimizing traveling time, other mobility constraints can be expressed like
avoiding car when the traffic is heavy, avoiding bike on rainy days, accepting only a limited
number of transfers. To capture these constraints, the Regular Language Constrained Shortest
Path Problem (RegLCSPP) has been formulated in [15]. It allows to express constraints as
word of a regular language L. That is, a path P is valid if the sequence Word(P ) of edges’
labels along P belongs to L.

Definition 2.9. (Regular Language Constrained Shortest Path Problem (RegLCSPP)) Given
an alphabet Σ of transportation mode, a directed edge-labeled graph G = (V, E, Σ), a regular
language L ∈ Σ∗, a source vertex s ∈ V and a target vertex t ∈ V , find a shortest path P

from s to t in G such that Word(P ) ∈ L.

A modified version of Dijkstra’s algorithm, hereafter referred to as DRegLC, has been
proposed in [15] to solve RegLCSPP. DRegLC first uses L and the user specified constraints
to create a Non-deterministic Finite Automaton A = (Q, Σ, δ, q0, F ) where Q denotes a finite
set of states, Σ a finite set of inputs symbols corresponding to the available transportation
modes, δ : Q × Σ → Q the transition relation, q0 the initial state and F ⊆ Q the set
of accepting states. Then, the algorithm uses both G and A to compute a product graph
G× = (V ×, E×) = G × A that will allow to navigate in the multimodal graph and the
automaton at the same time. More precisely, a product vertex v× = (u, q) ∈ V × ⇔ v ∈ V

and q ∈ Q and a product edge e× = ((u, qu), (v, qv), l) ∈ E× ⇔ (u, v, l) ∈ E and (qu, qv, l) ∈ A.
Finally, the algorithm initialize at the product node (s, q0) and select the path with minimum
cost among the shortest paths from (s, q0) to (t, qf ) for qf ∈ F .

Time considerations. In transportation networks, the duration of a trip depends on its
birth date. Thus, to obtain realistic trip scheduling, one need to consider timetable in-
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formation while modeling public transportation networks. Generally speaking, there are
two major approaches to model public transportation networks: the time-expanded and
the time-dependent approaches. In the time-expanded model, vertices correspond to de-
parture or arrival events at a station and edge costs are effective travel times. In the time-
dependent model, vertices represent stations and edge costs are piecewise linear functions of
time. In addition, time-dependent networks must have the FIFO property; that is, given
a time-dependent cost function w, for any edge e = (u, v) ∈ E, for any time τ1, τ2 ∈ R+
τ1 ≤ τ2 ⇒ τ1 + w(e, τ1) ≤ τ2 + w(e, τ2). Authors in [96] compare both approaches and con-
clude that the time-dependent model leads to better performance while the time-expanded
can easily model, by nature, complex transfer scenarios (like train transfers). To make the
time-dependent models more realistic, one can integrate a minimum transfer time at each
station. In this thesis, we consider the time-dependent model.

Definition 2.10. (Time-dependent shortest path problem (TDSPP)) Given a directed graph
G = (V, E), its time-dependent cost function w, a source vertex s ∈ V , a target vertex t ∈ V

and a departure time τs, find a path P from s to t in G such that its cost w(P, τs) is minimum.

TDSPP can be solved with any forward relaxation-based approach (like Dijkstra or A∗)
provided the FIFO property hold for the graph. However, one needs to add an extra label to
store the arrival time of each vertex and use it as input for the time-dependent cost function.
On the other hand, using bidirectional is not straightforward since the exact arrival time at
the target is unknown. To solve this issue, authors in [83] use a backward search from the
target vertex using lower bounds on edges’ costs to restrict the set of vertices that have to be
explored by the forward search.

2.3 Dynamic Ridesharing

Ridesharing has widely benefited from academic results in operation research and progress
in communication technologies. Dynamic ridesharing has been introduced in [2] and refers
to an automated system that arranges one-time trips between riders and drivers in real-time.
According to authors in [2], dynamic ridesharing has six main features:

• Dynamic. Trips are arranged in real-time, from a few minutes to a few hours before
the departure time.

• Independent. Drivers are independent and do not work for a central entity that
employs them or owns the cars.

• Cost sharing. Trip-related costs (e.g., fuel expenses, parking costs, tolls, . . . ) are split
between participants in order save money. For riders, it is competitive to traditional
traveling mode (e.g., airplane, train, . . . ), and drivers save money by sharing empty
seat of their cars and splitting the cost with riders.

• Non-recurring. It focuses on single, non-recurring trips.
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• Prearranged. Participants agree to share a ride in advance (i.e., while they are not
yet at the pickup location).

• Automated matching. It helps drivers and riders to find suitable matches with
minimal effort. It also facilitates the communication between them (e.g., a dedicated
mobile app with in-box messaging feature).

2.3.1 Routing aspects

In [52], authors propose four patterns to characterize ridesharing w.r.t. the routing aspect:

• Identical ridesharing. Both rider and driver have the same origin and destination
locations.

• Inclusive ridesharing. Both rider’s origin and destination location are on the driver
original route.

• Partial ridesharing. Pick-up and drop-off locations of the rider are on the driver
original route. That is, ridesharing is only part of the rider’s trip, who is willing to use
other transportation modes to reach the pick-up and to get to his destination after the
drop-off.

• Detour ridesharing. Similarly to partial ridesharing, it supposes that ridesharing is
only part of the rider’s trip. Additionally, pick-up and drop-off are authorized to not
be on the driver’s original route. Thus, the driver will make a detour to pick up and
deliver the rider.

Detour ridesharing can be viewed as a generalization of identical, inclusive and partial
ridesharing. In [21], authors solve the dynamic ridesharing problem in the detour ridesharing
setting by introducing the 2 Synchronization Points Shortest Path problem (2SP-SP). In the
2SP-SP, given a directed edge-labeled graph G = (V, E, Σ), a driver d and a rider r, each
having their respective origin and destination locations and departure times, the objective is
to find the optimal pick-up point i∗ and drop-off point j∗, such that the sum of arrival times
for both users is minimized. Several variants were studied, such as the situation in which
there is no limitation on the detour for both users and all points in the network may be a
meeting point. In a second variant, the authors introduce detour limitations for the rider.
The proposed method has a polynomial complexity and makes five calls to a time-dependent
DRegLC algorithm (in forward and in backward search) and also solves a sub-problem: the
so-called Best Origin Problem, which, given a set of vertices, selects the best origin vertex to
be used in order to reach a target vertex. In [4], authors also consider the 2SP-SP problem
on road networks in the detour ridesharing setting. They propose heuristic methods based
on several shortest path algorithms and a subgraph of potential pick-up and drop-off points.
In another paper [122], public transport is taken into account for the rider, and the authors
propose to limit the meeting points on the rider path from his origin to his destination and
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still consider the detour constraint for the driver. In [111], authors show that considering
meeting points other than origin and destination locations improve the number of matching
and thus the overall functionality of the ridesharing system.

2.3.2 Matching aspects

Authors in [2] distinguish four types of matching scenarios namely: single rider - single driver,
single rider - multiple drivers, multiple riders - single driver and multiple riders - multiple
drivers scenarios.

Single rider - single driver. In this scenario, each driver will have at most one pickup and
delivery during his/her trip. A classical solution used in this setting is a modeling of the system
as a weighted bipartite graph of drivers and riders, in which weights of feasible edge correspond
to either vehicle miles or traveling time. The underlining maximum-weight bipartite matching
problem is solved to find optimal assignments for drivers and riders. Such approach has been
used in [1] and assessed in a simulation environment, in term of matching success rate. In
[56], authors consider the problem from rider’s perspective and provide a method to find for a
rider’s request (s, t), the driver’s offer with the smallest detour among a list of k offers (si, ti).
That is, the proposed solution outputs the offer such that dist(si, s) + dist(s, t) + dist(t, ti) is
minimum. To do so, instead of running 2k + 1 shortest path queries for each incoming rider’s
offer, the proposed method pre-computes for each si a forward search from si and stores
the forward search space in a so-called forward bucket B↑; likewise, a backward bucket B↓ is
computed by running a backward search from each ti. Then, for each incoming rider’s offer
(s, t), all the distances dist(si, s) + dist(s, t) + dist(t, ti) are computed with a single backward
(forward) search from s (t) that scans the forward (backward) bucket.

Single rider - multiple drivers. In this scenario, also known as multi-hop ridesharing
[63], a rider is transferred from one driver’s car to another driver’s car at transfer points (like
public transport stops, shopping malls, . . . ) until he/she reaches his/her final destination.
Authors in [69] consider this problem in the partial ridesharing setting (i.e., drivers do not
deviate from their original routes) and model drivers’ offers as a time-expanded graph and
solve for each rider’s origin-destination query, a multi-objective shortest path algorithm is
run to find a route that minimizes costs, time and number of transfers. Authors in [43],
consider the problem in the detour ridesharing setting and solve it while supposing a fixed
set of potential transfer points. The proposed approach takes into account detour constraints
as well as waiting time constraints, and similarly to the approach proposed in [69], it models
the problem as a time-expanded graph on which a multi-objective shortest path algorithm is
run.

Multiple riders - single driver. In this scenario, the expected solution is a planning of
the pick-up and drop-off of each rider. Baldacci et al. [13] formulate the problem as an integer
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programming problem and propose both an exact and a heuristic method to solve it. Calvo
et al. [26] also consider the problem and solve it with a heuristic based on local search.

Multiple riders - multiple drivers. In this scenario, the solution consists in finding
routing for both drivers and riders. Drivers are allowed to take several riders. Furthermore,
riders can be transferred from one car to another. Herbawi et al. [70] consider this problem
as an optimization problem with a mono-objective function which is a weighted sum of the
drivers’ total traveling times and distances, the riders’ total traveling time and the number
of matches. They propose a genetic algorithm to solve it.
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Part II

Privacy-preserving ridesharing
systems
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Chapter 3

Meeting Points in Ridesharing: a
Privacy-Preserving Approach

The ubiquitous world in which we live has fostered the development of technologies that
take into account the context in which users are using them to deliver high-quality services.
For example, by providing personalized services based on the positions of users Location-
based services (LBS) [9, 97] encourage the emergence ridesharing services.

In traditional ridesharing services, the main studied problem is to assign riders to drivers
given various constraints or objectives [52, 2]. However, as stated in [2, 111], another issue
arises when considering meeting points between riders and drivers to satisfy more assignments
or to produce better solutions provided some objectives including reducing the travel time
spent by the rider, partially using the public transportation system or merely walking before
reaching the pick-up location. Instead of putting the burden of finding the meeting points on
the users, the system itself should be able to identify the optimal meeting points to make the
trip as short as possible for both participants.

The problem of meeting points for ridesharing is illustrated in Figure 3.1. We consider a
driver and a rider, each having their origin and destination locations. Both users are looking
for a pick-up and drop-off locations that will induce a small detour for the driver and that
the rider can use to share a trip with the driver. The objective of the routing component of
a ridesharing platform is to find for both users a pick-up and drop-off locations and optimal
itineraries for their journeys. The optimization function considered is the arrival times of
both users (i.e., the sum of their arrival times).

Recent academic works [21] have considered this issue for multimodal transportation net-
works and proposed an exact method to automatically solve it with a centralized system in a
polynomial time. In [122], some heuristic approaches are also proposed, that aim to reduce
the computation time, by limiting the set of meeting points on the rider itinerary. However,
these works do not consider privacy issues related to the sharing of location data.

In this chapter, we design a privacy-preserving protocol that a driver and a rider can use
to compute their pick-up and drop-off locations, without revealing their origin and destination
locations. More precisely, we focus on casual, one-time and irregular ridesharing scenarios.
In regular ridesharing, a trust is supposed already established between riders and drivers. We
also expect an almost real-time response for a better user experience.
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Figure 3.1: Ridesharing meeting point problem.

We formalize the secure meeting points for ridesharing problem and design two privacy-
preserving protocols Priv-2SP-SP and PPLD4R to solve it. Both Priv-2SP-SP and PPLD4R
are P2P protocols in which users make computations on their sensitive data in local and use
secure two-party computations to determine the meeting points.

The remainder of this chapter is organized as follows:

In Section 3.1, we discuss recent related work on meeting points for dynamic ridesharing
and location privacy-preserving mechanisms. In Section 3.2, we propose a model and a
formulation of the secure meeting points for ridesharing (SMP4R) problem. In Section 3.3,
we present Priv-2SP-SP a solution to compute meeting points for ridesharing in a privacy-
preserving way. In Sections 3.4 and 3.5, we motivate and discuss security and privacy of the
proposed solution as well as its performances from both analytic and experimental points
of view. In Section 3.6, we highlight limitations of Priv-2SP-SP and provide an advanced
protocol PPLD4R to get rid of these flaws. In Section 3.8, we provide in-depth evaluation of
PPLD4R. In particular, we analyze both computation and communication overheads as well
as the quality of the solutions. We compare it to a centralized and non-secure approach and
show that introducing privacy constraints does not degrade the performance of a ridesharing
system. In Section 3.9, we discuss some practical aspects of our solution, namely the monthly
data plan, the consideration of malicious users, and the real world implementation of our
solution. We conclude with a recapitulation of findings and future works in Section 3.10.

3.1 Related works

Related works to this chapter fall into two categories, namely meeting points in dynamic
ridesharing and location privacy-preserving mechanisms.
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3.1.1 Meeting points for dynamic ridesharing

The most relevant work, on dynamic ridesharing, to the present contribution is by Bit-Monnot
et al. [21] who propose the so-called 2SP-SP (2 Synchronization Points Shortest Path Problem)
to compute optimal meeting points (pick-up and drop-off) for dynamic ridesharing. The
proposed solution, as mentioned in Section 2.3.1, has a polynomial complexity and outputs
the optimal pick-up and drop-off locations, as well as the itineraries that both rider and
driver will use to complete their journey. The proposed approach takes into account the
multimodal aspect of transportation network while computing travel time of the rider. The
main limitation of this method is that it does not consider protecting location privacy of
both the driver and the rider. We overpass this limitation by proposing a privacy-preserving
protocol to compute meeting points for dynamic ridesharing.

3.1.2 Location privacy-preserving mechanisms

When users interact with location-based services, they need to share location information with
service providers. However, the fine-grained nature of location data raises obvious privacy
risks. To tackle this issue, location privacy-preserving mechanisms (LPPMs) aim at protecting
users’ location privacy during their interactions with location-based services [108].

LLPMs can be implemented with either a centralized or a distributed architecture. In
a centralized setting, a trusted third party collects users’ private inputs and applies data
protection routines (e.g., anonymization, dummy generation, encryption, . . . ) before sending
obfuscated to service providers. In contrary, in distributed architectures, data protection
techniques are applied directly at users’ levels. Our secure protocol relies on the later to
achieve location privacy for both driver and rider. Prior works related to distributed LPPMs
include privacy-preserving location sharing systems [71], privacy-preserving spatiotemporal
matching [113] and privacy-preserving Fair Rendez-Vous Problem (FRVP) [20].

In [71], authors devise a cryptographic privacy-preserving protocol for location-sharing
based systems. They propose two variants, both based on Identity-based Broadcast Encryption
[101]. Identity-based Broadcast Encryption schemes are public key encryption schemes that
can use arbitrary strings as public keys, and allow senders to efficiently broadcast ciphertexts
to a large set of receivers such that only non-revoked receivers can decrypt them. Authors also
design a vector commitment scheme to allow service providers to collect aggregate statistics
about users’ check-ins. The proposed solution is evaluated in term of computation time,
energy consumption and bandwidth overhead.

In [113], authors design a secure protocol to matches spatiotemporal profiles. Spatiotem-
poral profiles are vectors in which users continuously record their whereabouts in time. Match-
ing spatiotemporal profiles have several applications, including ad targeting, participatory
sensing, finding people with common interests, . . . . To protect users’ location privacy, while
matching spatiotemporal profiles, authors propose two solutions respectively based on the use
private set intersection cardinality [50] and Bloom filters [42]. In both approaches, spatiotem-
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poral profiles are generalized and then intersected. The proposed solutions are evaluated in
term of efficacy and efficiency.

In [20], authors propose a privacy-preserving algorithm to compute optimal meeting lo-
cation for a group of users. In the proposed approach, to determine the optimal meeting
point, each participant uses a homomorphic cryptosystem to encrypt the coordinates of her
preferred location before sending the ciphers to the service provider. Upon receiving all the
ciphers from each user, the service provider computes the distances between each pair of
potential meeting points obliviously and sends the result to the users. Finally, users select
the location i∗ that minimizes the maximum distance from any other place to i∗. In contrast,
we propose a secure protocol to compute meeting points and separations for ridesharing. Be-
sides, we consider actual travel time. To the best of our knowledge, our work is the first
that relies on secure multiparty computations and multimodal routing algorithms to design
privacy-protection mechanisms for ridesharing.

3.2 System model

We propose a secure ridesharing system to compute meeting points for ridesharing. Our
objective is twofold: (i) the proposed protocol should provide privacy protection to both
the driver and the rider and (ii) it should provide better or equivalent usability compared to
2SP-SP and existing ridesharing systems. In this section, we present the system’s participants,
the problem formalization as well as the adversarial and system assumptions. In Table 3.1,
we summarize the notations used throughout this chapter.

3.2.1 Participants

We assume a system consisting of two parties: a driver d and a rider r. Each user u is
associated with a profile [Ou, Du, τu

Ou
, Σu] which includes the origin location Ou, the departure

time τu
Ou

, the destination location Du as well as the set of available transport modes Σu. A
profile is said to be protected if any of its components Ou, τu

Ou
, Du and Σu is not leaked to

the service provider or the other participant.

While origin and destination locations can be easily considered as private information, as
they may correspond to home or work address, the sensitivity of departure time and trans-
portation modes is more ambiguous even though they can allow an adversary to learn origin
and destination locations. For instance, as the distribution of the transportation infrastruc-
ture (e.g., subway coverage, ferry location . . . ) is not uniform in a city, the way a target
moves can help the adversary in improving his/her prior beliefs of the target’s origin and
destination. Likewise, the knowledge of the departure time can be used to perform a trian-
gulation attack. In a triangulation attack, an adversary infers the location of the user based
on the travel costs needed by her to reach a set of locations.
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Symbol Meaning

S Set of ridesharing stations.

τu
l Departure time of user u from location l.

[Ou, Du, τu
Ou

, Σu] Profile of a user u with origin location Ou, destination location Du,
departure time τu

Ou
and transportation modes Σu.

πij A path from location i to location j.

WΣu(πij) Cost of the shortest path from location i to location j for user u
while using transport modes Σu.

W t
Σu(πij , τu

i ) Cost of the time-dependent shortest path from location i to location j
for user u while using transport modes Σu and starting the trip at τu

i .

sptτ (l, τ, m)

Time-dependent shortest path tree rooted
at location l at date τ with m as transportation modes.
sptτ (l, τ, m) returns a set of locations with their respective
minimal travel times from the origin (i.e., {(li, τ(li)) ∀i = 0, . . . , n}).

sptπ(l, m)

Estimated shortest path tree rooted at l. When there exists some
time-dependent modes, the exact shortest path tree cannot be
computed as starting time is unknown, but we can estimate it, for
instance using the minimal travel time on each arc. . .

M↑
u Potential pick-up locations of user u.

M↓
u Potential drop-off locations of user u.

scu(πij) Score given by the user u to the path πij .

Table 3.1: Summary of notations.

3.2.2 Problem statement

Definition 3.1. Trip cost. Given a pick-up location i ∈ S, a drop-off location j ∈ S, a driver
d with profile [Od, Dd, τd

Od
, Σd] and a rider r with profile [Or, Dr, τ r

Or
, Σr], for a ridesharing

scenario engaging the driver d and the rider r, we define the trip cost Tri−j(d) (respectively
Tri−j(r)) of the driver (respectively the rider) as follows :

Tri−j(d) = WΣd(πOdi) + WΣd(πij) + WΣd(πjDd
)

Tri−j(r) = W t
Σr (πOri, τ r

Or
) + WΣd(πij) + W t

Σr (πjDr , τ r
j )

The trip cost of a user includes the transit time from her origin to the pick-up location,
the duration of the shared trip between the pick-up and the drop-off locations, and her transit
time from the drop-off location to her final destination.

Definition 3.2. Ride cost. Given a pick-up location i ∈ S, a drop-off location j ∈ S, a driver
d with profile [Od, Dd, τd

Od
, Σd] and a rider r with profile [Or, Dr, τ r

Or
, Σr], for a ridesharing
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between the driver d and the rider r, we define the ride cost Ridei−j(d, r) as follows :

Ridei−j(d, r) = Tri−j(d) + Tri−j(r) + |τd
i − τ r

i |

The ride cost of a pair of driver and rider includes the trip cost of each user and the
minimum waiting time at the pick-up (defined as the difference between the arrival times of
both users).

The secure meeting points for ridesharing problem hereafter referred to as SMP4R is defined
as follows:

Definition 3.3. Secure Meeting Points for Ridesharing (SMP4R) problem. Given a driver d

with profile [Od, Dd, τd
Od

, Σd], a rider r with profile [Or, Dr, τ r
Or

, Σr], and the set S of rideshar-
ing stations, find locations (i∗, j∗) ∈ S × S, such that the ridesharing cost Ridei∗−j∗(d, r) is
minimum and the profile of both driver and rider is protected.

The expected solution for the SMP4R problem is the tuple (i∗, j∗) of meeting and separation
locations and five paths [πOri∗ , πOdi∗ , πi∗j∗ , πj∗Dr , πj∗Dd

]. Each path may have its restrictions.
That is, the rider may want to use walking and tramway as transportation modes to reach
the pick-up i∗ from his/her origin and solely use walking to get to his/her destination from
the drop-off j∗. The ridesharing cost is computed as the sum of trip costs of both users and
the waiting time at the pick-up location i∗. The shared path πi∗j∗ is considered twice as it is
included in the itinerary of both the driver and the rider. Finally, the driver’s traveling time
is assumed time-independent as her paths are on the road network.

3.2.3 Adversarial and system assumptions

Adversarial assumptions. We assume that both driver and rider are honest-but-curious
adversaries. Drivers and riders might attempt to learn private profile of each other.

Security We assume that the passenger and the driver are already in contact. A secure
protocol for establishing such contact is presented in Chapter 4. The primary security re-
quirement is the privacy of user data. Users should be able to control their personal data. In
particular, no user should be able to access the profile of another user unless explicitly au-
thorized. Users communicate over a secure channel and have sufficient computing resources
on their platforms (e.g., personal computer or smart-phone) to perform the tasks requiring
local computations such as the cryptographic ones.
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3.3 Priv-2SP-SP — A secure protocol for the computation of
ridesharing’s meeting points

In this section, we propose Priv-2SP-SP (Privacy-preserving 2 Synchronization Points Short-
est Path Protocol) a privacy-preserving protocol to solve the SMP4R problem.

3.3.1 Overview

At a high level, Priv-2SP-SP is a P2P protocol in which both users locally compute their
potential meeting points and use a private set intersection to find common meeting points.
Afterward, the pair of pick-up and drop-off locations that minimize the ride cost is selected
as a solution for the ridesharing meeting point problem.

More precisely, the driver (respectively the rider) locally computes her potential pick-up
locations and her potential drop-off locations. Then, both users obtain their common pick-
up (respectively drop-off) locations by computing the intersection of their potential pick-up
(respectively drop-off) locations. A privacy-preserving set intersection protocol is used to
reduce the amount of information exchanged between both users. Simply put, users learn
only shared preferences. Finally, the best pick-up (respectively drop-off) location is selected.

Rather than working in a centralized way as in 2SP-SP, Priv-2SP-SP is a decentralized
approach and consists of three main steps: (1) local computation of potential meeting points
(2) secure calculation of shared pick-up and drop-off locations and (3) selection of the best
pick-up and drop-off points. Figure 3.2 depicts the protocol.

3.3.2 Local computation of potential meeting points

This step is twofold.

In the first step, each user locally computes two isochrones, one from the origin location
and the other from the destination location (c.f., lines 1,2). For a user u, we denote by
I↑

u (respectively I↓
u) the isochrone rooted at his origin (respectively his destination).More

precisely, I↑
r is computed with a time-dependent regular language constrained shortest path

algorithm to capture both time-dependency and mobility aspects, and a regular language
constrained shortest path algorithm is used to estimate I↓

r . For the driver, as the road network
is assumed not time-dependent, a regular language constrained shortest path algorithm is used
to compute both I↑

r and I↓
d .

In the last step, the isochrones computed in the previous step are used to filter out
accessible ridesharing stations (c.f., lines 3,4). In addition, for each user u, the travel costs of
the trip from the origin location Ou to potential pick-ups i ∈M↑

u (respectively from potential
drop-offs j ∈ M↓

u to the destination location Du) are stored in private database (H↑
u or

H↓
u) (c.f., lines 5,6). For the computation of common meeting points, only the identifier of

43



Priv-2SP-SP

Driver Rider

1 : I↑
d = sptπ(Od, Σd) I↑

r = sptτ (Or, τ r
Or

, Σr)

2 : I↓
d = sptπ(Od, Σd) I↓

d = sptπ(Or, Σr)

3 : M↑
d = I↑

d ∩ S M↑
r = I↑

r ∩ S

4 : M↓
d = I↓

d ∩ S M↓
r = I↓

r ∩ S

5 : H↑
d = {WΣd(πOdi) : i ∈M↑

d} H↑
r = {W t

Σr (πOri, τ r
Or

) : i ∈M↑
r}

6 : H↓
d = {WΣd(πjDd

) : j ∈M↓
d} H↓

r = {W t
Σr (πjDr

, τ r
j ) : j ∈M↓

r}
7 : (pk, sk)←$ Gen(1n)

8 : [[M↑
d]] = Enc(M↑

d, pk)
9 : [[M↓

d]] = Enc(M↓
d, pk)

10 : [[M↑
d]], [[M↓

d]], pk

11 : [[M↑
r ]] = Enc(M↑

r , pk)
12 : [[M↓

r ]] = Enc(M↓
r , pk)

13 : [[M↑]] = [[M↑
d]] ∩ [[M↑

r ]]

14 : [[M↓]] = [[M↓
d]] ∩ [[M↓

r ]]

15 : [[M↑]], [[M↓]]

16 : M↑ = Dec([[M↑]], sk)
17 : M↓ = Dec([[M↓]], sk)
18 : T = ManyToManySP(M↑,M↓, Σd)

19 : T

20 : Scd = getScores(T,H↑
d,H↓

d) Scr = getScores(T,H↑
r ,H↓

r)

21 : Scd

22 : Scr

23 : (i∗, j∗) = argmax(i,j) (scd(πij) + scr(πij)) (i∗, j∗) = argmax(i,j) (scd(πij) + scr(πij))

Figure 3.2: Priv-2SP-SP — A secure protocol for meeting points.
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accessible ridesharing stations (stored in M↑
u and M↓

u) will be used, and both H↑
u and H↓

u

will remain confidential to avoid the possibility of triangulation attacks.

3.3.3 Secure collaborative computation of common meeting points

Once potential ridesharing locations are locally identified, both users collaboratively compute
common pick-ups M↑ and common drop-offs M↓ with the PSI protocol. The private set
intersection is chosen instead of the regular set intersection to follow the data minimization
strategy as recommended by the privacy-by-design approach [29]. Consequently, at the end
of this step users will get only common ridesharing locations.

To achieve this goal, the driver first generates a pair of public and private keys (pk, sk)
that will be used in the private set intersection protocol (c.f., line 7). Then, she encrypts
her potential pick-up (respectively drop-off) locations M↑

d (respectively M↓
d) and sends the

encrypted items [[M↑
d]] and [[M↓

d]] to the rider along with her public key pk (c.f., lines 8 —
10). Upon receiving of the public key and the encrypted potential meeting points, the rider
obliviously computes the intersections of potential pick-up (respectively drop-off) locations
(c.f., lines 11—14) and sends the ciphers [[M↑]] and [[M↓]] to the driver (c.f., line 15). Finally,
the driver decrypts the ciphers and obtains the set of common pick-ups M↑ and the set of
common drop-offs M↓ (c.f., lines 16,17).

Notice that, as the PSI protocol is asymmetric, only the initiator of the protocol gets the
final output. That is, in our case, only the driver will learn the common meeting points. To
get shared meeting points, the rider also needs to initiate a PSI. However, as we are in the
honest but curious setting, the driver will send the output to the rider without cheating.

3.3.4 Computation of shared paths

In this step, the driver computes the set T of all the costs (when using her transportation
modes Σd) of the shared paths πij between the set of common pick-ups M↑ and the set of
common drop-offs M↓ (c.f., line 18). The set of all the shared path is then sent to the rider
(c.f., line 19).

The subroutine ManyToManySP(M↑,M↓, Σd) requires the computation of min(|M↑|, |M↓|)
shortest path algorithms to get all the |M↑|∗|M↓| paths betweenM↑ andM↓. If the number
of common pick-ups and drop-offs is important, this subroutine may induce high computa-
tional overhead as it requires the computation of several shortest paths. We deliberately
leave the driver in charge of this computation for scenarios in which we would like to take
into account more complex itinerary’s constraints associated with the driver, that he only
can express (e.g., taking a particular highway or using a particular parking station). In the
absence of such constraints, both driver and rider can compute the shared path locally.

To reduce this overhead, both users iteratively compute the intersection of their isochrones
by gradually growing the radius. Iterations may stop as soon as a condition on the size of the
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intersection set is reached. This strategy helps in reducing the number of shared paths to be
computed.

3.3.5 Local computation of ridesharing scores

Once the set T of shared path is obtained, each user u computes the trip cost Tri−j(u)
induced by each shared path πij ∈ T by using the private databases H↑

u and H↓
u previously

computed. That is, for each shared path πij , the driver (respectively the rider) computes its
corresponding trip cost Tri−j(d) (respectively Tri−j(r)) as follow:

Tri−j(d) = H↑
d(i) + WΣd(πij) +H↓

d(j)
Tri−j(r) = H↑

r(i) + WΣd(πij) +H↓
r(j)

At the end of this step, the shared path πij such that the trip cost Tri−j(u) is minimum
will be the most relevant for each user u. As travel cost in isochrones can reveal enough
information to enable a triangulation attacks, trip costs can give enough details to infer the
area in which the origin and destination locations are located. Therefore, rather than relying
on the trip costs to elect the ideal shared path, each user first sorts the set of shared paths
T w.r.t. the trip cost. Then, she associates to each shared path a score (by calling the
getScores subroutine) which depends on its rank (c.f., line 20).

More precisely, the driver (respectively the rider) outputs for each shared path πij a score
scd(πij) = d.getScores(πij) (respectively scr(πij) = r.getScores(πij) reflecting her willing-
ness to use it as a subpath during the ridesharing trip. For simplicity we define getScores as:

getScores : P −→ N
πij 7−→ |M↑| ∗ |M↓| − rank(πij)

In both cases, the better the rank of a shared path, the higher its score. We design the
scoring function as the complementary of the rank. The conversion of the trip cost to a score
has the advantage of adding more privacy on the choice of each user because it discloses less
information than the trip cost itself. However, further privacy improvements can be made by
randomizing the scoring function to make it more difficult for an adversary to infer the rank
from the score.

3.3.6 Election of ideal pick-up and drop-off locations

In this step, each user communicates the score she attributes to each πij (c.f., lines 21 — 22).
Then, a simple voting procedure is applied in which instead of taking into account the trip
costs, the focus is made on the scores only (i.e., the values of costs are kept confidential for
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privacy reasons).

Instead of using the simple voting procedure, other voting strategies would be possible
provided they not be computationally expensive. Note that the same process must be em-
ployed by the two users to obtain the same result. 2SP-SP sought to minimize ridesharing
cost while Priv-2SP-SP reduces the problem to the maximization of the scores.

To achieve this goal, each user selects the shared path πij such that (scd(πij)+scr(πij)) is
maximized. More precisely, the pick-up and drop-off locations corresponding to the solution
are obtained the following manner: (i∗, j∗) = argmax(i,j) (scd(πij) + scr(πij)) (c.f., line 23).

By default, the election works in a fair manner by deciding that a score assigned to a given
path has the same weight for both parties. However, it is easy to design an unbalanced version
of this vote by using a positive multiplicative factor reflecting the importance given to one
party over the other. In this case, the best path will be the one such as α×scd(πij) + β×scr(πij)
is maximized with α and β representing respectively the influence of the driver and of the
rider on the choice of a shared path.

3.3.7 Waiting time

In the proposed approach, there is no guarantee that the waiting time of each participant
at the pick-up location will be the lowest one. To ensure that the waiting time meets the
constraints of the schedule of each user, one can securely check if |τd

i − τ r
i | ≤ θ, where θ

represents the maximal waiting time the users are willing to tolerate at the pick-up location
i. To take into account the limitation of each user on the waiting time, in this last step it is
important to check if the waiting time corresponding to the best-selected path is valid using a
secure comparison method. If this condition is not met (i.e., the time is not valid), users have
to select the second path and so forth until the waiting time of the path considered matches
their constraints.

3.4 Analysis of Priv-2SP-SP

3.4.1 Security analysis

Since we solve Priv-2SP-SP by using a PSI method, the security of our scheme depends
mainly on the security of the PSI method used. In [50], the authors proved the security of
PSI in the semi-honest model. We recall hereafter the sketch of the scheme and the security
proof.

Consider a party A running a PSI method with another party B. To summarize A starts
by generating a public and private encryption keys of an homomorphic encryption scheme
before defining a polynomial whose roots are her inputs. Then, she sends the public key and
the encryption of the polynomial coefficients to B. Once B receives the public key and the
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polynomial, he evaluates, in an oblivious fashion, the polynomial with his inputs and returns
the result to A. Finally, A decrypts an item if it is included in the intersection of the two sets
or a random number otherwise.

The correctness of the PSI method is ensured by the fact that it successfully evaluates
with high probability. The privacy of the input of A is guaranteed if the encryption scheme
used is semantically secure. Indeed, in this case, the views of B for any two inputs of A are
indistinguishable. The privacy of the input of B comes from the fact that for every party A′

operating in the real world, there is a party A operating in the ideal model, such that for
every input of B, the views of the parties A and B in the ideal model are indistinguishable
from the views of A′ and B in the real world.

3.4.2 Privacy analysis

Anonymity of the driver. In Priv-2SP-SP, the rider receives encrypted inputs from the
driver. Hence, she cannot learn anything about the driver’s inputs, as the PSI protocol’s
encryption scheme offers semantic security, i.e., it is (computationally) impossible for the
rider to distinguish whether two different ciphertexts conceal the same plaintext [50].

Anonymity of the rider. After receiving the results of the PSI protocol, the driver can
only learn the items that she and the rider have in common (and nothing else), as the PSI
protocol is secure in the honest but curious setting [50].

3.4.3 Communication and computational complexities of Priv-2SP-SP

We respectively denote by |V | and |E|, the number of vertices and the number of edges in
the transportation network.

The complexity of the proposed approach is directly proportional to the complexity of the
shortest path algorithms. More precisely, each participant runs twice the DRegLC algorithm
(which has a complexity of O((|E|+ |V |)× log |V |)) to get their potential pick-up and drop-
off locations. Finding the common POIs using PSI has a linear complexity of O(|V |). Once
common pick-up and drop-off locations are discovered, each participant makes at most |V |
calls to the DRegLC algorithm to get all the |V |2 possible shared paths. The scoring and
ranking step require the insertion of |V |2 paths into a binary heap. All these steps lead to a
global computational complexity of O(|V |×|E|× log |V |).

Finally, the communication complexity is O (|V |× log |V |) as the identifier of each node
may have to be exchanged, and the use of an efficient homomorphic encryption adds a constant
overhead.

The respective communication and computational complexities of the exact and central-
ized approach (2SP-SP) and the privacy-preserving approach (Priv-2SP-SP) are summarized
in Table 3.2.
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Communication cost Computational cost

2SP-SP O(1) O
(
|E|×|V |2

)
Priv-2SP-SP O(|V |× log |V |) O(|E|×|V |× log |V |)

Table 3.2: Computational and communication complexities of 2SP-SP and Priv-2SP-SP.

The 2SP-SP protocol is a centralized protocol. Therefore, it has a constant communication
cost. On the other hand, the Priv-2SP-SP protocol has a quasi-linear (in the number of
vertices) communication cost. The Priv-2SP-SP protocol is faster than 2SP-SP.

3.5 Evaluation of Priv-2SP-SP

In this section, we report on the experiments that we have conducted to evaluate the effec-
tiveness of our approach.

3.5.1 Experimental settings

Transportation network. The tests have been performed using a multimodal transporta-
tion graph of the city of Toulouse in which we consider any vertex as potential rideshar-
ing location. The multimodal graph has been generated using data from OpenStreetMap1

for the road network and GTFS files from Tisseo2 for the public transportation network.
The resulting graph has the following characteristics: |V | = 75 837, |E| = 527 053, Σ =
{Walk, Car, Bus, Subway, Tramway}.

Instances. Overall, we randomly generate 200 instances of ridesharing problem. To generate
a ridesharing instance, we randomly choose (in the transportation network) an origin and a
destination for each pair of driver and rider. Origins and destinations locations are selected
to geographically close in the transportation network to reflect a real-world situation. More
precisely we create two groups each containing 100 instances of ridesharing. In Table 3.3,
we summarize key features of each group. The main difference between the two datasets is

Group I Group II

Distance between the both origins (respectively destinations) 2000 m 800 m
Travel time for the rider alone 1h15min 2h
Travel time for the driver alone 19min 20min

Table 3.3: Instances characteristics.

the proximity between the driver and the rider. In the first group ridesharing candidates are
1http://www.openstreetmap.org
2https://developers.google.com/transit/gtfs
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more distant to each other.

Implementations details. The multimodal routing algorithms have been implemented in
C++. For our cryptographic operations, we rely on the NFLlib library [3], an optimized open-
source C++ library which includes optimized subroutines to perform arithmetic operations
over polynomials and allows to easily implement ideal lattice-based cryptography [79]. As
explained in Section 3.3.4, to reduce the overhead the shared path computation subroutine,
we compute the intersection of the isochrones by gradually growing their radius. In this
experiment, we divide each isochrone into rings such that the difference between the two radii
of each ring is 1 minutes. Then, we intersect rings and stop iterations as soon as there is 1
common meeting point.

Experiments were run in a virtual machine with 5GB RAM, on a 2.9 GHz Intel Core i7
host machine.

3.5.2 Experimental results

To evaluate our protocol, we run a Priv-2SP-SP protocol for each of our generated instances
and compare our results to the optimal solutions obtained using the centralized method
2SP-SP [21] (which does not take into account any privacy requirements).

Computation overhead. We summarize in Table 3.4 average values of the computation
overhead and the ridesharing cost for instances in both Group I and Group II. Concern-
ing the runtime, Priv-2SP-SP is more efficient than 2SP-SP. This observation confirms our
preliminary complexity analysis.

Ridesharing cost [min] CPU [s]
Group I Group II Group I Group II

2SP-SP 52± 13 47± 11 1.09± 1.66 0.68± 0.55
Priv-2SP-SP 54± 14 49± 11 0.67± 0.37 0.49± 0.30

Table 3.4: Ridesharing costs and computational overhead per pair of driver and rider. Statis-
tics (avg ± std) are computed over the 100 instances in both Group I and Group II.

Distribution of the computation overhead. Priv-2SP-SP is composed of 4 major
phases, namely the computation of potential meeting points, the determination of common
meeting points, the computation of shared paths, and the computation of ideal pick-up and
drop-off locations. In Table 3.5, we summarize the distribution of the computation over-
head between the most significant phases of Priv-2SP-SP. More precisely, we report on each
phase, its runtime per user, and the ratio of this runtime to the overall runtime per user.
Additionally, we recall the algorithm it uses.

The most computationally intensive subroutines are the computation of potential meeting
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Technique Group I Group II
Driver Rider Driver Rider

Phase 1 One-To-All SPP 110 ms (16%) 190 ms (34%) 110 ms (22%) 170 ms (45%)
Phase 2 PSI 308 ms (45%) 308 ms (56%) 178 ms (36%) 178 ms (47%)
Phase 3 Many-To-Many SPP 203 ms (30%) 0 ms (0%) 180 ms (36%) 0 ms (0%)
Phase 4 Scoring 56 ms (8%) 56 ms (10%) 31 ms (6%) 31 ms (8%)

Table 3.5: Distribution of the computation between the major phases of Priv-2SP-SP.

points, the computation of shared paths, and the private set intersection protocol. As shown
in Table 3.6, on average, there are 23 ∗ 17 = 391 (respectively 15 ∗ 14 = 210) shared paths
per instance of Group I (respectively Group II). The higher overhead introduced by Phase
2 is because we compute common meeting points with several calls of the PSI protocol. In
average, it takes 6 (respectively 3) iterations to compute common meeting points for instances
of Group I (respectively Group II).

Ridesharing cost and quality of the solutions. Results in Table 3.4 show that 2SP-SP
performs slightly better than Priv-2SP-SP as it always returns the optimal solution.

We use the gap between the ridesharing cost of Priv-2SP-SP and that of 2SP-SP to
evaluate the quality of our protocol. More precisely, the gap is computed as the percentage
difference between the two values. On average over the 200 instances, the gap between the
ridesharing cost of Priv-2SP-SP and 2SP-SP is small (4.40% in group I and 2.45% in group
II). In Figure 3.3, we report on the distribution of the gap for both Group I and Group II
instances. Overall, 75% of the instances in Group I have a gap less than 6.19% and 75% of the
instances in Group II have a gap less than 3.36%. That is, the smaller the distance between
drivers and riders the smaller the gap between the optimal solution and the solution of the
privacy-preserving approach.

Figure 3.3: Distribution of gaps between ridesharing cost in Group I (left) and Group II
(right).
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In Table 3.6, we report on the average value of the size of common pick-up and drop-off
locations for the Priv-2SP-SP approach, and the similarity between the solutions of 2SP-SP
and those of Priv-2SP-SP regarding the distance between their pick-up locations on the one
hand and the proximity of the drop-off locations on the other.

The size of common pick-up and drop-off locations is small because we intersect subsets of
isochrones in several iterations instead of intersecting entire isochrones. This strategy helps
in reducing the number of shared paths.

The average distance between ridesharing locations is 230.06 (respectively 103.42) me-
ters for pick-ups and 202.13 (respectively 99.23) meters for drop-offs in Group I (respectively
Group II). More details are given by Figures 3.4 and 3.5. To summarize, for 75% of the
instances in Group I, the distance between the pick-up location (respectively the drop-off
location) of the optimal and that of the privacy-preserving protocol is less than 311 (respec-
tively 328) meters. In Group II, the geographic proximity of pick-up locations (respectively
drop-off locations) of both approaches is less than 154 (respectively 150) meters for 75% of
the instances.

Observation Group I Group II

Pick-ups size 23 15
Drop-offs size 17 14

Proximity of pick-ups (m) 230.06 103.42
Proximity of drop-offs (m) 202.13 99.23

Table 3.6: Additional characteristics of Priv-2SP-SP’s ridesharing solutions.

Figure 3.4: Distribution of the distance between pick-ups (left) and the distance between
drop-offs (right) in Group I
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Figure 3.5: Distribution of the distance between pick-ups (left) and the distance between
drop-offs (right) in Group II

3.6 PPLD4R — A privacy-preserving location determination pro-
tocol for ridesharing

So far, we propose Priv-2SP-SP, a privacy-preserving protocol to compute interesting rideshar-
ing meeting points for drivers and riders while protecting their location privacy. As one can
notice, in the current form of the proposed protocol, waiting times for both driver and rider
at the pick-up location are not captured by the trip cost model. Furthermore, we consider
every node in the transportation network as a ridesharing station. Because this assumption
increases the computational overhead of the protocol, we use an iterative approach which
considers subsets of isochrones to compute common meeting points and shared paths. Fur-
thermore, a scoring algorithm is used to hide real trip costs. Consequently, the solution found
by Priv-2SP-SP approach is not always the optimal one, though the gap is acceptable.

In this section, we present PPLD4R, a privacy-preserving location determination protocol
for ridesharing.

PPLD4R is an improved version of Priv-2SP-SP which tackles the above-mentioned lim-
itations. More precisely, our improvements are fourfold. First, we assume that the set of
ridesharing stations is a predefined subset of vertices known by everyone. Next, we propose a
speed-up technique based on the pre-computation of shared paths. Then, we rely on a secure
comparison protocol to integrate the waiting time in the trip cost model. Finally, we use a
secure shared sum protocol to consider real trip costs instead of scores when selecting the
best meeting points.

3.6.1 Ridesharing stations

In Section 3.3.2, we make the assumption that any node in the transportation network can
be a ridesharing stations (S = V ). As we show in our preliminary experiments, the pri-
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vate set intersection protocol contributes significantly to the total computational overhead of
Priv-2SP-SP, and its impact on the scalability will increase with the size of the transportation
network.

To tackle this issue, we propose to consider only a predefined subset S ⊂ V of vertices
known by every user. Furthermore, the number of ridesharing stations is expected to be
very small as compared to the order of the transportation network; that is, |S| ≪ |V |. In
fact, in a real-world scenario, ridesharing pick-up locations are usually public transport stops
or parking of shopping malls. As a consequence, the driver and the rider do not need to
run a private set intersection protocol to compute common meeting points. Instead of that,
both users consider all the ridesharing stations while computing the best meeting points. For
unreachable ridesharing stations, the trip cost is set infinity.

3.6.2 Pre-computation of shared paths

Since the potential ridesharing station are known in advance, we can compute and store the
shared paths offline. Then, during the online phase, distances will be retrieved in constant
time. More precisely, given the set S of ridesharing stations, we compute all-pairs shortest
paths between the ridesharing stations s ∈ S and store them in a lookup table B. This step
requires |S| calls to the algorithm DRegLC.

3.6.3 Integration of waiting time in the trip cost

By definition

Ridei−j(d, r) = Tri−j(d) + Tri−j(r) + |τd
i − τ r

i |
= WΣd(πOdi) + W t

Σr (πOri, τ r
Or

) + |τd
i − τ r

i |
+ 2 ∗WΣd(πij) + WΣd(πjDd

) + W t
Σr (πjDr , τ r

j )

As arrival dates are positive values, we have

|τd
i − τ r

i | = max(τd
i , τ r

i )−min(τd
i , τ r

i )

which implies

Ridei−j(d, r) = WΣd(πOdi) + W t
Σr (πOri, τ r

Or
) + max(τd

i , τ r
i )−min(τd

i , τ r
i )

+ 2 ∗WΣd(πij) + WΣd(πjDd
) + W t

Σr (πjDr , τ r
j )

Once both users securely determine arrival order at each common pick-up i ∈ M↑, they can
compute their trip costs with waiting time included. This step requires |M↑| calls to a secure
comparison protocol. We introduce, a boolean flag φu(i) to model the fact that a user u
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arrives first at location i.

That is, for each shared path πij the driver’s trip cost will be computed as

Tri−j(d) =


2 ∗ H↑

d(i) + B(i, j) +H↓
d(j), if φd(i)

B(i, j) +H↓
d(j), otherwise

Likewise, for each shared path πij the rider’s trip cost will be computed as

Tri−j(r) =


2 ∗ H↑

r(i) + B(i, j) +H↓
r(j), if φr(i)

B(i, j) +H↓
r(j), otherwise

Notice that, the cost of each πij is directly retrieved from the lookup table B. To im-
plement the secure comparison protocol, we rely on the Goldreich-Micali-Wigderson (GMW)
protocol [62] which provides security against passive adversaries. Furthermore, to reduce the
communication overhead of the secure comparison subroutine, we encode all arrival times in
a single circuit.

3.6.4 Integration of actual trip cost in the election phase

To select the ideal shared path, both users compute the ride cost as an arithmetic shared
secret. More precisely, for each shared path πij , the driver (respectively the rider) holds a
secret share SSd(πij) (respectively SSr(πij)) such that SSd(πij) + SSr(πij) = Ridei−j(d, r).
As explained in Section 1.7, one party (here the driver) uses a homomorphic cryptosystem
to encrypt her trip cost and send the encrypted version as well as the public key to the
rider. Upon receiving, the rider generates a random number and add it to her trip cost
before computing (obliviously the sum) of both trip costs and sends it to the driver. The
same operation is repeated for all shared path and the ideal pick-up and drop-off locations
are computed as (i∗, j∗) = argmin(i,j) (SSd(πij)). Notice that, the rider must use the same
random number for each shared path to guarantee correctness.

We implement the homomorphic secret-sharing protocol by using the Fan-Vercauteren
(FV) homomorphic encryption scheme [48], which offers semantic security. Furthermore,
we represent all the trip costs as coefficients of a single |S|2th degree polynomial; that is,
cryptographic operations are done coefficient-wise. This process allows us to reduce the
communication overhead.
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3.6.5 Putting It All Together

The PPLD4R protocol is summarized in Figure 3.6. First, the driver generates a pair of public
and private keys of a homomorphic cryptosystem (c.f., line 1). Then both users scan the set
S of ridesharing stations to compute travel time (c.f., lines 2,3). In order to compute the
order of arrival at the potential pick-up points, both the driver and the rider run a secure
comparison protocol to compute the boolean φd(i) respectively (φr(i)) as (H↑

d(i)−H↑
r(i)) > 0

(respectively (H↑
r(i)−H↑

d(i)) > 0) for each ridesharing station i ∈ S (c.f., line 4). Once arrival
orders are determined, both users compute their trip costs. Afterward, for each shared path,
the corresponding ridesharing cost is calculated as a shared secret (c.f., lines 5–12). That is,
for each shared path the driver holds a random rA = Ride(d, r) − rB where rB is a random
number generated by the rider. Finally, the driver selects the shared path for which the
corresponding shared secret is minimum (c.f., lines 13, 14), and notifies the rider on the
result (c.f., line 15).

PPLD4R

Driver: d Rider: r
1 : (pk, sk)←$ Gen(1n)

2 : H↑
d = {WΣd(πOdi) : i ∈ S} H↑

r = {W t
Σr (πOri, τ r

Or
) : i ∈ S}

3 : H↓
d = {WΣd(πjDd

) : j ∈ S} H↓
r = {W t

Σr (πjDr
, τ r

j ) : j ∈ S}

4 : φd = SecureGT(H↑
d,H↑

r) φr = SecureGT(H↑
r ,H↑

d)

5 : Polyd = Σ|S|
i=1Σ|S|

j=1Tri−j(d)Xij Polyr = Σ|S|
i=1Σ|S|

j=1Tri−j(r)Xij

6 : [[Polyd]] = Enc(Polyd, pk)

7 : [[Polyd]], pk

8 : SSr = rand ∗ Σ|S|2

i=1 Xi

9 : [[SSr]] = Enc(SSr, pk)
10 : [[Polyr]] = Enc(Polyr, pk)
11 : [[Polydr]] = [[Polyd]] + [[Polyr]]− [[SSr]]

12 : [[Polydr]]

13 : SSd = Dec([[Polydr]], sk)
14 : (i∗, j∗) = argmin(i,j) (SSd(πij))

15 : i∗, j∗

Figure 3.6: PPLD4R — A privacy-preserving location determination protocol for ridesharing.

3.7 Analysis of PPLD4R

3.7.1 Security and privacy analysis

During the secure comparison protocol, both the driver and the rider learn nothing about
the private shares of each other thanks to the privacy guarantee against passive adversaries
of the GMW protocol [62].
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During the secret sharing subroutine, the rider receives encrypted inputs from the driver.
Hence, she can not learn anything about the driver’s inputs because of the semantic security
of the FV scheme [48]. On the other hand, the driver receives random-looking numbers.
Hence, she cannot learn anything about the rider’s input.

3.7.2 Communication and computational complexities of PPLD4R

We respectively denote by |V |, |E| and |S|, the number of vertices, the number of edges, and
the number of ridesharing stations in the transportation network. Furthermore, we denote
by l and lH the number of bits required to represent private inputs in the secure comparison,
and in the homomorphic secret sharing subroutine of PPLD4R.

In PPLD4R, each participant makes two calls to the DRegLC algorithm (which has a com-
putation complexity of O((|E|+ |V |)× log |V |)) to computes her trip costs. The secure com-
parison requires 4 interactions per AND gates, and for the GreaterThan circuit, there are
(3l − ⌈2 log2 l⌉ − 2)|S| AND gates [106]. Overall, the secure comparison protocol has a com-
putation complexity of O(|S|) and a communication complexity proportional to |S| ∗ l. The
secret-sharing protocol has a computation complexity of O

(
|S|2

)
and a communication com-

plexity of proportional to |S|2 ∗ lH . As in practice |S|2 ≪ |V |, the overall computation
complexity of PPLD4R is O((|E|+ |V |)× log |V |)). The overall communication complexity of
PPLD4R is O

(
|S|2

)
.

The respective communication and computational complexities of 2SP-SP and PPLD4R are
summarized in Table 3.7.

Communication cost Computational cost

2SP-SP O(1) O
(
|E|×|V |2

)
PPLD4R O

(
|S|2

)
O((|E|+ |V |)× log |V |)

Table 3.7: Communication and computational complexities of 2SP-SP and PPLD4R.

As the 2SP-SP protocol is centralized, it has a constant communication cost while the
PPLD4R protocol has a quadratic (in the number of ridesharing stations) communication cost.
On the other hand, the PPLD4R is faster than 2SP-SP mainly because of the pre-computation
of shared paths (as the ridesharing stations are predefined).

3.8 Evaluation of PPLD4R

In this section, we evaluate PPLD4R in term of solution quality as well as computational
and bandwidth overhead. We compare its performance to 2SP-SP-V2, a modified version
of 2SP-SP in which we force the ridesharing solutions’ space to the set S of pre-defined
ridesharing stations.
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3.8.1 Experimental settings

For our experiments, we consider two cases, namely an intracity scenario and an intercity
scenario. We run the intracity scenario in the city of Toulouse, and for the intercity scenario,
we consider Nantes as the pick-up city and Rennes as the drop-off city.

Transportation network. We generate the multimodal transportation network by using
data from Openstreetmap3 for the road network and GTFS data from Navitia4 for the public
transportation network. the main characteristics of the transportation networks for both
scenarios are given in Table 3.8.

Scenario |V | |E| Transport modes

Toulouse 75837 527567 walk, bike, bus, subway, tramway, car
Nantes - Rennes 297664 2108820 walk, bike, bus, tramway, car

Table 3.8: Main characteristics of the transportation networks

Instances. We partition each city according to their districts as shown in Figure 4.5.
In both scenarios, we generate 1000 instances of the ridesharing meeting point problem.
More precisely, we first randomly select a district and generate the driver’s origin within
the selected district. Then the rider’s departure location is generated within a radius of 5
kilometers around driver’s origin. The same operation is conducted to produce destination
locations. For simplicity, we consider the same departure time for both users. Finally, we
generate |S| = 64 ridesharing stations for each scenarios.

Figure 3.7: City of Toulouse [119] with its 6 districts (left), city of Nantes [84] with its 11
districts (middle) and city of Rennes [99] with its 12 districts (right).

Implementation details.

For the experiments, we use a computer (Intel Xeon CPU E3-1271 v3, 3.60GHz, 32GB
RAM) running on Linux 3.13.

3http://www.openstreetmap.org
4https://www.navitia.io/datasets
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The PPLD4R protocol is implemented in C++.

For the homomorphic secret sharing protocol, we use the FV-NFLlib library 5, which
implements the FV scheme [48]. As the degree of the polynomial has to be a power of 2 (see
[3]), for the 64 ridesharing stations we consider in our experiment, we use a 64 ∗ 64 = 4096th
degree polynomial to integrate all the trip costs of each user in a single polynomial. The
coefficients of the polynomial are 64-bit length and the modulus p has 124 bits. Therefore, a
public key or a ciphertext takes up 124 KB, while a plaintext takes up 32 KB.

For the secure comparison protocol, we use the ABY framework [38], which implements
both the Goldreich-Micali-Wigderson (GMW) protocol [62], with security against passive
adversaries. Each of the n = 64 private shares used for the secure two-party comparison test
are l = 10-bit length.

3.8.2 Isochrones’ computation overhead

In addition to the pre-computation of shared path, the offline phase of the protocol includes
the local computation of arrival times by each user. More precisely each user u uses two
shortest path algorithms to compute a forward bucket H↑

u (respectively backward bucket H↓
u)

to store traveling times of the transit phase of the ridesharing. In this Section, we analyze
the computation overhead introduced by this subroutine. Table 3.9 summarizes the runtime
for each user in both scenarios.

Sequential [ms] Parallel [ms]

Driver Rider Driver Rider

Toulouse 605.6± 1.68 663.9± 2.87 302.0± 1.54 331.0± 2.00

Nantes - Rennes 2691.8± 4.48 2875.6± 3.90 1338.8± 2.10 1426.3± 2.14

Table 3.9: Performances of isochrones’ computation. Statistics (avg ± std) for computational
overhead are computed over the 1000 instances.

Overall, when isochrones are computed sequentially, the runtime is less than 0.7 seconds
(respectively 2.9 seconds) for both users in the intercity (respectively intracity) scenario,
and performances increase by a factor of two with parallelization. Furthermore, since the
ridesharing stations are known in advance, each participant can compute his travel time in
advance, so that only the secure comparison protocol and the secret sharing protocol are run
while a driver and a rider engage in a PPLD4R protocol. That is, the computational overhead of
the travel time computation will not impact the overall performance of the PPLD4R protocol.

5https://github.com/CryptoExperts/FV-NFLlib
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3.8.3 Secure comparison overhead

The performance of the secure comparison only depends on the number of ridesharing stations.
That is, the communication overhead is the same in both scenarios and computation overheads
are of the same order.

Communication overhead. We convert arrival times in minutes, which reduce the number
of bits to represent them. In the secure comparison protocol, the two parties run a secure
equality on their private shares obtained with the secret sharing protocol. Overall each party
has 64 private shares, each of which is 10-bit length.

The ABY framework sends per AND gates 4 bits (2 bits per party) in the online phase.
In the online phase, each party sends 1 bit per input and 1 bit per output. Hence, we have
1152/8 + 1536 ∗ 2/8 + 64/8 = 536 bytes in the online phase.

Computation overhead. In the setup phase, the secure comparison protocol takes about
0.854 ms to complete. The online phase takes only 0.461 ms to complete.

In Table 3.10, we report the communication and computation overheads of the secure
comparison subroutine. The small memory footprint and computation time of the secure
comparison subroutine are due to the use of the SIMD (Single Instruction Multiple Data)
features of the ABY framework which allow encoding all the arrival times in a single circuit.

Communication [KB]
Runtime [ms]Driver Rider

Upload Download Upload Download

0.536 0.536 0.536 0.536 0.461± 0

Table 3.10: Secure comparison performances. Statistics (avg ± std) for computational over-
head are computed over the 1000 instances of the intracity scenario.

3.8.4 Secure shared sum overhead

Communication overhead. The 64 ridesharing stations lead to a total of 4096 different
trip costs, which are later on encoded in a single 4096th degree polynomial to compute
ridesharing costs as a shared sums. First, the driver sends to the rider a public key and a
ciphertext for her encrypted trip costs. This process requires has a payload size of 248 KB.
Then, the rider sends a ciphertext of random shares to the driver. This step has a payload
size of 124 KB. A detailed summary of the communication overhead for both users is given
in Table 3.11.
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Driver Rider

Upload Download Upload Download

248 KB 124 KB 124 KB 248 KB

Table 3.11: Communication overhead of the secure shared sum subroutine

Computation overhead. In Table 3.12 (respectively Table 3.13), we report the runtime
of cryptographic operations performed by the driver (respectively the rider) during the secure
shared sum sub-protocol.

Parameters (n = 4096, p = 124 bits)

Keys generation [ms] 141± 0.0

Encrypt [ms] 17± 0.0

Decrypt [ms] 7± 0.0

Table 3.12: Secure shared sum performances for the driver. Statistics (avg ± std) for com-
putational overhead are computed over the 1000 instances.

Parameters (n = 4096, p = 124 bits)

Encrypt [ms] 17± 0.0

Hom. Add. [ms] 1± 0.0

Table 3.13: Secure shared sum performances for the rider. Statistics (avg ± std) for compu-
tational overhead are computed over the 1000 instances.

Overall, the footprint of cryptographic operations is small. In fact, it takes about 183 ms
to complete all the cryptographic operations.

3.8.5 PPLD4R vs 2SP-SP-V2

In this Section, we compare PPLD4R and 2SP-SP-V2 protocols regarding ridesharing cost,
communication overhead, and computational overhead. In Table 3.14, we summarize the
average ridesharing cost, the communication and the average runtime of both PPLD4R and
2SP-SP-V2 for both the intracity scenario and the intercity scenario.

Computational overhead. Regarding the computational overhead, the average runtime of
2SP-SP-V2 is 1.3 seconds (respectively 6.1 seconds) for the intracity (respectively intercity)
scenario. On the other hand, the overall runtime of PPLD4R is very low (less than 200 ms).
By relying on the pre-computation of shared paths and the use adequate cryptographic tools,
PPLD4R achieves better computational performance than 2SP-SP-V2.

Communication overhead. As 2SP-SP-V2 is centralized, it requires only a few bits (repre-
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senting origin and destination locations) to compute the meeting points. On the other hand,
PPLD4R is a P2P protocol in which users exchange encrypted data in other to compute their
meeting points. Overall, PPLD4R requires about 249 KB of communication to complete. Even
if this communication is higher than that of 2SP-SP-V2, it remains very low and accept-
able. For instance, assuming a user of PPLD4R makes two intercity ridesharing every day, the
monthly data usage induced will be about 14.6 MB. To compare, a regular daily use of 15
minutes of turn by turn directions navigation services like Google Maps, lead to a monthly
data usage of 38 MB and visiting 5 web pages per day consumes 59 MB per month [34].

Solution quality. Overall, in both the intercity and intracity scenario, PPLD4R finds the
same solution as 2SP-SP-V2 because integrating the waiting time and considering actual trip
costs allow PPLD4R to have the same objective function as 2SP-SP-V2.

PPLD4R 2SP-SP-V2

Ridesharing cost [min] Communication [KB] CPU [ms] Ridesharing cost [min] Communication [KB] CPU [ms]

Toulouse 42 248.68 183.461 42 - 1300

Nantes - Rennes 201 248.68 183.461 201 - 6100

Table 3.14: Overall performance of PPLD4R and 2SP-SP-V2.

3.9 Discussion

3.9.1 Priv-2SP-SP Vs PPLD4R

We respectively denote by |V |, |E| and |S|, the number of vertices, the number of edges, and
the number of ridesharing stations in the transportation network.

In Table 3.15, we summarize the overall communication and computational complexities
of Priv-2SP-SP and PPLD4R protocols.

Communication cost Computational cost

Priv-2SP-SP O(|V |× log |V |) O(|E|×|V |× log |V |)
PPLD4R O

(
|S|2

)
O((|E|+ |V |)× log |V |)

Table 3.15: Computational and communication complexities of Priv-2SP-SP and PPLD4R.

Overall, PPLD4R has the best computational overhead. Moreover, it scales better than
Priv-2SP-SP. In fact, its communication cost is independent of the size of the transportation
network. Priv-2SP-SP is suitable for dynamic scenarios, in which the ridesharing stations
are not known in advance. On the other hand, PPLD4R is suitable for scenarios in which the
ridesharing stations are known in advance.
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3.9.2 The case of malicious adversary

Although the fact we have considered in our system the honest but curious adversary model, it
is interesting to see how one can deal with malicious adversary’s behavior. At the opposite of
honest but curious adversary, the malicious adversary does not intend to respect the protocol
and will try to inject manipulated inputs like fake isochrone to leak information about users
or to turn the ridesharing solution to her favor. To thwart such kind of attack, one can
rely on a privacy-preserving location proof system [130] which, by allowing proof of location,
will serve as a mean to provide certificates on isochrones. Furthermore, the secure two-party
computation subroutines can be implemented to provide security against malicious adversaries
(e.g., using [88, 87]), with additional computational and communication costs.

3.9.3 Real world implementation

All our experiments have been done in simulation mode on computer. In contrast, in the real
world, we can rely on a publish/subscribe model to match drivers and riders in the first place
and then a peer-to-peer communication will start between each couple of rider and driver to
run the proposed scheme and obtain meeting and arriving points. In Figure 3.8, we present
an architecture of the system. Our solution can be implemented with the existing network
infrastructure and the current mobile technologies.

For the rider, wearable like smart watch can serve as a user interface, smartphone will
be used for both local computations and peer-to-peer communications. Finally, the most
computationally expensive subroutines will be delegated to a remote personal cloud.

For the driver, computations can be balanced between an embedded calculator and a
smartphone, which will also take care of peer-to-peer communications.
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Personal	  Cloud	  

Smartphone	  

Wearable	   Smartphone	  

Rider Driver 

	  
Embedded	  Calculator	  	  

	  

Figure 3.8: Architecture of the system.

3.10 Summary

Ridesharing services have the potential to reduce local air pollution, greenhouse gas emissions,
and congestion. However, the existing users’ privacy concerns may disrupt the adoption of
such service.

In this chapter, we have addressed the secure meeting points for ridesharing (SMP4R)
problem by providing practical and effective solutions based on homomorphic encryption,
private set intersection, secret sharing, and secure two-party computation schemes. Moreover,
our solutions use multimodal routing algorithms to take into account mobility constraints of
both the rider and the driver. We have designed and implemented our privacy-preserving
protocols and evaluated their performances. Our solutions are proved to be effective regarding
privacy and have acceptable performance compared to traditional systems that do not protect
the privacy of users.

64



Chapter 4

SRide: A Privacy-Preserving
Ridesharing System

In this chapter, we propose SRide, a novel approach that addresses the matching problem for
dynamic ridesharing in a privacy-preserving way, including the computation of the pick-up
and drop-off times and locations, considering multiple means of transportation for the rider’s
transit, i.e., multimodal routing. More specifically, we propose a secure protocol based on
several existing well-established techniques, combined in an adequate way to implement data
minimization at reasonable CPU and bandwidth costs: homomorphic encryption, secure mul-
tiparty computation, and assignment or routing optimization methods. The proposed solution,
SRide, operates in four stages. In the first stage, riders and drivers apply time and space gen-
eralizations to their private inputs. During the second stage, the set of potential drivers/rider
pairs is reduced with a secure filtering protocol to those whose preferences and constraints
have a reasonable match. In the third stage, a two-party protocol is executed between feasi-
ble pairs, to determine the meeting times and locations, as well as the overall quality of the
match (i.e., ridesharing cost), in a privacy-preserving way (i.e., without revealing origin and
destination location). Finally, in the last stage, a matching algorithm is run by the service
provider to pair up drivers and riders, based solely on the scores computed in the third stage.
The proposed approach offers desirable privacy properties; in particular, limited information
disclosure to the service provider and between only a small number of drivers/riders pairs.

We analyze the privacy properties of our solution, and we evaluate its performance by
using synthetic traces generated from a real dataset collected from a popular ridesharing
service. In particular, our trace-driven experimental results show that our privacy-preserving
protocol is an order of magnitude faster than a brute force approach that would compute
the secure meeting points protocol PPLD4R (cf. Chapter 3) on the complete bipartite graph
formed by the divers and the riders.

The rest of this chapter is organized as follows:

In Section 4.1, we describe the system model, and we formalize the privacy-preserving ride
matching problem. We detail the proposed approach SRide in Section 4.2 and analyze its
security, privacy and performance in Section 4.3. In Section 4.4, we describe our experimental
setup and methodology, including the datasets used, and we report on our experimental
results. In Section 4.5, we discuss how SRide can be extended to provide all the features for
a real-world application. In Section 4.6, we survey academic works related to ridesharing and
privacy enhancing technologies in transportation. We conclude this chapter in Section 4.7.
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4.1 System model

Our objective is to design a ridesharing system that provides stronger privacy guarantees to
both the drivers and the riders, without sacrificing the usability of the system. At a high
level, our system is composed of three parties: drivers, riders, and the service provider (SP).

4.1.1 Notation

We denote by U , the set of users (drivers and riders), D the set of drivers, and R the set of
riders (D ∪ R = U). Let md and mr respectively denote the number of drivers and riders.
We assume that each user has a single role: either driver or rider, that is: D ∩R = ∅.

We will also denote by L the set of nL locations and by H the time horizon for considered
instances of ridesharing problem.

Each driver d ∈ D has a profile Pd = {T d, wtd} where:

• T d = {(Od, τd
l
Od

), . . . , (lk, τd
lk

), . . . , (Dd, τd
l
Dd

)} is her trajectory. It contains an origin Od,
a destination Dd, and a set of intermediate locations lk, along with their respective
arrival times τd

lk
.

• wtd is her maximum flexibility (i.e., waiting time).

The maximum number of intermediate locations on a driver’s trajectory is denoted by
nT = maxd∈D(|T d|).

Each rider r ∈ R has a profile Pr = {(Or, τ r
Or ), Dr, δr} containing:

• her origin Or with the expected departure time τ r
Or .

• her destination Dr.

• her maximum transit distance δr corresponding to the distance traveled by using public
transport.

4.1.2 Adversarial model

We consider the following privacy threats defined in [93]:

• T1: SP → D/R location tracking. The SP might try to learn location data of drivers
and riders, to improve its service quality or to monetize harvested data.
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• T2: D → R PII harvesting. Drivers might try to learn personally identifiable
information (PII ) of riders (e.g. for stalking or blackmailing purposes).

• T3: R → D PII harvesting. Riders might try to learn PII of drivers (e.g. for
stalking or blackmailing purposes).

In our model, the drivers, the riders, and the SP are passive adversaries (semi-honest). A
semi-honest adversary is a computationally bounded adversary who tries to learn additional
information from the messages seen during the protocol execution. In contrast to the stronger
malicious (active) adversary, the semi-honest adversary is not allowed to deviate from the
protocol. As the SP is semi-honest, we assume that it does not collude with the drivers
(respectively the riders) in their attempt to collect private data of riders (respectively drivers).
Finally, we assume that the SP cannot observe the IP addresses of drivers and riders, thanks
to the usage of anonymous network systems, such as Tor [41].

4.1.3 Design goals

The goal of SRide is to protect ridesharing users from threats mentioned in Section 4.1.2 while
offering similar usability as traditional ridesharing systems, which do not provide solutions
to protect users’ privacy. A profile is said to be protected if none of its spatiotemporal
components (location and departure time) is leaked to the service provider or the other
participants. While the origin and the destination locations can be easily considered as
private information, as they may correspond to home or work address, the sensitivity of
departure time is more ambiguous even though they can allow an adversary to learn origin
and destination locations. For instance, the knowledge of the departure time can be used to
perform a triangulation attack. In a triangulation attack, one can infer the location of a user
based on the time she takes to reach a set of locations.

The desired properties of SRide are the following:

• P1: Rider anonymity. It is computationally difficult for the SP to infer the identities
and the location data of a rider. It is also computationally difficult for a driver to learn
the location data of a rider without explicit consent. P1 addresses the location tracking
threat T1 and the PII harvesting threat T2.

• P2: Driver anonymity. It is computationally difficult for the SP to infer the identities
and the location data of a driver. It is also computationally difficult for a rider to learn
the location data of drivers with whom she does not match. P2 addresses the location
tracking threat T1 and the PII harvesting threat T3.

4.1.4 Types of Ridesharing Systems

Our approach is designed to support common types of ridesharing implemented by state-of-
the-art matching agencies, namely identical ridesharing and inclusive ridesharing [52].
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In the identical ridesharing setting, riders, and drivers have the same origin and destination
locations. A match can occur between a driver d and a rider r, if:

1. dist(Od, Or) ≤ δr

2. dist(Dd, Dr) ≤ δr

3. τ r
Od − τd

Od ≤ wtd

where dist(, ) represents the distance between two locations (typically the Euclidean dis-
tance in a projection coordinates system).

In the inclusive ridesharing setting, riders may be picked-up and dropped on drivers’ itineraries.
A match can occur between a driver d and a rider r, if ∃ (lk, τd

lk
) and (lk′ , τd

lk′ ) ∈ T d with
τd

lk′ > τd
lk′ such that:

1. dist(lk, Or) ≤ δr

2. dist(lk′ , Dr) ≤ δr

3. τ r
lk
− τd

lk
≤ wtd

In both contexts, the first two conditions capture the fact that the prior (respectively
posterior) transit distance of the rider must be less or equal to her maximum transit distance.
The third constraint captures consistency between rider’s arrival time at the pick-up and
driver’s departure time.

Furthermore, identical ridesharing is a particular case of inclusive ridesharing, in which the
pick-up (respectively drop-off) point is the driver origin (respectively destination). In this
paper, we will focus on inclusive ridesharing.

4.1.5 Problem statement

Definition 4.1. Privacy-preserving ride matching problem. Given a set D of drivers
d with profile Pd = {T d, wtd}, and a set R of riders r with profile Pr = {(Or, τ r

Or ), Dr, δr},
find the subset of drivers and riders that satisfy the inclusive ridesharing constraint, while
protecting the profile of each user.

4.2 SRide — A privacy-preserving ridesharing system

4.2.1 Naive approach

A naive solution to solve privacy concerns related to the matching in ridesharing is to consider
the complete bipartite graph formed by all the drivers and riders, and run the secure meeting
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point protocol for ridesharing PPLD4R (cf. Chapter 3) between every pair. The corresponding
bipartite graph has md × mr arcs (one arc per pair of driver and rider), each weighted by
the ridesharing cost for the corresponding pair. Finally, by using a minimum cost bipartite
matching algorithm, one can compute the optimal assignment for drivers and riders.

However, running PPLD4R for the complete bipartite graph can be expensive. In fact, it will
require md peer-to-peer communication for each rider to interact with the drivers, which can
introduce important communication and computation overheads. Our idea is to reduce the
size of the bipartite graph by securely computing feasible pairs of drivers and riders i.e., pairs
satisfying conditions for inclusive ridesharing. More precisely, we propose a secure filtering
protocol to filter out pairs of drivers and riders that are unlikely to match. Then we run the
PPLD4R protocol on the feasible bipartite graph before computing optimal assignments based
on ridesharing costs.

4.2.2 General overview

Private inputs 

Matching	
module	

	

Generaliza3on	
module	

Feasible pairs 

Pairs 

Secure	filtering	
module	

Secure	scoring	
module	

Figure 4.1: SRide Overview: Participants use their generalized inputs and the Secure
filtering module to build a bipartite graph of feasible pairs. The Secure scoring module
is used to securely compute ridesharing costs as well as meeting points. The Matching module
takes the bipartite graph as input and computes optimal matches based on ridesharing cost.
Finally, users are notified of their assignments.

At a high level, SRide is composed of four modules (see Figure 4.1), namely the gener-
alization module, the secure filtering module, the secure scoring module and the matching
module. Each of them will be detailed in the following sections.

To use SRide, whenever a rider is looking for a ride, she uses the generalization module to
generalize her private inputs (see Section 4.2.3). Then, she uses the secure filtering module to
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initiate a secure filtering protocol (see Section 4.2.4) with the service provider and the drivers.
The secure filtering protocol determines the subset of drivers with whom the rider can travel.
More precisely, potential drivers are drivers that visit the pick-up area of the rider at the same
epoch, and whose itineraries pass through the rider’s drop-off area. Once each rider learns
her feasible matches, she relies on the secure scoring module to launch the PPLD4R protocol
with each potential driver, and optimal assignments of drivers and riders are computed by
the SP (see Section 4.2.5).

4.2.3 Generalizations of inputs

4.2.3.1 Time and Space generalization

Our goal is to help drivers and riders in finding matches while keeping a minimal information
disclosure. To this end, we propose a matching model that relies on two generalizations,
namely time generalization and space generalization, to capture feasibility constraints.

Time generalization. The total time horizon H (a day for instance) is split into a set E of
nE epochs of the same size ω: E = {et}, ∀t ∈ 1, . . . , nE . We denote ϕω(τ ) the function that
converts a time τ ∈ H to its corresponding epoch et ∈ E .

Space generalization. We consider that the set of locations L can be divided in a set
C = {cs} of nC polygons or cells of the same area θ. The parameter θ can also represent
a level of granularity (i.e., country, city, borough, . . . ). We denote ϕθ(l) the function that
converts a location point l ∈ L to its corresponding cell cs ∈ C.

4.2.3.2 Computation of generalized inputs

Each user (driver d and rider r) computes a generalized input vector, denoted respectively
by Id and Ir, based on their own profile Pd and Pr. More precisely, for every location lk
on his trajectory T d, each driver d enumerates all the combination (lk, τd

lk
, lk′) ∀ τd

lk′ > τd
lk

of pick-up, departure time and drop-off. Overall, each driver d generates an input vector
with |T d| × (|T d| − 1)/2 of such triplets. Finally, each driver computes his generalized input
vector Id by applying spatial (respectively temporal) generalizations on the spatial (respec-
tively temporal) components of the triplets (see Algorithm 1). The maximal size of drivers’
generalized input vector is nT × (nT − 1)/2 where nT is the maximal number of locations in a
driver’s trajectory. For each rider, the corresponding generalized input vector Ir is composed
of a single generalized spatiotemporal triplet which contains the generalization of her origin,
departure time and destination (see Algorithm 2).

In these generalizations, we consider that the driver maximum waiting time wtd is lower than
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ω and that the area covered by the rider transit distance δr is included in the generalized
cells.

Data: Pd = {T d, wtd, F d}, ω, θ
Result: Id: Generalized Inputs

1 Id = ∅
2 for k ∈ 1 . . . |T d| − 1 do
3 for k′ ∈ k + 1 . . . |T d| do
4 (ck, ek, ck′) = (φθ(lk), φω(τd

lk
), φθ(lk′))

5 Id = Id ∪ {(ck, ek, ck′)}
6 end
7 end

Algorithm 1: DriverMacroInputs

Data: Pr = {(Or, τ r
Or ), Dr, δr}, ω, θ

Result: Ir: Generalized Inputs
1 Ir = {(ϕθ(Or), ϕω(τ r

Or ), ϕθ(Dr))}
Algorithm 2: RiderMacroInputs

4.2.3.3 Illustrative example

Let us consider the scenario of Figure 4.2 with one rider r and two drivers d1 and d2 having
the following profiles:

• Pd1 = {{(O1, t1), (l1, t2), (D1, t3)}, wtd1}

• Pd2 = {{(O2, t4), (D2, t5)}, wtd2}

• Pr = {(03, t6), D3, δr}

In this example, each arrival time is generalized to its corresponding 30-minute length
epoch of the time horizon starting at time 00:00 and ending at time 23:59. That is, φω=30(h :
m) = ⌈60∗h+mm

30 ⌉. In additions, locations are generalized to the number of the grid in which
they are located.

The computation of generalized inputs for each user produces the following generalized
input vectors:

• Id1 = {(2, 17, 6), (2, 17, 12), (6, 18, 12)}

• Id2 = {(6, 17, 4)}

• Ir = {(6, 18, 12)}
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Figure 4.2: Illustration of the generalization approach: A scenario with one rider (red
color) and two drivers (blue and green colors).
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4.2.4 Secure computation of feasible matches

4.2.4.1 Characterization of feasible matches

During the secure filtering phase, the aim is to obtain pairs of riders and drivers that can
travel together considering inclusive ridesharing hypothesis.

A match is feasible between d and r, denoted by d⇐⇒ r, if the following conditions hold:

∃ (cd
s , ed

t , cd
s′) ∈ Id and ∃ (cr

s, er
t , cr

s′) ∈ Ir such that:

1. cd
s = cr

s

2. ed
t = er

t

3. cd
s′ = cr

s′

The single triplet of the rider’s generalized input Ir = {(cr
s, er

t , cr
s′)} corresponds to the general-

ization her origin, the generalization of her departure time at the origin and the generalization
cell of her destination.

The first (respectively second) condition means that there is a location on the driver’s
trajectory that is in the same area as the rider’s origin (respectively destination). The third
condition means that the epoch of arrival time of the rider at this location is consistent with
the driver’s epoch of arrival time (and maximum waiting time).

In the example presented in 4.2.3.3, there is a feasible match between the rider r and driver
d1. In fact, the triplet (c6, e18, c12) is shared by both users and then satisfy the generalized
ridesharing conditions.

We implement a secure filtering protocol to compute feasible matches. In our imple-
mentation, we encode private inputs (generalized spatiotemporal triplets) as coefficients of
polynomials. From here on, we denote by P [i] the i-th coefficient of a polynomial P . Fur-
thermore, operations on polynomial are coefficient-wise.

4.2.4.2 SF4R — A secure filtering protocol for ridesharing

In this section, we present SF4R, a secure filtering protocol for ridesharing. SF4R is summarized
in Figure 4.3. It engages a rider r with its generalized input vector Ir, the service provider SP
and all the drivers d ∈ D with their respective generalized input vector Id. To compute feasible
matches, both the rider and all the drivers encode their generalized input to an integer to
ease the comparison. More precisely, to encode a generalized spatiotemporal triplet (ci, ei, cj),
the components of the triplet are converted in their binary form, concatenated together, and
the resulting binary number is converted in its decimal form. That is, encode(ci, ei, cj) =
[[ci]2 | [ei]2 | [cj ]2]10.
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SF4R

Rider: r ∈ R Service Provider: SP Driver: dj ∈ D
1 : (pk, sk)←$ keyGen()
2 : αr = encode(Ir)

3 : Pr = αrΣmd−1
i=0 Xi

4 : [[Pr]] = Enc(Pr, pk)

5 : [[Pr]], pk

6 : pk

7 : for q = 0 . . .
nT × (nT − 1)

2
− 1 do

8 : αq
dj

= encode(Idj [q])

9 : P q
dj

= αq
dj

Xj

10 : [[P q
dj

]] = Enc(P q
dj

, pk)

11 : endfor

12 : [[P q
dj

]]

13 : for q = 0 . . .
nT × (nT − 1)

2
− 1 do

14 : [[P q
D]] = Σmd

j=1 [[P q
dj

]]

15 : P q
SP = Σmd

i=1rand()Xi

16 : [[P q
SP]] = Enc(P q

SP, pk)
17 : [[P q

Dr]] = ([[Pr]]− [[P q
D]]) + [[P q

SP]]
18 : endfor

19 : [[P q
Dr]]

20 : for q = 0 . . .
nT × (nT − 1)

2
− 1 do

21 : P q
Dr = Dec([[P q

Dr]], sk)
22 : P q

Dr = SecureEq(P q
Dr, P q

SP)
23 : Fr

M = Fr
M ∪ {dj | P q

Dr[j] = 1}
24 : endfor

Figure 4.3: SF4R — A secure filtering protocol for ridesharing.

The details of the protocol are summarized as follows:

• The rider r generates a public/private key pair (pk, sk) of a somewhat homomorphic
cryptosystem. Then, she creates a (md − 1)th degree polynomial Pr (the degree equals
the number of drivers minus 1) whose coefficients are identical and correspond to the
encoding of her generalized input. That is, Pr[i] = encode(Ir), ∀i = 0 . . . md − 1.
Afterwards, she sends the encrypted version [[Pr]] of her polynomial, and her public key
pk to the service provider SP.

• The SP stores the encrypted polynomial of the rider, and forwards her public key to the
md drivers.

• The jth driver creates, for her qth generalized input, a polynomial P q
dj

such that
P q

dj
= encode(Idj [q])Xj . Overall, nT × (nT − 1)/2 of such polynomial are created

then encrypted with the rider’s public key pk, and sent to the SP. For drivers dj such
that |T dj | < nT , we set Idj [q] = (0, 0, 0) ∀ q > |T dj | × (|T dj | − 1)/2.

• The service provider sums (obliviously) the qth encrypted polynomial of each driver into
a single encrypted (md−1)th degree polynomial [[P q

D]] whose jth coefficient corresponds
to the qth generalized input of the jth driver. Next, it computes the feasible matches
of rider r on the qth generalized input. The feasible matches are computed as a shared
secret between the SP and the rider. More precisely, the SP generates a random mdth
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degree polynomial P q
SP corresponding to its share, and compute the share [[P q

Dr]] of the
rider r as [[P q

Dr]] = [[Pr]]− [[P q
D]] + [[P q

SP]]. The SP sends [[P q
Dr]] to the rider and keeps

P q
SP. The same operation is repeated for all the nT × (nT − 1)/2 encrypted polynomials

[[P q
D]] of the drivers.

• The rider decrypts each of her share P q
Dr and engages in a secure equality test with the SP

to learn her feasible matches. Notice that, whenever P q
Dr[j] = P q

SP[j], Pr[j] = P q
D[j], and

there is a match between the rider r and the jth driver dj on the qth generalized input.
The secure equality test prevents the rider from learning information about drivers with
whom she does not match. In fact, the secure equality test returns 1 whenever there is
a feasible match, and 0 otherwise.

Overall, SF4R is composed of two major phases. In the first phase, hereafter referred to as
the secret-sharing of feasible matches, the rider and the SP use an homomorphic arithmetic
secret sharing protocol to secret-share feasible matches of the rider. In the second phase,
hereafter referred to as the secure computation of feasible matches, the rider and the SP use
a secure equality test and their private shares to compute the feasible matches of the rider.

4.2.4.3 Illustrative example

Let us consider the same scenario of Figure 4.2 with one rider r and two drivers d1 and d2. We
summarize in Table 4.1, the different steps of the secure filtering protocol that will engage the
service provider (SP), the rider (r1), and the drivers (d1, d2), and will lead to the computation
of feasible matches of r1.

In Step 0, the rider and each driver encode their generalized input vectors. In this
example, to encode generalized inputs, we convert each of the three components ci, ei, and cj

into a 5-bit length binary numbers, concatenate them into a single binary number, which is
then reconverted into a decimal number. Then each party encodes the generalized inputs thus
computed in a polynomial. More precisely, the rider r produces the 1st degree polynomial
(there are 2 drivers) Pr = 6732X0+6732X1, and each driver produces 3 1st degree polynomials
(there are at most 3 locations on the trajectories of Figure 4.2)

In Step 1, the rider sends her public key and her encrypted polynomial to the SP and in
Step 2 it receives the encrypted polynomial of the drivers.

Finally, in the Step 3 (composed of 3 rounds, one round per each existing spatiotem-
poral triplet in drivers’ trajectories), the rider and the SP compute the secret shares of the
feasible matches and the feasible matches of the rider for each of the 3 private inputs of
the drivers. First the SP computes 3 1st degree polynomials (for each private inputs of the
driver) combining the first encrypted polynomial of each driver (Step 3.1), the second en-
crypted polynomial of each driver (Step 3.2) and the third encrypted polynomial of each
driver (Step 3.3). Secondly, the SP generates a random 1st -degree polynomial and combines
the encrypted polynomial of the rider, the random polynomial and the encrypted polynomial

75



of the drivers to generate a new 1st degree polynomial: [[P 1
Dr]] (Step 3.1), [[P 2

Dr]] (Step
3.2), and [[P 3

Dr]] (Step 3.3). These polynomials are sent to the rider who can decrypt them,
engage a secure equality test with the SP, and find her feasible matches.

Rider: r Service provider: SP Driver: d1 Driver: d2

Step 0 Pr = 6732X0 + 6732X1
P 1

d1
= 2598X0 + 0X1

P 2
d1

= 2604X0 + 0X1

P 3
d1

= 6732X0 + 0X1

P 1
d2

= 0X0 + 6692X1

P 2
d2

= 0X0 + 0X1

P 3
d2

= 0X0 + 0X1

Step 1 pk
[[Pr]] = [[6732X0 + 6732X1]] pk pk

Step 2

[[P 1
d1

]] = [[2598X0 + 0X1]]
[[P 2

d1
]] = [[2604X0 + 0X1]]]

[[P 3
d1

]] = [[6732X0 + 0X1]]
[[P 1

d2
]] = [[0X0 + 6692X1]]

[[P 2
d2

]] = [[0X0 + 0X1]]
[[P 3

d2
]] = [[0X0 + 0X1]]

Step 3.1
P 1

Dr = 4680X0 + 255X1

P 1
Dr = SecureEQ(P 1

Dr, P 1
SP) = (0, 0)

Fr
M = ∅

[[P 1
D]] = [[P 1

d1
]] + [[P 1

d2
]] = [[2598X0 + 6692X1]]

P 1
SP = 546X0 + 215X1

[[P 1
Dr]] = [[Pr]]− [[P 1

D]] + [[P 1
SP]] = [[4680X0 + 255X1]]

Step 3.2
P 2

Dr = 7484X0 + 8879X1

P 2
Dr = SecureEQ(P 2

Dr, P 2
SP) = (0, 0)

Fr
M = ∅

[[P 2
D]] = [[P 2

d1
]] + [[P 2

d2
]] = [[2604X0 + 0X1]]

P 2
SP = 3356X0 + 2147X1

[[P 2
Dr]] = [[Pr]]− [[P 2

D]] + [[P 2
SP]] = [[7484X0 + 8879X1]]

Step 3.3
P 3

Dr = 1239X0 + 8838X1

P 3
Dr = SecureEQ(P 3

Dr, P 3
SP) = (1, 0)

Fr
M = {d1}

[[P 3
D]] = [[P 3

d1
]] + [[P 3

d2
]] = [[6732X0 + 0X1]]

P 3
SP = 1239X0 + 2106X1

[[P 3
Dr]] = [[Pr]]− [[P 3

D]] + [[P 3
SP]] = [[1239X0 + 8838X1]]

Table 4.1: Illustration of SF4R solving the ridesharing matching scenario of Figure 4.2.

4.2.5 Scoring feasible matches and matching

Once feasible matches are computed, the PPLD4R protocol is run by each feasible pair of
driver d and rider r to compute ideal meeting points, as well as their ridesharing costs wdr.
To compute optimal assignments of drivers and riders, the SP runs a matching algorithm on
the bipartite graph GDR formed by feasible pairs of drivers and riders, and weighted with
ridesharing costs wdr computed using the PPLD4R protocol.

4.2.6 Putting it all together

SRide integrates the four previously presented modules. A summary of the complete protocol
is detailed in Algorithm 3.

First, the service provider SP initiates the system by setting the time and space granularity
and generates an empty bipartite graph GDR (lines 1−2). Then, (lines 3−8), each participant
generates its generalized inputs. Lines 9 to 12 correspond to the secure computation of
feasible matches in which each rider make one call to the SF4R protocol. Then, each feasible
pair securely computes its ridesharing cost with the PPLD4R protocol (lines 13 to 16) after
which both users learn the pick-up and drop-off locations. Finally, the SP centrally solves an
assignment problem based on the bipartite graph of feasible pairs, and notifies users of their
matches (lines 17 to 18).
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1 SP: Generate parameters for generalization : ω, θ
2 SP: Generate GDR = ∅
3 foreach driver d ∈ D do
4 Id = DriverMacroInputs(Pd, ω, θ)
5 end
6 foreach rider r ∈ R do
7 Ir = RiderMacroInputs(Pr, ω, θ)
8 end
9 foreach r ∈ R do

10 Fr
M = SF4R(r,D)

11 end
12 FM = {Fr

M, ∀ r ∈ R}
13 foreach (r, d) ∈ FM do
14 wdr = PPLD4R(r, d)
15 GDR = GDR ∪ (d, r, wdr)
16 end
17 SP: solves the matching problem on GDR
18 SP: Notifies users on their matches

Algorithm 3: Privacy Preserving Ride-Matching

4.3 Security and Privacy Analysis

The security and privacy guarantees of SRide are directly derived by the security a privacy
guarantees of SF4R and PPLD4R protocols.

We implement the homomorphic secret-sharing scheme of PPLD4R by using the Fan-
Vercauteren (FV) homomorphic encryption scheme [48]. As all SHE schemes, the FV scheme
offers semantic security, i.e., it is (computationally) impossible to distinguish whether two dif-
ferent ciphertexts conceal the same plaintext. For the two-party secure equality subroutine of
PPLD4R, we rely on the Goldreich-Micali-Wigderson (GMW) protocol [62] which provides se-
curity against passive adversaries. Finally, to compute ridesharing cost in a privacy-preserving
manner, we rely on the PPLD4R protocol which security and privacy against passive adversaries
have been proved in Chapter 3.

Anonymity of the rider
During the secret sharing subroutine, the SP receives encrypted generalized inputs of the
rider. Hence, it can not learn anything about the rider’s generalized inputs because of the
semantic security of the FV scheme. Similarly, the drivers can not learn anything about the
rider except her public key, which is the only information they receive about her. During the
secure computation of feasible matches, the SP learns nothing about the private shares of the
rider thanks to the privacy guarantee against passive adversaries of the GMW protocol [62].
Finally, during the PPLD4R protocol, the driver can not learn the rider’s location data thanks
to the privacy guarantee against passive adversaries of the PPLD4R protocol (cf. Chapter 3).
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Anonymity of the driver
During the secret sharing subroutine, the SP receives encrypted generalized inputs of the
drivers. However, as the FV scheme has semantic security, the SP can not learn anything
about drivers’ generalized inputs. During the secure computation of feasible matches, the
rider learns the generalized input of a driver if and only if there is a match between them;
that is, the rider learns nothing about drivers with whom she does not match. Finally, during
the PPLD4R protocol, the rider can not learn the driver’s location data thanks to the privacy
guarantee against passive adversaries of the PPLD4R protocol (cf. Chapter 3).

Overall, SRide achieves its privacy goals P1 and P2 related to the rider and driver
anonymity.

4.4 Experimental Evaluation

In this section, we evaluate SRide in terms of communication and computational cost and
compare the performance of the proposed method to a brute-force approach that produces a
matching using the complete bipartite graph obtained by running the Priv-2SP-SP algorithm
between every pair of (driver, rider).

4.4.1 Experimental Settings

Dataset. Our experimental dataset has been generated from data collected over a 19-month
period on the website Covoiturage-libre.fr,1 a popular, openly available ridesharing web service
operating in France (cf. Chapter 5). The collected data includes pick-up and drop-off cities
and schedules. Figure 4.4 (left) represents a ridesharing network of France, where all shared
rides have been taken into account. It has 3986 cities and 24459 weighted and directed edges
(representing shared rides). In this network, cities are sized according to their weighted degree.
According to our results, Paris is not the most important node in this network. Indeed, the
network shows that Rennes has the highest frequency of shared rides. As a whole, Rennes
appears in 46457 notices (roughly 23% of all shared rides), whereas Paris appears in 38243
notices. Rennes is pick-up towards 466 distinct cities against 389 for Paris, and drop-off from
472 distinct cities against 435 for Paris. The most shared trips are between Rennes and Paris
(roughly 5% of all shared rides), followed by trips between Rennes and Nantes. Figure 4.4
(right) shows the distribution of rides per day. To summarize, over the 19-month period, 75%
of the days have less 600 rides. In additions, on average there are 468 rides per day and the
busiest day has 1309 rides.

Instances. We simulate inter-cities ride-sharing scenarios between the cities of Nantes and
Rennes. These two cities (approximately 110 km apart from each other) were chosen because
of the high frequencies of rides observed between them in the dataset. In these experiments,
we consider that all the users want to travel from a given city to the other one and that there

1http://covoiturage-libre.fr
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Figure 4.4: French ridesharing network (left) and Nation wide distribution of rides per day
(right).

are no intermediate points between those two cities. We generate overall md = 1000 drivers’
offers and mr = 1000 riders’ requests. Departure locations are generated in the city of Nantes
and arrival locations in the city of Rennes. Each driver’s offer is a trajectory composed of
two locations points (origin and destination) with their corresponding arrival times (nT = 2).
Each rider’s request is composed of an origin location with a departure time and a destination
location. Departure times are uniformly generated between 5 p.m and 6 p.m for both riders
and drivers. In our simulation, the number of ride requests, in a two hours period, is greater
than what we observe on average for a day period in our real-world dataset.

Time and Space generalizations. We consider the interval [5p.m 8p.m] within a weekday
as the time horizon. This range is then divided into equal length epochs with granularity
values in {15, 30} minutes. We generalized locations to the district in which they are located.
The city of Nantes is composed of 11 districts while the city of Rennes has 12 districts leading
to a total of 23 generalized locations (cf. Figure 4.5).

Implementation details. In the generated instances, there is no intermediate locations in
drivers’ trajectory. Thus, there is a single triplet for the drivers generalized input vectors:
|Id| = 1, ∀d ∈ D, and by definition |Ir| = 1, ∀r ∈ R. The SRide protocol is implemented in
C++.

For the homomorphic secret sharing protocol, we use the FV-NFLlib library 2, which
implements the FV scheme. As the degree of the polynomial has to be a power of 2 (cf. [3]),
for the 1000 drivers we consider in our experiment, we use a 1024th degree polynomial to
integrate generalized inputs of all the drivers. The coefficients of the polynomial are 64-bit
length and the modulus p has 124 bits. Therefore, a public key or a ciphertext takes up 31

2https://github.com/CryptoExperts/FV-NFLlib
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Figure 4.5: City of Nantes [84] with its 11 districts (left) and city of Rennes [99] with its 12
districts (right).

KB, while a plaintext takes up 8 KB.

For the secure computation of feasible matches protocol, we use the ABY framework [38],
which implements both the Goldreich-Micali-Wigderson (GMW) protocol [62] and the Yao’s
garbled circuit protocol [129], with security against passive adversaries. As suggested in [106,
10], we use the GMW protocol to have better runtime and communication performances for
the secure two-party computation between the rider and the SP. The private shares used for
the secure two-party equality test are 15-bit length.

Our experiments are conducted on a Intel Xeon CPU E3-1271 v3 (3.60GHz, 32GB RAM)
running a Linux 3.13.

4.4.2 Experimental results

Our results concern the two main steps of the SRide method: the secure filtering and the
secure scoring. Then, we compare SRide to a brute-force approach.

4.4.2.1 Performances of the secure filtering protocol SF4R

In this part, we report the communication overhead and the computational overhead of both
the secret-sharing and the secure computation subroutines used in SF4R.

Communication overhead of the secret-sharing subroutine.
The secret sharing of feasible matches engages the rider, the SP, and all the drivers. For
each ride request, the rider sends to the SP a public key and a ciphertext for her encrypted
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generalized input. This requires a payload of 2 ∗ 31 = 62 KB. Next, the SP forward the
public key of the rider to each driver. This requires a payload of 31 KB. Then, each driver
encrypts her generalized input with the rider’s public key and sends the ciphertext to the SP.
This requires a payload of 31 KB. Finally, the SP send the ciphertext of the shared secret of
feasible matches to the rider. This requires a payload of 31 KB.

Communication overhead of the secure two-party equality subroutine.
The secure computation of feasible matches engages only the rider and the SP. In this protocol,
the two parties run a secure equality on their private shares obtained with the secret sharing
protocol. As each party has 1000 private shares, each of which is 15-bit length. Overall, the
boolean circuit for this secure equality test has 15 ∗ 1000 = 15000 inputs, 14 ∗ 1000 = 14000
AND gates, and 1000 outputs. The ABY framework sends per AND gate 256 bits (128 bit
per party) in the setup phase and 4 bits (2 bits per party) in the online phase. Since the
circuit has 14000 AND gates, each party sends/receives 14000 ∗ 128/8 = 224000 bytes in the
setup phase. In the online phase, each party sends 1 bit per input and 1 bit per output.
Hence, we have 15000/8 + 1000/8 + 14000 ∗ 2/8 = 5500 bytes in the online phase.

Overall communication overhead of SF4R
A detailed summary of the communication overhead for a ride request is given in Table 4.2.
Overall, the secure filtering introduces a small communication overhead. In fact, the total
bandwidth is under 70 KB (respectively 40 KB) for the rider (respectively the driver). As all
the private inputs are encoded using the same number of bits, the time generalization does
not impact the communication overhead.

The communication complexity of the secure filtering protocol is given in Table 4.3. The
only parameters impacting the bandwidth are the number of drivers md, the number of bits
lH used to represent private inputs in the homomorphic arithmetic secret sharing scheme, the
number of bits l used to represent the private shares in the secure two-party computation of
feasible matches, and the maximum number nT of locations on drivers’ trajectories.

Time generalization
(min)

Rider Driver
Upload
(KB)

Download
(KB)

Upload
(KB)

Download
(KB)

15 67.4 36.4 31 31
30 67.4 36.4 31 31

Table 4.2: Communication overhead of SF4R for a rider and for a driver in one ride request.
SF4R engages a rider, the SP, and the 1000 drivers at the same time.

Computational overhead of the secret-sharing subroutine.
A summary of the different cryptographic operations of each party is given in Table 4.4.
Overall, there are 5 cryptographic operations, namely the key generation (by the rider), the
encryption of generalized inputs (by both rider and driver), the oblivious computation of
the shared secret of feasible matches (by the SP) and the decryption of the shared secret of
feasible matches (by the rider). Note that encryption and decryption operations have a small
footprint (less than 5 ms). The relatively high value of the key generation runtime (33 ms)
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Rider
Upload Download

22+⌈log2md⌉ ∗ lH + mdnT (nT −1)(3l−1)
2 nT (nT − 1)(2⌈log2md⌉ ∗ lH + md(3l − 1))

Driver
Upload Download

nT (nT − 1)(2⌈log2md⌉ ∗ lH) 21+⌈log2md⌉ ∗ lH

Table 4.3: Communication complexity for the driver and the rider in SF4R.

is due to the high-security setting. The overhead introduced by the oblivious computation of
shared secret of feasible matches is due to the fact that the SP needs to add all the encrypted
input of the drivers. To summarize, it takes about 519 ms for a rider to obtain secret shares
of her feasible matches.

Computational overhead of the secure two-party equality subroutine.
In the setup phase, the secure equality takes about 4 ms to complete. The online phase takes
only 1 ms to complete.

Overall computational overhead of SF4R.
A summary of all the subroutines of SF4R is given in Table 4.4. Overall, the computational
overhead of the secure filtering protocol is very small (520 ms).

Time generalization
(min)

Rider SP Driver Rider & SP TotalKeyGen Enc Dec HomAdd Enc SecureEQ
15 33 ± 1 ms 4 ± 0 ms 1 ± 0 ms 477 ± 3 ms 4 ± 0 ms 1 ± 0 ms 520 ms
30 33 ± 1 ms 4 ± 0 ms 1 ± 0 ms 477 ± 3 ms 4 ± 0 ms 1 ± 0 ms 520 ms

Table 4.4: Computational overhead of SF4R. SF4R engages a rider, the SP, and the 1000
drivers at the same time. Statistics (avg ± std) for the runtime are computed over the 1000
riders.

4.4.2.2 Feasible Matches

In this section, we report the number |Fr
M| of feasible matches per rider obtained after the

secure filtering protocol for time generalizations of 15 and 30 minutes. Statistics in Table 4.5
present the average total number of feasible matches per rider and its standard deviation (avg
± std).

To summarize, in the two settings, the number of drivers with whom the rider can share a
trip have been significantly reduced. In fact, on average, for each ride request, only 4.3% (re-
spectively 2.2%) of the drivers are candidates for ridesharing, when the temporal granularity
is set to 30 (respectively 15) minutes. As expected, the finer the temporal granularity, the
smaller the set of feasible matches for each rider.
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Time generalization
(min) Number of feasible matches

15 22 ± 12
30 43 ± 23

Table 4.5: Number of feasible matches per rider. Statistics (avg ± std) for number of matches
are computed over the 1000 ride requests, for the two values of time generalization.

4.4.2.3 Secure scoring

In this section, we discuss the bandwidth overhead, and the computational footprint of the
Priv-2SP-SP protocol used to find optimal pick-up and drop-off locations and ridesharing
costs.

We run the PPLD4R protocol with 64 ridesharing stations. Overall, it takes less than 200
ms and total communication cost of 249 KB for each pair of rider and driver to run the
protocol.

4.4.2.4 Comparison with the naive approach

Overall, it takes about 9 seconds (respectively 5 seconds) to securely compute feasible matches
and their corresponding ridesharing cost, for a time generalization of 30 (respectively 15)
minutes. This include one execution of the SF4R protocol and 22 (respectively 43) P2P
executions of the PPLD4R protocol for a time generalization of 30 (respectively 15) minutes.
The communication overhead is about 11 MB (respectively 5 MB) for a time generalization of
30 (respectively 15) minutes. To compare, the naive approach (running a PPLD4R protocol for
every pair of rider and driver) requires about 3 minutes and 244 MB. That is, our approach
is an order of magnitude faster than the brute force approach. Concerning the bandwidth
requirement, the data footprint of our protocol is an order of magnitude smaller than that of
the naive approach.

4.5 Discussion

4.5.1 Malicious adversaries

SRide has been proven secure against semi-honest adversaries. However, it can be extended
to provide security against malicious adversaries. Let assume a model in which both the
drivers and riders are malicious adversaries and the SP is passive.

A malicious driver could corrupt the input of other drivers by encrypting non-zero values
in coefficients of his polynomial at the indexes that are not allocated to him. To prevent such
attack, the SP can multiply (coefficient-wise) the polynomial of each driver i by a masking
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polynomial PMi = Xi, which preserves only the content of the allocated index.

During the secure two-party equality test between the rider and the SP, a malicious rider
could try to learn the inputs of drivers with whom she does not match. It is possible to build
a secure two-party computation scheme that is secure against a malicious adversary (e.g.,
using [88, 87]), with additional computational and communication costs.

Assuming a semi-honest SP is reasonable. In fact, since there is a non-negligible chance
of the SP being caught while acting differently, the risk of public exposure and reputation
loss is a strong economic deterrent against malicious behavior. Nonetheless, SRide can be
implemented in a pure decentralized way without the SP by delegating its tasks to a small set
of drivers (randomly selected).

4.5.2 Toward a fully-blown privacy preserving ridesharing system

In this chapter, we focus on the privacy-preserving matching problem in ridesharing with
routing considerations. However, to be more realistic, a privacy-preserving ridesharing system
need to cover secure reputation management as well as payment. Our solution can be easily
composed with the privacy-preserving reputation management system proposed in [102]. More
precisely, before launching PPLD4R, each rider can select, in the set of feasible matches, only
drivers having a good reputation. As for payment, one can rely on e-cash [72] as suggested
in [93].

4.6 Related Work

In this section, we survey related works in transportation in general and in ridesharing and
ride-hailing in particular.

4.6.1 Privacy research in Transportation

In the field of privacy-enhancing technologies for transportation, prior works include trans-
portation modeling and secure navigation services.

Sun et al. [114] proposed a privacy-preserving mechanism to design fine-grained urban
traffic modeling using mobile sensors. The proposed method ensures the unlinkability of
mobility traces related to users (i.e., it is difficult for an adversary to assign traces to specific
users). In the same line of work, Ghasemzadeh et al. [58] devised an advanced anonymization
techniques to construct privacy-preserving passengers’ flow graph based on trajectory data.
The proposed approach relies on the so-called lk-anonymity which derives from k-anonymity
[116] but considers that the adversary has a prior knowledge, of length l, and ensures that
any pattern of length l has at least k occurrences in the released dataset to thwart identity
record linkages.
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Xi et al. [127] proposed a privacy-preserving shortest path algorithm based on the use of
a cryptographic primitive known as Private Information Retrieval (PIR) [30]. The proposed
approach allows users to query a navigation service provider to obtain the pre-computed
shortest path between two locations A and B without disclosing A and B to the navigation
service provider. In a relatively similar work, Wu et al. [126] have applied a graph compression
algorithm on road networks to improve PIR-based navigation services’ performances. Even
though these works are related to ours, none of them can be directly applied to the case of
ridesharing. In a PIR-based solution, as in Xi et al. [127], the SP builds a database of drivers’
offers which will be securely queried by the riders. However, this type of solution is suitable
only when drivers trust the SP on collecting their location data. In contrary, our solution can
be used even when the drivers do not trust the SP.

4.6.2 Privacy in Ridesharing and Ride-hailing

Hallgren et al. [65] propose a privacy-preserving protocol allowing peers of drivers and riders
to check their feasible matches. The authors propose two approaches, namely the proximity-
based ridesharing and the intersection-based ridesharing. The former relies on an homomor-
phic encryption scheme to compute euclidean distances between a driver and a rider, while
the later use a threshold private set intersection [50] protocol to compute the similarities be-
tween trajectories of the rider and the driver. Unlike SRide, the proposed approaches do not
consider time constraints of both the rider and the driver. Furthermore, with the proposed
approaches, to find her feasible matches, a rider has to make as many P2P executions of
the protocols as there are drivers in the systems, while in SRide the rider only makes one
execution to check its similarity with all the drivers.

Sanchez et al. [102] propose a fully decentralized approach to solve the matching between
riders and drivers and also a privacy-preserving distributed protocol for reputation manage-
ment in ridesharing. For the matching phase, space and time generalizations are used and a
publish-subscribe [47] subroutine allows drivers to subscribe to topics corresponding to their
generalized inputs, and to receive a notification when a rider publishes on the correspond-
ing topics. By contrast, SRide is partially decentralized and also relies on generalizations to
compute feasible matches. It relies on the SP to reduce communication costs. Nevertheless,
the SP does not learn anything about the location data of both the riders and the riders.
In additions, SRide allows the secure computation of the meeting points (in the generalized
area on which users match). The ridesharing meeting points thus computed are used to find
optimal assignments of drivers and riders.

Tong et al. [118] propose a jointly differentially private approach to solve the dynamic
ridesharing problem while preserving users’ location privacy. They formalize the ridesharing
problem as a linear program. First, drivers are grouped according to their proximities at
origin and destination. Next, for each cluster of drivers, an anchor driver is computed as the
cluster centroid, such that its fare (respectively its capacity) corresponds to the minimum
fare (respectively capacity) within the cluster. Then, riders are assigned to clusters thanks to
a jointly differentially mechanism. When the number of riders assigned to a cluster is greater
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than its size, the winning riders are computed differentially privately by using the exponential
mechanism [81]. This work is very interesting since it provides a formal way to quantify the
privacy and the utility of the riders. However, it only protects riders’ privacy. By contrast,
SRide protects the privacy of both riders and drivers.

Pham et al. [93] analyze the privacy threats for a Ride-Hailing system and propose
PrivateRide, a solution that enhances location privacy for the riders w.r.t. the service
provider and privacy for the drivers w.r.t. malicious outsiders, while preserving the conve-
nience and functionality offered by the current system. Pham et al. later proposed ORide [92],
a ride-hailing system based on somewhat-homomorphic encryption, which addresses most lim-
itations of PrivateRide and provides stronger privacy and accountability guarantees. In this
two privacy-preserving implementations of Ride-Hailing systems, the temporal constraints
of users are not considered. By contrast, SRide integrate both geographic and temporal
constraints. Furthermore, it should be noted that ride-hailing and ridesharing have funda-
mental structural differences. While in ridesharing, the vast majority of drivers plan a ride
for themselves in the first place and subsequently offer to share the ride with others, in
ride-hailing, drivers are professionals and make on-demand rides based on riders’ requests;
therefore, drivers have relatively strong origin constraints and no route or destination con-
straints. These systems also differ in term of use cases and properties of rides. Ride-hailing
essentially replaces taxi cabs (short trips, potentially frequent–several times a week) while
ridesharing replaces trains and planes (medium long trips, typically for weekend excursions
and commutes or vacations).

4.7 Summary

In this chapter, we have proposed SRide, a practical solution to implement matching in
ridesharing systems while protecting the privacy of users w.r.t. the service provider and
other curious users. We propose a secure filtering subroutine, which relies on homomorphic
arithmetic secret sharing and secure two-party equality test, to compute feasible matches.
Then, each feasible pair uses the PPLD4R protocol to compute its ridesharing cost which
will be used to compute the optimal assignment of riders and drivers. Our experimental
analysis shows that our privacy-preserving protocol has acceptable performances for real-
world applications.
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Part III

Data analysis and prototype
applications
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Chapter 5

Empirical Network Analysis of a
Ridesharing Service

Towards a better understanding of social networking interactions on ridesharing services,
this report analyses data collected from Covoiturage-libre.fr 1, a popular, openly available
ridesharing web service in France which allows users to publish short-notices to share rides.
The service went online in 2011, and roughly 688000 ridesharing notices have been published
since then.

The publication process of a short-notice is straightforward, fast, and does not require
any account creation. To publish a short-notice, each user must specify his/her role, which
is either a driver or rider, and provide a pseudonym, gender, email, pick-up and drop-off
cities, schedule time for pick-up as well as optional information like age, phone number, and
message. In case the user is a driver, comfort level, price per passenger, number of available
seats are required, and intermediate points could be provided. After registering a short-notice,
a confirmation message is sent to the mailbox of the user to confirm the registration request.
Once the recipient confirms the reception of this message, the notice is published on the main
page of the website along with the last ten ridesharing notices and is indexed in the site
database for future ride searches.

During 19 months, we have crawled and extracted data from short-notices of Covoiturage-
libre.fr. Collected data have key features of ridesharing users and their trip request, including
age, gender, pick-up and drop-off cities, ride price and schedule. From this data, we perform an
exploratory analysis, and we construct a network where cities are nodes and shared rides are
edges. The resulting empirical network analysis provides some insights on the cost, distance,
and most popular cities of shared rides.

The remainder of this chapter is organized as follows:

Section 5.1 shortly describes the French ridesharing website, Covoiturage-libre.fr, from
which we collected data. In Section 5.2, we present the exploratory analysis of the dataset.
In Section 5.3, we highlight the network construction, visualization, and the main findings of
empirical network analysis. We conclude in Section 5.4.

1http://covoiturage-libre.fr

91



5.1 Dataset

The dataset used for this study is built on the information extracted from short-notices on
Covoiturage-libre.fr website. Figure 5.1 describes tools we use for the study. First, data
are extracted from the website with a crawler implemented using scrapy 2, an open source
framework for extracting data from websites. Every five minutes, it crawls the 10 most
recent short-notices that appear on the main page of the website and extracts the following
information: pseudonym, age, gender, schedule, available seats, ride price, pick-up and drop-
off cities, car comfort, the entire message left by user, and the notice URL. At this step,
geographic coordinates pick-up and drop-off cities are inferred, and the record is inserted
into the SQL database. To infer geographic information we use GeoPy3, a popular client for
geocoding web services. Then, NetworkX4, a high-productivity software for complex networks,
is used to construct a network from the raw data. The network is saved into graphml format.
Finally, we use Gephi 5, an open-source network analysis software, to visualize and analyze
the network.

Figure 5.1: Main building blocks used to collect data from Covoiturage-libre.fr website, and
to construct the ridesharing networks.

Roughly, 221000 distinct ridesharing short-notices were collected during a crawling period
of 19 months, from November 2014 to June 2016. The vast majority of ride announcements
are proposed by drivers, accounting for almost 215000 notices. Overall, notices were created
by 44664 users, including 27861, men, 16803 women. Most of the drivers sharing a ride are
men, roughly 69%, whereas the majority of passengers publishing a request to find a ride are
women, about 57%. Among the 80% of users who filled their ages, the average age is 35.
Passengers looking for a ride are slightly older than ridesharing drivers on average, 40 and
34 years old respectively. Among ridesharing drivers, female drivers are younger than male
drivers on average, 31 and 36 years old respectively.

In the rest of this study, we only consider 14 months out of the 19 months. In fact,
the study begins in the middle of November 2014 and ends at the beginning of June 2016.
Furthermore, the server used for the crawling went down a few times during the data collection
campaign.

2http://scrapy.org/
3https://github.com/geopy/geopy
4https://networkx.github.io
5http://gephi.github.io/
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5.2 Exploratory analysis

Rides distribution nation wide. Overall, 198646 rides offers have been proposed within
the period considered. Figure 5.2 presents the distributions of ridesharing per month in
France. There are 14189± 2892 rides in average per month.

Figure 5.2: Nation wide distribution of rides per month.

Figure 5.3: Nation wide distribution of rides per week (left) and per day (right).

Figure 5.3 depicts the nationwide distribution of rides per week and per day. On average
2878± 1058.264 rides occur each week and the busiest week has a total of 5360 rides against
386 rides for the less busiest week. The average number of rides per day is 468± 225 with a
pick at 1309 against 3 for the less busiest day. Furthermore, half of the 69 weeks considered
record less than 2924 rides and half of the 424 days considered record less than 468 rides.

Ride distances. Figure 5.4 shows the empirical cumulative distribution functions of ride’s
distances and fares over the entire dataset. It highlights that for 75% of drop-off cities, the
distance to pick-up cities is less than 264 kilometers. This suggests that the majority of the
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rides are likely to last less than 2 hours, transporting people across nearby cities.

Figure 5.4: Nation wide distribution of rides distances (left) and fares (right).

Ride fares. The average fare for a ride is 15 ± 9 euros. The vast majority of rides cost
less than 22 euros, which is relatively cheap. Explanations for low prices for short distance
may stem from (i) the shorter the ride distance the higher the probability of the driver shares
his/her car, and (ii) that is more likely that a driver avoid taking roads where the toll must
be paid, so that reducing the price that becomes more attractive for passengers compared to
other transportation modes like taxi, train or airplane.

Ride schedule Figure 5.5 depicts the frequency of rides according to the days of the week.
As expected, drivers commonly share rides from Friday to Sunday, accounting for 75% of all
shared rides. This suggests that people use ridesharing for weekends. To shed some light
on the scheduling of rides, Figure 5.6 shows the frequency of rides by hours of the day. It
highlights that almost 64% of rides are shared in the afternoon.

Figure 5.5: Drivers commonly share rides for weekends.
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Figure 5.6: It is more common to share a ride in the afternoon.

5.3 Network analysis

This Section describes how our French ridesharing network is constructed and visualized. As
depicted in Figure 5.1, network construction, and visualization are based on raw datasets
stored in the database. The main insights of the network data analysis are highlighted and
discussed in turn.

5.3.1 Network construction

A French ridesharing network is represented as a directed network where nodes are cities and
edges are shared rides. The directed network is created from raw datasets using NetworkX.
In this network, nodes, edges, and edge weights are defined as follows.

Nodes: It represents a city and comprises four attributes, a numerical identifier, a label
representing the name of the city, the latitude and the longitude values.

Edges: They are derived from rides between pairs of cities. Concerning the frequency of
rides between pairs of cities, there are two variants of edge definition:

1. All shared rides: There exists a directed edge from city a to b whenever a driver shares
at least one ride where a is the pick-up city and b the drop-off city.

2. More frequent rides: An edge from city a and to city b is created only if drivers share
at least n rides from a to b, where n > 1.

Edge weights: Edges were weighted according to the normalized frequency of shared
rides between the pair of cities, hence the higher the frequency, the heavier the weight of
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a directed edge. Finally, the network could be exported to the GraphML6 file format using
NetworkX to be used as input for the visualization tool.

5.3.2 Network data visualization

The French ridesharing network analyzed in this report is visualized and analyzed using
Gephi. Once the GraphML file containing network is loaded in Gephi, the following steps are
performed:

Computing statistical metrics: A bunch of statistical metrics is computed to help
in understanding the structure of the network. These metrics for the network overview are:
average degree, average weighted degree, network diameter, average clustering coefficient, av-
erage path length, modularity (based on a community detection algorithm), and connected
components. A summary of these metrics is provided in Section 5.3.3.

Fitting to the geographic layout: We use GeoLayout, a Gephi plug-in, to display the
network of cities according to their geographic coordinates. This plug-in seems to provide an
intuitive way to display nodes and helped us in quickly figuring out interesting insights from
data, such as assessing the relationship between the frequency of rides and the geographic
density of France.

Adjusting nodes and edges visualization: Color and sizes of nodes and edges are
adjusted according to the weighted degree for nodes and weights for edges.

Identifying communities of closer cities: We color cities according to communities
or groups identified by the modularity metric available in Gephi, based on the algorithm
proposed by [23]. Therefore, cities that seem to be closer to each other in the network to
each other have the same color. This allows us to have some insights on the transportation
pattern of French ridesharing users, highlighting rides within a group of cities that are more
frequently shared.

5.3.3 Empirical analysis of the ridesharing network

This section provides the empirical analysis of the network that was constructed from the
collected data. According to the way edges were created, ridesharing networks can be divided
into two following groups: networks with all rides and network with more frequent rides.

Ridesharing network with all rides. Figure 5.7 represents a ridesharing network where
all shared rides were taken into account (see Section 5.3.1 for details about edge definition).
It has 3986 cities and 24459 weighted, directed edges (representing shared rides), with a low
average path length (3.49) and a relatively high clustering coefficient (scoring 0.33). In the

6http://graphml.graphdrawing.org
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network, cities are sized according to the weighted degree, and the length of edges are drawn
according to their weights.

Surprisingly, Paris is not the most important node in this network. Indeed, the network
shows that Rennes has the highest frequency of shared rides. As a whole, Rennes appears
in 46457 notices (roughly 23% of all shared rides), whereas Paris appears in 38243 notices.
Rennes is pick-up towards 466 distinct cities against 389 for Paris, and drop-off from 472
distinct cities against 435 for Paris. The most shared trips are between Rennes and Paris
(roughly 5% of all shared rides), followed by trips between Rennes and Nantes.

Figure 5.7: French ridesharing network: Rennes has more frequent shared rides than Paris.

Figure 5.7 also highlights with different colors the communities of cities that are closer to
each other in the network (within rides are most frequently shared). The biggest community
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City Weighted degree Degree Community color

Rennes 7.9235 938 Red
Paris 5.7128 847 Red
Nantes 4.6036 737 Red
Angers 1.7697 379 Red
Vannes 1.5924 324 Red
Lorient 1.4655 217 Yellow
Saint Brieuc 1.4137 277 Red
Toulouse 1.2900 612 Cyan
Quimper 1.1514 204 Yellow
Lille 1.1329 236 Red
Brest 1.1123 221 Yellow
Bordeaux 0.9815 481 Cyan
Montpellier 0.8013 445 Cyan
Le Mans 0.5629 325 Red
Caen 0.5197 327 Red
Guingamp 0.4824 142 Cyan
Clermont Ferrand 0.4751 470 Cyan
Limoges 0.4549 338 Cyan
Morlaix 0.4491 150 Yellow
Poitiers 0.4392 331 Cyan
Grenoble 0.4334 424 Cyan
Auray 0.4330 103 Yellow
Ploërmel 0.4186 124 Red
Tours 0.4115 327 Cyan
Nancy 0.3695 197 Red
Lanester 0.3381 98 Yellow
Valence 0.3374 311 Cyan
Lamballe 0.2966 106 Red
Orléans 0.2831 320 Cyan
Quimperlé 0.2756 81 Yellow

Table 5.1: Top 30 cities ranked by the weighted degree.
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(the cyan-colored one) gathers many cities from the South of France, accounting for 52.95%
of all cities. The second largest community (the red-colored one), with 28.64%, includes
most cities from the North of France. Since most of the shared rides have short distances in
kilometers, it makes sense that the majority of cities of the same group are geographically
close to each other. For example, Rennes and Vannes, which belong to the same community,
are located 121 kilometers far from each other. Table 5.1 summarizes some statistics for the
thirty cities with higher weighted degree scores.

To study cities according to their centrality in the network, we rank them concerning
the measure of their betweenness centrality. This well-known centrality measure allows us to
identify nodes that behave as hubs in the network. As we expected, the reshaped network
shows that Paris is the most important hub in this network. While Rennes scores 1367448,
Paris scores 1855894 in betweenness centrality. This shows that rides from involving a larger
number of cities are connected to Paris, even if individually their frequencies are lower than
those involving Rennes. We summarized some statistics metrics of top ten cities ordered by
the betweenness centrality in the Table 5.2.

City Betweenness centrality Closeness Community color

Paris 1855894 0.4697 Red
Rennes 1367448 0.4408 Red
Toulouse 1278559 0.4429 Cyan
Nantes 1004196 0.4451 Red
Clermont Ferrand 955129 0.4526 Cyan
Bordeaux 913353 0.4393 Cyan
Montpellier 742930 0.4196 Cyan
Grenoble 678636 0.4127 Cyan
Limoges 503129 0.4286 Cyan
Angers 439762 0.4257 Red

Table 5.2: Top 10 cities ranked by betweenness centrality.

Ridesharing network with most shared rides. We construct a second network with the
most shared rides. The new network has two main advantages, (i) it allows us to shed some
light on the characteristics of frequent rides and (ii) it makes the ridesharing network easier to
visualize. Therefore, we represent pairs of cities only if they shared at least 1 rides per month
on average. According to the edge definition in Section 5.3.1, we construct a edge between
cities that shared at least fourteen rides, i.e., n ≥ 14. Figure 5.8 depicts the reconstructed
ridesharing network where nodes are ranked according to the weighted degree.

Overall, the new directed network has 9074 edges and 2011 nodes. We observe that Rennes
remains the most important node of the network with the highest frequency of shared rides,
followed by Paris and Nantes. Table 5.3 highlights some information of this network.
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Figure 5.8: French ridesharing network with most shared rides.
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City Weighted degree Degree Community color

Rennes 7.58 194 Red
Paris 5.43 133 Red
Nantes 4.34 116 Red
Angers 1.62 39 Red
Vannes 1.48 52 Yellow
Lorient 1.39 43 Yellow
Saint Brieuc 1.32 47 Red
Toulouse 1.08 74 Cyan
Quimper 1.07 42 Yellow
Lille 1.04 20 Red

Table 5.3: Top 10 cities ranked by the weighted degree.

5.4 Summary

The ridesharing network from data of Covoiturage-libre.fr that we describe and analyze in
this chapter showed some interesting insights about ridesharing in France. We observe that
drivers share their cars for rides within nearby cities, whose distances are more likely to be
shorter than 264 kilometers and prices are lower than 22 euros. We notice that rides are
more frequently shared for weekends, Friday and Sunday being the days with most shared
offers. Our empirical network analysis provides some insights into the ridesharing service in
France. Although Paris is the best hub in the overall network, Rennes is the city with the
highest frequency of shared rides. Our findings suggest that rides among cities East France
are more frequent, consisting a relatively small subset of geographically close cities. These
results also suggest that drivers from a subset of East France cities (geographically close) use
the Covoiturage-libre.fr highly frequently.

101





Chapter 6

PlayMob — A platform for
mobility problem

During this thesis, we devoted considerable time and effort to designing and developing a
platform named PlayMob (Privacy Layer for Mobility). We implement all our privacy proto-
cols for ridesharing in this platform. Furthermore, we implement a web interface to visualize
transportation networks and to simulate the execution of ridesharing algorithms. In addition,
PlayMob integrates other transportation algorithms developed in our laboratory LAAS-CNRS.

In this chapter, we present the main features of PlayMob. The remainder of this chapter
is organized as follows:

Section 6.1 gives a general description of PlayMob. Section 6.2 present the IHM modules,
a web platform which allows the visualization of algorithms developed during this thesis.
Finally, Section 6.3 shows an example of integration of other mobility related applications
into PlayMob.

6.1 General description

The platform PlayMob integrates implementations of all privacy-preserving ridesharing pro-
tocols and multimodal routing algorithms proposed in this thesis. For instance it can be used
to compare 2SP-SP and Priv-2SP-SP. It also include tools to build multimodal transporta-
tion networks. PlayMob is written in C++ and Python and is available online1. It has been
presented in several events including Fête de la Science 2016 - LAAS-CNRS2 and CPS
20173.

At a high level, PlayMob is composed of a Core module and three other modules, namely
the NetworkBuilder, the Ridesharing, and the IHM modules.

The Core module contains graph data structures used to model transportation network.
It also contains implementations of the DRegLC algorithm [15] used for multimodal routing
and several building blocks including goal directed search, cost pruning, Landmark . . .

1https://redmine.laas.fr/projects/playmob.
2https://goo.gl/nNchoq.
3https://cps2017.sciencesconf.org/.
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The NetworkBuilder module is used to build transportation networks. An example of
a transportation network is shown in Figure 6.1. A transportation network is composed of
two major sub-networks, namely the road network and the public transportation network. A
road network is composed of all roads accessible by car (car network), by foot (foot network),
and by bicycle (bicycle network). A public transportation network is a network formed by
public transit services (Bus, Subways, Tramways, Trains, Ferries, Gondolas . . . ). To create
a transportation network, the NetworkBuilder module builds separately a layer for the road
network by using OpenStreetMap (OSM)4 data and a layer for the public transportation by
using General Transit Feed Specification (GTFS)5 data. Building a road network from a OSM
dataset is straightforward. To each node in the OSM dataset, we create a vertex in the road
network. Likewise, to each way in the OSM dataset, the corresponding edges are created in
the road network. Each edge is weighted according to the distance between its two vertices
and labeled (Foot, Car, or Bike) according to the metadata of the way. On the other hand,
building a public transportation network is a little bit more complex. First, we extract
information related to the transit stations (stations, routes, trips). Then the transportation
network is built by using the time-dependent approach described in Section 2.2.3. Once both
layers are built, the NetworkBuilder merges them into a single transportation network by
linking each public transit stations to its closest vertex in the road network with the so-called
transfer edge. Each transfer edge weights 1 minute, which models the time required to move
from the public transport network to the road network (e.g., moving from a subway station
to the land).

The Ridesharing module contains implementations of 2SP-SP, 2SP-SP-V2, Priv-2SP-SP,
PPLD4R (cf. Chapter 3) and SRide (cf. Chapter 4). For the privacy-preserving applications
Priv-2SP-SP, PPLD4R and SRide, in addition to routing algorithms of the Core modules,
we rely on some external libraries to implement our cryptographic and secure multiparty
computation subroutine. More precisely, we use NFLlib [3] and FV-NFLlib6 libraries to
implement the private set intersection protocol in Priv-2SP-SP, the homomorphic additive
secret sharing schemes in PPLD4R and SRide. FV-NFLlib is an implementation of the Fan-
Vercauteren (FV) homomorphic encryption scheme [48] built on top of NFLlib. Finally, we use
the ABY framework [38] to implement secure two-party computation subroutine in PPLD4R
and SRide.

The IHM module is a web application designed with the Django7 framework. It uses the
software SWIG8 to connect our C++ programs to the web application, which is written in
Python. It converts the outputs of transportation problems into the GeoJSON9 format and
shows them on a interactive maps by using the Leaflet10 library.

4http://www.openstreetmap.org/.
5https://developers.google.com/transit/gtfs/.
6https://github.com/CryptoExperts/FV-NFLlib.
7https://www.djangoproject.com/.
8http://swig.org/.
9http://geojson.org/.

10http://leafletjs.com/.
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Figure 6.1: Example of transportation network.
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6.2 Presentation of the IHM module

In this section, we present the most important features of the IHM module, namely the graph
analytic application, the multimodal routing application, the accessibility analysis application,
and the ridesharing application.

6.2.1 Graph analytic

The graph analytic application allows the user to visualize the properties of a transportation
network. More precisely, for each transportation network, it gives its order, its size, the
number of edges for each transportation mode (e.g., Car, Foot, Bus, Subway . . . ). Figure 6.2
shows a screenshot of the graph analytic application.

Figure 6.2: Screenshot of the graph analytic application.

6.2.2 Multimodal routing

The multimodal routing application allows a user to compute his shortest path given an origin
location, a destination location and mobility constraints including departure time, transport
mode. . . Figure 6.3 show an example of shortest path query. The output is the shortest path
from the origin location to the destination location, with a different color per transportation
mode.
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Figure 6.3: Screenshot of the multimodal routing application.
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6.2.3 Accessibility analysis

The IHM module can also be used for accessibility analysis. The accessibility analysis appli-
cation allows the user to obtain travel-time isochrone. A travel time isochrone is the shortest
path tree rooted at an origin location, which shows the time to reach any location in the
transportation network while the origin location as the starting point. For instance, it can
be used to determine all the points of interest within a given commute time of the current
location of a user. It can also help measuring network changes effects on travel time. Fig-
ures 6.4 and 6.5 are examples of travel time isochrones with our laboratory as origin location
and departure time of 9:00am. Figure 6.4 shows travel time isochrones while using walking
and public transportation, while Figure 6.5 shows travel time isochrones for walking mode
only. In both cases, each color band represents locations accessible within the same range of
time. For instance, the red band represents locations accessible within 10 minutes, while the
green band contains location that are between 30 and 40 minutes away.

Figure 6.4: Example of travel time isochrone for walking and public transportation modes.

6.2.4 Ridesharing

The ridesharing application allows a user to solve ridesharing instances. The user inputs origin
and destination locations of both the rider and the driver. The output of each query is the
pick-up and the drop-off locations as well as the shortest paths that link the meeting points
to the origin and destinations locations of both users. In additions, the application shows the
corresponding travel time of each path as well as the ridesharing cost. Figures 6.6 and 6.7 show
a scenario in which we compare 2SP-SP and Priv-2SP-SP using the ridesharing application.
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Figure 6.5: Example of travel time isochrone for walking mode

Figure 6.6 shows the inputs of our scenarios. Both scenarios have the same origin for the
driver and the same destination for the rider. Origin locations are in green, and destination
locations are in red. For the Priv-2SP-SP’s scenario, some additional parameter (isochrone
radius and ring radius) are required. Figure 6.7 shows the outputs of both scenarios. The
pick-up and the drop-off locations are yellow markers. In these scenarios, the ridesharing
costs are the same. They have the same drop-off locations (as shown by the details related
to travel time) but they differ in the pick-up locations.

109



Figure 6.6: Example of ridesharing scenarios: inputs of 2SP-SP (up) and Priv-2SP-SP (down)
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Figure 6.7: Example of ridesharing scenario: outputs of 2SP-SP (up) and Priv-2SP-SP (down)
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6.3 Example of integration

PlayMob has also been used by other researchers in our laboratory for other transportation
problems. For example, authors in [105] propose adaptations of some k-shortest paths al-
gorithms to consider the multimodal aspect of transportation networks. These algorithms
have been implemented in the IHM module by an intern. The developed application, called
k-SP allows the user to find alternative itineraries given his origin and destination locations,
his departure time, the number of alternative itineraries, and her transportation modes and
constraint (modeled as an automaton). Figure 6.8 shows an example of 50-shortest paths
query.

Figure 6.8: Homepages of PlayMob.
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Conclusion

Summary

In this thesis, we have investigated the potential of using privacy enhancing technologies to
design privacy-preserving ridesharing services. More precisely, this thesis has addressed the
research question “Can ridesharing services be implemented in a privacy-preserving fashion?”.
We have answered this question in the positive by proposing privacy-preserving protocols to
solve two main features of ridesharing systems, namely the computation of meeting points,
and the matching of drivers and riders. Our results are summarized as follows:

Privacy-preserving meeting points determination for ridesharing (Chapter 3).
We have investigated the problem of meeting points determination in ridesharing. We have
designed and evaluated privacy-preserving protocols that allow users to determine pick-up
and drop-off locations for ridesharing, without revealing their origin and destination location.
By using synthetic data and prototype applications, we have shown that our protocols have
reasonable performances regarding computational and communication overheads and that
they can compete with existing (non-privacy-preserving) ridesharing systems.

Privacy-preserving ride matching for ridesharing (Chapter 4). We have studied
the problem of ride-matching in ridesharing. We have designed and evaluated a privacy-
preserving ride matching protocol which allows riders and drivers to compute their matches
without revealing their location data. By using a synthetic data, generated according to a
real-world dataset, and a prototype application, we have demonstrated the computational and
communication efficiency of our protocol. In particular, it has low communication overhead
(under 11 MB) and low computational overhead (under 10 seconds) in realistic scenarios of
ridesharing.

Overall, following the privacy-by-design principle, we have integrated existing privacy
enhancing technologies to devise privacy-preserving protocols for ridesharing. We have shown
that privacy requirements can be taken into account in ridesharing services without degrading
their performance.

Future work

This thesis gives rise to several research directions.

In Chapter 3, to solve the secure meeting point determination problem, we have considered
a case where the ridesharing stations are known in advance. We have analyzed the complex-
ity of this approach and experimented on French transportation networks in both intercity
and intracity scenarios. As future work, experiments on very large transportation networks
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(e.g., New-York, Londres) can be run to see how this variant scales in practice. Additionally,
differential privacy [44, 45] can be used in our privacy-preserving protocols for ridesharing.
In particular, the exponential mechanism [81] can be integrated into the shared path election
subroutine of our privacy-preserving meeting point determination protocols. Using differen-
tial privacy mechanisms will allow obtaining quantifiable privacy guarantees regardless the
knowledge of the adversary.

In Chapter 4, we have used spatial and temporal generalization to compute feasible
matches for each rider. More precisely, we have generalized each location to the district
in which they are located, and each arrival to an epoch. As future work, other spatiotem-
poral generalizations can be considered. Furthermore, it is worth looking into how to solve
the matching problem without using spatiotemporal generalizations. We would also like to
extend our approach to consider the driver’s vehicle capacity and the sharing of this capacity
with several riders during the trip. The ridesharing’s fare could also be integrated into the
secure filtering protocol.

Another interesting research line is related to adapting our privacy-preserving protocols to
shared mobility — the shared use of transportation mode, including bike sharing, ridesharing,
and public transit — and allow to design privacy-preserving navigation services (services that
cannot learn the origin-destination queries of users). Current implementations of privacy-
preserving navigation services [127, 126] consider only road network and rely on the private
information retrieval [30] protocol and the pre-computation of shortest paths. However, due
to the dynamic nature of transit services, such techniques cannot be used. Hence, a solution
to address this concern while not sacrificing efficiency can be designed.

In a very broad sense, the potential of the so-called federated learning [24] — a privacy-
preserving machine learning approach that allows the training data to be distributed on the
mobile devices, and learns a shared model by aggregating locally computed updates — for
crowd-sourcing in the mobility context can be investigated.

As mobile devices are becoming more and more powerful, and the global awareness on
privacy issues related to the use of these technologies are increasing, the integration of privacy-
preserving technologies in mobility services could become more and more popular in the
future. This thesis is a step towards designing privacy-preserving mobility services.
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Appendix A

Résumé des Travaux de thèse

A.1 Contexte et Motivations

Le développement des technologies de l’information et de la communication (TIC ) a contribué
à l’émergence des services de covoiturage qui permettent aux conducteurs de partager les sièges
libres de leurs véhicules avec des passagers ayant des trajets similaires.

Les services de covoiturage présentent des avantages économiques et écologiques. Du point
de vue économique, ces services permettent la réduction des coûts de trajet grâce au partage
des frais entre conducteurs et passagers. Sur le plan écologique, ils permettent de réduire la
congestion et de facto l’émission des gaz à effet de serre.

Cependant, pour leur bon fonctionnement, ces services collectent des données personnelles
telles que les données de localisation et les données financières des utilisateurs. La nature sen-
sible des données de localisation peut conduire à des bris de vie privée. D’une part, l’analyse
des données de localisation peut permettre l’identification des points d’intérêts (domicile, lieu
de travail, loisirs) d’un individu ainsi que l’établissement de son modèle de mobilité [54].
D’autre part, ces données ont un fort pouvoir d’identification. En effet, il ne suffit que de la
connaissance d’un quelques données de localisation pour identifier de façon unique un individu
dans la population [82].

L’existence de ces risques pourrait porter un frein à l’adoption des systèmes de covoiturage.
Dans le cadre de cette thèse, on s’intéresse au développement de technologies d’amélioration de
la confidentialité (TAC ) pour le covoiturage. Nous avons pour cela considéré deux problèmes
inhérents au covoiturage : à savoir la synchronisation d’itinéraires permettant de déterminer
les points de rencontre et de séparation utilisés pour faire du covoiturage et le problème
d’appariement permettant de trouver un couplage des conducteurs et des passagers de sorte à
réduire les coûts de covoiturage. Pour ces deux problèmes, nous avons proposé des algorithmes
utilisant les TAC afin de garantir la protection de la vie privée des utilisateurs.

A.2 Nos contributions

Le Chapitre 1 donne des définitions générales de la vie privée, de ses menaces, de ses
propriétés ainsi que des dispositions de protection juridique et technique existantes.
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Le Chapitre 2 introduit des notions élémentaires de théorie des graphes et de routage
multimodal. Il introduit également le covoiturage et analyse ses aspects de routage et
d’appariement.

Dans le Chapitre 3, nous formalisons le problème de synchronisation sécurisée pour le
covoiturage (SMP4R) et fournissons deux protocoles (Priv-2SP-SP et PPLD4R) préservant la
confidentialité pour le résoudre. Le problème de synchronisation des itinéraires de covoiturage
est illustré dans la figure A.1.

Nous considérons un conducteur d et un passager r. Chaque utilisateur u ∈ {d, r} a
un profil P (u) = [Ou, Du, τu

Ou
, Σu] constitué de son origine Ou, sa destination Du, sa date

de départ à l’origine τu
Ou

, ainsi que ses modes de transport Σu. Pour chaque utilisateur
u et pour un doublet (i, j) de points de ramassage (pick-up) et de débarquement (drop-
off ), on définit le coût Tri−j(u) de son itinéraire comme étant le coût du trajet Ou → i →
j → Du. Ensuite, on définit le coût du covoiturage Ridei−j(d, r), pour un couple (d, r) de
conducteur et de passager et un couple (i, j) de pick-up et drop-off, comme étant la somme
des coûts des itinéraires du passager et de conducteur ainsi que du temps d’attente au pick-up:
Ridei−j(d, r) = Tri−j(d) + Tri−j(r) + |τd

i − τ r
i |.

Figure A.1: Instance d’un problème de synchronisation pour le covoiturage

L’objectif du problème de synchronisation sécurisée est de trouver, étant donné un con-
ducteur d, un passager r et un ensemble S de points de covoiturage potentiels, le couple
(i∗, j∗) ∈ S × S tel que Ridei∗−j∗(d, r) est minimisé et P (u) protégé ∀u ∈ {d, r}. Plus pré-
cisément, un profil P (u) sera dit protégé si les trois éléments Ou, Du et τu

Ou
sont protégés (ne

sont révélés à aucun autre utilisateur durant le calcul de (i∗, j∗)).

Le protocole Priv-2SP-SP est une version decentralisée et sécurisée de l’algorithme 2SP-SP
introduit dans [21]. Contrairement à 2SP-SP, Priv-2SP-SP permet la détermination des
points de pick-up et drop-off pour le covoiturage tout en garantissant la protection des don-
nées de localisation des utilisateurs. À l’instar de 2SP-SP, Priv-2SP-SP modélise le réseau
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de transport sous forme de graphe multimodal; il se déroule comme suit: dans un premier
temps, le passager et le conducteur calculent chacun en local leurs ensemble de points de cov-
oiturage (pick-up et drop-off) potentiels. Ensuite les deux utilisateurs engagent un protocole
d’intersection sécurisée pour déterminer les points de pick-up et de drop-off communs. Puis,
pour chaque couple de point (i, j), chaque utilisateur calcul un score inversement proportion-
nel au coût de l’itinéraire induit par (i, j). Enfin, le couple (i, j) ayant le score cumulé le plus
grand est choisie comme solution.

Le protocole PPLD4R permet également de déterminer de manière sécurisée les points de
synchronisation pour le covoiturage sans utiliser un protocole d’intersection sécurisée. Il est
utilisé dans le cas statique où l’ensemble S des points de covoiturage potentiels est connu
à l’avance, permettant ainsi le pré-calcul des trajets partagés i → j. Il permet également
d’intégrer le temps d’attente au point de pick-up grâce à une sous routine de comparaison
sécurisée. Enfin, il utilise un protocole de secret partagé pour prendre en compte de façon
explicite le coût du covoiturage dans la phase de sélection de la meilleur solution.

D’une part, on compare Priv-2SP-SP à 2SP-SP sur deux groupes de 100 instances chacun.
En termes de temps de calcul, Priv-2SP-SP est 1.6× (resp. 1.4×) plus rapide que 2SP-SP
sur le groupe I (resp. sur le groupe II). Cela est dû d’une part au fait que Priv-2SP-SP
explore moins l’espace des solutions que 2SP-SP, et d’autres part au fait que les routines
cryptographiques ont un temps de calcul quasi-linéaire au nombre de nuds dans le réseau de
transport. En terme de coût du covoiturage, on observe des écarts de 4.4% (resp. 2.5%) dans
le groupe I (resp. le groupe II) entre les solutions du Priv-2SP-SP et les solutions optimales
du 2SP-SP. La qualité des solutions du Priv-2SP-SP est également évaluée en termes de
proximité géographique par rapport aux solutions du 2SP-SP. On observe des écarts de 230m
(resp. 103 m) entres les pick-ups dans le groupe I (resp. le groupe II), et des écarts de 202m
(resp. 99 m) entres les drop-offs dans le groupe I (resp. le groupe II).

D’autre part on compare PPLD4R et 2SP-SP sur deux scénarios (intra-cité et inter-cité), de
1000 instances chacun, en terme de qualité de la solution et de temps de calcul, en supposant
que le trajet du passager est indépendant du temps entre le drop-off et sa destination finale.
Ici, on obtient les mêmes coûts de covoiturage pour PPLD4R et 2SP-SP, tandis que PPLD4R est
7× (resp. 33×) plus rapide que 2SP-SP sur le scénario intra-cité (resp. le scénario inter-cité),
grâce au pré-calcul des chemins partagés. On observe également des coûts de communication
raisonnables pour PPLD4R: de l’ordre de 250 ko.

Les résultats de nos expériences montrent que l’on peut concevoir des protocoles de syn-
chronisation d’itinéraires préservant la vie privée avec une qualité similaire aux protocoles de
covoiturage existants sans introduire de coûts de calcul et de communication importants.

Dans le Chapitre 4, nous considérons une version généralisée du problème SMP4R, dans
laquelle nous considérons plusieurs conducteurs et passagers et souhaitons assigner les con-
ducteurs aux passagers tout en préservant les données de localisation de chaque utilisateur.
Nous proposons SRide, un système d’appariement préservant la vie privée qui fonctionne en
trois étapes. Tout d’abord, il utilise un protocole de filtrage sécurisé pour construire le graphe
bipartite des correspondances possibles. Ensuite, il s’appuie sur les protocoles sécurisés de
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détermination de points de synchronisation proposés dans le Chapitre 3 pour obtenir le coût
de chaque paire possible. Enfin, il détermine les affectations optimales des conducteurs et des
passagers. Nous évaluons notre protocole et démontrons son efficacité en temps de calcul et
en communication. En particulier, on obtient des temps de calcul inférieurs à 10 secondes et
des coûts de communication de l’ordre de 11 MO sur des scénarios réalistes de 1000 offres et
1000 demandes de covoiturage sur une plage horaire de 1 heure.

Le Chapitre 5 est dédié à l’analyse des données collectées sur Covoiturage-libre.fr 1:
un service web de covoiturage populaire français. Cette analyse nous permet d’avoir plus
d’informations sur le covoiturage en France et d’utiliser cette information pour générer des
données synthétiques réalistes pour nos expériences.

Dans le Chapitre 6, nous présentons les principales fonctionnalités de PlayMob: une
plateforme web qui implémente les différents algorithmes proposés dans cette thèse.

1http://covoiturage-libre.fr
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